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SUMMARY

Supervised machine learning is the process of algorithmically learning how to

make future predictions by training on labeled examples of past occurrences. While

traditionally a learning algorithm has access to a large corpus of labeled examples,

the recent proliferation of data made possible by modern computing power and the

Internet has made unlabeled data much easier to come by than accompanying labels.

For example, billions of images are readily available for download on the Internet, but

annotations of the objects present in an image are much more difficult to acquire.

Two main methods have been proposed by the machine learning community for

taking advantage of relatively low-cost unlabeled examples in an effort to reduce the

number of expensive labeled examples needed for learning. One method is semi-

supervised learning, which includes a large quantity of unlabeled examples into the

training data in addition to a smaller number of labeled examples. Another is active

learning, in which the algorithm itself can select which examples it would like labeled

out of a large pool of unlabeled examples. Prior research on active learning has

focused almost entirely on the issue of reducing labeling effort (over that of passive

learning) through intelligent querying strategies.

In this dissertation, we demonstrate that the power to make adaptive label queries

has benefits beyond reducing labeling effort over passive learning. We develop and

explore several novel methods for active learning that exemplify these new capabili-

ties. Some of these methods use active learning for a non-standard purpose, such as

computational speedup, structure discovery, and domain adaptation. Others success-

fully apply active learning in situations where prior results have given evidence of its

ineffectiveness.
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Specifically, we first give an active algorithm for learning disjunctions that is able

to overcome a computational intractability present in the semi-supervised version of

the same problem. This is the first known example of the computational advantages

of active learning. Next, we investigate using active learning to determine structural

properties (margins) of the data-generating distribution that can further improve

learning rates. This is in contrast to most active learning algorithms which either

assume or ignore structure rather than seeking to identify and exploit it. We then

give an active nearest neighbors algorithm for domain adaptation, the task of learning

a predictor for some target domain using mostly examples from a different source

domain. This is the first formal analysis of the generalization and query behavior of

an active domain adaptation algorithm. Finally, we show a situation where active

learning can outperform passive learning on very noisy data, circumventing prior

results that active learning cannot have a significant advantage over passive learning

in high-noise regimes.
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CHAPTER I

INTRODUCTION

Active learning involves machine learning algorithms that make adaptive label queries

during the learning process. The thesis of this work is that the power to make

adaptive label queries has benefits beyond those traditionally considered to be within

the scope of active learning. While traditionally the purpose of the query ability is to

reduce labeling effort, especially in low-noise scenarios, we present several novel uses

of active learning that add significant breadth to its repertoire. These new capabilities

include speeding up computation time over semi-supervised learning, discovering and

exploiting margin structure in data, adapting to a changing data distribution, and

improving prediction accuracy over passive learning in the presence of very noisy

data.

1.1 Learning from Labeled and Unlabeled Data

Supervised machine learning is the process of algorithmically learning how to make

future predictions by training on examples of past occurrences. Training examples

are of the form (x, y) where x is an instance (e.g. an image or email) and y is a label

(e.g. the name of an item in the image or the classification of an email as “spam”

or “not spam”). Traditionally, a learning algorithm has access to a large corpus of

such examples, all of them labeled. While this paradigm is appropriate for many

applications, the recent proliferation of data made possible by modern computing

power and the Internet has changed the relative availability of different types of data.

For example, billions of images are readily available for download on the Internet, but

accompanying annotations of objects present in an image are much more difficult to

come by. Similarly, large numbers of emails can be found in just about anyone’s inbox,
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but the task of manually labeling each email is daunting at best. As a result, modern

machine learning frequently adheres to a new paradigm in which labeled examples

are expensive as usual, but unlabeled examples are cheap or even free.

Several methods have been proposed by the machine learning community for tak-

ing advantage of relatively low-cost unlabeled examples in an effort to reduce the

number of expensive labeled examples needed for learning. One method is semi-

supervised learning which includes a large quantity of unlabeled examples into the

training data in addition to a (usually smaller) number of labeled examples. At a

high level, we may expect unlabeled data to improve prediction performance because

it gives the learner information about what kinds of instances to expect (the data-

generating distribution), and this in turn allows the learner to focus its search for a

good predictor to those predictors which “make sense” given the kinds of examples

it expects to see.

Another method for learning with few labeled examples, and the main focus of this

thesis, is active learning. Active learning extends the classical paradigm of machine

learning by starting with access to a large supply of unlabeled data and intelligently

choosing which unlabeled examples should be labeled. The learner sequentially makes

label queries one at a time and can see each resulting label before proceeding to make

a query in the next iteration (see Section 2.1 for the formal definition). Applications

of active learning therefore require methods for acquiring labels. Often these methods

come in the form of feedback from experts (such as asking a doctor or technician to

label a medical image) or non-experts (such as Amazon’s Mechanical Turk or Zooni-

verse projects like Galaxy Zoo), but labels can also come from expensive procedures

like chemistry experiments or computer simulations.

Research on active learning has generally focused on demonstrating that the ability

to query the label of any unlabeled training example allows active learning algorithms

to achieve improved label complexity over passive methods (see Section 2.2 for a more

2



comprehensive review). In other words, most works attempt to show that active learn-

ing can achieve the same prediction accuracy while using fewer labels than methods

which are given randomly selected labeled examples. This is true of both applied and

theoretical work. Many methods have been proposed for selecting examples to query:

some are information theoretic, some are based on probabilistic models, some rely

on Bayesian priors, and still others are geometric. Despite the recent theoretical ad-

vancements in active learning, relatively few active learning methods have theoretical

guarantees, and of those that do, few are simultaneously practical.

1.2 Contributions

In this dissertation, we demonstrate that the power to make adaptive label queries

has benefits beyond reducing labeling effort over passive learning. We develop and

explore several novel methods for active learning that exemplify these new capabil-

ities. Some of these methods use active learning for a non-standard purpose, such

as computational speedup, structure discovery, and domain adaptation. Others suc-

cessfully apply active learning in situations—such as in the presence of very noisy

data—where prior results have given evidence of its ineffectiveness.

Our focus throughout is on theoretically sound algorithms with provable guar-

antees. However, we simultaneously demonstrate the practicality of our methods

through experiments on both synthetic and real data for the majority of our contri-

butions.

Here we give an overview of our main contributions.

1.2.1 Actively Learning Disjunctions

In a seminal work on the theory of semi-supervised learning, Balcan and Blum [13]

formalize the idea that unlabeled data is useful because for many learning problems,

the natural regularities of the problem involve not only the form of the function being

learned but also how this function relates to the distribution of data. For example,

3



a natural assumption in linear classification is that the separating hyperplane passes

through a low-density region rather than cutting through the middle of a dense clus-

ter. Unlabeled data is useful in this context because in principle, it allows one to

reduce the search space from the entire set of hypotheses down to the set of compati-

ble hypotheses, those satisfying the regularity condition with respect to the unlabeled

data. While such insights have been exploited for deriving a variety of sample com-

plexity results [40, 64, 85, 13], the algorithmic problems involved in semi-supervised

learning become much more challenging. The scarcity of efficient semi-supervised

learning algorithms was noted in [24], where several open problems were posed.

One of these open problems was to design an algorithm to learn the class of

two-sided disjunctions (the class of monotone disjunctions under a natural notion of

compatibility) in the semi-supervised model. We design two semi-supervised algo-

rithms for this problem under an additional restriction on the data distribution. One

outputs a disjunction that is both consistent with the labeled data and compatible

with the unlabeled examples, but it runs in polynomial time only for a subset of

possible target functions. The other is always efficient, but it is not a proper learning

algorithm (it does not always output a disjunction). In some sense, these restrictions

on the semi-supervised algorithms are necessary, as we also show that the problem

of finding a consistent and compatible hypothesis in the semi-supervised model is

NP-hard.

However, by taking advantage of the additional power available in active label

queries, we are able to design an efficient active learning algorithm that outputs a

consistent and compatible disjunction without any restrictions on the data distribu-

tion. This represents the first known example of how active learning can be used to

avert computational difficulties present in semi-supervised learning.

4



1.2.2 Passive and Active Learning with Large LqLp Margins

The notion of “margin” arises naturally in many areas of machine learning. Margins

have long been used to motivate the design of algorithms [33, 14], to give sufficient

conditions for fast learning rates [18, 71], and to explain unexpected behavior of

algorithms in practice [91]. In the context of learning linear separators, we can define

an LqLp margin, where Lq and Lp are dual norms placed on the weight vector space

and instance space respectively. For example, the compatibility notion of two-sided

disjunctions discussed above can be interpreted as a L∞L1 margin of 1/k where k is

the number of non-indicators.

Prior work on passive algorithms and generalization bounds for learning with large

LqLp margins has only been able to demonstrate the benefits of large margins in the

p >= 2 case. Margins (L2L2 in particular) have been used in active learning to guide

the design and analysis of algorithms, but little is known about active algorithms

designed to exploit large margins present in training data.

We first give a bound on the generalization error of passively learning linear sep-

arators with large LqLp margins for any finite p >= 1. The bound extends and

improves upon previous results and leads to a simple data-dependent sufficient con-

dition for fast learning rates. We also give examples showing the relative power of

different types of margins in different settings. This leads to a setting in which mak-

ing use of margins with p < 2 has a provable advantage over margins with p >= 2.

Both parts include experimental results on real data showing the relevance of our

theoretical results in practice.

We then show how active learning can be used to discover margin structure in

data. We modify traditional margin-based active learning algorithms by replacing

the usual margin with an LqLp margin. We first show that knowing the correct value

of p enables these algorithms to outperform traditional margin-based AL approaches.

Our main contribution here is the use of active learning to automatically determine
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the appropriate value of p for optimal margin-based active learning. We do this

by giving an algorithm that estimates from small batches of labeled examples the

sufficient condition for fast passive learning rates. Estimating this quantity at early

stages allows the algorithm to query more intelligently in future stages. We show that

this algorithm indeed has benefits over other methods, and effectively uses queries to

learn the structure of the data.

1.2.3 Active Learning for Domain Adaptation

Traditional machine learning paradigms operate under the unrealistic assumption

that the data generating process remains stable; that is, training and test data are

assumed to be from the same task. The main challenge in domain adaptation (or

transfer learning) [81] is to develop learning algorithms that adapt to and perform

well in changing environments. In a common model for domain adaptation, the learner

receives large amounts of labeled data from a source distribution and unlabeled data

from the actual target distribution (and possibly a small amount of labeled data from

the target task as well). The goal of the learner is to output a good model for the

target task.

Designing methods for this scenario that are statistically consistent with respect

to the target task is challenging, even in the so-called covariate shift setting [97,

99], where the marginal distribution over the covariates changes but the regression

functions (the labeling rules) of the source and target distributions are identical.

Performance guarantees in the literature usually involve an extra additive term that

measures the difference between source and target tasks (that is, the loss does not

converge to the optimal target error) [19, 76], or they rely on strong assumptions,

such as the target support being a subset of the source support and the density ratio

between source and target being bounded from below [100, 20]. Generally, the case

where the target is partly supported in regions that are not covered by the source, is

6



considered to be particularly challenging [32].

We provide the first formal demonstration that active learning yields a way to

address these challenges1. We propose a non-parametric algorithm, ANDA, that com-

bines an active nearest neighbor querying strategy with nearest neighbor prediction.

ANDA chooses target examples to query for labels according to how many source

examples lie in a k′-nearest neighbor ball around them (this serves as an indication

for how well the area of a point is covered by the source). ANDA then predicts with

a k-nearest neighbor classifier on the combined source and target labeled data.

We provide both an analysis of finite sample convergence rates of the resulting

classifier and an analysis of ANDA’s querying behavior. Remarkably, the bounds on

the expected loss we provide do not depend on the source/target relatedness. The

convergence rates only depend on the size of the input unlabeled target sample. The

number of queries that the algorithm will make, however, does depend the closeness

of the involved tasks. ANDA will automatically make more or less queries to the

target sample depending on how well the target is “covered” by the source, that is

depending on whether the source provides sufficiently informative examples or not.

ANDA’s intelligent querying behavior and its advantages are further demonstrated

by our visualizations and experiments. We visually illustrate ANDA’s query strategy

and show empirically that ANDA successfully corrects for dataset bias in a challenging

image classification task.

1.2.4 Sensor Consensus Game for High-Noise Active Learning

To date, research on active learning has focused only on the single-agent setting and

primarily on low-noise scenarios, although several notable works on active learning in

the presence of noise can be found as well [49, 9, 5]. However, it is known that the

1While the idea of incorporating active learning into domain adaptation strategies has recently
received some attention in the machine learning community [30, 29, 90], to the best of our knowledge,
there has not been any formal analysis of the possibilities of incorporating active learning to facilitate
being adaptive to distribution changes.
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effectiveness of active learning quickly degrades as noise rates become high [65, 22]. In

this work, we introduce and analyze a novel setting where label information is held by

highly-noisy low-power sensor agents. These agents are each noisily measuring some

quantity which assigns them an initial (binary) state and can communicate locally

with each other. A central agent far from the sensors can query an agent for its

state in an effort to learn a spacial boundary between the two states. Learning this

boundary directly would require prohibitively many queries due to the high noise rate

in the system. We show how by first using simple game-theoretic dynamics among

the agents we can quickly approximately denoise the system. This allows us to exploit

the power of active learning (especially, recent advances in agnostic active learning),

leading to efficient learning from only a small number of expensive queries.

1.3 Overview of the Dissertation

This dissertation is organized as follows. We first establish the traditionally accepted

uses of active learning, and then we provide evidence for four novel capabilities of

active learning.

Chapter 2 begins with a formal definition of the active learning models referenced

herein. We then review the major lines of research in the field that have arisen since

its inception. This chapter serves to establish that research in active learning has

typically focused on its ability to reduce label complexity over passive learning in

settings with little or no noise.

In Chapter 3 we describe efficient semi-supervised and active algorithms for learn-

ing two-sided disjunctions. We also demonstrate that the problem of finding a consis-

tent, compatible disjunction in the semi-supervised setting is NP-hard, while our ac-

tive learning algorithm is able to accomplish the same task efficiently. This shows how

active learning can be used to circumvent computational difficulties that arise in semi-

supervised learning. This chapter is based on work that appears in ICML 2013 [11].
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Chapter 4 contains new generalization guarantees for passive learning with large

LqLp margins and an example proving the usefulness of the L∞L1 margin. We also

give experiments showing not only that our theory for passive learning carries over

to practical settings, but also that active learning can be used effectively to discover

and exploit margin structure in the data. A portion of this chapter is based on work

that appears in AISTATS 2014 [10].

In Chapter 5 we describe our active nearest neighbors algorithm for domain adap-

tation and give theoretical analyses of its generalization performance and querying be-

havior. Our experiments show that our algorithm can successfully correct for dataset

bias in image classification. Appendix A contains some additional proofs of the the

theorems in this chapter. This chapter is largely based on work that appears in

ICML 2015 [21].

Finally, in Chapter 6 we propose a novel setting for learning from many noisy

low-power agents. We then describes our multi-agent scheme for denoising the sys-

tem based on a consensus game and prove its effectiveness in several settings. The

denoising scheme allows active learning to achieve exponential improvement over pas-

sive learning despite the high noise. This chapter is based on work that appears in

NIPS 2014 [16].
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CHAPTER II

ACTIVE LEARNING

In this chapter we first formally define the active learning setting and then give a

brief survey of the active learning literature, focusing on the advancements relevant

to this thesis. More detailed surveys can be found in [93], which contains full coverage

of the topic from a more empirical perspective, and [58], which includes theory only

and focuses on disagreement-based methods.

2.1 Formal Setup

We begin by formally defining the PAC (probably approximately correct) learning

model [105] for passive supervised learning on which active learning theory is based.

In the PAC model, we have an instance space X, label space Y = {−1, 1}, and a fixed

but unknown distribution1 PX over X. Instances x are drawn independently from

PX and associated labels y are given by a fixed target concept f ∗ : X → Y , where

f ∗ ∈ C, the concept class. A learning algorithm is given a concept class and a set

of n labeled examples S = {(x1, y1), . . . , (xn, yn)} and asked to efficiently produce a

hypothesis h : X → Y such that its error rate err(h) = Prx∼PX [h(x) 6= f ∗(x)] is small

(that is, h will rarely make mistakes on future labeled examples formed in the same

manner). Specifically, the algorithm is given an accuracy parameter ε and confidence

parameter δ and is asked to produce in polynomial time, with probability at least

1−δ, a hypothesis h with err(h) < ε. The sample complexity of the algorithm (given ε

and δ) is the minimum number of examples n such that for any f ∗ ∈ C, the algorithm

will output a hypothesis h with err(h) < ε with probability at least 1− δ.

1In later chapters, we will frequently use the notation D instead of PX when there is no need to
distinguish it from other probability distributions.
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The PAC model defined above is completely noise-free. That is, there exists a

function f ∗ with err(f ∗) = 0 and the algorithm is given a description of a set C

known to contain f ∗. We will refer to this setting as the realizable case. This model

can be extended to include learning in the presence of noise (the non-realizable case)

by assuming the examples (x, y) are independently drawn from a fixed but unknown

distribution P over X×Y . Now the error rate is given by err(h) = Pr(x,y)∼P [h(x) 6= y].

Alternatively (and equivalently), we could draw the instances x from a marginal

distribution PX over X and the corresponding labels y will be drawn from a binomial

distribution determined by the regression function η(x) = Pr[y = 1|x]. This is just a

re-parameterization of the distribution P into PX and η.

In this noisy setting, there may be no function f∗ ∈ C such that err(f ∗) = 0, so it

now may be impossible to find a hypothesis with error rate less than ε for any ε > 0.

There are two ways in which we can adjust the learner’s goal to take this into account.

The nonparametric approach is to require that the learner outputs a hypothesis that

can predict nearly as well (within error ε) as the best possible predictor for the data

generating distribution. This predictor, known as the Bayes classifier, is defined as

f ∗ = argminf :X→Y err(f) and is known to be given by f ∗(x) = 21[η(x) > 1/2] − 1.

The quantity err(h)− err(f ∗) is known as the excess error (or excess risk).

An alternative is a parametric approach known as agnostic learning [67]. In this

model, the algorithm is only expected to produce a hypothesis that can compete with

the best predictor in the given concept class. That is, given concept class C and

accuracy parameter ε, an agnostic learner must, with high probability, output h such

that err(h) < minf∈C err(f) + ε. Finding polynomial time agnostic learners is often a

very challenging problem, even for concept classes that are straightforward to learn

efficiently in the PAC model.

Active learning can be formalized as follows. The same set S of labeled examples
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is drawn as defined above, but the labels L = {y1, . . . , yn} are separated from the un-

labeled examples U = {x1, . . . , xn}. The active learner receives the set U of unlabeled

examples and is given access to a label oracle that returns the (possibly noisy) label

yi when given an instance xi. The active learning protocol then proceeds in rounds,

where in each round the algorithm can perform computations on the unlabeled data

and choose a single unlabeled example to send to the oracle for labeling. After some

number of rounds (possibly given to the learner in advance in the form of a label

budget) the learner outputs a hypothesis h that should have small error with high

probability.

Active learning is distinct from a related query model for learning known as the

membership query model [2]. In this model, the learner is not given unlabeled ex-

amples upfront but is instead expected to synthesize an unlabeled example on its

own each round and ask an oracle for the label. The major drawback of member-

ship query learning is that for many real-world tasks, such as image classification

and natural language processing, membership query algorithms produce instances for

labeling that have no natural semantic meaning to human labelers.

2.2 Literature Review

Active learning originated in the early 1990s as a method for learning more accurately

using fewer labeled examples. In the modern paradigm of unlabeled examples being

relatively inexpensive compared to the cost of labels, this mode of learning is especially

relevant.

In one of the earliest works on active learning, Cohn, Atlas, and Ladner [4] give

a simple and general approach for active learning in the realizable case that became

the basis for a line of work known as disagreement-based active learning. Their idea,

stemming from the earlier work of Mitchell [78] on passive learning, is to maintain

two sets known as the version space and region of disagreement, respectively. The
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version space V ⊆ C contains all hypotheses that are consistent with all labeled

examples seen so far, while the region of disagreement R ⊆ X contains all unlabeled

examples which would be labeled differently by two hypotheses in V . The query

strategy is simply to iterate through the unlabeled examples and make a query if the

example is in R, updating V and R after each query. The authors gave a method

for implementing this strategy to train neural networks on relatively simple concept

classes, but they gave no characterization of convergence rates and did not address

the computational challenges inherent in maintaining these sets or how to deal with

the presence of noise.

Since the publication of this seminal work, many strategies have been proposed

for choosing which examples to query. Most of these methods optimize an objective

function over the unlabeled examples in each round to select the next query point.

For example MacKay [75] proposes several information theoretic objective functions

that quantify the informativeness of each example based on a probabilistic model of

the data. Roy and McCallum [88] employ a Bayesian assumption to directly minimize

expected future error. Tong and Koller [104] propose several methods for selecting

examples based on a geometric interpretation of support vector machines [33]. All of

these works demonstrate the efficacy of their methods by testing them experimentally

on real-world data. The empirical advantage of active learning over passive learning

in terms of the trade-off between generalization error and labeled examples is made

very clear.

Perhaps the earliest theoretical work on active learning is the “query by commit-

tee” algorithm of Freund et al. [45]. This is the first example of a formal analysis

of query complexity and the first proven example of an algorithm with exponential

improvement over passive learning for non-trivial cases. The analysis is for the real-

izable case and depends on having a correct Bayesian prior. The bulk of the modern

work on active learning theory began with that of Dasgupta [35, 36] which also gave
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a query complexity analysis in the realizable case, now in a non-Bayesian setting.

Balcan et al. [12] developed the first active learning algorithm proven to satisfy

the stringent requirements of the agnostic model. The algorithm is not computa-

tionally efficient in general, but it does have exponential improvement over passive

learning in some natural settings (such as learning linear separators over the uniform

distribution on the unit sphere). This work led to further analyses of the query com-

plexity of active learning algorithms by Hanneke [56] and Koltchinskii [70] among

others. Hanneke’s work introduced a parameter known as the disagreement coeffi-

cient which characterizes the rate of convergence of disagreement-based methods.

The disagreement coefficient quantifies the relationship between the growth rates of

the version space and region of disagreement. Later works on agnostic active learning

include [41, 23, 15, 5, 110]. In a very recent result, Huang et al. [60] building on ideas

in [14] and [43], give a new efficient agnostic active learning algorithm that is both

general and aggressive.

Several other works have shown the power of active learning for reducing labeling

effort. Tong & Koller [103] show that active queries can reduce label complexity over

random sampling when learning structure in Bayesian networks. Hanneke [57] gives

a general strategy for turning any passive learning algorithm into an active one with

reduced label complexity. Gonen et al. [50] give an alternative aggressive approach

for actively learning linear separators. Sabato & Munos [89] give an active learning

algorithm for linear regression that provably improves over passive learning.

Despite the multitude of positive results for active learning, there are limits to

its capabilities. One of the first negative results was a lower bound proved by

Kääriäinen [65] which showed that in the agnostic setting with overall noise rate

η > 0, the label complexity of active learning is Ω((η2/ε2) log(1/δ)). In other words,

the dependency on the accuracy parameter ε is the same as that of passive learning.
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This does not preclude active learning from having exponential label complexity im-

provement settings with very low noise, but it does indicate that when the noise rate

is significantly greater than the desired accuracy, active learning can achieve no better

than a constant improvement over passive learning. This lower bound was improved

to Ω(dη2/ε2), where d is the VC-dimension of the hypothesis class, by Beygelzimer et

al. [22].
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CHAPTER III

ACTIVELY LEARNING DISJUNCTIONS

In this chapter we provide efficient algorithms with nearly optimal sample complexity

for semi-supervised and active learning of disjunctions under a natural regularity

assumption introduced by Balcan & Blum [13]. In particular we consider the so

called two-sided disjunctions setting, where we assume that the target function is a

monotone disjunction satisfying a margin-like regularity assumption. In the simplest

case resolved in [13], the notion of “margin” is as follows: every variable is either a

positive indicator for the target function (i.e., the true label of any example containing

that variable is positive) or a negative indicator (i.e., the true label of any example

containing that variable is negative), and no example contains both positive and

negative indicators. In this work, we consider the much more challenging setting

left open by Blum & Balcan [24] where non-indicators or irrelevant variables, i.e.,

variables that appear in both positive and negative examples, are also present.

