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SUMMARY

Advances in machine autonomy hold great promise in advancing technology,

economic markets, and general societal well-being. For example, the progression

of unmanned air systems (UAS) research has demonstrated the effectiveness and

reliability of these autonomous systems in performing complex tasks. UAS have

shown to not only outperformed human pilots in some tasks, but have also made novel

applications not possible for human pilots practical. Nevertheless, human pilots are

still favored when performing specific challenging tasks. For example, transportation

of suspended (sometimes called slung or sling) loads requires highly skilled pilots and

has only been performed by UAS in highly controlled environments.

The presented work begins to bridge this autonomy gap by proposing a trajec-

tory optimization framework for operations involving autonomous rotorcraft with

suspended loads. The framework generates optimized vehicle trajectories that are

used by existing guidance, navigation, and control systems and estimates the state

of the non-instrumented load using a downward facing camera. Data collected from

several simulation studies and a flight test demonstrates the proposed framework is

able to produce effective guidance during autonomous suspended load operations.

In addition, variational integrators are extensively studied in this dissertation. The

derivation of a stochastic variational integrator is presented. It is shown that the

presented stochastic variational integrator significantly improves the performance of

the stochastic differential dynamical programming and the extended Kalman filter

algorithms. A variational integrator for the propagation of polynomial chaos expan-

sion coefficients is also presented. As a result, the expectation and variance of the

trajectory of an uncertain system can be accurately predicted.
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I

INTRODUCTION

You have just then copied a common item? - Yes. - Why have you bothered
to do that? Why not create something new? - Because it’s easier to do. -
Well, isn’t this sort of a joke then that you’re playing on the public? - No.
It gives me something to do.

– Conversation between a reporter and Andy Warhol

This dissertation investigates methods for the propagation and optimization of

dynamical systems. The central and motivating application is autonomous rotor-

craft with suspended load operations. In the course of developing an optimization

framework for suspended load operations several questions arose: How can system

configuration propagation errors be reduced? How can stochasticity and uncertainty

be accounted for when propagating a system configuration? What are the minimal

necessary changes to an existing vehicle’s hardware and software in order to perform

successful suspended load operations? The presented work aims to address these

questions.

First, variational integrators are investigated due to their inherit ability to accu-

rately propagate system configurations. Furthermore, a first-order linearization exists

for the discrete dynamics produced by the specific variational integrator studied in

this work. Therefore, algorithms that require linearization and propagation of system

configurations, such as iterative optimization algorithms, can utilize the investigated

variational integrator. However, some algorithms required a stochastic representa-

tion of the system (e.g. the extended Kalman filter). In this dissertation, a stochastic

variational integrator is developed and the benefits of its use is studied in detailed.

Furthermore, a polynomial chaos variational integrator is also derived in order to

propagate the expansion coefficients of uncertain dynamical systems.
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Returning to the motivating application, the variational integrator ensures that

the proposed trajectory optimization framework is real-time feasible. Specifically,

since a variational integrator is utilized a relatively large discretization time step can

be used in the iterative optimization algorithm. The proposed framework generates

optimized vehicle trajectories that are used by the vehicle’s existing guidance, nav-

igation, and control system. In order to reduce the amount of necessary hardware

changes the suspended load and cable attachment assembly were not required to be

instrumented. Furthermore, a downward facing camera attached to the vehicle was

used for load state estimation. Data collected from several simulation studies and a

flight test demonstrate the proposed framework is able to produce effective guidance

during autonomous suspended load operations.

1.1 Contributions

The contributions presented in this dissertation are summarized as:

• Development of a stochastic variational integrator. It is shown that

state and input dependent noise can be modeled as external forces and incorpo-

rated into an existing variational integrator. The first-order linearization of the

discrete dynamics about a trajectory is derived. Furthermore, the expectation

and covariance of the linearization are well-defined and easily computed.

• Demonstration of benefits when the proposed variational integrator

is used in the stochastic differential dynamic programming and ex-

tended Kalman filter algorithms. A comparison between the utilization of

the presented stochastic variational integrator and the standard Euler method

in both algorithms is conducted. It is shown that the utilization of the varia-

tional integrator causes the performance of both algorithms to be less dependent

on the size of the discretization time step. Therefore, the computational effort

of both algorithms can be reduced.
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• Derivation of a polynomial chaos variational integrator. It is demon-

strated that the polynomial chaos expansion coefficients of an uncertain Hamil-

tonian system can be propagated using a variational integrator. The first-order

linearization of the coefficient dynamics about a trajectory is also derived.

• Development of a trajectory optimization framework for autonomous

rotorcraft suspended load operations. The main contribution of this dis-

sertation is a trajectory optimization framework for suspended load operations.

This framework requires minimal changes to an autonomous vehicle since the

existing guidance, navigation and control system is utilized and a downward

facing camera is used to estimate the state of the suspended load. Receding

horizon iterative optimization algorithms and variational integrators are used

to ensure a real-time and on-board guidance solution.

• Demonstration of proposed trajectory optimization framework in sim-

ulation studies and a flight test. Data collected from several simulation

studies and a flight test demonstrate the proposed framework is able to pro-

duce effective guidance during autonomous suspended load operations.

1.2 Dissertation Outline

The outline of the dissertation is as follows:

• Chapter 2 summarizes relevant literature on suspended load control, guidance,

and optimization. A highly abridged review of general trajectory optimization

methods is then given. In addition, two trajectory optimization methods are

reviewed in detailed, namely the stochastic differential dynamic programming

algorithm (S-DDP) and a projection-based optimization methodology. Fur-

thermore, a variational integrator and its linearization are reviewed through a

detailed derivation. The final section in Chapter 2 describes polynomial chaos
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expansion.

• A stochastic variational integrator is proposed in Chapter 3. The S-DDP and

the extended Kalman filter algorithms are used to compare the performance of

the variational integrator to that of the standard Euler method. It is shown

that both algorithms become far less dependent on the discretization time step

when the variational integrator is used to propagate system trajectories and

linearize system dynamics.

• In Chapter 4, a variational integrator is formulated for the propagation of poly-

nomial chaos expansion coefficients describing Hamiltonian systems. It is shown

that the expansion coefficients of a Hamiltonian system evolve as a Hamiltonian

system. As a result, a variational integrator is derived for the resulting expan-

sion coefficient system. It is then shown that the presented integration method

retains its accuracy over a large range of discretization time step sizes.

• Chapter 5 proposes a suspended load trajectory optimization framework. The

framework is implemented on the GTMax, a modified Yamaha RMAX heli-

copter UAV, in a high fidelity simulation environment and is flight tested. A

vision-based load state estimation method is used in order to reduce the amount

of necessary hardware modifications. Furthermore, the framework can be used

without modifying the vehicle’s existing guidance, navigation, and control sys-

tem. Simulation results and data from a flight test demonstrate the proposed

framework can be used to effectively control the suspended load to track a given

reference trajectory.

• Final conclusions are given in Chapter 6. Possible directions for future research

and development are also given.
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• Appendix A presents detailed derivations of variational integrators for a nonlin-

ear mass-spring-damper system and a 3-link manipulator. Additional simula-

tion results obtained using the proposed trajectory optimization framework are

shown in Appendix B.R,N,E
[
X
]
,Var

[
X
]
,N (µ, σ2),erf(),minx∈X f(x), maxx∈X f(x),arg minx f(x), arg maxx f(x),s,DiF (y1, y2, . . . )
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II

BACKGROUND

“Now when I was a little chap I had a passion for maps. I would look for
hours at South America, or Africa, or Australia, and lose myself in all the
glories of exploration. At that time there were many blank spaces on the
earth, and when I saw one that looked particularly inviting on a map (but
they all look that) I would put my finger on it and say, ‘When I grow up I
will go there’.”

– Joseph Conrad, Heart of Darkness

In this chapter the existing relevant literature is summarized and key concepts

are introduced. Specifically, past work in suspended load operations in manned ro-

torcraft systems, indoor and outdoor unmanned systems, and cranes is outlined.

Next, a very brief overview of optimal control and trajectory optimization methods

is given. Finally, detailed introductions to stochastic differential dynamical program-

ming, projection-based optimization, variational integrators, and polynomial chaos

expansion are given.

2.1 Suspended Load Operations

Automatic/semi-automatic control of loads suspended from a rotorcraft was initially

investigated for manned systems during the 1970s. The goal of this research thrust

was to assist pilots by actively damping the carried load. Proposed solutions included

using specialized hardware such as an active winch system [2], controllable fins [38],

on-load controlled aerodynamic surfaces [101], thrusters [93], an active arm [36], and

reaction wheels [80]. Feedback methods to dampen the load directly with the vehicle’s

motions (without requiring additional hardware) were also investigated [24,39,51,73].

In recent work, there has been a strong emphasis in stability margins, handling quali-

ties, and pilot perception. Handling qualities criteria for external load operations have
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been proposed [76]. Analytical studies of cable angle/rate feedback have focused on

improving stability margins, damping load oscillations, and reducing pilot workload

during load placement [12,13,103]. A pilot display aid has been shown to be effective

in damping pendulous load motion without the use of feedback control [41]. Recently,

extensive piloted flight test for a task-tailored control system with fuselage and cable

angle/rate feedback has shown a significant reduction of load set-down time and a

large improvement in average handling qualities [53, 54].

The development of agile indoor quadrotor systems has spurred the advancement

of autonomous methods for suspended load operations. A geometric control method

has been shown to theoretically allow for highly aggressive load trajectory tracking,

but it is yet to be seen if this framework can be implemented in practice [108,109]. A

coupled adaptive feedback and dynamic programming approach has been proposed

to generate swing-free trajectories and mitigate the effect of changes in the system’s

center of gravity [94–96]. Additionally, reinforcement learning approaches have also

been used to generate swing-free trajectories [28, 29]. Iterative optimal control al-

gorithms, like those considered in this dissertation, have also been implemented in

quadrotor systems with suspended loads [21, 22]. However, it should be noted that

these methods have only been tested on highly agile, in-door quadrotors with the

assistance of a precise position tracker, typically VICON. Further work is needed in

order to demonstrate these approaches on less agile rotorcraft systems in outdoor

flight. In addition, some of the research may not be applicable to larger platforms

that are far less agile, such as the GTMax considered in this dissertation. For com-

parison, the GTMax, a modified Yamaha RMAX, weights 64 kg and is powered with

a gasoline engine while the quadrotor used in Reference 29, an AscTec Hummingbird,

weights 0.71 kg and uses electric motors.

Automatic control techniques developed for cranes have been shown to be useful

7



for rotorcraft systems. For example, input shaping methods have been used success-

fully in practice in both crane systems and UAVs [8, 64, 93, 106]. In this open-loop

approach the system’s input is modified such that oscillations induced by the system’s

trajectory are negated [107,118]. Energy shaping and passivity-based control via in-

terconnection and damping assignment (IDA-PBA) techniques have been applied to

cranes in order to induce “virtual” damping to the system [3, 92]. Note that these

methods generally try to reduce load oscillations through modification of the system’s

input. Therefore, aggressive maneuvers involving large swing angles will not be pos-

sible using the methods discussed above. A projection-based optimization method,

described in more detail in Section 2.2.2, was used for position tracking (and not load

damping) of a crane-like system in the presence of slow sensor updates [104].

There has been limited work on autonomous outdoor suspended load operations.

Since precise measurements from a VICON system are not available, a GPS aided

inertial navigation system is typically used to estimate the state of the vehicle. A

variety of methods exist to estimate the state of the load: use of a magnetic encoder

[4], attaching an IMU to the load [7], and image processing using a downward facing

camera [10]. As already mention an input shaping method has been implemented and

successfully flight tested on the GTMax platform [8]. Delayed cable angle feedback

has also been successfully demonstrated [9, 93]. These techniques have been used for

load delivery onto a moving platform [93]. A simple torque compensator method

has shown to allow for single vehicle and multi-vehicle load transportation [4]. The

Kaman K-MAX/BURRO autonomous helicopter has been operational in Afghanistan

and has been shown to be a reliable alternative for resupply operations [19, 47, 79].

The Boeing A160T has also successfully perform suspended load operations, but has

not been used in military deployments [18].
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2.2 Trajectory Optimization Methods

A complete review of trajectory optimization methods and optimal control is far

beyond the scope of this work. For a partial review of the subjects the reader is

referred to References 5, 6, 14, 15, 20, 35, 49, 50, 65, 85, 100, and 113 (and references

therein). Numerical methods that can be used to solve optimal control problems

have been heavily investigated since the classical analytic solutions that are derived

from calculus of variations and the Pontryagin’s minimum principle are intractable

except for very simple systems.

Generally, the numerical methods are categorized as direct or indirect [100]. In in-

direct approaches the calculus of variations is used to obtain multiple-point boundary-

value problems. These boundary-value problems are then solved to obtain candidate

trajectories and the final optimal trajectory is selected from these candidates. In

direct methods, the optimal control problem is discretized. The resulting (non)linear

programming problem is then solved through a variety of optimization methodologies.

As a representative example, the numerical approach that achieves real-time tra-

jectory generation proposed in Reference 82 and 83 is discussed. This approach is

similar to other model predictive control methodologies since it performs an online

optimization by utilizing system models and predicted responses. Nonlinear system

trajectories and control inputs are parameterized by B-splines. Sequential quadratic

programming is then used to solve for the optimal spline coefficients. This approxima-

tion reduces the complexity of the problem, and hence, allows for real-time trajectory

generation. The method has been implemented on the Caltech ducted fan [25]. NTG

has been implemented for obstacle-avoiding trajectory generation on the Georgia Tech

GTMax platform in high fidelity simulations and flight tests [62]. The approach can

be implemented with a software library that is available for download [81].

In this dissertation, two numerical optimization algorithms are considered: dif-

ferential dynamic programming (DDP) and projection-based optimization. In the
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context of the presented work both methods rely on discretization of the system

dynamics and are iterative in nature. While iterative algorithms may take several

iterations to converge to an optimal solution, near-optimal solutions can usually be

obtained in a few iterations. Near-optimal solutions can be sufficient to effectively

control or guide a dynamical system with required specifications. That is, optimal

solutions may not always be necessary. Furthermore, since real-time implementation

is desired required computational effort is an important consideration. While other

frameworks may result in optimal solutions, iterative methods, in general, can pro-

vide near-optimal solutions fairly quickly. Finally, both methods considered have been

previously demonstrated in simulation studies or implemented in robotic systems.

The DDP algorithm generates optimal open and closed loop control policies by

computing a quadratic approximation of the cost-to-go function and utilizing quadrat-

ically approximated state space dynamics around a trajectory [55]. The same basic

principles were used to develop iterative linear quadratic regulators (iLQR) [72,112].

Extensions of the DDP algorithm have been developed in order to address state and

control constraints [67, 120]. Furthermore, the algorithm has been successfully im-

plemented in simulation to enable robust bipedal robotic walking [86]. Finally, the

stochastic differential dynamic programming (S-DDP) algorithm considers stochastic

system dynamics with additive control- and state-dependent noise and finds optimal

open and closed loop control policies to minimize the expectation of a given cost [111].

The projection-based optimization method defines an projection operator in order

to recast the constrained optimization problem (constrained due to system dynamics)

to an equivalent unconstrained optimization problem [42, 45]. A descent direction

is then found for the unconstrained optimization problem using standard methods

(e.g. Newton or quasi-Newton optimization). The system trajectory is then updated

using the computed descent direction and the projection operator. This method was

implemented for the control of an underactuated suspended load [104].
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2.2.1 Stochastic Differential Dynamic Programming

Consider a class of stochastic dynamical systems that evolve according to

dx = f(x, u) dt+
m∑
i=1

Fi(x, u) dωi (2.1)

where x ∈ Rn is the state vector, u ∈ Rp is the control input, and ωi ∈ R are

independent Brownian noises. Furthermore, the considered cost is of the form

v(x, u, t) = E
[
h(x(tf) +

∫ tf

t0

l(x(τ), u(τ), τ) dτ
]

(2.2)

where h(x(tf) is the terminal cost and l(x(t), u(t), t) is the instantaneous cost. The S-

DDP algorithm attempts to find the optimal sequence of discrete inputs to minimize

the given cost such that the continuous input is then defined as u(Tk) = uk, Tk =

[t0 + k∆t, t0 + (k + 1)∆t) where ∆t is the discretization time step. As a result, the

algorithm approximates continuous system trajectories by a sequence of state vectors

such that x1 = x(t0), x2 = x(t0 + ∆t), . . . , xN = x(tf). The appropriate selection of

∆t depends on the given system dynamics and cost function. It should be noted that

the S-DDP algorithm is iterative. Specifically, given a sequence of discrete inputs

{u1, . . . , uN−1} the S-DDP algorithm finds the optimal control deviation such that

the control input is updated as

ui+1 = ui + γδu?i , (2.3)

where γ is a user defined constant or is selected from an automated process (e.g.

Armijo line search). However, several iterations may be needed in order to arrive at

a control input that is sufficiently close to the optimal solution.

To begin the derivation1 of the S-DDP algorithm it is assumed that a sequence of

nominal discrete inputs {ū1, . . . , ūN−1} and the associated state trajectory {x̄1, . . . , x̄N}

1Reference 111 presents a complete and detailed derivation of the S-DDP algorithm.
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are given. Next, the first-order linearization of the system dynamics are given as

δxk+1 = (I +∇xf(xk, uk)∆t+

p∑
i=1

∇xFi(xk, uk)ωik)δxk

+ (∇uf(xk, uk)∆t+

p∑
i=1

∇uFi(xk, uk)ωik)δuk +

p∑
i=1

Fi(xk, uk)ωik. (2.4)

where ωik ∼ N (0,∆t) are independent random variables. For ease of exposition, the

notation is condensed to

δxk+1 = Akδxk +Bkδuk +
m∑
i=1

Γikωik. (2.5)

where

Ak = I +∇xf(xk, uk)∆t (2.6)

Bk = ∇uf(xk, uk)∆t (2.7)

Γik = ∇xFi(xk, uk)δxk +∇uFi(xk, uk)δuk + Fi(xk, uk) (2.8)

Utilizing the derived first-order linearization of the system dynamics a second-order

expansion of the cost-to-go function around the nominal trajectory is obtained2:

V (x̄+ δx) = V (x̄) + Vx(x̄)Tδx+
1

2
δxTVxx(x̄)δx, (2.9)

or, in its approximated discrete form,

V (x̄k+1 + δxk+1) = V (x̄k+1) + Vx(x̄k+1)Tδxk+1 + δxT
k+1Vxx(x̄k+1)δxk+1

= V (x̄k+1) + Vx(x̄k+1)T(Akδxk +Bkδuk +
m∑
i=1

Γikωik)+

1

2
(Akδxk +Bkδuk +

m∑
i=1

Γikωik)
TVxx(x̄k+1)(. . . )

The expectation of the second-order expansion of the cost-to-go function, E
[
V (x̄k+1 +

δxk+1)
]
, is needed. The expectation of the second term in equation (2.10) is given as

E
[
Vx(x̄k+1)T(Akδxk +Bkδuk +

m∑
i=1

Γikωik)
]

= Vx(x̄k+1)T(Akδxk +Bkδuk) (2.10)

2For ease of exposition, notation for derivatives is condensed to ∇zg = gz and ∇xzg = gxz
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The expectation of the third term in equation (2.10) is given as

E
[
δxT

k+1Vxx(x̄k+1)δxk+1

)
= E

[
δxT

kA
T
k Vxx(x̄k+1)Akδxk

]
+ E

[
δuT

kB
T
k Vxx(x̄k+1)Bkδuk

]
+ 2E

[
δuT

kB
T
k Vxx(x̄k+1)Akδxk

]
+ 2

m∑
i=1

E
[
ωikΓ

T
ikVxx(x̄k+1)Akδxk

]
+ 2

m∑
i=1

E
[
ωikΓ

T
ikVxx(x̄k+1)Bkδuk

]
+

m∑
i=1

E
[
(ωikΓ

T
ikVxx(x̄k+1)Γikωik

]
. (2.11)

Note that

E
[
δxT

kA
T
k Vxx(x̄k+1)Akδxk

]
= δxT

kA
T
k Vxx(x̄k+1)Akδxk, (2.12)

E
[
δuT

kB
T
k Vxx(x̄k+1)Bkδuk

]
= δuT

kB
T
k Vxx(x̄k+1)Bkδuk, (2.13)

E
[
δxT

kA
T
k Vxx(x̄k+1)Bkδuk

]
= δxT

kA
T
k Vxx(x̄k+1)Bkδuk, (2.14)

E
[
ωikΓ

T
ikVxx(x̄k+1)Akδxk

]
= 0, ∀i, (2.15)

E
[
ωikΓ

T
ikVxx(x̄k+1)Bkδuk

]
= 0, ∀i, (2.16)

and

E
[
ωikΓ

T
ikVxx(x̄k+1)Γikωik

]
= ∆t

(
δxT

k∇xFi(xk, uk)
TVxx(x̄k+1)∇xFi(xk, uk)δxk

+ δuT
k∇uFi(xk, uk)

TVxx(x̄k+1)∇uFi(xk, uk)δuk

+ Fi(xk, uk)
TVxx(x̄k+1)Fi(xk, uk)

+ 2δxT
k∇xFi(xk, uk)

TVxx(x̄k+1)∇uFi(xk, uk)δuk

+ 2δxT
k∇xFi(xk, uk)

TVxx(x̄k+1)Fi(xk, uk)

+ 2δuT
k∇uFi(xk, uk)

TVxx(x̄k+1)Fi(xk, uk)
)
. (2.17)
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Therefore,

E
[
δxT

k+1Vxx(x̄k+1)δxk+1

]
= δxT

kA
T
k Vxx(x̄k+1)Akδxk + δuT

kB
T
k Vxx(x̄k+1)Bkδuk

+ 2δxT
kA

T
k Vxx(x̄k+1)Bkδuk + δxT

kFδxk + δuT
kZδuk

+ 2δxT
kLδuk + 2δxT

k S + 2δuT
kU + T , (2.18)

where

F = ∆t
m∑
i=1

∇xFi(xk, uk)
TVxx(x̄k+1)∇xFi(xk, uk) (2.19)

Z = ∆t
m∑
i=1

∇uFi(xk, uk)
TVxx(x̄k+1)∇uFi(xk, uk) (2.20)

T = ∆t
m∑
i=1

Fi(xk, uk)
TVxx(x̄k+1)Fi(xk, uk) (2.21)

L = ∆t
m∑
i=1

∇xFi(xk, uk)
TVxx(x̄k+1)∇uFi(xk, uk) (2.22)

S = ∆t
m∑
i=1

∇xFi(xk, uk)
TVxx(x̄k+1)Fi(xk, uk) (2.23)

U = ∆t
m∑
i=1

∇uFi(xk, uk)
TVxx(x̄k+1)Fi(xk, uk). (2.24)

Finally, the second order expansion of the cost-to-go function can now be given as

V (x̄k+1 + δxk+1) = V (x̄k+1) + Vx(x̄k+1)T(Akδxk +Bkδuk) + δxT
kA

T
k Vxx(x̄k+1)Bkδuk

+
1

2
δxT

kA
T
k Vxx(x̄k+1)Akδxk +

1

2
δuT

kB
T
k Vxx(x̄k+1)Bkδuk

+
1

2
δxT

kFδxk +
1

2
δuT

kZδuk + δxT
kLδuk + δxT

k S + δuT
kU +

1

2
T .

Now consider the discretized state action value function defined as

Q(xk, uk) = L(xk, uk) + V (xk+1) (2.25)

where L(xk, uk) = l(xk, uk)∆t. Note that the Q(xk, uk) is a function of uk and is

backward propagating. By invoking Bellman’s Principle of Optimality it is known

that the optimal control deviation, δu?, is found by minimizing the state action value.
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A local quadratic approximation of the state action value function is now derived as

Q(x̄k + δxk, ūk + δuk) = Q(x̄k, ūk) + δuT
kQu(x̄k, ūk) + δxT

kQx(x̄k, ūk)

+
1

2
δuT

kQuu(x̄k, ūk)δuk +
1

2
δxT

kQxx(x̄k, ūk)δxk

+ δuT
kQux(x̄k, ūk)δxk (2.26)

where

Qx(x̄k, ūk) = Lx(x̄k, ūk) + AT
k Vx(x̄k+1) + S (2.27)

Qu(x̄k, ūk) = Lu(x̄k, ūk) +BT
k Vx(x̄k+1) + U (2.28)

Qxx(x̄k, ūk) = Lxx(x̄k, ūk) + AT
k Vxx(x̄k+1)Ak + F (2.29)

Quu(x̄k, ūk) = Luu(x̄k, ūk) +BT
k Vxx(x̄k+1)Bk + Z (2.30)

Qxu(x̄k, ūk) = Lxu(x̄k, ūk) + AT
k Vxx(x̄k+1)Bk + L (2.31)

The optimal control deviation δu? can now be solved for by minimizing the state

action value as

δu?k = arg min
δuk

Q(x̄k + δxk, ūk + δuk)

= −Quu(x̄k, ūk)
−1(Qu(x̄k, ūk) +Qux(x̄k, ūk)δxk). (2.32)

Plugging δu? back into (2.26) yields a backward propagating approximation of the

second-order expansion of the value function:

V (x̄k) = V (x̄k+1) + L(x̄k, ūk)−Qu(x̄k, ūk)Quu(x̄k, ūk)
−1Qu(x̄k, ūk+1), (2.33)

Vx(x̄k) = Qx(x̄k)−Qu(x̄k, ūk)Quu(x̄k, ūk)
−1Qux(x̄k, ūk)

T, (2.34)

Vxx(x̄k) = Qxx(x̄k)−Qxu(x̄k, ūk)Quu(x̄k, ūk)
−1Qux(x̄k, ūk)

T, (2.35)

where the initial conditions are derived from the terminal cost, h(·), as

V (x̄N) = h(x̄N), (2.36)

Vx(x̄N) = hx(x̄N), (2.37)

Vxx(x̄N) = hxx(x̄N). (2.38)
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This completes the derivation of the S-DDP algorithm. The derived optimal

control deviation, δu?, is used to update the nominal input. The process can then be

repeated using the updated input as the new nominal input. There are several points

that should be considered:

• Note that the optimal control deviation given by (2.32) contains a feed-forward

and a feedback component. Therefore, the term Q−1
uuQux gives the optimal state

feedback for a particular iteration.

