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SUMMARY 
 

The lymphatic system has fundamental physiological roles in maintaining fluid 

homeostasis, immune cell trafficking and lipid transport from the small intestine to the 

venous circulation. Lymphatic vessels are the main functional organ responsible for the 

diverse transport roles the system plays. Unlike the blood vasculature, the lymphatic 

system does not have a central pump, such as the heart, and relies on a variety of factors 

to move lymph through. It was long thought that only external factors, such as skeletal 

muscle contraction and lymph formation, played a role in the functional transport 

capacity of these vessels. With the advancement of imaging capabilities (both hardware 

and software), it has become clear in the past two decades or so that the main factor in 

driving lymph transport is the ability of these vessels to intrinsically contract whereby 

each vessel is comprised of a chain of ‘mini pumps’ in series. The functional capacity of 

these vessels is thus now understood to be primarily determined by this pumping activity 

that has been shown to be regulated by various mechanical and biochemical cues. 

Lymphatic vessel dysfunction has been implicated in a variety of diseases including many 

lipid related pathologies and a neglected tropical disease known as lymphatic filariasis. 

While it has been possible to study the vessel function in the context of fluid drainage and 

immune cell trafficking, the capability to understand the role of lymphatic vessels in lipid 

transport has not been available due to the lack of experimental animal models and 

acquisition systems. As part of this thesis, we sought to develop an experimental animal 

model along with hardware and software tools to investigate the interplay between 

lymphatics and their lipid content. We report the first functional measurements of how 

vessels respond to elevated lipid loads. We further utilized our engineering expertise to 

develop an experimental platform allowing us to further understand the parasite known 

as B. malayi that migrates to and resides in lymphatic vessels. 
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I. Introduction and Literature Survey 

1.1 Background and Motivation 
The lymphatic vasculature exists in nearly all tissues of the body and plays 

essential roles in maintaining fluid balance through fluid and protein clearance of the 

interstitium, in immune cell trafficking, and in lipid transport. Lymphatic vessels achieve 

these functions through two main types of vessels; initial lymphatics and collecting 

lymphatics. Initial lymphatics are blind-ended structures comprised of one endothelial cell 

layer with specialized junctional complexes 1–3. Initial lymphatics feed into the larger 

collecting lymphatics that have a smooth muscle media, allowing them to contract 4,5. 

Collecting lymphatics also contain unidirectional valves6 dividing the vessel into segments 

called lymphangions (Figure 1).  

 

Figure 1: Initial lymphatics are made of endothelial cells with specialized overlapping junctions that allow for easy entry 
of fluid, proteins and cells into the vessel. These lymphatics lack smooth muscle and therefore cannot contract. (b) 
Collecting lymphatics consist of individual contracting units known as lymphangions, which are lined with smooth muscle 
and separated by valves. (i) Confocal reconstruction of an isolated rat lymphatic vessel showing valve leaflets (courtesy 
of Dave Zawieja and Anitoliy Gashev). The collecting vessels are under a variety of mechanical loads: hoop stress (σhoop), 
axial stress (σaxial) and wall shear stress (τwall). These forces have been shown to modulate contractile function. For 
example, an increase in (ii) wall shear stress through enhanced fluid flow has been shown to cause upregulation of eNOS 
and subsequent release of NO, which acts as a vasodilator on the smooth muscle and inhibits vessel contraction.7 Blue 
spheres are water molecules, yellow spheres are lipoproteins, pink are immune cells, orange stars are NO molecules. 
(Image taken from Dixon 2010 8).  
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The collecting vessel’s contractile ability, along with the unidirectional valves, 

result in a pumping mechanism that provides an active transport system to move lymph 

back into circulation against a pressure gradient. Lymph flow is a consequence of various 

active (intrinsic) and passive (extrinsic) forces.  The phasic contraction of lymphangions 

accounts for the dominant intrinsic pumping mechanism. Extrinsic factors include the 

driving force of lymph formation, influences of cardiac and arterial pulsations, 

contractions of skeletal muscles in proximity to the lymphatic vessels, central venous 

pressure fluctuations, gastrointestinal peristalsis, and respiration 9. Previous research has 

shown that the intrinsic mechanism is regulated through alterations in both intraluminal 

pressure 10 and wall shear stress, such that increases in wall shear stress imposed through 

elevated flow inhibit contraction 11 through NO release 7. Failure of the lymphatic pump 

results in pathologies ranging from breast cancer-related lymphedema 12 and 

elephantiasis 13 (Figure 2), to intestinal bowl disease (IBD) 14. 

 

Figure 2: Elephantiasis is a disease resulting from lymphatic filariasis, a parasitic infection of the collecting lymphatics, 
which manifests itself with dramatic swelling of the lower limbs or genitals. Image courtesy of Maggie Steber 
(Washington Post) 
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Previous studies have shown that after a meal, lipids are broken down into fatty 

acids and transported into intestinal enterocytes where they are esterified into 

triglycerides and packaged into hydrophilic lipoproteins called chylomicrons. Once 

formed, the chylomicrons are then taken up by the lacteals of the intestinal villi and 

transported through the lymphatic system to the venous circulation 15–19. Until recently, 

the lymphatics have been treated as a passive system for the collection and transport of 

chylomicrons in lymph, without considering their active role in transport 20. Lymph flow 

rates, however, have been shown to affect chylomicron transport 21, and lymph flow rate 

increases after lipid absorption 22. What remains unclear is the exact relationship and 

molecular underpinnings that modulate lymphatic pump function in the context of the 

drastic changes in lipid uptake and lymph flow/formation that occur during the normal 

dietary functions of the intestine. This information is a vital link in understanding the 

significance of the lymphatic system in the context of lipid-related diseases and the 

implications of lymphatic pump failure on the progression and severity of these 

pathologies. 

Malformations of mesentery lymphatics result in various clinical pathologies 23. A 

mouse model of lymphatic vasculature dysfunction, which resulted in lymphatic leakage 

was reported to manifest signs of adult onset obesity 24, thus suggesting compromised 

lymphatic lipid transport may be a contributing factor to the onset of obesity. 

Furthermore, protein-losing enteropathies, for example, are characterized by the 

progressive loss of protein from bowel due to elevated lymphatic pressure, lymphatic 

congestion and nonulcerative mucosal disease as well as inflammatory and ulcerative 

diseases. Primary intestinal lymphangiectasia (PIL) is one important form of protein-losing 

enteropathy. PIL is a disorder characterized by dilated intestinal lacteals which 

presumably cause lymph leakage into the small bowel lumen. Quantitatively 

understanding how normal lymphatic pump behavior responds to lipid load will give 

scientists the basis to compare how this changes, and possibly even drives the pathology, 

in a PIL diseased state and will provide quantitative data to the extent of leakage, and 

potentially disease severity. A low-fat diet associated with medium-chain triglyceride 
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supplementation is the cornerstone of PIL medical management. The absence of fat in 

the diet prevents chyle engorgement of the intestinal lymphatic vessels thereby 

preventing their rupture with its ensuing lymph loss. Medium-chain triglycerides are 

absorbed directly into the portal venous circulation and avoid lacteal overloading 25. A 

long chain fatty acid (LCFA) fluorescent analogue such as BODIPY C16 can be used to 

better understand how the contribution of loading the lacteals contributes to the 

disease by investigating the active role that the collecting lymphatic vessel plays to clear 

the extra load. Even before PIL symptoms develop, patients have shown delayed 

transport of lipid from the intestine, suggesting that lymphatic lipid transport function is 

compromised at an early stage of the disease 23. In addition, inflammatory bowl diseases 

(IBDs) such as Crohn’s disease (CD), present themselves with several lymphatic 

abnormalities 14. Lymphatic contractile activity was shown to be impaired in an isolated 

vessel model of gut inflammation, suggesting that lymphatic function might be 

compromised in inflammatory diseases such as CD 8. While alleviating the lipid burden on 

lymphatics is clinically beneficial in many of these intestinal disorders, the exact 

mechanisms of lymphatic failure and the interplay between the lipid absorption process 

and lymphatic function is unclear. 

In addition to the role of lymphatics in lipid transport, there is another research 

area that is in dire need of further investigation. That area is the disease known as 

Lymphatic Filariasis (LF). LF is the single largest world-wide source of secondary 

lymphedema 26 and is caused by adult parasitic nematodes that target and dwell in the 

lymphatic system.  An estimated 120 million people in 73 countries are currently infected, 

and a further 1.4 billion live in areas where filariasis is endemic 27. Of the 120 million 

people harboring the parasites, 90% have Wuchereria bancrofti, while Brugia malayi and 

Brugia timori infections account for the other 10% 28. All three parasites use mosquitoes 

as transmission vectors 29. Infection is initiated when the host-seeking mosquito deposits 

an infective third-stage larva (L3) on the skin of the host during the process of obtaining 

a blood meal. The infective larvae then penetrate the skin at the site of the bite, 

presumably guided by chemoattractants 30,  and migrate to the lymphatic vessels and 
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lymph nodes of the host where after 6-12 months they mature into adult worms. The 

adult worms may reside within the lymphatic system for years before the host shows any 

clinical manifestations such as lymphedema, hydrocele, elephantiasis, chyluria and 

compromised immunity 31–37. Following mating in the lymphatics, the parasites release 

live progeny called microfilariae, which circulate in the bloodstream. These microfilariae 

can then be ingested by a mosquito during a blood meal, where they undergo 

development to form L2 and finally L3 larvae. Hence, the life cycle continues 32.  

In the year 2000, the World Health Organization (WHO) launched the Global 

Alliance to Eliminate Lymphatic Filariasis (GAELF). The GAELF has been one of the most 

rapidly expanding global health programs in the history of public health with the goal of 

eliminating LF by 2020 through annual mass drug administration (MDA) 27,29,38,39. While 

killing the adult worms is considered one of the best strategies, the drugs used in MDA 

are only effective at killing microfilaria, and not the adult worms 40–45. Thus, breaking 

the cycle of transmission has proven to be difficult unless we can repurpose current FDA 

approved drugs as macrofilaricides. Additionally, these treatment strategies provide no 

relief for the estimated 120 million people already infected. As we move from controlling 

the disease to eliminating it, an understanding of the mechanisms by which L3 filarial 

parasites target and migrate towards lymphatics and how they behave in the presence 

of the lymphatic environment will be crucial in developing treatment strategies targeting 

the migration process as well as the lymphatic-inhabiting adult worms. Developing a 

better understanding of these parasites will further enable the development of strategies 

to possibly reverse the damage these parasites have cause in patients that are already 

suffering from lymphedema as a consequence of the infection 46. 

In the following sections we describe various engineering approaches to elucidate 

the role of lymphatics in both lipid and filarial diseases. 

1.2 Research Goals 

The overall research goals of this thesis can be separated into two primary objectives: 
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1. Elucidating the role of collecting lymphatic vessels in lipid uptake and transport 

both in vivo and in vitro. 

2. Developing a better understanding of filarial parasites, primarily their migration 

pattern and ways to eliminate the adult version in an effort to limit their lifecycle 

and subsequent lymphatic vessel damage. 

These objectives were further broken down into the following specific goals: 

1. Develop an in vivo animal model along with the required imaging hardware to 

acquire both vessel lipid content and functional metrics describing vessel behavior 

(Chapter 2). 

2. Quantify the effect of lipid loads on lymphatic vessel function (Chapter 3) 

3. Measure the post-prandial viscosity of lymph following a high-fat meal to clarify 

the contribution of changes in viscosity to shear stress (Chapter 4) 

4. Quantify the sensitivity of lymphatic endothelial cells to shear stress in the context 

of the microenvironment these cells experience, including oscillatory shear stress 

and high lipid loads through intracellular calcium signaling (Chapter 5). 

5. Develop an in vitro platform to mimic the skin-lymphatic interface along with an 

automated imaging platform to quantify the migratory behavior of B. malayi 

within a multicellular microenvironment (Chapter 6). 
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II. DUAL-CHANNEL IN SITU OPTICAL IMAGING SYSTEM FOR 

QUANTIFYING LIPID UPTAKE AND LYMPHATIC PUMP FUNCTION 
 

2.1. Abstract 
Nearly all dietary lipids are transported from the intestine to venous circulation 

through the lymphatic system, yet the mechanisms that regulate this process remain 

unclear.  Elucidating the mechanisms involved in the functional response of lymphatics to 

changes in lipid load would provide valuable insight into recent implications of lymphatic 

dysfunction in lipid related diseases. Therefore, we sought to develop an in situ imaging 

system to quantify and correlate lymphatic function as it relates to lipid transport. The 

imaging platform provides the capability of dual-channel imaging of both high-speed 

bright-field video and fluorescence simultaneously. Utilizing post-acquisition image 

processing algorithms, we can quantify correlations between vessel pump function, 

lymph flow, and lipid concentration of mesenteric lymphatic vessels in situ. All image 

analysis is automated with customized LabVIEW virtual instruments: local flow is 

measured through lymphocyte velocity tracking, vessel contraction through 

measurements of the vessel wall displacement and lipid uptake through fluorescence 

intensity tracking of an orally administered fluorescently labelled fatty acid analogue, 

BODIPY FL C16. This system will prove to be an invaluable tool for scientists studying 

intestinal lymphatic function in health and disease, and those investigating strategies for 

targeting the lymphatics with orally delivered drugs to avoid first pass metabolism. 

2.2. Introduction 
The lymphatic vasculature exists in nearly all tissues of the body and plays 

essential roles in maintaining fluid balance through fluid and protein clearance of the 

interstitium, in immune cell trafficking, and in lipid transport. Lymphatic vessels achieve 

these desired functions through two main types of vessels; initial lymphatics and the 

collecting lymphatics. Initial lymphatics are blind-ended structures comprised of one 

endothelial cell layer with specialized junctional complexes 1–3. Initial lymphatics feed into 

the larger collecting lymphatics that have a smooth muscle media, allowing them to be 
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contractile4,5. They also contain unidirectional valves6 dividing the vessel into segments 

called lymphangions. The collecting vessels’ contractile ability, along with the 

unidirectional valves, result in a pumping mechanism that provides an active transport 

system to move lymph back into circulation. It has been shown that this mechanism is 

regulated through alterations in both intraluminal pressure10 and wall shear stress, such 

that increases in wall shear stress imposed through elevated flow inhibit contraction11.  

Dietary lipid uptake and transport after a meal is one of the primary functions of 

the lymphatic system16, yet very little is known about the mechanisms through which the 

lymphatics fulfill these roles. Previous studies have shown that after a meal, lipids are 

broken up into fatty acids and transported into intestinal enterocytes where they are 

esterified into triglycerides and packaged into hydrophilic lipoproteins called 

chylomicrons. Once formed, the chylomicrons are then taken up by the lacteals and 

transported through the lymphatic system to the venous circulation15–19. A mouse model 

of lymphatic vasculature dysfunction, which resulted in lymphatic leakage was reported 

to manifest signs of adult onset obesity24, thus suggesting compromised lymphatic lipid 

transport may be a contributing factor to the onset of obesity. Until recently, the 

lymphatics have been treated as a passive system for the collection and transport of 

chylomicrons in lymph, without considering their active role in transport20. Lymph flow 

rates, however, have been shown to affect chylomicron transport21, and lymph flow rate 

increases after lipid absorption22. What remains less clear is the exact relationship and 

molecular underpinnings that modulate lymphatic pump function in the context of the 

drastic changes in lipid uptake and lymph flow/formation that occur during the normal 

dietary functions of the intestine. This information is a vital link in understanding the 

significance of the lymphatic system in the context of lipid-related diseases and the 

implications of lymphatic pump failure on the progression and severity of these 

pathologies. 

Several models have previously been reported in the literature studying lipid 

uptake and transport through lymphatics.  A tissue-engineered model recapitulates the 

absorptive properties of the intestinal lymphatic interface using both Caco2 cells 
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differentiated into enterocytes and lymphatic endothelial cells cultured on opposite sides 

of a porous membrane47, but the model does not allow the study of the active role of the 

lymphatic pump.  Various animal models have previously been used to investigate 

lymphatic development and function including the canine48, sheep49–51, rat52–55, 

mouse56,57 and zebrafish58,59. Most commonly, rats have been used to quantify lipid 

absorption60 which involves the collection of systemic blood to quantify lipoprotein 

concentrations.  Studies over the past two decades have mostly used Bollman’s 

technique61 for collecting lymph from the mesenteric thoracic duct. Passive collection 

through the duct could alter the transport time of chylomicrons since these vessels are 

normally working against a pressure gradient that is no longer present during this 

preparation. Thus, there is a need for a method for quantifying lipid concentrations that 

both has minimal effect on the lymphatic vessel and is able to simultaneously provide 

quantifiable lymphatic pump function measurements. 

With the advancement in imaging hardware, computational power and image 

processing algorithms, it is now possible to use these tools to reliably perform in situ 

lymphatic pump function measurements of lymph flow rate and contraction with reliable 

accuracy62–64. In addition, by combining fluorescence imaging of a fluorescent long chain 

fatty acid analogue24,47,65, BODIPY FL C16, one can investigate direct correlations between 

lymphatic pump function and lipid uptake, and determine the extent to which 

lipoproteins modulate lymphatic function and in turn the consequences of lymphatic 

dysfunction to lipid transport and homeostasis. We thus developed a highly sensitive 

dual-channel optical imaging system capable of acquiring high-speed bright-field video 

and fluorescence images simultaneously, along with preprocessing and quantitative 

processing algorithms to extract relative lipid concentrations, vessel pump function 

metrics, and lymph flow rates, providing the capability to quantitatively elucidate the role 

of lymphatics in lipid transport. 
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2.3. Materials and Methods 

Dual-Channel Optical Imaging System 
A custom-built optical set-up provides dual-channel imaging of both high-speed 

bright-field video and fluorescence images simultaneously (Figure 3). This is achieved 

through optically dividing the microscope light path into two bands, one for fluorescence 

(495-550nm) and the other for bright-field (> 560nm). Two light sources are used to 

illuminate the vessel. A halogen light source built into the microscope (AxioScope, Carl 

Zeiss Microscopy, Thornwood, NY) offers transmission illumination and a mercury arc 

lamp (X-Cite, Lumen Dynamics, Ontario, Canada) provides reflective illumination. A band 

pass excitation filter centered at 475/40nm is positioned in the filter cube within the 

AxioScope (Zeiss). A 495nm long pass dichroic (Zeiss), also within the cube, allows for 

reflected light to pass through while restricting the excitation wavelength. A dual 

phototube adapter (Zeiss) allows us to divide the light path between two ports by using a 

560nm long pass dichroic (T555LPXR, Chroma, Bellows Falls, VT). A 530/40nm emission 

band pass filter (HQ530/40m, Chroma, Bellows Falls, VT) is placed before the fluorescence 

camera (PIXIS 1024B, Princeton Instruments, Trenton, NJ). An adjustable 60N to C-mount 

adapter (Zeiss) provides us with the flexibility of aligning the camera in the plane 

perpendicular to the light path in addition to adjusting focus and angular rotation. A 

580nm long pass filter (HQ580lp, Chroma, Bellows Falls, VT) with an optical density (OD) 

of 5 intercepts the halogen light path and only allows wavelengths greater than 580nm 

to pass. A 10x water immersion objective (Zeiss) with a numerical aperture (NA) of 0.3 is 

used to achieve the required magnification. 

A high-speed CMOS video camera (Falcon Dalsa VGA300 HG, Teledyne Dalsa, 

Billerica, MA) allows a frame capturing rate of up to 300 fps with a resolution of 640 x 480 

and provides images of individual lymphocytes flowing in the lymph. The 12-bit 

fluorescence camera utilizes a back-illuminated CCD that is cooled to -70 °C which 

eliminates thermal noise and provides high sensitivity, allowing the detection of small 

changes in fluorescence intensity. 
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Figure 3: A dual-channel optical system. Both a fluorescence and halogen light source are used to illuminate the 
vessel. A long pass filter (580 nm LP) is used to attenuate wavelengths below 580 nm. An excitation band-pass filter 
(475/40nm BP) is used for the fluorescence light source. A dichroic (550nm LP) effectively splits the wavelengths into 
two channels; >550nm for the bright-field channel and <550nm for fluorescence. An emission band pass filter 
(530/40nm) is placed in front of the fluorescence camera. An adjustable adapter allows focusing of the two cameras 
independently. A) Representative bright-field image from high-speed video of the vessel. B) Representative fluorescence 
image of the same vessel. BODIPY C16, an orally delivered fluorescent long chain fatty acid analogue, is used as our 
fluorophore. 

Tissue Phantom Preparation 

A 147 µm diameter channel fabricated in polydimethylsiloxane (PDMS; SYLGARD 

184, Dow Corning, Midland, MI) served as a mock lymphatic vessel to quantify the 

minimum detectable concentration of BODIPY FL C16 (Life Technologies, Grand Island, NY) 

with the system and the fluorescence camera’s linearity within a given concentration 

range of BODIPY (Excitation: 490 nm, Emission: 520 nm) in a 10 mg/mL bovine albumin 

(MP Biomedicals, Auckland, New Zealand) solution. A copper wire running through two 

holes in a polystyrene petri-dish was used as a PDMS mold. A 10:1 (elastomer to base) 

PDMS mixture was poured into the mold after removing air bubbles and cured overnight 
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at 60 °C. The wire was then pulled out to create a hollow cylindrical channel thus 

mimicking a collecting lymphatic vessel in both dimensions and optical clarity. 

An Integrated Image Acquisition Platform 
Using third-party toolkits (R Cubed Software, Lawrenceville, NJ and BitFlow, 

Woburn, WA) for both cameras, an integrated image acquisition application was written 

using LabVIEW (National Instruments, Austin, TX) to streamline the acquisition process 

with minimal user input. The interface provides a live feed of the high speed video and 

fluorescence images throughout the experiment. The user can specify the duration of a 

high-speed video segment, the integration time of the fluorescence camera, and the 

interval at which to capture for both cameras. Both video sequences and fluorescence 

images are time-stamped for later processing. 

High-speed video is captured at 250 fps using a Neon-CLB PCIe frame grabber 

(Bitflow, Woburn, MA) and is saved as an uncompressed AVI file. The program uses four 

memory buffers which, together with RAID 0 hard disks, and an 8-core central processing 

unit (CPU) configuration allows direct streaming of high-speed video frames to the hard 

drive without the RAM limitation of the camera or the computer reported previously64. 

This allows the user to capture an unlimited duration of high-speed video that is only 

limited by available hard disk space. Fluorescence images are captured at an interval of 5 

seconds with an integration time of 100, which provides enough sensitivity to image low 

levels of fluorescence while minimizing blur due to motion artifacts. Images are stored as 

uncompressed 16-bit TIFF files. 

Animal Preparation 
A male Sprague-Dawley (SD) rat (Charles River, Wilmington, MA) was chosen to 

facilitate comparative studies of lymphatic contractility to previous studies performed on 

the same strain. The animal was housed in an American Association for Accreditation of 

Laboratory Animal Care facility. At 9 weeks of age weighing 311 g the rat was fasted the 

night before the experiment for 15 hours while water was available ad libitum. After 

fasting, a solution of 0.5 mL of olive oil (Great Value, Walmart, GA) and 100 µg of BODIPY 
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FL C16, reconstituted in 20 µL of Dimethyl Sulfoxide (DMSO; Fisher Scientific, Pittsburgh, 

PA), was delivered via gavage. 

After waiting 1.5 hours to allow for digestion, the rat was sedated with an 

intramuscular (IM) injection of Diazepam (2.5 mg/Kg, Hospira, Lake Forest, IL) and then 

anesthetized through an IM injection of a cocktail containing 0.12 mL/kg Fentanyl (Sigma 

Aldrich, St. Louis, MO) and 6 mL/kg Droperidol (Sigma Aldrich, St. Louis, MO) which has 

been previously observed to have minimal effect on lymphatic vessel contractility. 

Supplemental IM booster doses at half the initial dose were administered as needed. 

