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SUMMARY

Recent impactful advances in integrated photonics undoubtedly owe much to

silicon and its associated enabling platform (SOI). Although silicon has proved to be

an indispensable element in many photonic systems yet it seems that it is not the

ultimate solution to address all the challenges facing the photonics community. There-

fore, integration of silicon with other optical materials featuring diverse properties is

highly desirable. Such integration will be conducive to platforms which are naturally

more capable and are suited for implementation of a wider range of optical devices and

diverse functionalities. This dissertation is dedicated to design and implementation of

integrated optical elements for hybrid material platforms. The basic theoretical foun-

dation of integrated photonics is laid out in Chapter 2. In Chapter 3, an interlayer

grating coupler for a specific hybrid material platform is designed, and demonstrated.

Considering the fact that in almost all integrated photonic platforms, fabrication im-

perfections lead to an unpredictable shift in the wavelength of operation of individual

devices, post fabrication tuning/trimming is inevitable. A number of widely used post

fabrication trimming/tuning methods are briefly reviewed in Chapter 4 with special

emphasis on a method based on electron beam exposure. In Chapter 5, an ultra-fast,

low-power, and self-trimmable electro-optic modulator in demonstrated on a Si-based

multilayer platform. Due to its remarkable optical and electronic properties, graphene

has become a valuable material for opto-electronic applications. Integration of this

novel 2D material with SOI platform is investigated in Chapter 6. Graphene-based

electro-optic modulation through absorption and refractive-index change is success-

fully demonstrated using electrostatic gating mechanism. Chapter 7 is devoted to

demonstration of a field-programmable 2 × 2 optical switch on a vertically stacked

xvi



Si/SiO2/SOI platform. In Chapter 8, the peak-dragging phenomenon in a nanobeam

photonic crystal cavity is studied. The optical bistability associated with this nonlin-

ear phenomenon is of great interest for all-optical processing and sensing application.

Future directions of this thesis are also discussed in the last Chapter.
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CHAPTER I

INTRODUCTION

Advances in information technology (IT) and its consequent high growth rate in the

generation of digital data have pushed for the emergence of new paradigms to store,

process, and transfer large quantities of data in a cost-effective way. Over the past

decade, IT has been struggling with issues such as resource availability, reliability,

scalability, and cost. Concepts such as cloud computing, utility computing, and

cloud storage have been introduced to address the abovementioned concerns. Recent

adoption of such concepts, which are more than three decades old, has placed a good

portion of data traffic and processing burden on the servers in data centers. As a

matter of fact, the total data traffic within data centers was 1.9 Zettabyte in year

2012 and is predicted to reach to 5.8 Zettabyte in 2017 [1]. This data traffic volume

comprises 76% of total data traffic (along with center-to-center and center-to-user

data traffic) with a compound annual growth rate (CAGR) of 24% [1]. The past,

present and predicted future growth trend of the data traffic for a six-year period are

shown in Figure 1(a).This growth emphasizes the importance of short-reach (within

data centers) interconnects for future development of the high-performance computing

infrastructures.

Conventionally, electrical (mostly copper-based) interconnects have been deployed

in long-, medium-, and short-reach links; benefiting from mature technology and con-

sequent possibility of volume production in a rather cost-effective way. Nevertheless,

this technology suffers from fundamental shortcomings. First, the power consumption

and the delay of the electrical links increase with the length of the link. Although

repeaters can be used to reduce the overall delay, this approach comes at the cost
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of an even more power consumption. Second problem with electrical interconnects

is the signal integrity, which exists for all link length scales (mainly due to crosstalk

through coupling capacitances). This issue can be dealt with pre- and post-emphasis

circuits, which again requires extra power. Moreover, according to predictions pro-

vided by the international technology roadmap for semiconductors (ITRS) reports,

the signal pin counts and bandwidth growth will be inadequate to keep up with the

future communication needs [2].

Figure 1: (a) Global data center traffic trend, data taken from [1]; (b) Historical trend
for substitution of electrical links with optical interconnects over the past decades,
image taken from [3].

In comparison, optical interconnects offer data transmission through channels

(e.g., waveguides and fibers) with negligible propagation loss, and hence, most of the

energy is consumed only at the transmitter/receiver terminals, where electrical-to-

optical (E/O) and optical-to-electrical (O/E) conversions take place. Therefore, this

technology can potentially provide length-independent power consumption solutions

especially for length ranges less than 100 m. Besides, optical signals are relatively less

prone to interference when compared with electrical signals. Also, optics in conjunc-

tion with wavelength-division multiplexing (WDM) technology offers immense band-

width of operation that can be enhanced with the number of carrier wavelengths.

However, optical interconnection technology still struggles with the manufacturing

2



cost. Yet, driven by the notable advantages of optical interconnects over their elec-

trical counterparts, we have witnessed a continual migration over time towards de-

ployment of optical interconnects whenever such substitution was financially justified.

This journey started by revamping transatlantic long-haul (1000 km − 10, 000 km)

communication cables in the mid 1980s and extended to cross-country and further

across central office and data center links (100 m − 1 km) in the late 1990s. This

30-year-long trend in substitution of optical links suggests roughly an order of magni-

tude deeper penetration every five years [4]. This historic trend over time along with

the associated cost and offered link bandwidth is shown in Figure 1(b). Following the

same trend, advances in the photonics technology have resulted in the possible use

of optical interconnections at all levels (e.g., board-to-board, chip-to-chip, and even

on-chip) over the last decade.

For chip-to-chip and on-chip applications, optics can compete with electronics

provided that the overall power consumption of the link remains low. The typical

target values for power consumption are 2 pJ/bit for communication from the core

to a distant memory, 500 fJ/bit for communication from the core to a short-distance

memory (e.g., L3 cache), and ultimately 100 fJ/bit for communication within the

core [3]. Besides power consumption, a viable optical solution for chip-to-chip and

on-chip interconnect should offer a high input/output (I/O) bandwidth density and

a high integration yield with a cost as low as possible.

As mentioned earlier, the cost of optics has been high, i.e., ≈ $1/Giga bit per

second (Gbps), mostly due to its smaller market size and should be brought down

(less than 10/Gbps) to be comparable with electronics. Capacitive proximity commu-

nication enables electronics to reach a potential bandwidth density of more than 1.25

Pbps/cm2 (assuming an electrical pad pitch of ≈ 20 µm and signal rates of ≈ 2.5− 5

Gbps per line [5]). An aggregate bandwidth density of 43 Tbps/cm2 (with a power
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efficiency of 3.6 pJ/bit) is already demonstrated for chip-to-chip communication us-

ing the electrical proximity communication technology [6]. In comparison, adopting

a similar approach in integrated optics in conjunction with WDM (assuming eight

channels in a coarse WDM arrangement each at 12.5 Gbps signaling rate) predicts an

order of magnitude higher bandwidth density, amounting to more than 11 Pbps/cm2,

given that a typical optical coupler can have a footprint of smaller than 30 µm on

each side.

Among various material platforms available for integrated optics (i.e., silica-on-

silicon, silicon-on-insulator (SOI), lithium niobate, TriPlex, III-V materials, and poly-

mers), SOI has become the center of attention for a number of different reasons.

First of all, this material platform is cheap and allows for keeping the total direct

material cost low. Also, the SOI platform permits the use of the existing complemen-

tary metal-oxide-semiconductor (CMOS) technology for the fabrication of photonic

devices. Thanks to the maturity of the integrated circuit technology, CMOS com-

patibility significantly reduces the overall manufacturing cost. Furthermore, silicon

(Si) is transparent over almost the entire optical telecommunication wavelength band

(1300 nm − 1600 nm) and offers a high refractive index contrast (nSi ≈ 3.48) with

respect to its surrounding material (usually silicon oxide (SiO2) with n ≈ 1.45 or air

with n = 1). This property enables tight confinement of light, which in turn leads

to the realization of ultra-compact photonic devices, reduced crosstalk and interfer-

ence, and ultimately high integration densities. However, this very property renders

Si-based photonic devices more vulnerable to fabrication imperfections (e.g., sidewall

roughness). Moreover, Si exhibits a decent free-carrier dispersion, which is desirable

for the realization of high-speed active optical devices.

Although Si has proven to be an indispensable element in many photonic systems,

it is not the ultimate solution for all the challenges facing today’s photonics industry
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due to its intrinsic shortcomings. For example, implementation of active function-

alities such as lasing and detection in crystalline Si is difficult owing to its inherent

indirect bandgap. Moreover, in contrast to silicon nitride (SiN), silicon carbide (SiC),

and SiO2; Si behaves nonlinearly once exposed to high intensity optical fields both

due to the two-photon absorption process and its comparatively large third-order

nonlinear optical coefficient (χ3) [7, 8].

In addition, although Si has a rather large Kerr nonlinear coefficient (n2 ≈ 3 ×

10−18 m2/W [7, 8]) compared to higher bandgap materials (e.g., SiN with n2 ≈

2.4 × 10−19 m2/W [9], and SiO2 with n2 ≈ 2.5 × 10−20 m2/W [10]), it suffers from

higher loss due to two-photon absorption (βTPA = 5×10−12 m/W ) and free-carrier loss

as compared to other CMOS-compatible materials such as SiN and SiO2. This poor

nonlinear figure of merit (NFOM = n2/(λβTPA) ≈ 0.37) in telecommunications band

makes Si less appealing for certain nonlinear applications such as comb generation

and high-speed all-optical processing. Due to these shortcomings, the best reported

propagation loss in Si waveguides (≈ 10 dB/m [11, 12]) is an order of magnitude

higher than that of SiN waveguides (≈ 0.1 − 2 dB/m [13]), and the best reported

resonator quality factor (Q) achieved in planar Si platforms is an order of magnitude

lower than that in SiN platforms(≈ 3 × 106 compared to ≈ 3 × 107, respectively)

[12, 14] for similar microresonators.

One common approach to mitigate these shortcomings is to coherently integrate Si

with other materials. In this thesis, I will partly focus on the development of photonic

devices suited for high-speed optical communication applications on planar hybrid

material platforms. The 3D schematic of my envisioned structure for realization of a

broadband modulator for chip-to-chip and on-chip optical interconnects is shown in

Figure 2. The structure can be fabricated on a hybrid material platform comprising

a multilayer stack of SiN, SiO2, and Si.

The rationale behind using such a hybrid platform is to from a semi-ideal material
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Figure 2: The envisioned architecture for a multichannel optical transmitter.

system for many desired optical functionalities by combining the unique features of

each material (e.g., low loss of SiN and tunability of Si) while avoiding their respective

shortcomings. In the proposed structure shown in Figure 2, an optical comb signal is

generated in a high-Q resonator in the SiN layer once excited with a pump laser light

via an adjacent waveguide. The possibility of optical comb generation in SiN micror-

ings through the four-wave-mixing mechanism is already demonstrated in [15]. The

multi-wavelength optical signal (i.e., the comb pulse train) is evanescently coupled to

the drop waveguide on the SiN layer. Then the comb signal is diffractively coupled

to the Si layer via an interlayer grating coupler. On the Si layer, each carrier wave-

length is modulated separately by an appropriate electrical signal in a multi-channel

electro-optic modulator structure. The resulting broadband signal is then directed

through the switches and routers toward their intended destinations. The modulation

can rely on the free-carrier dispersion effect in Si or alternatively can be achieved by

taking advantage of other novel materials such as graphene or electro-optic polymers.
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CHAPTER II

THEORETICAL FOUNDATION

2.1 Classical Electrodynamics

The goal of this section is to briefly introduce the background physics and math-

ematics used throughout this thesis required for accurate study of the behavior of

simple building blocks of integrated photonic circuits, e.g., waveguides, resonators

(also known as cavities), couplers, and etc. In general, Maxwell’s equations provide

an accurate mathematical tool to study the generation and propagation properties

of electromagnetic (EM) waves in arbitrary media. Nearly all integrated photonic

devices operate in rather low-energy radiation regimes, e.g., infra-red (IR) region

(λ ∈ [700 nm, 100 µm]), visible region (λ ∈ [400 nm, 700 nm]), and occasionally in

ultraviolet (UV) region (λ ∈ [10 nm, 380 nm]) of the electromagnetic spectrum. In

such cases, the wavelength of operation is invariably much greater than atomic spac-

ing of the optical medium (for solids and liquids atomic distances are around ≈ 2–3

Å and for gases are around ≈ 20-30 Å). Also in almost all occasions the basic oper-

ation of photonic devices relies on macroscopic observables (i.e., quantities averaged

over length scales much longer than atomic distances) and the details of the EM field

variations are generally irrelevant. The net effect of all small-scale EM sources (i.e.,

electric and magnetic charges associated with every single atom) can be encapsulated

in material properties, namely, the electric permittivity [ε] = ε0[εr] (or alternatively,

the reflective index n) and the magnetic permeability [µ] = µ0[µr] tensors. In general

the elements of permittivity and permeability tensors can be nonlinear and non-local.

The use of macroscopic variant of Maxwell’s equations is common for describing EM

waves in most materials (other than vacuum). This simplification is well justified as
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long as proper material properties are used in modeling the medium. The use of this

approximation significantly relaxes the intractable complexities and computational

burdens associated with modeling a myriad of EM sources.

The macroscopic Maxwell’s equations in time domain are as follows [16]:

5 · ~D = ρ,

5× ~H − ∂ ~D

∂t
= ~J,

5× ~E +
∂ ~B

∂t
= 0,

5 · ~B = 0.

(1)

In the system of Equations 1, ~E = ~E (~r, t), ~B = ~B (~r, t), ~D = ~D (~r, t), and

~H = ~H (~r, t) denote the (macroscopic) electric field, the magnetic induction, the

electric displacement, and the magnetic field, respectively. Also ρ = ρ (~r, t) and

~J = ~J (~r, t) represent the (macroscopic) free (as opposed to bound) electric charge

and current densities, respectively. In general, the four field quantities as well as the

two sources mentioned above can be functions of time (t) and space (~r).

For simplicity, the following discussion will be restricted to nonmagnetic, linear,

and isotropic optical materials. As a result, the permittivity and permeability ten-

sors are diagonal with identical diagonal entities and the electric field, the electric

displacement, the magnetic induction and the magnetic field are co-related through

the following constitutive relations.

~D = ~D
(
~E, ~B

)
=

∫
d~r′
∫
dt′ε0εr

(
~r′, t′

)
~E
(
~r − ~r′, t− t′

)
,

~B = ~B
(
~E, ~H

)
= µ0

~H.

(2)

Note that the medium response, i.e., εr

(
~r′, t′

)
, is usually localized around the origin

and may be nonvanishing for some range far from ~r′ = 0 and t′ = 0. In addition, the

free current density in conducting media is related to the electric field through Ohm’s

law, i.e.,

~J = σ (~r, t) ~E. (3)
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In Equation 3, σ is the conductivity of the medium. Knowledge of the sources, i.e.,

ρ (~r, t) and ~J (~r, t), and the medium, i.e., εr (~r, t), is sufficient to uniquely determine

the macroscopic vector fields at any given point in space and time. Usually for

visible, IR, or other EM radiations of longer wavelengths, the spatial non-locality (of

the permitivity) can be ignored and the relation between the electric field and the

electric displacement can be simplified as follows:

~D =

∫
dt′ε0εr (~r, t′) ~E (~r, t− t′) . (4)

In most devices used for integrated photonic applications, there are no free electric

charges and/or current sources. In addition,(oftentimes) the steady-state solutions

of Maxwell’s equations are of interest. Assuming solutions with a time-harmonic

dependence, i.e., e−iωt, for such cases, the Maxwell’s equations and the constitutive

relations can be combined and recast as:

(
52 + µ0ε (~r, ω)ω2

)
~E (~r)

~B (~r)

 = 0. (5)

Although analytic solutions to the Maxwell’s equations exist for a few number of

special structures, it is generally difficult (if not impossible) to obtain a closed-form

expression for arbitrary geometries (including waveguides and resonators). Alter-

natively, numerical approaches based on the finite-element-method (FEM) and the

finite-difference (FD) algorithms offer convenient means to deal with time-domain

and frequency-domain Maxwell’s equations. In the next section, FEM (available via

comsol software package) in the frequency-domain is used to investigate the properties

of two highly used planar photonic structures: optical waveguides and cavities.

2.2 Optical Waveguides

An optical waveguide is a device meant to carry the EM waves from one point to

another with as lowest possible distortion. The simplest optical waveguide is formed
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using at least two dielectric materials with unequal refractive indices. The material

with a higher refractive index is used as the core region and the material with a lower

refractive index is used as the surrounding region. Since optical fields tend to reside in

the material with high refractive index, most of the optical energy is usually confined

in the core region. As an example, single-mode fibers (SMF), which are by far the most

widely used optical waveguides, consist of a cylindrical core and a cladding material

with refractive indices of ncore ≈ 1.45205 and ncladd ≈ 1.44681, respectively. A typical

planar waveguide for chip-scale integrated applications consists of a rectangular core

(usually Si, SiN, and or other highly refractive materials) situated on top of a substrate

(usually SiO2). Often, this structure is capped with a cladding material (typically

SiO2) for passivation purposes. The picture shown in Figure 3(a) is a 3D schematic

of a typical planar waveguide buried underneath a cladding material.

Figure 3: (a) The 3D schematic representation of a typical waveguide structure; (b)
The cross-section view of the waveguide structure.

From a design point of view, propagation loss along the waveguide, phase and

group velocities (or equivalency dispersion relation), and the spatial profiles of the

propagating optical modes constitute the main characteristics of a waveguide. These

properties are mainly determined by the dimensions of the waveguide, i.e., width and
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height, as well as the refractive indices of the core and the surrounding material.

Since an ideal waveguide is considered to be homogeneous along the guiding direction

and infinitely long, the knowledge of the waveguide’s cross-sectional (see Figure 3(b))

geometry is sufficient to determine the above-mentioned features. As a result of the

translational symmetry in the waveguide structure (here assumed to be along the z

axis), it is possible to factor out the spatial variation of the fields in the z direction

and assume the following forms for the electric field and the magnetic induction:

~E(x, y, z, t) = ~E(x, y)e±ikz−iωt,

~B(x, y, z, t) = ~B(x, y)e±ikz−iωt.

(6)

The − and + signs in the exponents are associated with the forward and backward

propagating waves, respectively. For an arbitrary cross-section geometry, the rela-

tionship between the wavenumber (k) and the frequency (ω) of the EM wave is not

trivial. The k(ω) function is the so-called dispersion relation from which the phase

velocity vp (or alternatively effective refractive index neff = c/vp) and the group ve-

locity vg (or alternatively group refractive index ng = c/vg) of the propagating EM

wave can be calculated through vp = ω/k(ω) and vg = ∂ω/∂k(ω). With the as-

sumed z dependence of the fields in Equation 6, Equation 5 reduces to the following

two-dimensional form:

(
52
t + (µ0ε (x, y, ω)ω2 − k2)

)
~E (x, y)

~B (x, y)

 = 0. (7)

In the system of Equations 7, 52
t is the transverse part of the Laplacian operator

and ~E (x, y) and ~B (x, y) are the cross-sectional (transverse) field profiles. Based on

the direction of the electric field (referred to as polarization), the mode profiles can

be classified into two groups: transverse electric (TE) and transverse magnetic (TM)

modes. For TE modes, the electric field ~E mainly lies in the plane of the waveguide,

i.e., in the x−z plane, whereas for the TM modes the magnetic-induction vector ~B is

mainly in the x−z plane. Many applications require single mode operation (i.e., only
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one TE/TM mode). This requirement can be ensured by choosing the cross-sectional

dimensions, i.e., height h and width w, of the waveguide to be small compared to

the EM wavelength. As an example, at the telecommunication wavelength (λ ≈ 1550

nm), a single mode waveguide can be fabricated in an SOI platform with a typical

cross-sectional dimensions of h = 250 nm and w = 450 nm. The norm of the electric

field for the TE and TM modes of such a waveguide at λ = 1550 nm are obtained

through FEM in the x − y plane and shown in Figure 4 (the cladding material is

assumed to be air).

Figure 4: Spatial profiles of the components of the electric field for the TE and TM
modes of a Si waveguide with h = 250 nm and w = 450 nm obtained at λ = 1550
nm.

In Figure 4, it is seen that the TE mode is more confined to the core region and

hence undergoes a larger effective index, i.e., neff−TE ≈ 2.39 compared to neff−TM ≈

1.78 in the TM mode. Note that in both cases the mode profiles extend to the

low refractive surroundings. As a result, the effective refractive indices for both

polarizations are less than the refractive index of the core material, i.e., nc ≈ 3.48. In

addition, as explained in Section 2.2.1, the waveguide dispersion relation, i.e., k(ω),
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can be engineered by choosing a proper cross section.

