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SUMMARY

Network management is complex and error-prone; this complexity and brittleness

has several causes. First, much of today’s network management process remains low-level

and manual: operators must update router and switch configuration files to change the

network’s forwarding behavior (e.g., quarantining, garden-walling, or rate limiting a host)

while configuration language is unintuitive and hard to understand. Second, the configura-

tion is distributed all over the network instead of residing in one location, which makes it

harder to manage. Third, network conditions are dynamic. Traffic patterns change, hosts

arrive and depart, topologies change, intrusions occur, and so forth, thus the network’s con-

figuration needs continuous updates by operators. Yet, we understand very little about the

nature of network configuration and its changes. We also lack alternate solutions that can

help operators to express today’s complex network policies with less misconfigurations.

This dissertation analyzes traditional network management methods to better under-

stand the problem in network configuration, and presents better network management so-

lutions that help operators to configure and program their network in a concise, intuitive,

and less error-prone way. First, we analyze over five years of historical network configu-

ration files from two big campus networks and show that a network can experience a lot

of changes; number of lines that change in all configuration files ranges from 200,000 to

800,000 lines per year. Based on our findings, this dissertation presents two distinct so-

lutions that are both based on Software-Defined Networking (SDN). Kinetic is a domain

specific language and network control platform that enables operators to write programs

that can automatically reconfigure the network in face on arbitrary network events. Kinetic

also automatically verifies the correctness of these control programs with respect to user-

specified temporal properties. Coronet is an SDN-based service that provides automated
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recovery in face of an unexpected but common network event: data-plane failures such as

switch and link failures. Coronet provides other SDN control applications with the abstrac-

tion of a reliable virtual topology and achieves fast failover by updating small number of

table entries upon failure detection rather than the much larger number of individual flows

that are assigned to those table entries.

Our user study of Kinetic with several hundred network operators demonstrates that

Kinetic is intuitive and usable, and our performance evaluation shows that realistic Ki-

netic programs scale well as the number of policies and the size of the network increase.

Evaluation of Coronet against four Mininet-emulated network topologies demonstrates that

Coronet can provide fast failover (maximum less than two seconds), and encoding paths as

trees achieves network load balancing before and after failure close to the performance of

end-to-end routing paths, but with lower failover time and much lighter use of OpenFlow

table resources at switches.
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CHAPTER I

INTRODUCTION

Today, computer networks are large and complex. For example, our study shows that a

large campus network has around 1,000 to 1,700 network devices (e.g., routers, firewalls,

switches), and experiences 1,000 to 18,000 changes per month [46]. Despite of the growth

of size and complexity, however, the method and tools used for configuring a network have

not changed much. Network operators still perform complex network tasks by typing in

low-level commands in configuration files in individual network devices, and they make

frequent mistakes when making changes to network configuration [22, 67].

There are several reasons why network configuration is so hard and error-prone. First,

network configuration process remains low-level and mostly manual. Operators still use

command line interface (CLI) for interacting with network devices, and use low-level, un-

intuitive commands to configure routers, firewalls, and switches. Second, configuration

files reside in network devices, thus are distributed all over the network, making it hard to

manage. For example, Feamster et al. has concluded that distributed configuration across

routers is the cause of the majority of the configuration faults in ASes [22]. Third, network

conditions are dynamic, thus frequent and continuous network configuration updates are

inevitable. Traffic patterns and volume change, host devices arrive and depart, new depart-

ments appear and move, and so forth. Such planned or unplanned arbitrary network events

likely cause big or small updates to the network. Operators generally rely on manual up-

dates to configuration files, but also often use ad hoc scripts or tools to automate frequent

changes to the configuration. However, such scripts or tools do not prevent misconfigura-

tion, but in fact, can even introduce more misconfigurations [22].

To shed light on understanding how network is configured, and to explore better ways
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to configure networks, this dissertation focuses on analyzing current configuration prac-

tices and designing systems that make network configuration easier, more intuitive, and

less error-prone. First, we study how network is configured and how it changes over time

through static and longitudinal analysis. Such analytical study helps us better understand

current practices and identify problems in configuration methods. With lessons learned

from our analysis, this dissertation presents a radically different way of configuring the net-

work using SDN. This dissertation presents the design and implementation of systems that

operators can use to build network control programs that perform automatic adjustment of

network behavior based on planned and unplanned network events, and most importantly,

in a more concise, intuitive, and less error-prone way.

1.1 Challenges in improving network configuration methods

It is fundamentally hard to introduce better configuration solutions as the market is domi-

nated by few vendors, who predominantly constraint operators to use methods that require

typing in low-level commands directly in network devices. The API is also not open source,

thus has limited programmability. Such vertically integrated and closed “blackbox” devices

make it hard to test and introduce new functions or methods. The advent of Software-

Defined Networking (SDN) opens up a lot of possibilities. SDN separates network control

and data planes; a logically centralized controller makes traffic forwarding decisions and

programs switches to carry out traffic forwarding in the data plane. SDN enables global

network visibility, programmability, and extensibility. However, this approach introduces

another set of challenges.

SDN is an open-world without guidance. SDN is a powerful approach to managing com-

puter networks [23]. However, it opens up new challenges, especially in searching for the

right abstraction. While there are much work on standardizing the interface between the

data plane and control plane (“southbound” API, like OpenFlow [84]), not much research

has been done in coming up with the right abstraction for the language for building SDN
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control applications, the controller platform itself, and the communication between SDN

control applications and the platform (“northbound” API). The openness of SDN has en-

couraged plethora of controller platforms to emerge, such as NOX [79], POX [86], Flood-

light [26], HP VAN [36], Open Daylight [83], Ryu [92], Pyretic [75], and so forth. Yet

current SDN lacks guidance on how to implement an efficient and correct control program.

Such lack of guidance fails to prevent inefficient or even buggy control programs to appear,

which can introduce unexpected and undesired behavior in the network.

Generally hard to verify and guarantee correct network behavior. As the consequence

of misconfiguration or faulty control logic can be serious, it is important to have certain

sense of guarantee that the control program correctly encodes the intended network policy.

However, it is generally hard, if not impossible, to automatically verify the correctness

of the control program that operator implemented with a general-purpose programming

language. Manual inspection is too slow, inefficient, and bound to human error. There

are related work that performs verification on snapshots of network’s data-plane state (

[43,45,68]), but there are not much work on verifying the logic of the control program that

generates the data-plane state in the first place.

Scaling to large networks. The size of a typical enterprise network continues to grow, and

specialized networks such as data center networks usually house hundreds of switches with

thousands of links. The challenge is to provide a control platform and service that allow

operators or developers to build SDN control programs that scale to increasing number of

links, switches, hosts, and network events. Specifically, SDN control programs should react

to arbitrary network events and rapidly recompile and produce new forwarding rules that

are installed in the data plane. The number of necessary updates to the data plane should

also be minimized to ensure fast network reconfiguration in face of planned and unplanned

events. The language and control platform should bare such responsibility, rather than

relying on the operator to optimize her program to be efficient.
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1.2 Towards better network management

Thesis statement: This dissertation identifies that lots of network changes are caused by

various types of network events, and posits that network events and dynamic reactions to

them should be encoded in the network policy in the first place by the operator, or should

be handled transparently by a dedicated module for certain common network events. We

use software-defined networking to present a language and systems that help operators to

write dynamic network control programs in a concise, intuitive, and less error-prone way

compared to legacy methods. We bring guarantees and correctness verifications to network

control programs through software.

1.3 Contribution

This dissertation makes following contributions in defense of the thesis statement:

The first extensive longitudinal analysis study on network configuration changes. This

dissertation presents the first extensive longitudinal analysis on how network configuration

changes over time. By inspecting and analyzing over five years of configuration file change

logs from network devices from two large campus networks, we uncover and confirm that

network configuration changes a lot, which was only based on anecdotes from network

operators. We have found that a campus network may experience anywhere from 1,000 to

18,000 changes per month, and a variety of network-wide tasks contribute to changes in

devices, including provisioning, management, traffic engineering, security, and QoS.

Encoding network events and dynamic changes in forwarding behavior in network

policy. This dissertation focuses on a variety of network events and posits that such events

and corresponding reactions should be modeled into the network policy in the first place.

Instead of thinking a network-wide network policy as a combination of multiple static

network policies with network events that trigger transitions between them, we present a

domain specific language and platform that lets operators to encode network events into
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the network policy. Through an extensive user study and quantitative evaluation, we show

the benefit of such approach.

Making network configuration easier with abstractions, composition, and reusable

modules. This dissertation presents high-level abstractions to operators to make network

configuration easier. Our system allows to compose multiple network control programs that

have distinctive network tasks together to express more complex network policies. This

dissertation presents modular services and network control programs that can be reused by

operators, promoting code reusability. Coronet is an SDN service module that specifically

handles unplanned data-plane failures, and guarantees to swiftly and efficiently recover

from any single link or switch failure. This brings the developers and operators together to

create different SDN control “apps” and services that can be reused and shared among the

community.

Bringing verification and guarantees in network through software. We explore ways

to provide verification and guarantee in the network through software. Kinetic not only

enables operators to write network policies in a concise and intuitive way, but also provides

verification capabilities that can be used to verify whether the created software program

correctly encodes the event and reaction control logic using model checking in temporal

logic. Coronet uses graph theory to create a set of primary and backup paths that guar-

antee the network to survive any single data-plane failure in the network, and uses linear

programming to guarantee to find the optimal traffic failover placement on backup paths to

minimize maximum load on links.

1.4 Outline

Chapter 3 presents our analytical study on five years of network configuration files from

two big campus networks. Chapter 4 presents Kinetic, a domain specific language and con-

troller platform for programming verifiable dynamic network policies. Chapter 5 presents

5



Coronet, a failure recovery service module for SDN control applications. Chapter 7 con-

cludes this dissertation with summary of contributions, lessons learned, and future work.

1.5 Bibliographic notes

The analysis study of campus network configuration appeared as a full paper at IMC

2014 [46]. Kinetic was published as a full paper in NSDI 2015 [47]. A poster version

of Coronet appeared in ICNP 2012 [48], and is currently under submission in SOSR 2015.
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CHAPTER II

BACKGROUND AND RELATED WORK

2.1 Network configuration in legacy switches

In traditional network, network operators type in a combination of low-level commands

into a configuration file that resides in individual network devices such as routers, firewalls,

and switches. Figure 1 shows an example of how a configuration files looks like. It is

extremely hard to understand and interpret the meaning of such list of commands without

appropriate knowledge, and remains challenging even for network operators who normally

obtain certifications to understand and implement such configurations.

Operators often use tools to make configuration easier to manage and also to rollback

to previous configuration when an error is detected. RANCID [89] is a widely used track-

ing and monitoring tool for network device configurations. RANCID creates a catalog of

devices, pull the current configurations, and store them in a designated storage system.

In addition to configuration files, RANCID also pulls hardware information (e.g., model

number, serial number). When combined with a version control system, such as CVS, it

is possible to keep track how configurations in network devices have changed over time.

The version control system also allows operators to manually check in changes they made

in network devices, in addition to what RANCID provides automatically. The changelogs

are stored in a Revision Control System (RCS) file format, which stores “diffs” between

consecutive versions of a configuration file, and it is possible to reconstruct the snapshot of

each revision.

Static and dynamic analysis on network configuration. Static analysis of network con-

figuration focuses on capturing “snapshots” of configuration files from network devices and

analyzing them to uncover otherwise hidden characteristics. Previous work has performed
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Figure 1: Example of content of configuration file

static analysis of network configurations to study network properties and to help network

operators diagnose misconfigurations in their networks. Caldwell et al. propose a system

to automatically discover configuration templates and rules [8]. Maltz et al. performed a

study of many enterprise network configurations to gain insights about the design and use

of network configuration in enterprise networks [69]. The rcc tool performs network-wide

static analysis of router configurations to detect configuration errors in BGP [22]. There

is much other previous work on identifying and detecting misconfiguration [55, 67], but

these tools focus on static analysis. Other work has used static analysis of router configura-

tion to understand how operators configure specific functions (e.g., route redistribution [60]

and access control [104]), as well as to identify sources of configuration complexity [6].

The NetDB system pulled router configurations from the AT&T backbone network into a

database for analysis of configuration snapshots [25].

Other projects have explored the changes in configuration over time, albeit for smaller

sets of network configuration, or over shorter periods of time. Sung et al. examined changes

in stanzas over time for five enterprises VPN customers. They study which sets of stanzas

change most often [98]. Chen et al. also examine the dependencies between configuration
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stanzas by analyzing changes [11].

Automating configuration generation. Gottlieb et al. used NetDB to perform static anal-

ysis of network configuration to discover and construct configuration templates to help net-

work operators automatically configure new sessions for ISP customers [31]; a follow-up

system, Presto, constructs network configurations based on configuration templates [20].

These systems rely on operators to manually specify network configuration templates; ul-

timately, the type of analysis we perform in this study might help automatically identify

common tasks and configuration idioms that could be automated. Le et al. [59] aim to au-

tomatically generate rules to determine commands that a given stanza should contain. This

approach requires pre-processing and domain knowledge to determine how to represent the

commands as attributes of stanza; it also does not explore configuration changes over time.

Mining software repositories. The field of software repository mining, a sub-area of soft-

ware engineering, mines version control systems to discover artifacts that are produced

and archived during the evolution of a software program. Several studies have explored

the longitudinal evolution of software. Lehman et al. studied the evolution of source

code in several IBM products between 1969 and 2001 [61]. Eick et al. studied the phe-

nomenon of code decay, whereby changes to a software system become increasingly diffi-

cult over its lifetime [18]. Those studying changes to software repositories focus on both

changes to high-level properties, such as software complexity or maintainability; and on

changes to artifacts, which is typically done by analyzing differences between versions

in the version control system itself. A specific approach to mining software repositories

called source code differencing, pioneered by Raghavan et al., examines difference data

in software repositories to look for additions, deletions, and modifications to source code

over time [88]. This approach is similar to that which we take in this paper, where we

explore additions, deletions, and modifications to network configuration files to understand

changes to software artifacts. Kagdi et al. provide an excellent survey and taxonomy of the
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large body of work in mining software repositories [41].

2.2 Software-defined networking

Software-defined networking (SDN) decouples the system that makes the traffic forward-

ing decision (control plane) from the system that actually forwards the traffic (data plane).

Switches in the data plane become “dumb” forwarding devices, while the “brain” and con-

trol logic resides in the logically centralized controller as a software program. Figure 2

describes this separation of control plane from the data plane, compared to the traditional

network. Such decoupling enables to bring innovation easier than traditional switching

mechanisms that has every logic built into the hardware. By modifying the control logic in

the control plane, it is easier to make changes in forwarding behavior with much more flex-

ibly. SDN can also simplify networking and management by having a logically centralized

controller that makes forwarding decisions.

Although SDN has gain significant attention and traction only recently, there has been

previous work and study that steadily lead to SDN, advocating a programmable network.

We omit the detailed description of SDN and its history in this dissertation as there are
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abundant previous studies that summarize this. Feamster et al. presents an intellectual

history of programmable networks with technology push and use pull of techniques and

protocols along the way, as well as myths and misconceptions [23]. Nunes et al. gives

summary of past, present, and future of programmable networks [80], and Kreutz et al.

gives a comprehensive survey on OpenFlow and SDN [54].

2.2.1 SDN, OpenFlow, and northbound and southbound API

It is important to note the difference between SDN and OpenFlow [71], and be aware of the

concept of northbound and southbound API in SDN. SDN is a networking concept where

the control plane is separated from the data plane, and SDN uses a well-defined interface,

or Application Programming Interface (API) to interact with data plane, which is called

the southbound API, as shown in Figure 3. OpenFlow is just one of the most prominent

example of such southbound APIs, which defines and specifies on how to interact with for-

warding devices (e.g., routers, switches) in the data plane. On the other hand, northbound

API is the interface between the control platform and SDN control applications. North-

bound API bridges the control applications to control platform, and commands from the

control application will be passed to to the data plane through the southbound API.

OpenFlow dominates the southbound API field, and new specifications are discussed

and standardized by Open Networking Foundation (ONF) [81]. While there are interesting

research and works in the southbound API, this dissertation focuses on the northbound API

and control platforms, where research in finding the right high-level abstraction is on the

way.

2.2.2 Related work in SDN

Language and abstractions. FlowLog [78] provides a database-like programming model

that unifies the control-plane logic with data-plane state and controller state. Aspects of

FlowLog programs can be verified, but it cannot verify arbitrary temporal relationships,
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such as those that can be verified with CTL in Kinetic. FlowLog uses Alloy to perform

bounded verification, so its analysis is not complete, and certain aspects of verification

are manual. FlowLog has not been evaluated for realistic network policies or for large

networks. It requires storing multiple database entries for each network state variable and

handles certain aspects of control logic by sending data packets to the controller, so it is

unlikely to scale. VeriCon [4] verifies that a program written in its language (CSDN) is

correct for all topology and packet events (e.g., packet arrivals, switch joins). It does not

handle arbitrary network events, and there is no OpenFlow-based implementation, so its

practicality is unclear.

Recent work in network verification has focused on verifying static properties of the

data-plane state [45, 91, 95]. Especially, consistent updates to the data plane is extremely

important for correct behavior [91]. Kinetic should leverage such system to ensure cor-

rect network behavior in face of frequent data-plane reconfiguration. Anteater [68] and

HSA [43, 44] can verify properties of a static snapshot of a network’s data-plane state.

These systems can determine whether a static snapshot of data-plane state violates some

invariant, but they do not verify the logic of the control program that generated the state in
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the first place, making it difficult to identify which aspect of the network’s control-plane

logic caused the incorrect data-plane state. NICE [9] can test control-plane properties that

might result from arbitrary sequences of standard OpenFlow events; it is not a controller,

but rather a test harness for control programs written in existing low-level controllers (e.g.,

NOX) and hence does not permit reasoning about arbitrary events.

Many languages raise the level of abstraction for writing network control programs,

yet these languages do not offer constructs for concisely encoding policies that capture

network dynamics, nor do they incorporate formal verification of control-plane behavior.

FML [33] allows network operators to write and maintain policies in a declarative style.

Nettle [100] is a domain specific language in Haskell. Procera [101] applies functional

reactive programming to help operators express policies. Frenetic [27] is a family of lan-

guages that share fundamental constructs and techniques for efficient compilation to Open-

Flow switches.

Fault tolerance. OpenVirtex [3] “network hypervisor” presents virtual topologies to SDN

controllers and applications while assuming responsibility for ensuring physical connec-

tivity when network components fail, but lacks efficient mechanisms for fast failover and

congestion avoidance, and performs only shortest path route planning. FatTire [90] pro-

poses an SDN policy language that allows operators to specify flow-specific resilience re-

quirements, among other properties. Coronet could be customized to provide an efficient,

scalable implementation of such policies. Keep Forwarding [105] and Data Driven Con-

nectivity [65] propose new data-plane protocols for extremely fast restoration of data-plane

connectivity after failures. While these protocols could be used with an SDN control plane

that optimizes routes over longer time scales, they require switch hardware modification,

unlike Coronet which works with unmodified OpenFlow switches.

SWAN [34] and B4 [40] use SDN to manage traffic routing for expensive WAN links.

zUpdate [64] produces schedules for congestion-free re-routing of traffic flows for planned

network maintenance events. Forward Fault Correction (FFC) [63] also uses an LP solver
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after unplanned failures, but reserves spare bandwidth in advance of unplanned failures

to avoid congestion. R3 [102] provides congestion-free recovery in IP networks using

legacy OSPF routing and modified MPLS. In contrast to previous work, Coronet provides

best-effort congestion avoidance with weighted fast failover to multiple backup routes, and

more suited to SDN environment and amenable to providing transparent failover service to

SDN-based control applications.

Finally, prior research has proposed improvements for controller consistency and re-

liability [53], and reliable switch-controller communication [5]. Aditya et al. suggest

improvements to mitigate unreliability of switch-controller and controller-controller com-

munication [1].
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CHAPTER III

THE EVOLUTION OF NETWORK CONFIGURATION

3.1 Introduction

The behavior of a communications network depends in part on the configuration of thou-

sands of constituent network devices, each of which is configured independently. In this

sense, network configuration is a large, distributed program. Despite its importance in

dictating the overall behavior of the network, we understand very little about the nature

of configuration. Today, network operators implement high-level network tasks with low-

level configuration commands; operators frequently make mistakes when making changes

to network configuration [22, 67]. Although some studies have examined properties of

configuration “snapshots” (e.g., [69]), we have little understanding of how network config-

uration evolves over time.

Studying the evolution of network configuration over time can offer unique insights that

cannot be learned from a single static snapshot. First, such a study can shed light on how

network functions evolve over time: for example, we can learn more about how network

configuration evolves, and which network tasks contribute to the growth in complexity.

Second, because configuration changes are the cause of many errors, understanding the na-

ture of how configuration changes over time—and what tasks configuration changes are as-

sociated with—can better inform configuration testing by helping create targeted test cases.

Third, knowledge about configuration changes also offers valuable information about the

parts of network configuration where operators spend time, which may help designers of

configuration languages and configuration management systems design a better environ-

ment to make these tasks easier.

Towards these goals, this paper presents the first long-term longitudinal study of the
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evolution of network configuration, for two large campus networks: Georgia Tech and the

University of Wisconsin. Comparing the evolution of network configuration across two

different large campuses allows us to identify trends that are common across campuses,

as well as practices that are specific to a particular network. We study the changes that

operators make to the configurations of all routers, switches, and firewalls in these networks

over a five-year period. We study the following questions:

• How does network configuration size evolve over time? How many of the changes

are additions, modifications, or deletions? Do changes tend to occur at a specific

time of day or day of the week?

• Which network-wide factors contribute most to configuration evolution?

• What parts of the configuration change most frequently, and why?

• Are there dependencies and correlations in changes to network configuration, and

why?

We perform our analysis on two campus networks. Although the results may not generalize

beyond these two campuses, they represent a case study and a first attempt to perform

extensive longitudinal analysis on campus networks. Our study also complements previous

studies, which have focused on enterprise and backbone networks [25, 98].

