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SUMMARY

Fully homomorphic encryption (FHE) allows for computation of arbitrary func-

tions on encrypted data by a third party, while keeping the contents of the encrypted data

secure. This area of research has exploded in recent years following Gentry’s seminal

work. However, the early realizations of FHE, while very interesting from a theoretical

and proof-of-concept perspective, are unfortunately far too inefficient to provide any use in

practice.

The bootstrapping step is the main bottleneck in current FHE schemes. This step

refreshes the noise level present in the ciphertexts by homomorphically evaluating the

scheme’s decryption function over encryptions of the secret key. Bootstrapping is necessary

in all known FHE schemes in order to allow an unlimited amount of computation, as without

bootstrapping, the noise in the ciphertexts eventually grows to a point where decryption is

no longer guaranteed to be correct.

In this work, we present two new bootstrapping algorithms for FHE schemes. The first

works on packed ciphertexts, which encrypt many bits at a time, while the second works on

unpacked ciphertexts, which encrypt a single bit at a time. Our algorithms lie at the heart of

the fastest currently existing implementations of fully homomorphic encryption for packed

ciphertexts and for single-bit encryptions, respectively, running hundreds of times as fast for

practical parameters as the previous best implementations.

ix



CHAPTER I

INTRODUCTION

1.1 Motivations for Fully Homomorphic Encryption

Cloud computing allows for the outsourcing of computation to an external shared pool of

configurable computing resources. [70] This saves users from having to acquire hardware

infrastructure, and instead lets them “pay to play,” spending money on the service only

when using it. In the last decade, it has become ubiquitous, with many large technology

companies such as Amazon, Google, Oracle, and Microsoft entering the area, and many

new companies forming to take advantage of it.

There are a number of security concerns for cloud computing beyond those present

for in-house IT concerns. Some of these concerns, such as the need to securely transfer

information to and from the cloud, can easily be resolved with the proper implementation of

various practical well-known public and private-key cryptographic solutions. [6] However,

once the data has made it to the cloud securely, one needs to find a way to perform the

computation securely as well.

Allowing the cloud server the ability to decrypt the encrypted information sent to it is a

potential solution. In fact, this is what currently exists in all implemented cloud computing

solutions. The problem with this solution is that it requires the client to trust the cloud server

implementation to protect their data from misuse. This level of trust has been an acceptable

risk to many when it comes to less sensitive data. However, for more sensitive data (such

as trade secrets), many companies have had the attitude that “my sensitive corporate data

will never be in the cloud,” [6] as they are unwilling to trust the cloud provider to properly

secure and not misuse their data.

An alternative to the above less than optimal solution is for the cloud to be able to perform
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the desired computations on the data while it remains encrypted. Under this paradigm, there

is no need for any level of trust in the cloud server, as the data remains encrypted even in

the cloud, and even while computations are being performed. This option is known as fully

homomorphic encryption (FHE) [43].

Often referred to as “the holy grail of cryptography,” FHE has numerous uses beyond the

given example concerning outsourced computation. FHE can also be used to achieve secret

program execution [43, 26] and private information retrieval [66, 43, 87]. More recently,

it has been used as a building block to achieve various cryptographic primitives such as

indistinguishability obfuscation (IO) for all circuits [42].

1.2 Early Attempts at FHE

Fully homomorphic encryption was first considered in the early days of public key cryp-

tography by Rivest, Adleman and Dertouzos in 1978, under the term “privacy homomor-

phism” [76]. The application they considered was for time-sharing computing services,

which was essentially analogous to today’s cloud computing reality. While they gave several

examples of potential privacy homomorphisms, they acknowledged that they might be

cryptographically insecure. As it turned out, a number of years later, all the given example

homomorphisms in the paper were indeed shown to be insecure [27].

While numerous applications were discussed in the literature, over the next 30 years,

essentially no progress was made. Only a handful of candidate fully homomorphic encryp-

tion schemes were proposed [37, 36]. Of these handful, all were shown in a short period

of time to be insecure [32, 86]. Then, in 2009, Craig Gentry shocked the cryptographic

community with a candidate fully homomorphic encryption scheme based on plausible

hardness assumptions [43]. Since then, the area has exploded, with many, many papers in

the area.
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1.3 An Introduction to Fully Homomorphic Encryption

The basic idea behind FHE is fairly simple. FHE allows for the computation of arbitrary

functions on encrypted data by a third party, without the other party having access to

the secret key. By arbitrary functions, we mean any function that can be expressed as a

(polynomial-sized) circuits in terms of the input. This definition is chosen because these

functions are (when expressed as circuits) those generally considered to be computationally

tractable. As all circuits can be built using only NAND gates, it is easily seen that is sufficient

(and necessary) to be able to evaluate a NAND gate over two encrypted bits.

1.3.1 Fully Versus Partially Homomorphic

In currently known fully homomorphic encryption schemes, there is no “natural” way to

directly evaluate a NAND gate. Instead, the basic operations in these encryption schemes

are multiplication and addition over a commutative ring, typically one that embeds Z2. To

see that the ability to evaluate multiplication and addition in such a ring is sufficient for

FHE, note that for x1, x2 ∈ {0, 1},

x1 NAND x2 = 1− x1x2.

If an encryption scheme allows only homomorphic multiplication, or only homomorphic

addition, the scheme is referred to as partially homomorphic. Many public-key encryption

schemes are naturally partially homomorphic, such as (unpadded) RSA and El-Gamal

(multiplication), and Paillier, Goldwasser-Micali, and Benaloh (addition). [40] Partially

homomorphic encryption is itself an interesting topic with several applications. In particular,

partially homomorphic encryption has been used extensively in secure voting protocols. [61,

64, 34, 13]. Nevertheless, while useful, partially homomorphic encryption has significantly

less applications than fully homomorphic encryption, and for the remainder of this thesis,

we will be referring only to fully homomorphic encryption.
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1.3.2 Security and Efficiency Requirements

In addition to the basic ability to evaluate circuits over encrypted messages, there are several

other requirements that must be satisfied in order for a scheme to be fully homomorphic.

First of all, the encryption scheme must still satisfy basic notions of cryptographic security

(i.e. chosen-plaintext security). If not, the trivial “encryption” scheme that simply outputs

the plaintext itself as the “encryption” would still satisfy the definition.

Another trivial solution that must be excluded is the solution that involves simply

outputting the ciphertexts and the description of the circuit. To exclude this trivial solution,

we require that the size of the output ciphertext be a fixed polynomial size in terms of the

security parameter, independent of the size or depth of the circuit being evaluated. As a

stronger requirement, we can follow Gentry and require that decryption of the ciphertext

after the homomorphic evaluation be expressible by a circuit of fixed polynomial size in the

security parameter (still independent of the complexity of the circuit being homomorphically

evaluated). [43] Given that a major focus of this work is on expressing the decryption circuit

as simply and efficiently as possible, this stronger requirement is particularly suitable for

our purposes.

1.3.3 Noisy Ciphertexts

At a high level, all currently known FHE schemes have followed Craig Gentry’s original

paradigm. Gentry’s most significant idea was to use a scheme with inherent additive and

multiplicative homomorphisms. That is to say, to perform a homomorphic addition, one

simply adds the ciphertexts together in a “natural manner”, and to perform a homomorphic

multiplication, one multiplies the ciphertexts together in a suitable “natural” manner. He

found such a solution by using ideal lattices, which can be represented by elements of a

polynomial ring, and as a result, have “natural” addition and multiplication.

The ciphertexts in Gentry’s original scheme and all subsequent peer-reviewed schemes

that are not currently broken have an associated noise level. Without this noise, they would
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be insecure. This insecurity follows from the fact that if the noise were to be removed from

any of these schemes, the decryption function would become linear. Concretely, there would

be a function linear in the secret key that, when applied to ciphertexts, output the original

messages. As a linear function, this decryption function would be learnable, which Kearns

and Valiant have shown is inherently insecure [63, 19].

With the noise, the decryption functions of these schemes are no longer linear. Instead,

computing the proper linear (in the secret key) function of the secret key and a ciphertext

results in some form of “noisy” encoding of the message. As long as the noise remains

below a certain threshold, we can recover the message. However, if the noise becomes too

high, then we are no longer guaranteed to be able to recover the message.

For those schemes based on lattices, the hardness of breaking the underlying hard

problems is proportional to the “noise level” in a ciphertext, where the “noise level” is the

ratio of the absolute value of the noise in the ciphertext modulus we are working over to the

absolute value of the noise in the ciphertext [75]. In particular, when this ratio becomes as

small as 2−n (where n is the dimension of the lattice used in the scheme), the underlying

lattice problems can be efficiently solved with the LLL algorithm, leaving the schemes

insecure.

1.3.4 Noise Growth and Homomorphic Operations

The importance of this trade-off between noise level and security becomes apparent when

considering the homomorphic properties of the scheme. The noise level in these ciphertexts

grows as a result of performing homomorphic operations. In currently known schemes, this

noise growth limits the depth of computation that can be performed to an a priori bound.

Such a scheme is known in the literature as SHE (somewhat homomorphic encryption) if

the depth is relatively small (e.g. at most logarithmic in the security parameter) or as leveled

FHE if the maximum depth of computation can be set a priori (via a suitable choice of initial

parameters) to be any fixed polynomial in the security parameter.
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The maximum depth of computation possible in these schemes is a direct consequence

of the rate of noise growth for various homomorphic operations. Consequently, reducing

this rate of growth has been a major focus of research. In Gentry’s initial scheme, as well

as in all subsequent schemes, performing a homomorphic addition causes the noise in the

resulting ciphertext to be the sum of the noises in the two input ciphertexts.

Multiplication, however, has seen significant improvements in the rate of growth. In

Gentry’s initial candidate scheme, performing a homomorphic multiplication causes the

noise in the resulting ciphertext to be the product of the noises in the two input ciphertexts.

As a consequence, Gentry’s initial scheme only allowed the evaluation of circuits of very

limited depth (see Section 1.4 for further details). In more recent schemes [53, 20, 18],

multiplication causes the noise level to grow by a multiplicative factor quasilinear in the

security parameter λ. This turns out to be sufficient to give leveled FHE under plausible

assumptions.

In order to accomodate noise growth while remaining secure, the key and ciphertext

sizes of all known SHE schemes grow with the depth and, to a lesser extent, the size of the

functions that they can homomorphically evaluate. For instance, under plausible hardness

conjectures, the key and ciphertext sizes of the most efficient SHE scheme to date [20] grow

quasilinearly in both the supported multiplicative depth d and the security parameter λ, i.e.,

as Õ(d · λ).

1.4 Bootstrapping for FHE

To move beyond leveled FHE and enable evaluation of circuits of arbitrary depth, we need

to use bootstrapping, Gentry’s main innovation. Bootstrapping is a procedure that allows us

to homomorphically refresh the noise level in the ciphertext.

1.4.1 Basics of Bootstrapping

To understand bootstrapping, one must first consider what happens when we decrypt a

ciphertext in the clear. Viewing the decryption function for a given ciphertext as a known
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function of the (unknown) secret key, we can see that evaluating the decryption function

gives us the original message back. The crucial idea behind bootstrapping is noticing that

since decryption can be represented as a function of the secret key, it can be evaluated

homomorphically over an encryption of the secret key. Following this idea, we encrypt the

secret key (under itself or its own public key) and put the resulting ciphertext (or ciphertexts)

into a publicly available key that has been termed the evaluation key in the literature. Using

this evaluation key, homomorphic evaluation of the decryption function, which we call

bootstrapping, can be performed by a third party without knowledge of the secret key,

simply by utilizing the homomorphic properties of the underlying scheme. Importantly, the

encryption of the secret key creates a “circular security” situation; we discuss this in more

detail in Section 1.6.1.

The result of this homomorphic evaluation of the decryption function is an encryption

of the original message. Since we began with an encryption of the original message, it is

initially unclear how this bootstrapping operation does anything useful. To understand its

utility, we need to consider the noise levels. Since no homomorphic operations have been

done on the encryption of the secret key, those ciphertext (or ciphertexts) have relatively low

noise levels. As a result, if the bootstrapping procedure can be done with sufficiently small

noise growth, then we can take a ciphertext with a very high noise level and bootstrap to

obtain a ciphertext that encrypts the same message with less noise. This lower noise means

we can perform at least one more homomorphic operation on the ciphertext before needing

to bootstrap again. By repeating this process, we obtain unbounded fully homomorphic

encryption.

As things currently stand, bootstrapping is the main bottleneck in FHE. For a concrete

example, in Gentry’s initial implementation of bootstrapping it took 30 minutes perform a

single bootstrapping operation on a single CPU with an underlying lattice while achieving

72 bits of security under the best known lattice-reduction algorithms [47]. While still a big

breakthrough, this scheme was ludicrously inefficient. Since then, there has been intensive
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study of different forms of decryption procedures for SHE schemes, and their associated

bootstrapping operations.

1.4.2 Survey of Bootstrapping Algorithms

There have been two primary methods by which the time required for bootstrapping has

been improved. The first method has been through improving the underlying homomorphic

encryption scheme. Improvements in this category have included reducing the growth rate

of the noise from homomorphic multiplications, allowing “packed” ciphertexts (encrypting

many bits at once), and giving FHE schemes provably secure under better-understood

underlying assumptions [44, 53, 84, 47, 23, 20].

Our work focuses on the second method, which involves improving the algorithm for

bootstrapping for a given underlying SHE scheme. Here we give a survey of previous works

falling into this category.

Before discussing these methods, we recall a high-level form of the decryption function

that holds for all lattice-based SHE schemes. The schemes are parameterized by a security

parameter λ, R, q, and k, where R is a commutative ring and q and k are integers. In the

general lattice setting R = Z and k = n = Õ(λ) is quasilinear in the security parameter,

while in the ideal lattice setting R is a cyclotomic ring of size n = Õ(λ) and k = 2, while

in both settings q is polynomial in the security parameter. Ciphertexts are vectors in Rk
q and

secret keys are short vectors in Rk. Messages can be viewed as elements of Rp, where p is

an integer, p� q; in some schemes, the actual message may lie in some subring R′p of Rp.

Decryption of a ciphertext c ∈ Rk
q can then be expressed as the following function of the

secret key s ∈ Rk:

Decc(s) = b〈c, s〉ep,

where bwep := bw · (p/q)e denotes rounding w := 〈c, s〉 ∈ Rq to the nearest multiple

of q
p
.1

1Although most early schemes used an lsb encoding rather than the msb encoding described above, there is
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1.4.2.1 Gentry’s Initial Algorithm

In Gentry’s initial bootstrapping algorithm, all encryptions were of single bits, due to

problems of overly high-depth circuits he encountered when considering decryption circuits

for larger elements. Under these restrictions, evaluating the decryption circuit essentially

reduced to adding up n integers, each represented in binary with O(log(n)) bits of precision.

To evaluate this, he used elementary symmetric polynomials (all of degree at most n) to

compute the Hamming weight, represented in binary, of each column of bits (i.e. bits with

the same place value) of the original n integers, ending up with log n integers represented

in binary with O(log(n) bits of precision. As the polynomials evaluated in this step are of

degree at most n, it can be computed in depth log n. He then used the “3-for-2” trick, which

allows one to replace 3 numbers represented in binary with 2 numbers having the same sum,

and can be computed in constant depth. Applying this recursively to end up with 2 numbers

requires depth O(log3/2(log n)), and the final sum requires depth O(log log n). This allows

the entire bootstrapping algorithm to be evaluated depth O(log n) [43], which is easily seen

to be within a constant factor of the optimal depth for fan-in two circuits.

However, in this initial scheme, the error growth rate from multiplication was too high

to allow evaluation of this entire depth O(log n) circuit. In order to get around this issue

and make the scheme bootstrappable, Gentry introduced the now deprecated “squashing”

technique. This technique involves adding to the public key a set of vectors with a secret

sparse subset summing to the secret key, which makes knowledge of this sparse subset

sufficient to decrypt. This extra information allows the encrypter to form a modified

ciphertext c′ by computing the inner product of each of these vectors with the original

ciphertext c and concatenating the results. To decrypt, we only need to sum as many integers

as there are elements in the secret sparse subset. By making the subset sufficiently sparse

(while staying large enough to ensure a superpolynomially large number of possible subsets),

an easy transformation from lsb (where p and q must be coprime for security) to msb; see Section 2.8. As the
reverse transformation is not possible when p and q are not coprime, we have written it in the msb form.
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the depth can be sufficiently reduced, allowing bootstrapping to proceed.

1.4.2.2 Subsequent Works

This need for squashing was first overcome by Gentry and Halevi. To do so, they expressed

decryption as a depth-3 arithmetic circuit (
∑∏∑

). To handle the multiplication step,

they were able to switch to the multiplicatively homomorphic El-Gamal scheme after the

initial addition without any homomorphic evaluation. By setting the parameters of the

lattice-based SHE scheme to be sufficiently large, they were then able to handle decryption

of the El-Gamal scheme and the final addition step without the need for squashing. However,

these techniques did not improve on efficiency [46].

Soon after, the need for squashing was entirely obviated in a work by Brakerski and

Vaikuntanathan [23]. This work introduced key-switching as well as dimension and modulus

reduction. By using these techniques, the ciphertext can be shrunk down to a size small

enough to allow the scheme to evaluate its decryption circuit homomorphically. These

techniques are discussed in somewhat more detail in Sections 2.4 and 3.5.1.

There have been several other works focusing on bootstrapping since then. Two of these

algorithms are the starting point for the works making up this thesis, and we discuss them in

the next section [50, 51, 25]. The remainder of the works that have been published build

on the preliminary versions of the works making up this thesis, and we defer discussion of

these works to the beginning of the relevant chapters [60, 73, 59, 38].

1.5 Our Contributions

In this thesis, we present two bootstrapping algorithms, both of which were joint work with

Chris Peikert. These algorithms significantly improve on the previous work in terms of

practical efficiency. As a result, we bring fully homomorphic encryption much closer to

practicality, although there is still a long way to go.
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1.5.1 Efficient Bootstrapping-General

Chapter 2 contains our first bootstrapping algorithm. A preliminary version of this work

appeared in CRYPTO 2013 [3].

In the earliest fully homomorphic encryption schemes [43, 44, 84, 23], encryption was

limited to a bit (or more precisely, to an element mod p for a small integer p). Improvements

by Smart and Vercauteren [82] as well as by Brakerski, Gentry and Vaikuntanathan [20] led

to schemes working over “packed” ciphertexts, which encrypt large numbers of plaintext

elements, achieving Ω̃(λ) encrypted bits per ciphertext. Moreover, when encrypting modulo

qR for judicious choices of modulus q and cyclotomic ring R, these ciphertexts also allow

the encryption of individual (scalar) plaintext elements in multiple “slots” via the Chinese

Remainder Theorem (CRT). This then allows for batch (SIMD) homomorphic operations

on the plaintexts in the various slots. These advances initially allowed for the construction

of a scheme running bootstrapping in time Õ(λ2) with quasilinear overhead. Subsequently,

Gentry, Halevi, and Smart [51, 50] showed how to bootstrap these “packed” ciphertexts in

quasilinear Õ(λ) runtime using a technique involving the composition of permutations in a

log-depth permutation network.

However, while the result of Gentry, Halevi and Smart is a powerful theoretical result

and is asymptotically within a polylogarithmic factor of being optimal, it is far from the end

of the discussion in terms of practicality. Part of the reason for this is that the additional

polylogarithmic factor is very very large. As a result, for practical values of the security

parameter λ, the runtime appears to be longer than for the asymptotically worse Õ(λ2) of

Brakerski, Gentry and Vaikuntanathan. Indeed, a recent implementation of parts of this

scheme by Halevi and Shoup shows that the permutation/shift-networks upon which the

quasilinear time bootstrapping result is based are not that efficient, with each individual

permutation in the log-depth permutation network taking several seconds to compute [58].

We give a bootstrapping algorithm which improves significantly on that of Gentry et

al [3]. The main observation made in [50] is that one can use the log-depth permutation
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network to move the coefficients of an encrypted plaintext polynomial reduced modulo the

cyclotomic ring Φm(X) into the individual plaintext “slots.” The coefficients can then be

rounded in polylogarithmic time in a SIMD fashion (using a result from [50]) and then

mapped back to the coefficients of the plaintext.

Our work has the same high-level form of moving the plaintext coefficients into slots,

rounding, and then moving from the slots back to the coefficients. However, we avoid

many of the inefficiencies of the previous work such as the use of permutation networks

or reductions modulo the full cyclotomic ring (the mth cyclotomic polynomial generally

has a very ugly form for the values of m we need), thus getting a practically more efficient

scheme.

Several implementations at least partially based on this work now exist. An implemen-

tation of FHE by Rohloff and Cousins performs bootstrapping based on our techniques

for non-packed ciphertexts, achieving bootstrapping of ciphertexts encrypting a single bit

with 64 of security in 275 seconds on 20 cores [77]. A more recent work by Halevi and

Shoup, which uses the tensorial decomposition (but not ring-switching) central to our work,

takes 320 seconds on a single core to bootstrap a ciphertext with 1024 slots of elements in

GF(216), achieving an amortized rate of 51 bits/second [59].

1.5.2 Efficient Bootstrapping with Polynomial Error Growth

Chapter 3 contains our second bootstrapping algorithm, which focuses on achieving effi-

ciency while keeping the noise growth to a level polynomial in the security parameters. A

preliminary version of this work appeared in CRYPTO 2014 [4].

From a security perspective, the work described in the previous section suffers from a

significant drawback: the scheme must be based on assuming the hardness of superpoly-

nomial approximation of worst-case lattice problems on ideal lattices. This also indirectly

affects the efficiency, as the size of the parameters required to achieve real-world security

go up with the size of the approximation factor in the reduction.
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Brakerski and Vaikuntanathan [25] took an important step by giving a method for boot-

strapping a somewhat homomorphic encryption scheme that only incurs polynomial error

growth in the security parameter λ. This immediately gives (leveled) FHE with security

based on worst-case lattice problems with polynomial approximation factors, via the reduc-

tions to the learning with errors (LWE) problem given in [75, 74, 22] (to achive unbounded

FHE, they require the standard additional circular security assumption). The starting point

for their scheme is the homomorphic cryptosystem of Gentry, Sahai and Waters (GSW) [53],

and the “quasi-additive” nature of its noise growth under homomorphic multiplication when

using {0, 1} messages, and more generally when working over permutation matrices. They

then combine this with the “circuit sequentialization” property of Barrington’s Theorem [10],

which converts a depth-d circuit into a length-4d “branching program,” which can be realized

by a fixed sequence of conditional multiplications of permutation matrices. Since the decryp-

tion circuit for the GSW scheme can be realized as a depth c log(λ) circuit for a constant

c, Barrington’s theorem gives a polynomial-length program which can be evaluated with

only polynomial growth in the noise. On the downside, evaluating the branching program

requires O(λ2c) homomorphic multiplications, rendering it very inefficient.

We improve on this result by giving a bootstrapping method that requires only a quasi-

linear Õ(λ) of homomorphic operations on GSW ciphertexts. If we instantiate our boos-

trapping method with a GSW scheme based on ring-LWE, our algorithm requires Õ(λ2)

bit operations. Moreover, letting n = Õ(λ), our scheme can be based directly on lattice

approximation factors of Õ(n3), which is not that much larger than the factors required for

just plain public-key encryption.

The techniques in this work are hamstrung by the fact that the polynomial error growth

depends on the messages being roots of unity instead of larger ring elements, preventing us

from including messages of size proportional to the security parameter. However, it performs

quite well in practice. In a recent work which optimizes our bootstrapping algorithm in the

ring-setting, they are able to evaluate bootstrapping in less than a second (for an encryption
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of a single bit) [38].

1.6 Open Problems

Here we discuss two major open problems in the area of bootstrapping and homomorphic

cryptography.

