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SUMMARY

An interactive narrative is a form of digital entertainment in which players can

create or influence a dramatic storyline through actions, typically by assuming the role

of a character in a fictional virtual world. The interactive narrative systems usually

employ a drama manager (DM), an omniscient background agent that monitors the

fictional world and determines what will happen next in the players’ story experience.

Prevailing approaches to drama management choose successive story plot points based

on a set of criteria given by the game designers. In other words, the DM is a surrogate

for the game designers.

In this dissertation, I create a data-driven personalized drama manager that takes

into consideration players’ preferences. The personalized drama manager is capable

of (1) modeling the players’ preference over successive plot points from the players’

feedback; (2) guiding the players towards selected plot points without sacrificing

players’ agency; (3) choosing target successive plot points that simultaneously increase

the player’s story preference ratings and the probability of the players selecting the

plot points.

To address the first problem, I develop a collaborative filtering algorithm that

takes into account the specific sequence (or history) of experienced plot points when

modeling players’ preferences for future plot points. Unlike the traditional collab-

orative filtering algorithms that make one-shot recommendations of complete story

artifacts (e.g., books, movies), the collaborative filtering algorithm I develop is a

sequential recommendation algorithm that makes every successive recommendation

based on all previous recommendations. To address the second problem, I create a

xiii



multi-option branching story graph that allows multiple options to point to each plot

point. The personalized DM working in the multi-option branching story graph can

influence the players to make choices that coincide with the trajectories selected by

the DM, while gives the players the full agency to make any selection that leads to

any plot point in their own judgement. To address the third problem, the person-

alized DM models the probability that the players transitioning to each full-length

stories and selects target stories that achieve the highest expected preference ratings

at every branching point in the story space.

The personalized DM is implemented in an interactive narrative system built with

choose-your-own-adventure stories. Human study results show that the personalized

DM can achieve significantly higher preference ratings than non-personalized DMs or

DMs with pre-defined player types, while preserve the players’ sense of agency.

xiv



CHAPTER I

INTRODUCTION

Narratives, in the form of oral, written, visual or digital format, play a central role in

many forms of entertainment media, including novels, movies, and theaters. Previous

cognitive and psychological research suggests that narratives serve important cogni-

tive and social functions, such as communication [8, 42], social interaction [16, 27],

and learning [21], etc. In story-based computer games and other training and educa-

tion systems, narratives work as a means to motivate player’s activity and to create

a sense of causal continuity across a series of challenges [57].

A narrative is a recounting of one or more real or fictitious events communicated by

one or more narrators to one or more narratees [46]. For simplicity, the narrative can

be broken up into a sequence of plot points. In this dissertation, a plot point is used to

refer to a fictitious event that encapsulates one or more character actions, dialogue,

or behaviors over a short period of time in the narrative. There are two fundamental

types of narratives: linear narrative and branching narrative [50]. Linear narrative

is the traditional form of narrative in which a sequence of plot points is narrated

from beginning to ending without variation or possibility of a user altering the way

in which the story unfolds or ends. Many computer games employ linear narratives.

The story structure of the games is usually partitioned into levels. The outcome of

each level is either successful completion or failure, in which case the player must

start the level over. All players experience the same story throughout the game.

A branching narrative enables users to influence the way in which a narrative

unfolds or ends, thus increasing user engagement. The users can make a selection or

perform an action at certain predefined points in the narratives. The narrative will

1



then unfold into one of a predefined set of alternative storyline continuations based

on the users’ selection. The structure of the branching narrative can be represented

by a branching story graph, a directed acyclic graph in which each node represents a

plot point, and arcs denote alternative choices of action that the player can choose

[49, 74, 76, 75]. Any route from the root to any leaf node in the graph is a full-length

story experience for the users. Branching story graphs are found in the choose-your-

own-adventure (CYOA) series of novels1, and also used to great effect in hypermedia

and interactive systems [49].

The choose-your-own-adventure is a simple form of branching narrative that does

not require artificial intelligence. The CYOA books contain adventure stories origi-

nally created for teenagers in the US. At the end of every page in the CYOA books,

there are several options a reader can choose from. The reader will continue to read

different pages based on the options he/she chooses and the story will unfold into a

different branch. Figure 1 shows the branching story graph representation of one of

the CYOA books—The Abominable Snowman. Each node in the graph represents a

page in the book (a plot point). Every story starts from the root node and ends on

one of the leaves. As shown in Figure 1, the branching story graph encodes human

authorial intent since it specifies which plot points are allowed to follow other plot

points.

An interactive narrative is a computer game style of branching narrative. The

interactive narrative is a form of digital interactive experience in which players create

or influence a dramatic storyline through actions, either by assuming the role of

a character in a fictional virtual world, issuing commands to computer-controlled

characters, or directly manipulating the fictional world state [51]. The structure of

most interactive narrative can be represented by a branching story graph. The players

are allowed to influence the storyline by performing actions or making selections at

1http://en.wikipedia.org/wiki/Choose˙Your˙Own˙Adventure

2
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predefined branching points in the branching story graph. In this research, I focus

on the interactive narrative and other computer games/tutoring systems of which the

story structure can be represented by a branching story graph in which nodes are

plot points2.

Unlike the CYOA series, interactive narrative often employs a Drama Manager

(DM) [4, 70], an omniscient background agent that monitors the fictional world and

determines what will happen next in the player’s story experience. The goal of the

drama manager is to coordinate and/or instruct virtual characters in response to

player actions, and achieve a coherent and enjoyable narrative experience while pre-

serving the player agency in the virtual world. The player agency is the satisfying

power to take meaningful action and see the results of the decisions and choices [37].

Preserving player agency means that the drama manager should at least allow the

players to make choices by themselves in the interactive narrative. To enhance the

players’ experience through the branching story graph, the DM should also be able

to evaluate possible future narrative sequences that the player could experience. At

each plot point in the branching story graph, the DM must determine which succes-

sive plot points are the most appropriate for the current player and guide the player

to the selected plot points without sacrificing player agency.

Prevailing approaches to drama management evaluate successive story plot points

based on a set of criteria given by the game designer [39, 70, 55, 52, 31, 33]. This set of

criteria is provided by the human author beforehand and is the only measures for the

quality of the player’s interactive experience. Thus the majority of prior approaches

to drama management use the DM as a surrogate for human designer [74, 77].

I believe that different types of players have different opinions on whether a story

2The algorithms developed in this dissertation work on the level of the branching story graph.
Although most role playing games can be represented by the branching story graph at some ab-
stract level, the branching story graph may not capture all the detailed lower level player behav-
iors/interaction such as the players’ social interaction with other characters, player emotion, etc. in
the games.

4



experience is enjoyable or not. In this dissertation, I will build a drama manager that

can model players and then use the player models to increase the quality of individual

players’ story experiences. That is, I aim to create a personalized drama manager

that is also a surrogate for the player by taking into account the player’s preferences.

Player modeling has been applied in drama management to adapt computer games

[29]. But relatively little work has been done to build the drama manager that uses the

player models to personalize story experience for players. Most previous approaches

attempt to optimize player experience by classifying players according to well-defined

player types [41, 12, 67, 62], and using pre-defined mappings of classes to plot point

selection rules. These approaches require a designer to pre-determine the meaningful

player types, even though there is no clear evidence of links between player type

models and story preferences.

In this dissertation, I aim to improve players’ subjective experience through build-

ing a data-driven personalized drama manager without pre-defined player types. The

personalized DM is capable of discovering player types directly from player feedback

and can be easily generalized to a different domain where pre-defined player types

might not fit. It guides the players in a CYOA style interactive narrative system and

maximizes the players’ expected preference ratings for their story experience. In the

remaining part of this chapter, I will describe my research questions in building the

personalized DM, followed by my proposed solutions and my contributions.

1.1 Research Questions and Intended Contributions

To build the personalized drama manager that can increase the players’ preference

ratings for their story experience in interactive narratives, I propose the following

three research questions (RQ) and thesis statement:

RQ1. How can the drama manager model players’ preference over suc-

cessive plot points?

5



A story is a sequence of plot points. A player’s assessment of the story one is ex-

periencing is thus a function of the history of plot points experienced so far [56],

instead of the current plot point. Many traditional machine learning algorithms for

modeling user preferences do not take into account historical information, thus can

not be adopted directly to model players’ preference over successive plot point.

RQ2. How can the drama manager guide players towards a selected plot

point without sacrificing players’ agency?

Player agency is a critical aspect of interactive narrative. Some drama management

systems enforce certain narrative trajectories by limiting player agency in various ways

[48, 73, 39, 52]. I aim to build a personalized DM that can increase the probability

that the players choose the selected plot points but also give the players the rights to

choose other successive plot points in CYOA style interactive narrative system.

RQ3. How can the drama manager select story experience in interactive

narrative system?

Even though the personalized DM builds an accurate player preference model and

increases the probability the player transitioning to the plot points that are expected

to achieve the highest predicted preference ratings, the players may still choose the

options leading to other narrative experience because they are given the full agency

to make their own choices. It is possible that the personalized DM finds no plot point

that can lead to a player preferred narrative experience after it fails to guide a player

at some branching point in the branching story graph.

Based on the above research questions, I pose the following thesis statement:

Thesis Statement. A personalized drama manager, utilizing the se-

quential preference models dynamically built from the players’ feedback

and the personalized guidance algorithm, achieves significantly higher
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self-reported preference ratings for their story experience than a non-

personalized drama manager or a drama manager with pre-defined player

types for interactive narrative systems.

In response to RQ1, I develop a technique to learn a data-driven player preference

model using collaborative filtering (CF) instead of using pre-defined player types.

Collaborative filtering has been successfully applied in recommender systems to model

user preference over movies, books, music, and other products from users’ structural

feedback, e.g. ratings, previous purchase, etc [64]. The CF algorithms attempt to

learn users’ preference patterns from users’ preference ratings and predict new user’s

ratings from previous users’ ratings which share similar preference patterns. The

player models built with collaborative filtering algorithms do not take any assumption

about pre-defined player types. I propose to utilize CF algorithms to model players’

preferences over the future plot point sequences based on the players’ feedback. Unlike

the traditional usage of CF for one-shot recommendations of complete story artifacts

(e.g., books, movies), modeling preference over successive plot points is a new type

of recommendation problem—sequential recommendation, in which each subsequent

recommendation is dependent on the entire sequence of prior recommendations for

a particular story experience. To address the sequential recommendation problem,

I propose a prefix-based collaborative filtering (PBCF) algorithm. Chapter 3 will

describe in details how the PBCF algorithm is used to build flexible player models

from players’ explicit feedback, i.e. ratings. The PBCF algorithm learns player

preferences over fragments of story and then applies it to select successive plot points

in a simple story generation system I built based on choose-your-own-adventure books.

The story generation system is similar to an interactive narrative system except that

it ignores player agency, which will be revisited as part of RQ2.

In response to RQ2, I propose a personalized guidance algorithm that manipulates

the branching story graph such that the player is more likely to make a choice that
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coincides with the trajectory selected by the drama manager. The drama manager

using the personalized guidance algorithm gives the players the full agency to select

any option that leads to any plot point in their own judgement. Collaborative filtering

is used to build player models to predict the players’ preference over the options in

the story space. Chapter 4 will describe in more details the proposed personalized

guidance algorithm in interactive narrative systems.

In response to RQ3, I propose a personalized drama manager that can maximize

the players’ expected preference ratings in interactive narrative. The personalized

drama manager models the player’s preference over successive plot point sequences

using PBCF algorithm, builds a player model to predict the probability that the player

selects each option at each branching point, chooses a successive branch that simul-

taneously increases the player’s story preference ratings and the probability of the

player selecting the branch, and increases the probability that the player transitions

to the selected branch using the personalized guidance algorithm. The personalized

drama manager will be described in details in Chapter 4.

The major contributions of this thesis are:

� A data-driven player modeling algorithm that predicts players’ preference over

future plot points in interactive narrative.

� A personalized guidance algorithm that increases the likelihood that the players

select the desired plot points in interactive narrative.

� A personalized drama manager that maximizes the players’ self-reported story

preference ratings in interactive narrative.

1.2 Reader’s Guide

The remainder of this dissertation is arranged as follows: Chapter 2 describes re-

lated work on interactive narrative, player modeling and drama manager. Chapter 3
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describes how the PBCF algorithm is used to build the player model from the play-

ers’ explicit feedback—ratings, and predict players preference over future plot points

in storytelling systems. Chapter 4 describes the personalized guidance algorithm to

guide players towards the desired successive plot points and the personalized drama

manager algorithm to increase the players’ expected enjoyment ratings in interactive

narrative systems. Chapter 5 describes two further improvements to the personalized

drama manager: reducing the required amount of training data and incorporating

author’s preference into the personalized drama manager. Chapter 6 concludes the

entire dissertation.
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CHAPTER II

BACKGROUND AND RELATED WORK

The research problem I am addressing is how to build a personalized drama manager

that increases players’ story preference ratings in interactive narrative. Therefore, this

chapter will first introduce the basic concept of narrative and interactive narrative,

followed by some background information about the narrative structure I am going

to use in this research—the branching story graph. Then I will shift to a discussion

of previous work on various types of drama managers, which is what I am building.

Player modeling is an essential part of my personalized drama manager. Thus I

will also describe previous player modeling research in computer games, especially in

interactive narrative. At the end, I will briefly review collaborative filtering algorithms

and their application in computer games.

2.1 Narrative and Interactive Narrative

Narrative plays an important role in human culture. We use narrative to communi-

cate, entertain, and teach, etc. Prince [46] defines narrative as:

Definition 1 (Narrative). A narrative is a recounting of one or more real or fictitious

events communicated by one or more narrators to one or more narratees.

Prince’s definition indicates that a narrative can be presented as a sequence of

one or more events, which are called plot points in this dissertation. Instead of a

laundry list of random plot points, narrative has a continuant subject and constitutes

a whole. The main plot points of a narrative form a plot, which usually adheres to a

particular pattern, such as Freytag’s triangle [14] and Aristotelian dramatic arcs [3].

Figure 2 shows a typical Aristotelian dramatic arc.
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Figure 2: Aristotle’s dramatic arc.

Traditional linear narratives are usually narrated from the begin to the end with-

out the possibility for the narratees to change the progression or ending of the narra-

tives. Branching narratives enable users to influence the way in which the narrative

unfolds or ends. The users can make a selection or perform an action at prede-

fined points to push the narrative into one of a predefined set of alternative storyline

branches. An interactive narrative is a digital type of branching narrative in which

the players can influence the storyline through interacting with the fictional world.

Riedl and Bulitko [51] defines the interactive narrative as:

Definition 2 (Interactive Narrative). Interactive narrative is a form of digital in-

teractive experience in which users create or influence a dramatic storyline through

actions, either by assuming the role of a character in a fictional virtual world, issuing

commands to computer-controlled characters, or directly manipulating the fictional

world state.

The structure of an interactive narrative can be represented by a branching story

graph—a directed acyclic graph in which nodes represent story plot points and arcs

denote alternative choices of action that the player can choose. The next section will

introduce background information on the branching story graph.
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Figure 3: A sample branching story graph.

2.2 Branching Story Graph

Figure 3 shows a simple branching story graph; each round node is a plot point and

links denote options that players can make during each plot point. Depending on

which options a player choose, the Drama Manager will present the corresponding

next plot point to the player. For example, in Figure 3, if the player is at node 3 and

chooses option E, she will navigate to plot point 5 in the next step. A path through

the graph starting from the root node and terminating at any leaf node is a possible

complete story experience for the player. Figure 3 contains five possible complete

stories: {1,2,3,4}, {1,2,3,5,8}, {1,2,3,5,9}, {1,2,6,5,8}, and {1,2,6,5,9}.

In this dissertation, I assume there exists a pre-authored branching story graph

(including all the options), which is stored in the story library. The branching story

graph may have been authored by hand or by some other intelligent process (c.f.,

[70, 49, 55, 39]) or through collaborative editing techniques such as crowdsourcing

[28]. This assumption allows me to focus on the DM decision-making process and the

development and validation of the player modeling techniques.

Although the concept of a branching story graph is simple, many other story rep-

resentations used by AI-driven interactive narrative systems and story-based RPG

games (such as planning based DMs and optimization/search based DMs) are re-

ducible to the branching story graph [49, 74].

Riedl and Young have proved the correlation between the planning based narrative
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Figure 4: The branching story tree representation for the branching story graph in
Figure 3
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Figure 5: The narrative mediation tree for the branching story tree in Figure 4.
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mediation system and the branching story graph [48, 73]. The narrative mediation

system generates a linear narrative that represents the ideal story that should be

told to the player and then considers all the ways in which the interactive player

can interactive with the virtual world. For every action that the player makes that

threatens to deviate severely from the linear story, the system generates an alternative

storyline from the point of the deviation. Riedl and Young show that any acyclic

branching story graph can be transformed into a branching story tree which can

then be transformed into a mediation tree [49]. Figure 4 shows the branching story

tree representation for the branching story graph in Figure 3. The tree is created

by duplicating nodes with multiple incoming links. Figure 5 shows the narrative

mediation tree for the branching story tree in Figure 4. For each branching point

in the branching story tree, one of the branches is merged into a main linear story.

All the other branches are converted into branches in the narrative mediation tree.

On the other hand, any narrative mediation tree that does not contain concurrent

player action and DM action can be converted into a branching story graph through

converting all the player actions into branches of the branching story graph.

Search based DMs usually employ a plot point graph to move the interactive story

forward. The plot point graph is a partially ordered graph where the nodes represent

story event and the links represent temporal or logical constraints between the story

events [39]. Unlike the branching story graph, the plot point graph does not literally

specify all the possible stories. Any plot point and player action sequence that does

not violate the constraints in the plot point graph is a legal story. Figure 6 shows a

sample plot point graph used in Anchorhead [39]. A directed edge from node a to

node b indicates that a must happen before b, unless multiple edges are joined with

an OR arc. Figure 6 does not explicitly list all the possible stories trajectories as the

branching story graph does. A legal story could start from the node discover safe,

followed by the node get crypt key, get safe combo and open safe, etc.
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Figure 6: Plot point graph for Anchorhead’s Day 2 [39]. A directed edge from a to b
indicates that a must happen before b, unless multiple edges are joined with an OR
arc.

An adversarial-like search algorithm can be used to find complete linear narratives

in the space of possible narrative described by a plot point graph [70, 25, 49]. In

theory, the adversarial-like search algorithm can be used in a breadth-first manner to

find all the legal interactive stories which can then be transformed into a branching

story graph, although the entire story space and the resulting branching story graph

might be intractably large [25, 49].

With the branching story graph, the RQ1 can be characterized as the problem of

modeling, at any given point, the players’ preference on the successive plot points in

the graph. Due to the sequential nature of stories, the preference over the successive

plot points depends on all previous experienced plot points in the branching story

graph. The prefix-based collaborative filtering algorithm is proposed to solve this

problem in Chapter 3. RQ2 can be characterized as the problem of guiding the

player to a selected plot point in the branching story graph. In Chapter 4, I describe

a non-intrusive personalized guidance algorithm which can preserve the player agency.

RQ3 will be characterized as the problem to select the a successive plot point that

can achieve the highest expected preference ratings in the branching story graph.

Chapter 4 will describe the personalized drama manager algorithm.
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2.3 Drama Manager

The drama manager has been widely used in computer games to monitor the fic-

tional world and guide players through an expected experience set by designers. Two

most common types of drama managers include optimization-based (including search-

based and declarative optimization-based) and planning-based drama manager. In

this section, I will describe different types of drama mangers, followed by brief in-

troduction of the player agency and how the drama mangers guide the players in

previous interactive narrative systems.

2.3.1 Search-based and Declarative Optimization-based Drama Manager

The optimization-based drama manager, including search-based drama management

(SBDM) and declarative optimization-based drama management (DODM), trans-

forms the problem of selecting the next best plot point into a optimization problem

where the DM chooses possible future histories of plot points by optimizing an ob-

jective function set by the designers.

The search based drama manager solves the optimization problem through search-

ing for the best plot points in a pre-defined searching space [5, 70]. Most SBDMs

describe the game as a plot point graph. The SBDM aims to search for the plot

points and DM actions that can maximize an objective function while not violate the

constraints in the plot point graph [54].

SBDM is first proposed by Bates [5] and developed by Weyhrauch [70]. Weyhrauch

aims to optimize a dramatic aesthetic evaluation function that mimics the human

artists in a simplified version of the Infocom interactive fiction Deadline, named Tea

for Three. The evaluation function is calculated using predefined rules based on

seven manually selected scenario features such as whether one event in the user’s

experience relates logically to the next, how bored the user feels, how much freedom

the user perceives she has, etc. The output of the evaluation function is a real number
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between 0 (worst) and 10 (best), which represents the subjective aesthetic quality of

the scenario. The system uses a variety of searching algorithms, such as full-depth

adversary search, Sampling Adversary Search (SAS, SAS+), and memoized future

contribution search (MMFC), to find plot points and DM actions that maximize

the evaluation function. Weyhrauch finds that on “average” users, SAS, SAS+ and

MMFC are able to improve users’ experiences from the 50th percentile, to the 94th,

98th, and 99th percentile, respectively.