2.2.1 Dispersion

In contrast to the propagation of an EM wave in free space with no confinement

(plane wave), the relation between the wavenumber (k) and the frequency (ω) for

an EM wave propagating in a confined medium no longer takes the simple form of

ω = c/nk. Depending on the geometrical shape of the propagation medium, i.e.,

ε(r, ω), k(ω) can take an arbitrary form. The dispersion relation for confined media

can be obtained by seeking solutions in the form of expressions in Equation 6 for

Maxwell’s equations. As an example, for an EM wave propagating in a Si waveguide

with cross-sectional dimensions of h = 250 nm and w = 450 nm, the dispersion

relations for the supported TE and TM modes are plotted in Figure 5 (λ = 2π/k).

Figure 5: Dispersion plots of the TE and TM modes for Si waveguides with different
widths. The red and blue plots correspond to the TM and TE modes, respectively.
The corresponding dispersion plots for waveguides with w = 300 nm, w = 450 nm,
and w = 500 nm are distinguished by the square, the circle, and the triangle markers,
respectively.
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The dispersion curves are obtained through FEM simulations assuming refractive

indices of nSi = 3.48 and nSiO2 = 1.45 for the core and substrate regions. For

comparison, the dispersion relation is also calculated for waveguides with two different

widths of w = 300 nm and w = 500 nm. It is seen that the width of the waveguide

has a noticeable effect on the effective refractive index. In general, it is safe to

conclude that the cross-sectional dimensions of a waveguide significantly affect its

dispersion properties. The dispersion plots in Figure 5 suggest that although the

effective refractive indices of the TE and TM modes changes substantially over the

plotted wavelength range (i.e., from λ = 1500 nm to λ = 1650 nm), the corresponding

group velocities remain relatively constant judging from the negligible change in the

slope of dispersion curves.

2.2.2 Propagation Loss

In an ideal waveguide, the total power of the EM wave (P0) remains constant all

along the waveguide (z direction). However, as a result of material absorption and

scattering loss, the optical power in an actual waveguide drops according to P0e
−αz

as the wave propagates in the waveguide. In this expression, α = αm + αs + αr

encapsulates the collective effect of material loss αm, scattering loss αs, and possibly

radiation loss αr for non-straight waveguides. The material absorption is related to

the extinction coefficient k, which is the imaginary part of the refractive index (not to

be confused with the wavenumber) through αm = (4πk)/λ. In a straight waveguide

the scattering loss mainly stems from the fabrication-induced sidewall roughness (see

Figure 6). Typically the size of the rouphness (1 nm−10 nm) is considerably smaller

than the wavelength (λ ≈ 1550 nm). In Figure 6, roughness on the two sidewalls

of a typical microring is shown. In contrast to curved waveguides, the radiation loss

has negligible effect on power loss in straight waveguides. However, depending on

the curvature and refractive index contrast of a waveguide, this loss mechanism can
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significantly contribute to the overall power loss.

Figure 6: SEM images of the roughness observed on the inner and the outer sidewalls
of a microring. The degree of roughness can be minimized by using better fabrication
techniques which allow for higher precision.

For a waveguide with length l, the e−αl is referred to as the total propagation loss

or attenuation and is usually expressed in dB, which is −10 log10

(
e−αl

)
= 4.34×α× l

dB. The attenuation parameter can be normalized to the length of the waveguide

and expressed in dB/m, which is 4.34×α dB/m. Note that with the above definition,

the corresponding field amplitudes decay as e−
α
2
z.

2.3 Optical Microcavities

Optical microcavities, also referred to as optical microresonators, are generally used

to store EM energy for extended periods of time in a small volumetric region and

at specific frequencies. From a structural point of view, integrated microcavities

can be classified into a number of distinct geometries including microspheres, micro-

toroids, microdisks, microdonuts, microrings, one-dimensional photonic crystal (PhC)

cavities (also referred to as nanobeam cavities), two-dimensional PhC cavities, three-

dimensional PhC cavities. For some of the abovementioned structures, representative

SEM images are provided in Figure 7. To keep the discussion short, Only the prop-

erties of microdisk cavities will be explored in details. Similar concepts can readily

be extended to other types of optical microcavities.
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Figure 7: A representative subset of the family of optical micro-cavities. Scanning
electron microscopy images of (a) a silica microtoroid on a Si-chip with a radius of
40 µm (from [17]), (b) a microdisk with a radius of 25 µm (from [17]), (c) a silica
microsphere with a radius of 11.5 µm (from [17]), (e) a microring cavity on an SOI
platform, (e) a Si3N4 nanobeam cavity (from [18]), and (f) a two-dimensional PhC
cavity in a 175 nm GaAs slab with a single hole defect (from [19]).

A 3D schematic of a typical microdisk cavity is shown in Figure 8(a). As a result

of circular symmetry in the geometry of the device, knowledge of the radial cross

section (Figure 8(b)) of this device is sufficient to determine its optical properties.

Similar to the waveguide model, it is possible to factor out the spatial variation of

the fields in the φ direction and express the electric field and the magnetic induction

in the following forms:

~E(r, z, φ, t) = ~E(r, z)e±imφ−iωt,

~B(r, z, φ, t) = ~B(r, z)e±imφ−iωt.

(8)

In the above expressions, the + and - signs in the exponents are associated with

the degenerate clockwise (CW) and counter-clockwise (CCW) traveling waves, re-

spectively. In contrast to an ideal waveguide structure, which is infinitely long with

the EM fields confined in only two dimensions, in an optical microcavity the EM

fields are confined within the boundaries of the structure in three dimensions. As a
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consequence, the azimuthal mode number m can only assume discrete values (non-

negative integers) in contrast to the wavenumber k which can assume any numerical

value (in the range of real numbers).

Figure 8: (a) A schematic of a microdisk cavity; (b) A cross-section view of the device
taken at φ = 0 in the r − z plane.

The polarization of the supported modes are defined and determined similar to

the waveguide model. For a typical microdisk cavity the thickness of the structure is

chosen such that higher-order vertical (in z direction) modes are suppressed. However,

a microdisk cavity with a large radius compared to the wavelength can support a

number of radial modes. As an example, the first three TE radial modes of a Si-

based microdisk cavity with a radius of 20 µm and a height of 250 nm are shown in

Figure 9 (obtained through FEM simulations around λ ≈ 1550 nm).

In certain applications, e.g., optical spectroscopy and sensing, it is highly desired

to work with midrodisk cavities which support only one radial mode. It is possible

to suppress the 2nd and higher-order radial modes by reducing the radius of the

microsdisk. This approach, however, compromises the quality factor of the structure.

Alternatively, for a large-radius microdisk which supports multiple radial modes, the

coupling scheme can be optimized (e.g., through the pulley coupling scheme [20]) such

that only a specific radial mode is excited. Another approach is to use a microdonut
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Figure 9: Spatial profiles of the electric-field components of the first (left column), the
second (middle column), and the third (right column) radial modes of a 20 µm radius
microdisk are shown. The m number for each radial mode is chosen such that the
corresponding resonance wavelength is around 1550 nm. The computed resonance
wavelengths are λ1 = 1549.7 nm, λ2 = 1552.7 nm, and λ3 = 1552.2 nm. In the
bottom row, the top view of Re(Er) for the three radial modes (from a 30-degree pie
section) of the microdisk are shown.
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or a microring geometry to ensure single-radial mode operation which comes at the

cost of a lower quality factor.

2.3.1 Quality Factor

Basically, the quality factor (Q) parameter of a microcavity is a normalized measure of

optical loss rate in the cavity region (alternatively, Q can be thought of as a measure

for the frequency-domain sharpness of the device response to an external excitation).

Mathematically, Q can be defined for each resonant mode as follows:

Q =
2πf0UC
PLoss

(9)

In Equation 9, UC is the optical energy stored in the cavity, f0 = 1/T is the temporal

frequency of the resonant mode, and Ploss = −dUC/dt is the collective leaked and

dissipated optical energy over one period of temporal oscillation, i.e., T . It is easy

to see that in the absence of external sources, the initial stored energy (UC0) in the

cavity decays exponentially as:

UC = UC0e
−2πf0t/Q. (10)

The corresponding damping effect in the oscillation of the field amplitudes F (F

represents any of E, D, B and or H) in the cavity is as follows:

F (t) = F0e
−2πf0t/(2Q)e−i2πf0t. (11)

From Equation 10, it seems natural to define τ = Q/ (2πf0) as the photon lifetime in

the cavity (alternatively, one can define decay rate of the cavity as γ = 1/τ). Note that

If Q is defined for the amplitude of the optical field rather than its energy, the photon

lifetime expression will be τ = Q/ (πf0). In Equation 10, simple means is provided to

experimentally estimate the Q parameter by conducting time-domain measurements

(usually done for ultrahigh-Q devices). The Q parameter can also be estimated by

frequency-domain measurements. It is easy to see that the damped oscillation of the
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fields given in the generic form of Equation 11 does not posses a single frequency but

a spectrum spreading around f0. A straightforward Fourier transform analysis results

in the following Lorentzian expression for the spectral content of such oscillations.

F (ω) =
1

(ω − ω0)2 + (πf0/Q)
. (12)

From a practical point of view, this expression allows to estimate the Q-factor by

simply measuring the full-width (Γ) at half maximum of the resonance shape (Γ =

ω0/Q). It is clear that high Q values correspond to sharper spectral lineshapes.

Material loss, scattering loss, and radiation loss are the main loss mechanisms which

collectively determine the intrinsic quality factor (Qi) of a microcavity. It is possible

to define a quality factor fpr each loss mechanism, i.e., Qr for the radiation loss, Qm for

the material loss, and Qs for the scattering loss. Although radiation loss (Qr) can be

minimized by optimizing the geometry of the cavity (e.g., by avoiding sharp bends),

other loss mechanisms are less amenable to geometrical optimization. For example,

the scattering loss (Qs) which results from unavoidable fabrication imperfections, e.g.,

sidewall roughness (see Figure 6), is mainly dictated by the precision of the fabrication

instruments. The intrinsic material loss (Qm) is usually negligible compared to other

loss mechanisms for medium-Q values. However, it can play a significant role in

high field intensities through nonlinear absorption mechanisms. The intrinsic quality

factor (Qi) can be written in terms of other Qs as:

1/Qi = 1/Qs + 1/Qm + 1/Qr. (13)

Values on the order of hundreds of thousands are common for Qi in integrated optical

microcavities.

2.3.2 Free Spectral Range and Finesse

In general, an optical cavity can support an infinite but countable number of resonant

modes. The free spectral range (FSR) parameter is simply the relative distance, mea-

sured in frequency or wavelength, between successive resonant modes. The supported

20



discrete modes of a cavity can be labeled by a collective index such as n and referred

to by the corresponding resonance frequency, i.e., fn (or equivalently their resonance

wavelength, i.e., λn). In addition it is possible to sort the resonant modes such that

fn < fn+1 (or equivalently λn > λn+1). Assuming that all modes are non-degenerate,

i.e., fi 6= fj, the FSR parameter can be calculated as follows:

FSR = δf = fn+1 − fn,

FSR = δλ = λn − λn+1.

(14)

It is easy to show that for a cavity of length L and a group index of ng(λ), the FSR

can be estimated through the following expression:

FSR =
λ2

0

ngL
. (15)

As mentioned in Section 2.3, a microdisk cavity can support several radial modes.

The azimuthal modes (labeled by m) associated with each radial mode form a family

of modes. For this class of optical microcavities, the FSR parameter usually refers to

the wavelength (or frequency) separation for modes within one specified family (i.e., a

specific radial mode). Oftentimes the FSR of a family differs significantly from those

of other families. As an example, the FSR for the first, the second and the third

radial modes (TE) of a microdisk with 20 µm radius (shown in Figure 9) are 5.39

nm, 5.47 nm, and 5.51 nm, respectively (calculated around 1550 nm). Difference in

FSR allows for identification of resonant modes when required.

In Figure 10, the relative positions of resonant modes for an hypothetical mis-

crodisk cavity with (a) one radial mode, (b) two radial modes and (c) three radial

modes are shown (assuming single polarization). As shown, FSR mode density in-

creases with number of radial modes. However, all modes which belong to a specific

family can be identified by detecting and tracking the related FSR. Note that in

general, the TE and TM modes also exhibit distinct FSRs. For this reason, spectral

characterization of a cavity with one radial mode can still contain modes which are
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separated according to two distinct FSRs.

Figure 10: Typical spectral distribution of resonant modes of a single-polarization
microdisk cavity supporting (a) one, (b) two, and (c) three radial modes. As shown,
the FSR for each family differs from that of the rest.

Although the exact value of the FSR depends on the frequency (or wavelength),

this dependence is very weak and often negligible. Resorting to numerical methods is

a simple yet effective way for determining the value of FSR within each mode family.

Another parameter closely related to the FSR is finesse. Finesse is defined as the

ratio of the FSR to the 3-dB linewidth (i.e., the full-width at half-maximum Γ) of

the resonant modes. This parameter can be written in terms of Q and resonance

frequency (ω0) as follows:

Finesse =
FSR

Γ
= FSR

ω0

Q
. (16)

A high-finesse resonator is appealing for many applications including optical spectrum

analysis (spectrometers), sensing, and cavity quantum electrodynamic (CQED). As
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will be discussed in the later part of Section 2.4, a high-finesse cavity can be used to

enhance EM field amplitudes.

2.3.3 Mode Volume

As mentioned in Section 2.3, the resonant modes of optical microcavities are localized

in space. The mode volume parameter is a measure of the spatial extent of the corre-

sponding field profile. Depending on the application, the effective mode volume (Veff)

of a resonant mode can be defined in various ways. In general, smaller mode volumes

indicate higher field intensities in a cavity for a fixed excitation. One particularity

useful definition of mode volume is:

Veff =

∫
dr3ε (r) | ~E (r) |2

max
[
ε (r) | ~E (r) |2

] . (17)

In Equation 17, ~E(r) is the electric-field vector, and ε(r) is the dielectric constant (or

permittivity).

2.4 Coupled-mode Theory for Coupled Waveguide-cavity Sys-
tems

Perfectly isolated (i.e., no interaction with other external entities) optical microcavi-

ties have limited practical use as it is not possible to optically excite them or access

their stored optical energy. To benefit from all the features offered by microcavity

structures, it is imperative to couple EM waves in and out of the microcavity by some

means. A simple yet powerful way to access the resonant modes of a microcavity is

through coupling of evanescent waves. This approach can be applied using a variety

of techniques, e.g., by the use of an access waveguide (or a tapered optical fiber)

which is located in the vicinity of the cavity. As shown in Figure 11, this maximum

coupling between access waveguide and microcavity in this technique occurs at a sin-

gle point/region where the waveguide is closest to the microcavity. For this reason,

this technique is usually referred to as the point-coupling scheme.
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Figure 11: Schematic representation of a point-coupled access waveguide placed in
proximity of a microdisk cavity.

Since the optical modes supported by both devices have exponentially decaying

spatial profiles outside their physical boundaries, it is possible to choose the gap size

of the coupling region to ensure a non-zero overlap between the corresponding optical

modes. The nearby access waveguide provides a new leakage path for the optical

energy stored in the cavity. This path constitute a new loss mechanism (referred to

as the coupling loss) and can be modeled by a coupling-Q (Qc) parameter. Note that

in parallel to energy leakage from cavity, the access waveguide can provide a means

to couple EM energy into the cavity. The overall effect of this coupling will be a drop

in the total (as opposed to the intrinsic) quality factor estimated by the following

expression:

1/QT = 1/Qc + 1/Qi. (18)

The transmission characteristics of the access waveguide can be easily modeled by

the steady-state coupled-mode theory (CMT), which models the behavior over time

periods much longer than the time required for the EM energy to build up inside of

the cavity. For a coupling region shown in Figure 11, the field transmission coefficient

(τ) and the field coupling coefficient (κ) can be defined as τ = Et/Ei and κ = Ec/Ei

(see Figure 12(a) for the corresponding illustrations of Ei, Ec, and Et). Generally, κ
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and τ are complex-valued quantities, and can be shown to satisfy |κ|2 + |τ |2 = 1 that

for a lossless coupling region. Note that by changing the gap size between the access

waveguide and the microcavity, the numerical values for τ (and κ) can be controlled.

As an example, if the gap size is chosen large compared to the spatial decay rates of

the optical modes (i.e., vanishing overlap integral), the transmission coefficient will

be close to 1, assuming a lossless coupler.

Figure 12: Coupling configurations of (a) single-waveguide and (b) double-waveguide
are shown for a microdisk cavity.

In general, a microcavity can have more than one access point. As an example,

in Figure 12(b) a system comprising a microcavity and two access waveguides is

shown. In what follows, the CMT is applied to analyze this system. By inspecting

the structure in Figure 12(b), it is easy to see that the following field relations hold:

b1 = τ1a1 + κ1a2,

a4 = τ2b4 + κ2b3.

(19)

In Equation 19, a1 and b1 are the field amplitudes in the input and the throughput

ports of the top waveguide, respectively. Similarly a4 and b4 are field amplitudes

in the drop, and the add ports of the bottom waveguide. Moreover, a2, a3, b2,

and b3 are the field amplitudes inside the microcavity as shown in Figure 12. κ1,2

and τ1,2 are the coupling and transmission coefficients of the first and the second
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coupling regions, respectively. As discussed earlier, considering different intrinsic

loss mechanisms, the EM fields in the resonator undergo attenuation as they travel

around the circumference of the microdisk cavity. The total field attenuation in one

trip around the microdisk (also referred to as the loss coefficient) is assumed to be

αi. Note that for a cavity of length L the field attenuation αi can be expressed in

terms of the intrinsic Q of the cavity (Qi) through Qi =
−2πneffL

λ0 ln(αi/2)
. In addition the

EM wave picks up a geometrical phase (φ) as it propagates along the periphery of the

microcavity. These phenomenon can be used to related the field at various points in

the microcavity as follows:

b3 =
√
αie
−iφ/2b2,

a2 =
√
αie
−iφ/2a3,

a3 = τ ∗2 b3 − κ∗2b4,

b2 = τ ∗1a2 − κ∗1a1.

(20)

Note that the accumulated phase (φ) depends on the frequency (or equivalently wave-

length) as well as the phase velocity (or effective refractive index) of the considered

optical mode (φ(ω)). The intercavity field amplitudes in the system of Equations 20,

i.e., b3 and a2, can be expressed in terms of the input field amplitudes, i.e., b4 and a1,

as follows:

b3 =
−αiτ ∗1κ∗2e−iφ

1− αiτ ∗2 τ ∗1 e−iφ
b4 −

√
αiκ

∗
1e
−iφ/2

1− αiτ ∗2 τ ∗1 e−iφ
a1,

a2 =
−αiτ ∗2κ∗1e−iφ

1− αiτ ∗2 τ ∗1 e−iφ
a1 −

√
αiκ

∗
2e
−iφ/2

1− αiτ ∗2 τ ∗1 e−iφ
b4.

(21)

In addition, by combining the system of Equations 19 and 21 the output field am-

plitudes, i.e., b1 and a4, can be written in terms of the input field amplitudes as

follows:

b1 =
τ1 − (|τ |2 + |κ|2)αiτ

∗
2 e
−iφ

1− αiτ ∗2 τ ∗1 e−iφ
a1 −

√
αiκ1κ

∗
2e
−iφ/2

1− αiτ ∗2 τ ∗1 e−iφ
b4,

a4 =
τ2 − (|τ |2 + |κ|2)αiτ

∗
1 e
−iφ

1− αiτ ∗2 τ ∗1 e−iφ
b4 −

√
αiκ

∗
1κ2e

−iφ/2

1− αiτ ∗2 τ ∗1 e−iφ
a1.