• V (·), Vx(·), and Vxx(·) are backwards propagating. Therefore, the approxima-

tion of the value function can be computed given a nominal input, the associ-

ated nominal trajectory, and the linearized system dynamics along the nominal

trajectory. Furthermore, given the approximation of the value function, the

optimal control deviation δu? can be propagated.

• Recall that δu? is the optimal control deviation and the control input is updated

using a step size, γ (see equation 2.3). In the S-DDP (and DDP) implemen-

tations found in this dissertation an Armijo line search is used to automaticly

select an appropriate step size [63].

• Note that the linearization scheme given in equation (2.4) is not unique. In

the following chapters, it is highlighted that replacing the Euler linearization

with a linearization derived from a variational integrator greatly improves the

performance of the S-DDP algorithm.

• Note that the nominal state trajectory is obtained by propagating (or simulat-

ing) the system forward with the given nominal control input. Therefore, it is

safe to assume that the performance of the S-DDP algorithm is dependent on

the accuracy of this propagation. In the following chapters, it is highlighted

that variational integrators greatly improve the performance of the S-DDP al-

gorithm due to their ability to propagate system configurations forward in time
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with great accuracy.

• Deterministic dynamics can be considered by removing the diffusion vector

fields, Fi(x, u) = 0.

The S-DDP algorithm is outlined in Algorithm 1.

Algorithm 1 The S-DDP Algorithm with an Armijo Line Search

Require:
Initial discrete control input u(t), Algorithm parameters α, β, ε
Cost function v(x, u, t), Stochastic dynamics dx = f(x, u) dt+

∑m
i=1 Fi(x, u) dωi

while Cost updates results in more than ε in difference do
Find the discretized expected trajectory
Linearize the value function and system dynamics along the trajectory
Approximate the value function through back-propagation
Compute δu? and δx?

while Costp > Cost + αβ(δxT∇xv(x, u, t) + δuT∇uv(x, u, t)) do
Find the proposed input up ← u+ βjδu? and corresponding trajectory, xp

Find proposed cost Costp ← v(xp, up, t) and update j ← j + 1 if needed
end while
Update the control, trajectory and Cost: u← up, x← xp,Cost← Costp

end while

2.2.1.1 Overview of the S-DDP Algorithm

The stochastic differential dynamic programming (S-DDP) algorithm numerically

solves nonlinear stochastic optimal control problems using first and second order

expansions of stochastic dynamics and cost along nominal trajectories. It is based

on the classic differential dynamical programming algorithm, but considers stochastic

dynamical systems of the form dx = f(x, u) dt + F (x, u) dω where x is the system

state, u is the control input, and dω is Brownian noise. The S-DDP algorithm con-

siders a cost parameterized as v(x, u, t) = E[
∫ tf
t0
l(x(τ), u(τ), τ) dτ + h(x(tf))] where

h(·) is the terminal cost and l(·) is the running cost. Note that the cost is an ex-

pectation since the underlining system dynamics are stochastic. The essence of the

algorithm lies in finding the optimal local variation in control δu? that minimizes the

given cost. First, given an initial discrete control input u(t) the discretized expected
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Figure 2.1: (a) and (b): The optimized state trajectory and control input at a variety
of iterations. (c): Optimized cost as a function of number of optimization iterations.

trajectory of the system is found. Then the value function and system dynamics

are linearized along the trajectory. An approximation of the value function is found

through backwards-propagation. The approximated value function is used to find

δu?, δx? (the optimal state deviation), and the optimal feedback gain. The discrete

control input is updated as u(t) = u(t) + γδu?(t) and the process can then be re-

peated. In this paper γ is found through an Armijo line search (see Reference 63 for

further details) and the algorithm is terminated when consecutive final costs differ

by less then a defined amount. It should be noted that the algorithm relies heavily

on the accuracy of the propagation of the expected trajectory of the system and the

linearization of the system dynamics. The process is outline in Algorithm 1.

As a simple demonstrative example consider a deterministic and linear mass-

spring system where its mass is unity and the spring stiffness constant is 1 N/m.

Furthermore, consider the reference-tracking based cost given as

v(x, u, t) =

∫ tf

t0

(
10(x(τ)− xref(τ))2 + (ẋ(τ)− ẋref(t))

2 + u2(τ)
)

dτ. (2.39)

The DDP algorithm was used to find the optimal input. The initial nominal input

was given as u(t) = 0. Figure 2.1 shows the state trajectory and control input at a

variety of iterations and the optimized cost as a function of the number of optimization

iterations. Notice the iterative nature of the DDP algorithm.
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2.2.2 Projection-Based Optimization

A complete treatment of projection operator strategies for the optimization of trajec-

tory functionals is given in References 42, 44, and 45. Furthermore, this method has

been considered in a variety of systems and generalization to Lie groups have been

reported in the literature [43,46,89,102]. In the context of the work presented in this

dissertation, the constrained optimization problem is formulated with a cost of the

form3

v(ξ) = h(x(tf) +

∫ tf

t0

l(x(τ), u(τ), τ) dτ (2.40)

l(x(τ), u(τ), τ) = (x(τ)− xd(τ))TQ(x(τ)− xd(τ))

+ (u(τ)− ud(τ))TR(u(τ)− ud(τ)) (2.41)

l(x(τ), u(τ), τ) = (x(tf)− xd(tf))
TQf(x(tf)− xd(tf)) (2.42)

subject to the system dynamics

ẋ(t) = f(x(t), u(t)), x(t0) = x0, (2.43)

where ξ = (x, u) is the trajectory of the system over the time horizon t = [t0, tf],

ξd = (xd(·), ud(·)) is the desired trajectory and Q, Qf, and R are positive definite

matrices. Furthermore, it is not assumed that ξd satisfies the given system dynamics.

The trajectory manifold of the system T is defined such that if η = (x(·), u(·)) satisfies

the system dynamics ẋ(t) = f(x(t), u(t)) then η ∈ T . Next, a projection operator,

P , is defined as the mapping

P : φ = (α, µ)→ ξ = (x, u) ∈ T . (2.44)

Note that the projection operator simply maps an arbitrary trajectory to a trajectory

in T . If P exist then the consider constrained optimization problem can be recast as

3The presented discussion closely follows Section 3 in Reference 45.
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an unconstrained optimization problem where

min
ξ∈T

v(ξ) = min
ξ
v(P(ξ)). (2.45)

For the class of problems considered here the projection operator is given as

x(t0) = α(t0) (2.46)

u(t) = µ(t) +K(t)(α(t)− x(t)) (2.47)

ẋ(t) = f(x(t), u(t)) (2.48)

where K(t) is a time-varying feedback gain matrix found by solving a finite horizon

linear quadratic regulator (LQR) on a linearized representation of the system [88].

Specifically, suppose the (LQR) cost is parameterized as

J(x, u, t) =

∫ tf

t0

(
Gx(τ)2 + Fu(τ)2

)
dτ +Gfx(tf)

2, (2.49)

then a discrete approximation of the time-varying feedback gain matrix K(t) is found

via a discrete backward propagating Riccati equation:

PJ = Gf (2.50)

Pj−1 = G+ AT
j PjAj − AT

j PjB(Rj +BT
j PjBj)

−1BT
j PjAj, (2.51)

Kj = (F +BT
j PjBj)

−1BT
j PjAj (2.52)

where (Aj, Bj) is the linearization of the system dynamics at time tj and J is the

number of discretization points (tJ = tf).

Now suppose the ξi is the current trajectory iterate (the optimized trajectory at

the current iteration) using Newton’s descent methods the descent direction is given

as

ζi = arg min
ζ

Dv(ξi) · ζ +
1

2
D2v(P(ξi)) · (ζ, ζ). (2.53)

In this section, Dg(ξi) and D2g(ξi) are the first and second Frechet derivatives of

the Banach space functional g, respectively. Since the considered dynamical system
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evolves in a vector space, D2v(P(ξi)) · (ζ, ζ) is well-defined and is computed as

D2v(P(ξi)) · (ζ, ζ) = D2v(ξi) · (ζ, ζ) +Dv(ξi) ·D2P(ξi) · (ζ, ζ). (2.54)

If the quasi-Newton method is considered equation (2.54) is modified to

D2v(P(ξi)) · (ζ, ζ) = D2v(ξi) · (ζ, ζ). (2.55)

A rigorous treatment of the differentiation of the projection operator and a method

for calculating D2P(ξ) is presented in Reference 45. Note that equation (2.53) is a

linear quadratic problem defined using the first and second derivatives of the nonlinear

system dynamics and the cost, v(ξ), about ξi. The solution is obtained by numerically

integrating the associated differential Riccati equations. A line search is then perform

in order to find the optimize step size, γ, such that

γi = arg min
γ∈(0,1]

v(P(ξi + γζi)). (2.56)

For implementations presented in this dissertation an Armijo line search is used. The

trajectory is then updated:

ξi+1 = P(ξi + γiζi). (2.57)

References 42,44, and 45 present further important mathematical details not included

here. Figure 2.2 (from Reference 44) provides a visual representation of the algorithm.

Algorithm 2 Projection-Based Optimization

Require:
Initial trajectory ξ0, Algorithm parameters α, β, ε
Cost function v(x, u, t), System dynamics dx = f(x, u)dt
while Cost updates results in more than ε in difference do

Linearize the value function and system dynamics along the trajectory, ξi
Compute the time-varying feedback gain matrix, K(t)
Compute the search direction, ζi
Find the optimized step size, γi
Update the trajectory, ξi+1

end while
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Figure 2.2: The projection-based optimization methodology: (a) the tangent space
TξiT is computed by linearizing the system about the trajectory ξi, (b) the search
direction ζi is computed, (c) the optimal step size is computed through a line search,
γi, (d) a new updated trajectory ξi+1 is obtained. Image from Reference 44.

Notice that in both the DDP algorithm and the Projection-Based optimization

framework the optimal control deviation is sought. In the DDP algorithm, the devi-

ation is found through approximation of the value function that arises from the con-

sidered cost and system dynamics. In the Projection-Based optimization framework,

the problem is recasted to a simpler problem and, through the use of a projection

operator, the computed optimal control deviation is found for the original problem.

Furthermore, both methods rely on system propagation and linearization.

2.3 Variational Integrators and Structured Linearization

Variational integrators have been extensively studied and developed in the past decades

[68, 69, 77, 90]. Through discretization of Hamilton’s variational principle algorithms

can be developed to propagate a Hamiltonian system’s discrete trajectory. If the sys-

tem is dissipative or forced the Lagrange-d’Alembert principle is similarly invoked.

Since variational integrators are derived from the system’s fundamental characteristics

they are inherently well-suited to handle the integration of Euler-Lagrange equations.
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Variational integrators have been shown to have many desirable properties not found

in general ordinary differential equation numerical solvers [68]. For example, for the

case where no external forces are present the integrator is symplectic and momentum

conserving [77]. These benefits also extend to complex systems involving holonomic

constraints, elastodynamics, and two-body collisions [30,70,115].

In this dissertation variational integrators are shown to enable real-time nonlinear

trajectory optimization. Specifically, a variational integrator and its linearization are

utilized in the differential dynamic programing (DDP) algorithm used to obtain op-

timal trajectories for the studied suspended load system. Furthermore, a stochastic

variational integrator, a polynomial chaos variational integrator, and their lineariza-

tions are developed in this dissertation. It is shown that the performance of the

stochastic differential dynamic programing (S-DDP) algorithm improves when the

developed stochastic variational integrator is utilized when compared to utilizing the

Euler method. Similarly, when compared to the Euler method the polynomial chaos

variational integrator is shown to more accurately propagate expansion coefficients.

The following sections review the development of the variational integrator and its lin-

earization utilized in the implementation of the proposed real-time optimal trajectory

generation framework.

2.3.1 A Variational Integrator

To begin, consider the Lagrangian L(q(t), q̇(t)) of a dynamical system given as

L(q(t), q̇(t)) = T (q(t), q̇(t))− V (q(t)), (2.58)

where q is the state configuration vector, q̇ is its time derivative, T (q(t), q̇(t)) describes

the system’s kinetic energy, and V (q(t)) describes the system’s potential energy. The

action, S, can now be defined as

S[q(t)] =

∫ tf

t0

L(q(τ), q̇(τ)) dτ. (2.59)

23



The Least Action principle can now be used to derive the following variational relation

δS[q(t)] = δ

∫ tf

t0

L(q(τ), q̇(τ)) dτ = 0 (2.60)

that results, when minimized, in the classical Euler-Lagrange equations [75]:

∂

∂t

∂L

∂q̇
(q, q̇)− ∂L

∂q
(q, q̇) = 0. (2.61)

Note equation (2.61) provides the fundamental characteristics of a dynamical system

and describes how the system configuration vector propagates through time. How-

ever, it does not provide any method or algorithm that can be used to solve for the

trajectory of the system. Simply using numerical integration schemes developed for

general second order differential equations will result in numerical errors since the

system’s fundamental characteristics are ignored.

On the other hand, variational integrators approximate the continuous trajec-

tory of mechanical systems with a sequence of discrete points while ensuring (or

strongly enforcing) the conservation of fundamental quantities such as momentum

and energy [77]. Specifically, for the variational integrator considered in this dis-

sertation, a sequence of system configuration vectors {(t0, q0), (t1, q1), . . . , (tn, qn)} is

found such that the continuous system trajectory is approximated as qm ≈ q(tm)

where ∆t = ti+1 − ti is the discretization time step. Derivations for the same varia-

tional integrator are given in References 58 and 90

The derivation of the variational integrator begins with approximating the action

integral over a small time interval with a generalized midpoint approximation

Ld(qk, qk+1) = L((1− α)qk + αqk,
qk+1 − qk

∆t
)∆t ≈

∫ tk+1

tk

L(q(τ), q̇(τ)) dτ, (2.62)

where α ∈ [0, 1] defines the integration approximation, α = 1/2 results in second order

accuracy as discussed in Reference 115, and Ld(qk, qk+1) is referred to as the discrete

Lagrangian. The action integral defined in equation (2.59) can be approximated as
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an action sum using discrete Lagrangians:

S[q(t)] ≈
n−1∑
k=0

Ld(qk, qk+1). (2.63)

The Least Action principle can now be used to derive the following variational relation

δS[q(t)] ≈
n−1∑
k=0

(D1Ld(qk, qk+1) · δqk +D2Ld(qk, qk+1) · δqk+1) = 0. (2.64)

Equivalently,

δS[q(t)] ≈
n−1∑
k=1

(D1Ld(qk, qk+1) +D2Ld(qk−1, qk)) · δqk = 0, (2.65)

since δq0 = δqn = 0. Note that the Least Action principle requires that the variations

of the action sum be zero for any δqk. As a result, the implicit difference Discrete

Euler-Lagrange (DEL) equation is given as

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = 0. (2.66)

Notice that the DEL equation is the discrete time equivalent to the classical Euler-

Lagrange equation (2.61). However, the DEL equation provides a manner in which

the system’s discrete configuration can be propagated. Given two consecutive system

configurations qk and qk−1,

f(qk+1) = D1Ld(qk, qk+1) +D2Ld(qk−1, qk), (2.67)

can be solve implicitly for the next configuration qk+1. Therefore, given q0 and q1

equation (2.67) can be solved iteratively to find q2, . . . , qn. A simple root finder

algorithm outline in Algorithm 3 can be used to solve equation (2.67). The required

derivative Df(·) is given as

Df(qk+1) = D2D1Ld(qk, qk+1). (2.68)

It should be noted that the required derivatives in equations (2.67), (2.68) and
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Algorithm 3 Simple Root Finder

while |f(qk+1)| > εtol do
qk+1 ← qk+1 −Df−1(qk+1) · f(qk+1)

end while

those needed for the linearization of the integrator equations, presented in the follow-

ing section, can be found using the chain rule and equation (2.62) [58]:

D1Ld(qk, qk+1) =
∂

∂q
L(q, q̇)(1− α)∆t− ∂

∂q̇
L(q, q̇) (2.69)

D2Ld(qk, qk+1) =
∂

∂q
L(q, q̇)α∆t+

∂

∂q̇
L(q, q̇) (2.70)

D1D1Ld(qk, qk+1) =
∂2

∂q∂q
L(q, q̇)(1− α)2∆t− ∂2

∂q̇∂q
L(q, q̇)(1− α)

− ∂2

∂q∂q̇
L(q, q̇)(1− α) +

∂2

∂q̇∂q̇
L(q, q̇)

1

∆t
(2.71)

D2D1Ld(qk, qk+1) =
∂2

∂q∂q
L(q, q̇)(1− α)α∆t+

∂2

∂q̇∂q
L(q, q̇)(1− α)

− ∂2

∂q∂q̇
L(q, q̇)α− ∂2

∂q̇∂q̇
L(q, q̇)

1

∆t
(2.72)

D1D2Ld(qk, qk+1) =
∂2

∂q∂q
L(q, q̇)(1− α)α∆t− ∂2

∂q̇∂q
L(q, q̇)α

+
∂2

∂q∂q̇
L(q, q̇)(1− α)− ∂2

∂q̇∂q̇
L(q, q̇)

1

∆t
(2.73)

D2D2Ld(qk, qk+1) =
∂2

∂q∂q
L(q, q̇)α2∆t+

∂2

∂q̇∂q
L(q, q̇)α

+
∂2

∂q∂q̇
L(q, q̇)α +

∂2

∂q̇∂q̇
L(q, q̇)

1

∆t
(2.74)

2.3.1.1 The Forced Case

External forces can also be incorporated into the derivation of the variational inte-

grator. When considering continuous trajectories, the Lagrange-d’Alembert principle

is used to generalize the Euler-Lagrange equation (2.61) by modifying the variation

of the action, δS, to

δS[q(t)] = δ

∫ tf

t0

L(q(τ), q̇(τ)) dτ +

∫ tf

t0

F (q(τ), q̇(τ), u(τ)) · δq dτ (2.75)
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where F (q(τ), q̇(τ), u(τ)) represents the total external forcing acting on the system

and u is the system’s control input (if any). Minimization of the variational relation

leads to the forced Euler-Lagrange equation:

∂

∂t

∂L

∂q̇
(q, q̇)− ∂L

∂q
(q, q̇) = F (q(t), q̇(t), u(t). (2.76)

Similar to the discretization of the Lagrangian, the left, F−d (qk, qk+1, uk), and right,

F+
d (qk, qk+1, uk), discrete forces are introduce in order to obtain a discrete equivalent

to (2.76). The variation of the continuous external force is approximated over a small

time interval as

F−d (qk, qk+1, uk) · δqk + F+
d (qk, qk+1, uk) · δqk+1 ≈

∫ tk+1

tk

F (q(τ), q̇(τ), u(τ)) · δq dτ

(2.77)

where a generalized midpoint approximation can be used to define the the left and

right discrete forces as

F−d (qk, qk+1, uk) =
1

2
F ((1− α)qk + αqk+1,

qk+1 − qk
∆t

, uk)∆t, (2.78)

F+
d (qk, qk+1, uk) =

1

2
F ((1− α)qk + αqk+1,

qk+1 − qk
∆t

, uk)∆t, (2.79)

and uk = u(tk). The action sum (2.65) can then be modified and the resulting forced

DEL equation is given as

D1Ld(qk, qk+1) + F−d (qk, qk+1, uk) +D2Ld(qk−1, qk) + F+
d (qk−1, qk, uk−1) = 0. (2.80)

or, equivalently, in the position-momentum form the forced DEL equation is given as

pk +D1Ld(qk, qk+1) + F−d (qk, qk+1, uk) = 0, (2.81)

pk+1 = D2Ld(qk, qk+1) + F+
d (qk, qk+1, uk). (2.82)

Note that pk does not depend on qk+1 and in the unforced case pk is the momentum

quantity conserved by the integrator [58, 115]. Furthermore, the previously defined
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two-step mapping (qk−1, qk) → (qk+1) can now be replaced with a one step mapping

(qk, pk)→ (qk+1, pk+1). The integrator equation and its derivative are now defined as

f(qk+1) = pk +D1Ld(qk, qk+1) + F−d (qk, qk+1, uk) (2.83)

Df(qk+1) = D2D1Ld(qk, qk+1) +D2F
−
d (qk, qk+1, uk) (2.84)

As before, given q0, q1, and the control input, u(t), equation (2.83) can be solved

iteratively to find q2, . . . , qn.

2.3.1.2 The Constrained Case

Holonomic constraints can also be incorporated into the presented variational inte-

grator. Specifically, the considered constraints are of the form

h(q) = [h1(q), . . . , hm(q)]T, (2.85)

where the system configuration is said to be valid if h(q) = 0. Holomonic constraints

restrict the set of possible system configurations to lie in a sub-manifold. Therefore,

during propagation the computed system configurations should lie in the desired sub-

manifold. The forced DEL equations can now be modified to incorporate holonomic

constraints [78]:

D1Ld(qk, qk+1) + F−d (qk, qk+1, uk)+D2Ld(qk−1, qk) + F+
d (qk−1, qk, uk−1) = DhT(qk)λk,

(2.86)

h(qk+1) = 0. (2.87)

The term DhT(qk)λk can be seen to represent a force that imposes the constraint

and λk is the discrete Lagrange multiplier that defines the magnitude of this force.

Note that the inclusion of the equation h(qk+1) = 0 ensures that each discrete system

configuration qk observes the defined holomonic constraints. The integrator equation
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and its derivative are now defined as

f(qk+1, λk) =

 pk +D1Ld(qk, qk+1) + F−d (qk, qk+1, uk)−DhT(qk)λk

h(qk+1)

 , (2.88)

Df(qk+1, λk) =

 D2D1Ld(qk, qk+1) +D2F
−
d (qk, qk+1, uk) −DhT(qk)

Dh(qk+1) 0

 . (2.89)

The system configuration, (qk, pk), and the Lagrange multipliers, λk, are all prop-

agated. The simple root finder algorithm is modified such that the estimate of the

discrete Lagrangian multipliers are also updated: qk+1

λk

←
 qk+1

λk

−Df−1(qk+1, λk) · f(qk+1, λk) (2.90)

2.3.1.3 Propagation of a Mass-Spring System

In order to further elucidate the reviewed variational integrator, consider a simple

linear mass-spring system with unity mass and spring stiffness constant of 1 N/m.