Nelson and Mateas further explore the SBDM and reproduce Weyhrauch’s results

[39]. They apply SBDM to an abstract story search space based on the text-based

interactive fiction Anchorhead. Figure 7 shows a screenshot of the Anchorhead sys-

tem. Each paragraph in the Figure is abstracted to be a plot point. Nelson and

Mateas represent the story structure as a plot point graph as in Figure 6 and de-

fine five types of DM actions: permanent deniers, temporary deniers, causers, hints,

and game endings. They define a story evaluation function based on seven manually

selected features: location flow, thought flow, motivation, plot mixing, plot homing,

choices, and manipulativity. They further use Weyhrauch’s sampling search (SAS,

SAS+ and MMFC) algorithms to find the DM actions that maximize the evaluation

function. In their experiments, Nelson and Mateas found that Weyhrauch’s excel-

lent results with sampling search didn’t transfer to their combination of plot points,

evaluation function, and DM actions.

The declarative optimization-based drama manager is introduced by Nelson et

al. [40]. In this work, the plot point abstraction, DM actions, player transition

model, and author evaluation function are exactly as in [39]. But they approach the

optimization problem through solving a Markov Decision Process (MDP) instead of

searching. The author’s evaluation function is used to define the reward function

for MDP. The solution to the MDP represents the optimal choice of action for the

DM given any history of plot points and DM actions. The solution of the MDP is a
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Figure 7: A screenshot from Anchorhead, showing the relationships between concrete
game-world actions and the abstract plot points and DM actions. When the proprietor
opens the puzzle box, the game recognizes this as the plot point open puzzle box and
tells the drama manager. The drama manager decides on the DM action temp deny
get amulet and sends it to the game, which implements it by not allowing the user to
get the amulet.
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policy indicating the optimal choice of action in every state that can maximize the

long-term expected reward set by the designers. However they found that in the same

Anchorhead model, RL does not do well either. They conclude that the DM actions

specified are not sufficient to have much positive impact on the story, as measured by

the given evaluation function—an authorship rather than optimization issue.

Targeted Trajectory Distribution Markov Decision Process (TTD-MDP), devel-

oped by Roberts, et al., is an alternative technique for solving the DODM problem

[55, 6]. It solves non-Markov Decision Processes by wrapping all the previous MDP

states into one node of a trajectory tree. A Targeted Trajectory Distribution MDP

(TTD-MDP) is defined by a tuple (T,A, P, p), where A is a set of actions and P

is a transition model the same as in traditional MDP. T is the set of finite-length

trajectories (complete or incomplete) of MDP states which can also include actions.

p is a target distribution over complete trajectories. The target distribution in a

TTD-MDP conceptually replaces the reward function in a traditional MDP. The so-

lution to a TTD-MDP is a policy π : T × A → [0, 1] providing a distribution over

actions for every trajectory. Their objective was to produce the probabilistic policy π

that minimizes divergence from the target distribution of trajectories p. TTD-MDPs

require a pre-defined target distribution across trajectories/stories, which needs to be

specified beforehand. Further, as a reinforcement learning technique, it must simulate

a player. While the simulated player may utilize a player model, that model would

need to first be acquired or explicitly set by a human.

In summary, both the SBDM and the DODM aim to optimize an objective func-

tion or a reward function set by the human game designers. Thus they are all sur-

rogates for the human designers. Furthermore, each objective or evaluation function

is defined for a particular domain. It is not easy to transform the function across

different domains.
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Figure 8: The Mimesis system architecture.

2.3.2 Planning-Based Drama Manager

Young and Riedl [72] develop a planning drama management system—Mimesis. Fig-

ure 8 shows the system architecture of Mimesis. Mimesis is consist of two components:

the Mimesis Unreal Tournament Server (MUTS) and the Mimesis Controller (MC).

The MUTS serves as an extended version of unreal tournament game engine. The

MC acts as a story server, which is responsible for both the generation of a story

and the maintenance of a coherent narrative experience in the face of unanticipated

user activity. When a user performs actions that may interfere with the structure

of the story plan, the Mimesis reactively responds to the actions by replanning or

temporarily altering the effects of the players’ actions to prevent the failure of the

original narrative plans, which are specified by the game designers.

Riedl and colleagues [48, 73] propose narrative mediation which pre-computes ev-

ery way the player can violate the original narrative plan and generates a contingency

plan. It is applied in the Automated Story Director (ASD) [52], which uses a partial-

order planner to re-plan a story when the player performs actions that change the

virtual world in ways that prevent story progression as expected. Figure 9 shows a

portion of pre-computed tree of narrative plan contingencies for the application of

the ASD in Little Red Riding Hood.

Similarly, Porteous and Cavazza [45] use a planner with designer-provided con-

straints to control virtual characters and push a story forward. They formulate all

the constraints the system needs to satisfy into a constraints tree (CT). Then the
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Figure 9: A portion of the tree of narrative plan contingencies for Little Red Riding
Hood.

algorithm loops until the constraints tree is empty. Within each loop, the algorithm

formulate a new subproblem, the goal of which is disjunctive and is formed from the

leaves of the constraints tree, which are the earliest in the temporal order. After the

subproblem is solved, the constraints tree CT is updated so that any facts in leaf

nodes of the tree that are made true by the execution of previous plan are removed.

All of the above planning-based drama management techniques respond to player

actions to move the story forward in a way partially or completely conceived by a

human designer.

2.3.3 Other Types of Drama Manager

Other non-planning and non-optimization based drama managers use various kinds of

techniques to choose plot points and DM actions. The Façade interactive drama [33]

uses a reactive plot point selection technique to determine the next set of behaviors for
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Figure 10: The Façade dramatic arc.

two virtual characters. It addresses the balance of character and plot by implementing

a reactive behavior planner that selects, orders, and executes fine-grain plot elements

called beats. A beat is the smallest unit of story structure that can move the story

forward (e.g. a bit of dialogue or an action). Beats are selected and sequenced by a

drama manager called a beat manager. The beat manager identifies beats that are

applicable in the current state of the world and sequences the one that is most likely

to achieve a particular story arc that is pre-defined by human designers. Figure 10

shows a dramatic tension arc for Façade.

The U-Director [36] uses dynamic decision networks, a generalization of Bayesian

networks, to select DM actions to maximize narrative utility in the face of differ-

ent uncertainties (player behavior). U-DIRECTOR explicitly models the uncertainty

in narrative objectives, storyworld state, and user state. In each decision-making

cycle, it systematically evaluates the available evidence, updates its beliefs, and se-

lects the storyworld action that maximizes expected narrative utility. The narrative

utility needs to be specified by designers and is similar as the objective function in

Optimization-based drama manager.

Fairclough [13] proposes a narrative generation system OPIATE which uses case
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base (authored by game designers) and k-nearest neighbor to generate stories in re-

sponse to the changing game environment and player actions.

These drama management systems do not take players’ preference into considera-

tion and are still surrogates for the human designers. In this research, I aim to create

a personalized drama manager that is also a surrogate for the game players. The

personalized drama manager takes into account both the designer’s intention and the

players’ preference and preserves the player agency when it guides the players in the

story space. In the next section, I will introduce player agency and briefly review

how drama managers influence the players’ choices in previous interactive narrative

systems.

2.3.4 Player Agency and Player Guidance in Interactive Narrative

Player agency is an important aspect when evaluating the players’ experience in

interactive narrative and computer games. Murray [38] defines player agency as:

Definition 3 (Player Agency). The player agency is the satisfying power to take

meaningful action and see the results of the decisions and choices.

From Murray’s definition, the player agency includes two important aspects: tak-

ing actions and see the results of the decisions. Nextly I will briefly review how the

drama managers guide the players from the perspective of player agency in previous

interactive narrative systems.

Nelson and Mateas [39] use five types of DM actions to to guide players in An-

chorhead: permanent deniers which change the world so that a particular plot point

becomes simply impossible for the duration of the game, temporary deniers which

change the world so a particular plot point becomes temporarily impossible, causers

which make a plot point happen, hints which make a plot point more likely to hap-

pen with an associated multiplier and duration, and game endings which are a special

type of DM action that ends the game. Most of these DM actions are visible to the
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players. Some actions, such as permanent/temporary deniers, can even be intrusive

for the players’ experience. Some of the player actions are forbidden thus the player

agency could be compromised in the system.

Magerko and Laird [31, 30] build an Interactive Drama Architecture (IDA) which

uses planning and specific instructions such as “make the pistol jam” to actively

prevent certain deviation of the storyline from the original goal. The Mimesis system

and the narrative mediation also use a similar technique to intervene when the players

perform actions that threaten the original story plan [72, 48, 73]. Although the

players are not prevented from taking the actions, the results of their actions may

not be what the players expected because of the intervention of the drama managers.

Further studies are needed to evaluate the players’ sense of agency in these drama

management systems.

In this research, I create a personalized drama manager that does not forbid/hide

any selection or explicitly changes the results of the players’ action in the interactive

narrative system. The personalized drama manager works in a multi-option branching

story graph, which will be defined in Chapter 4, and guides the players through

increasing the probability the players selecting the desired options. Furthermore, the

personalized DM builds a player model to predict the players’ preference over stories.

There has been relatively little work that uses player models to determine how a story

should unfold in a game or virtual environment. In the next section, I will briefly

review previous work on player modeling and how the player models have been used

to interactive narrative.

2.4 Player Modeling

Player modeling has been widely applied to adapt computer games in a variety of

ways [29]. In this section, I will first briefly review related work on player modeling in

general. Then I will discuss previous work on player modeling for interactive narrative
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systems.

2.4.1 Player Modeling in Computer Games

Player modeling has been widely used to dynamically adjust difficulty in computer

games. Demasi and Cruz [10] employ genetic algorithms to build intelligent agents

that best fit the players’ skill level. They uses pre-defined models (agents with good

genetic features) as parents in the genetic operations for their online coevolution.

Hunicke and Chapman [19] control game environment settings to make the game

easier or harder for different players. They employ a probabilistic method drawn

from Inventory Theory for representing and reasoning about player status in first

person shooter (FPS) games. Spronck, etc., [63] use dynamic scripting—an adaptive

rule-base system—to adjust difficulty dynamically to the player skills. The rules in

the rulebases are manually designed. The probability a rule is selected is based on

an attached weight value which is updated to maintain a certain challenge level for

players. Hartley and Mehdi [17] use cased-based approach to predict human players’

actions and adapt the challenge level for FPS games. They develop a dual state

representation to enhance case matching, and use adaptive k-d tree-based techniques

to improve case storage and retrieval. Kazmi and Palmer [22] use finite state machine

to recognize the skill level of players in FPS games. They try to make the game

harder for expert players and easier for beginners. The finite state machine is also

used to adapt NPC behaviors, weapon mechanics and game level geometry in their

research. Collaborative filtering can also be used in the player modeling problem [34].

Zook and Riedl [81] use tensor factorization to learn player skill mastery over time,

allowing more accurate tailoring of challenges. They demonstrate the efficacy and

scalability of tensor factorization models in a simple role-playing combat game.

Player modeling has also been applied in procedural content generation to gen-

erate the game world, scenarios and quest for different players. Magerko et al. [32]
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build an intelligent director agent to customize simulation training scenarios for dif-

ferent trainee. They build a skill model that captures player proficiency levels by

monitoring and rating the trainee’s actions. The plot points in the training scenar-

ios are selected by matching the tested skills with the skill model of the trainees.

Togelius, etc, [69] propose a neural network based player modeling approach to in-

fer and simulate players’ behaviors and predict entertainment levels of the players.

Their approach can dynamically generate tracks to increase player satisfaction in a

car racing game. On a similar direction, Shaker, etc. [60] also use the neural network

based player modeling approach to adapt level design parameters for different types

of players in platform games. They use exhaustive search to find parameters for the

neural network to maximize players’ satisfaction. Jennings-Teats et al. [20] propose

Polymorph, a dynamic level generation system that can adjust difficulty levels for 2D

platform games. They use Rank-SVM to learn game level models and player models

from human labeled data. Sullivan et al. [65] propose the Grail Game Manager,

a rule-based system which can dynamically generate personalized quest structures

for different players. They choose quest entities (goals, actions, rewards, NPCs, and

dialog options) using players’ history and current world state.

2.4.2 Player Modeling in Interactive Narrative

The Interactive Drama Architecture (IDA) [31, 30] predicts player actions and reasons

about potential threats using a predictive player model. Then it attempts to preserve

the narrative goals—specified by the game designers—by directing virtual characters

to perform actions or change goals. In the IDA, the player model is used to model

players’ actions instead of players’ story preference. Thus it is still a surrogate for

the game designers.

Relatively little work has been done to use player models to model player prefer-

ence and determine how a story should unfold in a game or virtual environment. The
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PaSSAGE system [67] automatically learns a model of the player’s preference through

observations of the player in the virtual world, and uses the model to dynamically

select the branches of a CYOA style story graph. PaSSAGE uses Robin’s Laws five

game player schemes: Fighters, Power Gamers, Tacticians, Storyteller, and Method

Actors. A player is modeled as a vector where each dimension is the strength of one

of the types. As the player performs actions, dimensions are increased or decreased

in accordance to rules.

Peinado and Gervás [41] build player models using the same player types as in the

PaSSAGE system. They use a knowledge intensive case based reasoning approach to

generate interactive stories based on the current game state and the player models.

Seif El-Nasr [12] propose Mirage which uses a four-dimension player model: hero-

ism, violence, self-interestedness, and cowardice. Mirage uses a pre-authored rule-

based system to associate player behaviors to the four dimensional player models

then selects narrative events based on author’s specification and the player models.

Sharma etc. [61] use case based reasoning player modeling approach to predict

interestingness values for the plot points within the story. The drama manager then

uses an expectimax search process based on the player model and the author specified

aesthetic values to select plot points for interactive narrative systems.

These player modeling techniques assume players can be classified according to

several discrete play styles and that, even with continuous characteristic vector com-

bining the discrete player styles, optimal story choices can be made by a DM (Sharma’s

DM is an exception. But their player models are also built based on a fixed set of

hand-chosen features) [74, 77]. These systems further assume that role playing game

player classifications (or ad-hoc types) are applicable to story plot choices. In ad-

dition, these systems assume that plot points could be selected in isolation from

each other based on a comparison between their attributes and the player model. In

this research, I propose a collaborative filtering based player modeling approach that
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learns player model dimensions from player feedback—ratings—and further solves se-

quential plot point recommendation/selection problems. In the next section, I will

introduce some background on collaborative filtering and its application in computer

games.

2.5 Collaborative Filtering and Its Application in Com-
puter Games

In this section, I will firstly review various approaches for collaborative filtering. Then

I will discuss its applications in computer games.

2.5.1 Collaborative Filtering

As one of the most successful approaches to building recommender systems, collabora-

tive filtering make use of known preferences of a group of users to make recommenda-

tions or predictions of the unknown preferences for other users. Collaborative filtering

algorithms can be categorized into memory-based collaborative filtering, model-based

collaborative filtering, and hybrid collaborative filtering 1.

Memory-based collaborative filtering algorithms use the entire or a sample of the

user-item database to model the user preference. Neighborhood-based CF and item-

based/user-based top-N recommendations are typical examples of memory based CF

[58]. The neighborhood-based CF calculates the similarity or weight wi,j, which

reflects distance, correlation, or weight, between two users or two items, i and j.

Then it produces a prediction for the active user by taking the weighted average of

all the ratings of the user or item on a certain item or user, or using a simple weighted

average [58]. The memory-based collaborative filtering is an early approach used in

many commercial systems. It is easy to implement and fast to compute. But its

performance decreases when data gets sparse.

1http://en.wikipedia.org/wiki/Collaborative˙filtering
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Model-based collaborative filtering algorithms use data mining and machine learn-

ing algorithms to find patterns based on training data. The learned models are used

to make predictions for new users. Prevailing model-based collaborative filtering al-

gorithms include Bayesian networks, clustering models, latent semantic models such

as singular value decomposition and non-negative matrix decomposition, probabilistic

latent semantic analysis such as probabilistic principal component analysis, multiple

multiplicative factor, latent dirichlet allocation and markov decision process based

models [64]. The model-based collaborative filtering algorithms handle the sparsity

better than memory-based ones. Thus they improve the prediction performance with

large data sets. The model-based CF algorithms usually give an intuitive rationale

for the recommendations, although it can be time consuming to train the models.

The hybrid collaborative filtering algorithms combine the memory-based and the

model-based CF algorithms. The hybrid approaches try to overcome the limitations

of both memory-based and model-based algorithms. However, they usually increase

complexity and are expensive to implement [15].

In this research, I compare and use various memory-based and model-based col-

laborative filtering algorithms, including K-means clustering, K-nearest neighbors,

probabilistic principal component analysis, and non-negative matrix factorization,

etc., to build the player preference models. In the next section, I will discuss previous

applications of collaborative filtering for the player modeling in computer games.

2.5.2 Application in Computer Games

Collaborative filtering has not been widely used in computer games to model the

player preference or build the player models. Melder suggests that game developers

can benefit from incorporating the recommendation algorithms to build player mod-

els and adapt gameplay based on the player preference [34]. Zook and Riedl [81] use
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a tensor factorization approach to predicting player performance in skill-based com-

puter games. The tensor factorization approach is a temporal based collaborative

filtering that can predict changes in players’ skill mastery over time, allowing more

accurate tailoring of challenges.

Most common collaborative filtering algorithms, including the temporal based col-

laborative filtering, cannot be used directly to model the players’ preference over story

plot points due to the sequential natural of stories. The prefix based collaborative

filtering algorithm I develop in this research address the sequential recommendation

problem and can be used to predict the players’ story preference.
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CHAPTER III

DATA-DRIVEN PLAYER MODELING ALGORITHM

In this chapter, I will describe a data-driven player modeling algorithm—prefix-based

collaborative filtering (PBCF)—that predicts players’ preference over successive plot

points and chooses successive plot points for the players in storytelling systems.

Previous approaches to personalization of story generation and interactive narra-

tive [67, 41, 11] require a designer to pre-determine the meaningful player types, even

though there is no comprehensive theory that these pre-defined player types can cover

all different players or can be generalized to different types of games, nor any clear

evidence of links between player selections and the pre-defined player types. In this

research, I use collaborative filtering (CF) to discover the player types directly from

data. Collaborative filtering has been widely used in recommender systems to model

user preference over movies, books, music, and other products from users’ structural

feedback, e.g. previous ratings, historical purchase, etc [64]. The CF algorithms are

data-driven approaches that attempt to learn users’ preference patterns from ratings

and predict new user’s ratings from previous users’ ratings which share similar pref-

erence patterns. The CF algorithms enable us to easily extract the player types by

observations of players’ structured feedback, i.e. ratings. The player models built

with CF algorithms do not take any assumption about pre-defined player types.

Unlike the traditional usage of CF for one-shot recommendations of complete story

artifacts (e.g., books, movies), modeling preference over successive plot points is a new

type of recommendation problem—sequential recommendation, in which each subse-

quent recommendation is dependent on the entire sequence of prior recommendations

for a particular story experience. In other words, the sequential recommendation is a
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Figure 11: A sample branching story graph.

non-Markovian problem—at each step the DM’s selection of best next plot point is

based on all previous plot points encountered by the player. Thus most traditional

CF algorithms cannot be used directly to model the player’s preference over succes-

sive plot points. For example in Figure 11, which is the same example as Figure 3 in

Chapter 1, if a player is currently at node 5, the DM’s next selection, node 8 or node

9, should depend on the player’s previous experience, i.e., {1, 2, 3, 5} or {1, 2, 6, 5},

instead of preference on the individual node 8 or node 9. The player’s preference on

{1, 2, 3, 5, 9} and {1, 2, 6, 5, 9} may be completely different. The PBCF algorithm

is developed to address the sequential recommendation problem.

The prefix-based collaborative filtering algorithm first converts the branching story

graph into a prefix tree representation. Then it models the players’ preference over

the prefix nodes and select successive plot points based on the players’ preference over

the prefix nodes. Section 3.1 and Section 3.2 describe the PBCF algorithm in more

details. Section 3.3 evaluates the PBCF algorithm on both human data and simulated

data in a story generation system I built based on choose-your-own-adventure books.

3.1 Prefix Tree Representation

The first step to address the sequential recommendation problem is to transform the

branching story graph into a prefix tree. Figure 12 shows a prefix tree transformed

from Figure 11. In Figure 12, every node is a prefix of a possible complete story (i.e.,
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A

B

1

1, 2

DC 1, 2, 31, 2, 6

GF 1, 2, 3, 4 1, 2, 3, 5E 1, 2, 6, 5

H I

1, 2, 6, 5, 9

J K

1, 2, 6, 5, 8 1, 2, 3, 5, 8 1, 2, 3, 5, 9

Figure 12: The corresponding prefix tree of the branching story graph in Figure 3.
Options are temporarily ignored in this figure. The branching story graph is usually
a graph while the prefix tree is a tree or forest.

a path from initial node to terminal node in a branching story graph). The children

of a node in the prefix tree are the prefixes that can directly follow the parent prefix.