One practical motivation for using two-sided disjunctions is the problem of text

classification. If each instance is a document in bag-of-words representation (each

feature is an indicator variable for some word in the dictionary appearing in the given

document) then our regularity assumption is satisfied when some subset of dictionary

words (positive indicators) appear only in documents of the first class, another subset

of words (negative indicators) appear only in the second class, and the remaining

words (non-indicators) may appear in documents in either class. The assumption is

similar to the separability assumption used in the topic modeling literature in which

every topic is assumed to have an anchor word that only appears in documents of

that topic [3].
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In the semi-supervised learning setting, we present an algorithm that finds a con-

sistent hypothesis that furthermore is compatible (in the sense that it satisfies our

regularity assumption). This algorithm is proper (it outputs a disjunction), has near-

optimal labeled data sample complexity provided that each irrelevant variable appears

with non-negligible probability, and it is efficient when the number of irrelevant vari-

ables is O(log n). We next present a non-proper algorithm that PAC learns two-sided

disjunctions with nearly the same sample complexity and whose running time is poly-

nomial for any k. We also prove that, in general, it is NP-hard to find a consistent and

compatible two-sided disjunction in the semi-supervised setting, which gives some jus-

tification for why our semi-supervised algorithms have additional dependencies (one

is not proper, one is only efficient for a subclass of problems, and both depend on the

minimum probability of non-indicators appearing).

In the active learning setting, we present an efficient proper active learning al-

gorithm for two-sided disjunctions. This algorithm outputs a consistent, compati-

ble two-sided disjunction, with sample complexity linear in the number of irrelevant

variables and independent of the probability of irrelevant variables appearing, the

quantity that appears in both bounds in the semi-supervised setting. Combined with

our NP-hardness result for the semi-supervised setting, this shows that the active

query ability allows the learner to overcome a computational difficulty. This is the

first known example of such a benefit for active learning and our first example of how

active learning can be used for something other than reducing label complexity over

passive learning.

3.1 Related Work

Conceptually, what makes unlabeled data useful in the semi-supervised learning con-

text [13, 113], is that for many learning problems, the natural regularities of the

problem involve not only the form of the function being learned but also how this
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(a) All hypotheses

C C̃

(b) Highly compatible hypotheses

Figure 1: Compatibility assumptions shrink the effective hypothesis space, reducing
label complexity from O(1

ε
log |C|) examples to O(1

ε
log |C̃|).

function relates to the distribution of data; for example, that it partitions data by a

wide margin as in Transductive SVM [63] or that data contains redundant sufficient

information as in Co-training [25]. Unlabeled data is useful in this context because it

allows one to reduce the search space from the whole set of hypotheses, down to the

set of hypotheses satisfying the regularity condition with respect to the underlying

distribution (see Figure 1). Such insights have been exploited for deriving a variety of

sample complexity results [40, 64, 85, 13]. However, while in principle semi-supervised

learning can provide benefits over fully supervised learning [13, 113], the correspond-

ing algorithmic problems become much more challenging. As a consequence there has

been a scarcity of efficient semi-supervised learning algorithms.

While several semi-supervised learning methods have been introduced [28, 114, 63],

much of the theoretical work has focused either on sample complexity (e.g., [40, 64,

85]) or on providing polynomial time algorithms with error bounds for surrogate losses

only (e.g., [86]). The few existing results with guarantees on the classification error

loss hold under very stringent conditions about the underlying data distribution (e.g.,

independence given the label [25]). In contrast, we provide (PAC-style) polynomial

time algorithms for learning disjunctions with general guarantees on the classification

error loss.

We note that while a lot of the research on active learning [36, 12, 54, 55, 41, 23, 70]

has not made an explicit regularity assumption as in semi-supervised learning, this
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Figure 2: A schematic diagram of the two-sided disjunction defined by h+(x) =
x1∨x4∨x7∨x10 and h−(x) = x3∨x6∨x9. Vertices represent variables (features) and
hyperedges represent examples (the variables included in the edge are set to 1 in the
example). Edge color indicates the label of the example while vertex color represents
the indicator type of the variable (red for positive, blue for negative, and green for
non-indicator).

is an interesting direction to study. As our results reveal, active learning could help

overcome computational hardness limitations over (semi-supervised) passive learning

in these settings.

3.2 Preliminaries

Let X = {0, 1}n be the instance space, Y = {−1, 1} be the label set, and D denote

any fixed probability distribution over X. Following [13], a two-sided disjunction h is

defined as a pair of monotone disjunctions1 (h+, h−) such that h+(x) = −h−(x) for

all x ∼ D, and h+ is used for classification. Let the concept class C be the set of

all pairs2 of monotone disjunctions and for any hypothesis h = (h+, h−) ∈ C, define

h(x) = h+(x).

For a two-sided disjunction (h+, h−), variables included in h+ are the positive

indicators, and variables in h− are negative indicators. Variables appearing neither

in h+ nor in h− are called non-indicators, as the value of any such variable has no

1Recall that a monotone disjunction is an OR function of positive literals only, e.g. h(x) =
x1 ∨ x3 ∨ x4.

2Although we are actually interested in learning a single monotone disjunction, we need to asso-
ciate each disjunction with a second disjunction in order to test compatibility.
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effect on the label of any example. To simplify the discussion, we will often identify

binary strings in X = {0, 1}n with subsets of the variables V = {x1, . . . , xn}. In

other words, we say an example x contains xi if the i-th coordinate of x is set to 1.

This allows us to speak of variables “appearing in” or “being present in” examples

rather than variables being set to 1. We will use similar language when referring

to hypotheses, so that a two-sided disjunction h = (h+, h−) consists of a set h+ of

positive indicators and a set h− of negative indicators (which completely determine

a third set of non-indicators). See Figure 2 for a schematic of a two-sided disjunction

that will be used an example throughout this chapter.

In the semi-supervised learning setting, we will assume that both labeled examples

L and unlabeled examples U are drawn i.i.d. from D and that examples in L are

labeled by the target concept h∗, where h∗ is a two-sided disjunction with at most

k non-indicators. We will let |L| = ml and |U | = mu; both ml and mu will be

polynomial throughout this chapter. In the active setting, the algorithm first receives

a polynomially sized unlabeled sample U and it can adaptively ask for the label

`(x) = h∗(x) of any example x ∈ U .

The generalization error of a hypothesis h is given by err(h) = Prx∼D[h(x) 6=

h∗(x)], the probability of h misclassifying a random example drawn from D. For a set

L of labeled examples, the empirical error is given by errL(h) = |L|−1∑x∈L I[h(x) 6=

h∗(x)]. If errL(h) = 0 for some h we say that h is consistent with the data.

To formally encapsulate the regularity or compatibility assumption for two-sided

disjunctions described in the introduction, we consider the regularity or compatibility

function χ: χ(h, x) = I[h+(x) = −h−(x)] for any hypothesis h and example x ∈ X.

In addition, we define (overloading notation) the compatibility between h and the

distribution D as χ(h,D) = Ex∼D[χ(h, x)] = Prx∼D[h+(x) = −h−(x)]. For a set

U of unlabeled examples, define the empirical compatibility between h and U as

χ(h, U) = |U |−1∑x∈U I[h+(x) = −h−(x)]. If χ(h, U) = 1 we say that h is compatible
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with the data. Thus a hypothesis is consistent and compatible with a set of examples

if every example contains exactly one type of indicator and every labeled example

contains an indicator of the same type as its label. We will assume throughout this

chapter that the target function is compatible.

We define, for any ε > 0, the reduced hypothesis class CD,χ(ε) = {h ∈ C :

1 − χ(h,D) ≤ ε}, the set of hypotheses with “unlabeled error” at most ε. Similarly,

for an unlabeled sample U , we define CU,χ(ε) = {h ∈ C : 1 − χ(h, U) ≤ ε}. The key

benefit of using unlabeled data and our regularity assumption is that the number of

labeled examples will only depend on log(CD,χ(ε)) which for helpful distributions will

be much smaller than log(C).

3.2.1 The Commonality Graph

The basic structure used by all of our algorithms is a construct we call the commonality

graph. As mentioned in the introduction, the commonality graph is the graph on

variables that contains an edge between any two vertices if the corresponding variables

appear together in a common example. That is, given the set U of unlabeled examples,

define the commonality graph Gcom(U) = (V,E) where V = {x1, . . . , xn} and E

contains an edge (xi, xj) if and only if there is some x ∈ U such that xi and xj are

both set to 1 in x. Furthermore, given the set L of labeled examples, let V +
L be the set

of variables appearing in positive examples and V −L be the set of variables appearing

in negative examples.

The edge structure of the commonality graph and the labeled examples will allow

us to draw inferences about which vertices in the graph correspond to positive indi-

cators, negative indicators, and non-indicators in the target concept. Any variable

that appears in a labeled example cannot be an indicator of the type opposite of the

label. In addition, an edge between two variables implies they cannot be indicators
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Figure 3: Schematic of learning two-sided disjunctions in the absence of non-
indicators. First unlabeled examples (a) are used to create a commonality graph
(b). Then labels are queried for each connected component (c) and a consistent,
compatible hypothesis is output (d).

of different types. This means that any path in the commonality graph between pos-

itive and negative indicators must contain a non-indicator. Similarly, paths that pass

only through indicator variables can be used to propagate labels to the unlabeled

examples.

To see why the presence of irrelevant variables significantly complicates the al-

gorithmic problem, consider the case in which there are no non-indicators (the case

studied in [13]). If the target function indeed satisfies our regularity assumption,

then no component will get multiple labels, so all we need to learn is a single labeled

example in each component. Furthermore, if the number of components in the un-

derlying graph is small, then both in the semi-supervised and active learning setting

we can learn with many fewer labeled examples then in the passive supervised case.

See Figure 3 for an illustration of learning in this setting.

Introducing non-indicators into the target concept complicates matters because

components can now have multiple labels. We could think of the non-indicators as

forming a vertex cut in the commonality graph separating variables corresponding to

positive indicators from those corresponding to negative ones. To learn well, one could

try to find such a cut with the necessary properties to ensure compatibility with the

unlabeled data (i.e. no examples are composed only of non-indicators). Unfortunately,
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this is a difficult combinatorial problem in general.

Interestingly, we will be able to find such a cut in the semi-supervised setting

for k = O(log n) and for general k we will be still be able to learn with nearly

optimal rates, if each non-indicator appears with non-negligible probability; we do

this by identifying a superset of non-indicators and carefully making inferences using

it. Furthermore, since classification mistakes reveal vertices in both sides of the cut,

the adaptive query ability in the the active learning model will allow us to actively

search for vertices in the cut, without any conditions on the distribution.

3.2.2 Finding a Consistent Compatible Hypothesis is NP-hard

The following theorem formalizes the computational difficulty of finding a fully con-

sistent and compatible two-sided disjunction in the semi-supervised setting.

Theorem 1. Given data sets L and U as input, it is NP-hard to find a hypothesis

h ∈ C that is both consistent with L and compatible with U .

Proof. The proof is by reduction from 3-SAT. Given a 3-SAT instance ϕ on variables

x1, . . . , xn we produce the following data sets L and U containing examples on the 4n

variables x+1 , x
−
1 , x̄

+
1 , x̄

−
1 , . . . , x

+
n , x

−
n , x̄

+
n , x̄

−
n . The labeled set L contains examples of

the form ({x+i , x̄+i },+1) and ({x−i , x̄−i },−1) for 1 ≤ i ≤ n. In addition, for each clause

in ϕ of the form (`i ∨ `j ∨ `k) where `i, `j, `k can each be a positive or negative literal,

L contains the example ({`+i , `+j , `+k },+1). The unlabeled set U contains examples of

the form {x+i , x−i } and {x̄+i , x̄−i } for 1 ≤ i ≤ n. The labelings that are consistent and

compatible with all the non-clause examples correspond precisely to assignments of

x1, . . . , xn, and the clauses are compatible with a given hypothesis only if they are

satisfied in the underlying assignment. The set of positive indicators of any hypothesis

h = (h+, h−) ∈ C that is both consistent with L and compatible with U corresponds

to a truth assignment to x1, . . . , xn that satisfies ϕ, therefore finding such a hypothesis

is NP-hard.
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3.3 Semi-supervised Learning

Our general strategy is to identify non-indicators and remove them from the common-

ality graph, reducing this problem to the simpler case. Notice that each non-indicator

that appears in the unlabeled data is significant; failing to identify it can lead to incor-

rect inferences about a large probability mass of examples. A variable is obviously a

non-indicator if it appears in both positive and negative examples. A näıve approach

would be to draw enough labeled examples so that every significant non-indicator

appears in examples with both labels. The problem with this approach is that some

non-indicator can appear much more frequently in positive examples than in nega-

tive examples. In this case the number of examples needed by the näıve approach is

inversely proportional to the probability of that non-indicator appearing in negative

examples. This sample complexity can be worse than in the fully supervised case.

In our approach, it is enough to ensure each non-indicator appears in a labeled

example, but not necessarily in both positive and negative examples. The number of

examples needed in this case will now depend on the minimum probability of a non-

indicator appearing. This allows the sample complexity to be significantly smaller

than that of the näıve approach; for example, when a non-indicator appears in positive

examples with constant probability while in negative examples with probability ε/n.

Our approach can still identify non-indicators, now by examining paths in the

commonality graph. In paths whose interior vertices appear only in unlabeled exam-

ples (i.e. are indicators) and whose endpoints appear in oppositely labeled examples,

one of the endpoints must be a non-indicator. When k = O(log n) we can enumerate

over all consistent compatible hypotheses efficiently by restricting our attention to a

small set of paths.

If the number of non-indicators is larger, we can still find a good hypothesis effi-

ciently by finding the non-indicators one at a time. Each time our working hypothesis

makes a mistake this reveals a path whose endpoint is a non-indicator.
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The number of labeled examples we require will depend on the minimum non-

indicator probability defined by

ε0(D, h
∗) = min

xi /∈h∗+∪h∗−
Pr
x∼D

[xi = 1].

For notational convenience denote it simply by ε0 without ambiguity. To guarantee

with high probability that each non-indicator appears in some labeled example, it

suffices to use Õ( 1
ε0

log k) labeled examples.

3.3.1 Finding a Consistent, Compatible Hypothesis Efficiently when k =
O(log n)

We now give an algorithm, along with the intuition behind it, for finding a two-sided

disjunction that is consistent and compatible with a given training set. Our algorithm

will not run efficiently on every possible input (since, as shown above, this problem is

NP-hard in general), but the algorithm is efficient for a large class of possible inputs.

Given example sets L and U , the algorithm begins by constructing the commonality

graph G = Gcom(U) and setting G to G \ (V+ ∩ V−). This removes any variables

that appear in both positive and negative examples as these are guaranteed to be

non-indicators.

To identify the rest of the non-indicators, we consider a new graph. Using u↔G v

to denote the existence of a path in the graph G between vertices u and v, we define

the indicator graph Gind(G, V+, V−) to be the bipartite graph with vertex set V+ ∪V−
and edge set {(u, v) ∈ V+ × V− : u ↔G\(V+∪V−) v}. The key idea is that an edge

in this graph implies that at least one of its endpoints is a non-indicator, since the

two variables appear in oppositely labeled examples but are connected by a path of

indicators.

Note that the target set of non-indicators must form a vertex cover in the indi-

cator graph. By iterating over all minimal vertex covers, we must find a subset of

the target non-indicators whose removal disconnects positive examples from negative
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Algorithm 1 Finding a consistent compatible two-sided disjunction

Input: unlabeled set U , labeled set L
Set G = Gcom(U), V+ = V +

L , V− = V −L
Set G = G \ (V+ ∩ V−)
Set V+ = V+ ∩G, V− = V− ∩G
Set GI = Gind(G, V+, V−)
for each minimal vertex cover S of GI do

Set G′ = G \ S, V ′+ = V+ \ S, V ′− = V− \ S
Set h+ = {v ∈ G′ : ∃u ∈ V ′+, u↔G′ v}
if (h+, G

′ \ h+) is consistent and compatible then
break

Output: hypothesis h = (h+, G
′ \ h+)

examples, and this corresponds to a consistent compatible hypothesis. The algorithm

is summarized in Algorithm 1.

The key step in Algorithm 1 is enumerating the minimal vertex covers of the

indicator graph GI . One way to do this is as follows. First find a maximum matching

M in GI , and let m be the number of disjoint edges in M . Enumerate all 3m subsets

of vertices that cover M (for every edge in M , one or both of the endpoints can be

included in the cover). For each such cover S, extend S to a minimal vertex cover of

GI by adding to S every variable not covered by M that has no neighbors already in S.

This extension can always be done uniquely, so there is a one-to-one correspondence

between covers of M and minimal vertex covers of GI .

This enumeration method gives us both a concrete way to implement Algorithm 1

and a way to bound its running time. We prove in Theorem 2 that given enough

data, Algorithm 1 correctly outputs a consistent compatible hypothesis with high

probability. We then bound its time and sample complexity.

Theorem 2. For any distribution D over {0, 1}n and target concept h∗ ∈ C such

that χ(h∗, D) = 1, h∗ has at most k non-indicators, and the minimum non-indicator

probability is ε0, if

mu ≥
1

ε

[
log

2|C|
δ

]
and ml ≥ max

{
1

ε0
log

k

δ
,
1

ε

[
log

2|CD,χ(ε)|
δ

]}
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then with probability at least 1 − 2δ, Algorithm 1 outputs a hypothesis h ∈ C such

that errL(h) = 0, χ(h, U) = 1, and err(h) ≤ ε. Furthermore, when k = O(log n) the

algorithm runs in time at most poly(n).

Proof. We separate the proof into three sections, first proving consistency and com-

patibility of the output hypothesis, then giving the sample sizes required to guarantee

good generalization, and finally showing the overall running time of the algorithm.

Consistency and Compatibility. The exit condition for the loop in Algorithm 1

guarantees that the algorithm will output a consistent compatible hypothesis, so long

as a suitable minimal vertex cover of GI is found. Thus, it suffices to show that such

a vertex cover exists with high probability when L is large enough.

By the definition of ε0 along with the independence of the samples and a union

bound, if ml >
1
ε0

log k
δ
, then with probability at least 1−δ, all non-indicator variables

appear in some labeled example. We will assume in the remainder of the proof that

all variables not in V +
L ∪ V −L are indicators.

Since an edge in G between indicators forces both endpoints to be of the same

type, a path through indicators does the same. Edges in GI correspond to such paths,

but the endpoints of such an edge cannot be indicators of the same type because they

appear in differently labeled examples. It follows that at least one endpoint of every

edge in GI must be a non-indicator.

Now let V0 be the set of non-indicators in the target hypothesis. The above

observations imply that V0 contains a vertex cover of GI . It follows that there must

exist a subset S̃ ⊆ V0 that is a minimal vertex cover of GI . Let h̃ = (h̃+, h̃−) be the

hypothesis h formed from the minimal vertex cover S = S̃. We only need to show

that h̃ is both consistent and fully compatible.

Every indicator of h∗ is also an indicator of h̃ since only true non-indicators were

removed from G and all remaining variables became indicators in h̃. Since every

example contains an indicator of h∗, every example must contain an indicator of h̃ of
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the correct type. Furthermore, if an example contained both positive and negative

indicators, this would imply an edge still present in GI . But removing a vertex cover

removes all edges, so this is impossible. Hence h̃ is a consistent, fully compatible

hypothesis.

Generalization Error. If

mu ≥
1

ε

[
log

2|C|
δ

]
and ml ≥ max

{
1

ε0
log

k

δ
,

1

ε

[
log

2|CD,χ(ε)|
δ

]}
,

the above analysis states that Algorithm 1 will fail to produce a consistent compatible

hypothesis with probability at most δ. Furthermore, an algorithm with true error rate

greater than ε will be fully consistent with a labeled set of size ml with probability at

most δ/CD,χ(ε). Union bounding over all compatible hypotheses we see that a consis-

tent compatible hypothesis will fail to have an error rate less than ε with probability

at most δ. By a union bound over the two failure events, the overall probability of

failure is ≤ 2δ.

Running Time. Since checking consistency and compatibility can be done in time

polynomial in the number of examples, the limiting factor in the running time is

the search over minimal vertex covers of GI . In a bipartite graph, the size of the

minimum vertex cover is equal to the size of the maximum matching. The set of k

non-indicators in the target hypothesis includes a vertex cover of GI , so the size m

of the maximum matching is at most k. There is one minimal vertex cover for each

of the 3m covers of the maximum matching, so the number of minimal vertex covers

to search is at most 3k.

3.3.2 A General Semi-supervised Algorithm

Algorithm 1 is guaranteed (provided the labeled set is large enough) to find a hypoth-

esis that is both consistent and compatible with the given data but is efficient only

when k is logarithmic in n. When k is instead polylogarithmic in n, our algorithm is
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no longer efficient but still achieves a large improvement in sample complexity over

supervised learning. We now present an efficient algorithm for finding a low-error

(but not necessarily consistent and compatible) hypothesis which matches the sample

complexity of Algorithm 1.

The algorithm, summarized in Algorithm 2, begins by constructing the common-

ality graph from the unlabeled examples and identifying potential indicators from a

subset of the labeled examples. We use sample(m,S) to denote a random sample of

m elements from set S. An initial hypothesis is built and tested on the sequence of

remaining labeled examples. If the hypothesis makes a mistake, it is updated and

testing continues. Each update corresponds to either identifying a non-indicator or

labeling all indicators in some connected component in the commonality graph, so

the number of updates is bounded. Furthermore, if the hypothesis makes no mistakes

on a large enough sequence of consecutive examples, then with high probability it has

a small error rate overall. This gives us a stopping condition and allows us to bound

the number of examples seen between updates.

The hypotheses in Algorithm 2 use a variation on nearest neighbor rules for classi-

fication. Given a commonality graph G and a set L of labeled examples, the associated

nearest neighbor hypothesis hG,L classifies an example x the same as the nearest la-

beled example in L. The distance between two examples x and x′ is the measured by

the minimum path distance in G between the variables in x and the variables in x′.

If no examples in L are connected to x, then hG,L classifies x negative by default. For

convenience, we use nnG,S(x) to denote the vertex in the set S nearest to a variable in

the example x via a path in G. If no such vertex exists, nnG,S(x) returns the empty

set. Using hypotheses of this form ensures that the neighbor variable used to classify

an example x is connected to x by a path through indicators, which allows us to

propagate its label to the new example. If the example is misclassified, we must have

been fooled by a non-indicator.
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Algorithm 2 Learning a Low-error Hypothesis for Two-Sided Disjunctions

Input: data sets U and L, parameters ε, δ, k
Set L′ = sample( 1

ε0
log k

δ
, L) and L = L \ L′

Set G = Gcom(U) \ (V +
L′ ∩ V −L′ )

Set P = G ∩ (V +
L′ ∪ V −L′ )

Set h = hG,L′ and c = 0
while L 6= ∅ and c ≤ 1

ε
log k+T

δ
do

Set x = sample(1, L)
Set L = L \ {x}, and L′ = L′ ∪ {x}
if h(x) 6= `(x) then

Set G = G \ nnG,P (x)
Set h = hG,L′ and c = 0

else
Set c = c+ 1

Output: the hypothesis h

The number of examples used by Algorithm 2 depends on T , the number of

connected components in the commonality graph after removing all non-indicators.

Lemma 1 bounds this quantity by the number of compatible hypotheses.

Lemma 1. Let G be the graph that results from removing all non-indicators from

Gcom(U), and suppose G is divided into T connected components. If mu ≥ 2n2

ε
log n

δ
,

then T ≤ log2 |CD,χ(ε)| with probability at least 1− δ.

Proof. Since G has no non-indicators, a hypothesis is compatible with U if and only

if every component is made entirely of indicators of the same type. There are two

possible choices for each component, so the number of fully compatible hypotheses is

|CU,χ(0)| = 2T .

To complete the proof, it is sufficient to show that CU,χ(0) ⊆ CD,χ(ε). Since

any hypothesis in CU,χ(0) is compatible with any example containing variables from

only one component, we only need to show that there is at most ε probability mass

of examples that contain variables from multiple components. All such examples

correspond to edges that are absent from Gcom(U), so we only need to show that

Gcom(U) was constructed with enough examples so that nearly all significant edges
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appear in the graph.