The Lagrangian of the system is computed as

L(q, q̇) =
1

2
q̇2 − 1

2
q2. (2.91)

If α = 0.5 then the resulting DEL equations in the position-momentum form are

computed as

pk −
(qk+1 + qk)

4
∆t− qk+1 − qk

∆t
= 0, (2.92)

pk+1 = −(qk+1 + qk)

4
∆t+

qk+1 − qk
∆t

, (2.93)

and the derivative of the integrator equation is

Df(qk+1) = −1

4
∆t− 1

∆t
. (2.94)

It is now assumed that the initial conditions are given as q(t0) = 0 and q̇(t0) = 1. In

order to be consistent with the midpoint approximation used in this example (α = 1
2
)
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Figure 2.3: (a) and (b): Propagation of the mass position, q(t), with initial condition
q(t0) = 0 and q̇(t0) = 1 in time intervals t = [0, 10] and t = [90, 100], respectively.

initial conditions were set as q1 = 1
2
q̇(t0)∆t and q0 = −1

2
q̇(t0)∆t. Note that the

selection of q0 and q1 is not unique.

The quantity p1 can be found through equation (2.93) and equation (2.92) can

then be used to obtain q2. This process can be repeated indefinitely. Figure 2.3

shows the system trajectories solved using the analytic solution (q(t) = sin(t)) and

the variational integrator when ∆t = 0.02. Note that the variational integrator is

able to remain accurate despite a long propagation time.

2.3.2 Structured Linearization

As discussed in Reference 56 the one-step mapping (2.81) implicitly defines the func-

tion

xk+1 = g(xk, uk), (2.95)

where xk+1 = [pT
k+1, q

T
k+1]T. In this section, it is shown that the linearization of the

implicitly defined function g(xk, uk) can be found explicitly (first shown in Reference

56). Furthermore, the linearization is computed using only derivatives of the discrete

Lagrangian and forces. Specifically, the derived forced DEL equations (2.81) and

(2.82) are used to obtain a first-order linearization of the discrete dynamics of the
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form

δxk+1 = ∇xg(xk, uk)δxk +∇ug(xk, uk)δuk, (2.96)

or, equivalently, δqk+1

δpk+1

 =

 ∂qk+1

∂qk

∂qk+1

∂pk

∂pk+1

∂qk

∂pk+1

∂pk


 δqk

δpk

+

 ∂qk+1

∂uk

∂pk+1

∂uk

 δuk. (2.97)

To begin, equation (2.81) is implicitly differentiated with respect to qk:

∂

∂qk
[pk +D1Lk+1 + F−k+1 = 0],

0 +D1D1Lk+1 +D2D1Lk+1
∂qk+1

∂qk
+D1F

−
k+1 +D2F

−
k+1

∂qk+1

∂qk
= 0,

∂qk+1

∂qk
= −M−1

k+1[D1D1Lk+1 +D1F
−
k+1] (2.98)

where Mk+1 = D2D1Lk+1 + D2F
−
k+1 is assumed to be non-singular at qk, pk, and uk.

For ease of exposition, the discrete Lagrangian notation is condensed to

Lk+1 = Ld(qk, qk+1), (2.99)

and that of the discrete forces to

F±k+1 = F±d (qk, qk+1, uk). (2.100)

Repeating this procedure yields

∂qk+1

∂pk
= −M−1

k+1, (2.101)

∂qk+1

∂uk
= −M−1

k+1D3F
−
k+1. (2.102)

The remaining derivatives can be found by explicitly differentiating (2.82)

∂pk+1

∂qk
= [D2D2Lk+1 +D2F

+
k+1]

∂qk+1

∂qk
+D1D2Lk+1 +D1F

+
k+1, (2.103)

∂pk+1

∂pk
= [D2D2Lk+1 +D2F

+
k+1]

∂qk+1

∂pk
, (2.104)

∂pk+1

∂uk
= [D2D2Lk+1 +D2F

+
k+1]

∂qk+1

∂uk
+D3F

+
k+1. (2.105)
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Note that qk+1 is needed in order to evaluate the derivatives and can be found by

solving (2.81). A linearization for the constrained case and second-order linearizations

(constrained and unconstrained) are formulated in Reference 56. Section A.1 in the

Appendix presents a detailed derivation of a variational integrator and its linearization

for a nonlinear mass-spring-damper system.

2.3.3 Overview of the Variational Integrator and its Linearization

The reviewed variational integrator is used to accurately propagate the configuration

of a (nonlinear) Hamiltonian system. Unlike algorithms that are used to numeri-

cally solve general ordinary differential equations, variational integrators preserve a

system’s characteristic properties by conserving (or nearly conserving) quantities like

momentum and energy. The discrete equivalent of the Euler-Lagrange equations can

be found through discretization of the system’s Lagrangian and approximating the

action integral with an action sum. The Least Action principle can then be applied to

the resulting discrete approximation of the action integral to obtain the discrete Euler-

Lagrange (DEL) equations. Unlike their continuous equivalents, the DEL equations

result in an implicit two-step mapping (qk−1, qk) → (qk+1) that is used to propagate

a system’s configuration forward. The implicit mapping can be solved using a simple

root finder algorithm. By appealing to the Lagrange-d’Alembert principle, external

forces can also be incorporated into the discrete approximation. Finally, if the result-

ing integrator equation is placed in its position-momentum form a one-step mapping

(qk, pk) → (qk+1, pk+1) is obtained. A first-order linearization of the discrete sys-

tem dynamics about a trajectory can also be computed through implicit and explicit

differentiation of the integrator equation (in its position-momentum form).

2.4 Polynomial Chaos

First introduced by Wiener and later generalized, polynomial chaos expansion pro-

vides a manner in which second-order stochastic processes can be decomposed into
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a infinite summation of polynomials [16, 91, 116, 119]. The methodology has been

the subject of recent research due to its ability to quantify uncertainty in stochastic

dynamical systems. Specifically, the effect of system uncertainty on the state trajec-

tories can be characterized. Polynomial chaos has been used in robust control design,

stability analysis, nonlinear estimation, and uncertainty analysis [26,31–33,48,87].

To formally introduce polynomial chaos expansion consider the complete prob-

ability space Γ given by (Ω,F , P ), where Ω is the sample space, F is the set of

events (σ-algebra on Ω), and P is the probability measure function. Furthermore,

suppose λ(ω) is a random variable (ω is a random event) with probability density

function ρ(λ). A general second-order stochastic process X(λ) ∈ L2(Ω,F , P ) can be

represented by a polynomial chaos expansion as

X(λ) =
∞∑
i=0

xiφi(λ(ω)), (2.106)

where xi ∈ R are the expansion coefficients and φi(λ(ω)) ∈ L2(Ω,F , P ) are orthogonal

polynomials on Γ with respect to the probability density function, ρ(λ), such that∫
Γ

ρ(λ)φi(λ(ω))φj(λ(ω)) dλ = δij, (2.107)

where δij is the Kronecker delta product. If the probability density function ρ(λ) is

Gaussian then Hermite polynomials can be selected to be the orthogonal polynomials.

Similarly, the following pairs of distributions and polynomials can be similarly asso-

ciated: (Uniform, Legendre), (Gamma, Laguerre), and (Beta, Jacobi). Furthermore,

the generalized polynomial chaos (gPC) framework allows for the construction of

polynomial functions that are orthogonal with respect to arbitrary density functions.

Note that the expansion weights, xi, are computed as

xi =

∫
Γ

ρ(λ)X(λ)φi(λ(ω)) dλ. (2.108)

Typically, in practice the expansion is truncated to a finite sum:

X(λ) ≈
r∑
i=0

xiφi(λ(ω)). (2.109)
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The convergence of the sequence and its characteristics as r increases is a current area

of research [27]. An attractive characteristic of the expansion is that the expectation

and variance of the stochastic process X(λ) are easily computed:

E[X(λ)] = x0, (2.110)

Var[X(λ)] =
∞∑
i=i

x2
i ≈

r∑
i=i

x2
i . (2.111)

As a simple illustrative example, suppose λ(ω) is a standard normal deviate (λ ∼

N (0, 1)), X(λ) = A+Bλ+ Cλ2, and r = 2 then

X(λ) ≈ x0 + x1λ+ x2(λ2 − 1) (2.112)

where

x0 =

∫
Γ

ρ(λ)
(
A+Bλ+ Cλ2

)
dλ = A+ C (2.113)

x1 =

∫
Γ

ρ(λ)
(
Aλ+Bλ2 + Cλ3

)
dλ = B (2.114)

x2 =

∫
Γ

ρ(λ)
(
A(λ2 − 1) +B(λ3 − λ) + C(λ4 − λ2)

)
dλ = 2C, (2.115)

and, therefore,

X(λ) ≈ A+Bλ+ 2Cλ2 − C. (2.116)

If λ(ω) = [λ1(ω), λ2(ω)]T is a random vector the approximate expansion is modi-

fied such that [110]

X(λ1, λ2) ≈
∑

(i,j):(0≤i+j≤p)

x1
iφ

1
i (λ1)x2

jφ
2
j(λ2), (2.117)

where p is the largest polynomial degree in the expansion. Equivalently, a set of

orthogonal polynomials can be defined as φk(λ1, λ2) = φ1
i (λ1)φ2

j(λ2) such that the

approximate expansion is expressed as

X(λ) ≈
L∑
k=0

xkφk(λ1, λ2), (2.118)

where L = (n+p)!
n!p!
−1 and xk = xixj. Generalizing to the case where λ(ω) is of arbitrary

size is straight forward.
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III

A STOCHASTIC VARIATIONAL INTEGRATOR

“In proving foresight may be vain:
The best-laid schemes o’ mice an’ men
Gang aft agley,
An’ lea’e us nought but grief an’ pain,
For promis’d joy!”

– Robert Burns, To a Mouse

In this chapter a variational integrator for stochastic dynamical Hamiltonian sys-

tems is formulated. The system’s stochasticity is represented using state and control

dependent diffusion vector fields and Brownian motion. The resulting stochastic

differential equation (SDE) is evaluated in the Stratonovich sense. As before, the

variational integrator provides an implicit one-step mapping from the current system

configuration to the next. Using the methodology reviewed in Chapter 2, the implicit

mapping is utilized in order to obtain a stochastic first-order linearization of system

dynamics about a trajectory.

The benefits of using the formulated variational integrator and its linearization in

an iterative optimization process are then investigated. Through numerical experi-

ments it is shown that the stochastic differential dynamical programming (S-DDP)

algorithm (reviewed in Chapter 2) becomes less dependent on the discretization time

step and more predictable when it utilizes the proposed integrator. Furthermore, it

is shown that a significant reduction in computational time can be achieved without

sacrificing the algorithm’s performance. Therefore, the proposed variational inte-

grator can be used to enable real-time implementation of nonlinear optimal control

algorithms.
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The benefits of using the proposed stochastic variational integrator in the ex-

tended Kalman filter (EKF) algorithm is also investigated. As in the S-DDP case,

the EKF algorithm is shown to be less dependent on the discretization time step

when the proposed integrator and its linearization are used. Furthermore, it is also

shown that the algorithm remains stable when sensor updates become less frequent.

Therefore, the proposed integrator may reduce the computational, power, and sens-

ing requirements of systems by allowing the use of large discretization time steps and

reduced observation update rates.

Throughout the chapter the presented methodology is compared with the stan-

dard Euler method. The Euler method relies on first-order approximations in order

to propagate system configurations forward and obtain linearizations of system dy-

namics about a trajectory. Specifically, consider the equations describing a stochastic

Hamiltonian system of the form

dx = f(x) dt+

p∑
i=1

Fi(x) dωi (3.1)

where x ∈ Rn is the system state and dωi is independent Brownian noise. The

resulting explicit integration equation using the Euler method is

xk+1 = xk + f(xk, uk)∆t+

p∑
i=1

Fi(xk, uk)∆ωik, (3.2)

and its linearization is given by

δxk+1 = (I +∇xkf(xk, uk)∆t+

p∑
i=1

∇xkFi(xk, uk)∆ωik)δxk

+ (∇ukf(xk, uk)∆t+

p∑
i=1

∇ukFi(xk, uk)∆ωik)δuk +

p∑
i=1

Fi(xk, uk)∆ωik,

(3.3)

where ∆t is the discretization time step and ∆ωik ∼ N (0,∆t) are independent random

variables. It should be noted that the Euler method was considered due to its universal

use and its straightforward linearization. Comparisons to commonly used multi-step

methods (Runge-Kutta, Rosenbrock, etc) is an area of future research [1, 52,98].
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3.1 Formulation

This section presents a stochastic variational integrator used to obtain accurate dis-

cretized trajectories of stochastic dynamical Hamiltonian systems given as [11,84]

d
∂L(q, q̇)

∂q̇
=
∂L(q, q̇)

∂q
dt+ F0(q, q̇, u) dt+

p∑
i=1

Fi(q, q̇, u) s dωi,

q(0) = q0, q̇(0) = q̇0, (3.4)

where L(q, q̇) is the mechanical system’s Lagrangian given as the difference between

the system’s kinetic energy, T (q, q̇), and potential energy, V (q), such that L(q, q̇) =

T (q, q̇)−V (q), q is the state configuration vector, q̇ is the time derivative of the state

configuration vector, dωi, i = 1, . . . ,m are independent Brownian noises, Fi(q, q̇), i =

1, . . . ,m are the diffusion vector fields, F0(q, q̇, u) is the forcing function representing

deterministic non-conservative external forces, and s indicates the stochastic inte-

gral is evaluated in the Stratonovich sense [66]. A variational integrator computes a

discretized trajectory q = {q0, . . . , qN} that approximates the systems trajectory q(t)

such that qk ≈ q(tk), where t0 = 0, tN = tf and tk+1 − tk = ∆t.

The section also presents the derivation for a first-order linearization of the pre-

sented variational integrator and state-space realizations of stochastic Hamiltonian

systems. A complete and rigorous treatment of variational integrators was pre-

sented in References 40 and 77. Scalable variational integrators were implemented

to generic mechanical systems in generalized coordinates in Reference 58. First- and

second-order linearizations of a deterministic variational integrator was formulated in

Reference 56. The presented stochastic variational integrator and its first-order lin-

earization are based on the deterministic variational integrator and its linearization

reported in Reference 58 and 56. In addition, stochastic variational integrators have

also been investigated in References 11,84, and 114.
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3.1.1 Stochastic Variational Integrators

As in Chapter 2, the discrete Lagrangian, Ld(qk, qk+1), is introduced to obtain an

approximation of the action integral over a short interval,

Ld(qk, qk+1) ≈
∫ tk+1

tk

L(q(s), q̇(s)) ds. (3.5)

The generalized midpoint approximation is used to formulate Ld as Ld(qk, qk+1) =

L
(
(1−α)qk +αqk+1,

qk+1−qk
∆t

)
∆t, where α ∈ [0, 1] and α = 1/2 results in second order

accuracy as discussed in [115]. Left and right discrete forces, F−d (qk, qk+1, uk) and

F+
d (qk, qk+1, uk), approximate the non-conservative forces as∫ tk+1

tk

F0(q(s), q̇(s), u(s)) · δq ds ≈ F−0,d/2 · δqk + F+
0,d/2 · δqk+1, (3.6)

and the Stratonovich integral used to represent the stochastic effects is converted to

its equivalent Itō’s representation (see Reference 66) and then approximated as∫ tk+1

tk

Fi(q, q̇, u) · δq s dωi =
1

2

∫ tk+1

tk

F ′iFi · δq dt+

∫ tk+1

tk

Fi · δq dωi

≈ F ′
−
i,dF

−
i,d/4 · δqk + F ′

+
i,dF

+
i,d/4 · δqk+1 + F s

i,d∆ωik · δqk,

where

F±0,d = F0

(
(1− α)qk + αqk+1,

qk+1 − qk
∆t

, uk
)
∆t, (3.7)

F±j,d = Fj
(
(1− α)qk + αqk+1,

qk+1 − qk
∆t

, uk
)
∆t, (3.8)

F ′
±
j,d = F ′j

(
(1− α)qk + αqk+1,

qk+1 − qk
∆t

, uk
)
, (3.9)

F s
j,d = Fj

(
qk,

qk − qk−1

∆t
, uk
)
, (3.10)

uk = u(tk), and ∆ωik = ωi(tk+1) − ωi(tk) ∼ N (0,∆t). The discrete form of the

Lagrange-d’Alembert principle can be used to relate the derived approximations as

δ

N−1∑
k=0

Lk+1 +
1

2

N−1∑
k=0

(
F−k+1 · δqk + F+

k+1 · δqk+1

)
+

N−1∑
k=0

F s
k∆ωk · δqk = 0, (3.11)
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where F±k = F±0,d(qk−1, qk, uk−1) +
∑p

i=1 F
′±
i,d(qk−1, qk, uk−1)F±i,d(qk−1, qk, uk−1)/2, F s

k =

[F s
1,d(qk−1, qk, uk), . . . , F

s
p,d(qk−1, qk, uk)], Lk = Ld(qk−1, qk), and ∆ωk = [∆ω1,k, . . . ,

∆ωp,k]
T. Solving equation (3.11) leads to a forced Discrete Euler-Lagrange (DEL)

equation

D2Lk +D1Lk+1 + F+
k + F−k+1 + F s

k∆ωk = 0. (3.12)

The integrator equation can now be defined as

f(qk+1) = pk +D1Lk+1 + F−k+1 + F s
k∆ωk, (3.13)

where, for computation convenience,

pk = D2Lk + F+
k . (3.14)

Note that pk does not depend on qk+1 and, in the unforced case, pk is the general-

ized momentum quantity conserved by the integrator as discussed in Reference 58.

Furthermore, the derivative of (3.13) with respect to qk+1 is given as

Df(qk+1) = D2D1Lk+1 +D2F
−
k+1. (3.15)

The integrator equation (3.13) is an implicit one-step mapping (qk, pk)→ (qk+1, pk+1)

and is solved using Algorithm 3 (see Chapter 2) as shown in Reference 58. Note that

if q0 and q1 are known then qk, k ≥ 1 can be obtained by utilizing the presented

integrator.
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3.1.2 Stochastic Structured Linearization

As in Chapter 2, the derived forced DEL equation (3.12) can be used to obtain a

first-order linearization of the discrete dynamics of the form1 δqk+1

δpk+1

 =

 ∂qk+1

∂qk

∂qk+1

∂pk

∂pk+1

∂qk

∂pk+1

∂pk


 δqk

δpk

+

 ∂qk+1

∂uk

∂pk+1

∂uk

 δuk +

 ∂qk+1

∂∆ωk

∂pk+1

∂∆ωk

 δ∆ωk. (3.16)

To begin the forced DEL equation is represented in its equivalent position-momentum

form as (see [56] for further details)

pk +D1Lk+1 + F−k+1 + F s
k∆ωk = 0, (3.17)

pk+1 = D2Lk+1 + F+
k+1. (3.18)

Implicitly differentiating equation (3.17) with respect to qk yields

∂

∂qk
[pk +D1Lk+1 + F−k+1 + F s

k∆ωk = 0],

0 +D1D1Lk+1 +D2D1Lk+1
∂qk+1

∂qk
+D1F

−
k+1 +D2F

−
k+1

∂qk+1

∂qk
+D2F

s
k∆ωk = 0,

∂qk+1

∂qk
= −M−1

k+1[D1D1Lk+1 +D1F
−
k+1 +D2F

s
k∆ωk] (3.19)

where Mk+1 = D2D1Lk+1 + D2F
−
k+1 is assumed to be non-singular at qk, pk, and uk.

Repeating this procedure yields

∂qk+1

∂pk
= −M−1

k+1, (3.20)

∂qk+1

∂uk
= −M−1

k+1[D3F
−
k+1 +D3F

s
k∆ωk], (3.21)

∂qk+1

∂∆ωk
= −M−1

k+1F
s
k . (3.22)

1As discussed in [58] and in Chapter 2, the one-step mapping (3.13) implicitly defines a func-
tion g(xk, uk,∆ωk) such that xk+1 = g(xk, uk,∆ωk) where xk+1 = [pT

k+1, q
T
k+1]T. The lin-

earization is equivalently defined as δxk+1 = ∇xk
g(xk, uk,∆ωk)δxk + ∇uk

g(xk, uk,∆ωk)δuk +
∇∆ωg(xk, uk,∆ωk)∆ωk.
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The remaining derivatives can be found by explicitly differentiating (3.18)

∂pk+1

∂qk
= [D2D2Lk+1 +D2F

+
k+1]

∂qk+1

∂qk
+D1D2Lk+1 +D1F

+
k+1, (3.23)

∂pk+1

∂pk
= [D2D2Lk+1 +D2F

+
k+1]

∂qk+1

∂pk
, (3.24)

∂pk+1

∂uk
= [D2D2Lk+1 +D2F

+
k+1]

∂qk+1

∂uk
+D3F

+
k+1, (3.25)

∂pk+1

∂∆ωk
= [D2D2Lk+1 +D2F

+
k+1]

∂qk+1

∂∆ωk
. (3.26)

Note that qk+1 is needed in order to evaluate the derivatives and can be found by

solving (3.13). Furthermore, note that, in general, the partial derivatives with respect

to qk and uk are stochastic. However, these derivatives are affine in ∆ωk (see (3.19)

and (3.21)). That is, the derivatives are of the form A + B∆ωk where A and B are

deterministic. Therefore, the expectation of the linearization of the discrete dynamics

(3.16) can be found.

It should be noted that F s
k was formulated in equations (3.10) and (3.11) such

that it did not depend on qk+1. This was possible since the Stratonovich integral

was converted to its equivalent Itō’s representation. Note that by invoking this

equivalence, we replace an explicit dependence of qk+1 with a projection of stochas-

tic effects on the system, captured by the term 1
2

∫ tk+1

tk
F ′iFi · δq dt. As a result,

Mk+1 is not stochastic and, therefore, ratios of stochastic quantities are avoided (e.g.

∂qk+1

∂qk
= −M−1

k+1[D1D1Lk+1 + D1F
−
k+1 + D2F

s
k∆ωk]). The expectation and central

moments of the linearization are well-defined and computed easily. Note that the

change in the representation of the stochastic effects avoids ratios of stochastic quan-

tities, but this is not to say that using a Stratonovich representation in this case is

ill-posed. Conversion between a Stratonovich and a Itō representation (or another

representation) is often done when one definition is more convenient.
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3.2 Application to the Stochastic DDP Algorithm

3.2.1 3-Link Planar Manipulator

This example demonstrates the benefits of using the proposed stochastic variational

integrator and its linearization when implementing the S-DDP algorithm. An experi-

ment involving the control of a dynamical system representing a human finger (3-link

planar manipulator) (see [71] for system model and parameters) is considered2. It

is shown that the solution of the S-DDP algorithm when utilizing the variational

integrator is far less dependent on the discretization step size than when the Euler

method is used. The lack of dependence allows the algorithm to obtain a solution

utilizing a relatively large step size that approximates a solution acquired utilizing a

small step size. As a result, the computational time of the algorithm can be signifi-

cantly reduced without degrading its performance. All experiments were conducted

using MATLAB scripts.

As shown in Figure 3.1a the dynamical system is described by three coordi-

nates given by the relative angles between adjacent links, θ(t) = [θ1(t), θ2(t), θ3(t)],

and three control inputs, u(t) = [u1(t), u2(t), u3(t)]. Figures 3.1b and 3.1c show a

comparison between the propagation of θ1(t) using the Euler method and the pre-

sented variational integrator with two different step sizes subject to initial conditions

θ(t0) = [π/2, 0, 0] and θ̇(t0) = [0, 0, 1] and u(t) = 0. Note that the accuracy of the

Euler method is degraded when the discretization step size is increased while the

variational integrator is negligibly affected.