Comparing Figures 11 and Figure 12, one can see that each node in the prefix tree

incorporates all the previous plot points in the path from the initial plot point to

the current plot point. With the prefix tree, the drama manager does not need to

worry about history when choosing the next node because the previous history is

incorporated into the prefix nodes themselves.

In my approach, stories will be presented to the players plot point by plot point

and I will collect players’ ratings for the “story-so-far”, the portion of the story that

they have observed leading up to the current point in time. Notice that it is easier

and more accurate for the players to rate the story-so-far than the new plot point

only since the history of interaction up to that point matters in stories. Any one plot

point does not make sense without previous ones. It is probably impossible to ask

the players to not consider the context of the prior story. The story-so-far exactly

corresponds to the prefix nodes in the prefix tree. Furthermore, through prefix tree I
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do not need to solve the credit assignment problem as in reinforcement learning which

is to determine how much of a final rating each previous plot point is responsible for

[66].

Compared to other algorithms which also roll history into state nodes such as

TTD-MDP [55, 6], the prefix based collaborative filtering algorithm focuses on opti-

mizing the path for different players based on the player model. Furthermore, unlike

TTD-MDP which tries to convert the problem into a Markovian problem, the prefix

selection problem in the paper is still non-Markovian. For example, if the DM is at

node D in Figure 12, the selection of the next node (F or G in Figure 12 should

be related to the player’s ratings on previous three prefix nodes (A, B, and D). A

player who gives positive feedback on node B and negative feedback on node D should

be different from another one who gives negative feedback on both node B and D.

Through the prefix based CF algorithm I describe in the next sections, the DM can

model players’ preference based on all previous prefix ratings and make a selection to

the best of its knowledge.

3.2 Prefix Based Collaborative Filtering

With the prefix tree representation, a prefix-based collaborative filtering algorithm can

now be considered to build the player preference model. In prefix based collaborative

filtering, all the players’ ratings for the story prefixes are collected in a single matrix

which I call a prefix-rating matrix. An n by m prefix-rating matrix contains the

ratings for n prefixes from m players. Each column of the matrix represents the

ratings of the corresponding player for the all the prefixes. Each row of the matrix

represents ratings for the corresponding prefix from all the players. Figure 13 shows

a simple illustration of the prefix-rating matrix. The matrix is usually very sparse,

i.e. containing a lot of missing ratings which are labeled as ∗ in Figure 13, because I

do not expect any given player to have read and rated all the prefixes in the library.
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Prefix Player 1 Player 2 Player 3 …

A (1) * * 2 …

B (1, 2) 1 * 2 …

C (1, 2, 6) * * * …

D (1, 2, 3) 4 3 * …

… … … … …

Figure 13: An illustration of the prefix-rating matrix. A, B, C and D represent the
prefixes in Figure 12. The larger the digital number, the higher the preference. The
stars represent those missing ratings.

If one can predict all the missing ratings in the prefix-rating matrix for a player,

it will be straightforward to choose the best next prefix during story generation

process—to choose the prefix that will lead to the highest rated full-length stories

for the player. In my approach, the prefix-rating matrix is treated as the product-

rating matrix as in traditional Collaborative Filtering [64, 79]. CF algorithms can be

applied to train and compute the missing ratings in the prefix-rating matrix.

The CF algorithms make no presumptions on the player types as in [67]. Instead

the algorithms will cluster the ratings of the players and learn “patterns” from each

cluster of ratings. These “patterns” also represent player types, although, as with

many machine learning techniques, it is difficult to interpret these player types. These

player types are soft clusters in the sense that a particular player can have a degree

of membership in each player type. The learned player types is more capable of

describing all types of players for particular games, compared to the pre-defined types.

The PBCF algorithm consists of two phases: model learning and story recommen-

dation. In the next section, I will introduce the CF algorithms that will be used in

this work. Then I will describe two phases in the PBCF process: model learning and

story recommendation.
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3.2.1 Collaborative Filtering Algorithms

I experimented on two collaborative filtering algorithms: probabilistic Principal Com-

ponent Analysis (pPCA) [68] and Non-negative Matrix Factorization (NMF) [26, 80].

I will briefly introduce the two algorithms and their application to the model learning

and story recommendation process.

The probabilistic PCA algorithm assumes that a n dimensional vector r can be

factorized as follows:

r = Wx + µ+ ε (1)

where x is a n′ dimensional vector in the hidden or reduced dimension space (usually

n′ < n) and x ∼ N(0, I). W is a n by n′ matrix. µ is the mean vector which permits

r to have nonzero mean. ε ∼ σ2I is the Gaussian noise.

Let the vector r be one column of the prefix-rating matrix. pPCA projects the

corresponding player’s prefix-rating vector into a hidden space or a reduced dimension

space x just as in traditional principal component analysis. The hidden space vector

x models the corresponding player’s preference type. Note that from Equation 1:

r|x ∼ N(Wx + µ, σ2I) (2)

Thus the basic assumption of pPCA algorithm is that the player’s prefix rating

vector (the column of the prefix-rating matrix) obeys a multi-dimensional Gaussian

distribution. In other words, the ratings for each prefix from a single player take

a univariate Gaussian distribution. Furthermore, pPCA assumes that the expecta-

tions of different players’ rating vectors are linear combinations of wi, the columns

of the matrix W , which in my case represent player types. The player model in

pPCA is captured by W , µ and σ. Thus, for each player with prefix-rating vector ri,

these parameters help us find the hidden vector xi, the individual player’s preference

properties; once the hidden vector is known, the player’s ratings for all prefixes with-

out ratings by this individual can be computed according to the multi-dimensional
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Gaussian distribution.

The NMF algorithm aims to factorize an n by m matrix R as follows:

R = W ∗H (3)

where W ∈ Rn∗n′
and H ∈ Rn′∗m are two non-negative matrices (usually n′ < n).

The non-negative property means that all the entries in the matrix are greater than

or equal to zero.

In my case, R is set to be the prefix-rating matrix (n prefixes and m players).

The player model in NMF is simply the matrix W . The columns of the matrix W ,

wj j = 1, ...n′, are bases that represent different types of players. hi, the ith column

of H, corresponds to the ith player’s preference properties.

In practice, it will be difficult to interpret the player types that correspond to

wi or hi. However, known player types can be introduced as prior knowledge to

the model learning process to improve the training accuracy. For example, in NMF,

if I have prior knowledge about some preference types (e.g., fighter, tactician), i.e.,

I know their ratings for all the prefixes (e.g., fighter’s rating vector wf , tactician’s

rating vector wt), then the matrix W can be seeded with the rating vectors (wf , wt)

as fixed columns.

3.2.2 Model Learning Algorithms

Due to the large amount of missing values in the prefix-rating matrix R, EM algorithm

[2] is used to learn the parameters for pPCA algorithm (W , µ and σ) and NMF

algorithm (W ).

3.2.2.1 Model Learning with pPCA

In the E-step of the pPCA model learning algorithm, I use a Gaussian Process to

compute the missing ratings in R given the parameter W , µ and σ [47]. Let Σ =

WW T + σ2I be the covariance matrix for the rating vector r, which is one column
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of R. Denote the sub-vector of r which contains all missing ratings as rh and the

sub-vector of r which contains all known ratings as ro. Then the distribution p(rh|ro)

and the expectation of rh can be computed using the Gaussian Process:

E(rh|ro,µ,Σ) = µh + Σho(Σoo)
−1(ro − µo) (4)

where µh is the sub-vector of µ containing elements at the positions corresponding

to the missing ratings and µo is the sub-vector containing elements at the positions

corresponding to the known ratings. Σho means the sub-matrix of Σ, of which the

rows are indexed by the position of missing ratings while the columns are indexed by

known ratings in r. The notation system follows the tradition in [79].

In the M-step of the pPCA, the parameters W , µ and σ are computed through

maximizing the expected likelihood function E(rh, ro|W,µ, σ) over distribution p(rh|ro),

which is computed in the E-step using Gaussian Process. After a few equation ma-

nipulations, the expected likelihood function will be:

E(rh, ro|W,µ, σ) ∼ log|Σ|+tr(CΣ−1) (5)

where C = 1
m

E(
∑

m
i=1(ri−µ)(ri−µ)T ) and m is the total number of training players.

The parameters can be computed by minimizing Equation 5. The minimization

results are as follows:

µ =
1

m

∑
i

ri (6)

σ2 =
tr(C)−

∑
n′
i=1λi

n− n′
(7)

W = U ′S (8)

where the λi is the ith biggest eigenvalue of C, U ′ contains the n′ eigenvectors corre-

sponding to λi and S is a diagonal matrix with the i value equaling to (λi − σ2).
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1: Initialize W , µ and σ randomly for pPCA, or W and H for NMF
2: while not converging or termination criterion not reached do
3: Compute the rating matrix R through Equation 4 for pPCA algorithm, or Equation 3 for

NMF algorithm . E-step
4: Set the corresponding elements in R to the known ratings in R0

5: Compute W , µ and σ through Equation 6-8 for pPCA, or W and H through Equation 9 and
Equation 10 for NMF . M-step

6: end while

Figure 14: The model learning algorithm.

3.2.2.2 Model Learning with NMF

For the NMF algorithm, the E-step to compute the prefix-rating matrix R is simple

given the W and H: R = WH. Then the known elements of R are set to be the

corresponding input player ratings.

Given a fully observed R in the M-step, the objective is to minimize the distance

||R−WH||2 as in [26] to get W and H, where ||◦|| is the Frobenius norm. The update

rules are as follows:

Hij ← Hij
(W TR)ij

(W TWH)ij
(9)

Wij ← Wij
(RHT )ij

(WHHT )ij
(10)

3.2.2.3 Summary of Model Learning

Regardless of algorithm, the complete model learning process is as follows. In the first

step, I build the story library and convert the branching story graphs into a group of

prefix trees. In the second step, I collect data to populate the prefix-rating matrix

R0. In the third step, I use the algorithm in Figure 14 to learn the player model, i.e.,

to predict missing rating values for all players.

3.2.3 Story Recommendation Algorithms

At current stage, the players are not allowed to select options by themselves. Instead,

the DM will recommend a path through the branching story graph for an individual

player based on the learned player models in the model learning phase. The story
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1: Initialize h, a column of H in Equation 3, for NMF
2: while Not converging or termination criterion not reaching do
3: Compute r using Equation 3 (with h)
4: Set the corresponding elements in r to the known ratings in r0
5: Compute new h using Equation 9
6: end while

Figure 15: The rating prediction algorithm for NMF.

recommendation phase begins with collecting some initial prefix ratings to seed r0

for a new player. Next, I predict the missing ratings for the player using the player

models built in the modeling learning step. When using pPCA, this is accomplished

simply by applying Equation 4. For NMF algorithm, the prediction algorithm in

Figure 15 is used. At last, the plot point in the prefix that can lead to the highest

rated full-length story will be selected.

For example if the story has proceeded to node B in Figure 12, the selection of

plot point C or D depends on the predicted ratings of node H, I, J and K. If node

I gets the highest predicted rating, then the DM will select plot point 6. If node K

wins, plot point 3 in node D will be selected.

3.2.3.1 Summary of Story Recommendation

The entire story recommendation phase can be described as follows:

1. Collect a initial rating vector r0 with missing values from the player.

2. Compute r with no missing values using Equation 4 for pPCA, or the algorithm

in Figure 15 for NMF.

3. Select one of the child nodes in the prefix tree that can lead to the highest

rated leaf node in the prefix tree.

4. Present the plot point from the selected prefix node that would follow the

current plot point.

5. Collect player’s rating on the story-so-far (i.e., the recommended prefix).
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6. Include the new rating into r and go to step 2.

Notice that it is not necessary to collect new ratings after each prefix in the story

recommendation phase; I do it in the system for the purpose of collecting as much

data as possible to build a more accurate player model. With every new rating,

the DM will get better understanding of the current player’s preference. This is

important as the quality of the recommendation can improve and prior predictions

can be overridden. The DM can change the recommendation direction as soon as

it finds the prior predictions are wrong. In fact, I show in the experiments with

simulated players that the prefix based story generation approach works better than

applying collaborative filtering directly on full-length stories.

3.3 Evaluation of the Player Modeling Algorithm

In this section I describe human studies and simulated studies designed to evaluate

the prefix based collaborative filtering algorithm in a simple story generation environ-

ment. I will first introduce the story library used in the experiment, followed by the

user interface of the story generation system. Then I will describe four human studies

and one simulated study I performed. The first human study trained a player model

on human ratings of stories. I evaluate pPCA and NMF implementations for the

accuracy of models of human rating behavior learned. The second human study used

the player model trained in the first experiment to evaluate the story recommendation

algorithm against a baseline. The third and the fourth human studies are comparison

experiments which evaluate story preference model built without considering history

and story preference model built with the Robin’s Laws as prior knowledge. Finally,

I will describe experiments conducted on simulated computer players in order to get

a more complete picture of PBCF algorithm performance.
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3.3.1 Story Library

The story library I used for the experiments was built by transcribing the stories

from four Choose-Your-Own-Adventure (CYOA) books: The Abominable Snowman,

Journey Under the Sea, Space and Beyond, and The Lost Jewels of Nabooti, all of

which contain adventure stories for teenagers in the US [1]. All the stories from one

book constitute a branching story graph. At the end of every page in the book, there

is a multi-choice question. Depending on which choice the reader chooses, he or she

will be delivered to different pages of the book to continue down different branches of

the story. Figure 16, which is the same as Figure 1 in Chapter 1, shows a branching

story graph from one of the books—The Abominable Snowman. Here I do not allow

the players to select options by themselves for the purpose of evaluating the story

preference models.

One of the reasons that I transcribed stories from Choose-Your-Own-Adventure

books is to control for story quality, as opposed to authoring stories myself. In

the current system, every story was pruned and transcribed to contain exactly six

plot points. This was achieved by manually removing branches that led to “sudden

death” outcomes and merging a few successive plot points. Note that the algorithm

generalizes to longer and variable-length stories, although all the stories are of the

same length in the current library. Figure 17 shows the branching story graph of The

Abominable Snowman after conversion.

The four branching story graphs were transformed into four prefix trees (in this

case a prefix forest), which was stored in the story library. In total, the story library is

capable of generating 154 possible stories (about 1000 words per story) and contains

326 prefixes. The constraints between plot points greatly reduce the number of valid

stories in the story library such that the number of prefixes will grow linearly with

the number of full-length stories.
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Figure 16: Illustration of the branching story graph of stories in The Abominable
Snowman. Each node in the graph represents a page in the book (a plot point).
Every story starts from the root node and ends on one of the leaves.
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Figure 17: The branching story graph for the choose-your-own-adventure book: The
Abominable Snowman. The digits at the bottom are the left-most score distribution
I used in the evaluation.

3.3.2 User Interface

I built a simple story generation system to evaluate the prefix based CF algorithm.

The system implements the CF model learning and story recommendation algorithms

described earlier. It selects the next plot point that is believed to be most enjoyed

by the player then directly present the plot point to the player.

Figure 18 shows a screenshot of the simple story generation system I built for

experiments with human participants1. The system presents the stories to the player

one plot point at a time, where each plot point is a paragraph of a story. In Figure 18,

two plot points are presented. After each plot point, the system asks the player for

their preference rating on the story-so-far (corresponding to a prefix node in the prefix

tree). The ratings are integers ranging from 1 to 5, where a larger number indicates

a higher preference. A new plot point will appear after the player clicks the Next

button. The next plot point is determined by the story selection algorithm, which is

either PBCF or random selection of a successor. In this system, by limiting player

interaction to providing ratings of the story-so-far I aim to control the experimental

1In this human study, I collected the players’ preference ratings using a slider, which could
introduce a default bias effect [18]. In the next chapter, I will use a group of radio buttons without
pre-selecting any of them to avoid the default bias effect.

44



Figure 18: A screenshot of the interactive narrative system. A plot point is a
paragraph of the story in the screenshot.

variable of player agency to further facilitate validation of the PBCF algorithm. In

Chapter 4, I will build a full interactive narrative system that can provide the players

the appearance of full agency.

3.3.3 Model Training on Human Players

In this experiment, I examine the ability of the system to learn a player model for

prefixes utilizing human-generated prefix ratings. To learn a model, I need a sparse

prefix-rating matrix. To generate the matrix, I implemented a version of the narrative

system that randomly walks the branching story graph. It starts at a randomly

selected root node and then selects randomly from possible successor plot points. For

each plot point presented, the system asks for a rating of the story-so-far from the

players.

I recruited 31 players (18 male and 13 female) for the experiment. 26 of the players

are college graduate students and the other 5 players are research scientists and staff

at our University. Five out of the 31 players were familiar with the choose your own
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adventure series of books prior to participating in the study. Participants who were

not familiar with choose your own adventure books were given a sample adventure

story to familiarize them. The experiment took about half an hour for each player.

A 326 by 31 prefix-rating matrix R with ∼ 86% ratings missing is collected in

this step. The prefix-rating matrix R was randomly split into training part Rt which

contains 90% of the ratings, and validation part Rv which contains the remaining

10% of the ratings. The Rt and the Rv are still of the same dimensions as the original

R and both contained missing values.

The NMF and pPCA algorithms are trained on the training set Rt with different

parameters. The resulting models were then used to predict the ratings in the valida-

tion matrix. To evaluate the accuracy of each algorithm, I measured the Root Mean

Square Error (RMSE), which is computed as follows:

RMSE =

√
1

|O|
∑
i,j∈O

((Rv)ij − (Rv′)ij)2 (11)

where Rv′ is the predicted validation matrix, O is the set of entries indices that are

not missing in the validation matrix Rv and |O| is the number of entries that are not

missing in Rv.

The random splitting process is repeated ten times and the average RMSEs on the

validation sets are reported in Table 1. The dim i in the table mean that from NMF

the matrix W in Equation 3 has i columns. The RMSEs in the table suggest that

there are probably six types of players in the current training set when it comes to

story preferences. Although it is not easy to interpret and label the player types, by

learning to cluster participants into these player types the system is able to predict

prefix ratings to within one point of actual participant ratings on the story-so-far on

average.
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Table 1: The average RMSE for NMF and pPCA algorithms with different parame-
ters.

Algorithms RMSE
NMF dim3 1.2423
NMF dim4 1.1781
NMF dim5 1.1371

NMF dim6 0.9901
NMF dim7 1.1108
NMF dim8 1.1354
NMF dim9 1.2464

pPCA 1.2016

3.3.4 Evaluation of Story Recommendation

I hypothesize that the PCBF algorithm can improve overall ratings of story expe-

riences by increasing the likelihood that players see stories that are more aligned

with their preferences than by chance alone. Because of constraints between plot

points, I know that all possible paths in a branching story graph from root to leaf

nodes were intentionally designed, even random walks produce legal stories from the

designer’s perspective. I therefore believe that a random walk baseline is a strong

baseline. My hypothesis builds on the assumption that individual players may have

preferences across the possible story experiences allowable by the designer’s branching

story graph.

22 graduate students (17 male and 5 female) were recruited to evaluate the PBCF

algorithm. None of the participants were involved in earlier experiments. I use the

best player model from model training phase (i.e., NMF with 6 dimensions). To

compare the model performance on new players versus existing players on which the

player model was trained, I also invited 11 players from model training phase back

to participate in this study.

The story recommendation study consists of four stages. In the first stage the

DM presents five randomly selected stories, generated in the same way as the model
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Table 2: The average ratings for the random and personalized full-length stories.
The accuracies are the percent of pairs in which the average rating of the personalized
stories is higher than the average rating of the random stories.

Random Personalized Accuracy p-value
All 2.9449 3.8899 0.828 < 0.0001

Returning 3.0320 4.0350 0.863 < 0.0315
New 2.8993 3.8138 0.809 < 0.0001

training experiment. This provides some initial ratings from the participant. In the

second stage, five personalized stories are generated according to the PBCF algorithm.

These personalized stories are also presented to the participant plot point by plot

point and the players’ story-so-far ratings are collected after every plot point. As in

Sharma et al. [61], the DM generates another five personalized stories in the third

stage, followed by five random stories in the last stage in order to eliminate any bias

introduced by the order in which the stories are presented to the participants. I do

not want the players to feel that the stories in the system become better as they

read more stories. In total, every participant is required to read 20 stories (10 total

random stories and 10 total personalized stories).

Table 3 shows the results for the new players and returning players. The first line

exhibits the statistical results on all the 33 testing player. The second and the third

lines give the results of the 11 returning players and the 22 new players, respectively.

The first column “Random” and the second column “Personalized” show the average

ratings of all the random and all the personalized stories respectively. For every

player in the story generation phase, I also compare the pair of average story ratings

from the first step and the second step, and the pair of average story ratings from

the third and the fourth step. The “Accuracy” column shows the percent of pairs in

which the average rating of the personalized stories is larger than the average rating

of the random stories, indicating the DM correctly chooses preferred stories. The
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last column shows the significance of the difference between random and personalized

averages using the Wilcoxon signed-rank test.