After preparing a surgical area around the abdominal cavity, a 2 cm incision was made at 

the midline starting 1 cm below the Xiphoid process. A segment of the small intestine 

distal to the duodenum was exteriorized and stabilized in a groove between two acrylic 

plates thus exposing the mesentery over an imaging window covered with a glass slide 

(Figure 4). An albumin physiological salt solution (APSS; in mM: 145.0 NaCl, 4.7 KCl, 2.0 

CaCl2, 1.2 MgSO4 , 1.2 NaH2 PO4 , 5.0 glucose, 2.0 sodium pyruvate, 0.02 EDTA, 3.0 MOPS, 

and 10 g/L BSA) (all reagents from Sigma, St. Louis, MO and BSA from ICP Bio, New 

Zealand) with pH adjusted to 7.4 ± 0.1 at 38 °C was temperature controlled at 36 °C to 39 

°C and flowed at a rate of 12 mL/min to bathe the mesentery. The APSS bath recapitulates 

the oncotic extracellular environment found around the mesentery. The temperature of 

the rat was maintained through circulating hot water flowing in silicone tubing 

underneath the animal within the custom designed imaging board while body 

temperature was monitored and recorded with a rectal thermometer (Kent Scientific, 

Torrington, Connecticut). A lymphatic vessel was then located and placed over the 

imaging window allowing the imaging session to begin. Imaging was performed for a total 

of 70 minutes. All animal procedures were performed in accordance with the Georgia 

Institute of Technology Internal Animal Care and Use Committee and complied with the 

National Institutes of Health Guide for the Care and Use of Laboratory Animals. At the 

end of the experiment the rat was euthanized. 
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Figure 4: The surgical set-up. A) The small intestine is stabilized in a loop via a two-piece clamp thus exposing the 
mesentery. The base of the platform is a glass slide which forms the imaging window. B) A custom designed imaging 
board that allows us to image the mesentery while bathing it in a circulating albumin physiological salt solution (APSS). 
The animal sits on a heated platform, which maintains the animal’s core body temperature. The board is screwed into 
the microscope stage to insure long term field-of-view stability by limiting slight board movements. 

 

Post-Acquisition Image Processing 

Lipid Intensity 

Utilizing the fluorescence images, we defined a region of interest (ROI) in the 

middle of the vessel and quantified the mean pixel intensity over time to track the relative 

intensity of BODIPY C16. The ROI spatially averages the fluorescent pixels in the x-y plane 

and is typically drawn as a square to encompass a maximum area within the vessel. A 

cross-correlation (CC) algorithm was implemented to track the same vessel region in 

every frame to compensate for vessel motion artifacts. Intensity values were averaged 

over a 35 second period (7 frames), which allows for sufficient imaging of the physiological 

changes in lipid concentration that occur on a much longer timescale, allowing us to 

correct for focus fluctuations due to motion artifacts. 

Motion Compensation 

Intestinal peristalsis greatly increases after a meal66, which when coupled with the 

rat’s respiration, introduces significant motion artifacts. While most researchers perform 

lymphatic pump function measurements on a fasted rat to minimize these effects63, the 
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purposes of this study required the development of a multitemporal motion 

compensation algorithm that can be used to preprocess the video for subsequent 

analysis. Area-based methods are preferably applied when the images do not have many 

prominent details and the distinctive information is provided by graylevels/colors rather 

than by local shapes and structure67. An area-based intensity-based 2D cross-correlation 

(CC) image registration method was chosen over other methods as it was the least prone 

to changes due to loss of focus. A 100 x 100 pixel template window was drawn on the 

initial frame in the video sequence and the CC coefficient was calculated for the 

subsequent frames to find the best possible match above a correlation index threshold of 

0.1. Such a low correlation is seen when the vessel is significantly out of the plane of focus. 

An image with correlation index <0.1 is not processed and instead is left as is. This does 

not affect diameter and velocity readings as those two algorithms ignore large frame 

shifts due to their inherent use of small CC windows for their processing. Once the best 

match was located, the image was offset in the x-y plane to overlap the original template 

window. The variability in adipocyte (fat cells) patterns in a given field-of-view (FOV) 

ensures accurate cross-correlation comparisons even when the image goes temporarily 

out of focus due to z-plane motion. The size of the frame in both the horizontal and 

vertical dimensions was kept constant by compensating with a black border. The video 

sequence was then rotated to align the vessel horizontally in preparation for diameter 

and lymphocyte velocity tracking. 

Diameter Tracings 

For quantifying lymphatic pump metrics an accurate diameter tracing algorithm 

was developed. In addition to the inherent low contrast, adipocytes accumulate around 

lymphatic vessels causing the vessel wall to become obscure and in most cases lose its 

sharp edge characteristics, thus common automatic edge detection algorithms did not 

prove to be accurate. This led us to use a 2D cross-correlation method based on previously 

published techniques62 (Figure 5A). The user manually selects the two vessel walls in the 

first image of the sequence. The algorithm then draws a window around each of the vessel 

walls and sets the two windows as reference templates. To track the movement of these 
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windows, the template windows (solid green line) in a frame were correlated to search 

windows (dashed red line) in a subsequent frame and the maximum correlation 

coefficient calculated indicates the new position of the wall. The template window was 

centered on the current location of the vessel wall while the search window was larger 

and centered on the same coordinates in a subsequent frame. Typically the template 

window is 40 x 40 pixels while the search window is 80 x 80 pixels. The dimensions of 

these windows can be adjusted dynamically in the program in order to decrease 

computational time (by making the windows smaller) or to account for high contraction 

amplitudes in highly contractile vessels (by making the search windows larger). The 

diameter of the vessel was the distance separating the centers of the two windows and 

is tracked in every frame to give the diameter tracings over time. 

Lymphocyte Velocity Tracking 

While various demonstrated flow tracking systems are currently in use, each has 

its advantages and disadvantages. Laser speckle for example can measure speed but 

cannot differentiate the direction of flow68 which is problematic given the oscillatory flow 

conditions in lymphatic vessels. Scanning laser image correlation (SLIC) might provide the 

ability to measure individual lymphocytes and distinguish particles flowing at various 

velocities in the field of view. While SLIC has been demonstrated in microfluidic channels 

and in zebrafish, it has yet to be adapted for use in larger animal models such as rats69. 

Therefore, a video based particle velocity algorithm was adapted from previous work62,70 

(Figure 5B) to track lymphocytes moving within the lumen of the vessel. The diameter 

tracings were used to set the spatial limit such that the template height was 80% of the 

average vessel diameter, the width was 50 pixels and centered at the midline of the 

vessel. This provided an adequate area to encompass several lymphocytes within the 

template window. In order to enhance the difference in correlation indices across the 

search area two consecutive frames were subtracted to remove static features in the 

vessel. This resulted in an apparent frame temporal separation (Δt) of 8ms instead of the 

expected 4ms resulting from an acquisition speed of 250 fps. Lymphocyte velocity was 

calculated as: 
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The algorithm was verified using 15 µm polystyrene microspheres (Polysciences, 

Warrington, PA) attached to a glass slide. The size of the beads is comparable to 

lymphocyte diameters which range from 9-16 µm71. A custom .NET program was written 

to control a Zeiss AxioObserver Z1 motorized stage and move the slide at fixed velocities. 

High-speed video sequences were captured using the same imaging hardware and under 

the same magnification (100x) as our in situ experiment and compared to the known 

velocity values. 

 

Figure 5: Post-acquisition image processing algorithms. A) Diameter tracing algorithm. Green boxes (solid line) 
represent the template windows. Red boxes (dashed line) are the correlation search windows. The diameter (d) is the 
distance separating the centers of the two template windows as they are located across sequential frames. B) 
Lymphocyte velocity tracking algorithm. The green box (solid line) is the template window which is cross-correlated with 
the search window, yellow box (dashed line), the red box is the new template window location. Δt is the time separating 
two frames. The average velocity of lymphocytes is V*=Δx/Δt. 

Fourier Analysis 

An FFT amplitude spectrum was obtained for the diameter and velocity signals. 

Although the sampling rate was 250 fps, the resulting diameter and velocity signals are 

discontinuous with an inconsistent sampling period since the algorithm does not report 

back a diameter value when the image is highly out of focus. In addition, if there are too 

few lymphocytes to make an accurate velocity reading the velocity tracking algorithm will 

return a blank value. Thus before any processing was made, the signals were interpolated 

using linear interpolation then low pass filtered (Butterworth with cut-off of 5 Hz) to 
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remove high frequency measurement noise. The FFT amplitude spectrum was then 

obtained. All Fourier analysis was carried out with Mathworks MATLAB 2012a. 

Quantifying Correlation Between Triglyceride Concentration and BODIPY C16 Fluorescence 

in Lymph 

Animals 

Male Sprague-Dawley (SD) rats weighing 250–350 g (Harlan, Indianapolis, IN) were 

individually housed in a temperature-controlled (21 ±1C) vivarium on a 12-hr light, 12-hr 

dark cycle. Standard chow (LM-485 Mouse/Rat Sterilizable Diet, Harlan Laboratories) and 

water were provided ad libitum (except where noted). All animal procedures were 

performed in accordance with the University of Cincinnati Internal Animal Care and Use 

Committee and complied with the National Institutes of Health Guide for the Care and 

Use of Laboratory Animals. 

Lymph fistula surgery and lymph collection 

Rats were fasted for 24 hours prior to surgery, but retained free access to water. 

Rats were anesthetized with Isoflurane, then the superior mesenteric lymphatic duct was 

cannulated with polyvinyl chloride tubing (0.5 mm ID, 0.8 mm OD; Tyco Electronics, Castle 

Hill, Australia) according to the method of Bollman et al.61 with slight modifications72. The 

lymph cannula was secured with cyanoacrylate glue (Krazy Glue, Columbus, OH). 

Intraduodenal cannulation was performed by inserting a silicone feeding tube (1.02 mm 

ID, 2.16 mm OD; VWR International, West Chester, PA) approximately 2 cm beyond the 

pylorus into the duodenum via a fundal incision of the stomach. The tube was secured by 

a purse-string ligature in the stomach and sealed by a drop of cyanoacrylate glue to 

prevent leakage. The lymph cannula and the intraduodenal feeding tube were 

exteriorized through the right flank. After surgery, the animals were placed in Bollman 

restraint cages and allowed to recover overnight; the animals were kept in a temperature-

regulated chamber at 28 °C to prevent hypothermia and received a continuous 

intraduodenal infusion of 5% glucose-saline solution (145 mM NaCl, 4 mM KCl and 0.28 

M glucose) at 3 mL/h for 6-7 hours. Rats then received continuous infusion of saline (0.15 

M NaCl) at 3 mL/hr overnight prior to lipid infusion to compensate for fluid and electrolyte 



19 
 

loss due to lymphatic drainage. After overnight recovery, fasting lymph was collected on 

ice for 30 min prior to the start of the intraduodenal infusion. Rats received intraduodenal 

infusion of 3 mL of Liposyn III 20% concentration (Hospira) with 100 µg of BODIPY C16 (Life 

Technologies, Grand Island, NY) reconstituted in 20 µL of Dimethyl Sulfoxide (DMSO; 

Fisher Scientific, Pittsburgh, PA). Lymph was collected on ice for 30 min intervals for 4h 

min post-infusion. At the end of the lymph collection period rats were euthanized. 

Measurement of triglyceride and BODIPY C16 in lymph 

Lymphatic triglyceride concentrations were determined using a commercially 

available kit (Randox TG, Randox Laboratories Ltd., Crumlin, Northern Ireland, UK). Lymph 

samples were shipped on ice overnight from Cincinnati, OH to Atlanta, GA and BODIPY 

fluorescence was measured using a multimode fluorescence plate reader (DTX 880, 

Bechman Coulter, Indianapolis IN). 

Quantitative Descriptors for Lymphatic Pump Function 

From the diameter and velocity tracing the following metrics were calculated: 

Constriction Wall Velocity (CWV). The velocity of the wall during vessel constriction for 

each contractile cycle averaged over the entire length of the video segment:  

EDD ESD

t



   (0.2) 

Where EDD is the End Diastolic Diameter, ESD is the End Systolic Diameter and Δt is the 

constriction time. 

Dilation Wall Velocity (DWV). The velocity of the wall during vessel expansion for each 

contractile cycle averaged over the entire length of the video segment. 

Volume Flow Rate (VFR). The lymphocyte velocity (
*V ) calculated using the algorithm lies 

between the spatially averaged velocity (V ) and the maximum velocity ( MaxV
) assuming 

Poiseuille flow in a cylindrical tube. Since particles tend to locate themselves in the center 
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of a tube it can be assumed that 
*V   is closer to MaxV . Experimentally, a reasonable 

approximation was found to be 

*2

3
V V

62.  

Under these assumptions a volumetric flow rate is obtained: 

* 2

6

V d
VFR




  (0.3) 

Where d   is the diameter of the vessel when the lymphocyte velocity 
*V is measured. 

Stroke Volume (SV). Is defined as the total expected volume displaced during a 

contraction cycle of a lymphangion assuming an average lymphangion length and proper 

valve closure to prevent backflow: 

2 2

2 2

EDD ESD
SV L

    
     

        (0.4) 

Where EDD is the End Diastolic Diameter, ESD is the End Systolic Diameter, L is the typical 

length of a rat lymphangion and is assumed to be 1 mm73. 

Ejection Fraction (EF). The fraction of end-diastolic volume ejected during a single phasic 

lymphatic contraction was calculated as: 

2 2

2

-  
  

EDD ESD
EF

EDD


  (0.5) 

Where EDD is the End Diastolic Diameter, ESD is the End Systolic Diameter. 

Fractional Pump Flow (FPF). An index of minute lymph pump flow74 calculated as: 

. .60FPF EF CF   (0.6) 

Where EF is the Ejection Fraction and CF is the Contraction Frequency measured in Hz. 

Lymphatic Output (LO). Defined as the lymph flow rate due strictly to phasic contractions: 
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.LO SV CF   (0.7) 

Average and Max Wall Shear Stress (WSS). Assuming Poiseuille flow70,75, WSS can be 

approximately calculated by: 

*4

2

V
WSS

d




  (0.8) 

Where µ is the dynamic viscosity of lymph and is on average equal to 1.5 centipoise (cP)76, 

*V is the lymphocyte velocity and d  is the diameter of the vessel70. 

Effective Lipid Output (ELO). Representing the effective lipid output per minute and 

calculated as: 

. .60ELO IntensityVFR   (0.9) 

Where the intensity is the normalized BODIPY C16 fluorescence intensity and VFR is the 

Volume Flow Rate in µl/hr. 

2.4. Results 

Optical System Sensitivity to BODIPY 
Our characterization experiments confirm the quantum yield of BODIPY exhibits a 

7-fold increase when mixed with albumin (Figure 6). The increase in quantum yield quickly 

plateaus at an albumin concentration below that typically measured in lymph77 

suggesting fluctuations in fluorescence due to changes in albumin concentration are 

minimized. This increase in quantum yield is most often caused by alteration of the 

fluorophore de-excitation pathway, essentially increasing the probability of a radiative 

event78. Considering the limitations of this method, we calculate the minimum detectable 

concentration of BODIPY to be 24 ng/mL at 100 ms integration time (Figure 7) with the 

primary limiting factor being light leakage from the transmission halogen light source 

through the 580 nm LP filter with optical density (OD) of 5. A 100 ms integration time was 

used for all the experiments presented in this study. 
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Figure 6: Fluorescence intensity in the presence of albumin. BODIPY fluorescence intensity increased by approximately 
7 fold when bound to albumin. Once bound, fluorescence is stable with the increase in albumin concentration. Error bars 
represent mean standard deviation (SD). 

 

Figure 7: Performance characteristics of the fluorescence camera, the PIXIS. A) A calibration curve shows the linearity 
of the PIXIS fluorescence camera and allows it to be used for quantitative fluorescence. B) Minimum detectable BODIPY 
concentration at 3dB signal-to-noise ratio (SNR) is 24 ng/mL in 10 mg/mL albumin solution. 
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Correlation of BODIPY C16 Fluorescence and Triglyceride Concentration 

In order to quantify the extent to which BODIPY C16 might be indicative of actual 

in vivo Triglyceride (TG) concentration we collected lymph from rats (n = 7) over a  4 hour 

period. Rats were infused with a lipid emulsion along with BODIPY C16. It was found that 

the fluorescence trend correlates well with actual TG concentration (Figure 8) with a 

linear regression (R2) value of approximately 0.83. 

 

Figure 8: BODIPY C16 fluorescence correlates well with TG concentration. A) TG concentration and BODIPY fluorescence 
in rat lymph. Lymph samples were collected at 30 minute intervals for 4 hours. TG concentration was quantified using a 
commercially available kit and fluorescence intensity values were obtained using a fluorescence plate reader. TG and 
fluorescence peak at around 2 hours after the start of intraduodenal lipid infusion. B) BODIPY fluorescence vs. TG 
concentration with a linear regression (R2) value of almost 0.83. n = 7. Error bars represent mean standard deviation 
(SD). 

Image Processing Performance 
Motion Compensation. The motion compensation algorithm significantly 

stabilized the high-speed video captured during intestinal peristalsis (Figure 9). A 

randomly chosen 60-second video segment was used to obtain performance 

characteristics. The standard deviation for the displacement of the original unstabilized 

video was 9 pixels with a maximum displacement of 45 pixels while that of the stabilized 

video was 0.4 and 3.5 pixels respectively (Figure 9A). The normalized correlation index of 

a window that was fixed in the FOV was calculated for the video segment. The standard 

deviation for the displacement of the original unstabilized video was 0.27 with a minimum 

correlation index of 0 (the contents of the window completely leave the area), while that 

of the stabilized video was 0.05 and 0.63 respectively (Figure 9B). The motion 

compensation algorithm developed can be easily applied to any video sequence. 
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Figure 9: Motion compensation algorithm performance metrics. A) Original vs. stabilized pixel displacement. The 
displacement of a template window was tracked as it moved in the field of view using 2D cross correlation. The standard 
deviation for the original unstabilized video was 9 pixels while that of the stabilized was 0.4 pixels. B) Original vs. 
stabilized normalized cross correlation values. The correlation index was tracked over time for a template window fixed 
in the field of view.  The standard deviation of the normalized correlation index for the original unstabilized image was 
0.28 while that of the stabilized was 0.05. 

Diameter Tracings. Manual measurements were carried out every one second of 

video by the user drawing a line connecting the vessel walls and measuring that distance. 

The manual measurements were then compared to the automated tracings (Figure 10). 

The average error rate between manual and algorithmic tracings was found to be around 

3.3% and is likely a result of user subjectivity on the manual selection of where a vessel 

wall starts or ends. Diameter tracings obtained provide the basis for various parameters 

used to quantify lymphatic pump function (Table 1).  
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Figure 10: Verification of diameter tracing algorithm. Two different vessels with varying morphology and sizes are 
displayed. Black markers indicate manual measurements where the user drew a line connecting the vessel walls and the 
distance was measured. Error rate between manual vs. algorithmic tracings was 3.3%. 

Table 1: Diameter related quantifiable parameters for characterizing BODIPY uptake and lymphatic pump function. 

Time 

(min) 

BODIPY 

(Normalized 

a.u.) 

AD 

(µm) 

CF 

(Hz) 

DC 

(µm) 

EDD 

(µm) 

ESD 

(µm) 

CA 

(%) 

CWV 

(µm/s) 

DWV 

(µm/s) 

1 3.01 144 0.26 11 150 139 7 7 5 

3 3.22 138 0.24 13 146 133 8 8 6 

4 3.49 137 0.22 19 147 129 12 9 11 

6 3.25 141 0.24 13 148 133 10 8 9 

8 3.23 133 0.16 17 138 123 10 9 8 

10 3.26 148 0.16 11 153 142 7 7 6 

12 2.89 148 0.18 8 151 142 5 5 4 

28 3.75 153 0.24 5 156 151 2 5 3 

41 1.00 144 0.12 7 147 140 4 3 4 

43 1.30 142 0.24 4 145 140 3 2 3 

46 2.06 144 0.26 6 147 141 4 3 5 

53 1.76 143 0.18 13 150 138 7 3 8 

57 1.95 128 0.16 10 136 125 7 3 7 

60 1.26 157 0.24 3 159 156 2 1 3 

AD: Average Diameter, CF: Contraction Frequency, DC: Diameter Change, EDD: End-Diastolic 

Diameter, ESD: End-Systolic Diameter, CWV: Constriction Wall Velocity, DWV: Dilation Wall Velocity 
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Velocity Tracking. The algorithm has a 97% accuracy for measuring particle 

velocity in the range of lymphocyte velocities in the mesentery lymphatics reported in 

literature70 (Figure 11). The motorized stage being used produced some inherently small 

jerky movements when moving at low speeds, this accounted for the somewhat jumpier 

than expected algorithm accuracy verification readings. Volume Flow Rates (VFR) and 

Wall Shear Stress (WSS) can be calculated from lymphocyte velocities as described 

previously70 assuming Poiseuille flow in a cylindrical tube ( 

 

 

Table 2). 

 

Figure 11: Accuracy of the lymphocyte velocity tracking algorithm. Validation measurements were carried out by 
placing 15 µm beads on a slide and a motorized stage was programmed to move at certain velocities. Within the velocity 
range previously published the algorithm has close to a 97% accuracy rate in determining the velocity. 
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Table 2: Lymphocyte velocity related quantifiable parameters for characterizing BODIPY uptake and lymphatic 
pump function 

Time 

(min) 

BODIPY 

(Normali

zed a.u.) 

MLV 

(µm/s) 

Max. 

LV 

(µm/s) 

Min. 

LV 

(µm/s) 

VFR 

(µl/hr) 

Avrg. 

WSS 

(dyn/cm
2) 

Max. 

WSS 

(dyn/cm
2) 

FPF 

(/min

) 

EF SV 

(µL) 

LO 

(µL/hr

) 

VFR/

LO 

ELO 

1 3.01 43 1928 -1512 17 0.06 2.00 2.14 0.14 0.02 22.77 1.10 0.84 

3 3.22 240 2394 -1503 87 0.21 2.21 2.46 0.17 0.03 24.70 5.26 4.65 

4 3.49 289 2111 -1578 103 0.24 1.84 3.12 0.24 0.04 32.09 4.79 5.96 

6 3.25 377 2404 -1465 143 0.32 2.03 2.74 0.19 0.03 28.52 7.51 7.74 

8 3.23 392 1933 -1378 132 0.35 1.89 1.98 0.21 0.03 17.98 11.03 7.11 

10 3.26 396 1916 -1034 164 0.32 1.52 1.33 0.14 0.03 14.78 16.69 8.94 

12 

2.89 527 
1845 -846 

219 
0.43 1.55 1.19 0.11 0.02 12.87 25.48 10.5

1 

28 

3.75 504 
2024 -1407 

224 
0.40 1.68 0.78 0.05 0.01 8.95 37.61 14.0

3 

41 1.00 441 2312 -1275 173 0.37 1.96 0.68 0.09 0.02 6.99 37.25 2.89 

43 1.30 326 2665 -1736 125 0.27 2.35 0.93 0.06 0.01 9.19 20.38 2.71 

46 2.06 439 2929 -1578 174 0.36 2.57 1.23 0.08 0.01 12.66 20.57 5.97 

53 1.76 435 2670 -1557 170 0.35 2.21 1.65 0.15 0.03 17.52 14.53 4.97 

57 1.95 202 2753 -1866 63 0.19 2.66 1.46 0.15 0.02 12.81 7.40 2.05 

60 1.26 399 2559 -1456 187 0.30 2.06 0.67 0.05 0.01 8.04 34.84 3.91 

MLV: Measured Lymphocyte Velocity, LV: Lymphocyte Velocity, VFR: Volume Flow Rate, WSS: Wall Shear 

Stress, FPF: Fractional Pump Flow, EF: Ejection Fraction, SV: Stroke Volume, LO: Lymphatic Output, ELO: 

Effective Lipid Output 

 

 

2.5. Discussion 

Alterative Imaging Systems 
Miura et al. measured relative changes in lipid concentration in the mesentery 

lymph using graylevel ratios obtained by analyzing video images and were able to 

correlate them to an increase in lymphatic contraction frequency22. While some 

qualitative conclusions can be made, the sensitivity to changes in lipid concentration falls 

into a few discrete gray level values. The system is also limited by the fact that initial small 

changes in lipid uptake would not be detectable. However, using a back-illuminated 12-

bit CCD along with BODIPY allows us to quantify changes in lipid concentrations as low as 

24 ng/mL. With regards to quantifying lymphatic function, several systems are currently 

being used74,79–82, however our set-up provides us with the capability of capturing an 
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unlimited duration of high-speed video allowing us to carry out measurements without 

any blind spots if the experimentalist wishes to do so. In addition, our motion 

compensation algorithm provides an integral tool for studies in the rat mesentery model, 

as unlike other systems, we do not need to fast our animal before an imaging experiment. 

This is also important since peristalsis is thought to provide an extrinsic mechanism for 

driving lymph flow83, thus studies designed that intentionally minimize motion artifact by 

limiting peristalsis might actually be underestimating lymph flow rates in the mesentery. 