For all cases considered the reference tracking based cost function is

J(t) =

∫ tf

t0

[(θ(τ)− θt(τ))2 + u(τ)2] dτ + (θ(tf)− θt(tf))2, (3.27)

where θt(t) = [1+0.25 sin(4πt), 0.1 sin(2πt), 0] and tf−t0 = 1.5. The S-DDP algorithm

parameters (see Algorithm 1 in Chapter 2) were set to ε = 1 × 10−4, α = 1 × 10−8,

2The variational integrator and its linearization for a 3-link planar manipulator is formulated in
Appendix A.
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Figure 3.1: (a): Diagram of the studied dynamical system. (b) and (c): Propagation
of the θ1(t) with initial condition θ(t0) = [π/2, 0, 0] and θ̇(t0) = [0, 0, 1] subject to
input u(t) = 0. Dotted lines indicate a step size of ∆t = 1 × 10−3 while solid lines
indicate ∆t = 4× 10−3.

and β = 0.25.

In order to examine the performance of the variational integrator in a variety of

situations three cases were considered: white noise, input-dependent noise, and state-

dependent noise. In the first case, Fi(q, q̇, u) = Cei, C = 5× 10−5, i = {1, 2, 3}.3 As

discussed in Reference 111 if the additive noise is neither state nor control dependent

the S-DDP algorithm is equivalent to the classic DDP solution. Figures 3.2a and 3.2b

display the calculated optimal solutions using the Euler method and the variational

integrator with two different step sizes. It is concluded that the Euler method is

far more dependent on the discretization step size. Figure 3.2c shows the optimized

cost as a function of the running computational time of the S-DDP algorithm. Note

that when the variational integrator is used the required computational time can

be drastically reduced without significantly changing the optimized cost. Table 3.1

and Figure 3.5a show that the optimized cost increases much more rapidly as the

discretization time step is increased when the Euler method is used. Additionally, the

number of algorithm iterations is more predictable when the variational integrator is

used. Depending on the allowable deviation from the true optimal solution (assuming

it is obtained when ∆t = 0.0001) the required computational time can be drastically

3The standard basis is used to define vectors ei, i ∈ {1, 2, 3} (e.g. e1 = [1, 0, 0]T).
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Figure 3.2: (a) and (b): Tracking error of the system states in Case 1. (c): Optimized
cost versus the running computational time of the S-DDP algorithm (computational
time plotted on a logarithmic scale). Dotted lines indicate a step size of ∆t = 1×10−4

while solid lines indicate ∆t = 6× 10−3.

reduced by utilizing a larger step size when the variational integrator is used. Finally,

it should be noted that the growth of the optimized cost when utilizing the presented

variational integrator is cause, in part, by the reduction of the controller’s bandwidth.

However, how much of the growth can be attributed to the change in the controller’s

bandwidth and not other effects (integrator accuracy, numerical precision, etc.) is an

area of future research.

The next case considers input-dependent noise where Fi(q, q̇, u) = Ceiu
2
i (t), i =

{1, 2, 3}, C = 5 × 10−4. As shown in the first case, Figures 3.3a and 3.3b show that

the optimized solution obtained utilizing the Euler method is far more dependent

on the discretization step size. Furthermore, note that since ∆ωik ∼ N (0,∆t) the

perceived amount of noise at discretization points increases with ∆t. Therefore, as

shown in Figure 3.3c the optimal control input will be dependent on the time step

since it is advantageous to reduced the amount of induced noise. As a result, the

optimized cost should increase as the time step increases. However, how much of the

growth can be attributed to increases in noise and not other effects already discussed

is unknown. Nevertheless, as shown in Table 3.1 and Figure 3.5b the growth in the

cost is far greater when the Euler method is used.

State-dependent noise is considered in the final case, Fi(q, q̇, u) = C(θi(t) −
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Figure 3.3: (a) and (b): Tracking error of the system states in Case 2. Dotted lines
indicate a step size of ∆t = 1 × 10−4 while solid lines indicate ∆t = 6 × 10−3. (c):
Optimal control inputs when the variational integrator method is used (initial 0.1
seconds shown). Dotted lines indicate a step size of ∆t = 1 × 10−4 while solid lines
indicate ∆t = 2× 10−2.
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Figure 3.4: (a) and (b): Tracking error of the system states in Case 3. (c): Optimal
θ1 trajectories when the variational integrator is used. Dotted lines indicate a step
size of ∆t = 1× 10−4 while solid lines indicate ∆t = 8× 10−3.

θi(t0))2, i = {1, 2, 3}, C = 5 × 10−4. Figures 3.3a and 3.3b display the calculated

optimal solutions using the Euler method and the variational integrator with two

different step sizes. Note both methods are strongly dependent on the discretization

step size. As in Case 2, the perceived amount of noise at discretization points in-

creases with ∆t. In this case, it is advantageous to keep the system near the initial

equilibrium state. Therefore, a trade-off between the tracking performance and the

amount of induce noise occurs. As illustrated in Figure 3.4, the optimized state tra-

jectory is dependent on the step size. However, as shown in Table 3.1 the growth in

the optimized cost is greater when the Euler method is used.
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Figure 3.5: Optimized cost as a function of the discretization time step. Dotted
lines indicate the Euler method was used and solid lines indicate that the variational
integrator was used.



Table 3.1: Summary of Data Collected from Numerical Experiments

∆t 0.0001 0.001 0.002 0.005 0.006 0.007 0.008 0.009 0.01 0.02
White Noise, Euler

Cost 0.0008 0.0009 0.0009 0.0011 0.0204 0.0217 0.0689 0.0413 0.1031 0.1320
CPU Time (sec) 1119.7 107.7 62.0 56.6 112.5 175.4 26.5 240.6 26.4 2.3

Iterations 13 13 14 31 71 130 23 236 31 6
White Noise, VI

Cost 0.0008 0.0008 0.0008 0.0010 0.0010 0.0010 0.0011 0.0011 0.0011 0.0018
CPU Time (sec) 393.5 39.4 19.9 8.5 7.2 6.0 5.3 4.6 4.3 2.4

Iterations 13 13 13 13 13 13 13 13 14 14
Input-Dependent, Euler

Cost 0.0008 0.0009 0.0009 0.0011 0.0204 0.0212 0.0690 0.0410 0.1031 0.1320
CPU Time (sec) 989.2 98.1 54.1 51.1 100.2 154.4 23.3 224.0 24.8 2.5

Iterations 13 13 14 31 71 131 23 241 31 6
Input-Dependent, VI

Cost 0.0008 0.0008 0.0008 0.0010 0.0010 0.0010 0.0011 0.0011 0.0011 0.0020
CPU Time (sec) 412.1 38.1 19.1 7.8 6.4 5.3 4.8 4.6 4.2 2.2

Iterations 13 13 13 13 13 13 13 13 14 14
State-Dependent, Euler

Cost 0.0008 0.0008 0.0009 0.0012 0.0244 0.0332 0.0720 0.0831 0.1051 0.1320
CPU Time (sec) 990.4 104.9 52.8 48.4 86.0 128.0 95.4 64.6 24.3 1.9

Iterations 13 14 14 31 63 107 92 71 28 6
State-Dependent, VI

Cost 0.0008 0.0008 0.0008 0.0012 0.0018 0.0030 0.0052 0.0088 0.0138 0.0754
CPU Time (sec) 371.3 37.9 20.2 9.3 7.5 6.4 5.9 4.9 4.1 1.1

Iterations 13 13 14 15 15 15 15 15 14 4



3.2.2 Effect of Noise Intensity

In this example the effect of noise intensity on the optimized trajectory and input

is studied. In order to focus on the fundamental relationship of noise intensity and

the optimized trajectory and input, a simple nonlinear mass-spring-damper system is

considered in this example. Specifically, consider a system with unity mass, a spring

force given as fs = −5x3, and a damping force given as fs = −0.1ẋ4. Furthermore,

the reference-tracking based cost given as

v(x, u, t) =

∫ tf

t0

(
5(x(τ)− xref(τ))2 + (ẋ(τ)− ẋref(t))

2 + u2(τ)
)

dτ. (3.28)

As before, three different cases are considered. The additive noise is parameterized

when white noise, input-dependent noise, and state-dependent noise as F (q, q̇, u) =

C1x(t)2, F (q, q̇, u) = C2u(t)2, and F (q, q̇, u) = C3x(t)2, respectively. As in the pre-

vious example, Figure 3.6 shows that the S-DDP algorithm is far less dependent on

the discretization time step when the variational integrator is used.

The effect of noise intensity on the optimized input and time varying feedback gain

when input-dependent noise is considered is shown in Figure 3.7 ( ∆t = 1× 10−3 )5.

Note that as noise intensity increases, the magnitude of the optimized input tends to

be smaller. Furthermore, the feedback gain can also be seen to be dependent on the

intensity. When C2 = 2.0, there is a large spike in the time-varying feedback gain at

around t = 1. Figures 3.8 and 3.9 display the distribution of the response of the system

over 1500 Monte Carlo simulations when the optimal control policy (feedforward and

feedback) was implemented. As expected, increasing the noise intensity results in a

larger standard deviation in the observed trials. However, notice that the effect of

the noise is mitigated by the optimized feedback controller.

4Section A.1 in the Appendix presents a detailed derivation of a variational integrator and its
linearization for a nonlinear mass-spring-damper system.

5Note that in the case of white noise, as shown by Equation 2.32 and in Reference 111, the
optimal solution obtain by the SDDP algorithm is identical to the one obtained in the deterministic
case. Therefore, the effect of noise intensity in this case is not investigated
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Figure 3.6: Optimized cost as a function of the discretization time step. C3 = 1, C2 =
1, and C1 = 0.5 when white noise, input-dependent noise, and state-dependent noise
were considered, respectively. Dotted lines indicate the Euler method was used and
solid lines indicate that the variational integrator was used.

The effect of noise intensity on the optimized trajectory and time varying feedback

gain when input-dependent noise is considered is shown in Figure 3.10 ( ∆t = 1 ×

10−3 ). Note that as noise intensity increases, the magnitude of the optimized input

tends to be smaller. Furthermore, the feedback gain is allowed to become more

aggressive as the noise intensity increases. Since the optimized trajectory becomes

more conservative a more aggressive feedback gain is needed to ensure performance

is maintained. Intuitively, as noise intensity increases the predictive response of the

system becomes less informative and, as a result, the feedback gain is relied on more.

Figures 3.11 and 3.12 display the distribution of the response of the system over

1500 Monte Carlo simulations when the optimal control policy was implemented. As

before, increasing the noise intensity results in a larger standard deviation in the

observed trials. Nevertheless, the computed control policy was able to mitigate the

effects of the system’s stochasticity.

3.3 Application to the Extended Kalman Filter Algorithm

In this section the benefits of using the proposed stochastic variational integrator and

its linearization when implementing the extended Kalman filter algorithm are demon-

strated [37,105]. As in the previous section, an experiment involving the control of a

dynamical system representing a human finger (3-link planar manipulator) (see [71]

49



0 2 4 6 8 10
−1

0

1

2

3
Effect of Noise Intensity on Input

O
pt

im
iz

ed
 In

pu
t

Time (sec)

 

 

C
2
 = 0.01

C
2
 = 1.0

C
2
 = 2.0

(a)

0 2 4 6 8 10
−4

−2

0

2

4

6

8
Effect of Noise Intensity on Feedback

F
ee

db
ac

k 
G

ai
n 

− 
P

os
iti

on
 D

ev
ia

tio
n

Time (sec)

(b)

0 2 4 6 8 10
0

5

10

15

20
Effect of Noise Intensity on Feedback

F
ee

db
ac

k 
G

ai
n 

− 
V

el
oc

ity
 D

ev
ia

tio
n

Time (sec)

(c)

Figure 3.7: The computed optimized input and feedback gains for different noise
parameterizations. Solid, dotted, and dashed lines indicate that the input-dependent
noise was parameterized as C2 = 0.01, C2 = 1.0 and C2 = 2.0, respectively.
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Figure 3.8: Statistics of 1500 Monte Carlo simulations when the optimal control policy
was implemented for input-dependent noise parameterized as C2 = 0.01. The solid
line shows the mean response while the dotted lines are drawn 2 computed standard
deviations away in either direction.
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Figure 3.9: Statistics of 1500 Monte Carlo simulations when the optimal control
policy was implemented for input-dependent noise parameterized as C2 = 0.5. The
solid line shows the mean response while the dotted lines are drawn 2 computed
standard deviations away in either direction.
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Figure 3.10: The computed optimized trajectory and feedback gains for different noise
parameterizations. Solid, dotted, and dashed lines indicate that the state-dependent
noise was parameterized as C2 = 0.01, C2 = 1.0 and C2 = 2.0, respectively.
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Figure 3.11: Statistics of 1500 Monte Carlo simulations when the optimal control
policy was implemented for state-dependent noise parameterized as C1 = 0.01. The
solid line shows the mean response while the dotted lines are drawn 2 computed
standard deviations away in either direction.
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Figure 3.12: Statistics of 1500 Monte Carlo simulations when the optimal control
policy was implemented for state-dependent noise parameterized as C1 = 0.5. The
solid line shows the mean response while the dotted lines are drawn 2 computed
standard deviations away in either direction.

51



for system model and parameters) is considered. It is shown that the EKF solution is

far less dependent on the discretization step size when utilizing the variational inte-

grator. As a result, sensor information can be incorporated less frequently since the

filter solution is much more stable. Therefore, the proposed integrator may reduce

the computational, power, and sensing requirements of systems by allowing the use of

large discretization time steps and reduced observation update rates. Similar results

are presented in Reference 34 for a linear filter. All experiments were conducted using

MATLAB scripts.

For this study consider dynamics describing a stochastic Hamiltonian system that

have a linearization of the following form

xk+1 = Fk(xk)xk +

p∑
i=0

Lk,i(xk)∆ωik (3.29)

zk = Hkxk + vk (3.30)

where ∆wk,i, i ∈ {1, . . . , p} and vk are independent random variables such that

∆wk,i ∼ N (0,∆t) and vk ∼ N (0, Rk). Note that the structure of the linearization

restricts dynamics of the considered system to be affine in ∆ωik . It is assumed (explicit

or implicit) mappings from (xk, ω1k , . . . , ωpk)→ (xk+1) and from (xk, vk)→ (zk) exists

such that the dynamical system can be described in the following form

xk+1 = f(xk, ω1k , . . . , ωpk), (3.31)

zk = h(xk) + vk (3.32)

Note that f(·, ·) is implicitly defined by the variational integrator and explicitly de-

fined when the Euler method is utilized and, therefore, both methodologies conform

to equation (3.31). Additionally, the first-order linearization given by (3.16) conforms

to equation (3.29) since the linearization is affine in ∆ωk. The linearization given by

(3.3) also conforms to equation (3.29).

Next define x̂k|k−1 as the a priori state estimate, x̂k|k as the a posteriori state

estimate, Pk|k−1 as the a priori error covariance matrix, and Pk|k as the a posteriori
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error covariance matrix. The state estimate and error covariance matrix are propa-

gated as described by Algorithm 4. It should be noted that a measurement update

is not needed at every time step.

Algorithm 4 Extended Kalman Filter

x̂k|k−1 ← f(x̂k−1|k−1, 0)
Pk|k−1 ← Fk−1Pk−1|k−1F

T
k−1 +

∑p
i=0 Lk−1,iL

T
k−1,i∆t

if measurement available then
Kk ← Pk|k−1H

T
k /(HkPk|k−1H

T
k +Rk)

x̂k|k ← x̂k|k−1 +Kk(zk − h(x̂k|k−1))
Pk|k ← (I−KkHk)Pk|k−1

else
x̂k|k ← x̂k|k−1

Pk|k ← Pk|k−1

end if

The dynamical system considered in the presented numerical experiments is shown

in Figure 3.1a and is described by three coordinates given by the relative angles

between adjacent links, θ(t) = [θ1(t), θ2(t), θ3(t)], and three control inputs, u(t) =

[u1(t), u2(t), u3(t)]. Furthermore, encoders at the link joints give measurements of

the relative angles (h(θ) = θk) and the measurement update rate is 10 Hertz (i.e. a

new measurement is available every 0.1 seconds). No control inputs are considered for

these experiments (u(t) = 0) and initial conditions were set to θ(t0) = [π, 0, 0], θ̇(t0) =

[0, 0, 1], and P0|0 = 0. Therefore, the initial state estimate for the EKF utilizing the

Euler method was x̂0|0 = [θ(t0), θ̇(t0)]T and the initial state estimate for the EKF

utilizing the variational integrator was x̂0|0 = [θ(t0), D2L0(θ(t0)− θ̇(t0)∆t, θ(t0))]T.

In the first case, the process noise is parameterized as Li(q, q̇, u) = Cei, i =

{1, 2, 3}, C = 5 × 10−4 and the observation noise was characterized as Rk = 5 ×

10−3I3.6 Figures 3.13, 3.14, 3.15, 3.16, 3.17, 3.18 and 3.19 were generated using the

same process and observation noise profiles and the system was propagated using a

discretization time step of ∆t = 1× 10−3. The Euler method was used to propagate

6The standard basis is used to define vectors ei, i ∈ {1, 2, 3} (e.g. e1 = [1, 0, 0]T)
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Figure 3.13: Case 1: The estimated standard deviations of the estimation error calcu-
lated by the EKF utilizing the Euler method. The dotted and solid lines correspond
to the solutions obtained when ∆t = 1× 10−3 and ∆t = 2× 10−3, respectively.

the system when the EKF utilizing the Euler method was tested. Likewise, the

variational integrator was used to propagate the system when the EKF utilizing

the variational integrator was tested. Figures 3.13, 3.14 and 3.15 show the EKF

solution obtained when the Euler method was used for a variety of discretization

time steps. Notice that there is a rapid degradation of the solution as the time step is

increased and the solution obtained when ∆t = 5×10−3 is erratic. On the other hand,

Figures 3.16, 3.17, 3.18 and 3.19 show the EKF solution obtained when the variational

integrator was used for a variety of discretization time steps. It is easily noted that a

much slower degradation of the solution occurs when compared to Figures 3.13, 3.14

and 3.15. In fact, a significant degradation is only seen when the time step is increase

to ∆t = 2 × 10−2 and even at this large time step the solution is relatively stable

and well-behaved. The estimated error variances were validated through a series of

2500 Monte Carlo trials where the process and observation noise profiles were varied.

Figure 3.20 shows that the EKF solution utilizing the variational integrator is able to

accurately predict the mean squared error when ∆t = 1× 10−3 and ∆t = 5× 10−3.

In the second case, the process noise is dependent on the system configuration

and is parameterized as Li(q, q̇, u) = Cei(θi(t)− θi(t0))2, i = {1, 2, 3}, C = 1× 10−3

and Li(q, q̇, u) = Cei−3, i = {4, 5, 6}, C = 5 × 10−4. As before, Figures 3.21 and

3.22 were generated using the same process and observation noise profiles and the
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Figure 3.14: Case 1: The estimated standard deviations of the estimation error calcu-
lated by the EKF utilizing the Euler method. The dotted and solid lines correspond
to the solutions obtained when ∆t = 1× 10−3 and ∆t = 4× 10−3, respectively.
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Figure 3.15: Case 1: The estimated standard deviations of the estimation error calcu-
lated by the EKF utilizing the Euler method. The dotted and solid lines correspond
to the solutions obtained when ∆t = 1× 10−3 and ∆t = 5× 10−3, respectively.
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Figure 3.16: Case 1: The estimated standard deviations of the estimation error calcu-
lated by the EKF utilizing the proposed variational integrator. The dotted and solid
lines correspond to the solutions obtained when ∆t = 1 × 10−3 and ∆t = 2 × 10−3,
respectively.
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Figure 3.17: Case 1: The estimated standard deviations of the estimation error calcu-
lated by the EKF utilizing the proposed variational integrator. The dotted and solid
lines correspond to the solutions obtained when ∆t = 1 × 10−3 and ∆t = 4 × 10−3,
respectively.
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Figure 3.18: Case 1: The estimated standard deviations of the estimation error calcu-
lated by the EKF utilizing the proposed variational integrator. The dotted and solid
lines correspond to the solutions obtained when ∆t = 1 × 10−3 and ∆t = 5 × 10−3,
respectively.
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Figure 3.19: Case 1: The estimated standard deviations of the estimation error calcu-
lated by the EKF utilizing the proposed variational integrator. The dotted and solid
lines correspond to the solutions obtained when ∆t = 1 × 10−3 and ∆t = 2 × 10−2,
respectively.
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Figure 3.20: Case 1: The estimated variance of the estimation error calculated by the
EKF utilizing the proposed variational integrator and the calculated mean squared
error over 2500 Monte Carlo trials. The solid line corresponds to the the calculated
mean squared error and the dotted and dashed lines correspond to the estimate
obtained when ∆t = 1× 10−3 and ∆t = 5× 10−3, respectively.
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Figure 3.21: Case 2: The estimated standard deviations of the estimation error calcu-
lated by the EKF utilizing the Euler method. The dotted and solid lines correspond
to the solutions obtained when ∆t = 1× 10−3 and ∆t = 5× 10−3, respectively.

system was propagated using a discretization time step of ∆t = 1×10−3. Figure 3.21

and 3.22 show the EKF solutions obtained when ∆t = 1× 10−3 and ∆t = 5× 10−3.

As in the first case, when the Euler method is used the solution becomes unstable

when ∆t = 5× 10−3. On the other hand, the EKF solutions utilizing the variational

integrator are virtually identical. Therefore, it can be concluded that increasing the

discretization time step affects the EKF algorithm much more if the Euler method

is used. The estimated error variances were validated by a series of 2500 Monte

Carlo trials where the process and observation noise profiles were varied. Figure 3.23

shows that the EKF solution utilizing the variational integrator was able to accurately

predict the mean squared error when ∆t = 1× 10−3 and ∆t = 5× 10−3.
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Figure 3.22: Case 2: The estimated standard deviations of the estimation error calcu-
lated by the EKF utilizing the proposed variational integrator. The dotted and solid
lines correspond to the solutions obtained when ∆t = 1 × 10−3 and ∆t = 5 × 10−3,
respectively.
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Figure 3.23: Case 2: The estimated variance of the estimation error calculated by the
EKF utilizing the proposed variational integrator and the calculated mean squared
error over 2500 Monte Carlo trials. The solid line corresponds to the the calculated
mean squared error and the dotted and dashed lines correspond to the estimate
obtained when ∆t = 1× 10−3 and ∆t = 5× 10−3, respectively.
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3.4 Conclusion

In this chapter a stochastic variational integrator and its linearization were presented.

The stochastic differential dynamical programming algorithm was used to compare

the performance of the variational integrator to that of the standard Euler method.

It was demonstrated that the S-DDP algorithm was far less dependent on the dis-

cretization time step when the variational integrator was used to propagate system

trajectories and linearize system dynamics. Furthermore, the extended Kalman fil-

ter algorithm was also used to compare the two methodologies. Similar benefits

were seen in this case. Specifically, the solution obtained was much less affected

by changes in the discretization time step when the variational integrator was used

to propagate system trajectories and linearize system dynamics. Furthermore, the

filter was more well-behaved when the variational integrator was implemented. It

is stressed that these benefits are not limited to the S-DDP and EKF algorithms

and similar improvements can be expected to any process that utilizes propagated

system trajectories or linearized system dynamics. Finally from a implementation

standpoint, the use of variational integrators may enable real-time implementation

of nonlinear optimal control algorithms and reduce the computational, power, and

sensing requirements of control and estimation technologies.
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IV

A POLYNOMIAL CHAOS VARIATIONAL INTEGRATOR

“We look upon a thing as the effect of chance when we see nothing regular
in it, nothing that manifests design, and when furthermore, we are ignorant
of the causes that brought it about. Thus, chance has no reality in itself. It
is nothing but a term for expressing our ignorance of the way in which the
various aspects of a phenomenon are interconnected and related to the rest
of nature.”