To see this, fix any pair of variables xi, xj. If Prx∼D[xi = 1 ∧ xj = 1] < ε/n2, we

can ignore this pair since all such pairs together constitute a probability mass strictly

less than ε. Now suppose Prx∼D[xi = 1 ∧ xj = 1] ≥ ε/n2. The probability that xi

and xj do not appear together in any of the examples in U is at most (1− ε
n2 )mu , so if

mu ≥ n2

ε
log n2

δ
then this failure probability is at most δ/n2. By a union bound over all

such pairs, with probability at least 1− δ all corresponding edges appear in Gcom(U),

and the probability mass of examples containing variables from multiple components

is at most ε. This means that every fully compatible hypothesis has unlabeled error

at most ε, so we have T = log2 |CU,χ(0)| ≤ log2 |CD,χ(ε)|.

The following theorem bounds the number of examples sufficient for Algorithm 2

to output a low-error hypothesis.

Theorem 3. For any distribution D over {0, 1}n and target concept h∗ ∈ C such

that χ(h∗, D) = 1, h∗ has at most k non-indicators, and the minimum non-indicator

probabilityis ε0, if mu ≥ 2n2

ε
log n

δ
and

ml ≥
1

ε0
log

k

δ
+
k + log |CD,χ(ε)|

ε

[
log

k + log |CD,χ(ε)|
δ

]
then with probability at least 1−3δ, Algorithm 2 outputs a hypothesis h in polynomial

time such that err(h) ≤ ε.

Proof. Generalization Error. First note that according to the loop exit condition,

Algorithm 2 outputs the first hypothesis it encounters that correctly classifies a se-

quence of at least 1
ε

log k+T
δ

i.i.d. examples from D. If err(h) > ε for some hypothesis

h, then the probability that h correctly classifies such a sequence of examples is at

most (1 − ε) 1
ε
log k+T

δ ≤ δ
k+T

. Assuming Algorithm 2 updates its hypothesis at most

k+T times, a union bound over the k+T hypotheses considered guarantees that with

probability at least 1−δ, the hypothesis output by Algorithm 2 has error rate at most
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ε. In the remainder of the proof, we will bound the total number of samples required

by Algorithm 2 and show that it makes at most k + T updates to its hypothesis.

Mistake Bound. By the definition of ε0, the initial set of ml labeled examples

ensures that with probability at least 1 − δ all non-indicators are included in the

potential indicator set P , so all variables outside P (call this set Q) are indicators.

We will assume such an event holds throughout the remainder of the proof. In

particular, this means that any paths through Q must consist entirely of indicators

of the same type.

Suppose at some point during the execution of Algorithm 2, the intermediate

hypothesis h misclassifies an example x. There are two types of such mistakes to

consider. If the variables in x are not connected to any variables in P , then by the

above observation, all variables connected to x are indicators of the same type, and

in particular, they are indicators of the type corresponding to the label of x. This

means that this type of mistake can occur only when h knows of no labeled examples

connected to x. Once h is updated to be hG,L′ where x ∈ L′, h can make no further

mistakes of this type on any examples connected to x. Thus, Algorithm 2 can make at

most T mistakes of this type before all connected components have labeled examples.

The hypothesis hG,L′ labels x with the label of the example of L′ containing

nnG,P (x). If x is labeled incorrectly, then this must be an example with label opposite

that of x. But since the path between nnG,P (x) and x consists only of vertices not in

P , i.e. indicators, we conclude that nnG,P (x) must be a non-indicator. Algorithm 2

can make at most k mistakes of this type before all non-indicators are removed from

G.

Sample Complexity and Running Time. We have shown that after Algorithm 2

makes k+T updates, all non-indicators have been removed from G and all connected

components in G contain a variable that has appeared in a labeled example. Since at

most 1
ε

log k+T
δ

examples can be seen between updates, the total number of labeled
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examples needed by Algorithm 2 is at most

1

ε0
log

k

δ
+
k + T

ε
log

k + T

δ
.

Straightforward algebra and an application of Lemma 1 yields the bound given in the

theorem statement, and a union bound over the three failure events of probability δ

yields the stated probability of success. The time complexity is clearly polynomial in

n per example and therefore polynomial overall.

3.4 Active Learning

We now consider the problem of learning two-sided disjunctions in the active learning

model, where the learner has access to a set U of unlabeled examples and an oracle

that returns the label of any example in U it submits. The additional power provided

by this model allows us to use the same strategy as in the semi-supervised algorithm

in Section 3.3.2 while achieving sample complexity bounds independent of ε0.

As in Section 3.3.2, the goal will be to identify and remove non-indicators from

the commonality graph and obtain labeled examples for each of the connected com-

ponents in the resulting graph. In the semi-supervised model we could identify a

mistake when there was a path connecting a positive labeled example and a negative

labeled example. To identify non-indicators we guaranteed that they would lie on the

endpoints of these labeled paths. In the active learning setting, we are able to check

the labels of examples along this path, and thus are able to remove our dependence

on minimum non-indicator probability parameter.

The algorithm we propose can be seen as a slight modification of Algorithm 2. The

idea is to maintain a set of at least one labeled example per connected component and

to test the corresponding nearest neighbor hypothesis on randomly chosen examples.

If the hypothesis misclassifies some example, it identifies a path from the example

to its nearest neighbor. Since these examples have opposite labels, a non-indicator

must be present at a point on the path where positive indicators switch to negative
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Figure 4: Schematic diagram of Algorithm 3. The commonality graph (a) is formed
from unlabeled data. Labels are queried for each connected component in (b). Binary
search is used to identify a non-indicator in (c), (d), and (e), followed by the removal
of variable x2 from the graph (f).

indicators, and such a non-indicator can found in logarithmically many queries by

actively choosing examples to query along this path in a binary search pattern. The

search begins by querying the label of an example containing the variable at the

midpoint of the path. Depending on the queried label, one of the endpoints of the path

is updated to the midpoint, and the search continues recursively on the smaller path

whose endpoints still have opposite labels. Let BinarySearchG,L(x) return the non-

indicator along the path in G from a variable in x to nnG,L(x). As with Algorithm 2,

the algorithm halts after removing all k non-indicators or after correctly labeling a

long enough sequence of random examples.

The details are described in Algorithm 3, and the analysis is presented in Theo-

rem 4.

Theorem 4. For any distribution D over {0, 1}n and target concept h∗ ∈ C such

that χ(h∗, D) = 1 and h∗ has at most k non-indicators. If mu ≥ 2n2

ε
log n

δ
then after

at most

mq = O

(
log |CD,χ(ε)|+ k

[
log n+

1

ε
log

k

δ

])
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Algorithm 3 Actively Learning Two-Sided Disjunctions

Input: unlabeled data U , parameters ε, δ, k
Set G = Gcom(U) and L = ∅
for each connected component R of G do

Choose x ∈ U such that x ⊆ R
Set L = L ∪ {(x, `(x))}

Set h = hG,L and c = 0
while c ≤ 1

ε
log k

δ
do

Set x = sample(1, U) and L = L ∪ {(x, `(x))}
if h(x) 6= `(x) then

Set v = BinarySearchG,L(x)
Set G = G \ {v}
for each new connected component R of G do

Choose x ∈ U such that x ⊆ R
Set L = L ∪ {(x, `(x))}

Set h = hG,L and c = 0
else

Set c = c+ 1
Output: the hypothesis h

label queries, with probability ≥ 1 − 2δ, Algorithm 3 outputs a hypothesis h in poly-

nomial time such that err(h) ≤ ε.

Proof. Generalization Error. According to the exit condition of the loop in Step

3, Algorithm 3 outputs the first hypothesis it encounters that correctly classifies a

sequence of at least 1
ε

log k
δ

i.i.d. examples from D. If err(h) > ε for some hypothesis h,

then the probability that h correctly classifies such a sequence of examples is at most

(1 − ε)
1
ε
log k

δ ≤ δ
k
. Assuming Algorithm 3 updates its hypothesis at most k times,

a union bound over the k hypotheses considered guarantees that with probability

at least 1 − δ, the hypothesis output by Algorithm 3 has error rate at most ε. In

the remainder of the proof, we will bound the total number of samples required by

Algorithm 3 and show that it makes at most k updates to its hypothesis.

Queries per Stage. In the loops over connected components of G, one label is

queried for each component. The components are those formed by removing from G

a subset of the non-indicators, so the total number of queries made in these loops is
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at most T , the number of components after removing all non-indicators.

Now suppose the hypothesis h misclassifies an example x. Let x′ be the nearest

labeled example to x, and let xi and xj be the endpoints of the shortest path from x

to x′ in G. If each variable along the path appears in examples of only one label, then

there could be no path between xi and xj, which appear in examples with different

labels. Thus, there must exist a variable along the path from xi to xj that appears

in both positive and negative examples, i.e. a non-indicator. Since the commonality

graph was constructed using the examples in U , we can query the labels of examples

that contain variables between xi and xj in order to find the non-indicator. Using

binary search, the number of queries is logarithmic in the path length, which is at

most n.

Query Complexity and Running Time. Each mistake results in removing a non-

indicator from the G, so at most k mistakes can be made. For each mistake, O(log n)

queries are needed to find a non-indicator to remove and at most 1
ε

log k
δ

more queries

are used before another mistake is made. Combined with the queries for the connected

components, we can bound the total number of queries by O
(
T + k

[
log n+ 1

ε
log k

δ

])
.

We can further bound T by log |CD,χ(ε)| via Lemma 1, and pay the price of an

additional δ probability of failure. The running time for this algorithm is clearly

polynomial.

3.5 Discussion

One drawback of our semi-supervised algorithms is that their dependence on the

minimum non-indicator probability restricts the class of distributions under which

they can be used for learning. Additionally, the class of target concepts for which

Algorithm 1 can efficiently learn a consistent and compatible hypothesis is restricted,

and our reduction proves that some such restriction is necessary since the general

problem is NP-hard. The surprising result of our work is that both restrictions can
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be lifted entirely in the active learning setting while improving label complexity at

the same time. The ability to adaptively query the labels of examples allows us to

execute a strategy for identifying non-indicators that would require too many labeled

examples in the semi-supervised setting. As this represents the first known example

of how active learning can be used to avert computational difficulties present in semi-

supervised learning, we hope this work will lead to more such examples and to a more

general understanding of when active learning provides this type of advantage.

It is important to note that the problem of learning two-sided disjunctions can be

viewed as learning under a large-margin assumption. We can represent a two-sided

disjunction h as a linear threshold function h(x) = sign(w · x) where wi = +1 for

positive indicators, wi = −1 for negative indicators, and wi = 0 for each of the k

non-indicators. If h is fully compatible with the distribution D, every x ∼ D has at

least one indicator set to 1 and does not have any indicators of the opposite sign set

to 1. This means that |w · x| ≥ 1, so when ‖x‖1 ≤ k we immediately have

|w · x|
‖w‖∞ ‖x‖1

≥ 1

k

and when ‖x‖1 > k, |w · x| is minimized when x has k non-indicators, so we have

|w · x|
‖w‖∞ ‖x‖1

≥ ‖x‖1 − k‖x‖1
≥ 1

k + 1
.

Combining these two cases gives us an L∞L1 margin of O(1/k). This is a different

notion of margin than the L2L2 margin appearing in the mistake bounds for the

Perceptron algorithm [87] and the L1L∞ margin appearing in the bounds for Win-

now [74]. Providing generic algorithms with bounds depending on the L∞L1 margin

(and more generally, the LqLp margin) is the main topic discussed in Chapter 4.
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CHAPTER IV

PASSIVE AND ACTIVE LEARNING WITH LARGE LqLp

MARGINS

The notion of “margin” arises naturally in many areas of machine learning. Margins

have long been used to motivate the design of algorithms [33, 14], to give sufficient

conditions for fast learning rates [18, 71], and to explain unexpected behavior of algo-

rithms in practice [91]. Here we are concerned with learning the class of homogeneous

linear separators in Rd over distributions with large margins. We use a general no-

tion of margin, the LqLp margin, that captures, among others, the notions used in

the analyses of Perceptron (p = q = 2) and Winnow (p =∞, q = 1). For p, q ∈ [1,∞]

with 1/p+1/q = 1, the LqLp margin of a linear classifier x 7→ sign(w ·x) with respect

to a distribution D is defined as

γq,p(D,w) = inf
x∼D

|w · x|
‖w‖q ‖x‖p

.

While previous work has addressed the case of p ≥ 2 both theoretically [51, 92, 47]

and experimentally [111], the p < 2 case has been mentioned but much less explored.

This gap in the literature is possibly due to the fact that when p < 2 a large margin

alone does not guarantee small sample complexity (see Example 1 below for such

a case). This leads to the question of whether large LqLp margins with p < 2 can

lead to small sample complexity, and if so, under what conditions will this happen?

Furthermore, are there situations in which taking advantage of margins with p < 2

can lead to better performance than using margins with p ≥ 2?

In this chapter, we answer these three questions using both theoretical and em-

pirical evidence. We first give a bound on the generalization error of linear separators

with large LqLp margins that holds for any finite p ≥ 1. The result is proved through
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a new bound on the fat-shattering dimension of linear separators with bounded Lq

norm. The bound improves upon previous results by removing a factor of log d when

2 ≤ p < ∞ and extends the previously known bounds to the case of 1 ≤ p < 2. A

highlight of this theoretical result is that it gives a simple sufficient condition for fast

learning even for the p < 2 case. The condition is related to the L2,p norm of the data

matrix and can be estimated from the data.

We then give a concrete family of learning problems in which using the L∞L1

margin gives significantly better sample complexity guarantees than for LqLp margins

with p > 1. We define a family of distributions over labeled examples and consider

the sample complexity of learning the class Wp of linear separators with large LqLp

margins. By bounding covering numbers, we upper bound the sample complexity of

learning W1 and lower bound the complexity of learning Wp when p > 1, and we show

that the upper bound can be significantly smaller than the lower bound.

In addition, we give experimental results supporting our claim that taking ad-

vantage of large L∞L1 margins can lead to faster learning. We observe that in the

realizable case, the problem of finding a consistent linear separator that maximizes

the LqLp margin is a convex program (similar to SVM). An extension of this method

to the non-realizable case is equivalent to minimizing the Lq-norm regularized hinge

loss. We apply these margin-maximization algorithms to both synthetic and real-

world data sets and find that maximizing the L∞L1 margin can result in better

classifiers than maximizing other margins. We also show that the theoretical condi-

tion for fast learning that appears in our generalization bound is favorably satisfied

on many real-world data sets.

Finally, we show how active learning can be used to adapt to the optimal margin

parameters. We activize the LqLp SVM via the simple margin strategy of Tong &

Koller [104] and empirically demonstrate that the resulting algorithm selects examples

to query that allow it not only to determine which margin parameters to use but to
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exploit that knowledge by querying the appropriate labels. This is an example of

using active learning to discover and exploit margin structure in data and serves as

our second example of how the power to make adaptive label queries has benefits

beyond reducing labeling effort over passive learning.

We note that much of this chapter can be equivalently interpreted as results on

norm-based regularization rather than learning with large-margins. As can be seen

from the formulation of the support vector machine optimization problem (see Sec-

tion 4.2.1), maximizing LqLp margin is equivalent to performing Lq-norm regulariza-

tion on examples with unit (or bounded) Lp-norm. Under this interpretation, our

results say that we can adaptively determine which type of regularization will lead to

the fastest learning rates, and then we can query the labels of the examples that will

lead to the best label complexity under the chosen form of regularization.

4.1 Related Work

It has long been known that the classic algorithms Perceptron [87] and Winnow [74]

have mistake bounds of 1/γ22,2 and Õ(1/γ21,∞), respectively. A family of “quasi-

additive” algorithms [51] interpolates between the behavior of Perceptron and Win-

now by defining a Perceptron-like algorithm for any p > 1. While this gives an

algorithm for any 1 < p ≤ ∞ the mistake bound of Õ(1/γ2q,p) only applies for p ≥ 2.

For small values of p, these algorithms can be used to learn non-linear separators by

using factorizable kernels [48]. A related family [92] was designed for learning in the

PAC model rather than the mistake bound model, but again, guarantees were only

given for p ≥ 2.

Other works [66, 32, 69, 77] bound the Rademacher complexity of classes of linear

separators under general forms of regularization. Special cases of each of these regu-

larization methods correspond to Lq-norm regularization, which is closely related to

maximizing LqLp margin. Specifically, Kakade et al. [66] directly consider the case
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of Lq-norm regularization but only give Rademacher complexity bounds for the case

of p ≥ 2. Kloft & Blanchard [69] give Rademacher complexity bounds that cover

the entire range 1 ≤ p ≤ ∞ in the context of multiple kernel learning1, but their

discussion of excess risk bounds for different choices of p is limited to the p ≥ 2 case

while our work discusses the generalization error over the entire range. Cortes et

al [32] also give Rademacher complexity bounds for multiple kernel learning which

hold only for even integers p. Maurer & Pontil [77] consider the more general setting

of block-norm regularized linear classes but only give bounds for the case of p ≥ 2. A

work of Zhang [111] deals with algorithms for Lq-norm regularized loss minimization

and discusses cases in which L∞-norm regularization may be appropriate. In contrast

to our work, none of the above works give lower bounds on the sample complexity

or give concrete evidence of when some values of p will result in faster learning than

others.

A more recent work of Neyshabur et al. [80] studies the use of norm-based regular-

ization for capacity control of feedforward neural networks. Their Rademacher com-

plexity bounds on the class of neural networks depend on a bound on the Rademacher

complexity of Lq-norm regularized linear functions such as the bound we give in Sec-

tion 4.3.1. Interestingly, they seek to find, among other things, conditions on when

their bounds will have no or weak dependence on the size of the network, just as we

are concerned with limiting dependence on data dimensionality.

4.2 Preliminaries

Let D be a distribution over a bounded instance space X ⊆ Rd. A linear separator

over X is a classifier h(x) = sign(w · x) for some weight vector w ∈ Rd. We use h∗

and w∗ to denote the target function and weight vector, respectively, so that h∗(x) =

1Our setting is a special case of multiple kernel learning in which there are d kernels, one for each
dimension of the instance space, where each kernel simply acts as a one-dimensional projection. That
is, the i-th kernel Ki is defined as Ki(x, x

′) = xix
′
i and the corresponding feature transformation

can be taken to be Φi(x) = xi.
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X =

 | | |
x1 x2 . . . xn

| | |

 → L2 ↓
→ L2 ↓
→ L2 ↓ Lp

Figure 5: The d × n data matrix X is oriented with one unlabeled example in each
column. The L2,p-norm is found by first taking the L2-norm of each row in X, resulting
in a vector of L2-norms for each feature variable. The ‖X‖2,p is the Lp-norm of this
resulting vector.

sign(w∗ · x) gives the label for any instance x and errD(h) = Prx∼D[h(x) 6= h∗(x)] is

the generalization error of any hypothesis h. We will often abuse notation and refer

to a classifier and its corresponding weight vector interchangeably. We will overload

the notation X to represent either a set of n points {x1, . . . , xn} in Rd or the d × n

matrix of containing one point per column.

For any point x = (x1, . . . , xd) ∈ Rd and p ≥ 1, the Lp-norm of x is

‖x‖p =

(
d∑
i=1

|xi|p
) 1

p

and the L∞-norm is ‖x‖∞ = maxi |xi|. Let ‖X‖p denote supx∈X ‖x‖p, which is finite

for any p by our assumption that X is bounded. The Lq-norm is the dual of the

Lp-norm if 1/p + 1/q = 1 (so the L∞-norm and L1-norm are duals). In this work, p

and q will always denote dual norms.

For any weight vector w, the LqLp margin of w with respect to D is defined as

γq,p(D,w) = inf
x∼D

|w · x|
‖w‖q ‖x‖p

.

We can similarly define γq,p(X, w) for a set X. We will drop the first argument

when referring to the distribution-based definition and the distribution is clear from

context. We assume that D has a positive margin; that is, there exists w such that

γq,p(D,w) > 0. Note that by Hölder’s inequality, |w · x| ≤ ‖w‖q ‖x‖p for dual p and

q, so γq,p(D,w) ≤ 1.
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We also define the La,b matrix norm

‖M‖a,b =

 r∑
i=1

(
c∑
j=1

|mij|a
)b/a

1/b

for any r× c matrix M = (mij). In other words, we take the La-norm of each row in

the matrix and then take the Lb-norm of the resulting vector of La-norms. We will

primarily be concerned with the L2,p-norm of the data matrix X as shown in Figure 5.

4.2.1 LqLp Support Vector Machines

Given a linearly separable set X of n labeled examples, we can solve the convex

program

min
w
‖w‖q

s.t.
yi(w · xi)
‖xi‖p

≥ 1, 1 ≤ i ≤ n.
(1)

to maximize the LqLp margin. Observe that a solution ŵ to this problem has

γq,p(X, ŵ) = 1/ ‖ŵ‖q. We call an algorithm that outputs a solution to (1) an LqLp

SVM due to the close relationship between this problem and the standard support

vector machine.

If X is not linearly separable, we can introduce nonnegative slack variables in the

usual way and solve

min
w,

ξ≥0

‖w‖q + C
n∑
i=1

ξi

s.t.
yi(w · xi)
‖xi‖p

≥ 1− ξi, 1 ≤ i ≤ n.

(2)

which is equivalent to minimizing the hinge loss with respect to an Lp-normalized

data set using Lq-norm regularization on the weight vector space.

4.3 Generalization Bounds

In this section we give an upper bound on the generalization error of learning linear

separators over distributions with large LqLp margins. The proof follows from com-

bining a theorem of [18] with a new bound on the fat-shattering dimension of the class
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of linear separators with small Lq-norm. We begin with the following definitions.

Definition. For a set F of real-valued functions on X, a finite set {x1, . . . , xn} ⊆ X

is said to be γ-shattered by F if there are real numbers r1, . . . , rn such that for all

b = (b1, . . . , bn) ∈ {−1, 1}n, there is a function fb ∈ F such that

fb(x
i)


≥ ri + γ if bi = 1

≤ ri − γ if bi = −1.

The fat-shattering dimension of F at scale γ, denoted fatF(γ), is the size of the largest

subset of X which is γ-shattered by F .

Our bound on the fat-shattering dimension will use two lemmas analogous to

Lemmas 11 and 12 in [92].

Lemma 2. Let F = {x 7→ w · x : ‖w‖q ≤ ‖W‖q} with 1 ≤ p ≤ ∞. If the set

{x1, . . . , xn} ⊆ Xn is γ-shattered by F then every b = (b1, . . . , bn) ∈ {−1, 1}n satisfies

‖∑n
i=1 bix

i‖p ≥ γn
‖W‖q

.

Proof. The proof is identical to that of Lemma 11 in [92], replacing the radius 1/ ‖X‖p
of F in their lemma with ‖W‖q.

The next lemma will depend on the following classical result from probability

theory known as the Khintchine inequality.

Theorem 5 (Khintchine). If the random variable σ = (σ1, . . . , σn) is uniform over

{−1, 1}n and 0 < p <∞, then any finite set {z1, . . . , zn} ∈ C satisfies

Ap

√√√√ n∑
i=1

|zi|2 ≤
(
E

[∣∣∣ n∑
i=1

σizi

∣∣∣p]) 1
p

≤ Bp

√√√√ n∑
i=1

|zi|2

where Ap and Bp are constants depending only on p.

The precise optimal constants for Ap and Bp were found by [52], but for our

purposes, it suffices to note that when p ≥ 1 we have 1/2 ≤ Ap ≤ 1 and 1 ≤ Bp ≤ √p.
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Lemma 3. For any set X = {x1, . . . , xn} ⊆ Xn and any 1 ≤ p < ∞, there is some

b = (b1, . . . , bn) ∈ {−1, 1}n such that ‖∑n
i=1 bix

i‖p ≤ Bp ‖X‖2,p.

Proof. We will bound the expectation of ‖∑n
i=1 bix

i‖p when b = (b1, . . . , bn) is uni-

formly distributed over {−1, 1}n. We have

E

∥∥∥∥∥
n∑
i=1

bix
i

∥∥∥∥∥
p

 = E

( d∑
j=1

∣∣∣ n∑
i=1

εix
i
j

∣∣∣p)1/p


≤
(

d∑
j=1

E

[∣∣∣ n∑
i=1

εix
i
j

∣∣∣p])1/p

≤

 d∑
j=1

Bp
p

(
n∑
i=1

|xij|2
)p/2

1/p

= Bp ‖X‖2,p

where the first inequality is an application of Jensen’s inequality and the second uses

the Khintchine inequality. The proof is completed by noting that there must be some

choice of b for which the value of ‖∑n
i=1 bix

i‖p is smaller than its expectation.