The system presented in this paper is both sensitive and able to provide us with various 

quantifiable data (Table 1 and  

 

 

Table 2) that comprehensively describe lymphatic pump function and lymph flow 

in the context of lipid uptake and transport. 

Determining Intrinsic vs. Extrinsic Factors 

Lymph flow is a consequence of various active (intrinsic) and passive (extrinsic) 

forces.  The phasic contraction of lymphangions accounts for the dominant intrinsic 

pumping mechanism. Extrinsic factors include the driving force of lymph formation, 

influences of cardiac and arterial pulsations, contractions of skeletal muscles in proximity 

to the lymphatic vessels, central venous pressure fluctuations, gastrointestinal peristalsis, 

and respiration9. Because of this complexity the velocity peaks due to the actions of 

passive lymph pumps often are not synchronized with intrinsic contractile activity of 

lymphangions (Figure 12), flow profiles in lymphatic vessel are extremely variable and 

bidirectional84. By tracking both flow and contraction simultaneously during the 

absorptive process, we can quantity the significance of both the extrinsic and intrinsic 

pump on lymph flow. One such indicator for describing the dominant pumping is the 

Volume Flow Rate to Lymphatic Output ratio (VFR/LO). The VFR is the measured flow in 

the vessel obtained through lymphocyte tracking, while the LO is what is expected due to 

the intrinsic contractility of the lymphangion. In fasted rats this average ratio was 0.7170 
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while for the lipid fed rat shown here the average ratio was 11.64, indicating a dominance 

of extrinsic factors. This is most likely due to lymph formation serving as a dominant 

extrinsic factor22, but more studies are warranted to determine the exact mechanism. Our 

system does, however, have the ability to distinguish between the expected flow rate due 

to vessel pumping and the actual flow rate, even in the context of lipid absorption and 

substantial intestinal peristalsis. In addition, obtaining a frequency spectrum of the 

underlying velocity and contraction frequencies (Figure 13) clearly shows that the 

fundamental frequencies of contraction and flow are independent, with flow having a 

higher fundamental frequency than contraction, further showing that extrinsic factors 

play a major role. 

 

Figure 12: Correlating lipid uptake with lymphatic pump function. A, B, C) Diameter tracings superimposed on velocity 
profiles for three time points at minutes 12, 28 and 57. C) Estimated BODIPY C16 concentration plot over a 68 minute 
period giving us relative lipid concentrations in the lymphatic vessel. E) Sample fluorescence image used for pixel 
intensity measurements. F) A single frame from a bright-field high-speed video segment used to extracting diameter 
and velocity data. 



30 
 

 

Figure 13: Fourier analysis of representative diameter and velocity tracings. A) at 12 minutes (Figure 12A). B) at 28 
minutes Figure 12B). C) at 57 minutes (Figure 12C). Fundamental frequencies for diameter and velocity tracings are 
different (see numerical labels), indicating that extrinsic factors might potentially be the dominant mechanism of 
transport as opposed to lymphatic contraction. 
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Quantifying Intestinal Uptake 

We have chosen BODIPY FL C16 (4,4-Difluoro-5,7-Dimethyl-4-Bora-3a,4a-Diaza-s-

Indacene-3-Hexadecanoic Acid), a fluorescently labeled 16-carbon chain fatty acid, to 

quantify lipid uptake. BODIPY is an ideal choice due to having a high quantum yield and 

solvent photostability. The lymphatic transport characteristics of BODIPY C16 have been 

previously validated using a co-culture lacteal in vitro model47,85 and have also been 

previously reported to be taken up into lymphatics in vivo after administration via 

gavage24,47. Because this fluorescent lipid analogue is a long-chain free fatty acid (LCFA), 

it is absorbed by the villi lining the small intestine and packaged along with the 

triglycerides present in the olive oil cocktail, to form fluorescent chylomicrons and 

correlates well with actual TG concentrations in lymph (Figure 8). BODIPY is exclusively 

taken up by lymphatics and is not detectable in the mesenteric blood circulation47 and is 

metabolized as an 18-carbon fatty acid due to the presence of two extra carbons in the 

fluorophore86. Once the chylomicrons enter the mesenteric lymphatic, an increase in 

fluorescence intensity is observed (Figure 12D). While BODIPY was chosen for this 

particular application, any fluorophore in the green fluorescent protein (GFP) 

excitation/emission range can be used to quantify uptake by the mesentery lymphatics.  

There has been growing interest in targeting lymphatics with orally delivered 

drugs or vaccines as such a route would avoid first-pass metabolism by the liver and could 

also provide access to mesenteric lymph nodes 87,88. Fluorescently labeling these delivery 

systems would allow investigators to not only access lymphatic absorption of the drug, 

but would also provide insight into whether or not the delivery has unwanted 

consequences on lymphatic function, thus limiting its delivery to the systemic circulation. 

It could also provide insight into the mechanisms behind the enhancement of lymphatic 

uptake seen when drugs are delivered to a subject with elevated system levels of 

triglyceride rich lipoproteins89. Understanding the effects of metabolic differences 

between patients on oral drug absorption is essential for developing proper dosing 

strategies for these individuals. 



32 
 

Significance in Studying Disease 

Malformations of mesentery lymphatics result in various clinical pathologies23. 

Protein-losing enteropathies, for example, are characterized by the progressive loss of 

protein from bowel due to elevated lymphatic pressure, lymphatic congestion and 

nonulcerative mucosal disease as well as inflammatory and ulcerative diseases. Primary 

intestinal lymphangiectasia (PIL) is one important form of protein-losing enteropathy. PIL 

is a disorder characterized by dilated intestinal lacteals which presumably cause lymph 

leakage into the small bowel lumen. Comparing VFR and BODIPY fluorescence in this 

diseased state to a healthy state will provide quantitative data to the extent of leakage, 

and potentially disease severity. A low-fat diet associated with medium-chain triglyceride 

supplementation is the cornerstone of PIL medical management. The absence of fat in 

the diet prevents chyle engorgement of the intestinal lymphatic vessels thereby 

preventing their rupture with its ensuing lymph loss. Medium-chain triglycerides are 

absorbed directly into the portal venous circulation and avoid lacteal overloading25. Using 

a long chain fluorescent fatty acid analogue such as BODIPY C16 can be used to better 

understand how the contribution of loading the lacteals contributes to the disease by 

investigating the active role that the collecting lymphatic vessel plays to clear the extra 

load. Even before PIL symptoms develop, patients have shown delayed transport of lipid 

from the intestine, suggesting that lymphatic lipid transport function is compromised at 

an early stage of the disease23.  

In addition, inflammatory bowl diseases (IBDs) such as Crohn’s disease (CD), 

present themselves with several lymphatic abnormalities14. Lymphatic contractile activity 

was shown to be impaired in an isolated vessel model of gut inflammation, suggesting 

that lymphatic function might be compromised in inflammatory diseases such as CD8. 

While alleviating the lipid burden on lymphatics is clinically beneficial in many of these 

intestinal disorders, the exact mechanisms of lymphatic failure and the interplay between 

the lipid absorption process and lymphatic function is unclear. The imaging system 

described here has the capability to address many of these issues in a unique fashion. The 

parameters obtainable in Table 1 and  
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Table 2, along with Fourier analysis and further signal processing analysis (Figure 

13) will pave the way to understanding various disease states and quantitatively 

elucidating how mesentery lymphatic function changes in response to disease. 

2.6. Conclusion 
In an effort to better understand the role of lymphatics in lipid related diseases 

we developed a dual-channel in situ optical imaging system capable of quantifying lipid 

uptake and various parameters describing lymphatic pump function. We have 

demonstrated that the system has high sensitivity to low levels of an orally administered 

fluorescent fatty acid analogue and the ability to process the hundreds of thousands of 

images that are generated in a given experiment to quantify both flow and vessel 

contraction. The image processing techniques implemented allow all of this to be done 

even in the presence of the significant motion artifacts that occur as a consequence of 

intestinal peristalsis during fat absorption, providing a comprehensive tool to study lipid 

related diseases in the context of lymphatic transport. 
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III. ACUTE LIPID EXPOSURE DECREASES RAT MESENTERIC 

LYMPHATIC PUMP FUNCTION IN VIVO 

3.1. Abstract 
Dietary lipids are transported from the small intestine through collecting 

lymphatics that act as pumps generating strong contractions to move fluid against 

adverse pressure gradients. Recent studies have indicated that chronic pathologic lipid 

loads can adversely affect lymphatic function. However, the acute lymphatic pump 

response in the mesenteric lymphatics to a postprandial lipid meal has gone relatively 

unexplored. In this study, we used the rat mesenteric collecting vessel as an in vivo model 

along with a novel multimodal intravital microscopy technique to quantify the effect of 

lipoproteins on vessel pump function. Lipid load was continuously monitored using the 

intensity of a fluorescent fatty-acid analogue, BODIPY C16, which we infused along with a 

fat emulsion through a duodenal cannula. The vessel contractile behavior was 

simultaneously quantified using high-speed bright-field video. We demonstrated for the 

first time that collecting lymphatic vessels functionally respond to an acute lipid load by 

reducing pump function. High lipid levels decreased contraction frequency by 86 % 

compared to a 16 % decrease in the saline infused control group (P = 0.019) and 

contraction amplitude decreased by 76 % compared to 16 % in the control group (P = 

0.049). We also showed a strong tonic response by the vessel as indicated by a reduction 

in the end diastolic diameter of 43 % in the lipid group compared to 9 % in the control 

group (P = 0.006). These results provide the first evidence that high post-prandial lipid has 

an immediate negative effect on lymphatic pump function even in the acute setting. 

3.2. Introduction 
Nearly all dietary lipids enter the venous circulation via the lymphatics 90, which 

transport chylomicrons from the villi of the small intestine through the lymphatic vessel 

network to the thoracic duct where lymph is emptied into the blood via the left subclavian 

vein 8,16,91,92. There is a rapid increase in triglyceride content in lymph after a lipid-rich 

meal 21 and how lymphatics respond to functionally handle this increased lipid load 

remains unclear. Lymph is drained through the intestinal lymphatics in large part through 
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the intrinsic pumping activity of the collecting vessels and one-way valves, which prevent 

backflow 10,70. The collecting lymphatic vessels contain lymphatic smooth muscle cells 

which cause phasic and tonic contractions 4,5. The collecting vessels’ contractility, along 

with their unidirectional valves, result in a pumping mechanism that provides an active 

transport system to move lymph from peripheral tissue into venous circulation. It has 

been shown that this pumping mechanism can be modulated by a variety of substances 

including nitric oxide (NO) 93,94, histamine 95, prostaglandins 96,97 and hormones 98, many 

of which can be mechanically regulated to alter pump function in response to intraluminal 

pressure 99 and wall shear stress  11. 

The lymphatic vasculature has recently been implicated in a variety of lipid related 

pathologies 8,100,101. Several recent studies have shown strong correlations between 

obesity, high levels of circulating lipoproteins and lymphatic dysfunction. Diet-induced 

obesity in a mouse model showed impaired collecting lymphatic vessel function through 

decreased contraction frequency and enlargement of the vessels 102, decreased 

interstitial fluid flow, and decreased lymphatic transport to and between local lymph 

nodes 103. Similar results have been shown in isolated mesenteric lymphatic vessels taken 

from a rat metabolic syndrome model where there was a decrease in contraction 

frequency and fractional pump flow 53. In addition, vessels taken from a mouse model of 

type 2 diabetes showed compromised lymphatic barrier function and increased lymph 

leakage 104. In humans, lymphatics present with a reduced ability to remove 

macromolecules from the interstitial space in obese subjects 105. Obesity has also been 

associated with an increased risk in developing post-operative lymphedema 106,107. On the 

other hand, an increase in lymphatic transport of lipids was observed in genetically 

diabetic obese rats, although this response was likely due to an increase in triglyceride 

synthesis as lymph flow remains unaltered in this diabetic model 108. While lymphatic 

dysfunction seems to be directly correlated with obesity due in part to the chronic 

inflammatory environment associated with large adipose tissue beds 109, it remains 

unclear whether acute high levels of circulating lipoproteins in lymph could have a direct 

effect on lymphatic function as they do in the blood vasculature 110. Chronic levels of 
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increased circulating lipoproteins, such as in hypercholesterolemia in adult ApoE-/- mice, 

resulted in a degeneration of lymphatic vessels that lead to decreased lymphatic drainage 

57. On the other hand, an older study conducted in rats, showed that mesenteric 

lymphatic vessels, in fact, increased their contractile frequency after being given an 

infusion of olive oil into the stomach 22. However, in a recent clinical study, lymph lipid 

and lipoprotein concentrations in peripheral lymphatics were inversely correlated with 

lymph flow rate 111 but it was not clear whether that was due to decreased lymphatic 

pump function or other factors affecting lymph formation. 

While obesity and high levels of lipoproteins are suggested to be a driving force 

for lymphatic dysfunction, several recent studies have shed light on a complementary 

relationship whereby lymphatic dysfunction can drive obesity and other lipid-related 

pathologies. For example lymphedema, a disease clinically characterized by irreversible 

swelling and compromised lymphatic function, was also associated with adipose tissue 

expansion 112,113 and chronic inflammation 109. In addition, lymphatic vascular defects 

promoted by Prox-1 caused adult-onset obesity due to mesenteric lymph leakage 24. 

Furthermore, impaired lymphatics were shown to exacerbate the atherosclerotic 

pathology using a mouse model of atherosclerosis crossed with different transgenic 

mouse strains with lymphatic insufficiency through unknown mechanisms affecting 

lipoprotein metabolism, increasing the levels of circulating lipid, and causing an increase 

in atherogenesis 114. 

There has been a growing interest lately in the role that lymphatics play in the 

development and progression of lipid related diseases, and in quantitatively describing 

the evidently strong interplay between lipids and lymphatic vessel structural and 

functional behavior 8,100. Although recent studies provide significant evidence that 

lymphatic function and the local lipid environment are highly influenced by one another, 

it is less clear how the main collecting lymphatics that drain the lipid-rich lymph of the 

intestine functionally respond to the rapid increase in lipid load that occurs in response 

to a lipid-rich meal. Given the regional heterogeneity of lymphatic pump performance 11, 

knowledge of the contractile response to lipid exposure in the lymphatic tissue bed that 
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encounters the largest potential lipid load will provide a relative framework for 

understanding the global lymphatic response to pathological lipid levels. While it is well 

established that circulating lipoproteins interact with the vascular endothelium to elicit 

endothelium mediated vascular responses that have been attributed to vascular disease 

115,116, it is not known if such interactions also occur within the lymphatic endothelium 

and whether they cause measurable changes in the pump function of the vessel which 

could result in pathologically low lymph transport capacity. Previously, we reported the 

development of an intravital imaging system capable of simultaneously tracking 

lymphatic pump function and lipid load in vivo in the rat mesentery 117. In this study we 

utilized this system to quantify the phasic and tonic contractile response of mesenteric 

prenodal lymphatics as they transitioned from a state of fasting to a post-prandial lipid 

load. We hypothesized that as lipid concentration in the mesenteric vessel increases post-

prandially, the vessel will functionally respond to acute lipid exposure in a manner that is 

similar to pathological non-mesenteric vessels and exhibit a decrease in intrinsic 

lymphatic pump function. 

3.3. Methods 

Animal Model and Ethical Approval 
Male Sprague-Dawley (SD) rats weighing 180-280 g (Charles River, Wilmington, 

MA) were chosen to facilitate comparative studies of lymphatic contractility to previous 

studies performed on the same strain. Both lipid (n = 8) and saline (n = 6) groups were 

provided with the same standard chow diet. Rats were fasted for 48 hours before each 

experiment while water was available ad libitum. One sugar cube was provided per rat 

the day after fasting began. All experiments were carried out under general Isoflurane 

anesthesia and animals were continuously monitored for signs of distress. Internal body 

temperature was maintained at 37-38 °C using a feedback controlled setup. Following the 

experimental procedure rats were sacrificed with a cut in the diaphragm while still under 

anesthesia. All animal procedures were performed in accordance with the Georgia 

Institute of Technology Internal Animal Care and Use Committee (IACUC) and complied 

with the National Institutes of Health Guide for the Care and Use of Laboratory Animals. 
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Surgical Protocol 

After shaving a surgical area around the abdominal cavity, a 2 cm incision was 

made at the midline starting 1 cm below the Xiphoid process. The stomach was located 

and gently moved to the outside of the abdomen to expose the duodenum. A small 

incision was then made in the duodenum using a surgical scalpel and a small silicone tube 

was inserted into the incision and fixed to the outside of the duodenum using topical 

tissue adhesive (GLUture, Abbott, Worcester, MA). The stomach and duodenum were 

then placed back into the abdominal cavity. A single surgical suture was used to reduce 

the opening of the abdominal incision to around 1 cm. A segment of the small intestine 

distal to the duodenum was exteriorized and stabilized in a groove between two acrylic 

plates thus exposing the mesentery over an imaging window covered with a glass slide. 

An albumin physiological salt solution (APSS; in mM: 145.0 NaCl, 4.7 KCl, 2.0 CaCl2, 1.2 

MgSO4 , 1.2 NaH2 PO4 , 5.0 glucose, 2.0 sodium pyruvate, 0.02 EDTA, 3.0 MOPS, and 1 g/L 

BSA) (all reagents from Sigma, St. Louis, MO) with pH adjusted to 7.4 ± 0.1 at 38 °C was 

temperature controlled to 36-39 °C and flowed at a rate of 21 mL/min to bathe the 

mesentery. A total of 1 L of APSS was recirculated for each rat throughout the experiment. 

The APSS bath recapitulated the oncotic extracellular environment found around the 

mesentery. The temperature of the rat was monitored and recorded with a rectal 

thermometer (Kent Scientific, Torrington, Connecticut). Internal body temperature was 

maintained at 37-38 °C using a feedback control mechanism by continuously monitoring 

the rat with a rectal probe and automatically adjusting a circulating water bath which 

flowed warmed water through tubing integrated within the custom designed surgical 

board. A lymphatic vessel was then located and placed over the imaging window. The 

vessel was given 10 minutes to equilibrate under the given conditions then imaging 

began.  

A lipid solution containing Intralipid-20% fat emulsion (30% of total volume, 

Sigma), oleic acid (0.89 mg/mL, Sigma), saline (0.9% NaCl, 70% of total volume) and 

BODIPY C16 (40 µg/mL) (Life Technologies, Grand Island, NY) was infused through the 

duodenal cannula at a flow rate of 5 mL/hr. The infusion was stopped when the solution 
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reached the part of the small intestine that was being imaged (evident by the intestinal 

segment turning white and a noticeable distension). For the saline control group, saline 

was infused at the same flow rate as the lipid solution and infusion stopped when the 

intestine appeared relatively distended. The color of the intestine remained the same due 

to the fact that saline, unlike the lipid emulsion, was clear and not white. Image 

acquisition was carried out for an average of 90 minutes for both groups. 

In Vivo Imaging and Processing of Mesenteric Lymphatic Vessel Function 

A dual-channel optical imaging system and customized image processing 

algorithms were used to acquire both high-speed video and fluorescence intensity to 

simultaneously track lymphatic contraction and lymph lipid levels as described previously 

117. The high-speed video was captured at a frame rate of 250 fps and the fluorescence 

images at 0.2 fps (i.e. 1 frame every 5 s). Following acquisition, videos were digitally 

stabilized and vessel diameter tracings were obtained. Mean fluorescence intensity was 

also quantified post image stabilization. 

Statistics 
Eight rats were used for the lipid infused group and six for the saline controls. For 

each rat a single vessel was imaged. All data followed a Gaussian distribution. The Pearson 

correlation coefficient was used as a correlation index. A one-way ANOVA followed by 

correction for multiple comparisons using a Tukey test was used for all analysis. When 

comparing the percent changes between the saline and lipid groups multiple unpaired t-

tests were run and the Holm-Sidak method was used to correct for multiple comparisons. 

For all tests, statistical significance was defined as p ≤ 0.05 and graphically represented as 

‘ns’ for p > 0.05, ‘*’ for p ≤ 0.05, ‘**’ for p ≤ 0.01 and ‘***’ for p ≤ 0.001.  All statistical 

analyses were performed with Graphpad Prism v6 (GraphPad Software, La Jolla, CA). 

3.4. Results 

Imaging Vessel Contractile Behavior in Response to Lipid Load 

By imaging the fluorescence emission of BODIPY C16 in a mesenteric vessel (Figure 

14A), we were able to track the lipid uptake dynamics of a vessel after lipid arrival in the 

corresponding intestinal segment drained by that vessel (Figure 14B). Previously, we 
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demonstrated that the kinetics of BODIPY C16 into lymph closely follows that of 

triglyceride (TG), making it a suitable reporter for tracking lymph TG levels over time 117. 

Lipid is first detected in the vessel within 15 minutes of appearing in the intestinal 

segment. This detection was followed by a rapid rise in lymph lipid level that peaked 

between 60 to 80 minutes post arrival of the lipid in the intestinal loop section being 

imaged. The high-speed bright-field video provided a clear view of the mesenteric vessel 

walls and was used to quantify diameter changes over time (Figure 14C), allowing us to 

extract and quantify various parameters of vessel pump function including contraction 

frequency (Figure 14D), contraction amplitude, average diameter and end diastolic 

diameter. Calculating the Pearson correlation coefficient between the relative lipid 

concentration over a 1-minute interval and the respective pump function parameter over 

that same time interval suggested that increases in lipid load resulted in a decrease in the 

contractile activity of the lymphatic vessel (correlations ranged between -0.27 to -0.30 

(Figure 14E)). To analyze this in more detail, we utilized the BODIPY fluorescence intensity 

signal and segmented the experimental data into three discrete groups: 1) no lipid, 2) low 

lipid and 3) high lipid (See Figure 14F) and calculated vessel pump functional parameters 

for each of these loads. 
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Figure 14: Simultaneous high-speed video and fluorescence acquisition provides the ability to assess the effect of a 
lipid load on lymphatic pump function. A) Fluorescent image of a rat mesenteric prenodal collecting lymphatic vessel. 
BODIPY C16 is used as a fluorescent indicator for triglyceride concentration within the vessel. The red window indicates 
a typical region in which fluorescence intensity was quantified following image stabilized to remove motion artifacts. 
B) BODIOPY C16 fluorescence intensity in the vessel over time following duodenal infusion of a fat emulsion along with 
BODIPY C16. C) A single bright-field frame from a video sequence of 1-minute duration taken at 250 fps. The lymphatic 
vessel wall can be clearly seen and is typically surrounded by adipocytes. The red boxes represent a region of interest 
around each wall that was tracked using cross-correlation. The distance measurement provided diameter tracings 
which was used to quantify various functional parameters such as contraction frequency (D). E) The Pearson correlation 
coefficient calculated for each metric as a function of BODIPY C16 fluorescence. Negative correlations were observed 
for all four metrics. F) A representative distribution for a certain metric (average diameter in this case) as a function of 
BODIPY fluorescence. Three discrete segments were chose to represent cases where there was no lipid in the vessel, 
low lipid and high lipid. n = 8, error bands and bars represent SD. 



42 
 

Contraction Frequency and Amplitude (Phasic Response) Decrease in Response to 

Lipid 
Utilizing the obtained diameter tracings, we quantified two key parameters 

describing the phasic response of the lymphatic vessel; contraction frequency and 

contraction amplitude and showed that they both decrease with an increase in lipid load. 

Contraction frequency decreased as a function of BODIPY concentration (Figure 15A). The 

points where contraction frequency is zero represented video segments in which the 

vessel did not physically contract within the one minute video segment being quantified. 

The contraction amplitude exhibited a similar decrease (Figure 15B). As described earlier 

we further divided the lipid load into 1) no load, 2) low lipid and 3) high lipid. Contraction 

frequency was inversely related to lipid load and decreased from an average of 10.2 cpm 

when no lipid was present in the vessel to 1.8 cpm with a high lipid load (P < 0.0001), with 

several vessels exhibiting no contraction at that load. Even low lipid loads caused a 

significant decrease in contraction frequency compared to no lipid (P = 0.0094). There 

was no difference between the contraction frequency of vessels prior to lipid uptake 

compared to vessels draining from the intestines that were infused with saline (P = 

0.7564) (Figure 15C). Contraction amplitude averaged around 10 µm in saline infused 

animals and in lipid-infused animals when the levels of lipid were low, while in vessels 

with high lipid loads the contraction amplitude significantly decreased 5-fold to 2 µm (P < 

0.0001). Taken together these results suggest a reduction in the phasic contractility of rat 

mesenteric lymphatics when exposed to high levels of lipid after a lipid-rich meal. 