1.6.1 Circular Security

If we wish to achieve only leveled FHE (providing a bootstrapping key for each “level”),

then our bootstrapping algorithms are secure under the Ring-LWE and LWE assumptions,

respectively, as one can use a hybrid argument to show IND-CPA security given the IND-

CPA security of the underlying scheme. However, as we have mentioned, in order to achieve

unbounded FHE with our bootstrapping algorithms, as well as to avoid absurdly large public

key sizes, it is necessary to make an ad hoc assumption of “circular security.”

1.6.1.1 Definitions

Classical definitions of security for encryption (such as semantic or IND-CPA security) [54]

assume that the plaintext messages are chosen independently of the secret key. However,

in bootstrapping, providing encryptions of the secret key under its own public key is an

inherent requirement. Several works have shown separations between traditional notions

of security and circular security [30, 79, 65], making it potentially risky to trust that the

encryption schemes we are using are in fact circular secure unless we manage to find a proof

of circular security.

Circular security is a special case of key-dependent message security. Key dependent

message-security [14] has generally been defined with respect to a family of functions

F ⊂ {f : K` →M}, where K is the keyspace for secret keys, ` is the number of users in

the system andM is the message space of the underlying encryption scheme (technically,

F is a family of sets of functions parameterized by a security parameter λ). The adversary

can query encryptions of arbitrary functions from this family, with the goal of distinguishing
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between honest encryptions and encryptions of some fixed message value inM (e.g., 0).

There is an important distinction between KDM security and traditional IND-CPA security.

For traditional IND-CPA security, one can show via a generic hybrid argument that allowing

only a single encryption query by the adversary is equivalent to allowing an unbounded

number of encryption queries. However, due to the dependence of the messages on the

secret key, this argument does not work for KDM security, and in general, security against a

bounded number of queries does not imply security against an unbounded number of queries.

The literature has also generally considered the case of multiple distinct users (and hence

multiple secret keys), and has looked at key cycles (circular security), where (functions from

a specific class of) key 1 is encrypted under key 2, key 2 under 3, . . ., key n under key 1, as

well as key-cliques (clique security), where key i may be encrypted under key j for any i,

j [21, 16, 5, 2].

1.6.1.2 Challenges

It appears at first glance that our task should be tractable. First, we only need to consider the

case of providing encryptions of functions of the secret key for a single user under its own

public key as part of the public evaluation key, rather than requiring broader forms of KDM

security. Secondly, instead of needing to allow an unbounded number of encryptions, we

only need sufficient encryptions of the proper functions to be able to bootstrap.

However, due to the homomorphic properties of the scheme, this is essentially just

as powerful as being able to make an unbounded number of queries of any efficiently

computable function of the secret keys. To see this, first note that in both schemes, the

public evaluation key contains an encryption of the full secret key, meaning that given

oracle decryption access to the ciphertexts in the public evaluation key, one can recover

the full secret key. From an encryption of the secret key, one can then exploit the fact

that it is an unbounded FHE scheme to homomorphically compute an encryption of any

efficiently computable function of the secret key. Via proper re-randomization during the
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procedure, it should be possible to make sure that the ciphertexts are distributed according

to an instantiation of the real encryption scheme with sufficiently larger error terms than the

actual ciphertexts in the public evaluation key.

As of yet, the most expressive results for KDM security for LWE and ring-LWE-based

schemes is for a function space consisting of a priori bounded degree d polynomials, in

a work by Brakerski and Vaikuntanathan. However, this is achieved at the cost of the

ciphertexts becoming larger in dimension by a factor of d. As the only way that we know to

reduce the dimension of ciphertexts itself requires an “encryption” of the secret key 2.4.6, this

technique is entirely unusable for achieving security for unbounded degree functions [24].

In fact, there are some reasons to believe the task might not be possible. In particular,

if the efficiency requirement on the function is relaxed, and the reduction is only given

input/output access to the arbitrary challenge function, then there are black-box impossibility

results known for achieving a proof of security [57]. As a result, it is perhaps not surprising

that so far, a proof of security has eluded us.

1.6.1.3 Beyond Circular Security

Until very recently, achieving unbounded FHE without resorting to an ad hoc circular

security assumption was probably the main outstanding theoretical problem relating to

fully homomorphic encryption. However, a recent breakthrough work achieved a pure FHE

construction from a generic leveled FHE scheme using indistinguishability obfuscation

(IO) and puncturable pseudorandom functions (PRFs) without requiring any encryptions

of the secret key under itself (circular security) [29]. Although candidate constructions for

IO, following the initial work of Garg et al. [42], require pure FHE (which, in turn, prior

to this work, required circular security) as a building block to achieve IO for all circuits,

it appears that the amount of IO required to achieve their result can be based on other

concrete hardness assumptions relating to cryptographic constructions of multilinear maps.

However, the multilinear map hardness assumptions have not been well-studied and in
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fact, have recently resulted in meaningful attacks, although none of the attacks have yet

been “fatal.” [48, 17, 31, 35] The construction also inherently requires the rather strong

assumptions of subexponentially hard IO and subexponentially hard one way functions,

rather than requiring only the standard polynomial hardness. Moreover, from a practical

perspective, FHE based on this construction would be very very very inefficient and have

very very large keys. As a result, this construction is far from the end-all in the area, and it is

still very worthwhile to consider resolving the circular security issues in our bootstrapping

constructions or their variants.

1.6.2 Bootstrappable Homomorphic Trapdoors

A dual to fully homomorphic encryption is the new primitive of fully homomorphic trapdoor

functions (HTDFs). Here, each trapdoor function has an associated tag t, which corresponds

to a message in FHE. Performing computations on the trapdoor functions induces operations

on the underlying tags. Among other useful properties, the trapdoor remains functional as

long as the tag t is invertible, while it becomes “punctured” (allowing the embedding of a

challenge instance of a hard problem) when the tag t is 0. As an unwanted but heretofore

necessary side effect, these computations also degrade the quality of the trapdoor in a manner

corresponding to noise growth in FHE schemes. The primitive was implicitly introduced by

Boneh et al. [15] in the form key-homomorphic encryption with the goal of applying this

technique to construct attribute-based encryption (ABE) for arbitrary arithmetic circuits.

It was then explicitly described by Wichs et al and used to create, as a first-class object,

leveled fully homomorphic trapdoor functions HTDFs [55] in order to achieve leveled fully

homomorphic signatures.

We have shown in an independent work that a slight extension of homomorphic trapdoor

functions can lead to compact public key sizes for lattice-based signatures [1]. Still to

be resolved is the question of bootstrapping these homomorphic trapdoor functions. At

present, one can only homomorphically compute functions of an a priori bounded degree.
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If we could bootstrap these trapdoor functions, we could then homomorphically compute

functions of unbounded degree over the tags. While the form of these functions is similar

to that of the GSW cryptosystem [53], there are a number of challenges to be overcome in

order to adapt these trapdoor functions to make them bootstrappable.

1.7 Notation

For a positive integer k, we let [k] = {0, . . . , k − 1}. For an integer modulus q, we

let Zq = Z/qZ denote the quotient ring of integers modulo q, and (Zq,+) its additive

group. For integers q, q′, we define the integer “rounding” function b·eq′ : Zq → Zq′ as

bxeq′ = b(q′/q) · xe mod q′. We write vectors v in bold lowercase and we write matrices

M in bold uppercase. By ordpn we mean the multiplicative order of n modulo p (i.e. the

least k just that nk = 1 mod p).
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CHAPTER II

EFFICIENT BOOTSTRAPPING OF PACKED CIPHERTEXTS

2.1 Bootstrapping Efficiently

The past few years have seen an intensive study of different forms of decryption procedures

for SHE schemes, and their associated bootstrapping operations [44, 43, 84, 47, 23, 46,

20, 51]. The first few bootstrapping methods had moderate polynomial runtimes in the

security parameter λ, e.g., Õ(λ4). Brakerski, Gentry, and Vaikuntanathan [20] gave a major

efficiency improvement, reducing the runtime to Õ(λ2). They also gave an amortized

method that bootstraps Ω̃(λ) ciphertexts at once in Õ(λ2) time, i.e., quasilinear runtime per

ciphertext. However, these results apply only to “non-packed” ciphertexts, i.e., ones that

encrypt essentially just one bit each, which combined with the somewhat large runtimes

makes these methods too inefficient to be used very much in practice. Most recently, Gentry,

Halevi, and Smart [50] achieved bootstrapping for “packed” ciphertexts (i.e., ones that

encrypt up to Ω̃(λ) bits each) in quasilinear Õ(λ) runtime, which is asymptotically optimal

in space and time, up to polylogarithmic factors. For this they relied on a general “compiler”

from another work of theirs [51], which achieved SHE/FHE for sufficiently wide circuits

with polylogarithmic multiplicative “overhead,” i.e., cost relative to evaluating the circuit

“in the clear.”

Bootstrapping and FHE in quasi-optimal time and space is a very attractive and pow-

erful theoretical result. However, the authors of [51, 50] caution that their constructions

may have limited potential for use in practice, for two main reasons: first, the runtimes,

while asymptotically quasilinear, include very large polylogarithmic factors. For realistic

values of the security parameter, these polylogarithmic terms exceed the rather small (but

asymptotically worse) quasilinear overhead obtained in [20]. The second reason is that their
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bootstrapping operation is algorithmically very complex and difficult to implement (see the

next paragraphs for details). Indeed, perhaps due to this difficulty, no implementations the

only implementation of bootstrapping with subquadratic runtime that we are aware of is

based of a

Is quasilinear efficient? The complexity and large practical overhead of the constructions

in [51, 50] arise from two kinds of operations. First, the main technique from [51] is a

way of homomorphically evaluating any sufficiently shallow and wide arithmetic circuit

on a “packed” ciphertext that encrypts a high-dimensional vector of plaintexts in multiple

“slots.” It works by first using ring automorphisms and key-switching operations [23, 20]

to obtain a small, fixed set of “primitive” homomorphic permutations on the slots. It then

composes those permutations (along with other homomorphic operations) in a log-depth

permutation network, to obtain any permutation. Finally, it homomorphically evaluates the

desired circuit by combining appropriate permutations with relatively simple homomorphic

slot-selection and ring operations.

In the context of bootstrapping, one of the key observations from [50] is that a main

step of the decryption procedure can be evaluated using the above technique. Specifically,

they need an operation that moves the coefficients of an encrypted plaintext polynomial,

reduced modulo a cyclotomic polynomial Φm(X), into the slots of a packed ciphertext

(and back again). Once the coefficients are in the slots, they can be rounded in a batched

(SIMD) fashion, and then mapped back to coefficients of the plaintext. The operations

that move the coefficients into slots and vice-versa can be expressed as O(log λ)-depth

arithmetic circuits of size O(λ log λ), roughly akin to the classic FFT butterfly network.

Hence they can be evaluated homomorphically with polylogarithmic overhead, using [51].

However, as the authors of [50] point out, the decryption circuit is quite large and complex –

especially the part that moves the slots back to the coefficients, because it involves reduction

modulo Φm(X) for an m having several prime divisors. This modular reduction is the most
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expensive part of the decryption circuit, and avoiding it is one of the main open problems

given in [50]. However, even a very efficient decryption circuit would still incur the large

polylogarithmic overhead factors from the techniques of [51].

2.2 Overview of Our Algorithms

We give a new bootstrapping algorithm that runs in quasilinear Õ(λ) time per ciphertext

with small polylogarithmic factors, and is algorithmically much simpler than previous

methods. It is easy to implement, and has proven to be substantially more efficient in

practice than all prior methods. [59] We provide a unified bootstrapping procedure that

works for both “non-packed” ciphertexts (which encrypt integers modulo some p, e.g., bits)

and “packed” ciphertexts (which encrypt elements of a high-dimensional ring), and also

interpolates between the two cases to handle an intermediate concept we call “semi-packed”

ciphertexts.

Our procedure for non-packed ciphertexts is especially simple and efficient. In particular,

it can work very naturally using only cyclotomic rings having power-of-two index, i.e.,

rings of the form Z[X]/(1 + X2k), which admit very fast implementations (see, i.e. This

improves upon the method of [20], which achieves quasilinear amortized runtime when

bootstrapping Ω̃(λ) non-packed ciphertexts at once. Also, while that method can also use

power-of-two cyclotomics, it can only do so by emulating Z2 (bit) arithmetic within Zp for

some moderately large prime p, which translates additions in Z2 into much more costly

multiplications in Zp. By contrast, our method works “natively” with any plaintext modulus.

However, for practical parameters (although not asymptotically) it has now been superseded

efficiency-wise by the extension of our algorithm in Chapter 3 by Ducas and Micciancio [38].

For packed ciphertexts, our procedure draws upon high-level ideas from [51, 50], but

our approach is conceptually and technically very different. Most importantly, it completely

avoids the two main inefficiencies from those works: first, unlike [51], we do not use

permutation networks or any explicit permutations of the plaintext slots, nor do we rely on a
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general-purpose compiler for homomorphically evaluating arithmetic circuits. Instead, we

give direct, practically efficient procedures for homomorphically mapping the coefficients

of an encrypted plaintext element into slots and vice-versa. In particular, our procedure does

not incur the large cost or algorithmic complexity of homomorphically reducing modulo

Φm(X), which was the main bottleneck in the decryption circuit of [50].

At a higher level, our bootstrapping method has two other attractive and novel features:

first, it is entirely “algebraic,” by which we mean that the full procedure (including generation

of all auxiliary data it uses) can be described as a short sequence of elementary operations

from the “native instruction set” of the SHE scheme. By contrast, all previous methods at

some point invoke rather generic arithmetic circuits, e.g., for modular addition of values

represented as bit strings, or reduction modulo a cyclotomic polynomial Φm(X). Of course,

arithmetic circuits can be evaluated using the SHE scheme’s native operations, but we believe

that the distinction between “algebraic” and “non-algebraic” is an important qualitative one,

and it certainly affects the simplicity and concrete efficiency of the bootstrapping procedure.

The second nice feature of our method is that it completely decouples the algebraic

structure of the SHE plaintext ring from that which is needed by the bootstrapping procedure.

In previous methods that use amortization (or “batching”) for efficiency (e.g., [82, 20,

50]), the ring and plaintext modulus of the SHE scheme must be chosen so as to provide

many plaintext slots. However, this structure may not always be a natural match for the

SHE application’s efficiency or functionality requirements. For example, the lattice-based

pseudorandom function of [8] works very well with a ring Rq = Zq[X]/(Xn + 1) where

both q and n are powers of two, but for such parameters Rq has only one slot. Our method

can bootstrap even for this kind of plaintext ring (and many others), while still using batching

to achieve quasilinear runtime.
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2.2.1 Techniques

At the heart of our bootstrapping procedure are two novel homomorphic operations for

SHE schemes over cyclotomic rings: for non-packed (or semi-packed) ciphertexts, we give

an operation that isolates the message-carrying coefficient(s) of a high-dimensional ring

element; and for (semi-)packed ciphertexts, we give an operation that maps coefficients to

slots and vice-versa.

Isolating coefficients. Our first homomorphic operation is most easily explained in the

context of non-packed ciphertexts, which encrypt single elements of the quotient ring Zp for

some small modulus p, using ciphertexts over some cyclotomic quotient ring Rq = R/qR

of moderately large degree d = deg(R/Z) = Õ(λ). We first observe that a ciphertext

to be bootstrapped can be reinterpreted as an encryption of an Rq-element, one of whose

Zq-coefficients (with respect to an appropriate basis of the ring) “noisily” encodes the

message, and whose other coefficients are just meaningless noise terms. We give an simple

and efficient homomorphic operation that preserves the meaningful coefficient, and maps all

the others to zero. Having isolated the message-encoding coefficient, we can then homo-

morphically apply an efficient integer “rounding” function (see [50] and Appendix 2.9) to

recover the message from its noisy encoding, which completes the bootstrapping procedure.

(Note that it is necessary to remove the meaningless noise coefficients first, otherwise they

would interfere with the correct operation of the rounding function.)

Our coefficient-isolating procedure works essentially by applying the trace function

TrR/Z : R → Z to the plaintext. The trace is the “canonical” Z-linear function from R to

Z, and it turns out that for the appropriate choice of Z-basis of R used in decryption, the

trace simply outputs (up to some scaling factor) the message-carrying coefficient we wish

to isolate. One simple and very efficient way of applying the trace homomorphically is to

use the “ring-switching” technique of [49], but unfortunately, this requires the ring-LWE

problem [68] to be hard over the target ring Z, which is clearly not the case. Another way
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follows from the fact that TrR/Z equals the sum of all d automorphisms ofR; therefore, it can

be computed by homomorphically applying each automorphism and summing the results.

Unfortunately, this method takes at least quadratic Ω(λ2) time, because applying each

automorphism homomorphically takes Ω(λ) time, and there are d = Ω(λ) automorphisms.

So, instead of inefficiently computing the trace by summing all the automorphisms at

once, we consider a tower of cyclotomic rings Z = R(0) ⊆ R(1) ⊆ · · · ⊆ R(r) = R, usu-

ally written as R(r)/ · · · /R(1)/R(0). Then TrR/Z is the composition of the individual trace

functions TrR(i)/R(i−1) : R(i) → R(i−1), and these traces are equal to the sums of all automor-

phisms of R(i) that fix R(i−1) pointwise, of which there are exactly di = deg(R(i)/R(i−1)) =

deg(R(i)/Z)/ deg(R(i−1)/Z). We can therefore compute each TrR(i)/R(i−1) in time linear

in λ and in di; moreover, the number of trace functions to apply is at most logarithmic

in d = deg(R/Z) = Õ(λ), because each one reduces the degree by a factor of at least

two. Therefore, by ensuring that the degrees of R(r), R(r−1), . . . , R(0) decrease gradually

enough, we can homomorphically apply the full TrR/Z in quasilinear time. For example, a

particularly convenient choice is to let R(i) be the 2i+1st cyclotomic ring Z[X]/(1 +X2i) of

degree 2i, so that every di = 2, and there are exactly log2(d) = O(log λ) trace functions to

apply.

More generally, when bootstrapping a semi-packed ciphertext we start with a plaintext

value in Rq that noisily encodes a message in Sp, for some subring S ⊆ R. (The case S = Z

corresponds to a non-packed ciphertext.) We show that applying the trace function TrR/S to

the Rq-plaintext yields a new plaintext in Sq that noisily encodes the message, thus isolating

the meaningful part of the noisy encoding and vanishing the rest. We then homomorphically

apply a rounding function to recover the Sp message from its noisy Sq encoding, which uses

the technique described next.

Mapping coefficients to slots. Our second technique, and main technical innovation, is in

bootstrapping (semi-)packed ciphertexts. We enhance the recent “ring-switching” procedure
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of [49], and use it to efficiently move “noisy” plaintext coefficients (with respect to an

appropriate decryption basis) into slots for batch-rounding, and finally move the rounded

slot values back to coefficients. We note that all previous methods for loading plaintext data

into slots used the same ring for the source and destination, and so required the plaintext

to come from a ring designed to have many slots. In this work, we use ring-switching to

go from the SHE plaintext ring to a different ring having many slots, which is used only

temporarily for batch-rounding. This is what allows the SHE plaintext ring to be decoupled

from the rings used in bootstrapping, as mentioned above.

To summarize our technique, we first recall the ring-switching procedure of [49]. It was

originally devised to provide moderate efficiency gains for SHE/FHE schemes, by allowing

them to switch ciphertexts from high-degree cyclotomic rings to subrings of smaller degree

(once enough homomorphic operations have been performed to make this secure). We

generalize the procedure, showing how to switch between two rings where neither ring need

be a subring of the other. The procedure has a very simple implementation, and as long

as the two rings have a large common subring, it is also very efficient (i.e., quasilinear in

the dimension). Moreover, it supports, as a side effect, the homomorphic evaluation of any

function that is linear over the common subring. However, the larger the common subring

is, the more restrictive this condition on the function becomes.

We show how our enhanced ring-switching can move the plaintext coefficients into the

slots of the target ring (and back), which can be seen as just evaluating a certain Z-linear

function. Here we are faced with the main technical challenge: for efficiency, the common

subring of the source and destination rings must be large, but then the supported class of

linear functions is very restrictive, and certainly does not include the Z-linear one we want

to evaluate. We solve this problem by switching through a short sequence of “hybrid” rings,

where adjacent rings have a large common subring, but the initial and final rings have only

the integers Z in common. Moreover, we show that for an appropriately chosen sequence of

hybrid rings, the Z-linear function we want to evaluate is realizable by a sequence of allowed
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linear functions between adjacent hybrid rings. Very critically, this decomposition requires

the SHE scheme to use a highly structured basis of the ring for decryption. The usual

representation of a cyclotomic ring as Z[X]/Φm(X) typically does not correspond to such a

basis, so we instead rely on the tensorial decomposition of the ring and its corresponding

bases, as recently explored in [69]. At heart, this is what allows us to avoid the expensive

homomorphic reduction modulo Φm(X), which is one of the main bottlenecks in previous

work [50].1

Stepping back a bit, the technique of switching through hybrid rings and bases is

reminiscent of standard “sparse decompositions” for linear transformations like the FFT,

in that both decompose a complicated high-dimensional transform into a short sequence

of simpler, structured transforms. (Here, the simple transforms are computed merely as a

side-effect of passing through the hybrid rings.) Because of these similarities, we believe

that the enhanced ring-switching procedure will be applicable in other domain-specific

applications of homomorphic encryption, e.g., signal-processing transforms or statistical

analysis.

2.3 Algebraic Number Theory Background

Throughout this work, by “ring” we mean a commutative ring with identity. For two rings

R ⊆ R′, an R-basis of R′ is a set B ⊂ R′ such that every r ∈ R′ can be written uniquely as

an R-linear combination of elements of B. For two rings R, S with a common subring E,

an E-linear function L : R→ S is one for which L(r+ r′) = L(r) +L(r′) for all r, r′ ∈ R,

and L(e · r) = e · L(r) for all e ∈ E, r ∈ R. It is immediate that such a function is defined

uniquely by its values on any E-basis of R.

1The use of more structured representations of cyclotomic rings in [69] was initially motivated by the desire
for simpler and more efficient algorithms for cryptographic operations. Interestingly, these representations yield
moderate efficiency improvements for computations “in the clear,” but dramatic benefits for their homomorphic
counterparts!
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2.3.1 Cyclotomic Number Fields

For a positive integer m, called the index, let ζm denote a primitive mth root of unity. The

mth cyclotomic number field is the field extension K = Q(ζm). The minimal polynomial of

ζm over Q is the mth cyclotomic polynomial Φm(X) =
∏

i∈Z∗m
(X − ωim) ∈ Z[X], where

ωm = exp(2π
√
−1/m) ∈ C is the principal mth complex root of unity, and the roots

ωim ∈ C range over all the primitive complex mth roots of unity. We have by definition that

K is a field extension of degree n = ϕ(m) over Q, so that the first and second cyclotomic

number fields are simple Q.

2.3.2 Canonical Embedding

In this section we briefly describe the canonical embedding of a cyclotomic number field,

which endow the number field with a ‘canonical’ geometry.

As a Galois extension, the mth cyclotomic number field K = Q(ζm) is of degree n, and

therefore has exactly n distinct ring homorphisms (embeddings) σi : K → C that fix every

element of the base field Q. Letting ωim ∈ C be some fixed primitive mth root of unity, these

embeddings can be defined for each i ∈ Z∗m by σi(ζm) = ωim. The canonical embedding

σ : K → Cn=φ(m) can then be defined as

σ(a) = (σi(a))i∈Z∗m .