We can use these two lemmas to give an upper bound on the fat-shattering di-

mension for any finite p.

Theorem 6. Let F = {x 7→ w · x : ‖w‖q ≤ ‖W‖q} with 1 ≤ p < ∞. If there is a

constant C = C(d, p) independent of n such that ‖X‖2,p ≤ Cnα ‖X‖p for any set X

of n examples drawn from D, then

fatF(γ) ≤
(
CBp ‖W‖q ‖X‖p

γ

) 1
1−α

.

Proof. Combining Lemmas 2 and 3, we have that any set X = {x1, . . . , xn} ⊆ Xn

that is γ-shattered by F satisfies γn
‖W‖q

≤ Bp ‖X‖2,p ≤ CBpn
α ‖X‖p. Solving for n

gives us n ≤ (
CBp‖W‖q‖X‖p

γ
)1/(1−α) as an upper bound on the maximum size of any

γ-shattered set.
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This bound extends and improves upon Theorem 8 in [92]. In their specific setting,

‖W‖q = 1/ ‖X‖p, so we can directly compare their bound

fatF(γ) ≤ 2 log 4d

γ2
(3)

for 2 ≤ p ≤ ∞ to our bound

fatF(γ) ≤
(
CBp

γ

)1/(1−α)
(4)

for 1 ≤ p <∞. Observe that by Minkowski’s inequality, any set X satisfies ‖X‖2,p ≤

n1/2 ‖X‖p if p ≥ 2. In this case, (4) simplifies to (Bp/γ)2 which is dimension-

independent and improves upon (3) by a factor of log d when p is constant. When

1 ≤ p < 2, (3) does not apply, but (4) still gives a bound that can be small in many

cases depending on the relationship between ‖X‖2,p and γ. We will give specific

examples in Section 4.3.2.

The fat-shattering dimension is relevant due to the following theorem of [18] that

relates the generalization performance of a classifier with large margin to the fat-

shattering dimension of the associated real-valued function class at a scale of roughly

the margin of the classifier.

Theorem 7 (Bartlett & Shawe-Taylor). Let F be a collection of real-valued functions

on a set X and let D be a distribution over X. Let X = {x1, . . . , xn} be a set of

examples drawn i.i.d. from D with labels yi = h∗(xi) for each i. With probability at

least 1− δ, if a classifier h(x) = sign(f(x)) with f ∈ F satisfies yif(xi) ≥ γ > 0 for

each xi ∈ X, then

errD(h) ≤ 2

n

(
k log

8en

k
log(32n) + log

8n

δ

)
,

where k = fatF(γ/16).

Now we can state and prove the following theorem which bounds the generalization

performance of the LqLp SVM algorithm.
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Theorem 8. For any distribution D and target w∗ with γq,p(D,w
∗) ≥ γq,p, if there

is a constant C = C(d, p) such that ‖X‖2,p ≤ Cnα ‖X‖p for any set X of n examples

from D then there is a polynomial time algorithm that outputs, with probability at

least 1− δ, a classifier h such that

errD(h) = O

(
1

n

((
CBp

γq,p

) 1
1−α

log2 n+ log
n

δ

))
.

Proof. By the definition of LqLp margin, there exists a w (namely, w∗/ ‖w∗‖q) with

‖w‖q = 1 that achieves margin γq,p with respect to D. This w has margin at least

γq,p with respect to any set X of n examples from D. A vector ŵ satisfying these

properties can be found in polynomial time by solving the convex program (1) and

normalizing the solution. Notice that if the sample is normalized to have ‖x‖p = 1

for every x ∈ X then the LqLp margin of ŵ does not change but becomes equal to the

functional margin y(ŵ · x) appearing in the Theorem 7. Applying Theorem 6 with

‖W‖q = 1 and ‖X‖p = 1 yields fatF(γ) ≤ (CBp
γ

)1/(1−α) and applying Theorem 7 to ŵ

gives us the desired result.

Theorem 8 tells us that if the quantity(
CBp

γq,p

) 1
1−α

(5)

is small for a certain choice of p and q then the LqLp SVM will have good general-

ization. This gives us a data-dependent bound, as (5) depends on data; specifically,

C and α depend on the distribution D alone, while γq,p depends on the relationship

between D and the target w∗.

As mentioned, if p ≥ 2 then we can use C = 1 and α = 1/2 for any distribution, in

which case the bound depends solely on the margin γq,p (and to a lesser extent on Bp).

If p ≤ 2 then any set has ‖X‖2,p ≤ n1/p ‖X‖p (this follows by subadditivity of the

function z 7→ zp/2 when p ≤ 2) and we can obtain a similar dimension-independent

bound with C = 1 and α = 1/p. Achieving dimension independence for all distri-

butions comes at the price of the bound becoming uninformative as p → 1, as (5)
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simplifies to (Bp/γq,p)
q for these values. More interesting situations arise when we

consider the quantity (5) for specific distributions, as we will show in Section 4.3.2.

4.3.1 Generalization Bounds in the Non-realizable Case

The results in Section 4.3 apply to the realizable case—that is, when the two classes

are linearly separable by a positive “hard margin.” When the data is not linearly

separable, convex program (1) has no solution, but convex program (2) remains solv-

able and we may still achieve good generalization performance in the presence of a

“soft margin” (some small margin violations exist in the data, but the majority of

points will be far from the optimal separator). In this non-realizable case, we can

still obtain generalization bounds analogous to Theorem 8, but they will include an

additional dependence on how far the data is from being separable by a large margin

(the hinge loss).

Bounds based on Rademacher complexity. The empirical Rademacher com-

plexity of a class F of real-valued functions is

Rn(F) =
1

n
E

[
sup
f∈F

n∑
i=1

σif(xi)

]
where σ = (σ1, . . . , σn) is uniform over {−1, 1}n. In the case of linear functions

x 7→ w · x with ‖w‖q ≤ ‖W‖q, this is

Rn(F) ≤
Bp ‖W‖q ‖X‖2,p

n
,

where we have applied Jensen’s inequality and the Khintchine inequality as in Sec-

tion 4.3. This result is a special case of Proposition 2 of [69]. If ‖X‖2,p ≤ Cnα ‖X‖p,

then this simplifies to

Rn(F) ≤
CBp ‖W‖q ‖X‖p

n1−α

which can be used to bound the Rademacher complexity term in several standard

generalization bounds such as those in terms of convex loss functions [17] or mar-

gins [71].
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Bounds based on fat-shattering dimension. Theorem VII.14 of [95] gives a

generalization error bound in terms of the fat-shattering dimension of the concept

class F and the sum of the slack variables ξ in convex program (2). The bound is of

the form

err(h) ≤ Õ

(
1

n

(
fatF(γ/16) +

1

γ

n∑
i=1

ξ̂i

))
(6)

where h is the classifier corresponding to a solution ŵ of (2) and where ξ̂i = max(0, γ−

yi(ŵ ·xi)). We can then use our bound from Theorem 6 to obtain a bound analogous

to Theorem 8.

4.3.2 Examples

Here we will give some specific learning problems showing when large margins can be

helpful and when they are not helpful. We focus on the p ≤ 2 case, as large margins

are always helpful when p ≥ 2.

Example 1. Unhelpful margins. First, let D1 be the uniform distribution over

the standard basis vectors in Rd and let w∗ be any weight vector in {−1, 1}d. In

this case γq,p = d−1/q, which is a large margin for small p. If n ≤ d, then ‖X‖2,p
is roughly n1/p ‖X‖p (ignoring log factors), and (5) simplifies to Bq

pd. We could also

choose to simplify (5) using C = d1/p and α = 0, which gives us Bpd. Either way, the

bound in Theorem 8 becomes Õ(d/n) which is uninformative since n ≤ d. If we take

n ≥ d, we can still obtain a bound of Õ(d/n), but this is the same as the worst-case

bound based on VC dimension, so the large margin has no advantage. In fact, this

example provides a lower bound: even if an algorithm knows the distribution D1 and

is allowed a 1/2 probability of failure, an error of ε cannot be guaranteed with fewer

than (1− 2ε)d examples because any algorithm can hope for at best an error rate of

1/2 on the examples it has not yet seen.

Example 2. Helpful margins. As another example, divide the d coordinates into

k = o(d) disjoint blocks of equal size and let D2 be the uniform distribution over
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w∗: ++-+++-+--+--++---

D: 000100000000000000 +

000000000001000000 -

000000000100000000 -
...

Figure 6: A diagram showing a case with unhelpful margins as in Example 1.

Table 1: Summary of key quantities in Example 1.

p γq,p(w
∗) ‖X‖2,p sample complexity

1 1
√
dn Õ(d/ε)

2 1/
√
d

√
n Õ(d/ε)

∞ 1/d
√
n/d Õ(d/ε)

examples that have 1’s for all coordinates within some block and 0’s elsewhere. Taking

w∗ to be a vector in {−1, 1}d that has the same sign within each block, we have

γq,p = k−1/q. If k < n < d then ‖X‖2,p is roughly k1/p−1/2
√
n ‖X‖p, and (5) simplifies

to B2
pk. When k = o(d) this is a significant improvement over worst case bounds for

any constant choice of p.

Example 3. An advantage for p < 2. Consider a distribution that is a combination

of the previous two examples: with probability 1/2 it returns an example drawn from

D1 and otherwise returns an example from D2. By including the basis vectors, we

have made the margin γq,p = d−1/q but as long as k = o(d) the bound on ‖X‖2,p
does not change significantly from Example 2, and we can still use C = k1/p−1/2 and

α = 1/2. Now (5) simplifies to B2
pk for p = 1, but becomes B2

pk
2/p−1d2/q in general.

When k =
√
d this gives us an error bound of Õ(

√
d/n) for p = 1 but Õ(d/n) or worse

for p ≥ 2. While this upper bound does not imply that generalization error will be

worse for p ≥ 2 than it is for p = 1, we show in the next section that for a slightly

modified version of this distribution we can obtain sample complexity lower bounds

for large margin algorithms with p ≥ 2 that are significantly greater than the upper
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w∗: ++++++------++++++

D: 111111000000000000 +

000000000000111111 +

000000111111000000 -
...

Figure 7: A diagram showing a case with helpful margins as in Example 2.

Table 2: Summary of key quantities in Example 2.

p γq,p(w
∗) ‖X‖2,p sample complexity

1 1
√
kn Õ(k/ε)

2 1/
√
k

√
n Õ(k/ε)

∞ 1/k
√
n/k Õ(k/ε)

bound for p = 1.

4.4 The Case For L∞L1 Margins

Here we give a family of learning problems to show the benefits of using L∞L1 margins

over other margins. We do this by defining a distribution D over unlabeled examples

in Rd that can be consistently labeled by a variety of potential target functions w∗.

We then consider a family of large LqLp margin concept classes Wp and bound the

sample complexity of learning a concept in Wp using covering number bounds. We

show that learning W1 can be much easier than learning Wp for p > 1; for example,

with certain parameters for D having O(
√
d) examples is sufficient for learning W1,

while learning any other Wp requires Ω(d) examples.

Specifically, let Wp = {w ∈ Rd : ‖w‖∞ = 1, γq,p(w) ≥ γq,p(w
∗)}, where w∗

maximizes the L∞L1 margin with respect to D. We restrict our discussion to weight

vectors with unit L∞ norm because normalization does not change the margin (nor

does it affect the output of the corresponding classifier). Let the covering number

N (ε,W,D) be the size of the smallest set V ⊆ W such that for every w ∈ W there
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w∗: ++++++------++++++

D: 001000000000000000 +

000000111111000000 -

000000000000111111 +

000000100000000000 -
...

Figure 8: A diagram showing a case with an advantage for p < 2 as in Example 3.

Table 3: Summary of key quantities in Example 3.

p γq,p(w
∗) ‖X‖2,p sample complexity

1 1
√
kn Õ(k/ε)

2 1/
√
d

√
n Õ(d/ε)

∞ 1/d
√
n/k Õ(d2/(kε))

exists a v ∈ V with dD(w, v) := Prx∼D[sign(w · x) 6= sign(v · x)] ≤ ε.

Define the distribution D over {0, 1}d as follows. Divide the d coordinates into

k disjoint blocks of size d/k (assume d/(2k) is an odd integer). Flip a fair coin. If

heads, pick a random block and return an example with exactly d/(2k) randomly

chosen coordinates set to 1 within the chosen block and all other coordinates set to

0. If tails, return a standard basis vector (exactly one coordinate set to 1) chosen

uniformly at random. The target function will be determined by any weight vector

w∗ achieving the maximum L∞L1 margin with respect to D. As we will see, w∗ can

be any vector in {−1, 1}d with complete agreement within each block.

We first give an upper bound on the covering number of W1.

Proposition 1. For any ε > 0, N (ε,W1, D) ≤ 2k.

Proof. Let Vk be the following set. Divide the d coordinates into k disjoint blocks of

size d/k. A vector v ∈ {−1, 1}d is a member of Vk if and only if each block in v is

entirely +1’s or entirely −1’s. We will show that W1 = Vk, and since |Vk| = 2k we

will have N (ε,W1, D) ≤ 2k for any ε.
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Note that by Hölder’s inequality, γq,p(w) ≤ 1 for any w ∈ Rd. For any w ∈ Vk and

any example x drawn from D, we have |w · x| = ‖x‖1, so γ∞,1(w) = 1, the maximum

margin. If w /∈ Vk then either w /∈ {−1, 1}d or w has sign disagreement within at least

one of the k blocks. If w /∈ {−1, 1}d then γ∞,1(w) = minx |w ·x|/ ‖x‖1 ≤ mini |w ·ei| =

mini |wi| < 1. If w has sign disagreement within a block then |w · x| < ‖x‖1 for any

x with 1’s in disagreeing coordinates of w, and this results in a margin strictly less

than 1.

Next we will give lower bounds on the covering numbers for Wp with p > 1. In

the following let H(α) = −α log(α)− (1−α) log(1−α), the binary entropy function.

Proposition 2. If 1 < p <∞ then for any ε > 0,

N (ε,Wp, D) ≥ 2(1/2−H(2ε))d−k1/q(d/2)1/p−k.

Proof. First we show that |Wp| ≥ 2d/2−k
1/q(d/2)1/p−k. Any w∗ ∈ W1 has margin

γq,p(w
∗) = d−1/q, so Wp = {w ∈ Rd : γq,p(w) ≥ d−1/q}. Note that Wp ⊆ {−1, 1}d

because if w /∈ {−1, 1}d then γq,p(w) ≤ mini |w · ei|/ ‖w‖q = mini |wi|/ ‖w‖q < d−1/q.

Let w ∈ {−1, 1}d be a weight vector such that in each block there are at least d/k− r

positive values and at most r negative values or vice versa (there are at most r values

with whichever sign is in the minority). Clearly w has large margin with respect

to any of the basis vectors drawn from D. For the rest of D we have infx |w · x| =

max(1, n/(2k) − 2r), so w ∈ Wp if and only if max(1, d/(2k) − 2r) ≥ (d/(2k))1/p.

For p < ∞ and d > 2k, this happens if and only if r ≤ 1
2
( d
2k
− ( d

2k
)1/p). Letting

r∗ =
⌊
1
2
( d
2k
− ( d

2k
)1/p)

⌋
, we have

|Wp| =
(

2
r∗∑
i=0

(
d/k

i

))k

≥ 2d/2−k
1/q(d/2)1/p−k.

Now we can lower bound the covering number using a volume argument by noting

that ifm is the cardinality of the largest ε-ball around any w ∈ Wp thenN (ε,Wp, D) ≥

|Wp|/m. For any pair w,w′ ∈ Wp, dD(w,w′) ≥ h(w,w′)/(2d) where h(w,w′) is the

53



hamming distance (number of coordinates in which w and w′ disagree). Therefore,

in order for dD(w,w′) ≤ ε we need h(w,w′) ≤ 2εd. For any w ∈ Wp the number of w′

such that h(w,w′) ≤ 2εd is at most
∑b2εdc

i=0

(
d
i

)
≤ 2H(2ε)d. It follows that

N (ε,Wp, D) ≥ |Wp|/2H(2ε)d ≥ 2d/2−H(2ε)d−k1/q(d/2)1/p−k.

Proposition 3. For any ε > 0, N (ε,W∞, D) ≥ 2(1−H(2ε))d.

Proof. First we show that W∞ = {−1, 1}d. Any w∗ ∈ W1 has margin γ1,∞(w∗) = 1/d,

so W∞ = {w ∈ Rd : γ1,∞(w) ≥ 1/d}. For any w ∈ {−1, 1}d and example x drawn

from D, we have ‖w‖1 = d, ‖x‖∞ = 1, and |w · x| ≥ 1 (since x has an odd number

of coordinates set to 1) resulting in margin γ1,∞(w) ≥ 1/d. If w /∈ {−1, 1}d then

γ1,∞(w) = minx |w · x|/ ‖w‖1 ≤ mini |w · ei|/ ‖w‖1 = mini |wi|/ ‖w‖1 < 1/d.

To bound the covering number, we use the same volume argument as above.

Again, the size of the largest ε-ball around any w ∈ W∞ is at most 2H(2ε)d (since this

bound only requires that every pair w,w′ ∈ W∞ has dD(w,w′) ≥ h(w,w′)/(2d)). It

follows that N (ε,W∞, D) ≥ 2d/2H(2ε)d.

Using standard distribution-specific sample complexity bounds based on covering

numbers [61], we have an upper bound of O((1/ε) ln(N (ε,W,D)/δ)) and lower bound

of ln((1 − δ)N (2ε,W,D)) for learning, with probability at least 1 − δ, a concept in

W to within ε error. Thus, we have the following results for the sample complexity

m of learning Wp with respect to D. If p = 1 then

m ≤ O

(
1

ε

(
k + ln

1

δ

))
,

if 1 < p <∞ then

m ≥
(

1

2
−H(4ε)

)
d− k1/q

(
d

2

)1/p

− k + ln(1− δ),
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and if p =∞ then

m ≥ (1−H(4ε)) d+ ln(1− δ).

For appropriate values of k and ε relative to d, the the sample complexity can be much

smaller for the p = 1 case. For example, if k = O(d1/4) and Ω(d−1/4) ≤ ε ≤ 1/40,

then (assuming δ is a small constant) having O(
√
d) examples is sufficient for learning

W1 while at least Ω(d) examples are required to learn Wp for any p > 1.

4.5 Experiments

We performed two empirical studies to support our theoretical results. First, to give

further evidence that using L∞L1 margins can lead to faster learning than other mar-

gins, we ran experiments on both synthetic and real-world data sets. Using the LqLp

SVM formulation defined in (1) for linearly separable data and the formulation defined

in (2) for non-separable data, both implemented using standard convex optimization

software, we ran our algorithms for a range of values of p and a range of training

set sizes n on each data set. We report several cases in which maximizing the L∞L1

margin results in faster learning (i.e., smaller sample complexity) than maximizing

other margins.

Figure 9 shows results on two synthetic data sets. One is generated using the

“Blocks” distribution family from Section 4.4 with d = 90 and k = 9. The other uses

examples generated from a standard Gaussian distribution in R100 subject to having

L∞L1 margin at least 0.075 with respect to a fixed random target vector in {−1, 1}d

(in other words, Gaussian samples with margin smaller than 0.075 are rejected). In

both cases, the error decreases much faster for p < 2 than for large p.

Figure 10 shows results on three data sets from the UCI Machine Learning Repos-

itory [6]. The Fertility data set consists of 100 training examples in R10, the SPECTF

Heart data set has 267 examples in R44, and we used a subset of the CNAE-9 data

set with 240 examples in R857. In all three cases, better performance was achieved by
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Figure 9: Synthetic data results for blocks distribution (top) and Gaussian with
margin (bottom). The left column plots generalization error (averaged over 500 trials
with different training sets) versus number of training examples n while the right
column plots error versus p.

algorithms with p < 2 than by those with p > 2.

The goal of our second experiment was to determine, for real-world data, what

parameter α can be used in the bound on ‖X‖2,p in Theorem 8. Specifically, for each

data set we want to find αmin = inf{α : ‖X‖2,p ≤ nα ‖X‖p}, the smallest value of α

so the bound holds with C = 1. Recall that for p = 1, αmin can theoretically be as

great as 1, while for p ≥ 2 it is at most 1/2. We would like to see whether αmin is

often small in real data sets or whether it is close to the theoretical upper bound.

We can estimate αmin for a given set of data by creating a sequence {Xm}nm=1 of

data matrices by adding to the matrix one point from the data set at a time. For

each point in the sequence we can compute

αm =
log(‖Xm‖2,p / ‖X‖p)

logm
,

a value of α that realizes the bound with equality for this particular data matrix.

We repeat this process T times, each with a different random ordering of the data,
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Figure 10: Results for Fertility data (top), SPECTF Heart data (middle), and CNAE-
9 (bottom). The left column plots error (averaged over 100 trials with different train-
ing sets and tested on all non-training examples) versus number of training examples
n while the right column plots error versus p.
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Figure 11: A histogram showing the values of α̂min on 47 data sets from the UCI
repository.
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Algorithm 4 Passive max-margin adaptive LqLp SVM

input Labeled data L, discretization P of [1,∞]
for all p ∈ P do
wp ← solution to (1) on data L with margin parameters p, q

p∗ ← argmaxp∈P γq,p(L,wp)
return x 7→ sign(wp∗ · x)

to find T sequences αim, where 1 ≤ i ≤ T and 1 ≤ m ≤ n. We can then compute

α̂min = maxi,m α
i
m, a value of α which realizes the bound for every data matrix

considered and which causes the bound to hold with equality in at least one instance.

Figure 11 shows a histogram of the resulting estimates on a variety of data sets

and for three values of p. Notice that in the vast majority of cases, the estimate of

αmin is less than 1/2. As expected there are more values above 1/2 for p = 1 than for

p ≥ 2, but none of the estimates were above 0.7. This gives us evidence that many

real data sets are much more favorable for learning with large L∞L1 margins than

the worst-case bounds may suggest.

4.6 Active Learning with LqLp Margins

Here we show how active learning can be used to discover margin structure in data.

In other words, if the underlying data distribution satisfies a large margin condition,

active learning can be used to approximately determine the “best” p and q to use.

4.6.1 Passive Adaptation

Without active learning, we can passively determine the optimal margin parame-

ters in the following manner. We first train one LqLp SVM for each of several values of

p and q spanning the entire margin spectrum. For each resulting linear separator, we

then test how large its LqLp margin is with respect to the training data (we assume

linearly separable data for now as we will deal with the non-realizable case later).

The separator that resulted in the largest margin is then used as the final hypothesis.

This process of training several LqLp SVMs and choosing the one resulting in the
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Figure 12: Margin-conditional Gaussian distributions in R2 with margin 0.2. In (a),
the margin sizes are γ∞,1 = 0.2, γ2,2 = 0.196, and γ1,∞ = 0.167. In (b), the margin
sizes are γ∞,1 = 0.156, γ2,2 = 0.2, and γ1,∞ = 0.156. In (c), the margin sizes are
γ∞,1 = 0.167, γ2,2 = 0.196, and γ1,∞ = 0.2.

largest margin we refer to as the max-margin adaptation strategy and is detailed in

Algorithm 4.

We first test this procedure on synthetic data. Examples are drawn from a stan-

dard Gaussian distribution in R25 conditioned on the LqLp margin with respect to

target separator w∗ being at least 0.05. We refer to this type of distribution as a

margin-conditional Gaussian distribution. The examples are labeled with no noise

according to w∗ ∈ {0, 1}25. We give results for three cases: (1) p = 1, q = ∞, and

‖w∗‖1 = 25, (2) p = 2, q = 2, and ‖w∗‖1 = 12, and (3) p =∞, q = 1, and ‖w∗‖1 = 1.

See Figure 12 for samples of this type of distribution in R2 and with a margin of 0.2.

Note that the distributions are designed so that the margin is larger for one set of

margin parameters than for any other choice of margin parameters.

Figure 13 shows how on margin-conditional Gaussian data the max-margin adap-

tation strategy consistently results in selecting hypotheses that perform nearly as well

as if the correct p and q were known ahead of time. Each point in Figure 13 is an

average over 50 independent trials, each with a different test set of 2000 examples.
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Figure 13: Passively adapting to the optimal margin parameters for three cases of
margin-conditional Gaussian data. The caption labels the value of p used in the LqLp
margin of the data distribution.