43 
 

 

Figure 15: Mesenteric lymphatic vessels exhibit a decrease in their phasic response as evident by a decrease in both 
contraction frequency and amplitude. A) Contraction frequency decreased as a function of BODIPY C16 fluorescence. 
B) Contraction amplitude also decreased. C) Contraction frequency exhibited a lipid load dependent effect where it 
decreased from 10. cpm when no lipid was present to 1.8 cpm with the highest lipid load (P < 0.0001). D) Contraction 
amplitude also showed a similar dependency on lipid load where it decreased from 10 µm under no lipid load to 2 µm 
(P = 0.6013) under the high load. n = 8, error bars represent SD. 

Average and End Diastolic Response (Tonic Response) also Decrease in Response 

to Lipid 
In addition to a phasic contractile response, lymphatics are also known to exhibit 

a tonic contractile response with different underlying molecular mechanisms regulating 

the two 118. To track changes in vessel tone over time, we quantified two parameters that 

are most reflective of the tonic response that has been reported in isolated, perfused 

lymphatic vessels: average diameter and end diastolic diameter. Both parameters 

decrease with an increase in lipid load, suggesting a measurable tonic response of the 

vessel to an infusion of lipid. Average diameter decreased as a function of BODIPY 

concentration (Figure 16A). The end diastolic diameter exhibited a similar decrease 

(Figure 16B). The average diameter decreased from 82 µm to around 50 µm under high 

lipid versus no lipid (P < 0.0001), and to a lower extent, 70 µm, under a low lipid load (P = 

0.0163). There was no statistical difference between no lipid and the saline control group 

(P = 0.4627). Following a similar trend to the average diameter, the end diastolic diameter 



44 
 

decreased from 86 µm to 73 µm under a low lipid load (P = 0.0174) and to an average of 

52 µm under high lipid (P < 0.0001). There was no difference in average end diastolic 

diameter between the no lipid and saline controls (P = 0.3722). 

 

Figure 16: Mesenteric lymphatic vessels exhibit a decrease in their tonic response as evident by a decrease in both 
average and end diastolic diameters. A) Average diameter decreased as a function of BODIPY C16 fluorescence. B) End 
diastolic diameter also decreased. C) Average diameter exhibited a lipid load dependent effect where it decreased from 
82 µm when no lipid was present to 50 µm with the highest lipid load (P < 0.0001). D) End diastolic diameter also 
showed a similar dependency on lipid load where it decreased from 86 µm under no load to 52 µm (P < 0.0001) under 
the high load. n = 8, error bars represent SD. 

Lymphatics Maintain Constant Pump Function throughout Imaging Procedure 

Since the rat is maintained under anesthesia and the mesenteric vessels are 

exposed to imaging for over two hours, there was some concern that loss of contractile 

activity could occur over time and thus result in the reduction of pump function that was 

observed during periods of high lipid. In addition to this concern the mesenteric bed 

becomes stretched due to the significant distention of the intestinal wall as the bolus of 

food arrives. To account for these effects, we designated a group of control rats which 

underwent the same procedure except they were given an equal volume infusion of saline 

instead of lipid. The contraction frequency and amplitude showed a very modest decrease 

over time in the saline control rats (Figure 17A-B), but comparing the phasic response 

metrics at the same interval in time when we typically see the high lipid load in the lipid 
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infused rats showed that the percentage decrease for both metrics was significantly 

higher in the lipid group. Specifically, there was an 86 % decrease in contraction frequency 

compared to 16 % in controls (P = 0.019) and 76 % decrease in contraction amplitude 

compared to 16 % in controls (P = 0.049) (Figure 17E). The average and end diastolic 

diameters also showed a slight decrease in the saline control rats (Figure 17C-D) but 

comparing the tonic response metrics at the same interval in time when we typically see 

the high lipid load in the lipid infused rats showed that the percentage decrease for both 

metrics was significantly higher in the lipid group. Specifically, there was a 41 % decrease 

in average diameter compared to 8 % in controls (P = 0.005) and a 43 % decrease in end 

diastolic diameter compared to 9 % in controls (P = 0.006) (Figure 17E). All this suggests 

that the phasic contractility of the mesenteric lymphatic vessel as well as the tonic 

response significantly decreased in the presence of intraluminal lipid. 
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Figure 17: Rats infused with saline only show little decrease in phasic and tonic response. Control rats were infused 
with saline only instead of the lipid emulsion. Contraction frequency (A), contraction amplitude (B), average diameter 
(C) and end diastolic diameter (D) showed minimal decrease over time. E) Contraction frequency showed a much higher 
percentage decrease in the lipid infused rats than in the controls (86 % vs 16 %, P = 0.019), so did contraction amplitude 
(76 % vs 16 %, P = 0.049), average diameter (41 % vs 8 %, P = 0.005) and end diastolic diameter (43 % vs 9 %, P = 0.006). 
n = 6, error bars represent SEM. 

3.5. Discussion 
While lipid uptake by lymphatics has been extensively studied and reported in 

literature, most of these studies were carried out by collecting lymph via the mesenteric 

lymphatic duct. Since our technique allows us to determine when lipid first appears in the 

intestinal region drained by a given lymphatic, we were able to determine the total time 

for lipid absorption, packaging of chylomicrons, release into the villi and uptake into the 

lacteal 119. Lipid can first be detected in the mesenteric collecting vessel within 10-20 

minutes and reaches a maximum concentration around 60-80 minutes. The time-frame 

previously reported for chylomicrons to first appear in the mesenteric lymphatic duct was 
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reported to be at around 14-22 minutes and to peak around 2-3 hours 21 (Figure 18). 

Previous studies used fluorescence based TG assays instead of quantifying chylomicron-

incorporated fluorescent fatty acids. The assays typically utilize the hydrolysis of TG by 

lipase to produce free fatty acids and glycerol which is then measured by an enzymatic 

reaction quantified using a fluorescence colorimetric readout 120. Despite the fact that TG 

assays might possibly be more sensitive and are a more direct measurement of TG, they 

cannot be used for real-time intraluminal TG measurements. We have previously shown 

that lymph fluorescence of BODIPY C16 correlates quite strongly with total lymph TG 117, 

thus giving us a real-time measurement of the lipid content in the vessel and allowing us 

to quantify the instantaneous vessel response upon lipid exposure. 

 

Figure 18: Mesenteric duct lymph flow rate and triglyceride concentration increases after lipid infusion. A) Average 
flow rate in a rat mesenteric duct as measured using lymph collected from a cannula. Flow rate increases beginning at 
around 1 hour after the start of duodenal lipid infusion and plateaus at 3 hours. B) Triglyceride concentration increases 
with time and plateaus at around 2 hours. TG concentration was measured using a TG fluorescence assay. n = 7, error 
bars represent SD. 

The vessel responded to the acute exposure to lipid by reducing the phasic 

contraction frequency and amplitude and through reducing the overall average vessel 

diameter and the end diastolic diameter. The reduction in phasic contractility appears to 

agree with similar results reported in mesenteric collecting lymphatic vessels isolated 

from a rat metabolic syndrome model 53 and in vivo in obese mice 102 but is in 

disagreement with one in vivo study in which rats infused with olive oil demonstrated a 

significant increase in collecting lymphatic contraction frequency 22. This study was 

limited in its quantitative description of vessel luminal lipid content and thus it is difficult 

to compare their results with those presented here. It is worth noting that the fatty acid 
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content for both Intralipid and olive oil is similar (Table 3) except that Intralipid has a 

higher level of the polyunsaturated omega-6 linoleic acid than olive oil whereas olive oil 

is richer in the monounsaturated omega-9 oleic acid but there is no strong support that 

these differences would account for the different lymphatic vessel response 121. The 

decrease in phasic contractility presented in our study however could be attributable to 

a variety of factors including oxidative stress due to lipoprotein oxidation, through 

induced nitric oxide (iNOS) mediated NO 122 or histamine 95 both of which are released by 

activated lymph resident immune cells that double in density after a lipid meal 22. 

However, these factors would not explain the strong tonic response we observed in the 

lymphatics in response to high lipid, as both NO and histamine are known to increase the 

diastolic diameter. Lymphatic vessel tone is usually defined as being the percent 

difference between the passive diameter of the vessel under Ca2+-free conditions at a 

given pressure and the end diastolic diameter with the presences of Ca2+ at the same 

pressure 53. While we are unable to directly quantify vessel tone in this manner in vivo, as 

we have no control over the pressure or the Ca2+ concentration, we interpret a reduction 

in the end diastolic diameter as indicative of a tonic response. A variety of factors have 

been previously shown to cause vessel constriction in lymphatics, these include elevated 

downstream pressures 98, increased local vessel pressure 123, inhibition of VEGFR-3 79, 

arachidonic acid metabolites which can be secreted by lymphatic vessels 124 as well as 

certain concentrations of histamine 125.  

Table 3: Fatty acid components of olive oil and the commercial lipid emulsion, Intralipid. Fatty acid content is similar 
in both with Intralipid having more linoleic acid as opposed to olive oil which has a higher percentage of oleic acid.

 

Quantifying the acute functional response of mesenteric lymphatic vessels during 

lipid absorption of a high fat meal is crucial in understanding numerous clinical 



49 
 

pathologies where lipids have been implicated in malformations and dysfunctional 

lymphatic vessels 23. For example, in some protein-losing enteropathies such as primary 

intestinal lymphangiectasia (PIL), the blind ended initial lymphatics in the intestinal villi 

are significantly dilated and cause lymph leakage into the intestinal lumen. A standard 

procedure in managing the disease is to prescribe a low-fat diet supplemented with 

medium (MCT) and short chain triglycerides (SCT) which minimizes the lipid load of the 

lymphatics since they primarily absorb long chain triglycerides (LCT) 25. The absence of 

high lipid load prevents the rupture of lacteals and hence reduced lymph leakage. Using 

a long chain fluorescent fatty acid analogue such as BODIPY C16 can be used to better 

understand how downstream impairment of collecting lymphatic vessel lipid clearance 

might contribute to the observed overloading of the lacteals. Even before PIL symptoms 

develop, patients have shown delayed transport of lipid from the intestine, suggesting 

that lymphatic lipid transport function is compromised at an early stage of the disease23. 

In addition, lymphatic phasic contraction was shown to be hindered in an isolated vessel 

model of gut inflammation, suggesting that lymphatic function might be compromised in 

inflammatory bowel diseases such as Crohn’s disease 14. While alleviating the lipid burden 

on lymphatics is clinically beneficial in many of these intestinal disorders, the exact 

mechanisms of lymphatic failure and the interplay between the lipid absorption process 

and lymphatic function in these disease states is still unclear. The results presented here 

suggest that high concentrations of lipid can directly reduce lymphatic pump function, 

which would likely exacerbate the condition in a disease physiology where there is already 

substantial inflammation. 

Obesity is one of the few established factors that predisposes patients to 

developing secondary lymphedema 107,109. Additionally, several recent studies have 

demonstrated impaired function of the lymphatics in obesity 102,103,107,109. LCTs constitute 

around 90 % of the fat content in a typical Western diet so if lipid content is adversely 

affecting lymphatic pump function, it is likely to increase the chances of lymphedema 

since patients who have a reduced lymphatic functional capacity at baseline are at higher 

risk for developing lymphedema 103. It has also been shown that reducing the amount of 
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LCT in diets of lymphedema patients and replacing them with MCT reduced peripheral 

edema 126. This edema reduction could be due to reduced formation of lymph, and hence 

less leakage in the affected limb, or to the fact that lower lipid content in lymph possibly 

restores lymphatic vessels to their normal functional capacity. 

While our in vivo animal model along with the developed imaging tools provide a 

good platform to study the effect of lipids on lymphatic pump response, there were 

several limitations that might limit our understanding of the physiological post-prandial 

response that we might typically see. The procedure is highly invasive, requires 

anesthetic, and alters the vessel’s mechanical environment. Care was taken to minimize 

these effects by including control rats that underwent all of the same surgical and 

mechanical perturbations, but received a bolus of saline in the intestine rather than lipid. 

In addition to this, while we would have liked to measure flow rates in the vessel utilizing 

our previously published approach 62,117 we were only able to accomplish this in the 

control rats (Figure 19). These measurements were not possible in the lipid infused rats 

due to the low contrast between lymphocytes and the surrounding lymph. This low 

contrast was most likely due to the dramatic increase in chylomicron concentration which 

acted as light scattering agents (note, lymph turns milky white after a high fat meal) 127. 

Since we cannot measure lymphatic flow in the local vessel, it makes it difficult to 

ascertain whether alterations in fluid shear stress during lipid absorption might be 

partially responsible for the pump function response. However, this seems unlikely, as 

there are no reports of shear stress in lymphatics decreasing the contractile frequency 

and causing a reduction in the end diastolic diameter. Typically, elevated fluid shear 

reduces contraction frequency and dilates the vessel 7,95,128. 
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Figure 19: Flow rate in control rats can be measured successfully. Flow rate for the control rats can be measured due 
to the fact that there is large inherent contrast between lymphocytes and the surrounding lymph. Similar 
measurements cannot be made however on the lipid infused rats. Flow rate in control rats (infused with saline) seems 
to not change upon infusion. n = 5, error bars represent SD. 

3.6. Conclusion 
In conclusion, we report here for the first time the kinetics of lipid uptake from 

the intestine to the mesenteric collecting lymphatic vessel immediately draining the 

region in the small intestine where the lipid is being absorbed. We go on to show using a 

novel multimodal intravital microscopy approach, that in the context of a lipid meal, high 

lipid loads within a lymphatic vessel alter lymphatic function by reducing phasic 

contractions and causing an overall tonic constriction in the vessel.  In addition, the 

developed experimental model will allow future researchers to further investigate the 

detailed mechanisms underlying lipid uptake and transport in both healthy and disease 

states and can be easily adaptable to other small animal models. 
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IV. POST-PRANDIAL VISCOSITY OF LYMPH FOLLOWING A HIGH-FAT 

MEAL 

4.1. Abstract 
Lipid content of mesenteric lymph increases several folds during lipid absorption 

after a high-fat meal. It has long been suggested that this also translates into a substantial 

increase in lymph viscosity and hence an increase in shear stress that the mesenteric 

vessel is exposed to. Here, we sought to measure lymph viscosity in a rat for both the 

fasting state and the time-dependent changes following a high-fat meal. Viscosity 

measurements were conducted using a microrheology technique utilizing the Brownian 

motion of fluorescent carboxylate-modified polystyrene particles embedded in lymph 

samples collected from rats at 15 minute intervals for 4 hours. The mean fasting lymph 

viscosity was found to be 0.70 cP and 0.82 cP when an anti-coagulant was added to the 

samples. After a high-fat meal the viscosity ranged from 0.70 to 0.78 cP peaking at 1 hour 

and 0.82 to 1.04 cP in the presence of an anti-coagulant. The average lymph triglyceride 

(TG) concentration ranged from 107 mg/dL at the start of lymph collection to 709 mg/dL 

at 4 hours with a peak mean of 1098 mg/dL occurring at 2 hours. While TG and viscosity 

are positively correlated, other unknown factors present in lymph also appear to have an 

effect on lymph viscosity, reflecting the dynamic and variable nature of lymph 

composition. The viscosity of lymph during postprandial lipid absorption and its 

relationship to lymph TG have been reported for the first time, and suggest that changes 

in lymph viscosity have a small but important effect on the fluid sheer stress imposed on 

the lymphatic vessel during lipid absorption. 

4.2. Introduction 
Lymphatic networks are found in almost all vascularized tissues, excluding the 

bone marrow and the nervous system 129,130, and function to maintain fluid homeostasis 

within the interstitium of these organs 127,131, provide a conduit for immune cell 

trafficking, and transport dietary lipids from the intestinal tract to venous circulation 8,21. 

Collecting lymphatic vessels transport lymph through coordinated contractions of 

individual vessel segments known as lymphangions 132. These contractions constitute 
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what is known as the intrinsic lymphatic pump. Lymph flow within these vessels 

continuously exposes the lymphatic endothelium to wall shear stress (WSS) 70, which has 

been shown to play a primary role in vessel development and function. Low WSS levels 

are required for both the formation of structurally sound lymphatic vessels 133–135 and 

maintenance of lymphatic endothelial cell identity 136. WSS also actively modulates the 

pumping response of the vessel, and hence transport, through the differential release of 

vasoactive substances, such as nitric oxide (NO) 137–139. This response seems to vary with 

the physiological region of the vessels whereby the thoracic duct has been shown to be 

the most sensitive to WSS, drastically reducing its pumping when exposed to flow and 

thus lowering its resistance to flow and behaving as a passive conduit. Mesenteric vessels, 

on the other hand, are less sensitive to WSS, maintaining their function as a pump even 

in the presence of fluid flow 7,11. The influence of WSS and its effects on the lymphatic 

vasculature is an emerging field of study.  

Lymph viscosity, along with flow rate and vessel diameter, is an important 

contributing factor to WSS. One of the most dramatic changes in lymph content occurs in 

the mesenteric lymphatic vessels which transport absorbed lipids from the small intestine 

to the mesenteric lymphatic duct. These changes are especially dramatic after a high-fat 

meal when lipid concentration dramatically increases compared to the fasting state. 

Ingested lipids are broken down by digestive enzymes and absorbed into the epithelial 

cells (enterocytes) lining the inner lumen of the small intestine. Within the enterocytes, 

the triglycerides are combined with cholesterol and phospholipids, and then packaged 

into lipoproteins called chylomicrons. The chylomicrons are then absorbed into the 

lymphatics through the lacteals, lymphatic capillaries located within the villi of the small 

intestine 8,16–19,140. While there are currently both methods to measure the changes in 

lymph flow rates and vessel diameter 70,117 and to impose arbitrary lymphatic flow 

waveforms in vitro 141, it has been very difficult to estimate the contribution of viscosity 

changes to WSS resulting from the increase in lymphatic lipid concentration. Most studies 

estimating WSS in lymphatics refer to a 1917 study to provide an estimate for lymph 

viscosity, where Burton-Opitz et al. measured the viscosity of dog lymph after feeding a 
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high-fat meal 76. They accomplished this by collecting lymph from the thoracic duct and 

measuring the time required for the passage of lymph through a capillary tube at a given 

pressure. Unfortunately, this method cannot be used with small lymph volumes, 

preventing measurements in smaller animal models, regional measurements from 

various lymph formation sources, and temporal measurements over short drainage 

intervals. More recently, Bouta et al., reported in vivo lymph viscosity in the collecting 

lymphatic draining the hind-limb by calculating the diffusion coefficient of fluorescently 

labeled albumin following in vivo multi-photon fluorescence recovery after 

photobleaching (MP-FRAP) and then utilizing Stokes-Einstein equation to estimate the 

viscosity 142,143. 

The main hindrance in measuring lymph viscosity has been the relatively small 

sample volumes collected through the various lymph collection techniques 144. These 

small volumes make it difficult to obtain complex fluid properties through conventional 

rheology measurements which typically require sample volumes larger than a millimeter 

145. Moreover, conventional rheometers provide an average measurement of the bulk 

response, and do not allow for local measurements in inhomogeneous systems 146. 

Complex fluids, such as lymph, demonstrate behavior intermediate between solids 

(completely elastic) and fluids (completely viscous), and accurate methods are thus 

required to quantify the phenomena associated with their viscoelasticity 147. As a result 

of miniaturization, improvements in imaging technology and computing power, a new 

category of rheology, microrheology, has emerged. Microrheology probes the material 

response on micrometer length scales and typically requires less than 10 µL of sample 148 

with the ability to even probe intracellular rheological properties 149. Here we utilize a 

passive microrheology technique which uses the Brownian motion of embedded 

florescence particles to accurately measure the viscosities of rat lymph during a fasting 

state as well as the transient changes occurring over a 4-hour period following a high-fat 

meal. Measurements were carried out for lymph containing and lacking anti-coagulant. 
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4.3. Methods and Materials 

Lymph Collection 
Male, Sprague-Dawley rats (weighing approximately 300g) (Harlan Laboratories, 

Indianapolis, IN) were housed individually and maintained in a temperature and humidity 

controlled facility, on a 12-h light/dark cycle.  Animals had free access to water and 

standard chow (Harlan Teklad 7012 Mouse/Rat Sterilizable Diet, Harlan Laboratories, 

Indianapolis, IN) prior to all procedures.  All animal procedures were approved by the 

University of Cincinnati Institutional Animal Care and Use Committee. 

Prior to placement of lymph cannulas, the animals were fasted overnight with free 

access to water.  Under Isoflurane anesthesia, a midline incision was made and a cannula 

(polyvinyl chloride tubing, 0.5 mm inner diameter, 0.8 mm outer diameter, Tyco 

Electronics, Castle Hill, Australia) was placed in the major mesenteric lymphatic duct as 

described by Bollman 61.  The lymphatic cannula was secured with cyanoacrylate glue 

(Krazy Glue, Columbus, OH).  A silicone feeding tube (1.02 mm inner diameter, 2.16 mm 

outer diameter, VWR International, West Chester, PA) was introduced into the stomach 

and advanced slightly beyond the pylorus into the duodenum.  The feeding tube was 

secured with a purse-string ligature in the stomach.  Both the lymph cannula and the 

duodenal feeding tube were exteriorized through the right flank; the abdomen was then 

closed in two layers.  After surgery, the animals were placed in Bollman restraint cages 

and allowed to recover overnight (18 h).  The animals were kept in a temperature-

regulated chamber (24°C) to prevent hypothermia.  To compensate for fluid and 

electrolyte loss due to lymphatic drainage, a 5 % glucose-saline solution was infused into 

the duodenum at 3 mL/h for 6-7 h, followed by an overnight infusion of saline only at 3 

mL/h. 

Following overnight recovery, fasting lymph was collected for 1 h prior to a 3 mL 

duodenal bolus of lipid (2.2 mL Liposyn II and 0.8 mL saline).  Thirty minutes following the 

bolus, a 0.9% saline infusion was provided at 3 mL/h for the remainder of the study 

period.  Lymph samples were continuously collected on ice every 15 minutes for 4 hours. 

The anti-coagulant containing samples were treated in the same manner except upon 
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collection a cocktail of 10% by volume of an anti-proteolytic cocktail (0.25 M EDTA, 0.80 

mg/mL aprotinin and 80 U/mL heparin) was added to each collection tube. 

Triglyceride and Viscosity Measurements 
Lymphatic triglyceride concentrations were determined using a commercially 

available kit (Randox TG, Randox Laboratories Ltd., Crumlin, Northern Ireland, UK). Lymph 

samples were shipped on ice overnight from Cincinnati, OH to Atlanta, GA for viscosity 

measurements. Fluorescent carboxylate-modified polystyrene (PS) FluoSpheres® 

(Molecular Probes,Inc.) with 1.0 µm diameters and 3 % polydispersity were used; 

Pluronics F-127 (EO100PO70EO100, MW ~ 12,600 g/mol) from Sigma Chemicals was used 

without further purification for surface modification of the PS particles to prevent non-

specific interactions between the lymph and the tracer particles 150. Samples were 

prepared by combining 1.5 µL of tracer particle suspension with 50 µL of lymph and gently 

mixing the samples by repeated loading and dispensing of the pipette. The samples were 

then loaded into ~100 µm thick sample chambers, which were created by placing parafilm 

spacers between a microscope slide and cover slip, and sealed with vacuum grease to 

prevent evaporation. The samples were placed on the Peltier-controlled thermal 

microscope stage (PE100-LI2, Linkam Scientific Instruments Ltd.) that was used for 

effective temperature control of the sample during measurements; the sample 

temperature was carefully monitored using a thermocouple (HH11B, Omega) that was 

attached to the sample chamber. 

Viscosity information of the samples was obtained by performing statistical 

analysis of mobility of colloidal tracer particles via particle tracking video microscopy 

(PTVM) 151. The Brownian motion of fluorescent tracer particles in the samples was 

monitored at 38°C (rat internal body temperature) via an optical microscope (Leica DM-

IRB) with a 63× objective, and movies were captured using a CCD camera (Cohu 4920, 

Poway, CA; 30 frame/s and 640 × 480 pixel resolution). Subsequently the recorded movies 

were analyzed with software developed using Interactive Data Language (ITT Visual 

Information Solutions, Boulder, CO). Because Brownian motion leads to small particle 

displacements on these timescales and is highly sensitive to external vibrational noise, all 
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experiments were performed on a vibration-isolated optical table. After obtaining video 

images, we utilized a standard brightness-weighted centroid method to identify the 

particle trajectories. The method uses four major steps: restoring the image, locating 

possible particle centers, refining particle positions/eliminating unwanted particles, and 

linking particle positions into trajectories 148. A control sample with well-documented 

viscosity (DI water at 38°C) was used to confirm the accuracy of our protocol. 