One reason I would like to collect players’ ratings during story recommendation

phase is to create a more accurate player model as described in Section 3.2.3. Another

advantage is that both the random stories and personalized stories will be presented

in the same format so that the players’ preference judgement will not be affected by

the system interface. In fact, the players were not told which stories were random

and which stories were personalized before the experiment and most of them did not

notice the difference afterwards. The last reason is that I need to compare their

ratings between random stories and personalized stories so that I can evaluate the

PBCF algorithm.

3.3.5 Experiment on Human Players without Considering History

Throughout the dissertation, I believe in the theory that history matters in stories.

In order to select stories based on player’s preference, the drama manager is required

to make prediction and recommendation in the context of previously experienced plot

points. A story is a recounting of a sequence of plot points. One assumption I have for

the theory is that any single plot point taken out of the sequence does not necessarily

provide reasonable information for the entire story. Another assumption behind this

is that the DM built with player’s preference over individual plot points is difficult, if

not impossible to catch players’ preference on prefixes or full-length stories. The first

assumption coincides with our daily experience. To validate the second assumption,

I perform another group of human study.

The comparison experiment is designed in which the DM selects the successive plot

points based on the players’ ratings over plot points. This study was also composed

of model training phase and story recommendation phase. In the model learning

phase, 19 players participated in the study. Each player read 30 independent plot
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points without story context. These plot points are randomly selected from the

branching story graph and presented to the players one by one. I collected a rating

from the players after every plot point as before. Unlike in the prefix based CF human

study, the players were told to rate single plot points alone in this experiment. In

order to prevent the players from memorizing previous plot points and creating their

own story history, I hid previous plot points when presenting the new plot point.

And consecutive two plot points were always chosen from different CYOA books.

Instead of the prefix-rating matrix, I collected a plot point rating matrix in the model

learning phase. Then the player model was built by training the NMF algorithm (with

dimension six) on the plot point rating matrix.

In the story recommendation phase, I invited another 14 players for the study.

The game interface is similar to the one in story generation phase of the prefix based

CF human study. Every player read 20 stories in exactly the same sequence as in

previous experiments(5 random, 5 personalized, 5 personalized and 5 random). And

after each plot point, the players were required to leave a preference rating for each

new plot point. Based on the NMF model learned from the plot point rating matrix,

the DM chose the next plot point that can follow the current plot point to guide the

players through the branching story graph. Apparently the DM did not take history

into consideration when recommending stories.

Notice that the players’ ratings are still dependent on the story-so-far since it is

impossible for them to forget previous plot points. As a result, in this experiment,

the drama manager tries to predict players’ preference on story prefixes using the

player model built based on players’ preference for plot points. Table 3.3.5 shows the

results of the comparison experiment.
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Table 3: The experiment results of the comparison experiment without considering
history.

Random Personalized Accuracy p-value
All 2.4214 2.5500 0.464 0.4379

3.3.6 Evaluation of Using Robin’s Laws as Prior Knowledge

In order to evaluate whether using the Robin’s Laws can improve the story preference

models I built, I performed another human study which uses the Robin’s Laws as

prior knowledge. The Robin’s Laws player types assume that there are five types of

players for games: Fighters (who prefer combat), Power Gamers (who prefer gaining

items and riches), Tacticians (who prefer thinking creatively), Storytellers (who prefer

complex plots) and Method Actors (who prefer to take dramatic actions) [67, 41]. In

order to test the Robin’s Laws on the players data, I labeled all the story prefixes in

the story library. Each prefix was labeled with a five dimensional vector according

to Robin’s Laws player types. The entries of the vector, ranging from 0 to 1, express

the average belief about how the story prefix matches players of the corresponding

Robin’s Laws player type. For example, a story prefix with the vector [0.1, 0, 0, 0.9, 0]

means most Storytellers will like it very much and there is a slight probability that

Fighters will also like it. The labeling of prefixes was performed by three college

students, including me. To mitigate bias, the final label for each prefix is the average

produced by each of the human labelers. These entries in the vectors are scaled to 1

to 5 and treated as ratings. I get a 326 by 5 rating matrix P , each column of which

represents ratings for all the prefixes from a Robin’s Laws player type.

As mentioned in Section 3.2, known prior knowledge can be included into the

model learning process. In the experiment, I set the first five columns of matrix W

in Equation 3 to be P and keep the five columns constant during the EM learning

process. I train the model on the rating data from 31 human players in the modeling
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Table 4: The RMSE for NMF algorithms with Robin’s Laws prior on human player
data.

Algorithms RMSE
NMF dim5 2.025
NMF dim6 1.891
NMF dim7 1.792
NMF dim8 1.917
NMF dim9 1.988

learning phase of the first human experiment in Section 3.3.3. The RMSE results for

NMF of different dimensions are shown in Table 4. Notice that W is constant for

NMF dim5 algorithm in the table. So I only need to learn H in the model learning

phase.

3.3.7 Experiment with Simulated Players

In addition to studies with human participants, I also conducted experiments on sim-

ulated computer players in order to get a more complete picture of PBCF algorithm

performance. Simulated players are more consistent over time, allowing me to make

observations about my algorithms on a controllable data set. With simulated players

I can generate larger data sets to examine algorithm learning rates and experiment

with different algorithm designs without requiring hundreds of human participants.

Note that it is not required that the simulated players play in the same way or have

the similar preference as human players. Instead, as long as the simulated players are

consistent on their behaviors, they can be used to test the capability of my system to

capture players’ preference and build player models.

The simulated players are built based on the Robin’s Laws player schemes de-

scribed earlier and used in related works. Every simulated player is created with a

five-dimensional characteristic vector. Each entry of the vector (ranging from 0 to 1)

specifies the corresponding characteristic of the simulated player. For example, the
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vector [0, 0.7, 0, 0, 0.9] means the simulated player is a combination of Power Gamer

and Method Actor and tends to enjoy Method Actor a little more. Story prefixes

are labeled according to beliefs about how they match Robin’s Laws player schemes.

Three graduate students (including me) labeled each prefix independently. The final

prefix labels were computed by averaging the labels from the three students. Note

that the prefix labels are not required to be accurate descriptions of the story prefix

content since I do not aim to imitate human preference.

Furthermore, I assume that a simulated player will prefer a story prefix that most

closely matches the player’s type. For example, a simulated player with characteristic

vector p = [0.8, 0, 0, 0, 0] will prefer for a story prefix i with label si = [1, 0, 0, 0, 0]

over a story prefix j with label sj = [0, 1, 0, 0, 0]. Consequently, I assume that the

rating r of a simulated player p for a prefix s is proportional to cosine distance

between the vector p and s: r ∼ pT s
|p||s| . The ratings are computed by scaling the

cosine distances to the range between 1 and 5. In addition, I add random noise with

standard Gaussian distribution (mean 0 and variance 1) to all the ratings in order to

simulate the variability in the human player behaviors that it could be inaccurate to

quantitate preference into digital labels.

In the model learning phase, 120 simulated players were created with characteristic

vectors randomly chosen from {[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0],

[0, 0, 0, 0, 1]}. Each simulated player then “read” 10 random stories and generated a

preference rating after every plot point, similar to what I asked of human participants.

A 326 by 120 prefix-rating matrix was generated in this way and used to train the

player model.

In order to test the generalization ability of the PBCF algorithm, a new group

of 1000 simulated players was created in the story generation phase. Each simulated

player was given a random characteristic vector, of which the five entries were float-

ing point values ranging from 0 to 1. The story generation phase follows the same
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four steps as the human story generation experiments. For the purpose of compar-

ison to other algorithms, the DM generated personalized stories using the following

algorithms:

� BaselineP : using pPCA to learn the player models based only on simulated

players’ ratings for full-length stories instead of prefixes, then directly recom-

mend the full-length stories instead of choosing branches through recommending

prefixes. The BaselineP algorithm behaves similar to a traditional movie recom-

mendation system where full-length movies are recommended based on others’

ratings on the full-length movies.

� BaselineN : The same as BaselineP except using NMF as the CF algorithm.

� Vector : Each player is simulated as a vector which initially is [0, 0, 0, 0, 0]. For

every plot point encountered, the DM updates the characteristic vector based

on the features of the current story prefix including the new plot point. Then

the DM generates successive plot points by recommending the following prefix

based on the updated player vector, or chooses randomly when there is no clear

preference. The vector based player modeling algorithm is built to simulate the

model learning technique used by Thue et al. [67]2.

� pPCA: The prefix based CF algorithm using pPCA; same as with the human

players.

� NMFwoP : The prefix based CF algorithm using NMF without prior knowledge;

same as with the human participant story generation experiment in Section

3.3.4.

� NMFwP : The prefix based algorithm using NMF with Robin’s Laws player

schemes as prior knowledge. In the case of simulated players, I can compute

2A difference between Thue’s approach and the Vector approach is that Thue et al. bootstrap
the player model with pre-game players’ selections, while I use a uniform non-informative vector as
the initial player model [67].
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Table 5: The experiment results for the simulated players using several variations of
the DM algorithm.

Algorithm Random Personalized Accuracy
BaselineP 2.2190 2.5305 0.668
BaselineN 2.1752 2.4582 0.643

Vector 2.2010 2.8335 0.617
pPCA 2.2350 2.9607 0.798

NMFwoP 2.2362 3.3950 0.894
NMFwP 2.2013 4.0027 0.949

the accurate rating vector wj for each known player type j, where j = 1, ..., 5

correspond to the five player types in the model learning phase. These vectors

wj are included in the matrix W in Equation 3 as fixed columns during the

model learning process. This condition represents the near ideal circumstance

where the designer has strong genre knowledge about how players respond to

stories and can author plot point sequences accordingly.

The experiment results for these algorithms on the 1000 simulated players are

shown in Table 5. The results are all statistically significant at p-values approaching

zero (using one-tailed t-tests on random and personalized averages) due to the large

number of simulated testing players.

I explored the learning rate of different player modeling algorithms. In previous

experiments, each player read 5 stories (random or generated) in each of the four steps

of the story generation phase. I alter this number and compare the story generation

accuracy for different algorithms. Figure 19 shows the average accuracies of 1000

simulated players as the number of stories read in every step changes. As shown in

the figure, the NMF algorithms can achieve accuracies higher than 70% even when a

new simulated player reads only one story.

The influence of the training set size on the player model learning process was

also tested. Figure 20 shows the average RMSEs of the three prefix based algorithms
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Figure 19: The accuracies of the six algorithms as the number of stories read in every
step changes.
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Figure 20: The average RMSEs of the three prefix based algorithms with different
number of simulated players for training.

with different number of simulated players for training. Each RMSE value in the

figure is an average computed from 10 random splits of the training data. As seen

from the figure, the training RMSEs decrease as the training set size grows. Due to

the Gaussian noise in the rating data, the RMSE values for the NMFwP algorithm

become stable after the number of training players goes above 100 even if it has the

perfect prior knowledge of the player models.

3.4 Discussion and Conclusions

The experiment on the human players using the prefix based collaborative filtering

algorithm achieves high story recommendation accuracies on the current choose your

own adventure data set. In the story recommendation study, the new players rate

DM-generated stories higher than random stories for over 80 percent of times. I can
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achieve this rate after the new players have only read and rated 5 sample stories. The

accuracy of about 86% is achieved when the testing players’ data are already part

of the trained model. For all the participants including the returning players and

the new players, The average ratings for the personalized stories are higher than the

random stories. And the p-values are approaching zero for the results. The results

show that the prefix based collaborative filtering algorithm can capture the players’

preference and recommend new stories with high accuracy and validate my hypothesis

in Section 3.3.4.

During the experiment on the human players without history in Section 3.3.5, the

accuracy is around 56%. The plot point based collaborative filtering algorithm per-

forms similar to a random selection algorithm. And thee average rating of generated

stories is approaching the average rating of the random stories. The results demon-

strate the assumption that the player model built on plot point preference cannot be

used directly to predict players’ preference for prefixes or full length stories. Thus the

human study proves the importance of history in story generation, the theory based

on which I build the prefix based collaborative filtering algorithm.

Using Robin’s Laws as prior knowledge for the PBCF algorithm in Section 3.3.6

does not improve the learning accuracy. On the contrary, the learned player model is

much worse than the model from the PBCF algorithm without the prior knowledge

in terms of RMSEs. The results shows that the real human’s ratings are so complex

that simple combinations of a few pre-defined player types is incapable of capturing

the ”patterns” from them. The real ”patterns” in the ratings might be so far away

from the Robin’s Laws model that introducing the prior knowledge could reduce the

accuracy.

In the experiments with simulated players, the NMF algorithm usually performs

better than the pPCA algorithm. One reason for it might be the linear model assump-

tion for the simulated players. The linear characteristic model for simulated players
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coincides with the basic assumption of the NMF algorithm, which also assumes that

players (columns of the matrix R in Equation 3) are linear combinations of a set of

bases (columns of the matrix W in Equation 3). Although NMF is a natural fit for

the simulated players, it is also superior to pPCA for human data in terms of RMSEs

in my experiments.

Figure 19 illustrates that the prefix based algorithms are capable of extracting

player preference much faster than traditional CF algorithms, which create the player

model directly on full-length stories (baseline algorithms BaselineP and BaselineN ).

The results demonstrate that the players’ preference for story prefixes does correlated

with players’ preference for full-length stories. Compare to the experiments on human

players without history in Section 3.3.5, I can conclude that the player model built

based on prefix ratings are better at describing the players’ preference over full-length

stories than the plot point based player model. Another reason the prefix based

algorithms work better than traditional CF is that the prefix based algorithms can

obtain more preference information (the ratings on all the prefixes) from the players

in both model learning and story generation phases. Figure 19 also shows that the

Vector approach learns the player model much slower than my algorithms and is thus

less accurate on average. This is because the Vector approach cannot acquire any

information from the training data.

The total number of prefixes in the story library could be exponential in the num-

ber of plot points. But in practice I can effectively add constraints between plot

points to limit the size of the prefix database. Notice that in my system, the number

of total prefixes grows linearly with the number of total stories given a limit of max-

imum number of plot points in each story because of the constraints imposed by the

branching story graph representation. Although there are only 154 full-length stories

and 326 prefixes in the story library, the well-known scalability of collaborative filter-

ing algorithms suggests that the PBCF algorithm can be extended to handle larger
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scale problems as long as I have enough rating data. In traditional recommendation

systems, CF algorithms can easily process products-user matrix with dimension of

hundreds of thousands and achieve high recommendation accuracies [64].

In this chapter, I develop a prefix based collaborative filtering algorithm to model

players’ preference over story prefixes. The PBCF algorithm enables the drama man-

age to build a flexible player preference model without rigid assumption on pre-defined

player types. Compare to other player modeling algorithms with rigid predefined

player types, the PBCF algorithm can learn player types dynamically from players’

feedback and better capture players’ story preference. A simple interactive game is

created based on CYOA series to evaluate the PBCF algorithm. The drama manager

using PBCF algorithm is capable of choosing successive plot points on behalf of the

players and increasing the players’ story preference ratings. But in the current sys-

tem, the players are not allowed to make option selection by themselves. In the next

chapter, I will build a fully interactive narrative system that restores player agency.
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CHAPTER IV

PERSONALIZED DRAMA MANAGER

In all the human studies until now, the drama manager selects successive story plot

points for the players. The drama manager utilizing the PBCF based player mod-

eling algorithm can optimize an individual player’s narrative experience by directly

selecting the branches through a branching story graph that are predicted to earn the

highest ratings. However, this comes at the expense of player agency—the ability for

the player to determine his or her own narrative future. In this chapter, I will restore

player agency to allow the players to make choices by themselves.

Unfortunately, the players do not know what will happen in future plot points

when they make choices. They usually select options based on a variety of local

clues, such as the words in the options, contents in previous plot points, etc. Given

full agency, the players’ myopic selection could be in contradiction with their own

preference over future story experience, while the DM’s selections based on the PBCF

algorithm can recommend better stories with high probability, as shown in previous

chapter.

In this chapter, I describe a personalized drama manager to address the contra-

diction. The personalized drama manager has two tasks. The first task is to select

target trajectories that maximize the players’ expected preference ratings. The prefix

based collaborative filtering algorithm can be used to choose the target trajectories.

The second task for the personalized drama manager it to increase the probability

that the players make choices that coincide with the target trajectories selected by

the drama manager. I develop a personalized guidance algorithm to achieve it.

The personalized drama manager works in a multi-option branching story graph, in
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which multiple options are allowed to point to the same plot point. Given the multi-

option branching story graph, the personalized guidance algorithm uses collaborative

filtering to predict which option a player is likely to choose and only presents a subset

of options such that the player is more likely to follow the target branch that the

drama manager selects.

This chapter is organized as follows: firstly I will introduce the multi-option

branching story graph. Then I will describe the player modeling algorithm to model

the players’ preference over the options, followed by the personalized guidance algo-

rithm. After that, I will describe how the personalized drama manager selects target

successive plot points, followed by a summarization of the personalized drama man-

ager algorithm. At the end, I will describe the human studies I performed to evaluate

the personalized drama manager.

4.1 Multi-option Branching Story Graph

The personalized drama manager works in a multi-option branching story graph.

Figure 21 shows a simple multi-option branching story graph which is transformed

from Figure 3. In Figure 21, each non-leaf plot point has two or three options pointing

to each successive plot points. Ideally, there are multiple options between all plot

points and their immediate successors in the multi-option branching story graph.

With the multi-option branching story graph, the personalized drama manager

can pick a subset of the options to present to the player such that at least one option

leads to each child (ensuring true player agency) and also increase the likelihood that

the player will pick the option that transitions to the desired target plot point. For

example, suppose a player is at plot point 5 in Figure 21 and the personalized drama

manager predicts that the player’s optimal narrative trajectory is through plot point

8. Suppose the drama manager further predicts that the player’s preferences over all

the available options to be g1 > h1 > g2 > h2 > g3 > h3, such that the player is
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Figure 21: A branching story graph with multiple options pointing to the same plot
point.

predicted to transition to plot point 9 instead. To intervene, the personalized drama

manager will present options h1 and g3 to the player, while suppressing the other

options.

This simple extension to the conventional branching story graph gives the drama

manager the ability to subtract options from players’ considerations without com-

pletely pruning a branch of the graph. This preserves the authorial intent behind the

structure of the graph and also ensures that all trajectories through the graph are

available to the player at all times.

I believe that options should be authored to appeal to different motivations that

they players might have, tapping into individual differences. In this research, I utilized

the following motivational theories, drawn from Petty [43] and Cialdini [9], to author

the additional options:

� Expert Source: a desire to follow experts’ opinions.

� Scarcity : a desire for something that will soon become unavailable.

� Consistency : a desire to appear consistent with what we have already done or

said.

� Social Proof : a desire to imitate others in similar situations.
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� Reasoning : a desire to follow arguments that sound rational.

� Number of arguments : a desire to follow statement that contains repetitive

arguments expressed in different ways without new information.

� Motivation–Friendship: a desire for friendship.

� Motivation–Safety : a desire for being safe.

� Motivation–Money : a desire for being rich.

� Motivation–Fame: a desire for being famous.

Authoring of options based on the above motivational theories is not strictly

necessary, but I hypothesize that utilization of motivational categories will improve

the personalized drama manager’s ability to learn players’ preferences for options. In

Section 4.6 and Appendix A, I will describe more details about the multiple option

authoring process.

4.2 Player Option Preference Modeling

I assume that players have different preferences over the difference version of options

in the multi-option branching story graph. For a particular player, if I know his/her

preference for all the options in the multi-option branching story graph, it will be

straightforward for the drama manager to select a subset of options to show. In this

section, I will build an option preference model to predict which options the player

will prefer at any given plot point.

Collaborative filtering algorithms are used to build the option preference model.

Applying collaborative filtering algorithms to option preference, I have players rate

the options presented after each plot point in the training phase. Then I construct

an option-rating matrix similar to the prefix-rating matrix in Figure 13. Figure 22

illustrates a sample option-rating matrix.
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Op�on Player 1 Player 2 Player 3 …

* * 2 …

1 * 2 …

4 3 * …

* 5 1 …

… … … … …

Figure 22: An illustration of the option-rating matrix. The stars represent those
missing ratings.

An n by m option-rating matrix contains the ratings for n options from m players.

Each column of the option-rating matrix contains one player’s preference ratings for

all the options while each row contains ratings for one option from all the players.

The matrix will be sparse, containing a large number of missing ratings since I do not

expect each player to read all the options in the extended branching story graph.

I investigated a variety of common collaborative filtering training algorithms on

the option-rating matrix, including: NMF, pPCA, K-Nearest Neighbor1, and K-

means algorithms2. The NMF and pPCA algorithm are used in a similar way as

in Section 3.2.1.

The K-Nearest Neighbor algorithm predicts the option rating vector r of a new

player through using option ratings of K nearest training players. To be more specific,

r is computed as follows:

r =
1

K

∑
i∈OK

ri (12)

where OK is the set of K nearest players to the current player. The distance between

1http://en.wikipedia.org/wiki/K-nearest˙neighbors˙algorithm
2http://en.wikipedia.org/wiki/K-means˙clustering
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the new player and the training players can be computed using l2 distance between

the initial option ratings of the new player and the option ratings of the training

players.