– Pierre Simon de Laplace, Essai philosophique sur les probabilitès

In this chapter a variational integrator for the propagation of polynomial chaos

expansion coefficients describing a Hamiltonian system is formulated. Using the pre-

viously reported result showing that expansion coefficients form a Hamiltonian system

a variational integrator is derived for the resulting expansion coefficient system. A

simple numerical example is presented to demonstrate the benefits of using a varia-

tional integrator in this unique setting. Specifically, the presented integration method

retains its accuracy over a large range of discretization time step sizes. As a result, the

computational time required for integration should be able to be reduced. Therefore,

the presented variational integrator may be a viable when the number of expansion

coefficients is large or when the uncertain system is highly nonlinear.

4.1 Formulation

The description of a Hamiltonian system in the context of polynomial chaos expan-

sion and the proof that expansion coefficients form a Hamiltonian system was first

introduce in Reference 97. Specifically, consider a system described by an Hamilto-

nian H(q, p;λ) = T (q, p;λ) + V (q;λ), where T (q, p;λ) is the total kinetic energy of

the system, V (q;λ) is the potential energy of the system, and the parameter λ is a

vector representing uncertain parameters with a known probability density ρ(λ). The
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propagation of the uncertain system can be derived using the classical Hamiltonian

equations:

q̇i =
∂H(q, p;λ)

∂pi
(4.1)

ṗi = −∂H(q, p;λ)

∂qi
, (4.2)

where the generalized polynomial chaos (gPC) expansions of the generalized coordi-

nates, qi, and momentum, pi, are given as

qi =
∞∑
k=0

Qikφk(λ), (4.3)

pi =
∞∑
k=0

Pikφk(λ), (4.4)

where functions φk(λ) form a set of orthogonal polynomials (see Section 2.4 for fur-

ther details). The propagation of the expansion coefficients can be described using

equations (4.1), (4.2), (4.3), and (4.13):

Q̇ik =

∫
Γ

q̇iφk(λ)ρ(λ)dλ =

∫
Γ

∂H

∂pi
φk(λ)ρ(λ) dλ (4.5)

Ṗik =

∫
Γ

ṗiφk(λ)ρ(λ)dλ = −
∫

Γ

∂H

∂qi
φk(λ)ρ(λ) dλ. (4.6)

Furthermore, define the expected value of the Hamiltonian as

Ĥ(Q,P ) =

∫
Γ

H(q, p;λ)ρ(λ) dλ (4.7)

where Q and P are the gPC expansion coefficients.

Theorem 1 [Theorem 3.1 [97]] The gPC expansion coefficients {Q,P} and the

expected value of the Hamiltonian, Ĥ(Q,P ), form a Hamiltonian system where the

expansion coefficient propagation as follows:

Q̇ik =
∂Ĥ

∂Pik
(4.8)

Ṗik = − ∂Ĥ

∂Qik

. (4.9)
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Proof The proof follows directly from computing partial derivatives of the ex-

pected value of the Hamiltonian:

∂Ĥ

∂Pik
=

∫
Γ

( n∑
s=1

∂H

∂qs

qs
∂Pik

+
∂H

∂ps

ps
∂Pik

ρ(λ)
)

dλ

=

∫
Γ

n∑
s=1

∂H

∂ps

ps
∂Pik

ρ(λ) dλ

=

∫
Γ

n∑
s=1

∞∑
r=1

∂H

∂ps
δisδkrφr(λ)ρ(λ) dλ

=

∫
Γ

∂H

∂pi
φk(λ)ρ(λ) dλ

= Q̇ik, (4.10)

and, similarly,

∂Ĥ

∂Qik

= −
∫

Γ

( n∑
s=1

∂H

∂qs

qs
∂Qik

+
∂H

∂ps

ps
∂Qik

ρ(λ)
)

dλ

= −
∫

Γ

n∑
s=1

∂H

∂qs

qs
∂Qik

ρ(λ) dλ

= −
∫

Γ

n∑
s=1

∞∑
r=1

∂H

∂qs
δisδkrφr(λ)ρ(λ) dλ

= −
∫

Γ

∂H

∂qi
φk(λ)ρ(λ) dλ

= −Ṗik (4.11)

�

Theorem 1 highlights a fundamental property of Hamiltonian systems. The sym-

plectic structure of Hamiltonian equations (4.1) and (4.2) is preserved when the

expansion coefficients are propagated. It is easily seen that any representation of

the generalized coordinates and momentum that is composed with orthogonal basis

functions will inherit a symplectic structure. In fact, the standard representations

q = [q1, . . . , qn] and p = [p1, . . . , pn] are composed with orthogonal basis functions

(the standard Cartesian basis) and, therefore, equations (4.1) and (4.2) are akin to

(4.8) and (4.9). Therefore, the symplectic structure, needed for the formulation of
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variational integrators, is preserved regardless of the complexity of coordinate repre-

sentation, so long as orthogonality is present.

As noted in Reference 97, the coefficients of a truncated expansion (see equation

(2.109)) will also form a Hamiltonian system relative to the quasi-expected value of

the Hamiltonian regardless of the degree of expansion. As a result, the non-physical

expansion coefficients behave like physical system configuration states. Therefore,

coefficients from truncated expansions can be numerically propagated forward in time

using the same methods used to propagate Hamiltonian systems. Under this train of

thought, consider the resulting truncated expansion coefficient Hamiltonian,

H(Q,P ;λ) = T (q̃, p̃;λ) + V (p̃;λ) = T (Q,P ;λ) + V (P ;λ) (4.12)

where the generalized system configuration and momentum are approximated as

qi ≈ q̃i =
r∑

k=0

Qikφk(λ), (4.13)

pi ≈ p̃i =
r∑

k=0

Pikφk(λ). (4.14)

In general, the Hamiltonian in equation (4.12) is an aprroximation of H(q, p;λ).

However, as the degree of the approximation increases, r → ∞, the resulting ex-

pansion coefficient Hamiltonian converges to the uncertain system’s Hamiltonian,

H(Q,P ;λ)→ H(q, p;λ). Similarly, the resulting truncated expansion coefficient La-

grangian is formulated as

L(Q, Q̇;λ) = T (q̃, ˙̃q;λ)− V (q̃;λ) = T (Q, Q̇;λ)− V (Q;λ) (4.15)

where the gPC expansion of the system configuration and its time derivative are given

as

qi ≈ q̃i =
r∑

k=0

Qikφk(λ), (4.16)

q̇i ≈ ˙̃qi =
r∑

k=0

Q̇ikφk(λ). (4.17)
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In the proceeding presentation Q is viewed as an extended system configuration state

and Q̇ as its derivative. The forced Euler-Lagrange equation can now be used to

obtain an ordinary differential equation describing the evolution of the expansion

coefficients:

d

dt

∂L

∂Q̇
(Q, Q̇)− ∂L

∂Q
(Q, Q̇) = F (Q(τ), Q̇(τ), u(τ)). (4.18)

where

Fi(Q(t), Q̇(t), u(t);λ) =
r∑

k=0

Fik(Q(t), Q̇(t), u(t);λ)φk(λ). (4.19)

Note that equation (4.18) gives a second order ordinary differential equation, but, as

discussed in Chapter 2, does not provide any method or algorithm that can be used

to solve for the propagation of the expansion coefficients.

As in Chapters 2 and 3, a discrete approximation of the Lagrangian in conjunction

with the Hamiltonian variational principle are used in order to obtain a variational

integrator. The forced discrete Euler-Lagrange (DEL) equation for the considered

polynomial chaos expansion system is derived to be

Pk +D1Ld(Qk, Qk+1;λ) + F−d (Qk, Qk+1, uk;λ) = 0 (4.20)

Pk+1 = D2Ld(Qk, Qk+1;λ) + F+
d (Qk, Qk+1, uk;λ) (4.21)

where the sequence of expansion coefficient vectors {(t0, Q0), (t1, Q1), . . . , (tn, Qn)} ap-

proximate the continuous expansion coefficient evolution such thatQm ≈ Q(tm) where

∆t = ti+1−ti is the discretization time step. The discrete Lagrangian Ld(Qk, Qk+1;λ)

approximates the action integral over a small time interval such that

Ld(Qk, Qk+1;λ) = L((1− α)Qk + αQk+1,
Qk+1 −Qk

∆t
;λ)∆t. (4.22)

where α ∈ [0, 1] parameterizes a generalized midpoint approximation and α = 1/2

results in second order accuracy as discussed in Reference 115. F−d (Qk, Qk+1, uk;λ)
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and F+
d (Qk, Qk+1, uk;λ) are the left and right discrete forces, respectively, and ap-

proximate continuous external forces over a small time interval:

F−d (Q(t), Q̇(t), u(t);λ) · δQk + F+
d (Q(t), Q̇(t), u(t);λ) · δQk+1

≈
∫ tk+1

tk

F (Q(t), Q̇(t), u(t);λ) · δQ dτ. (4.23)

When integrating a deterministic (Chapter 2) or a stochastic (Chapter 3) unforced

Hamiltonian system qk can be viewed as the momentum quantity conserved by the

integrator. However, in this context Pk does not have an equivalent physical repre-

sentation and can be viewed as a quantity that facilitates integration. The derivative

of the integrator equation is defined as

Df(Qk+1) = D2D1Ld(Qk, Qk+1) +D2F
−
d (Qk, Qk+1, uk;λ) (4.24)

Expressions D1Ld(Qk, Qk+1;λ), D2Ld(Qk, Qk+1;λ), and D2D1Ld(Qk, Qk+1;λ) can be

derived similarly to the expressions given in equations (2.69), (2.70), and (2.73).

Furthermore, the partial derivatives needed to evaluate these derived expressions are

obtained using the same methodology presented in the proof of Theorem 4.1:

∂L(Q, Q̇;λ)

∂Qik

=

∫
Γ

∂L(Q, Q̇;λ)

∂q̃i
φk(λ)ρ(λ) dλ (4.25)

∂L(Q, Q̇;λ)

∂Q̇ik

=

∫
Γ

∂L(Q, Q̇;λ)

∂ ˙̃qi
φk(λ)ρ(λ) dλ (4.26)

∂2L(Q, Q̇;λ)

∂Qjm∂Qik

=

∫
Γ

∂2L(Q, Q̇;λ)

∂q̃j∂q̃i
φm(λ)φk(λ)ρ(λ) dλ (4.27)

∂2L(Q, Q̇;λ)

∂Q̇jm∂Q̇ik

=

∫
Γ

∂2L(Q, Q̇;λ)

∂ ˙̃qj∂ ˙̃qi
φm(λ)φk(λ)ρ(λ) dλ (4.28)

∂2L(Q, Q̇;λ)

∂Qjm∂Q̇ik

=

∫
Γ

∂2L(Q, Q̇;λ)

∂q̃j∂ ˙̃qi
φm(λ)φk(λ)ρ(λ) dλ (4.29)

As in Chapters 2 and 3, a first-order linearization of the discrete dynamics can be

found:  δQk+1

δPk+1

 =

 ∂Qk+1

∂Pk

∂Pk+1

∂pk

∂Pk+1

∂Qk

∂Pk+1

∂Pk


 δQk

δPk

+

 ∂Qk+1

∂uk

∂Pk+1

∂uk

 δuk,
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The expressions for the required derivatives can be found using the same methodology

used to obtain equations (2.98)-(2.105).

4.2 Simple Application

In order to further elucidate the presented variational integrator, consider a simple

linear mass-spring system with unity mass and an uncertain spring stiffness constant

represented as (5 + σλ) N/m where λ ∼ N (0, 1) and σ is a measure of uncertainty

(σ2 gives the variance of the spring stiffness). If the expansion is selected such that

r = 3, the resulting truncated expansion coefficient Lagrangian is given as

L(Q, Q̇;λ) =
1

2
m(Q̇10φ0 + Q̇11φ1 + Q̇12φ2 + Q̇13φ3)2

− 1

2
(K + σλ)(Q10φ0 +Q11φ1 +Q12φ2 +Q13φ3)2 (4.30)

The variational integrator can now be derived using equation (2.69), (2.70), (2.73),

and (4.20). Recall partial derivatives of polynomial chaos expansions are calculated

as in equations (4.25)-(4.29) As an illustrative example the partial ∂L
∂Q̇13

is calculated

as

∂L

∂Q13

=

∫
Γ

∂L(Q, Q̇;λ)

∂q̃1

φ3(λ)ρ(λ) dλ,

= −
∫

Γ

(K + σλ)(Q10 +Q11λ+Q12(λ2 − 1) +Q13(λ3 − 3λ))(λ3 − 3λ)ρ(λ) dλ,

= −6KQ13 − 6σQ12, (4.31)
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since1 ∫
Γ

(
KQ10λ

3 − 3KQ10λ+ σQ10λ
4 − 3σQ10λ

2
)
ρ(λ) dλ = 0,∫

Γ

(
KQ11λ

4 − 3KQ11λ
2 + σQ11λ

5 − 3σQ11λ
3
)
ρ(λ) dλ = 0,∫

Γ

(
σQ12(λ6 − 4λ4 + 3λ2) +KQ13(λ5 − 4λ3 + 3λ)

)
ρ(λ) dλ = 6σQ12,∫

Γ

(
σQ13(λ7 − 6λ5 + 9λ3) +KQ13(λ6 − 6λ4 + 9λ2)

)
ρ(λ) dλ = 6KQ13.

The remaining derivatives required to derive the variational integrator and its lin-

earization are given by

∂L

∂Q
=



−KQ10 − σQ11

−KQ11 − σQ10 − 2σQ12

−2KQ12 − 2σQ11 − 6σQ13

−6KQ13 − 6σQ12


,

∂L

∂Q̇
=



mQ̇10

mQ̇11

2mQ̇12

6mQ̇13


, (4.32)

∂2L

∂Q∂Q
=



−K −σ 0 0

−σ −K −2σ 0

0 −2σ −2K −6σ

0 0 −6σ −6K


,

∂2L

∂Q̇∂Q̇
=



m 0 0 0

0 m 0 0

0 0 2m 0

0 0 0 6m


,

∂2L
∂Q̇∂Q

= 0, and ∂2L
∂Q∂Q̇

= 0.

The forced Euler-Lagrange equation provides the differential equations needed to

propagate the expansion coefficients using the Euler method (see equation [3.2]):

Q̈10 = −(KQ10 + σQ11)/m,

Q̈11 = −(KQ11 + σQ10 + 2σQ12)/m,

Q̈12 = −(2KQ12 + 2σQ11 + 6σQ13)/2m,

Q̈13 = −(6KQ13 + 6σQ12)/6m.

1Recall that if λ ∼ N (0, 1) then
∫

Γ
λpρ(λ) dλ =

{
0 if p is odd

(p− 1)!! if p is even
.

}
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In order to obtain reference trajectories 1500 Monte Carlo simulations where con-

ducted such that each trial was deterministic and the spring stiffness for each trial was

sampled from the considered distribution. The mean trajectory and the squared mean

error from the mean trajectory are considered the reference expected trajectory and

the reference variance. Figure 4.1 shows the computed expansion coefficients using the

Euler method and the presented variational integrator when σ = 0.1, ∆t = 5× 10−3,

and r = 3. Note that the Euler method results in a trajectory that diverges quicker

from the reference trajectory. Furthermore, the variational integrator was able to

fairly accurately propagate both the expected mass displacement and its variance.

Figure 4.2 shows the computed expansion coefficients using the presented varia-

tional integrator when σ = 0.1 and ∆t = 5× 10−3 over a range of expansion degrees.

As expected, reducing the expansion degree deteriorates the accuracy of the prop-

agated trajectories when compared to the reference trajectory. However, even with

a relatively small expansion degree accurate trajectories were obtained. Neverthe-

less, Figure 4.3 shows the effect on the propagated trajectories when σ is increase

to 0.25. Notice the accuracy of all the trajectories are deteriorated and there was a

much larger effect on the expansion with the smallest degree. Therefore, the amount

of uncertainty strongly affects the accuracy of truncated expansions. Furthermore,

as shown in Figure 4.4, the accuracy degrades as the trajectory moves further away

from the initial time. The error induced by using the truncated expansion accumu-

lates and, as a result, the accuracy of the trajectory continuously degrades. Note that

increasing the expansion degree does mitigate this degradation.

Figure 4.5 shows the computed expansion coefficients using the presented varia-

tional integrator when σ = 0.1 and r = 3 over a range of discretization time steps.

Notice that there is a negligible difference between trajectories obtained with differ-

ent discretization time steps. As in Chapter 3, the variational integrator is able to

maintain its performance despite a change in ∆t. This property distinguishes it from
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Figure 4.1: (a) and (b): Propagation of the expansion coefficients with initial condi-
tion Q(t0) = [5, 0, 0, 0, 0] and Q̇(t0) = [0, 0, 0, 0, 0] subject to σ = 0.1 and ∆ = 5×10−3.
Dotted-dashed and solid lines indicate the trajectories were propagated using the Eu-
ler method and the variational integrator, respectively, and the dotted line represents
the statistics of 1500 Monte Carlo trials.

other integration schemes. As a result, less computational resources should be needed

in order to propagate expansion coefficients forward in time.

Figure 4.6 shows the average error in the propagated expansion coefficients when

compared to the reference trajectory. It can be concluded that increasing the dis-

cretization time and the amount of uncertainty increases the average error in the

propagated expansion coefficients. Note that the errors in the expected system con-

figuration all follow a similar trend while the errors in the variance are relatively

constant.

4.3 Conclusion

A variational integrator for polynomial chaos expansion coefficients was presented. It

was shown that the presented integrator was able to accurately predict the expectation

and variance of an uncertain system. The size of the expansion coefficient vector is a

limiting factor of the presented approach. However, it has been shown that variational

integrators for an arbitrary mechanical system can be implemented and scales for large

state configuration vectors [58]. Therefore, the complexity of the presented approach
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Figure 4.2: (a) and (b): Propagation of the expansion coefficients using the pre-
sented variational integrator, with initial condition Q(t0) = [5, 0, 0, 0, 0] and Q̇(t0) =
[0, 0, 0, 0, 0] subject to σ = 0.1 and ∆ = 5 × 10−3. Solid, dotted-dashed, and dot-
ted lines indicate expansion degrees of r = 1, r = 2 and r = 3 were considered,
respectively, and the dotted line represents the statistics of 1500 Monte Carlo trials.
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Figure 4.3: (a) and (b): Propagation of the expansion coefficients using the pre-
sented variational integrator, with initial condition Q(t0) = [5, 0, 0, 0, 0] and Q̇(t0) =
[0, 0, 0, 0, 0] subject to σ = 0.25 and ∆ = 5 × 10−3. Solid, dotted-dashed, and dot-
ted lines indicate expansion degrees of r = 1, r = 2, and r = 3, were considered,
respectively, and the dotted line represents the statistics of 1500 Monte Carlo trials.
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Figure 4.4: (a) and (b): Propagation of the expansion coefficients using the pre-
sented variational integrator, with initial condition Q(t0) = [5, 0, 0, 0, 0] and Q̇(t0) =
[0, 0, 0, 0, 0] subject to σ = 0.25 and ∆ = 5 × 10−3. Solid, dotted-dashed, and dot-
ted lines indicate expansion degrees of r = 1, r = 2, and r = 3, were considered,
respectively, and the dotted line represents the statistics of 1500 Monte Carlo trials.

0 5 10 15
−6

−4

−2

0

2

4

6
Expected System Trajectory

E
xp

ec
te

d 
M

as
s 

D
is

pl
ac

em
en

t

Time (sec)

 

 

∆t = 2.5 × 10
−2

∆t = 5 × 10
−2

∆t = 1.0 × 10
−1

Reference

(a)

0 5 10 15
0

0.5

1

1.5

2

2.5
Variance of System Trajectory

V
ar

ia
n

ce
 o

f 
M

as
s 

D
is

p
la

ce
m

en
t

Time (sec)

(b)

Figure 4.5: (a) and (b): Propagation of the expansion coefficients using the pre-
sented variational integrator, with initial condition Q(t0) = [5, 0, 0, 0, 0] and Q̇(t0) =
[0, 0, 0, 0, 0] subject to σ = 0.25 and r = 3. Solid, dotted-dashed, and dotted lines indi-
cate a discretization time step of ∆t = 2.5× 10−2, ∆t = 5× 10−2, and ∆t = 1× 10−1,
were considered, respectively, and the dotted line represents the statistics of 1500
Monte Carlo trials.
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Figure 4.6: (a) and (b): Average error in the propagated expansion coefficients when
compared to statistics of 1500 Monte Carlo trials using the presented variational
integrator, with initial condition Q(t0) = [5, 0, 0, 0, 0] and Q̇(t0) = [0, 0, 0, 0, 0] over
a range of discretization times and parameter uncertainty. Circle, X, star, and plus
markers indicate that the uncertainty was parameterized as σ = 0.1, σ = 0.25,
σ = 0.75, and σ = 1.0, respectively, and the solid line indicates that no uncertainty
was considered.

may be mitigated through software.
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V

A TRAJECTORY OPTIMIZATION METHOD FOR

AUTONOMOUS SUSPENDED LOAD OPERATIONS

“You promised me Mars colonies. Instead, I got Facebook.”
– Dr. Buzz Aldrin

In this chapter a real-time implementable trajectory optimization framework for

autonomous suspended load operations is presented. The computational effort re-

quired for the optimization frameworks is mitigated by the use of variational integra-

tors and a simplified, but representative, system model. It should be expected that

the manner in which an algorithm propagates the modeled system’s configuration and

linearizes the resultant discrete dynamics has a large effect on its performance. As

shown in Chapter 3, utilizing a variational integrator within the DDP algorithm pro-

vides significant advantages when compared to utilizing Euler methods. Specifically,

the algorithm’s performance is far less dependent on the size of the discretization

time step. Therefore, the discretization time step can be made larger without sacri-

ficing much performance and enables real-time implementation through the reduction

of computational effort. The unmanned vehicle system’s existing guidance, naviga-

tion, and control architecture is utilized resulting in minimal software reconfiguration.

Furthermore, the state of the slung load is estimated via an augmentation to the ex-

isting navigation system and utilizes only vision-based measurements of the load. It

is shown in simulation studies and a flight test the framework is real-time onboard

implementable despite a relatively large time horizon of 12 seconds. The vehicle was

able to maneuver the suspended load to track reference trajectories.
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5.1 Flight Test Vehicle and Simulation Environment

Simulation studies and flight tests used in the validation of the proposed trajectory

optimization framework were conducted with a modified Yamaha RMAX helicopter

UAV, dubbed the GTMax [57]. Custom avionics and the flight control software

(GUST) needed for autonomous flight were designed at the Georgia Tech Unmanned

Aerial Vehicle Research Facility (UAVRF). The GTMax weighs 157 pounds (with

avionics) and has a 10.2 foot main rotor diameter. The vehicle is equipped with an

extensive sensor suite including an Inertial Science IMU, short-range sonar, magne-

tometer, and differential GPS [23,57]. In addition, the vehicle is instrumented with a

Prosilica GC 1380 camera for vision-based operations [17,74,117]. Figure 5.1b shows

the GTMax test platfrom.

Two separate onboard processes, primary and secondary, are used for all onboard

computational requirements and are executed on a single onboard computer with

an i7 processor. The primary process performs the basic functionality needed for

navigation, guidance, and control of the vehicle. An adaptive neural network model

inversion flight controller, the vehicle’s baseline controller, was used for all simulation

studies and the presented flight test [59]. The secondary process is used to perform

image capture and processing needed for the presented load state estimator. In addi-

tion, the proposed trajectory optimization framework was executed in the secondary

process. The proposed computational architecture is described in detail in Section

5.3.4 (Figure 5.6).

The suspended load weighs 8.4 pounds resulting in a load mass ratio (LMR) of

0.051 and is attached to the vehicle with a 46 foot braided nylon line. The bucket

is sealed with a white cover to assist with tracking as discussed in Section 5.2. In

addition, the load can be jettisoned by the safety pilot with a radio transmitter.

Figure 5.1a shows the suspended load used in the flight tests.