We recall several important facts about the canonical embedding (for further details,

see [67, 69]). Most importantly, it gives K a canonical geometry. We define the `2 norm

for a ∈ K to be ‖a‖2 = ‖σ(a)‖2, and the `∞ norm to be maxi|σi(a)|. Multiplication in the

embedding is component-wise, so that for a, b ∈ K (letting ‖·‖ denote an arbitrary `p norm,

we have that

‖a · b‖ ≤ ‖a‖∞ · ‖b‖,

giving a bound on how much elements expand other elements via multiplication. This bound

is critical in the context of FHE.
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2.3.3 Ring of Integers and Its Ideals

In this work, we shall mainly be concerned with the ring of integers Om = Z[ζm] of the

mth cyclotomic number field, which we refer to as the mth cyclotomic ring. As a result,

Om is isomorphic to the polynomial ring Z[X]/Φm(X) by identifying ζm with X , and has

the “power basis” {1, ζm, . . . , ζn−1
m } as a Z-basis. However, for non-prime-power m the

power basis can be somewhat cumbersome and inefficient to work with. In Section 2.3.7 we

consider other, more structured bases that are essential to our techniques.

For a ring R ⊂ K of algebraic integers, a fractional ideal I ⊆ K of R is a nontrivial

R-module, such that there exists an element d ∈ R making dI ⊆ R into an (integral) ideal

of R. As a result, all (integral) ideals can be seen to be fractional ideals by taking d = 1.

A fractional ideal is principal if it is generated by a single element. In other words, there

exists u ∈ K such that I = uR. Importantly, any fractional ideal I embeds under σ as a

lattice σ(I), which we refer to as an ideal lattice.

The sum I + J of ideals is the set of all a+ b for a ∈ I, b ∈ J , while the product ideal

IJ is the set of all finite sums of terms ab for a ∈ I, bıJ . As in any Dedekind domain, the

set of fractional ideals of R form a group under multiplication, so that every fractional ideal

I has a multiplicative inverse I−1.

Two ideals I,J ⊆ R are coprime if I + J = R. An ideal p ( R is prime if whenever

ab ∈ p for some a, b ∈ R then a ∈ p or b ∈ p (or both). Since R is a Dedekind domain,

every ideal I factors uniquely up to ordering as a product of powers of prime ideals [41].

2.3.4 Duality and the Trace Function

Ifm|m′, we can view themth cyclotomic ringOm as a subring ofOm′ = Z[ζm′ ], via the ring

embedding (i.e., injective ring homomorphism) that maps ζm to ζm
′/m

m′ . The ring extension

Om′/Om has degree d = ϕ(m′)/ϕ(m), and also d automorphisms τi (i.e., automorphisms

of Om′ that fix Om pointwise), which are defined by τi(ζm′) = ζ im′ for each i ∈ Z∗m′ such

that i = 1 (mod m). The trace function Tr = TrOm′/Om : Om′ → Om can be defined as the
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sum of these automorphisms:

TrOm′/Om(a) =
∑
i

τi(a) ∈ Om.

Notice that Tr is Om-linear by definition. If Om′′/Om′/Om is a tower of ring extensions,

then the trace satisfies the composition property TrOm′′/Om = TrOm′/Om ◦TrOm′′/Om′
.

For any fractional ideal I ∈ K, its dual is defined as

I∨ = {a ∈ K : Tr(aI) ⊆ Z}

Important facts about the dual ideal are that (I∨)∨ = I, that I∨ is itself a fractional

ideal, and that it embeds under σ. Additionally, we have that for any fractional ideal I, its

dual is I∨ = I−1 · R∨. The factorR∨ is generally called the codifferent in the literature.

To characterize the codifferent, we consider an important element in the mth cyclotomic

ring, defined as

g :=
∏

odd prime p|m

(1− ζp) ∈ Om. (2.3.1)

Define m̂ = m/2 if m is even, otherwise m̂ = m, for any cyclotomic index m. It is known

that g|m̂ (see, e.g., [69, Section 2.5.4]). The following lemma shows how the elements g in

different cyclotomic rings, and the ideals they generate, are related by the trace function.

Lemma 2.3.1. Let m|m′ be positive integers and let g ∈ R = Om, g′ ∈ R′ = Om′

and m̂, m̂′ be as defined above. Then TrR′/R(g′R′) = (m̂′/m̂) · gR, and in particular,

TrR′/R(g′) = (m̂′/m̂) · g.

Later on we use the scaled trace function (m̂/m̂′) TrR′/R, which by the above lemma

maps the ideal g′R to gR, and g′ to g.

Proof. Let Tr = TrR′/R. To prove the first claim, we briefly recall certain properties

of R∨; see [69, Section 2.5.4] for further details. First, R∨ = (g/m̂)R, and similarly

(R′)∨ = (g′/m̂′)R′. It also follows directly from the definition of the dual ideal that

Tr((R′)∨) = R∨; see for example [49, Equation 2.2]. Therefore, Tr(g′R′) = (m̂′/m̂) · gR.

29



For the second claim, we first show the effect of the trace on g′ whenm′ = m ·p for some

prime p. If p divides m, then m̂′/m̂ = m′/m = p, the degree of R′/R is ϕ(m′)/ϕ(m) = p,

and g′ = g ∈ R, so Tr(g′) = Tr(g) = p · g. Now suppose p does not divide m. If p = 2,

then m is even and m′ is odd, so m̂′/m̂ = (m′/2)/m = 1, the degree of R′/R is 1, and

g′ = g ∈ R, so Tr(g′) = g. Otherwise p is odd, so m̂′/m̂ = m′/m = p and g′ = (1− ζp)g.

Therefore Tr(g′) = Tr(1−ζp) ·g = p ·g, where the final equality follows from Tr(1) = p−1

and Tr(ζp) = ζ1
p + ζ2

p + · · · ζp−1
p = −1.

The general case follows from the composition property of the trace, by iteratively

applying the above case to any cyclotomic tower R(r)/R(r−1)/ · · · /R(0), where R(r) = R′

and R(0) = R, and the ratio of the indices of R(i), R(i−1) is prime for every i = 1, . . . , r.

2.3.5 Tensorial Decomposition of Cyclotomics

An important fact from algebraic number theory, used centrally in this work (and in [69]), is

the tensorial decomposition of cyclotomic rings (and their bases) in terms of subrings. Let

Om1 ,Om2 be cyclotomic rings. Then their largest common subring is Om1 ∩ Om2 = Og

where g = gcd(m1,m2), and their smallest common extension ring, called the compositum,

is Om1 + Om2 = Ol where l = lcm(m1,m2). When considered as extensions of Og, the

ring Ol is isomorphic to the ring tensor product of Om1 and Om2 , written as (sometimes

suppressing Og when it is clear from context)

Ol/Og ∼= (Om1/Og)⊗ (Om2/Og). (2.3.2)

On the right, the ring tensor product is defined as the set of all Og-linear combinations of

pure tensors a1 ⊗ a2, with ring operations defined by Og-bilinearity:

(a1 ⊗ a2) + (b1 ⊗ a2) = (a1 + b1)⊗ a2,

(a1 ⊗ a2) + (a1 ⊗ b2) = a1 ⊗ (a2 + b2),

c(a1 ⊗ a2) = (ca1)⊗ a2 = a1 ⊗ (ca2)
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for any c ∈ Og, and the mixed-product property (a1 ⊗ a2) · (b1 ⊗ b2) = (a1b1) ⊗ (a2b2).

The isomorphism with Ol/Og then simply identifies a1 ⊗ a2 with a1 · a2 ∈ Ol. Note that

any a1 ∈ Om1 corresponds to the pure tensor a1 ⊗ 1, and similarly for any a2 ∈ Om2 .

The following simple lemma will be central to our techniques.

Lemma 2.3.2. Let m1,m2 be positive integers and g = gcd(m1,m2), l = lcm(m1,m2).

Then for any Og-linear function L̄ : Om1 → Om2 , there is an (efficiently computable)

Om2-linear function L : Ol → Om2 that coincides with L̄ on the subring Om1 ⊆ Ol.

Proof. WriteOl ∼= Om1⊗Om2 , where the common base ringOg is implicit. Let L : (Om1⊗

Om2)→ Om2 be theOg-linear function uniquely defined by L(a1⊗a2) = L̄(a1) ·a2 ∈ Om2

for all pure tensors a1 ⊗ a2. Then because (a1 ⊗ a2) · b2 = a1 ⊗ (a2b2) for any b2 ∈ Om2

by the mixed-product property, L is also Om2-linear. Finally, for any a1 ∈ Om1 we have

L(a1 ⊗ 1) = L̄(a1) by construction.

2.3.6 Ideal Factorization and Plaintext Slots

Here we recall the details of unique factorization of prime integers into prime ideals in

cyclotomic rings, and, following [82], how the Chinese remainder theorem can yield several

plaintext “slots” that embed Zq as a subring, even for composite q. Similar facts for

composite moduli are presented in [50], but in terms of p-adic approximations and Hensel

lifting. Here we give an ideal-theoretic interpretation using the Chinese remainder theorem,

which we believe is more elementary, and is a direct extension of the case of prime moduli.

Let p ∈ Z be a prime integer. In the mth cyclotomic ring R = Om = Z[ζm] (which has

degree n = ϕ(m) over Z), the ideal pR factors into prime ideals as follows. First write

m = m̄ · pk where p - m̄. Let e = ϕ(pk), and let d be the multiplicative order of p modulo

in Z∗m̄, and note that d divides ϕ(m̄) = n/e. The ideal pR then factors into the product of

eth powers of ϕ(m̄)/d = n/(de) distinct prime ideals pi, i.e.,

pR =
∏

pei .
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Each prime ideal pi has norm |R/pi| = pd, so each quotient ring R/pi is isomorphic

to the finite field Fpd . In particular, it embeds Zp as a subfield. (Although we will

not need this, the prime ideals are concretely given by pi = pR + Fi(ζm)R, where

Φm̄(X) =
∏

i Fi(X) (mod p) is the mod-p factorization of the m̄th cyclotomic polynomial

into ϕ(m̄)/d distinct irreducible polynomials of degree d.)

We now see how to obtain quotient rings of R that embed the ring Zq, where q = pr for

some integer r ≥ 1. (The case of arbitrary integer modulus q follows immediately from the

Chinese remainder theorem.) Here we have the factorization qR =
∏

i p
re
i , and it turns out

that each quotient ring R/prei embeds Zq as a subring. One easy way to see this is to notice

that q is the smallest power of p in prei , so the integers {0, . . . , q − 1} representing Zq are

distinct modulo prei .

By the Chinese Remainder Theorem (CRT), for q = pr the natural ring homomorphism

from Rq to the product ring
⊕

i(R/p
re
i ) is an isomorphism. When the natural plaintext

space of a cryptosystem is Rq, we refer to the ϕ(m̄)/d quotient rings R/prei as the plaintext

“Zq-slots” (or just “slots”), and use them to store vectors of Zq-elements via the CRT

isomorphism. With this encoding, ring operations in Rq induce “batch” (or “SIMD”)

component-wise operations on the corresponding vectors of Zq elements. We note that the

CRT isomorphism is easy to compute in both directions. In particular, to map from a vector

of Zq-elements to Rq just requires knowing a fixed mod-q CRT set C = {ci} ⊂ R for which

ci = 1 (mod prei ) and ci = 0 (mod prej ) for all j 6= i. Such a set can be precomputed using,

e.g., a generalization of the extended Euclidean algorithm.

Splitting in cyclotomic extension rings. Now consider a cyclotomic extension R′/R

where R′ = Om′ = Z[ζm′ ] for some m′ divisible by m. Then for each prime ideal pi ⊂ R

dividing pR, the ideal piR′ factors into equal powers of the same number of prime ideals

p′i,i′ ⊂ R′, where all the p′i,i′ are distinct. The ideal p′i,i′ is said to “lie over” pi (and pi in turns

lies over p). Since p′i,i′ are also the prime ideals appearing in the factorization pR′, we can
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determine their number and multiplicity exactly as above. Letting m̄′, e′ and d′ be defined as

above for R′, we known that pR′ =
∏

i,i′(p
′
i,i′)

e′ , where there are a total of ϕ(m̄′)/d′ distinct

prime ideals p′i,i′ . Therefore, each pi splits into exactly (ϕ(m̄′) · d)/(ϕ(m̄) · d′) ideals each;

this number is sometimes called the “relative splitting number” of p in R′/R.

2.3.7 Product Bases

Our bootstrapping technique relies crucially on certain highly structured bases and CRT

sets, which we call “product bases (sets),” that arise from towers of cyclotomic rings. Let

Om′′/Om′/Om be such a tower, let B′′ = {b′′j′′} ⊂ Om′′ be any Om′-basis of Om′′ , and let

B′ = {b′j′} ⊂ Om′ be any Om-basis of Om′ . Then it follows immediately that the product

set B′′ ·B′ := {b′′j′′ · b′j′} ⊂ Om′′ is an Om-basis of Om′′ .2 Of course, for a tower of several

cyclotomic extensions and relative bases, we can obtain product bases that factor with a

corresponding degree of granularity.

Factorization of the powerful and decoding bases. An important structured Z-basis of

Om, called the “powerful” basis in [69], was defined in that work as the product of all the

power Z-bases {ζ0, ζ1, . . . , ζϕ(pe)−1} of Ope (where ζ = ζpe), taken over all the maximal

prime-power divisors pe of m. In turn, it is straightforward to verify that the power Z-basis

of Ope can be obtained from the tower Ope/Ope−1/ · · · /Z, as the product of all the power

Opi−1-bases {ζ0
pi , . . . , ζ

di−1
pi
} ofOpi for i = 1, . . . , e, where di = ϕ(pi)/ϕ(pi−1) ∈ {p−1, p}

is the degree of Opi/Opi−1 . Therefore, the powerful basis has a “finest possible” product

structure. (This is not the case for other commonly used bases of Om, such as the power

Z-basis, unless m is a prime power.)

Similarly, [69] defines the “decoding” Z-basis D of a certain fractional ideal O∨m =

(g/m̂)Om, which is the “dual ideal” of Om, to be the dual basis of the conjugate powerful

2Formally, this basis is a Kronecker product of the bases B′′ and B′, which is typically written using the ⊗
operator. We instead use · to avoid confusion with pure tensors in a ring tensor product, which the elements of
B′′ ·B′ may not necessarily be.
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basis. Unlike the powerful basis, the decoding basis has optimal noise tolerance (see [69,

Section 6.2]) and is therefore a best choice to use in decryption, when using the dual ideal

O∨m appropriately in a cryptosystem. For simplicity, our formulation of the cryptosystem (see

Section 2.4) avoids using O∨m by “scaling up” to (m̂/g)O∨m = Om, and so we are interested

in factorizations of the scaled-up Z-basis (m̂/g)D ofOm. As shown in [69, Lemma 6.3], this

basis is very closely related to the powerful basis, and has a nearly identical product structure

arising from the towers Ope/Ope−1/ · · · /Z for the maximal prime-power divisors pe of m.

The only difference is in the choice of the lowest-level Z-bases of each Op/Z, which are

taken to be {ζjp + ζj+1
p + · · ·+ ζp−2

p }j∈{0,...,p−2} instead of the power basis. In summary, the

preferred Z-basis of Om used for decryption also has a finest-possible product structure.

Factorization of CRT sets. Using the splitting behavior of primes and prime ideals, we

can also define CRT sets having a finest-possible product structure. First consider any

cyclotomic extension Om′/Om, and suppose that prime integer p splits in Om into distinct

prime ideals pi. In turn, each pi splits in Om′ into the same number k of prime ideals p′i,i′ ,

which are all distinct. For simplicity, assume for now that p does not divide m or m′, so

none of the ideals occur with multiplicity.

A mod-p CRT set C = {ci} for Om satisfies ci = 1 (mod pi) and ci = 0 (mod pj) for

j 6= i; therefore, ci = 1 (mod p′i,i′) and ci = 0 (mod p′j,i′) for all i′ and all j 6= i. We

can choose a set S = {si′} ⊂ Om′ of size k such that C ′ = S · C is a mod-p CRT set for

Om′ , as follows: partition the ideals p′i,i′ arbitrarily according to i′, and define si′ ∈ Om′

to be congruent to 1 modulo all those ideals p′i,i′ in the i′th component of the partition,

and 0 modulo all the other ideals p′j,j′ . Then it is immediate that each product ci · si′ is 1

modulo p′i,i′ , and 0 modulo all other p′j,j′ . Therefore, C ′ = S · C is a mod-p CRT set for

Om′ . The generalization of this process to the case where p factors into powers of the ideals,

and to moduli q = pr, is immediate.

For an arbitrary cyclotomic index m, consider any cyclotomic towerOm/ · · · /Z. Then a
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mod-q CRT set with corresponding product structure can be obtained by iteratively applying

the above procedure at each level of the tower. A finest-possible product structure is obtained

by using tower of maximal length (i.e., one in which the ratio of indices at adjacent levels is

always prime).

2.4 Ring-Based Homomorphic Cryptosystem

Here we recall a symmetric-key somewhat-homomorphic encryption scheme whose security

is based on the ring-LWE problem [68] in arbitrary cyclotomic rings. For further details

on its security guarantees, various homomorphic properties, and efficient implementation,

see [68, 24, 20, 52, 49, 69].

2.4.1 The Ring-LWE Problem

We briefly recall the ring-LWE problem, and in particular its discretized version, as well

as the Gaussian distributions used in defining the problem. The problem involves distin-

guishing between samples drawn from the ring-LWE distribution (for a secret s ∈ R∨q

chosen uniformly at random) and samples chosen uniformly at random. Concretely, for

a distribution ψ, a sample from the discretized ring-LWE (often called R-DLWE in the

literature) distribution As,ψ over Rq × qR∨ is generated by choosing a ∈ Rq uniformly at

random, sampling e← ψ, and outputting (a, b = a · s+ e mod qR∨), where R = Om is a

cyclotomic ring.

To ease error growth management and implementation, it is most convenient to set ψ

equal to a properly discretized version of the (spherical) continuous Gaussian distributionDs,

which is a normalized version of the standard Gaussian function ρs(x) = exp(−π〈x,x〉/s2).

2.4.2 Cryptosystem Definition

Let R = Om ⊆ R′ = Om′ be respectively the mth and m′th cyclotomic rings, where m|m′.

The plaintext ring is the quotient ring Rp for some integer p. Ciphertexts are made up of

elements of R′q for some integer q, which for simplicity we assume is divisible by p. The
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secret key is some s ∈ R′. The case m = 1 corresponds to “non-packed” ciphertexts,

which encrypt elements of Zp (e.g., single bits), whereas m = m′ corresponds to “packed”

ciphertexts, and 1 < m < m′ corresponds to what we call “semi-packed” ciphertexts. Note

that without loss of generality we can treat any ciphertext as packed, since R′p embeds Rp.

But the smaller m is, the simpler and more practically efficient our bootstrapping procedure

can be. Since our focus is on refreshing ciphertexts that have large noise rate, we can think

of m′ as being somewhat small (e.g., in the several hundreds) via ring-switching [49], and q

also as being somewhat small (e.g., in the several thousands) via modulus-switching. Our

main focus in this work is on a plaintext modulus p that is a power of two, though for

generality we present all our techniques in terms of arbitrary p.

Let ψ be a continuous LWE error distribution over KR, and let b·e denote a suitable

discretization to (cosets of) R∨ of a properly chosen Gaussian distribution Dr (these dis-

cretizations can be achieved via various rounding techniques. For details, see [69]). The

scheme can then be formally defined as follows.

• Gen: Sample secret key ŝ′ ← bψeR′∨ and output s′ = (m̂′/g′)ŝ′ ∈ R′ as the secret

key.

• Encs′(µ ∈ Rp): Choose error term e′ ← (m̂′/g′)bψeR′∨ ∈ R′q. Sample c′1 ← Rq

uniformly at random. Let c′0 = −c′1 · s′ + e′ + q
p
· mu, and output the ciphertext

(c′0, c
′
1) ∈ (R′q ×R′q).

• Decs(c
′ = (c′0, c

′
1)): Compute v := c′0 + c′1 · s′ =

q
p
· µ+ e′ (mod qR′). Then output

µ := bve q
p
R

.

Importantly for this work, we have that a ciphertext encrypting a message µ ∈ Rp under

secret key s′ ∈ R′ is some pair c′ = (c′0, c
′
1) ∈ R′q ×R′q satisfying the relation

c′0 + c′1 · s′ =
q

p
· µ+ e′ (mod qR′) (2.4.1)
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for some error (or “noise”) term e′ ∈ R′ such that e′ · g′ ∈ g′R′ is sufficiently “short,” where

g′ ∈ R′ is as defined in Equation (2.3.1). Quantitatively, “short” is defined with respect

to the canonical embedding of R′. The above system is equivalent to the one from [69]

in which the message, error term, and ciphertext components are all taken over the “dual”

fractional ideal (R′)∨ = (g′/m̂′)R′ in the m′th cyclotomic number field, and the error

term has an essentially spherical distribution over (R′)∨. In that system, decryption is best

accomplished using a certain Z-basis of (R′)∨, called the decoding basis, which optimally

decodes spherical errors. The above formulation is more convenient for our purposes, and

simply corresponds with multiplying everything in the system of [69] by an m̂′/g′ factor.

This makes e′ · g′ ∈ g′R′ = m̂′(R′)∨) short and essentially spherical in our formulation.

See [68, 69] for further details. Informally, the “noise rate” of the ciphertext is the ratio of

the “size” of e′ (or more precisely, the magnitude of its coefficients in a suitable basis) to

q/p.

We note that Equation (2.4.1) corresponds to what is sometimes called the “most signif-

icant bit” (msb) message encoding, whereas somewhat-homomorphic schemes are often

defined using “least significant bit” (lsb) encoding, in which p and q are coprime and

c′0 + c′1s
′ = e′ (mod qR′) for some error term e′ ∈ µ + pR′. For our purposes the msb

encoding is more natural, and in any case the two encodings are essentially equivalent: when

p and q are coprime, we can trivially switch between the two encodings simply by multiply-

ing by p or p−1 modulo q. When p divides q, we can use homomorphic operations for the

msb encoding due to Brakerski [18]; alternatively, we can switch to and from a different

modulus q′ that is coprime with p, allowing us to switch between lsb and msb encodings as

just described. In practice, it may be preferable to use homomorphic operations for the lsb

encoding, because they admit optimizations (e.g., the “double-CRT representation” [52])

that may not be possible for the msb operations (at least when p divides q).
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2.4.3 Decryption Algorithm

At a high level, the decryption algorithm works in two steps: the “linear” step simply

computes v′ = c′0 + c′1 · s′ =
q
p
· µ+ e′ ∈ R′q, and the “non-linear” step outputs bv′ep ∈ Rp

using a certain “ring rounding function” b·ep : R′q → Rp. As long as the error term e′ is

within the tolerance of the rounding function, the output will be µ ∈ Rp. This is all entirely

analogous to decryption in LWE-based systems, but here the rounding is n-dimensional,

rather than just from Zq to Zp.

Concretely, the ring rounding function b·ep : R′q → Rp is defined in terms of the integer

rounding function b·ep : Zq → Zp and a certain “decryption” Z-basis B′ = {bj} of R′, as

follows. In our formulation, the basis B′ is (m̂′/g′) times the decoding basis of (R′)∨. See

Section 2.3.7 and the previous section. Represent the input v′ ∈ R′q in the decryption basis

as v′ =
∑

j v
′
j · b′j for some coefficients v′j ∈ Zq, then independently round the coefficients,

yielding an element
∑
bv′jep · b′j ∈ R′p that corresponds to the message µ ∈ Rp (under the

standard embedding of Rp into R′p).

2.4.4 Homomorphic Operations

To ease presentation, we say that a ciphertext of degree d ≥ 1 is a polynomial c = c(S)

of degree at most d in an indeterminate S, having coefficients in Rd
q . Fresh ciphertexts

produced by the encryption algorithm have degree 1, and can be seen as c(S) = c0 + c1S.

Viewing the ciphertexts in this manner, it becomes very easy to define homomorphic

operations. Specifically, for ciphertexts c, c′ of arbitrary degrees k, k′ (respectively), their

homomorphic product is the degree-(k + k′) ciphertext c(S) d c′(S) = c(S) · c′(S), where

· represents standard polynomial multiplication. The noise in the result is the product

of the noise terms of c and c′. One can control the noise growth from multiplication by

modulus-switching appropriately (the second operation below in Section 2.4.5).