The K-means algorithm clusters the training players into k clusters through min-

imizing:
k∑
i=1

∑
r∈Si

||r − ri||2 (13)

where Si is the ith cluster of the option rating vectors and ri is the center of the

option rating vectors of cluster Si. Given a new player with an initial option rating

vector, the drama manager firstly clusters the new player into one or several (if soft

clustering is allowed) of the k clusters. Then the cluster center can be used as the

prediction of the option ratings for the new player.

For the NMF, pPCA and K-means algorithms, the learned player model retains

the extracted rating patterns for players of different option preference types and will

be used to predict future players’ preference ratings over the options. Once training is

complete, the player option preference model can be used to predict players’ ratings

for options that players have never encountered. This includes the possibility of

predicting a player’s preferences for options on a graph that he or she has never

played through if I have data for the player from another graph.

4.3 Personalized Guidance Algorithm

The personalized drama manager attempts to influence players’ trajectories in the

multi-option branching story graph such that the players are more likely to select

options that leads to the selected target plot points.

In the training step, the personalized drama manager collects option ratings to

populate the option-user matrix, which is used to train the option preference model.

In the testing step, the personalized drama manager uses the personalized guidance
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algorithm to guide new players in the story space. For each new player, the person-

alized DM must collect a few initial option ratings ro to bootstrap the player model.

These ratings can be collected on a graph especially for training on new players or can

come from repeated interactions with the system. Once a player is in the option-rating

matrix, the personalized DM uses the following personalized guidance algorithm at

each plot point:

1. Determine which child plot point the player should experience next.

2. Predict the player’s preference for all options using the NMF, pPCA, K-Nearest

Neighbor, or K-means algorithm.

3. Display the highest rated option that points to target successor plot point and

the lowest rated option for each other successor plot point.

4. Collect player’s ratings for the displayed options. Include the ratings into ro.

5. Player chooses an option.

6. Display the corresponding child plot point according to the player’s selection

and go to step 1.

It is not strictly necessary to collect ratings as in step 4. I do it in the system

for the purpose of collecting as much data as possible to build more accurate player

models. With every new rating, the personalized DM will get better understanding

of the current player’s preference over the options.

4.4 Target Full-length Story Selection

In this section, I describe two algorithms to choose target full-length stories to increase

the players’ story preference ratings: highest rating algorithm and highest expected

rating algorithm.
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4.4.1 Highest Rating Algorithm

A simple way to choose the target stories is to select the successive plot points that

can lead to the highest rated full-length stories based on PBCF prediction at each

branching point in the multi-option branching story graph. But in practice, choosing

target based only on PBCF prediction might not be the best solution. It is possible

that the personalized DM finds no plot point that can lead to a player preferred

narrative experience after it fails to guide the player at some branching point in the

branching story graph.

For example, suppose that the player is at prefix node A of the prefix tree in Fig-

ure 23, where the multiple options are not drawn for simplicity. The PBCF predicts

that a player’s preferences over the full-length stories (leaf nodes) G,H, I, J,K, and L

are 4, 4, 4, 4, 1, and 5, respectively. Then the personalized DM will attempt to guide

the player to the node 12 if it selects target stories based solely on PBCF predicted

story ratings. Let’s further assume that after the drama manager intervention, the

current player still has a much higher probability to choose the option that transitions

to node K instead of L at plot point F for a variety of reasons. In this case, it is very

likely that the player will be end up at the node K and receive the worst story expe-

rience. A better strategy for the drama manager is to select a full-length story from

G,H, I, or J as the target when the player is at node A. Thus the personalized DM

needs to take into consideration the probability the player reaches each full-length

story when selecting target stories.

4.4.2 Highest Expected Rating Algorithm

The highest expected rating algorithm chooses target plot point based not only on

the predicted players’ preference over the successive story experience, but also on the

probability that the players transition to the selected story experience because the

players are given the full agency to make their own choices in the interactive narrative
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Figure 23: A simple prefix tree. Suppose the player is at prefix node A currently.

system.

To compute the probability that the players reach each full-length story, the per-

sonalized drama manager needs to model the players’ transition probabilities at each

branching point. In the next section, I will describe the branch transition probability

modeling algorithm for the personalized DM.

4.4.2.1 Branch Transition Probability Modeling

With the option preference ratings for a particular player, the personalized DM uses

probabilistic classification algorithms to predict the player’s successive story branch

transition probability. Logit regression, Probit regression and probabilistic Support

Vector Machine (SVM) are used to train the branch transition probability model.

Logit regression [7] is a probabilistic statistical classification model that can be

used to predict the probability that an input data point belongs to each class. The

binary Logit regression assumes that the class label yi for each input data point Xi

follows a Bernoulli distribution with expectation:

E[yi|Xi] = Logit(θ′ ·Xi) (14)
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where Logit() is the Logit function and θ contains the parameters to be learned.

The Probit regression model [7] is similar to Logit regression, except that the

Logit function is substituted with a Gaussian cumulative distribution function in

Equation 14. The probabilistic SVM [44] trains a traditional SVM and an additional

sigmoid function that maps the SVM outputs into probabilities.

Applying the probabilistic classification algorithms to the branch transition prob-

ability modeling, I define xIJ,K to be the feature that the player is at a prefix node

I with two successive prefix nodes J and K, where the node J is the preferred child

selected by the personalized DM. xIJ,K is a two dimensional vector containing highest

preference rating for the options transitioning to the preferred node J and the lowest

preference rating for the options transitioning to the node K. To be more specific,

xIJ,K is:

(maxα∈OI
J
{R(α)}, minβ∈OI

K
{R(β)})′ (15)

where R(·) is the predicted preference rating for an option, OI
J is the set of options

that lead to preferred successive prefix node J from node I, and OI
K is the set of

options that lead to the other successive prefix node K from node I.

The probability PI
J,K that the player transitions from I to J under the DM inter-

vention is:

PI
J,K = f(xIJ,K ;θ) (16)

where f could be the Logit, Probit, or probabilistic SVM model, θ are the parameters

to be learned. Notice that PI
J,K + PI

K,J 6= 1 due to the DM intervention. For a

prefix node that has three or more successive nodes, a multinomial Logit regression,

multinomial Probit regression or multi-class SVM can be used in a similar way to

model the transition probability P [7].

For example, suppose a player is at prefix node A in Figure 23 and the DM selects

node C as the desired target for the player. Suppose that the DM has six options (α1,

α2, and α3 point to node B and β1, β2, and β3 point to node C. Then the feature
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value xAC,B contains the maximum of the three preference ratings for options β1, β2,

and β3, and the minimum of the three preference ratings for options α1, α2, and α3.

The probability PA
C,B will be f(xAC,B;θ).

For a player at node I, I define PIL to be the probability that the player transitions

to a leaf node L under the DM intervention. PIL can be computed by multiplying the

successive transition probabilities through the path from node I to node L. For

example, in the Figure 23, suppose the player is at the root node A. The probability

that the player transitions to node L: PAL = PA
C,B ∗ PF

L,K .

4.4.2.2 Target Full-length Story Selection

For a player at node I of a prefix tree, the personalized DM will select an target full-

length story from the subgraph with the root I to maximize the player’s expected

enjoyment. More precisely, the personalized DM selects a leaf node L∗ such that:

L∗ = argmaxLi∈LeafI{R(Li) ∗ PILi
} (17)

where LeafI is the set of leaf nodes (full-length stories) in the subtree with root I in

the current story prefix tree; R(Li) is the predicted story rating for Li using PBCF;

PILi
is the predicted probability that the player transitions to Li from the current

node I under the DM intervention as computed in the previous section.

4.5 Personalized Drama Manager Algorithm

The personalized drama manager puts the story preference model (PBCF), the per-

sonalized guidance algorithm and the target story selection algorithm to use as fol-

lows. For a new player, the personalized drama manager must first collect a few

initial ratings for story prefixes and options. These ratings can be collected on a

graph especially for training on new players or can come from repeated interactions

with the system. The collected ratings are then used to bootstrap the PBCF model

and the CF model for option rating prediction. Then at each prefix node I in the
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1: while I is not a full-length story do
2: Predict the ratings for full-length stories Li that are descendants of I using PBCF
3: Predict the ratings for all the available options in the subtree with I as its root using CF
4: Calculate the probabilities that the player transitions to each Li under DM intervention: PI

Li

5: Select an objective full-length story L∗ that has the highest expected rating using Equation 17
6: Increase the probability the player transitions to the successive node that leads to L∗ by

showing a subset of options to the player
7: Collect the player’s preference over the story-so-far (the current node I) and the presented

options and update the PBCF and CF models
8: The player chooses an option
9: Set I to be the successive prefix node based on the player’s selection

10: end while

Figure 24: The personalized drama manager algorithm.

prefix tree, the personalized drama manager uses the algorithm in Figure 24 to guide

the player.

Notice that it is not strictly necessary to collect story ratings and option ratings as

in step 7. I do it in my system for the purpose of collecting as much data as possible to

build more accurate player models. With every new rating, the personalized drama

manager will get better predictions in step 2 and 3. On the other hand, if the

personalized drama manager does not collect new ratings, it will not be necessary to

re-predict the ratings for full-length stories and options after every plot point.

4.6 Evaluation of the Personalized DM

To evaluate how the personalized drama manager can guide the players in the story

space and whether the personalized drama manager can increase players’ preference

ratings, I conducted a group of human studies in an interactive narrative system built

with choose your own adventure stories.

I hypothesize that the personalized DM algorithm will be able to significantly af-

fect the behavior of players and significantly increase the players’ self-reported story

preference ratings, as compared to a version of the interactive story with no drama

management. In this section, I will describe the story library, online game environ-

ment, methodology, and results.
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4.6.1 Stories and User Interface

The branching story graphs are created in a similar way as in Chapter 3. Right now

I only use two Choose-Your-Own-Adventure books: The Abominable Snowman and

The Lost Jewels of Nabooti, into two branching story graphs. The branching story

graph of The Abominable Snowman contains 26 leaf nodes and 19 branching points.

The branching story graph of The Lost Jewels of Nabooti contains 31 leaf nodes and

18 branching points. The two branching story graphs are converted into two prefix

trees. In total I have 134 story prefix nodes in the two trees.

I authored two additional options for every branch in the branching story graphs.

Each new option was constructed by rewriting the existing option with different mo-

tivations as described in Section 4.1. No new information is added into the new

options to ensure that the players’ option selection behavior is not influenced by the

new information. In the final extended branching story graphs, there are thus three

different options per successor plot point at every branching point. In total, there are

275 options in the two branching story graphs.

In the experiments, all the stories were presented plot-point by plot-point to the

players. After each plot point, the players were asked to rate the story-so-far (for

PBCF training) and all the options (for option-preference CF training) on a scale of

1 to 5 before they could select one of the options to continue. A larger rating num-

ber indicates a greater preference. Figure 25 shows the online interactive narrative

testbed. The figure shows two plot points, a place for players to rate the story-so-far

(for PBCF training), and two options with ratings (for option-preference training).

The human study is composed of two phases: model training and testing, which

will be described in the following sections.
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Figure 25: A screenshot of the interactive narrative system.
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4.6.2 Training the Personalized Drama Manager

I recruited 80 participants from Amazon’s Mechanical Turk. Each player read 4 to 6

full-length stories, each of which was randomly started at the root of one of the two

branching story graphs. In total I had 410 valid play-throughs from the 80 players.

Each story was presented plot-point by plot-point to the player. At every branching

plot point, the DM randomly picked one option for each successor plot point to present

to the player and the player was free to make a choice. I collected the players’ ratings

for all the options and stories they read. The players were asked to explore the graph

as much as possible. If the players encountered a plot point they had seen previously,

their previous ratings for story-so-far and options were automatically filled out from

their previous response. I obtain a 134 by 80 prefix-rating matrix and a 275 by 80

option-rating matrix in the training process.

To train the PBCF model, I randomly select 90% of the ratings in the prefix-rating

matrix to train the pPCA and NMF algorithms, which are then used to predict the

remaining 10% of ratings in the prefix-rating matrix. The process is repeated 50

times. I compute the root-mean-square-error (RMSE) between the predicted prefix

ratings and the real players’ prefix ratings on the remaining 10% of the data. The best

average RMSE for pPCA algorithm (dimension 46) is 0.576 (a fraction of a rating),

and for NMF algorithm (dimension 12) is 0.743 (a fraction of a rating). Thus pPCA

is used to model players’ story preference in the testing phase. Note that the results

are different from the PBCF results in Chapter 3, where NMF achieved better results

because I derived a different version of pPCA algorithm using EM algorithm.

To train the option preference model, I randomly select 80% of the training players

to learn an option preference CF model. For the remaining 20% of players, the DM

builds the initial rating vector from the players’ option ratings in one of the branching

story graph and predicts option ratings in the other branching story graph. I repeated

the process 50 times. The best average RMSE for pPCA algorithm is 0.550 (dimension
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Table 6: The training results of the branch transition probability model using three
probabilistic classification algorithms.

Algorithm θ0 θ1 Accuracy
Logit 0.086 (1.151, -1.092) 78.89%
Probit 0.099 (0.645, -0.622) 78.19%
PSVM - - 79.35%

225), and for NMF algorithm is 0.798 (dimension 9). Thus the pPCA algorithm is

also selected for option preference modeling in the testing phase.

I train the branch transition probability model using the predicted option ratings

from the learned option preference model and the players’ option selection. Table 6

shows the training results for the three probabilistic classification algorithms: Logit

regression, Probit regression and probabilistic SVM. The column θ0 and θ1 show

the parameters from maximum log-likelihood estimation for the Logit and Probit

algorithm. Similar to option preference model learning, I randomly select 80% of

the training players to learn an option preference CF model. For the remaining

20% of players, the personalized DM firstly builds the initial rating vector using the

players’ option ratings from one of the branching story graph. Then the DM uses

the learned option preference model and the learned branch transition probability

model to predict players’ branch selection in the other branching story graph. The

last column Accuracy in Table 6 shows the average prediction accuracies for the

three algorithms. The probabilistic SVM algorithm, which uses a radial basis as its

kernel function, achieves the best accuracy among the three classification algorithms.

However, I select Logit regression for branch transition probability modeling in the

testing phase because the linear model is more stable against the noise in the predicted

option ratings.
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4.6.3 Testing the Personalized Drama Manager

I recruited another group of players from Mechanical Turk to evaluate the personalized

DM’s ability to increase the players’ enjoyment. Each player read 6 full-length stories

plot-point by plot-point. For the first five stories, the player explored one of the

two branching story graphs. As in the training phase, the DM randomly picked one

option for each successive branch to present. The story and option ratings collected

were used to bootstrap the preference models for the new player. For the sixth story,

the player played through the other branching story graph. At each branching point,

the personalized DM selected a desired successive plot point and picked a subset of

options using one of the three guidance algorithms described below to attempt to

increase the player’s enjoyment.

In this section, I will first compare the performance of the three target plot point

selection algorithms. Then I will evaluate the DM’s performance when it picks one

option for each successive branch.

4.6.3.1 Personalized Drama Manager Algorithm Comparison

For the purpose of comparison, I implemented the following three target selection

algorithms for the personalized DM:

� HighestRating (HR): at each node in the prefix tree, the personalized DM selects

an objective full-length story based on predicted ratings of the full-length stories.

� HighestMeanRating (HMR): at each node in the prefix tree, the personalized DM

selects a successive node that leads to the full-length stories with the highest

mean rating. For example, suppose a player is at node A in Figure 23. The

DM will compare the average predicted rating for nodes G,H, I, and J to the

average predicted rating for nodes K and L. If the former one is bigger, the

DM will select node B as its objective. Otherwise, the DM will select node C

as its objective.
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� HighestExpectedRating (HER): at each node in the prefix tree, the personalized

DM selects an objective full-length story that achieves the highest expected

rating. This is my personalized DM algorithm as in Figure 24.

The HMR algorithm and the HR algorithm are two baselines that the personalized

drama manager algorithm (HER) will be compared to. I hypothesize that (1) the

HER algorithm can significantly increase players’ preference ratings, compared to

the case without drama manager; (2) the HER algorithm will result in higher story

preference ratings than the HMR or the HR algorithm.

In the human study, the above three target selection algorithms use the same

PBCF story preference model and option preference model for the purpose of com-

parison. At each branching point, the personalized drama manager used one of the

three algorithms to select a desired successive plot point and picked two options for

the desired plot point and one option for each other successive plot point.

I recruited 28 players for the guidance algorithm HR, 26 players for the guidance

algorithm HMR, and 47 players for the guidance algorithm HER. Table 7 shows the

results of the comparison of the three algorithms. The Algorithm column refers to

the algorithms that the DM is using. The column (no DM ) and the column (DM )

show the average full-length story ratings for stories that are without drama manager

guidance (average ratings in the first five trials) and with drama manager guidance

(average ratings in the sixth trial). The Wilcoxon signed-rank test is used to compare

the ratings for no DM stories and DM stories. The p-values are shown in the second

to the last column. The last column shows the percent of the time the players chose

the options transitioning to the desired plot points selected by the drama manager. As

we can see from Table 7, the personalized drama manager algorithm HMR and HER

can significantly increase the players’ preference rating for their story experience.

The HER algorithm has a much higher guidance success rate than the other two

algorithms. Note that I recruited more players for the HER algorithm than the HMR
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Table 7: The comparison of the personalized drama manager with three target se-
lection algorithms.

Algorithm no DM DM p-value Success rate
HR 3.41 3.50 0.263 65.7%
HMR 3.27 3.62 0.023 64.6%
HER 3.14 3.96 <0.001 81.3%

and the HR algorithm in order to perform comparison in Section 4.6.3.2. In fact the

DM ratings for HER was 4.13 (p<0.001) after I recruited only 24 players.

I further compared the players’ ratings for with DM stories (column DM in Ta-

ble 7) under the three different DM algorithms. The results show that the ratings for

the HER algorithm are significantly higher than the HR algorithm (p=0.037). The

rating comparisons for HER vs. HMR and HMR vs. HR are not significant on a

significance level of 0.05 (the p values are 0.126 and 0.452, respectively).

The players’ ratings could be unstable in the first few training stories when the

players play the interactive narrative for the first time. I perform a sensitivity analysis

of the players’ story ratings as different numbers of training stories discarded. Table 8

shows the players’ average story ratings in the bootstrapping phase as I discard the

players’ ratings from the first 0 to 3 training stories. The story ratings in second

column of Table 8 are the same as the second column in Table 7 because no training

story is discarded. The four p-value columns show the comparison of the average

ratings of the random stories (with different number of stories discarded) and the av-

erage ratings of the personalized stories under different DM guidance algorithms. The

sensitivity analysis results in Table 8 shows that the average story ratings stay stable

even after I discard the ratings from the first few training stories in the bootstrapping

phase.
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Table 8: The sensitivity analysis of the players’ ratings in the bootstrapping phase
as the numbers of discarded training stories change.

# of discarded stories p value
0 1 2 3 0 1 2 3

HR 3.41 3.35 3.33 3.18 0.263 0.206 0.181 0.071
HMR 3.27 3.23 3.15 3.12 0.023 0.021 0.014 0.012
HER 3.14 3.17 3.17 3.21 <0.001 <0.001 <0.001 <0.001

4.6.3.2 Select One Option Per Branch

In the above human studies, the personalized drama manager picked two options for

the desired branch but only one option for all the other successive branches. If the

players do not have different preference over different options or the players select the

options randomly, they also have higher probability of transitioning to the branches

with two options pointing to them. On the other hand, one might guess that the

player can infer where the DM wanted him or her to go based on the number of the

options if the DM select different number of options for different successive branch.

Thus I perform another group of human study to evaluate whether the personalized

drama manager would perform differently if it picked equal number of options for

each successive branch.

I recruited another 50 players from Mechanic Turk. The study was conducted in

the same fashion as in the above testing process. The only difference was that the

personalized drama manager picked one option for each successive plot point in the

sixth trial. The HER algorithm was used to guide the player in the sixth trial. The

average ratings for full-length stories no DM and DM are 3.28 and 3.74, respectively.

The DM ratings are significantly higher than the no DM ratings (p=0.004). The

average guidance success rate is 70.8% for all the 50 players. Thus the personalized

drama manager with the HER algorithm can also increase the players’ preference

ratings significantly when the drama manager picks one option for each successive

branch.
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4.6.4 Player Agency Study

To further evaluate players’ experience when interacting with the personalized DM,

I performed another group of human study to examine the players’ sense of agency

in the interactive narrative. To be more specific, I aim to test whether and to what

extent the personalized DM algorithm impacts on the players’ sense of agency and

replayability in the interactive narrative.

In the human study, each player first reads five stories plot-point by plot-point

in the same way as in the previous section. Then in the sixth story, I compare the

following three cases:

� no Choice: the player has no choice after each plot point. Instead, the personal-

ized DM selects only one option that can lead to the highest expected full-length

story at each branching point. This is the baseline case.

� no DM : the player can make his/her own choices. The personalized DM ran-

domly selects one option for each successive branch after each plot point.

