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Rémi A. Chou

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy
in

Electrical and Computer Engineering

School of Electrical and Computer Engineering
Georgia Institute of Technology

August 2015

Copyright c© 2015 by Rémi A. Chou
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Notation
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pX probability distribution of random variable X

pX|Y conditional probability distribution of X given Y

X ∼ pX random variable X with distribution pX

N (µ, σ2) Gaussian distribution with mean µ and variance σ2

B(p) Bernoulli distribution with parameter p ∈ [0, 1]

x
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Var(X) variance of random variable X

EX expected value over random variable X
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SUMMARY

The objective of this thesis is to develop and analyze coding schemes for information-

theoretic security, which could bridge a gap between theory and practice. We focus on

two fundamental models for information-theoretic security: secret-key generation for

a source model and secure communication over the wire-tap channel. Many results

for these models only prove the existence of codes, and few attempts have been made

to design practical schemes. The schemes we would like to propose should account for

practical constraints to avoid oversimplifying the problems. From a practical point of

view, many constraints should be taken into account; we, however, restrict our study

to the following ones: (i) computationally bounded legitimate users, in particular, one

should not solely rely on proofs showing the existence of codes with exponential com-

plexity in the block-length; (ii) a rate-limited public communication channel for the

secret-key generation model, to account for bandwidth constraints; (iii) a non-uniform

and rate-limited source of randomness at the encoder for the wire-tap channel model,

since a perfectly uniform and rate-unlimited source of randomness might be an expen-

sive resource. The main contributions of this thesis are coding schemes for secret-key

generation and wire-tap channel models that satisfy the aforementioned constraints.

xiii



CHAPTER 1

INTRODUCTION

Secure communications and data privacy in large-scale networks have become a major

concern with economical and safety issues at stake not only for individuals but also

for companies, or governments. For instance, the increasing amount of personal data

collected in databases is threatening users privacy, while the nature of the transmission

medium of wireless communication, over which a significant amount of sensitive data

is carried, is prone to malicious and undetected acts of eavesdropping.

Information-theoretic security aims at enhancing security and privacy-preserving

properties of future and emerging information and communication systems. It in-

cludes providing solid mathematical foundations, through an analysis of the funda-

mental security and communication limits under an information-theoretic framework,

as well as practical solutions. Taking the example of wireless communication, all upper

layers of typical communication protocols already have their own set of cryptographic

primitives, whereas the physical layer, at which channel coding is implemented and

on which all others layers rely, is currently not intrinsically secured against eaves-

dropping. Information-theoretic security could be used to secure this layer and thus

enhance the security of wireless communication protocols. Unlike complexity-based

cryptography, it would also have the advantage of making no assumption on the

computational power of adversaries, and thus of being everlastingly usable.

Nevertheless, little progress has been made toward a widespread use of systems

implementing physical-layer security since the introduction of information-theoretic

security. To date, information-theoretic security still needs to be further explored and

better understood to pursue this goal. Specifically, the need exists for models with

as few simplifying assumptions as possible and for constructive schemes.

1



1.1 Background on information-theoretic security

Cryptography has a long history and is intimately related to the development of com-

munication systems and recent wars. Prior to the 19th century, most cryptographic

techniques relied on alphabet substitutions or letter permutations and transpositions.

However, at the beginning of the 19th century and the beginning of the 20th cen-

tury, the inventions of telegraphy and wireless telegraphy, respectively, exacerbated

the need for better encryption. Moreover, these inventions played a key role dur-

ing the American Civil-War, World War I, and World War II. Consequently, new

cryptographic techniques emerged.

A major breakthrough in cryptography occurred in the aftermath of World War II,

when Shannon publicly released its work on secure communication in 1949 [1]. As

illustrated in Figure 1, Shannon formalized the problem as follows. Consider two

legitimate users, Alice and Bob, who share a secret key K. Alice aims at securely

sending a message M to Bob, called plaintext, over a public error-free channel. On

Alice’s side, an encoder takes as inputs the message M and the secret-key K. The

output of the encoder C is publicly transmitted by Alice to Bob and is called the

ciphertext. The objective for Bob is to recover M from the ciphertext C and the

secret-key K, whereas Eve should obtain no information about M given C. The

latter statement is quantified in an information-theoretic sense as I(M ;C) = 0, where

I is Shannon’s mutual information. Shannon proved that an encoder exists such that

the message M can be securely transmitted if the key K satisfies three conditions.

Specifically, the key K must be distributed according to a uniform distribution, this

key must be at least as large as the entropy of the message M , and finally, this key

must only be used once.

The one-time pad, illustrated in Figure 2, is an instance of secure communication

under this model. The encoding consists in performing the modulo-2 addition, be-

tween the plaintext M and the secret-key K. The result is a uniform sequence from

2
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Figure 1. Model for symmetric encryption.
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Figure 2. An instantiation of symmetric encryption: the one-time pad.

which Eve gains no information about M . As for Bob, he recovers M by performing

the modulo-2 addition of the ciphertext C with the secret-key K.

The problem of secure communication against a computationally unbounded eaves-

dropper is thus solved by the one-time pad. However, the difficulty is transferred to

the problem of secret-key generation, which still remains a challenging task in itself.

In fact, no efficient method for information-theoretic secret-key generation is currently

known.
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1.2 Secret-key generation

Information-theoretic secret-key generation protocols are a fundamental primitive for

information-theoretic security, as explained in the previous section. We first formally

describe such problems and then provide a literature survey.

1.2.1 Model

Information-theoretic secret-key generation was first formally introduced in [2, 3],

and can abstractly be described as follows in a multi-terminal configuration [4]. Let

m > 2 be the number of terminals that wish to generate a common secret-key. We set

M , J1,mK, and let Z and Xi, for i ∈ M, be arbitrary finite alphabets. We define

XM , (X1,X2, . . . ,Xm) and consider a discrete memoryless source (XMZ, pXMZ),

where XM , (X1, X2, . . . , Xm). For i ∈M, Terminal i observes n realizations of the

component Xi of (XMZ, pXMZ), whereas an eavesdropper observes n realizations of

the component Z. The source is assumed to be outside the control of all parties, but its

statistics are known to all parties. Communication is allowed between terminals over

an authenticated1 noiseless public channel with communication rate Rp ∈ R+∪{+∞}.