For ciphertexts c, c′ of equal degree k, their homomorphic sum is defined as the degree-k

ciphertext c(S) ‘ c′(S) = c(S) + c′(S) (polynomial addition). The noise in the result is
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the sum of the noise terms of c and c′. In order to homomorphically add two ciphertexts

of different degrees, we can either homomorphically multiply the one with the smaller

degree by a fixed public encryption of 1 a sufficient number of times, or we can use the

key-switching technique (Section 2.4.6) to reduce the degree of both polynomials to 1.

2.4.5 Changing the Plaintext Modulus

We use two operations on ciphertexts that alter the plaintext modulus p and encrypted

message µ ∈ Rp, often referred to in the literature as “modulus switching.” The first

operation changes p to any multiple p′ = dp, and produces an encryption of some µ′ ∈ R′p′

such that µ′ = µ (mod pR′). To do this, it simply “lifts” the input ciphertext c′ = (c′0, c
′
1) ∈

(R′q)
2 to an arbitrary c′′ = (c′′0, c

′′
1) ∈ (R′q′)

2 such that c′′j = c′j (mod qR′), where q′ = dq.

This works because

c′′0 + c′′1 · s′ ∈ c′0 + c′1 · s′ + qR′ =
(q
p
· µ+ e′

)
+ qR′ =

q′

p′
(µ+ pR′) + e′ (mod q′R′).

Notice that this leaves the noise rate unchanged, because the noise term is still e′, and

q′/p′ = q/p.

The second operation applies to an encryption of a message µ ∈ Rp that is known to be

divisible by some divisor d of p, and produces an encryption of µ/d ∈ Rp/d. The operation

actually leaves the ciphertext c′ unchanged; it just declares the associated plaintext modulus

to be p/d (which affects how decryption is performed). This works because

c′0 + c′1 · s′ =
q

p
µ+ e′ =

q

p/d
· (µ/d) + e′ (mod qR′).

Notice that the noise rate of the ciphertext has been divided by d, because the noise term is

still e′ but q/p′ = d(q/p).

2.4.6 Key Switching

An important transformation introduced by Brakerski and Vaikuntanathan [23] allows us to

go from a degree-d ciphertext c(S) (with coefficient vector ~c ∈ Rd+1
q ) encrypting a message
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µ under secret key s to a degree-1 ciphertext c′ encrypted the same message µ under the

secret key t. This transformation is referred to as “key-switching,” and is used both for

reducing the degree of a ciphertext and as a crucial part of “ring-switching,” described

below.

To enable key-switching from a degree-d ciphertext c(S) to a degree-1 ciphertext, a

key-switching hint is added to the evaluation key. Let ` = dlog2 qe and define

g = (1, 2, 4, . . . , 2`−1) ∈ Z`q and G = I[d]⊗ gt ∈ Zd×d`q .

G has a very short basis [71], so we can sample a short ~x such that G~x = ~c. Let ~s =

(s0, . . . , sd) ∈ Rd+1. The key-switching hint will essentially consist of an encryption of Gt~s

(in lsb form) under the target secret key t. To key-switch, we compute the inner product of

this encryption with ~x, which gives us the required result. The noise incurred as a result of

this transformation is a relatively small additive factor. For details, see [69].

2.4.7 Ring Switching

We rely heavily on the cryptosystem’s support for switching ciphertexts to a cyclotomic

subring S ′ of R′, which as a side-effect homomorphically evaluates any desired S ′-linear

function on the plaintext. Notice that the linear function L is applied to the plaintext as

embedded in R′p; this obviously applies the induced function on the true plaintext space Rp.

Proposition 2.4.1 ([49], full version). Let S ′ ⊆ R′ be cyclotomic rings. Then the above-

described cryptosystem supports the following homomorphic operation: given any S ′-linear

function L : R′p → S ′p and a ciphertext over R′q encrypting (with sufficiently small error

term) a message µ ∈ R′p, the output is a ciphertext over S ′q encrypting L(µ) ∈ S ′p.

The security of the procedure described in Proposition 2.4.1 is based on the hardness

of the ring-LWE problem in S ′, so the dimension of S ′ must be sufficiently large. The

procedure itself is quite simple and efficient: it first switches to a secret key that lies in

the subring S ′. Next, it multiplies the resulting ciphertext by an appropriate fixed element
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of R′ (which is determined solely by the function L being evaluated). Finally, it applies the

trace function TrR′/S′ : R
′ → S ′ to the ciphertext. All of these operations are quasi-linear

time in the dimension of R′/Z, and very efficient in practice. In particular, the trace is

a trivial linear-time operation when elements are represented in any of the bases we use.

The ring-switching procedure increases the effective error rate of the ciphertext by a factor

of about the square root of the dimension of R′, which is comparable to that of a single

homomorphic multiplication. See [49] for further details.

2.5 Overview of Bootstrapping Procedure

Here we give a high-level description of our bootstrapping procedure. We present a unified

procedure for non-packed, packed, and semi-packed ciphertexts, but note that for non-

packed ciphertexts, Steps 3a and 3c (and possibly 1c) are null operations, while for packed

ciphertexts, Steps 1b, 1c, and 2 are null operations.

Recalling the cryptosystem from Section 2.4, the plaintext ring is Rp and the ciphertext

ring is R′q, where R = Om ⊆ R′ = Om′ are cyclotomic rings (so m|m′), and q is a power

of p. The procedure also uses a larger cyclotomic ring R′′ = Om′′ ⊇ R′ (so m′|m′′) to

work with ciphertexts that encrypt elements of the original ciphertext ring R′q. To obtain

quasilinear runtimes and exponential hardness (under standard hardness assumptions), our

procedure imposes some mild conditions on the indices m, m′, and m′′:

• The dimension ϕ(m′′) of R′′ must be quasilinear, so we can represent elements of R′′

efficiently.

• For Steps 2 and 3, all the prime divisors of m and m′ must be small (i.e., polylogarith-

mic).

• For Step 3, m and m′′/m must be coprime, which implies that m and m′/m must

be coprime also. Note that the former condition is always satisfied for non-packed

ciphertexts (where m = 1). For packed ciphertexts (where m = m′), the latter
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condition is always satisfied, which makes it easy to choose a valid m′′. For semi-

packed ciphertexts (where 1 < m < m′), we can always satisfy the latter condition

either by increasing m (at a small expense in practical efficiency in Step 3; see

Section 2.7.1.3), or by effectively decreasing m slightly (at a possible improvement in

practical efficiency; see Section 2.5.2).

For example, when m = 1, both m′ and m′′ can be powers of two.

The input to the procedure is a ciphertext c′ = (c′0, c
′
1) ∈ (R′q)

2 that encrypts some

plaintext µ ∈ Rp under a secret key s′ ∈ R′, i.e., it satisfies the relation

v′ = c′0 + c′1 · s′ =
q

p
· µ+ e′ (mod qR′)

for some small enough error term e′ ∈ R′. The procedure computes a new encryption of

bv′ep = µ (under some secret key, not necessarily s′) that has substantially smaller noise

rate than the input ciphertext. It proceeds as follows (explanatory remarks appear in italics):

1. Convert c′ to a “noiseless” ciphertext c′′ over a large ring R′′Q that encrypts a plaintext

(g′/g)u′ ∈ R′q′ , where g′ ∈ R′, g ∈ R and m̂, m̂′ ∈ Z are as defined in (and following)

Equation (2.3.1), q′ = (m̂′/m̂)q, and u′ = v′ (mod qR′). This proceeds in the

following sub-steps (see Section 2.5.1 for further details).

Note that g′/g ∈ R′ by definition, and that it divides m̂′/m̂.

(a) Reinterpret c′ as a noiseless encryption of v′ = q
p
· µ + e′ ∈ R′q as a plaintext,

noting that both the plaintext and ciphertext rings are now taken to be R′q.

This is purely a conceptual change in perspective, and does not involve any

computation.

(b) Using the procedure described in Section 2.4.5, change the plaintext (and ci-

phertext) modulus to q′ = (m̂′/m̂)q, yielding a noiseless encryption of some

u′ ∈ R′q′ such that u′ = v′ (mod qR′).
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Note that this step is a null operation if the original ciphertext was packed, i.e.,

if m = m′.

We need to increase the plaintext modulus because homomorphically computing

TrR′/R in Step 2 below introduces an m̂′/m̂ factor into the plaintext, which we

will undo by scaling the plaintext modulus back down to q. (See Section 2.5.2

for an alternative choice of q′.)

(c) Multiply the ciphertext from the previous step by g′/g ∈ R′, yielding a noiseless

encryption of plaintext (g′/g)u′ ∈ R′q′ .

The factor (g′/g) ∈ R′ is needed when we homomorphically compute TrR′/R in

Step 2 below. Note that g′/g = 1 if and only if every odd prime divisor of m′

also divides m, e.g., if m = m′.

(d) Convert to a noiseless ciphertext c′′ that still encrypts (g′/g)u′ ∈ R′q′ , but using

a large enough ciphertext ring R′′Q for some R′′ = Om′′ ⊇ R′ and modulus

Q� q′.

A larger ciphertext ring R′′Q is needed for security in the upcoming homomorphic

operations, to compensate for the low noise rates that will need to be used.

These operations will expand the initial noise rate by a quasipolynomial λO(log λ)

factor in total, so the dimension of R′′ and the bit length of Q can be Õ(λ) and

Õ(1), respectively.

The remaining steps are described here only in terms of their effect on the plaintext value

and ring. Using ring- and modulus-switching, the ciphertext ring R′′ and modulus Q may be

made smaller as is convenient, subject to the security and functionality requirements. (Also,

the ciphertext ring implicitly changes during Steps 3a and 3c.)

2. Homomorphically apply the scaled trace function (m̂/m̂′) TrR′/R to the encryption of

(g′/g)u′ ∈ R′q′ , to obtain an encryption of plaintext

u =
m̂

m̂′
· TrR′/R

(g′
g
· u′
)

=
q

p
· µ+ e ∈ Rq
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for some suitably small error term e ∈ R. See Section 2.6 for further details.

This step changes the plaintext ring from R′q′ to Rq, and homomorphically isolates the

noisy Rq-encoding of µ. It is a null operation if the original ciphertext was packed,

i.e., if m = m′.

3. Homomorphically apply the ring rounding function b·ep : Rq → Rp, yielding an

output ciphertext that encrypts buep = µ ∈ Rp. This proceeds in three sub-steps, all

of which are applied homomorphically (see Section 2.7 for details):

(a) Map the coefficients uj of u ∈ Rq (with respect to the decryption basis B of R)

to the Zq-slots of a ring Sq, where S is a suitably chosen cyclotomic.

This step changes the plaintext ring from Rq to Sq. It is a null operation if

the original ciphertext was non-packed (i.e., if m = 1), because we can let

S = R = Z.

(b) Batch-apply the integer rounding function b·e : Zq → Zp to the Zq-slots of Sq,

yielding a ciphertext that encrypts the values µj = bujep ∈ Zp in its Zp-slots.

This step changes the plaintext ring from Sq to Sp. It constitutes the only non-

linear operation on the plaintext, with multiplicative depth dlg pe·(logp(q)−1) ≈

log(q), and as such is the most expensive in terms of runtime, noise expansion,

etc.

(c) Reverse the map from the step 3a, sending the values µj from the Zp-slots of

Sp to coefficients with respect to the decryption basis B of Rp, yielding an

encryption of µ =
∑

j µjbj ∈ Rp.

This step changes the plaintext ring from Sp to Rp. Just like step 3a, it is a null

operation for non-packed ciphertexts.
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2.5.1 Obtaining a Noiseless Ciphertext

Step 1 of our bootstrapping procedure is given as input a ciphertext c′ = (c′0, c
′
1) over R′q

that encrypts (typically with a high noise rate) a message µ ∈ Rp under key s′ ∈ R′, i.e.,

v′ = c′0 + c′1 ·s′ =
q
p
·µ+e′ ∈ R′q for some error term e′. We first change our perspective and

view c′ as a “noiseless” encryption (still under s′) of the plaintext value v′ ∈ R′q, taking both

the plaintext and ciphertext rings to be R′q. This view is indeed formally correct, because

c′0 + c′1 · s′ =
q

q
· v′ + 0 (mod qR′).

Next, in preparation for the upcoming homomorphic operations we increase the plain-

text (and ciphertext) modulus to q′, and multiply the resulting ciphertext by g′/g. These

operations clearly preserve noiselessness. Finally, we convert the ciphertext ring to R′′Q

for a sufficiently large cyclotomic R′′ ⊇ R′ and modulus Q � q that is divisible by q.

This is done by simply embedding R′ into R′′ and introducing extra precision, i.e., scaling

the ciphertext up by a Q/q factor. It is easy to verify that these operations also preserve

noiselessness.

2.5.2 Variants and Optimizations

Our basic procedure admits a few minor variants and practical optimizations, which we

discuss here.

Smaller temporary modulus q′. In Step 1b we increase the plaintext modulus from q to

q′ = rq where r = m̂′/m̂, and at the end of Step 2 we reduce the modulus back to q because

the plaintext is divisible by r. The net effect of this, versus using a modulus q throughout, is

that the modulus Q is larger by an r factor, as are the error rates used for key-switching in

Step 2. This does not affect the asymptotic cost of bootstrapping, but it may have a small

impact in practice. Instead, we can increase the modulus to only q′ = (r/d)q, where d is

the largest divisor of r coprime with q. Then in Step 2 we can remove an (r/d) factor from

the plaintext by scaling the modulus back down to q, and keep track of the remaining d
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factor and remove it upon decryption. (We could also remove the d factor by multiplying the

ciphertext by d−1 mod q, but this would increase the noise rate by up to a q/2 factor, which

is typically much larger than the m̂′/m̂ factor we were trying to avoid in the first place.)

Using a smaller index m in Steps 2 and 3. Steps 3a and 3c can be much more costly

in practice than Step 2, because they require working with rings that have at least ϕ(m)

Zq-slots. As the number of needed slots increases, the indices of such rings tend to grow

quickly, and involve more prime divisors of larger size (though asymptotically the indices

remain quasilinear); see Appendix 2.10 for some examples. So, in practice it may be

faster to invoke Step 3 a few times to evaluate the rounding function over a smaller ring

R̃ = Om̃ ⊂ R, for some proper divisor m̃ of m. Our procedure can be adapted to work in

this way, even if the original plaintext µ is an arbitrary element of the plaintext space Rp.

The main facts we use are that the decryption basis B of R factors as B = B′ · B̃, where

B̃ is the decryption basis of R̃, and in particular B′ is an optimally short R̃-basis of R. (See

Section 2.3.7.) Moreover, applying the ring rounding function on any u ∈ Rq is equivalent

to independently applying the ring rounding function on each of u’s R̃q-coefficients with

respect to B′. Lastly, the R̃q-coefficients of u can be individually extracted using the trace

function TrR/R̃ on certain fixed (short) multiples of u. (This all just generalizes the case

R̃ = Z in the natural way.) Using these facts, in Step 2 we can homomorphically apply

TrR/R̃ several times to obtain encryptions of the R̃q-coefficients of the noisy encoding

u ≈ (q/p) · µ, then use Step 3 to homomorphically round those coefficients to get the R̃p-

coefficients of µ ∈ Rp, and finally reassemble the pieces by homomorphically multiplying

by the short basis elements in B′, and summing the results.

Note that the above method requires evaluating TrR/R̃ a total of ϕ(m)/ϕ(m̃) times in

Step 2, and the same goes for the R̃q rounding function in Step 3. Because each evaluation

takes quasilinear time no matter what m̃ is, the asymptotic performance can only worsen

as m̃ decreases. However, in practice there may be benefits in choosing m̃ to be slightly
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smaller than m.

2.6 Homomorphic Trace

Here we show how to perform Step 2 of our bootstrapping procedure, which homomorphi-

cally evaluates the scaled trace function (m̂/m̂′) TrR′/R on an encryption of (g′/g)u′ ∈ R′q′ ,

where recall that: g′ ∈ R′, g ∈ R are as defined in Equation (2.3.1), and (g′/g) divides

(m̂′/m̂); the plaintext modulus is q′ = (m̂′/m̂)q; and

u′ = v′ =
q

p
· µ+ e′ (mod qR′),

where e′ · g′ ∈ g′R′ is sufficiently short. Our goal is to show that:

1. the scaled trace of the plaintext (g′/g)u′ is some u = q
p
·µ+ e ∈ Rq, where e · g ∈ gR

is short, and

2. we can efficiently homomorphically apply the scaled trace on a ciphertext c′′ over

some larger ring R′′ = Om′′ ⊇ R′.

2.6.1 Trace of the Plaintext

We first show the effect of the scaled trace on the plaintext (g′/g)u′ ∈ R′q′ . By the above

description of u′ ∈ R′q′ and the fact that (g′/g)q divides q′ = (m̂′/m̂)q, we have

(g′/g)u′ = (g′/g)v′ = (g′/g)

(
q

p
· µ+ e′

)
(mod (g′/g)qR′).

Therefore, letting Tr = TrR′/R, by R-linearity of the trace and Lemma 2.3.1, we have

Tr((g′/g)u′) = Tr(g′/g) · q
p
· µ+ Tr(e′ · g′)/g

=
m̂′

m̂

(
q

p
· µ+ e

)
(mod q′R),

where e = (m̂/m̂′) Tr(e′ · g′)/g ∈ R. Therefore, after scaling down the plaintext modulus

q′ by an m̂′/m̂ factor (see Section 2.4.5), the plaintext is q
p
· µ+ e ∈ Rq.

Moreover, e · g = (m̂/m̂′) Tr(e′ · g′) ∈ gR is short because e′ · g′ ∈ g′R′ is short; see,

e.g., [49, Corollary 2.2]. In fact, by basic properties of the decoding/decryption basis (as
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defined in [69]) under the trace, the coefficient vector of e with respect to the decryption

basis of R is merely a subvector of the coefficient vector of e′ with respect to the decryption

basis of R′. Therefore, e is within the error tolerance of the rounding function on Rq,

assuming e′ is within the error tolerance of the rounding function on R′q.

2.6.2 Applying the Trace

Now we show how to efficiently homomorphically apply the scaled trace function (m̂/m̂′) TrR′/R

to an encryption of any plaintext in R′q′ that is divisible by (g′/g). Note that this condition

ensures that the output of the trace is a multiple of m̂/m̂′ in Rq′ (see Lemma 2.3.1), making

the scaling a well-defined operation that results in an element of Rq.

First recall that TrR′/R is the sum of all ϕ(m′)/ϕ(m) automorphisms of R′/R, i.e., auto-

morphisms of R′ that fix R pointwise. Therefore, one way of homomorphically computing

the scaled trace is to homomorphically apply the proper automorphisms, sum the results,

and scale down the plaintext and its modulus. While this “sum-automorphisms” procedure

yields the correct result, computing the trace in this way does not run in quasilinear time,

unless the number ϕ(m′)/ϕ(m) of automorphisms is only polylogarithmic.

Instead, we consider a sufficiently fine-grained tower of cyclotomic rings

R(r)/ · · · /R(1)/R(0),

where R′ = R(r), R = R(0), and each R(i) = Omi
, where mi is divisible by mi−1 for i > 0;

for the finest granularity we would choose the tower so that every mi/mi−1 is prime. Notice

that the scaled trace function (m̂/m̂′) TrR′/R is the composition of the scaled trace functions

(m̂i−1/m̂i) TrR(i)/R(i−1) , and that g′/g is the product of all g(i)/g(i−1) for i = 1, . . . , r, where

g(i) ∈ R(i) is as defined in Equation (2.3.1). So, another way of homomorphically applying

the full scaled trace is to apply the corresponding scaled trace in sequence for each level

of the tower, “climbing down” from R′ = R(r) to R = R(0). In particular, if we use the

above sum-automorphisms procedure with a tower of finest granularity, then there are at

most log2(m′/m) = O(log λ) levels, and since we have assumed that every prime divisor
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of m′/m is bounded by polylogarithmic in the security parameter λ, the full procedure will

run in quasilinear Õ(λ) time.

For technical reasons related to the analysis of noise terms under automorphisms, we

actually use the sum-automorphisms procedure only on levels R(i)/R(i−1) = Omi
/Omi−1

of

the tower where every odd prime dividingmi also dividesmi−1. Otherwise, we instead apply

the scaled trace via an alternative procedure using ring-switching, which has essentially the

same runtime (see Section 2.6.2.2 below for details). In fact, the alternative procedure can

actually be used for any level of the tower, but it has the slight disadvantage of requiring the

index of the ciphertext ring to be divisible by at least one prime that does not divide mi; this

is why we prefer not to use it when, e.g., mi is a power of two.

2.6.2.1 Details of the Sum-Automorphisms Procedure

Here we specify the procedure for homomorphically applying the scaled trace by summing

automorphisms, as sketched above. Let R′/R = Om′/Om be a cyclotomic extension,

where here m,m′ are just dummy indices, not necessarily the ones from above. As already

mentioned, we require that every odd prime dividing m′ also divides m. The procedure takes

as input a ciphertext c′′ over some R′′ ⊇ R′ that encrypts a plaintext w′ ∈ R′q′ under secret

key s′′ ∈ R′′, where q′ = (m̂′/m̂)q and w′ is divisible by (g′/g). It proceeds as follows:

1. Compute ciphertexts τi(c′′) over R′′ for a certain set of automorphisms τi of R′′/R

that induce the automorphisms of R′/R. These ciphertexts will respectively encrypt

τi(w
′) ∈ R′q′ under secret key τi(s′′). Then key-switch [23, 20] these to ciphertexts

c(i) encrypting τi(w′) under a common secret key s̃. See below for further details.

2. Sum the ciphertexts c(i) (component-wise) to get a new ciphertext c̃ that encrypts

(under secret key s̃) the plaintext TrR′/R(w′) =
∑

i τi(w
′) ∈ Rq′ , which is divisible

by m̂′/m̂.

3. Using the procedure from Section 2.4.5, reduce the plaintext modulus to q, resulting

in a ciphertext that encrypts the scaled trace (m̂/m̂′) TrR′/R(w′) ∈ Rq under s̃.
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The correctness of Steps 2 and 3 is immediate, so we just need to give the details of

Step 1. We need to choose automorphisms τi of R′′/R that induce the automorphisms

of R′/R. Recall that the latter are defined by τj(ζm′) = ζjm′ for all j ∈ Z∗m′ such that

j = 1 (mod m). For each such j, we choose an i ∈ Z∗m′′ such that i = j (mod m′) and such

that i is 1 modulo every prime p that divides m′′ but not m′; this is possible by the Chinese

Remainder Theorem. Then τi(ζm′′) = ζ im′′ is an automorphism of R′′/R that induces τj ,

because i = 1 (mod m) and

τi(ζm′) = ζ
(m′′/m′)i
m′′ = ζjm′ .

Also, by our assumption on m,m′, each i we use is 1 modulo every prime that divides m′′,

because every such prime either divides m, or does not divide m′, or is 2.

To complete the details of Step 1, we need to show why the ciphertext τi(c′′) encrypts

τi(w
′) ∈ R′q′ under secret key τi(s′′). This follows from the decryption relation for c′′, and

the fact that τi is a ring homomorphism that induces an automorphism of R′ and fixes Z ⊆ R

pointwise:

τi(c
′′
0) + τi(c

′′
1) · τi(s′′) =

q

p
· τi(µ) + τi(e

′′),

where the error term e′′ ∈ R′′ of c′′ is such that e′′ ·g′′ is short (under the canonical embedding

of R′′).