(22)

For a special case, where only one waveguide is present and the coupling region is
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lossless, Equations 19, 20, 21, and 22 can be simplified by setting κ2 = 0, τ2 = 1,

and |κ|2 + |τ |2 = 1. In this case, Equation 22 is reduced to the following expression

describing the waveguide transmission (T (φ)):

T (φ) =
b1

a1

=
τ1 − αie−iφ

1− αiτ ∗1 e−iφ
. (23)

Note that the resonance condition is satisfied for specific frequencies (such as ωr)

where the accumulated phase in one round trip is an integer multiple of 2π, i.e.,

φ(ωr) = ±2πn (n ∈ Z). Depending on the relative magnitudes of the transmission

coefficient and the field attenuation, three distinct regimes of operation can be iden-

tified: (a) αi > τ1 which is referred to as the under-coupled regime, (b) αi = τ1 which

is referred to as the critically coupled regime and (c) αi < τ1 which is referred to as

the over-coupled regime. The fields intensities in the cavity can be much higher than

that in the access waveguide. This can be seen by looking at the following field ratio

for the case when the Add port is not excited (i.e, b4 = 0):

B = |a2

a1

|2 = | −αiτ
∗
2κ
∗
1e
−jφ

1− τ ∗1 τ ∗2αie−jφ
|2. (24)

For a symmetric and low-loss microcavity (i.e., κ1 = κ2 = κ << 1, τ1 = τ2 = τ ≈ 1,

and αi ≈ 1) the enhancement factor (Equation 24) at resonance (i.e., φ = 0) can be

reduced to:

B = |a2

a1

|2 = | −κ
∗

1− τ 2
|2 = |1

κ
|2. (25)

It can be shown that the enhancement factor in this regime can be written in terms of

finesse (B = |1/κ|2 = finesse/π). This expression provides a practical way to estimate

the field enhancement by measuring the spectral transmission response of the access

waveguide. The field enhancement property of microcavities renders them appealing

for nonlinear applications with low-power excitations. The transmission coefficient

(τ) can also be converted to an equivalent Q-factor referred to as the waveguide-

cavity coupling Q (Qc) parameter. The phase and amplitude of the transmission for
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under-, over-, and critically-coupled regimes are plotted in Figure 13 for a microcavity

featuring a fixed Qi = 10k (or equivalently αi ≈ 0.98 for a 6 µm radius resonator).

Figure 13: (a) Amplitude and (b) phase characteristics of a transmitted EM wave
around the resonance wavelength of a waveguide-coupled microcavity for critically-
coupled (red), undercoupled (green), and overcoupled (blue) regimes.

The plots in Figure 13 indicate that once the EM wave in the access waveguide

passes through the coupling region its amplitude and phase can experience a dramatic

change. In the over-coupled regime, the EM wave phase factor can gain up to 2π.

However, in the critically-coupled regime this phase factor can only reach a maxi-

mum of π, and for the under-coupled case this phase factor is invariably less than

π. Moreover, it is seen that depending on the coupling regime, the normalized field

amplitude of the transmitted wave can vary significantly. In the over-coupled case,

the resonance linewidth future broadens compared to the critically coupled case. In

a heavily over-coupled regime, the sharp resonance feature disappears and the trans-

mission curve flattens. This regime of operation can be used to design delay lines of

very small footprints with low insertion loss. In the undercoupled case, the lineshape

of the resonance remains sharp. However, as the waveguide-cavity coupling becomes

weaker, the amplitude extinction at resonance decreases progressively. These observa-

tions allow for the implementation of simple optical modulation schemes, e.g., on-off

keying (OOK) and binary phase shift keying (BPSK), using coupled waveguide-cavity
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units. Implementation of spectrally efficient high-order modulation formats, such as

quadrature phase shift keying (QPSK), are also possible by combining waveguide-

cavity units with Mach-Zehnder interferometers.
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CHAPTER III

AN INTERLAYER GRATING COUPLER DESIGN FOR A

SI/SIO2/SIN HYBRID PLATFORM

3.1 Overview

As explained in the introduction chapter, no single-material platform offers all the re-

quired properties for the realization of complex optical systems in which power, speed,

insertion loss, and device footprint are not traded off against each other. Hybrid ma-

terial platforms, e.g., in the form of multi-layer structures with different materials

in each layer offering the necessary optical properties (e.g., low loss, reconfigurabil-

ity, nonlinear optical effects, gain) for functional integrated photonic devices, provide

an attractive solution to this challenge. An example is a hybrid Si/SiN platform in

which low-loss devices (e.g., high-Q resonators and low-loss optical delay lines) are

fabricated in the SiN layer; and the tunable devices are fabricated in the Si layer.

A major requirement in using such hybrid platforms is the ability to efficiently cou-

ple light between different layers to avoid high overall insertion loss. The transfer

of optical power between layers can be achieved through either evanescent or prop-

agating field coupling. In the case of evanescent field coupling, efficient coupling

can take place in a reasonably small footprint, provided that the two coupled lay-

ers are stacked in the vicinity of each other with the buffer layer thickness (if any)

not exceeding few hundreds of nanometers. Such a coupling scheme has already been

demonstrated in Si/SiO2/SiN platform featuring 0.4±0.2 dB waveguide-to-waveguide

insertion loss with a 3-dB bandwidth of 20 nm, and 0.8±0.2 dB insertion loss with a

3-dB bandwidth of 100 nm [21]. Moreover, evanescent coupling from a Si waveguide

in a lower layer to a high-Q (e.g., Q = 106) SiN resonator in the top layer has been
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demonstrated [22]. The shortcoming of this scheme is the limited ability to control

(specifically suppress) the coupling level between the two layers at arbitrary locations

on the chip. On one hand, a thin buffer layer between the two layers is desired to

achieve reasonable coupling in short distances. On the other hand, a thin buffer layer

can result in unwanted coupling (and consequently scattering/crosstalk) between the

two layers at other locations (see Figure 14). This issue poses an extra constraint

on the layout of the devices on both layers. Therefore, in applications where dense

integration is of concern, excessive optical scattering loss and interference are to be

compromised against on-chip real estate and are sometimes unavoidable.

Figure 14: A hypothetical optical circuitry on a multilayer material platform with a
thin buffer layer. Optical power is coupled through evanescent waves between the the
top (red) and the bottom (blue) layers.

An alternative approach is to use a thicker buffer layer to alleviate the interfer-

ence and scattering issue. The power transfer between the two layers in this scheme

can be realized by the incorporation of diffractive elements such as grating couplers

or angled refractive micro-mirrors. The latter approach entails non-vertical etching

(usually done through wet etching by relying on the direction-dependent etch rate

of the crystalline material), which makes the fabrication process more challenging

for arbitrary substrates. Direct optical links have been demonstrated using angled
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micro-mirrors for chip-to-chip coupling on the Si platform; and a facet-to-facet inser-

tion loss of 2.5 dB has been demonstrated [23, 24]. On the other hand, the diffractive

grating-based optical proximity coupling can be realized through conventional ver-

tical dry etching and hence is more applicable for a wider range of materials. The

utilization of diffractive gratings for interlayer/chip-to-chip power transfer has been

demonstrated by various groups in several material platforms such as Si/SiO2/Si and

Si/SiO2/SU-8 stacks with the best reported insertion losses of around 1.5 dB and 6

dB, and 3-dB bandwidths of 51 nm and 41 nm, respectively [25, 26, 27, 28]. Interlayer

grating couplers on hydrogenated amorphous Si layers have also been demonstrated

with a high efficiency of 83% and a 3-dB bandwidth of more than 40 nm [29]. De-

spite the unique advantages of the Si/SiO2/SiN platform for future three-dimensional

(3D) integrated photonic structures, an efficient grating-based coupling scheme in

this platform has not been reported yet. A versatile coupling scheme with a sys-

tematic design approach for this material platform is highly beneficial for the future

integrated photonic systems. In this work, I report, for the first time, the design

and implementation of single/double reflector-enhanced interlayer grating couplers

for the Si/SiO2/SiN platform with a rather thick buffer layer. My simulations predict

unprecedented high coupling efficiencies of about 89% and 64% (0.5 dB and 1.9 dB

insertion losses, respectively) along with 3-dB bandwidths of 40 nm and 50 nm for

single- and double-mirror structures, respectively. The fabricated single-mirror device

exhibits 2 dB insertion loss along with > 40 nm bandwidth. The proposed struc-

ture along with the design approach and simulation results are presented in Section

3.2. The fabrication process is reviewed in Section 3.3. Final conclusions and the

experimental results are presented in Section 3.4.
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3.2 Design Method

Figure 15 shows the schematic of the proposed coupling structure in a 3D Si/SiO2/SiN

hybrid material platform. In this structure light from a ridge waveguide in the (lower)

Si device layer is coupled to a SiN microring resonator in the higher layer through

a SiN waveguide. The coupling between the two layers is achieved by using two

gratings in the Si and SiN layers (see Figure 15(b)). These two layers are separated

by a relatively thick SiO2 buffer layer to minimize the unwanted crosstalk coupling

between the layers.

Figure 15: (a) A schematic of the interlayer grating coupler enhanced with top and
backside metallic reflectors to couple light from a Si waveguide (lower layer) to a
ring resonator coupled to the access waveguide on the SiN layer (top layer). (b) The
detailed cross section of the device around interlayer grating coupler. Each grating
period is divided into a material (i.e., Si or SiN) part (called ‘bar’) and a groove part
(called ‘gap’). The beginning of the top layer grating is displaced from that of the
bottom layer grating by an amount referred to as ‘displacement’. The gratings on
the Si and SiN layers contain 18 and 24 grooves, respectively; and their widths and
positions are found by the optimization process.
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Several design parameters can be chosen to design and optimize the interlayer

grating couplers in Figure 15(b). While the thicknesses of these layers (i.e., Si, SiO2,

and SiN) can be considered as design parameters, they are usually selected by prac-

tical considerations. For example, commercially available SOI wafers offer only a

few options for the thicknesses of the SiO2 buried oxide (BOX) and the Si device

layers. In this design, a 3 µm-thick BOX layer and a 250 nm-thick Si device layer

are assumed, to comply with practical requirements. Also, the thickness of the SiN

layer is usually limited by its deposition technique. For higher quality SiN films, a

low-pressure chemical vapor deposition (LPCVD) technique is desired. Thicker SiN

films are desired for realizing more compact devices (e.g., resonators and waveguides)

with a better field confinement. Yet, in light of the deposition process, there exists an

upper bound, dictated by the stress of the layer, beyond which stress-induced cracks

appear all over the sample and render it unfit for high-yield fabrication. This upper

bound, depends on the substrate (e.g., SOI here) and its thickness, the SiO2 buffer

thickness, the SiN deposition temperature, and the involved gas ratios in the LPCVD

process [30]. My initial tests proved that the combination of 400 nm SiN and 1.6

µm buffer oxide on 250 nm Si is immune to cracking. The top cladding layer (SiO2)

thickness is inconsequential and is simply chosen to be 2.25 µm. Fixed etch depths of

90 nm and 400 nm for the gratings on the Si and SiN layers are assumed, respectively,

during the optimization. As shown in Figure 15(a), the top of the cladding and the

bottom of the BOX layers are also coated with a thin reflective metal to enhance the

efficiency of the power transfer between the two layers by containing the field in a

vertical Fabry-Perot cavity, on the two sides of the interlayer grating coupler.

With layer thicknesses fixed, the problem of designing the efficient interlayer cou-

pler reduces to finding optimal geometries for the two gratings in the Si and SiN

layers. In this optimization, the bottom (Si) and the top (SiN) gratings are assumed

to have 24 and 18 grooves (periods), respectively. The design parameters are the
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groove width (identified by ’gap’ in Figure 15(b)) and the material width (identified

by ’bar’ in Figure 15(b)) in each period of each grating. This is an unconstrained

global optimization problem with the reward function being the coupling efficiency.

Considering the high-dimensional search space (assuming the grating geometries

are arbitrary), brute-force search approaches are not feasible due to the extremely

high computational cost. Metaheuristic approaches such as genetic algorithm (GA)

or particle swarm optimization (PSO) are highly effective in dealing with various

classes of optimization problems. In my case, a GA code (in Matlab) is developed

to perform geometrical optimization. Starting with an educated guess for the initial

values of the parameters in GA can result in faster convergence. In my case, the

initial designs for the gratings are periodic with periods (ΛSi and ΛSiN for Si and SiN

gratings, respectively) chosen according to the Bragg condition for both gratings [31]:

k sin(α) +m
2π

ΓSi,SiN
= βSi,SiN . (26)

First-order diffraction, i.e., m = 1, for both gratings is assumed. In Equation 26,

k =
2πnBuffer

λ
, βSi =

2πneff−Si
λ

, and βeff−SiN = 2πnSiN
λ

represent the diffracted/incident

wavenumber in the buffer region, the propagation constants of the guided mode in the

Si and SiN gratings, respectively. In addition, nBuffer, neff−Si, and neff−SiN are the

refractive indices of the buffer layer, the effective index of Si grating, and SiN grating

regions, respectively. α is the incident/diffracted angle in the buffer region which is

assumed to be 8 ◦ for the initial guess to reduce the back-reflection into the waveguide

caused by second-order reflection of the grating [32]. Considering the dimensions of

the films and their corresponding effective refractive indices in the grating regions at

free-space wavelength of λ = 1550 nm (i.e., neff−si = 2.77, and neff−SiN = 1.58),

initial periods of ΛSi = 600 nm and ΛSiN = 1200 nm for Si and SiN gratings have

been chosen, respectively, both with 50% duty cycle. The GA with a population

size of 10 (for each generation) was exploited to achieve geometrical optimization

for both gratings in initial steps. As the growth rate of the coupling efficiency is
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reduced (i.e., as we get closer to the optimum solution), the geometrical parameters

of only one grating is changed in each step and alternated between the two gratings in

subsequent steps. This approach divides the overall search space dimension (originally

84-dimensional space) into two separate 48- and 36-dimensional spaces, which in turn

helps to reach convergence in a shorter time. The GA process is finalized when the

growth rate in coupling efficiency becomes negligible (i.e., less than 0.01% per 20

generations).

Table 1: Optimized gap/bar dimensions (in nm) for the double-mirror interlayer
grating coupler obtained through GA.

Cell 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Si Layer Grating
Gap 299 209 239 333 261 344 391 288 272 303 297 252 267 352 336 277 348 273 333 361 260 322 336 266
Bar 236 476 341 320 313 207 299 298 384 209 370 281 424 186 360 230 391 240 329 257 354 290 284 1000
SiN Layer Grating
Gap 528 753 520 886 493 445 570 601 819 687 660 800 499 596 557 682 729 634

Displacement 2206 nm
Bar 1000 714 497 657 401 45 1172 571 570 320 608 426 483 408 824 579 414 445

Table 2: Optimized gap/bar dimensions (in nm) for the single-mirror interlayer grat-
ing coupler obtained through GA.

Cell 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Si Layer Grating
Gap 338 223 257 359 283 323 407 302 256 292 327 185 239 306 299 286 268 308 353 308 252 304 328 301
Bar 225 417 351 264 319 249 297 260 384 200 387 386 479 172 339 308 360 260 367 242 354 351 222 1000
SiN Layer Grating
Gap 597 755 648 1046 634 371 651 605 786 664 660 780 485 637 562 725 733 727

Displacement 1192 nm
Bar 1000 650 378 695 164 32 1229 406 413 524 606 470 531 420 728 571 304 435

The reward function is estimated for all individuals in the population by invoking

a two-dimensional (2D) electromagnetic solver implemented using the finite element

method (FEM) for the structure in Figure 15(b). The Wave Optics module in COM-

SOL software is used for this purpose. To achieve adequate accuracy, a rather fine

mesh size (maximum mesh size is set to 1/20th of the wavelength in each region) is

incorporated to discretize the geometry. The input port waveguide on the Si layer is

excited with a TE (i.e., electric field parallel to the plane of Si or SiN layer) electro-

magnetic field featuring a matched spatial profile with that of an unperturbed ridge
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waveguide. The outcoming optical power from the top SiN ridge waveguide was then

monitored and the coupling efficiency was calculated simply by dividing the output

power at the SiN terminal waveguide to the input power of the Si waveguide (see A

and B in Figure 16(a), respectively). In FEM simulations, the refractive indices of

3.46, 2.00, and 1.44 for Si, SiN, and SiO2 layers are assumed, respectively. The metal-

lic reflectors were also modeled by assuming a complex refractive index of 0.55+11.5i

associated with gold [33].

Figure 16: The magnitude of TE field in the optimized structure for (a) the single-
mirror and (b) the double-mirror interlayer grating coupler obtained through 2D-FEM
simulations at the telecommunication wavelength (1550 nm). The input terminal of
the Si ridge waveguide (Point A) is excited by the TE mode of the waveguide, and
the output power is calculated in the SiN waveguide after the grating (Point B). In
the figure, brightness indicates relative magnitude.

The outputs of the GA, i.e., groove sizes (gap) and their relative positions with

respect to the next groove (bar) are compiled in Tables 1 and 2 for structures com-

prising the double- and single- (i.e., top side) metallic reflectors, respectively. The

single reflector structure has only one metallic plate on the top (i.e., the bottom

metallic reflector in Figure 15(a) is not present). The relative displacement of the

gratings in two layers (i.e., the edge of the leftmost grooves, see Figure 15(b)) is also

provided in each case. These results are associated with peak coupling efficiencies

of 89% (double-mirror) and 64% (single-mirror) for excitation wavelength of 1550
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nm. The corresponding electric-field profiles for the single-mirror and double-mirror

grating coupler are also shown in Figures 16(a) and 16(b), respectively.

Although the realization of structures featuring backside metallic reflectors entails

more complexity in terms of fabrication, simulations suggest that the additional bot-

tom reflector can significantly enhance the coupling efficiency, which is worthwhile in

applications with tight constraints on the insertion loss. To estimate the bandwidth

of the interlayer coupler, FEM simulations were performed for the optimized struc-

ture for wavelengths ranging from 1510 nm to 1590 nm. The frequency responses of

the two structures are shown in Figure 17(a). This simulation predicts a 25% wider

3-dB bandwidth of 50 nm for single-mirror grating coupler as compared to the 40 nm

bandwidth for the double-mirror grating coupler.

Figure 17: (a) Calculated frequency response of the optimized interlayer grating
coupler with single/double metallic mirrors obtained through FEM simulations; (b)
Effect of X-direction misalignment of the SiN grating on the insertion loss for the
optimized single-/double-mirror grating couplers. The geometrical parameter of the
two structures are those listed in Tables 1 and 2.

In practical situations, misalignment between different layers of the coupler is

inevitable and depending on the used lithography technology, the misalignment can

range from less than 10 nm (e.g., in electron-beam lithography) to 1-2 microns in worst

cases (e.g., in photolithography). Results shown in Figure 17(b) predict a similar

oscillatory behavior in the insertion loss for both structures as the misalignment
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varies, and indicate that a maximum penalty of about 3 dB can be imposed on the

coupling efficiency for misalignments up to ±0.5 µm.

Figure 18: Variations of the insertion loss with respect to (a) the cladding layer
thickness, and (b) the buffer layer thickness in Figure 15(b) calculated for 1550 nm
wavelength. The parameters of the two structures are the same as those in Tables
1(a) and 1(b).

The effect of variations in the cladding and buffer thicknesses on the insertion loss

are also investigated at 1550 nm wavelength and the results are shown in Figures 18(a)

and 18(b), respectively. Oscillations seen in Figures 18(a) and 18(b) are attributed to

the vertical Fabry-Perot resonator formed by stacked materials on top of each other

with different refractive indices. The change in the total optical length of the vertical

cavity can also lead to a shift in the peak transmission wavelength. Figure 18 shows

that for operation in the efficient coupling regime, a thickness variation of about ±5%

(i.e., ±0.1 µm) can be tolerated.

3.3 Fabrication Steps

The 3D structure in Figure 15(a) can be fabricated using two different approaches.

The first approach is based on bonding (either flip chip or direct bonding) of the

appropriate commercially available SOI (from SOITECH) and SiN on oxide (from

Rogue Valley) wafers. In this process, lithography and etching are performed on the

SOI and the SiN substrates separately, and the two substrates are then aligned and
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bonded together. The second approach is to start with an SOI wafer and fabricate the

desired structures in Si. In the next step, the buffer oxide and SiN layers are stacked

through deposition and the patterns are defined/etched on the SiN layer after careful

alignment with the waveguide in the Si layer. In the last step, the cladding (SiO2)

layer is deposited on top of the SiN device layer. The top and the bottom metallic

mirrors in both approaches can be readily realized through metallization/liftoff and

backside etching/metallization of the device, respectively. In this work, the latter

approach is used due to the higher yield, simplicity, and the better quality of the

final 3D structure without requiring sophisticated processes. I also focus only on

demonstration of single-mirror (top mirror) couplers. A brief pictorial representation

of the fabrication process is shown in Figure 19. In the fabrication process, I start

with a commercial SOI wafer (from SOITECH) with a 3 µm BOX layer and a 250

nm-thick device Si layer.

Since there exist a 160 nm-thick pedestal for the grating structure on the Si

layer, fabrication of the waveguide, the resonator, and the grating structure on the

Si layer requires two separate etch steps with different etch depths. The first step

includes electron-beam lithography (EBL using a JEOL JBX-9300FS system) and

inductively coupled plasma (ICP) etching with Cl2 chemistry with an etch depth of

90 nm to partially form the waveguide and resonator and completely form the 90

nm-deep grating grooves. The electron-beam resist in this step is HSQ (6% from

Dow Corning). In the second step, EBL with ma-N 2400 (Micro Resist Technology)

as the resist is used to cover the grating and perform ICP etching using Cl2 chemistry

for another 160 nm to complete the fabrication of all Si-layer devices. In addition

to the desired devices and gratings, alignment markers are fabricated in the Si layer

(250 nm etch depth) to facilitate the alignment of the devices in the Si and SiN layers

in subsequent steps.