We find that configurations continue to grow over time, and a variety of factors—

infrequent ones, such as, infrastructure expansion and policy changes, and more frequent

ones, such as customer addition/modification—contribute in interesting ways to configu-

ration evolution. We find that routers experience configuration changes more frequently,

and that changes to routers involve a broader range of network configuration tasks than the

changes that operators make to switch and firewall configurations. Given that there are far

fewer routers than firewalls or switches in both networks, the relative frequency of configu-

ration changes to routers highlights that many crucial day-to-day network operations tasks
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center around router configurations. Third, although there are many similarities in the con-

figurations between the two campuses—both in the amount of configuration devoted to

each configuration task and to the nature of the configuration changes—the network oper-

ators for each campus do have distinct practices (e.g., the use of static ARP entries) that

tend to appear on more general purpose devices, such as core routers. In contrast, devices

that are more special-purpose such as firewalls tend to exhibit more common configura-

tion change patterns. Finally, we note that configuration changes to switches and routers

are sometimes correlated, suggesting the possibility for better configuration tools that can

assist operators by automatically recognizing these dependencies.

Our findings suggest possible areas for improvement in configuration management and

testing. For example, our findings concerning correlated changes across configurations can

suggest improvements to the configuration process: a configuration management system

could observe correlations in configuration changes and suggest changes that operators

might make to low-level configuration constructs based on observations of past correlated

changes for different high-level tasks. The management system can similarly help with

debugging erroneous changes to configuration. Our observations regarding the high fre-

quency of router configuration updates—which are often manual and hence error-prone—

suggest the need for automated network-wide configuration management systems targeted

specifically toward routers.

The rest of the paper is organized as follows. Section 4.2 presents background on net-

work configuration, and on the configuration management systems used to make changes

to network configuration. Section 3.3 describes the datasets that we use for this study

and our approach. Section 3.4 describes our results for routers, switches, and firewalls.

In each case, we observe characteristics for a snapshot of the network configuration; we

also perform a longitudinal analysis of configuration changes over the five years of our

study. Section 3.5 discusses possible future research directions for our results, including

suggestions for how they might be used to improve configuration management and testing.
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Section 5.6 concludes.

3.2 Background and Related Work

We use an archived history of network configuration files to analyze the nature and causes

of configuration changes to switches, routers, and firewalls in the Georgia Tech and Univer-

sity of Wisconsin campus networks. In this section, we describe the common configuration

management systems used by the networks studied.

3.2.1 Configuration Management

Both campus networks use a configuration management tool called RANCID [89] for track-

ing and monitoring network device configurations. RANCID’s main function is to construct

a catalog of devices, pull the current configurations, and store them in a version control sys-

tem, which can allow network operators to track changes in the configurations to network

devices. In addition to device configurations, RANCID also pulls hardware information

(e.g., cards, serial numbers). RANCID operates with devices from many vendors, includ-

ing Cisco, Juniper, Foundry, and HP. More details can be found on the RANCID Web

site [89].

In addition to accepting input from RANCID, the version control system also allows

network operators to manually checkpoint and commit changes to the repository. Just as

programmers use revision control to track changes to source code, network operators have

adopted revision control to manage network devices by tracking changes to device configu-

ration files. The CVS repository tracks changes by giving each revision of the configuration

file a unique revision number and by storing metadata along with this revision, such as the

time of change, comment, author of the change, and the sets of lines changed.

CVS stores all the metadata along with revisions for each configuration file in a single

Revision Control System (RCS) file. Figure 4 shows an excerpt from an RCS file. The

current revision number is on the top (line 2), followed by log (lines 3–5), which contain

comments provided by the operator or RANCID explaining the nature and cause of the
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1 . . .
2 1 . 5 1
3 l o g
4 @Fri Feb 5 1 5 : 0 4 : 2 8 EST 2010
5 @
6 t e x t
7 @a141 1
8 p o r t−o b j e c t r a n g e b o o t p s bo o t pc
9 a160 4

10 ob jec t−group s e r v i c e 12−123−12−13−any−udp udp
11 p o r t−o b j e c t r a n g e b o o t p s bo o t pc
12 ob jec t−group s e r v i c e 12−123−12−14−any−udp udp
13 p o r t−o b j e c t r a n g e b o o t p s bo o t pc
14 d173 16
15 a188 9
16 ob jec t−group s e r v i c e 13−14−15−16−any−udp udp
17 p o r t−o b j e c t r a n g e b o o t p s bo o t pc
18 ob jec t−group s e r v i c e 14−15−16−17−any−udp udp
19 . . .
20 @

Figure 4: RCS file showing changes to network configuration.

change (the revision date in this case). The text (lines 6–20) lines document the location,

number and nature of the change; these lines allow us to track additions and deletions to

the network configuration. We interpret an addition immediately followed by a deletion as

a modification if the sum of the line number and the number of line changes of deletion is

equal to the line number of addition added by one. For example, in Figure 4, lines 14–15

shows a modification (173+16 = 188+1).

3.2.2 Related Work

We provide a brief overview of related work. We first discuss various prior work on static

analysis of network configuration to better understand network properties and to character-

ize or diagnose network configurations. Although the networking community has seen only

limited work on analyzing configuration changes, the software engineering community has

performed extensive studies of changes to source code that relate to our study.

Static analysis. Previous work has performed static analysis of network configurations

to study network properties and to help network operators diagnose misconfigurations in

their networks. Caldwell et al. propose a system to automatically discover configuration
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templates and rules [8]. Maltz et al. performed a study of many enterprise network con-

figurations to gain insights about the design and use of network configuration in enterprise

networks [69]. The rcc tool performs network-wide static analysis of router configurations

to detect configuration errors in BGP [22]. There is much other previous work on identify-

ing and detecting misconfiguration [55, 67], but these tools focus on static analysis. Other

work has used static analysis of router configuration to understand how operators con-

figure specific functions (e.g., route redistribution [60] and access control [104]), as well

as to identify sources of configuration complexity [6]. The NetDB system pulled router

configurations from the AT&T backbone network into a database for analysis of configu-

ration snapshots [25]. Gottlieb et al. used NetDB to perform static analysis of network

configuration to discover and construct configuration templates to help network operators

automatically configure new sessions for ISP customers [31]; a follow-up system, Presto,

constructs network configurations based on configuration templates [20]. These systems

rely on operators to manually specify network configuration templates; ultimately, the type

of analysis we perform in this study might help automatically identify common tasks and

configuration idioms that could be automated.

Dynamic analysis. Other projects have explored the changes in configuration over time,

albeit for smaller sets of network configuration, or over shorter periods of time. Sung

et al. examined changes in stanzas over time for five enterprises VPN customers. They

study which sets of stanzas change most often [98]. Chen et al. also examine the depen-

dencies between configuration stanzas by analyzing changes [11]. Le et al. [59] aim to

automatically generate rules to determine commands that a given stanza should contain.

This approach requires pre-processing and domain knowledge to determine how to repre-

sent the commands as attributes of stanza; it also does not explore configuration changes
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over time.

Mining software repositories. The field of software repository mining, a sub-area of soft-

ware engineering, mines version control systems to discover artifacts that are produced

and archived during the evolution of a software program. Several studies have explored

the longitudinal evolution of software. Lehman et al. studied the evolution of source

code in several IBM products between 1969 and 2001 [61]. Eick et al. studied the phe-

nomenon of code decay, whereby changes to a software system become increasingly diffi-

cult over its lifetime [18]. Those studying changes to software repositories focus on both

changes to high-level properties, such as software complexity or maintainability; and on

changes to artifacts, which is typically done by analyzing differences between versions

in the version control system itself. A specific approach to mining software repositories

called source code differencing, pioneered by Raghavan et al., examines difference data

in software repositories to look for additions, deletions, and modifications to source code

over time [88]. This approach is similar to that which we take in this paper, where we

explore additions, deletions, and modifications to network configuration files to understand

changes to software artifacts. Kagdi et al. provide an excellent survey and taxonomy of the

large body of work in mining software repositories [41].

3.3 Data and Analysis

We describe the configuration data that we use in our study and our approach for postpro-

cessing and analyzing the data.

3.3.1 Data

Both Georgia Tech (GT) and University of Wisconsin (UW) manage their network con-

figurations with RANCID and CVS, the tools described in the previous section. We have

collected five years of archived configuration files from all network devices (i.e., routers,

firewalls, and switches) in the two networks. Table 1 shows the number of network devices
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Table 1: Number of devices for each device type.

Routers Firewalls Switches Total
Georgia Tech 16 365 716 1097
Wisconsin 53 325 1246 1624

currently deployed in both networks for each device type. We note that both networks

comprise mostly Cisco devices; configurations are stored in the RCS format. Our analysis

tools thus focus on parsing Cisco’s configuration language and the RCS format. The bor-

der routers in both networks are Juniper routers. Because the configuration language syntax

differs significantly from Cisco’s configuration language, we omit the border routers from

our analysis for both networks. We now describe the design of each network and how they

use RANCID and CVS in more detail.

Georgia Tech. Figure 5a shows the topology of the Georgia Tech network. The Internet

connection originates from two multi-homed border routers; two physical firewalls are de-

ployed close to the border. Departments, research groups, and residence halls are divided

into separate subnets and assigned unique virtual LANs (VLANs). Each subnet has dif-

ferent access control policies, enforced with a separate virtual firewall. The network has

hundreds of virtual firewall instances that are not shown in the figure. Hosts are connected

to the network via switches at the edge. RANCID pulls the latest configuration files every

three hours and saves the snapshot of the files. A CVS “commit” only occurs when the

system detects a change in the latest configuration. In this network, the operators rarely

make manual backups of the configurations; as such, most revisions in the repository are

created by RANCID.

University of Wisconsin. The UW network, shown in Figure 5b, is similar to GT in many

aspects; like the GT network, the UW network topology is hierarchical, with Internet traf-

fic entering through two border routers and redirected through two major border firewalls

for access control. Border routers are distinct from core routers, and they reside one level
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(a) Georgia Tech (b) University of Wisconsin

Figure 5: GT and UW campus networks.

higher than the core routers. Figure 5b does not show the border routers. The UW net-

work contains four tiers: the core and node layers, which primarily comprises routers; and

the radial and access layers, primarily comprising switches. The access switches connect

computers in the different departments to the network. Unlike GT, the RANCID setup at

UW pulls snapshots for only firewall configurations. Similarly, commits to firewall con-

figuration files only happen when the system detects a change to the latest configuration.

Operational policies and tools at UW force operators to manually snapshot and commit all

other configuration changes before they can be pushed to the devices. As such, most re-

visions are created by operators. This different approach does not affect our results, as it

simply reflects a difference in the mechanism on who pulls snapshots, detects changes and

commits to the repository.

3.3.2 Analysis

We analyze the evolution of network configuration changes by analyzing the RCS files for

changes and extracting information about how each configuration file changes over time.

This section describes our analysis, which has two major parts: (1) abstracting higher-level

operator tasks from low-level configuration changes; (2) performing change analysis on the

RCS files.
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3.3.2.1 Developing abstractions for functionality

The first task in analyzing the network configuration is to derive abstractions of high-level

functions and tasks from low-level configuration commands. This helps us more readily

identify the types of tasks that network operators most commonly perform when making

changes to the network configuration and the amount of configuration devoted to each task.

We do so by manually associating each command in the configuration language with a

unique function. Table 2 shows the list of the functions we use in our analysis, with several

example commands for each of the categories. Given this categorization, we construct a

database that maps configuration commands to one of these functions. Due to the abstrac-

tion we apply to the configurations, we do lose fine-grain information that can be valuable

to our study, but the goal of this work is to offer a high-level analysis of network configu-

ration and its evolution.

Although our categorization is extensive, the mapping does not cover all configuration

commands: some commands are difficult to classify or do not map to any particular func-

tion (e.g., commit checksum values, comments, banners, start/end markers, and version

info). Although not complete, we believe our functionality map is extensive enough to

cover 93% of all configuration commands and 91% of all configuration changes in Univer-

sity of Wisconsin, and 98% of all commands and changes in Georgia Tech, thus complete

enough to shed light on how operators devote time to various high-level tasks.

To abstract configuration changes that involve multiple lines of configuration, we group

configuration into stanzas, each of which is the largest contiguous block of commands that

encapsulate a piece of the network functionality. Cisco’s configuration language provides

special symbols (“!”) for separating stanzas. We analyze configuration changes according

to how stanzas change in total.
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Table 2: Functionality map. We map each command to a specific functionality to effectively
analyze configuration files.

Meaning Examples
mgt device management

settings
username, password, telnet, ssh, logging, aaa, clock, console,
radius-server

l1 interface/port
settings

interface definition, bandwidth, switchport, description, duplex

l2 layer 2 settings arp x.x.x.x, mac-address, ip proxy-arp, arp timeout, spanning-tree
vlan VLAN settings vlan definition, switchport mode trunk, switchport mode access

vlan, set vtp, set vmps
l3 layer 3 related ip address x.x.x.x , ip gateway x.x.x.x, ip route x.x.x.x, nat, router

bgp/ospf/rip, router-id, neighbor
acl access control object define, access-list, permit, deny
sec security related vpn, ipsec, crypto, webvpn, anyconnect, ssl, tunnel-group, flood-

guard
cflt control filtering prefix-list
qos QoS policy-map, class-map, service-policy, port-channel load-balance,

set qos

3.3.2.2 Change analysis

After developing abstractions for the configuration tasks and grouping configuration com-

mands by stanza, we perform three types of analysis on the configuration changes to better

understand how configuration evolves over time:

• Snapshot and change analysis. As a baseline for understanding the composition of

network configuration in the two networks, we analyze a snapshot of the network

configuration for each network and examine the number of lines of configuration

devoted to each function. To understand where operators devote their efforts when

modifying network configuration, we then study the extent to which network configu-

ration changes are associated with different functions that the configuration performs.

We also explore how many of the changes corresponded to additions, deletions, and

modifications. We use a Python library called difflib to infer what constitutes an

addition, deletion, or modification, by comparing two consecutive revisions and pro-

ducing a “diff” in a context format. We evaluate the size of the diff in terms of
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number of lines. We assume the library is able to correctly identify additions, dele-

tions, and modifications. We also correlate the line number difference from the first

version to the last revision to verify that the numbers of line additions, deletions, and

modifications derived are consistent.

• Longitudinal analysis. To understand how the network configuration has evolved

over time, and the primary factors underlying different evolution patterns, we per-

form a longitudinal analysis of configuration changes, using five years of RCS files

from each network.

• Correlation analysis. To understand whether certain aspects of the network config-

uration frequently change together, we perform a correlation analysis to determine

network configuration tasks that operators commonly perform together.

Our toolkit parses each RCS file and aggregates information for the snapshot and basic

change analysis, such as how many lines of configuration are devoted to each function,

how many changes occur and what types of changes (i.e., addition, deletion, modification)

occur, when and where these changes happen. It also parses the data and author information

from the RCS files determine the frequency of changes made on certain days, times, and by

certain authors. The toolkit then inserts this information into a database that performs the

longitudinal and stanza analysis. Correlation analysis requires additional software func-

tionality, beyond gathering first-order statistics. To perform this analysis, the toolkit parses

the RCS files and extracts every version of the configuration file. The configuration files

are parsed, and stanzas from each configuration file are stored in a database, using which

we can study correlated changes.

3.4 The Evolution of Configuration

We now present results on network configuration evolution in the two campus networks.

In the process, we identify change characteristics that the campuses share in common and

those where they differ. We augment our analysis with operator discussions to shed light on
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Table 3: Number of add/del/mod for all devices and average per device for each device
type in GT.

Georgia Tech add del mod Total
Routers (16) 31,178 27,064 262,216 326,458
Firewalls (365) 249,595 118,571 171,005 539,171
Switches (716) 216,958 20,185 116,277 353,420
Rtr avg. per device 2,324 1,692 16,389 20,404
FW avg. per device 684 325 469 1,477
Swt avg. per device 303 28 162 494

Table 4: Number of add/del/mod for all devices and average per device for each device
type in UW.

UW-Madison add del mod Total
Routers (53) 79,202 38,288 154,407 271,897
Firewalls (325) 193,499 73,827 161,863 429,189
Switches (1246) 1608,512 213,910 1,768,384 3,590,806
Rtr avg. per device 1,494 722 2,913 5,130
FW avg. per device 595 227 498 1,321
Swt avg. per device 1,291 172 1,419 2,882

the impact of operational practices on configuration evolution in the respective campuses.

3.4.1 Overview

What types of changes occur? We begin by measuring the number of configuration com-

mands changed for each device type and normalize the results by the number of devices, as

shown in Tables 3 and 4.

We make the following high-level observations. First, the networks have a similar

number of firewalls, but UW has nearly four times as many routers and almost twice as

many switches. Second, although most changes happen in firewalls and switches (with

changes on switches dominating), routers, which are far fewer in number, tend to have

many more configuration changes per device (on average) in both the GT and UW networks.

We delve into router configuration changes in Section 3.4.2. Third, we find interesting

differences between the two networks: in UW, switches clearly undergo a large number

of modifications relative both to other devices in the same network, and to switches in the
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Figure 6: Changes to the UW network configuration over a day.

GT network. GT has relatively more changes to its firewall devices than UW. We delve

into firewall and switch configuration evolutions across the two campuses in Sections 3.4.3

and 3.4.4, respectively.

When do changes occur? Figure 6 shows how configuration changes are distributed across

hours of the day for UW. The pattern shows that most changes to switches and routers are

made during the work hours. However, many of the configuration changes to firewalls hap-

pen later, as shown by a large increase in commits around 8 p.m. In contrast to routers and

switches, the firewall configurations are often managed by a department-specific system

administrator and then transferred to a member of the campus IT staff, who checks them

for consistency and eventually uploads the files to the firewalls and commits them toward,

or after the end of, working hours. Figures 7a and 7b show how changes to network con-

figuration are distributed across the months of the year in the two networks. We observe

that the number of configuration changes peaks during August. Our conversations with

operators revealed that, in both networks, large network-wide changes are put off until the

summer when many of the users are away and disruptions might have the least detrimental
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Figure 7: Changes to the GT and UW configurations over one year. Changes to the config-
uration increase dramatically before the start of the academic year.

effect on users of the network.

Table 5 summarizes the main findings from our analysis of these two campus networks.

We note several interesting characteristics that may ultimately help understand network

configuration and its evolution better, and ultimately devise better methods or tools for

device configuration and management. The rest of this section discusses these findings and

others in more detail.

3.4.2 Routers

We first focus our analysis on routers. The main function of routers in the network is to

support layer-3 routing, but, interestingly, many of the configuration changes on routers are

associated with tasks other than layer-3 routing.

3.4.2.1 Snapshot and change analysis

Commands other than those involving routing change frequently over time. Figures 8a

and 8b present the results from analyzing a snapshot of recent configuration files from all

routers from each campus. Figures 8c and 8d present the changes occurring in both net-

works over five years for the routers in each campus. In both campuses, the l1 and l3

commands are added, deleted, or modified most frequently. In the GT network, l2 changes
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Table 5: Main results, and where they are described.

Many changes in routers are security-related. Bulk changes in routers come
from security-related tasks, and different campuses use different mechanisms,
thus showing dissimilar patterns of changes.

§4.2.1,
§4.2.2,
Figure 8,
Figure 9

Deployment location matters. Where the device is placed within the network
, e.g., border vs edge, have significant influence on the size of change and what
changes. Intuitively, devices at the border undergo a lot more changes than edge
devices. In addition, the changes are more restrictive at borders and are more
closely monitored.

§4.2.1:
Figure 9,
§4.3.1:
Figure 12

Variety of network-wide tasks contribute to changes in devices. This in-
cludes network expansion, change of policy, addition of new features or modi-
fication of existing, and provisioning new customers or deleting subnetworks.

§4.2,
§4.3, §4.4

Specialized devices are similar across different networks. Highly specialized
network appliances, like firewalls, tend to have very similar traits when it comes
to configuration and its evolution.

§4.3.1,
§4.3.2

Correlated changes in firewall devices occur within the acl command. In
firewalls, commands are highly concentrated on acl stanzas. However, we found
highly correlated behavior within the acl stanza, namely object definition and
actual access lists.

§4.3.3

Switch configuration is highly port-centered. Switches are configured port-
by-port, and batch changes on interfaces is frequent. l1 has a variety of subcom-
mands, hence large correlation occur among commands in switches, although
they differ by network and tasks assigned.

§4.4,
§4.4.3
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the number of additions, deletions and modifications of each command in a row-stacked
fashion, all devices combined over 5 years.
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Figure 9: Number of changes to each router per month for the GT and UW networks.
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are extremely frequent, due to changes to static ARP entries, which we will explain in

more detail later. There are many more modifications to the UW network in general, many

of which result from modifications to the existing l1– l3 and vlan commands. Further

investigation shows that VLAN interface definitions in UW router configurations are con-

stantly changing due to addition, update and removal of “customers” of the UW network

(departments or groups of users with specific needs, each group with its own VLAN). This

explains the large amount of the l1, l2 and vlan configuration changes. As we show later,

the changes in l3 are due to security related changes to a particular router.

Distinct security-related practices are found. Notably, many configuration changes to

routers involve security-related tasks, although the mechanisms that each network uses dif-

fer. Each campus has security practices that use specific router configuration commands.

The significant amount of the l2 command changes in Figure 8c shows one example. Fur-

ther inspection reveals that this is due to static ARP entries in routers deployed in residence

halls in the GT network. The GT network maps each end host machine’s MAC address to

a static IP address in residence halls. The main goal is to provide better security and more

fine-grained monitoring. This part of the configuration constantly undergoes changes as

residents come and go. We examine changes to the stanzas in the routers for the different

networks in Figures 9a and 9b. Our analysis shows that, on average, most routers in the UW

network have configuration changes that reflect a consistent breakdown across functions,

regardless of the router. The exception to this pattern is device 6, which has significantly

more layer-3 changes than other devices. Upon further examination, we discovered that

router is a blackhole device. Blackhole filtering, or null routing, provides a firewalling ser-

vice with minimal impact on performance, by routing certain traffic to nowhere, and not

providing any information regarding what happened to the traffic sources (no “no route to

destination” reported back; hence the term blackhole). This practice uses “static routes”

to manipulate the blackhole behavior; thus, we see constant changes to l3 stanzas in this

router device. This is another example of using specific router configuration commands to
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achieve certain security goals. The GT network also has routers with changes that are dis-

tinct from one another. Devices 5, 6, 7, and 8 are “resnet” routers in the campus dormitories

with static ARPs.