The only subtlety is that we need τi(e′′) · g′′ to be short. We show below that g′′ = τi(g
′′),

from which it follows that τi(e′′) ·g′′ = τi(e
′′ ·g′′), which is short because the automorphisms

of R′′ simply permute the coordinates of the canonical embedding, and hence preserve

norms (see, e.g., [68, Lemma 5.6]). To see that g′′ = τi(g
′′), recall that i ∈ Z∗m′′ is 1 modulo

every prime p that divides m′′. Therefore, τi fixes every ζp and hence also fixes g′′.3

3If, contrary to our assumption, m′ was divisible by one or more primes that did not dividem, then the error
term τi(e

′′ · g′′) appearing in the ciphertext would be accompanied by a factor of g′′/τi(g′′). The expansion
associated with this term can be bounded and is not excessive, but it depends on the number and sizes of the
primes dividing m′ and not m. By contrast, the alternative procedure described in Section 2.6.2.2 incurs no
multiplicative increase in the noise rate.
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Lastly, we briefly analyze the efficiency of the procedure. Applying automorphisms to

the ciphertext ring elements is a trivial linear-time operation in the dimension, when the

element is represented in any of the structured bases we consider (and also in the so-called

“Chinese remainder” basis). Similarly, key-switching is quasilinear time in the bit length of

the ciphertext, which itself is quasilinear in our context.

2.6.2.2 Applying the Trace via Ring-Switching

Here we describe the alternative procedure for applying the scaled trace, which uses the

ring-switching technique from [49] (see Proposition 2.4.1). Let R′/R = Om′/Om be an

arbitrary cyclotomic extension, where m,m′ are again dummy variables. For this procedure,

we require that the ciphertext ring R′′ = Om′′ ⊇ R′ be such that m′′/m′ is coprime with m′,

but otherwise we can choose m′′ however we like. As before, the input is a ciphertext c′′

over R′′ that encrypts a plaintext w′ ∈ R′q′ , where w′ is divisible by (g′/g).

The main idea is that since m′ and m′′/m′ are coprime, we can write R′′ ∼= R′ ⊗ U

where U = Om′′/m′ and the tensor product is over the largest common base ring Z. Then the

R-linear function TrR′/R is induced by the (R⊗U)-linear function L : (R′⊗U)→ (R⊗U)

defined by L(a′ ⊗ u) = TrR′/R(a′)⊗ u for all a′ ∈ R′, u ∈ U . So, using the ring-switching

procedure from Proposition 2.4.1, we can homomorphically evaluate L on ciphertext c′′,

yielding an encryption of TrR′/R(w′), and then scale down the plaintext and its modulus

as usual. One nice fact we highlight is that using ring-switching to evaluate the function

TrR′/R does not incur any multiplicative increase in the noise rate, only a small additive one

from the key-switching step. This is because the factor associated with the function TrR′/R

that is applied to the ciphertext in the ring-switching procedure is simply 1.

One very important point is that ring-switching requires ring-LWE to be hard over

the target ring Om′′·m/m′ ∼= R ⊗ U , so its dimension must be sufficiently large, but at the

same time we cannot make the dimension of R′′ = Om′′ too large, for efficiency reasons.

Therefore, we only use the procedure when m′/m is small, and for sufficiently large m′′.
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Note that if the m′′ associated with a given input ciphertext is too small, we can trivially

increase it by embedding into a larger cyclotomic ring.

2.7 Homomorphic Ring Rounding

In this section we describe how to efficiently homomorphically evaluate the “ring rounding

function” b·ep : Rq → Rp, where R = Om is the mth cyclotomic ring. Conceptually, we

follow the high-level strategy from [50], but instantiate it with very different technical

components. Recall from Section 2.4.3 that the rounding function expresses its input u

in the “decryption” Z-basis B = {bj} of R, as u =
∑

j uj · bj for uj ∈ Zq, and outputs

buep :=
∑

jbujep · bj ∈ Rp. Unlike with integer rounding from Zq to Zp, it is not clear

whether this rounding function has a low-depth arithmetic formula using just the ring

operations of R. One difficulty is that there are an exponentially large number of values

in Rq that map to a given value in Rp, which might be seen as evidence that a corresponding

arithmetic formula must have large depth. Fortunately, we show how to circumvent this issue

by using an additional homomorphic operation, namely, an enhancement of ring-switching.

In short, we reduce the homomorphic evaluation of the ring rounding function (from Rq to

Rp) very simply and efficiently to that of several parallel (batched) evaluations of the integer

rounding function (from Zq to Zp).

2.7.1 Overview

Suppose we choose some cyclotomic ring S = O` having a mod-q CRT set C = {cj} ⊂ S

of cardinality exactly |B|. That is, we have a ring embedding from the product ring Z|B|q into

Sq, given by u 7→
∑

j uj · cj . Note that the choice of the ring S is at our convenience, and

need not have any relationship to the plaintext ring Rq. We express the rounding function

Rq → Rp as a sequence of three steps:

1. Map u =
∑

j uj · bj ∈ Rq to
∑

j uj · cj ∈ Sq, i.e., send the Zq-coefficients of u (with

respect to the decryption basis B) to the Zq-slots of Sq.
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2. Batch-apply the integer rounding function from Zq to Zp to the slot values uj , to get∑
jbujep · cj ∈ Sp.

3. Invert the map from the first step to obtain buep =
∑

jbujep · bj ∈ Rp.

Using batch/SIMD operations [82], the second step is easily achieved using the fact that Sq

embeds the product of several copies of the ring Zq, via the CRT elements cj . That is, we can

simultaneously round all the coefficients uj to Zp, using just one evaluation of an arithmetic

procedure over S corresponding to one for the integer rounding function from Zq to Zp.

We now describe one way of expressing the first and third steps above, in terms of

operations that can be evaluated homomorphically. The first simple observation is that the

function mapping u =
∑

j uj · bj to
∑

j uj · cj is induced by a Z-linear function L̄ : R→ S.

Specifically, L̄ simply maps each Z-basis element bj to cj . Now suppose that we choose

S so that its largest common subring with R is Z, i.e., the indices m, ` are coprime. Then

letting T = R + S = Om` ∼= R ⊗ S be the compositum ring, Lemma 2.3.2 yields an

S-linear function L : T → S that coincides with L̄ on R ⊆ T , and in particular on u. The

ring-switching procedure from Proposition 2.4.1 can homomorphically evaluate any S-linear

function from T to S, and in particular, the function L. Therefore, by simply embedding R

into T , we can homomorphically evaluate L̄(x) = L(x) by applying the ring-switching

procedure with L.

Unfortunately, there is a major problem with the efficiency of the above approach: the

dimension (over Z) of the compositum ring T is the product of those of R and S, which

are each at least linear in the security parameter. Therefore, representing and operating on

arbitrary elements in T requires at least quadratic time.

2.7.1.1 Efficiently Mapping from B to C

In hindsight, the quadratic runtime of the above approach should not be a surprise, because

we treated L̄ : R→ S as an arbitrary Z-linear transformation, and B,C as arbitrary sets. To

do better, L̄, B, and C must have some structure we can exploit. Fortunately, they can—if
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we choose them carefully. We now describe a way of expressing the first and third steps

above in terms of simple operations that can be evaluated homomorphically in quasilinear

time.

The main idea is as follows, and is summarized in Figure 1. Instead of mapping directly

from R to S, we will express L̄ as a sequence of linear transformations L̄1, . . . , L̄r through

several “hybrid” cyclotomic rings R = H(0), H(1), . . . , H(r) = S. For sets B and C with an

appropriate product structure, these transformations will respectively map A0 = B ⊂ H(0)

to some structured subset A1 ⊂ H(1), then A1 to some structured subset A2 ⊂ H(2), and so

on, finally mapping Ar−1 to Ar = C ⊂ H(r). In contrast to the inefficient method described

above, the hybrid rings will be chosen so that each compositum T (i) = H(i−1) + H(i) of

adjacent rings has dimension just slightly larger (by only a polylogarithmic factor) than

that of R. This is achieved by choosing the indices of H(i−1), H(i) to have large greatest

common divisor, and hence small least common multiple. For example, the indices can

share almost all the same prime divisors (with multiplicity), and have just one different

prime divisor each. Of course, other tradeoffs between the number of hybrid rings and the

dimensions of the compositums are also possible.

The flip side of this approach is that using ring-switching, we can homomorphically

evaluate only E(i)-linear functions L̄i : H(i−1) → H(i), where E(i) = H(i−1) ∩H(i) is the

largest common subring of adjacent hybrid rings. Since each E(i) is large by design (to keep

the compositum T (i) small), this requirement is quite strict, yet we still need to construct

linear functions L̄i that sequentially map B = A0 to C = Ar. To achieve this, we construct

all the sets Ai to have appropriate product structure. Specifically, we ensure that for each

i = 1, . . . , r, we have factorizations

Ai−1 = Aout
i−1 · Zi, Ai = Ain

i · Zi (2.7.1)

for some set Zi ⊂ E(i), where both Aout
i−1 and Ain

i are linearly independent over E(i). (Note

that for 1 ≤ i < r, each Ai needs to factor in two ways over two subrings E(i−1) and E(i),

which is why we need two sets Ain
i and Aout

i .) Then, we simply define L̄i to be an arbitrary
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E(i)-linear function that bijectively maps Aout
i−1 to Ain

i . (Note that Aout
i−1 and Ain

i have the same

cardinality, because Ai−1 and Ai do.) It immediately follows that L̄i bijectively maps Ai−1

to Ai, because

L̄i(Ai−1) = L̄i(A
out
i−1 · Zi) = L̄i(A

out
i−1) · Zi = Ain

i · Zi (2.7.2)

by E(i)-linearity and the fact that Zi ⊂ E(i).

B ⊂ R = H(0)

T (1)

E(1)

H(1)

T (2)

E(2)

H(2) = S ⊃ C

em
be

d
H (1)-linear

E(1)-linear
(induced)

em
bed

H (2)-linear
E(2)-linear
(induced)

Figure 1: An example mapping from B ⊂ R to C ⊂ S, via a sequence of hybrid rings.
Each E(i) = H(i−1) ∩H(i) is a largest common subring, and each T (i) = H(i−1) +H(i) is
a compositum, of adjacent hybrid rings. For any E(i)-linear function from H(i−1) to H(i),
there is a corresponding H(i)-linear function from T (i) to H(i) that coincides with it on
H(i−1) (see Lemma 2.3.2).

Summarizing the above discusion, we have the following theorem.

Theorem 2.7.1. Suppose there exists a sequence of cyclotomic ringsR = H(0), H(1), . . . , H(r) =

S and sets Ai ⊂ H(i) such that for all i = 1, . . . , r, we have Ai−1 = Aout
i−1 · Zi and

Ai = Ain
i · Zi for some sets Zi ⊂ E(i) = H(i−1) ∩ H(i) and Aout

i−1, A
in
i that are each E(i)-

linearly independent and of equal cardinality. Then there is a sequence of E(i)-linear maps

L̄i : H
(i−1) → H(i), for i = 1, . . . , r, whose composition L̄r ◦ · · · ◦ L̄1 bijectively maps A0

to Ar.

2.7.1.2 Applying the Map Homomorphically

So far we have described how our desired map between plaintext rings R and S can be

expressed as a sequence of linear maps through hybrid plaintext rings. In the context of
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bootstrapping, for security these plaintext rings typically need to be embedded in some larger

ciphertext rings, because the dimensions of R, S are not large enough to securely support the

very small noise used in bootstrapping. For example, following Step 2 of our bootstrapping

procedure (Section 2.5), we have a ciphertext over the ring R′′ where R′′ = Om′′ ⊇ R for

some m′′ of our choice that is divisible by m. We need to choose the sequence of hybrid

ciphertext rings so that they admit linear functions (over the respective largest common

subrings) that induce the desired ones on the underlying plaintext rings. This turns out to be

very easy to do, as we now explain.

LetH,H ′ be adjacent hybrid plaintext rings having largest common subringE = H∩H ′

and compositum T = H + H ′. Then we want the corresponding ciphertext rings to be

H̃ ∼= H ⊗ U , H̃ ′ ∼= H ′ ⊗ U ′ for some cyclotomic rings U,U ′, and the largest common

subring and compositum of H̃, H̃ ′ to be Ẽ ∼= E ⊗ (U ∩ U ′) and T̃ ∼= T ⊗ (U + U ′),

respectively (where all the tensor products are over the common base ring Z). Then any

E-linear function L : H → H ′ is induced by any Ẽ-linear function L̃ : H̃ → H̃ ′ satisfying

L̃(h ⊗ 1) = L(h) ⊗ 1, which is the function we actually apply when switching between

ciphertext rings.

To satisfy the above conditions, it is sufficient (and in fact necessary) to choose the

respective indices u, u′ of U,U ′ so that lcm(u, u′) is coprime with lcm(h, h′), where h, h′

are the respective indices of H,H ′. Then the ciphertext rings H̃, H̃ ′ have indices hu and

h′u′, and their compositum has index lcm(h, h′) · lcm(u, u′), which must be quasilinear for

asymptotic efficiency. In typical instantiations, in order to get enough additional slots in each

successive ring, h′/h will be moderately large and lcm(h, h′) ≈ h′. So to ensure that all the

ciphertext rings are about the same size, we can choose u/u′ ≈ h′/h and lcm(u, u′) ≈ u.
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2.7.1.3 Mapping Selected Coefficients

In some settings we may only need to map certain coefficients into slots, i.e., map a particular

portion of B to a CRT set of appropriate size. For example, when bootstrapping a semi-

packed ciphertext over R′ = Om′ with plaintext over R̃ = Om̃, we may need to artificially

expand our view of the plaintext ring to some R = Om, so that m is coprime with m′/m

(see the constraints listed at the start of Section 2.5). In such a case, the decryption basis B

of R factors as B = B′ · B̃, where B̃ is the decryption basis of R̃ and B′ ⊂ R is a particular

R̃-basis of R. Since the true message is really only over R̃, it can be shown that the only

coefficients we need to recover the message are associated with the subset b′ · B̃ ⊆ B for a

particular fixed b′ ∈ B′. Therefore, when designing the hybrid rings and CRT sets we only

need |B̃| slots in total. When initially switching from R through the hybrid rings, we do so

in a way that maps b′ to one entry of a CRT set and all the other elements of B′ to zero, then

continue by mapping all of B̃ to a CRT set as usual. Note that we still need to go through

just as many hybrid rings to map from R to S, but the size of S can be significantly smaller

because it needs fewer CRT slots.

2.7.2 Construction

By Theorem 2.7.1 and the ring-switching procedure, in order to map B ⊂ R to a CRT set C

of some ring S of our choice in a way that can be efficiently evaluated homomorphically,

we just need to construct hybrid cyclotomic rings R = H(0), H(1), . . . , H(r) = S and sets

Ai ⊂ H(i) (where A0 = B and Ar = C) to satisfy the following two properties for each

i = 1, . . . , r:

1. Each compositum T (i) = H(i−1) +H(i) is not too large, i.e., its dimension is quasilin-

ear.

2. The sets Ai−1, Ai factor as described in Equation (2.7.1).

The remainder of this subsection is dedicated to providing such a construction.
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2.7.2.1 Decomposition of R and Basis B ⊂ R

For our given ring R = Om and its Z-basis B used in decryption, we consider a tower of

cyclotomic rings

R(r)/R(r−1)/ · · · /R(1)/R(0),

where R(r) = R and R(0) = O1 = Z, and each R(i) has index mi, which is divisible by

mi−1 for i > 0. For example, in a finest-grained decomposition, r is the number of prime

divisors (with multiplicity) of m, and the ratios mi/mi−1 are all these prime divisors in

some arbitrary order. A coarser-grained decomposition may be used as well, but will tend to

make the compositum rings T (i) larger.

We need Z-bases Bi of the rings R(i) that have a product structure induced by the tower.

Specifically, for each i = 1, . . . , r we need to have the factorization

Bi = B′i ·Bi−1 ⊂ R(i) (2.7.3)

for some set B′i ⊂ R(i) that is linearly independent over R(i−1). We also need the basis B(r)

of R = R(r) to be the one used for decryption. As shown in Section 2.3.7, the scaled-up

“decoding” basis ofR has a finest-possible factorization, so we can use it asB for any choice

of the tower.

We mention that the power basis {1, ζm, ζ2
m, . . . , ζ

ϕ(m)−1
m } of R, which is implicitly the

one used when representing R as the polynomial ring Z[X]/Φm(X), does not have the

required product structure when m is divisible by two or more odd primes, but that it does

coincide with the scaled-up decoding basis when m is a power of 2. (See [69] for details.)

2.7.2.2 Ring S and CRT Set C ⊂ S.

We next design S = O` so that it also yields a tower of cyclotomic rings S(r)/S(r−1)/ · · · /S(1)/S(0),

where S(r) = S and S(0) = Z, and each S(i) has index `i. As described in Sections 2.3.6

and 2.3.7, there are structured mod-q CRT sets C̃i of S(i) that factor as

C̃i = C̃ ′i · C̃i−1,
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where C̃ ′i ⊂ S(i) is an S(i−1)-linearly independent set whose cardinality is the “relative

splitting number” of p in S(i)/S(i−1), i.e., the number of distinct prime ideals in S(i) lying

over any prime ideal divisor of p in S(i−1).

We need to choose the ring S and its tower so that for all i = 1, . . . , r,

• the respective indices mr−i+1, `i of R(r−i+1), S(i) are coprime (certainly it suffices

for m and ` to be coprime, but this is not always necessary);

• the dimension ϕ(mr−i+1 · `i) is not too large (specifically, it is quasi-linear in the

security parameter);

• the relative splitting number |C̃ ′i| ≥ |B′r−i+1|.

We can then easily define structured CRT sets Ci ⊂ C̃i ⊂ S(i) of the appropriate cardinality,

and in particular C = Cr, as follows. Define C0 = {1} ⊂ Z = S(0). Then for each

i = 1, . . . , r, let C ′i ⊆ C̃ ′i be an arbitrary subset having cardinality exactly |B′r−i+1|, and

define

Ci = C ′i · Ci−1 ⊂ C̃i. (2.7.4)

2.7.2.3 Hybrid Rings H(i) and Sets Ai ⊂ H(i)

Informally, with each successive hybrid ring we remove another level from the R-tower and

add on another level to the S-tower, and similarly with the corresponding components of the

structured sets B and C. Formally, for i = 0, 1, . . . , r we define

H(i) = Omr−i `i
∼= R(r−i) ⊗ S(i), (2.7.5)

Ai = Br−i · Ci ⊂ H(i), (2.7.6)

where the tensor product in Equation (2.7.5) applies to the rings as extensions of Z, and

the isomorphism holds because gcd(mr−i, `i) ≤ gcd(mr−i+1, `i) = 1 by design. Note that

H(0) = Omr = R, H(r) = O`r = S, and A0 = Br = B, Ar = Cr = C, as required.

For each i = 1, . . . , r, because mr−i+1 and `i are coprime, it is straightforward to verify

that the largest common subring E(i) = H(i−1)∩H(i) and compositum T (i) = H(i−1) +H(i)
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are

E(i) = Omr−i `i−1
∼= R(r−i) ⊗ S(i−1)

T (i) = Omr−i+1 `i
∼= R(r−i+1) ⊗ S(i),

where the tensor products above are over the common base ring Z. Note that the dimension

of T (i)/Z is ϕ(mr−i+1 · `i), which is quasi-linear in the security parameter by construction.

Lemma 2.7.2. The sets Ai−1, Ai factor as in Equation (2.7.1), i.e., Ai−1 = Aout
i−1 · Zi and

Ai = Ain
i · Zi for some sets Zi ⊂ E(i) and Aout

i−1, A
in
i that are each E(i)-linearly independent

and of equal cardinality.

Proof. Define Zi = Br−i · Ci−1 ⊂ E(i). Recall from Equation (2.7.3) that Br−i+1 =

B′r−i+1 ·Br−i, where B′r−i+1 ⊂ R(r−i+1) is linearly independent over R(r−i) ⊂ H(i−1), and

hence also over E(i) ∼= R(r−i) ⊗ S(i−1) (because it corresponds to the set of pure tensors

B′r−i+1 ⊗ {1} ⊂ R(r−i+1) ⊗ S(i−1)). Then

Ai−1 = (B′r−i+1 ·Br−i) · Ci−1 = B′r−i+1 · Zi

is the desired factorization. Similarly, recall from Definition (2.7.4) that Ci = C ′i · Ci−1,

where C ′i ⊆ C̃ ′i ⊂ S(i) is linearly independent over S(i−1), and hence also over E(i). Then

we have the desired factorization

Ai = Br−i · (C ′i · Ci−1) = C ′i · Zi.

Finally, we have |Aout
i−1| = |B′r−i+1| = |C ′i| = |Ain

i | by design of C ′i.

2.8 Transformation Between LSB and MSB Encodings

Here we describe a folklore transformation between the “least significant bit” and “most

significant bit” message encodings for (ring-)LWE-based cryptosystems.

Let plaintext modulus p and ciphertext modulus q be coprime, fix integers cp, cq such

that cpp+ cqq = 1, and observe that cp = p−1 (mod q) and cq = q−1 (mod p).
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• An lsb encoding of a value µ ∈ Zp is any v ∈ Zq such that v = e (mod q) for some

integer e ∈ [−q/2, q/2) where e = µ (mod p).

• An msb encoding of µ is any w ∈ Zq such that bwep := bw · (p/q)e = µ (mod p).

If v ∈ Zq is an lsb encoding of µ ∈ Zp, then we claim that p−1·v ∈ Zq is an msb encoding

of −q−1 · µ ∈ Zp. Indeed, since v = e (mod q) for some e ∈ (µ+ pZ) ∩ [−q/2, q/2), we

have

bp−1 · vep =
⌊

1−cqq
p
· e · p

q

⌉
=
⌊
(1
q
− cq) · e

⌉
= −cq · e = −q−1 · µ (mod p).

In the other direction, if w ∈ Zq is an msb encoding of µ ∈ Zp, then we claim that p · w

is an lsb encoding of −q · µ ∈ Zp. Indeed, by assumption we have

bwep = bw · (p/q)e = w · (p/q)− f = µ (mod p)

for some f ∈ 1
q
Z ∩ [−1/2, 1/2). Multiplying by q and letting e = q · f ∈ Z ∩ [−q/2, q/2),

we have

p · w − e = q · µ (mod pq).

Reducing this modulo q, we get p · w = e (mod q), and reducing it modulo p, we have

e = −q · µ (mod p).

The above facts make it possible to convert between lsb and msb representations of (ring-

)LWE ciphertexts, simply by multiplying the ciphertext by p or p−1 modulo q. This works

because decryption recovers a Zq-encoding of the message simply as a linear function of the

ciphertext, so the p or p−1 factor simply “passes through” the ciphertext to the encoding. (In

the ring setting, the encoding of plaintext ring elements is coefficient-wise in a certain basis,

so the same reasoning applies.) If q = −1 (mod p), then the above transformations preserve

the message exactly. In other cases, we can just keep track of the factors of −q or −q−1

introduced by the conversions (which may be affected by other homomorphic operations),

and remove them upon decryption.
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2.9 Integer Rounding Procedure

Here we recall (a close variant of) the efficient arithmetic procedure from [50] for com-

puting the “most significant bit” function msbq : Zq → Z2 for q = 2` ≥ 4, defined as

msbq(x) = bx/(q/2)c. Note that the integer rounding function b·e2 : Zq → Z2 is simply

bxe2 = msbq(x + q/4). The multiplicative depth and cost (in number of operations) of

the msbq procedure are not precisely analyzed in [50], and the procedure as written turns

out to be suboptimal in depth and number of operations by log2(q) factors, because it

(homomorphically) raises ciphertexts to large powers in an inner loop. So for completeness,

here we present a simplified and optimized version of the procedure, and an analysis of its

depth and cost. It uses the standard ring operations of Z2j , as well as division by 2 of values

that are guaranteed to be even. All of these operations can be evaluated homomorphically

for the cryptosystem described in Section 2.4, as explained in Section 2.4.5. The procedure

also easily generalizes to any prime base.