All the public inter-terminal communications are collectively denoted by F and are

subject to the constraint H(F) 6 NRp. The case of m = 2 legitimate users and

two-way one-round public communication with F , (A,B) is illustrated in Figure 3.

!
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Eve
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Xn
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Figure 3. Model for secret-key generation: two-users case and two-way one-round
public communication with F , (A,B).

1In others words, Eve has total access to Alice and Bobs messages, but cannot tamper with the
messages over the channel.
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The rules by which the legitimate users compute the messages they exchange over

the public channel and agree on a key define a secret-key generation strategy. The

performance of a secret-key generation strategy that allows the m terminals to agree

on the key K is measured in terms of the following metrics.

• The average probability of error between the keys:

lim
n→∞

P[∃i ∈M, K 6= Ki] = 0,

• The information leakage to the eavesdropper:

lim
n→∞

I(K;ZnF) = 0, 2 (1)

• The uniformity of the key:

lim
n→∞

logd2nRe −H(K) = 0.

Moreover, the maximum number of secret-key bits per observation is called the wire-

tap secret-key (WSK) capacity. This quantity is simply called the secret-key (SK)

capacity for the special case Z = ∅, i.e., when the eavesdropper has no correlated

observation of the source.

We briefly comment on two hypotheses made in this model.

• We assume the existence of a memoryless source with known but uncontrollable

statistics. In practice, it can, for instance, be obtained in a wireless communi-

cation setting [5–7]. Assume that we denote cA→B the channel from Alice to

Bob, cB→A the channel from Bob to Alice, cA→E the channel from Alice to Eve,

and cB→E the channel from Bob to Eve. We can then set X as the channel gain

of cA→B, Y as the channel gain of cB→A, and Z as the pair of channel gains for

(cA→E,cB→E).

2This condition corresponds to strong secrecy, whereas limn→∞ I(K;ZnF)/n = 0 corresponds to
weak secrecy.
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• We also assume the existence of an authenticated public channel. In practice, a

solution to ensure authentication would be to have the legitimate users share a

secret sequence of random bits. This solution is acceptable since the size of this

secret sequence can be chosen in the order of the logarithm of the length of the

message [2,8], which is negligible compared to the length of the key generated.

We now list additional constraints that will be taken into account in this thesis to

avoid oversimplifying the model.

• Computationally bounded legitimate users. A secret-key generation scheme

should be implementable by computationally bounded users, and not solely rely

on a proof showing existence of codes with exponential complexity in the num-

ber of observations n.

• Rate-limited public communication. The public communication constraint

Rp should be considered finite. Indeed, channels with unlimited communication

rate do not exist. Moreover, we can expect sharp performance degradation for

applications in which strong bandwidth constraints hold, as for instance in a

wireless sensor network. We will see that the main difficulty introduced by this

constraint is the need for vector quantization of the source observation.

From a practical point of view, many other constraints should be taken into account,

such as finite block-length, unknown eavesdropper’s statistics, or arbitrary eavesdrop-

per’s alphabet. Proposing a scheme that is able to account for all these constraints

is a challenging problem. A first step towards this goal will consist in dealing with

subsets of these constraints.

We conclude this section by pointing out other models for secret-key generation.

The model we have introduced is called the “source model” for secret-key generation.

A variant of this model is the “channel model” for secret-key generation, in which the

source is partially controlled by one of the legitimate users. Upper and lower bounds
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of the WSK capacity for the channel model in different settings, often derived from

bounds of WSK capacity for the source model or obtained with similar techniques, can

be found in [2, 3, 9, 10]. Secret-key generation is also studied in the quantum setting,

and relies on arguments of a totally different nature, such as quantum entanglement

or quantum superposition. Quantum secret-key generation first appeared in [11, 12]

and has since then attracted interest, as well [13–15].

1.2.2 Literature Survey

Closed-form expressions and bounds for the WSK capacity with m = 2, i.e. two

legitimate users, have been established for a large variety of models [2–4,9,10,16–22].

However, usual achievability proofs only prove existence of codes, and do not always

provide direct insight into the design of practical key-generation strategies.

The only exception is sequential strategies when rate-unlimited public communi-

cation is considered. The main benefit of such strategies is to successively deal with

reliability and secrecy by means of a reconciliation protocol and privacy amplifica-

tion, respectively. Indeed, reconciliation can be efficiently implemented with LDPC

codes [23] and privacy amplification can be performed with extractors [24, 25]. Note

that uncertainty about the eavesdropper’s statistics is addressed, since extractors are

universal and can thus be chosen such that security holds when the statistics of Z are

known to belong to a given set SZ . Specifically, the length of the output of the ex-

tractors is chosen such that security holds for p∗Z , where p∗Z , arg maxpZ∈SZ I(X;Z).

Moreover, in the case of non-memoryless source, [26] addresses the finite-length regime

with a sequential strategy. A finite-length analysis of privacy amplification is also pro-

vided in [27], and in [28] by means of malleable extractors [28, 29].3 Note also that,

for a related model,4 [30] deals with computationally bounded legitimate users, and

3The model considered in [28] is the following. The legitimate users observe the same component
of a non-memoryless source, while the eavesdropper observes a correlated component of the source.
Moreover, two-way one-round public communication over an unauthenticated channel with unlimited
capacity is assumed.

4The model considered in [30] is the following. The legitimate users observe the components of
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the finite-length regime.

To the best of our knowledge, only non-constructive schemes deal with rate-limited

public communication. For discrete memoryless sources, the WSK capacity with

one-way rate-limited public communication, and bounds for the WSK capacity with

two-way one-round rate-limited public communication are provided in [4]. The WSK

capacity for one-way rate-limited public communication is extended to the case of

continuous degraded memoryless sources in [20].

For a multi-terminal setting, that is, the number m of legitimate users is such that

m > 2, upper and lower bounds for the WSK capacity are derived in [4, 9, 21, 31].