Number of changes in core routers are noticeably larger than non-core routers. In

Figure 9a, devices 1, 2, and 3 in the GT network have many l1 and vlan changes, which

are distinct from other routers. These three routers are core routers through which many

VLANs are trunked. Core routers are responsible for routing traffic between the upper

border gateway and subnets at the edge. Many VLANs for edge subnets are aggregated

(or trunked) at these routers, so changes in each subnet can result in substantial changes

at the core router. This characteristic is apparent in the UW network as well, as shown in

Figure 9b. Devices aligned on the left of the figure (device 0-5) are the core routers, which

are identified by their device names. The number of changes per month for these routers

are significantly larger than other non-core routers. The changes are concentrated on l1 and

vlan stanzas.

This analysis shows that, depending on the function of the router and its placement in

the network, the changes to its configuration may differ significantly. Different design and

operational practices in two networks result in distinct change patterns in routers.

3.4.2.2 Longitudinal analysis

Network expansion causes steady increase in configuration size. Figures 10a and 10d

show how the number of lines changes, for each router function. The figures account for all

routers that were deployed in the network at a single time epoch. There is a gradual increase

in overall number of lines in UW routers while it is quite steady for the GT routers. This

growth appears to be caused by devices being added to the network, as shown in Figures 10c

and 10f. The number of GT routers has grown relatively slowly over the past five years,

while the UW network has added many routers over the time period. In 2007, there are 7

cores, 10 nodes, and 6 devices playing miscellaneous roles. By 2010, however, there are 9
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Figure 10: Longitudinal analysis of routers over five years. The graphs show the total
number of lines of configuration for all devices, the median number of lines of configuration
per device, and the total number of devices over time.

cores, 12 nodes, 4 radial and hot spares, 1 VPN router, and several access routers. There is

one considerable period of growth in routers in the GT campus network around July 2008

(Figure 10c), which caused a significant increase in l2, as shown in Figure 10a. This growth

in routers corresponded to the expansion of the “resnet” network in GT.

Adding features, modifying existing commands and provisioning new customers us-

ing VLANs cause a lot of changes. We now examine the evolution of a typical router

configuration. We calculate the median number of lines of each function among all routers

at every time epoch. Results are shown in Figure 10b and 10e. For the GT network, l1 is

increasing over time, while l3 stays relatively steady. The sudden increase of l1 seems to

be caused by new routers added to the network, again around July 2008. This is under-

standable, as new router devices would have a bulk of ports defined and opened when first

deployed. A sudden drop in acl around January 2008 was caused by a major configuration

clean-up: several core routers purged hundreds lines of access control lists, and disabled

AppleTalk routing and related instances. Several subnets were removed from the network
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Table 6: Correlated stanza changes for routers.

UW GT
Correlated Stanzas % Correlated stanzas %
l1, vlan 35% l1, vlan 26%
l1, l2, l3 13% l1, l2 18%
l1, l3 14% acl, l1 10%
acl, l1, l2, l3 7% l1, l3 9 %
acl, l1 5% l1, l3, acl 5%

at this point, causing hundreds of acl to be obsolete. For the UW network, the number of

vlan and l3 lines for the median device generally decreases over time as new devices are

added, mainly because the newly added devices have far fewer lines with these function-

alities. The exception to this is the period from from Jan 2008 to Jun 2008, where there

is growth in the configuration constructs for these two functions. There are two reasons

for this: first, the median device remains the same over this period; as more VLANs are

added, there is a steady growth in vlan statements; and second, the introduction of multicast

related configuration and new filters acl result in a sharp jump in l3 and acl configuration

lines.

On the whole, we find that a variety of network-wide factors contribute to configuration

changes: network expansion, addition of new features or modification of existing ones,

and provisioning of new customers. No one factor appears to be the dominant reason for

configuration changes, although the impact of the first two factors, and the configuration

changes that result from them, appear less often.

3.4.2.3 Correlation analysis

We first examine the extent to which changes to certain configuration constructs are cor-

related with others. To perform a certain high-level operational task, an operator has

to change (add, delete, or modify) many different stanzas simultaneously. Indeed, we

found that a fraction of changes—13% and 10% of all change events in UW and GT,

respectively—are indeed performed in a correlated fashion, involving two or more stanza
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types. Such correlation has implications for the design of configuration management and

debugging tools, as we discuss in Section 3.5.

Table 6 enumerates the five most common types of correlated stanza changes. The two

campuses agree in three of the five: (1) l1 and vlan: Although routers provide routing ca-

pabilities, they also have to control reachability (i.e., offer basic connectivity between, as

well as ensure separation of, multiple subnets), which is often achieved through the use

of VLANs. Thus, a considerable amount of change to l1 and vlan occurs; (2) l1 and acl:

These change together because adding, deleting, or modifying networks (an l1 change)

often causes access control lists corresponding to the networks to be added, deleted, or

modified to ensure consistency; and (3) l1 and l3: These correlated changes occur because

modifying interfaces and subnets in the routing stanzas permits redistribution of reachabil-

ity information.

Correlated l1 and l2 changes (the second most common in the GT network) occur when

defining interfaces and setting a spanning-tree protocol for that interface for which each

port has a variety of options. Similarly, correlated l1, l2 and l3 changes in UW occur

when interfaces are added, the spanning tree is modified for the interfaces, and the routing

protocol is changed to include the subnet or to setup routing protocol/peering adjacency

over the interface.

3.4.3 Firewalls

A firewall’s main function is to perform access control. As expected, we find that config-

uration changes are concentrated on acl statements (Figures 11c and 11d). Therefore, we

focus most of our analysis instead on how firewalls are used in the respective campuses and

the similarities and differences in how they are used. We find that, despite the highly spe-

cialized nature of firewalls, their usage across the two campuses is similar (see Figures 11

and13).
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Figure 11: Static analysis and change analysis for firewalls. (a) and (b) shows a static
analysis of the latest firewall configurations all combined for each campus. (c) and (d)
shows the number of additions, deletions and modifications of each functionalities in a
row-stacked fashion, all devices combined over 5 years.
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Figure 12: Number of changes to each firewall device per month for the GT and UW
networks.
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3.4.3.1 Snapshot and change analysis

The change characteristics are similar between two campuses. Figures 11a and 11b

show the static analysis of the latest firewall configuration snapshot. As expected, most

of the configuration is dedicated to access control (note that graphs are in log scale). This

characteristic holds for changes as well, as shown in Figure 11c and 11d. Most changes are

dedicated to access control while other types are mostly insignificant. High similarity in

snapshot and change analysis between two different campus networks is intriguing. These

similarities also appear in the longitudinal analysis shown in Figure 13. This similarity

seems to result from the fact that devices like firewalls are designed to provide specific

functionality to the network. Most changes involve acl for both campus networks. The

actual content of commands will still differs, since network policies from two distinct net-

works are far from similar.

Deployment location matters. Figure 12 shows the top 30 firewall devices sorted in terms

of number of stanza changes per month. Again, the graph shows that changes are heav-

ily concentrated on acl stanzas. The number of changes per firewall is skewed, with a

few firewalls experiencing many more changes and a large set of remaining firewalls ex-

periencing minimal changes per month. Upon closer examination, we find that the top

firewalls in the GT network (Figure 12a) are close to the border, and are physical devices

where multiple virtual firewall instances actually spawn from. All changes to the virtual

firewalls are reflected on these border firewalls, hence showing a lot of changes compared

to others. This is true for the UW network as well. We also found a practice in the GT

network that close-to-border firewalls are periodically backed up and commit to the CVS

every six hours, while unit firewalls which are deployed closer to the edge are not managed

that intensively. We assume this is due to the higher reliability requirement for the border

firewalls compared to the unit firewalls; failure or misconfiguration on border firewalls can
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Figure 13: Longitudinal analysis of firewalls over five years.

bring destructive consequences to the whole network.

Distinct practice using sec stanzas is captured. There are some noticeable sec stanzas

on the UW network in Figure 12b. Inspection of the actual commands changed show that

operators are turning off failover for the interfaces (internal and external). This prevents

the virtual firewalls from failing over when the interfaces or connected devices are taken

down. The anomalies occur in the firewalls used primarily by the campus IT department.

In summary, the two campus networks show very similar configuration change and

usage patterns when it comes to firewalls. The majority of the changes occur at the border

firewalls, where the changes on virtual firewalls are aggregated to. Border firewalls are also

managed more intensively compared to simple unit firewalls at the edge.

3.4.3.2 Longitudinal analysis

Figure 13 shows the longitudinal view of firewall configuration evolution over a span of

five years. The number of lines for acl commands increases sharply over five years. For

the GT network, there was a factor of six increase. In the case of the UW network, firewalls

were deployed starting in January 2006, and around 260 firewalls were added through April
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2010.

Figures 13b and 13e show how the configuration of a typical firewall evolves over time.

The small spike in the GT network around July 2007 is caused by adding new firewall

machines and moving a substantial amount of access control lists to those firewalls. ACL

configurations in previous firewalls are removed several days after the migration occurs. A

slight increase of qos commands occurs around July 2008. Further inspection in the con-

figuration shows a global policy map, which includes default inspection ports and Session

Initiation Protocol (SIP) ports, is defined and inserted into around 40 firewalls. This policy

map enforces further inspection on the specified services. In the UW network (Figure 13e),

we observe a similar increase in qos commands around January 2008. These define two

class maps: one for SIP ports as with the GT network, and one for a specific list of man-

agement services, ranging from DNS and rsh to SunRPC.

The decrease of mgt commands around January 2008 is due to the removal of the “pdm”

(PIX Device Manager) commands from all firewalls. This command allows the device to

determine who will have access to the management GUI for the firewalls. The removal

of these commands prevents access to the GUI and forces the departments to submit all

changes to the campus IT team, reflecting a new campus-wide security policy instituted in

UW in 2008.

As with routers, we observe that a variety of network-wide factors, ranging from infras-

tructure expansion, to policy changes, and addition/modification of features, contribute to

firewall configuration evolution.

3.4.3.3 Correlation analysis

Correlation analysis on firewall devices has not shown any specific correlated change be-

havior on stanzas, as most changes are solely made to acl stanzas. Clearly, the functionality

abstraction we employ in this paper is too high-level for correlation analysis on firewalls.

We do witness many correlated changes within the acl commands. Specifically, if there is
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a change in the network object group definition (where operators can combine multiple IP

addresses, ports, subnets to separate groups), there are also changes in the actual access

control lists which reference that particular network object. More fine-grained classifica-

tion of commands within the acl stanza may show interesting correlated change behavior.

For example, there might be correlated changes within the access control lists; such an

exploration would make a good direction for future work.

3.4.4 Switches

In this section, we study changes in switch configurations. We find: (i) interface definition

and related subcommands dominate the changes in switches (Figures 14c and 14d); and

(ii) extensive correlated changes (Table 7).

3.4.4.1 Snapshot and change analysis

Many changes involve management, layer 1, layer 2 and VLAN commands. Figure 14

shows the static snapshot and change analysis of switches from both campuses. If we focus

on changes of the configuration, Figures 14c and 14d show that there are many mgt, l1, l2

and vlan command changes. Note from Figures 14a and 14b that these lines also constitute

a majority of any given switch configuration snapshot. As seen previously, l1 and vlan

changes occur together naturally. l2 changes are understandable as switches can offer layer

2 connectivity. The abnormality seems to be the significant number of changes in mgt

commands. A majority of mgt changes in switch devices are in fact snmp trap and logging

commands; snmp trap is for sending events to the SNMP server when particular conditions

are met, and logging configures the logging behavior for the interface. The default is to

define SNMP trap and logging commands along with the port configuration in the UW

network. This induces the bulk of the mgt and l1 changes to the network.

Certain practices shape how switch configuration evolves. The GT network has many

additions, while the UW network experiences many modifications. Most of the changes
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Figure 14: Static analysis and change analysis for switches. (a) and (b) shows a static
analysis of the latest configurations all combined for each campus. (c) and (d) shows the
number of additions, deletions and modifications of each functionalities in a row-stacked
fashion, all devices combined over 5 years.
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Figure 15: Number of changes to each switch per month for the GT and UW networks.
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Figure 16: Longitudinal analysis of switches over five years.

in the GT network are actually due to additions in l1 and vlan, followed by mgt and l2

commands. However, the UW network looks different; there are a lot of modifications in

general, with changes in mgt and l1 followed by vlan appearing to dominate the changes.

We found that this resulted from a large number of modifications that operators made to a

majority of switches in the UW network, including interface and their subcommands, snmp

trap and logging. From this behavior, it appears as though operators of the UW network

have decided to uniformly enable or disable some functions on ports across most of its

switches.

Specialized switch devices can be identified by their distinct patterns. Figure 15 presents

the number of changes per stanza type, for each of the top 30 switches in both networks.

The switches in UW are similar, in that most of the changes are in the interface com-

mands, with a few devices having a significant amount of VLAN additions. Unlike UW,

GT switches have several different patterns. mgt accounts for a significant amount for De-

vice 1. This device is a switch for the SoX (Southern Crossroads) deployed within the
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Georgia Tech campus, and the changes to mgt are due to changes to the device authentica-

tion configuration, namely aaa, radius-server, and file stanzas. This can be caused by the

fact that multiple users manage this device. There is also a group of devices (devices 25–

29) that have a lot of sec stanzas. Further inspection shows these devices are VPN boxes

with many ipsec changes. These devices can be classified as specialized switches that pro-

vide unique functions of secure connection establishment between the internal and external

network.

3.4.4.2 Longitudinal analysis

Evolution trend is heavily influenced by how switches are added, removed or swapped,

as well as their initial configuration. Figures 16a and 16d show a gradual increase in the

total number of configuration lines, for both networks. The increasing trend is mainly due

to the increase in number of switch devices, as shown in Figures 16c and 16f. An abnormal

spike appears around September 2010 in Figure 16a, when 150 new switches were added

to the GT network. In Figure 16b, the l2 command experiences several decreases and

increases. Inspection of the switch configurations reveals that around February 2006, a set

of new switches with 24 ports was added to the network; older switches had more ports

and hence had more verbose configuration. The other increases and decreases are of the

same nature: the trend depends on what type of switches are added to the network with

specific initial configurations. This phenomenon is similar to the decreasing number of

vlan commands in Figure 16b; switches with small vlan instances are being added to the

network continuously.

Distinct practices and decisions in UW. Turning to UW, in Figures 16d and 16e, we see

that in January 2008, the number of lines for sec doubles and mgt decreases. Additions to

sec commands occurred due to changes to all interfaces on all switches to make the network

more resilient to bursty traffic, by installing a limiting mechanism. The mgt drop in Jan,

2008 is due to operators removing the SNMP feature from all interfaces. In both cases, the
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large changes reflect updates to all switches in the network.

We find that operational and network expansion practices of individual networks play

an important role in shaping how the switch configuration evolves; understanding this evo-

lution can facilitate the design of better network management tools.

3.4.4.3 Correlation analysis

In Table 7, we examine the set of correlated stanzas for the switches across the two cam-

puses. Most changes in UW include either l1 or mgt whereas most changes in GT include

either vlan or l1. However, both networks agree on a set of correlated changes: (1) vlan and

l1, (2) acl and l1, and (3) mgt and l1. As with other devices, interface definition and VLAN

configuration commands have high correlation, as do ACLs that reference certain inter-

faces. l1 and mgt correlates well in switches, because many default interface configuration

in switches have snmp trap and logging. The UW network has an additional l2 correla-

tion with l1 and mgt. This is due to heavily using spanning-tree related subcommands on

interfaces. Although not shown, UW does in fact contain mgt and vlan correlations; UW

contains half as many correlated occurrences of mgt and vlan. In addition to those, GT

includes a unique combination sec and qos, this combination can be attributed to the usage

of VPN devices, which are unique to GT. The l1,l2, and mgt combinations are unique to

the UW campus; similar commands change as with the l1 and mgt combination.

On the whole, we find significant evidence of correlated changes to stanzas, although

the specific sets of stanzas that change depend on the network in question. As such, when

using correlations to drive configuration management (e.g., in providing guidance on con-

figuration changes to install, as discussed in Section 3.5), we must first design techniques

that learn the correlations prevalent in a given network.

45



Table 7: Correlated stanza changes for switches.

UW GT
Correlated Stanzas % Correlated Stanzas %
acl, l1 24% mgt, l1 15%
l1, vlan 11% l1, vlan 13%
l1, l2, mgt 11% acl, l1 11%
mgt, l1 10% mgt, vlan 6%
vlan, mgt 9% sec, qos 6%

3.5 Discussion

We now discuss how our observations can help augment existing and proposed configura-

tion tools and mechanisms.

First, it may be possible to provide recommendations or suggestions to the operator

concerning changes, based on the previous historical change logs. For example, we have

found that l1 and l3 stanzas change the most in routers, while l1 and vlan stanzas changes

together frequently in switches. Based on the what the operator is changing, a system

could provide feedback or possible changes associated with currently updated stanzas. For

example, in firewalls, if there is a change in network object group definitions, the system

can recommend the operator to also consider the ACLs where that group is used. A tool

could also proactively offer negative recommendations. If the operator attempts to change a

line or stanza of the network configuration that is not frequently changed, the configuration

system could discourage the modification by raising an alert, forcing the operator to go

through multiple confirmation steps, or blocking a low-rank operator from making changes.

Knowledge of network configuration changes also helps point designers of configura-

tion automation tools to parts of the configuration that could be automatically generated,

for various types of devices. Our results reveal that network operators make different types

of configuration changes, depending on the network device type and, hence, point to possi-

bilities for customizing these configuration change templates based on the type of device.
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Highly specialized devices like firewalls are distinct, where most configuration is dedi-

cated to access control, and the changes mostly happen on that specific area as well. For

switches, a template that enables batch-modification on ports and VLAN configurations

would be helpful.

Our work also opens many possible avenues for studying configuration changes in more

detail. One possibility would be to look for changes to network configuration that were

later reverted or changed again. Such changes might point to cases where operators made

errors when configuring the network; knowledge about where in the configuration these

errors occur could improve configuration testing methods. Another possibility would be

to analyze the configuration for “copy-paste” behavior, as is done in software engineering

studies of “code clones”. Identifying parts of configuration that are commonly copied

might also inspire design templates for configuration update.

3.6 Conclusion

We presented a longitudinal analysis of network configuration and its evolution over five

years for two large campus networks. We focused on capturing configuration characteris-

tics and common practices by examining change patterns from CVS commit log data, in

contrast to earlier studies, which have mostly examined a single configuration snapshot. In

contrast to earlier studies, which have focused mostly on router configuration, we also study

configuration changes for firewalls and switches, which comprise a significant portion of

the networks. Our study unearths a variety of important aspects regarding configuration

evolution: we study the frequency and extent of configuration updates, showing the simi-

larities and differences across networks; identify the prevalence of correlated changes; and

shed light on how various network-wide factors affect evolution.

Our work is a first step toward understanding configuration evolution in more depth.
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Just as mining software repositories has emerged into a mature field in software engineer-

ing for assisting programmers understand software engineering better, we believe that min-

ing network repositories for configuration changes can help deepen our understanding of

configuration and design practices. A better understanding of this process is imperative, as

it is a cornerstone for improving current methods of configuring and managing network de-

vices, easing the pain of network operators by providing recommendations, offering better

templates, reducing misconfiguration and, ultimately, enabling automation.

3.7 Acknowledgements

We thank the campus network operators who provided us with network configuration data.

We especially thank Dan Forsyth and Dale Carder for answering many questions about

network management and configuration practices. We should also like to thank Lixia

Zhang (our shepherd) and the anonymous reviewers for their insightful feedback. This

work is supported in part by NSF grants CNS-0643974, CNS-0746531, CNS-1017545,

CNS-1018021, and CNS-1050170.

48



CHAPTER IV

KINETIC: VERIFIABLE DYNAMIC CONTROL

4.1 Introduction

Network conditions are always changing. Traffic patterns change, hosts arrive and de-

part, topologies change, intrusions occur, and so forth. Despite the fact that many of these

changes are predictable—and, in some cases, even planned—an operator’s control over the

network remains relatively static. In response to changing conditions, network operators

typically manually change low-level network configurations. Our previous study of net-

work configuration changes found that a campus network may experience anywhere from

1,000 to 18,000 changes per month [46]. Although tools like Puppet [87] and Chef [10]

can automate some network device configuration tasks, this level of automation is still

relatively hands-on and error-prone.

To underscore the importance of this problem, we analyzed acceptable use policies

from more than 20 campus networks (many of which are publicly available [62]) and also

surveyed network operators about their experience with existing tools for implementing

these kinds of policies. These policies are written in English and typically express how the

network’s forwarding behavior should change in response to changing network conditions.

For example, the University of Illinois’s network use policy has an unrestricted class, and

four restricted classes of traffic shaping; a user’s traffic is downgraded into different classes

based on their past usage over a 24-hour sliding window. Such policies sound simple

enough when expressed in prose, but in fact they require complex instrumentation and

“wrappers” that dynamically change low-level network configuration. Network operators

currently have no concise way to express these functions, nor do they have any way of

checking whether their changes will result in the intended behavior. In a recent survey we
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conducted that included several hundred network operators, 89% of respondents said that

they could not be certain that the changes they made to network configuration would not

introduce new bugs.

Software-defined networking (SDN) is a powerful approach to managing computer net-

works [23] because it provides network-wide visibility of and control over a network’s

behavior; the Frenetic [28] family of languages provides higher-level abstractions for ex-

pressing network control. These languages are embedded in general-purpose programming

languages (specifically, OCaml and Python), which makes it possible to write control pro-

grams that can respond to arbitrary events. Yet these languages do not provide intuitive

abstractions for automating changes to network policy in response to dynamic conditions,

nor do they make it possible to verify that these changes will match the operator’s require-

ments for how network behavior should react to changing network conditions.

To address these problems, we present Kinetic, a domain specific language (DSL) and

SDN controller that enables writing network control programs that capture responses to

changing network conditions in a concise, intuitive, and verifiable language. Kinetic pro-

vides a structured language for expressing a network policy in terms of finite state machines

(FSMs), which both concisely capture dynamics and are amenable to verification. States

correspond to distinct forwarding behavior, and events trigger transitions between states.