Algorithm 1 Arithmetic procedure for computing msbq : Zq → Z2 [50]
Input: Element x ∈ Zq, where q = 2` for some positive integer `
Output: msbq(x) ∈ Z2

1: w0 ← x // w0 ∈ Zq
2: for i← 1, . . . , `− 1 do
3: y ← x // y ∈ Zq, y = x (mod 2i+1)
4: for j ← 0, . . . , i− 1 do
5: wj ← w2

j // now wj = lsb(bx/2jc) (mod 2i−j+1)
6: y ← (y − wj)/2 mod (q/2j+1) // now y ∈ Zq/2j+1 , y = bx/2j+1c (mod 2i−j)

7: wi ← y // wi ∈ Zq/2i , wi = bx/2ic (mod 2)

8: return w`−1 ∈ Z2

Correctness follows from [50, Lemma 2]. The main idea is that when initially assigned,

each wj has the same least-significant bit as bx/2jc, i.e., wj = bx/2jc (mod 2) (but its

other bits may not agree with x’s). Each time wj is squared in Step 5, its least-significant

bit remains the same, but an additional more-significant bit is set to zero. That is, after t

squarings, wj = lsb(bx/2jc) (mod 2t+1). Therefore, in iteration i, the inner loop “shifts

away” the i least-significant bits of x, leaving the (i+ 1)st bit intact in the least significant
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position (but possibly changing the others), at which point we can assign wi and maintain

the invariant.

We now briefly analyze the homomorphic evaluation of the procedure, in terms of its

induced noise growth and runtime cost. The most important observation is that although

it is written using a doubly nested loop, the procedure actually has multiplicative depth

exactly `− 1 = log2(q/2). This is because in the inner loop, each wj for j = 0, . . . , i− 1

can be squared in parallel (Step 5). Each squaring of the plaintext value wj ∈ Zq/2j induces

the usual small polynomial expansion (q/2j) · nc (where c ≈ 1) in the noise rate of the

associated ciphertext. The iterated subtractions and divisions by 2 (Step 6) cause no growth

at all in the noise rate: each subtraction sums (at worst) the noise rates of the associated

ciphertexts, and division by 2 halves the noise rate.

In the ith iteration, the procedure performs i homomorphic multiplications and i subtrac-

tions (and also i divisions by 2, but these are trivial as homomorphic operations). Therefore,

the procedure uses a total of `(`− 1)/2 homomorphic multiplications and subtractions each.

2.10 Concrete Choices of Rings

Here, for p = 2 and several values of the original cyclotomic index m, we give some

workable values for the target cyclotomic index `, along with the indices of the intermediate

“hybrid” rings, the dimensions of the compositum rings, etc. Note that when mr−i+1 = 2,

then the ring Rr−i+1 has dimension 1, and so we can move directly from mr−i+1 = 2 to

mr−i+1 = 1. In the tables below, and following the notation in Section 2.7:

• mr−i+1 is the index of the ring Rr−i+1 at step i;

• `i is the index of the ring Si at step i;

• ϕ(mr−i+1 · `i) is the dimension of the compositum ring at step i;

• |B′r−i+1| is the dimension of the intermediate ring extension R(r−i+1)/R(r−i);

• |C̃ ′i| is the “relative splitting number” of p = 2 in the extension S(i)/S(i−1).
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• r denotes the number of hybrid rings Rr−i+1, i ∈ [r]

All the indices are lower bounds needed to support the functionality of the ring-rounding

technique on the plaintext space (Section 2.7). Larger ciphertext indices may be required to

ensure adequate security for all the homomorphic operations; see Section 2.7.1.2.

Table 1: Concrete choices for mr = 1024, ϕ(mr) = 512

Step i mr−i+1 `i |B′r−i+1| |C̃ ′i| ϕ(mr−i+1 · `i)

1 1024 17 2 2 8192

2 512 221 = 17 · 13 4 4 49152

3 128 1547 = 221 · 7 4 6 73728

4 32 7735 = 1547 · 5 4 4 73728

5 8 23205 = 7735 · 3 2 2 36864

6 4 69615 = 23205 · 3 2 3 55296

7 1 69615 55296

Table 2: Concrete choices for mr = 512, ϕ(mr) = 256

Step i mr−i+1 `i |B′r−i+1| |C̃ ′i| ϕ(mr−i+1 · `i)

1 512 17 2 2 4096

2 256 221 = 17 · 13 4 4 24576

3 64 1547 = 221 · 7 4 6 36864

4 16 7735 = 1547 · 5 4 4 36864

5 4 23205 = 7735 · 3 2 2 18432

6 1 23205 18432
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Table 3: Concrete choices for mr = 256, ϕ(mr) = 128

Step i mr−i+1 `i |B′r−i+1| |C̃ ′i| ϕ(mr−i+1 · `i)

1 256 17 2 2 2048

2 128 221 = 17 · 13 4 4 12288

3 32 1105 = 221 · 5 4 4 12288

4 8 3315 = 1105 · 3 2 2 6144

5 4 9945 = 3315 · 3 2 3 9216

6 1 9945 9216

Table 4: Concrete choices for mr = 128, ϕ(mr) = 64

Step i mr−i+1 `i |B′r−i+1| |C̃ ′i| ϕ(mr−i+1 · `i)

1 128 17 2 2 2048

2 64 119 = 17 · 7 2 2 3072

3 32 595 = 119 · 5 4 4 6144

4 8 1785 = 595 · 3 2 2 3072

5 4 5355 = 1785 · 3 2 3 4608

6 1 5355 4608

2.11 Bounds on the Compositum

Here we discuss asymptotic bounds for the maximum value obtained by the compositum.

For simplicity, we focus on the case that the modulus q = 2j and the index of the initial ring

R is mr = 2k+1, making the dimension of the initial ring R equal to the security parameter

λ = 2k. Initially, we hoped to be able to choose the cyclotomic tower of rings S(i) so that

the compositum would be larger than the initial ring R by at most a polylogarithmic factor,

but this does not appear possible. We say “appear” because a proof of the impossibility

appears beyond our grasp, and indeed, the grasp of number theorists at present.

On the positive side, we are able to show that, for the conditions on the modulus and

the index of the initial ring given above, there exist choices for the tower of cyclotomics

S(i) such that the compositum at any point in the procedure is at most 2k+O(
√
k ln(k)). We
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also give a heuristic argument that choices exist for the tower of cyclotomics such that the

compositum at any point in the procedure is at most 2k+O(ln(k) ln(ln(k))).

2.11.1 Factors Contributing to the Compositum

Here we discuss the approach used to choose indices for the intermediate “hybrid” rings in

our procedure such that the maximum value taken by the compositum at any point in our

procedure is minimized. Concrete choices for these indices can be seen in Section 2.10.

During step i of our algorithm, we embed the hybrid ring H(i−1) into the compositum

T (i) of it and the adjacent hybrid ring H(i). The dimension of the compositum will be the

least common multiple of the dimension of H(i−1) and H(i). To minimize the growth of the

compositum, we wish to use as fine-grained rings as possible. In particular, the index of the

compositum T (i) at step i divided by the index of the hybrid ring H(i−1) should always be

some prime p = pi. The number of slots provided by this prime will be equal to the “relative

splitting number” of 2 in the extension S(i)/S(i−1). This, in turn, is equal to the order of 2

modulo `i divided by the order of 2 modulo `i−1, where `i is the index of the destination

ring Si at step i.

At the end of the step, we ring-switch down from T (i) to H(i), and the compositum’s

dimension is divided by the dimension of the intermediate ring extension B′r−i+1, which, to

maximize efficiency, is set equal to the largest (not necessarily prime) factor of mr−i+1 less

than the relative splitting number C̃ ′i. As a result, the growth of the compositum during the

procedure is due to the size of the primes pi used, the growth of the order of 2 mod `i versus

`i−1 and due to the “wasted slots.” These “wasted slots” come into play due to the relative

splitting number not being a power of 2. In this case, since mr−i+1 is always a power of

2 for the case being considered, |C̃ ′i| is strictly greater than the maximum possible value

of |B′r−i+1|, and the additional slots in S(i)/S(i−1) are considered “wasted.” However, the

multiplicative factor for the slots being wasted in each step (except for the last step, where it

can be upper bounded by ϕ(pi)) can be upper bounded by 2, since if |C̃ ′i| ≥ 2|B′r−i+1|, we
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can increase |B′r−i+1| by a factor of 2.

Recall that λ is the dimension of the initial ring R. Using the above information, for all

i in the process except for the last step, we can upper bound the size of the compositum at

step i as

ϕ(mr−i+1`i) ≤ λord`i2 · 2i

At the final step r, we can thus upper bound it with

ϕ(m1`r) ≤ λord`r2 · 2r−1ϕ(pr − 1) (2.11.1)

2.11.2 Overview and Difficulties of Asymptotic Bounds

In order to minimize the maximum dimension taken by the compositum, we want to find

small relatively prime integers (preferably themselves prime) such that the order of 2 modulo

their product is also small. For the unconditional upper bound, we begin by noticing that the

algebraic decomposition of xn−1 into irreducible cyclotomic polynomial factors guarantees

that 2n − 1 will have a large number of relatively small factors when n is itself a product of

many small distinct prime factors. This observation leads to our approach for a concrete

upper bound. We choose an integer n of the appropriate size that has many small distinct

prime factors. We set `i = Φpi(2) for the ith largest prime factor pi of n, where Φpi(2) is

the pith cyclotomic polynomial evaluated at 2. While we could give a slightly smaller upper

bound on the size of the compositum by using the dth cyclotomic polynomials evaluated at

2 for all small divisors d of n, we have omitted this for ease of exposition.

Difficulties in making more significant improvements on the unconditional upper bound

derived using the above approach stem from the lack of progress made in determining the

distribution of factors of 2n − 1 beyond those that arise from the algebraic factorization

into cyclotomic polynomials. For example, when p is prime, Φp(2) = 2p − 1 is a Mersenne

number, and despite very intensive research, it is still unknown whether or not there are an

infinite number of Mersenne primes prime (or, for that matter, whether there are an infinite

number of 2p − 1 for prime p that are composite). [56]
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It also seems intractable to show reasonably tight lower bounds. In particular, it seems

out of reach to show that for sufficiently large k (where the initial ring R = O[2k+1], there

are no choices for the tower of rings S(i) such that the compositum is at most 2k+O(log k).

It is not difficult to see that this would imply that asymptotically, the largest prime factor

of 2n − 1 (n not necessarily prime) must be superpolynomially large in n, since if not, we

could simply construct the tower of rings to have ratios of indices equal to the various prime

factors of 2n − 1. However, while Murata and Pomerance conjecture that the largest prime

factor may always be at least 2n/ logn asymptotically [72], the best result known, even under

strong number theoretic conjectures such as the Generalized Riemann Hypothesis and the

abc conjecture, is that for sufficiently large n, the largest prime factor will always be at least

n2−ε for any ε > 0. [83]

Instead, we give a significantly smaller heuristic upper bound that appears empirically

to be relatively tight. Similar to our approach for the unconditional bound, we begin by

choosing an even integer n that is the product of many small distinct prime factors and

therefore has many even divisors. By Fermat’s Theorem, if p is a prime such that p− 1 | n,

then p | 2n − 1, so that (under a heuristic argument), 2n − 1 will have many small factors.

2.11.3 Unconditional Upper Bounds

We will need the following bounds on functions of prime numbers. Let pn denote the nth

prime number.

Lemma 2.11.1 ([9, 39]). For n ≥ 6,

n(ln(n) + ln(ln(n))− 1) < pn < n(ln(n) + ln(ln(n)))

Lemma 2.11.2 (Theorem 4, [9]). Let ϑ(x) =
∑

p≤x ln p be the first Chebyshev function.

Then for x > 1, we have that

ϑ(x) < x(1 +
1

2 ln(x)
)
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Combining the previous two lemmas gives the following.

Corollary 2.11.3. For n ≥ 3, ϑ(pn) ≤ n(ln(n) + ln(ln(n)) + 1
2
.

We will also need the following lemmata about Mersenne numbers Mp = 2p − 1 for

prime p.

Lemma 2.11.4 ([78], Theorem 7.12). If p is an odd prime, then any divisor of Mp is of the

form 2kp+ 1 for some positive integer k.

Corollary 2.11.5. For an odd prime p, we have that ϕ(Mp)/Mp ≥ (1/2)1/ log2(p) where ϕ

is Euler’s totient function

Proof. By Lemma 2.11.4, the smallest prime factor of Mp is at least 2p+ 1. Thus Mp has

at most p/ log2(p) distinct prime factors, and so

ϕ(Mp)

Mp

≥
(

2p

2p+ 1

)p/ log2(p)

≥
(

1
2

)1/ log2(p)
.

Lemma 2.11.6. For positive integers a, b, x, gcd(xa − 1, xb − 1) = xgcd(a,b) − 1

Proof. Clearly xgcd(a,b)−1 divides both xa−1 and xb−1. Now, let g := gcd(xa−1, xb−1).

xa = xb = 1 (mod g) so that by the extended Euclidean algorithm, xgcd(a,b) = 1 (mod g).

Thus, g | (xgcd(a,b) − 1), and since g is the greatest common divisor, equality holds.

We then immediately have the following corollary.

Corollary 2.11.7. For coprime a, b, we have that gcd(Ma,Mb) = 1

We now lower bound the number of distinct prime ideals in the factorization of the ideal

2R in the m̄ = Mpn = (2pn−1)th cyclotomic ringR = Om̄. Recall from above that this num-

ber, which corresponds to the number of “Zq-slots,” is equal to ϕ(Mpn)/ordMpn
(2).(Jacob:

TODO: Ensure ord is defined somewhere)
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Lemma 2.11.8. Let pn be the nth prime. Then

ϕ(Mpn)

ordMpn
2
≥ 2n(ln(n)−3/8)

Proof. Since ordMpn
(2) = pn, by Corollary 2.11.5, we have that

ϕ(Mpn)/ordMpn
(2) ≥ 2pn−1/ log2 pn−log2(pn)

The lemma then follows from direct verification for n ≤ 15 and Lemma 2.11.1.

We can now give the unconditional upper bound.

Theorem 2.11.9. Let R = R(r) have index mr where mr = 2k+1 for some integer k > 1,

and let p = 2. Then there exists a tower of cyclotomic rings S(i) such that the size of the

compositum at any step in our procedure is at most 2k+O(
√
k ln(k)).

Proof. We define the tower of cyclotomic rings S(i) so that the ratio of their indices `i/`i−1 =

Mpi = 2pi − 1 (with `0 = 1). Note that by Corollary 2.11.7, we have that `i/`i−1 and `i−1

are coprime. As the order of 2 modulo `i−1 is
∏i−1

j=1 pj and hence coprime to pi, we have

that the “relative splitting number” of 2 in S(i)/S(i−1) is |C̃ ′i| = ϕ(Mpi)/pi. As a result, via

Lemma 2.11.8, we may choose the intermediate ring extension R(r−i+1)/R(r−i) to be of

dimension

|B′r−i+1| = 2blog2(ϕ(Mpi )/pi)c ≥ 2log2(ϕ(Mpi )/pi)−1 ≥ 2i(ln(i)−3/8)−1.

After t total steps, the index of R(r−t) will then be at most 2k+1−(
∑t

n=1 n(ln(n)−3/8)−1). A

standard calculation gives that for t ≥ O(
√
k/ ln(k)), the index will be at most 2 (and hence

the dimension will be at most 1). As a result, the algorithm stops after at mostO(
√
k/ ln(k))

steps.

If the algorithm has not stopped at the end of step i, then the dimension of the hybrid

ring H(i) is at most

ϕ(mr−i`i) ≤ ϕ(mr−i+1`i−1) · ϕ(Mpi) · 2−blog2(ϕ(Mpi )/pi)c ≤ ϕ(mr)2
i
∏i

j=1 pj
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Thus, by Corollary 2.11.3 the maximum dimension of a hybrid ring is

ϕ(mr)2
O(
√
k/ ln(k))e

ϑ(p
O(
√

k/ ln(k))
) ≤ 2

k+O
(√

k ln(k)
)

The dimension of the compositum in step i+ 1 is the dimension of the hybrid ring H(i)

multiplied by the dimension of S(i+1)/S(i). As the latter value is at most 2O(
√
k ln(k)), we

can upper bound the compositum’s maximum dimension during the algorithm by

ϕ(mr−i`i)ϕ(`i+1)/ϕ(`i) ≤ 2k+O(
√
k ln(k))

2.11.4 Heuristic Bounds

We give a heuristic upper bound on the maximum size of the compositum. For an appropriate

choice of n = θ(λ) (see below), let Pn := {odd primes p : (p − 1) | n}, r := |Pn|, and

let pi denote the ith largest prime in Pn. We define the ring S and its associated tower of

cyclotomic rings S(i) so that the ratio of their indices `i/`i−1 = pi (with `0 = 1). We wish

to find the maximum k such that we can apply the ring-switching procedure using the tower

of cyclotomics S(i)from an initial ring R of index mr = 2k+1. We will show heuristically

that, if the initial ciphertext is fully packed, the maximum dimension of the compositum

during the procedure will be at most 2k+O(ln(k) ln(ln(k))).

Let Wn :=
∑

p∈Pn
log2(ϕ(p)). Since the order of every prime p in Pn divides n, the

total number of “slots” in the full ring S is at least 2Xn/n = 2Xn−log2 n. Accounting for

the at most 2r slots “wasted” during the procedure (see Section 2.11.1), we are then able

to accomodate any k ≤ Wn − r − log2 n. Noting the definition of r above, by defining

Xn =
∑

p∈Pn
(log2(ϕ(p))− 1), we can accomodate k ≤ Xn − log2 n.

It remains to determine the approximate value of Xn. We heuristically show that for a

randomly chosen integer n (in the neighborhood of λ),

Xn ≈ xn :=
2

ln(2)
d(n/2)

where d(n) denotes the number of divisors of n.
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Consider an even factor m of n. The prime number theorem implies that a random odd

integer in the neighborhood of m + 1 is prime with probability approximately 2/ ln(m).

As a result, we can then say the “expected” contribution of m to the sum defining Xn

is approximately 2
ln(m)

· log2 φ(m+ 1) = 2
ln(2)

. Since there are d(n/2) such factors, the

heuristics for a random integer n follow immediately.

If n has many distinct prime factors relative to its size, then most factors m of n will

have a large number of distinct prime factors relative to their size, which in turn makes it

more likely that m+ 1 is prime than a random integer (since m+ 1 cannot divide any of the

factors of m), so that heuristically, the “expected” contribution to the above sum in this case

will actually be greater than 2/ ln(2).

Let ZN = {n ∈ [N ] : d(n/2) ≥ 2c ln(N)/ ln(ln(N))}, where .5 ≤ c ≤ 1. We use the prime

number theorem and the results of [9] to show that for large N , |ZN | ≥ 2c ln(N)/ ln(ln(N)).

Indeed, π(2 ln(N)) = 2 ln(N)
ln(ln(N))

and the product of any subset of c ln(N)/ ln(ln(N)) of the

primes less than 2 ln(N) is at most N/2 and thus corresponds to an integer x ≤ N such that

d(x/2) ≥ 2c ln(N)/ ln(ln(N)). It is easy to see that there are at least 2c ln(N)/ ln(ln(N)) such subsets,

so that |ZN | ≥ 2c ln(N)/ ln(ln(N)). As a result, under the heuristic, it is likely that for any large

N , there is indeed some integer n ≤ N such that Xn ≥ 2c ln(N)/ ln(ln(N)) ≥ 2c ln(n)/ ln(ln(n)).

Since finding such an integer only requires knowing its factors, and since N itself is

polynomial in the security parameter (so that it has log2(N) bits and may be factored in

polynomial time), one may find such an integer via a brute-force search in polynomial time.

Let C denote the largest dimension the compositum takes during the procedure. Then

combining the above heuristic results, we have that

k ≥ 2θ(ln(n)/ ln(ln(n))) − log2(n) and log2(C) ≤ 2θ(ln(n)/ ln(ln(n))) + log2(n),

so that

log2(C) = k +O(ln(k) ln(ln(k)))

As a result, if we pack λ = θ(2k) plaintexts into the initial ciphertext, we have that
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the compositum will be at most λ ln(λ)O(ln(ln(ln(λ))))), which is very slightly larger than

quasilinear.
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CHAPTER III

EFFICIENT BOOTSTRAPPING OF UNPACKED CIPHERTEXTS

3.1 Bootstrapping with Polynomial Error Growth

In a major milestone for fully homomorphic encryption and bootstrapping, Brakerski and

Vaikuntanathan (BV) [25] gave a bootstrapping method that incurs only polynomial error in

the security parameter λ. This allows security to be based on the learning with errors (LWE)

problem [75] with inverse-polynomial error rates, and hence on worst-case lattice problems

with polynomial approximation factors (via the reductions of [75, 74, 22]). The BV method

is centered around two main components:

1. the recent homomorphic cryptosystem of Gentry, Sahai, and Waters (GSW) [53],

specifically, the “quasi-additive” nature of its error growth under homomorphic

multiplication; and

2. the “circuit sequentialization” property of Barrington’s Theorem [11], which converts

any depth-d circuit (of NAND gates) into a length-4d “branching program,” which is

essentially a fixed sequence of conditional multiplications.

Since decryption in homomorphic cryptosystems can be implemented in circuit depth

O(log λ), Barrington’s Theorem yields an equivalent branching program of length 4d =

poly(λ). Moreover, the quasi-additive error growth of GSW multiplication means that ho-

momorphic evaluation of the branching program incurs only poly(λ) error, as demonstrated

in [25].

The polynomial error growth of the BV bootstrapping algorithm is a terrific feature, but

the method also has two significant drawbacks: it comes at a high price in efficiency, and

the error growth is a large polynomial. Both issues arise from the fact that in this context,

Barrington’s Theorem yields a branching program of large polynomial length. Existing
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analyses (e.g., [23, Lemma 4.5]) of decryption circuits (for cryptosystems with 2λ security)

yield depths of c log λ for some unspecified but moderately large constant c ≥ 3, which

translates to a branching program of length at least λ2c ≥ λ6. (Even if the depth were to

be improved, there is a fundamental barrier of c ≥ 1, which yields length Ω(λ2).) The

branching program length is of course a lower bound on the number of homomorphic

operations required to bootstrap, and it also largely determines the associated error growth

and final lattice approximation factors.

Separately, Brakerski and Vaikuntanathan also show how to obtain better lattice approxi-

mation factors through a kind of “dimension leveraging” technique, but this comes at an

even higher price in efficiency: if the original error growth was λc for some constant c,

then the technique involves running the bootstrapping procedure with GSW ciphertexts of

dimension n ≈ λc/ε, where the choice of ε ∈ (0, 1) yields a final approximation factor of

Õ(n3/2+ε). The high cost of dimension leveraging underscores the importance of obtaining

smaller error growth and approximation factors via other means.

3.1.1 Our Results

Our main result is a new bootstrapping method having substantially smaller runtime and

(polynomial) error growth than the recent one from [25]. The improvements come as a

result of treating decryption as an arithmetic function, in contrast to most earlier works

which treated decryption as a boolean circuit. This avoids the circuitous and inefficient path

of constructing a shallow circuit and then transforming it via Barrington’s Theorem into a

branching program of (large) polynomial length. Instead, we show how to directly evaluate

the decryption function in an elementary and efficient arithmetic form, using just basic facts

about cyclic groups. See the next subsection for a detailed overview.

Our method requires only a quasi-linear Õ(λ) number of homomorphic operations

on GSW ciphertexts, to bootstrap essentially any LWE-based encryption scheme with 2λ

security under conventional assumptions. This performance is quasi-optimal (i.e., ignoring
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polylogarithmic factors) for a system with bitwise encryption (like GSW), because the

decryption function must depend on at least λ secret key bits. When instantiated with a

GSW scheme based on ring-LWE [68], in which the cost of each homomorphic operation

is only Õ(λ) bit operations, the total runtime of our algorithm is a respectable Õ(λ2) bit

operations.1

Regarding error growth, the security of our basic scheme can be based on LWE with error

rates as large as 1/Õ(λ·n), where n = Ω̃(λ) is the LWE dimension used in the GSW scheme.