Through the Einstein-Stokes relation it is possible to relate the mean squared 

displacement of the particles, that occurs over time τ, and the viscosity of the fluid using 

the following expression: 
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where MSD is the mean squared displacement, d is the dimensionality, kB is Boltzman’s 

constant, T is the temperature in Kelvin, η is the viscosity, and a is the radius of the 

particle. Therefore, a linear relationship can be proposed using equation (1) with the slope 

being: 
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Solving for the viscosity, η: 
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Statistical Analysis 

Statistical differences were determined using a paired Student’s t-test. 

Significance was defined as p < 0.05. One value for TG concentration (rat 7, t = 105 min) 

was treated as an outlier after using an Iterative Grubbs’ outlier test and confirming that 

sudden jumps in TG concentration are due to measurement error. Correlation levels were 

determined using the Pearson correlation coefficient. Sample size was n = 7 for samples 
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without an anti-coagulant and n = 4 for those with. All statistical analyses and plots were 

carried out in GraphPad Prism v6. 

4.4. Results 

Fasting Lymph 
Lymph collected before the start of the duodenal lipid infusion provided typical 

baseline values for a fasted state. The fasting triglyceride (TG) concentrations ranged from 

31 mg/dL to 170 mg/dL with a mean of 108 mg/dL (Figure 20A). The fasting viscosity 

ranged from 0.67 cP to 0.72 cP with a mean of 0.70 cP (Figure 20B). Fasting viscosity 

values were very close to that of distilled water at 38 °C. 

 

Figure 20: TG and viscosity values for lymph in a fasting state. A) Triglyceride concentration for fasting rat lymph. B) 
Dynamic viscosity of fasting rat lymph. Dotted line represents the viscosity of purified water at 38 °C as both reported 
by literature and measured with our technique. N = 7. 

Transient Changes in Viscosity, Triglyceride Concentration and Lymph Flow 

In order to determine the transient changes in viscosity following a high-fat meal, 

triglyceride concentration and lymph flow rate samples were collected at 15 minute 

intervals for up to 4 hours following the start of duodenal lipid infusion. The average 

lymph triglyceride concentration ranged from 107 mg/dL at the start of lymph collection 

to 709 mg/dL at 4 hours with a peak mean of 1098 mg/dL occurring at 2 hours. TG 

concentration increased relatively steeply up to 2 hours and then started a gradual 

decline (Figure 21A, C). The average lymph viscosity ranged from 0.70 cP at the start of 

lymph collection to 0.71 cP at 4 hours with a peak mean of 0.78 cP occurring at 1 hour. 

Viscosity values followed a similar trend to triglyceride concentration where they 

increased steeply up to 1 hour and then began a gradual decline (Figure 21B, D). Neither 
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TG concentration nor viscosity reached baseline fasting values within the 4-hour data 

collection interval. The mesenteric duct lymph flow rate varied with different rats (Figure 

22A). The typical trend showed an initial decrease in flow rate from 39 µL/min to 13.6 

µL/min after 30 minutes from the start of lymph collection and then began a gradual 

increase to a peak of 63 µL/min at around 180 minutes. Flow rate did not return to 

baseline value within the 4-hour data collection period (Figure 22B). 

 

Figure 21: Transient changes in TG concentration and viscosity. A) Triglyceride concentration over a 4-hour period. 
Peak can be seen at around 1.5-2 hours. B) Viscosity over a 4-hour period. Peak occurs at around 1 hour and is earlier 
than the average peak TG concentration. Dotted line represents the viscosity of water at 38 °C. C) Maximum and 
minimum TG values measured throughout the time-coarse of the experiment. D) Maximum and minimum viscosity 
values measured throughout the experiment. Error bars represent SD. N = 7. 
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Figure 22: Mesenteric duct lymph flow rates. A) Lymph flow rates for each rat plotted separately showing the inter-
variability between animals. B) Average mesenteric duct flow rate over a 4-hour period. N = 7, error bars represent SD. 

Inter-Animal Variability 

There was large inter-animal variability for both measured TG concentrations and 

viscosities. With one rat (rat 7) experiencing peak triglyceride concentration of 1961 

mg/dL which is almost double that of the smallest peak (rat 5) which was 979 mg/dL 

(Figure 23A). The same can be said about viscosity values with one rat showing a peak of 

0.88 cP (rat 7) compared to the smallest peak (rat 4) which measured 0.77 cP (Figure 23B). 

While in most cases there was a clear peak for both metrics, this peak was not consistent 

between rats and generally ranged from 1-2.5 hours depending on the animal. 

 

Figure 23: Inter-variability of TG ad viscosity values across animals. A,B) Triglyceride and viscosity values over a 4-hour 
period for 7 different rats. 

Correlation between Triglyceride Concentration and Viscosity 

Viscosity correlated positively with triglyceride concentration with a Pearson 

correlation coefficient of r = 0.38 (Figure 24A). The fasting viscosity and triglyceride 

concentrations showed lower correlation with r = 0.15 (Figure 24B). Dividing the readings 

into a rising segment (0-60 min) and falling segment (60-240 min) the values during the 
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rising segment seemed to be more correlated (r = 0.48, Figure 24C) than the falling 

segment (r = 0.29, Figure 24D). Breaking down the data into individual rats showed a large 

variability among correlation values, with rat 4 showing a correlation coefficient as high 

as 0.90 while rat 2 showed a negative correlation coefficient of -0.15 (Figure 24E). In 

Figure 24F correlation coefficients were broken down further for the rising segment (0-

60 min) and falling segment (60-240 min). The data suggests that during the rising 

segment lipid concentration was more highly correlated with viscosity than during the 

falling segment. 
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Figure 24: Correlation of lymph viscosity and triglyceride concentration. A-D) Correlation plots of viscosity vs TG for 
three different segments of the temporal profile. E,F) Pearson correlation coefficient demonstrating positive correlation 
between the TG content of lymph and viscosity values especially during the rising phase of the TG profile. 
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Viscosity Values are Higher Upon the Addition of an Anti-Coagulant Cocktail 
Lymph has been shown to contain small amounts of coagulating factors which tend to 

promote coagulation upon collection 76,152. So we sought to quantify the changes in viscosity that 

might result from a modified procedure. We found that in one of the rats the viscosity peak was 

as high as 1.32 cP (Figure 25A) while the average lymph viscosity peaked at around 1.04 cP (Figure 

25B) compared to 0.78 cP when no coagulant was present in the samples. The mean fasting and 

maximum viscosities were 0.83 cP and 1.14 cP respectively (Figure 25C and D) 

 

Figure 25: Viscosity with the addition of an anti-coagulant cocktail upon lymph collection. A) Viscosity values over a 
4 hour period. B) Average viscosity values over the same period for all rats. C,D)  Fasting, minimum and maximum 
viscosities in the presence of anti-coagulant. N = 4, error bars represent SD. 

4.5. Discussion 
Measurements of blood viscosity are prevalent in various health and disease 

conditions 153–156 but there exist very limited measurements carried out on lymph. In 

1917, Burton-Opitz et al. measured the viscosity of lymph from dogs which had been given 

a moderate amount of fatty meat four hours prior to measurements. Lymph was collected 

from the thoracic duct and 2-3 mL of lymph was used for each measurement. They 
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showed that fasting lymph, which they measured 6 hours after the meal, was 1.5x 

(approx. 1 cP) the viscosity of distilled water at 37°C (approx. 0.69 cP) while peak viscosity 

during lipid absorption was around 2x (1.38 cP) that of distilled water 76. The method they 

utilized during their study involved a conventional Ostwald viscometer in which lymph is 

directly flowed in a glass capillary under a given pressure and the flow rate is calculated. 

The kinetic viscosity can be backed out from the resulting measurements 157. Recently, 

Bouta et al. were able to devise a method based on multi-photon fluorescence after 

photobleaching (MP-FRAP) to measure lymph viscosity in a lymphatic vessel afferent to 

the popliteal lymph node in a mouse arthritic joint 143. The in vivo viscosity they reported 

was 1.8 cP which they noted was 1.8x the viscosity of distilled water, which would be 

correct for water at 20 °C. However, it was unclear at what temperature their calibration 

was carried out. Nevertheless, MP-FRAP may prove a useful technique for measuring in 

vivo viscosity when we have optical access to the vessel of interest. The limiting factor of 

their technique is the reliability of measuring the diffusion coefficient using FRAP. With 

the utilization of various rat animal models for research into lymphatic biomechanics 

54,158,159 we decided in this study to measure both lymph viscosity in a fasting state and 

the changes in viscosity attributed to lipid absorption over a 4-hour period following a 

high-fat meal. 

Conventional methods for measuring viscosity, including various forms of 

rheometers, typically require large sample sizes and do not lend themselves for time-

course measurements of lymph samples from small animals. While lymph collection 

methods for small rodents have been used extensively for the past several decades 144,160 

it is only recently that techniques capable of investigating the rheological properties at 

very small scales, known as microrheology, have become available. The availability of new 

microrheology techniques coupled with the ability to collect mesenteric lymph has made 

it possible to measure viscosities in a time dependent fashion and be able to correlate 

them with lipid concentrations. Technological innovations in light scattering and video 

microscopy, as well as theoretical advances have greatly expanded the power of 

microrheology. Current techniques can be divided into two main categories: active 
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methods that involve probe manipulation and passive methods that rely on thermal 

fluctuations to induce motion of the probes. In this study we used a passive method. 

Instead of using an external excitation to move the probe particles, the intrinsic Brownian 

motion of the particles was used 148,161 as described in Methods. 

The correlation between lymph viscosity and TG concentration varied significantly 

between rats from being negatively correlated (r = -0.15) to being highly positively 

correlated (r = 0.9). In addition, there was a general trend where correlation was higher 

during the rise in TG concentration (0-60 min) versus the decline. These results are not 

surprising considering that lymph is a complex fluid composed of various constituents 

including immune cells, proteins and chylomicrons. The apparent viscosity of lymph is 

thus due to multiple factors. The TG concentrations calculated do not reflect the number 

or size of chylomicrons present in the sample. It has been previously shown that sizes of 

these particles range from 40-1,000 nm 162,163 and that during active lipid absorption their 

size rather than their number increases in response to increased TG content 164. 

Lymphocyte density has also been shown to increase in response to lipid absorption by 

as much double the fasting values 22. The fasting viscosity values showed almost no 

correlation between TG content and viscosity possibly due to the small differences in TG 

concentration (~150 mg/dL). 

Whether the changes in viscosity have a considerable effect on shear mediated 

responses requires that we investigated the variations in shear stress typically 

experienced by mesenteric collecting lymphatic vessel. Flow rate after lipid infusion 

measured in the mesenteric duct increased from 13.6 µl/min to 63 µl/min (almost a 5x 

change) over a 4-hour period (Fig. 3B). This corresponds to an increase in WSS from 0.64 

dynes/cm2 in a fasting state 70 to around 3.2 dynes/cm2. Thus the shear stresses, assuming 

Poiseuille flow, experienced purely because of viscosity changes are almost negligible (a 

1.1x change when comparing min to max viscosity). And in more extreme cases such as 

in edema, we consider a recent study by Rhabar et al. in which rats were infused with 

saline via an intravenous infusion in order to induce edema. Average WSS in the 

mesentery lymphatic vessel increased from 0.12 dynes/cm2 to nearly 1.5 dynes/cm2 (a 
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10x change) and the maximum WSS rose from 5 dynes/cm2 to 40 dynes/cm2 (an 8x 

change) during the 25 minute post infusion observations 165. Moreover, and in referring 

to Burton-Opitz study, in recent lymphatic literature a value of 1.5 cP for fasting lymph 

has been continuously used to estimate WSS in lymphatic vessels 63,70,117. Here we found 

that the fasting lymph viscosity was approximately 1.3 cP which is very close to what is 

currently being used, thus showing that current literature estimates of WSS a lymphatic 

vessel is exposed to, are relatively accurate. 

4.6. Conclusion 
In summary, the viscosity values presented in this study, for both fasting lymph 

and the changes seen post-prandially after a high-fat meal, will allow researchers to more 

accurately elucidate the biomechanics involved in shear mediated lymphatic vessel 

response. 
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V. INTRACELLULAR CALCIUM DYNAMICS IN LYMPHATIC 

ENDOTHELIAL CELLS UNDER OSCILLATORY AND LIPID LOADS 
 

5.1. Abstract 
Mesenteric lymphatic vessels are responsible for the absorption and transport of 

chylomicrons from the intestine to venous circulation. These vessels are exposed to 

oscillatory shear stress as well as high lipid loads. We have previously shown that pre-

nodal collecting lymphatic vessels respond to a high lipid load through a reduction in 

pumping activity and overall vessel diameter. Many vasoactive substances that are 

believed to be involved in vessel regulation, such as nitric oxide, utilize intracellular Ca2+ 

as a secondary messenger. Here, we employed intracellular Ca+ measurements using a 

fluorescence indicator, Fluo-4 AM, as a real-time readout to assess the response of human 

lymphatic endothelial cells to both oscillatory shear stress and exposure to high lipids, in 

the form of very low density lipoproteins (VLDL). We found that these cells have a longer 

response duration when exposed to oscillatory shear stress compared to a ramp profile 

having the same peak magnitude. We also found that lymphatic endothelial cells exposed 

to VLDL for 24 hours have a prolonged Ca2+ response compared to controls. These results 

show that lymphatic endothelial cells can sense the type of shear they are exposed to in 

addition to the fact that VLDL activates calcium mechano-sensitive pathways that are yet 

to be determined. 

5.2. Introduction 
The contractile activity of collecting lymphatic vessels has been shown to be 

regulated biochemically 93–98 and mechanically 132 through both intraluminal pressure 99  

and wall shear stress 11,128. Unlike the blood vasculature, lymph flow in lymphatic vessels 

is oscillatory in nature 70 due to the contractility of individual lymphatic segments, called 

lymphangions, and their separation with unidirectional valves 166. Several studies have 

implicated the lymphatic endothelium to be the main player in regulating pumping 

activity due to its direct exposure to mechanical forces, mainly shear stress, and lymph 

content, such as vasoactive substances. Lymphatic endothelial cells, similar to blood 
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endothelial cells, increase their endothelial nitric oxide synthase (eNOS) expression in 

response to shear 54,167. This translates to nitric oxide (NO) release which acts on 

lymphatic muscle cells surrounding the endothelium to regulate contractility though 

alterations in both contraction amplitude, contraction frequency and vessel diameter 

82,139.  Intracellular calcium is an important secondary messenger involved in a variety of 

cell-level responses 168. Most notably, intracellular calcium leads to activation of eNOS 

and the subsequent release of NO 169,170. Thus, imaging intracellular calcium provides a 

real-time indicator of how endothelial cells respond to a stimulus.  While the response to 

a step shear stress profile has been recently quantified 171, it is not clear how lymphatic 

endothelial cells respond to an oscillatory shear profile experienced in vivo. We have 

recently shown that isolated rat mesenteric lymphatic vessels synchronize their 

contractile frequency with that of the oscillatory frequency of the shear waveform 

imposed on them (Kornuta et al. 2015, paper in review). We have also recently shown 

that pre-nodal collecting mesenteric lymphatic vessels reduce their contraction 

amplitude, frequency and both average and end diastolic diameter when exposed to high 

lipid loads in the form of chylomicrons (Kassis et al. 2015, paper in review). In this study 

we sought to quantify the calcium response of lymphatic endothelial cells to two 

important environments they are exposed to in the mesentery, mainly oscillatory shear 

stress and high lipid loads. While there are a variety of Ca2+ indicators in use, we chose 

one with a high fluorescence signal in order to detect any small oscillations in free Ca2+ 

that might be dynamically changing. Fluo-4 AM has both a high fluorescence signal when 

bound to free Ca2+ and low photobleaching compared to other dyes 172–174. While it is 

difficult to use a non-ratiometric indicator to quantify absolute intracellular calcium 

concentrations, our main goal in this study was to elucidate the spatio-temporal dynamics 

of the signal. Hereon, we report the intracellular Ca2+ response dynamics of lymphatic 

endothelial cells to a ramp and sinusoidal shear profile peaking at 4 dyn/cm2, and both 

the shear sensitivity and response of these cells when exposed very low density 

lipoproteins (VLDL) which is close in size and lipid content to chylomicrons. 
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5.3. Methods and Materials 

Lymphatic Endothelial Cell Culture 
Human dermal microvascular endothelial neonatal lymphatic cells (HMVEC-

dLyNeo, Lonza, New York) were cultured in T25 polystyrene flasks at a seeding density of 

5,000 cells/cm2. Flasks were coated for 1 hr at room temperature with a collagen solution 

containing type I rat tail collagen (BD Biosciences, San Jose, CA) at a concentration of 50 

µg/mL in 0.1% acetic acid (Sigma). The cells were grown in EBM-2 supplemented with the 

EGM-2 BulletKit (both from Lonza). Cells in the flasks were grown to passage 6 and 

trypsinized at 60-90% confluency preceding seeding in the flow chambers. Cells used for 

all experiments were at passage 7 within the flow chambers. 

Flow Chamber Set-up and Fluo-4 Dye Loading 
In order to impose flow, cells were seeded in a polystyrene based flow chamber 

measuring 3.8 mm in width and 0.4 mm in height (µ-Slide VI 0.4 ibiTreat, IBIDI, Munich, 

Germany). The flow chambers were coated with the same collagen solution as above for 

1 hr. Cells were then seeded at a density of 20,000 cells/cm2 and given 48 hours to reach 

full confluency. Experiments were carried out 48 hours post-seeding. EBM-2 culture 

media was replenished at 24 hours. For the case of the VLDL treated group, cells were 

incubated for 24 hours with 10 mg/mL TG content (in EBM-2) from human plasma (Lee 

Biosolutions, St. Louis, MO). Immediately before the start of an experiment, cells within 

the flow chambers were rinsed 2x with pre-warmed serum-free DMEM-F12 (Life 

Technologies, Grand Island, NY). DMEM-F12 with HEPES was used for pH stability at room 

temperature and CO2 levels. In addition, due to autofluorescence of phenol red in the 

green channel the media chosen was phenol red free. All uses of DMEM-F12 in this study 

was serum free. To image intracellular calcium dynamics, Fluo-4 AM (Life Technologies) 

with a final concentration of 10 µM in DMEM-F12 as a buffer was incubated with the cells 

for 30 minutes at 37 °C. Cells were then washed with 2x with DMEM-F12 at room 

temperature and then incubated in the same media for 20 minutes at room temperature 

to allow complete de-esterification of the AM esters. 
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Oscillatory and Ramp Flow Ca2+ Measurements 

A custom-built LabVIEW virtual instrument was created to control a 12-roller 

Ismatec REGLO Digital MS-4/12 peristaltic pump (IDEX Health and Science, Glattbrugg, 

Switzerland) using RS-232 commands sent at a sampling period of 200 ms to the pump in 

an approach similar to that previously published 141. The program has the capability of 

imposing any arbitrary flow waveform. For this study a 0.1 Hz sinusoidal waveform with 

a peak amplitude of 4 dyn/cm2 and DC offset of 2 dyn/cm2 was used for the oscillatory 

study. For the ramp study, an upward ramp going from 0 to 4 dyn/cm2 was used. Both 

stimuli lasted for 1 minute. Imaging was carried out using a Zeiss Axioobserver inverted 

microscope (Carl Zeiss Microimaging, Jena, Germany) with a 20x objective. A back-

illuminated CCD camera (PIXIS 1024B, Princeton Instruments, Trenton, MJ) was used to 

acquire fluorescent images with 500 ms integration time and at 1 sec intervals. A mercury 

lamp source set at 20 % intensity (X-Cite, Lumen Dynamics, Ontario, Canada) was used to 

continuously excite the Fluo-4 dye. Fluorescence intensity was quantified using ImageJ by 

drawing a small region of interest (ROI) inside the nucleus of each cell. For each field of 

view 40-45 cells were randomly chosen for quantification (Figure 26). An ROI over an area 

clear of cells was used to correct for background fluorescence for each image individually. 

The output metric used (F/F0) represents the fluorescence signal, F, divided by the 

average fluorescence for all images preceding the stimulus, F0. Images were saved and 

analyzed as 16 bit TIFFs. All image acquisition was carried out in Micro-Manger 175. All Ca2+ 

experiments were carried out within a temperature controlled incubator at 27 °C. Fluo-4 

showed very high leakage rates out of lymphatic endothelial cells at 37 °C making it 

extremely difficult to run these studies at physiological temperatures. For the oscillatory 

studies 60 seconds of baseline was obtained, stimulus was applied for another 60 seconds 

and then imaging stopped 180 seconds later for a total of 5 minutes. For the lipid studies 

only 30 seconds of baseline was obtained. 
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Figure 26: Human dermal microvascular endothelial neonatal lymphatic cells (HMVEC-dLyNeo) as seen under a 20x 
objective and captured with a 1024 x 1024 pixel back-illuminated CCD. Four representative images are shown. 20 
seconds before the stimulus, then 30, 120 and 210 seconds subsequently after the stimulus. The top and bottom rows 
are the same images however the bottom row has been false colored with a 16 color palette. 40-45 cells were randomly 
chosen within this field of view for quantification. The region of interest was drawn within the nucleus. 

Statistics 

Six independent experiments were carried out for each group. For each 

experiment 40-45 randomly chosen cells within the field of view were quantified to give 

an average for that experiment. All results are reported as mean ± standard deviation 

unless otherwise noted. Student t-tests were used to compare both the peak time 

between each of the two groups and the 120 s post-stimulation. Statistical significance 

was defined as having P  0.05. All statistical analyses was carried out using Prims 6 

(GraphPad Software Inc, La Jolla, CA). 

5.4. Results 

Intracellular Ca2+ Signaling Under Oscillatory Shear Stress 
We quantified intracellular Ca2+ signaling in response to an oscillatory shear stress 

stimulus with a DC offset of 2 dyn/cm2 and a peak amplitude of 4 dyn/cm2. The stimulus 

was applied for 1 minute starting at 60 seconds post image acquisition. There was 

relatively high variability in the amplitude of the response between experiments. Figure 

27A and B represent two different experiments where in ‘A’ the peak was around one 

third in amplitude of that in ‘B’. The initial response time for the cells was consistent 
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between experiments and was evident from the rise in the average fluorescence as well 

as a sudden increase in the standard deviation measured across the cell population within 

the field of view. 

 

Figure 27: Fluo-4 fluorescence intensity for two representative experiments. There was a large variability in the 
amplitude of the peaks between experiments. The grey area represents when the sinusoidal shear profile was being 
applied.  N = 40-45, error bands represent SD. 

In order to determine whether there was a dynamic oscillatory Ca2+ signal in response to 

the oscillatory shear stress we looked at the fluorescence signal of individual cells. Three 

different examples are shown in Figure 28A. There was a large difference in peak 

intensity, time to reach the peak and recovery rate between cells within the same 

experiment. The signal did not follow the sinusoidal input but seemed to initially respond 

to the input shear without any dynamic changes. Using the mean of all experiments 
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combined, the response to the sinusoidal stimulus began at 6 seconds post-stimulation 

and peaked at around 38 seconds post-stimulation (Figure 28B). Instead of just relying on 

average fluorescence intensity we quantified the fraction of cells that were activated. 

Although cells begin activating immediately after the stimulus, it is only after 40 seconds 

that all the cell population within the FOV becomes activated (Figure 28C). The activated 

cells remain in their activated state but the average fluorescence intensity (as seen from 

B) starts decreasing after the 38 second peak. 
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Figure 28: Intracellular Ca2+ dynamics in response to oscillatory shear. Grey signal represents the oscillatory shear 
waveform that was applied. A frequency of 0.1 Hz and amplitude of 4 dyn/cm2 was used with a DC offset of 2 dyn/cm2. 
The stimulus was applied for 1 minute starting at 60 seconds post-acquisition. A) The fluorescence response for 3 
representative cells. Cells did not seem to exhibit a dynamic Ca2+ signal. B) The mean response for all experiments 
combined. C) The fraction of cells activated within the FOV being analyzed. N = 6, error bands represent SEM. 
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Oscillatory vs. Ramp Shear Stress Exposure 

While the response of lymphatic endothelial cells to a step shear exposure has 

been quantified previously 171 we wanted to test the hypothesis that these cells are 

capable of sensing the type of shear profiles they are exposed to. We chose a ramp profile 

from 0-4 dyn/cm2 to compare to our sinusoidal stimulus applied earlier. We found that 

the intracellular Ca2+ peaked at the same time for both exposures (Figure 29A) but 

interestingly the recovery rate was significantly lower for the oscillatory stimulus. 