4.6.2 Active Adaptation in the Realizable Case

While the above passive procedure can make a small correction toward the optimal

margin parameters, we hope to improve upon this by querying labels in a manner

that allows us to more fully take advantage of the large margin. To activize the LqLp

SVM, we apply the simple margin query strategy of Tong & Koller [104]. We note

that their ratio margin and max-min margin strategies may also work well for this

task, as may the margin-based active learning algorithm of Balcan et al. [14]. While

margin-based strategies such as these are not necessarily guaranteed to work well in

general [37], there are several examples in the literature of cases in which they do

work well [104, 62].

Specifically, we modify the simple margin strategy to use the LqLp margin instead

of the typical L2 margin. In each iteration, this algorithm trains an LqLp SVM on the

current set of labeled examples and then queries the label of the example that has the

least LqLp margin with respect to the separator found by the SVM. This process is

repeated until the given label budget is reached. We refer to this algorithm, detailed

in Algorithm 5, as the active LqLp SVM (with fixed margin parameters).

Figure 14 shows how this family of algorithms compares to passive learning on
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Algorithm 5 Active LqLp SVM

input Unlabeled data U , label budget b, margin parameters p, q
L← ∅
w(0) ← 1
for i = 1 to b do
x(i) ← argminx∈U\L γq,p(x,w

(i−1))

y(i) ← label of x(i)

L← L ∪ {(x(i), y(i))}
w(i) ← solution to (1) on data L with margin parameters p, q

return x 7→ sign(w(b) · x)
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Figure 14: Generalization error versus number of labeled examples used for passive
and active LqLp SVMs using fixed margin parameters on three types of realizable
margin-conditional Gaussian data (caption indicates distribution parameters). Error
is shown on both a linear scale (top) and a logarithmic scale (bottom).
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Algorithm 6 Active adaptive LqLp SVM

input Unlabeled data U , label budget b, discretization P of [1,∞]
L← ∅
p(0) ← 2
w(0) ← 1
for i = 1 to b do
x(i) ← argminx∈U\L γq(i−1),p(i−1)(x,w(i−1))

y(i) ← label of x(i)

L← L ∪ {(x(i), y(i))}
for all p ∈ P do
wp ← solution to (1) on data L with margin parameters p, q

p(i) ← argmaxp∈P γq,p(L,wp)

w(i) ← wp(i)

return x 7→ sign(w(b) · x)

realizable data with various values of p and q. We again use a margin-conditional

Gaussian with margin 0.05. Each point in Figure 14 is an average over 25 independent

trials, each with a different test set of 2000 examples. When viewed on a logarithmic

scale, it is clear that the learning rates for active learning are exponentially faster

than those of passive learning, as we might expect given the data distribution. We

can also see that knowing (or perhaps guessing) the correct margin parameters allows

both the passive and active algorithms to perform better than using incorrect margin

parameters, especially when the data-generating distribution uses parameters on the

extreme ends of the margin spectrum.

We can make our active LqLp SVM adapt to the optimal margin parameters by

using the max-margin adaptation strategy after each query. Specifically, after each

new label has been queried, we train on the current set of labeled data several LqLp

SVMs with a wide range of margin parameters. We compute the margin for each of the

resulting classifiers with respect to the labeled data, and choose the hypothesis with

the largest margin to use for the next iteration. We refer to this type of algorithm,

detailed in Algorithm 6, as active adaptive.

Figure 15 shows the values of p selected by the active adaptive algorithm on the
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Figure 15: Margin parameters selected by the active adaptive algorithm on margin-
conditional Gaussian data (caption indicates distribution parameters). Thin lines
show the value of p selected in each iteration of the algorithm for 10 separate trials.
Thick lines show the average p selected over all 10 trials.

same margin-conditional Gaussian data as above. Selections begin around p = 2

regardless of data, but they quickly approach the correct value in every trial before

60 examples are queried. We note that the algorithm appears to converge fastest in

the p = 2 case and converges more quickly in the p =∞ case than in the p = 1 case.

Note that the query strategy is somewhat self-correcting in the sense that selecting

the incorrect margin parameters in one iteration makes it more likely to select the

correct parameters in future iterations. This seems to be due to the dual nature of

minimizing the margin for querying and maximizing the margin for model selection.

That is, querying an example that minimizes γb,a will shrink the margins of all the

separators trained in the next iteration, but it will have the biggest shrinkage effect on

the LbLa SVM, making the LbLa SVM less likely to be selected. However, the increase

in sample size will eventually have a larger effect than this self-correction, so the bias

introduced is not prohibitive. In fact, by encouraging some amount of exploration

early on, it helps prevent the algorithm from compounding early mistakes.

Figure 16 shows how the active adaptive algorithm compares to fixed margin al-

gorithms on realizable margin-conditional Gaussian data. Each point in Figure 16
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Figure 16: Generalization error versus number of labeled examples used for active
LqLp SVM, näıve adaptive, and active adaptive algorithms on realizable margin-
conditional Gaussian data (caption indicates distribution parameters). Error is shown
on both a linear scale (top) and a logarithmic scale (bottom). Error bars represent
two standard errors, or approximately a 95% confidence interval.

is an average over 25 independent trials, each with a different test set of 5000 ex-

amples. The adaptive algorithm is competitive with the fixed-margin active SVMs

and significantly outperforms fixed-margin SVMs with a poor choice of margin pa-

rameters. In order to show that the adaptivity is due to the active query ability

rather than simply the choice of margin used in training the final classifier, we also

compare to a näıve adapter that makes active queries with respect to a fixed margin

(p = q = 2) until the label budget is reached, and then attempts to find the optimal

margin parameters (again by the max-margin strategy) for use with the final clas-

sifier. Figures 16b and 17 clearly show a statistically significant advantage for the

active adapter over the näıve adapter. This is remarkable, as it shows that, without
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Figure 17: A more finely grained experiment showing the statistically significant
advantage for the active adaptive algorithm in the p = 1 case. Error is shown on
both a linear scale (left) and a logarithmic scale (right). Error bars represent two
standard errors, or approximately a 95% confidence interval.

access to privileged information, the adaptive algorithm is able to learn how to shape

its data distribution in a way that leads to better performance.

4.6.3 Active Adaptation in the Non-realizable Case

In the non-realizable case, we can no longer rely on the max-margin adaptation strat-

egy because noisy examples make the hard margin meaningless. Instead, we use

Algorithm 7 which chooses the separator in each iteration that minimizes

min
γ

1

γ

(
1 +

n∑
i=1

ξ̂i

)

where ξ̂i = max(0, γ − yi(ŵ · xi)) for a solution ŵ of (2). Minimizing this quantity

is motivated by the upper bound (6) on generalization error in the non-realizable

case. Intuitively, a large margin γ that results in a small hinge loss (total distance

of margin violations) indicates good generalization, and the margin parameters used

to generate this separator are more likely to be the correct choice. While we could

minimize (6) exactly by estimating α for each p, q based on the unlabeled data, this

turns out to introduce unnecessary additional error into the selection process.

Figure 18 shows how this algorithm can actively adapt to the optimal margin

parameters in the non-realizable case. The unlabeled data is again drawn from a
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Algorithm 7 Active adaptive LqLp soft SVM

input Unlabeled data U , label budget b, discretization P of [1,∞], tradeoff C
L← ∅
p(0) ← 2
w(0) ← 1
for i = 1 to b do
x(i) ← argminx∈U\L γq(i−1),p(i−1)(x,w(i−1))

y(i) ← label of x(i)

L← L ∪ {(x(i), y(i))}
for all p ∈ P do
wp ← solution to (2) on data L with margin parameters p, q and tradeoff C

p(i) ← argminp∈P minγ
1
γ

(
1 +

∑|L|
i=1 max(0, γ − y(i)(wp · x(i)))

)
w(i) ← wp(i)

return x 7→ sign(w(b) · x)
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Figure 18: Generalization error versus number of labeled examples used for active
LqLp SVM, active adaptive, and näıve adaptive algorithms on margin-conditional
Gaussian data with random classification noise (caption indicates distribution param-
eters). Error is shown on both a linear scale (top) and a logarithmic scale (bottom).
Error bars represent two standard errors, or approximately a 95% confidence interval.
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margin-conditional Gaussian distribution, this time with a slightly larger margin of

0.1. The examples are labeled according to a target separator as before, but we cor-

rupt the labels by adding random classification noise with noise rate 0.1. In other

words, each example disagrees with the target separator independently with proba-

bility 0.1. Each point in Figure 18 is an average over 25 independent trials, each with

a different test set of 5000 examples.

While it is not clear from Figure 18 whether the active adaptive algorithm consis-

tently outperforms our näıve adapter, we can demonstrate the benefit of label queries

based on the correct margin parameters through a different experiment. The idea is

to separate the margin parameters used for querying from those used for training the

final classifier. We compare several active LqLp SVMs with different combinations

of margin parameters. Each one has a different set of margin parameters used for

querying, and the parameter choice is fixed for the duration of the algorithm (they

are not adaptive). In all of them, we set the margin parameters used for training the

final classifier to match the parameters of the distribution. This allows us to attribute

any difference in performance to the query strategy alone.

Figure 19 shows the results of this experiment, where each point is an average over

50 independent trials with separate test set of 5000 examples. When p = 1, we see that

querying based on L2L2 margin is still approximately as effective as using the L∞L1

margin, but performance significantly degrades as the type of margin moves further

from the correct choice. When p = ∞, we see a statistically significant separation

between L∞L1 margin and L1L∞ margin, with the L2L2 somewhere in the middle.

These results give very strong evidence that in addition to approximately determining

the optimal margin parameters to use, the power of active learning can also be used

to shape the distribution of examples in order to more fully take advantage of large

LqLp margins.

67



20 30 40 50 60 70
n

0.00

0.05

0.10

0.15

0.20

0.25

0.30

ge
ne

ra
liz

at
io

n
er

ro
r

p = 1.0625

p = 1.25

p = 2.0

p = 5.0

p = 17.0

20 30 40 50 60 70
n

10−5

10−4

10−3

10−2

10−1

100

ge
ne

ra
liz

at
io

n
er

ro
r

(a) p = 1

15 20 25 30 35 40
n

0.00

0.05

0.10

0.15

0.20

0.25

ge
ne

ra
liz

at
io

n
er

ro
r

p = 1.0625

p = 1.25

p = 2.0

p = 5.0

p = 17.0

15 20 25 30 35 40
n

10−5

10−4

10−3

10−2

10−1

100
ge

ne
ra

liz
at

io
n

er
ro

r

(b) p =∞

Figure 19: Generalization error versus number of labeled examples used for active
LqLp SVM with fixed margin parameters. The legend gives the margin parameters
used for querying while the final classifier is trained using margin parameters matching
the distribution. The data is drawn from a margin-conditional Gaussian distribution
with random classification noise (caption indicates distribution parameters). Error
is shown on both a linear scale (top) and a logarithmic scale (bottom). Error bars
represent two standard errors, or approximately a 95% confidence interval.
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CHAPTER V

ACTIVE LEARNING FOR DOMAIN ADAPTATION

Most machine learning paradigms operate under the assumption that the data gen-

erating process remains stable. Training and test data are assumed to be from the

same task. However, this is often not an adequate model of reality. For example, it

is often desirable to train engineered systems on simulated examples before deploy-

ment in the real world, where the instances encountered will inevitably be different.

Speech and face recognition systems may be trained on only a small subset of users

but intended to work well for everyone. E-commerce recommendation systems that

are trained on customers in one country may be used to make predictions and rec-

ommendations in a different country. These and numerous other examples signify

the importance of developing learning algorithms that adapt to and perform well in

changing environments. This is usually referred to as transfer learning or domain

adaptation.

In a common model for domain adaptation, the learner receives large amounts

of labeled data from a source distribution and unlabeled data from the actual target

distribution (and possibly a small amount of labeled data from the target task as

well). The goal of the learner is to output a good model for the target task. Designing

methods for this scenario that are statistically consistent with respect to the target

task is important, yet challenging. This difficulty occurs even in the so-called covariate

shift setting, where the change in the environments is restricted to the marginal

over the covariates, while the regression functions (the labeling rules) of the involved

distributions are identical.

In this chapter, we give the first formal analysis showing that using active learning
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for domain adaptation yields a way to address these challenges. This is our third

example of how the power to make adaptive label queries has benefits beyond reducing

labeling effort over passive learning.

In this active domain adaptation model, the learner can make a small number of

queries for labels of target examples. Now the goal is to accurately learn a classifier

for the target task while making as few label requests as possible. We design and

analyze an algorithm showing that being active adaptive can yield a consistent learner

that uses target labels only where needed.

We propose a simple nonparametric algorithm, ANDA, that combines an active

nearest neighbor querying strategy with nearest neighbor prediction. ANDA receives

a labeled sample from the source distribution and an unlabeled sample from the target

task. It first actively selects a subset of the target data to be labeled based on the

amount of source data among the k′ nearest neighbors of each target example. Then

it outputs a k-nearest neighbor classifier on the combined source and target labeled

data.

We prove that ANDA enjoys strong performance guarantees. We first provide a

finite sample bound on the expected loss of the resulting classifier in the covariate

shift setting. Remarkably, the bound does not depend on source-target relatedness;

it only depends on the size of the given unlabeled target sample and properties of the

target distribution. This is in stark contrast to most theoretical results for domain

adaptation, where additive error terms describing the difference between the source

and target frequently appear.

On the other hand, the number of target label queries ANDA makes does depend

on the closeness of the involved tasks. ANDA will automatically adjust the number of

queries it makes based on local differences between the source and target. We quantify

this by giving sample sizes sufficient to guarantee that ANDA makes no queries at all

in regions with large enough relative source support. Simply put, ANDA is guaranteed
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to make enough queries to be consistent but will not make unnecessary ones.

ANDA’s intelligent querying behavior and its advantages are further demonstrated

by our visualizations and experiments. We visually illustrate ANDA’s query strategy

and show empirically that ANDA successfully corrects for dataset bias in a challenging

image classification task.

The idea of incorporating active learning in to the design of algorithms for domain

adaptation has recently received some attention in the machine learning research

community [30, 29, 90]. However, to the best of our knowledge, there has not been

any formal analysis of using active learning to adapt to distribution changes. We

believe that active learning is a particularly promising tool for obtaining domain

adaptive learners and that this work provides an important piece of the theoretical

foundation this area deserves.

5.1 Related Work

For domain adaptation, even under covariate shift, performance guarantees usually

involve an extra additive term that measures the difference between source and target

tasks (that is the loss does not converge to the target optimal optT but to optT + ∆,

where ∆ is some measure of distance between distributions) [19, 76], or they rely on

strong assumptions, such as the target support being a subset of the source support

and the density ratio between source and target being bounded from below [100, 20].

Generally, the case where the target is partly supported in regions that are not covered

by the source, is considered to be particularly challenging [32]. There are heuristics,

that aim to find a suitable mapping of source and target into some common space

[96], but the success of any such method again relies on very strong prior knowledge

about source and target relatedness. We show that our method guarantees small loss

independently of source target relatedness.

Nearest neighbor methods have been studied for decades [34, 98, 73]. Due to their
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flexibility, nearest neighbor methods can suffer in high dimensions, both computa-

tionally and statistically. However, recently, there has been renewed interest in these

methods and ways to overcome the curse of dimensionality. It has been proven that

the generalization performance actually scales with notions of intrinsic dimension,

which can be lower than the dimension of the feature space [72]. Several recent stud-

ies have shown how to perform nearest neighbor search more efficiently [42, 84, 83]

Selective sampling for nearest neighbor classification has been shown to be consistent

under certain conditions on the querying rule [38]; however, this work considers a

data stream that comes from a fixed distribution (as opposed to our covariate shift

setting). A 1-Nearest Neighbor algorithm has been analyzed under covariate shift

[20]; however, that study assumes a fixed lower bound on a weight ratio between

source and target, and therefore does not apply to settings where the target is sup-

ported in areas where the source is not. In this work, we argue that the flexibility of

nearest neighbor methods can be exploited for adapting to changing environments;

particularly so for choosing where to query for labels by detecting areas of the target

task that are not well covered by the source.

5.2 Preliminaries

Let (X , ρ) be a separable metric space. We let Br(x) denote the closed ball of radius

r around x. We let Nε(X , ρ) denote the ε-cover-number of the metric space, that is,

the minimum number of subsets C ⊆ X of diameter at most ε that cover the space

X (a set C ⊆ X has diameter at most ε if, for all x, x′ ∈ C, we have ρ(x, x′) ≤ ε).

We consider a binary classification task, where PS and PT denote source and

target distributions over X × {0, 1}. We let DS and DT denote the source and target

marginal distributions over X , respectively. Further, we let XS and XT denote the

support of DS and DT respectively. That is, for I ∈ {S, T}, we have

XI := {x ∈ X : ∀r > 0, DI(Br(x)) > 0}.
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We use the notation S and T for i.i.d. samples from PS and DT , respectively, and

let |S| = mS, |T | = mT , and m = mS + mT . We let Ŝ, T̂ denote the empirical

distributions according to S and T .

Our analysis is in the covariate shift setting, in which the regression function

η(x) = P[y = 1|x] is the same for both source and target. In other words, the only

difference between the distributions PS and PT is the difference between the marginal

distributions DS and DT .

For any finite A ⊆ X and x ∈ X , the notation x1(x,A), . . . , x|A|(x,A) gives

an ordering of the elements of A such that ρ(x1(x,A), x) ≤ ρ(x2(x,A), x) ≤ · · · ≤

ρ(x|A|(x,A), x). If A is a labeled sequence of domain points, A = ((x1, y1), (x2, y2), . . . ,

(xm, ym)), then we use the same notation for the labels (that is yi(x,A) denotes

the label of the i-th nearest point to x in A). We use the notation k(x,A) =

{x1(x,A), . . . , xk(x,A)} to denote the set of the k nearest neighbors of x in A.

We are interested in bounding the target loss of a k-nearest neighbor classifier. For

a sequence A of labeled points A = ((x1, y1), (x2, y2), . . . , (xm, ym)) we let hkA denote

the k-NN classifier on A:

hkA(x) := 1

[
1

k
Σk
i=1yi(x,A) ≥ 1

2

]
,

where 1[·] denotes the indicator function.

We denote the Bayes classifier by h∗(x) = 1[η(x) ≥ 1/2] and the target loss of a

classifier h : X → {0, 1} by LT (h) = P(x,y)∼PT [y 6= h(x)]. For a subset A ⊆ X of the

domain that is measurable both with respect to DS and DT and satisfies DT (A) > 0,

we define the weight ratio of A as β(A) := DS(A)/DT (A). For a collection of subsets

B ⊆ 2X (for example all balls in (X , ρ)), we let dVC(B) denote its VC-dimension. For

example, the VC-dimension of the class of all balls in Rd is d+ 1.
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Figure 20: An illustration of (k, k′)-NN-cover with k = 4 and k′ = 9. Unlabeled
examples are gray and labeled examples are blue and red. The large filled circle (left)
is covered by labeled examples while the large open circle (right) is not.

5.3 Active Nearest Neighbors Algorithm

In brief, our algorithm receives a labeled sample S (from the source distribution), an

unlabeled sample T (from the target distribution), and two parameters k and k′. It

then chooses a subset T l ⊂ T to be labeled, queries the labels of points in T l, and

outputs a k-NN predictor on S ∪ T l (see Algorithm 8). The subset T l is chosen so

that the resulting labeled set S ∪ T l is a (k, k′)-NN-cover for the target (unlabeled)

sample T .

Definition ((k, k′)-NN-cover). Let T ⊆ X be a set of elements in a metric space

(X , ρ) and let k, k′ ∈ N with k ≤ k′. A set R ⊆ X is a (k, k′)-NN-cover for T if,

for every x ∈ T , either x ∈ R or there are k elements from R among the k′ nearest

neighbors of x in T ∪R, that is |k′(x, T ∪R) ∩R| ≥ k (or both).

Figure 20 illustrates the concept of (k, k′)-NN-covers. Our loss bound in Sec-

tion 5.4 (Theorem 10) holds whenever T l ∪ S is some (k, k′)-NN-cover of T . Algo-

rithm 9 provides a simple strategy to find such a cover: add to T l all points whose k′

nearest neighbors among S∪T include fewer than k source examples. It is easy to see

that this will always result in a (k, k′)-NN-cover of T . Furthermore, this approach has

a query safety property: the set T l produced by Algorithm 9 satisfies T l∩Q = ∅ where

Q = {x ∈ T : |k′(x, S ∪ T ) ∩ S| ≥ k} is the set of target examples that have k source
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Algorithm 8 ANDA: Active Nearest Neighbors for Domain Adaptation

input Labeled set S, unlabeled set T , parameters k, k′

Find T l ⊆ T s.t. S ∪ T l is a (k, k′)-NN-cover of T
Query the labels of points in T l

return hk
S∪T l , the k-NN classifier on S ∪ T l

Algorithm 9 Safe: Finding a (k, k′)-NN-cover

input Labeled set S, unlabeled set T , parameters k, k′

return {x ∈ T : |k′(x, S ∪ T ) ∩ S| < k}

neighbors among their k′ nearest neighbors in S∪T . In other words, Algorithm 9 will

not query the label of any target example in regions with sufficiently many labeled

source examples nearby, a property used in the query bound of Theorem 11.

5.3.1 Finding a Small (k, k′)-NN-cover

In order to make as few label queries as possible, we would like to find the smallest

subset T l of T to be labeled such that T l ∪ S is a (k, k′)-NN-cover of T . As we

show below, this problem is NP-hard and is a special case of Minimum Multiset

Multicover, a generalization of the well-known NP-hard Minimum Set Cover

problem (see [82] and Chapter 13.2 in [107]).

Definition (Minimum Multiset Multicover). Given a universe U of n elements,

a collection of multisets S, and a coverage requirement re for each element e ∈ U , we

say that a multiset S ∈ S covers element e once for each copy of e appearing in S.

The goal is to find the minimum cardinality set C ⊆ S such that every element e ∈ U

is covered at least re times by the multisets in C.

We show that finding a minimum (k, k′)-NN-cover is NP-hard via reduction from

Minimum Dominating Set in 3-regular graphs (Min-Dom-3Reg). Given a graph

G = (V,E), a set D ⊆ V is a dominating set of G if for every v ∈ V , either v ∈ D or v

is adjacent to some vertex in D. The optimization problem Min-Dom-3Reg is that

of finding, given a 3-regular graph G, a dominating set of G of minimum cardinality.
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Min-Dom-3Reg is known to be NP-hard [1].

Theorem 9. Given a metric space (X, ρ), a set T ⊆ X of targets, and integers

k ≤ k′, the optimization problem of finding a minimum cardinality set R such that R

is a (k, k′)-NN-cover of T is NP-hard.

Proof. Given an instance of Min-Dom-3Reg consisting of a 3-regular graph G, we

construct an instance of minimum (k, k′)-NN-cover as follows. Let X = T = V and

ρ be the shortest path metric on G. Let k′ = 3 and k = 1. Notice that for any

element x ∈ T , its k′ = 3 nearest neighbors are precisely its adjacent neighbors in

G because G is 3-regular. Since we require only k = 1 of them to be in D in order

for x to be covered, the notions of cover for dominating set and for (k, k′)-NN-cover

are equivalent. Therefore, a set D is a dominating set of G if and only if D is a

(k, k′)-NN-cover of T , and from this it follows that the minimization problems are

also equivalent.

We can phrase the problem of finding the smallest T l such that T l ∪S is a (k, k′)-

NN-cover of T as a Minimum Multiset Multicover problem as follows. Let

U = T and set the coverage requirements as rx = max(0, k − |k′(x, S ∪ T ) ∩ S|)

for each x ∈ T . The collection S contains a multiset Sx for each x ∈ T , where Sx

contains k copies of x and one copy of each element in {x′ ∈ T : x ∈ k′(x′, S ∪ T )}.

By construction, a minimum multiset multicover of this instance is also a minimum

(k, k′)-NN-cover and vice versa.