Kinetic’s event handler listens to events and triggers transitions in policy, which in turn

update the data plane.

Kinetic makes it possible to verify that changes to network behavior conform to a

higher-level specification of correctness. For example, a network operator might want to

prove that a control program would never allow a host access to certain parts of the network

once an intrusion has been detected. Ongoing work has devoted much attention to verifica-

tion of the network’s data plane; tools such as VeriFlow [45] and HSA [44] can determine,

for example, whether the forwarding table entries in a network’s switches and routers would

result in persistent loops or reachability problems. However, these tools only operate on
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a snapshot of the data plane; they do not allow operators to reason about network control

programs, or how network control would change in response to various events or changes

in network conditions. They do not provide any way for a network operator to find errors in

the control programs that install erroneous data-plane state in the first place. Kinetic’s fo-

cus on automating and verifying the control plane is complementary to this previous work.

Kinetic’s use of computation tree logic (CTL) [14]—and its ability to automatically verify

policies with the NuSMV model checker [12]— can allow network operators to verify the

dynamic behavior of the controller before the control programs are ever run.

One significant challenge we faced when designing Kinetic is the potential for state

explosion in Kinetic programs, due to the large number of hosts, flows, network events,

and policies. A naı̈ve encoding of dynamic policies in an FSM would result in an expo-

nential number of states, even for simple programs because every flow, with all possible

combination of fields (e.g., src/dst IP, src/dst MAC, etc), can have its own state. To control

this state explosion, Kinetic introduces an abstraction called a Located Packet Equivalence

Class (LPEC), through which a programmer can specify a division of the flow space and

map an independent copy of an FSM (FSM instance) to each class of flow space. Using

LPECs, a programmer can define groups of flows that should always map to same FSM

instances (e.g., all flows from the same source MAC address). Thus, each defined group of

flows will be in the same state. Additionally, because Kinetic is itself based on Pyretic (a

Python-based SDN control language in the Frenetic family) [75], Kinetic inherits Pyretic’s

language and runtime features. Specifically, Kinetic uses Pyretic’s composition operators

to express larger FSMs as multiple smaller ones that correspond to distinct network tasks

(e.g., authentication, intrusion detection, rate-limiting). Applying Pyretic’s composition

operators to independent Kinetic FSMs and classic product construction of automata [19]

(combining multiple FSMs with union or product) greatly simplifies the construction of

Kinetic’s FSM expressions and allows the FSM-based policies to scale.

We evaluated two aspects of Kinetic: (1) its usability, in terms of both conciseness and
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operators’ facility with expressing realistic network policies; and (2) its performance, in

terms of its ability to efficiently compile network policies into flow-table entries, particu-

larly as the number of policies, the size of the network, and the rate of events grow. We

conducted a user study with Kinetic of more than 650 participants, many of whom were

network operators with no prior programming experience; most found Kinetic quite ac-

cessible: 79% thought that configuring the network with Kinetic was easier than current

approaches, and 84% thought that Kinetic makes it easier to verify network configuration

than existing alternatives.

Kinetic is open-source and publicly available; the project webpage provides access to

the source code, a tutorial on Kinetic, and all of the code for the experimental evalua-

tion [49]. The system has been used by SDN practitioners [29] and has served as the basis

for projects and assignments in several university courses, as well as in a Coursera [16]

course, where it has been used by thousands of students over the past two years.

4.2 Motivation and Background

Table 8: Demographics of participants in the Kinetic user study. We asked these partic-
ipants about their experiences configuring existing networks, as well as their experiences
using Kinetic. Section 5.4 discusses the participants’ experience with Kinetic. Not all
participants answered every question.

Profession Experience (years) # Users in Network
Operator 216 1 32 1–10 156
Developer 251 1–5 310 10–100 137
Student 123 5–10 187 100–1,000 136
Vendor 80 10–15 150 1,000–10,000 118
Manager 69 15–20 122 > 10,000 322
Other 138 > 20 73
Total 877 874 869

To motivate the need for Kinetic, we present the results of a survey of network oper-

ators about problems automating and verifying network configuration. We then present

background on Pyretic, the language on which Kinetic is based; and on model checking
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and computation tree logic, which we use to design Kinetic’s verification engine.

4.2.1 Motivation: Network Operator Survey

To gain a better understanding of the extent to which network operators have to change their

network configurations, as well as their level of confidence in their changes, we conducted

an institutional review board (IRB)-approved survey of more than 800 participants, con-

cerning their experience with configuring existing networks, as part of a Coursera course

on software-defined networking that we offer [16]. Table ?? summarizes the demographics

of the participants: about 870 students completed the survey, 216 of whom were full-time

network operators. The majority of the students who completed the assignment and survey

had more than 5 years of experience in networking, and many had more than 15 years of ex-

perience. More than 200 of the students had experience with networks of more than 1,000

devices, and more than 300 of the students had experience with networks with more than

10,000 users. Most of the participants had the most experience with campus or enterprise

networks.

The responses we received demonstrate a clear need for better tools for automating and

verifying network control. Nearly 20% of participants said that they must change their

network configurations more than once a day. The most common causes of changes were

provisioning, planned maintenance, and updates to security policies—exactly the types

of configuration changes that we aim to automate with Kinetic. More strikingly, 89% of

respondents indicated that they were never completely certain that their changes to the

configuration would not introduce a new problem or bug, and 82% were concerned that

the changes would introduce problems with existing functionality that was unrelated to the

change. The two most common aspects of configuration that operators wanted to see au-

tomated were correctness testing (37%) and quality of service and performance assurances

(24%). The two most common aspects of configuration that participants wanted to see ver-

ified were general correctness problems (37%) and security properties (26%). We asked
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Table 9: Computation tree logic (CTL) operators.
Operator Meaning

(Quantifiers over Groups of Paths)
A φ φ holds for all possible paths from the current state.
E φ There exists a paths from the current state where φ holds.

(Quantifiers over a Specific Path)
X φ φ holds for neXt state.
F φ φ eventually holds sometime in the Future.
G φ φ holds for all current and following states, Globally.
φ U ψ φ holds at least Until ψ.

these same participants to write programs in Kinetic and other SDN controllers; we discuss

the results of that part of our user study in Section 4.5.1.

4.2.2 Background: Pyretic and CTL

Pyretic.. To develop a language for expressing control dynamics that is both concise and

easy to use, we based the Kinetic language on Pyretic [75], a Python-embedded domain-

specific programming language for writing SDN control programs. It encodes network

data-plane behavior in terms of policy functions that map an incoming “located packet”

(i.e., a packet and its location) to an outgoing set of located packets. Pyretic has a policy

variable that determines the actions that the control program applies to incoming packets

(e.g., filtering, modification, forwarding). Pyretic ultimately compiles policies to OpenFlow-

based switches. Pyretic’s composition operators provide straightforward mechanisms for

composing multiple distinct policies into a single coherent control program. Pyretic’s par-

allel composition operator (+) makes a copy of the original packet and applies the corre-

sponding policies to each copy in parallel. Sequential composition (>>) applies policies

to a packet in sequence, so that the second policy is applied to the packet that is the out-

put of the first policy. Pyretic is extensible, and its support for composing distinct policies

and dynamically recompiling flow-table entries whenever the policy variable is updated

are useful features for Kinetic. Still, the language itself does not provide a framework for

writing concise, intuitive policies that respond to changing conditions, which is Kinetic’s

goal.
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Model checking.. We wanted to design Kinetic so that policies were not only easy to

automate, but also easy to verify. To do so, we applied a model checking framework devel-

oped by Clarke and Emerson [13, 14] and subsequently refined by McMillan [72]. Model

checking can guarantee that a finite state machine (FSM) satisfies certain properties that

are expressed in different types of logics; this feature makes FSMs a logical choice for

expressing Kinetic policies. One such logic is computation tree logic (CTL), a branching-

time logic that represents time as a tree structure. The initial state of an FSM is the root,

and each node represents a different future state. A path through the tree represents an

execution path of the FSM. CTL allows the expression of various types of temporal logic

statements, such as those expressed in Table ??. NuSMV is a widely used symbolic model

checker for FSMs [12]. The Kinetic compiler automatically translates Kinetic programs

into an SMV model, which can be tested against various CTL-based assertions.

4.3 Kinetic by Example

We illustrate various features of Kinetic by way of example programs. All of the examples

that we present in this section are verifiable; we defer a discussion of verification, as well as

the details of the Kinetic language and runtime, to Section 4.4. We have selected examples

that demonstrate the design features of Kinetic; the Kinetic Github repository has more

examples [49].

Kinetic programs capture control dynamics with a finite state machine (FSM) abstrac-

tion. To illustrate this abstraction, we start with a simple example involving intrusion detec-

tion. Although FSMs are intuitive, representing all possible network states in a monolithic

FSM would result in state explosion; the second and third examples illustrate two abstrac-

tions that address this challenge: Located Packet Equivalence Classes (LPECs) and FSM

composition. Finally, to show Kinetic’s generality, we present a MAC learning switch

implementation.
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4.3.1 Capturing Dynamics

2 

infected:False,
policy:identity,

,,event(infected,True),

,,event(infected,False),

infected:True,
policy:drop,

Figure 17: Intrusion detection FSM.

We begin with a simple dynamic policy involving intrusion detection. Suppose that a

network operator wants the network to drop all packets to and from a host once it receives

an event indicating that the host is infected (e.g., from an intrusion detection system). Ki-

netic allows operators to concisely express these dynamics with finite state machines that

determine how a policy should evolve in response to events such as intrusions. We chose

FSMs as the basic abstraction for expressing Kinetic programs because (1) they intuitively

and concisely capture control dynamics in response to network events; and (2) their struc-

ture makes them amenable to verification.

In this example, each host would have a single state variable, infected. When

infected is false, the controller applies Pyretic’s identity (allow) policy for traffic

from that host; when it is true, the controller applies Pyretic’s drop policy for the host’s

traffic. Figure 17 shows this logical FSM. To support verification, the actual specification

of the FSM for this policy is slightly more complicated; we expand on this example in

Section 4.4.2.

4.3.2 Capturing State for Groups of Packets

Defining FSMs in Kinetic has the potential to create state explosion, since dynamic policies

must be defined over a state space that is exponential in the number of hosts and flows (and

possibly other aspects of the network). For example, consider the previous example, a

two-state FSM indicating whether a host is infected. If the network has N hosts, then

representing the state of the network requires an FSM with 2N states, which is intractable,
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timeout:False,
outgoing:False,
policy:ihs,

event'
(outgoing,True)'

event'
(timeout,True)'

event(timeout,False)'

timeout:False,
outgoing:True,
policy:identity,

timeout:True,
outgoing:False,
policy:ihs,

Figure 18: Stateful firewall FSM.

particularly as the size of the network and the complexity of policies grow. Instead of

directly encoding an FSM that explicitly encodes all variable values, Kinetic encodes a

single generic FSM that can be applied to any given group of packets (e.g., all packets from

the same host, in the case of the previous example). Each group of packets has a separate

FSM instance; packets in the same group will always be in the same state. We call such a

group of packets a located packet equivalence class (LPEC).

To illustrate the use of LPECs, we describe the implementation of a stateful firewall

that implements a common security policy. Figure 18 shows the Kinetic representation of

the policy. This program always allows outbound traffic, but blocks inbound traffic unless

the traffic flow is in response to corresponding outbound traffic for that flow. For example,

if internal host ih1 pings external host eh2 then packets sent from eh2 should be allowed

back through the firewall until a certain timeout occurs, but only if ih1 is the destination.

The firewall’s initial state, in the left of the figure, shows the policy, ihs, which is a

filter policy matching all traffic whose source address in the set of internal hosts. A Pyretic-

encoded query collects outbound packets from hosts in ihs and produces (outgoing,True)

event. This triggers the update of the policy variable to identity (indicating that traf-

fic is now allowed), and outgoing is reset. The timeout event is provided by Kinetic

event driver. After certain amount of time (e.g., five seconds), a (timeout,True) event

is invoked unless another outgoing packet is seen within the timeout. The program should

regard inbound and outbound flows between the same pairs of endpoints with the same
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policy:,
No_delay'
rate:1,

policy:,
200ms_delay'

rate:2,

policy:,
400ms_delay'

rate:3,

event,
(rate,2),

event,
(rate,2),

event,
(rate,3),

event,
(rate,1),

event,
(rate,1),

event,
(rate,3),

Figure 19: Data usage-based rate limiter FSM.

state, and the programmer should not have to explicitly encode state for every pair of end-

points. To implement such a policy, the programmer can define an LPEC to correspond to

a distinct source-destination IP address pair:

1 def l p e c ( p k t ) :

2 h1 = p k t [’srcip’ ]

3 h2 = p k t [’dstip’ ]

4 re turn ( match ( s r c i p =h1 , d s t i p =h2 ) |

5 match ( s r c i p =h2 , d s t i p =h1 ) )

4.3.3 Composing Independent Policies

Many aspects of network state are logically independent. For example, whether a host has

authenticated is independent of whether it is infected or whether it has exceeded a usage

cap. This independence allows a programmer to represent the overall network state as a

product automaton that can be decomposed in terms of simpler tasks, where each task has

simpler (and smaller) FSMs. This example shows the composition of four independent

network tasks.

In our survey of campus network policies, we found nearly 20 university campuses [62]

that implemented some form of usage-based rate-limiting (e.g., [15]). Network operators

currently implement these policies using low-level scripts that interact with monitoring de-

vices. Kinetic provides intuitive mechanisms for implementing such a policy. Figure 19
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illustrates the FSM for a usage-based rate limiter, which forward traffic with different de-

lays depending on the user’s historical data usage patterns. By default, traffic is forwarded

with no delay; depending on the events that the controller receives concerning usage, the

controller may institute a policy that introduces additional delay on user traffic. (OpenFlow

1.0 does not support traffic shaping, so we use variable delay as an illustrative example;

Kinetic could be coupled with controllers that support later versions of OpenFlow that can

do traffic shaping.)

Naturally, a real network would not only have policies involving quality-of-service, but

also other policies, such as those relating to authentication and security. For example, a

control program might first check whether a host is authenticated, either through a Web

login or via 802.1X mechanism. Subsequently, the host’s traffic might be subject to an

intrusion detection policy that allows traffic by default but blocks the traffic if an infec-

tion event occurs. Finally, it might be sequentially composed with the rate-limiting policy

above, yielding the resulting policy:

1 ( web au th + 802 .1 X auth ) >> i d s >> r a t e l i m i t e r

To verify this program, Kinetic generates a single FSM model for input to a model checker.

Thus, programmers can write CTL specifications for the resulting composed policy, not

only for individual policies. For example, a logic statement involving the combination of

policies such as “If a host is authenticated either by the web authentication system or with

802.1X and is not infected, the resulting policy should never drop packets” can be verified

with a single CTL assertion, as shown in Table 10. (Section 4.4.4 discusses verification in

more detail.)

4.3.4 Handling General Event Types

Figure 20 shows a Kinetic FSM for a MAC learner that responds to both packets from

hosts and topology changes. Although the implementation of a MAC learning switch is

just as simple in other languages (indeed, it is the “canonical” reference program for SDN

59



16 

port:n,
policy:fwd(n),

TC:False,
,

port:0,
policy:flood,

TC:True,
,

port:0,
policy:flood,
TC:False,

'

event'
(port,n)'

event'
(TC,True)'

event(TC,False)'

Figure 20: MAC learner FSM.

controllers), we present this example to illustrate that Kinetic programs can handle a variety

of event types, including packet arrivals.

This program responds to two different types of events: TC (topo change) and port

events. The TC event is a built-in event that is invoked automatically whenever a topology

change occurs. In Kinetic, programs can register and react to this built-in event. The port

events are generated by a Pyretic query that collects the first packet for each (switch,srcmac)

pair. The values of policy are defined by that of port: the value is flood when port

is 0, and fwd(n) when port=n. Initially port is 0 (indicating the port has not yet been

learned), and TC is False. When a (port,n) event arrives, which is invoked by the

Pyretic runtime when it sees a packet from an unseen host, a transition occurs, setting the

port to the value learned and the policy to unicast out that port. The MAC learner then

unicasts packets to the appropriate hosts until a topology change occurs, triggering the

transition to the right-most state in which TC is True, resulting in flooding for packets

corresponding to that LPEC (i.e., switch-source MAC address pair).

4.4 Kinetic Design & Implementation

We describe the details of Kinetic’s architecture, language, runtime, and verification engine.

4.4.1 Architecture

We now describe the Kinetic system architecture, including the design of the Kinetic pro-

gramming language. Figure 21 shows the Kinetic architecture, which is built on the Pyretic

runtime. At the highest level, a Kinetic program has three parts: (1) a finite state machine

(FSM) specification; (2) a specification of portions of flow space that are always in the
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Kinetic 
Runtime 

Kinetic 
Program 

FSM 
Event Hookup 
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port_events 
switch_events 

packet_outs 
stat_requests flow_mods 

external 
events 

packet_ins 
stat_replies 

LPEC projection map 

Figure 21: Kinetic architecture.

same state in any given FSM (an LPEC); and (3) mechanisms for incorporating external

events that could change the state of any given LPEC’s FSM.

Kinetic instantiates copies of programmer-specified FSMs (one per LPEC); the Kinetic

event handler sends incoming events, which can arrive either from external event hookups

or from the Pyretic runtime (e.g., in the case of certain types of events such as incoming

packets), to the appropriate FSMs. Kinetic FSMs register with one or more event drivers

and update their states when new events arrive, responding to incoming events that may be

processed by those drivers. Kinetic supports both native events and generic JSON events.

Because Kinetic is embedded in Pyretic, these functions can be executed using Pyretic’s

runtime. We use the Pyretic runtime to exchange OpenFlow messages with the network

switches; we also use the Pyretic runtime to handle certain types of events, such as those

related to either network topology or traffic.

4.4.2 Language and Abstractions

We offer a complete description of the language and then discuss LPECs and FSM compo-

sition in more detail.
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K  ::=    P | FSMPolicy(L,M)  |  K + K | K >> K  
L  ::=     f,:,packet,U>,F 
M ::=    FSMDef([var_name=W]) 
W ::=    VarDef(type,init_val,T),
T ::=  [case(S,D)],
S ::=  D==D | S & S | (S | S) | ! S,
D ::=     C(value),|,V(var_name),|,event,,
,

P ::=     Dynamic() | N | P + P | P >> P 
 

N ::=    B  |  F  |  modify(h=v),|  N + N   |  N >> N  

F ::=   A  |  F & F  |  (F | F)  | ~F  

A ::=   identity,|,drop,|,match(h=v)  
B ::=   FwdBucket() | CountBucket(),

 

Pyretic 

Static 
Pyretic 

Kinetic 

Figure 22: The Kinetic language grammar.

4.4.2.1 Language Overview

Figure 22 defines the Kinetic language, which extends Pyretic (P). Pyretic has bucket poli-

cies (notated by B) which collect packets and count packet statistics, respectively; primitive

filters (A) and derived filters (F) that allow only matching packets through; and static poli-

cies (N). Static policies include buckets, filters, the modify policy, and the combination

of these via parallel and sequential composition. Dynamic generates a stream of static

policies and can be combined with other policies in parallel or sequence.

Kinetic extends the Pyretic DSL with a subclass of Dynamic—FSMPolicy—which

takes two arguments: an LPEC projection map (L) and an FSM description (M). The LPEC

projection map takes a packet and returns a filter policy. The FSM description is set of

assignments from a variable name to a variable definition (W). Each variable is defined by

its type, initial value, and associated transition function (T). Each transition function is a

list of cases, each of which contains a test (S) and an associated basic value (D) to which

this corresponding state variable will be set, should this case be the first one in which the

test is true. Tests are the logical combination of other tests (using and, or, not) or equality

comparison between basic values. Finally, basic values are constants (C(value)), state
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(a) Explicit encoding is exponential in N.

H_1 FSM H_2 FSM H_3 FSM 

allow 

drop 

allow 

drop 

allow 

drop 

…  + + 

H_N FSM 

allow 

drop 

+ 
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Default state 

(b) Decomposing to N LPEC FSMs.

Figure 23: Reducing state explosion using an LPEC FSM.

variables (V(variable name)), and events (event).

4.4.2.2 Located Packet Equivalence Classes

Recall from Section 4.3 that an LPEC allows an operator to encode a generic FSM for

groups of packets (e.g., all packets with the same source MAC address). Each distinct

LPEC will have its own FSM instance, and the group of packets in each LPEC will be

in the same state. Because each LPEC refers disjoint sets of packets, their FSMs (and

corresponding policies) can be maintained independently, thus allowing their policies to

be encoded in parallel. This mechanism allows the programmer to avoid explicit encoding

of all combinations of network states (as shown in Figure 23a) and instead express each

LPEC’s FSM independently and compose them in parallel, as shown in Figure 23b.

Each LPEC has an FSM, which has a set of states, where each state has a Pyretic policy;
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infected:False,
policy:identity,

infected:True,
policy:drop,

infected:True,
policy:identity,

infected:False,
policy:drop,

,,event(infected,True),

,,event(infected,False),

(a) Actual implementation of the Kinetic FSM.
1 @ t r a n s i t i o n
2 def i n f e c t e d ( s e l f ) :
3 s e l f . c a s e ( o c c u r r e d ( s e l f . e v e n t ) , s e l f . e v e n t )
4
5 @ t r a n s i t i o n
6 def p o l i c y ( s e l f ) :
7 s e l f . c a s e ( i s t r u e (V(’infected’ ) ) ,C( drop ) )
8 s e l f . d e f a u l t (C( i d e n t i t y ) )
9

10 s e l f . f s m d e f = FSMDef (
11 i n f e c t e d =FSMVar ( type=BoolType ( ) ,
12 i n i t = F a l s e ,
13 t r a n s = i n f e c t e d ) ,
14 p o l i c y =FSMVar ( type=Type ( P o l i c y ,{ drop , i d e n t i t y } ) ,
15 i n i t = i d e n t i t y ,
16 t r a n s = p o l i c y ) )
17
18 def l p e c ( p k t ) :
19 return match ( s r c i p = p k t [’srcip’ ] )
20
21 f s m p o l = FSMPolicy ( lpec , s e l f . f s m d e f )

(b) Kinetic code that implements the Kinetic FSM.