� DM : the player can make their own choices. The personalized DM selects a

subset of options that maximize the probability the player transitioning to the

full-length stories that achieve the highest expected preference ratings. This is

exactly our personalized DM algorithm.

In terms of impact on the players’ experience in the interactive narrative system,

I hypothesize that (1) the case DM (our personalized DM algorithm) is NOT sig-

nificantly different from the case no DM ; (2) the case DM is significantly different

from the case no Choice. I hypothesize that the case DM is not significantly different

from the case no DM because the players are not prevented from make choices to

transition to any successive plot points in the branching story graph and they are not

aware of the multiple options in the testing branching story graph which they only

visit once in the testing phase.
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To evaluate the players’ experience, in particular their sense of agency, I require

all the players to answer 15 yes/no questions about their experience in the sixth story

after they finish the game. The questionnaire is shown as follows:

� Q1: I felt my choices had impact on later events in the story.

� Q2: I felt that I had control over aspects of the story that I wanted control

over.

� Q3: I felt I could take an active role in the story.

� Q4: I felt that I had little influence over the things that happened in the story.

� Q5: Sometimes I felt that I didn’t have enough control over the direction of the

story.

� Q6: What happened in the story was my own doing.

� Q7: I don’t think that chance played an important role in the story.

� Q8: The story ending resulted from some unseen forces.

� Q9: I felt that the actions I took were meaningful within the context of the

story.

� Q10: I was able to see the results of my actions.

� Q11: I felt that the story would have been different if I had selected different

choices.

� Q12: I felt that several choices would lead to the same thing happening in the

story.

� Q13: I felt that the story system tried to push me to some particular story

ending.

� Q14: Sometimes I felt that the system wanted me to pick some particular

choices.
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� Q15: I would like to play the game again.

Question 1 to question 10 focus on the players’ perceived sense of agency (Q1-

Q8 are mostly based on locus of control questions [53]. Question 9 and question 10

are specially created based on Murray’s definition of agency [38]). Question 11 and

question 12 are used to evaluate whether the multi-option branching story graph has

impact on the players’ experience. Question 13 and question 14 are used to evaluate

whether the guidance of our personalized DM has explicitly impact on the players’

experience. Question 15 evaluates the replayability for our interactive narrative. Q11

to Q15 are custom-built.

I recruited 22 players for the case no Choice, 23 players for the case no DM and

23 players for the case DM. Table 9 shows the results of the player experience study.

The first three columns (no Choice, no DM and DM ) show the percentage of players

who answered yes to the corresponding question under the three cases. The column

no Choice vs. DM shows the p values from comparing the case no Choice with the

case DM. The last column no DM vs. DM shows the p values from comparing the case

no DM with the case DM. As shown in Table 9, there is no statistically significant

difference between the case no DM with the case DM for all the 15 questions. For

the comparison between the case no Choice and the case DM, the players’ response

are significantly different for all the questions except question 8, question 12 and

question 15. I compute the Pearson product-moment correlation coefficient3 for the 15

questions to evaluate the linear correlation between DM and no Choice, and between

DM and no DM. The Pearson product-moment correlation coefficient is -0.675 for DM

vs. no Choice, and 0.957 for DM vs. no DM. It shows that the players responses in

the case of DM and no DM have very high positive correlation with each other.

3http://en.wikipedia.org/wiki/Pearson˙product-moment˙correlation˙coefficient
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Table 9: The results for the player experience study. The significant comparisons
are mark with * (p value < 0.05).

no Choice no DM DM no Choice no DM
vs. DM vs. DM

Q1 36.36% 95.65% 100.00% 0.000* 0.364
Q2 22.73% 82.61% 95.24% 0.000* 0.227
Q3 40.91% 86.96% 90.48% 0.000* 0.409
Q4 72.73% 30.43% 23.81% 0.001* 0.727
Q5 86.36% 34.78% 47.62% 0.013* 0.864
Q6 13.64% 73.91% 76.19% 0.000* 0.136
Q7 77.27% 34.78% 23.81% 0.000* 0.773
Q8 54.55% 60.87% 42.86% 0.458 0.545
Q9 18.18% 91.30% 95.24% 0.000* 0.182
Q10 45.45% 91.30% 100.00% 0.000* 0.455
Q11 59.09% 100.00% 95.24% 0.003* 0.591
Q12 50.00% 43.48% 28.57% 0.181 0.500
Q13 81.82% 30.43% 14.29% 0.000* 0.818
Q14 81.82% 43.48% 28.57% 0.001* 0.818
Q15 31.82% 56.52% 38.10% 0.608 0.318

4.7 Discussion and Conclusions

The learned parameters θ1 and θ0 for the Logit model ((1.151, −1.092) and 0.086)

and for the Probit model ((0.645, −0.622) and 0.099) show that the players have a

higher probability to choose the option that is rated higher than the other options

presented by the drama manager, which is aligned with my expectation. The Logit

model is capable of correctly predicting the players’ branch transitions for 78.9% of the

time. Although the non-linear probabilistic SVM classifier achieves higher predicting

accuracy on the training data, the generalization error will probably not be reduced

due to the prediction error in the option ratings. Thus in the testing process, I use

the linear Logit model which is more robust to the noise in the predicted players’

ratings. I believe that the input features are more important factors in predicting

players’ option selection. In the future, it may improve the drama manager’s ability

to influence the players’ choices if I include some personalized features such as the

player’s previous transition behaviors into the branch transition probability modeling

process.

By incorporating the players’ transition probabilities into the drama manager’s
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decision process, the personalized drama manager significantly increases the players’

enjoyment in the interactive narrative system. The personalized drama manager us-

ing HER target selection algorithm significantly increases players’ preference ratings.

HER also beats both HR and HMR in terms of the players’ enjoyment ratings. These

human study results verify the two hypotheses in Section 4.6.3.1. The guidance suc-

cess rate of HER is also higher than HR and HMR because the HER algorithm does

not select targets that the players have low chance to reach. The DM rating compar-

ison between HER and HMR is not significant. One possible explanation is that I do

not have enough testing players, which is suggested by the fluctuation of the players’

average ratings in the case of no DM (column no DM in Table 7). The sensitivity

analysis in Table 8 shows that the average story ratings stay stable even after I discard

the ratings from the first few training stories in the bootstrapping phase.

The human study results show that the personalized drama manager is capable of

predicting an individual player’s preference over the stories and options, modeling the

probability the player transitioning to successive plot points, selecting an objective

story experience that can maximize the player’s expected enjoyment, and significantly

increasing the players’ preference ratings, compared to a no-DM case or DM with

different target selection algorithms. Although the personalized DM algorithm is

studied in a simple testbed, it represents one of the most important fundamentals of

drama management: guiding the players to a better experience in a branching story

graph. The personalized DM can be easily extended to other story-based computer

games and tutoring systems in which the players can select options or perform actions

to change the direction of the story progression.

The player experience study results validate both hypotheses in Section 4.6.4. The

results show that there is no significant difference between the case DM and the case

no DM in terms of the players’ response to the 15 questions. Thus I did not detect
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any significant negative impact on the players’ experience for the personalized DM al-

gorithm. Compared to the case no Choice, the personalized DM achieves significantly

different results for most of the 15 questions. Thus the personalized DM is capable of

guiding the players in the story space without being noticed by the players. In other

words, the personalized DM improves the players’ experience while preserving the

players’ perceived sense of agency in the interactive narrative system. The compari-

son results for question 8 and 12 are not significant, probably because the statement

of question 8 is not very clear for some players and question 12 is not applicable to

the case no Choice. The answers to the replayability question (Question 15) are not

significantly different for both comparisons. The replayability does not have obvious

correlation with the hypothesis about the player agency. In fact, the question 15

itself could have different ways of interpretation for different players. Without fur-

ther study, I do not even know whether a significant difference for question 15 means

a better result for the personalized drama manager or not. A significant difference

between DM and no DM may be result from a better story experience for the case

DM. But a significant difference might also suggest that the players could detect the

difference between the two cases. Further studies are required to determine whether

the difference is related to the player agency, the player enjoyment, or other elements

in the interactive narrative (e.g. the quality, the size of story space).

Although the personalized DM algorithm is studied in a simple testbed, it rep-

resents one of the most important fundamentals of drama management: guiding the

players to a better experience in a branching story graph. The personalized DM

algorithm can be easily extended to other story-based computer games and tutor-

ing systems in which the players can select options or perform actions to change

the direction of the story progression. The personalized drama manager is capable of

significantly improve players’ experience while preserving the players’ sense of agency.
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CHAPTER V

FURTHER IMPROVEMENT OF THE PERSONALIZED

DRAMA MANAGER

In this chapter, I propose two directions of further improvement for the personal-

ized drama manager: reducing the requirement for the amount of training data for

the personalized DM and incorporating author’s preference into the decision of the

personalized drama manager. The following two sections will describe the two im-

provements, respectively.

5.1 Reduce the Requirement for the Amount of Training
Data

In the current system, the personalized drama manager needs to collect a few initial

prefix and option ratings after each plot point to bootstrap the player models for

each new player. The feedback collection is intrusive and could negatively impact the

players’ experience in the interactive storytelling system. Unfortunately, it is difficult

to acquire the players’ story preference information without explicit questionnaire in

an interactive storytelling system.

In this section, I first perform human studies to quantitatively evaluate the impact

of feedback collection on players’ experience and rating quality. Then I will develop

an algorithm based on active learning to reduce the amount of training data for the

personalized drama manager.

5.1.1 Impact of the Amount of Data Collection on Player Experience

In this human study, I aim to explore the impact of the number of training stories and

the amount of collected ratings on the players’ experience. I recruited three groups of
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players. All the players in the three groups read the stories plot point by plot point

as in Section 4.6. Each player in group 1 and group 3 reads six stories, the first five

of which are training stories and the last one is testing story. Each player in group

2 reads four stories, the first three of which are training stories and the last one is

testing story. For group 1 and group 2, their ratings for all the story-prefixes and

options were collected. For group 3, the players were not required to rate any story

prefix or option except the full-length stories.

For each participant, the training stories are selected from one branching story

graph, e.g. the Yeti branching story graph, while the testing story is selected from

the other branching story graph, e.g. the Nabooti diamond branching story graph.

Prior to the human study, the players were told that the first 3 or 5 stories they were

going to read were used to train the AI system and a good training would give them

better experience later. I recruited 101 players from Amazon Mechanical Turk, of

which 35 players were assigned into group 1, 45 players were assigned into group 2,

and 21 players were assigned into group 3. After the players finished all the four/six

stories, I asked them three boredom related questions.

� Q1: Do you feel bored after reading the training stories?

� Q2: After how many training stories you start to feel bored?

� Q3: How many training stories you are willing to do for the next time?

The answer to the first question is on a scale of 1 to 5 with higher value meaning

less bored. The second and the third questions are multiple-choice questions. Table 10

shows the average response to the three questions for the first two groups of players.

As shown in Table 10, the players in group 2 who read 3 training stories felt less

bored than the player in group 1 who read 5 training stories on average. The players

in group 1 started to feel bored later than group 2. It might suggest that participants

were thinking back and choosing a value roughly 20-30% less than the total number
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Table 10: The average response to the three boredom related questions for different
number of training stories.

Average After # training stories # training stories
boredom players start to feel bored for the next time

Group 1 (5 training) 3.27 3.64 3.44
Group 2 (3 training) 3.74 2.51 2.94

p-value 0.301 < 0.01 0.068

Table 11: The average response to the three boredom related questions for different
amount of feedback collected.

Average After # training stories # training stories
boredom players start to feel bored for the next time

Group 1 (More Feedback) 3.27 3.64 3.44
Group 3 (Less Feedback) 3.71 3.62 4.00

p-value 0.075 0.466 0.091

of training rounds they experienced, i.e., they just reported some percentage less but

not really an accurate number. It also shows that the players would like to read less

training stories for both groups.

It is interesting to note that the time at which they start feeling bored and the

amount of training they are willing to do are closer to the 3 actual training rounds

in group 2 than in group 1. This suggests that 3 might be about the limit of what

people are willing to accept.

Table 11 shows the comparison of the players’ response between group 1 and

group 3. The players in group 1 who left more feedback feel more bored and want

less training stories than the players in group 3 who left less feedback. The number

of training stories after which the players started to feel bored is similar for the two

groups.

To evaluate whether the number of training stories will influence the statistical

properties of the story and option ratings, I compare the difference of the averages

of the prefix/option ratings between the first two groups of players. Table 12 shows

the averages of the prefix ratings and option ratings. As we can see from Table 12,
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Table 12: The comparison of averages of prefix and option ratings for different
numbers of training stories.

Average prefix ratings Average option ratings
Group 1 (5 training) 3.44 3.16
Group 2 (3 training) 3.67 3.39

p-value 0.378 0.206

collecting different numbers of training stories does not have a significant influence

over the average of prefix ratings or option ratings.

In summary, all the players want to read less number of training stories and rate

less number of prefixes/options, although the statistical property (average) of the

ratings are not influenced by the amount of feedback collected, which suggests that

the players do not change their rating behavior based on the amount of training and

the rating quality is not reduced by collecting more feedback. The human study

results are consistent with our expectation. In the next section, I will develop an

algorithm based on active learning to reduce the amount of training data for the

personalized drama manager.

5.1.2 Use Active Learning to Select Training Stories

In the current drama management system, the drama manager randomly picks story

prefixes/options for the first few training stories for each new player (Section 4.6).

The personalized DM uses the collected prefix/option ratings to bootstrap the player

models. As suggested by the human studies in previous section, the players prefer

less number of training stories in general. In this section, I aim to reduce the amount

of training by choosing the initial story prefixes/options through active learning.

Active learning is a semi-supervised learning algorithm that can achieve higher

accuracy with fewer training labels through interactively query an oracle (a human

or some other information source) [59]. The queries posed by the active learner are

usually in the form of unlabeled data instances to be labeled by the oracle. In terms of
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the interactive narrative, the data instances will be the story prefixes/options and the

labels are their ratings. The personalized DM asks the new player for ratings of the

story prefixes/options that are supposed to identify the player’s type more efficiently

than randomly chosen story prefixes/options. Using active learning, the personalized

DM will be capable of creating a more accurate player model with less requirement

for the ratings.

The active learning algorithm is used to improve the performance of the pPCA

algorithm. In pPCA algorithm, the covariance matrix of the prefix rating vector

Var(r) equals to WW T + σ2I, where W is the conversion matrix in Equation 1, σ2 is

the variance of ε in Equation 1, and I is the identity matrix. The correlation matrix

Corr for r can be computed by normalizing the covariance matrix Var(r). Then I

define a utility score U(p) for each story prefix pi as follows:

U(pi) =
∑
j∈Si

|Corri,j| (18)

where Si is the set of prefixes of which the ratings are known. For an unknown

prefix pi, the lower the U(pi) score, the higher the probability that the prefix will be

selected. In other words, the active learning algorithm aims to select prefixes that

have low correlation with the prefixes of which the ratings are already known.

I performed two studies, one of which is on human players’ data and the other is

on simulated players’ data, to evaluate whether and to what extent the active learning

can help build the player models. The following two sections will describe the two

studies in details.

5.1.2.1 Active Learning Study on Human Data

I applied the active learning algorithm on the human players’ data collected in Sec-

tion 4.6. In total I have prefix ratings from 151 testing players. Each player read 6

stories, the first five of which are training stories from one branching story graph and
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Figure 26: Use active learning to improve the story preference model on human
players’ prefix ratings.

the last one is the testing story from the other branching story graph. The prefix

ratings of the first five stories are used to bootstrap the player model for each player.

I compared two prefix selection algorithms: random selection and active selection.

For random selection, I randomly select a subset of prefix ratings from the first five

stories for each player to bootstrap the player model. For active selection, I use

active learning to select a subset of prefixes to bootstrap the player model. The

player models are then used to predict the corresponding player’s prefix ratings in

the last story. Figure 26 shows the root mean square errors of the prediction on the

last story for the two player models using different prefix selection strategies.

As shown in Figure 26, the player model built with actively selected ratings

achieves better RMSE that randomly selected ratings. On average, active learn-

ing can reduce the number of training prefixes by 4.5. Thus using active learning
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can improve the bootstrapping speed of the player model for each new player in the

personalized drama manager.

5.1.2.2 Active Learning Study on Simulated Data

To further understand how active learning can improve player modeling and com-

pare different active prefix selection strategies in the personalized drama manager,

I performed another group of study on simulate players. The simulated players are

created using Robin’s Laws in the same way as in Section 3.3.7 except that I remove

the randomness in the simulated ratings for the purpose of better comparing different

prefix selection strategies.

Each simulated player reads one to seven training stories and one testing story plot

point by plot point. The drama manager collects their prefix and option ratings after

every plot point. At each plot point in the training stories, the drama manager uses

one of the following strategies to select target prefixes for the simulated players and

guides the players to the selected target using the personalized guidance algorithm:

� Random: the drama manager randomly selects a successive plot point in the

branching story graph.

� Child: the drama manager selects an immediate child plot point that has the

lowest utility score which is defined in Section 5.1.2.

� Offspring: the drama manager selects a child plot point that leading to a prefix

that has the lowest utility score in the current subtree.

� Any: the drama manager selects a prefix that has the lowest utility score in the

entire branching story graph.

For each of the four strategies, I create 10,000 simulated players. Figure 27 shows

the average root mean square errors of the DM prediction in the last story for different

number of training stories. As shown in the figure, the two active selection strategies
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(Child and Offspring) achieve lower root mean square errors than Random strategy.

The Any strategy can be viewed as a theoretical minimum since it is not possible to

use it with human players in real interactive narrative.

Both the experiment on human players’ data and on simulated players show that

active learning can help reduce the amount of training data required to build the

story preference model. The human study results in Section 5.1.1 show that the

players would like to read less number of training stories and rate less number of

prefixes/options in the interactive storytelling. Thus the personalized drama manager

using active learning to select training prefixes is capable of improving the players’

experience in interactive storytelling.

5.2 Incorporate Author’s Preference

Up until now, the personalized drama manager builds the story/option preference

model based only on the players’ preference. It will be beneficial to take the au-

thor’s intention into consideration when building the player models. Incorporating

the author’s preference will not only increase the author satisfaction, but also help

to build better player preference models for the personalized drama manager. Un-

fortunately, it is difficult to collect the story and option preference from the authors

of the choose-your-own-adventure books. In this section, I will only discuss how the

personalized drama manager can utilize the author’s preference for different types of

author preference.

In general, there are three different types of author preference over the full-length

stories in the branching story graphs:

� Uniform: the author has the same preference over all the full-length stories.

� Subset: the author prefers towards a subset of stories but do not like other

stories outside the subset.

� Distribution: the author has a distribution of preference ratings for the stories.
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The first two types can be viewed as specialized types of the third type Distri-

bution, which is the most general one. I intentionally separate the first two types

from the third one for the purpose of using different strategies of incorporating the

author’s preference into the player models.

For the author preference type Uniform, the personalized drama manager does not

need to make any change to the current player preference models because the uniform

preference does not provide any additional information and can be just viewed as a

noninformative prior.

For the preference type Subset, the author’s preference for the full-length stories

can be represented as a vector containing 0s and 1s, where 1 means in the subset and

0 means not in the subset. The personalized drama manager can utilize two strategies

to incorporate the author’s preference. The first strategy is to only select target full-

length stories that are also in the author’s subset, which is equivalent to multiplying

the players’ preference ratings by the author’s preference. The second strategy is to

use a weighted average of the players’ preference ratings and the author’s preference

vector. The first strategy ensures that most selected stories will be within the subset

that the author prefers, while the second strategy does not. Thus the first strategy

leans more towards the author’s preference.

For the third preference type Distribution, the author’s preference can be repre-

sented as a preference vector on a scale of 1 to 5, which is similar to the players’

preference vector for the story prefixes. The two strategies that the personalized DM

uses for the preference type Subset can also be used here. In addition, the personal-

ized drama manager can use the author’s preference vector as a prior knowledge for

the training of the player preference model as described in Chapter 3. The author’s

preference is then viewed as one type of players’ preference in this case.

Incorporating the author’s preference into the personalized drama manager in-

creases author satisfaction, although the story preference ratings could decrease for
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players who have very different preference than the author. For the players who

have similar preference to the author, incorporating the author’s preference can not

only build a better player preference model, but also reduce the required number of

training stories and shorten the model bootstrapping phase for the players. Through

achieving a balance between the author’s preference and the players’ preference, the

personalized drama manager can potentially improve the players’ experience, while

increase the author’s satisfaction.

5.3 Conclusion

In this chapter, I explore two possible improvements to the personalized drama man-

ager: using active learning to reduce the required number of training stories and in-

corporating author’s preference into the player preference models. The human studies

on players’ training experience show that the players would like to read less training

stories and rate less number of prefixes/options in the interactive storytelling. Both

the experiments on human players’ data and on simulated players demonstrate that

using active learning can effectively reduce the amount of training data required to

build the story preference model. The personalized drama manager equipped with

active learning can build a better player preference model with less training data,

thus improve the players’ experience in interactive storytelling. Incorporating the

author’s preference into the player models can not only increase author satisfaction,

but also reduce the required number of training stories and improve the experience

for players with similar preference types to the author.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

In this chapter, I will summarize this dissertation and highlight its contributions.