Quantifying the fraction of activated cells allowed us to distinguish between average 

intensity and the number of cells that are involved in the response (Figure 29B). The 

response until up to the 115 second time-point appeared to be mainly due to fluorescence 

intensity indicating a stronger response, but after the 115 second time-point more cells 

remained activated in the oscillatory condition. We chose a time-point at 150 seconds 

(120 seconds post-stimulus) when the signal seemed to stabilize and quantified the 

fluorescence intensity remaining in the cells. We found that the cells exposed to the 

oscillatory shear exhibited both a longer response and the calcium signal did not return 

to baseline within the time-frame of our experiment compared to the ramp case (P = 

0.007), but in both, the peak arrived at the same time (P = 0.08) (Figure 30). To further 

support this point we quantified the area under both curves and found that the area for 

the oscillatory case was almost 1.7x higher than the ramp case (ratio = 411/245). 
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Figure 29: Quantifying the intracellular Ca2+ response of lymphatic endothelial cells exposed to both a ramp and 
oscillatory shear profile. A) Both ramp and oscillatory shear stimuli were applied at 30 seconds for a total of 1 minute. 
With the oscillatory stimulus there seems to be a more persistent Ca2+ response. B) The two had the same fluorescence 
peak both in amplitude and time of occurrence (P = 0.08). C) Quantifying the difference in fluorescence intensity at the 
120 s time-point we can see a significant difference (P = 0.007) in terms of intracellular Ca2+ concentration remaining in 
the oscillatory case compared to the ramp profile. N = 6, error band represents SEM, error bars represent SD. 

 

Figure 30: A) The peak fluorescence time was the same for both ramp and oscillatory conditions. B) In the oscillatory 
case, the fluorescence signal was significantly higher at 120 s post stimulation than the ramp group. This seems mostly 
due to a higher number of cells that have remained in their ‘activated’ state. 
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Shear Sensitivity of VLDL Conditioned Cells 

In order to test whether exposure to lipoproteins affected the cells’ ability to sense 

shear we incubated lymphatic endothelial cells with VLDL at 10 mg/mL triglyceride 

concentration (typical elevated levels occurring in a rat mesenteric lymph after a high fat 

meal) for 24 hours. To find out what shear stress level activated the mechano-

transduction pathway we used a ramp profile going from 0 to 4 dyn/cm2 over a 1 minute 

period and quantified fluo-4 fluorescence for both control and VLDL treated conditions 

(Figure 31A). There appeared to be a prolonged response mostly due to higher average 

intensity per cell before the 120 second mark and due to a higher number of cells 

remaining in their ‘activated’ state after that (Figure 31B). Looking more closely at the 

time-frame when we start seeing an increase in fluorescence (Figure 31C) there was no 

difference between both conditions. We calculated the moving standard deviation and 

defined a standard deviation of 0.25 as indicating a response. With this we were able to 

determine that for both conditions a shear stress value of 0.11 dyn/cm2 elicited a 

response (Figure 31D). 

 

Figure 31: Determining the shear sensitivity of lymphatic endothelial cells pre-incubated with VLDL. A) Both VLDL 
incubated cells and controls were exposed to a ramp shear stress profile going from 0-4 dyn/cm2 for 1 minute. B) Fraction 
of ‘activated’ cells. While there was a differential response in terms of how fast intracellular calcium was cleared there 
did not appear to be a difference in the initial shear stress exposure required to elicit a response (C). To further clarify 
this the standard deviation was calculated over time and a value of 0.25 was defined as being responsive. Shear 
sensitivity was calculated to be around 0.11 dyn/cm2 for both groups (D). N = 6, error bands represent SEM in (A) and 
(B), and SD in (C). 
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The fluorescence peak and time of occurrence for the VLDL treated group was the same 

for that of the control (P = 0.259) (Figure 32A). The VLDL treated group however has a 

longer response and slower clearance rate as evident by the fact that the area under the 

curve for the VLDL group was 1.57x greater than the control (ratio = 386/246). At 120 s 

post-stimulation there was a significant difference in the remaining intracellular calcium 

signal (P = 0.0093) (Figure 32B).  

 

Figure 32: Quantifying the effect of VLDL pre-incubation on peak response and clearance dynamics. A) The peak 
fluorescence in both amplitude and time of occurrence for VLDL incubated cells was the same as control. B) The 
fluorescence signal for the VLDL treated group was significantly higher at 120 s post-stimulation compared to controls. 
This could likely indicate an increased Ca2+ concentration compared to control. N = 6, error bars represent SD. 

5.5. Discussion and Conclusion 
Our preliminary findings presented here demonstrate that lymphatic endothelial 

cells (LECs) respond to the local environment that they are exposed to in mesenteric 

lymphatic vessels. LECs appear to have the capacity to sense the type of shear stress 

profile they are exposed to even when both the average and peak magnitudes were the 

same in both the ramp and oscillatory flow cases. This is not very surprising considering 

oscillatory flow induced higher intracellular calcium flickers than other types of flow 

profiles in osteoblasts 176 and blood vascular cells were shown to be able to sense the 

direction of flow and align accordingly 177 but in our study the net direction and average 

magnitude were always the same but the instantaneous magnitude dynamically changed. 

While we initially hypothesized that the Ca2+ signal would follow the shear profile this did 

not turn out to be the case. It seemed that when a given cell was exposed to shear it 
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‘switch on’ and was blind to further changes in the shear magnitude and direction. The 

cells exposed to oscillatory flow seemed to have a stronger intracellular Ca2+ signal 

indicating a more pronounced response that lasted longer than cells exposed to a ramp 

profile.  

Recent work by Jafarnejad et al. 2015 171 demonstrated the intracellular calcium 

response due to a step shear profile and showed that the peak occurred on the order of 

1.5 minutes while with our cells the peak typically occurred within 40 seconds and the 

calcium signal started decreasing while the shear stimulus was still occurring. One main 

difference could be attributable to the cell line used. Whereby the origin of both our cells 

and the line Jafarnejad used were dermal lymphatics we obtained our line from Lonza 

while the other study used cells from PromoCell. In addition, the other study used Fura-2 

measurements which are ratiometric in nature permitting more reliable calcium 

concentration calculations and less prone to erroneous readings due to photobleaching. 

Fluo-4 photobleaches to around half of its initial fluorescence intensity within 5 minutes 

when exposed to high light intensity (lower bleaching rate than fura-2) 178 . Due to the 

sensitivity of the back-illuminated camera we used, the decrease in the fluorescence 

signal is not due to photobleaching but actual decrease in Ca2+ binding. 

While we showed interesting preliminary results on the temporal dynamics of 

intracellular calcium in response to both different shear profiles and incubation with 

VLDL, work is still in progress to clarify the molecular basis for these comparisons 

including the extent to which both local cell calcium stores and extracellular calcium influx 

play a role. Although eNOS has been shown to be shear mediated 179,180 it is difficult to 

conclude at this point that the intracellular calcium increase upon shear stimulation is due 

to the eNOS pathway. Further work quantifying mRNA expression post-stimulation might 

be required to determine if eNOS is in fact upregulated in the case of VLDL incubation.  
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VI. AN INTEGRATED IN VITRO IMAGING PLATFORM FOR 

CHARACTERIZING FILARIAL PARASITE BEHAVIOR WITHIN A 

MULTICELLULAR MICROENVIRONMENT 
 

6.1. Abstract 
Lymphatic Filariasis, a Neglected Tropical Disease, is caused by thread-like 

parasitic worms, including B. malayi, which migrate to the human lymphatic system 

following transmission. The parasites reside in collecting lymphatic vessels and lymph 

nodes for years, often resulting in lymphedema, elephantiasis or hydrocele. The 

mechanisms driving worm migration and retention within the lymphatics are currently 

unknown. We have developed an integrated in vitro imaging platform capable of 

quantifying B. malayi migration and behavior in a multicellular microenvironment 

relevant to the initial site of worm injection by incorporating the worm in a 

Polydimethylsiloxane (PDMS) microchannel in the presence of human dermal lymphatic 

endothelial cells (LECs) and human dermal fibroblasts (HDFs). The platform utilizes a 

motorized controllable microscope with CO2 and temperature regulation to allow for 

worm tracking experiments with high resolution over large length and time scales. Using 

post-acquisition algorithms, we quantified four parameters: 1) speed, 2) thrashing 

intensity, 3) percentage of time spent in a given cell region and 4) persistence ratio. We 

demonstrated the utility of our system by quantifying these parameters for L3 B. malayi 

in the presence of LECs and HDFs. Speed and thrashing increased in the presence of both 

cell types and were altered within minutes upon exposure to the anthelmintic drug, 

tetramisole. The worms displayed no targeted migration towards either cell type for the 

time course of this study (3 hours). When cells were not present in the chamber, worm 

thrashing correlated directly with worm speed. However, this correlation was lost in the 

presence of cells. The described platform provides the ability to further study B. malayi 

migration and behavior. 
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6.2. Introduction 
Lymphatic Filariasis (LF) is the single largest world-wide source of secondary 

lymphedema 26 and is caused by adult parasitic nematodes that target and dwell in the 

lymphatic system.  An estimated 120 million people in 73 countries are currently infected, 

and a further 1.4 billion live in areas where filariasis is endemic 27. Of the 120 million 

people harboring the parasites, 90% have Wuchereria bancrofti, while Brugia malayi and 

Brugia timori infections account for the other 10% 28. All three parasites use mosquitoes 

as transmission vectors 29. Infection is initiated when the host-seeking mosquito deposits 

an infective third-stage larva (L3) on the skin of the host during the process of obtaining 

a blood meal. The infective larvae then penetrate the skin at the site of the bite, 

presumably guided by chemoattractants 30,  and migrate to the lymphatic vessels and 

lymph nodes of the host where after 6-12 months they mature into adult worms. The 

adult worms may reside within the lymphatic system for years before the host shows any 

clinical manifestations such as lymphedema, hydrocele, elephantiasis, chyluria and 

compromised immunity 31–37. Following mating in the lymphatics, the parasites release 

live progeny called microfilariae, which circulate in the bloodstream. These microfilariae 

can then be ingested by a mosquito during a blood meal, where they undergo 

development to form L2 and finally L3 larvae. Hence, the life cycle continues 32.  

In the year 2000, the World Health Organization (WHO) launched the Global 

Alliance to Eliminate Lymphatic Filariasis (GAELF). The GAELF has been one of the most 

rapidly expanding global health programs in the history of public health with the goal of 

eliminating LF by 2020 through annual mass drug administration (MDA) 27,29,38,39. While 

killing the adult worms is considered one of the best strategies, the drugs used in MDA 

are only effective at killing microfilaria, and not the adult worms 40–45. Thus, breaking the 

cycle of transmission has proven to be difficult. Additionally, these treatment strategies 

provide no relief for the estimated 120 million people already infected. As we move from 

controlling the disease to eliminating it, an understanding of the mechanisms by which L3 

filarial parasites target and migrate towards lymphatics and how they behave in the 
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presence of the lymphatic environment will be crucial in developing treatment strategies 

targeting the migration process as well as the lymphatic-inhabiting adult worms.  

In vitro experiments suggest B. malayi induce local lymphatic remodeling via up-

regulation of matrix metalloproteases (MMPs) 13 and actively secrete proteins to 

modulate immune function and evade detection 35. Experiments with L3 B. pahangi, 

nonhuman filarial parasites, suggest sera isolated from mammals preferentially spur 

chemotaxis, possibly guiding worm penetration into the host at the bite site 30. 

Additionally, experiments with intradermally injected B. pahangi exhibit differential gene 

expression compared to intraperitoneal injection 181. These experiments suggest filarial 

parasites actively sense and respond to the local cellular microenvironment. Nematodes 

respond to a variety of different stimuli. Chemotaxis mediated by movement toward or 

away from chemical gradients, plays an important role in food- and mate-finding, and 

other aspects of nematode interactions. In very few cases have attractive substances 

been isolated and identified 182. There is currently no high throughput in vitro imaging 

platform that allows researchers to quantify the complex interactions between these 

parasites and their multicellular host environment. Understanding how filarial worms 

interact with the multicellular microenvironment may reveal how they target and migrate 

towards the lymphatic system, and why they reside in it. This will provide invaluable 

insight for the anti-parasitic drug community and aid in the development of drugs that 

target the migration process and adult worms which will greatly aid in MDA elimination 

efforts. Additionally, it could lead to insight as to how worms utilize the unique 

environment of the lymphatic to enhance drug resistance and immune evasion. 

Assays have been developed in recent years that quantify worm migration, 

development, behavior and viability 183–196. Existing worm trackers either use the centroid 

position 192,197–199 of the worm or a ‘‘skeleton’’ of the worm’s shape 185,186,189,200–202 to 

track its location. Centroid-based trackers define worm position as the geometric center 

of the segmented worm in each video frame. They can follow multiple worms at low 

magnification or, with the aid of a motorized x-y stage and feedback control, they can 

follow single worms over multiple hours 197,198. The throughput of such trackers can be 
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increased by operating several setups in parallel 203. Centroid-based trackers provide 

limited information about the details of worm behavior such as thrashing. Skeleton-based 

trackers, by contrast, generally operate at high magnification and derive a skeleton of 

each worm from segmented images. These skeletons provide extensive information 

about behavior. Existing assays rely on motorized x-y motorized stages, read only single 

wells at a time, are low-throughput, and do not offer quantitative regional based tracking. 

While many of these systems have extensive uses, there is no current integrated platform 

that is capable of quantifying migration and regional cell-proximity based behavior of 

multiple worms in a multicellular microenvironment at high magnification. 

Here, we describe a scalable platform that can track multiple worms in parallel, 

and extract key parameters describing migration and regional based behavior using a 

novel co-culture system which exposes a single L3 B. malayi worm to both lymphatic and 

dermal layer cell types. The application can process multiple worms simultaneously 

without user intervention, allowing for long-term experiments in a CO2 and temperature 

controlled environment. This system can be used to assay large parasites such as filarial 

parasites and study their targeted migration towards a variety of desired cell types. Our 

system is scalable for a variety of multi-well devices providing the ability to alter the worm 

environment for high-throughput drug screening.  In its current 7-lane configuration, we 

characterized the behavior and tracked the migration patterns of L3 B. malayi in the 

presence of cell types specific to the human interstitium by quantifying four key 

parameters; 1) speed, 2) thrashing, 3) percentage of time spent in a cell region, and 4) 

persistence ratio. Furthermore, we validated the platform’s sensitivity to worm behavior 

by quantifying the effect of the common anthelmintic drug levamisole (in the form of 

tetramisole) 204,205 on L3 B. malayi. 

6.3. Methods 

Brugia malayi Culture 
Freshly isolated L3 B. malayi parasites were obtained from the National Institutes 

of Health Filarial Research Reagent Resource (FR3) 206 at the University of Georgia 

(Athens, GA). Worms were rinsed in 5 successive washings with Endothelial Basal Medium 
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(EBM) (Lonza, New York) supplemented with 20% FBS (Atlanta Biologicals Lawrenceville, 

GA), 1% Glutamax, 1% Penicillin-Streptomycin-Amphotericin (Gibco, New York), 25 

mg/mL cyclic-AMP and 1 mg/mL hydrocortisone acetate (both from Sigma, St. Louis, MO). 

The worms were then maintained in 10 mL of EBM at 37 °C in a 5% CO2 incubator for at 

least 18 hours prior to experimentation. 

Cell Culture 

Lymphatic endothelial cells (LECs) were obtained through isolation from human 

neonatal foreskins via immunomagnetic separation using the LEC marker podoplanin as 

described previously 207. The LECs were expanded in T75 flasks that had been previously 

coated for 1 h with a collagen solution containing type I rat tail collagen (BD Biosciences, 

San Jose, CA) at a concentration of 50 µg/mL in 0.1% acetic acid (Sigma). The cells were 

grown in EBM (Lonza, New York) supplemented with 20% FBS (Atlanta Biologicals), 1% 

Glutamax, 1% Pencillin-Streptomycin-Amphotericin (Gibco), 25 mg/mL cyclic-AMP, and 1 

mg/mL hydrocortisone acetate (both from Sigma). LECs were split at 80-90% confluence 

and were used in experiments either at passage 8 or 9. Human dermal fibroblasts (HDFs) 

were cultured in Dulbecco's Modified Eagle Medium (DMEM) (Lonza) supplemented with 

10% FBS and 1% Pencillin-Streptomyacin-Amphotericin. HDFs were split at 80-90% 

confluence and were used in experiments at passage 14. 

Decision Chamber 

The mold for the decision chamber was designed in Autodesk Inventor 2013 and 

milled in 6061 aluminum (Figure 33A). To construct a device, poly(dimethylsiloxane) 

(PDMS) with a 10:1 ratio of base to curing agent (Sylgard 184, Dow Corning) was poured 

in the mold, degassed for 20 minutes using a vacuum chamber, and then cured at 60 °C 

for a minimum of 8 hours. The mold featured seven equidistant linear lanes, which 

allowed for the culture of two different cell types in each lane. Each cell region (referred 

to as ‘well’ throughout) started with a 200 µm down step which allowed for additional 

fluid retention in the region during the cell seeding process but did not significantly 

impede worm movement. In addition, only the ‘well’ region was adherent to cells due to 

a collagen coating. Regions outside of the well (PDMS surface) did not allow cell adhesion 
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and thus prohibited cell migration. The device dimensions were chosen to provide the 

worm, which is placed in the center, with equal access to the cell types being evaluated 

in tandem (Figure 33B and C). The dimensions of each lane were 30 x 3 mm. Each cell 

region occupied 22.5 mm2 (25% of the total lane area). Full schematics and CAD files of 

the mold are available upon request. 

 

Figure 33: A worm-cell coculture device for studying nematode migration and behavior in a multicellular 
microenvironment. (A) A rendering of the aluminum mold used to cast the PDMS device (B) A rendering of the PDMS-
based coculture device consisting of seven parallel lanes. (C) A top-view schematic showing the various regions discussed 
in this study. Each cell region occupies approximately 25% of the total lane area. The ‘humidifier’ is filled with water in 
order to limit media evaporation, flow lanes are included in the device for future flow-related experiments but were not 
utilized in the current study. (D) LECs and HDFs cultured in the device before and after a 3-hour exposure time to the 
worm (blue = nucleus, green = Actin). Spreading of the cells was less pronounced than what would be seen on polystyrene 
plates due to the surface roughness of the machine PDMS mold. The presence of the worms in the device did not seem 
to affect cell viability. 

User Interface 

A graphical user interface (GUI) was created in LabVIEW 2013 (National 

Instruments, Austin, TX). The GUI allows the user to select the number of lanes to track, 

the duration to track each worm for during an imaging cycle and the total experiment 

time. After setting the initial parameters, user interaction was no longer required. The 



86 
 

developed LabVIEW virtual instrument was also used to interface the microscope control 

dynamic link library (dll) with the rest of the imaging program. 

Microscope Control 
The Zeiss MTB2004 64 bit SDK along with Visual Studio 2010 (Microsoft, Redmond, 

WA) were used to create a C# dynamic link library (dll) allowing full control of a Zeiss 

AxioObserver Z1 inverted microscope (Carl Zeiss, Jena, Germany) along with a motorized 

x-y stage. The dll was accessed using a LabVIEW virtual instrument. The developed library 

allowed for full control of all microscope features including; filter-wheel, objectives, light 

intensity, incubation temperature and CO2 levels, and x-y-z position. 

Image Acquisition 

Video frames required for centroid location and post-acquisition analysis were 

captured with a Guppy Pro CCD camera (Allied Vision Technologies, Newburyport, MA) at 

15 frames/second (fps) with a resolution of 640 x 480 pixels. The program ran on a Lenovo 

Intel dual-core CPU with 4 Gb of RAM (Lenovo, Morrisville, NC) running Windows 7 64 bit. 

For the set of experiments carried out in this study a 2.5x microscope objective was used 

with a 0.5x C-mount camera adapter giving a total effective magnification of 12.5x 

(accounting for the 10x microscope phototube). 

Tracking Algorithm 

Video was acquired at 15 fps. Frames were stored as individual 8-bit compressed 

TIFFs. Each two consecutive frames were subtracted to obtain a difference image 

representing motion-based segmentation of the worm. The resulting image was then 

binarized using a clustering based thresholding approach using the included blocksets in 

the Vision Development Module 2013 (National Instruments). Small particles were then 

filtered out and a binary image convex hull function was applied. The centroid location of 

the resulting segment was then calculated and taken as being a close approximation to 

the worm centroid. The motorized stage was then moved in the x-y plane to align the 

calculated centroid with the static center of the camera field of view (FOV) thus moving 

the worm to the center of the FOV. This process is repeated every two seconds, while 

video of the worm is acquired, and the x-y position of the stage (representing the worm 
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location) is stored along with the corresponding time-stamp. The program then moves 

the stage to the next lane in which the center is pre-determined and repeats until all the 

lanes have been covered. When the program returns to a previously imaged lane, it 

moves to the last known location of the worm. If the worm was not found, it begins a 

scanning process from either the top or bottom of the lane until the worm is found. The 

scanning process alternates the direction of scanning to negate the effect of stage 

movement on worm displacement. Video is only stored when the worm is in the FOV. 

Figure 34A provides a block diagram representing pseudo-code for the worm tracking 

implementation. Full code is available upon request. 

 

Figure 34: Block diagram of the worm tracking and thrashing algorithms. (A) The procedural steps involved in the 
worm tracking algorithm. Initial worm location in each lane is determined manually. The program then starts the process 
of acquiring video and cycles through all the lanes by moving to the last known worm location. If the worm is not found, 
then a linear scanning process initiates in order to find the worm. The scanning process alternates the start position, 
hence the direction of movement, in order to negate the effect of the microscope stage movement on worm 
displacement. (B) The thrashing algorithm takes two consecutive images and subtracts them to remove both 
background and all static features. The resulting image represents degree of worm movement during the time period 
separating the two frames (~66 ms for a frame rate of 15 fps). The segment is then thresholded and the mean intensity 
of the resulting image calculated.  The mean intensity is summed for the entire length of an imaging cycle (2 seconds) 
and the resulting values are normalized to obtain the ‘thrashing index’ metric. 

Experimental Procedure 
The PDMS decision chamber was rinsed with 70% ethanol followed by deionized 

water and left in the oven at 60 °C to dry for 30 minutes. The chamber was then UV 

treated in a UV cleaner for 30 minutes to increase surface hydrophilicity. The cell regions 

of the lanes were treated with 50 µg/mL of Type I Rat Collagen (BD biosciences) in sterile 

0.1% acetic acid for 1 hour at room temperature. Either human dermal fibroblasts or 

lymphatic endothelial cells were seeded in the well at a density of 20,000 cells/well in 100 

µL of EBM, and allowed to adhere for 30 minutes at 37 °C. Regional selection for cell 
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seeding was randomized to remove any bias inherent to the chambers that might 

preferentially direct worm taxis. The chamber was then centrally flooded with EBM and 

cultured for 2 hours at 37 °C. Thirty minutes prior to an experiment, the EBM was replaced 

with fresh EBM. Single worms were then introduced into the center regions via pipette. 

Worms were individually centered in the field of view and location was recorded within 

the user interface software. After all worms had been centered and located, the tracking 

system was initiated and worms were tracked for 3 hours. A halogen light source was 

used to illuminate the worm being imaged. The worm was only exposed to the light 

source when being tracked and was in complete darkness during all other time of the 

experiment (hence better mimicking in vivo light conditions). We used the device with 

four experimental conditions using two cell types as shown in Figure 33C. Tetramisole 

experiments followed the same procedure, except tetramisole (Sigma) was added to a 

lane to yield concentrations of 1.2 mM or 2.4 mM. 