Figure 24: Logical FSM for an IDS in Kinetic, and the Kinetic code that implements the
policy.

and a set of transitions between those states, where transitions occur in response to events

that the operators defines. When events arrive, the respective LPEC FSMs may transition

between states, ultimately inducing the Pyretic runtime to recompile the policy and push

updated rules to the switches. In Kinetic, a programmer can specify an LPEC in terms of a

Pyretic filter policy. For example, match(srcip=pkt[’srcip’]) defines an LPEC

FSM for each unique source IP address.

Returning to our IDS example from Section 4.3 (Figure 17), Figure 24b shows the

code for the Kinetic program that implements the simple intrusion detection example from

Section 4.3. Each host (i.e., source IP address) can have a distinct state, so we need an
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!
!
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>> >> 

(a) Without composition! (b) With composition!

Figure 25: Composing independent tasks in sequence.

LPEC FSM per source IP address; lines 18–19 define the LPEC. To define an FSM that

is amenable to model checking, we must separate the infected variable and the corre-

sponding policy variable into two separate states, as shown in Figure 24a. Exogenous

events trigger transitions between the infected variable states; a change in this vari-

able’s value in turn triggers an endogenous transition of the policy variable, which ulti-

mately causes the Pyretic runtime to recompile flow-table entries for the network switches.

Lines 1–3 in Figure 24b define the exogenous transition for infected; lines 5–8 defined

the endogenous transition for policy (note that the value of policy is defined in terms

of the value of infected). Finally, lines 10–16 define the FSM itself, in terms of the two

variables; the FSM definition is simply a set of FSM variables, each of which has a type,

an initial value, and a transition function.

4.4.2.3 FSM Composition

In Section 4.3, we showed an example of a campus network policy that composed FSMs

for independent network tasks to control state explosion. Without FSM composition, a

programmer would need to define FSMs for ΠN
i=1ai possible states, where ai is the number

of possible states for task i and N is the total number of tasks. Decomposing the product

automaton reduces state complexity from exponential to linear in the number of indepen-

dent tasks. For example, given ten tasks, each with two states, a monolithic program would
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Auth.,
events,

(a) Without composition! (b) With composition!

Figure 26: Composing multiple authentication tasks in parallel. Any successful authenti-
cation would result in allowing the host’s traffic.

require 1,024 states, as opposed to just 20.

Pyretic allows policies to be composed either in parallel (i.e., on independent copies

of the same packet) or in sequence (i.e., where the second policy is applied to the output

from the first). It turns out that these operators are also useful for reducing state explosion.

Figure 25 illustrates how sequential composition can reduce state complexity by decom-

posing a larger product automaton. Consider a simple control program that puts the host

into a walled-garden until it has authenticated, quarantines the host if an infection has been

detected, and rate limits a host if it has exceeded a usage cap. Each of these tasks has two

possible states: authenticated or not, quarantined or not, capped or not, resulting in 23 pos-

sible states. By applying auth >> IDS >> cap, the same network control program

requires only 2 · 3 states.

Figure 26 shows how parallel composition reduces state complexity. A Kinetic program

might specify that either a network flow should be authenticated by a Web authentication

mechanism or 802.1X. If either of these tasks places the host in an authenticated state, the

host should be allowed to send traffic. Without composition, the network state machine

would need a second set of states, requiring 2N states, where N is the number of authen-

tication tasks (in this case, N = 2). (Clearly, even more states would be needed if any

independent task could assume more than two states.) As before, decomposition reduces
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this to ΣN
i=1ai states, where ai is the number of possible states for task i, and N is the

number of tasks.

4.4.3 Runtime

We now explain optimizations to the Kinetic runtime to support the efficient compilation

of the large finite state machines that might result from networks with many hosts and poli-

cies and high event rates. The Kinetic runtime’s main challenge is storing and processing

the joint state of all LPEC FSMs to produce a single set of forwarding table entries in the

network switch. To accomplish this goal, the runtime first decomposes the FSMs with com-

binators to achieve a representation of the network state that is linear in the number of hosts

and policies. Second, Kinetic optimizes the compilation process itself by recognizing that

the LPEC FSMs typically operate on disjoint flow space, which allows for optimizations

that dramatically speed up parallel composition. Finally, Kinetic only expands the LPEC

FSMs for which a transition has actually occurred. We describe each of these optimizations

below.

Decomposing the product automata.. A Kinetic FSMPolicy encodes the complete

FSM as the product automaton [19] of the individual LPEC FSMs. We can represent

the Pyretic policy for the entire network, given a global network state s as the following

product automata:

policy =
N∑
i=1

(lpeci >> lfsmi(s))

where the summation operator represents parallel composition of the corresponding poli-

cies, and each LPEC generator produces the appropriate packets that are processed by the

corresponding LPEC FSM in state s.

Fast compilation of disjoint LPECs.. Compilation of policies that are composed in par-

allel is computationally expensive, as it requires producing the cross-product of all match

and action rules: it involves computing the intersection of match statements and the union
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Figure 27: Expanding only M LPEC FSMs that have changed.

of actions, for every pair of match and action pairs between the two policies. If LPECs are

disjoint, however, the resulting policies can simply be combined without explicitly com-

puting the intersection of the match statements: the rules from each LPEC FSM can simply

be inserted into the flow tables.

Default policies and on-demand LPEC FSM expansion.. Even a linear-sized represen-

tation may not scale. For example, the LPEC generator shown in Section 4.4.2.2 would

generate 232 LPECs if it were fully expanded, while a generator for each pair of hosts

(based on hardware address) would produce 296 LPECs. Fortunately, because all LPEC

FSMs are generated from the same FSM specification, they start with the same initial state

and, hence, the same default policy. Thus, Kinetic does not need to expand the FSM for an

LPEC unless and until it experiences a state transition; until that point, the Kinetic runtime

can simply apply whatever default policy is defined for that FSM. Figure 27 highlights this

on-demand expansion.

Kinetic’s runtime optimizations reduce the computational complexity of compilation

from exponential in the number of LPECs (Figure 23a), to linear in the number of LPECs

(Figure 23b), and finally to linear in the (much smaller) number of LPECs that have ac-

tually experienced a transition (Figure 27). Kinetic additionally employs additional op-

timizations, such as memoizing previously compiled policies, as other applications have

used [32].
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1 MODULE main
2 VAR
3 p o l i c y : { i d e n t i t y , d rop } ;
4 i n f e c t e d : b o o l e a n ;
5 ASSIGN
6 i n i t ( p o l i c y ) := i d e n t i t y ;
7 i n i t ( i n f e c t e d ) := FALSE ;
8 next ( i n f e c t e d ) :=
9 c a s e

10 TRUE : {FALSE , TRUE} ;
11 e s a c ;
12 next ( p o l i c y ) :=
13 c a s e
14 i n f e c t e d : drop ;
15 TRUE : i d e n t i t y ;
16 e s a c ;

Figure 28: NuSMV FSM model for IDS policy from Figure 24b.

4.4.4 Verification

When the programmer executes a Kinetic program, Kinetic automatically creates an FSM

model for the NuSMV model checker. Kinetic obtains information about each state variable

(e.g., type, initial value, and transition relationship) by parsing the fsm def data structure;

Kinetic parses the transition function for additional information about transitions, which

often depend on other variables.

Kinetic then uses NuSMV to test CTL specifications that the programmer writes against

the FSM model. Kinetic outputs the CTL specifications that passed; for any failed specifi-

cations, Kinetic produces a counterexample, showing the sequence of events and variable

changes that violated the specification. In addition to single FSMPolicy objects, Ki-

netic can convert composed policies into a single model that can be verified. For example,

although the programmer specifies a composed policy as in Figure 25b and Figure 26b,

verification will execute on a combined FSM model as in Figure 25a and Figure 26a.

Figure 28 shows the NuSMV FSM model corresponding to the IDS policy from Fig-

ure 24b. The model definition has two parts. The first is VAR, which declares the names

and types of each variable (lines 2–4). The second is ASSIGN, where current and future

variable values are assigned, using two functions for each variable: an init function that

determines the variable’s initial value (line 5–7), and a next function that specifies what
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Table 10: NuSMV CTL rules for different Kinetic programs.

Program CTL Description

Mac learner

AG (topo change→AX policy=flood) Always resets to flooding when topology
changes.

AG (policy=flood→AG EF (port>0)) Can always go from flooding to unicasting a
learned port.

! AG (port=1→ EX port=2) It is impossible to update the learned port
without first flooding.

AG (port>0 → A [port>0 U
topo change])

Port will stay learned until there is a topology
change.

Stateful firewall
AG (outgoing & !timeout → AX pol-
icy=identity)

If first packet originated from internal host and
timeout did not occur, the system should allow
traffic.

AG (outgoing & timeout → AX pol-
icy=matchFilter)

If first packet originated from internal host,
but timeout occurred, the system should shut
down traffic (apply match filter).

AG (!outgoing → AX pol-
icy=matchFilter)

If first packet is not from internal host, the sys-
tem should not allow traffic (apply match fil-
ter).

Composed policy
AG (infected→ AX policy=drop) If host is infected, drop packets.
AG ( (authenticated web | authenti-
cated 1x) & !infected → AX pol-
icy!=drop )

If host is authenticated either by Web or
802.1X, and is not infected, packets should
never be dropped.

AG (authenticated web & !infected &
rate=2→ AX policy=delay200)

If host is authenticated by Web, not infected,
and the rate is 2, delay packets by 200ms.

value or values the variable may take, as a function of the current values of other variables

in the model (line 8–16).

Within the case clause of each next function, the left-hand side shows the condition,

while the right-hand side shows the variable’s next value if the condition holds. TRUE on

the left-hand side refers to a default transition. Lines 8–11 indicate that the infected

variable can change between FALSE and TRUE, independent of any other state variable

(in reality, the value changes based on external event of the same name). The policy

variable in lines 12–16 shows that the value transitions to drop if infected is True,

while the default is identity. Thus, it shows that policy’s next value depends on the

infected variable. Table 10 shows examples of the types of temporal properties that

Kinetic can verify.
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4.5 Evaluation

In this section, we evaluate two aspects of Kinetic: (1) Does Kinetic make it easier for net-

work operators to configure realistic network policies? (Section 4.5.1); and (2) How does

Kinetic’s performance scale with the number of flows, users, and policies? (Section 4.5.2).

4.5.1 Programming in Kinetic: User Study

Evaluating whether a new network configuration paradigm such as Kinetic makes it easier

for network operators to write network policies is challenging. Network operators already

know how to use existing tools and infrastructure, and deploying a new control framework

requires overcoming both the inertia of network infrastructure that is already deployed

and the knowledge base of network operators, many of whom are not programmers by

training. We needed to find a way to ask many network operators to evaluate Kinetic in light

of these obstacles. Fortunately, the Coursera course on software-defined networking that

we teach [16] offers precisely this captive audience, as the course’s demographic includes

many network operators who are both educated about SDN and willing to experiment with

cutting-edge tools. (Section 4.2 and Table ?? explained the initial survey and described

the demographics of the participants.) We obtained approval from our institutional review

board (IRB) to ask students to use Kinetic and other SDN controllers to complete a simple

network management task and subsequently survey them.

We asked the students in the course to write a “walled garden” controller program that

is inspired from real enterprise network management task that we have learned about in

our discussions with network operators [17]. In summary, the students were asked to write

a program that permitted all traffic to and from the Internet unless a host was deemed

to be infected (e.g., as determined from an intrusion detection system alert) and not a

host that was exempt from the policy (one might imagine that certain classes of users,

such as high-ranking administrators or executives would get different treatment than strict

interruption of service). In the assignment, we asked the students to: (1) Write a Kinetic
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Figure 29: The lines of code required to implement the walled-garden program in different
controller languages.

program that implements the policy; (2) Choose either Pyretic or POX to implement the

same policy; (3) Optionally implement the policy in the remaining controller; (4) Answer

survey questions about their experiences with each controller.

The course devoted one week each to each of the three controller platforms, and stu-

dents had already completed assignments in both POX and Pyretic, so if anything, students

should have found those platforms at least as familiar as Kinetic. In fact, there were three

programming assignments in Pyretic while there was only one for Kinetic. Kinetic was dis-

cussed in only one lecture out of eight lectures in the course, and was not treated specially.

To further minimize the bias in favor of Kinetic, students were instructed to complete the

assignment in Kinetic first, as the first attempt is usually the hardest. With better under-

standing of the assignment, it is likely that programming in Pyretic or POX would have

been easier.

Of the students who completed the survey from Section 4.2, 667 attempted the as-

signment, and 631 successfully completed it (a 95% completion rate), and 70% of those

students completed the programming assignment in less than three hours. We asked stu-

dents who did not complete the assignment why they did not complete it; most referenced

external factors such as time constraints, as opposed to anything pertinent to Kinetic.

To compare the complexity of the different control programs, we compare the lines of
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Table 11: Lines of code to implement programs in each controller.

Programs FL Pox Pyretic Kinetic
ids/firewall 416 22 46 17
mac learner 314 73 17 33
server load balancer 951 145 34 37
stateful firewall – – 25 41
usage-based rate limiter – – – 30

code in programs implemented with different controllers; we then conduct qualitative mea-

surements by surveying the students of the course. Although the lines of code for a program

depends on the language, programmer, and implementation style, a high-level comparison

can nevertheless yield a rough but meaningful sense for the relative simplicity of a Kinetic

program. Figure 29 shows the distribution of the lines of code that students needed to im-

plement the walled-garden program in different controller languages. About 80% of the

implementations using Kinetic required about 22 lines of code; in contrast, more than half

of the Pyretic implementations required more than 50 lines, and half of the assignments

written in POX required more than 75 lines of code. The fact that Kinetic requires fewer

lines of code to implement this program highlights the utility of the abstractions that Pyretic

provides. In addition to the experiment from the Coursera course, where we could find pub-

licly available implementations on the Web, we compared the number of lines of code for

several different programs to our own implementations of the same programs in Kinetic.

(Blank entries in the table indicate that no implementation was available.) Table 11 shows

these results, for four different controllers: Floodlight, POX, Pyretic, and Kinetic. The

public Pyretic programs are occasionally slightly shorter than the corresponding Kinetic

programs because they only handle built-in events such as packet arrivals and topology

changes. Programs that need to handle arbitrary events would likely always be shorter in

Kinetic.

In addition to analyzing quantitative measures such as lines of code, we asked students

more qualitative questions about their experiences using Kinetic to implement the walled-

garden assignment, relative to their experiences with Pyretic and POX. We asked students
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Figure 30: Number of students who preferred each controller.

to rank the controllers based on ease of use, as well as which platform they preferred.

Figure 30 shows some highlights from this part of the survey. Of the three controllers, more

than half of the students preferred writing the assignment in Kinetic versus either Pyretic

or POX. We asked students whether Kinetic could make it easier to configure and verify

policies in their networks. About 79% of students thought that configuring the network

with Kinetic would be easier than current approaches, and about 84% agreed that Kinetic

would make it easier to verify network policies.

Students who chose Kinetic as the language that they preferred best cited its abstrac-

tions, FSM-based structure, and support for intuition (e.g., “Kinetic is more intuitive: the

only thing I need to do is to define the FSM variable.”, “intuitive and easy to understand”,

“reduces the number of lines of code”, “programming state transitions in FSMs makes

much more sense”, “the logic is more concise”). Some students still preferred Kinetic,

despite the fact that the syntax had a steeper learning curve: “Kinetic took less time and

was actually more understandable using the templates even though the structure was very

’cryptic’... I thought the Pyretic would be the easiest...[but] I spent a lot more time chasing

down weird bugs I had because of things I left out or perhaps didn’t understand.” Interest-

ingly, many of the students actually preferred the lower-level trappings of POX to Pyretic

(e.g., “Pyretic was friendly, but the logic more intricate”). The results of this experiment
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Table 12: The frequency of network events on a primary campus network, which we use
for a trace-driven evaluation of Kinetic.

Statistic # per day
Total Unique Authenticated Users 22,586
Total Unique Devices Authenticated 41,937
Number of WPA authentication Events 1,330,220
Number of WEB authentication Events 1,850

and survey highlight both the advantages and disadvantages of Kinetic’s design, as well as

the difficulty of designing “northbound” languages for SDN controllers: without intuitive

abstractions, operators may even prefer the lower-level APIs to higher-level abstractions.

4.5.2 Performance and Scalability

We evaluate Kinetic’s performance and scalability when handling incoming events, as well

as the performance and scalability of verification, as those are the two main contributions

of our work. We evaluated the Kinetic controller on a machine with an Intel Xeon CPU

E5-1620 3.60 GHz processor and 32 GB of memory. We measured raw packet forwarding

performance but do not focus those numbers, as the forwarding performance is not the focus

of our work and is equivalent to what can be achieved with POX and Pyretic, in any case.

Similarly, the rate at which updated rules can be installed depends on lower layers (e.g.,

POX). Optimizing the number of rule updates [103] and applying them consistently [91]

have been studied in previous work, so we do not focus on those aspects here.

Event handling and policy recompilation.. Because Kinetic recompiles the policy when-

ever an event causes a state transition, we must evaluate how fast Kinetic can react to events

and recompile the policy for realistic network scenarios. We used the wireless network

from a large university campus with more than 4,300 access points deployed across 200

buildings; the network authenticates nearly 42,000 unique devices for more than 22,000

users every day. Table 12 summarizes these statistics. On such a network, Kinetic would

have to keep track of an equivalent number of devices, and each authentication event (about

1.3 million per day) would require Kinetic to recompile policy, resulting in an average of
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Figure 31: Time to handle a batch of incoming events and recompile policies in Kinetic,
for different event arrival rates and policies.

15 events per second (though certainly higher during peak periods). We evaluate Kinetic

for event arrival rates for up to 1,000 events per second, for both a single-FSM policy and a

policy involving the composition of multiple FSMs, based on the example in Section 4.3.3.

We create a Kinetic program that results in 42,000 LPEC FSMs and randomly distribute

authentication events across these FSMs (i.e., devices).

Figure 31 presents the results of this experiment. Recompilation time is longer for the

program with multiple FSMs composed together as it embeds a more complex policy than

the program with a single FSM. For both programs, event handling time increases as event

arrival rate increases. Even for event arrival rates that are several orders of magnitude more

frequent than an actual campus network, Kinetic’s event handling and recompilation times

are around (or less than) a few hundred milliseconds.

Verification.. The speed of verification depends on the performance of NuSMV, which in

turn depends on three factors: (1) the size of the given FSM (i.e., number of states and

transitions), (2) the number of properties to verify, and (3) the kinds of properties to ver-

ify. To observe whether Kinetic’s verification time is reasonable, we evaluate Kinetic’s
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Figure 32: Verification time as a function of the number of CTL properties that Kinetic
checks, for a policy with a single FSM and a policy with a composition of multiple FSMs.

verification performance with the same programs that we used to evaluate Kinetic’s event

handling and recompilation performance. The single-FSM authentication program pro-

duces an FSM with four states, and the program with multiple FSMs produces a combined

FSM with 384 states. To test Kinetic with more than the handful of CTL specifications we

manually created, we generate over one hundred specifications using random combinations

of CTL operators. They are all syntactically correct (i.e., NuSMV will not complain about

the syntax), but are generated regardless of whether they will be true or false when each

goes through the model checker, as our goal is merely to measure verification time.

Figure 32 shows the time to complete verification for different Kinetic programs with

different numbers of properties. Each experiment had 1,000 independent trials; the vari-

ance across experiments was small, so we do not show the error bars. As expected, a

Kinetic program with a larger FSM model takes longer to finish. The figure also shows

that the number of properties affects verification time, but all verification finishes within 35

milliseconds. Kinetic performs verification before the Kinetic program ever runs, so this

process has no effect on performance.
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4.6 Related Work

We discuss SDN controllers with verifiable properties, approaches for formally verifying

data-plane behavior, and other high-level SDN control languages.

Formal verification of SDN control programs.. FlowLog [78] provides a database-like

programming model that unifies the control-plane logic with data-plane state and controller

state. Aspects of FlowLog programs can be verified, but because the language does not nat-

urally capture state transitions and temporal relationships, it cannot verify arbitrary tempo-

ral relationships, such as those that can be verified with CTL in Kinetic. FlowLog uses

Alloy to perform bounded verification, so its analysis is not complete, and certain aspects

of verification are manual. FlowLog has not been evaluated for realistic network policies

or for large networks. It requires storing multiple database entries for each network state

variable and handles certain aspects of control logic by sending data packets to the con-

troller, so it is unlikely to scale. VeriCon [4] verifies that a program written in its language

(CSDN) is correct for all topology and packet events (e.g., packet arrivals, switch joins). It

does not handle arbitrary network events, and there is no OpenFlow-based implementation,

so its practicality is unclear.

Formal verification of data-plane behavior.. Recent work in network verification has

focused on verifying static properties of the data-plane state [45, 91, 95]. Anteater [68]

and HSA [43, 44] can verify properties of a static snapshot of a network’s data-plane state.

These systems can determine whether a static snapshot of data-plane state violates some

invariant, but they do not verify the logic of the control program that generated the state in

the first place, making it difficult to identify which aspect of the network’s control-plane

logic caused the incorrect data-plane state. In contrast, Kinetic helps operators verify con-

trol logic, such as “if an intrusion detection system determines that a host is infected, the

host’s traffic should be dropped”. This capability helps operators both reason about future

data-plane states that a control program could install and troubleshoot incorrect behavior
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when it does arise. Because Kinetic’s verifies the static programs themselves, it can detect

logic errors before the control program is ever run on a live network. NICE [9] can test

control-plane properties that might result from arbitrary sequences of standard OpenFlow

events; it is not a controller, but rather a test harness for control programs written in exist-

ing low-level controllers (e.g., NOX) and hence does not permit reasoning about arbitrary

events.

Other SDN control languages.. Many languages raise the level of abstraction for writing

network control programs, yet these languages do not offer constructs for concisely encod-

ing policies that capture network dynamics, nor do they incorporate formal verification of

control-plane behavior. FML [33] allows network operators to write and maintain policies

in a declarative style. Nettle [100] is a domain specific language in Haskell. Procera [101]

applies functional reactive programming to help operators express policies. Frenetic [27] is

a family of languages that share fundamental constructs and techniques for efficient com-

pilation to OpenFlow switches.