The Georgia Tech UAV Simulation Tool (GUST), developed at the UAVRF, is
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Figure 5.1: (a) Suspended load used during the presented flight tests. (b) Annotated
image of the GTMax vehicle test platform. (c) A comparison of simulated and mea-
sured responses of the suspended load. Dotted lines indicate the measured position
of the vehicle and red and blue lines indicate the measured and simulated position of
the load, respectively.

used to simulate flight tests in order to demonstrate the efficacy of the proposed

trajectory optimization framework [60,61]. GUST contains a high-fidelity vehicle and

environment model, onboard flight control software, and ground station software and

is used for rapid development and testing of software and hardware for all aspects of

autonomous vehicle operation. The vehicle model is a rigid body six degree of freedom

model with additional engine, fuel, and rotor dynamics. In addition, the vehicle

model simulates sensor noise, communication delay, real world location, orientation,

and actuator dynamics and saturation. It should be noted that the vehicle model

is not propagated with a variational integrator. Since accuracy, not computational

efficiency, is important during simulation, a 2nd order Euler method is used and

integration occurs at 400 Hertz. Therefore, inconsistency between the propagation

methods used in the optimization framework and the simulation environment had

a negligible affect. Furthermore, a simulated camera capturing rendered graphics

is used to predict the real-time performance of vision-based operations. External

disturbances such as turbulence and wind are also simulated. The suspended load is

simulated by GUST with a rigid body six degree of freedom model with flexible cable

dynamics.
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In addition, aerodynamic loading is represented with a reduced order model based

on a quasi-steady aerodynamics, unsteady effects on body motion, and unsteady

effects of vortex shedding [99]. This aerodynamic model significantly improves the

fidelity of the suspended load simulation when compared to a simple model that only

considers quasi-steady drag. As shown in Figure 5.1c, preliminary flight tests show

a good correspondence between the model and the observed behavior of the load.

Further details on the high fidelity aerodynamic loading model and the preliminary

flight tests results can be found in Reference [99].

5.2 Vision-Based Estimation of Load

The presented vision-based suspended load state estimator is an extension to the

suspended load state estimator previously presented in References [7] and [10]. The

proposed framework provides estimates of the suspended load state (swing angle and

rate) through augmentation of an existing vehicle navigation system. The suspended

load is not instrumented with any sensors and only images captured from a downward

facing camera provide sensing information. Furthermore, the estimated vehicle state

is use to drive the suspended load’s process model and an unscented Kalman filter

produces estimation updates.

5.2.1 Process Model

The process and sensor model used in the presented framework are the same as those

used in the estimator presented in References [7] and [10]. The system model is

reviewed here and the cited references are referred to for further details.

A simple pendulum process model is used to described the suspended load system.

Specifically, the suspended load is modeled as a point mass where the position of the

load is given by generalized coordinates θw and φw (swing angles) which can be

considered as a 2-1 Euler angle rotation about the attachment point on the vehicle.

The length of the cable is assumed to be constant and the line never becomes slack.
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Figure 5.2.a shows the representation of the system. The equations of motion of the

system are obtained as

θ̈wL = − cos(θw) cos(φw)ẍv + sin(θw) cos(φw)(z̈v − g), (5.1)

θ̇w(t0) = θ̇w0, θw(t0) = θw0, t ≥ 0,

φ̈wL = sin(θw) sin(φw)ẍv + cos(θw) sin(φw)(z̈v − g)− cos(φw)ÿv, (5.2)

φ̇w(t0) = φ̇w0, φw(t0) = φw0,

where g is the gravitational constant, ẍv, ÿv, and z̈v are the vehicle’s translational ac-

celerations in the inertial frame and L is the total length of the pendulum (attachment

point to center of mass of the load). The position of the load is given as

RI
l = RI

v + RI
ha +


sin(θw) cos(φw)

sin(φw)

cos(θw) cos(φw)

L,

where RI
v is the position of the vehicle in the inertial frame, RI

l is the position of the

load in the inertial frame, and RI
ha is the vector from the center of mass of the vehicle

to the attachment point in the inertial frame. Furthermore, the velocity of the load

Ṙ
I

l = Ṙ
I

v + Ṙ
I

ha +


cos(θw) cos(φw) − sin(θw) sin(φw)

0 cos(φw)

− sin(θw) cos(φw) − cos(θw) sin(φw)


 θ̇w

φ̇w

L,

5.2.2 Sensor Model

The sensor information extracted by processing the captured images from a downward

facing camera is the unit vector, Rv
cl, from the camera to the white disk on top of the

load in the vehicle frame. The estimate of the load position relative to the attachment
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Figure 5.2: (a) Diagram of the process model used in the vision-based estimator.
(b) Diagram of the camera coordinate frame. Figures recreated from those found in
Reference [10].

.

point of the helicopter is given by

R̂
I

al =


sin(θ̂w) cos(φ̂w)

sin(φ̂w)

cos(θ̂w) cos(φ̂w)

L,

where θ̂w and φ̂w are the estimated swing angles. Finally, the predicted measurement

needed to implement an unscented Kalman filter is found as [105]

R̂
v

cl =
TvIR̂

I

al + Rv
ha −Rv

hc

|TvIR̂
I

al + Rv
ha −Rv

hc|
, (5.3)

where Rv
hc is the vector from the center of mass of the vehicle to the camera in the

vehicle frame, Rv
ha is the vector from the center of mass of the vehicle to the helicopter

attachment point in the vehicle frame, and TvI is the transformation matrix from the

inertial frame to the vehicle frame.

5.2.3 Image Capture and Processing

As previously mentioned, images from a downward facing camera are processed in

order to obtain sensor information to aid in the estimation of the suspended load
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state. In order to assist in the localizing of the load a white disc is placed on top

of the load. A probability-based mapping is then performed on a gray-scaled image

in order to identify the likelihood that pixels from that image are centers to a white

disk of a specific radius. Specifically, the pixels on the white disc are assumed to

be normally distributed parameterized with user-defined mean and variance. Using

the cumulative distribution function of a normal distribution the mapping produces

a score of how “white” the image around a pixel is:

S(r,s) =
∏

(i,j)∈R

1

2

(
1 + erf

(
P(r+i,s+j) − µ

σ
√

2

))
(5.4)

where S(r,s) ∈ [0, 1] is the pixel score, R is the set of pixel translations that approx-

imates a disk of a specific radius, and P(r,s) ∈ [0, 255] is the gray-scale value of the

(r, s) pixel where P(r,s) = 0 if the pixel is black and P(r,s) = 255 if the pixel is white.

As shown in Figure 5.3, set R is defined as

R = {(i, j) : i, j ∈ N, |i|+ |j| ≤ r} (5.5)

where r is the radius of the disc. As an example, if a disc of unity radius is considered

(r = 1) then R = {(0, 0), (1, 0), (0, 1), (−1, 0), (0,−1)}. In order for a pixel to achieve

a score close to unity all of its neighboring pixels and itself should be “whiter than

most other pixels” given the specified mean and variance. If the pixel with the highest

score meets user-defined minimum requirements it is considered a positive detection

of the load. Figure 5.4 gives an example of the mapping produced by (5.4) given

µ = 220, σ = 5 and r = 2 (pixel scores scaled to produce a post-processed gray-scaled

image). Notice the white pixels in the post-process image correspond to the center of

the load. Note that the select of r is determined by the length of the cable and the

camera resolution. Furthermore, if possible, σ and µ should be selected such that the

environment does not produce scores above the defined threshold.

Note the use of the cumulative distribution function of a normal distribution in

equation (5.4) is arbitrary. Other functions that map pixel values to [0, 1] can be
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Figure 5.3: Depictions of the set R for a radius of 1 (a), 2 (b), and 3 (c).

(a) (b)

Figure 5.4: (a) Typical image from a flight test and (b) the post-processed image
when µ = 220, σ = 5 and r = 2.

used. However, in order for the function to be effective a pixel should receive a very

low score if one of its neighbors is significantly different from the ideal pixel. Finally,

it should be noted that the target disc can be made a different color depending on

the application. For example, the disc can be red or orange in operations with thick

snow/ice on the ground. In this case, a pixel will achieve a high score close if its

neighbors and itself are “redder than most other pixels”. Appropriate changes to

equation (5.4) can be made trivially.

Once a pixel is selected, the coordinates of the pixel (px, py), as shown in Figure

5.2.b, are used to compute the sensed unit vector from the camera to the load. First,

the coordinate py is scaled based on the image dimensions as p̄y = lx
ly
py where lx

80



and ly are the width and height of the image in pixels. Next, characterize angles of

computed as

θp = ρ
√
p2
x + p̄2

y, and φp = atan2(p̄y, px) (5.6)

where ρ is ratio of the field of view and the width in pixels of the image. The sensed

unit vector from the camera to the load can then be computed as

Rv
cl = Tvc


cos(θp)

sin(θp) cos(φp)

sin(θp) sin(φp)

 ,
where Tvc is the transformation matrix from the camera frame to the vehicle frame.

5.3 Trajectory Optimization Framework

5.3.1 System Model and Cost Function

Since guidance (not control) was the goal of the optimization framework a greatly

simplified model was used to represent the complex and coupled rotorcraft-suspended

load system. The model consist of two point masses under a gravitational field with a

holonomic constraint restricting the distance between them to equal a defined length.

Furthermore, three control forces can accelerate the mass representing the vehicle.

Figure 5.5 shows a depiction of the simplified model. Variational integrators were used

to propagate and linearize the system in the DDP and projection-based frameworks.

The Lagrangian of the system is given as

L(q, q̇) =
1

2
M(ẋ2

v + ẏ2
v + ż2

v) +
1

2
m(ẋ2

l + ẏ2
l + ż2

l ) +mgzl +mgzv (5.7)

where q = [xv, yv, zv, xl, yl, zl]
T, M is the mass of the vehicle and m is the mass of the

load. The holonomic constraint is a wire constraint defined as

h(q) = (xv − xl)
2 + (yv − yl)

2 + (zv − zl)
2 − L2 (5.8)
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Figure 5.5: Diagram of the modeled suspended load system.

where L is the cable length (slacked lines not considered). Finally, the left and right

discrete forces needed to evaluate the constrained-forced DEL equations (2.86) are

defined as

F±d (qk, qk+1, uk) =



1
2
ux∆t

1
2
uy∆t

1
2
uz∆t

0

0

0


(5.9)

where ∆t is the discretization time step. A variational integrator can now be derived

for the system.

The reference trajectory based cost function used in both optimization processes

is given as

v(q, u, t) =

∫ tf

t0

(
Q1(q(τ)− qref(τ))2 +Q2(q̇(τ)− q̇ref(τ))2 +R(u(τ)− utrim(τ))2

)
dτ

+Qf(q(tf)− qref(tf))
2. (5.10)

where (qref(t), q̇ref(t)) is a reference system trajectory, Q1, Q2 ≥ 0 are the state tracking

error cost, Qf ≥ 0 is the final state tracking error cost, and R > 0 is the control cost.
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Though the reference system trajectory should be reasonable (i.e. limited vehicle

velocity, acceleration and jerk), it does not have to be dynamically feasible. For

example, a reference trajectory with no load swing (xv(t) = xl(t) and yv(t) = yl(t))

can be valid.

The variational integrator allows for reliable propagation of the system configu-

ration and linearization of the discrete dynamics about a given trajectory. Further-

more, as noted in Chapter 3 the performance of iterative optimization algorithms is

far less dependent on the discretization time step when a variational integrator is

used. Therefore, as shown in the proceeding sections the DDP and projection-based

frameworks were real-time feasible due, in part, to a relatively large time step. In

addition, modeling the simplified system with a wire constraint allows the reference

trajectory for the vehicle and load to be decouple. As a result, the cost associated

with the load trajectory is not directly a function of the vehicle trajectory and results

in a simple cost function. Lastly, as discussed in Section 2.3.1.2, the variational in-

tegration ensures that each discrete system configuration qk will observe the defined

constraint.

5.3.2 Differential Dynamic Programming

The differential dynamic programming (DDP) algorithm outlined in Section 2.2.1 was

one of the algorithms implemented to solve the trajectory optimization problem de-

scribed above (deterministic dynamics were considered). The initial nominal discrete

inputs and associated state trajectory were the output of the previous optimization

cycle shifted to the current initial time t0. Furthermore, during each optimization

cycle a maximum of 5 iterations were performed before a control and state trajectory

were outputted. The time horizon (tf− t0) was 12 seconds and ∆t = 0.1. In addition,
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the cost parameters were defined as

Q1 = diag([0.5, 0.5, 0.5, 3.0, 3.0, 3.0]), (5.11)

Q2 = diag([0.5, 0.5, 0.5, 3.0, 3.0, 3.0]), (5.12)

R = diag([1.0, 1.0, 1.0]), (5.13)

Qf = diag([0.5, 0.5, 0.5, 2.0, 2.0, 2.0]). (5.14)

The Armijo search parameters were set as α = 0.00001 and β = 0.7 and the maxi-

mum number of possible Armijo iterations was set to 15. If the Armijo search failed

(i.e. the Armijo cost criteria was not met after 15 iterations) the current optimiza-

tion cycle was terminated and the current nominal input and state trajectory were

outputted. Furthermore, if the maximum possible change in the cost for a computed

descent direction, δxT∇xv(x, u, t) + δuT∇uv(x, u, t), was less than 1 × 10−6 the op-

timization cycle was terminated and the current nominal input and state trajectory

were outputted.

5.3.3 Projection-Based Optimization

The projection-based optimization methodology outlined in Section 2.2.2 was also

used to solve the considered trajectory optimization problem. Parameters associated

with the cost function, time horizon and discretization, and Armijo search were the

same as those in the DDP algorithm. In addition, the LQR cost used to find the time-

varying feedback gain K(t) needed to define the projection operator was selected as:

G = I12 (5.15)

Gf = I12 (5.16)

F = I3 (5.17)

During each optimization cycle the descent direction during the first 6 iterations was

found using a quasi-Newton method (2.55). In the remaining iterations the Newton
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Figure 5.6: Overview of the implemented communication and computer architecture.

descent method (2.53) was used. A maximum of 10 iterations were performed. Like

in the DDP algorithm the cycle was terminated if the Armijo search failed or if the

descent direction could only yield a very small change in the cost function.

5.3.4 Integration

The optimization process described in the previous section can be implemented into

an existing autonomous vehicle system. Figures 5.6 and 5.7 give an overview of

how the proposed optimization framework can be integrated into an existing on-

board computer. It is assumed the existing guidance, navigation, and control system

is able to follow reasonable reference trajectories relatively accurately. A second

thread in the secondary computer is used exclusively to solve the selected optimization

algorithm. As a result, other processes contained in the secondary computer (i.e.

image processing, communication to primary computer, etc.) are not affected by the

computationally heavy optimization process. Simulation studies and flight tests have

shown that the stored optimization solution using either the DDP or projection-based

algorithm is updated at an average rate faster the 10 Hertz. Note that computational

time is much smaller than the optimization horizon of 12 seconds. Therefore, as

confirm in simulation and flight tests, real-time trajectory optimization is achieved

by the proposed framework.
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Figure 5.7: Overview of the optimization trajectory optimization process.

5.4 Simulation Implementation Results

In order to test the effectiveness of the proposed framework a set of 4 basic maneuvers

were performed. First, it was ensured that the vehicle could maintain the load at a

fixed location (Maneuver 1: Hover). In order to test for robustness in simulation,

the response to a instant change in load velocity was also investigated. The second

and third reference trajectories were constructed to go from two way-points with a

given prescribed maximum velocity and acceleration (Maneuver 2a: Way-point and

Maneuver 2b: Way-point). Maneuver 2a reference trajectory was generated using
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a maximum velocity and acceleration of 10 feet/sec and 2 feet/sec2, respectively,

and traveled about 46 feet and 115 feet along the x-axis and y-axis, respectively.

Maneuver 2b reference trajectory was generated using a maximum velocity and ac-

celeration of 10 feet/sec and 2 feet/sec2, respectively, and traveled about 50 feet and

1 foot along the x-axis and y-axis, respectively. The final reference trajectory was

constructed to inscribed a circle with a 50 foot radius every 75 seconds such that its

tangential velocity is 4.19 feet/sec (Maneuver 3: Circle). Table 5.1 gives a summary

of maneuvers.

The reference trajectory for the load and the vehicle were identical except for a

offset in the altitude. Therefore, the generated reference trajectories are not dynam-

ically feasible, but are idealized (and reasonable) trajectories. Note that trajectories

near the idealized trajectories are sought. The cost matrices, Q1, Q2, and Qf, are

designed to prioritize which states should be closer to their idealized values. Note

that the consider cost function (5.11) - (5.14) penalizes deviations associated with

the load more than vehicle deviations. Therefore, in this case the load’s trajectory is

prioritized. As a result, the optimization process favors adjusting the vehicle’s tra-

jectory in order to maintain the load closer to the reference trajectory. Furthermore,

specifying dynamically feasible trajectories would require more on-line computation

and, furthermore, prescribing non-ideal reference trajectories may lead to sub-optimal

performance.

5.4.1 Unoptimized Response

This section presents results obtained from simulations studies where no optimized

trajectory was computed and the reference trajectory was used in its place. Therefore,

the vehicle simply followed the generated reference trajectory without any consider-

ation of the response of the load or a cost function.
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Table 5.1: Summary of maneuvers were performed.

Maneuver Designation Description
1 Hover Maintains a fixed position.
2a Way-point Travels 46 and 115 feet along the x-axis and

y-axis, respectively, with a maximum velocity and

acceleration of 10 feet/sec and 2 feet/sec2, respectively.
2b Way-point Travels 50 and 1 feet along the x-axis and

y-axis, respectively, with a maximum velocity and

acceleration of 10 feet/sec and 2 feet/sec2, respectively.
3 Circle Inscribes a 50 foot radius circle every 75 seconds.
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Figure 5.8: Simulation-Unoptimized Maneuver 1 (a) and (b): Load position as a
function of time along the x-axis and y-axis, respectively. Solid and dotted lines
represent the load state and reference trajectory, respectively. (c): Load velocity as
a function of time. Solid and dotted lines represent the velocity along the x-axis and
y-axis, respectively.

Figure 5.8 shows the trajectory history of the load when Maneuver 1 was per-

formed. At t = 157.80 the velocity of the load along the x-axis was instantaneously

change to 10 feet/sec. Note that the velocity of the load slowly decays and the load

retains a 12 foot oscillation about 30 seconds after the induce velocity disturbance.

Figures 5.9 and 5.10 shows the trajectory history of the load when Maneuver

3 was performed. As seen in Maneuver 1, large load oscillations are found in the

system response. Note the large oscillations along the y-axis at the beginning of the

maneuver and those along the x-axis at the end of the maneuver.
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Figure 5.9: Simulation-Unoptimized Maneuver 3 (a): Phase plot of the maneuver, (b)
and (c): Load position as a function of time along the x-axis and y-axis, respectively.
Solid and dotted lines represent the load state and reference trajectory, respectively.
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Figure 5.10: Simulation-Unoptimized Maneuver 3 (a) and (b): Load velocity as a
function of time. Solid and dotted lines represent the load state and reference trajec-
tory, respectively. (c): Position tracking error as functions of time. Solid and dotted
lines represent the tracking error along the x-axis and y-axis, respectively.
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5.4.2 Differential Dynamic Programming Implementation

This section presents results obtained from simulations studies where the DDP algo-

rithm was used for optimization.

Figure 5.11 shows the trajectory history of the load when Maneuver 1 was per-

formed. At t = 112.72 and t = 150.88 the velocity of the load along the x-axis was

instantaneously change to 5 feet/sec and 10 feet/sec, respectively. Note that the ve-

hicle is able to maintain the load close to the desire position and at “steady state”

the load tracking error is always less than 2.5 feet. Furthermore, the system is able to

decrease the velocity of the load after the induced disturbance. Figure 5.12 shows the

load position estimation errors (or residuals). Note there is a bias in both directions.

These biases are caused by errors in the vehicle navigation solution. In particular,

in the estimation of the vehicle’s attitude and accelerometer bias terms. Any error

in the estimate of the vehicle’s state affects the sensor model used to update the

estimate of the load’s state. As shown in Figure 5.11, these biases are manifested in

the trajectory history of the load.

Figures 5.13 and 5.14 shows the trajectory history of the load when Maneuver

2a was performed. Though experiencing large tracking errors during transitional

portions of the reference trajectory the suspended load is able to track the reference

trajectory generally well. As shown in Figure 5.14 some of the tracking error is caused

by a delayed response.

Figures 5.15 and 5.16 shows the trajectory history of the load when Maneuver 2b

was performed. As in Maneuver 2a the load was able to track the reference trajectory

well and there is a noticeable delayed response.

Figures 5.17 and 5.18 shows the trajectory history of the load when Maneuver 3

was performed. Note that following an initial transient phase the load is able to track

the reference load with a relatively small error.

90



80 100 120 140 160 180 200
−4

−2

0

2

4

6

8

10

12
Maneuver 1, X−Axis

P
os

iti
on

 o
f t

he
 L

oa
d,

 X
−a

xi
s

Time (sec)

 

 

Reference
Controlled Load

(a)

80 100 120 140 160 180 200
−4

−2

0

2

4

6

8

10

12
Maneuver 1, Y−Axis

P
os

iti
on

 o
f t

he
 L

oa
d,

 Y
−a

xi
s

Time (sec)

(b)

80 100 120 140 160 180 200
−8

−6

−4

−2

0

2

4

6

8
Maneuver 1

V
el

o
ci

ty
 o

f 
th

e 
L

o
ad

Time (sec)

 

 

x−axis
y−axis

(c)

Figure 5.11: Simulation-DDP Maneuver 1 (a) and (b): Load position as a function
of time along the x-axis and y-axis, respectively. Solid and dotted lines represent
the load state and reference trajectory, respectively. (c): Load velocity as a function
of time. Solid and dotted lines represent the velocity along the x-axis and y-axis,
respectively.
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Figure 5.12: Simulation-DDP Maneuver 1 (a) and (b): The estimation error of the
load’s position along the x-axis and y-axis, respectively
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Figure 5.13: Simulation-DDP Maneuver 2a (a): Phase plot of the maneuver, (b) and
(c): Load position as a function of time along the x-axis and y-axis, respectively.
Solid and dotted lines represent the load state and reference trajectory, respectively.

91



55 60 65 70 75 80 85
−12

−10

−8

−6

−4

−2

0

2
Maneuver 2a, X−Axis

V
el

oc
ity

 o
f t

he
 L

oa
d,

 X
−a

xi
s

Time (sec)

(a)

55 60 65 70 75 80 85
−12

−10

−8

−6

−4

−2

0

2
Maneuver 2a, Y−Axis

V
el

oc
ity

 o
f t

he
 L

oa
d,

 Y
−a

xi
s

Time (sec)

(b)

55 60 65 70 75 80 85
−2

0

2

4

6

8

10

12
Maneuver 2a, Position Tracking Error

P
o

si
ti

o
n

 T
ra

ck
in

g
 E

rr
o

r

Time (sec)

 

 

X−Axis
Y−Axis

(c)

Figure 5.14: Simulation-DDP Maneuver 2a (a) and (b): Load velocity as a function
of time. Solid and dotted lines represent the load state and reference trajectory,
respectively. (c): Position tracking error as functions of time. Solid and dotted lines
represent the tracking error along the x-axis and y-axis, respectively.
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Figure 5.15: Simulation-DDP Maneuver 2b (a): Phase plot of the maneuver, (b) and
(c): Load position as a function of time along the x-axis and y-axis, respectively.
Solid and dotted lines represent the load state and reference trajectory, respectively.
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Figure 5.16: Simulation-DDP Maneuver 2b (a) and (b): Load velocity as a function
of time. Solid and dotted lines represent the load state and reference trajectory,
respectively. (c): Position tracking error as functions of time. Solid and dotted lines
represent the tracking error along the x-axis and y-axis, respectively.
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Figure 5.17: Simulation-DDP Maneuver 3 (a): Phase plot of the maneuver, (b) and
(c): Load position as a function of time along the x-axis and y-axis, respectively.
Solid and dotted lines represent the load state and reference trajectory, respectively.
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Figure 5.18: Simulation-DDP Maneuver 3 (a) and (b): Load velocity as a function
of time. Solid and dotted lines represent the load state and reference trajectory,
respectively. (c): Position tracking error as functions of time. Solid and dotted lines
represent the tracking error along the x-axis and y-axis, respectively.
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Figure 5.19: Simulation-Projection-Based Optimization Maneuver 1 (a) and (b):
Load position as a function of time along the x-axis and y-axis, respectively. Solid
and dotted lines represent the load state and reference trajectory, respectively. (c):
Load velocity as a function of time. Solid and dotted lines represent the velocity
along the x-axis and y-axis, respectively.