The analysis of such a setting is considerably more involved than the case of two

legitimate users. Moreover, most results only hold when the eavesdropper observes

the inter-terminal public communication, but has no side observation Z of the source

observed by the legitimate users. Again, for these settings, the proofs in the literature

only provide existence of codes but no explicit code constructions. We can, though,

mention the exception of [32,33], that are based on explicit algorithms for tree packing,

and [34], that relies on channel coding. The protocol proposed in the latter reference

is, however, computationally intractable, because it requires standard arrays that

grow exponentially with the number of source observations.

1.3 Communication over a wire-tapped channel

In this section, we discuss a model related to secret-key generation, called the wire-

tap channel. We first formally introduce the problem and then review relevant known

results.

1.3.1 Model

Communication over the wire-tap channel model can be seen as a secret-key genera-

tion problem for the channel model, in which the source of randomness stems from

a non-memoryless source, that are close with respect to certain metrics, while the eavesdropper has
no observations of the source. Moreover, one-way public communication over an unauthenticated
channel is assumed.
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Figure 4. The wire-tap channel model.

the transmission medium, in which there is no error-free public channel for commu-

nication, and in which the key is fixed by the transmitter ahead of time. Because

of this distinction, coding mechanisms for the wire-tap channel and secret-key gen-

eration are very different. The wire-tap channel model was first introduced in [35],

and can be described as follows. As illustrated in Figure 4, consider two legitimate

users, Alice and Bob, connected by a communication channel, which is abstracted by

the conditional probability distribution pY |X . Consider also an eavesdropper, Eve,

which observes the communication of Alice and Bob through a channel defined by

the conditional probability distribution pZ|X . Alice aims at secretly transmitting to

Bob a message M , which is encoded in Xn, and received as Y n and Zn by Bob and

Eve, respectively. It is assumed that Alice has access to a source of uniform random-

ness (R, pR) to randomize the encoding of M . Similar to the secret-key generation

model described in Section 2.2.1, the performance of a coding scheme for the wiretap

channel is measured in terms of the following metrics.

• The average probability of error between M and M̂ :

lim
n→∞

P[M 6= M̂ ] = 0,

• Information leakage, measured by the mutual information between the message
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M and all the information available to Eve through Zn:

lim
n→∞

I(M ;Zn) = 0.

The highest rate at which Alice can securely transmit messages to Bob is called the

secrecy capacity. It is shown in [35], that the secrecy capacity is strictly positive if

Bob’s channel, pY |X , is less noisy than Eve’s channel, pZ|X – see, for instance, [23,

Proposition 3.6] for a formal description of “less noisy”. In the latter case, unlike in

Section 2.1 for symmetric encryption, secure communication is possible without the

need of a shared secret-key for the legitimate users, by harnessing the communication

noise introduced by the transmission medium.

We now list additional constraints that will be taken into account in the thesis to

avoid oversimplifying the model.

• Computationally bounded legitimate users. A coding scheme for the wire-

tap channel should be implementable by computationally bounded users, and

not solely rely on a proof showing existence of code with exponential complexity

in the number of observations n.

• Non-uniform and rate-limited source of randomness. As depicted in Fig-

ure 4, an implicit assumption made in the original wire-tap channel model [35] is

the availability at the encoder of a perfectly uniform and rate-unlimited source

of randomness. Such a resource may be expensive or not available at all. Con-

sequently, we introduce the constraint that only a possibly non-uniform and

rate-limited source of randomness is available at the encoder.

• Bandwidth efficiency. The secrecy capacity, which is always less than the

capacity, suggests that secrecy can only be achieved at the cost of reducing

communication rates. This decrease in achievable communication rates could

be a factor that may hinder the adoption of physical-layer security schemes in

communication systems.
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Similar to secret-key generation schemes, from a practical point of view, other con-

straints, such as finite block-length, unknown eavesdropper’s statistics, or arbitrary

eavesdropper’s alphabet, should be taken into account. We will, however, restrict our

analysis to the three aforementioned constraints.

1.3.2 Literature survey

Although closed-form expressions for the secrecy capacity are known [35, 36], tradi-

tional achievability proofs only prove the existence of codes, and, again, do not always

provide direct insight into the design of practical coding schemes.

Recent works have tackled the constraint of computationally bounded legitimate

users with polar codes [37], when symmetric channels are assumed [38, 39]. We can

also mention a constructive scheme with efficiently invertible extractors based on

finite field multiplication [40, 41] for symmetric or additive channels, and LDPC-

based constructions [42–44] for erasure channels. However, none of these solutions

allows the treatment of arbitrary channels.

Rate-limited randomness at the encoder has been studied in [45, 46]. In [45], the

authors precisely analyze the trade-off between the rates of secret message, public

message, and local uniform randomness in the broadcast channel with confidential

messages. Moreover, [46, 47] investigates the case of non-uniform randomness at the

encoder.

Bandwidth efficiency can be improved by multiplexing public and confidential

messages. This idea implicitly appears in the original work of Csiszár and Körner [36],

and is explicitly formalized in [48, 49]. In [50], the authors analyze the possibility of

guaranteeing secrecy with dependent messages and non-uniform randomization.

The constraints of unknown eavesdropper’s statistics is, for instance, addressed

in [51–53]. [52] handles a Gaussian multiple-input multiple-output setting and shows

that if the eavesdropper’s statistics are unknown, one can obtain a strictly positive
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secrecy capacity when the legitimate users have more antennas than the eavesdrop-

per. However, no constructive scheme is known in this case. The case of an arbi-

trary eavesdropper’s alphabet and arbitrary wiretap channels can be treated with

information-spectrum methods using non-constructive schemes, see for instance [54].

A non-asymptotic treatment of the wire-tap channel model by means of non-

constructive schemes is also possible, see for instance [14].

Finally, the assumption regarding a source of uniform randomness available at

the encoder is partially relaxed with non-constructive schemes in [46, 47, 55], where

non-uniform or rate-limited sources of randomness are considered.

1.4 Outline of the dissertation and related publications

Chapters 2 and 3 are related to secret-key generation, while Chapters 4 and 5 are

related to secure communication over a wire-tap channel. Each chapter may be read

independently from the other chapters.