Post-Acquisition Analysis 

Tracking the centroid and recording video for each worm within the device 

allowed us to extract various metrics describing worm motility both in the context of the 

entire lane as well as specific regions. ‘Speed’ was calculated for each section of the 

device, to compare worm speed in different environments, and over the entire tracking 

period. Thrashing measurements were carried out by subtracting two subsequent frames 

with an interval of 66 ms apart to obtain a difference image. The resulting image was then 

binarized using a metric based thresholding approach. The mean intensity of the entire 

image was then calculated and summed for a complete cycle (30 frames total) to obtain 

the ‘thrashing index’ metric (Figure 34B). In addition to the two motility metrics, the 

‘percentage of time spent’ in any given region was calculated. The ‘persistence ratio’ was 

calculated by subtracting the final location of the worm at the end of the experiment from 

the location at the start and dividing by the total displacement of the worm during the 

entire 3-hour experiment. To determine the extent that the persistence ratio might 

change over time, the persistence ratio was also calculated over a 10 minute non-

overlapping sliding window. Algorithms for determining the speed, time spent and 
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persistence ratio were written in MATLAB 2013 while LabVIEW 2013 was using for the 

trashing metric. 

Statistical Analysis 
A Kruskal-Wallis nonparametric test followed by Dunn’s test to correct for multiple 

comparisons was used for statistical analysis of the percentage of time spent in each cell 

region. All other statistical tests were performed with a one-way ANOVA followed by a 

Tukey test to correct for multiple comparisons. All statistical analyses were performed in 

GraphPad Prism 6. P  0.05 was considered statistically significant. Graphical P value 

designation was as follows: (P  0.05) = *, (P  0.01) = **, (P  0.001) = *** and (P  

0.0001) = ****. All data is presented as mean ± standard deviation. Sample number is 

indicated in each figure caption where applicable. 

6.4. Results 

A scalable PDMS-based coculture choice chamber 
The choice chamber allowed for co-culture of two cell types along with the L3 B. 

malayi thus creating a multicellular microenvironment for the worm. The aluminum mold 

used for the casts allows for repeated manufacturing of devices for a large number of 

experiments (Figure 33A). Microgrooves resulting from machining the mold had the 

advantage of providing a relatively rough surface, thus increasing friction, to potentially 

facilitate worm movement. Made of PDMS, the chamber was both biocompatible and 

optically clear allowing for both transmission and reflective imaging using an inverted 

microscope. The linear parallel lane configuration is also scalable to include more lanes 

per device if needed. The humidifying chamber, filled with sterile water or PBS, limited 

evaporation of the media (Figure 33B). Cells remained intact at the conclusion of the 

experiment with minimal signs of cytoskeletal remodeling as can be seen by the green 

actin stain of a representative image of the LECs and HDFs (Figure 33D). 

An automated imaging platform for quantifying speed, thrashing and migratory 

behavior 

We developed an in vitro imaging platform that was used to study the migration 

behavior of nematodes in a multicellular microenvironment. The tracking algorithm 
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provided the capability of imaging multiple worms under high magnification by imaging 

one worm at a time and then moving on to the next. If the worm was lost, then a search 

process was initiated to find the worm. A two-second video sequence was recorded along 

with the location of the worm during each cycle (Figure 34A). The system was built around 

a fully controllable environment in terms of both atmospheric CO2 levels and 

temperature, which made it ideal for long-term experiments requiring prolonged 

monitoring and quantification. With our current 7-lane configuration and 2-second 

imaging window for each worm it took approximately 120 seconds for a full cycle (in 

which 7 worms were tracked and imaged) with the main time spent on the search 

algorithm to find the worm if it had left the FOV of the last known location. To 

demonstrate the sensitivity of the two metrics for detecting changes in worm behavior, 

we exposed L3 B. malayi to tetramisole, a known anthelminthic, and showed that both 

speed and thrashing intensity decreased as a function of tetramisole concentration 

(Figure 35). At a concentration of 1.2 mM there was a 33% reduction in worm speed and 

a 37% reduction in thrashing. These values were increased to 70% for speed and 72% for 

thrashing when the concentration was increased to 2.4 mM.  This change in speed was 

observed within 10 minutes of treatment with the tetramisole. 
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Figure 35: Tetramisole reduces both worm speed and thrashing. Representative speed (A) and thrashing (B) over a 3-
hour experimental period for three worms under different concentrations of tetramisole (0.0, 1.2 and 2.4 mM) as 
measured with our platform. Tetramisole is a known paralytic agent that affects nematode thrashing. The gray interval 
represents a 10-minute gap when the drug was added and imaging session restarted. Our platform can detect changes 
in both worm speed (C) and thrashing (D) after drug administration. While both speed and thrashing decreased as 
tetramisole concentration was increased, the thrashing metric was more sensitive to the changes in tetramisole 
concentration. N = 9, error bars represent standard deviation. Sample videos provided in supplemental materials. 

L3 B. malayi motility is altered in the presence of cells 
The location data along with the video sequences allowed us to extract both the 

speed and thrashing intensity for each worm over time demonstrating that the L3 B. 

malayi maintained relatively constant motility throughout the experiment with a speed 

of around 10-15 µm/s (Figure 36). Worm speed was highest in the presence of LECs 

followed by HDFs (15 µm/s and 12 µm/s respectively). No difference in speed was found 

when both cell types were present versus no cells at all (Figure 37A). Thrashing was 

highest in the presence of LECs followed by HDFs and then when the two cell types were 

both present (Figure 37B). While the overall presence of cells within the device enhanced 
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worm motility, there was no difference in speed or thrashing when the worm was in 

physical contact with the cells, i.e. when the worm was in a given cell region (Figure 38). 

In addition, we found that in the case of a completely empty lane (no cells or collagen) 

the thrashing intensity correlated with speed to a high degree (Pearson correlation 

coefficient of 0.81) but the two metrics were no longer correlated when cells were 

present (Pearson correlation coefficients of 0.006 for HDFs + LECs, -0.049 for LECs alone 

and 0.12 for HDFs alone, Figure 39). 
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Figure 36: L3 B. malayi speed and thrashing, over a 3-hour experimental session, remain constant. (A-H) Speed and 
thrashing plots over a 3-hour period under each lane condition. 1) Absence of cells: no cells (nor collagen coating) present 
in the lane, 2) LECs vs. no cells: LECs on one well and collagen coating on the other, 3) HDFs vs. no cells: HDFs on one 
well and collagen coating on the other, and 4) HDFs vs. LECs: HDFs on one well and LECs on another. A relatively flat 
trend was seen for all cases indicating worms were viable and showed consistent behavior throughout the experimental 
time-frame. N  28, error band represents standard deviation. 
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Figure 37: L3 B. malayi exhibit increased speed and thrashing in the presence of cells. Average speed (A) and trashing 
(B) of the worms under different conditions: When there are 1) only LECs in the lane 2) only HDFs in the lane 3) both 
HDFs and LECs in the lane, and 4) no cells in the lane. The worms were most active when in the LEC lane. They were also 
more active when only one of the cell types was present compared to both being present in the same lane. N  28, error 
bars represent standard deviation. 

 

Figure 38: L3 B. malayi speed and thrashing are independent of physical contact with cells. Speed of worms and 
thrashing behavior when in physical contact with LECs (A, E), HDFs (B, F), HDFs + LECs (C, G) and combined data (D, H). 
No statistical differences were observed. N  28, error bars represent standard deviation. 
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Figure 39: L3 B. malayi speed and thrashing are correlated in an empty lane, but not when cells are present. (A) In 
the empty lanes thrashing correlated with speed (Pearson correlation coefficient; r = 0.81). (B-D) There was no 
correlation when there were cells in the lane (r = 0.006, -0.049 and 0.12 respectively) which covered 25% of the total 
lane area. N  28. 

L3 B. malayi do not show targeted migration towards LECs or HDFs 
In order to determine whether L3 B. malayi had a preference towards a certain 

cell type we quantified the percentage of time spent in each cellular region of the device. 

There was no preference towards a certain cell type as the worms spent equal time in all 

regions regardless of the culture conditions (Figure 40). To quantify the presence of any 

targeted migration we calculated the persistence ratio and found that the worms had 

very low persistence regardless of the culture conditions, suggesting that the worms’ 

migration, while rather active, was fairly random (Figure 41A-E). This lack of targeted 

migration is further illustrated by a tracing of a typical worm’s velocity, which oscillates 

back and forth as the worm continuously migrates up and down the lane (Figure 41). 
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Figure 40: No difference in percentage of time spent by L3 B. malayi in each lane region. (A-D) Cell (HDF or LEC) and 
no cell (only collagen coating) areas each cover 25% of the lane, while the empty region is 50% of the area. No statistical 
differences were observed when accounting for area differences. N  28, error bars represent standard deviation. 
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Figure 41: L3 B. malayi do not show targeted migration towards LECs or HDFs. (A) The persistence ratio calculated 
over the entire time of the experiment (3 hours). (B-E) The persistence ratio calculating for a 10 minute non-overlapping 
sliding window. (F) A representative velocity plot for one worm illustrating the randomness in directionality. N  28, 
error bars and bands represent standard deviation. 

6.5. Discussion 
We demonstrated a platform for monitoring long-term nematode migration 

related behavior in a complex multicellular microenvironment that is potentially scalable 

for high through-put drug screening. The image acquisition system is flexible and 

surpasses most other published systems in acquisition capability 208. The platform can be 

used with any nematode, including C. elegans, which are the most widely used model for 

studying nematode migration and behavior, since both tracking and analysis are 

independent of worm size and shape. Video is captured using a 640 x 480 pixel resolution 

camera but is capable of using any NI Vision compatible camera. Experiments were 

performed at a frame rate of 15 fps while the system is configurable to run at 60 fps 

without any reduction in resolution. The graphical user interface (GUI) is easy to use and 

requires minimal user intervention. The set-up is scalable to include any given number of 

lanes with the only limitation given by the minimum required dimensions of the lanes in 

order to encompass the given worm size and how much ‘blind time’ is acceptable 

between successive imaging cycles. From our experiments with the current device 

dimensions, the addition of each lane adds an average of 17 seconds of blind time as the 
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algorithm has an additional lane to scan and image. While the software is only compatible 

with current Zeiss manufactured microscopes, due to the fact that we utilized the Zeiss 

microscope SDK, it does provide us with full control of every part of the microscope. Due 

to the modular design of the control VIs, we can easily add full control of the fluorescent 

filter wheel, objective, focus, illumination and dual-camera ports for experiments 

requiring more complex image acquisition workflows. The PDMS-based choice chamber 

provides a cheap and robust platform for nematode behavioral assays in which their 

interaction with various cellular environments would be of interest. Although the worms 

are capable of moving on the surface of the PDMS a three dimensional matrix 

environment would better recapitulate the migratory environment the worm must 

traverse to reach the lymphatic 209–211. This setup would provide the benefit of creating a 

more defined concentration gradient of any potential chemo-attractants released by 

cells, however, it is uncertain whether L3 B. malayi have the capability of moving through 

such an environment. 

We demonstrated that L3 B. malayi exhibited an increase in motility, as defined 

by speed and thrashing, when cells are cultured with the worm. The worms seemed to be 

most motile when LECs were present, followed by HDFs and then followed by the two cell 

types together. Co-culture with specific cell types has been previously shown to enhance 

worm survival. Falcone et al. showed that by using Jurkat and HDFs as feeder cells, L3 B. 

malayi survival was dramatically increased and allowed L3s to mature into L4s in vitro 212. 

Thus, the increased motility seen with our system could be resulting from the production 

of an (or several) important micronutrient or metabolite by the mammalian cells that is 

enabling increased worm motility. Given the limited information available regarding B. 

malayi sensory receptors we cannot at this time provide any further details regarding 

what molecules could be responsible for the modified behavior. What is interesting 

however, is that we have demonstrated that L3 B. malayi are capable of ‘sensing’ their 

multicellular environment, within minutes after exposure to cells, which suggests a 

cellular cue could play a role in determining their migration patterns and preference to 

reside in lymphatics. In addition to this rapid response in motility to cells, we 
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demonstrated that tetramisole, a paralytic agent commonly used to reduce nematode 

motility, reduced B. malayi motility within minutes of adding the drug to the worms. Thus 

the kinetics of action of tetramisole on B. malayi is comparable to C. elegans, which at 

similar drug concentrations usually show decreased motility within 15 minutes 213,214. 

Thrashing is a common metric to quantify the effect of a drug in parasite studies and we 

have demonstrated that that our system can detect immediate changes in both thrashing 

and speed under a given drug. Therefore, the system can thus be used as a rapid drug 

screen for B. malayi, while at the same time culturing the worms in a multicellular 

environment. Additionally, there has been renewed interest in developing new methods 

of in vitro culture for filariasis nematodes that can support the support the entire life cycle 

of the worm. Traditional approaches have required worms to be cultured for weeks at a 

time to determine the culture supplements that result in the lowest worm death. Given 

that both cells and drugs produced a measureable (yet subtle) difference in worm 

behavior that could be immediately quantified, this system provides an ideal platform for 

pre-screening dozens of different culture conditions for optimizing an in vitro parasitic 

host environment including the presence of cell derived chemokines such as CXCL12 

which was previously shown to enhance the growth of L4 filariae 215.  

For the purpose of this study, we chose three widely used metrics to quantify 

behavior: speed, thrashing, and persistence ratio. In addition to these metrics, we 

determined the percentage of time spent at each cell type as a way of assessing whether 

L3 B. malayi had a certain preference for being in physical proximity to a given cell type. 

Our results indicated that L3 B. malayi did not have a preference towards a given cell type 

nor did they modify their motility (defined by both speed and thrashing) when in physical 

contact with LECs or HDFs. Interestingly, when cells are not present an increase in worm 

thrashing directly translates into an increase in worm speed, as suggested by the two 

parameters’ high degree of correlation. The fact that this correlation is lost when cells are 

present, suggests that not only are the worms increasing their speed, but also that 

thrashing (as we have determined it) no longer is the driving mechanism determining 

worm migration. At the very least, the analysis capabilities of our platform provide the 
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ability to discriminate between very subtle changes in behavior that otherwise would not 

be apparent with traditional approaches. We then attempted to determine whether B. 

malayi exhibited directional guidance to lymphatic endothelial cells and found that they 

had no preference towards either cell type tested (LECs and HDFs). While chemotaxis 

through a gradient of CCL21 released by lymphatic endothelial cells has been shown to 

promote dendritic cell migration to lymphatic vessels 209,216,217, there are no known 

chemotactic molecule-receptor pairs identified for filarial parasites, much less ones that 

involve a lymphatic chemokine. Such chemotaxis of the larvae to serum, as shown 

previously, would support the hypothesis that chemotaxis can drive targeted migration 

30,218,219. However using our platform, chemotaxis does not seem to be the main 

contributor to migration towards lymphatics. This phenomenon could be due to the fact 

that stable chemokine gradients are not formed in our device due to the high diffusion 

coefficient of relevant chemokines in cell culture media. Other factors in the in vivo 

environment not captured in the current iteration of the device might play a large 

contribution to migration including the contents of lymph, the presence of immune cells, 

and interstitial flow (which is always directed towards the nearest draining lymphatic and 

has been implicated in lymphatic-targeting for other cell types 211,220,221). In addition, 

worm movement within the dermis might be random until the worm encounters a point 

of entry into the lymphatics (i.e. collecting lymphatic vessels) which are large enough to 

encompass the worm and fragile enough to be penetrated given their thin walls. 

6.6. Conclusion 
The described platform provides a tool for parasitologists to explore mechanisms 

that drive L3 filarial worms to target lymphatic vessels, to screen for the efficacy of 

potential new drug compounds, and to engineer in vitro environments that provide a 

more viable host for long-term worm culture. While in its current form our study provides 

valuable insight by quantifying L3 B. malayi behavior both in the presence and absence of 

dermal specific cells, the in vitro platform needs to be further expanded to better capture 

key biophysical and biochemical aspects that are essential to the host environment 

including flow and concentration gradients. In vivo flow conditions can be replicated by 
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flowing media through the channels with the appropriate wall shear stress values. A 

stable diffusion gradient will be somewhat challenging without the incorporation of a 3D 

matrix but one possibility would be depositing an immobilized 2D gradient on the surface 

of PDMS 222 to test a given chemokine in question. While MDA has proven successful to 

an extent, the main limiting factor, second to non-compliance 223, is that the drugs used 

do not kill adult worms. Hence, it is crucial that as we move from control to elimination 

that we find new strategies to disrupt the transmission cycle. This shift requires 

understanding L3 B. malayi migration and the effects of drugs in an environment that 

mimics in vivo conditions with the goal of creating an environment close enough to the 

human host to ultimately culture Wuchereria bancrofti, the primary filarial species that is 

responsible for 90% of infections. 
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VII. CONCLUSION 
 

 

In this scholarly work, we presented several novel engineering tools to study 

lymphatic pump function in the context of lipid uptake and for elucidating the behavior 

of the lymphatic specific filarial parasite known as B. malayi. Specifically, we developed 

an in situ imaging platform capable of simultaneous brightfield high-speed video 

acquisition and fluorescence imaging. Using custom-built image processing algorithms, 

the system allowed us to quantify the response of a rat mesenteric lymphatic vessel pump 

function to a post-prandial load. Utilizing the system we showed that contraction 

frequency and amplitude as well as average and end diastolic diameters decrease with an 

increase in lipid load. In order to clarify the contribution of viscosity to the post-prandial 

changes after a high-fat meal we utilized a microrheology approach to quantify the 

viscosity of lymph. To further elucidate the response of the lymphatic endothelium to the 

stimuli seen in the mesenteric vessels, mainly oscillatory shear and high lipid load, we 

utilized intracellular Ca2+ as a real-time output metric to quantify the response of 

lymphatic endothelial cells to these local stimuli in vitro. The animal model, imaging 

system and lymph characterization techniques developed pave the way for future studies 

exploring the role of mesenteric lymphatics in lipid absorption and transport, intestinal 

immune cell trafficking and in drug delivery targeting the lymphatics to avoid first pass 

metabolism.  

With respect to our filariasis related work we developed an in vitro platform to 

quantify the migratory patterns of B. malayi and showed that within the limitations of the 

platform these parasites do not intentionally migrate towards lymphatic endothelial cells 

but once there they have a certain preference as indicated by their increased motility.  
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7.1. Contributions 
This work can be summarized as having the following overall contributions: 

 An imaging platform capable of acquiring both high-speed video and fluorescence 

images simultaneously. 

 An image processing algorithm suitable for stabilizing high speed videos from the 

mesentery with large motion artifacts due to gut motility and respiration. 

 A set of image processing algorithms to quantify lymphatic contraction, flow rates 

and lipid load. 

 A rat animal model for the study of collecting vessel lymphatic lipid uptake. 

 Establishing the use of BODIPY C16 as a real-time fluorescent lipid indicator. 

 The insight that mesenteric lymphatic vessels reduce their contraction frequency, 

amplitude and both average and end diastolic diameters once exposed to high 

lipid loads. 

 Post-prandial lymph viscosity values during absorption of a high-fat meal. 

 The first evidence that intracellular Ca2+ in lymphatic endothelial cells varies with 

the type of shear stress waveform the cells exposed to and first evidence that 

mechano-regulation carried out by these cells is affected in the presence of VLDL. 

 An in vitro platform for co-culture of filarial parasites with two other cell types. 

 An automated worm tracking platform for long term tracking. 

 Image processing algorithms for quantifying worm displacement and thrashing 

behavior. 

 A low-cost imaging set-up for high-throughput screening of macrofilaricidal 

compounds on adult parasites. 
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7.2. Future Work 
The major contribution of this thesis has been to provide a comprehensive toolset 

to study the role of lymphatics in lipid transport. While many new insights have been 

gained through the various studies presented in this work, many more questions remain. 

The imaging system developed paves the way for numerous studies investigating a range 

of questions ranging from characterizing the biomechanics of mesenteric collecting 

vessels to quantifying the uptake of various lipid based drug delivery vehicles targeting 

lymphatics. As a first step however, we see this system being adapted and scaled down 

to accommodate mouse animal models. This will open up a range of possibilities by using 

genetically modified mouse models to better understand the molecular mechanisms 

governing lymphatic pump function especially in the context of lipid absorption. On the 

software side, the amount of data collected from such experiments is very large and 

processing it is not currently very efficient. All the image processing algorithms need to 

be adapted for large-scale parallel processing utilizing high performance computing 

clusters. This should minimize analysis time from several days for each animal to as low 

as a couple of minutes. While we showed that collecting lymphatic vessels exhibited a 

decrease in pumping in response to a high lipid load, there remains many unknowns on 

the exact mechanisms regulating this. Further work needs to be carried out to clarify the 

exact mechanisms involved. We suggest taking an in vitro approach by investigating the 

role of lymphatic endothelial cells in mechano-regulation, by measuring the various 

effects that mechanical and lipid stimuli have on these cells especially on their signaling 

pathways and more importantly on their vasoactive substance release. 

In addition to the above, there remains much work to be done to understand the 

behavior of filarial parasites. This includes developing more physiologically relevant in 

vitro platforms that both mimic the lymphatic environment and provide real-time 

measuring capabilities. Depending on the complexity of such platforms, they can provide 

further insight into both the lymphatic pathophysiology that these parasites cause as well 

as developing ways to safely eliminate them within the human host.  
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APPENDIX A – MATLAB CODE 
 

 

% This script conditions the velocity data for further 

analysis. The signal 

% is cleaned and smoothed. 

% x is the time axis in seconds 

% y is the velocity value in mm/sec 

% Output is the background subtracted and smoothed signal 

% Last updated 08/05/13 by Timothy Kassis 

  

function [yyy] = ProcessVelocity(x,y) 

%% Condition the waveform 

% Remove values below or above a threshold 

indices = find(abs(y)>3000); 

y(indices) = NaN; 

  

% Create a mask of where there are values for later use 

ymsk = ones(length(y),1); 

indices2 = find(isnan(y)); 

indices3 = find(~isnan(y)); 

ymsk(indices2) = NaN; 

ymsk(indices3) = 1; 

  

% Smooth the signal and apply mask 

if all(isnan(y)); 

    yy = zeros(length(y),1); 

    yyy = zeros(length(y),1); 

else 

yy = smooth(x,y,76,'rloess'); 

yyy = yy.*ymsk; 

end 

  

%% Output results and plots 

[xx,ind] = sort(x); 

  

subplot(2,1,1) 

plot(xx,y(ind),'b.',xx,yy(ind),'r-') 

legend('Original Data','Smoothed Data Using 

''rloess''','Location','NW') 

xlabel('Time (sec)') 

ylabel('Velocity (um/s)') 

  

subplot(2,1,2) 

plot(xx,yyy(ind),'r-') 

legend('Masked','Location','NW') 

xlabel('Time (sec)') 

ylabel('Velocity (um/s)') 

 



106 
 

 
% This function conditions the lipid data for further analysis.  

% t is the time axis in seconds 

% y is the intensity value (assuming taken every 5 seconds) 

% Output is an array representing intensity values in minute 

increments 

% Last updated 09/12/14 by Timothy Kassis 

  

function [ysmooth] = ProcessLipid(t,y) 

%% Condition the waveform 

ynew = ones((round(length(y)/12)),1).*NaN; 

tnew = transpose(0:60:((length(ynew)*60)-1)); 

% Take highest 6 images in each rolling minute 

j=2; 

for i = 0:12:length(y)-12 

    if i==0 

        suby = y(1:12); 

        sortedsuby = sort(suby,'descend'); 

        maxvalues = sortedsuby(1:6); 

        ysample = nanmean(maxvalues); 

        ynew(1,1) = ysample; 

    else 

        suby = y(i:i+12); 

        sortedsuby = sort(suby,'descend'); 

        maxvalues = sortedsuby(1:6); 

        ysample = nanmean(maxvalues); 

        ynew(j,1) = ysample; 

         

    end 

    j=j+1; 

end 

  

ysmooth = smooth(ynew,7,'rlowess'); 

  

%% Output results and plots 

[tt,ind] = sort(t); 

[ttnew,ind2] = sort(tnew); 

  

plot(tt,y(ind),'b*', ttnew,ysmooth(ind2),'k-', 'Linewidth', 2) 

legend('Raw', 'Filtered Smoothed with 

''rlowess''','Location','NW') 

xlabel('Time (sec)') 

ylabel('Fluorescence Intensity (AFU)') 

 

 
 

% This script conditions the diameter data for further 

analysis. The signal 

% is cleaned and smoothed. 