5.4.3 Projection-Based Optimization Implementation

This section presents results obtained from simulations studies where the projection-

based optimization algorithm was used for optimization.

Figure 5.19 shows the trajectory history of the load when Maneuver 1 was per-

formed. At t = 95.14 and t = 138.24 the velocity of the load along the x-axis was

instantaneously change to 5 feet/sec and 10 feet/sec, respectively. The proposed

framework was able to reduced the induced velocity and maintain the load relatively

near the desired position. Note that the response of the system is very similar to that

shown in Figure 5.11.

Figures 5.20 and 5.21 shows the trajectory history of the load when Maneuver

3 was performed. Again, the performance of the framework is quite similar to that

displayed in Figures 5.15 and 5.16

5.4.4 Effect of State Estimator Error

This section presents results obtained from simulations studies where the DDP algo-

rithm was used for optimization and when the system’s navigation solution was error

free (estimated state equaled simulation state). Maneuver 1 was performed in order
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Figure 5.20: Simulation-Projection-Based Optimization Maneuver 3 (a): Phase plot
of the maneuver, (b) and (c): Load position as a function of time along the x-axis
and y-axis, respectively. Solid and dotted lines represent the load state and reference
trajectory, respectively.
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Figure 5.21: Simulation-Projection-Based Optimization Maneuver 3 (a) and (b):
Load velocity as a function of time. Solid and dotted lines represent the load state
and reference trajectory, respectively. (c): Position tracking error as functions of
time. Solid and dotted lines represent the tracking error along the x-axis and y-axis,
respectively.
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Figure 5.22: Simulation-DDP (with error free navigation) Maneuver 1 (a) and (b):
Load position as a function of time along the x-axis and y-axis, respectively. Solid
and dotted lines represent the load state and reference trajectory, respectively. (c):
Load velocity as a function of time. Solid and dotted lines represent the velocity
along the x-axis and y-axis, respectively.

to investigate if a significant performance improvement could be obtained if the navi-

gation solution was error free. Figure 5.22 shows the trajectory history of the load. At

t = 107.87 and t = 151.04 the velocity of the load along the x-axis was instantaneously

change to 5 feet/sec and 10 feet/sec, respectively. Note that the vehicle is able to

maintain the load close to the desire position and at “steady state” the load tracking

error is negligible. Furthermore, the system is able to decrease the velocity of the load

at a faster rate when compared to the trajectory shown in Figure 5.11. Figure 5.23

shows the trajectory history of the load if a more aggressive cost function parame-

terized as Q1 = diag([1.0, 1.0, 1.0, 6.0, 6.0, 6.0]), Q2 = diag([1.0, 1.0, 1.0, 6.0, 6.0, 6.0]),

R = diag([1.0, 1.0, 1.0]), and Qf = diag([1.0, 1.0, 1.0, 4.0, 4.0, 4.0]), is used. At t =

118.82 and t = 155.93 the velocity of the load along the x-axis was instantaneously

change to 5 feet/sec and 10 feet/sec, respectively. The velocity of the load decays at

a slightly faster rate when compared Figure 5.22. Furthermore, it has been observed

in simulation studies not presented here that the performance of the system when

the navigation solution is not error free deteriorates if the aggressive cost function is

selected.
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Figure 5.23: Simulation-DDP (with error free navigation and aggressive cost function)
Maneuver 1 (a) and (b): Load position as a function of time along the x-axis and
y-axis, respectively. Solid and dotted lines represent the load state and reference
trajectory, respectively. (c): Load velocity as a function of time. Solid and dotted
lines represent the velocity along the x-axis and y-axis, respectively.

5.5 Flight Test Results

This section presents results obtained from a flight test where the DDP algorithm

was used for optimization. The flight test was perform on March 18, 2015 at around

10am. An air temperature of 63.3 degrees Fahrenheit and a wind speed of 2.3 miles

per hour in varied directions was reported1.

Figures 5.24 and 5.25 shows the estimated trajectory history of the load when

Maneuver 2a was performed. Note that the response of the system is very similar to

the response seen in simulation (Figures 5.13 and 5.14). As expected, the tracking

errors in the flight test are larger than the ones seen in simulation. However, given

that the length of the line is 46 feet and the system is subject to environmental factors

like wind a tracking error of about 6 feet is reasonable. Furthermore, the estimation

bias shown in simulation may also have contributed to the tracking errors.

Figures 5.26 and 5.27 shows the trajectory history of the load when Maneuver 2b

was performed. As seen in Maneuver 2b, the response of the system is very similar

to the response seen in simulation (Figures 5.15 and 5.16).

Figures 5.28 and 5.29 shows the trajectory history of the load when Maneuver 3

1Weather report for area code 31805 and the specified date provided by Weather Undergound.
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Figure 5.24: Flight Test-DDP Maneuver 2a (a): Phase plot of the maneuver, (b) and
(c): Load position as a function of time along the x-axis and y-axis, respectively.
Solid, dotted, and dashed lines represent the estimated load state, simulated load
state (Figure 5.13), and reference trajectory, respectively.

was performed. As seen in the other two maneuvers performed, the results obtained

through simulation studies are very similar to those obtained in the flight test. Fig-

ure shows the histograms of the computational times related to image processing and

optimization when Maneuver 3 was performed. In the recorded data set the computa-

tional time required to perform an optimization cycle (maximum of 5 iterations) had

a mean of 0.0965 seconds and a standard deviation of 0.0167. This relatively small

computational time allows for real-time trajectory optimization and is possible due

to the large discretization time step facilitated by the used of a variational integrator.

Furthermore, the computational time required to process an image required for load

state estimation had a mean of 0.1329 seconds and a standard deviation of 0.005.

When compared to other sensors used on-board for vehicle navigation this “sensor”

has a relatively slow update rate.

5.6 Analysis of Results

The following observations can be made from the presented data:

• The load tracking error is significantly reduced when the vehicle trajectory is

optimized. Furthermore, if Figures 5.10 and 5.18 are compared it can be seen

that the trajectory of the load is more oscillatory in the unoptimized case.
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Figure 5.25: Flight Test-DDP Maneuver 2a (a) and (b): Load velocity as a function
of time. Solid, dotted, and dashed lines represent the estimated load state, simulated
load state (Figure 5.14), and reference trajectory, respectively. (c): Position tracking
error as functions of time. Solid and dotted lines represent the estimated tracking
error along the x-axis and y-axis, respectively.
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Figure 5.26: Flight Test-DDP Maneuver 2b (a): Phase plot of the maneuver, (b)
and (c): Load position as a function of time along the x-axis and y-axis, respectively.
Solid, dotted, and dashed lines represent the estimated load state, simulated load
state (Figure 5.15), and reference trajectory, respectively.
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Figure 5.27: Flight Test-DDP Maneuver 2b (a) and (b): Load velocity as a function
of time. Solid, dotted, and dashed lines represent the estimated load state, simulated
load state (Figure 5.16), and reference trajectory, respectively. (c): Position tracking
error as functions of time. Solid and dotted lines represent the estimated tracking
error along the x-axis and y-axis, respectively.
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Figure 5.28: Flight Test-DDP Maneuver 3 (a): Phase plot of the maneuver, (b) and
(c): Load position as a function of time along the x-axis and y-axis, respectively.
Solid, dotted, and dashed lines represent the estimated load state, simulated load
state (Figure 5.17), and reference trajectory, respectively.
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Figure 5.29: Flight Test-DDP Maneuver 3 (a) and (b): Load velocity as a function
of time. Solid, dotted, and dashed lines represent the estimated load state, simulated
load state (Figure 5.18), and reference trajectory, respectively. (c): Position tracking
error as functions of time. Solid and dotted lines represent the estimated tracking
error along the x-axis and y-axis, respectively.
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Figure 5.30: Maneuver 1 (a): Histogram of the optimization cycle computational
times. The recorded data set had a mean of 0.0965 seconds and a standard deviation
of 0.0167. (b): Histogram of image processing computational times. The recorded
data set had a mean of 0.1329 seconds and a standard deviation of 0.005.

• The response of the system when the DDP algorithm is utilized is nearly iden-

tical to the response when the projection-based optimization method is used.

Appendix B shows computed optimized vehicle trajectories using both opti-

mization processes. It is shown that nearly identical solutions are computed.

• The simulation studies accurately predicted data collected during the flight test.

It can be expected that further simulation studies will predict future flight test.

Appendix B presents additional results obtained from simulation in which more

aggressive (larger nominal velocity and acceleration) reference trajectories were

considered.

• The results presented in Section 5.4.4 suggest that a limiting factor of the pre-

sented framework is the vehicle and suspended load navigation solution. Fur-

thermore, since the vehicle navigation solution is fairly accurate it can be con-

cluded that instrumenting the load will significantly improve the performance of

the framework. This is not too surprising since any inaccuracy in the initial con-

ditions given to the optimization process will be manifested in the effectiveness
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of the optimized trajectory.

5.7 Conclusion

A trajectory optimization framework for suspended load operations was proposed.

The effectiveness of the approach was demonstrated through a series of simulation

studies and a flight test. Several directions for future research are outlines in the next

chapter.
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VI

CONCLUSION AND FUTURE WORK

“...you must go on, I can’t go on, I’ll go on.”
– Samuel Beckett, The Unnamable

This dissertation focused on the optimization and propagation of dynamical sys-

tems. Using autonomous rotorcraft with suspended load operations as the motivating

example the presented optimization framework was demonstrated to be effective and

real-time feasible. To the author’s knowledge, the presented flight test is the first time

a suspended load operation was conducted using iterative optimization techniques in

an outdoor/uncontrolled environment. Furthermore, accurate methods for propagat-

ing a system’s configuration in the presence of uncertainty and stochasticity were also

developed.

In Chapter 3, a stochastic variational integrator and its linearization were pre-

sented. The stochastic differential dynamical programming and extended Kalman

filter algorithms were used to compare the performance of the variational integrator

to that of the standard Euler method. It was demonstrated that the algorithms were

far less dependent on the discretization time step when the variational integrator was

used to propagate system trajectories and linearize system dynamics. It is stressed

that these benefits are not limited to the S-DDP and EKF algorithms and similar

improvements can be expected in other control and estimation frameworks. The use

of variational integrators may enable real-time implementation of nonlinear optimal

control algorithms and reduce the computational, power, and sensing requirements

of control and estimation technologies.

In Chapter 4, a variational integrator for polynomial chaos expansion coefficients

was presented. It was shown that the presented integrator was able to accurately
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predict the expectation and variance of an uncertain system. The size of the expansion

coefficient vector is a limiting factor of the presented approach and, as a result, further

work is needed to mitigate the integrator’s complexity.

In Chapter 5, a real-time implementable trajectory optimization framework for

autonomous suspended load operations was presented. The computational effort re-

quired for the differential dynamic programming (DDP) framework was reduced by

the use of variational integrators and a simplified, but representative, system model.

Successful simulation studies and a flight test displayed the effectiveness of the pro-

posed framework. Note that this work verifies real-time implementations of trajectory

optimization algorithms on complex aerospace systems. Furthermore, the framework

can, with necessary changes, be enacted in other robotic guidance or control systems.

The following contributions were presented in this dissertation:

• Development of a stochastic variational integrator.

• Demonstration of benefits when the proposed variational integrator

is used in the stochastic differential dynamic programming and ex-

tended Kalman filter algorithms.

• Derivation of a polynomial chaos variational integrator.

• Development of a trajectory optimization framework for autonomous

rotorcraft suspended load operations.

• Demonstration of the proposed trajectory optimization framework in

simulation studies and a flight test.

In addition, the following research directions have the potential to make significant

contributions:

• Implementation of the stochastic differential dynamic programming

algorithm in the presented trajectory optimization framework. In
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Chapter 3, the stochastic differential dynamic programming algorithm was

shown to effectively mitigate against stochasticity. Incorporating the S-DDP

algorithm into the existing framework may be useful in handling the stochastic-

ity found in the suspended load system. In particular, disturbances due to wind

and estimation errors caused by the inherent nature of pixel-based processing.

• Consideration of input and state constraints. Due to safety considerations

and vehicle limits it is critical to ensure that the optimized trajectory respects

given constraints. As more demanding reference trajectories and operations

are performed constraints will become even more crucial. Furthermore, state

constraints can be used to incorporate obstacle avoidance and multi-vehicle lift

in the presented framework.

• Identification of wind, cable length, and other uncertainties. On-line

methods to identify uncertainty and persistent disturbances can greatly improve

the performance and usability of the proposed framework. Existing learning or

adaptive based approaches can be implemented separately from the presented

framework. In between iterations the vehicle and environment models can be

easily updated to incorporate new information. The interaction between the

processes (learning and control/guidance) is complex and an area of research in

multiple communities.

• Continuation of flight tests. More aggressive maneuvers, like those shown

in Appendix B, and the research directions described above should be demon-

strated. Furthermore, other operational objectives such as precision load drop

off need to be performed.

• System identification using polynomial chaos expansion. Suppose that

an uncertain system is represented with a polynomial chaos expansion. Is it

possible to use sensor information in conjunction with this representation to
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reduce system uncertainty? That is, given the computed distribution of the

trajectory and sensor information gathered in operation can uncertain system

parameters be identified? If so, what are the limits in identifying a system in

this manner?

• Optimal control for a polynomial chaos expansion dynamical system.

Integrating a polynomial chaos expansion representation into an iterative opti-

mization algorithm can allow for probabilistic control. That is, the expectation

and the variance of the optimized trajectory can both be optimized. This allows

for risk sensitivity, for example, to be incorporated into the cost function.

• Development of a variational integrator for an uncertain and stochas-

tic system. The developed stochastic and polynomial chaos variational inte-

grators both consider non-deterministic system dynamics. However, stochas-

ticity and uncertainty are fundamentally different. Consider that stochasticity

arises from random events external to the considered modeling “domain” while

uncertainty captures what is unknown inside this domain. Nevertheless, in any

system both representations are useful and neither one can capture a complete

picture of the studied system.

• Investigate the connection between the projection-based optimization

framework and the DDP algorithm. Note that both methodologies pro-

vide the optimal control deviation, but do so in fundamentally different ways.

In the DDP algorithm, system dynamics are used to approximate the backward

propagating value function. In the projection-based framework, the initial de-

scent direction can be found without explicit consideration of the underlying

dynamics. However, the projection operator ensures valid trajectories. It seems

probable that a projection operator can be constructed such that the DDP al-

gorithm is recovered within the projection-based optimization framework. Such
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an operator may utilize the value function to project trajectories optimally to

the desired manifold. The results presented in Appendix B give motivation for

this line of research.
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APPENDIX A

VARIATIONAL INTEGRATORS OF CONSIDERED

DYNAMICAL SYSTEMS

This chapter derives variational integrators (VIs) and their linearizations for a mass-

spring-damper system and a 3-link planar manipulator. The reader is referred to

Chapters 2 and 3 for additional details concerning the stochastic variational integrator

and its linearization.

A.1 Mass-Spring-Damper

The Lagrangian of the considered one-dimensional mass-spring-damper system is

given by

T (q, q̇) =
1

2
mq̇2(t), (A.1)

V (q) =

∫ q

0

fs(ξ(t))dξ, (A.2)

L(q, q̇) = T (q, q̇)− V (q), (A.3)

where m is the system’s mass and fs(·) gives the force of the spring as a function of

mass displacement such that fs(q) is finite and positive for all q 6= 0 and fs(0) = 0.

In addition, the system is subject to a damping force and an input such that

F0(q, q̇, u) = u(t)− bq̇(t), (A.4)

where b > 0, and a stochastic disturbance parameterized by (see (3.4))

F1(q, q̇, u) = q2(t). (A.5)

The discrete Lagrangian (using the midpoint approximation) is given as

Ld(qk, qk+1) =
1

2
m

(qk+1 − qk)2

∆t
−
(∫ qk+1+qk

2

0

fs(ξ(t)) dξ
)

∆t, (A.6)
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and the derivatives necessary to define the variational integrator and its linearization

are given as

∂

∂q
L(q, q̇) = −fs(q(t)),

∂

∂q̇
L(q, q̇) = mq̇,

∂2

∂q∂q
L(q, q̇) = − ∂

∂q
fs(q(t)),

∂2

∂q̇∂q̇
L(q, q̇) = m,

∂2

∂q̇∂q
L(q, q̇) = 0, and

∂2

∂q∂q̇
L(q, q̇) = 0.

The left, right, and stochastic discrete forces are given as

F−k+1(qk, qk+1, uk) = − b
2

(qk+1 − qk) +
1

2

(qk+1 + qk
2

)3

∆t+ uk∆t, (A.7)

F+
k+1(qk, qk+1, uk) = − b

2
(qk+1 − qk) +

1

2

(qk+1 + qk
2

)3

∆t, (A.8)

F s
k (qk−1, qk, uk) = q2

k, (A.9)

respectively, and the associated derivatives are computed as

D1F
−
k+1(qk, qk+1, uk) =

b

2
− 3

4

(qk+1 + qk
2

)2

∆t,

D2F
−
k+1(qk, qk+1, uk) = − b

2
+

3

4

(qk+1 + qk
2

)2

∆t,

D3F
−
k+1(qk, qk+1, uk) = ∆t,

D1F
+
k+1(qk, qk+1, uk) =

b

2
− 3

4

(qk+1 + qk
2

)2

∆t,

D2F
+
k+1(qk, qk+1, uk) = − b

2
+

3

4

(qk+1 + qk
2

)2

∆t,

D3F
+
k+1(qk, qk+1, uk) = 0,

D1F
s
k (qk−1, qk, uk) = 0,

D2F
s
k (qk−1, qk, uk) = 2qk,

D3F
s
k (qk−1, qk, uk) = 0.

The integrator equation (3.13) for the mass-spring-damper system is computed as

f(qk+1) = pk −
1

2
fs((qk+1 + qk)/2)∆t− m

∆t
(qk+1 − qk)−

b

2
(qk+1 − qk)

+
1

2

(qk+1 + qk
2

)3

∆t+ uk∆t+ q2
k∆ωk, (A.10)
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where

pk = −1

2
fs((qk + qk−1)/2)∆t+

m

∆t
(qk − qk−1)− b

2
(qk − qk−1) +

1

2

(qk + qk−1

2

)3

∆t.

The derivative of the integrator equation is calculated as

Df(qk+1) = −1

4

∂

∂q
fs((qk+1 + qk)/2)∆t− m

∆t
− b

2
+

3

4

(qk+1 + qk
2

)2

∆t. (A.11)

Therefore, given qk−1, qk, and uk the next system configuration qk+1 can be found by

using (A.10), (A.11), and Algorithm 3. The first-order linearization of the discrete

dynamics (3.16) is computed as

∂qk+1

∂qk
= −M−1

k+1

(
− 1

4

∂

∂q
fs((qk+1 + qk)/2)∆t+

m

∆t
+
b

2
− 3

4

(qk+1 + qk
2

)2

∆t+ 2qk∆ωk

)
,

∂qk+1

∂pk
= −M−1

k+1,

∂qk+1

∂uk
= −M−1

k+1∆t,

∂qk+1

∂∆ωk
= −M−1

k+1q
2
k,

∂pk+1

∂qk
=
(
− 1

4

∂

∂q
fs((qk+1 + qk)/2)∆t+

m

∆t
− b

2
+

3

4

(qk+1 + qk
2

)2

∆t
)∂qk+1

∂qk
,

− 1

4

∂

∂q
fs((qk+1 + qk)/2)∆t− m

∆t
+
b

2
− 3

4

(qk+1 + qk
2

)2

∆t,

∂pk+1

∂pk
= −

(
− 1

4

∂

∂q
fs((qk+1 + qk)/2)∆t+

m

∆t
− b

2
+

3

4

(qk+1 + qk
2

)2

∆t
)
M−1

k+1,

∂pk+1

∂uk
= −

(
− 1

4

∂

∂q
fs((qk+1 + qk)/2)∆t+

m

∆t
− b

2
+

3

4

(qk+1 + qk
2

)2

∆t
)
M−1

k+1∆t,

∂pk+1

∂∆ωk
= −

(
− 1

4

∂

∂q
fs((qk+1 + qk)/2)∆t+

m

∆t
− b

2
+

3

4

(qk+1 + qk
2

)2

∆t
)
M−1

k+1q
2
k,

where

Mk+1 = −1

4

∂

∂q
fs((qk+1 + qk)/2)∆t− m

∆t
− b

2
+

3

4

(qk+1 + qk
2

)2

∆t. (A.12)

As an example, consider the case where there is no stochastic disturbance, u(t) =

0, b = 0, m = 1, and fs(q(t)) = 4q(t). The linearization of the system for this case is

given as  δqk+1

δpk+1

 =

 1−∆t2

1+∆t2
∆t

1+∆t2

−4∆t
1+∆t2

1−∆t2

1+∆t2


 δqk

δpk

 . (A.13)
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If ∆t << 1 then  δqk+1

δpk+1

 ≈
 1 ∆t

−4∆t 1


 δqk

δpk

 . (A.14)

For comparison purposes consider the explicit integrator equation obtained by using

the Euler method

xk+1 = (I +
∂

∂xk
f(xk)∆t)xk. (A.15)

where xk = [qk, q̇k]
T, q̇k = mpk (for this case and not in general), and

f(x) =

 δq̇k

−4qk

 . (A.16)

Note that if ∆t is sufficiently small the linearizations approximate each other. How-

ever as shown in Chapters 3 and 4, the variational integrator is far less dependent

on ∆t than the Euler method. To further highlight this point, Figure A.1 shows how

the two methods propagate q(t) for the case considered above. It is clear the the

variational integrator is able to accurately propagate the system state for both time

steps while the Euler method quickly becomes unreliable when the larger time step

is used.

A.2 3-Link Manipulator

This section considers a dynamical system representing a human finger (3-link planar

manipulator) (see [71] for system model and parameters). As shown in Figure A.2

the dynamical system is described by three coordinates given by the relative angles

between adjacent links, q(t) = [θ1(t), θ2(t), θ3(t)], and three control inputs, u(t) =

[u1(t), u2(t), u3(t)]. The mass of the links is assumed to be concentrated at the end of

each link (3 linked pendulums). The potential energy of the system arises from the
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Figure A.1: (a): Propagation of mass displacement, q(t), with initial condition q(t0) =
1 and q̇(t0) = 0 subjected to input u(t) = 0. Solid lines indicate a step size of
∆t = 1× 10−3 while dotted lines indicate ∆t = 5× 10−2.
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Figure A.2: Diagram of the studied 3-link planar manipulator.

112



gravitational field present and is computed as

V (q) = −m1gl1 sin(θ1)−m2g
(
l1 sin(θ1) + l2 sin(θ1 + θ2)

)
−m3g

(
l1 sin(θ1) + l2 sin(θ1 + θ2) + l3 sin(θ1 + θ2 + θ3)

)
. (A.17)

The kinetic energy of the system is given as

T (q, q̇) = T1(q, q̇) + T2(q, q̇) + T3(q, q̇), (A.18)

T1(q, q̇) =
1

2
m1l

2
1θ̇

2
1, (A.19)

T2(q, q̇) =
1

2
m2

(
l21θ̇

2
1 + l22(θ̇1 + θ̇2)2 + l1l2 cos(θ2)θ̇1(θ̇1 + θ̇2)

)
, (A.20)

T3(q, q̇) =
1

2
m3

(
l21θ̇

2
1 + l22(θ̇1 + θ̇2)2 + l23(θ̇1 + θ̇2 + θ̇3)2 + l1l2 cos(θ2)θ̇1(θ̇1 + θ̇2)

+ l1l3 cos(θ2 + θ3)θ̇1(θ̇1 + θ̇2 + θ̇3) + l2l3 cos(θ3)(θ̇1 + θ̇2)(θ̇1 + θ̇2 + θ̇3)
)
.