Then I will discuss possible directions of future work for the personalized drama

manager.

6.1 Summary

Although widely used in recommender systems to personalize users’ experience, player

modeling is still an emerging field of study in computer games, especially interactive

narrative. Prevailing player modeling approaches in interactive narrative classify

players according to well-defined player types and using pre-defined mappings between

types and plot point selection rules. These approaches require human designers to

pre-determine the meaningful player types, even though there is no clear evidence of

links between player type models and story preferences.

In this dissertation, I develop a a data driven player modeling algorithm—prefix

based collaborative filtering algorithm—to model players’ preference over stories in

interactive narrative. Unlike traditional collaborative filtering problem, the story pref-

erence modeling is a sequential recommendation problem, in which each subsequent

recommendation is dependent on the entire sequence of prior recommendations due

to the sequential natural of stories. The PBCF algorithm is developed to address the

sequential recommendation problem. The drama manager using the PBCF algorithm

can build flexible player preference models dynamically from players’ feedback with-

out rigid assumption on pre-defined player types. The PBCF algorithm is capable of

learning player types dynamically from players’ feedback and better capturing play-

ers’ story preference. Both human study and simulated study results in Chapter 3
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show that the PBCF algorithm can model the players’ preference with high accuracy.

The PBCF algorithm can improve the players’ preference ratings if the drama

manager selects stories for the players in interactive narrative. To allow the players

make choices by themselves, I develop a personalized drama manager algorithm that

can maximize the players’ expected story ratings while preserve the player agency.

The personalized drama manager works in a multi-option branching story graph. It

is capable of predicting an individual player’s preference over the stories using PBCF

and the player’s preference over the options using CF, modeling the probability the

player transitioning to successive plot points, selecting a target story experience that

can maximize the player’s expected preference ratings, and guiding the player to the

selected story experience in an interactive narrative system. The human study results

in Chapter 4 show that the personalized DM significantly increases the players’ story

experience ratings and guidance successful rate in the testbed interactive narrative

built with CYOA stories.

I further propose two possible improvements to the personalized drama manager:

using active learning to reduce the required number of training stories and incorpo-

rating author’s preference into the player preference models. Both the experiments on

human data and simulated data demonstrate that the personalized drama manager

using active learning can effectively reduce the amount of training data required to

build the story preference model, thus improve the players’ experience in interactive

storytelling. Incorporating the author’s preference into the player models can not

only increase author satisfaction, but also reduce the required number of training

stories and improve the experience for players with similar preference types to the

author.

6.2 Contributions and Potential Applications

In this dissertation, I made the following contributions:

99



� I propose a new type of recommendation problem—sequential recommendation,

in which each subsequent recommendation is dependent on the entire sequence

of prior recommendations. I develop a prefix based collaborative filtering al-

gorithm to address the sequential recommendation problem. The prefix based

collaborative filtering algorithm is a data-driven preference modeling algorithm

that does not require any assumption on pre-defined player types.

� I develop a personalized guidance algorithm that can guide the players in a

multi-option branching story graph while preserve player agency. The person-

alized guidance algorithm allows the players to make their own choices but

significantly increases the probability that the players choose selected branches

in interactive narrative.

� I build a personalized drama manager that uses PBCF algorithm to model the

players’ preference over story plot points, selects target story plot points that

maximize the player’s expected preference ratings, and guides the player to the

selected plot point using the personalized guidance algorithm. Human study

results show that the personalized drama manager can influence the players’

choice selection and significantly improve the players’ story preference ratings

while preserve the player agency. I also demonstrate that active learning can

be used to further improve players’ experience in interactive narrative.

In addition to the contributions described above, the development of the person-

alized drama manager system also provides immediate benefits in supporting several

potential applications, including computer games, intelligent tutoring systems and

other domains or problems which have sequential nature.

The initial goal of developing the personalized drama management system was to

improve soldiers’ experience and performance for a training system. The tasks and

events in the training system have a sequential nature. Thus PBCF algorithm can
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be easily adapted to model users’ performance in the training systems, in which case

the PBCF algorithm should model the users’ training scores instead of preference

ratings. The PBCF can also be applied in intelligent tutoring systems to improve

users’ performance and experience. In fact, the PBCF algorithm has already been

successfully used in an edition of the CRYSTAL ISLAND narrative-centered learning

environment [35].

The personalized drama manager can not only be used in computer games and

tutoring systems, but also be applied to other systems where we would like to model

users’ preference and influence the users’ choice selections. For example in a online

shopping case, traditional collaborative filtering algorithms make one-shot recom-

mendation for a product. Using the PBCF, the system can recommend a sequence

of products for a customer based on his/her preference or previous purchase history.

Then the personalized drama manager algorithm can be applied to influence the

customer’s choices if we have a selected product for the customer.

6.3 Future Work

In this section, I will discuss two major future directions: how to guide the players

in the case of repeated visits to the same branching plot point, and how to further

reduce the amount of feedback the drama manager needs to collect from the players

through using other features to build the player models.

6.3.1 Repeated Visits to the Same Branching Point

Human study results in Section 4.6 show that the players’s preference ratings are

significantly increased in the testing phase (the last session), in which the players

visit a new branching story graph for the first time. It is still unclear that whether

and how much the personalized drama manager can improve the players’ experience

during repeated visits to the same branching plot point.
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The original player preference models over the story prefixes should be recali-

brated based on the players’ new experience. Temporal based collaborative filtering

approaches can be used to model the changes of the players’ preference [23, 24, 81].

Furthermore, the story preference model should take into consideration the players’

characteristics such as whether the players prefer to explore more in the branching

story graph, at which branching points the players are more likely to change their

decisions, etc.

The personalized guidance algorithm also needs to be updated during the repeated

visits. Some options are already exposed to the players. The personalized drama

manager needs to either update the preference model for the options, or build another

option selection model to predict the probabilities that the player will select each

option based on all the information, e.g. whether the players have read the options,

the previous ratings for the options, the number of times the players have visited this

branch, the options shown to the player during previous visits, etc.

6.3.2 Building Player Models Using Other Features

In Section 5.1.2, I use active learning to reduce the number the training stories re-

quired to build the player models. It will be beneficial to further reduce the require-

ment for training data.

The personalized drama manager can utilize other features to bootstrap the player

models for the new players. The players’ option selection behavior is an useful in-

dication for their preference [67]. The personalized drama manager can utilize the

selected options to help build the preference model. For more complex computer

games, the players’ gameplay features could also be used to build the player models.

The gameplay features have been used to model the players’ boredom, frustration

and fun [71, 78]. Further research is needed to study how these gameplay features

are correlated with the players’ preference over the stories. It is a promising research
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direction to build the personalized drama manager purely on these features instead

of the explicitly preference ratings.

6.4 Conclusion

Improving player experience is an important goal for the drama manager in inter-

active narrative systems. Although personalized drama management has not been

well explored in the literature, I believe that building a personalized DM is essen-

tial to enhance the player experience in interactive narrative systems and computer

games. The personalized drama manager presented in this dissertation builds data

driven player models without pre-defined player types, and guides the players to bet-

ter story experience while preserves the player agency. Its capabilities have been

tested and proved in the human studies and evaluations in the dissertation. As such,

I conclude the thesis statement, first proposed in Section 1.1 have been achieved.

The personalized drama manager marks an important milestone for personalizing the

players’ experience in interactive narratives. Its development helps us to understand

important problems and identify possible solutions in the scientific pursuit of using

artificial intelligence to improve user experience in interactive narratives, computer

games, intelligent tutoring systems, and other computer systems.

103



APPENDIX A

STORY LIBRARY USED IN THE HUMAN STUDIES

In this research, I transcribed totally four choose-your-own-adventure books to create

all the branching story graphs for the story library: The Abominable Snowman, The

Lost Jewels of Nabooti, Space And Beyond, and Journey Under The Sea. For the

human study in Section 3.3, all the four branching story graphs are used but no

option is shown to the players. For the human study in Section 4.6, I used the

branching story graphs—The Abominable Snowman and The Lost Jewels of Nabooti.

Two additional options are authored for each branch. In total, there are three options

pointing to each successive plot point at every branching point in the two branching

story graphs. In this appendix, I describe in details all the branching story graphs

for the four choose-your-own-adventure books and all the options used in the human

studies.

A.1 Four Branching Story Graphs

Figure 28 shows the branching story graph for The Abominable Snowman. Figure 29

shows the branching story graph for The Lost Jewels of Nabooti. Figure 30 and

Figure 31 show the branching story graphs for Space And Beyond. Figure 32 and

Figure 33 show the branching story graphs for Journey Under The Sea.

I transcribed the stories in the original choose-your-own-adventure books through

removing branches that led to “sudden death” outcomes and splitting/merging some

pages in the books to ensure that every full-length story contains exactly six plot

points. The mappings between the plot points in my branching story graphs and the

pages in the original books are shown in Table 13 to Table 16.
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Figure 28: The branching story graph for the choose-your-own-adventure book: The
Abominable Snowman.
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Figure 29: The branching story graph for the choose-your-own-adventure book: The
Lost Jewels of Nabooti.
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Figure 30: The first part of the branching story graph for the choose-your-own-
adventure book: Space And Beyond.

Table 13: The plot point and page number mappings for The Abominable Snowman.

Plot Point Page Number Plot Point Page Number Plot Point Page Number
0 1-5 1 7 2 8,10
3 9 4-6 15,32 7 20,31
8 43,58 9 43,62 10 82,96
11 82,98,109,60 12 77,91,101,103 13 77,95,106,111
14 80 15 45 16 55,76,78,100,104
17 55,76,78,102 18 57,75,73 19 13,14
20 22,34,21 21 46 22 59
23 64 24-26 22,34,21,47 27 23

28-29 33 30 23,38 31 50,65
32 50,67 33 86,37 34 86,114
35 87 36 85 37 83,99
38 48,49,68,69 39 88 40 89
41 16 42 19 43 24,26
44 27 45 39 46 51

47,48 42 49 40 50 63
51 51,70,92,97-107 52 72 53,54 116

55-57 28 58 29
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Figure 31: The second part of the branching story graph for the choose-your-own-
adventure book: Space And Beyond.
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Figure 32: The first part of the branching story graph for the choose-your-own-
adventure book: Journey Under The Sea.
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Figure 33: The second part of the branching story graph for the choose-your-own-
adventure book: Journey Under The Sea.
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Table 14: The plot point and page number mappings for The Lost Jewels of Nabooti.

Plot Point Page Number Plot Point Page Number Plot Point Page Number
100 1-4 101 5 102 8
103 16 104 29 105 126
106 27,64,66 107 89 109 88,109,122
111 27,44,43 112 61,86,116 116 62,85
117 18,30 118 50 120 70,95
121 72,96 130 12 131 19,32,35
132 49 133 74 134 76
135 52 136 128 140 20,37,38
141 53,75 143 97 145 100,131
142 53,78 147 101,130 148 103
149 54 150 80 151 79

152-156 9,10,14,24 157,158 9,10,15 162 20,41
163 21 164 42 165 55,80
166 60 167,168 58 171 57,82
172 107 174 108,114

A.2 Options in the Multi-Option Branching Story Graphs

The branching story graphs from the choose-your-own-adventure books The Abom-

inable Snowman and The Lost Jewels of Nabooti are used in the interactive narrative

system in Chapter 4. Two additional options are authored for each successive plot

point at every branching point in the two branching story graphs. The following

motivational theories, drawn from Petty [43] and Cialdini [9], are used to author the

options:

� Expert Source: a desire to follow experts’ opinions.

� Scarcity : a desire for something that will soon become unavailable.

� Consistency : a desire to appear consistent with what we have already done or

said.

� Social Proof : a desire to imitate others in similar situations.

� Reasoning : a desire to follow arguments that sound rational.
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Table 15: The plot point and page number mappings for Space And Beyond.

Plot Point Page Number Plot Point Page Number Plot Point Page Number
200 1,2,4,5 201-205 9,10,22 206 8
207 19 208 42 209,210 60
211 56,59 212 82,106,112 213 82,106,113
214 82,107 215 83 216-218 39
219 20 220 21 221 41,43
222 62 225 57 223,224 44
225 57 226 1,2,3 227 6,12
228 7 229 6,14 230 25,47
231 25,26,45,46 232 66 233 25
234 47 235 84 236 85
237 64 238 86 239 87,90
240 94 241 114 242 115
243 116 244 67 245 70

246,247 92 248 89,108 249 89,109
250 117 251 120 252 118
253 119 254,255 94 256 91
257 110 258 111,121 259 111,122

260-263 32,50 264 32,49 265 69
266 69 267 95 268 96
269 71 270,271 97 272 98
273 124 274 125 275 15,16

276-278 31 279 34 280 51
281 72 282 74 283,284 52
285 17,36 286 55 287 77
288 104 289 105 290 54,73
291 54,78 292 99 293 126
294 127 295 101 296 128
297 129 298,299 102 300 103
301 131 302 130
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Table 16: The plot point and page number mappings for Journey Under The Sea.

Plot Point Page Number Plot Point Page Number Plot Point Page Number
400 1,2 401 6,7 402 10
403 19 404 34 405,406 36
407 49 408 50,8 409,410 17
411 31 412 17,32 413 47
414 66 415 47,63 416 88
417 87,94 418 87,95,110 419,420 87,95,111
421 4 422 3 423 14

424,425 23 427,428 26,39 429 3,14,26
430 40 431 55 432 56
433 76 434 77 435 78
436 79 437 8 438-440 18,30

442-444 13,24 445 8,13 446 27
447 42 448 57 449 58

450,451 43 453 28,29 454 45
455 62 456 64,83 457 64,86
458 44,59 459 44,60 460 80
461 82,114 462 82,114 463 81,116
464 81,117 465 84 466-468 9,25,6
469 3,9,21 470 33 471 51
472 67 473 68 474 53,69
475 53,70 476 96 477 97
478 98 479 99,54 480 38
481 52 482 54 483 74,92
484 74,93,104 485 74,93,105 486 71,89,101
487 71,89,103 488 71,90,100 489 71,90,102
490 72 491 75
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� Number of arguments : a desire to follow statement that contains repetitive

arguments expressed in different ways without new information.

� Motivation–Friendship: a desire for friendship.

� Motivation–Safety : a desire for being safe.

� Motivation–Money : a desire for being rich.

� Motivation–Fame: a desire for being famous.

Table 17 to Table 23 shows all the options, including the original ones and the new

ones I authored, in the branching story graph in Figure 28. Table 24 to Table 31 shows

all the options in the branching story graph in Figure 29. The column From contains

the plot point numbers from which the options point. The column To contains the

plot point numbers to which the option point. The column Theory shows which

motivation theory is used to author the corresponding option.
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Table 17: The options used in Figure 28.

From To Theory Content
0 1 Original You decide to expedition by yourself.
0 1 Friendship You are worry about your friend Carlos. You decide to

go to the Everest base to search for Carlos as soon as
possible.

0 1 Consistency You decide to follow your original plan and go directly
to Kathmandu to search for the Yeti.

0 2 Original You feel that Carlos is OK and want to meet with Mr.
Runal.

0 2 Reasoning It will be very helpful for your expedition if you can talk
with a mountain expert before your trip. You decide to
talk with Mr. Runal about you expedition plan.

0 2 Safety This will be your first trip to Himalayas. It is much
safer to meet with Mr. Runal, a mountain expert, for
safety tips in mountain area.

1 3 Original You and Runal want to search below the base camp in
the valley.

1 3 Social You and Runal decide to search the canyon where most
previous reports of the Yeti were reported.

1 3 Safety You decide to search downhill since it is safer to go down
the trail and avoid the ice and snow up in the mountain.

1 19 Original You and Runal want to search above the base camp.
1 19 Reasoning Most of the previous reports about Yeti are outdated

and probably misleading. That’s why no one has ever
gotten a Yeti photo. You decide to ignore those reports
and search above the camp.

1 19 Original Carlos’s analysis was that he believed the Yeti lived high
in the mountain. You believe your friend’s judgment
and decide to search uphill.

2 41 Friendship Carlos could be in danger. You decide to go ahead to
search for Carlos.

2 41 Fame You continue the expedition for Yeti since you could be
the first person in the world to get Yeti photos.

2 41 Consistency You have been preparing for the expedition for such a
long time that you decide to continue to the expedition.

2 42 Safety It is wise to play it safe. You decide to postpone the
expedition for the Yeti.

2 42 Money You go for tigers since you can make a good fortune by
selling photos of tigers in the Terai region.

2 42 Expert Mr. Runal is an expedition expert. He recommends you
to postpone the Yeti expedition. You decide to follow
his advice.

3 4 Original You decide to ignore the message.
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Table 18: The options used in Figure 28 (Continued).

3 4 Friendship Carlos might be in danger and need help. You decide to go
to look for Carlos immediately.

3 4 Reasoning Carlos went to the expedition alone. But the woman said
there were two persons. It might not be your friend Carlos
who left the message. You decide to investigate what hap-
pened.

3 7 Original You obey the message.
3 7 Safety The trail looks so dangerous. You do not know what will

happen ahead. You decide to find a safe place to stay.
3 7 Arguments Carlos is your friend whom you trust. Since he left a message

asking you to go back to the base camp, you decide follow
his advice.

4 5 Original Continue.
5 6 Original Continue.
7 8 Original You decide to follow the Yeti with Runal.
7 8 Scarcity How could you miss such a rare opportunity to get the photos

of the Yeti? You and Runal grab a camera immediately and
follow the sound before it is gone.

7 8 Expert The woman lives local and seems to know a lot about Yeti.
You and Runal decide to trust her and accept the invitation
from Yeti.

7 9 Original You decide to follow the Yeti alone.
7 9 Friendship You come all the way to find Carlos. He might be in danger.

The Yeti could lead you to him. You decide to follow Yeti
but leave Runal behind as a rear guard for safety.

7 9 Money You might earn a lot of money if you make new discovery
about Yeti. But you do not want to share the money with
Runal. You decide to run down the trail to follow the Yeti
by yourself.

7 15 Original You decide to return to the base camp and the helicopter.
7 15 Reasoning There have been so many people in the world searching for

the Yeti for such a long time. But still no people have found
the Yeti yet. How could the women find it so quickly? You
decide not to believe in her.

7 15 Safety Judging from the noise, you feel that the Yeti were enraged.
Something bad might happen. You decide that it is safer to
stay away from it.

8 12 Original You decide to retreat.
8 12 Safety It does not look safe here. You decide to get out of here while

you still can.
8 12 Arguments The place is eerie. The red backpack might be taken from

Carlos or he might leave it as a warning for you. You decide
to stay there but keep silent.
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Table 19: The options used in Figure 28 (Continued).

8 14 Original You give the special bird call whistle that you and Carlos
used as your emergency code.

8 14 Friendship The red backpack might be taken from Carlos. Is he in
trouble? You call his name to see if he is nearby.

8 14 Reasoning The place is dark. The backpack indicates that Carlos
might be nearby. But he might not be able to see you.
You decide to shout out loudly to see if anyone is there.

9 10 Original You hesitate to go into the door.
9 10 Expert Mr. Runal knows more about this area. He told you to

come back to him. You decide to go back to Mr. Runal.
9 10 Safety It could be really dangerous inside the doors. You decide

to turn back.
9 11 Original You decide to go inside the door.
9 11 Fame The doors might lead you to the Yeti. You could be the

first person in the world to find the Yeti. You push the
door.

9 11 Consistency You do not want to retreat and give up at the last minute
on your way searching for the Yeti. You decide to go in to
the door.

15 16 Original You decide to go back.
15 16 Safety The big foot prints might be left by the Yeti. The giant

foot prints indicate the Yeti are huge. It is too dangerous
to follow the prints. You decide to talk with Runal for the
next step.

15 16 Arguments The helicopter is smashed. The rotor blades are twisted
and the Plexiglas is shattered. You decide to stay out of
there as soon as possible.

15 18 Original You decide to follow the prints.
15 18 Consistency The giant footprints looks like Yeti footprints. It has been

your dream to find the Yeti. You will not quit half way
through your expedition. You ask Runal to go follow the
prints with you.

15 18 Scarcity The footprints will be soon covered by snow. You might
never get so close to getting photos of the Yeti ever again.
You and Runal decide to follow the prints.

19 20 Original You stay there and look around.
19 20 Safety You are very concerned of the danger ahead along searching

for Yeti. You decide to stay at Sangee’s shop and purchase
new safety equipment.

19 20 Money It seems that you can buy some local stuff here and sell
them later in the US for a profit. You decide to pick up
some new things.

19 30 Original You want to know more about Sangee.
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Table 20: The options used in Figure 28 (Continued).

19 30 Reasoning Sangee has very rich experience exploring the area close to
Kathmandu. It will be very helpful for. You decide to talk
with Sangee to know more about the Yeti.

19 30 Arguments It has always been your dream to find Yeti. You have come
a long way to search for it. Sangee is an expert on local
expedition. You decide to invite Sangee to your expedition.