4.7 Conclusion

One of the reasons that network configuration is so challenging is that network conditions

are continually changing, and network operators must adapt the network configuration

whenever these conditions change. Network operators need means not only to automate

these configuration changes but also to verify that the changes will be correct. Existing

general-purpose SDN controllers lack intuitive constructs for expressing dynamic policy

and ways to efficiently verify that the control programs conform to expected behavior.

To address these problems, we designed and developed Kinetic, a domain specific lan-

guage and SDN controller for implementing dynamic network policies in a concise, verifi-

able language. Kinetic exposes a language that allows operators to express network policy

in an intuitive language that maps directly to a CTL-based model checker. We evaluated

Kinetic’s usability and performance through both a large-scale user study and trace-driven
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performance evaluation on realistic policies and found that network operators find Kinetic

easy to use for expressing dynamic policies and that Kinetic can scale to a large number of

policies, hosts, and network events.

Kinetic sits squarely in the realm of ongoing work on network verification and com-

plements the growing body of work on data-plane verification, such as Veriflow [45] and

NetPlumber [43]. As these tools can help network operators ask questions about snapshots

of data-plane state, and Kinetic can help network operators reason about the dynamics

of network policies (which ultimately compile to the corresponding data-plane state), the

approaches are complementary. Similarly, Kinetic needs the path guarantees that consis-

tent updates [91] provide to guarantee that the properties it verifies are preserved during

state transitions; conversely, consistent updates could be extended to reason about tempo-

ral properties such as those that Kinetic can express. One natural next step would be to

combine these approaches.
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CHAPTER V

CORONET: TRANSPARENT FAILURE RECOVERY SERVICE

5.1 Introduction

Software-Defined Networking (SDN) separates network control and data planes; a logi-

cally centralized controller makes traffic forwarding decisions and programs switches to

carry out traffic forwarding in the data plane. SDN enables global network visibility, pro-

grammability, and extensibility. For example, both Google and Microsoft have deployed

SDN in production to manage traffic flows between data-centers [34, 40].

Until recently, fault resilience has been an overlooked challenge for SDN, despite the

high business costs of unplanned network component failures that cause service outages.

There are three fault domains in SDN-based networks: (1) Data-plane failure, where a

switch or link fails, (2) control channel failure, where the connection between the controller

and switch fails, and (3) controller failure, where the controller machine or software fails.

It is often acceptable to implement the SDN control channel using low-performance legacy

network technologies,with legacy protocols such as Ethernet Spanning Tree Protocol (STP)

providing control channel resilience. Recent work has explored more general approaches

for providing a reliable control channel and controller [1]. Controller reliability can also be

improved using well-understood distributed systems techniques for consistent maintenance

and updates of replicated state [53].

While the SDN controller could emulate legacy distributed protocols like STP to re-

cover from switch and link failures, that approach would fail to take advantage of the global

visibility and central control offered by SDN to optimize network performance metrics.

Alternatively, each SDN application could custom-implement an efficient fault resilience

solution, but this poses a burden impeding SDN adoption.
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In this paper, we present Coronet, a practical and general solution for fast data-plane re-

covery in arbitrary topology networks using standard, unmodified OpenFlow 1.3-compliant

switches and controllers. Coronet focuses on data plane failures and assumes a reliable

controller and control plane. Switch and link failure and recovery events can generally

be detected by neighboring switches, which are programmed to notify the controller of

detected topology changes.

The key challenge that Coronet addresses is to rapidly reconfigure routing rules in the

data plane to quickly restore connectivity to all flows affected by switch or link failures.

As we demonstrate through benchmarking state-of-the-art OpenFlow 1.3 capable switches,

slow rule updates in modern switches can readily lead to recovery times on the order of

minutes in large networks. Coronet achieves one-to-two-second failover in large networks,

while supporting multi-path routing and transparent resiliency for SDN applications.

Coronet satisfies several important design goals in addition to fast failover in large net-

works. Specifically, Coronet supports multipath routing to maximize network throughput

by exploiting alternative paths, with a routing policy that avoids congestion and unnec-

essary use of overly long paths. Coronet supports arbitrary topologies, unlike some prior

work that requires special topologies [66], and it provides maximal connectivity even under

network partition failures. Coronet is a practical solution that works with existing protocols

and platforms, without need for hardware modification or new standards. Coronet achieves

graceful failover to backup paths by taking into account traffic conditions and distributing

affected traffic to backup paths to minimize introducing congestion. Finally, Coronet can

act as a general resilience service that transparently restores connectivity when data-plane

failures occur, on behalf of one or more higher-level SDN applications.

The key idea behind Coronet is to map a large number of flows onto a smaller number of

routes, and then change only the routes when failures are detected. For this, Coronet makes

use of an OpenFlow 1.3 feature called group tables, which provides a level of indirection

during the forwarding action lookup at each switch. Updating only the group table entries
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enables very fast recovery times compared to reconfiguring each individual affected flow.

Coronet proactively plans and sets up primary routes and sufficient backup routes to rapidly

recover from the failure of any single component. While OpenFlow group tables support a

feature for fast failover, the failover action is limited to the switches that are immediately

incident to a failed component, and thus this feature can implement only local traffic re-

routing. In contrast, Coronet plans backups over the network-wide scope, changing traffic

routes multiple hops away from the failed component, to optimize global network through-

put and load balancing. While Coronet plans for single failure events, multiple concurrent

failures may also occur. In some of these scenarios Coronet must reactively compute and

install new routes, possibly a slower procedure than failing over to precomputed backups.

Our evaluation focuses on single failures and largely leaves multiple failures for future

work.

Coronet achieves efficient resource utilization in addition to fast failover. Coronet uses

group table entries at ingress switches to represent routes. To reduce pressure on group

table usage, and also to speed up failover by minimizing the number of group table entries

that need to be updated after a failure is detected, Coronet can optionally represent routes

as trees in the network instead of individual paths. In addition, Coronet represents each tree

with a small number of group table entries determined using an algorithm that combines

traffic to multiple egress switches while taking into account all of their possible failover

requirements. To reduce pressure on link bandwidth usage in the network, Coronet dynam-

ically assigns new flows to lower utilization paths, and upon failover distributes affected

traffic across multiple backup traffic trees, using a linear optimizer to minimize worst case

congestion.

We implemented Coronet on a production SDN controller, HP VAN, and evaluated its

operation when controlling four Mininet-emulated network topologies. Our experimental

results verify that Coronet achieves fast failover. Coronet achieves failover with congestion
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avoidance in 50ms–250ms with small networks with less than 25 switches, and 500ms–

1500ms for large networks with more than 100 switches. Without congestion avoidance,

Coronet achieves subsecond recovery for large networks as well. Further, the results show

that representing routes as trees instead of as paths significantly saves group table usage

while achieving similar performance in terms of link bandwidth usage, both before and

after failures.

5.2 Failure Recovery in SDNs

We present an example which shows that in a large network, a straightforward approach

to recovering from a single failure requires a large number of flow table updates in the

bottleneck switch. Based on the switch update rate benchmark(§5.4.2), such numerous

updates lead to unacceptably long recovery times.

Though Coronet works with arbitrary topology, we use a more structured data center

network example to demonstrate a general problem of failure recovery in SDNs, especially

with large networks. Figure 33 shows a two-layer fat-tree topology with four spine switches

(top switches in the figure) and eight leaf switches (bottom switches). A leaf switch has

four 10G port towards the spine switches, and 32 1G ports connected to end hosts. Each

spine switch has eight 10G ports. This topology allows 32 × 8 = 256 physical hosts,

representing a fairly large data center network.

Assume the hosts exchange uniform all-to-all traffic. While flows can be defined differ-

ently and have a wide range of granularity, e.g., per-TCP connection, subnet-to-subnet, etc.,

if we define each flow to be the unidirectional traffic from one host to another, the number of

flows originating from one leaf switch to other seven leaf switches is 32×(7×32) = 7168 if

we assume all hosts are active. Considering only the traffic that traverses the spine switches,

and assuming perfect load balancing, each spine switch will have 7168/4 = 1792 incoming

flows from one leaf switch through a single link.

If the link between s1–s2 fails, as shown in Figure 33, 1792 upward flows and 1792
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Figure 33: Two-layer fat-tree topology with four spine switches and eight leaf switches.
Each leaf switch has four 10G port and 32 1G ports. Some links are omitted for better
visualization.

Table 13: Number of modifications and time required to recover from link s1–s2 failure.

Failover
mechanism

Number of flow table entries
that needs modification

Recovery
time

Leaf
switches

Swith with
most updates

Spine
switches

Naı̈ve 3,584 1,792
0 w/ backups
(1792 if not)

32,581 ms

Coronet 18 3 0 54 ms

downward flows are affected by the failure. Table 13 summarizes the number of modifi-

cations and time required to recover from a link failure. To recover, the controller needs

to perform 1792 flow rule modifications in switch s2 to forward the affected upward flows

to a different spine switch. The 1792 downward flows originating from other leaf switches

need to be modified as well. Therefore, in total 3584 flow entry modifications are necessary

across all leaf switches. We assume the selected alternate spine switch was pre-installed

with backup flow table entries for alternate paths.

Assuming that the controller can issue flow modifications in parallel to the switches, the

recovery time is dominated by switch s2 which requires the largest number of modifications

(1792). Flow modification benchmarks reported by previous studies [37, 40, 63], as well

as our benchmark in §5.4.2, show that modern switches have slow rule updates leading

to long recovery times (e.g., 55 rules/second update rate in our benchmark). Compared
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Table 14: Definitions.

Term Definition
Route tree A set of switches and links that forms a tree structure, used for for-

warding packets in the network
Host-attached
switches

Switches that have one or more host attached

Ingress switch The first host-attached switch a packet meets when it enters the net-
work after it is sent from the source host

Egress switch The last host-attached switch a packet meets in the network, respon-
sible of forwarding it to its final destination host

Intermediate switches Switches that a packet visits while forwarded in a route tree, which
are not ingress or egress switches for that packet

Network components Links and switches in the data plane
Shared components Overlapping network components used by the given set of route trees

to the naı̈ve solution, Coronet can recover the connectivity with a mere 18 modifications,

224 times less than 3584, with at most three modification per leaf switch, reducing the

link failure recovery time from over 30 seconds to 54 milliseconds with a 55 rules/second

update rate.

Using the same topology, the recovery time gets worse with the naı̈ve approach as we

increase the number of ports on leaf switches. For 64-port and 128-port switches, the

recovery time increases to 130 seconds (>two minutes) and 521 seconds (>eight minutes),

respectively. Such sensitivity to port count is particularly troublesome given the general

trend in data center switches toward higher port counts. With Coronet, the recovery time

does not increase as Coronet does not modify the flow table entries for individual flows to

restore connectivity.

5.3 Design of Coronet

We describe Coronet using terminology listed in Table 14. Figure 34 shows the Coronet ar-

chitecture. At start-up, Coronet’s route-tree generation component computes a set of route

trees within the physical topology, and pre-installs switch rules to forward packets along the

route trees. In the meantime, the virtualization map component delivers the one-big-switch

86



Figure 34: Coronet architecture in the control plane. Dotted lines indicate interactions that
are done at start-up. Normal lines indicate real-time interactions.

abstraction to the SDN control application. At runtime, the virtualization map compo-

nent intercepts packet-ins and translates them for the virtual topology and pass it onto the

SDN control application above. When the SDN control application makes a forwarding

decision, the message is eventually passed to Coronet’s route selection component, which

maps a forwarding rule to a route tree.

When a network component failure is detected, Coronet adjusts only the affected route

trees rather than the much greater number of affected flows, which greatly reduces the

number of rule table updates that the controller needs to issue, leading to a large reduction

in recovery time. This is done by only updating the group table rules at ingress switches to

specify a different tag (switching the flows to a different tree).

Furthermore, to minimize the chance of overwhelming a link over its capacity, Coronet

recovery component formulates the distribution of traffic to backup paths as a linear pro-

gramming problem, and solves it with a well-known LP solver, GLPK [30], which goal is

to minimize the maximum load on links after traffic is redistributed on backup paths. We

present the design details of Coronet in the following subsections.
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5.3.1 Planning for Failures

Coronet attempts to compute and create multiple primary route trees that are as resource-

disjoint as possible in terms of shared switches and links, to exploit path diversity for load

balancing and failure resilience. Coronet also computes sufficient backup route trees to

guarantee restoring connectivity despite any single component failure. A primary tree can

also serve as backup for other primary trees.

In this section, we first describe how primary route trees are generated, and then explain

how backup route trees are created and paired with each primary.

5.3.1.1 Route tree properties

Coronet builds each route tree to span all host-attached switches. Thus, a route tree can

forward traffic between any host pair, along a single path which may or may not be a short-

est hop path. The route tree generation component create route trees that avoid resource

sharing, such as links and switches, between trees. Such resource disjointness between

route trees helps Coronet to utilize redundant paths, and it enables many trees to serve dual

roles – primary routes and backup routes for other primary routes.

Figure 35 shows the pseudocode for generating a set of primary route trees in Coronet.

Note there are two parts: (1) creating the first set of resource-disjoint route trees, and (2)

improving the set by adding route trees that have shorter hop paths for each host-attached

switch pair.

Resource-disjoint route trees. First, the controller reports to Coronet the network topol-

ogy, discovered using the Link Layer Discovery Protocol (LLDP), and a list of host-

attached switches. Coronet then computes the route trees as a series of Minimum Span-

ning Trees (MST) using the well-known Kruskal algorithm [56], which has algorithmic

complexity O(|E| log|V |), where |E| is the number of links and |V | is the number of

switches. Coronet prunes each spanning tree by removing all branches that are devoid of

host-attached switches, yielding a tree that spans and connects all host-attached switches.
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As shown in the first part of Figure 35 (line 1–15), Coronet computes route trees one by

one, and adds a positive value w to the weight of links used by each tree as it is gener-

ated, thereby discouraging subsequently generated trees from selecting the same resources

as previously generated trees. Figure 36 shows the procedure graphically. Route trees are

generated until all links in the network are covered, thus enabling network-wide link uti-

lization with a concise set of route trees. We refer to these as primary route trees, which

are used to forward flows before failure.

The weight value w plays an important role in route tree construction. We want to

encourage using alternative paths, so w has to be big enough to shift selection to different

resources for subsequent trees. But it should not be too big because it would encourage

paths with excessively long hop count which should be avoided. Coronet picks a different

w value for different topologies: the value is equal to w=1/(the average number of hops

between all host-attached switch pairs) in the topology. Even though simple, this approach

works well for all topologies we have evaluated.

Improving route trees. Route trees created previously do not guarantee to have bounds

in terms of path stretch. A route tree can provide very long paths for some host-attached

switch pairs. The second part (line 16–26) in Figure 35 adds primary route trees to ensure

that the length of the route between every host-attached switch pair is within the bound

dminHop×me.

The m value decides the path stretch of using route trees in comparison to shortest

paths. However, larger m value can create more route trees, which in turn affects the

recovery time later when a failure occurs. Thus, the m value creates a trade off. There

is no silver bullet m value that works for every situation, and the value should depend on

topology, traffic forwarding requirements (e.g., latency bound), and more. For this paper,

we have fixed m = 2, thus bounding route trees to provide no longer than twice the shortest

paths available in the topology. Future work should explore how to decide an appropriate

m value for different situation.
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1 / / 1 . C r e a t e i n i t i a l s e t o f r o u t e t r e e s
2 R={}
3 while (∃ uncove red l i n k ) :
4 ri= B u i l d T r e e W i t h K r u s k a l A l g (G) ;
5 Tr imTree (ri ) ;
6 R . add (ri ) ;
7
8 for each l i n k l i n ri :
9 i n c r e m e n t we i gh t by w ;

10
11 for each s w i t c h s i n ri :
12 for each l i n k l a t t a c h e d t o s :
13 i n c r e m e n t we i gh t by w ;
14 R e s e t W e i g h t s (G)
15
16 / / 2 . Improve s e t
17 for each ( s r c , d s t ) h o s t− a t t a c h e d s w i t c h p a i r :
18 p a t h = S h o r t e s t P a t h (G, s r c , d s t ) ;
19 minHop = p a t h . l e n g t h ( ) ;
20
21 r = S e l e c t S h o r t e s t R o u t e T r e e (R , s r c , d s t ) ;
22 hopCount = NumOfHops (r , s r c , d s t ) ;
23
24 i f ( hopCount > dminHop ∗ me ) :
25 r′ = B u i l d T r e e W i t h P a t h (G, p a t h ) ;
26 R . add (r′ ) ;

Figure 35: Pseudocode for creating a set of primary route trees.

Figure 36: Constructing resource-disjoint route trees (numbers shown on links represent
weights).

5.3.1.2 Backup route tree computation

Figure 37 shows the algorithm for backup route tree computation. For each primary route

tree in ri ∈ R, the algorithm first searches for a backup route tree rj that shares the least

number of components (e.g., links and switches) with ri, and it is added to the primary ri’s

backup set (line 2–4). If the backup is completely disjoint with the primary, such backup

tree will restore connectivity for any component failure in the primary, thus the backup

route selection process for ri completes. If the primary and the backup is not completely

disjoint, the algorithm tries to find a second backup rk that does not contain the shared

component of ri and rj (line 7–11). Such rk survives failures that ri and rj do not survive,
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1 NewR={} / / newly c r e a t e d r o u t e s
2 for each ri ∈ R , do :
3 ArgMin ( | SharedComp (ri ,rj ) | , rj ) ,rj ∈ (R∪newR )−{ri}
4 B={rj} ;
5 i f SharedComp (ri ,rj) = φ :
6 c o n t i n u e ; / / ri and rj a r e c o m p l e t e l y d i s j o i n t .
7 else :
8 F ind a l l rk ∈ R∪newR−{ri ,rj} t h a t does n o t c o n t a i n SharedComp (ri ,rj ) .
9 i f ∃rk :

10 ArgMin ( | SharedComp (ri ,rk ) | , rk ) ;
11 B=B∪{rk} ;
12 else :
13 AddWeight (G, ri ,w ) ;
14 rk= B u i l d T r e e W i t h K r u s k a l ( G−SharedComp (ri ,rj ) ) ;
15 i f rk s p a n s a l l h o s t− a t t a c h e d s w i t c h e s :
16 Tr imTree (rk ) ;
17 B=B∪{rk} ; newR=newR∪{rk} ;
18 else :
19 / / Remove s h a r e d components one by one .
20 for each ci ∈ SharedComp (ri ,rj ) , do :
21 rk= B u i l d T r e e W i t h K r u s k a l (G−ci ) ;
22 i f rk s p a n s a l l h o s t− a t t a c h e d s w i t c h e s :
23 Tr imTree (rk ) ;
24 B=B∪{rk} ; newR=newR∪{rk} ;
25 else :
26 i f ci i s a l i n k :
27 ri s t i l l works i n each s u b g r a p h ;
28 else i f ci i s a s w i t c h :
29 rk= B u i l d T r e e W i t h K r u s k a l (G−ci ) ;
30 Tr imTree (rk ) ; newR=newR∪{rk} ;
31 c u r V e r t e x F a i l M a p . p u t (ci , rk ) ;
32
33 / / ri ’ s backup s e t i s c o m p l e t e
34 ri . b ackupSe t = B
35 }

Figure 37: Pseudocode for finding 1-failure resilient backup route trees for each primary
route tree.

specially for the components shared by ri and rj . If such rk cannot be found in the pre-

computed set, the algorithm creates a new route tree without the shared components of ri

and rj (line 12–17). If the new route tree rk does not span all host-attached switches, that

means the removal of all shared components of ri and rj disconnected the topology. In

such case, Coronet removes each shared component one by one, and creates route tree for

each removed component (line 18–24). If even removing one component disconnects the

topology, it means it is a cut-edge of cut-vertex (line 25–31), which we discuss in §5.3.1.3.

After Figure 37’s algorithm, Coronet runs another routine that checks the number of

live backups after each component failure for each primary route tree. It constructs more

backup route trees if the number is less than a pre-defined parameter, which is the minimum
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number of backups guaranteed to be alive after a failure. This prevents Coronet from having

too few choices when traffic needs to be distributed on backups, which can lead to excessive

load on certain links (details in § 5.3.3). The value introduces a trade-off: bigger values

will intuitively bring better load distribution on links and switches after a failure, but the

computation time for finding the optimal load distribution will increase. Smaller values

will have an opposite effect. We will highlight the trade-off in our evaluation section.

5.3.1.3 Network partition failures

In graph theory, a cut edge, or a bridge edge, is an edge that disconnects the graph into

two or more subgraphs when removed. When such an edge fails in a topology (graph), all

route trees generated by Coronet will be affected. In this case, the original primary route

tree provides the best connectivity possible without any modification necessary1. This

means the original tree will still span all vertices within each island when the graph is

disconnected.

A vertex failure can also disconnect the topology, affecting all precomputed route tress.

In graph theory, such vertices are known as cut vertex or articulation points. A vertex

failure can remove multiple edges in the graph, thus the original primary route tree might

not guarantee best connectivity within each island, which makes the situation different with

the cut edge failure scenario above.

To immediately recover from such failures, Coronet prepares for cut vertex failures in

advance by first identifying nodes that will disconnect the graph when removed. One or

more backup spanning trees are precomputed and mapped to each identified cut vertex.

Thus when a cut vertex failure is detected, Coronet can immediately return the relevant

set of backup route trees that provides best connectivity in face of such a failure. The

preparation of such failures is in line 28–31 in Figure 37. curVertexFailMap is a

hashmap that maps a cut vertex to a backup route tree that can be used to provide best

1We omit proof for the limited space.
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Figure 38: Two different route trees in a three-layer fat-tree topology, one shown in blue
solid line, the other one shown in red dotted line. Grey boxes on the bottom layer are
host-attached switches.

connectivity when the vertex (switch) fails. There exists efficient algorithms for finding

such set including work from Hopcroft and Tarjan [35], and Schmidt et al. [94]. Coronet

can also leverage such algorithms to identify such articulation points faster.

5.3.2 Traffic Forwarding

In this section, we describe how Coronet represents route trees in switches and how it

forwards flows using route trees.

5.3.2.1 Representing route trees

Figure 38 shows an example of two route trees in a three-layer fat-tree topology. Whenever

a source host initiates a new flow, Coronet’s route selection component chooses an appro-

priate route tree to forward the flow. It favors a shorter path unless that path is experiencing

high traffic volume, in which case another less loaded longer path is selected.