Taking n = Õ(λ) to be asymptotically minimal, this translates to lattice approximation

factors of Õ(n3), which is quite close to the Õ(n3/2) factors that plain public-key encryption

can be based upon (and quite a bit smaller than for many other applications of LWE!). We

emphasize that these small factors are obtained directly from our construction with small

LWE dimensions. To further improve the assumptions at a (high) cost in efficiency, we can

let n = λ1/ε to directly yield Õ(n2+ε) factors for any ε ∈ (0, 1), or we can use the successive

dimension/modulus-reduction technique from [25] to obtain Õ(n3/2+ε) factors.

Simpler GSW variant. As a contribution of independent interest, we also give a variant

of the GSW cryptosystem that we believe is technically simpler, along with a tighter analysis

of error terms under its homomorphic operations (see Section 3.2). The entire scheme,

security proof, and error analysis fit into just a few lines of standard linear algebra notation,

and our variant enjoys additional useful properties like full “re-randomization” of error

terms as a natural side effect. The error analysis is also very clean and tight, due to the

use of subgaussian random variables instead of coarser measures like the `2 or `∞ norms.

One nice consequence of this approach is that the error in a homomorphic product of d

ciphertexts grows with
√
d, rather than linearly as in prior analyses. This is important for

establishing the small error growth of our bootstrapping method.

1Homomorphic operations in standard-LWE-based GSW are quite a bit more expensive, due to matrix
multiplications of dimensions exceeding λ.
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3.1.2 Technical Overview

Here we give an overview of the main ideas behind our new bootstrapping method. We

start by recalling in more detail the main ideas behind the work of Brakerski and Vaikun-

tanathan [25], which uses the Gentry-Sahai-Waters (GSW) [53] homomorphic encryption

scheme to obtain FHE from LWE with inverse-polynomial error rates, and hence from lattice

problems with polynomial approximation factors.

The starting point is a simple observation about the GSW encryption scheme: for

encryptions C1,C2 of messages µ1, µ2 ∈ Z, the error in the homomorphic product C1 dC2

of µ1 · µ2 is “quasi-additive” and asymmetric in the ciphertexts’ respective errors e1, e2,

namely, it is e1 · poly(n) + µ1 · e2, where n is the dimension of the ciphertexts. (The error

in the homomorphic sum C1 ‘ C2 is simply the sum e1 + e2 of the individual errors.)

This property has a number of interesting consequences. For example, Brakerski and

Vaikuntanathan use it to show that the homomorphic product of many freshly encrypted 0-1

messages, if evaluated sequentially in a right-associative manner, has error that grows at

most linearly in the number of ciphertexts. More generally, the homomorphic product of

many encrypted permutation matrices—i.e., 0-1 matrices in which each row and column

has exactly one nonzero entry—has similarly small error growth.

The next main idea from [25] is to use Barrington’s Theorem to express the boolean de-

cryption circuit of depth d = O(log λ) as a branching program of length 4d = poly(λ) over

the symmetric group S5, or equivalently, the multiplicative group of 5-by-5 permutations

matrices. Their bootstrapping algorithm homomorphically (and sequentially) multiplies

appropriate encrypted permutation matrices to evaluate this branching program on a given

input ciphertext, thereby homomorphically decrypting it. Since evaluation is just a homo-

morphic product of poly(λ) permutation matrices, the error in the final output ciphertext is

only polynomial, and the LWE parameters can be set to yield security assuming the hardness

of lattice problems for polynomial approximation factors.
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3.1.2.1 Our Approach

Our bootstrapping method retains the use of symmetric groups and permutation matrices, but

it works without the “magic” of Barrington’s Theorem, by treating decryption more directly

and efficiently as an arithmetic function, not a boolean circuit. In more detail, the decryption

function for essentially every LWE-based cryptosystem can without loss of generality (via

standard bit-decomposition techniques) be written as a “rounded inner product” between the

secret key s ∈ Zdq and a binary ciphertext c ∈ {0, 1}d, as

Dec(s, c) = b〈s, c〉e2 ∈ {0, 1}.

Here the modular rounding function b·e2 : Zq → {0, 1} indicates whether its argument is “far

from” or “close to” 0 (modulo q), and the dimension d and modulus q can both be made as

small as quasi-linear Õ(λ) in the security parameter via dimension/modulus reduction [23],

while still providing provable 2λ security under conventional lattice assumptions. Note that

the inner product itself is just a subset-sum of the Zq-entries of s indicated by c, and uses

only the additive group structure of Zq.

Embedding Zq into Sq. As a warm up, we first observe that the additive group Zq embeds

(i.e., has an injective homomorphism) into the symmetric group Sq, the multiplicative group

of q-by-q permutation matrices. (This is just a special case of Cayley’s Theorem, which

says that any finite group G embeds into S|G|.) The embedding is very simple: x ∈ Zq maps

to the permutation that cyclically rotates by x positions. Moreover, any such permutation

can be represented by an indicator vector in {0, 1}q with its 1 in the position specified

by x, and its permutation matrix is obtained from the cyclic rotations of this vector. In this

representation, a sum x + y can be computed in O(q2) bit operations by expanding x’s

indicator vector into its associated permutation matrix, and then multiplying by y’s indicator

vector. This representation also makes the rounding function b·e2 : Zq → {0, 1} trivial to

evaluate: one just sums the entries of the indicator vector corresponding to those values

in Zq that round to 1.
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These ideas already yield a new and simple bootstrapping algorithm that appears to have

better runtime and error growth than can be obtained using Barrington’s Theorem. The

bootstrapping key is an encryption of each coordinate of the secret key s ∈ Zdq , represented

as a dimension-q indicator vector, for a total of d · q = Õ(λ2) GSW ciphertexts. To bootstrap

a ciphertext c ∈ {0, 1}d, the inner product 〈s, c〉 ∈ Zq is computed homomorphically as a

subset-sum using the addition method described above, in O(d · q2) = Õ(λ3) homomorphic

operations. The rounding function is then applied homomorphically, using justO(q) = Õ(λ)

additions.

Embedding Zq into smaller symmetric groups. While the above method yields some

improvements over prior work, it is still far from optimal. Our second main idea is an

efficient way of embedding Zq into a much smaller symmetric group Sr for some r = Õ(1),

such that the rounding function can still be efficiently evaluated (homomorphically). We do

so by letting the modulus q =
∏

i ri be the product of many small prime powers ri of distinct

primes. (We can use such a q by modulus switching, as long as it remains sufficiently large

to preserve correctness of decryption.) Using known bounds on the distribution of primes, it

suffices to let the ri be maximal prime powers bounded by O(log λ), of which there are at

most O(log λ/ log log λ).

By the Chinese Remainder Theorem, the additive group Zq is isomorphic (via the natural

homomorphism) to the product group
∏

i Zri , which then embeds into
∏

i Sri as discussed

above. Therefore, we can represent any x ∈ Zq as a tuple of O(log λ) indicator vectors of

length ri = O(log λ) representing x (mod ri), and can perform addition by operating on

the indicator vectors as described above. In this representation, the rounding function is no

longer just a sum, but it can still be expressed relatively simply as

bxe2 =
∑

v∈Zq s.t. bve2=1

[x = v],

where each equality test [x = v] returns 0 for false and 1 for true.2 In turn, each equality test

2Note that we are not using any special property of the rounding function here; any boolean function
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[x = v] is equivalent to the product of equality tests [x = v (mod ri)], each of which can be

implemented trivially in our representation by selecting the appropriate entry of the indicator

vector for x (mod ri). All of these operations have natural homomorphic counterparts in

our representation, so we get a corresponding bootstrapping algorithm.

As a brief analysis, each coordinate of the secret key s ∈ Zdq is encrypted as
∑

i ri = Õ(1)

GSW ciphertexts, for a total of Õ(d) = Õ(λ) ciphertexts in the bootstrapping key. Similarly,

each addition or equality test over Zq takes Õ(1) homomorphic operations, for a total of

Õ(d+ q) = Õ(λ). Both of these measures are quasi-optimal when relying on a scheme that

encrypts one bit per ciphertext (like GSW). By contrast, bootstrapping using Barrington’s

Theorem requires at least 4c log λ = λ2c homomorphic operations to evaluate the branching

program, where c log λ is the depth of the decryption circuit using NAND gates (of fan-in

2). To our knowledge, upper bounds on the constant c have not been optimized or even

calculated explicitly, but existing analyses like [23, Lemma 4.5] yield c � 3, and the

necessary dependence on λ inputs bits for 2λ security yields a fundamental barrier of c ≥ 1.

3.1.2.2 Related Work on Branching Programs

Several works have extended and improved Barrington’s Theorem for the simulation of

general circuits and formulas via branching programs, e.g., [28, 33]. Of particular interest

here is the thesis of Sinha [81], which gave quasi-linear-size, log-width branching programs

for threshold functions (i.e., those which output 1 if at least some k of the n inputs are 1) and

“mod” functions (i.e., those which output 1 if the number of 1s in the input is zero modulo

some d). Similarly to our techniques, Sinha’s construction uses the Chinese Remainder

Theorem over many small primes in an essential way.

Because decryption in LWE-based cryptosystems involves modular addition, and can

be implemented in constant depth (and polynomial size) by threshold gates, it might be

possible to bootstrap in a quasi-linear number of homomorphic operations by using Sinha’s

f : Zq → {0, 1} can be expressed similarly by summing over f−1(1).
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results in place of Barrington’s Theorem. However, we have not seen a way to make this

work concretely.

3.1.3 Generalizations and Improvements

Since the preliminary publication of this work, several improvements and generalizations

have appeared. Here we give a brief overview of these new works.

The most important of these subsequent works, by Ducas and Micciancio [38], special-

izes our algorithm to the ring setting. Their bootstrapping algorithm has the same high-level

structure as the one in this work. However, they utilize properties of the ring structure to

improve beyond a simple ring-based implementation of our algorithm. In our work, we

use an indicator vector to represent elements of the cyclic group Zq, and reduce from an

additional linear factor to an additional logarithmic factor by choosing q to have a large

number of distinct prime factors. In their work, they work over a ring that contains q-th

roots of unity, and they represent i ∈ Zq as xi where x is a primitive q-th root of unity. This

allows them to eliminate the additional logarithmic factor. As a result, they achieve what is

currently the fastest bootstrapping algorithm (when considering speed in a non-amortized

manner), taking only 0.6 seconds to bootstrap on a standard personal computer.

Another work by Orsini, van der Pol and Smart [73] generalizes our idea of using a

specialized representation for bootstrapping. They describe a generalized framework where

bootstrapping consists of two parts. The first part involves computing a representation of Zq

in some group G, which they refer to as rep. The second step involves homomorphically

evaluating the “rounding” part of bootstrapping via a map they refer to as red. By initially

using a polynomial representation, they show that the circuit for red can be evaluated in

depth log log q, an improvement over previous algorithms when viewed in this framework.

Unfortunately, the rep step takes depth log q, similarly to previous bootstrapping algorithms.

Moreover, it appears that given only addition and multiplication as basic operations, log q
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depth is in fact a tight lower bound for evaluating mod p modulo q [12], meaning improve-

ments beyond log q will likely require an underlying somewhat homomorphic encryption

scheme which has either more expressive basic operations or a less complex decryption

circuit.

Finally, Hiromasa, Abe and Okamoto [60] show how to modify the GSW encryption

scheme to support the encryption of matrices of {0, 1} elements. While the original GSW

scheme allows this by encrypting each element of the matrix in a separate ciphertext, this

requires the ciphertexts to grow by a multiplicative factor linear in the number of matrix

elements. Their technique allows the encryption of r × r matrices of {0, 1} elements while

growing each dimension of the ciphertexts additively instead of multiplicatively, providing a

much more efficient solution. Using this technique, they are able to reduce the growth of the

error in the scheme by a factor
√
n (where n is the underlying lattice dimensions).

3.2 GSW Cryptosystem

Here we present a variant of the Gentry-Sahai-Waters homomorphic encryption scheme [53]

(hereafter called GSW), which we believe is simpler to understand at a technical level. We

also give a tighter analysis of its error growth under homomorphic operations.

3.2.1 Background

We first recall some standard background (see, e.g., [71] for further details).

3.2.1.1 Subgaussian Random Variables

In our construction it is very convenient to analyze the behavior of “error” terms using

the standard notion of subgaussian random variables. (For further details and full proofs,

see [85].) A real random variable X (or its distribution) is subgaussian with parameter

r > 0 if for all t ∈ R, its (scaled) moment-generating function satisfies E[exp(2πtX)] ≤

exp(πr2t2). By a Markov argument, X has Gaussian tails, i.e., for all t ≥ 0, we have

Pr[|X| ≥ t] ≤ 2 exp(−πt2/r2). (3.2.1)
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(If E[X] = 0, then Gaussian tails also imply subgaussianity.) Any B-bounded centered

random variable X (i.e., E[X] = 0 and |X| ≤ B always) is subgaussian with parameter

B
√

2π.

Subgaussianity is homogeneous, i.e., X is subgaussian with parameter r, then cX

is subgaussian with parameter c · r for any constant c ≥ 0. Subgaussians also satisfy

Pythagorean additivity: if X1 is subgaussian with parameter r1, and X2 is subgaussian with

parameter r2 conditioned on any value of X1 (e.g., if X1 and X2 are independent), then

X1 +X2 is subgaussian with parameter
√
r2

1 + r2
2. By induction this extends to the sum of

any finite number of variables, each of which is subgaussian conditioned on any values of

the previous ones.

We extend the notion of subgaussianity to vectors: a random real vector x is subgaussian

with parameter r if for all fixed real unit vectors u, the marginal 〈u,x〉 ∈ R is subgaussian

with parameter r. In particular, it follows directly from the definition that the concatenation

of variables or vectors, each of which is subgaussian with common parameter r conditioned

on any values of the prior ones, is also subgaussian with parameter r. Homogeneity and

Pythagorean additivity clearly extend to subgaussian vectors as well, by linearity.

The next claim follows directly from the material in [85, Section 5.2.4 and Proposi-

tion 5.16].

Lemma 3.2.1. Let x ∈ Rn be a random vector with independent coordinates that are

subgaussian with parameter r. Then for some universal constant C > 0, we have Pr[‖x‖2 >

C · r
√
N ] ≤ 2−Ω(N).

3.2.1.2 Gadget Matrix

For a modulus q, let ` = dlog2 qe and define the “gadget” (column) vector g = (1, 2, 4, . . . , 2`−1) ∈

Z`q. Note that the penultimate entry 2`−2 of g is in the interval [q/4, q/2) mod q. It will be

convenient to use the following randomized “decomposition” function.
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Claim 3.2.2 (Adapted from [71]). There is a randomized, efficiently computable function

g−1 : Zq → Z` such that x ← g−1(a) is subgaussian with parameter O(1), and always

satisfies 〈g,x〉 = a.

Briefly, the algorithm described in the claim works as follows (though for our application

it is not necessary to understand its internals): let S ∈ Z`×` be the basis of the lattice

Λ⊥(gt) = {z ∈ Z` : 〈g, z〉 = 0 ∈ Zq} as constructed in [71], whose Gram-Schmidt vectors

all have Euclidean norm O(1). Given a ∈ Zq, run a randomized version of the nearest-

plane algorithm [7] with basis S to sample from the coset Λ⊥a (gt) = {x : 〈g,x〉 = a},

where in each iteration of the algorithm we choose the coefficient of the ith basis vector to

have expectation zero over {ci − 1, ci} for an appropriate ci ∈ 1
q
Z ∩ [0, 1). In particular,

the coefficient is subgaussian with parameter
√

2π given any fixed values of the previous

coefficients. The final output x is the linear combination of the (orthogonal) Gram-Schmidt

vectors of S with these coefficients, and is therefore subgaussian with parameter O(1).

For vectors and matrices over Zq, define the randomized function G−1 : Zn×mq → Zn`×m

by applying g−1 independently to each entry. Notice that for any A ∈ Zn×mq , if X ←

G−1(A) then X has subgaussian parameter O(1) and

G ·X = A, where G = gt ⊗ In = diag(gt, . . . ,gt) ∈ Zn×n`q (3.2.2)

is the block matrix with n copies of gt as diagonal blocks, and zeros elsewhere.

3.2.2 Cryptosystem and Homomorphic Operations

The GSW scheme is parameterized by a dimension n, a modulus q with ` = dlog2 qe, and

some error distribution χ over Z which we assume to be subgaussian. Formally, the message

space is the ring of integers Z, though for bootstrapping we only work with ciphertexts

encrypting messages in {0, 1} ⊂ Z. The ciphertext space is C = Zn×n`q . For simplicity

we present just a symmetric-key scheme, which is sufficient for our purposes (it can be

converted to a public-key or even attribute-based scheme, as described in [53]).

Our GSW variant differs from the original scheme described in [53] in two main ways:
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1. In [53], a ciphertext is a square binary matrix C ∈ {0, 1}n`, a secret key is a “struc-

tured” mod-q vector s ∈ Zn`q (having large entries), and s is an “approximate mod-q

eigenvector” of C, in the sense that stC ≈ µst (mod q), where µ ∈ Z is the message.

In our variant, a ciphertext is a rectangular mod-q matrix C ∈ Zn×n`q , a secret key is

some (unstructured, short) integer vector s ∈ Zn, and stC ≈ µ · stG (mod q), i.e., s

and Gts are corresponding left- and right- “approximate singular vectors” of C.

The difference between these two variants turns out to be purely syntactic, in that we

can efficiently and “losslessly” switch between them (without needing the secret key).

However, we believe that our variant leads to simpler notation and easier-to-understand

operations and analysis.

2. The second difference is more substantial: our homomorphic multiplication procedure

uses the randomized G−1(·) operation from Claim 3.2.2. This yields a few important

advantages, such as a very tight and simple error analysis using subgaussianity (see

Lemma 3.2.6), and the ability to completely re-randomize the error in a ciphertext

(see Corollary 3.2.7).

We now describe the scheme formally.

GSW.Gen(): choose s̄← χn−1 and output secret key s = (s̄, 1) ∈ Zn.

GSW.Enc((s̄, 1), µ ∈ Z): choose C̄← Z(n−1)×n`
q and e← χm, let bt = et− s̄tC̄ (mod q),

and output the ciphertext

C =

C̄

bt

+ µG ∈ C,

where G is as defined in Equation (3.2.2). Notice that stC = et + µ · stG (mod q).

GSW.Dec(s,C ∈ C): let c be the penultimate column of C, and output µ = b〈s, c〉e2,

where b·e2 : Zq → {0, 1} indicates whether its argument is closer modulo q to 0 or to

85



2`−2 (the penultimate entry of g).3

Homomorphic addition is defined as C1 ‘ C2 = C1 + C2.

Homomorphic multiplication is defined as C1 d C2 ← C1 · G−1(C2), and is right

associative. Notice that this is a randomized procedure, because G−1 is randomized.

The IND-CPA security of the scheme follows immediately from the assumed hardness

of LWEn−1,q,χ, where the entries of the secret are drawn from the error distribution χ (which

is no easier than for a uniformly random secret; see [5, Lemma 2]). This is because a fresh

ciphertext is just µG plus a matrix of n` independent LWE samples under secret s̄, which

are pseudorandom by assumption and hence hide µG.

3.2.3 Analysis

Here we analyze the scheme’s correctness and homomorphic operations.

Definition 3.2.3. We say that a ciphertext C is designed to encrypt message µ ∈ Z (under

a secret key s) if it is a fresh encryption of µ, or if C = C1 ‘ C2 where C1,C2 are

respectively designed to encrypt µ1, µ2 ∈ Z and µ = µ1 +µ2, or similarly for homomorphic

multiplication.

Definition 3.2.4. We say that a ciphertext C that is designed to encrypt µ ∈ Z (under s) has

error vector et ∈ Zn` if stC− µ · stG = et (mod q).

For convenience later on, we also say the matrix µG is designed to encrypt µ, and has

error 0. (This is essentially implied by the above definitions, since µG is indeed a fresh

encryption of µ, assuming that zero is in the support of χ.) The next claim on the correctness

of decryption follows immediately from the fact that s = (s̄, 1) and the penultimate column

of G is (0, . . . , 0, 2`−2), where 2`−2 ∈ [q/4, q/2) mod q.

3Note that we can decrypt messages in Z ∩ [− q
2 ,

q
2 ), or any other canonical set of representatives of Zq,

by “decoding” stC to the nearest multiple of stG. The above decryption algorithm will be sufficient for our
purposes.
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Claim 3.2.5. If C is designed to encrypt some µ ∈ {0, 1} ⊂ Z, and has error vector et

whose penultimate coordinate has magnitude less than q/8, then GSW.Dec(s,C) correctly

outputs µ.

3.2.4 Error Growth from Homomorphic Operations

We now analyze the behavior of the error terms under homomorphic operations.

Lemma 3.2.6. Suppose C1,C2 are respectively designed to encrypt µ1, µ2 ∈ Z and have

error vectors et1, e
t
2. Then C1 ‘ C2 has error vector et1 + et2, and C1 d C2 has error vector

et1X + µ1e
t
2, where X← G−1(C2) is the matrix used in the evaluation of d. In particular,

for any values of Ci, ei, µi, the latter error vector is of the form et + µ1e
t
2, where the entries

of e are independent and subgaussian with parameter O(‖e1‖).

Importantly, the error in C1 d C2 is quasi-additive and asymmetric with respect to the

errors in C1,C2: while the first error vector et1 is multiplied by a short (subgaussian) matrix

X, the second error vector et2 is only multiplied by the (scalar) message µ1, which we will

ensure remains in {0, 1}.

Proof. The first claim is immediate, by linearity. For the second claim, because G ·X = C2

we have

st(C1 d C2) = stC1 ·X

= (et1 + µ1 · stG)X

= et1X + µ1(et2 + µ2 · stG)

= (et1X + µ1e
t
2) + µ1µ2 · stG.

As observed in [25], the asymmetric noise growth allows for performing a long chain

of homomorphic multiplications while only incurring a polynomial-factor error growth,

because d is defined to be right associative. For convenience of analysis, in such a chain

we always include the fixed ciphertext G, which is designed to encrypt µ = 1 and has zero
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error, as the rightmost ciphertext in the chain. This ensures that the error vector of the output

ciphertext is subgaussian and essentially independent of the errors in the input ciphertexts

(apart from their lengths), which leads to a simpler and tighter analysis. (In [25] a weaker

independence guarantee was achieved by a separate “partial re-randomization” procedure,

which requires additional public key material.)

Corollary 3.2.7. Suppose that Ci for i ∈ [k] are respectively designed to encrypt µi ∈

{0,±1} and have error vectors eti. Then for any fixed values of these variables,

C←
ô

i∈[k]

Ci d G = C1 d (C2 d (· · · (Ck d G) · · · ))

has an error vector whose entries are mutually independent and subgaussian with parameter

O(‖e‖), where et = (et1, . . . , e
t
k) ∈ Zkn` is the concatenation of the individual error vectors.

Proof. By Lemma 3.2.6, the error vector in C is
∑

i e
t
iXi, where each etiXi is a fresh

independent vector that has mutually independent coordinates and is subgaussian with

parameter O(‖ei‖). The claim then follows by Pythagorean additivity.

3.3 Symmetric Groups and Zq-Embeddings

Here we recall some basic facts about symmetric groups, which can be found in most

abstract algebra textbooks, e.g., [62]. Let Sr denote the symmetric group of order r, i.e., the

group of permutations (bijections) π : {1, . . . , r} → {1, . . . , r} with function composition

as the group operation. The group Sr is isomorphic to the multiplicative group of r-

by-r permutation matrices (i.e., 0-1 matrices with exactly one nonzero element in each

row and each column), via the map that associates π ∈ Sr with the permutation matrix

Pπ = [eπ(1) eπ(2) · · · eπ(r)], where ei ∈ {0, 1}r is the ith standard basis vector. For the

remainder of this work we identify permutations with their associated permutation matrices.