Chapter 2 considers secret-key generation with two-way one-round rate-limited

communication between two legitimate users. Specifically, we study a sequential key-

generation strategy that handles reliability and secrecy successively, and show its

optimality (under the assumption of degraded sources for two-way communication).

We, however, show that although reliability and secrecy can be treated successively,

they might not always be treated independently, thereby exhibiting the limits of

sequential strategies to rate-limited public communication. Chapter 2 is based on the

results obtained in the following references:

• R. Chou and M. Bloch. Separation of Reliability and Secrecy in Rate-Limited

Secret-Key Generation, in IEEE transactions on Information Theory, Vol. 60,

no. 8. 2014.

• R. Chou and M. Bloch. One-Way Rate-Limited Sequential Key-Distillation.

Proc. of IEEE International Symposium on Information Theory (ISIT). 2012.
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Chapter 3 considers polar coding for different models of secret-key generation.

Specifically, we propose secret-key capacity-achieving and low-complexity schemes for

the following models: (i) the degraded binary memoryless source (DBMS) model with

rate-unlimited public communication, (ii) the DBMS model with one-way rate-limited

public communication, (iii) the 1-to-m broadcast model, (iv) the Markov tree model

with uniform marginals, (v) several models for biometric systems. Chapter 3 is based

on the results obtained in the following references:

• R. Chou, M. Bloch, and E. Abbe. Polar Coding for Secret-Key Generation.

Accepted to IEEE transactions on Information Theory. May, 2015.

Available at http://arxiv.org/abs/1305.4746

• R. Chou, M. Bloch, and E. Abbe. Polar Coding for Secret-Key Generation.

Proc. of IEEE Information Theory Workshop (ITW). 2013.

Chapter 4 considers a source-channel coding scheme for the wiretap channel.

We show that multiplexing unprotected and protected data allows, first, to avoid the

necessity of additional randomness at the encoder and, second, to efficiently use the

bandwidth available between the legitimate users. Specifically, the overall commu-

nication rate of the same channel without secrecy constraints is maintained. The

scheme leverage results about lossless source coding with uniform encoder output.

Chapter 4 is based on the results obtained in the following references:

• R. Chou, M. Bloch, B. Vellambi, and J. Kliewer. Source-Channel Coding

Schemes for Achieving Strong Security at Negligible Cost. To be submitted to

IEEE transactions on Information Theory. 2015.

• R. Chou and M. Bloch. Uniform Distributed Source Coding for the Multi-

ple Access Wiretap Channel. Proc. of IEEE Conf. on Communications and

Network Security (CNS). 2014.
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• R. Chou and M. Bloch. Data Compression with Nearly Uniform Output. Proc.

of IEEE International Symposium on Information Theory (ISIT). 2013.

Chapter 5 considers polar coding for the wiretap channel model. Specifically, we

propose a low-complexity and secrecy capacity achieving scheme. Our scheme extends

previous work by using an optimal rate of uniform randomness in the stochastic

encoder, and avoiding assumptions regarding the symmetry or degraded nature of the

channels. Moreover, we describe a close conceptual connection between our coding

scheme and a random binning proof of the secrecy capacity region. An extension to

the broadcast channel with confidential messages is also proposed. Chapter 5 is based

on the results obtained in the following references:

• R. Chou and M. Bloch. Polar Coding for the Broadcast Channel with Confi-

dential Messages and Constrained Randomization. Submitted to IEEE trans-

actions on Information Theory. November, 2014.

Available at http://arxiv.org/abs/1411.0281

• R. Chou, M. Bloch. Polar Coding for the Broadcast Channel with Confidential

Messages. Proc. of IEEE Information Theory Workshop (ITW). 2015.
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CHAPTER 2

SEPARATION OF RELIABILITY AND SECRECY IN
SECRET-KEY GENERATION

2.1 Summary

For a discrete or a continuous source model, we study in this chapter the problem of

secret-key generation with two-way one-round of rate-limited public communication

between two legitimate users. Although we do not provide new bounds on the wire-

tap secret-key (WSK) capacity for the discrete source model, we use an alternative

achievability scheme that may be useful for practical applications. As a side result,

we conveniently extend known bounds to the case of a continuous source model.

Specifically, we consider a sequential key-generation strategy, that implements a rate-

limited reconciliation step to handle reliability, followed by a privacy amplification

step performed with extractors to handle secrecy. We prove that such a sequential

strategy achieves the best known bounds for the rate-limited WSK capacity (under

the assumption of degraded sources in the case of two-way communication). However,

we show that, unlike the case of rate-unlimited public communication, achieving the

reconciliation capacity in a sequential strategy does not necessarily lead to achieving

the best known bounds for the WSK capacity. Consequently, reliability and secrecy

can be treated successively but not independently, thereby exhibiting a limitation of

sequential strategies for rate-limited public communication. Nevertheless, we provide

scenarios for which reliability and secrecy can be treated successively and indepen-

dently, such as the two-way rate-limited SK capacity, the one-way rate-limited WSK

capacity for degraded binary symmetric sources, and the one-way rate-limited WSK

capacity for Gaussian degraded sources. This chapter is based on the results obtained

in [56,57].
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2.2 Introduction

A sequential key-generation strategy consists of (i) a reconciliation step, during which

Alice and Bob communicate over the public channel to agree on a common bit se-

quence, which might not be totally hidden from Eve, (ii) a privacy amplification step,

during which Alice and Bob apply a deterministic function to their shared sequence

to generate their common secret key, this time completely unknown from Eve. The

main benefit of sequential key-generation strategies is to separate how one deals with

reliability and secrecy,1 and thus to provide a perhaps more practical key-generation

design. Indeed, reconciliation can be efficiently implemented with LDPC codes [58,59]

and privacy amplification can be performed with extractors [24, 25]. While sequen-

tial key-generation is studied in [23, 25] for a public channel of unlimited capacity,

we focus on the performance of sequential key-generation strategies in the case of

rate-limited public communication.2

Although, we do not improve the rate-limited WSK capacity bounds for the dis-

crete source model, we provide an achievability scheme that might be easier to trans-

late into practical designs. Specifically, we show that sequential strategies, that are

known to be optimal for rate-unlimited public communication, are also optimal for

rate-limited communication. We, however, also qualify the robustness of sequential

strategies to rate-limited public communication, as we show in this case that it may

not be optimal to achieve the reconciliation capacity in a sequential strategy. That is,

reliability and secrecy can be handled successively but not necessarily independently,

thereby limiting the coding scheme flexibility. The main results of this chapter are:

1We mean that the key-generation can be performed by the succession of two protocols, one, free
from any secrecy constraint, dealing with reliability, and the other dealing with secrecy. A stronger
result would be that optimizing both protocols independently, in a sense defined in Section 2.3.4,
leads to the best possible key-generation strategy. In Section 2.5, we prove that this stronger result
holds in some scenarios.