To implement route tree forwarding, Coronet assigns a unique label value to each route

tree, and tags an incoming packet with the appropriate label to indicate the chosen route

tree to forward the packet. Coronet programs the ingress switch to tag every packet of an

incoming flow with the label corresponding to the route tree chosen for the flow. Coronet

also programs the last hop egress switch to pop the label before forwarding the packet to

the destination host.
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a   .   b   .   c   .   d

(dstHostSwitch/254)+1 dstHostSwitch%254 attached port #identifier

Encapsulated_IP

Example
dst_ip = 10.0.0.5

dst_host_switch = 15 

identifier = 1

attached port = 2

Encapsulated_IP: 

1 . 15 . 1 . 2

Figure 39: Encapsulation mechanism in Coronet. A destination host-attached switch can
be identified with the first two positions, a and b. Thus, the flow table entry can match
on a.b.c.d/16 to forward flows to the destination switch. The identifier can be used to
differentiate different VMs attached to the same port. The port indicates the port number
where the destination host is attached to on the destination host-attached switch.

The hop-by-hop route taken by a packet depends on its route tree and its destination ad-

dress. To reduce the number of forwarding rules needed in intermediate switches, Coronet

encapsulates each packet at the ingress switch with an IP header that identifies the destina-

tion egress switch. As Coronet has a global view of the network, it can dynamically track

which switch each host or VM is currently attached to.

For each flow, Coronet first installs a rule at the ingress switch to encapsulate the flow’s

packets with an IP header destination address based on the egress switch and egress port as

shown in Figure 39. Coronet installs another rule action to tag, or “push”, a label identify-

ing the chosen route tree for the flow. At all intermediate switches, Coronet installs rules

to forward packets on each route tree to the corresponding egress switch, instead of to the

much larger number of destination hosts as would be needed without encapsulation. Fi-

nally, Coronet installs a rule at the egress switch to decapsulate the destination IP address,

and another rule action to “pop” the label and forward the packet to its destination host.

Coronet currently uses the IP header for encapsulation and decapsulation, and the VLAN

header for label tagging, but other fields can be used for the same purpose.
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5.3.2.2 Group table usage

The OpenFlow specification v1.1.0 [84] introduced an OpenFlow table type called Group

Table. An OpenFlow switch can have one group table. The group table provides a level of

indirection, in which the flow table entry that matches a packet can point to a group table

entry which is subsequently accessed to complete the lookup of the packet’s forwarding

action. One or more flow table entries can point to a single group table entry (many-to-one

mapping). Thus, a single update to a shared group table entry can affect multiple flows.

Reducing table updates for recovery. Using both flow table and group table entries en-

ables Coronet to recover from failures with far fewer control-plane messages than using

flow tables alone. Figure 40 illustrates how flow table and group table entries are used in

host-attached switches (depicted as grey boxes). First, the ingress switch for a flow has

flow table entries that encapsulate the destination IP address and direct the flow to a group

table entry based on group ID. In an unoptimized approach, the group ID is unique for each

(route tree, egress switch) pair (we describe how to optimize and reduce group table entries

below). In Figure 40, multiple flows are directed to a group table entry. Each group table

entry tags a flow with a label (to identify the route tree) and forwards it to a specified out-

put port. When a failure disconnects a route tree, Coronet modifies the actions of affected

group table entries to tag flows with different labels representing live backup route trees,

and modifies the output port too if necessary.

Reducing the number of group table entries. In the approach just described, the number

of group table entries used at each host-attached switch is H × N , for a network with H

host-attached switches and N route trees. In a large network this may exhaust group table

capacity. It also requires a large number of entries to be modified after a failure, leading to

slow recovery time.

To reduce the number of group table entries needed, we observe that flows that always

have the same forwarding action can be grouped together. In particular, flows that share
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Figure 40: Flow table and group table in Coronet. Group ID numbers are unique for each
group table entry. The numbering does not need to be sequential or start from 1.

the same route tree, i.e., tagged with the same label, and forwarded to the same output port,

both before failure and after failure, can share a group ID. Figure 41 shows an example

of forwarding rules at a host-attached ingress switch for traffic to different host-attached

egress switches. In this example, a primary tree has two backup trees, and there are nine

egress host-attached switches (A to I). The table on the left shows the forwarding action

for each tree and egress switch. Without group table reduction, the ingress switch would

require nine entries for the primary tree. As shown in the table on the right, the group table

usage is reduced to five entries by grouping traffic to different egress switches that share

the same forwarding action.

Figure 42 shows the pseudocode for reducing group table entries described above.

Given a primary route tree r and its backup route tree set Br, for each host-attached switch

v in r, a set of other host-attached switches, named NewDstSet, that are reachable through
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Primary

Backup 1

Backup 2

outport 1 outport 2 outport 3
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Figure 41: Reducing the number of group table entries by bundling destination switches
(in alphabet) that are reachable by the same output port in primary and backup route trees.
Bundles are identified by rectangular boxes around them.

each output port p of v is computed (line 1–4). Then the FindNewGroup method finds

if the whole set or a subset of NewDstSet can be reached by using some output port

in r’s backup paths. FindNewGroup method calls itself recursively until NewDstSet

becomes empty (line 8–10), which eventually happens after all host-attached destinations

are considered. The NewDstSet is first preserved (line 12–13). Next, the destinations in

NewDstSet are tested whether the whole set or the subset of them are reachable through a

particular output port using each of backup route trees (line 15–21). If a group of destina-

tion host-attached switches are found (or ends up having a single destination host-attached

switch), a new group table ID is assigned to the group (line 24), and then the method is

called recursively with the remaining un-dealt set of destinations (linke 25–26).

5.3.3 Avoiding Congestion in Failure Recovery

When a data-plane failure is detected, Coronet looks up and implements the pre-computed

action to restore connectivity to affected routes. For each affected route, Coronet only

updates the corresponding group table entries at ingress switches to convert them to use one

or more backup trees. Compared to adjusting every affected flow, adjusting only the tagging

and tree routes leads to a tremendous reduction in the number of updates. When multiple

backups are available for an affected primary route, Coronet computes appropriate weights

for redistributing the traffic from the affected route to the backups in order to minimize
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1 M i n i m i z a t i o n (r ,Br ) :
2 for each v ∈ {r ’ s h o s t− a t t a c h e d s w i t c h e s } , do :
3 for each p ∈ o u t p u t P o r t s ( v ) , do :
4 NewDstSet= Ge tReachab l eDs t (p ,r )
5 FindNewGroup ( NewDstSet ,Br , v )
6
7 FindNewGroup ( NewDstSet ,Br , v ) :
8 / / I f NewDstSet becomes n u l l , s t o p .
9 i f NewDstSet=φ ,

10 return
11
12 / / M a i n t a i n o r i g i n a l s e t
13 OrgSet =NewDstSet
14
15 / / S t a r t s e a r c h i n g i n backup ’ s l i n k s
16 for each p ∈ o u t p u t P o r t s ( v ) , do :
17 for each b ∈ Br , do :
18 / / F ind r e a c h a b l e D s t S e t for t h i s p and b .
19 Tmp=NewDstSet ∩ GetR eachab l eDs t ( p , b )
20 i f Tmp 6= φ ,
21 NewDstSet=NewDstSet ∩ GetR eachab l e Ds t ( p , b )
22
23 / / Ass ign new group ID
24 ass ignNewGroupId ( NewDstSet )
25 / / Deal w i th r e m a i n i n g d s t s e t
26 FindNewGroup ( OrgSet−NewDstSet ,Br , v )

Figure 42: Pseudocode for reducing the number of group table entries.

network congestion introduced by the failover.

The goal of selecting backup route weights to minimize congestion is formulated as

the linear programming (LP) problem shown in Figure 43, using the definitions listed in

Table 15. The LP objective is to minimize z, the maximum load among all links in the

topology after traffic is distributed to the backup paths for every primary path that is dis-

connected by the failure. Constraint (1) states that z is the upper bound of loads on all

links in the network. The load of a link after failure is determined by multiplying three

values: the weight (in ratio) given to a backup (w), the traffic amount of the original flow

(T ), and a binary value that indicates whether the link is included in a backup route (L).

Constraint (2) states that for each (primary path, ingress switch) pair, the addition of the

weights of all backup paths will sum to 1. Constraint (3) presents the case where different

egress switches are reachable by the same group table entry, due to the group minimization

process described in § 5.3.2 and Figure 41.

The model above is expressed and solved using the GNU Linear Programming Kit
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Table 15: Definitions used in the LP model.

Term Definition
z Maximum load on a link.
E Set of all links in the topology.
Loade Traffic amount at link e.
R Set of route trees computed so far.
Br Set of backup route trees for a primary route tree r.
H Set of all host-attached switches.
~Tr,s |H|x1 vector. Traffic amount from s to each destination host-attached

switch that uses route tree r.
Le,s,r |H|x1 binary vector. 1 if link e is included in the path between s and

list of destination host-attached switches that uses route tree r. 0 if
not.

~wr,s,b |H|x1 vector. Weight setting distribution among backups in Br for
each host-attached switches for backup b at switch s when primary
route tree r is used.

getGroupId(r,s,d) Returns the group entry ID for route tree r, source switch s, and des-
tination switch d.

− Minimize z
− C o n s t r a i n t s :

( 1 ) For e v e r y l i n k e ∈ E : Loade ≤ z .
Loade =

∑
r∈R

(
∑
s∈H

(
∑

b∈Br

(~wr,s,b(~L
T
e,s,b

~Tr,s))))

( 2 ) For each (r, s) c o m b i n a t i o n ,
∑

b∈Br

~wr,s,b = ~1 ,

( 3 ) For each (r, b, s, d1, d2) c o m b i n a t i o n ,
I f g e t G r o u p I d (r, s, d1 ) == g e t G r o u p I d (r, s, d2 ) ,
~wr,s,b[d1]== ~wr,s,b[d2]

where r ∈ R, b ∈ Br, s ∈ H, d1 ∈ H, d2 ∈ H

Figure 43: Weight adjustment formulated as LP model.

(GLPK) [30]. The number of weight variables can grow as the square of the number of

host-attached switches, leading to long execution time in some cases. Thus, we introduce

a simplified formulation in Figure 43 that effectively reduces the number of variables by

constraining all the group table entries for a single primary tree at an ingress switch to share

the same backup tree weight distribution. In §5.4.3 we show that this simplified formulation

produces almost identical results as the full LP model but is quicker to solve.

Coronet fails over to multiple backup routes by using a select group table entry type

introduced since OpenFlow v1.1.0. This feature allows different actions to be performed

on each unique flow based on selection weights. Specifically, a select type group table
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Figure 44: select group table entry type used in Coronet. Red boxes in the right group table
denote different backup route trees’ action buckets. How traffic is redistributed depends on
how weights are assigned to each backup action bucket.

entry can have multiple action buckets, each specifying its own list of actions. Each flow

gets hash mapped to a bucket with probability proportional to an assigned bucket weight.

Figure 44 illustrates the use of select group table entry and weights in Coronet.

5.3.4 Fault-tolerance as a Service

Network operators or developers build their own SDN applications to solve specific tasks

for their networks, yet it is cumbersome to build their own algorithm or method to handle

unexpected data-plane failures. Coronet’s purpose is to fill this gap, and provide a general

“service”, specifically a fault-tolerant connectivity service that maintains connectivity in

face of link and switch failures.

Coronet exports a simplified virtual topology to an SDN control application allowing

it to implement high-level policies while Coronet transparently handles failure recovery in

the real physical topology. As illustrated in Figure 34, Coronet first receives a packet-in

message from the data plane, and passes it to the SDN control application. The application

can issue OpenFlow flow table modification messages for the virtual topology, which Coro-

net intercepts and translates into the form that can actually be realized through Coronet’s

routing mechanism. Coronet has several techniques that help it to be integrated with other

SDN applications: (1) physical topology abstraction, (2) packet-in message interception,
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and (3) flow-mod message transformation.

Topology abstraction. Previous works have suggested of presenting a “one big

switch” abstraction to operators, liberating them from grappling with hop-by-hop forward-

ing in the physical network [42, 76]. With such topology abstraction, operators can fo-

cus on programming the forwarding behaviors between end-hosts rather than meddling

with hop-by-hop routing in the network. Following this approach, Coronet retrieves the

physical topology and creates a single virtual switch with ports on the perimeter of the

physical topology. Coronet maintains the mapping of (virt switch, virt port)

to (real switch, real port) and vice versa.

Intercepting packet-in messages. Coronet intercepts packet-in messages that directly

come from the data plane and transforms the original packet-in messages to the virtual

ones in accordance to the topology abstraction. The SDN App has an illusion that packet-

in messages are coming from the data plane directly. With virtual packet-in messages, the

SDN App can built its own logic for handling packet-in events and react to (e.g., forward,

block, ignore) as intended.

Transforming flow-mod messages. The SDN App can create OpenFlow messages

that modifies (e.g., add, delete, modify) flow table entries in an SDN-enabled switch. How-

ever, such flow-mod message from the SDN App is created with the virtual topology and

cannot be applied directly on the physical topology. To translate such flow-mod messages

to relevant ones, Coronet provides a special API that SDN Apps can leverage to pass its

flow-mod message to Coronet, which in turn translates it into a series of flow-mods that

actually works on the physical topology.

Coronet’s current abstraction only supports one SDN application at a time with one

virtual topology. For future work, we plan to support multiple SDN applications simulta-

neously where each SDN application could have a different view of the topology.
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5.4 Implementation and Evaluation

In this section, we first present how we implemented Coronet using HP’s VAN SDN con-

troller, and how we evaluated Coronet with various network topologies. We then show the

performance of Coronet both before and after data-plane failures.

5.4.1 Implementation

Coronet requires support for OpenFlow v1.1 [84] or higher in switches and the controller

to leverage the group tables for routing and fast failover. We built the Coronet controller

program (around 13,500 lines of Java code) using the HP VAN SDN controller platform.

The HP VAN controller [36] is a production grade platform built with Java, and supports

OpenFlow v1.3. The controller platform uses the OSGi (Open Service Gateway initiative)

framework, which allows modular software deployment, thus it is possible to load and

unload multiple modular SDN apps dynamically. The controller also has extensive REST

API support, and allows external scripts or applications to indirectly control the network

through the controller.

The HP VAN controller has notable similarities with other SDN controllers such as

Floodlight [26] and OpenDaylight [82] in terms of programming language, framework,

and controller structure. Therefore, porting Coronet to either platform should be feasible.

The Coronet controller program runs on a machine with an Intel Xeon CPU E5-1620

3.60 GHz processor and 32 GB of memory.

5.4.2 Benchmark of flow table update time

The flow table update time (or rule update time) is the time it takes to modify an entry in

a flow table of an OpenFlow-enabled switch. This has been measured by previous studies

with commercial OpenFlow-enabled switches [37, 40, 63], showing that the time to update

an entry could be substantial; FFC [63] reported that the median time to update 100 rules

is around one second (100 rules/second), with the worst case being over 200 seconds (0.5
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rules/second) in a controlled environment. We also benchmarked two OpenFlow-enabled

switches from two different vendors, using HP VAN controller as our controller platform,

which one performed around 35 rules/second and the other around 55 rules/second on av-

erage.

Measurement mechanism: Figure 45 shows our experiment setup. We first populate the

flow table with hundreds of unique entries, all forwarding packet to a black hole output

port (port 3). Then we start a script in host h1 to continuously send UDP traffic to host h2,

which will never go through unless the output port of a particular flow entry is modified

correctly. To measure time needed to modify N flows, we sequentially send flow modifica-

tion messages from the controller starting from the first flow to the (N − 1)th flow that will

modify the output port to another black hole output port (port 4). Then controller sends a

barrier request message to the switch, which forces the switch to complete queued

control messages first before processing the next arriving one. Next, the controller sends a

flow modification for the N th flow, corresponding to the UDP traffic flow. The flow mod-

ification changes the output port to direct packets to host server, h2. The total rule update

time is measured as the difference between the time when the UDP packet arrived at h2,

and the time when the first flow’s modification message was sent from the controller. Hosts

h1 and h2 and the controller all physically reside on the same well provisioned server and

use a common clock for timing.

Figure 46 shows the rule update rate of one of the two OpenFlow switches we bench-

marked (we omit the lesser performing one due to space limit). The switch shows a rule

update rate around 50–55 rules per second with varying number of flow modifications.

Based on this real switch measurement, we extrapolate estimated recovery time for our

evaluation by dividing the number of modifications with the update rate, which is 55 rules

per second, as we did in Figure 13.
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Figure 45: Setup to measure rule update delay of 100 flows.
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Figure 46: OpenFlow rule update rate in an OpenFlow switch.

5.4.3 Evaluation methodology

Testbed emulation. We evaluated Coronet in a Mininet-emulated testbed with four differ-

ent topologies. The topologies are summarized in Table 16. The B4 topology is Google’s

WAN, which provides connectivity among Google data centers around globe, and it de-

livers over 90% of internal application traffic [40]. AT&T is an ISP backbone network in

North America, which is also a real network obtained from the Internet Topology Zoo [99].

Both the Jellyfish [96] and Clos [2] are not emulated based on a real networks but are

widely used topologies in data centers. Mininet-emulated testbeds use Open vSwitch [85]

for switches that run OpenFlow v1.3.
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Table 16: Testbed topologies.

Size B4 AT&T Jellyfish Clos
Number of switches 12 25 100 125
Number links 19 58 200 500

Traffic matrix. We use network traffic collected from real inter-connected data centers

that are grouped by (source cluster, destination cluster, application) tuple, the same traffic

traces used in [7]. We estimate the number of virtual machine instances in each cluster

by the incoming and outgoing traffic amount. The clusters are mapped to ingress/egress

switches in the testbed topology in a way to equally spread the number of virtual machines

in each switch and also minimize the amount of inter-cluster traffic, which is a widely used

practice for data centers.

Coronet-K-Shortest algorithm. We evaluate Coronet and its tree generation algorithm

(now we denote as Coronet-Trees or Coronet interchangeably) by comparing it with a rea-

sonable but more naı̈ve path generation approach called Coronet-K-Shortest. Coronet-K-

Shortest algorithm creates k number of shortest paths between each host-attached switch

pair in the network. The paths are rendered to be disjoint with each other by a similar tech-

nique used in Coronet: when one shortest path is created, it adds weights to links used by

the path so that the next path chooses different links in the next round, up to k rounds. We

fix k=4 for our experiments to make sure it has enough redundancy when recovering from

failures. Due to larger and more diverse set of routing paths, we expect Coronet-K-Shortest

to perform better in terms of load balancing and avoiding link congestion but with a cost

of using more flow and group table space. Except the route generation algorithm, Coronet-

K-Shortest uses the same techniques and algorithms as Coronet-Trees: Coronet-K-Shortest

uses group tables to reduce the number of modification needed for recovery and the GLPK

LP solver to distribute traffic on multiple backups to avoid link congestion.
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We first evaluate if Coronet-Trees provides reasonable traffic distribution and link uti-

lization in the network before data-plane failures (§ 5.4.4). More specifically, Coronet-

Trees should spread out the traffic on the network for load balancing, and also ensure no

single link is overly utilized. We then evaluate how fast Coronet-Trees recovers from single

link failures in the network (§ 5.4.5), and how well load on affected links are distributed

after data-plane failures (§ 5.4.6). Switch failure can be regarded as special case of link

failures: simultaneous failures of multiple links which Coronet-Trees guarantees to have

backups available with any switch failure. We omit the evaluation for switch failures as the

evaluation shows similar trend.

Our evaluation shows that Coronet-Trees provides comparable link load distribution to

the Coronet-K-Shortest algorithm before and after failures, and the maximum link utiliza-

tion can even be smaller in some topologies. Coronet is up to three times faster when re-

covering from failures compared to the Coronet-K-Shortest algorithm except for the Clos

network. Coronet is able to achieve this with less cost, specifically using less number of

group table entries in the switches.

5.4.4 Normal operation before failure

Coronet leverages group tables to perform forwarding during normal operation. However,

most switches, including the switches we have benchmarked, have a limit around 100–150

group table entries per switch. As group table entries are scarce resources, it is necessary

to keep the number of entries as low as possible. We measure the number of group table

entries required in host-attached switches with Coronet-Trees and Coronet-K-Shortest, re-

spectively. Figure 47 shows the median number of group table entries in all host-attached

switches in the network for different topologies. Overall, Coronet-K-Shortest requires more

group table entries than Coronet. Coronet requires around 10 to 100 group table entries per

host-attached switch for various topologies. On the contrary, Coronet-K-Shortest path re-

quires over 40 group table entries for all topologies, and up to 200 for the Jellyfish and
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Figure 47: Number of group table entries required by Coronet and Coronet-K-Shortest.

Clos topologies. This is because Coronet-K-Shortest approach creates multiple shortest

paths for every host-attached pair while Coronet relies on a smaller number of route trees,

each of which can route any flow in the network. Coronet is able to further reduce the num-

ber of group table entries by incorporating the group minimization algorithm described in

Section 5.3.2.2.

To better understand link utilization in the network, Figure 48 shows the distribution

of loads on links for each topology before any failure for Coronet and Coronet-K-Shortest.

Link loads are normalized against the maximum link load in Coronet for each topology,

respectively. As shown in the figure, Coronet has comparable link load distribution to

Coronet-K-Shortest, and comparable maximum link load for each topology. We can see

that for Clos and Jellyfish topologies, more than 80% of the links are lightly loaded

with only around 20% of the maximum load, for both Coronet and Coronet-K-Shortest;

while for B4 and AT&T, the loads on links are more evenly distributed. Overall, Coro-

net incurs slightly higher link loads than Coronet-K-Shortest, mainly because Coronet-K-

Shortest has a larger and more diverse set of forwarding paths, which allows to spread the

traffic better than route trees. However, the much smaller number of group table entries

required by Coronet-Trees justifies this overhead.
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Figure 48: Link load distribution for different topologies before any failure. Link loads
shown are normalized to the link with maximum load in Coronet, for each topology re-
spectively.

5.4.5 Recovery time after failure

Recovery time is the most important metric for any failure recovery scheme. Here, we

define the recovery time as the time that the LP solver takes to calculate back up route

weights at the controller, plus the time it takes to complete updates in switches.