(A.21)

The system is subject to damping forces and inputs such that

F0(q, q̇, u) = [u1(t)− bθ̇1(t), u2(t)− bθ̇2(t), u3(t)− bθ̇3(t)]T (A.22)

where b > 0, and stochastic disturbances parameterized by (see (3.4))

F s
1 = [C1(θ1(t)− θ1(t0))2, 0, 0]T, F s

2 = [C2u
2
1(t), 0, 0]T, F s

3 = [C3, 0, 0]T,

F s
4 = [0, C4(θ2(t)− θ2(t0))2, 0]T, F s

5 = [0, C5u
2
2(t), 0]T, F s

6 = [0, C6, 0]T,

F s
7 = [0, 0, C7(θ3(t)− θ3(t0))2]T, F s

8 = [0, 0, C8u
2
3(t)]T, F s

9 = [0, 0, C9]T,
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Ci > 0 for all i. The partial derivatives necessary to define the variational integrator

and its linearization are computed as

[
∂

∂q
L(q, q̇)]1 = m1gl1 cos(θ1) +m2g

(
l1 cos(θ1) + l2 cos(θ1 + θ2)

)
+m3g

(
l1 cos(θ1) + l2 cos(θ1 + θ2) + l3 cos(θ1 + θ2 + θ3)

)
,

[
∂

∂q
L(q, q̇)]2 = m2gl2 cos(θ1 + θ2) +m3g

(
l2 cos(θ1 + θ2) + l3 cos(θ1 + θ2 + θ3)

)
−m2l1l2 sin(θ2)θ̇1(θ̇1 + θ̇2)−m3l1l2 sin(θ2)θ̇1(θ̇1 + θ̇2)

−m3l1l3 sin(θ2 + θ3)θ̇1(θ̇1 + θ̇2 + θ̇3),

[
∂

∂q
L(q, q̇)]3 = m3gl3 cos(θ1 + θ2 + θ3)−m3l1l3 sin(θ2 + θ3)θ̇1(θ̇1 + θ̇2 + θ̇3)

−m3l2l3 sin(θ3)(θ̇1 + θ̇2)(θ̇1 + θ̇2 + θ̇3),

[
∂

∂q̇
L(q, q̇)]1 = m1l

2
1θ̇1 +m2

(
l21θ̇1 + l22(θ̇1 + θ̇2) + l1l2 cos(θ2)(2θ̇1 + θ̇2)

)
+m3

(
l21θ̇1 + l22(θ̇1 + θ̇2) + l23(θ̇1 + θ̇2 + θ̇3) + l1l2 cos(θ2)(2θ̇1 + θ̇2)

+ l1l3 cos(θ2 + θ3)(2θ̇1 + θ̇2 + θ̇3) + l2l3 cos(θ3)(2θ̇1 + 2θ̇2 + θ̇3)
)
,

[
∂

∂q̇
L(q, q̇)]2 = m2

(
l22(θ̇1 + θ̇2) + l1l2 cos(θ2)θ̇1

)
+m3

(
l22(θ̇1 + θ̇2) + l23(θ̇1 + θ̇2 + θ̇3) + l1l2 cos(θ2)θ̇1

+ l1l3 cos(θ2 + θ3)θ̇1 + l2l3 cos(θ3)(2θ̇1 + 2θ̇2 + θ̇3)
)
,

[
∂

∂q̇
L(q, q̇)]3 = m3

(
l23(θ̇1 + θ̇2 + θ̇3) + l1l3 cos(θ2 + θ3)θ̇1 + l2l3 cos(θ3)(θ̇1 + θ̇2)

)
, [

∂2

∂q∂q
L(q, q̇)]1,1 = −m1gl1 sin(θ1)−m2g

(
l1 sin(θ1) + l2 sin(θ1 + θ2)

)
−m3g

(
l1 sin(θ1) + l2 sin(θ1 + θ2) + l3 sin(θ1 + θ2 + θ3)

)
,

[
∂2

∂q∂q
L(q, q̇)]1,2 = −m2gl2 sin(θ1 + θ2)−m3g

(
l2 sin(θ1 + θ2) + l3 sin(θ1 + θ2 + θ3)

)
,

[
∂2

∂q∂q
L(q, q̇)]1,3 = −m3gl3 sin(θ1 + θ2 + θ3),

[
∂2

∂q∂q
L(q, q̇)]2,1 = −m2gl2 sin(θ1 + θ2)−m3g

(
l2 sin(θ1 + θ2) + l3 sin(θ1 + θ2 + θ3)

)
,
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[
∂2

∂q∂q
L(q, q̇)]2,2 = −m2

(
l1l2 cos(θ2)θ̇1(θ̇1 + θ̇2) + gl2 sin(θ1 + θ2)

)
−m3

(
l1l2 cos(θ2)θ̇1(θ̇1 + θ̇2) + l1l3 cos(θ2 + θ3)θ̇1(θ̇1 + θ̇2 + θ̇3)

+ gl2 sin(θ1 + θ2) + gl3 sin(θ1 + θ2 + θ3)
)
,

[
∂2

∂q∂q
L(q, q̇)]2,3 = −m3

(
l1l3 cos(θ2 + θ3)θ̇1(θ̇1 + θ̇2 + θ̇3) + gl3 sin(θ1 + θ2 + θ3)

)
,

[
∂2

∂q∂q
L(q, q̇)]3,1 = −m3gl3 sin(θ1 + θ2 + θ3),

[
∂2

∂q∂q
L(q, q̇)]3,2 = −m3

(
l1l3 cos(θ2 + θ3)θ̇1(θ̇1 + θ̇2 + θ̇3) + gl3 sin(θ1 + θ2 + θ3)

)
,

[
∂2

∂q∂q
L(q, q̇)]3,3 = −m3

(
l1l3 cos(θ2 + θ3)θ̇1(θ̇1 + θ̇2 + θ̇3)

+ l2l3 cos(θ3)(θ̇1 + θ̇2)(θ̇1 + θ̇2 + θ̇3) + gl3 sin(θ1 + θ2 + θ3)
)
,

[
∂2

∂q̇∂q̇
L(q, q̇)]1,1 = m1l

2
1 +m2

(
l21 + l22 + 2l1l2 cos(θ2)

)
+m3

(
l21 + l22 + l23 + l1l2 cos(θ2)2 + l1l3 cos(θ2 + θ3)2 + 2l2l3 cos(θ3)

)
,

[
∂2

∂q̇∂q̇
L(q, q̇)]1,2 = m2

(
l22 + l1l2 cos(θ2)

)
+m3

(
l22 + l23 + l1l2 cos(θ2) + l1l3 cos(θ2 + θ3) + 2l2l3 cos(θ3)

)
,

[
∂2

∂q̇∂q̇
L(q, q̇)]1,3 = m3

(
l23 + l1l3 cos(θ2 + θ3) + l2l3 cos(θ3)

)
,

[
∂2

∂q̇∂q̇
L(q, q̇)]2,1 = m2

(
l22 + l1l2 cos(θ2)

)
+m3

(
l22 + l23 + l1l2 cos(θ2) + l1l3 cos(θ2 + θ3) + 2l2l3 cos(θ3)

)
,

[
∂2

∂q̇∂q̇
L(q, q̇)]2,2 = m2l

2
2 +m3

(
l22 + l23 + 2l2l3 cos(θ3)

)
,

[
∂2

∂q̇∂q̇
L(q, q̇)]2,3 = m3

(
l23 + l2l3 cos(θ3)

)
,

[
∂2

∂q̇∂q̇
L(q, q̇)]3,1 = m3

(
l23 + l1l3 cos(θ2 + θ3) + l2l3 cos(θ3)

)
,

[
∂2

∂q̇∂q̇
L(q, q̇)]3,2 = m3

(
l23 + l2l3 cos(θ3)

)
,

[
∂2

∂q̇∂q̇
L(q, q̇)]3,3 = m3l

2
3,

[
∂2

∂q∂q̇
L(q, q̇)]1,1 = [

∂2

∂q∂q̇
L(q, q̇)]2,1 = [

∂2

∂q∂q̇
L(q, q̇)]3,1 = 0,
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[
∂2

∂q∂q̇
L(q, q̇)]1,2 = −m2l1l2 sin(θ2)(2θ̇1 + θ̇2)

−m3

(
l1l2 sin(θ2)(2θ̇1 + θ̇2) + l1l3 sin(θ2 + θ3)(2θ̇1 + θ̇2 + θ̇3)

)
,

[
∂2

∂q∂q̇
L(q, q̇)]1,3 = −m3

(
l1l3 sin(θ2 + θ3)(2θ̇1 + θ̇2 + θ̇3) + l2l3 sin(θ3)(2θ̇1 + 2θ̇2 + θ̇3)

)
,

[
∂2

∂q∂q̇
L(q, q̇)]2,2 = −m2l1l2 sin(θ2)θ̇1 −m3

(
l1l2 sin(θ2)θ̇1 + l1l3 sin(θ2 + θ3)θ̇1

)
,

[
∂2

∂q∂q̇
L(q, q̇)]2,3 = −m3

(
l1l3 sin(θ2 + θ3)θ̇1 + l2l3 sin(θ3)(2θ̇1 + 2θ̇2 + θ̇3)

)
,

[
∂2

∂q∂q̇
L(q, q̇)]3,2 = −m3l1l3 sin(θ2 + θ3)θ̇1,

[
∂2

∂q∂q̇
L(q, q̇)]3,3 = −m3

(
l1l3 sin(θ2 + θ3)θ̇1 + l2l3 sin(θ3)(θ̇1 + θ̇2)

)
,

[
∂2

∂q̇∂q
L(q, q̇)]1,1 = [

∂2

∂q̇∂q
L(q, q̇)]1,2 = [

∂2

∂q̇∂q
L(q, q̇)]1,3 = 0,

[
∂2

∂q̇∂q
L(q, q̇)]2,1 = −m2l1l2 sin(θ2)(2θ̇1 + θ̇2)

−m3

(
l1l2 sin(θ2)(2θ̇1 + θ̇2) + l1l3 sin(θ2 + θ3)(2θ̇1 + θ̇2 + θ̇3)

)
,

[
∂2

∂q̇∂q
L(q, q̇)]2,2 = −m2l1l2 sin(θ2)θ̇1 −m3

(
l1l2 sin(θ2)θ̇1 + l1l3 sin(θ2 + θ3)θ̇1

)
,

[
∂2

∂q̇∂q
L(q, q̇)]2,3 = −m3l1l3 sin(θ2 + θ3)θ̇1,

[
∂2

∂q̇∂q
L(q, q̇)]3,1 = −m3

(
l1l3 sin(θ2 + θ3)(2θ̇1 + θ̇2 + θ̇3) + l2l3 sin(θ3)(2θ̇1 + 2θ̇2 + θ̇3)

)
,

[
∂2

∂q̇∂q
L(q, q̇)]3,2 = −m3

(
l1l3 sin(θ2 + θ3)θ̇1 + l2l3 sin(θ3)(2θ̇1 + 2θ̇2 + θ̇3)

)
,

[
∂2

∂q̇∂q
L(q, q̇)]3,3 = −m3

(
l1l3 sin(θ2 + θ3)θ̇1 + l2l3 sin(θ3)(θ̇1 + θ̇2)

)
,
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The left, right, and stochastic discrete forces are given as

F−k+1(qk, qk+1, uk) =


− b

2
(θ1,k+1 − θ1,k) +

C2
1

2

(
θ1,k+1+θ1,k

2
− θ1,0

)3

∆t+ u1,k∆t

− b
2
(θ2,k+1 − θ2,k) +

C2
4

2

(
θ2,k+1+θ2,k

2
− θ2,0

)3

∆t+ u2,k∆t

− b
2
(θ3,k+1 − θ3,k) +

C2
7

2

(
θ3,k+1+θ3,k

2
− θ3,0

)3

∆t+ u3,k∆t

 ,

F+
k+1(qk, qk+1, uk) =


− b

2
(θ1,k+1 − θ1,k) +

C2
1

2

(
θ1,k+1+θ1,k

2
− θ1,0

)3

∆t

− b
2
(θ2,k+1 − θ2,k) +

C2
4

2

(
θ2,k+1+θ2,k

2
− θ2,0

)3

∆t

− b
2
(θ3,k+1 − θ3,k) +

C2
7

2

(
θ3,k+1+θ3,k

2
− θ3,0

)3

∆t

 ,

F s
k (qk−1, qk, uk) =


C1(θ1,k − θ1,0)2 C2u

2
1,k C3 . . . . . .

. . . C4(θ2,k − θ2,0)2 C5u
2
2,k C6 . . .

. . . . . . C7(θ3,k − θ3,0)2 C8u
2
3,k C9

 ,
respectively, and the associated derivatives are computed as

D1F
−
k+1(qk, qk+1, uk) =


b
2

+
3C2

1

4

(
θ1,k+1+θ1,k

2
− θ1,0

)2

∆t

b
2

+
3C2

4

4

(
θ2,k+1+θ2,k

2
− θ2,0

)2

∆t

b
2

+
3C2

7

4

(
θ3,k+1+θ3,k

2
− θ3,0

)2

∆t

 ,

D2F
−
k+1(qk, qk+1, uk) =


− b

2
+

3C2
1

4

(
θ1,k+1+θ1,k

2
− θ1,0

)2

∆t

− b
2

+
3C2

4

4

(
θ2,k+1+θ2,k

2
− θ2,0

)2

∆t

− b
2

+
3C2

7

4

(
θ3,k+1+θ3,k

2
− θ3,0

)2

∆t

 ,

D3F
+
k+1(qk, qk+1, uk) =


∆t

∆t

∆t

 ,

D1F
+
k+1(qk, qk+1, uk) =


b
2

+
3C2

1

4

(
θ1,k+1+θ1,k

2
− θ1,0

)2

∆t

b
2

+
3C2

4

4

(
θ2,k+1+θ2,k

2
− θ2,0

)2

∆t

b
2

+
3C2

7

4

(
θ3,k+1+θ3,k

2
− θ3,0

)2

∆t

 ,

117



D2F
+
k+1(qk, qk+1, uk) =


− b

2
+

3C2
1

4

(
θ1,k+1+θ1,k

2
− θ1,0

)2

∆t

− b
2

+
3C2

4

4

(
θ2,k+1+θ2,k

2
− θ2,0

)2

∆t

− b
2

+
3C2

7

4

(
θ3,k+1+θ3,k

2
− θ3,0

)2

∆t

 ,

D3F
−
k+1(qk, qk+1, uk) =


0

0

0

 .
D1F

s
k (qk−1, qk, uk), D2F

s
k (qk−1, qk, uk), and D3F

s
k (qk−1, qk, uk) can be calculated in a

similar manner. The integrator equation (3.13), its derivative (3.15), and first-order

linearization (3.16) can now be computed from the quantities presented above.
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APPENDIX B

ADDITIONAL SIMULATION RESULTS

The chapter provides additional results from simulation studies. First, results when

the reference trajectories are made more aggressive (i.e. larger maximum velocities

and accelerations) are shown. Next, a possible method to incorporate input con-

straints into the proposed framework is discussed and preliminary simulation results

are shown. Finally, outputs from the two optimization techniques implemented (dif-

ferential dynamic programming and projection-based optimization) are compared.

B.1 Aggressive Maneuvers

Three new maneuvers are introduced for the purposes of this section. Maneuver 2c

reference trajectory was generated using a maximum velocity and acceleration of 15

feet/sec and 4 feet/sec2, respectively, and traveled about 355 feet and -575 feet along

the x-axis and y-axis, respectively. Maneuver 2d reference trajectory was generated

using a maximum velocity and acceleration of 25 feet/sec and 5 feet/sec2, respectively,

and traveled about -347 feet and 246 foot along the x-axis and y-axis, respectively.

Maneuver 3a reference trajectory was constructed to inscribed a circle with a 100 foot

radius every 75 seconds such that its tangential velocity is 8.38 feet/sec.

Figures B.1, B.2, B.3, and B.4 show the trajectory histories when Maneuvers 2c

and 2d were performed. Note that in both responses the general shape of the resul-

tant trajectories were very similar in both position and velocity to the given reference.

However as seen in Chapter 5, the responses lag behind the reference trajectory (see,

for example, Figure B.3.b). Limiting the reference trajectory’s jerk and snap should

alleviate this problem. Currently, the reference trajectory has infinite jerk and this
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Figure B.1: Simulation-DDP Maneuver 2c (a): Phase plot of the maneuver, (b) and
(c): Load position as a function of time along the x-axis and y-axis, respectively.
Solid and dashed lines represent the load state and reference trajectory, respectively.
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Figure B.2: Simulation-DDP Maneuver 2c (a) and (b): Load velocity as a function
of time. Solid and dashed lines represent the load state and reference trajectory,
respectively. (c): Position tracking error as functions of time. Dashed and solid lines
represent the tracking error along the x-axis and y-axis, respectively.

results in a rapid increase of the tracking error at the beginning of the maneuver (see,

for example, Figures 5.18.c and B.2.c). Note that the vehicle (if initially at hover)

cannot instantaneously accelerate the load forward. Furthermore, the acceleration of

the vehicle is directly related to its attitude and cannot be changed instantaneously.

Therefore, placing limits on the jerk and snap of the reference trajectory correspond-

ing to the maneuverability of the vehicle is the next logical step forward.

Figures B.5 and B.6 show the trajectory history when Maneuvers 3a was per-

formed. After an initial large tracking error (see paragraph above) the vehicle was

able to maintain the load within 5 feet of the reference trajectory.
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Figure B.3: Simulation-DDP Maneuver 2d (a): Phase plot of the maneuver, (b) and
(c): Load position as a function of time along the x-axis and y-axis, respectively.
Solid and dashed lines represent the load state and reference trajectory, respectively.
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Figure B.4: Simulation-DDP Maneuver 2d (a) and (b): Load velocity as a function
of time. Solid and dashed lines represent the load state and reference trajectory,
respectively. (c): Position tracking error as functions of time. Dashed and solid lines
represent the tracking error along the x-axis and y-axis, respectively.
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Figure B.5: Simulation-DDP Maneuver 3a (a): Phase plot of the maneuver, (b) and
(c): Load position as a function of time along the x-axis and y-axis, respectively.
Solid and dashed lines represent the load state and reference trajectory, respectively.
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Figure B.6: Simulation-DDP Maneuver 3a (a) and (b): Load velocity as a function
of time. Solid and dashed lines represent the load state and reference trajectory,
respectively. (c): Position tracking error as functions of time. Dashed and solid lines
represent the tracking error along the x-axis and y-axis, respectively.

B.2 Input Constraints

In this section we investigate the effectiveness of imposing given input constraints

with “clamping”. Specifically, the Armijo line search is altered in Algorithm 1 such

that the proposed input respects given constraints:

up = max(min(u+ βjδu?, ū), u) (B.1)

where ū and u are the upper and lower input constraints, respectively. Note that the

proposed input up, and not the optimal descent direction u? , is altered. Additionally,

reference trajectories were not used in this investigation. Instead, step commands

were given. That is, the desired position of the load was translated instantaneously

to a new position.

Figures B.7, B.8, B.9, and B.10 show the trajectory histories when Maneuvers

4a and 4b were performed. The vehicle was able to place the load at the desired

positions. As expected, the velocity of the vehicle generally follows “a rapid increase

then a rapid decrease” shape. The input constraints were generally respected. Note

that the initial acceleration of the vehicle need not respect the imposed constraints.

As a result, the initial system configuration vector may cause a slight violation of the

constraints since the commanded position, velocity, and acceleration of the vehicle
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Figure B.7: Simulation-DDP Maneuver 4a (a): Phase plot of the maneuver, (b) and
(c): Load position as a function of time along the x-axis and y-axis, respectively.
Solid and dashed lines represent the load state and reference trajectory, respectively.
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Figure B.8: Simulation-DDP Maneuver 4a (a) and (b): Velocity of the vehicle as a
function of time along the x-axis and y-axis, respectively. (c): Commanded acceler-
ation of the vehicle. Dashed and solid lines represent the commanded acceleration
along the x-axis and y-axis, respectively, and the dotted lines indicate the imposed
input constraints.

are found through interpolation. It should be noted that state constraints cannot be

handled in this manner.

B.3 Comparing Optimization Techniques

In this section outputs from the two optimization techniques implemented (differen-

tial dynamic programming and projection-based optimization) are compared. The

initial conditions were set such that the vehicle was at hover, there is no swing angle,

and the load has a small forward velocity (1.5 feet/sec). Figures B.11 ,B.12, and B.13

show the optimized trajectories (at t = 0) when Maneuvers 1, 2e, and 3 were selected,
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Figure B.9: Simulation-DDP Maneuver 4b (a): Phase plot of the maneuver, (b) and
(c): Load position as a function of time along the x-axis and y-axis, respectively.
Solid and dashed lines represent the load state and reference trajectory, respectively.
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Figure B.10: Simulation-DDP Maneuver 4b (a) and (b): Velocity of the vehicle as
a function of time along the x-axis and y-axis, respectively. (c): Commanded accel-
eration of the vehicle. Dashed and solid lines represent the commanded acceleration
along the x-axis and y-axis, respectively, and the dotted lines indicate the imposed
input constraints.
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Figure B.11: Simulation-Maneuver 1 (a) and (b): Optimized trajectory as a function
of time along the x-axis and y-axis, respectively. The dashed and solid lines corre-
spond to the Projection-Based and DDP algorithms, respectively. (c): The difference
between the optimized trajectories as a function of time. The solid and dashed lines
correspond to the difference along the x-axis and y-axis, respectively.

respectively. Maneuver 2e reference trajectory was generated using a maximum ve-

locity and acceleration of 10 feet/sec and 2 feet/sec2, respectively, and traveled about

100 feet and 150 feet along the x-axis and y-axis, respectively. (see Section 5.4 for

a description of Maneuvers 1 and 3). The DDP algorithm produced a lower cost for

each maneuver:

DDP Man. 1 : 9.72, Man. 2e : 21353.33, Man. 3 : 5528.76

Projection-Based Man. 1 : 9.81, Man. 2e : 21462.01, Man. 3 : 5697.67

However, the differences between the costs were all relatively small. Furthermore,

the optimized trajectories were very similar (particularly before t = 7). The minor

differences can be a result of how the projection operator was selected. It is reasonable

to suspect that changing G, Gf , and F will produce different, albeit very similar,

results.
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Figure B.12: Simulation-Maneuver 2e (a) and (b): Optimized trajectory as a function
of time along the x-axis and y-axis, respectively. The dashed and solid lines corre-
spond to the Projection-Based and DDP algorithms, respectively. (c): The difference
between the optimized trajectories as a function of time. The solid and dashed lines
correspond to the difference along the x-axis and y-axis, respectively.

0 2 4 6 8 10 12
−40

−35

−30

−25

−20

−15

−10

−5

0
Maneuver 3, Optimized Trajectory

O
pt

im
iz

ed
 T

ra
je

ct
or

y,
 X

−a
xi

s

Time (sec)

 

 

Projection−Based
DDP

(a)

0 2 4 6 8 10 12
−80

−70

−60

−50

−40

−30

−20

−10

0
Maneuver 3, Optimized Trajectory

O
pt

im
iz

ed
 T

ra
je

ct
or

y,
 Y

−a
xi

s

Time (sec)

(b)

0 2 4 6 8 10 12
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Maneuver 3, Difference in Trajectories

D
if

fe
re

n
ce

 in
 O

p
ti

m
iz

ed
 T

ra
je

ct
o

ri
es

Time (sec)

 

 

X−axis
Y−axis

(c)

Figure B.13: Simulation-Maneuver 3 (a) and (b): Optimized trajectory as a function
of time along the x-axis and y-axis, respectively. The dashed and solid lines corre-
spond to the Projection-Based and DDP algorithms, respectively. (c): The difference
between the optimized trajectories as a function of time. The solid and dashed lines
correspond to the difference along the x-axis and y-axis, respectively.
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