Before depositing the buffer oxide layer, I had to planarize the surface of the chip
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Figure 19: Pictorial summary of the fabrication flow of the interlayer grating coupler
for the Si/SiO2/SiN platform.

by spin-coating a 700 nm-thick flowable oxide (FOX 16% from Dow Corning) followed

by a pre-bake at 300 ◦C for 3 minutes (on a hotplate) and anneal at 900 ◦C for 2 hours

(in a furnace with oxygen environment). The high temperature annealing step shrinks

the film thickness down to 550 nm. Afterward, plasma-enhanced chemical vapor

deposition (PECVD) is used to deposit further SiO2 to reach the buffer thickness 1600

nm measured from the top of the Si waveguide. In the next step, a 400 nm thick SiN

layer is deposited in an LPCVD furnace at 800 ◦C (dichlorosilane to ammonia ratio

of 0.35). The gas ratio is chosen to prevent the formation of stress-induced cracks

in the SiN film. Note that the SiN deposition recipe is optimized for a fixed buffer

SiO2 thickness (i.e., 1.6 µm). In Figure 20, typical crack formation on the SiN layer

is shown for three different SiO2 thicknesses, i.e., 1.6 µm, 3 µm, and 5 µm. Three

representative points on the sample are shown for each deposited film thickness. As
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seen in Figure 20, thicker SiO2 layers result in crack formation as a consequence of

higher stress levels on the SiN layer.

Figure 20: Typical crack formation (shown at three different points) on a 400 nm-
thick SiN film deposited through LPCVD on a buffer layer of SiO2 with three different
thicknesses, i.e., 1.6 µm, 3 µm, and 5 µm.

The grating along with the waveguide/resonator masks on the SiN layer are de-

fined through EBL using a 500 nm thick positive tone electron-beam resist (ZEP

from ZEONREX Electronic Chemicals) featuring a good etch selectively (≈ 0.5) in

CF4/CHF3 chemistry. To prevent misalignment due to the charge-up issue during

EBL on such insulating layers, the sample is coated with an anti-charging water-

soluble solution (ESPACER from Showa Denko). Also, the SiN and SiO2 layers over

the alignment marks are selectively etched to facilitate the alignment process. The

sample is then etched in a reactive ion etching (RIE) chamber (CF4 = 50 sccm,

CHF3 = 5 sccm) for 400 nm and cladded with a 2.25 micron PECVD SiO2 layer
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after it was planarized in a similar way explained earlier.

Figure 21: (a) Optical micrograph of the fabricated devices before metallization step
including: (top) SiN reference waveguide, (middle) Si reference waveguides coupled
to a microdisk, and (bottom) connected Si/SiN waveguides through an interlayer
grating coupler. (b) Optical micrograph of the interlayer grating coupler with a top
metallic mirror (10 nm Ti adhesion layer along with 100 nm gold).

Figure 21(a) shows the optical micrograph of the device after cladding deposition.

In the final step, the top mirror is defined though metal evaporation (10 nm Ti,

100 nm Au) on top of a 600 nm patterned PMMA (from MICROCHEM) and the

subsequent liftoff process. In my design, 12 µm wide gratings on Si and SiN layers

are laterally connected to 500 nm and 1.3 µm wide waveguides, respectively, through

100 µm long linear tapers (see Figure 21). A similar back-to-back linear taper is

included in the middle of reference waveguides on both the Si and the SiN layers.

The dimensions of both waveguides are chosen to ensure single TE-mode operation.

The waveguide on the SiN layer is point-coupled (500 nm gap) to a 2 µm wide

microring with outer radius of 35 µm (the device is shown at the bottom of Figure

21(a)). Also a 7 µm-radius microdisk with both TE and TM modes was placed 180

nm away from the Si reference waveguide (the device is shown in the middle of Figure

21(a)). The transmission characteristics of this structure is used to adjust the input

polarization to make sure the on-chip polarization is the desired one. Waveguides
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on both layers are extended at both sides for a few millimeters without tapering.

Access to waveguide facets is made possible by cleaving the sample at both sides

perpendicular to the waveguides.

3.4 Characterization Results

To characterize the device, the output light of a tunable laser (Agilent 81682A) is

launched into a lensed single mode fiber through an in-line polarization controller.

The fiber is mounted on a stage equipped with XYZ micro-positioners as well as a

rotation/tilt compensator. The fiber is then aligned so that its outcoming light is

focused on the input facet of the integrated waveguide in the desired (Si and SiN)

layer. The output light from the chip is collected at the output facet with a similar

lensed fiber and fed directly into a detector (Thorlabs PDB150C 800 nm−1700 nm).

The transmission spectrum of the device along with reference waveguides were then

obtained by sweeping the laser wavelength from 1460 nm to 1530 nm. To adjust

the state of polarization of the incoming laser light, fibers are first aligned with

the Si reference waveguide facet; and the in-line polarization controller is adjusted

so that the TM resonance modes of the microdisk in the Si layer are suppressed

in the output (i.e., TM modes are not excited through the coupled Si waveguide).

Once the TE polarization is set, the transmission spectrum of the desired devices

on the chip are characterized by measuring the optical power in the output fiber

for each device. To minimize the effect of fiber to waveguide coupling variation

(caused by possible misalignment), the alignment is repeated several times to make

sure maximum coupling is achieved at a fixed wavelength (i.e., 1470 nm). With the

described measurement setup, the total fiber-to-fiber insertion loss comprises coupling

losses of fibers and waveguide facets (at both input and output of the chip), waveguide

scattering loss, reflection/scattering loss of the tapered regions, and interlayer grating

couplers. Assuming similar fiber/facet alignment for all waveguides and the same
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propagation losses in the waveguides, the coupling efficiency at the grating coupler

can be estimated by comparing its corresponding fiber-to-fiber insertion loss with that

of the reference waveguide structures on the Si and SiN layers.

Figure 22: Normalized transmission spectrum of the interlayer grating coupler em-
bedded at the intersection of the Si/SiN waveguides. Sharp resonances (loaded-Q of
150k) are related to the coupled microring cavity on the SiN layer. The green curve
is the averaged transmitted power.

Figure 22 shows the normalized TE transmission spectrum of the interlayer grat-

ing coupler. The observed shift (relative to the design value) on the peak transmission

wavelength of the interlayer grating coupler response is believed to be due to both

thickness variations of the deposited layers and the scaled dimensions of the grating

grooves. While the former effect was observed during fabrication, the latter is prob-

ably due to non-optimized EBL dosage in defining the grating grooves in the Si and

the SiN layers. Figure 22 clearly shows the wideband transmission spectrum of the

interlayer grating coupler (3-dB bandwidth of at least 40 nm with peak transmission

wavelength of around 1470 nm). The sharp resonance signatures in the transmission

spectrum (Figure 22) are related to the coupled ring resonator on the SiN layer. The

45



Lorentzian lineshape of the resonance around 1467.5 nm (inset of Figure 22) shows a

loaded-Q of around 150k.

To estimate the coupling efficiency of the interlayer gating couplers at 1470 nm

wavelength, I use the measured transmission of the Si reference waveguide, the SiN

reference waveguide and the Si/SiN structure with the grating coupler, which are

−27.78 dB, −14.77 dB, and −23.10 dB, respectively. The difference (≈ 13 dB) in

the detected signal levels for the Si and SiN reference waveguides is attributed to

the different facet dimensions (500 nm × 250 nm for Si and 1.5 µm × 400 nm for

SiN) as well as the higher refractive-index mismatch for the Si waveguide, which is

in agreement with the modal overlap calculations. Assuming the grating to be in the

middle of the Si/SiN structure, the respective transmission from the Si and the SiN

waveguide section in the structure can be estimated at −27.78/2 = −13.89 dB and

−14.77/2 = −7.38 dB, respectively. Thus, the overall transmission of the waveguide

section of this structure is −13.89 + (−7.38) = −21.27 dB. Comparing with the

overall −23.10 dB transmission, −2.03 dB is attributed to the transmission of the

single-mirror interlayer grating coupler. This corresponds to a coupling efficiency

of ≈ 63% that agrees well with the theoretical calculations (64%). Note that by

adding the second mirror on the bottom layer, the efficiency is expected to increase

to 89% in the optimized device. This is the highest coupling efficiency over a large

bandwidth (> 40 nm) in a Si/SiN hybrid structure reported to date. The coupling

structure reported here can facilitate the realization of functional devices in hybrid

CMOS-compatible material platforms.
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CHAPTER IV

TUNABLE INTEGRATED PHOTONIC DEVICES

4.1 Need for Tuning/Trimming

Despite all the shortcomings of Si in optics, silicon-on-insulator (SOI) seems to be

the platform of choice for integrated applications. This is mainly due to the low

mass-manufacturing cost promised by the CMOS technology that has already been

developed around Si. Other high-refractive-index materials such as SiN (as detailed

in Chapter 3), as well as III-V compound semiconductors have also been combined

with silicon to enrich the functionalities of Si-based platforms. Compared to most

electronic devices, the specifications of photonic devices heavily depend on the geo-

metrical dimensions of the device structure. This sensitivity is even higher for devices

that are fabricated on material platforms featuring high refractive index contrast.

In most integrated photonic applications (ranging from optical filters to lasers),

optical resonators play a key role in meeting the goals of the overall system. How-

ever, optical characteristics of such elements, specifically their resonance wavelength,

depend heavily on the optical path length and are hence vulnerable to fabrication

tolerances. To study the sensitivity of a typical microcavity to fabrication imper-

fections, the shift in the resonance wavelength of a silicon-based microdsik cavity

(3-µm radius) as a function of dimensional variations (in both radius and thickness)

is obtained using FEM simulations.

As seen in Figure 23, this study indicates that ±4 nm shift in the resonance

wavelength should be expected for ±10 nm deviations in the radius. Also, it is

seen that similar deviations in the thickness of the microcavity will result in even

larger shifts (by a factor of ≈ 3) in the resonance wavelength. This issue is more
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consequential in photonic systems featuring more than one optical microcavity, e.g.,

in high-order sharp optical filters, in which the proper functionality of the system relies

on the precise control of each and every resonant mode and their relative spacings.

Figure 23: (a) Shift in resonance wavelength of a 3-micron radius microdisk cavity as
a function of dimension variations due to fabrication imperfections. (b) The geometry
of the microcavity superimposed by its optical mode.

For this very reason, in almost all practical cases, the use of a mechanism which

accommodates either post-fabrication trimming or, alternatively, continuous tuning

is highly desired and sometimes inevitable. This goal can be achieved by tuning the

optical properties (in particular the refractive index) of the material in use. Such

tuning capability is of immense engineering significance since it allows designing re-

configurable systems that can perform numerous functionalities. In Sections 4.2 and

4.3, the available mechanisms to achieve tuning and trimming in optical materials are

briefly introduced.

4.2 Tuning and Trimming Mechanisms

The refractive-index tuning methods are based on either the thermo-optic effect (for

almost all optical materials) or the carrier dispersion property of optical materials

(mostly for Si). The refractive index of most optical materials is sensitive to the
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temperature. The strength of this temperature dependence is reflected in the so-called

thermo-optic coefficient. As an example the thermo-optic coefficient of Si is roughly

five times higher than that of SiN in telecommunication wavelengths (1.86×10−4K−1

for Si versus 4 × 10−5K−1 for SiN). In integrated applications, micro-heaters are

usually used to locally increase the operation temperature of photonic devices. This

approach can easily increase the average temperature of the device by more than 100

◦C. It is clear that the speed at which the device can be tuned depends on how fast

the device can be heated up, which is governed by the heat transport equation. In

solids, the main mechanism for heat flow is the heat conduction. It can be shown

that the transient heat conduction in three-dimensional structures takes the following

form:

ρc
∂T

∂t
− qs = 5 · (k · 5T ). (27)

In Equation 27, qs, k, c, and ρ are the heat density (generated by the source),

the thermal conductivity of the material, the specific heat capacity and the mass

density, respectively. Although the mass density of most optical materials is in the

same range, their heat capacity and thermal conductivity can vary significantly. For

example, the numerical values for three of the mostly-used optical materials (i.e., Si,

SiO2, and SiN) are tabulated in Table 3 (the values are for bulk material)[34, 35].1

Although the optical device geometry and the microheater structure can be optimized

Table 3: Thermal properties of few optical materials

Material ρ(kg/m3) c(J/kgK) k(W/mK)
Si 2330 703 163

PECVD SiO2 2203 650 1
LPCDV SiN 2500 170 20

for fast tuning, usually the rise and fall times for the thermal-based tuning approaches

are in the µs range.

1Since the thickness of Si in most integrated optical devices is comparable to the mean free path
of phonons, the effective thermal conductivity should be used.
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As mentioned earlier in this section, the modification of the concentration of free

carriers, i.e., the density of electrons and holes, in a semiconductor can alter the refrac-

tive index property of the material. Permanent extrinsic carriers can be introduced

in semiconductors by implanting donor or acceptor species through ion implantation.

Alternatively, one can use carrier injection or depletion in pn-junction structures, and

accumulation in capacitive structures to alter the concentration of the carriers. This

approach provides a much faster means to tune optical devices. The rise and fall

times in the ns range is readily achievable. However, in addition to the refractive

index change, the introduction of extrinsic free carries gives rise to a significant op-

tical loss in the material through the free-carrier absorption mechanism. This loss

is the main prohibitive factor that limits the capability of this method for achieving

wide tuning ranges. In almost all practical cases the change in the refractive index

as a result of carrier dispersion is much smaller than that achievable through thermal

tuning. For this reason, carrier dispersion does not provide a practical way for cases

where large tuning is desired.

4.3 Passive Trimming

Although the microheater-based tuning mechanism is reliable for most practical cases,

it accounts for the largest share of power consumption (electrical) in integrated pho-

tonic devices. As an example, in a typical resonance-based EO modulator, the elec-

trical power for actual modulation is an order of magnitude smaller than that re-

quired to tune the wavelength of operation. This considerable overhead in the power

consumption is not desirable and needs to be reduced or totally eliminated. Pas-

sive post-fabrication trimming methods offer permanent solutions to adjust the pa-

rameters of the structure with no power penalty. The use of UV-sensitive as well

as electron-beam-sensitive polymers in trimming of microring resonators has been

demonstrated with a rather wide trimming range [36, 37]. However, due to their
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lack of compatibility with high-temperature processing and also short-time durability

(aging), the use of such polymers is not possible for many applications. Fine tuning

techniques based on controlled local oxidation, such as electric-field-driven oxidation

or laser-assisted oxidation, have also been developed and demonstrated specifically

for silicon-based devices. A similar approach is shown to be effective for silicon ni-

tride substrates where trimming is accomplished by converting stoichiometric SiN

to oxynitride through oxygen-plasma treatment [38, 39, 40]. Nevertheless, it seems

that oxidation-based trimming usually comes at the expense of quality-factor degra-

dation. Compaction through UV irradiation and electron-beam exposure for both

silicon dioxide and silicon nitride has shown to be feasible and has been exploited for

various applications, including waveguide formation, strain exertion, as well as trim-

ming [41, 42, 43]. Although most post-fabrication trimming methods offer discrete

trimming, they can still be used to reduce the unintended mismatch between the

fabricated and the designed specification (usually the resonance wavelength) within

their precision limit. The exact match can be reached by adding an active trimming

mechanisms such as the thermal-based tuning method. In this scenario the required

trimming power is much lower compared to the case for which only the thermo-optic

effect is in use.

As briefly mentioned above, electron-beam exposure allows for passive trimming

of photonic devices. The trimming effect due to electron-beam exposure results from

two related mechanisms, i.e., compaction-induced and stress-induced refractive index

change. Since SiO2 is usually used as the cladding material for many integrated

photonic devices, compaction-induced refractive index change in this material can

be harnessed for trimming purposes. Aside from this effect, the compacted cladding

layer exerts a new stress profile on the device layer. Depending on the details of

the compacted layer, this stress profile could be tensile, compressive, shear, or a

combination of all. This highly geometry-dependent stress can locally modify the
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refractive index of the device layer (e.g., Si) according to the stress-optic relations

[44, 45].

In the following, the efficacy of the electron-beam exposure for post-fabrication

trimming is studied. For this study, an array of microdisk resonators (6 µm in radius)

are fabricated on a multilayer platform. The device layer of the platform comprises

a 110 nm-thick Si, a 70 nm-thick SiO2 layer, and a 110 nm-thick Si layers which are

vertically stacked on top of each other. The device layer sits on top of a 3 µm-thick

buried oxide. The resonators are covered by a 1 µm-thick layer of SiO2 deposited

through the plasma-enhanced chemical vapor deposition technique. The fabrication

is done through standard electron-beam lithography and plasma etching steps. The

devices are optically characterized in a thermally-stable environment (to suppress

the thermo-optic effect) and the resonance wavelengths of each microdisk cavity are

recorded.

Figure 24: (a) Shift in resonance wavelength due to electron-beam exposure for for
the first two radial modes of a 6 µm radius microdisk. (b) Transmission spectrum
of the device before exposure (violet curve) to the electron beam, after one day of
exposure (brown curve), and after two days of exposure (green curve).

In the next phase of the experiment, a scanning electron microscope (Zeiss Ultra60

FE-SEM) is used to expose the microresonators to a 118 pA electron-beam current

(with extra high tension voltage set at 20 kV ). The effect of electron-beam dosage
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is investigated by varying the exposure time from one minute to four minutes in

one-minute steps. After exposure, the microresonators are characterized and the

resonance wavelengths are compared with the corresponding pre-exposure values. In

all cases, a blue shift is observed in the resonance wavelength. This is at odds with

the previous reports in which red shifts in the resonance wavelength are observed

[43]. As explained earlier, the exposure-induced stress profile is highly geometry

dependent. This disparity likely stems from the geometrical differences in microrings

(in the work reported by Schrauwen, et al. [43]) and microdisks (in my experiment).

In Figure 24(a), the absolute wavelength shift for the first two radial modes of the

resonator are shown. It is evident that longer exposure times result in larger shifts

in the resonance wavelength for both modes. To ensure that the trimming effect of

the electron-beam exposure is not ephemeral, the optical characterization is repeated

one and two days after the exposure was carried out. In Figure 24(b), the collected

transmission spectra of a representative device is shown. The plot in violet shows the

transmission spectrum of the device before exposure. The plots in brown and green

are the collected spectra after one and two days of exposure, respectively. As seen in

figure 24(b), the drift in the resonance wavelength after 48 hours is negligible.

In summary, wavelength trimming up to 3 nm is shown to be readily achiev-

able through electron-beam exposure for microdisk cavities fabricated on multilayer

material platforms. This post-fabrication trimming method can be used in conjunc-

tion with microheater-based tuning approach to drastically reduce the overall power

consumption of tunable photonic systems.
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CHAPTER V

COMPACT HIGH-SPEED ELECTRO-OPTIC

MODULATOR

5.1 Overview

The staggering growth rate of data traffic within datacenters has posed a serious

challenge for conventional electrical interconnection systems. Over the past few years

this challenge has been the main driving force behind the development of a more

capable technology, which is suitable for such short-reach applications. Integrated

photonics is the most promising candidate offering an unparalleled solution to tackle

the electrical interconnect bandwidth inadequacy. One of the key elements (other

than the laser source and the photoreceiver) in an integrated photonic transceiver

is the electro-optic (EO) modulator, which determines the ultimate achievable data

rate in the communication link. For this reason, extensive research has been aimed at

developing reliable, compact, low-power, and high-speed EO modulators that can be

deployed at a reasonable cost. The existing low-cost silicon (Si) manufacturing ecosys-

tem and the potential for monolithic integration with electronic integrated circuits

have been the prime motivations for directing most of such research efforts towards

the Si photonic platform. Carrier dispersion offers a fast way to change the optical

properties of Si, in particular its refractive index and optical absorption [46]. Carrier

injection and depletion in a pn-junction device [47, 48] and carrier accumulation in

a capacitive device [49, 50] are among the main mechanisms by which the carrier

concentration in Si can be altered in a short time (< 0.1 ns). In contrast to injection

mechanism in which the lifetime (τc) of the excess (minority) carriers limits the speed
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of the process, the relaxation time of the electric circuit (τ = RC) plays the decid-

ing role in the charge dynamics in cases of depletion and accumulation mechanisms

[51, 52]. Since it is rather easy to engineer the RC of the device such that τ << τc,

most of the current studies for high-speed EO modulation applications are focused

on the depletion mechanism in devices with a reverse-biased pn-junction [53]. In a

typical reverse-biased pn-junction-based modulator (with an abrupt doping profile

at the junction) the junction capacitance (Cj) and resistance (R) of the device are

mainly controlled by the doping levels (N) on the p and n regions such that R ∝ N−1

and Cj ∝ N1/2. In comparison to the depletion mechanism, the carrier accumulation

mechanism (which is implemented by forming a capacitor with two Si layers separated

by a thin dielectric layer) is less explored. A particularly noteworthy feature of the

accumulation-based devices compared to their depletion-based counterparts is that

the capacitance-per-area (C = εrε0/to, with εr and to being the relative permittivity

and thickness of the dielectric layer of the capacitor) of the structure can be readily

designed by choosing the dielectric material (i.e., εr) and thickness (to), which are

independent from the doping levels of the two Si electrodes. The flexibility in the

choice of C allows for designing structures featuring extremely low-voltage (i.e., by

choosing a large C) and or extremely high-speed (i.e., by choosing a small C) op-

eration performance. A few EO modulators based on the accumulation mechanism

have been demonstrated in resonance and interferometric architectures featuring an

embedded metal-oxide-semiconductor (MOS) capacitor and operation speed of up to

3Gb/s [49, 50]. In these structures, a doped poly-Si (p-Si) layer is used as the top

gate-electrode and a crystalline Si layer (separated by a dielectric layer) serves as

the second electrode. In general, the use of p-Si in integrated optical devices is not

desirable, since the scattering loss from the p-Si grain boundaries significantly affects

their performance. Most notably the scattering loss degrades the quality factor (Q) of
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compact resonance-based devices. In this work, a Si/SiO2/Si multilayer material plat-

form featuring crystalline Si layers is used to demonstrate a wideband (> 10 GHz)

accumulation-based modulator. The crystalline Si layers allow us to achieve a com-

pact and low-loss (i.e., high-Q) microdisk resonator as the main building block of the

device [54]. My accumulation-based device platform can be extended to other optical

materials in conjunction with Si in the form of a vertically-stacked heterogeneous

structure to enhance the functionality of the overall integrated photonic structure.