We evaluated the GLPK LP solver computation time for each topology by failing one

link at a time, testing all links in the network (kill link, solve, restore link, repeat with next

link).

Table 17: Average LP completion time with full and simplified LP model.

B4 AT&T Jellyfish Clos
Full 10 ms 70 ms 2200 ms 2300 ms
Simplified 5 ms 30 ms 400 ms 610 ms

The first row in Table 17 shows the average LP computation time for the full LP

model, which completes within one second for B4 and AT&T but over two seconds for

both Jellyfish and Clos topology. The LP computation time increases as the number

of variables increase, which is determined by a number of factors: the number of pri-

mary route trees affected by the failure, the number of backups alive for each primary

route tree, and the number of source and destination host-attached switches. Thus, the

full LP model can become unusable as the size of the network increase. To overcome
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Figure 49: Recovery time comparison between Coronet-Trees and Coronet-K-Shortest for
the worst-case switch (switch with most updates). Coronet-Trees is shown in solid bar and
Coronet-K-Shortest in shown in bar with dots. Recovery time is the sum of switch update
time (grey) and LP computation (light blue). We vary the number of minimum backups
guaranteed to be alive for each primary route tree after every single link failure from one
to two.

lengthy computation time for large networks, we create a simplified LP model by reduc-

ing the number of weight variables, which is achieved by defining one weight variable for

each (route tree, src switch) pair instead of for each (route tree, src

switch, dst switch) pair. In this case, the weight distribution for a particular route

tree in a switch will be identical for all group table entries corresponding to that route tree.

The simplified LP model completes within 1 second for any topology, 2-6 times faster than

the full LP model, which is a significant improvement. We use this simplified version of

the LP model to produce the weight distribution to backups for avoiding congestion.

Figure 49 shows the recovery time after a single link failure occurs in the network

for both Coronet-Trees and Coronet-K-Shortest. The switch update time is computed by

dividing the number of required group table modification messages by the rule update rate

we measured in § 5.4.2, which is 55 rules/second. The figure plots recovery time of the

switch that needs the most number of updates in the network after a failure. All possible

link failures are evaluated, and the median is taken.

Figure 49a shows the recovery time when Coronet-Trees just guarantees one available
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backup for any single failure while Figure 49b shows the recovery time when Coronet-

Trees guarantees two available backups. The result shows that Coronet-Trees always has

shorter switch update time for all topologies regardless of the number of minimum backups.

Coronet’s efficient switch update mechanism through group tables accompanied with the

group table minimization process has a significant effect on creating much smaller number

of modification messages required to recover from any failure. However, Figure 49b shows

that Coronet has longer recovery time for Jellyfish and Clos caused by longer LP

computation time. As anticipated in §5.3.1.2, the minimum number backups that are guar-

anteed to be available for every failure for every primary route tree certainly introduces a

trade off. Larger number of backups possibly produces better spread of traffic on remain-

ing links by having more backups available, but increases LP computation due to producing

more weight variables in the linear program.

5.4.6 Avoiding congestion after failure

We now evaluate how well the link load minimization process reduces the maximum link

load after a failure occurs. Figure 50 shows the cumulative distribution (CDF) of max-

imum link loads after every single link failure. The link load values for Coronet-Trees

and Coronet-K-Shortest are normalized against the loads produced when failover traffic is

equally distributed to all available backups and when Coronet-Trees is used without link

load minimization. This is similar to what ECMP does to distribute traffic to output ports.

Figure 50a shows Coronet-K-Shortest with link load minimization. Figure 50b and Fig-

ure 50c show the cases where Coronet-Trees has at least one and two backup guaranteed to

be available for every failure, respectively.

The figure shows that Coronet-K-Shortest (Figure 50a) generally has lower maximum

link utilization compared to Coronet-Trees (Figure 50b and 50c) . This is not surprising

because Coronet-K-Shortest has a larger number of forwarding paths precomputed which

makes it have a more diverse set of paths. Coronet-K-Shortest also creates shorter paths
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Figure 50: Normalized traffic amount on the link that has maximum load. Load values are
normalized against equal weight distribution with Coronet-Trees (i.e., without running link
load minimization) with minimum one available backup for any failure.

in terms of number of hops for each host-attached switch pair, thus fewer links are used

when forwarding traffic, reducing the overall traffic load. However, Coronet-Trees shows

comparable results to Coronet-K-Shortest, which is noteworthy because the number of

group table entries Coronet-Trees uses is two to five times less then Coronet-K-Shortest

(Figure 47), and also Coronet-Trees results in shorter recovery time (Figure 49).

Comparing Figure 50b and 50c, we see that the minimum number backups that are

guaranteed to be available does have an impact on maximum link utilization. With one

minimum backup, the lowest maximum link load among all single failures is around 40–

60% for all topologies while with two minimum backups, the lowest maximum link load

around 20–40% for all topologies. However, more guaranteed backups increases the LP

computation time and eventually the overall recovery time, as shown in §5.4.5.

5.5 Related Work

While network failure resilience has been extensively studied for many years, the advent

of SDN presents new challenges and opportunities for resilience. For example, the Open-

Virtex [3] “network hypervisor” presents virtual topologies to SDN controllers and ap-

plications while assuming responsibility for ensuring physical connectivity when network

components fail, similar to Coronet, but lacks efficient mechanisms for fast failover and
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congestion avoidance, and performs only shortest path route planning. FatTire [90] pro-

poses an SDN policy language that allows operators to specify flow-specific resilience re-

quirements, among other properties. Coronet could be customized to provide an efficient,

scalable implementation of such policies.

Other recent research efforts, Keep Forwarding [105] and Data Driven Connectiv-

ity [65], propose new data-plane protocols for extremely fast restoration of data-plane con-

nectivity after failures. While these protocols could be used with an SDN control plane that

optimizes routes over longer time scales, they require switch hardware modification, unlike

Coronet which works with unmodified OpenFlow switches.

Several efforts have proposed routing traffic on diverse trees or other graphs mapped

onto the network topology to achieve multi-path load balancing and/or tolerance of com-

ponent failures, such as Resilient Routing Layers [57, 58, 74], multiple spanning tree rout-

ing [106], routing over vertex- or edge-redundant paths [73], and Ensemble Routing [93].

Extensive comparison of the algorithms used in these works to the tree construction in

Coronet is left for future work; Coronet’s algorithms appear unique in combining resilience

to single failures, maximal recovery in network partition cases, and congestion avoidance

through weighted failover to multiple backup trees. Less related efforts have focused on

resilience using different routing techniques, e.g., source routing [97], routing tables [24],

or routing in specific topologies [66].

Other recent work has used SDN to avoid congestion. For example, SWAN [34] and

B4 [40] use SDN to manage traffic routing for expensive WAN links. zUpdate [64] pro-

duces schedules for congestion-free re-routing of traffic flows for planned network mainte-

nance events. Forward Fault Correction (FFC) [63] also uses an LP solver after unplanned

failures, but reserves spare bandwidth in advance of unplanned failures to avoid conges-

tion. R3 [102] provides congestion-free recovery in IP networks using legacy OSPF routing

and modified MPLS. In contrast to previous work, Coronet provides best-effort congestion

avoidance with weighted fast failover to multiple backup routes, and more suited to SDN
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environment and amenable to providing transparent failover service to SDN-based control

applications.

Finally, prior research has proposed improvements for controller consistency and re-

liability [53], and reliable switch-controller communication [5]. Aditya et al. suggest

improvements to mitigate unreliability of switch-controller and controller-controller com-

munication [1].

5.6 Conclusion

Coronet demonstrates support for fast failover and multipath routing in arbitrary topologies

using automatic construction of resource-disjoint route trees, and transparent data plane

resilience for SDN applications using network topology virtualization.

There are several opportunities for future work, including: 1) Extending Coronet for k-

failure resilience, possibly taking into account specific multiple-failure scenarios indicated

by network operators; 2) Enabling Coronet-integrated SDN applications to themselves

make use of group tables; and 3) Enabling Coronet to present different virtual topologies to

meet the individual needs of different SDN apps, while minimizing the number of routing

trees needed to support all the different topology abstractions simultaneously.
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CHAPTER VI

RESEARCH IN NETWORK MANAGEMENT

Research in network management is hard. It is a field that touches a lot of corners, which

can even extend into fields like human computer interaction (HCI) when it comes to evalu-

ating a “good” or “bad” management system for operators. In this chapter, I will try to (1)

point out why research in network management is hard, (2) provide suggestions and tips,

and (3) share related resources and data we have collected so far.

6.1 Why is Network Management Research Hard?

It is hard to gain access to resources. First step in network management research is an-

alyzing how the current network is configured and managed. To do this, it is vital to have

a good and collaborative relationship with people in the IT group, which is often not the

case for many enterprise networks. It is generally hard to find a time to sit down with the

IT group and hear what they say, and even harder to have regular meetings or discussions.

Thus, gaining access to detailed information like network topology, connections, network

device and middlebox inventory, monitoring logs, and bandwidth and latency measure-

ments does not come easily. Some sensitive data even require signing forms like Non-

disclosure Agreement (NDA) form, such as network configuration files or firewall rules.

Sometimes, an enterprise network lacks such valuable data because the IT department de-

cides not to store and maintain such historical data about the network.

Some data is just hard to generate in the first place, and one example is a collection of

well-maintained network policies. A network policy defines various kinds of access control

rules, guidelines on network usage such as excessive bandwidth consumption, rate limiting,

and QoS policies. However, there is no standard way or format for defining and expressing
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such policy. At best, you have a set of documents that describe multiple policies in a crude

manner with natural human language.

It is hard to test and validate. Even if you come up with a novel network manage-

ment scheme or solution, it is extremely hard to test it out and validate its usability or

performance on a realistic network. As network connectivity cannot be disturbed on the

production network, there is almost no chance that you will be able to do a live test run on

a production network. However, emulating a testbed and simulating realistic traffic pattern

on a network is not trivial as well. It is not easy, if not impossible to capture all traffic

and details of the network, model it, and make a reasonably realistic testbed. One way

is to create or transform a small portion of the real network into a testbed and test a new

solution in a smaller scale. However, a question remains on how to derive a scientifically

solid conclusion that the solution will remain feasible on a network with larger scale.

Measuring and evaluating usability is even harder. How to do you know a solution

makes a certain network task easier than others? What is the best way to compare usability

between different solutions? One way is to do well-planned survey against network opera-

tors who used various different tools and management solutions, but this is not always easy

to do, especially in large scale.

It is hard to change. A network cannot be changed easily, especially if it involves chang-

ing the physical network infrastructure as well. It is the same reason as why widespread

IPv6 deployment is far from being the reality even after decades of discussion and devel-

opment. Whatever solution a researcher come up with, it would have the best chance of

being deployed if it can be done incrementally.

6.2 Suggestions

Reach out to network operators. Network engineers and operators have the most hands-

on experience when it comes to network management and configuration. They know the
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problem areas, such as what is missing and what is most frustrating task in network man-

agement. They have stories, best practices, and tools and scripts they use when configur-

ing their network. They have invaluable data, which is very important when it comes to

research. Examples are: current and historic network configuration files from network de-

vices, network topologies, syslogs, measurements on bandwidth, latency, jitter, and packet

loss. They will also likely have system monitoring data such as network component’s CPU

usage, memory, and rule table size. These data can provide invaluable insight into how

networks are configured and managed. Thus, it is very important for researchers to reach

out to network engineers and operators who work on the field, i.e., the real world.

There are conferences and workshops that can give researches opportunity to meet and

discuss with operators, even outside of their own campus or enterprise network. In North

America, the North American Network Operators’s Group, or NANOG [77], is an orga-

nization of network operators in North America, and they have a meeting in every four

months primarily held in the United States and Canada, where they share their experience

on networks, current and future deployment or upgrade plans, as well as best practices.

Internet2 [39] is a more research-friendly organization where not only network operators

but also researchers and government representatives gather around to collaborate via inno-

vative technologies with great focus on networking. Internet2 has a Technology Exchange

event every year, as well as a Global Summit event annually. To gain insight and knowl-

edge about standard protocols, The Internet Engineering Task Force (IETF) meetings [38],

which are held three times a year, is the best event to attend.

Don’t rule out the method of doing a large scale survey. It is rare for a computer sci-

ence or engineering researcher to conduct survey with human subjects, especially in a large

scale. However, in certain cases, such large-scale survey is the best way to identify a prob-

lem area, and also evaluate and compare different solutions. It is important to note that such

situation appears frequently in network management research where one needs a result that

statistically proves that a proposed solution makes network management easier than using
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other solutions. Such approach becomes more applicable when there is no straightforward

and systematic way to evaluate the “easiness” of a network management approach or solu-

tion. Therefore, researchers in network management, especially the ones who aim to build

a new management solution or approach that makes network management easier, should

not be shy of orchestrating and performing large-scale surveys against human subjects. Of

course, as it is a study against human subjects, protocols and procedures should be approved

by the Institutional Review Board (IRB).

6.3 Data and Resources

Example Network Policies. Real network polices used in production enterprise or campus

networks are hard to find. At most, they are described in a very high-level without much

details. Nonetheless, they are still valuable. We have mined the Internet in hope to find

real network policies, particularly used in campus networks because they are mostly public.

Such examples are gathered and uploaded in a public repository, in hope to help researchers

find realistic network policies [21].

Survey Template. We have uploaded the questionnaire we have used to survey the users

who have used Kinetic, our dynamic network control platform [51]. Researchers may

consult this example questionnaire to make their own version, which they can use to do a

survey to evaluate the effectiveness of a solution.

Kinetic Code. As mentioned in Chapter 4, the source code for Kinetic can be found

here: [49]. More information about the Kinetic project can be found in the Kinetic Web-

site [50]. Tutorial for Kinetic can be found here: [52].
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CHAPTER VII

CONCLUSION

7.1 Summary of contributions

The first extensive longitudinal analysis study on network configuration changes. By

inspecting and analyzing over five years of configuration file change logs from network

devices from two large campus networks, we have shed light on understanding how con-

figuration changes over time, and why. We focused on capturing configuration character-

istics and common practices by examining change patterns from CVS commit log data, in

contrast to earlier studies, which have mostly examined a single configuration snapshot.

Moving a step forward from earlier studies, which have focused mostly on router config-

uration, we also study configuration changes for firewalls and switches, which comprise

a significant portion of the networks. We study the frequency and extent of configuration

updates, showing the similarities and differences across networks; identify the prevalence

of correlated changes; and shed light on how various network-wide factors affect evolution.

We found that a variety of network-wide tasks contribute to changes in devices, including

provisioning, management, traffic engineering, security, and QoS. We also confirmed that

network configuration changes a lot; a campus network may experience anywhere from

1,000 to 18,000 changes per month.

Making network configuration easier with abstractions and reusable modules. This

dissertation focuses on a variety of network events, and posits that such events and corre-

sponding reactions (i.e., change of forwarding behavior) should be modeled into the net-

work policy in the first place. Instead of thinking a network-wide network policy as a

combination of multiple static network policies with network events triggering transitions

between them, we present a domain specific language and platform that allow operators
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to encode network events and transitions between network states in a software program.

Through an extensive user study and quantitative evaluation, we show that such approach

enables to express network policies in a more concise, intuitive, and less error-prone way.

Our system allows composing multiple network control programs that have distinctive net-

work tasks together, enabling to express more complex network policies. This dissertation

presents modular services and network control programs that can be reused by operators,

and promotes code reusability.

Bringing verification and guarantees in networking through software. We explore

ways to provide verifications and guarantees in the network through software. Kinetic not

only enables operators to write network policies in a concise and intuitive way, but also

provides verification capabilities that can be used to verify whether the created software

program correctly encodes the event and reaction control logic using model checking in

temporal logic. Coronet uses graph theory to create a set of primary and backup paths

that guarantee the network to survive any single data-plane failure in the network, and uses

linear programming to guarantee to find the optimal traffic failover placement on backup

paths to minimize maximum load on links.

7.2 Lessons learned

We provide lessons we have learned throughout our study in hope to guide anyone who

plans to do research related to this dissertation.

Appropriate level of constraints are better than none. SDN has opened a lot of doors to

improving network management and configuration by separating the control and data plane,

providing unprecedented flexibility to network control through network programmability.

Such openness, especially in the control plane, has encouraged lots of different control

platforms and languages for building network control programs. This, however, can in-

troduce more problems then promises with a lack of guidance. Too much freedom and

flexibility in the control plane can make SDN control programs inefficient, buggy, and hard
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to understand and debug. Network control programs will also become incompatible with

each other. Through our studies, we have discovered that a constrained but structured lan-

guage and control platform can be better than an environment with more flexibility. With

Kinetic, we have constrained the language to guide operators to write control programs that

are easier to write and understand, and also that is automatically verifiable. With Coronet,

we have constrained the operators to build SDN control applications on a simplified vir-

tual topology while Coronet takes care of routing and recovery in the physical data plane.

Such approaches indeed limits operator’s freedom in the control plane, but brings benefits

to creating a more intuitive, secure, and correct network control program.

Usability is important. It is important to have the right level of abstraction for usability.

Throughout out studies, we have discovered that users will prefer low-level language and

methods to higher-level abstractions if the level of abstraction is not appropriate. Usability

of the system is very important. To test the usability of a system or language, a qualitative

user study against a wide audience is essential. Quantitative evaluation of the usability or

complexity of a language or system has limitations, and it is generally hard to do. A well-

designed survey or user study against humans directly assesses the usability of a system,

and likely produces more relevant and meaningful results. In this dissertation, we have

conducted an extensive user study against over 870 participants who used Kinetic to eval-

uate its usability. uCap, a wireless router platform that has Kinetic as its backend to enable

dynamic control, also went through an extensive user study and hour-long interviews to

assess its usability [70].

Verification is needed in every stack in the network. Based on our survey with Kinetic,

verification is clearly needed in network configuration. Nearly 20% of participants said that

they must change their network configurations more than once a day, and more strikingly,

89% of respondents indicated that they were never completely certain that their changes

to the configuration would not introduce a new problem or bug, and 82% were concerned
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that the changes would introduce problems with existing functionality that was unrelated

to the change. The two most common aspects of configuration that operators wanted to see

automated were correctness testing (37%) and quality of service and performance assur-

ances (24%). The two most common aspects of configuration that participants wanted to

see verified were general correctness problems (37%) and security properties (26%).

Such verifications should happen in every stack in the network. Network operators give

us feedback in the NANOG 62 meeting that some type of verification is extremely needed

in the data plane; some mechanism that confirms the instructed changes from the control

plane actually took place in the switches in the data plane. Operators need (1) verification

of the correctness of the configuration or SDN control program they wrote, (2) verification

that the instructions are delivered correctly to the data plane, and (3) verification that the

network devices in the data plane has the correct rules and performs correctly according to

the rules.

Research in software engineering, theoretical computer science, and math can bring

great improvements to computer networks. There are lots of great research in software

engineering, machine learning, theoretical computer science, and math, which can be ap-

plied to various parts of networking and telecommunication research. We have used prac-

tices and techniques in software engineering for analyzing revisions in network configura-

tion files. To verify the correctness of the control logic encoded in Kinetic control programs

we applied a model checking framework developed by Clarke and Emerson [13, 14] and

subsequently refined by McMillan [72]. Model checking can guarantee that a finite state

machine (FSM) satisfies certain properties that are expressed in different types of logics;

this feature makes FSMs a logical choice for expressing Kinetic policies. We have exten-

sively used graph theory work in Coronet in the process of creating algorithms to build a

set of primary and backup routing paths (or trees) that guarantees fast failure recovery for

any single data-plane component failure. We believe there are much more interesting and

useful research in various scientific fields that are applicable to networking research, which
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can improve how we manage and configure our network.

7.3 Future work

This dissertation concludes with summarizing interesting research opportunities and ideas

related to network configuration analysis, automating configuration, composing network

control application and services, and formal verification in control and data plane.

Network analysis and data mining. If we can identify configuration change patterns

that frequently occur in the network and use such information to automatically synthesize

programs that test and apply relevant changes according to a given high-level operational

task, the number of human-induced errors can be reduced while also cutting down opera-

tor’s workload needed to make such change. A promising approach is to use data mining

techniques; they are effective at finding patterns with specific characteristics that occur

repetitively. I want to explore how archetypical data mining algorithms can be used on

network configuration data to reveal common changes operators make in the network and

help design a better solution that can automate changes in the network.

Verifying correctness. Kinetic sits squarely in the realm of ongoing work on network ver-

ification and complements the growing body of work on data-plane verification, such as

Veriflow [45] and NetPlumber [43]. As these tools can help network operators ask ques-

tions about snapshots of data-plane state, and Kinetic can help network operators reason

about the dynamics of network policies (which ultimately compile to the corresponding

data-plane state), the approaches are complementary. Similarly, Kinetic needs the path

guarantees that consistent updates [91] provide to guarantee that the properties it verifies

are preserved during state transitions; conversely, consistent updates could be extended to

reason about temporal properties such as those that Kinetic can express. One natural next

step would be to combine these approaches.

Conflict resolution in SDN. Software-Defined Networking is opening a lot of doors to new
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applications that provide various types of services in the network. Some people anticipates

an “SDN App Store” to emerge where network operators can “shop” for applications or

services that meet their needs. The challenge is how to compose and run multiple applica-

tions or services together without having unforeseen and undesirable consequences. Such

conflicts are inevitable to happen if the running applications are unaware of each other, and

no precaution was made to prevent such conflicts. An attempt to make network services

and applications conflict-free has been made in the past in the pre-SDN era with legacy

network devices, but without any meaningful success. I want to explore how such goal can

be achieved with SDN, which I believe to have a better chance of success because: 1) Rea-

soning with software is easier than hardware, and 2) SDN programs use a shared protocol

(e.g., OpenFlow).

SDN for home networks. The uCap project was the first attempt to enable non-tech-savvy

home network users to have better command over their network. By using uCap, normal

home users were able to set data caps on end-host devices (e.g., tablet PCs, laptops) through

simple clicking and entering numbers in the Web-based user interface. Going further, we

envision home users setting much more sophisticated network polices, such as application

or user-specific rate-limiting, or setting different bandwidth and caps based on time of day.

Research in finding the right design, abstractions, and leveraging software and hardware

capabilities will make such vision possible.
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