% Last updated 11/07/14 by Timothy Kassis 
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function yy = ProcessDiameter(t,y) 

% Remove zero values 

indices = y==0; 

y(indices) = NaN; 

  

% Remove values below or above a threshold 

ymean = nanmean(y); 

indices2 = y>(ymean+50) | y<(ymean-50); 

y(indices2) = NaN; 

  

% Smooth the signal 

yy = smooth(t,y,100,'rlowess'); 

yy(1) = yy(2); % Replace the first value to avoid a NaN 

  

% Output plots 

[tt,ind] = sort(t); 

plot(tt,y(ind),'b.',tt,yy(ind),'r-', 'LineWidth',2) 

title('Diameter Tracing','FontSize',16); 

legend('Original Data','Smoothed Data Using 

''rlowess''','Location','NW') 

xlabel('Time (sec)', 'FontSize',14) 

ylabel('Diameter (um)', 'FontSize',14) 

 

 
function [maxtab, mintab]=peakdet(v, delta, x) 

%PEAKDET Detect peaks in a vector 

%        [MAXTAB, MINTAB] = PEAKDET(V, DELTA) finds the local 

%        maxima and minima ("peaks") in the vector V. 

%        MAXTAB and MINTAB consists of two columns. Column 1 

%        contains indices in V, and column 2 the found values. 

%       

%        With [MAXTAB, MINTAB] = PEAKDET(V, DELTA, X) the 

indices 

%        in MAXTAB and MINTAB are replaced with the 

corresponding 

%        X-values. 

% 

%        A point is considered a maximum peak if it has the 

maximal 

%        value, and was preceded (to the left) by a value lower 

by 

%        DELTA. 

  

% Eli Billauer, 3.4.05 (Explicitly not copyrighted). 

% This function is released to the public domain; Any use is 

allowed. 

  

maxtab = []; 

mintab = []; 

  

v = v(:); % Just in case this wasn't a proper vector 
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if nargin < 3 

  x = (1:length(v))'; 

else  

  x = x(:); 

  if length(v)~= length(x) 

    error('Input vectors v and x must have same length'); 

  end 

end 

   

if (length(delta(:)))>1 

  error('Input argument DELTA must be a scalar'); 

end 

  

if delta <= 0 

  error('Input argument DELTA must be positive'); 

end 

  

mn = Inf; mx = -Inf; 

mnpos = NaN; mxpos = NaN; 

  

lookformax = 1; 

  

for i=1:length(v) 

  this = v(i); 

  if this > mx, mx = this; mxpos = x(i); end 

  if this < mn, mn = this; mnpos = x(i); end 

   

  if lookformax 

    if this < mx-delta 

      maxtab = [maxtab ; mxpos mx]; 

      mn = this; mnpos = x(i); 

      lookformax = 0; 

    end   

  else 

    if this > mn+delta 

      mintab = [mintab ; mnpos mn]; 

      mx = this; mxpos = x(i); 

      lookformax = 1; 

    end 

  end 

end 

 

 
% This function calculates contraction related data from the 

diameter 

% tracing and returns the following: 

% 1- AD: Average diameter 

% 2- CF: Average contraction frequency 

% 3- CA: Average contraction amplitude 

% 4- CAp: Average contraction amplitude percentage 
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% 5- MCA: Maximum contraction amplitude 

% 6- MCAp: Maximum contraction amplitude percentage 

% 7- EDD: End diastolic diameter 

% 8- ESD: End systolic diameter 

% 9- CWV: Average constriction wall velocity 

% 10- DWV: Average dilation wall velocity 

% 11- LV: Average lymphocyte velocity 

% 12- MaxLV: Maximum lymphocyte velocity 

% 13- MinLV: Minimum lymphocyte velocity 

% 14- VFR: Average volumetric flow rate 

% 15- MVFR: Maximum volumetric flow rate 

% 16- WSS: Average wall shear stress 

% 17- MWSS: Maximum wall shear stress 

% 18- FPF: Fractional pump flow 

% 19- EF: Ejection fraction 

% 20- SV: Stroke volume 

% 21- LO: Lymphatic output 

% 22- VFRLO: VFR to LO ratio 

% By Timothy Kassis last updated 08/05/13 

  

function out = CalPar(t,d,v) 

  

out = zeros(1,22); 

  

% Peak detection 

[maxtabout, mintabout]=peakdet(d,2,t); 

  

% Set threshold for peaks 

maxmindiff = sortrows([maxtabout; mintabout]) 

tempdiff = diff(maxmindiff) 

  

for i = 1:length(tempdiff) 

    if tempdiff(i) > 10 

    maxtab(i) = maxtabout(i); 

    mintab(i) = mintabout(i); 

    else 

    maxtab(i) = []; 

    mintab(i) = [];     

    end 

end 

  

% Calculate parameters 

AD = nanmean(d);   % Average diameter 

CF = length(maxtab)./max(t); % Average contraction frequency 

maxminlist = sortrows([maxtab; mintab]); 

temp = diff(maxminlist); 

CA = mean(abs(temp)); 

CA = CA(2);     % Average contraction amplitude 

CAp = (CA/AD)*100; % Average contraction amplitude percentage 

MCA = max(abs(temp)); 

MCA = MCA(2);     % Maximum contraction amplitude 
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MCAp = (MCA/AD)*100; % Maximum contraction amplitude percentage 

EDD = max(maxminlist);  % End diastolic diameter 

ESD = min(maxminlist);  % End systolic diameter 

wallvel = temp(:,2)./temp(:,1); 

syscount = sum(wallvel<0);  % Number of systolic contractions 

diascount = sum(wallvel>0);     % Number of diastolic 

contractions 

CWV = sum((wallvel<0).*wallvel)./syscount;    % Average wall 

velocity during systole 

DWV = sum((wallvel>0).*wallvel)./diascount;  % Average wall 

velocity during diastole 

LV = nanmean(v);    % Average lymphocyte velocity 

MaxLV = max(v);     % Maximum lymphocyte velocity 

MinLV = min(v);     % Minimum lymphocyte velocity 

FR = ((pi * v .* (d.^2))/6) * 0.000036; % Flow rate 

VFR = nanmean(FR);   % Average volumetric flow rate 

MVFR = max(((pi * v .* (d.^2))/6) * 0.000036);    % Maximum 

volumetric flow rate 

WSS = nanmean((4*1.5*v)./(d/2)); % Wall shear stress 

MWSS = max((4*1.5*v)./(d/2));    % Maximum wall shear stress 

EF = (EDD(1,2)^2 - ESD(1,2)^2)/EDD(1,2)^2; % Ejection fraction 

FPF = EF*CF*60; % Fractional pump flow 

SV = pi*((EDD(1,2)/2)^2 - (ESD(1,2)/2)^2)*1000;   % Stroke 

volume 

LO = SV*CF; % Lymphatic output 

VFRLO = VFR/LO; % VFR to LO ratio 

  

% Store parameters 

out(1,1) = AD; 

out(1,2) = CF; 

out(1,3) = CA; 

out(1,4) = CAp; 

out(1,5) = MCA; 

out(1,6) = MCAp; 

out(1,7) = EDD(1,2); 

out(1,8) = ESD(1,2); 

out(1,9) = abs(CWV); 

out(1,10) = DWV; 

out(1,11) = LV; 

out(1,12) = MaxLV; 

out(1,13) = MinLV; 

out(1,14) = VFR; 

out(1,15) = MVFR; 

out(1,16) = WSS; 

out(1,17) = MWSS; 

out(1,18) = FPF; 

out(1,19) = EF; 

out(1,20) = SV; 

out(1,21) = LO; 

out(1,22) = VFRLO; 
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%% Plot 

[tt,ind] = sort(t); 

  

% Diameter tracing and peaks 

subplot(3,1,1) 

plot(tt,d(ind), 'b-', 'Linewidth', 2); 

hold on; 

plot(mintab(:,1), mintab(:,2), 'g*'); 

plot(maxtab(:,1), maxtab(:,2), 'r*'); 

title('Diameter Tracing'); 

ylabel('Diameter (um)') 

hold off; 

  

% Lymphocyte velocity 

subplot(3,1,2) 

plot(tt,v(ind),'r-','Linewidth', 2) 

title('Lymphocyte Velocity'); 

ylabel('Velocity (um/s)') 

  

% Flow rate 

subplot(3,1,3) 

plot(tt,FR(ind),'g-','Linewidth', 2) 

title('Volume Flow Rate'); 

xlabel('Time (sec)') 

ylabel('Flow Rate (ul/hr)') 

  

 
% This function calculates contraction related data from the 

diameter 

% tracing and returns the following: 

% 1- AD: Average diameter 

% 2- CF: Contraction frequency 

% 3- CA: Average contraction amplitude 

% 4- CAp: Average contraction amplitude percentage 

% 5- MCA: Maximum contraction amplitude 

% 6- MCAp: Maximum contraction amplitude percentage 

% 7- EDD: End diastolic diameter 

% 8- ESD: End systolic diameter 

% 9- CWV: Average constriction wall velocity 

% 10- DWV: Average dilation wall velocity 

  

% By Timothy Kassis last updated 11/07/14 

  

function Diameter_Out = CalDiameter(t,d) 

  

Diameter_Out = zeros(1,10); 

  

% Peak detection 

[maxtab, mintab]=peakdet(d,4,t); 

  

% Calculate parameters 
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AD = nanmean(d);   % Average diameter 

CF = length(mintab)./max(t); % Average contraction frequency 

maxminlist = sortrows([maxtab; mintab]); 

temp = diff(maxminlist); 

CA = mean(abs(temp)); 

CA = CA(2);     % Average contraction amplitude 

CAp = (CA/AD)*100; % Average contraction amplitude percentage 

MCA = max(abs(temp)); 

MCA = MCA(2);     % Maximum contraction amplitude 

MCAp = (MCA/AD)*100; % Maximum contraction amplitude percentage 

EDD = mean(maxtab); % Average EDD 

ESD = mean(mintab); % Average ESD 

wallvel = temp(:,2)./temp(:,1); 

syscount = sum(wallvel<0);  % Number of systolic contractions 

diascount = sum(wallvel>0);     % Number of diastolic 

contractions 

CWV = sum((wallvel<0).*wallvel)./syscount;    % Average wall 

velocity during systole 

DWV = sum((wallvel>0).*wallvel)./diascount;  % Average wall 

velocity during diastole 

  

% Store parameters 

Diameter_Out(1,1) = AD; 

Diameter_Out(1,2) = CF; 

Diameter_Out(1,3) = CA; 

Diameter_Out(1,4) = CAp; 

Diameter_Out(1,5) = MCA; 

Diameter_Out(1,6) = MCAp; 

Diameter_Out(1,7) = EDD(1,2); 

Diameter_Out(1,8) = ESD(1,2); 

Diameter_Out(1,9) = abs(CWV); 

Diameter_Out(1,10) = DWV; 

  

  

%% Plot 

[tt,ind] = sort(t); 

  

% Diameter tracing and peaks 

subplot(3,1,1) 

plot(tt,d(ind), 'b-', 'Linewidth', 2); 

hold on; 

plot(mintab(:,1), mintab(:,2), 'g*'); 

plot(maxtab(:,1), maxtab(:,2), 'r*'); 

title('Diameter Tracing'); 

ylabel('Diameter (um)') 

hold off; 

  

 
% Analyze all diameter data for a particular experiment 

% By Timothy Kassis, last updated 11/07/14 
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myvars = who('Var*'); 

Results = cell(length(myvars),11); 

  

Results{1,1} = 'TimePoint'; 

Results{1,2} = 'AD'; 

Results{1,3} = 'CF'; 

Results{1,4} = 'CA'; 

Results{1,5} = 'CAp'; 

Results{1,6} = 'MCA'; 

Results{1,7} = 'MCAp'; 

Results{1,8} = 'EDD'; 

Results{1,9} = 'ESD'; 

Results{1,10} = 'CWV'; 

Results{1,11} = 'DWV'; 

  

u = ones(length(Time),length(myvars)).*NaN; 

  

fprintf('Processing diameter data\n'); 

for i = 1:length(myvars) 

    fprintf('Processing video %d of %d\n',i,length(myvars)); 

    u(:,i) = ProcessDiameter(Time,eval(myvars{i,1})); 

end 

  

%% 

for j = 1:length(myvars) 

    fprintf('Calculating parameters for video %d of 

%d\n',j,length(myvars)); 

    try              %# Attempt to perform computation 

    out = CalDiameter(Time,u(:,j)); 

      catch   %# Catch the exception 

          continue 

    end 

         

    Results{j+1,1} = myvars{j,1}; 

    Results{j+1,2} = out(1,1); 

    Results{j+1,3} = out(1,2); 

    Results{j+1,4} = out(1,3); 

    Results{j+1,5} = out(1,4); 

    Results{j+1,6} = out(1,5); 

    Results{j+1,7} = out(1,6); 

    Results{j+1,8} = out(1,7); 

    Results{j+1,9} = out(1,8); 

    Results{j+1,10} = out(1,9); 

    Results{j+1,11} = out(1,10); 

end 

  

 
% Analyze all diameter data for a particular experiment 

% By Timothy Kassis, last updated 11/07/14 

  

myvars = who('Var*'); 
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Results = cell(length(myvars),11); 

  

Results{1,1} = 'TimePoint'; 

Results{1,2} = 'AD'; 

Results{1,3} = 'CF'; 

Results{1,4} = 'CA'; 

Results{1,5} = 'CAp'; 

Results{1,6} = 'MCA'; 

Results{1,7} = 'MCAp'; 

Results{1,8} = 'EDD'; 

Results{1,9} = 'ESD'; 

Results{1,10} = 'CWV'; 

Results{1,11} = 'DWV'; 

  

u = ones(length(Time),length(myvars)).*NaN; 

  

fprintf('Processing diameter data\n'); 

for i = 1:length(myvars) 

    fprintf('Processing video %d of %d\n',i,length(myvars)); 

    u(:,i) = ProcessDiameter(Time,eval(myvars{i,1})); 

end 

  

%% 

for j = 1:length(myvars) 

    fprintf('Calculating parameters for video %d of 

%d\n',j,length(myvars)); 

    try              %# Attempt to perform computation 

    out = CalDiameter(Time,u(:,j)); 

      catch   %# Catch the exception 

          continue 

    end 

         

    Results{j+1,1} = myvars{j,1}; 

    Results{j+1,2} = out(1,1); 

    Results{j+1,3} = out(1,2); 

    Results{j+1,4} = out(1,3); 

    Results{j+1,5} = out(1,4); 

    Results{j+1,6} = out(1,5); 

    Results{j+1,7} = out(1,6); 

    Results{j+1,8} = out(1,7); 

    Results{j+1,9} = out(1,8); 

    Results{j+1,10} = out(1,9); 

    Results{j+1,11} = out(1,10); 

end 

 
% This script conditions the velocity data for further 

analysis. The signal 

% is cleaned and smoothed. 

% x is the time axis in seconds 

% y is the velocity value in mm/sec 

% Output is the background subtracted and smoothed signal 
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% Last updated 01/17/15 by Timothy Kassis 

  

function [yyy] = ProcessVelocity2(x,y) 

%% Condition the waveform 

% Remove values below or above a threshold 

indices = find(abs(y)>3000); 

y(indices) = NaN; 

  

% Create a mask of where there are values for later use 

ymsk = ones(length(y),1); 

indices2 = find(isnan(y)); 

indices3 = find(~isnan(y)); 

ymsk(indices2) = NaN; 

ymsk(indices3) = 1; 

  

% Smooth the signal and apply mask 

if all(isnan(y)); 

    yy = zeros(length(y),1); 

    yyy = zeros(length(y),1); 

else 

yy = smooth(x,y,76,'rloess'); 

yyy = yy.*ymsk; 

end 

  

%% Output results and plots 

[xx,ind] = sort(x); 

  

subplot(2,1,1) 

plot(xx,y(ind),'b.',xx,yy(ind),'r-') 

legend('Original Data','Smoothed Data Using 

''rloess''','Location','NW') 

xlabel('Time (sec)') 

ylabel('Velocity (um/s)') 

  

subplot(2,1,2) 

plot(xx,yyy(ind),'r-') 

legend('Masked','Location','NW') 

xlabel('Time (sec)') 

ylabel('Velocity (um/s)') 

 
 

 

function out = CalVel(t,d,v) 

  

out = zeros(1,3); 

  

LV = nanmean(v);    % Average lymphocyte velocity 

FR = ((pi * v .* (d.^2))/6) * 0.000036; % Flow rate 

VFR = nanmean(FR);   % Average volumetric flow rate 

WSS = nanmean((4*1.5*v)/(d/2)); % Wall shear stress 
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out(1,1) = LV; 

out(1,2) = VFR; 

out(1,3) = WSS; 

  

[tt,ind] = sort(t); 

  

% Lymphocyte velocity 

subplot(3,1,2) 

plot(tt,v(ind),'r-','Linewidth', 2) 

title('Lymphocyte Velocity'); 

ylabel('Velocity (um/s)') 

  

% Flow rate 

subplot(3,1,3) 

plot(tt,FR(ind),'g-','Linewidth', 2) 

title('Volume Flow Rate'); 

xlabel('Time (sec)') 

ylabel('Flow Rate (ul/hr)') 

end 

 

 

 

% Analyze all diameter data for a particular experiment 

% By Timothy Kassis, last updated 11/07/14 

  

myvars = who('Var*'); 

Results = cell(length(myvars),2); 

  

Results{1,1} = 'TimePoint'; 

Results{1,2} = 'Velocity'; 

  

u = ones(length(Time),length(myvars)).*NaN; 

  

fprintf('Processing velocity data\n'); 

for i = 1:length(myvars) 

    fprintf('Processing video %d of %d\n',i,length(myvars)); 

    u(:,i) = ProcessVelocity2(Time,eval(myvars{i,1})); 

end 

  

%% 

for j = 1:length(myvars) 

    fprintf('Calculating parameters for video %d of 

%d\n',j,length(myvars));     

    Results{j+1,1} = myvars{j,1}; 

    Results{j+1,2} = nanmean(u(:,j)); 

 end 

 

 

% Analyze all motion data for a particular experiment 

% By Timothy Kassis, last updated 11/29/14 
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myvars = who('Var*'); 

Results = cell(length(myvars),3); 

  

Results{1,1} = 'TimePoint'; 

Results{1,2} = 'Freq'; 

Results{1,3} = 'Amp'; 

  

u = ones(length(Time),length(myvars)).*NaN; 

  

fprintf('Processing motion data\n'); 

for i = 1:length(myvars) 

    fprintf('Processing video %d of %d\n',i,length(myvars)); 

    u(:,i) = ProcessMotion(Time,eval(myvars{i,1})); 

end 

  

%% 

for j = 1:length(myvars) 

    fprintf('Calculating parameters for video %d of 

%d\n',j,length(myvars)); 

    try              %# Attempt to perform computation 

    out = CalMotion(Time,u(:,j)); 

    catch   %# Catch the exception 

          continue 

    end 

         

    Results{j+1,1} = myvars{j,1}; 

    Results{j+1,2} = out(1,1); 

    Results{j+1,3} = out(1,2); 

end 

  

 

 

 

% Analyze all motion data for a particular experiment using the 

% MeasurePeristalsisFFT function 

% By Timothy Kassis, last updated 01/06/15 

  

myvars = who('Var*'); 

Results = cell(length(myvars),8); 

  

Results{1,1} = 'TimePoint'; 

Results{1,2} = 'Power'; 

Results{1,3} = 'F1'; 

Results{1,4} = 'A1'; 

Results{1,5} = 'P1'; 

Results{1,6} = 'F2'; 

Results{1,7} = 'A2'; 

Results{1,8} = 'P2'; 

  

%% 

for j = 1:length(myvars) 
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    fprintf('Calculating parameters for video %d of 

%d\n',j,length(myvars)); 

    try              %# Attempt to perform computation 

    [P, F1, A1, P1, F2, A2, P2] = 

MeasurePeristalsisFFT(eval(myvars{j,1}),250); 

    catch   %# Catch the exception 

          continue 

    end 

     

    Results{j+1,1} = myvars{j,1}; 

    Results{j+1,2} = P; 

    Results{j+1,3} = F1; 

    Results{j+1,4} = A1; 

    Results{j+1,5} = P1; 

    Results{j+1,6} = F2; 

    Results{j+1,7} = A2; 

    Results{j+1,8} = P2; 

end 

  

 

 

 

% This function calculates motion related data from the 

diameter 

% By Timothy Kassis last updated 11/29/14 

  

function Motion_Out = CalMotion(t,d) 

  

Motion_Out = zeros(1,2); 

  

% Peak detection 

[maxtab, mintab]=peakdet(d,4,t); 

  

% Calculate parameters 

Freq = length(mintab)./max(t); % Average contraction frequency 

maxminlist = sortrows([maxtab; mintab]); 

temp = diff(maxminlist); 

Amp = mean(abs(temp)); 

Amp = Amp(2);     % Average contraction amplitude 

  

% Store parameters 

Motion_Out(1,1) = Freq; 

Motion_Out(1,2) = Amp; 

  

  

%% Plot 

[tt,ind] = sort(t); 

  

% Motion tracing and peaks 

subplot(3,1,1) 

plot(tt,d(ind), 'b-', 'Linewidth', 2); 
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hold on; 

plot(mintab(:,1), mintab(:,2), 'g*'); 

plot(maxtab(:,1), maxtab(:,2), 'r*'); 

title('Motion Tracing'); 

ylabel('Displacement (Pixel)') 

hold off; 

  

 

% Script to measure intestinal peristalsis 

% Function accepts input signal 'y' and sampling frequency 'Fs' 

% By Timothy Kassis, last updated 01/06/15 

  

function [P, F1, A1, P1, F2, A2, P2]  = 

MeasurePeristalsisFFT(y,Fs)  

%% Plot input signal 

% y = VarName85; 

% Fs = 250; 

t = (0:length(y) - 1)/Fs; 

figure(1) 

plot(t,y) 

xlabel('Time (s)') 

ylabel('Amplitude') 

  

%% Subtract the mean to concentrate on motion fluctuations. 

Compute and plot the periodogram. 

ynorm = y - mean(y); 

[pxx,f] = periodogram(ynorm,[],[],Fs); 

figure(2) 

plot(f,pxx); 

set(gca,'xlim',[0 2]) % Set maximum frequency plotted between 

0-2 Hz 

xlabel('Frequency (Hz)') 

ylabel('Magnitude') 

  

%% Determine the highest two frequency magnitudes (presumably 

peristalsis and breathing) 

[pk,amp] = findpeaks(pxx,'NPeaks',2,'SortStr','descend'); 

hold on 

plot(f(amp),pk,'or') 

hold off 

f(amp(1)) 

f(amp(2)) 

  

F1 = f(amp(1)); 

F2 = f(amp(2)); 

A1 = amp(1); 

A2 = amp(2); 

  

%% Calculate signal power 

pwrTot = bandpower(ynorm,Fs,[0 (Fs/2 -1)]); 

Harmonic = {'F2';'F1'; 'Full Signal'}; 
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Freqs = [f(amp(2)) f(amp(1)) 0]'; 

Power = zeros([3 1]); 

for k = 1:2 

    Power(k) = bandpower(ynorm,Fs,Freqs(k)+[-0.001 0.05]); 

end 

Power(3) = bandpower(ynorm,Fs,[0 (Fs/2 -1)]); 

Percent = Power/pwrTot*100; 

inDB = pow2db(Power); 

T = table(Freqs,Power,Percent,inDB,'RowNames',Harmonic) % Put 

data in table 

  

P = inDB(3); 

P1 = inDB(2); 

P2 = inDB(1); 

 

 

% This script conditions the motion data for further analysis. 

The signal 

% is cleaned and smoothed. Using only the x values for this 

% Last updated 11/29/14 by Timothy Kassis 

  

function yy = ProcessMotion(t,y) 

% Remove zero values 

indices = y==0; 

y(indices) = NaN; 

  

% Remove values below or above a threshold 

ymean = nanmean(y); 

indices2 = y>(ymean+100) | y<(ymean-100); 

y(indices2) = NaN; 

  

% Smooth the signal 

yy = smooth(t,y,100,'rlowess'); 

yy(1) = yy(2); % Replace the first value to avoid a NaN 

  

% Output plots 

[tt,ind] = sort(t); 

plot(tt,y(ind),'b.',tt,yy(ind),'r-', 'LineWidth',2) 

title('X Displacement Tracing','FontSize',16); 

legend('Original Data','Smoothed Data Using 

''rlowess''','Location','NW') 

xlabel('Time (sec)', 'FontSize',14) 

ylabel('Displacement (pixels)', 'FontSize',14) 
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