Such hybrid material platforms have been developed and exploited to demonstrate

novel applications beyond the inherent capabilities of Si [22, 55, 56, 21]. In many

practical applications, the operational wavelength of the photonic devices needs to be

precisely controlled. Unfortunately, in almost all resonance-based devices integrated

on high-index-contrast material platforms, the designed resonance wavelength devi-

ates from the actual one due to the fabrication imperfections. The expected level

of accuracy in resonance wavelength is invariably dictated by the precision of the

fabrication technique in use. For example, the variation in resonance wavelength

of a 4 µm-radius microdisk in the silicon-on-insulator (SOI) platform for operation

around λ = 1550 nm can be as large as 0.5 nm [57]. To rectify this mismatch, both

active and passive trimming techniques have been developed [58, 59, 42, 43]. Due

to their limited precision, passive trimming techniques have limited use compared to

active approaches. Most of the active trimming techniques rely on the thermo-optic

effect, and despite offering continuous trimming (i.e., high precision), they impose

a serious challenge in terms of the overall power consumption of the device. I have

previously shown that the resonance wavelength of a fabricated microdisk resonator

on the Si/SiO2/Si multilayer platform can be trimmed (i.e., corrected) by up to 1

nm (which is adequate for almost all practical applications) by applying a dc voltage

between the two Si layers [56, 60]. The unique self-trimming feature of this modu-

lator is of great technological importance as it obviates the need for implementation
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of thermal-based trimming techniques; this in turn significantly reduces the overall

power consumption of the device. In Section 5.2 the architecture of my high-speed

EO device is introduced. In Section 5.3, details on the corresponding fabrication pro-

cesses are provided. Characterziation results are discussed in Section 5.4. Finally, in

Section 5.5, the possible extension of this work is briefly discussed to achieve higher

data rates through spectral efficient modulation formats.

5.2 Design

The cross-section of the EO modulator device studied in this section is shown in

Figure 25(a). The device comprises a small microdisk (radius (r) = 3 µm) optical

resonator, a 450 nm wide access waveguide, and two focusing grating couplers, which

are fabricated on a multilayer Si/SiO2/Si platform. The thickness of the top and

bottom Si layers is 110 nm each, and the middle SiO2 layer is 70 nm thick (to).

The access waveguide is placed 150 nm away from the microdisk to achieve near-

critical-coupling through evanescent excitation. A 50 nm thick Si pedestal underneath

the device provides access to the bottom Si layer for adding electrodes. The top

and bottom Si layers are moderately doped (≈ 1018 cm−3) to reduce their electrical

resistivity. Regions underneath the electrical contacts are heavily doped (≈ 1020

cm−3) to achieve low contact resistance with Si. The cross section of the doping

profile on the microdisk and the pedestal is shown in Figure 25(b). The electrodes are

deliberately placed far from the first radial whispering gallery mode of the microdisk

to ensure negligible propagation loss due to metallization (see Figure 25(b) and 25(c)).

The electric-field profile of the first radial TE mode of the microdisk (shown in Figure

25(c)) is obtained numerically using a commercially available finite-element-method

(FEM) software package (COMSOL). The two Si layers and the sandwiched SiO2 layer

in between form a capacitor, which extends all over the microdisk area (A = πr2).

Application of a positive voltage (V) between the two metallic electrodes (and thus,
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between the two Si layers) results in the accumulation of oppositely charged carries

on the top and bottom Si layers (q = C × V ). As seen in Figure 25(c), the optical

intensity of the mode of interest is mainly concentrated within a distance of d ≈ 700

nm from the periphery of the microdisk and has negligible extent in the central part

of the structure. Therefore, accumulated charges on the central part of the capacitor

has negligible interaction with the optical mode. To distinguish between these two

regions on the microdisk, the total capacitance of the structure (C) can be expressed

as the sum of two parallel capacitances, i.e., C = Cp+Cm. Here, Cp and Cm denote the

parasitic capacitance (central region of the microdisk resonator) and the functional

capacitance (region near the periphery of the microdisk with non-negligible optical

field), respectively (see Figure 25(b)).

Figure 25: (a) 3D schematic of the cross section of the accumulation-based EO mod-
ulator on a multilayer platform. Two focusing grating couplers are connected to the
terminating ends of the access waveguide (not shown) to facilitate the input/output
light coupling during characterization (b) Cross section view of the designed doping
profile on different layers of the device. (c) The corresponding mode profile (mag-
nitude of the electric field) of the first radial transverse electric (TE, electric field
parallel to the Si layers) mode of the microdisk resonator obtained around λ ≈ 1560
nm.

The accumulated electrons (∆N) and holes (∆P ) on the two Si layers around

the optical mode (i.e., on the Cm capacitor) shorten the optical path length of the
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microdisk resonator through carrier dispersion property of Si (∆n = −(8.8× 10−22×

∆N + 8.5× 10−18×∆P 0.8)), which ultimately results in a blue shift in the resonance

wavelength of the microdisk [46]. The total operation bandwidth (fcutoff) of the

EO modulator is determined by the electrical relaxation time constant (i.e., τc) of

the structure as well as the lifetime of photons in the microdisk resonator (i.e., τo)

approximately through (1/fcutoff)2 ≈ (2πτc)
2 + (2πτo)

2 relation [61, 62]. If the total

electrical resistance of the Si layers, ohmic contacts, and the electrical interconnects

are modeled by a lumped series resistor (R), the electrical relaxation time constant will

be given by τc = R×C. The lifetime of photons can readily be estimated through the

Q of the resonant mode (τo = Q/ω, ω is the optical resonance frequency). Assuming

that the switch times of the logic levels in the driving signal are much faster than

the electrical response time of the structure (i.e., τc), the average power consumption

of the device subject to a random bit sequence drive (i.e., equal likely 1-0, 1-1, 0-1,

and 0-0 transitions) can simply be estimated through P = 1/4 × C × V 2 [63, 64].

Note that the elimination of Cp can improve the electrical bandwidth as well as the

power consumption of the device by a factor of r2/(r2− (r− d)2). In the device with

the aforementioned dimensions, this factor is approximately 2.42. With the designed

dimensions of the microdisk resonator shown in Figure 25, the total capacitance of the

structure is estimated to be ≈ 13.9 fF (capacitance per unit area of the multilayer

Si/SiO2/Si platform is approximately 0.49 fF/µm2 with εr ≈ 3.9). Assuming that

the total pad-to-pad resistance (i.e., R) of the structure is dominated by the resistance

of the doped Si layers for the microdisk geometry, R can be approximated to be 760

ohm resulting in an estimated τc of ≈ 10.6 ps or equivalently an electrical bandwidth

of ≈ 15 GHz. In comparison, the doping levels in the depletion-based structures are

set around 1 2 × 1018 cm−3 to minimize the free-carrier optical loss associated with

the dopants while achieving a decent carrier dispersion effect and low resistance. This

choice would result in a junction capacitance of Cj ≈ 2 fF/µm2 (assuming an abrupt
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junction profile) in such structures.

5.3 Fabrication Steps

The designed structure shown in Figure 25(a) is fabricated on a multilayer platform

prepared through direct (fusion) bonding [65] of two SOI wafers. In the first step,

a thin layer of oxide (with targeted thickness of 35 nm) is thermally grown on the

device layer of two commercially available Si-on-insulator (SOI) wafers with a 3 µm

thick buried oxide (BOX) layer. In the next step the two SOI wafers are bonded

together on the thermal oxide side and then the handle layer as well as the buried

oxide layer of the top wafer is removed using a dry etching process. The details of

this bonding process is explained in Ref. [66] and are not repeated here. The initial

thickness of the device layer is chosen such that after oxidation and bonding, the

total thickness of the sandwiched oxide is around 70 nm, and the thickness of each

device Si layer is 110 nm. The microdisk resonator, the access waveguide, and the

input/output focusing grating couplers are patterned by electron-beam lithography

(EBL using a JEOL JBX-9300FS system) with a 190 nm thick spin-coated hydrogen

silsesquioxane (HSQ) layer (6% from Dow Corning) as the resist. The Si and the oxide

layers are then dry-etched in an inductively coupled plasma (ICP) chamber (with Cl2

chemistry) and a reactive ion etching (RIE) chamber (with Ar and CHF3 chemistry),

respectively. A 55 nm thick pedestal is selectively left un-etched around the microdisk

on the bottom Si layer through another EBL step using ma-N 2400 (Micro Resist

Technology) electron-beam resist. In Figure 26(a), the scanning electron microscope

(SEM) image of the access waveguide and part of the microdisk is shown (tilt angle

is 45 ◦. In this image the (false-colored) blue and pink shaded regions correspond to

the Si and SiO2 layers, respectively.

The sample is then conformally coated with a thin (i.e., 10 nm) layer of blanket

oxide using atomic layer deposition (ALD) to prevent ion channeling in the following
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ion implantation steps. Five rounds of ion implantation are carried out successively

for 1.25 × 1013 cm−2 of 75As+ at 380 keV , 0.87 × 1013 cm−2 of BF2+ at 110 keV ,

1.25× 1013 cm−2 of 75As+ at 50 keV , 5× 1015 cm−2 of P+ at 40 keV , and 3.5× 1015

cm−2 of BF2+ at 35 keV . EBL-patterned PMMA (from MICROCHEM) layers are

used in all implantation steps as the masking material. The SRIM software is used

to estimate the required implantation energy for the chosen dopant species such that

the resulting doping profile resembles the one shown in Figure 25(b). Rapid thermal

annealing at 950 ◦C for 10 minutes is used to electrically activate the implanted

dopants. The sample is then cladded under 1 µm of SiO2 deposited by plasma-

enhanced chemical vapor deposition (PECVD). Two via holes are patterned using an

EBL step and dry-etched with Cr as a hard mask to reach the bottom Si layer (on

the pedestal) as well as the top Si layer on top of the microdisk. In the last step,

Ti/Cu metals are sputtered and lifted off on a 3−µm thick layer of patterned PMMA

with the aid of sonication bath. In Figure 26(b), the SEM image of the device after

metallization step is shown.

Figure 26: (a) Tilted SEM image of the gap region between the access waveguide and
the microdisk resonator. False colors are used to accentuate the stacked Si (blue) and
SiO2 (pink) layers (b) Top view SEM image of the cladded device after metallization
step showing the input/output waveguide, microdisk, and RF electronic pads. Pads
are placed close to the microdisk (< 50 µm) to ensure electrically short connections
to the device for f 6 50 GHz.
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5.4 High-speed Measurement Results

For both the dc and ac (or RF) characterization steps, the chip is mounted on a

thermally controlled stage and fixed using a conductive double-sided adhesive tape.

Two flat-cleaved single mode fibers (SMF) are used to couple light in and out of

the chip with the aid of focusing grating couplers. The insertion losses of the two

grating couplers and the propagation loss of the access waveguide are collectively

measured to be 20 dB at 1560 nm. Since the goal of this work is the demonstration

of the modulation technique in the multi-layer structure, a detailed optimization of

the input/output coupler has not been performed. SMF fibers are mounted on a stage

equipped with manual XYZ translation as well as tilt and rotation adjustments.

A tunable laser source (Agilent 8164A) is used to launch continuous-wave (CW)

light into the input SMF fiber. In order to adjust the state of polarization of the

incident light on the input grating coupler, a 3-paddle polarization rotator is placed

on the input fiber. The output light is then coupled to the access waveguide on

chip through the input grating coupler. After coupling to the microdisk resonator

the light in the access waveguide is coupled out of the chip and into the output

SMF by the output grating coupler. In the dc characterization case, the output fiber

is directly connected to a photoreceiver (PDB150C from Thorlabs) with 104 (V/A)

transimpedance gain. In this experiment, the laser wavelength is slowly swept (i.e., 5

nm/s) from 1550 nm to 1570 nm, and the corresponding detected voltage recorded

using a data acquisition card (DAQ from National Instrument) and PC.

Figure 27(a) shows the measured normalized transmission spectrum for different

applied dc voltages. The polarity of the dc voltage is chosen such that electrons

and holes are accumulated on the n-type and p-type doped Si layers, respectively

(referred to as positive polarity hereafter). As seen in Figure 27(a) the linewidth

of the resonance feature in the transmission spectrum is ≈ 0.45 nm (i.e., loaded

Q ≈ 3500) for no applied dc voltage (Vdc = 0). The resonance wavelength and its
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associated extinction change Vdc increases from 0 V to 20 V .

The observed blue shift in the resonance wavelength and the change in the trans-

mission extinction are attributed to the free-carrier plasma dispersion property of Si

[46]. The accumulated free carriers slightly reduce the refractive index of Si, which in

turn decreases the resonance wavelength. Moreover, the introduced free-carrier ab-

sorption (FCA) associated with the accumulated charges (∆α = 8.5× 10−18×∆N +

6×10−18×∆P ) [46]) gives rise to an increase in the total internal loss of the microdisk

resonator. Thus, the observed increase in the resonance linewidth (or decrease in the

Q) in the transmission plots for Vdc > 0 is a direct consequence of FCA. Note that

the waveguide-microdisk coupling-Q (Qc) is designed such that the resonance mode

under study is initially under-coupled at Vdc = 0. As the applied voltage increases,

the intrinsic Q (Qi) gradually matches Qc, and the waveguide-resonator structure is

pushed toward the critical coupling regime. This effect is clearly reflected in higher

on-resonance extinctions in the corresponding transmission spectrum at higher Vdc as

shown in Figure 27(a).

Figure 27: (a) Transmission spectrum of the device in Figure 26 for different applied
dc voltages with positive polarity. (b) Measured shift in the resonance wavelength
with respect to the applied dc voltage for positive (solid-blue curve) and negative
(dashed-red curve) polarities.

The blue and red plots in Figure 27(b) show the measured shift in resonance
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wavelength as a function of Vdc with positive and negative polarities, respectively.

Although the shifts for negative polarity Vdc follows the same trend as that with the

positive polarity, the measured absolute resonance shifts are smaller in the former

case. The lag in charge accumulation in this case can be readily explained by noting

that the Si layers should first be depleted from the oppositely charged carries due to

their initial doping (see Figure 25(b)), which requires higher levels of applied voltage

in the negative polarity case. This situation is comparable to the inversion condition

in a MOS capacitor [67]. In addition, it is seen that for Vdc more than ≈ 12 V , the

resonance wavelength changes linearly at ≈ 25 pm/V , which is in accordance with

the numerical predictions. For Vdc less than ≈ 12 V the observed resonance shifts

are smaller than what is predicated by a linear capacitor model. This disparity is

attributed to a non-zero flat band voltage (possibly due to the introduction of charged

ions, and etc. during the fabrication process).

Figure 28 depicts the setup used for the high-speed ac characterization. The

optical power collected from the device is boosted using an erbium-doped fiber am-

plifier (EDFA) (VG2020 from ADVA with a total fixed gain of 21 dB) to compen-

sate for the losses, primarily coupling losses. A high speed photoreceiver (PT-40G

from Picometrix) with a cutoff frequency of 36 GHz is used at the receiving end of

the output fiber. The optical amplification together with a variable optical atten-

uator (Agilent 8156A) ensures that the signal to noise (primarily receiver thermal

noise) ratio is maximized while maintaining a linear response of photoreceiver. A

programmable bandpass filter (Nistica Wavelength Selective Switch) with a 50 GHz

passband is placed after the EDFA to suppress out-of-band amplified spontaneous

emission (ASE) and associated noise (i.e., signal-ASE and ASE-ASE beat noise). To

detect and correct for any drift in the fiber/grating alignments during the experiment,

the output optical power was constantly monitored via a 10/90 directional coupler.

The aggregate physical length of the output fiber from the EO modulator to the
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photoreceiver (apart from the EDFA) is approximately 10m. The output voltage of

the photoreceiver is monitored both in the time domain and the frequency domain

using a wideband oscilloscope (Agilent DCA-X 86100D) and an electrical spectrum

analyzer (Agilent 8564EC).

Figure 28: Schematic of the experimental setup for the high-speed ac measurement.
DUT: device under test, BPF: band-pass filter.

In order to find the upper 3-dB cutoff frequency of the EO response of the modu-

lator, I measure the frequency response of the device to a sinusoidal excitation with

its frequency manually swept in 500 MHz steps in the range of 0.5 GHz to 15 GHz.

The voltage excitation is generated by an RF signal generator (HP 83650B). An elec-

trical amplifier (SHF 806E, bandwidth 38 GHz) with a nominal power gain of 26 dB

is used to boost the electrical RF power. To deliver the electrical signal to the pads in

Figure 26(b), a high-bandwidth probe (Cascade Microtech, Inc.) is used at the out-

put of a bias tee, which combines the RF signal with a dc voltage signal. High-speed

SMA cables and connectors are used to connect the lumped electrical elements. A

14V dc voltage is applied to bias the device in the linear regime (see Figure 27(b)).

The output RF power of the signal generator is calibrated such that the delivered
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RF power at the probe remains constant, i.e., 16 dBm, as the frequency is manually

swept.

Figure 29: The measured frequency response of the accumulation mode modulator
demonstrating a 3-dB bandwidth greater than 10 GHz. The inset shows the detected
signal with a sinusoidal drive at 10 GHz.

Figure 29 shows the measured EO frequency response of the device in the range

of 0.5 GHz to 15 GHz. The 3-dB upper cutoff frequency of more than 10 GHz is

clearly observed in this experiment. The eye-diagram of the detected signal at 10

GHz is also provided in the inset of Figure 29. The observed EO response rolls off

slowly and generally follows the estimations of Section 5.2 with a 3-dB frequency of

more than 15 GHz. However, I also observe variations in the higher EO frequency

response as shown by two unexpected decreases in the response above 10 GHz. The

origin of these drops is not clear but likely stem from impedance mismatches between

the probe and device. I also studied the response of the device to a pseudo-random

bit sequence (PRBS) at 10 Gb/s and 15 Gb/s. The PRBS signal is generated via an

SHF pattern generator and the SHF amplifier producing a peak to peak voltage ≈ 4

V . The corresponding measured eye-diagrams are shown in Figures 30(a) and 30(b).
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Figure 30: Measured eye-diagram of the modulator at (a) 10 Gb/s, and (b) 15 Gb/s
with a 215 − 1 long NRZ pseudorandom binary sequence (PRBS).