While (k, k′)-NN-cover is NP-hard to solve exactly, by phrasing it as a special case

of Minimum Multiset Multicover we know that a greedy algorithm efficiently

provides an approximate solution (see the end of this section). The greedy algorithm

iteratively picks the “most helpful” multiset until every element e is covered at least re

times, where “most helpful” means the multiset that provides the most total coverings

of elements up to, but not above, their coverage requirements.
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Algorithm 10 EMMA: Efficient multiset multicover approximation for finding a
small (k, k′)-NN-cover

input Labeled set S, unlabeled set T , parameters k, k′

T l ← ∅
for all x ∈ T do
rx ← max(0, k − k′(x, S ∪ T ) ∩ S)
nx ← |{x′ ∈ T : rx′ > 0 ∧ x ∈ k′(x′, S ∪ T )}|

while {x ∈ T : rx > 0} 6= ∅ do
T l ← T l ∪ {argmaxx∈T\T l rx + nx}
for all x ∈ T do
rx ← max(0, k − k′(x, S ∪ T ) ∩ (S ∪ T l))
nx ← |{x′ ∈ T \ T l : rx′ > 0 ∧ x ∈ k′(x′, S ∪ T )}|

return T l

Algorithm 10 formalizes this as an ANDA subroutine called EMMA for finding a

small (k, k′)-NN-cover. In the language of (k, k′)-NN-covers, in each round EMMA

computes the helpfulness of each x ∈ T in two parts. The remaining coverage require-

ment rx is the number of times x would cover itself if added to T l (that is, the savings

from not having to use rx additional neighbors of x), and the total neighbor coverage

nx is the number of times x would cover its neighbors if added to T l. EMMA then

selects the point x with the largest sum rx + nx among all points in T that have not

yet been added to T l.

In its most basic form, EMMA does not have the same query safety property

enjoyed by Safe because the greedy strategy may elect to query labels of target ex-

amples that were already fully covered by source examples. We can ensure that an

intelligent query strategy like EMMA still has the desired query safety property by

first running Safe and then passing the resulting set Tsafe to EMMA as its unlabeled

sample. We call the resulting strategy for finding a (k, k′)-NN-cover Safe-EMMA.

Computational considerations. Apart from the computational complexity of

performing the k- and k′-nearest neighbor search steps1, computational considerations

1Since our primary concern is that of analyzing the statistical properties, we assume access to
a method for performing nearest neighbor search. We treat the issue of how to efficiently perform
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also arise when determining whether to use Safe or Safe-EMMA. The computational

complexity of Safe is relatively small. For each target example, it only requires per-

forming a k′-NN search and counting the labels among the resulting neighbor set, so

the runtime is O(mT (k′ + Nk′)), where we use Nk′ to denote the runtime of a k′-NN

search on S ∪ T .

On the other hand, Safe-EMMA requires first performing k′-NN searches and

initializing coverage counts for each target example and then maximizing the coverage

improvement and updating coverage counts for each query made. Assuming the

appropriate data structures are used, the first part takes O(Nk′) time for k′-NN search

and O(k′) time for initializing coverage counts for each target example. The main loop

requires an O(mT )-time maximization step and O(1)-time coverage count updates

per target example, so the overall complexity is at most O(mT (k′ + Nk′) + m2
T ) =

O(mT (k′ +Nk′ +mT )).

Asymptotically, Safe is always at least as fast as Safe-EMMA. If Nk′ = Ω(mT )

(for example, if a linear search method is used or if mS is much larger than mT ) then

the two methods will have the same computational complexity. Otherwise, Safe will

be slightly better asymptotically (this will occur, for example, if a space partitioning

search is used for data in Rd with mS = O(mT ) and d� mT ). While the two methods

may behave the same asymptotically, constant factor slowdowns for Safe-EMMA may

be a significant issue in practice.

Approximation guarantees. Minimum Multiset Multicover is known to

remain NP-hard even when the multisets in S are small. However, a small upper

bound b on the maximum size of any multiset in S can make the problem much easier

to approximate. Specifically, the greedy algorithm has an approximation factor of

Hb, the b-th harmonic number [82]. This is known to be essentially optimal under

nearest neighbor search as orthogonal to this primary concern. For some results in this area, see
[46, 39, 108, 83, 42] and references therein.
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standard hardness assumptions.

In our setting, the size of the largest multiset is determined by the point x ∈ T

with the largest number of points in S∪T having x as one of their k′ nearest neighbors.

In general metric spaces this can be up to m = mS + mT , resulting in a multiset of

size m + k and an approximation factor of Hm+k = O(logm). However, in spaces

with doubling-dimension γ, it is known that b ≤ k′4γ log3/2(2L/S) where L and S are

respectively the longest and shortest distances between any two points in T [112].

5.4 Performance Guarantees

In this section, we analyze the expected loss of the output classifier of ANDA as

well as its querying behavior. The bound in Section 5.4.1 on the loss holds for

ANDA with any of the sub-procedures presented in Section 5.3. To simplify the

presentation we use ANDA as a placeholder for any of ANDA-Safe, ANDA-EMMA

and ANDA-Safe-EMMA. The bounds on the number of queries in Section 5.4.3

hold for ANDA-Safe and ANDA-Safe-EMMA, which we group under the placeholder

ANDA-S.

5.4.1 Bounding the Loss

We start with a finite sample bound under the assumption that the regression function

η satisfies a λ-Lipschitz condition. That is, we have |η(x)− η(x′)| ≤ λρ(x, x′) for all

x, x′ ∈ XS ∪ XT .

Our bound on the expected loss in Theorem 10 is proven using standard techniques

for nearest neighbor analysis. However, since our algorithm does not predict with a

fully labeled sample from the target distribution (possibly very few or even none of

the target generated examples get actually labeled and the prediction is mainly based

on source generated examples), we need to ensure that the set of labeled examples

still sufficiently covers the target task. The following lemma serves this purpose. It

bounds the distance of an arbitrary domain point x to its k-th nearest labeled point
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in terms of its distance to its k′-th nearest target sample point. Note that the bound

in the lemma is easy to see for points in T . However, we need it for arbitrary (test-)

points in the domain.

Lemma 4. Let T be a finite set of points in a metric space (X , ρ) and let R be a

(k, k′)-NN-cover for T . Then, for all x ∈ X we have

ρ(x, xk(x,R)) ≤ 3ρ(x, xk′(x, T ))

Proof. Let x ∈ X . If the set k′(x, T ) of the k′ nearest neighbors of x in T con-

tains k points from R, we are done (in this case we actually have ρ(x, xk(x,R)) ≤

ρ(x, xk′(x, T ))). Otherwise, let x′ ∈ k′(x, T ) \ R be one of these points that is not in

R. Since R is a (k, k′)-NN-cover for T , and x′ ∈ T , the set of the k′ nearest neighbors

of x′ in R ∪ T contains k elements from R.

Let x′′ be any of these k elements, that is x′′ ∈ R ∩ k′(x′, R ∪ T ). Note that

ρ(x′, x′′) ≤ 2ρ(x, xk′(x, T )) since x′ is among the k′ nearest neighbors of x and x′′ is

among the k′ nearest neighbors of x′ in R ∪ T . Thus, we have

ρ(x, x′′) ≤ ρ(x, x′) + ρ(x′, x′′)

≤ ρ(x, xk′(x, T )) + 2ρ(x, xk′(x, T ))

= 3ρ(x, xk′(x, T )).

This lemma allows us to establish the finite sample guarantee on the expected loss

of the classifier output by ANDA. Note that the guarantee in the theorem below is

independent of the size and the generating process of S (except for the labels being

generated according to η), while possibly (if S covers the target sufficiently) only

few target points are queried for labels. Recall that Nε(XT , ρ) denotes the ε-covering

number of the target support.
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Theorem 10. Let (X , ρ) be a metric space and let PT be a (target) distribution over

X ×{0, 1} with λ-Lipschitz regression function η. Then for all k′ ≥ k ≥ 10, all ε > 0,

and any unlabeled sample size mT and labeled sequence S = ((x1, y1), . . . , (xmS , ymS))

with labels yi generated by η,

E
T∼PmTT

[LT (ANDA(S, T, k, k′))] ≤
(

1 +

√
8

k

)
LT (h∗) + 9λε+

2Nε(XT , ρ) k′

mT

.

The proof (see Appendix A.1) incorporates our bound on the distance to the k

nearest labeled points of Lemma 4 into a standard technique for nearest neighbor

analysis (as in [94]). The key to the guarantee being the bound in Lemma 4, one

could obtain analogous generalization bounds under relaxed assumptions for which

nearest neighbor classification can be shown to succeed (see, e.g. [31] for a discussion

on such). Similarly, one could obtain bounds for other settings, such as multi-class

classification and regression.

Generalized covariate shift. While the covariate shift assumption seems rather

restrictive (source and target regression functions need to take identical values at

every domain point), it is not hard to see that our guarantee in Theorem 10 holds

under more general conditions. Intuitively, ANDA only requires the source to be a

good estimate of the target’s Bayes predictor. That is, the source regression function

could be a “less noisy” version of the target regression function, and does not need

to be Lipschitz continuous (or even continuous at all) itself. Below, we formally state

the relaxed conditions under which our guarantees hold.

Definition (Generalized covariate shift). For two values a, b ∈ [0, 1] we say that

a >noise b if

a >noise b ⇔


a ≥ b ∧ min{b, 1− b} ≤ 1/2

or

a < b ∧ min{b, 1− b} > 1/2
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Now we say that source and target regression function satisfy the generalized covariate

shift with target Lipschitz constant λ, if the target regression function ηT is λ-Lipschitz

and for all x, x′ ∈ X we have

ηS(x′) >noise ηT (x) ⇒ |ηS(x′)− ηT (x)| ≤ λ|x− x′|

5.4.2 Consistency

We show that ANDA is consistent in a slightly more general setting, namely if the

regression function is uniformly continuous and the Nε(XT , ρ) are finite. Note that

this is the case, for example, if (X , ρ) is compact and η is continuous. Recall that a

function η : X → R is uniformly continuous if for every γ > 0 there exists a δ such

that for all x, x′ ∈ X , ρ(x, x′) ≤ δ ⇒ |η(x)− η(x′)| ≤ γ.

Corollary 1. Let (X , ρ) be a metric space, and let P(X , ρ) denote the class of distri-

butions over X × {0, 1} with uniformly continuous regression functions. Let (ki)i∈N,

(k′i)i∈N and (mi)i∈N be non-decreasing sequences of natural numbers with k′i ≥ ki for

all i, and ki →∞, k′i →∞,mi →∞ and (k′i/mi)→ 0 as i→∞. For each i ∈ N, let

Si ∈ (X ×{0, 1})ni be a sequence of labeled domain points. Then for any distribution

PT ∈ P(X , ρ) with finite covering numbers Nε(XT , ρ), we have

lim
i→∞ E

T∼PmiT

[LT (ANDA(Si, T, ki, k
′
i))] = LT (h∗).

Proof. We need to show that for every α > 0, there exists an index i0, such that

E
T∼PmiT

[LT (ANDA(Si, T, ki, k
′
i))] = LT (h∗) + α

for all i ≥ i0. Let PT ∈ P(X , ρ) and α be given.

Let γ be so that 9γ ≤ α/3. Since η is uniformly continuous, there is a δ, such

that for all x, x′ ∈ X ,

ρ(x, x′) ≤ δ ⇒ |η(x)− η(x′)| ≤ γ.
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Note that the only way we used the λ-Lipschitzness in the proof of Theorem 10 is

by using that for any two points x, x′ that lie in a common element C of an ε-cover

of the space, we have |η(x) − η(x′)| ≤ λε. Thus, we could now repeat the proof of

Theorem 10, using a δ-cover of the space and obtain that

E
T∼DmTT

[LT (ANDA(S, T, k, k′))] ≤ (1 +

√
8

k
)LT (h∗) + 9γ +

2Nδ(XT , ρ) k′

mT

.

for all k ≥ 10 and k′ ≥ k. Now let i1 be so that
√

8
ki
≤ α

3
for all i ≥ i1. Note that

this implies √
8

ki
LT (h∗) ≤ α

3

for all i ≥ i1. Since (k′i/mi)→ 0 as i→∞, we can choose i2 be so that

2Nδ(XT , ρ) k′i
mi

≤ α

3

for all i ≥ i2. Together these imply that for all i ≥ i0 := max{i1, i2}, we have

E
T∼PmiT

[LT (ANDA(Si, T, ki, k
′
i))] = LT (h∗) + α

as desired.

5.4.3 Bounding the Number of Queries

In this section, we show that our algorithm automatically adapts the number of label

queries to the similarity of source and target task. First, we now provide a finite

sample bound that implies that with a sufficiently large source sample, with high

probability, ANDA-S does not query at all in areas where the weight ratio of balls

is bounded from below; i.e. it only queries where it is “needed.” In our analysis, we

employ a lemma by [72], which follows from VC-theory [106].

Lemma 5 (Lemma 1 in [72]). Let B denote the class of balls in (X , ρ), and let D be

a distribution over X . Let 0 < δ < 1, and define αn = (dVC(B) ln(2n) + ln(6/δ))/n.

The following holds with probability at least 1 − δ (over a sample T of size n drawn
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i.i.d. from D) for all balls B ∈ B: if a ≥ αn, then T̂ (B) ≥ 3a implies D(B) ≥ a and

D(B) ≥ 3a implies T̂ (B) ≥ a.

With this, we now prove our query bound. We let Bk,T (x) denote the smallest

ball around x that contains the k nearest neighbors of x in T , and B the class of all

balls in (X , ρ). Recall that β(B) = DS(B)/DT (B) is the weight ratio.

Theorem 11. Let δ > 0, w > 0 and C > 1. Let mT be some target sample size with

mT > k′ = (C + 1)k for some k that satisfies k ≥ 9 (dVC(B) ln(2mT ) + ln(6/δ)). Let

the source sample size satisfy

mS ≥
72 ln(6/δ)mT

C w
ln

(
9mT

C w

)
Then, with probability at least 1− 2δ over samples S of size mS (i.i.d. from PS) and

T of size mT (i.i.d. from DT ), ANDA-S on input S, T, k, k′ will not query any points

x ∈ T with β(BCk,T (x)) > w.

Proof. Since k ≥ 9 (dVC(B) ln(2mT )+ ln(6/δ)), we have dVC(B)/k < 1. Thus, we have

mS ≥ max

{
8

(
9 dVC(B)mT

C k w

)
ln

(
9 dVC(B)mT

C k w

)
,

18 ln(6/δ)mT

C k w
,

9mT

C w

}
,

Note that

mS ≥ 8

(
9 dVC(B)mT

C k w

)
ln

(
9 dVC(B)mT

C k w

)
implies that

mS ≥ 2

(
9 dVC(B)mT

C k w

)
ln(2mS),

and together with the second lower bound (in the max) on mS, this yields

mS
C k w

3mT

≥ 3(dVC(B) ln(2mS) + ln(6/δ)). (7)

We now assume that S and T are so that the implications in Lemma 5 are valid (this

holds with probability at least 1− 2δ over the samples S and T ). Let x ∈ T be such
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that β(BCk,T (x)) > w. By definition of the ball BCk,T (x), we have T̂ (BCk,T (x)) = Ck
mT
,

and by our choice of k, we have

T̂ (BCk,T (x)) =
C k

mT

≥ C 9 (dVC(B) ln 2mT + ln 6/δ)

mT

.

Now Lemma 5 implies that DT (BCk,T (x)) ≥ C k
3mT

, so the condition on the weight

ratio of this ball now yields

DS(BCk,T (x)) ≥ C k w

3mT

= mS
C k w

3mT mS

≥ 3

(
dVC(B) ln(2mS) + ln(6/δ)

mS

)
,

where the last inequality follows from Equation (7). Now, Lemma 5, together with

mS ≥ 9mT
C w

(the third term in the max), implies that

Ŝ(BCk,T (x)) ≥ C k w

9mT

≥ k

mS

.

This means that BCk,T (x) contains k examples from the source, which implies that

among the k′ = Ck+ k nearest sample points (in S ∪T ) there are k source examples,

and therefore x will not be queried by ANDA-S.

Theorem 11 provides a desirable guarantee for the “lucky” case: It implies that if

the source and target distributions happen to be identical or very similar, then, given

that ANDA-S is provided with a sufficiently large source sample, it will not make

any label queries at all. More importantly, the theorem shows that, independent of

an overall source/target relatedness measure, the querying of ANDA-S adapts auto-

matically to a local relatedness measure in the form of weight ratios of balls around

target sample points. ANDA-S queries only where it is necessary to compensate for

insufficient source coverage.

5.4.4 Query Consistency

Extending the proof technique of Theorem 11, we get a “query-consistency” result

under the assumption that DS and DT have continuous density functions. In the limit

of large source samples, ANDA-S will, with high probability, not make any queries in

the source support.
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Theorem 12. Let DS and DT have continuous density functions. Let δ > 0, C > 1,

and let mT , k and k′ satisfy the conditions of Theorem 11. Then, there exists a

(sufficiently large) source sample size MS such that with probability at least (1− 3δ)

over source samples of size mS ≥ MS and target samples of size mT , ANDA-S will

not make any label queries in the source support.

Proof. Recall that, according to the requirements of Theoren 11, we have mT > k′ =

(C + 1)k for some k that satisfies

k ≥ 9 (dVC(B) ln(2mT ) + ln(6/δ)).

Since DT has a continuous density function, for every point x in XT and 0 < ε ≤ 1,

there is a ball Bε(x) of target weight exactly ε around x (i.e. DT (Bε(x)) = ε). For

some w > 0, let XT (ε, w) ⊆ XT denote the set of points x whose ε-ball has weight

ratio smaller than w, that is

XT (ε, w) = {x ∈ XT | β(Bε(x)) < w}.

Claim 1.

lim
w→0

DT (XT (ε, w) ∩ XS) = 0

Let ε = Ck/3mT . Given the claim (which we prove below), we can choose w

small enough such that (with probability at least 1 − δ), a target sample of size mT

will not hit XT (ε, w) ∩ XS. Now we can choose a size MS for the source sample S

large enough such that (with probability 1− 2δ) ANDA-S will not query any points

in XS \ XT (ε, w). This is shown similarly to the proof of Theorem 11 as follows.

First, assume that the sample T is so that the implications of Lemma 5 are

satisfied (this also happens with probability at least (1− δ)). Then, by invoking the

contrapositive of the first implication in Lemma 5,

DT (Bε(x)) = ε =
Ck

3mT
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and

Ck

mT

≥ C 9 (dVC(B) ln(2mT ) + ln(6/δ))

mT

implies that

T̂ (Bε(x)) ≤ Ck

mT

.

Thus, for all x, the ball Bε(x) contains at most Ck points from the target sample T .

Now we choose a sufficiently large size for the source sample S, namely

mS ≥MS =
72 ln(6/δ)mT

C w
ln

(
9mT

C w

)
for the value of w chosen above. We assume that the sample S is so that the impli-

cations of Lemma 5 are satisfied (this, again, holds with probability at least (1− δ)).

Exactly as in the proof of Theorem 11, we can show that, for all x with β(Bε(x)) ≥

w,

DT (Bε(x)) =
Ck

3mT

implies

Ŝ(Bε(x)) ≥ k

mS

,

Thus, for all x with β(Bε(x)) ≥ w, the ball Bε(x) contains at least k points from the

source sample S.

In summary, we have shown that with probability (1 − 3δ) over the samples S

and T , for all target sample points x, that fall into the source support, we have

β(Bε(x)) ≥ w, and for those the ball Bε(x) contains at most Ck target and at least

k source samples points. This implies that for all target sample points, that fall into

the source support, the k′ = (C + 1)k Nearest Neighbor ball (in S ∪ T ) around x

contains at least k points from the source sample and will therefore not be queried.

Proof of Claim 1. Let (wi)i∈N be a decreasing sequence that converges to 0. Then the

sets XT (ε, wi) are linearly ordered by inclusion (getting smaller as wi gets smaller).
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Thus, the limit of the sequence of sets XT (ε, wi) exists and we have

lim
i→∞
XT (ε, wi) =

∞⋂
i=1

XT (ε, wi) ⊆ XT \ XS

To see the last inclusion, recall that, by definition, a point x is in the source support

XS if and only if every ball B around x has positive source mass DS(B) > 0. Hence,

in particular DS(Bε(x)) > 0 , which implies that these balls also have strictly positive

weight ratio β(Bε(x)) > 0. Thus, for every point x in the source support, there exists

an i such that x /∈ XT (ε, wi), since the wi converge to 0.

The above set convergence implies

lim
i→∞

DT (XT (ε, wi)) = DT (
∞⋂
i=1

XT (ε, wi)) ≤ DT (XT \ XS).

This, in turn, implies

lim
i→∞

DT (XT (ε, wi) ∩ XS) ≤ DT ((XT \ XS) ∩ XS) = 0,

yielding the claim.

Together with Corollary 1 this shows that for increasing target sample sizes, the

expected loss of the output of ANDA-S converges to the Bayes optimal and, with

high probability over increasing source samples, ANDA-S will not query target sample

points in the source support.

5.5 Experiments

Our experiments on synthetic data illustrate ANDA’s adaptation ability and show

that its classification performance compares favorably with baseline passive nearest

neighbors. Experiments on challenging image classification tasks show that ANDA

is a good candidate for correcting dataset bias. We discuss the results in relation to

our theory.
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Figure 21: Visualization of synthetic data and query strategies for two versions of
ANDA. Red and blue circles represent labeled source examples, black circles represent
unqueried target examples, and green stars represent queried target examples.

5.5.1 Synthetic Data

The source marginal DS was taken to be the uniform distribution over [−1, 0.5]2 and

the target marginal DT was set to uniform over [−0.75, 1]2. This ensures enough

source/target overlap so the source data is helpful in learning the target task but not

sufficient to learn well. The regression function chosen for both tasks was

η(x1, x2) =
1

2
− (sin(2πx1) sin(2πx2))

1/6

2

for (x1, x2) ∈ R2. This creates a 4× 4 checkerboard of mostly-positively and mostly-

negatively labeled regions with noise on the boundaries where η crosses 1/2. Training

samples from this setting are pictured in Figure 21 along with query locations. Notice

that queries are almost never made inside the source support, as our theory would

suggest.

The baseline algorithms we compare against are the following. The “source only”

algorithm predicts according to a k-NN classifier built on a source sample alone. The
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Figure 22: Experimental results on synthetic data. Error bars represent two standard
errors, or roughly a 95% confidence interval.

“target only” algorithm creates a k-NN classifier on a random sample from the target,

and “source + target” does the same but includes labeled data from a source sample

as well.

We compare the generalization error of ANDA-Safe-EMMA and ANDA-Safe

against these baselines across a range of unlabeled target sample sizes. Since the

number of queries made by both ANDA-Safe-EMMA and ANDA-Safe increases with

target sample size, this generates a range of query counts for the active algorithms.

The baseline algorithms were given labeled target samples of sizes in the same range

as these query counts. For all algorithms and target sample sizes we fixed mS = 3200,

k = 7, and k′ = 21. Figure 22 shows the resulting generalization error (averaged over

100 independent trials) for each algorithm as a function of the number of target labels

used.

Both active algorithms perform significantly better than the passive baselines

in terms of the error they achieve per target label query. ANDA-Safe-EMMA also

outperforms ANDA-Safe, since (as shown in Figure 21) achieves full coverage of the
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target region with many fewer queries.

5.5.2 Image Classification

A major problem in building robust image classifiers is that the source of training

images is often not the same as the source of images on which the classifier is expected

to perform. This leads to the problem of dataset bias, which requires some form of

domain adaptation to correct. [102] aligned and preprocessed several image datasets

that provide a way of comparing domain adaptation algorithms on this problem.

Even though these datasets are unlikely to satisfy the covariate shift setting exactly,

we compare ANDA with baseline nearest neighbor classifiers to show that ANDA

provides a partial solution to the dataset bias problem.

The task is to classify images according to the object in the image. We use

the dense setup which contains four datasets (representing different domains) and

40 object classes. SIFT features for each image were precomputed and grouped

into a bag-of-words representation with a 1000-word vocabulary. Despite the high

dimensionality, we find that nearest neighbor methods work well on these datasets

without further dimensionality reduction.

Three of the four datasets (Imagenet, Caltech256, and Bing) are object-centric,

meaning the object corresponding to an image’s class is usually centered and relatively

large, while the fourth (SUN) is scene-centric, meaning the objects of interest are

much more varied in position and scale [102]. Furthermore, the Bing dataset is

known to contain some incorrectly labeled images as they were obtained via web

search. These differences between datasets may explain several of our findings.

Number of target queries. Before testing classification performance, we run

experiments to check how many target queries are made by both ANDA-Safe and

ANDA-Safe-EMMA for each combination of source and target (including self pairs).