2Note that the achievability scheme of [21, Theorem 4.1], which only holds for Gaussians sources
and when there is no side information at the eavesdropper, is very close to the sequential approach
that we study, even though their model is different in that it deals with a quantized source and
unrestricted public communication.
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• an alternative achievability scheme that separates reliability and secrecy by

means of a reconciliation protocol and a privacy amplification step performed

with extractors, which achieves

(i) the best known bound of the two-way one-round rate-limited WSK capac-

ity for degraded sources in Theorem 2.4.3;

(ii) the one-way rate-limited WSK capacity in Theorem 2.4.4;

(iii) the two-way one-round rate-limited SK capacity (no side information at

the eavesdropper) in Theorem 2.4.5;

As a side result, we extend the bounds for a discrete source model in [16], to the

case of a continuous source model in Corollary 2.4.2 (the case of the one-way

rate-limited WSK capacity is treated in [60], but only for degraded sources) ;

• scenarios for which achieving the reconciliation capacity is optimal in a sequen-

tial key-generation strategy, as it is not necessarily the case in general when

constraints are imposed on public communication. Such results are important

to obtain a flexible coding scheme; Specifically, we treat the case of

(i) the two-way rate-limited SK capacity in Section 2.5.1;

(ii) the one-way rate-limited WSK capacity for degraded binary symmetric

sources in Section 2.5.2;

(iii) the one-way rate-limited WSK capacity for degraded Gaussian sources in

Section 2.5.3;

As side results, we obtain a characterization of the rate-limited reconciliation

capacity in Proposition 2.5.2, which corresponds to the best trade-off between

the length of the sequence shared by Alice and Bob after reconciliation and

the quantity of information publicly exchanged; we also obtain a closed-form
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expression of the one-way WSK capacity for degraded binary symmetric sources

with Proposition 2.5.4, as illustrated in Example 2.5.2.

Our proofs techniques mainly rely on the analysis of randomness extraction with

extractors, Wyner-Ziv coding, and a fine analysis with robust typicality [61] to ex-

tend the discrete case to a continuous setting. The determination of the one-way

WSK capacity for degraded binary symmetric sources relies on perhaps less standard

techniques, as we use the Krein-Milman Theorem to simplify a convex optimization

problem under convex constraints.

The remainder of the chapter is organized as follows. In Section 2.3, we introduce

the problem and provide some background on the topic. Specifically, we formally

introduce the problem studied in Section 2.3.1, and recall known bounds for the

secret-key capacity in Section 2.3.2. In Section 2.3.3, we describe the two steps

of a sequential strategy and recall known bounds achieved by such a strategy. In

Section 2.3.4, we introduce the notion of independence between the two steps of

a sequential strategy, when constraints are imposed on public communication. In

Section 2.4, we prove that the sequential application of reconciliation and privacy

amplification with extractors is an optimal key-generation strategy. In Section 2.5,

we provide scenarios for which these two phases can be treated independently of each

other. Specifically, we provide the case of the two-way SK capacity in Section 2.5.1,

the one-way WSK capacity for degraded binary symmetric sources in Section 2.5.2,

and the one-way WSK capacity for degraded Gaussian sources in Section 2.5.3. All

proofs are gathered in the appendices to streamline presentation.

2.3 Problem statement and background

2.3.1 Model

We consider in this chapter a special case of the model introduced in Section 1.2.1.

As illustrated in Figure 5, two legitimate users, Alice and Bob, and one eavesdropper,

Eve, observe the realizations of a memoryless source (MS) (XYZ, pXY Z), that can
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Figure 5. Source model for secret-key generation.

be either discrete (DMS) or continuous (CMS). The three components X, Y and Z,

are observed by Alice, Bob, and Eve, respectively. The MS is assumed to be outside

the control of all parties, but its statistics are known. Alice and Bob’s objective is

to process their observations and agree on a key K, about which Eve should have

no information. We assume a two-way one-round communication between Alice and

Bob, that is, we suppose that Alice first sends a message to Bob, and that in return

Bob sends a message to Alice.3 We also assume that the messages are exchanged over

an authenticated noiseless public channel with limited rate; in others words, Eve has

total access to Alice and Bob’s messages, but cannot tamper with the messages over

the channel. We now formally define a key-generation strategy.

Definition 2.3.1. A
(
2nR, n, R1, R2

)
key-generation strategy Sn for a source model

with MS (XYZ, pXY Z) consists of

• a key alphabet K =
q
1, 2nR

y
;

• two alphabets A, B respectively used by Alice and Bob to communicate over the

public channel;

• two encoding functions f0 : X n → A, g0 : Yn ×A → B;

• two functions κa : X n × B → K, κb : Yn ×A → K;

3One could also suppose that Bob is the one who sends messages, in which case one only needs
to exchange the role of X and Y in the following.
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and operates as follows.

• Alice observes Xn while Bob observes Y n;

• Alice transmits A = f0(Xn) subject to H(A) 6 nR1;

• Bob transmits B = g0(Y n, A) subject to H(B) 6 nR2;

• Alice computes K = κa(X
n, B) while Bob computes K̂ = κb(Y

n, A).

The performance of a
(
2nR, n, R1, R2

)
key-generation strategy Sn is measured in

terms of the average probability of error between the key K generated by Alice and

the key K̂ generated by Bob

Pe(Sn) , P[K 6= K̂|Sn],

in terms of the information leakage to the eavesdropper

L(Sn) , I(K;ZnAB|Sn),

and in terms of the uniformity of the key

U(Sn) , log
⌈
2nR
⌉
−H(K|Sn).