The modulation depth (MD) of ≈ 10 dB and insertion loss (IR) of ≈ 5 dB

are estimated from the prior dc characterization experiment (laser wavelength is set

around 1560.8 nm). Note that by tuning the laser wavelength around the resonance

wavelength, less IR can be achieved at the expense of lower MD. The wide open

eyes and sharp rise times seen in Figure 30 clearly indicates that data rates of more

than 15 Gb/s are achievable. The source of the jitter noise observed on the rise

time and fall time transitions (see the eye-diagram in Figure 30) again believed to be

attributed to impedance mismatch. The rise and fall times evident in Figure 30 are

consistent with device that is capable of handling data rates of up to 30Gb/s. While

the performance of the modulator structure presented here is on a par with the best

integrated photonic EO modulators, its clear advantages are the self-trimming, and

compactness. As explained in the device architecture section, the performance of the

device can be significantly enhanced by optimizing the doping profiles on the device

as well as increasing the optical Q of the resonator by rearranging the electrical

electrodes such that the need for the Si pedestal region around the microdisk is

eliminated. None of these optimizations were performed in the results reported here.
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My calculations show that the speed of the device can be enhanced by a factor of

more than 2 by eliminating the parasitic capacitance (Cp) of the device. This can be

achieved simply by containing the n-doping profile on the lower Si layer only around

the optical mode (see Figure 25(b)). Elimination of the parasitic capacitance will also

result in a reduction in power consumption by a factor of more than 2. In addition,

optimization can be done on the position of electrodes to reduce the ohmic resistance

(R) of the device. Thus, I have demonstrated a compact device architecture that is

capable of modulation speeds in excess of 60 Gb/s with proper optimization.

In summary, a small-footprint (≈ 30 µm2) high-speed (> 15 Gb/s) electro-optic

modulator is demonstrated in this chapter. The modulation mechanism is based on

carrier dispersion in Si through the accumulation mechanism in a Si/SiO2/Si material

platform. The estimated power consumption of the device is 55 fJ/bit. The operation

wavelength of the device can be trimmed by up to 1 nm by a dc voltage without

increasing the overall power consumption. Speeds more than 60 Gb/s and power

consumptions less than 27 fJ/bit can be expected in future only by optimizing the

doping profile of the device and improved instrumentation. Moreover, enhancement

of Q of the microdisk through material platform/geometry optimization can improve

the IR and MD figures of merit. The unique flexibility in controlling the device

capacitance allows for device designs benefiting from a very low-voltage or a very

high-bandwidth operation. The device performance is quite promising for future

generation of short-reach optical interconnects and networks.

5.5 Spectrally Efficient Modulation Formats

The simple device introduced in this chapter provides us with a building block capable

of performing high-speed modulation with on/off keying or binary phase shift keying

formats. This device can be used in more complex optical architectures to achieve

other optical modulation formats. As an example, it is possible to to implement
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quadrature phase shift keying (QPSK) modulation format by combining two of such

building blocks.

Figure 31: Schematic diagram of an optical QPSK modulator constructed with the
aid of two identical resonance-based modulators featuring BPSK modulation format.

As seen in Figure 31, in the input of the system the power of the input laser

is divided using a directional coupler between the upper and the lower waveguides.

The data are imparted on the laser carriers with BPSK format through the micro-

resonators. The constellation diagram of the two BPSK signals are shown in Figure

31. On the lower waveguide the phase shifter imposes a 90-degree phase on the

optical signal which effectively rotates the corresponding constellation diagram. At

the output another 3-dB directional coupler combines the two BPSK signals into one

with QPSK modulation format. This architecture can be extended through nested

Mach-Zehnder interferometers to generate 16-PSK or higher-order PSK modulation

formats.
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CHAPTER VI

ELECTRO-OPTIC MODULATION BASED ON NOVEL

2D MATERIALS

6.1 Overview

The emergence of two-dimensional materials combined with reliable growth and pro-

cessing techniques, offer a promising solution to the looming problems facing CMOS

technology as device dimensions continue to scale down to the size of a few atoms.

Graphene, in particular, owing to its electronic dispersion properties, exhibits near-

ballistic transport and high mobility (≈ 200× 103 cm2V −1s−1 for suspended samples

and ≈ 40 × 103 cm2V −1s−1 for samples sitting on SiO2 substrates) at room tem-

perature [68, 69, 70]. This property allows for realization of high-speed switches,

and transistors. Moreover, graphene is capable of remarkable interaction with optical

waves (e.g., ≈ 2.3% absorption of normal incident light for unbiased samples [71, 72]).

Therefore, if integrated with Si, graphene can considerably enhance the functionali-

ties of conventional CMOS devices by adding new capabilities such as photo-detection

and optical modulation. Graphene in combination with other 2D materials has great

potential for numerous applications including but not limited to wearable electronics,

water desalination, bioelectric sensory devices, photovoltaics, and energy storage.

Recently, a monolayer of graphene sheet has been integrated with photonic crystal

(PhC) microcavities in which the optical properties of the sheet were modulated by

electrochemical approaches, i.e., gating through electrolytes such as ion gels [73, 74].

However, demand for high-speed devices prevents the use of such materials at their

current stage since their response time is far slower than that of the state-of-the-

art modulators. Therefore, an alternative to the electrochemical gating scheme that
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features fast tunability (e.g., thorough a dielectric layer) seems to be more relevant

for high-frequency applications. In addition, integrated photonic devices with smaller

footprints (e.g., microring and microdisk resonators) are generally preferred over PhC-

based devices when dense-integration is considered.

The goal of this chapter is to demonstrate electrical gating of a monolayer graphene

sheet through a thin dielectric layer embraced by the graphene sheet (as the top

electrode) and a Si device layer (for the bottom electrode). In my design, a Si-based

ultra-compact microdisk serves as the optical cavity where light-matter interaction

takes place between the carriers in the graphene sheet (on top of the microdisk)

and the optical field of the microdisk cavity. It will be shown that this interaction

significantly perturbs the resonance characteristics of the microcavity as the optical

conductivity of graphene is tuned by changing the gate voltage. Thus, this platform

can be used for designing ultra-fast and ultra-compact integrated photonic modulators

that can be highly useful for various applications including optical signal processing,

optical communications, and optical interconnection.

6.2 Device Schematics

The cross-section of the envisioned device is shown in Figure 32. A microdisk res-

onator of small footprint (radius = 3 µm) fabricated in an SOI platform is at the

heart of the device. The finesse of the resonator is designed such that the optical field

intensity in the resonator is much higher than that in the feeding access waveguide.

To provide electrical connection, the microdisk resonator is placed on top of a 50

nm-thick pedestal layer which is connected to an electrode on the other side of the

waveguide. To form the gate dielectric layer, the chip is covered by a thin layer of

insulating material. A monolayer of graphene sheet is overlaid on top of the microdisk

resonator and is connected to the second electrode.

In the configuration shown in Figure 32, the application of a voltage between the

71



two electrodes results in the accumulation of electrons/holes on the graphene sheet.

This way, the Fermi level in the graphene sheet can be tuned quite easily by varying

the applied external voltage in a rather wide range (≈ ±1eV ).1

Figure 32: A 3D schematic representation of the graphene-based modulator. The
graphene sheet is patterned such that it covers only the microdisk resonator and
extends underneath the gold electrode. Alumina is used as the dielectric material in
this design.

The electrical conductivity of the graphene sheet at optical frequencies (referred to

as the optical conductivity) is crucially affected by the inter- and intra-band electronic

transition rates, which in turn can be modified via filling or depleting the available

electronic states (i.e., by accumulation of carriers) on the graphene sheet (see Figure

33(a)). For a single-layer graphene sheet, the optical conductivity can be modeled by

a complex-valued function given by Kubo formula [75]:

σ(ω) = σ0
iEF

ω + iτ−1
+ σ0

[
θ(~ω − 2EF ) +

i

π
log |~(ω + iτ−1)− 2EF

~(ω + iτ−1) + 2EF
|
]
. (28)

In Equation 28, σ0 = e2/π~2 ≈ 60 µS is the minimum conductivity set by two

fundamental physical constants, i.e., the electron charge e, and the reduced Plancks

constant ~. In addition, θ is the step function, ω is the frequency of light, EF is the

Fermi level, and τ is the scattering rate which models the effect of carrier scattering

1Compared to bulk, i.e., 3D, semiconductors, 2D materials have fewer electronic states and hence
the Fermi level in such materials is more sensitive to extrinsic carriers.
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phenomena due to various sources such as intrinsic ripples on graphene or flexural

phonons [76, 77, 78], adsorbed molecules [79, 80], point defects [81], charge impurities

and cluster formation [82, 83, 84], resonant scatterers [85, 86] and bilayer regions [87].

Arguably, coulomb centers, ripples and resonant impurities seem to play the major

role in the carrier scattering on a graphene sheet.

Figure 33: (a) The band structure of a monolayer graphene with the Fermi level below
(left) or above (right) the Dirac point. Forbidden and allowed inter-band transitions
are shown in red and green arrows, respectively. (b) The real and imaginary parts of
the optical conductivity of graphene at λ = 1550 nm for two representative carrier
scattering rates.

In Figure 33(b), the normalized (with respect to σ0) optical conductivity of a

graphane layer is shown (obtained for an optical excitation of λ = 1550 nm). It is

seen that both the real and the imaginary parts of the optical conductivity undergo a

significant change as the Fermi level reaches half the photon energy, i.e., EF = ~ω/2.

Since beyond this Fermi energy level inter-band transitions are prohibited (due to

Pauli exclusion principle), a notable change in the optical conductivity is explicable.

The carrier scattering phenomena induce a broadening effect which smooth out the

sharp transition around the EF = ω~/2 point as seen in Figure 33(b).
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6.3 Device Fabrication and Characterization

The device is fabricated on a commercially available SOI wafer with a 3 µm BOX

layer and a 250 nm Si device layer. The passive microdisk resonator and the access

waveguide are defined on the device layer through a standard electron-beam lithog-

raphy (EBL) step, in which a 110 nm-thick spin-coated HSQ layer is used as the

mask and subsequently etched in an inductively coupled plasma (ICP) chamber. A

50 nm-thick Si pedestal is selectivity left unetched around the resonator device for

electrical connection; and the sample is mildly doped (p-type) in a diffusion furnace

afterwards. Then, through a conventional single-layer lift-off processes, 800 nm of

aluminum is placed on the pedestal region, which provides electrical connection to

the Si layer. Subsequently, using atomic layer deposition (ALD), a thin (i.e., 30 nm)

layer of Al2O3 was deposited all over the sample to form the dielectric layer. In the

next step, through a wet transfer process, a sheet of monolayer graphene is placed on

top of the chip. The used graphene sheet is grown on a copper foil and is coated with

PMMA (from ACS Material-Advanced Chemicals Supplier) [88]. Before the transfer

step, the copper layer is removed through a wet-etch process and the top PMMA

is dissolved in acetone after the graphene sheet is transferred on the chip. In the

next step, the chip is annealed at 300 ◦C in vacuum to ensure good adhesion. The

graphene layer is patterned through an EBL step with an 800 nm-thick spin-coated

PMMA layer as the mask. Second electrical pad (10 nm titanium/50 nm gold) is

then lifted off on the graphene region.

An optical micrograph of the fabricated device is shown in Figure 34(a). The

yellow square (with rounded edges) on top of the resonator is the gold contact. The

white square below the waveguide is the aluminum contact behind which the pedestal

layer is extended (the square with sharp edges). The dark spots on top of the alu-

minum pad are the remnants of the graphene layer which are peeled and curled up.
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Figure 34: (a) An optical micrograph of the device illustrating the Au and Al pads on
the graphene sheet and the Si pedestal. (b) An SEM image of the microdisk showing
the transferred graphene layer on the device. (c) An SEM image from the transferred
graphene sheet on a flat area.

Since the graphene layer is only one atom thick, it induces an imperceptible con-

trast against its surroundings on a Si substrate. To make sure that the graphene layer

is in good condition, an SEM image is taken from the device. As seen in Figure 34(b),

the graphene sheet is connected and exists on the resonator area which confirms the

quality of the transfer.

Figure 35: (a-d) SEM images of the graphene sheet transferred on microdisk res-
onators. It is seen that the graphene sheet is torn apart at the periphery of the
microdisk where the surface of the chip is not flat. (e-g) Optical micrographs of the
showing the curls and wrinkles on the graphene sheet after the transfer process.
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Note that the transferred sheet is prone to wrinkle formation and large-scale tear-

ing during wet transfer process. The grain boundaries of the graphene sheet as well

as wrinkles on the sheet are visible in Figure 34(c). Moreover, transfer on non-flat

surfaces applies strain on graphene sheet and tears the layer over the step regions.

This issue significantly reduces the yield of this process. In Figures 35(a-d), the occur-

rence of such small-scale tears is shown. Optical micrographs of large-scale wrinkles

are also shown in Figures 35(e-g). Although the contrast (on either optical or electron

microscope images) of the transferred sheet can be a good indicator of the number

of actual layers in the transferred sheet, a more accurate means to count the total

number of layers is to use Raman spectroscopy.

Figure 36: (a) The Raman spectrum of the graphene sheet transferred on the Si
substrate. (b) Optical transmission spectra of the device collected after etching the
passive device, after doping the sample, and after the ALD/graphene transfer (GT)
step. Plots are superimposed such that the linewidth of the resonances can be com-
pared.

In a typical Raman analysis, two main peaks are expected in the spectrum col-

lected form a graphene sheet. The first peak is usually labeled as G (at ≈ 1580 cm−1)

which is due to the primary in-plane vibrational mode, and the second peak is usually

labeled as 2D (at ≈ 2690 cm−1) which is due to the second-order overtone of another

in-plane vibrational mode, i.e., D at ≈ 1350 cm−1. It can be shown that the ratio

of the corresponding peak intensities, i.e., I2D/IG, as well as the exact position and
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linewidth of these peaks are related to the actual number of layers [89, 90, 91, 92].

The Raman characterization of the transferred graphene sheet in my device (see Fig-

ure 36(a)) suggests that the transferred sheet is mostly single-layer with a rather low

defect density.

The device is optically characterized at different stages of the fabrication process,

i.e., (a) after the etching steps, (b) after the doping step, and (c) after the graphene

transfer step. Characterization of the device is done by launching laser light (from a

tunable laser source) into a single-mode fiber (SMF) and delivering it to the access

waveguide with the aid of a grating coupler. A polarization rotator is used to excite

the TE mode in the access waveguide. At the output the transmitted light is collected

in the output SMF and is fed to a photodetetor. To compare the effect of doping,

and graphene layer on the Q of the microdisk resonator, the collected transmission

spectra around the resonance wavelength of the microcavity are superimposed and

shown in Figure 36(b). It is seen that the loaded-Q slightly decreases from ≈ 13K

to ≈ 9K after doping, which is due to the free-carrier absorption effect in Si. The

loaded-Q further reduces to ≈ 4K after deposition of the alumina layer and graphene

transfer (see Figure 36(b)). This lower loaded-Q is attributed to the excessive loss

due to the graphene sheet and also possible residues of PMMA left on the sheet.

Once the fabrication steps are completed, I study the effect of electrostatic gating

(of the graphene sheet) on the transmission characteristics of the access waveguide.

To gate the graphene sheet, a voltage signal (peak-to-peak amplitude of Vpp = 10V )

is applied between the two pads (i.e., the gate and the substrate electrodes). The

applied voltage is changed in discrete steps such that it follows a triangular pulse

train (see Figure 37(a)). The transmission spectrum of the device is monitored and

recorded for each and every step. In Figure 37(b), a representative subset of such

transmission spectra are shown. Also the resonance wavelength of the first two radial

modes of the microdisk resonators are plotted versus time in Figure 37(a). As is clear
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from the plots, the resonance wavelength of the microdisk cavity drifts toward shorter

wavelengths over time as the voltage signal varies.

Figure 37: (a) Drift in the resonance wavelength of the first and the second radial
modes of the microdisk resonator. The applied voltage is a triangular pulse train
with a period of T = 20 s. (b) A few representative transmission spectra recorded at
different points in time.

This undesirable behavior cannot be explained only by considering the optical

conductivity of the graphene layer. Since the experiment is done in an uncontrolled

ambient conditions, the drift in resonance wavelength is proposed to be due to the

adsorbates (such as H2O molecules) coming from the ambient air [93]. To prevent

substance adsorption by the graphene layer, a thin (10 nm) layer of alumina is de-

posited on the sample through atomic layer deposition. This protective layer proved

to be helpful in terms of eliminating the drift issue. After passivation step, the char-

acterization process of the protected sample is repeated with the same pulse train but

higher voltage swing (i.e., Vpp = 30 V ). In this experiment, the resonance wavelength

of the microdisk cavity along with its extinction is monitored as the gate voltage

swings at a low frequency (i.e., period of T = 20 s) for five consecutive cycles.

In Figure 38, the average (i.e., over five cycles) resonance wavelength and extinc-

tion at resonance are plotted in blue and violet colors, respectively. As seen in both

plots, there is no noticeable ambient-induced drift. Although the blue shift in the

78



resonance wavelength is predicted by FEM simulation results, the observed hysteresis

in both extinction and shift is not corroborated by the used simple model (i.e., the

Kubo formula). This behavior is suspected to have its origin in trapped charges both

at the graphene/alumina as well as the alumina/Si interfaces and possibly on the

graphene defect sites [94].

Figure 38: Transmission spectrum of device after passivation. The laser wavelength
is matched with the resonance wavelength of the microdisk resonator.

In summary, a monolayer of graphene sheet is integrated on top of a small footprint

microdisk cavity, which is fabricated in an SOI platform. The strong electro-optic

interaction between graphene and whispering gallery modes of the microcavity is

studied and demonstrated. Although the hysteresis issue still needs to be addressed,

the overall results presented in this chapter are quite promising for high-speed EO

modulation applications.
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CHAPTER VII

COMPACT FIELD-PROGRAMMABLE PHOTONIC

DEVICES

7.1 Overview

The realization of low-power optical devices for scalable optical interconnects has been

of great interest lately. Among essential building blocks for interconnects, optical

switches have received special attention due to their unique role in routing data in

complex optical networks. Of particular interest is the development of optical switches

that can be configured by the end user (similar to the field-programmable gate arrays

(FPGAs) in digital electronics).

Silicon (Si) has been the most highly used material for the implementation of on-

chip optical switches due to the low cost, the ease of fabrication, and the possibility

of integration with electronics. In fact, photonics community has witnessed a rapid

growth in research on active and passive integrated photonic devices in Si during

the past decade. The reconfiguration (or tuning) of Si-based devices has been based

mainly on free-carrier dispersion [95] and thermo-optic effect [96]. The former is

the technology of choice for making high-speed switches due to its fast dynamics.

Optical comb switch functionality mediated by either free-carrier generation through

photon absorption or carrier injection/depletion has already been demonstrated on

Si-on-insulator platform and successfully incorporated in optical networks for data

routing featuring extensive data rates of up to 250 Gbps [97]. In such designs, high-Q

resonators serve as the building blocks of the system, offering short transition time

(< 1 ns), low insertion loss, and sufficient extinction ratio (> 10 dB) [97, 98, 99, 100].

Despite unique features of resonance-based optical devices in Si, a simple approach
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for forming field-programmable optical devices (e.g., switches) in Si is still missing. In

this work, I demonstrate the first field-programmable optical unit based on irreversible

electrical breakdown of a layer of silicon oxide (SiO2) embedded in a high-Q optical

microresonator. In comparison to electronics, this unit nearly mimics the functionality

of a simple one-time field-programmable electrical switch for routing optical signals.

7.2 Theory and Fabrication

The fundamental device that forms the building block for the field-programmable

structure is composed of a microdisk resonator (radius ≈ 3 µm) coupled to an adja-

cent waveguide (width of 450 nm) formed by electron-beam lithography (EBL) and

inductively-coupled plasma (ICP) etching. The material platform used in this work

is a high-quality multilayer structure formed by vertically stacked layers of Si, SiO2,

and Si. This multilayer platform is prepared by direct bonding of two SOI wafers

(from Soitec). First, a thin oxide layer (30 nm) is thermally grown on the two SOI

wafers. This step leaves 110 nm Si on the device layer on each wafer. After bond-

ing the two wafers and backside etching, the Si/SiO2/Si stack with 110 nm, 60 nm,

and 110 nm thicknesses, respectively, is ready. In the next step, the optical devices

(i.e., a microdisk with 3 µm radius in proximity of an access waveguide along with

the grating couplers at the input/output terminals) are defined through EBL, and

dry-etched with Cl2 chemistry in an ICP chamber. A thin (50 nm) pedestal in the

bottom Si layer is left unetched and later selectively etched away. Then, the device

is cladded under 1.2 µm of SiO2 through plasma-enhanced chemical vapor deposition

(PECVD). Two via holes are opened on top of the disk and on the pedestal; both 1

µm away from the resonator periphery to access the top and bottom Si layers of the

disk without interfering with the optical mode of the resonator. Afterward, contacts

and pads are defined at these vias through a metallization/ liftoff process.

Figure 39(a) shows the scanning electron micrograph (SEM) of a ridge waveguide
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fabricated in this hybrid Si/SiO2/Si material platform. Figure 39(b) and 39(c) depict

the SEM of the overall coupled waveguide-cavity device and the micrograph of the

metallic pads on the fabricated structure, respectively. The operation of the device

in Figure 39(b) is based on coupling the input light (e.g. from an optical fiber) to the

waveguide and monitor the output transmission after the resonator as shown in Figure

39(b). This transmission characteristic can be altered by applying an electronic signal

(i.e., a voltage) between the two electrodes in Figure 39(e).