This allows us to see similarities and differences in the datasets that are based on the
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(d) Target: SUN

Figure 23: Number of target queries made by ANDA-Safe (solid lines) and
ANDA-Safe-EMMA (dashed lines) for each source-target combination. Each plot
fixes the target data and target sample size (mT = 2000) while varying the source
data, source sample size, and algorithm. Error bars represent two standard errors.

covariates alone rather than the effects of labeled information. To test this, we fixed

mT = 2000, k = 25, and k′ = 75 and ran ANDA-Safe and ANDA-Safe-EMMA for

a series of values of mS. The resulting query counts (averaged over 5 independent

trials) are shown in Figure 23.

This is valuable in a few different ways. First, when the source and target ex-

amples are sampled from the same dataset, we would expect no target queries to be

made when the source sample is large enough. Indeed, for all four datasets, neither
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ANDA-Safe nor ANDA-Safe-EMMA makes any queries when mS ≥ mT . This con-

firms a desirable property predicted by our theory: ANDA will automatically detect

when to rely on source data alone and not waste label queries.

When the source and target are not the same, Figure 23 provides insight into how

much overlap exists between each of the four datasets in the current representation.

For instance, if the source support completely contains the target support, we would

expect the number of target queries made by ANDA-Safe to rapidly approach zero

as mS increases. In contrast, if there are portions of the target support that do

not overlap at all with the source support, the number of target queries made by

ANDA-Safe will decrease more slowly, possibly approaching a positive constant rather

than zero.

Based on this reasoning, we can draw several conclusions from Figure 23. Fig-

ure 23a tells us that Imagenet appears to have regions that are not covered by any of

the other datasets, since the query counts for the other datasets decrease slowly. We

can also order the other three datasets by how much mass Imagenet has outside of

their support. We can make a similar conclusion for Caltech256 based on Figure 23b:

Caltech256 has a very small mass uncovered by Imagenet (Imagenet’s curve decreases

quickly, but never quite reaches zero) while it has significant portions uncovered by

Bing and SUN. Figure 23c shows that Bing is an interesting target because the query

counts for sources Imagenet and Caltech256 decrease to zero as fast as when Bing

itself is the source. This seems to indicate that Bing is completely contained within

the support of Imagenet and Caltech256 but has significant mass uncovered by SUN.

Figure 23d shows that SUN appears to be the smallest dataset since the query counts

decrease quickly for every source dataset.

Classification performance. Our next experiments demonstrate ANDA’s ability

to correct for dataset bias. For each of the twelve source-target permutations, we
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(a) Caltech256 → Imagenet
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(b) Bing → Imagenet
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(c) SUN → Imagenet
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(d) Imagenet → Caltech256
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(e) Bing → Caltech256
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(f) SUN → Caltech256
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(g) Imagenet → Bing
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(h) Caltech256 → Bing
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(i) SUN → Bing

Figure 24: Results on image classification task for object-centric target datasets. Each
plot caption is of the form source → target. Error bars represent two standard errors.
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(a) Imagenet → SUN
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(b) Caltech256 → SUN
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(c) Bing → SUN

Figure 25: Results for cases in which the scene-based SUN dataset is the target. Each
plot caption is of the form source → target. Error bars represent two standard errors.

compared the same algorithms described in Section 5.5.1 and used the same method

for generating a range of query counts. For all algorithms and target sample sizes

we fixed mS = 2000, k = 25, and k′ = 75. Figures 24 and 25 show the resulting

generalization error (estimated from test sets of 1000 examples and averaged over 50

independent trials) for each algorithm as a function of the number of target labels

used. The error values reported here2 are on the same order as those in the results of

[102], but since different sample sizes were used, they cannot be directly compared.

Overall we find that our methods (especially ANDA-Safe-EMMA) successfully cor-

rect for dataset bias in image classification, also showing that ANDA is robust to small

violations of our theory’s assumptions. For all 12 pairs of datasets, ANDA-Safe-EMMA

performs better than using source data alone (adding in target examples always helps).

Even more encouraging, on 6 of the 12 pairs (6 of 9 with object-centric targets), it

performs better than the target-only baseline (indicating that having source examples

allows us to make more efficient use of target labels) and on 7 of the 12 (6 of 9 with

object-centric targets) it outperforms the passive source + target baseline (and never

performs worse). The results are particularly promising when Imagenet is the target

2Note that since there are 40 classes, guessing labels uniformly at random results in a general-
ization error of 97.5%.
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(Figures 24a, 24b, and 24c). In all three of these cases and nearly all query counts,

ANDA-Safe-EMMA outperforms all other methods.

When Caltech256 is the target (Figures 24d, 24e, and 24f), the target-only baseline

outperforms the other methods for high enough query counts. This is likely because

Caltech256 is less noisy than the other datasets, so the noisy source data is helpful in

the absence of target data but harmful when enough target data is available. Notice

that for all three of these cases, ANDA-Safe-EMMA has the best accuracy at small

query counts, exemplifying its efficiency at making use of labels when it only makes

a few queries.

When Bing is the target (Figures 24g, 24h, and 24i), neither active algorithm

performs better (or worse) than the passive baseline. Bing was previously known to

be noisier than the other two datasets [102], and further evidence of this can be found

in the observation that the source-only baselines (for both Caltech256 and Imagenet)

perform better than Bing’s target-only baseline. This means the target queries from

Bing are generally less informative than source examples, regardless of where the

queries are made, resulting in all the source-target combination methods performing

equally well.

Figure 25 shows the three cases in which SUN is the target. These cases exhibit

particularly poor performance for all methods incorporating source examples. This

is possibly due to the fact that SUN appears to be a relatively clean and localized

dataset (in this representation), so oppositely-labeled source examples from outside

this region may be misleading the k-NN predictor. These cases also point to what

may be a more general issue with this feature representation: while scene-centric data

can be a helpful source for an object-centric target task, the reverse appears not to

be true.

These experiments also give evidence for the types of situations in which

ANDA-Safe-EMMA has an advantage over ANDA-Safe. ANDA-Safe-EMMA has
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the greatest improvement over ANDA-Safe when Imagenet and Caltech256 are the

target tasks. From our analysis in the previous section, these are the two datasets

that are the most spread out and are the least covered by the other datasets. Intu-

itively, this is exactly what we would expect, since the approximation algorithm of

ANDA-Safe-EMMA will have a bigger effect when there are large, contiguous regions

containing only target examples rather than cases where source and target examples

are uniformly interspersed.

5.6 Discussion

Domain adaptation is crucial to nearly every application of machine learning. In

many of these applications it makes sense to allow learners to request labels of selected

examples from the target task. We give the first formal analysis of this setting, proving

that ANDA successfully adapts from a source task to a target task by automatically

determining where it needs labeled target examples. We prove not only that ANDA

will have small classification error, but also that it will not make queries where it does

not need to and that the queries it does make are necessary. We also give experimental

evidence that ANDA can correct for dataset bias in image classification.

One feature that ANDA exhibits in our experimental analysis, but is not captured

by our theory, is that approximately finding a minimum (k, k′)-NN-cover as done by

ANDA-Safe-EMMA can lead to improved performance over the use of larger covers.

Fully capturing the sample complexity of ANDA-Safe and ANDA-Safe-EMMA will

likely require and lead to a more general understanding of selective sampling or sample

compressions for nearest neighbor methods. This is an exciting research avenue on

its own and left to future work. Our notion of nearest neighbor covers may prove

beneficial for this more general theory.

Another interesting direction would be to explore how different data represen-

tations effect ANDA’s ability to transfer knowledge. For the image classification
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problem we study here, there is some recent evidence that decaf7 features may be

more amenable to domain adaptation than the SIFT bag-of-words features we use

here [101].

Here we use active learning for handling covariate shift. However, we believe active

learning should be a powerful tool for detecting and correcting label shift as well and

that algorithms for performing this task are greatly needed. More generally, we

have shown that the query ability of active learning can provide great advantages to

domain adaptation algorithms based on k-NN classifiers. However, the benefits active

learning has for domain adaptation are by no means limited to nearest-neighbor-

based algorithms. We believe that two aspects of ANDA will inspire future work on

developing learning methods that perform well under changing tasks: (1) being active

and (2) automatically adapting to the relatedness of source and target, that is, not

needing any parameter tuning to account for the relatedness of specific source and

target tasks at hand. We hope that future research will further develop these aspects

and the intriguing relationship between them.
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CHAPTER VI

SENSOR CONSENSUS GAME FOR HIGH-NOISE

ACTIVE LEARNING

As discussed in Chapter 2, most prior work on active learning has focused only on

the single-agent low-noise setting, with a learning algorithm obtaining labels from a

single, nearly-perfect labeling entity. In large part this is because the effectiveness

of active learning is known to quickly degrade as noise rates become high [22]. In

this chapter, we introduce and analyze a novel setting where label information is

held by highly-noisy low-power agents (such as sensors or micro-robots). We show

how by first using simple game-theoretic dynamics among the agents we can quickly

approximately denoise the system. This allows us to exploit the power of active

learning (especially recent advances in agnostic active learning), leading to efficient

learning from only a small number of expensive queries. This ability to drastically

improve label complexity over passive learning even in the presence of very noisy data

is our final example of a new capability of active learning.

We specifically examine an important setting relevant to many engineered systems

where we have a large number of low-power agents (e.g., sensors). These agents are

each measuring some quantity, such as whether there is a high or low concentration of

a dangerous chemical at their location, but they are assumed to be highly noisy. We

also have a center, far away from the region being monitored, which has the ability

to query these agents to determine their state. Viewing the agents as examples, and

their states as noisy labels, the goal of the center is to learn a good approximation

to the true target function (e.g., the true boundary of the high-concentration region

for the chemical being monitored) from a small number of label queries. However,

99



because of the high noise rate, learning this function directly would require a very

large number of queries to be made (for noise rate η, one would necessarily require

Ω( 1
(1/2−η)2 ) queries [9]). The question we address in this chapter is to what extent this

difficulty can be alleviated by providing the agents the ability to engage in a small

amount of local communication among themselves.

What we show is that by using local communication and applying simple robust

state-changing rules such as following natural game-theoretic dynamics, randomly

distributed agents can modify their state in a way that greatly de-noises the system

without destroying the true target boundary. This then nicely meshes with recent

advances in agnostic active learning [5], allowing for the center to learn a good ap-

proximation to the target function from a small number of queries to the agents. In

particular, in addition to proving theoretical guarantees on the denoising power of

game-theoretic agent dynamics, we also show experimentally that a version of the

agnostic active learning algorithm of [5], when combined with these dynamics, indeed

is able to achieve low error from a small number of queries, outperforming active

and passive learning algorithms without the best-response denoising step, as well as

outperforming passive learning algorithms with denoising. More broadly, engineered

systems such as sensor networks are especially well-suited to active learning because

components may be able to communicate among themselves to reduce noise, and the

designer has some control over how they are distributed and so assumptions such as a

uniform or other “nice” distribution on data are reasonable. We focus in this chapter

primarily on the natural case of linear separator decision boundaries but many of our

results extend directly to more general decision boundaries as well.

6.1 Related Work

There has been extensive work analyzing the performance of simple dynamics in

consensus games [26, 44, 79, 68, 8, 7]. However, this line of work has focused on
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getting to some equilibria or states of low social cost, while we are primarily interested

in getting near a specific configuration, which as we show below is an approximate

equilibrium.

6.2 Preliminaries

First we describe the basic setup underlying the remainder of this chapter. We assume

we have a large number N of agents (e.g., sensors) distributed uniformly at random

in a geometric region, which for concreteness we consider to be the unit ball in Rd.

There is an unknown linear separator such that in the initial state, each sensor on the

positive side of this separator is positive independently with probability ≥ 1− η, and

each on the negative side is negative independently with probability ≥ 1 − η. The

quantity η < 1/2 is the noise rate.

6.2.1 The Sensor Consensus Game

The sensors will denoise themselves by viewing themselves as players in a certain

consensus game, and performing a simple dynamics in this game leading towards a

specific ε-equilibrium.

Specifically, the game is defined as follows, and is parameterized by a communi-

cation radius r, which should be thought of as small. Consider a graph where the

sensors are vertices, and any two sensors within distance r are connected by an edge.

Each sensor is in one of two states, positive or negative. The payoff a sensor receives

is its correlation with its neighbors: the fraction of neighbors in the same state as it

minus the fraction in the opposite state. So, if a sensor is in the same state as all its

neighbors then its payoff is 1, if it is in the opposite state of all its neighbors then its

payoff is −1, and if sensors are in uniformly random states then the expected payoff

is 0. Note that the states of highest social welfare (highest sum of utilities) are the

all-positive and all-negative states, which are not what we are looking for. Instead,

we want sensors to approach a different near-equilibrium state in which (most of)
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those on the positive side of the target separator are positive and (most of) those on

the negative side of the target separator are negative. For this reason, we need to be

particularly careful with the specific dynamics followed by the sensors.

We begin with a simple lemma that for sufficiently large N , the target function

(i.e., all sensors on the positive side of the target separator in the positive state and

the rest in the negative state) is an ε-equilibrium, in that no sensor has more than ε

incentive to deviate.

Lemma 6. For any ε, δ > 0, for sufficiently large N , with probability 1− δ the target

function is an ε-equilibrium.

Proof Sketch: The target function fails to be an ε-equilibrium iff there exists

a sensor for which more than an ε/2 fraction of its neighbors lie on the opposite side

of the separator. Fix one sensor x and consider the probability this occurs to x,

over the random placement of the N − 1 other sensors. Since the probability mass

of the r-ball around x is at least (r/2)d (see discussion in proof of Theorem 13), so

long as N − 1 ≥ (2/r)d ·max[8, 4
ε2

] ln(2N
δ

), with probability 1− δ
2N

, point x will have

mx ≥ 2
ε2

ln(2N
δ

) neighbors (by Chernoff bounds), each of which is at least as likely

to be on x’s side of the target as on the other side. Thus, by Hoeffding bounds,

the probability that more than a 1
2

+ ε
2

fraction lie on the wrong side is at most

δ
2N

+ δ
2N

= δ
N

. The result then follows by union bound over all N sensors. For a

bit tighter argument and a concrete bound on N , see the proof of Theorem 13 which

essentially has this as a special case.

Lemma 6 motivates the use of best-response dynamics for denoising. Specifically,

we consider a dynamics in which each sensor switches to the majority vote of all

the other sensors in its neighborhood. We analyze below the denoising power of this

dynamics under both synchronous and asynchronous update models.
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6.2.2 Margin-based Active Learning

Recently, Awasthi et al. [5] gave the first polynomial-time active learning algorithm

able to learn linear separators to error ε over the uniform distribution in the presence

of agnostic noise of rate O(ε). Moreover, the algorithm does so with optimal query

complexity of O(d log 1/ε). This algorithm is ideally suited to our setting because (a)

the sensors are uniformly distributed, and (b) the result of best response dynamics

is noise that is low but potentially highly coupled (hence, fitting the low-noise ag-

nostic model). In our experiments (Section 6.5) we show that indeed this algorithm

when combined with best-response dynamics achieves low error from a small number

of queries, outperforming active and passive learning algorithms without the best-

response denoising step, as well as outperforming passive learning algorithms with

denoising.

Here, we briefly describe the algorithm of [5] and the intuition behind it. At high

level, the algorithm proceeds through several rounds, in each performing the following

operations (see also Figure 26):

Instance space localization: Request labels for a random sample of points within

a band of width bk = O(2−k) around the boundary of the previous hypothesis

wk.

Concept space localization: Solve for hypothesis vector wk+1 by minimizing hinge

loss subject to the constraint that wk+1 lie within a radius rk from wk; that is,

||wk+1 − wk|| ≤ rk.

[5, 53, 109] show that by setting the parameters appropriately (in particular,

bk = Θ(1/2k) and rk = Θ(1/2k)), the algorithm will achieve error ε using only k =

O(log 1/ε) rounds, with O(d) label requests per round. In particular, a key idea of

their analysis is to decompose, in round k, the error of a candidate classifier w as its

error outside margin bk of the current separator plus its error inside margin bk, and to
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Figure 26: The margin-based active learning algorithm after iteration k. The al-
gorithm samples points within margin bk of the current weight vector wk and then
minimizes the hinge loss over this sample subject to the constraint that the new
weight vector wk+1 is within distance rk from wk.

prove that for these parameters, a small constant error inside the margin suffices to

reduce overall error by a constant factor. A second key part is that by constraining

the search for wk+1 to vectors within a ball of radius rk about wk, they show that

hinge-loss acts as a sufficiently faithful proxy for 0-1 loss.

6.3 Simultaneous-move Dynamics

We start by providing a positive theoretical guarantee for one-round simultaneous

move dynamics.

Theorem 13. If

N ≥ 2

(r/2)d(1/2− η)2
ln

(
1

(r/2)d(1/2− η)2δ

)
+ 1

then, with probability at least 1 − δ, after one synchronous consensus update every

sensor at distance at most r from the separator has the correct label.

The result follows from a union bound and an application of Bernstein’s inequality

on the difference between the number of positively and negatively labeled sensors

within radius-r balls around sensors.

Note that since a band of width 2r about a linear separator has probability mass

O(r
√
d), Theorem 13 implies that with high probability one synchronous update
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denoises all but an O(r
√
d) fraction of the sensors. In fact, Theorem 13 does not

require the separator to be linear, and so this conclusion applies to any decision

boundary with similar surface area, such as an intersection of a constant number of

halfspaces or a decision surface of bounded curvature.

Proof (Theorem 13): Fix a point x in the sample at distance ≥ r from the

separator and consider the ball of radius r centered at x. Let n+ be the number of

correctly labeled points within the ball and n− be the number of incorrectly labeled

points within the ball. Now consider the random variable ∆ = n− − n+. Denoising

x can give it the incorrect label only if ∆ ≥ 0, so we would like to bound the

probability that this happens. We can express ∆ as the sum of N − 1 independent

random variables ∆i taking on value 0 for points outside the ball around x, 1 for

incorrectly labeled points inside the ball, or −1 for correct labels inside the ball. Let

V be the measure of the ball centered at x (which may be less than rd if x is near

the boundary of the unit ball). Then since the ball lies entirely on one side of the

separator we have

E[∆i] = (1− V ) · 0 + V η − V (1− η) = −V (1− 2η).

Since |∆i| ≤ 1 we can take M = 2 in Bernstein’s theorem. We can also calculate that

Var[∆i] ≤ E[∆2
i ] = V . Thus the probability that the point x is updated incorrectly is

Pr

[
N−1∑
i=1

∆i ≥ 0

]
= Pr

[
N−1∑
i=1

∆i − E
[N−1∑
i=1

∆i

]
≥ (N − 1)V (1− 2η)

]

≤ exp

(
−(N − 1)2V 2(1− 2η)2

2
(
(N − 1)V + 2(N − 1)V (1− 2η)/3

))

≤ exp

(−(N − 1)V (1− 2η)2

2 + 4(1− 2η)/3

)
≤ exp

(
−(N − 1)V (1/2− η)2

)
≤ exp

(
−(N − 1)(r/2)d(1/2− η)2

)
,

where in the last step we lower bound the measure V of the ball around r by the
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measure of the sphere of radius r/2 inscribed in its intersection with the unit ball.

Taking a union bound over all N points, it suffices to have e−(N−1)(r/2)
d(1/2−η)2 ≤ δ/N ,

or equivalently

N − 1 ≥ 1

(r/2)d(1/2− η)2

(
lnN + ln

1

δ

)
.

Using the fact that lnx ≤ αx− lnα− 1 for all x, α > 0 yields the claimed bound on

N .

We can now combine this result with the efficient agnostic active learning al-

gorithm of [5]. In particular, applying the most recent analysis of [53, 109] of the

algorithm of [5], we get the following bound on the number of queries needed to

efficiently learn to accuracy 1− ε with probability 1− δ.

Corollary 2. There exists constant c1 > 0 such that for r ≤ ε/(c1
√
d), and N

satisfying the bound of Theorem 13, if sensors are each initially in agreement with the

target linear separator independently with probability at least 1− η, then one round of

best-response dynamics is sufficient such that the agnostic active learning algorithm

of [5] will efficiently learn to error ε using only O(d log 1/ε) queries to sensors.

In Section 6.5 we implement this algorithm and show that experimentally it learns

a low-error decision rule even in cases where the initial value of η is quite high.

6.4 Asynchronous Dynamics

In this section we discuss the asynchronous update setting in which the sensors update

their label one at a time. We show that the results can differ drastically depending

on the order in which the sensors perform their updates.

6.4.1 Arbitrary-order Asynchronous Dynamics

We contrast the above positive result with a negative result for arbitrary-order asyn-

chronous moves. In particular, we show that for any d ≥ 1, for sufficiently large
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N , with high probability there exists an update order that will cause all sensors to

become negative.

Theorem 14. For some absolute constant c > 0, if r ≤ 1/2 and sensors begin with

noise rate η, and

N ≥ 16

(cr)dφ2

(
ln

8

(cr)dφ2
+ ln

1

δ

)
,

where φ = φ(η) = min(η, 1/2− η), then with probability at least 1− δ there exists an

ordering of the agents so that asynchronous updates in this order cause all points to

have the same label.

The basic idea is to have the sensors update from the far negative side of the

separator toward the positive side, in order of distance from the separator. The first

half of them will all flip negative as long as N is large relative to 1/(1/2− η) (similar

to the argument of Theorem 13). The rest will all flip negative because half of the

neighboring sensors are already negative and the other half will not be all positive

because N is large relative to 1/η.

Proof. We first give a sketch for the d = 1 case before moving on to the more general

setting. Consider the case d = 1 and a target function x > 0. Each subinterval of

[−1, 1] of width r has probability mass r/2, and let m = rN/2 be the expected number

of points within such an interval. The given value of N is sufficiently large that with

high probability, all such intervals in the initial state have both a positive count and a

negative count that are within ±φ
4
m of their expectations. This implies that if sensors

update left-to-right, initially all sensors will (correctly) flip to negative, because their

neighborhoods have more negative points than positive points. But then when the

“wave” of sensors reaches the positive region, they will continue (incorrectly) flipping

to negative because the at least m(1 − φ
2
) negative points in the left-half of their

neighborhood will outweigh the at most (1− η+ φ
4
)m positive points in the right-half

of their neighborhood.
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Now we give the proof in full generality for d ≥ 1. Suppose the labeling is given

by sign(w · x). We show that if sensors are updated in increasing order of w · x (from

most negative to most positive) then with high probability all sensors will update to

negative labels.

Consider what we see when we come to update the sensor at x. Assuming we have

not yet failed (given a positive label), all of the points x′ with w ·x′ < w ·x are labeled

negative, while those with w ·x′ > w ·x are unchanged from their original states, and

so are still labeled with independent uniform noise. As in the proof of Theorem 13,

we apply Bernstein’s theorem to the difference ∆ between the number of negative

and positive points in the neighborhood of x, which we write as a sum of (N − 1)

independent variables ∆i. The expected labels of the nearby points depend on the

location of x, so we consider three regions: w ·x ≤ −r, w ·x ≥ 0, and −r < w ·x < 0.

Let V denote the probability mass of the ball of radius r around x. In all cases

the variance is bounded by Var[∆i] ≤ E[∆2
i ] = V ≤ rd.

In the first region (w · x ≤ −r) we can use the same analysis from Theorem 13

to find that E[∆i] ≤ −V (1 − 2η) ≤ −(r/2)d(1 − 2η), since the ball around x never

crosses the separator and any sensors previously updated to negative labels cannot

hurt.

In the second region (w · x ≤ 0) we can use a similar analysis, bounding

E[∆i] ≤ −V/2 + (1− η)V/2 = −ηV/2 ≤ −1

2
(r/2)d,

since the measure of the (positive biased) half of the ball further from the separator

than x is never larger than the measure of the remaining (all negative) half of the

ball.

In the final region (0 < w ·x < r), we must take a little more care, as the measure

of the all-negative half of the ball may be less than the measure of the unexamined

side, which may be positive-biased due to crossing the separator. To analyze this
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Figure 27: A ball around x intersecting the decision boundary and the boundary of
the unit ball.

case, we project onto the 2-dimensional space spanned by x and w. The worst case

is clearly when x is on the surface of the ball, as shown in Figure 27.