The additive cyclic group (Zr,+) embeds into the symmetric group Sr via the injective

homomorphism that sends the generator 1 ∈ Zr to the “cyclic shift” permutation π ∈ Sr,
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defined as π(i) = i + 1 for 1 ≤ i < r and π(r) = 1.4 Clearly, this embedding and its

inverse can be computed efficiently. Notice also that the permutation matrices in the image

of this embedding can be represented more compactly by just their first column, because

the remaining columns are just the successive cyclic shifts of this column. Similarly, such

permutation matrices can be multiplied in only O(r2) operations, since we only need to

multiply one matrix by the first column of the other.

For our efficient bootstrapping algorithm, we need to efficiently embed a group (Zq,+),

for some sufficiently large q of our choice, into a symmetric group of order much smaller

than q (e.g., polylogarithmic in q). This can be done as follows: suppose that q = r1r2 · · · rt,

where the ri are pairwise coprime. Then by the Chinese Remainder Theorem, the ring Zq is

isomorphic to the direct product of rings Zr1 × Zr2 × · · · × Zrt , and hence their additive

groups are isomorphic as well. Combining this with the group embeddings of (Zri ,+) into

Sri , we have an (efficient) group embedding from (Zq,+) into Sr1 × Sr2 × · · · × Srt .5

Importantly for our purposes, q can be exponentially large in terms of maxi ri above.

This can be shown using lower bounds on the second Chebyshev function

ψ(x) :=
∑
pk≤x

log p = log
(∏
p≤x

pblogp xc
)
,

where the first summation is over all prime powers pk ≤ x, and the second is over all primes

p ≤ x; note that pblogp xc is the largest power of p not exceeding x. Therefore, the product q

of all maximal prime powers ri = pblogp xc ≤ x is exp(ψ(x)). Asymptotically, it is known

that ψ(x) = x±O(x/ log x), and we also have the nonasymptotic bound ψ(x) ≥ 3x/4 for

all x ≥ 7 [80, Theorem 11]. In summary:

Lemma 3.3.1. For all x ≥ 7, the product of all maximal prime powers ri ≤ x is at least

exp(3x/4).

4This is just a special case of Cayley’s theorem, which says that any group G embeds into the symmetric
group S|G|.

5The latter group can be seen as a subgroup of Sr for r =
∑

i ri, but it will be more efficient to retain the
product structure.
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3.4 Homomomorphic Encryption for Symmetric Groups

Brakerski and Vaikuntanathan [25] showed how to use the GSW encryption scheme to ho-

momorphically compose permutations of five elements (i.e., to homomorphically compute

the group operation in the symmetric group S5) with small additive noise growth; the use of

S5 comes from its essential role in Barrington’s theorem [11]. In [25], the homomorphic

composition of permutations is intertwined with the evaluation of a branching program

given by Barrington’s theorem. Here we give, as a “first-class object,” a homomorphic cryp-

tosystem for any symmetric group Sr. The ability to use several different small values of r,

along with a homomorphic equality test that we design, will be central to our bootstrapping

algorithm.

3.4.1 Encryption Scheme

We now describe our (symmetric-key) homomorphic encryption scheme for symmetric

groups, called HEPerm. Let C denote the ciphertext space for an appropriate instantiation of

the GSW scheme, which we treat as a “black box.” A secret key sk for HEPerm is simply a

secret key for the GSW scheme.

• HEPerm.Enc(sk, π ∈ Sr): let P = (pi,j) ∈ {0, 1}r×r be the permutation matrix

associated with π. Output an entry-wise encryption of P, i.e., the ciphertext

C = (ci,j) ∈ Cr×r, where ci,j ← Enc(sk, pi,j).

(Decryption follows in the obvious manner.) As with the GSW system, we say that a

ciphertext C ∈ Cr×r is designed to encrypt a permutation π ∈ Sr (or its permutation matrix

Pπ) if its C-entries are designed to encrypt the corresponding entries of Pπ. For convenience,

we let J ∈ Cr×r denote the ciphertext that encrypts the identity permutation with zero noise,

which is built in the expected way from the fixed zero-error GSW ciphertexts that encrypt 0

and 1.
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We now show how to homomorphically compute two operations: the standard composi-

tion operation for permutations, and an equality test.

Homomorphic composition Cπ e Cσ: on ciphertexts Cπ = (cπi,j),C
σ = (cσi,j) ∈ Cr×r

encrypting permutations π, σ ∈ Sr respectively, we compute one encrypting the

permutation π ◦ σ by homomorphically evaluating the naı̈ve matrix-multiplication

algorithm.6 That is, output C = (ci,j) ∈ Cr×r where

ci,j ←
ð

`∈[r]

(cπi,` d cσ`,j) ∈ C. (3.4.1)

Just like d, we define e to be right associative.

Homomorphic equality test Eq?(Cπ = (cπi,j), σ ∈ Sr): given a ciphertext encrypting some

permutation π ∈ Sr and a permutation σ ∈ Sr (in the clear), output a ciphertext c ∈ C

encrypting 1 if π = σ and 0 otherwise, as

c←
ô

i∈[r]

cπσ(i),i d g,

where g ∈ C denotes the fixed zero-error encryption of 1. (Recall that d is right

associative.)

Observe that for the above two operations, the GSW ciphertext(s) in the output are

designed to encrypt the appropriate {0, 1}-message. For Compose this is simply by correct-

ness of the matrix-multiplication algorithm. For Eq? this is because the output ciphertext is

designed to encrypt 1 if and only if every cσ(i),i is designed to encrypt 1, which is the case if

and only if Cπ is in fact designed to encrypt σ. All that remains is to analyze the behavior

of the error terms, which we do next.

6Note that asymptotically faster algorithms (e.g., Strassen’s) do not appear suitable here, because the
intermediate steps of these algorithms can result in values having magnitude greater than one, which can cause
the error in the ciphertexts to grow much faster. In any case, this will not matter much in our application,
since r will be small.
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3.4.2 Analysis

Recalling that the GSW scheme is parameterized by n and q, denote its space of error

vectors by E = Zm where m = ndlog2 qe. The Euclidean norm on Er = Zmr is defined in

the expected way. In what follows it is often convenient to consider vectors and matrices

over E , i.e., each entry is itself a (row) vector in E = Zm, and we switch between Eh×w and

Zh×wm as is convenient.

The following lemma describes the behavior of errors under the homomorphic com-

position operation e. Note that working with vectors and matrices over E lets us write a

statement that is syntactically very similar to the one from Lemma 3.2.6, with a very similar

proof.

Lemma 3.4.1. Let Cπ,Cσ ∈ Cr×r respectively be designed to encrypt permutation matrices

Pπ,Pσ ∈ {0, 1}r×r with error matrices Eπ,Eσ ∈ Er×r. Then for any fixed values of these

variables, Cπ e Cσ has error matrix E + Pπ · Eσ ∈ Er×r, where the Z-entries of E are

mutually independent, and those in its ith row are subgaussian with parameter O(‖eπi ‖),

where eπi is the ith row of Eπ.

Proof. Let C← Cπ e Cσ. It suffices to show that for all i, j, its (i, j)th entry ci,j ∈ C has

error

ei,j + eσπ−1(i),j ∈ E = Zm,

where all the Z-entries of all the ei,j ∈ Zm are mutually independent and subgaussian

with parameter O(‖eπi ‖), and eσ`,j is the (`, j)th entry of Eσ. This follows directly from

Equation (3.4.1) and Lemma 3.2.6: the error in each ciphertext cπi,` d cσ`,j is pπi,` · eσ`,j plus a

fresh vector whose entries are independent and subgaussian with parameter O(‖eπi,`‖). Since

pπi,` = 1 for ` = π−1(i) and 0 otherwise, the claim follows by Pythagorean additivity of

independent subgaussians.

Similarly to a multiplication chain of GSW ciphertexts, we can perform a (right-

associative) chain of compositions while incurring only small error growth. For convenience
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of analysis, we always include the fixed zero-error ciphertext J ∈ Cr×r (which encrypts

the identity permutation) as the rightmost ciphertext in the chain. The following corollary

follows directly from Lemma 3.4.1 in the same way that Corollary 3.2.7 follows from

Lemma 3.2.6.

Corollary 3.4.2. Suppose that Ci ∈ Cr×r for i ∈ [k] are respectively designed to encrypt

permutation matrices Pi ∈ {0, 1}r×r and have error matrices Ei ∈ Er×r. Then for any

fixed values of these variables,

C←
õ

i∈[k]

Ci e J = C1 e (C2 e (· · · (Ck e J) · · · ))

has an error matrix whose Z-entries are mutually independent, and those in its ith row are

subgaussian with parameter O(‖ei‖), where eti ∈ Ekr is the ith row of the concatenated

error matrices [E1 | · · · | Ek].

Finally, since the Eq? procedure simply performs a chain of (right-associative) multipli-

cations of GSW ciphertexts, Corollary 3.2.7 applies.

3.4.3 Optimizations for Zr Embeddings

For bootstrapping, we use the above scheme only to encrypt elements in the cyclic subgroup

Cr ⊆ Sr that embeds the additive group (Zr,+). As described in the preliminaries, an

element π ∈ Cr can be represented more compactly as an indicator (column) vector

p ∈ {0, 1}r (rather than a matrix in {0, 1}r×r), and its associated permutation matrix Pπ is

made up of the r cyclic rotations of p. In addition, the composition of two permutations

represented in this way as p,q is given by the matrix-vector product Pπ · q, which may be

computed in O(r2) operations, rather than O(r3) as in the general case. All of this translates

directly to encrypted permutations in the expected way, i.e., ciphertexts are entry-wise

encryptions in Cr of indicator vectors, etc.

Similarly, the equality test Eq? can be performed more efficiently when we restrict to

the subgroup Cr: given r ciphertexts encrypting the entries of an indicator vector in {0, 1}r

and an s ∈ Zr, just output the ciphertext in the position corresponding to s.
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Since our bootstrapping scheme uses Zr embeddings only for r = O(log λ), these

optimizations lead to polylogarithmic factor improvements in runtime and error, but no

more.

Signed and generalized permutations. We can also use the GSW scheme to obtain a

homomorphic encryption scheme for the group of signed permutations (also known as

the signed symmetric group or hyperoctahedral group), by encrypting signed permutation

matrices. (A signed permutation matrix is one in which every row and column has exactly

one nonzero entry, which may be +1 or −1.) Even more generally, when using a ring-LWE-

based GSW scheme over the mth cyclotomic ring, we can get homomorphic encryption for

the generalized symmetric group Zm o Sr, by encrypting generalized permutation matrices

whose nonzero entries are mth roots of unity. All our analysis goes through essentially

unchanged for these cases, since we only rely on the fact that the nonzero entries of the

encrypted matrices have magnitude one.

Generalized symmetric groups contain somewhat larger cyclic groups than symmetric

groups do, so they can be used as an optimization by letting us use slightly smaller orders r.

However, the overall difference does not appear to be too significant.

3.5 Bootstrapping

We now describe our bootstrapping procedure.

3.5.1 Specification and Usage

We start by specifying the abstract preconditions and output guarantees of our bootstrapping

algorithm, and describe how to use it (with some additional pre- and post-processing) to

bootstrap known LWE-based encryption schemes.

The scheme to be bootstrapped must have binary ciphertexts in {0, 1}d and secret keys

in Zdq for some dimension d and modulus q that should be made as small as possible (q, d =

Õ(λ) are possible), and a decryption function of the form Decs(c) = f(〈s, c〉) ∈ {0, 1}
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for some arbitrary function f : Zq → {0, 1}. We rely on an appropriate instantiation of the

GSW cryptosystem, as described in further detail in Section 3.5.2 below.

BootGen(s ∈ Zdq , sk) takes as input a secret key vector s ∈ Zdq from the scheme to be

bootstrapped, and a secret key sk for GSW. It outputs a bootstrapping key bk, which

appropriately encrypts s under sk.

Bootstrap(bk, c ∈ {0, 1}d) takes as input the bootstrapping key bk and a ciphertext vector

c ∈ {0, 1}d (which decrypts under the secret key s). It outputs a GSW ciphertext

which decrypts (under sk) to the same bit as c does (under s), but with less error.

Pre- and post-processing. We can bootstrap all known LWE-based bit-encryption schemes

using the above algorithms as follows. In all LWE-based encryption schemes, decryption

can be expressed as a “rounded inner product” b〈s, c〉e2 for some appropriate rounding

function b·e2 : Zq → {0, 1}, as required. Note that a GSW ciphertext can trivially be put

in this form by just taking its penultimate column (see GSW.Dec in Section 3.2.2). As for

the other conditions we need (binary ciphertexts and small d, q), LWE encryption schemes

are not always presented in a way that fulfills them, but fortunately there are standard

transformations that do so, as we now describe. (See [23, 22] for further details.)

First, since we do not need to perform any further homomorphic operations on the

ciphertext, we can use dimension- and modulus-reduction [23] to get a ciphertext c̄ (over

Zq) of dimension Õ(λ) and modulus q = Õ(λ), while preserving correct decryption. These

steps can be implemented with 2λ security under conventional lattice assumptions.7

In somewhat more detail, modulus-switching is used to reduce the size of the ciphertext

modulus. It was originally introduced to reduce the size and depth of the decryption circuit,

and has been used for several other purposes as well in more recent papers [20, 25]. We

recall the main result, that if we switch from a modulus q to a modulus p < q by scaling by

7To make the modulus quasi-linear, we need to use randomized (subgaussian) rounding in the modulus-
reduction step.
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p/q and then rounding, the noise in the decryption relation increases by at most ‖s‖1 (the `1

norm of the secret key s). Formally,

|〈bp
q
ce, s〉 − p

q
〈c, s〉| ≤ ‖s‖1,

where c and s are viewed as integers.

Then, we can obtain a binary ciphertext c using “bit decomposition:” let G be as defined

in Section 3.2.2, and for the ciphertext c̄ over Zq under secret key s̄, let c be a {0, 1}-vector

such that Gc = c̄, and let s = Gts̄ so that 〈s, c〉 = 〈s̄, c̄〉 ∈ Zq. (The secret key s is

therefore the one we need to provide to BootGen.)

After bootstrapping, the output is a GSW ciphertext C encrypted under sk (which is just

an integer vector). If desired, we can convert this ciphertext back to one for the original

LWE cryptosystem, simply by taking the penultimate column of C. We can also key-switch

from sk back to the original secret key s. (As usual in bootstrapping, going “full circle” in

this way requires an appropriate circular security assumption.)

3.5.2 Procedures

Our algorithms rely on instantiations of GSW and HEPerm with parameters n,Q, χ. Impor-

tantly, the ciphertext modulusQ is not the modulus q of the scheme we are bootstrapping, but

rather some Q� q that is sufficiently larger than the error in Bootstrap’s output ciphertext.

Let C denote the GSW ciphertext space.

Our procedures need q to be of the form q =
∏

i∈[t] ri where the ri are small and

powers of distinct primes (and hence pairwise coprime). Specifically, using Lemma 3.3.1

we can choose q = Õ(λ) to be large enough by letting it be the product of all maximal

prime-powers ri that are bounded by O(log λ), of which there are t = O(log λ/ log log λ).

Let φ be the group embedding of (Zq,+) ∼= (Zr1 × · · · × Zrt ,+) into S = Sr1 × · · · × Srt

described in Section 3.3, and let φi denote the ith component of this embedding, i.e., the

one from Zq into Sri .
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BootGen(s ∈ Zdq , sk): given secret key s ∈ Zdq for the scheme to be bootstrapped and a

secret key sk for HEPerm, embed each coordinate sj ∈ Zq of s as φ(sj) ∈ S and

encrypt the components under HEPerm. That is, generate and output the bootstrapping

key

bk = {Ci,j ← HEPerm.Enc(sk, φi(sj)) : i ∈ [t], j ∈ [d]}.

Recalling that we are working with embeddings of Zri , each Ci,j ∈ Cri can be

represented as a tuple of ri GSW ciphertexts encrypting an indicator vector (see

Section 3.4.3). Because t, ri = O(log λ) and d = Õ(λ), the bootstrapping key

consists of Õ(λ) GSW ciphertexts.

Bootstrap(bk, c ∈ {0, 1}d): given a binary ciphertext c ∈ {0, 1}d, do the following:

Inner Product: Homomorphically compute an encryption of

v = 〈s, c〉 =
∑
j : cj=1

sj ∈ Zq

using the encryptions of the sj ∈ Zq as embedded into the permutation group S,

via a chain of compositions. Formally, for each i ∈ [t] compute (recalling that

e is right associative, and J is the fixed HEPerm encryption of the identity

permutation)

Ci ←
õ

j s.t. cj=1

Ci,j e J. (3.5.1)

Again, because we are working with embeddings of Zri , each Ci ∈ Cri .

Round: Homomorphically map v ∈ Zq to f(v) ∈ Z2 = {0, 1}: for each x ∈ Zq such

that f(x) = 1, homomorphically test whether v ?
= x by homomorphically multi-

plying the GSW ciphertexts resulting from all the equality tests v ?
= x (mod ri).

Then homomorphically sum the results of all the v ?
= x tests.

Formally, compute and output the GSW ciphertext (recalling that d is right

associative, and G is the fixed GSW encryption of 1)

C←
ð

x∈Zq s.t. f(x)=1

(
ô

i∈[t]

Eq?(Ci, φi(x)) d G
)
. (3.5.2)
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Note that since we are working with embeddings of Zri , each Eq?(Ci, φi(x)) is

just some GSW ciphertext component of Ci ∈ Cri (see Section 3.4.3).

Because t, ri = O(log λ) and d = Õ(λ) and by Equations (3.5.1) and (3.5.2),

Bootstrap performs Õ(λ) homomorphic multiplications and additions on GSW ci-

phertexts.

3.5.3 Analysis

The following is our main theorem.

Theorem 3.5.1. The above bootstrapping scheme can be instantiated to be correct (with

overwhelming probability) and secure assuming that the decisional Shortest Vector Problem

(GapSVP) and Shortest Independent Vectors Problem (SIVP) are (quantumly) hard to

approximate in the worst case to within Õ(n2λ) factors on n-dimensional lattices.

Because all known (quantum) algorithms for poly(n)-factor approximations to GapSVP

and SIVP on n-dimensional lattices take 2Ω(n) time, for 2λ hardness we can take n = Θ(λ),

yielding a final approximation factor of Õ(n3). This comes quite close to the O(n3/2+ε)

factors obtained in [25], but without any expensive “dimension leveraging:” we use GSW

ciphertexts of dimension only n = O(λ), rather than some large polynomial in λ. Al-

ternatively, at the cost of a larger dimension n = λ1/ε, but without using the successive

dimension-reduction procedure from [25], we can obtain factors as small as Õ(n2+ε) for any

constant ε > 0.

The remainder of this subsection is devoted to proving the above theorem.

Security. If the HEPerm key sk is generated independently of s, then IND-CPA security of

the bootstrapping key follows immediately from the security of HEPerm, hence from LWE

with parameters n− 1, Q, χ, and finally from worst-case lattice problems. (We instantiate

these parameters below to obtain the claimed approximation factors.) As usual, if the keys
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are not independent, then we need to make an appropriate circular security assumption. (To

date, such an assumption is the only known way to obtain unbounded FHE.)

Correctness and error analysis. For correctness, we first show that the ciphertext C

output by Bootstrap is designed to encrypt the appropriate bit. Then we quantify the error

in C and instantiate the parameters so that it indeed decrypts to the intended bit.

Lemma 3.5.2 (Correctness). For bk ← BootGen(s, sk), the GSW ciphertext C← Bootstrap(bk, c)

is designed to encrypt Decs(c) = f(〈s, c〉) ∈ {0, 1}.

Proof. First, by construction the HEPerm ciphertext Ci,j is designed to encrypt φi(sj).

Therefore, because φi : Zq → Sri is a group homomorphism, the ciphertext Ci as defined in

Equation (3.5.1) is designed to encrypt φi(
∑

j : cj=1 sj) = φi(〈s, c〉) = φi(v). By correctness

of Eq? and the isomorphism Zq ∼= Zr1 × · · · × Zrt given by Chinese Remainder Theorem,

the homomorphic product
Ô

i∈[t] Eq?(Ci, φi(x)) d G is designed to encrypt 1 if and only

if v = x. Finally, because the homomorphic sum is taken over every x ∈ Zq such that

f(x) = 1, it is designed to encrypt 1 if and only if f(v) = 1.

We now quantify the error in the ciphertext output by Bootstrap. Recall that GSW and

HEPerm are parameterized by a dimension n, a modulus Q with ` = dlog2Qe, and an error

distribution χ over Z that is subgaussian with parameter s, where typically s = Θ(
√
n). Let

r =
∑

i∈[t] ri be the sum of the maximal prime-power divisors ri of q, and recall that each

ri = O(log λ).

Lemma 3.5.3. For any c ∈ {0, 1}d, the error vector in the refreshed ciphertext C ←

Bootstrap(bk, c) has independent subgaussian entries with parameter O(sn`
√
rdq) =

Õ(sn`λ), except with probability 2−Ω(n`) over the random choices of bk and Bootstrap.

By Claim 3.2.5, the ciphertext C therefore decrypts correctly (except with negl(λ)

probability) as long as the modulus Q of the GSW system is at least sn`
√
rdq · ω(

√
log λ).
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Proof. Recall that the GSW ciphertext and error spaces are respectively C = Zn×n`Q and

E = Zn`, and the HEPerm ciphertext and error spaces for the embedding of Zri into the

symmetric group Sri are Cri and Eri , respectively. To perform homomorphic composition,

we take cyclic rotations to get ciphertexts and error matrices in Cri×ri and Eri×ri .

We analyze the error in the various ciphertexts Ci,j,Ci,C produced by BootGen and

Bootstrap. Essentially, this proceeds by a couple of invocations of Lemma 3.2.1 (which

bounds the `2 norm of a vector having independent subgaussian entries) and Corollar-

ies 3.2.7 and 3.4.2 (which guarantee fresh subgaussian errors in a homomorphic chain of

multiplications/compositions). Specifically:

• The error vector in a fresh GSW ciphertext has independent subgaussian entries with

parameter s, so by Lemma 3.2.1, its `2 norm is O(s
√
n`), except with probability

2−Ω(n`). Therefore, in the concatenation of the rotation-expanded error matrices of

Ci,j over any subset of j ∈ [d], every row has `2 norm O(s
√
rin`d).

• By Corollary 3.4.2, all the Z-entries in all the error matrices Ei ∈ Eri for Ci (see

Equation (3.5.1)) are mutually independent, and are subgaussian with parameter

O(s
√
rin`d). By Lemma 3.2.1, it follows that any single E-entry of Ei has `2 norm

O(sn`
√
rid) except with probability 2−Ω(n`), and hence their concatenation over all

i ∈ [t] has `2 norm O(sn`
√
rd).

• By the above and Corollary 3.2.7, each GSW ciphertext produced inside the paren-

thesized expression of Equation (3.5.2) has a fresh error vector with independent

subgaussian entries with parameter O(sn`
√
rd). Finally, by Pythagorean additivity of

independent subgaussians, the error vector of C has independent subgaussian entries

with parameter O(sn`
√
rdq), as claimed.

Instantiating the parameters. We now instantiate all the parameters to finish the proof

of Theorem 3.5.1. To rely on the (quantum) worst-case hardness of LWE [75], we take
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s = 3
√
n = Θ(

√
n). Then by Lemma 3.5.3, we simply need to take a sufficiently large

Q = Ω̃(n3/2λ logQ); some Q = Õ(n3/2λ) suffices. The LWE inverse error rate is therefore

Q/s = Õ(nλ), yielding an approximation factor of Õ(n2λ) for worst-case lattice problems

in dimension n. Slightly worse factors can be obtained by relying on classical reductions

for the hardness of LWE [74, 22].
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