Figure 39: (a) Cross section of a fabricated waveguide in the multilayer bonded
platform; (b) tilted SEM image and (c) optical micrograph of the fabricated device;
(d-e) 3D schematic along with the cross section of the device superimposed with the
TE-polarized optical mode obtained through finite element method (FEM) simulation
at 1540 nm.

As discussed in Section 2.4, assuming the CMT, the transmission spectrum of

an access waveguide coupled to a travelling wave optical resonator can readily be

obtained as [101]:

TThrough(λ) =

√
1− κ2 − αe−iφ(λ)

1−
√

1− κ2αe−iφ(λ)
, (29)

where κ and α are the waveguide-resonator coupling coefficient and the resonator

roundtrip transmission (considering both radiation and material losses), respectively.

φ is the accumulated phase shift observed by the optical field (at wavelength λ) after

one complete rotation around the resonator. In a typical high-Q resonator, the loss

factor and the coupling coefficient are usually small (i.e., α ≈ 1, and κ ≈ 0 ); and the
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waveguide transmission features a rather sharp Lorentzian lineshape at the resonance

wavelength of the resonator with zero transmission in the critical coupling regime

[101]. In a cavity with high optical loss (i.e., α << 1 ), the optical field will not

build up; and the resonance signatures fade away. Equation 29 suggests that at very

high resonator loss (i.e., α → 0), the transmission amplitude approaches unity for

all wavelengths (i.e., TThrough =
√

1− κ2 ≈ 1). Therefore, by using a mechanism

to permanently convert a low-loss cavity to a high-loss one, a one-time configurable

on/off switch can be formed for operation in the resonance bandwidth of the cavity.

I use dielectric breakdown in the SiO2 layer [102, 103] sandwiched between the two

Si layers for this purpose as shown in Figure 39(d).

Figure 40: (a) Transmission spectrum of the device in Figure 39 under different volt-
ages; (b) demonstration of resonance elimination through irreversible oxide break-
down; (c,d) SEM images of the structure after breakdown; (c) device metallization
is melted after breakdown; (d) view after removing the metallization, the cladding
layer, and the top Si layer showing the damaged bottom Si layer.

In this structure, the application of the voltage V between the two electrodes

results in the accumulation of positive and negative charges on the two sides of the

SiO2 layer (in the two Si layers) similar to a conventional parallel plate capacitor.

The electric field (E) inside SiO2 layer is E = V/d, with d being the thickness of the

SiO2 layer (60 nm in this case). Considering the breakdown field of SiO2 (Ebd ≈ 10

MV/cm [104]), the application of a voltage around V = 60 V can result in the
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breakdown of the SiO2 layer; resulting in a very high loss (and thus very low Q)

in the resonator and negligible effect of the resonator on the transmission spectrum

in the adjacent waveguide. The optical profile of the transverse electric (TE) mode

(i.e., electric field in the plane of resonator) of the resonator shown in Figure 39(d)

indicates a reasonable extent of the field in the SiO2 layer.

To study the response of the device described in Figure 39, the transmission spec-

trum of the access waveguide is monitored for different applied voltages by launching

the output light of a tunable laser (Agilent 81682A) into the access waveguide and

collecting light out of it through a pair of grating couplers. The plotted data in Figure

40(a) clearly show the modulation of the resonance wavelength of the resonator by

the application of the voltage. The reason for this modulation is the accumulation

of positive and negative charges on the two Si layers that results in a change in the

index of refraction through the charge-induced plasma dispersion effect [103]. Also

it can be seen from Figure 40(a) that the resonance linewidth progressively widens

from 400 pm to 500 pm as the applied voltage increases. This is due to the added

free-carrier loss caused by the accumulated charge in Si [46].

The effect of the applied voltage in excess of 40V is shown in Figure 40(b) indicat-

ing that wavelength shifts up to ≈ 1 nm (from ≈ 1566.6 nm down to ≈ 1565.7 nm)

is possible by accumulating enough charges on the Si layers. The required voltage for

this shift can be drastically reduced by using a much thinner (compared to 60 nm)

high-k dielectric material instead of SiO2 between the two Si layers provided that the

dielectric layer can withstand the mechanical stress. Moreover, as expected, the di-

electric layer starts to leak after being exposed to a high-magnitude electric field, and

eventually undergoes a permanent physical damage exhibiting excessive optical loss,

which in turn renders the cavity optically inactive. The purple plot in Figure 40(b)

shows that the resonance features disappear when V = 44 V is applied. Comparing

the transmission spectrum of this damaged device with that of the original one clearly
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shows the field-configuration possibility of this device.

An SEM image from the top surface of the device is shown in Figure 40(c). It is

seen that the metallic layer is completely melted and spilled all over the cladding on

the resonator and waveguide. This could be explained by considering the relatively

high thermal power dissipation on the electrodes via Joule-heating process during

breakdown. During this high current transition, the Si and SiO2 layers also undergo

an irreversible destructive physical damage, which is considered the primary source

of optical loss. Figure 40(d) shows the top view of the device where a hole through

the Si layer is visible. This image is taken after dissolving the metal remnants (see

Figure 40(c)) in a wet copper etchant and pirahna solution and removing the cladding

(oxide) in buffered oxide etch (BOE). The top Si layer was also etched away in the

ICP chamber. Figure 40(d) clearly shows the permanent damage of the SiO2 and the

bottom Si layers, which is responsible for the effective removal of the spectral features

of the corresponding resonator from the device characteristics. Similar devices can

be fabricated in other conventional substrates (such as SOI) featuring a vertical thin

slot. On such a platform, the electrically-induced breakdown scheme presented here

can also be adopted for other integrated photonic structures (e.g., slot waveguides).

In such settings atomic layer deposition can be used to infiltrate the slot with an

appropriate dielectric material.

Figure 41: (a) Schematic of the 2×2 switch describing the on/off behavior of the device
with the resonators in and out of operation; (b) operation table for the resonator states
(the X sign indicates that the resonator can be either on or off).
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The simple programmable unit in Figure 39 can be used as the building block

in more complex field-programmable systems. As an example, Figure 41(a) shows

the schematic of a 2 × 2 programmable switch composed of two programmable op-

tical resonators with matched resonance wavelengths, each coupled to an additional

drop waveguide. The governing equation for the transmission spectrum of the access

waveguide in such add/drop configuration is similar to Equation 29. However, the

energy loss due to the additional (drop) waveguide contributes to the total resonator

loss as well. As seen in Section 2.4, the spectral response of the drop waveguide can

be readily expressed as [101]:

TDrop(λ) =

√
ακ∗1κ2e

−iφ(λ)/2

1−
√

(1− κ2
1)(1− κ2

2)αe−iφ(λ)
, (30)

where κ1 and κ2 are the coupling coefficients of the resonator to the access and drop

waveguides, respectively. Also, α and φ have the same definition as those in Equation

29. It can be seen that as the resonator loss becomes very high (or equivalently, as

α→ 0), the drop port transmission is effectively suppressed at all wavelengths. Thus,

the state (burnt/not burnt) of each resonator can be configured so that either of the

two input ports can be independently routed to any of the two output ports as shown

by the operation table in Figure 41(b).

Figure 42: Optical image of the actual fabricated device.

The optical micrograph and SEM of the device is shown in Figure 42 and in the

inset of Figure 43, which is fabricated on a similar platform following the same steps
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mentioned earlier. However, for this device the 50 nm-thick pedestal was not etched

away, so the blanket pedestal extends over the whole chip. Also, a common ground

electrode has been envisioned for both resonators to keep the device footprint small.

In this design, resonators (6 µm in radius) are placed 180 nm and 200 nm away from

the 450 nm wide add and drop waveguides, respectively. Focusing grating couplers

with peak transmission wavelength around 1570 nm were also incorporated at the

terminal of all input/output waveguides. The spacing between input/output couplers

was chosen according to my measurement setup constraints and no attempt has been

made to minimize the overall footprint of the device (currently around 0.2 mm2).

7.3 Characterization

Figure 43 shows the normalized transmission spectrum of the device in Figure 41

at different stages of characterization. The data are normalized to the response of

the input/output grating coupler on the device such that the coupling loss of the

grating couplers, the propagation loss of the waveguides, and the scattering loss of

the Y-junction are eliminated. Although, the two resonators were designed to have

similar resonance wavelengths, post-fabrication characterization revealed that their

resonance wavelengths differ by ≈ 1 nm due to fabrication imperfections (see Figure

43).

To correct this fabrication-induced deviation, I used a scanning electron-beam

microscope (Zeiss Ultra60 FE-SEM) and exposed the cladding of the red-shifted res-

onator to 118 pA electron-beam current (with extra high tension (EHT) voltage set at

20 kV ) in four separate stages for 210 seconds in total. As can be seen in Figure 43,

the resonance wavelength originally located at 1567.5 nm (dashed pale blue curve)

was progressively reduced and successfully positioned within 10 pm of the other one at

1566.4 nm (solid blue and pink curves). After this post-fabrication trimming process,

the drop port of the device (Out.2) was characterized. Figure 43 shows the collected
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spectrum at the Out.2 port with input fibers positioned at the In.1 and In.2 ports

(dark violet and dark green curves, respectively). Similarly, the pale violate and pale

green curves refer to same measurements after their respective resonator is burnt. As

can be seen in Figure 43, both routes exhibit an on/off extinction ratio of more than

20 dB.

Figure 43: Normalized spectrum of the through port (Out.1) of the 2 × 2 switch in
Figure 41 during resonance trimming (dashed curves colored with shades of blue);
the solid blue curve is the trimmed top cavity resonance, which sits 10 pm away
from the bottom cavity resonance (pink curve). Solid green and violet curves are
the transmission spectra collected at the Out.2 port with the laser light launched in
In.1 and In.2, respectively. The corresponding spectrum after resonance elimination
are drawn in pale green and pale violet. The operation is in accordance with the
operation table in Figure 41(b). The inset shows an SEM image of the fabricated
device.

Characteristics shown in Figure 43 are in good agreement with the operation

table in Figure 41(b), and they clearly demonstrate the device functionality as a

field-programmable 2 × 2 switch. A similar approach, in conjunction with post-

fabrication trimming, can readily be adapted for demonstration of more intricate

optical architectures with system-level functionalities including field-programmable
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N × N optical switching, optical FGPA, passive spectrometers, field-programmable

optical filters, etc.
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CHAPTER VIII

OPTICAL BISTABILITY IN INTEGRATED OPTICAL

CAVITIES

8.1 Viewpoint

Use of nonlinear properties of optical materials is inevitable for all-optical signal

processing applications [105]. In general, nonlinear optical coefficients such as the

third order nonlinear susceptibility (χ3), in common integrated photonic materials,

i.e., silicon (Si) and silicon nitride (Si3N4), are relatively weak and can be neglected

in low field intensity limits [106, 107]. Nevertheless, in high-Q microresonators with

small effective mode volumes, the field intensity (and optical power density) can reach

a rather high level such that nonlinear effects become significant even at modest

input powers. Optical bistability in passive optical resonators, as one manifestation

of nonlinear effects, has long been of interest as a simple mechanism to manipulate

light with light. This phenomenon has been observed and carefully studied in various

material platforms and different types of integrated resonators including one/two-

dimensional PhC resonators, microdisk, and microring resonators [108, 109, 110, 111,

112, 113, 114, 115]. It has been shown that the interplay between the heat generation

due to optical absorption at resonance wavelength and the shift in the resonance

wavelength of the resonator caused by the thermo-optic effect of the resonator material

can result in a hysteretic behavior and a positive feedback process which can lead to

optical bistability. Thermal bistability is especially important in Si photonics due to

the widespread use of Si on the device layer for integrated photonic structures. In most

of the reported Si photonic devices to-date, thermal bistability relies on the nonlinear

optical absorption processes, i.e., two-photon absorption (TPA) and the subsequent
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free-carrier absorption (FCA). Thermal-bistability can also be achieved through linear

absorption in optical resonators [116]. However, in both cases of thermal-bistability,

the threshold field density in the resonator is very high. This severely limits the use

of optical bistability to form practical nonlinear integrated photonic devices in Si. In

this work, I propose and demonstrate low-power thermal-bistability in Si photonic

resonators with moderate Qs (e.g., 10k) based on amplification of the heat generated

by linear absorption using Joule-heating [117]. In the designed device, a reverse-biased

pn-junction is integrated with a nanobeam PhC resonator. The illumination of the

depletion region of the pn-junction by the incident light results in photo-generated

carriers through linear absorption in Si. These carriers are swept by the electric

field (due to the reverse bias) and are collected at the two sides of the pn-junction

device [118, 119, 120, 121]. Such photocurrent, though small, once accompanied by a

large reverse bias can considerably increase the heat generated per absorbed photon

via Joule-heating to substantially reduce the optical power threshold for achieving

optical bistability. My experimental studies show that the photocarriers are induced

mainly by the linear optical absorption in the device. The proposed approach can

be exploited to design ultralow power optical transistors, optical memory elements,

and ultrasensitive sensors [122, 123, 124, 125]. In addition to its contribution to

heat generation, the photocurrent can be monitored in an external electronic circuit

to generate a negative feedback signal (i.e., adjusting the reverse bias voltage) to

stabilize the bistable features against the random variations of the environmental

conditions (e.g., temperature).

8.2 Photonic Crystal Nanobeam Cavity Design

The PhC nanobeam resonator used in this study is designed and fabricated in a

silicon-on-insulator (SOI) substrate with a 250 nm-thick Si layer on a 3 µm buried

91



oxide layer. The resonator comprises a symmetric resonant region sandwiched be-

tween two symmetric PhC mirrors. The resonant region and the PhC mirrors consist

of a number of air holes with their centers located in a one-dimensional (1D) periodic

lattice with lattice constant a (see Figure 44(a)). These air holes are etched in a Si

rib waveguide with a width of w sitting on a 50 nm-thick pedestal. The radii of the

air holes in the mirror regions are equal to rm, while the radii of the air holes in the

resonant region are different from each other and they are optimally engineered to

maximize the quality factor. The overall structure is symmetric around its center.

The resonant region has 15 pairs of air holes while each mirror section contains five

air holes. The number of air holes for the two mirrors is chosen to ensure a decent

coupling Q (Qw) between the resonator and the inline waveguide at the two terminals

of the device.

Figure 44: (a) A 3D schematic of the nanobeam PhC resonator; (b) Normalized band
diagram of the periodic mirror regions showing a photonic band gap in the range 181
THz < f < 204 THz (for a = 330 nm, the corresponding wavelength range is 1469
nm < λ < 1656 nm ); (c) The field profiles of the first (λ1 = 1579.71 nm) and the
second (λ2 = 1609.95 nm) TE resonant modes of the device in (a) with mode volumes
of 0.97(λ1/nsi)

3 and 1.36(λ2/nsi)
3 respectively;(d) Tabulated air-hole radii calculated

via the TL technique for the resonant region in part (a).
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Given the geometrical dimensions of the substrate, the width of the waveguide

is chosen at w = 700 nm to support a propagating mode in the desired wavelength

range (i.e., 1469 nm < λ0 < 1656 nm) well below the light lines. The lattice constant

is set to be a = 330 nm. This choice will place the edge of the Brillouin zone (i.e.,

κ = π/a, where κ is the normalized propagation constant) far from the edge of the

radiation zone (i.e., 2π/λ0) to reduce the radiation loss [126]. The photonic bandgap

of the PhC in the mirror section is adjusted by setting the air hole radius to rm = 100

nm to place the desired resonance wavelength at the center of the photonic gap (see

Figure 44(b)). In order to maximize the radiation Q (Qr) of the resonant region

(i.e., minimize the radiation loss), the transmission line (TL) technique (detailed in

[127]) is used to design the air holes in the resonant region such that the spatial

profile of the resonant mode (see Figure 44(c)) meets all the requirements for low

radiation loss explained in [128]. The calculated air hole radii for the resonant region

are tabulated in Figure 44(d). A commercially available finite-difference-time-domain

(FDTD)-based software package (i.e., Lumerical) is used to obtain the actual mode

profiles as well as the estimates of the optical Qs of the resonant modes of the device

shown in Figure 44(a). Figure 44(c) shows the magnitude of the electric field for the

first and the second TE (electric field in the x − y plane in Figure 44(a)) modes at

λ1 = 1579.71 nm and, λ2 = 1609.95 nm (with Si refractive index nsi = 3.46). To

separately estimate the Qr and Qw of these modes, the structure is simulated with

(a) fifteen and (b) five PhC lattice periods in the mirror regions. Simulations suggest

that the leakage power from the fifteen-period mirrors is negligible (i.e., Qw → ∞),

and the estimated Qs of Q1 = Qr1 ≈ 1.36 × 106 and Q2 = Qr2 ≈ 3.77 × 105 for

the first and the second modes, respectively, are mainly limited by the radiation loss

(note that the material loss is neglected due to its negligible effect on Q at the selected

wavelengths). Moreover, Qs of Q1 = Qw1 ≈ 48000 and Q2 = Qw2 ≈ 3700 (i.e., Qs are

limited only by the coupling loss to the input and output waveguides) are estimated
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for the first and the second modes, respectively, when the five-period mirrors are

used. By comparing the values of Qr and Qw obtained for each mode, I conclude

that under a practical design for achieving reasonable coupling to the input/output

waveguides, the Q of each mode will not be limited by the radiation Q, and they

will be defined by the coupling Q (i.e., Qw). To complete the design of the structure,

two focusing grating couplers are added on the input and output rib waveguides for

out-of-plane coupling of the input and output of the overall device to the input laser

and the output detector, respectively [129]. These gratings are designed using the

conventional techniques and for the sole purpose of characterizing the device.

8.3 Fabrication

The PhC nanobeam resonator along with the input/output focusing grating couplers

(designed to have a peak coupling efficiency at around 1600 nm) are fabricated on

an SOI wafer with a 250 nm thick Si layer. A 110 nm layer of hydrogen silsesquiox-

ane (6% HSQ from Dow Corning) is spin-coated on the sample as the resist, and

the patterns are defined through electron-beam lithography (EBL). After developing

the sample in 25% tetramethylammonium hydroxide (TMAH) at an elevated tem-

perature of 40 ◦C, the device Si layer is etched with an etch-depth of 200 nm in an

inductively-coupled-plasma (ICP) chamber. This step leaves a 50 nm pedestal on the

sample, which is selectively removed around the grating coupler areas. The sample

is then covered with 10 nm of silicon oxide (SiO2) through atomic layer deposition.

The metallurgical pn-junction in the middle of the nanobeam structure is formed by

successive ion implantation steps to achieve concentrations of ≈ 6 × 1017 cm−3 on

the resonator region (75As+ and 49BF2+ species) and ≈ 1020 cm−3 on the contact

regions. This level of doping increases the material loss in the Si layer to α = 3.35

cm−1 at the telecommunication wavelength [46]. The drop in Q of the designed
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nanobeam resonator due to the additional material loss is estimated through the per-

turbation theory using the obtained mode profiles shown in Figure 44(c) [130], and

the calculated values are ≈ 9000 and ≈ 3500 for the first and the second TE modes,

respectively. The patterned polymethyl methacrylate (PMMA from MicroChem) re-

sist (thickness ≈ 2 µm) is used as the implantation mask in all doping steps. In the

next step, dopants are electrically activated by annealing the sample at 950 ◦C for

240 seconds in a rapid thermal processing (SSI RTP) system. For the metallization

layer, titanium (as an adhesion layer) and copper are sputtered successively on an-

other patterned layer of PMMA resist (thickness ≈ 3 µm) and lifted off with the aid

of a sonication bath. The optical micrograph of the device along with the scanning

electron micrograph (SEM) of the resonator region is shown in Figures 45(a) and

45(b), respectively. The nanobeam is connected to the feeding waveguide at both

ends of the resonator.

Figure 45: (a) Optical micrograph of the fabricated device showing the copper pads
on a 50 nm thick pedestal around the PhC nanobeam resonator as well as the 400
µm long inline feeding waveguide along with the focusing grating couplers at the two
ends. (b) False-colored SEM of the fabricated PhC nanobeam resonator (taken before
metallization). The purple and green colors represent the n-type and p-type regions,
respectively.
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The focusing gratings at the two ends of the feeding waveguides facilitate the

input/output coupling of light to/from the device. The optical field propagating

inside the waveguide couples into and out of the PhC nanobeam resonator through

the mirror regions at the two ends of the resonator.

8.4 Characterization

To characterize the device, the output light of a CW tunable laser (Agilent 81682A)

is launched into a cleaved single mode fiber through an in-line polarization controller.