Any point in the red region is known to have a negative label, while points in

the dark blue region are biased towards positive labels. We first show that the red

region is bigger by showing that the angle α subtended by the dark blue region is

smaller than the angle β of the red region. Construct the segment xA by reflecting

the segment xB about the line xO and extending it to the separator. Note that the

angle ∠OxA is the same as the angle θ between x and the separator. We find that

α ≤ β precisely when xA ≥ xC = r. Indeed, by considering the isosceles triangle

4AxO we see that xA = 1/(2 cos θ) ≥ 1/2. So as long as r ≤ 1/2 we have β ≥ α.

Thus, since the projection of the uniform distribution over the unit ball onto this

plane is radially symmetric, the red region has more probability mass than the blue

region.

We can now calculate for this case

E[∆i] ≤ (−1)[measure of red] + (1− 2η)[measure of blue] + (2η − 1)[measure of white]

≤ −2η[measure of red].

Note that although the projection does not make sense for d = 1 the result obviously
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still holds (as there are no points near both the separator and the boundary of the

unit ball). We can lower bound the measure of the red region by the measure of the

sphere inscribed in the sector, which has radius at least cr for some 0 < c < 1/2 as

long as r ≤ 1/2 (since β is bounded away from 0 in this range of r).

Now we see that for any x the expected label satisfies

E[∆i] ≤ −
1

2
(cr)d min(η, 1/2− η).

Letting φ = min(η, 1
2
− η), we find that the probability of giving a positive label on

any given update is

Pr[∆ ≥ 0] ≤ exp

( −1
4
(N − 1)2(cr)2dφ2/2

(N − 1)rd + (N − 1)(cr)dφ/3

)
= exp

(−1
4
(N − 1)(cr)dφ2

1 + φ/3

)
= exp

(
−(N − 1)(cr)dφ2/8

)
By the union bound, we find that

N ≥ 16

(cr)dφ2

(
ln

8

(cr)dφ2
+ ln

1

δ

)
suffices to ensure that with probability at least 1−δ all sensors are updated to negative

labels.

Note that if r = O(1/
√
d) then we can lower bound all of the relevant measures

in the preceding proof by Θ(rd) rather than (Θ(r))d, to see that

N ≥ Ω

(
1

rdφ2

(
ln

1

rφ
+ ln

1

δ

))
suffices.

6.4.2 Random Order Dynamics

While Theorem 14 shows that there exist bad orderings for asynchronous dynamics,

we now show that we can get positive theoretical guarantees for random order best-

response dynamics (that is, sensors each update only once, but they do so in a random

order).
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The high level idea of the analysis is to partition the sensors into three sets: those

that are within distance r of the target separator, those at distance between r and

2r from the target separator, and then all the rest. For those at distance < r from

the separator we will make no guarantees: they might update incorrectly when it

is their turn to move due to their neighbors on the other side of the target. Those

at distance between r and 2r from the separator might also update incorrectly (due

to “corruption” from neighbors at distance < r from the separator that had earlier

updated incorrectly) but we will show that with high probability this only happens in

the last 1/4 of the ordering. I.e., within the first 3N/4 updates, with high probability

there are no incorrect updates by sensors at distance between r and 2r from the

target. Finally, we show that with high probability, those at distance greater than 2r

never update incorrectly. This last part of the argument follows from two facts: (1)

with high probability all such points begin with more correctly-labeled neighbors than

incorrectly-labeled neighbors (so they will update correctly so long as no neighbors

have previously updated incorrectly), and (2) after 3N/4 total updates have been

made, with high probability more than half of the neighbors of each such point have

already (correctly) updated, and so those points will now update correctly no matter

what their remaining neighbors do. Our argument for the sensors at distance in [r, 2r]

requires r to be small compared to (1
2
− η)/

√
d, and the final error is O(r

√
d), so the

conclusion is we have a total error less than ε for r < cmin[1
2
− η, ε]/

√
d for some

absolute constant c.

We begin with a key lemma. For any given sensor, define its inside-neighbors to

be its neighbors in the direction of the target separator and its outside-neighbors to

be its neighbors away from the target separator. Also, let γ = 1/2− η.

Lemma 7. For any c1, c2 > 0 there exist c3, c4 > 0 such that for r ≤ γ

c3
√
d

and

N ≥ c4
(r/2)dγ2

ln
1

rdγδ
,
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with probability 1 − δ, each sensor x at distance between r and 2r from the target

separator has mx ≥ c1
γ2

ln(4N/δ) neighbors, and furthermore the number of inside-

neighbors of x that move before x is within ± γ
c2
mx of the number of outside neighbors

of x that move before x.

Proof. First, the guarantee on mx follows immediately from the fact that the proba-

bility mass of the ball around each sensor x is at least (r/2)d, so for appropriate c4

the expected value of mx is at least max[8, 2c1
γ2

] ln(4N/δ), and then applying Hoeffd-

ing bounds [59, 27] and the union bound. Now, fix some sensor x and let us first

assume the ball of radius r about x does not cross the unit sphere. Because this is

random-order dynamics, if x is the kth sensor to move within its neighborhood, the

k − 1 sensors that move earlier are each equally likely to be an inside-neighbor or an

outside-neighbor. So the question reduces to: if we flip k − 1 ≤ mx fair coins, what

is the probability that the number of heads differs from the number of tails by more

than γ
c2
mx. For mx ≥ 2( c2

γ
)2 ln(4N/δ), this is at most δ/(2N) by Hoeffding bounds.

Now, if the ball of radius r about x does cross the unit sphere, then a random

neighbor is slightly more likely to be an inside-neighbor than an outside-neighbor. We

can analyze this difference in probabilities as follows. First, in the worst case, x is at

distance exactly 2r from the separator, and is right on the edge of the unit ball. So we

can define our coordinate system to view x as being at location (2r,
√

1− 4r2, 0, . . . , 0).

Now, consider adding to x a random offset y in the r-ball. We want to look at

the probability that x + y has Euclidean length less than 1 conditioned on the first

coordinate of y being negative compared to this probability conditioned on the first

coordinate of y being positive. Notice that because the second coordinate of x is

nearly 1, if y2 ≤ −cr2 for appropriate c then x + y has length less than 1 no matter

what the other coordinates of y are (worst-case is if y1 = r but even that adds at

most O(r2) to the squared-length). On the other hand, if y2 ≥ cr2 then x + y has

length greater than 1 also no matter what the other coordinates of y are. So, it is
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only in between that the value of y1 matters. But notice that the distribution over y2

has maximum density O(
√
d/r). So, with probability nearly 1/2, the point is inside

the unit ball for sure, with probability nearly 1/2 the point is outside the unit ball for

sure, and only with probability O(r2
√
d/r) = O(r

√
d) does the y1 coordinate make

any difference at all.

Therefore, the difference in probabilities is only O(r
√
d), which is at most γ

2c2
for

appropriate choice of constant c3. The result follows by applying Hoeffding bounds

to the γ
2c2

gap that remains.

Theorem 15. For some absolute constants c3, c4, for r ≤ γ

c3
√
d

and

N ≥ c4
(r/2)dγ2

ln
1

rdγδ
,

in random order dynamics, with probability 1− δ all sensors at distance greater than

2r from the target separator update correctly.

Proof. We begin by using Lemma 7 to argue that with high probability, no points at

distance between r and 2r from the separator update incorrectly within the first 3N/4

updates (which immediately implies that all points at distance greater than 2r update

correctly as well, since by Theorem 13, with high probability they begin with more

correctly-labeled neighbors than incorrectly-labeled neighbors and their neighborhood

only becomes more favorable). In particular, for any given such point, the concern is

that some of its inside-neighbors may have previously updated incorrectly. However,

we use two facts: (1) by Lemma 7, we can set c4 so that with high probability the total

contribution of neighbors that have already updated is at most γ
8
mx in the incorrect

direction (since the outside-neighbors will have updated correctly, by induction), and

(2) by standard concentration inequalities [59, 27], with high probability at least 1
8
mx

neighbors of x have not yet updated. These 1
8
mx un-updated neighbors together

have in expectation a γ
4
mx bias in the correct direction, and so with high probability

have greater than a γ
8
mx correct bias for sufficiently large mx (sufficiently large c1 in
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Lemma 7). So, with high probability this overcomes the at most γ
8
mx incorrect bias of

neighbors that have already updated, and so the points will indeed update correctly

as desired. Finally, we consider the points of distance ≥ 2r. Within the first 3
4
N

updates, with high probability they will all update correctly as argued above. Now

consider time 3
4
N . For each such point, in expectation 3

4
of its neighbors have already

updated, and with high probability, for all such points the fraction of neighbors that

have updated is more than half. Since all neighbors have updated correctly so far,

this means these points will have more correct neighbors than incorrect neighbors no

matter what the remaining neighbors do, and so they will update correctly themselves.

6.5 Experiments

In our experiments we seek to determine whether our overall algorithm of best-

response dynamics combined with active learning is effective at denoising the sensors

and learning the target boundary. The experiments were run on synthetic data, and

compared active and passive learning (with Support Vector Machines) both pre- and

post-denoising.

Synthetic data. The N sensor locations were generated from a uniform distri-

bution over the unit ball in R2, and the target boundary was fixed as a randomly

chosen linear separator through the origin. To simulate noisy scenarios, we corrupted

the true sensor labels using two different methods: 1) flipping the sensor labels with

probability η and 2) flipping randomly chosen sensor labels and all their neighbors,

to create pockets of noise, with η fraction of total sensors corrupted.

Denoising via best-response dynamics. In the denoising phase of the experi-

ments, the sensors applied the basic majority consensus dynamic. That is, each sensor

was made to update its label to the majority label of its neighbors within distance
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r from its location1. We used radius values r ∈ {0.025, 0.05, 0.1, 0.2}. Updates of

sensor labels were carried out both through simultaneous updates to all the sensors

in each iteration (synchronous updates) and updating one randomly chosen sensor in

each iteration (asynchronous updates).

Learning the target boundary. After denoising the dataset, we employ the ag-

nostic active learning algorithm of Awasthi et al. [5] described in Section 6.2.2 to

decide which sensors to query and obtain a linear separator. We can also extend the

algorithm to the case of non-linear boundaries by implementing a kernelized version.

Here we compare the resulting error (as measured against the “true” labels given by

the target separator) against that obtained by training a SVM on a randomly se-

lected labeled sample of the sensors of the same size as the number of queries used by

the active algorithm. We also compare these post-denoising errors with those of the

active algorithm and SVM trained on the sensors before denoising. For the active al-

gorithm, we used parameters asymptotically matching those given in Awasthi et al [5]

for a uniform distribution. For SVM, we chose for each experiment the regularization

parameter that resulted in the best performance.

6.5.1 Results

Here we report the results for N = 10000 and r = 0.1. Every value reported is an

average over 50 independent trials.

Denoising effectiveness. Figure 28 (left side) shows, for various initial noise rates,

the fraction of sensors with incorrect labels after applying 100 rounds of synchronous

denoising updates. In the random noise case, the final noise rate remains very small

even for relatively high levels of initial noise. Pockets of noise appear to be more

1We also tested distance-weighted majority and randomized majority dynamics and experimen-
tally observed similar results to those of the basic majority dynamic.

115



0 10 20 30 40 50
Initial Noise(%)

0

5

10

15

20

25

30

35

40

45

Fi
na

lN
oi

se
(%

)

Random Noise
Pockets of Noise

0 1 10 100 1000
Number of Rounds

0

10

20

30

40

50

Fi
na

lN
oi

se
(%

)

Random Noise - Asynchronous updates
Pockets of Noise - Asynchronous updates
Random Noise - Synchronous updates
Pockets of Noise - Synchronous updates

Figure 28: Initial vs. final noise rates for synchronous updates (left) and comparison
of synchronous and asynchronous dynamics (right). One synchronous round updates
every sensor once simultaneously, while one asynchronous round consists of N random
updates.
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Figure 29: Generalization error of the two learning methods with random noise at
rate η = 0.35 (left) and pockets of noise at rate η = 0.15 (right).

difficult to denoise. In this case, the final noise rate increases with initial noise rate,

but is still nearly always smaller than the initial level of noise.

Synchronous vs. asynchronous updates. To compare synchronous and asyn-

chronous updates we plot the noise rate as a function of the number of rounds of

updates in Figure 28 (right side). As our theory suggests, both simultaneous updates

and asynchronous updates can quickly converge to a low level of noise in the ran-

dom noise setting (in fact, convergence happens quickly nearly every time). Neither

update strategy achieves the same level of performance in the case of pockets of noise.
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Generalization error: pre- vs. post-denoising and active vs. passive. We

trained both active and passive learning algorithms on both pre- and post-denoised

sensors at various label budgets, and measured the resulting generalization error

(determined by the angle between the target and the learned separator). The results

of these experiments are shown in Figure 29. Notice that, as expected, denoising

helps significantly and on the denoised dataset the active algorithm achieves better

generalization error than support vector machines at low label budgets. For example,

at a label budget of 30, active learning achieves generalization error approximately

33% lower than the generalization error of SVMs.
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CHAPTER VII

CONCLUSIONS

We have given theoretical and empirical evidence that active learning has several uses

beyond the traditional one of label complexity improvement over passive learning

under limited noise. Our four examples show that active learning can have compu-

tational benefits over semi-supervised learning, can be used to discover and exploit

margin structure in data, can be used to adapt to a shifting distribution, and can

achieve label complexity improvements over passive learning in some scenarios with

very high noise. In this chapter, we summarize these findings in more detail and

discuss some future directions that have opened up as a result of this work.

In Chapter 3 we proved that the problem of finding a consistent and compatible

two-sided disjunction in the semi-supervised setting is NP-hard but that allowing the

learner to make active queries allows it to solve this problem efficiently. We also give

efficient semi-supervised algorithms for learning two-sided disjunctions, but these are

at full strength in a somewhat less general setting than our active algorithm. In ad-

dition to this being the first example of provable computational advantages for active

learning over semi-supervised learning, our work is also one of the first two discuss

active learning in the context of compatibility notions typically associated with semi-

supervised learning. This leads to questions of whether computational advantages

for active learning can be viewed as a more general phenomenon, rather than specific

to our setting of two-sided disjunctions. Are there other settings typically associated

with semi-supervised learning where active learning has a computational advantage?

Are there more general classes of concepts and compatibility notions where these or

similar results will hold? These new directions would be very interesting to explore.
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In Chapter 4 we initiated a discussion of the LqLp margin spectrum, motivated in

part by the L∞L1 margin condition implied by the definition of two-sided disjunctions

in the previous chapter. We proved a generalization guarantee for passive learning

that applies to the entire spectrum, generalizing previous results. We showed both

theoretically and empirically that situations exist where taking advantage of L∞L1

margins leads to better performance than using other margin parameters, comple-

menting prior work showing similar results for other regions of the margin spectrum.

We then showed how label queries allow learning algorithms to identify the appro-

priate margin parameters for the data at hand and then exploit this by shaping the

distribution of labeled data to enhance classification accuracy. The idea of using label

queries to discover structure in data and then use that knowledge to improve learning

is both natural and intriguing and may be possible in many other settings as well.

Chapter 5 introduced ANDA, a novel active nearest neighbors algorithm for do-

main adaptation. We proved that ANDA has nearly the same generalization guar-

antee as a passive nearest neighbors classifier but will use drastically fewer labeled

examples when information is shared between the source and target distributions.

The use of active label queries allows ANDA to automatically adapt its label usage

to a local measure of relatedness between the source and target tasks and allows it to

maintain statistical consistency even when the source and target tasks are not at all

related. These features are not typical of traditional domain adaptation techniques.

We gave further evidence of ANDA’s adaptation ability by showing that it can correct

for data set bias in multi-class image categorization. We hope that this first formal

analysis of active domain adaptation will spur the machine learning and learning

theory communities to explore this setting more deeply and broadly. One possible

direction is to more precisely characterize the convergence rates of different active

nearest neighbor methods for domain adaption. On the other hand, it would be very

interesting to find other (non-nearest-neighbor) active domain adaptation algorithms
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that also enjoy strong theoretical guarantees. The power active learning provides for

domain adaptation is clear, but our understanding of the benefits and limitations of

this setting is far from complete.

In Chapter 6 we gave our final example of a novel use for active learning by

introducing a setting in which high-noise active learning is feasible. In this setting,

the data is held by many distributed low-power power sensors which can communicate

locally with their neighbors. We showed that by using a simple consensus update

strategy, the sensors can nearly completely denoise the system so that an active learner

running on the resulting data will require exponentially fewer queries than a passive

learner would need. The sensor dynamics lead to an approximate equilibrium rather

than a true equilibrium, making the analysis different from much of the game theory

literature. Avenues for future research include theoretically analyzing alternative

denoising schemes and active learning algorithms as well as empirically testing these

in real-world sensor networks.

In conclusion, we have shown that the power of active learning extends far beyond

its traditional use. In addition to deepening our understanding of active learning

itself, this work connects active learning to several other areas of machine learning

and game theory. We hope these connections will open new doors for future research

and insights into the nature of machine learning.
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APPENDIX A

ACTIVE LEARNING FOR DOMAIN ADAPTATION

A.1 Proof of Theorem 10

We adapt the proof (guided exercise) of Theorem 19.5 in [94] to our setting. As is

done there, we use the notation y ∼ p to denote drawing from a Bernoulli random

variable with mean p. We will employ the following lemmas:

Lemma 8 (Lemma 19.6 in [94]). Let C1, . . . , Cr be a collection of subsets of some

domain set X . Let S be a sequence of m points sampled i.i.d. according to some

probability distribution D over X . Then, for every k ≥ 2,

E
S∼Dm

 ∑
i:|Ci∩S|<k

P[Ci]

 ≤ 2rk

m
.

Lemma 9 (Lemma 19.7 in [94]). Let k ≥ 10 and let Z1, . . . , Zk be independent

Bernoulli random variables with P[Zi = 1] = pi. Denote p = 1
k

∑
i pi and p′ =

1
k

∑k
i=1 Zi. Then

E
Z1,...,Zk

P
y∼p

[y 6= 1[p′ > 1/2]] ≤
(

1 +

√
8

k

)
P
y∼p

[y 6= 1[p > 1/2]] .

Before we prove the theorem, we show the following:

Claim 2 (Ex. 3 of Chapter 19 in [94]). Fix some p, p′ ∈ [0, 1] and y′ ∈ {0, 1}. Then

P
y∼p

[y 6= y′] ≤ P
y∼p′

[y 6= y′] + |p− p′| .
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Proof. If y′ = 0, we have

P
y∼p

[y 6= y′] = p

= p− p′ + p′

= P
y∼p′

[y 6= y′] + p− p′

≤ P
y∼p′

[y 6= y′] + |p− p′|.

If y′ = 1, we have

P
y∼p

[y 6= y′] = 1− p

= 1− p− p′ + p′

= P
y∼p′

[y 6= y′]− p+ p′

≤ P
y∼p′

[y 6= y′] + |p− p′|.

Proof of Theorem 10. Let hST denote the output classifier of Algorithm 8, and let

C = {C1, . . . , Cr} denote an ε-cover of the target support (XT , ρ). That is,
⋃
iCi = XT

and each Ci has diameter at most ε. Without loss of generality, we assume that the

Ci are disjoint and for a domain point x ∈ X we let C(x) denote the element of C that

contains x. Let L = T l ∪ S denote the (k, k′)-NN-cover of T that ANDA uses (that

is, the set of labeled points that hST uses for prediction). We bound its expected loss

as follows:

E
T∼DT

mT
[LPT (hST )] = E

T∼DT
mT

[
P

(x,y)∼PT

[hST (x) 6= y]

]

≤ E
T∼DT

mT

[
P

(x,y)∼PT

[hST (x) 6= y ∧ ρ(x, xk′(x, T )) > ε] + P
(x,y)∼PT

[hST (x) 6= y ∧ ρ(x, xk′(x, T )) ≤ ε]
]

= E
T∼DT

mT

[
P

(x,y)∼PT

[ρ(x, xk′(x, T )) > ε]

]
+ E
T∼DT

mT

[
P

(x,y)∼PT

[hST (x) 6= y ∧ ρ(x, xk′(x, T )) ≤ ε]
]

= E
T∼DT

mT

[
P

(x,y)∼PT

[ρ(x, xk′(x, T )) > ε]

]
+ E
x∼DT

 P
y∼η(x)

T∼DT
mT

[hST (x) 6= y ∧ ρ(x, xk′(x, T )) ≤ ε]

 ,
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where the last equality holds by Fubini’s theorem. Continuing the chain above, we

have

≤ E
T∼DT

mT

[
P

(x,y)∼PT

[ρ(x, xk′(x, T )) > ε]

]
+ E
x∼DT

 P
y∼η(x)

T∼DT
mT

[hST (x) 6= y | ρ(x, xk′(x, T )) ≤ ε]


≤ E

T∼DT
mT

[
P

(x,y)∼PT

[|T ∩ C(x)| < k′]

]
+ E
x∼DT

 P
y∼η(x)

T∼DT
mT

[hST (x) 6= y | ρ(x, xk′(x, T )) ≤ ε]

 , (8)

where for the first summand of the last inequality, we used that a point x can only

have distance more than ε to its k′-th nearest neighbor in T if C(x) is hit less than

k′ times by T . Lemma 8 implies that this first summand can be upper bounded as

E
T∼DTmT

[
P

(x,y)∼PT
[|T ∩ C(x)| < k′]

]
≤ 2Nε(XT , ρ) k′

mT

. (9)

To bound the second summand, we now first fix a sample T and a point x such that

ρ(x, xk′(x, T )) ≤ ε (and condition on these). Since the set of labeled points L = T l∪S

used for prediction is an (k, k′)-NN-cover of T , Lemma 4 implies that there are at

least k labeled points in L at distance at most 3ε from x. Let k(x, L) = {x1, . . . , xk}

be the k nearest neighbors of x in L, let pi = η(xi) and set p = 1
k

∑
i pi. Now we get

P
y1∼p1,...yk∼pk,y∼η(x)

[hST (x) 6= y] = E
y1∼p1,...yk∼pk

[
P

y∼η(x)
[hST (x) 6= y]

]
≤ E

y1∼p1,...yk∼pk

[
P
y∼p

[hST (x) 6= y]

]
+ |p− η(x)|

≤
(

1 +

√
8

k

)
P
y∼p

[y 6= 1[p > 1/2]] + |p− η(x)|,

where the first inequality follows from Claim 2 and the second from Lemma 9. We

have

P
y∼p

[1[p > 1/2] 6= y] = min{p, 1− p}

≤ min{η(x), 1− η(x)}+ |p− η(x)| .

Further, since the regression function η is λ-Lipschitz and ρ(xi, x) ≤ 3ε for all i, we
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have

|p− η(x)| =

∣∣∣∣∣
(

1

k

∑
i

η(xi)

)
− η(x)

∣∣∣∣∣
=

∣∣∣∣∣
(

1

k

∑
i

η(xi)− η(x) + η(x)

)
− η(x)

∣∣∣∣∣
≤
∣∣∣∣∣
(

1

k

∑
i

3λε+ η(x)

)
− η(x)

∣∣∣∣∣
=

∣∣∣∣∣3λε+

(
1

k

∑
i

η(x)

)
− η(x)

∣∣∣∣∣ = 3λε.

Thus, we get

P
y1∼p1,...yk∼pk,y∼η(x)

[hST (x) 6= y] = E
y1∼p1,...yk∼pk

[
P

y∼η(x)
[hST (x) 6= y]

]
≤
(

1 +

√
8

k

)
P
y∼p

[y 6= 1[p > 1/2]] + |p− η(x)|

≤
(

1 +

√
8

k

)
(min{η(x), 1− η(x)}+ |p− η(x)|) + |p− η(x)|

≤
(

1 +

√
8

k

)
min{η(x), 1− η(x)}+ 3|p− η(x)|

≤
(

1 +

√
8

k

)
min{η(x), 1− η(x)}+ 9λε.

Since this holds for all samples T and points x with ρ(x, xk′(x, T )) ≤ ε, we obtain

E
x∼DT

 P
y∼η(x)

T∼DTmT

[hST (x) 6= y | ρ(x, xk′(x, T )) ≤ ε]


≤ E

x∼DT

[(
1 +

√
8

k

)
min{η(x), 1− η(x)}+ 9λε

]

=

(
1 +

√
8

k

)
E

x∼DT
[min{η(x), 1− η(x)}] + 9λε

=

(
1 +

√
8

k

)
LT (h∗T ) + 9λε. (10)

Combining Equations (8), (9), and (10) completes the proof.
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