Definition 2.3.2. A WSK rate R is achievable for a source model if there exists a

sequence of
(
2nR, n, R1, R2

)
key-generation strategies {Sn}n>1 such that

lim
n→∞

Pe(Sn) = 0 (reliability),

lim
n→∞

L(Sn) = 0 (strong secrecy),

lim
n→∞

U(Sn) = 0 (strong uniformity).

Moreover, the WSK capacity of a source model with MS (XYZ, pXY Z) is the supre-

mum of achievable WSK rates, and is denoted by CWSK. In the following, we also

consider situations in which the eavesdropper has access to the public messages ex-

changed by Alice and Bob, but has no side information Zn. In such cases, the WSK

capacity is simply called the secret-key (SK) capacity and is denoted by CSK.
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2.3.2 Known bounds for CWSK and CSK

For convenience, we recall known results regarding the model described in Section 2.3.1.

Note that these results only hold for DMS.

Theorem 2.3.1 ( [16, Theorems 2.5, 2.6]). Let (XYZ, pXY Z) be a DMS.

(a) For R1, R2 ∈ R+, the two-way one-round WSK capacity satisfies

CWSK(R1, R2) > RWSK(R1, R2),

where

RWSK(R1, R2) , max
U,V

(
[I(Y ;U)− I(Z;U)]+ + [I(X;V |U)− I(Z;V |U)]+

)

subject to
R1 > I(X;U)− I(Y ;U),

R2 > I(Y ;V |U)− I(X;V |U),

U—X—Y Z, V—Y U—XZ,

|U|6 |X |+2, |V|6 |Y|.

(b) For R1 ∈ R+, the one-way WSK capacity is

CWSK(R1, 0) = max
U,V

(I(Y ;V |U)− I(Z;V |U))

subject to
R1 > I(X;V )− I(Y ;V ),

U—V—X—Y Z,

|U|, |V|6 |X |+2.

Corollary 2.3.1 ( [16, Theorems 2.2, 2.3, 2.4]). Let (XY , pXY ) be a DMS.

(a) For R1, R2 ∈ R+, the two-way one-round SK capacity is

CSK(R1, R2) = max
U,V

(I(Y ;U) + I(X;V |U))

21



subject to
R1 > I(X;U)− I(Y ;U),

R2 > I(Y ;V |U)− I(X;V |U),

U—X—Y , V—Y U—X,

|U|6 |X |+2, |V|6 |Y|.

(b) For R1 ∈ R+, the one-way SK capacity is

CSK(R1, 0) = max
U

I(Y ;U)

subject to
R1 > I(X;U)− I(Y ;U),

U—X—Y,

|U|6 |X |+1.

2.3.3 Sequential strategy

In the following, we use the term sequential key-generation strategy, for a key-

generation strategy consisting of the succession of a reconciliation protocol and a

privacy amplification with extractors.

2.3.3.1 Reconciliation

During the reconciliation phase, Alice and Bob send messages to each other over an

authenticated public channel with limited rate. Alice and Bob then process their

observations to agree on a common bit sequence S. At this stage the sequence is

not subject to any secrecy constraint. Formally, a two-way one-round rate-limited

reconciliation protocol is defined as follows.

Definition 2.3.3. Let R1, R2 ∈ R+. A rate-limited reconciliation protocolRn(R1, R2),

noted Rn for convenience, for a source model with MS (XY , pXY ) consists of

• an alphabet S = J1,MK;

• two alphabets A, B respectively used by Alice and Bob to communicate over the

public channel;
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• two encoding functions f : X n → A, g : Yn ×A → B;

• two functions ηa : X n × B → S, ηb : Yn ×A → S;

and operates as follows

• Alice observes Xn while Bob observes Y n;

• Alice transmits A = f(Xn) subject to H(A) 6 nR1;

• Bob transmits B = g(Y n, A) subject to H(B) 6 nR2;

• Alice computes S = ηa(X
n, B) while bob computes Ŝ = ηb(Y

n, A).

The reliability performance of a reconciliation protocol is measured in terms of

the average probability of error

Pe(Rn) , P[S 6= Ŝ|Rn].

In addition, since the reconciliation protocol, which generates the common sequence

S, is followed by the privacy amplification step to generate a secret-key, it is desirable

to leak as little information as possible over the public channel. As in [23] we define

the reconciliation rate of a reconciliation protocol as

R(Rn) , 1

n
[H(S|Rn)−H(AB|Rn)] .

Definition 2.3.4. For a given (R1, R2), a reconciliation rate R is achievable, if there

exists a sequence of rate-limited reconciliation protocols {Rn}n>1 such that

lim
n→∞

Pe(Rn) = 0 and lim
n→∞

R(Rn) > R.

Moreover, the two-way one-round rate-limited reconciliation capacity Crec(R1, R2) of

a MS (XY , pXY ) is the supremum of achievable reconciliation rates.

Intuitively, the reconciliation capacity characterizes the best trade-off between the

length of the sequence shared by Alice and Bob after reconciliation and the quantity

of information publicly exchanged.
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2.3.3.2 Privacy amplification

During the privacy amplification phase, Alice and Bob generate their secret key by

applying a deterministic function, on which they publicly agreed ahead of time, to

their common sequence S obtained after reconciliation. This phase is performed with

extractors [62], which are functions that take as input a sequence of n arbitrarily

distributed bits and output a sequence of k nearly uniformly distributed bits, using

another input of d truly uniformly distributed bits. Define the min-entropy of a

discrete random variable X as

H∞(X) , − log
(

max
x

pX(x)
)
,

and, for two discrete random variables X and Y , the conditional min-entropy of X

given Y as

H∞(X|Y ) ,
∑

y

pY (y)H∞(X|Y = y).

The following theorem provides a lower bound on the size of the key, on which the

legitimate users agree.