The fiber is mounted on a stage equipped with XYZ micro-positioners as well as

a rotation/tilt compensator. The fiber is then aligned so that its outcoming light

is focused on the input grating coupler. Similarly, the output light from the chip

is collected through the output grating coupler with a similar cleaved fiber and fed

directly into a detector (Thorlabs PDB150C 800 nm− 1700 nm). The chip is placed

on a temperature controlled stage with the temperature set at 25 ◦C. Figure 46 shows

the normalized transmission spectrum of the device, which is obtained by sweeping the

laser wavelength from 1510 nm to 1640 nm at the rate of 5 nm per second. To have a

good signal-to-noise ratio, the output power of the laser is set to its maximum-over-

sweep value, i.e., 354 µW . The measurement is repeated with the laser power set at a

much lower level of 5 µW . Since the later measurement results in the same lineshape

for both resonances, I conclude that the nonlinear loss sources have negligible effect

on the measurement with the higher laser power, and all observed effects are due to

linear phenomena. For normalization, the obtained transmission spectrum is divided

to that of a reference device (fabricated on the same chip) that consists of similar

grating couplers and waveguides with no PhC nanobeam resonator in the middle

(with the same overall device length).

The two pronounced peaks in the collected spectrum in Figure 46 are related to

the two supported resonant modes of the PhC nanobeam resonator. The first TE
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mode at 1598.8 nm features a loaded-Q (QL) of ≈ 8900. The second TE mode at

1627.3 nm is closer to the bandgap edge and exhibits a larger spatial extent along the

resonator and consequently experiences a stronger coupling from and to the feeding

waveguides (Figure 44).

Figure 46: Normalized transmission spectrum of the PhC nanobeam resonator in
Figure 45. The inset shows a closer look at the linewidth around the first mode. The
designed photonic bandgap of the PhC mirrors covers the range 1469 nm < λ < 1656
nm.

The measured QL for this mode is ≈ 3200. The actual resonance wavelengths

are slightly higher than the simulated ones owing to the thin deposited silica on the

sample. The measured transmission of the resonator at the first and second reso-

nance wavelengths are 0.047 and 0.76, respectively. With the symmetric resonator-

to-input/output waveguide coupling regions, the resonator transmission at resonance

is given by T (ω0) = (QL/Qw)2 [130]. From this relation, the experimental Qw values

can readily be calculated to be 41000 and 3670 for the first and the second modes,

respectively which are in good agreement with the predicted values from the FDTD
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simulations. A calibrated optical head power sensor (Agilent 81624A) is used to

measure the actual power coupled into the input fiber and the power collected at

the output fiber in the reference device. From such measurements, the sum of the

coupling loss of the input grating coupler and the propagation loss in the feeding

waveguide region is estimated to be ζ ≈ 6.6 dB at the first resonant wavelength (i.e.,

1598.8 nm). This loss is of interest in the calculation of the optical power that enters

the resonator input. The Ec = (Qw/ω0)Pout expression is then used to estimate the

total stored electromagnetic energy in the resonator (Ec) for different laser output

powers [130]. In this expression Pout is the waveguide output power (see Figure 44(a))

which is estimated by measuring the power in the output fiber of the actual device

and normalizing it to the propagation losses (i.e., ζ). Plots in Figure 47 show the

transmission spectrum of the device around the first resonant mode for different laser

excitation powers with no reverse bias applied to the pn-junction (the corresponding

resonator energies are provided in the legend). It is seen that for the applied laser

power levels, the resonance wavelength and the lineshape are preserved. This ob-

servation suggests that the nonlinear absorption mechanisms are not present at zero

reverse-bias.

To observe the effect of the applied reverse bias of the pn-junction device, the

transmission spectrum of the device is monitored under different reverse-bias voltages,

and the results are shown in Figure 47(b). In this measurement, the laser wavelength

is swept from shorter to longer wavelengths. As shown in Figure 47(b), the Lorentzian

lineshape of the resonance is no longer preserved for bias voltages larger than 22V .

The observed redshift in the resonance wavelength for smaller voltages (i.e., Vr <

22V ) is attributed to the carrier dispersion property of Si, which is triggered by the

depletion of the majority carriers in the p and n regions [46]. Once the applied bias

voltage exceeds 22V , the resonance linewidth becomes lopsided, and the resonance

peak experiences an even bigger redshift; this is not explicable only through the carrier

98



dispersion property of Si. As seen in Figure 47(b), the resonance lineshape in this

regime broadens and features an abrupt jump on the right side (higher wavelength) of

the peak. This behavior is known as the peak dragging which is directly linked to the

bistability condition [131]. This characteristic can be explained by considering both

the thermo-optic effect in Si (dnsi/dT = 1.86× 10−4K−1 [132]) and the Joule heating

mechanism due to the induced photocurrent in the device. Once the laser wavelength

reaches the vicinity of the resonance wavelength (from the left side) the optical field

in the resonator generates a finite photocurrent. The associated dissipated electric

power increases the device temperature, which in turn results in a small redshift in

the resonance wavelength. This redshift in the resonance wavelength tends to reduce

the optical field in the resonator and hence, it limits the photocurrent generation. As

the laser wavelength is swept to longer wavelengths, the thermo-optic effect can no

longer catch up with the Joule heating effect. Consequently, this negative feedback

process turns into a positive one. The abrupt jump in the spectrum is where this

condition manifests itself.

Figure 47: (a) Measured transmitted power spectrum of the nanobeam resonator at
different laser output powers (PL) with the applied voltage of the pn-junction device
kept fixed (Vr = 0), (b) Transmitted power spectrum of the nanobeam resonator
at a fixed laser power (PL = 1.84 mW ) with varying reverse bias applied to the
pn-junction device.

I use a source measurement unit (SMU) (Keithley 4200-SCS) to measure the

99



photocurrent generated in the pn-junction. In this experiment, the wavelength of the

tunable laser is slowly swept (at a rate of 500 pm/s) from 1595 nm to 1605 nm. This

range covers the first resonance wavelength of the nanobeam resonator. Different

curves in Figure 48(a) show the measured leakage current of the device at various

applied reverse-bias voltages as a function of the laser scanning wavelength. In this

study, the output power of the laser is fixed at 1.84 mW (corresponding to 403 µW

in the input waveguide).

Figure 48: (a) Measured pn-junction leakage current in the resonator region as the
laser wavelength is swept (the top and bottom horizontal axes are the sweeping time
and the corresponding laser wavelength, respectively). In these measurements the
laser power is kept fixed at PL = 1.84 mW . To clarify the speed of the wavelength
sweep, the sweeping time is also shown in the figure. (b) Measured photocurrent
generated for different laser powers (bias is kept fixed at Vr = 22 V ) as a function
of the sweeping time. The inset shows the photocurrent jump versus the laser power
(PL).

As it can be clearly seen, the leakage current rises at the wavelengths closer to the

resonance wavelength of the resonator because of the increased field density in the

resonator. Application of higher reverse bias voltages widens the depletion region,

which in turn modestly increases the photocarrier collection efficiency. In addition,

the generated photocarriers experience a stronger driving force under higher electric

fields. It is seen in Figure 48(a) that the generated photocurrent progressively in-

creases from ≈ 1.9 µA to ≈ 16 µA as the reverse-bias voltage increases from 22 V
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to 28 V . The leakage current (off-resonance) also rises with the reverse-bias voltage.

The plots in Figure 48(b) show that the photocurrent increases in response to the

successive increments in the laser power at a fixed reverse-bias voltage, i.e., Vr = 22

V . It is seen that by increasing the laser power from 354 µW to 1.84 mW , the pho-

tocurrent rises from ≈ 1.9 µA to ≈ 6.4 µA rather linearly (see the inset in Figure

48(b)). Combining the results in Figures 48(a) and 48(b), one can conclude that

for higher optical powers, the bistability occurs at lower reverse voltages. The linear

characteristic seen in the inset of Figure 48(b) suggests that the photocarriers are

generated mainly through the linear absorption mechanisms. Note that the required

input optical power (to achieve bistability) in the device can be reduced significantly

by improving the photocarrier collection efficiency and using a resonator with higher

Q.

8.5 Discussion

Although pure bulk Si has minimal linear absorption at telecommunication wave-

lengths, additional ion implantation, material defects, and also the mid gap surface

states, e.g., at the Si-air or Si-SiO2 interfaces, substantially contribute to the linear

absorption of Si-based nanostructures [133, 134, 135, 136, 137]. Following the ex-

pressions in Appendix 1, the linear and nonlinear absorption rates can be estimated.

Assuming a perfect collection of photocarriers, i.e., η = 1, the collective linear absorp-

tion rate is calculated to be γL = 2.9× 1010 s−1 when the stored energy is Ec = 402

aJ (corresponding to 397 µW input waveguide power and the resonator Q of 8900).

The TPA and FCA absorption rates are also evaluated to be γTPA = 5.50 × 107

s−1 and γFCA = 2.46 × 107 s−1 for the same stored energy (see Appendix 1). It is

seen that the nonlinear absorption rates are much smaller than the collective linear

absorption rate. This result is consistent with the experimental observations detailed

in the characterization section. This confirms that the generated photocurrent in my
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experiments is mainly due to the linear absorption processes. It is worth noting that

in principle, the photocarriers due to TPA can also contribute to the photocurrent

(before non-radiative relaxation takes place). Such photocarriers can be generated in

high-Q/low-mode-volume cavities at low input optical powers as shown in numerous

studies [111, 112]. In such cases optical bistability can be achieved even at lower

input optical powers once the structure is integrated with a similar reverse-biased

pn-junction explained in the present work.
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CHAPTER IX

EPILOGUE

9.1 Brief Summary of Contributions

My thesis has been mainly focused on the design, implementation, and characteri-

zation of a series of essential integrated photonic elements that are urgently needed

for realization of complex integrated photonic systems on-chip using hybrid material

platforms. As discussed throughout the chapters, the use of multiple heterogeneous

materials can greatly enhance the optical functionality of the platform for photonic

applications. The first part of my work was dedicated to the Si/SiO2/SiN material

platform. In this part, a wideband interlayer grating coupler featuring very low inser-

tion loss for the aforementioned platform was demonstrated. The used methodology

for this design is readily applicable to other types of multilayer platforms.

As the second major contribution of my research, I developed a resonance-based

integrated electro-optic modulator on a multilayer material platform consisting of

a stack of Si, SiO2, and Si layers. The modulation mechanism is based on carrier

accumulation on the Si layers. This device benefits from a very small footprint and

exhibits modulation speeds in the 30 Gb/s range without sophisticated optimization.

Up to now, this demonstrated speed is the record-high for this type of modulators.

I further showed that modest optimization on the device can further increase the

modulation data rate up to ≈ 60 Gb/s. This modulator can be self-trimmed up to 1

nm by applying a dc voltage (the device is capacitive and draws negligible current).

This feature eliminates the need for power-hungry thermal-based trimming/tuning

methods and hence, can substantially decrease the overall power consumption of

the device. The demonstration of this modulator is only the first step in showing the
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potentials of this unique material platform, and a similar approach can be adopted for

realization of other functional devices and subsystems (e.g., filters, routers, switches)

with unprecedented performance and no need for power-hungry trimming techniques.

By utilizing the same Si/SiO2/Si platform, I also demonstrated the first integrated

field-programmable photonic device. This powerful yet simple-to-fabricate device al-

lows for large-scale integration, which is compatible with the existing fabrication

technology. This device opens up new possibilities for realization of functional pho-

tonic devices and systems featuring comparable functionalities to electronic FPGAs.

As a simple example, I used this building block to demonstrate a field-programmable

2× 2 optical switch.

Looking ahead, I also investigated the use of graphene in the hybrid material

platform to address some of the shortcomings of Si and SiN, especially in achieving

ultra-high speeds (beyond 100 GHz). My goal in this add-on part to my thesis was

to show the unique capabilities of the graphene-based hybrid materials (rather than

demonstrating the full system) to open up new areas of research in this field. For this

purpose, in Chapter 6, light-matter interaction between the electrons on an atom-thick

sheet of graphene and the optical field circulating in a silicon-based microdisk was

explored. In the presented device, infrared light was modulated through electrostatic

gating of the graphene sheet. This design is of great technological significance as it

paves the way for development of chip-scale photonic devices for ultrafast electro-

optical switching and modulation applications.

In the last part of my work, I demonstrated an optical bistable device in a Si-based

integrated photonic platform comprising a rather low-Q photonic crystal nanobeam

resonator with an embedded pn-junction. The bistable functionality of the proposed

device relies on the interplay between the generated heat due to the photocurrent

and the thermo-optic effect. This is in contrast to other Si-based bistable optical
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devices, which depend on heating through non-radiative relaxation of carriers (trig-

gered by nonlinear TPA and FCA processes). I demonstrated that the generated

photocurrent through linear absorption mechanisms is sufficient to achieve bistabil-

ity. The proposed Joule-heating mechanism is particularly of interest as it permits

the realization of optical bistability at comparatively low input optical powers. The

proposed mechanism allows for design and implementation of all-optical processing

systems and robust ultrahigh sensitive sensors at extremely low optical powers.

9.2 Future Directions

The material and device properties demonstrated in this thesis opens up several new

fronts for performing cutting-edge research in the field of integrated nanophotonics.

The achievable device performance in the hybrid material platforms is very encourag-

ing for realization of integrated photonic systems for practical applications. With the

goal of this research being a ground-breaking effort in demonstrating device capabili-

ties of CMOS-compatible hybrid material platforms, there is still several possibilities

to achieve higher speeds, lower power consumptions, lower operation power and more

compact devices compared to the world-record performance measures demonstrated

in this thesis. Some of the possibilities are as follows:

(a) It is rewarding to future optimize the geometrical dimensions of the interlayer

grating coupler for better coupling efficiencies. To reduce the overall footprint of the

device, the current methodology can be applied to optimize the device for shorter

taper regions similar to the architecture of focusing grating couplers.

(b) The modulation depth, the insertion loss, and the power consumption of the

electro-optic modulator demonstrated in this thesis can be highly enhanced. Such

improvements can be achieved by using a multilayer platform featuring a higher

optical quality. The use of fabrication techniques with higher precision can reduce the

size of the device. Also modest optimization on the doping profiles can be beneficial

105



both for the lower power consumption as well as the operational bandwidth. Other

possibilities include the use of thin layers of high-k dielectrics (e.g., Al2O3) in place of

SiO2 as the buffer layer between the active Si layers of the hybrid material platform,

undercutting of this oxide layer and infiltration with electro-optic polymers, and the

use of graphene in place of Si.

(c) The design of the graphene-based modulator can be modified to achieve a

better performance. In particular, adding a second graphene layer as the second

electrode can significantly increase the operation bandwidth. Utilization of graphene

layers with lower defect density and development of the transfer technique conducive

to a lower residual contamination allows to take full advantage of the properties of an

ideal graphene sheet. Similar to the electro-optic modulator device, the use of higher-

Q microresonators (possibly on low-loss substrates such as SiN) greatly ameliorates

the modulator specifications.

(d) The bistable device introduced in Chapter 8 is very promising for sensing

applications. An external feedback circuit can be developed to stabilize the specifi-

cations of the device. The photonic device can also be optimized to reach bistability

at considerably lower optical powers.

(e) By combining the photonic elements demonstrated in the dissertation, it is

possible to develop a multi-channel modulator for dense wavelength division multi-

plexing (DWDM) or course wavelength division multiplexing (CWDM) applications

(similar to the architecture shown in Figure 2). Each channel can support binary or

other advance modulation formats such as QPSK. The demonstration of such intricate

systems requires many optimization efforts at various levels, which can form inter-

esting topic for future Ph.D. dissertations. Finally, the hybrid material platform is

an excellent candidate for demonstration of the future RF-millimeter-wave/photonic

information processing systems.
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APPENDIX A

DRY-ETCH RECIPES

Table 4 summarizes the gas flow rates, the plasma DC bias, and the RF power used

for the dry-etch process of SiN deposited through LPCVD. This recipe is used to etch

photonic device in 400 nm-thick SiN substrates. Since ZEP is use as the mask, etch

rate is measured for SiN as well as ZEP.

Table 4: Detailed parameters for LPCVD-deposited SiN.

Tool Oxford RIE
Gas type CF4 CHF3 Ar O2 Cl2 C8F8

Flow rate (sccm) 50 4 0 0 0 0
RF Power (W) 175
DC Bias (V) 190

Chamber pressure (Torr) 0.250
SiN Etch Rate (nm/min) ≈ 40
ZEP Etch Rate (nm/min) ≈ 20

Table 5 summarizes the gas flow rates, the plasma DC bias, and the RF power

used for the dry-etch process of thermally-grown SiO2. This recipe is used to remove

thin layers of thermal SiO2 from the surface.

Table 5: Detailed parameters for thin thermally-grown SiO2.

Tool Oxford RIE
Gas type CF4 CHF3 Ar O2 Cl2 C8F8

Flow rate (sccm) 0 24 15 0 0 0
RF Power (W) 200
DC Bias (V) 420

Chamber pressure (Torr) 0.035
SiO2 Etch Rate (nm/min) ≈ 25

Table 6 summarizes the gas flow rates, the plasma DC bias, and the RF power

used for the dry-etch process of crystalline Si. This recipe is used to etch photonic
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devices on Si substrates. HSQ is used as the mask. The etch rate is measured for Si,

HSQ, and thermally-grown SiO2.

Table 6: Detailed parameters for thin crystalline Si.

Tool Plasma-therm ICP
Gas type CF4 CHF3 Ar O2 Cl2 C8F8

Flow rate (sccm) 0 0 0 0 50 0
RF1 Power (W) 125
RF2 Power (W) 75

DC Bias (V) 460
Chamber pressure (Torr) -
Si Etch Rate (nm/min) ≈ 70− 75

HSQ (nm/min) ≈ 16.8
Thermal SiO2 (nm/min) ≈ 11.6

Table 7 summarizes the gas flow rates, the plasma DC bias, and the RF power

used for dry-etch process of SiO2 deposited through PECVD. This process is used to

open up deep via holes in the PECVD SiO2 cladding layer. In such processes, Cr can

be used as a hard mask as well as an etch stop. Etch rates for SiO2, Cr, Si, ZEP and

PMMA are provided.

Table 7: Detailed parameters for thick PECVD-deposited SiO2.

Tool Plasma-therm ICP
Gas type CF4 CHF3 Ar O2 Cl2 C8F8

Flow rate (sccm) 0 0 4 4 15 16
RF1 Power (W) 400
RF2 Power (W) 400

DC Bias (V) 800
Chamber pressure (Torr) -

SiO2 Etch Rate (nm/min) ≈ 260
Cr (nm/min) < 60
Si (nm/min) ≈ 180

ZEP (nm/min) ≈ 500
PMMA (nm/min) ≈ 600
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APPENDIX B

TWO-PHOTON ABSORPTION AND FREE-CARRIER

ABSORPTION EFFECTIVE MODE VOLUMES

The nonlinear absorption rates depend on the resonator mode profile (E(r)) as well

as the stored energy, i.e., Ec. The TPA rate (γTPA) can be estimated through the

following expressions [109]:

γTPA(Ec) = ΓTPA
βSic

2

n2
SiVTPA

Ec,

VTPA =

(∫
n2(r)E2(r)dr

)2∫
n4(r)E4(r)dr

,

ΓTPA =

∫
Si
n4(r)E4(r)dr∫
n4(r)E4(r)dr

.

(31)

In Equation 31, βSi = 8.4 × 10−12 mW−1 is the TPA coefficient of Si [8]. In Si with

a reverse-biased pn-junction the effect of intrinsic free-carriers is minimal. However,

the FCA due to the free carriers induced by TPA can be significant. Similarly I have

the following expressions for FCA rate (γFCA) [109].

γFCA(Ec) = ΓFCA
τσSiβSic

3

2n3
Si~ω0V 2

FCA

E2
c ,

V 2
FCA =

(∫
n2(r)E2(r)dr

)3∫
n6(r)E6(r)dr

,

ΓFCA =

∫
Si
n6(r)E6(r)dr∫
n6(r)E6(r)dr

.

(32)

In Equation 32, τ denotes the free-carrier lifetime, which strongly depends on the

free-carrier density as well as the surface effects (for the purpose of my calculations,

τ ≈ 0.5 × 10−9 s is assumed [110]), σSi = 14.5 × 10−22 m2 is the free-carrier cross

section, and ~ω0 is the photon energy [46]. The field profiles obtained through the

FDTD method are used to calculate the TPA and FCA effective mode volumes and
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the geometric coefficients in Equations 31 and 32 for the first resonant mode of the

nanobeam resonator in Chapter 8 (VFCA−M1 = 3.28(λ1/nSi)
3, ΓFCA−M1 = 0.998,

VTPA−M1 = 4.63(λ1/nsi)
3, ΓTPA−M1 = 0.992).
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