20 21 Original Continue.
21 22 Original You make up a fantastic story.
21 22 Safety They will kill you if you tell them nothing. You decide to

say something to earn yourself more time.
21 22 Money They will heavily reward you if you provide helpful infor-

mation. You decide to try to fool in hopes of reward.
21 23 Original You insist that you know nothing.
21 23 Reasoning They should know something about the map because they

have it in their shop. You might get yourself into trouble if
you lie to them. You decide to tell the truth.

21 23 Arguments You saw the map by chance. But you do not know anything
about the map. Although they may reward you if you can
provide helpful information, you decide to explain yourself
further.

24 25 Original Continue.
25 26 Original Continue.
27 28 Original Continue.
28 29 Original Continue.
30 31 Original You hesitate where to go.
30 31 Expert It seems difficult for you to make the decision. Sangee is

very familiar with this area. You would like to talk with
Sangee to know more about the Yeti.

30 31 Arguments The Yeti can be near the Everest area, but they can also
live in the Annapurna area. You need to think more about
it.

30 32 Original You decide to go to the Annapurna region.
30 32 Safety It is too dangerous to go to the Everest region, the highest

mountain on earth. Safety is most important for you. You
decide to avoid the Everest region for safety.

30 32 Reasoning The Everest is so high and so cold that it is unlikely for the
Yeti to survive there. You decide to follow Sangee’s advice.

30 38 Original You decide to go to the Everest region.
30 38 Fame You will be famous if you find the Yeti in the Everest area,

the highest mountain in the world. You will go to the Ever-
est area.
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Table 21: The options used in Figure 28 (Continued).

30 38 Scarcity You might never find another chance to visit the Everest
area, the highest mountain in the world. You cannot miss
it.

31 33 Original You decide to take a picture of the creature.
31 33 Fame You will be the first person in the world to find the Yeti.

You will be famous all over the world. You decide to follow
the Yeti with your camera.

31 33 Money You will be richer than you can imagine if you can get the
Yeti pictures. You decide to grab a camera.

31 35 Original You decide not to take a picture of the creature.
31 35 Safety It will be too dangerous to take a picture of the creature.

You decide to grab something that can defend yourself.
31 35 Safety The camera flash will attract the Yeti. You do not know

what it will do to you. You decide to grab something that
can frighten the creature.

32 36 Original You want to respond to their help.
32 36 Scarcity The flashlight might be from the Yeti. You do not know

how long you have to wait for another chance. You cannot
let it go away. You decide to go to take a look.

32 36 Arguments You see a light flash on Annapurna. The flash repeats and
seems to be a signal. Someone might be in trouble. You
decide to go to help them.

32 37 Original You decide to let Sangee return to Pokhara for help.
32 37 Safety It will be too dangerous to walk below the glacier. You

decide to let Sangee return to Pokhara for help.
32 37 Reasoning It is dark and cold out there. You might not be very helpful

by yourself. You decide to let Sangee return to Pokhara for
help.

38 39 Original You decide to take the risk.
38 39 Consistency It has been your dream to search for the Yeti. There will

be more opportunities in Khumbu Icefall. You decide to
go there.

38 39 Expert Sangee is very familiar with this area. He recommends you
to start your search from Khumbu Icefall. You decide to
follow his advice and go to the Khumbu Icefall.

38 40 Original You can’t decide it.
38 40 Safety It will be really dangerous in the icefall. You could lose

your life. You hesitate.
38 40 Arguments Great pieces of ice tumble from the glacier and pile up like

children’s building blocks. The ice may crack and give way
when you least suspect. Many have died in these icefalls.
You need to think more about it.

41 43 Original You accept Runal’s offer to join you.

119



Table 22: The options used in Figure 28 (Continued).

41 43 Safety It will be much safer if you two go together and look after
each other. You need a companion in case of emergency.
You decide to ask Runal to come with you.

41 43 Scarcity It is a great chance to have an expedition expert on your
team. If you hesitate the other expedition team will know
your plan and offer higher compensation to Runal. You
cannot miss the chance to have Runal on your team.

41 44 Original You decline Runal’s offer to join you.
41 44 Reasoning Mr. Runal seems not to support your expedition from the

very beginning. You doubt that he will really help you on
your expedition. You decide to find an excuse to decline
his offer.

41 44 Consistency Carlos and you make a good climb team. It is not easy
to get along with a new companion in a short time. You
decide to go alone for Carlos.

42 55 Original Continue.
43 49 Original You are ready for the secret knowledge of the Yeti.
43 49 Consistency You have been searching for Yeti for such a long time. You

will not give up at the last minute. You decide to continue
your journey no matter what will happen to you.

43 49 Fame You will be famous if you become the first person in the
world to find the Yeti. You decide to accept the offer for
now, take some pictures of the Yeti and the go back home.

43 53 Original You reject the offer of secret knowledge.
43 53 Reasoning No one has ever published a Yeti photo before. It seems to

be impossible to keep the secret of the Yeti for so long if so
many people know about it. You decide not to trust them.

43 53 Arguments Your life will be changed if you accept the offer. It sounds
terrible that your life will never be the same forever. You
decide to find an excuse to retreat.

44 45 Original You try to make amends.
44 45 Safety Mr. Runal seems to be angry. You do not know what he

can do to sabotage your expedition. It is wise to do as he
wishes.

44 45 Scarcity It will be very helpful to have a mountain expert on your
team. You change your mind and invite Mr. Runal to
accompany you before he changes his mind to go expedition
with the other team.

44 47 Original You stick to your decision.
44 47 Consistency You rejected Mr. Runal’s offer to come with you. You will

not change the decision you just made. You decide not to
ignore him.
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Table 23: The options used in Figure 28 (Continued).

44 47 Arguments He does not support your expedition from the very begin-
ning. He seems not to be friendly with you. You decide to
get out of there as soon as possible.

45 46 Original Continue.
47 48 Original Continue.
49 50 Original You are not prepared to change your life forever.
49 50 Arguments You can quit right now. It is the last chance for you to quit

this weird journey. You can never go back if you continue
the journey. You decide to quit.

49 50 Safety The whole thing is getting too weird. You do not know
how dangerous it will be ahead in the journey. You decide
to find an excuse to quit right now.

49 51 Original You agree to take the journey.
49 51 Consistency It has been your dream to find the Yeti. You will not give

up at the last minute. You definitely agree to continue.
49 51 Fame You will become world-famous to find the Yeti. You decide

to accept their offer for the moment.
53 54 Original Continue.
55 56 Original Continue.
56 57 Original You split up.
56 57 Arguments You can cover more territory if you split up. You decide to

split up.
56 57 Reasoning Poachers may catch both of you if you stay together. You

decide to split up so that if one of you get caught, the other
one can go for help.

56 58 Original You stay together.
56 58 Safety It will be safer to stay together. You can look after each

other. You decide to stay together.
56 58 Expert Mr. Runal is an expedition expert. He suggests you stay

together. You decide to follow his advice.
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Table 24: The options used in Figure 29.

From To Theory Content
100 101 Original You agree to go on tomorrow’s plane for Paris.
100 101 Friendship Peter and Lucy are your cousins and best friends. You

will go on tomorrow’s plane for Paris to help them with-
out hesitation.

100 101 Money You will be much richer than you can imagine if you
find the precious diamond. You go for Paris without
hesitation.

100 157 Original You want to help them but need more information.
100 157 Safety It is safer to think carefully before you take any action.

You decide to talk with them and get more information.
100 157 Arguments You are still puzzled after reading the letter. Although

you feel Peter and Lucy might be in danger, you hesi-
tated about what to do next. You decide to talk with
them first.

101 102 Original You accept his offer.
101 102 Expert The man is an expert on the Jewels of Nabooti. You

decide to accept the offer and follow his advice.
101 102 Scarcity You don’t speak French and barely know anyone in

France. You might not have another chance to find
someone to help you. You accept his offer to search
Nabooti together.

101 130 Original You make excuses and refuse his help.
101 130 Safety Looking at the man by appearance, it seems not safe to

work together with this stranger. You refuse his offer
politely by saying that you are expecting a friend to
pick you up.

101 130 Reasoning The coincidence seems to be too suspicious. You want
to be very careful at each step and not let other people
sabotage your plan. You make excuses and refuse his
help.

102 103 Original You take a seat on the left near the door.
102 103 Safety You pick a seat close to the door since it will help you

can escape easily if you need to.
102 103 Reasoning Your companion looks suspicious. You still do not know

his background or what he wants. You decide not to
follow what he said and sit close to the door.

102 117 Original You sit with your back to the wall.
102 117 Arguments You should watch the doors and windows. There may

be your enemies. You decide to sit with your back to
the wall away from the door.
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Table 25: The options used in Figure 29 (Continued).

102 117 Expert You accompany seems to be very experienced in this sit-
uation. You decide to follow his advice and sit with your
back to the wall.

103 104 Original You grab a chair to defend yourself.
103 104 Scarcity This will be your only chance to talk with Molotawa and

know more about the jewel. You decide not to run away
and you grab a chair to fight against him.

103 104 Consistency You have not finished talking with Molotawa and are
still confused and have a lot of questions for him. You
want to continue your conversation and decide not to run
away. You grab a chair to fight against him.

103 106 Original You get out of the cafe and try to lose yourself into a
crowd.

103 106 Reasoning You know the entrance and exit of the cafe. You don’t
think the person would do harm on you in public. You
race for the nearest exit and try to lose yourself into a
crowd.

103 106 Safety The man coming towards you is really strong. He is
much stronger than you and he has a knife in his hand.
It is safe to avoid him. You race for the nearest exit and
try to lose yourself into a crowd.

103 111 Original You get out of the cafe and wish someone can come to
help you.

103 111 Safety It is too dangerous. The man might kill you. You run
out of cafe and wish someone can help you.

103 111 Consistency You are here to find the jewel, not to create trouble. You
decide to get out of here and continue searching for the
jewel. You wish someone can help you continue searching
the jewel.

104 105 Original Continue.
106 107 Original You decide to go to Morocco.
106 107 Reasoning Molotawa used the word “gave” You believe he does not

have the jewels and decide to go to Morocco instead.
106 107 Safety It is not safe to go back to talk with Molotawa. Someone

there tried to kill you. You decide to go to Morocco
instead.

106 109 Original You want to be back to talk with Molotawa.
106 109 Scarcity Molotawa told you it would be your only chance to meet

him. You might never find Molotawa again in the future.
You decide to go back to talk with Molotawa.

106 109 Arguments Molotawa is from the Nabooti group. He knows about
the jewels. You decide to go back to talk with Molotawa
to research more on the jewels.
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Table 26: The options used in Figure 29 (Continued).

111 112 Original You hesitate and then go peacefully.
111 112 Safety It is too dangerous to fight with them! You decide to go

out peacefully for safety.
111 112 Reasoning You are alone with a pistol. They have more people and

more weapons. There is no chance to fight with them.
You decide to go peacefully.

111 116 Original Fight it out.
111 116 Scarcity They will not hurt you in the thirty-six seconds. You

can attach them by surprise during the thirty-six seconds.
After the thirty-six seconds, there will be no chance for
you to fight it out. You decide to grab the last minute
and fight with them.

111 116 Arguments They shot at you. Now you have a pistol. You can fight
back at them. You decide to fight.

117 118 Original Continue.
118 120 Original You decide to contact the Nabooti.
118 120 Reasoning The car might be from the Nabooti. They seem to know

you are here. You decide not to hide from them. You will
contact the Nabooti directly.

118 120 Arguments Dakar is a big city. It will take too long to search in
Dakar. You decide to contact the Nabooti directly.

118 121 Original You decide to search in Dakar.
118 121 Safety It might expose yourself and put you in danger if you

contact the Nabooti directly. You decide to search in
Dakar first.

118 121 Expert Ouobessa is a local police officer. You decide to follow
his advice and search in Dakar first instead of directly
contacting the Nabooti.

123 124 Original Continue.
124 125 Original You go to the Mountains of the Moon.
124 125 Arguments The Mountains of the Moon are very beautiful. It bears

the secret of your search. You decide to go there first.
124 125 Reasoning You need to find Nabooti as quickly as possible. You are

closer to the Mountains of the Moon. You decide to go to
the Mountains of the Moon first.

124 128 Original You travel to the headwaters of the Zaire River.
124 128 Safety The Mountains of the Moon is one of the highest moun-

tains in the world. It will be dangerous to climb it. You
decide to start searching from the headwaters of the Zaire
River.

124 128 Expert The man recommends starting searching from the head-
waters of the Zaire River. He seems to know everything
in your mind. You follow his advice to go the river.
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Table 27: The options used in Figure 29 (Continued).

125 126 Original You ignore the warning and go into the hut.
125 126 Consistency You come along all the way to search for the jewels. You

will not give up at the end. You decide to ignore the
warning.

125 126 Money The warning and the curse mean something precious
might be inside the hut. It could be the jewels you are
looking for. You definitely go into the hut.

125 127 Original You heed Ouobessa and refuse to enter.
125 127 Safety It means it is death to enter. You will not put your life

in danger.
125 127 Arguments There are three chicken bones and two dead mice across

the doorway. Ouobessa tells you that it is magic. It is a
curse and a warning. You refuse to enter.

128 129 Original Continue.
130 131 Original You go to the jet.
130 131 Money They will heavily reward you if you cooperate with them

and find the jewels. You decide to go to the jet.
130 131 Expert They are expert on the Jewels of Nabooti and might help

you find the jewels. You follow their advice and go to
the jet.

130 140 Original You tell them that there must be some mistake.
130 140 Safety It is too dangerous to go to the jet without knowing the

background of these guys. You decide to make an excuse.
130 140 Reasoning The dagger shows you a message. They seem to be not

friendly with you. You decide to make an excuse.
131 132 Original You give the ivory piece to the blind woman.
131 132 Safety Your life is threatened by the driver. The woman might

be able to save you. You decide to give the ivory piece
to the woman.

131 132 Reasoning Whoever sees the ivory will help you. It seems that the
woman was trying to signal you and she might help you
find the jewels. You decide to give the ivory piece to the
woman.

131 135 Original You decide to not do anything.
131 135 Arguments The woman is so disgusting. And she is blind. You

decide to avoid her as soon as possible.
132 133 Original You decide to obey him.
132 133 Safety They do not look nice to you and may hurt you if you do

not obey them. You decide to obey him for the moment.
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Table 28: The options used in Figure 29 (Continued).

132 133 Reasoning Nobody has put anything in your pocket. There will be
no harm for you to let them check your pocket. You
decide to obey him.

132 134 Original You decide to run for the door.
132 134 Arguments You dont know what is going on. The old man wants

you to give the jewels to him. You do not want to give
the jewels to him. You decide to run for the door.

132 134 Consistency You has been searching for the jewels for such a long
time. You will not give the jewels to them. You decide
to run for the door.

135 136 Original Continue.
137 138 Original Continue.
138 139 Original Continue.
140 141 Original You accept the offer of police protection and take a gun

with you.
140 141 Arguments You want to find the Jewels of Nabooti. The police offer

to help you by providing you with a detective and a gun.
They could be very helpful. You happily accept the offer
of detective and gun.

140 141 Scarcity It is very rare for police to offer a gun. You immediately
accept the offer of police protection and the gun before
they change their minds.

140 142 Original You accept the offer of police protection but will not
bring a gun.

140 142 Expert The police are expert on handling these problem. You
listen to the polices advice to bring a detective. But guns
can cause trouble and you could hut yourself. You accept
the offer to come with a detective but not the gun.

140 142 Safety It will be much safer if the police comes with you. But
guns can cause trouble and you could hurt yourself. You
accept the offer of police protection but not the gun.

140 149 Original You travel to Morocco alone, but accept the special
phone number.

140 149 Reasoning The police thought you were a smuggler. Now they offer
to help you. It seems that what the police really want is
to keep you under surveillance. You decide to travel to
Morocco alone, but accept the special phone number.

140 149 Friendship The police might take the jewels away if you find them.
You need the jewels to save your cousins. You decide
to travel to Morocco alone, but accept the special phone
number.

140 149 Consistency You only accept the special phone number since you al-
ways want to search for the jewels by yourself.
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Table 29: The options used in Figure 29 (Continued).

141 143 Original You go to meet the African People’s Federation.
141 143 Expert Raoul is a special detective and is more experienced in

such circumstance. You follow his advice to meet with
the African Peoples Federation.

141 143 Scarcity It will be difficult to find all the members of African Peo-
ples Federation in the future. Most of them will leave after
the meeting. You decide to meet with them immediately.

141 145 Original You skip the proposed meeting and push on for Morocco.
141 145 Reasoning You do not want too many people to know about your

plan of searching for the jewels. You do not know if any
of them might sabotage you plan. You decide to skip the
meeting and push on for Morocco directly.

141 145 Friendship Peter and Lucy are in danger. You do not have too much
time to meet with the African Peoples Federation. You
decide to push on for Morocco directly.

142 147 Original You follow the instructions in the note.
142 147 Expert As an experienced detective, Raoul knows what he is do-

ing. You follow the instructions in the note.
142 147 Arguments The note seems to be left by Raoul. He asks you to leave

by the back door and turn left at Rue Pelican, right at
Rue Fugere and wait until you are contacted. You decide
to follow the instructions.

142 148 Original You wait for Raoul to return.
142 148 Reasoning You are not sure if the note is left by Raoul. The note

could be left by someone else to mislead you. You do not
know their intention. You decide to wait in the restaurant
and see what will happen.

142 148 Safety A lot of weird things happened on your way to search for
the jewels. It is unsafe to walk around in an unfamiliar
area. You decide to wait in the restaurant.

149 150 Original You go on in.
149 150 Scarcity The door will close again very soon. You do not know

when it will open again. It might never open again. You
go inside the door.

149 150 Money The jewels might be there. You could be very rich if you
go inside. You decide to go on in.

149 151 Original You ring the bell again and wait.
149 151 Safety It could be very dangerous to go inside the door directly.

You do not know what will happen if you go into the door
directly. You decide to ring the bell again and wait.

149 151 Reasoning The door is open but no one is there. It is weird. It could
be a trap. You decide to ring the bell again and wait to
see what will happen.
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Table 30: The options used in Figure 29 (Continued).

152 153 Original Continue.
153 154 Original Continue.
154 155 Original Continue.
155 156 Original Continue.
157 158 Original Continue.
158 162 Original You decide to leave for Paris without getting the aid of

the police.
158 162 Friendship You worry about Peter and Lucy very much. It is all in

your mind to help them find the jewels and save their
lives as soon as possible. There is no time for hesitation.
You decide to leave for Paris immediately without calling
the police about the shooting.

158 162 Money The more those people threatened you, the more valuable
you believe the jewels are. But the police might take
away the jewels after you find them. You decided to
leave for Paris without contacting the police.

158 163 Original You decide to get in touch with the Police first.
158 163 Reasoning Police have professional experience to handle the threat-

ening and cold calls. They might help you to identify the
callers and find useful clues for searching for the jewels.
You decide to get in touch with the Police.

158 163 Safety It is too dangerous to solve the problem on your own.
You decide to get in touch with the Police.

159 160 Original Continue.
160 161 Original Continue.
162 167 Original You decide to skip Paris and head directly for Morocco.
162 167 Safety The men standing in the check-in counter look danger-

ous. It is better to avoid them. You decide to play it
safe and go for Morocco instead.

162 167 Arguments There seemed to be a car following you to the airport.
And there are three squarely built men with crew cuts
standing by the counter watching the door. All of these
look weird. You decide to change your plan to go to
Morocco instead of Paris.

162 171 Original You go up to Paris according to Peter and Lucy’s plan.
162 171 Consistency Starting the search from Paris has been your plan from

the very beginning. You decide to stick to the plan.
162 171 Reasoning The jewels were stolen in Paris. There might be some

clues there. You decide to go to Paris according to Peter
and Lucys plan.

163 164 Original Continue.
164 165 Original You agree to meet him in Morocco.
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Table 31: The options used in Figure 29 (Continued).

164 165 Arguments Anson wants to meet you in Morocco. He does not want
to meet in Paris. You decide to meet him in Morocco.

164 165 Friendship Anson is your good friend. He agrees to help you and
wants to meet you in Morocco. You respect your friends
desires and decide to meet him in Morocco.

164 166 Original You pressure him to meet you in Paris.
164 166 Consistency You, Peter and Lucy planned to meet in Paris. You

decide to stick to your plan and pressure Anson to meet
you in Paris.

164 166 Reasoning The jewels were stolen in Paris. There should be some
clues there. You decide to pressure Anson to meet you
in Paris.

167 168 Original Continue.
169 170 Original Continue.
171 172 Original You keep on going up the steps of the plane.
171 172 Safety It will be too dangerous to run away. You keep on going

up the steps of the plane.
171 172 Arguments You captor points you with a gun. He does not allow

you to run away. You keep on going up the steps of the
plane.

171 174 Original You run for it.
171 174 Scarcity This might be your only chance to escape. You cannot

miss the only opportunity to get away. You decide to
run for it.

171 174 Reasoning It will be much more difficult for you to escape after you
board the plane. This will be your last chance to escape
before boarding. You definitely run for it.
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