Theorem 2.3.2 ([25], [23, Theorem 4.6]). Let S ∈ {0, 1}n be the random variable that

represents the common sequence shared by Alice and Bob, and let E be the random

variable that represents the total knowledge about S available to Eve. Let e be a

particular realization of E. If Alice and Bob know that

H∞(S|E = e) > γn, for some γ ∈]0, 1[,

then there exists an extractor g : {0, 1}n × {0, 1}d → {0, 1}k with d 6 nδ(n) and k >

n(γ − δ(n)), where δ(n) satisfies limn→+∞ δ(n) = 0.

Moreover, if Ud is a random variable uniformly distributed on {0, 1}d and Alice and

Bob choose K = g(S, Ud) as their secret key, then

H(K|Ud, E = e) > k − δ∗(n),

with δ∗(n) = 2−
√
n/logn (k +

√
n/log n).
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Note that, the size d of the uniformly distributed input sequence is negligible,

compared to n, so that the effect on the rate of public communication is negligible.

Moreover, extractors that extract almost the entire min-entropy of the input S and

require comparatively negligible amount of uniform randomness can be efficiently

constructed [62].

2.3.3.3 Known results concerning sequential strategies

For a DMS, in the absence of rate constraint between Alice and Bob, i.e. R1, R2 =

+∞, [25], [23, Theorem 4.7] state that one can handle reliability and secrecy succes-

sively to achieve the WSK capacity CWSK(+∞,+∞), by means of a reconciliation

step, and a privacy amplification step. Figure 6 schematically illustrates the role

of each step in terms of information shared by each party. At the beginning of the

protocol, we assume, without loss of generality [2, 63], that Bob has an advantage

over Eve in terms of the amount of information he has about Alice’s observations

of the source. The reconciliation step aims at correcting the discrepancies between

Alice’s and Bob’s observations. Hence, after this step, Alice and Bob share a common

sequence S, while Eve has gained some information about S from the public commu-

nication that occurred during reconciliation. Finally, the privacy amplification step

allows Alice and Bob to extract from S a shorter sequence K totally independent

from Eve’s total knowledge.

2.3.4 Independence between reconciliation and privacy amplification

In this section, we define a notion of independence between reconciliation and privacy

amplification, when constraints hold on the public communication rate. As explained

earlier, we would like to ensure that reliability and secrecy can be handled not only

successively but also independently, to obtain a flexible coding scheme. We will show

in the following section that the reconciliation capacity is given by the following

proposition.

Proposition 2.3.1. Let (XY , pXY ) be a DMS. Let R1 ∈ R+. The reconciliation
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Figure 6. Schematic representation of information shared between the users and the
eavesdropper during a sequential strategy for secret-key generation.

capacity Crec(R1, 0) is given by

Crec(R1, 0) = CSK(R1, 0).

As shown in Example 2.3.1, unlike the case of rate-unlimited communication, in

the case of rate-limited communication, it is not necessarily optimal to first achieve the

reconciliation capacity in Proposition 2.3.1 and then to perform privacy amplification.

In other words, if a sequential strategy is known to achieve the secret-key capacity,

it does not tell us at which rate we should perform the reconciliation step. In the

following, we say that reconciliation and privacy amplification are independent if

achieving the reconciliation capacity in a sequential strategy leads to achieving the

secret-key capacity.

Example 2.3.1. Consider the scenario presented in Figure 7, in which |X |= |Y|=

|Z|= 2, X—Y—Z forms a Markov chain, and X ∼ B(p). We assume a one-way

rate-limited public communication, i.e R1 ∈ R and R2 = 0. We set the parameters as

follows. R1 = H(X|Y )/3, p = 0.23, β1 = 0.01, β2 = 0.03, γ1 = 0.03 and γ2 = 0.01.

We note Hb the binary entropy function and define for p ∈ [0, 1], p̄ , 1− p.

We will show in the next section that a sequential strategy achieves the WSK
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capacity CWSK(R1, 0). Moreover, we can show that

CWSK(R1, 0) = max
α1,α2

(f − g)(α1, α2),

subject to (h− f)(α1, α2) = R1, (2)

Crec(R1, 0) = max
α1,α2

f(α1, α2),

subject to (h− f)(α1, α2) = R1, (3)

where

f(α1, α2) , Hb(py)− puHb(a)− p̄uHb(b),

g(α1, α2) , Hb(pz)− puHb(c)− p̄uHb(d),

h(α1, α2) , Hb(p)− puHb(α1)− p̄uHb(α2),

with pu = (ᾱ2 − p)/(ᾱ2 − α1), py = p̄β̄1 + pβ2, pz = pyγ̄1 + p̄yγ2, a = α1β2 + ᾱ1β̄1,

b = α2β̄1 + ᾱ2β2, c = γ̄1a+ γ2ā, d = γ̄1b+ γ2b̄.

Numerically,

CWSK(R1, 0) > 0.050 > 0.045 > (f − g)(α∗1, α
∗
2),

where (α∗1, α
∗
2) achieves Crec(R1, 0). Hence, for this example, achieving the reconcil-

iation capacity in a sequential key-generation is not optimal and incurs a rate loss

above 10%.

Remark 2.3.1. Deriving (2) and (3) is not straightforward. We used Proposi-

tion 2.5.3 given in the following sections, which shows that equality holds in the public

communication rate constraint (4) and that |U|6 |X |.

In Section 2.4, for R1, R2 ∈ R+, we study the achievability of RWSK(R1, R2),

CWSK(R1, 0), given in Theorem 2.3.1 and CSK(R1, R2) given in Corollary 2.3.1, with

a sequential key-generation strategy. Moreover, in Section 2.5, we identify scenarios

for which reconciliation and privacy are independent in the sense defined in this

section.
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Figure 7. Example of a binary DMS studied in Example 2.3.1.

2.4 Sequential strategies achieve the best know bounds of
CWSK and CSK

In this section, we provide one of our main result. That is, the successive combina-

tion of reconciliation and privacy amplification, achieves the best known rates of the

secret-key capacity (under the assumption of degraded sources in the case of two-way

communication), when constraints are imposed on the public communication. As a

side result, we extend known bounds of CWSK and CSK for DMS to the case of CMS.

Before we state our results, we provide a high-level description of our coding

schemes. The main difficulty introduced by rate-limited public communication is the

need for vector quantization of the source in the reconciliation step to better control

the amount of information sent over the public channel. We use Wyner-Ziv cod-

ing, i.e. lossy source coding with side information, to handle this part. The privacy

amplification step is performed with extractors, that is, functions that take as in-

put a sequence of n arbitrarily distributed bits and a sequence of d truly uniformly

distributed bits to output a sequence of k nearly uniformly distributed bits. Specifi-

cally, Alice and Bob publicly agree on a sequence Ud of d truly uniformly distributed

bits, and use the extractors, using S and Ud as inputs, to form their secret-key K.

Observe that the extractors must be chosen such that the size d of Ud must be negli-

gible, compared to n, so that the effect of the transmission of Ud on the rate of public

communication is negligible. Moreover, the extractors must extract almost the entire

min-entropy of the input, that is, all the randomness of the input, to maximize the

length of the secret-key generated. As already mentioned, such extractors are, for

instance, explicitly constructed in [62].
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The next major difficulty is to combine reconciliation and privacy amplification,

since the output of the reconciliation step is not an independently and identically

distributed random variable because of the vector quantization. Crucial ingredients to

successfully perform this combination are Markov’s Lemma (see for instance [61]) and

a repetition of the reconciliation protocol. A schematic representation of the scheme is

illustrated in Figure 8 for one-way rate-limited public communication. Specifically, a

reconciliation protocol, operating over sequences of size n, is repeated m times. Then,

an overall reconciliation step is performed, followed by an overall privacy amplification

step. After the overall reconciliation step, Alice and Bob have agreed on a common

sequence S , UN , where N , n × m. Finally, Alice and Bob perform privacy

amplification by using an extractor with inputs UN and a uniform random variable

Ud. Note that the eavesdropper’s total knowledge is thus ZN , his observation of the

source, F , (A,B), the public communication of Alice and Bob, and Ud. We now

Reconciliation protocol

Alice! S = Un

Bob! bS = bUn

P[bUn 6= Un]  �✏(n)

Reconciliation protocol

Alice! S = Un

Bob! bS = bUn

P[bUn 6= Un]  �✏(n)

Reconciliation protocol

Alice! S = Un

Bob! bS = bUn

P[bUn 6= Un]  �✏(n)

Reconciliation protocol

Alice! S = Un

Bob! bS = bUn

P[bUn 6= Un]  �✏(n)

Reconciliation protocol

Alice! S = Un

Bob! bS = bUn

P[bUn 6= Un]  �✏(n)

Reconciliation protocol

Alice! S = Un

Bob! bS = bUn

P[bUn 6= Un]  �✏(n)

Reconciliation protocol

Alice ! S = Un

Bob ! bS = bUn

Ext : {0, 1}N ⇥ {0, 1}d ! {0, 1}k

Alice ! K = Ext(UN , Ud)

Bob ! bK = Ext(bUN , Ud)

Privacy amplification

m
times

P[bUn 6= Un]  �✏(n)

Information available to Eve after reconciliation: ZN , F , Ud

�

�

Figure 8. Schematic representation of sequential-key generation for one-way rate-
limited public communication. The scheme starts with m repetitions of a reconcili-
ation protocol, during which Alice and Bob agree on Un, a quantized version of Xn,
with an error probability bounded by δε(n), with limn→∞ δε(n) = 0, and ε > 0. Privacy
amplification with extractors is then performed to form the shared secret-key.

state our results as follows.

Theorem 2.4.3. Let (XYZ, pXY Z) be a MS such that X—Y—Z. For R1, R2 ∈ R+,

all WSK rates R that satisfy

R < RWSK(R1, R2)
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are achievable with sequential key-generation strategies.

Proof. See Appendix 2.A.

Remark 2.4.2. Note that we assume X—Y—Z. For two-way communication, the

necessity of this hypothesis might be an inherent weakness of a scheme that consists

of a successive design of reconciliation and privacy amplification, rather than a joint

design as in [16] (see the proof in Appendix 2.A for more details). Observe, however,

that for a one-way public communication, in Theorem 2.4.4, this assumption is not

required.

Theorem 2.4.4. Let (XYZ, pXY Z) be a MS. For R1 ∈ R+, all WSK rates R that

satisfy

R < CWSK(R1, 0)

are achievable with sequential key-generation strategies.

Proof. See Appendix 2.B.

Theorem 2.4.5. Let (XY , pXY ) be a MS. For R1, R2 ∈ R+, all SK rates R that

satisfy

R < CSK(R1, R2)

are achievable with sequential key-generation strategies.

We omit the proof of Theorem 2.4.5, which is similar to the one of Theorem 2.4.3

without the random variable Z.

Note that putting constraints on the public communication leads to auxiliary random

variables in the expression of the secret-key capacity and the reconciliation capacity,

as seen in Section 2.3. Hence, as demonstrated in Example 2.3.1, auxiliary random

variables that achieve the reconciliation capacity, may not achieve the secret-key ca-

pacity. In other words, reliability and secrecy can be handled successively, but cannot

necessarily be treated independently, as defined in Section 2.3.4. Nevertheless, in the
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next section, we identify scenarios for which reconciliation and privacy amplification

can be treated independently.

As a side result, we have extended known bounds for the secret-key capacity for

DMS to the case of CMS. We summarize this result in the following corollary, which

is directly deduced from Theorems 2.4.3, 2.4.4, and 2.4.5.

Corollary 2.4.2. Let (XYZ, pXY Z) be a MS.

(a) Assume that X—Y—Z. For R1, R2 ∈ R+, the two-way WSK achievable bound

RWSK(R1, R2) given in Theorem 2.3.1.a, remains valid for a CMS.

(b) For R1 ∈ R+, the expression of the one-way WSK capacity CWSK(R1, 0) given in

Theorem 2.3.1.b, remains valid for a CMS.

(c) For R1, R2 ∈ R+, the two-way SK capacity CSK(R1, R2) given in Corollary 2.3.1,

remains valid for a CMS.

2.5 Scenarios for which independence holds between reliabil-
ity and secrecy

As seen in the Example 2.3.1, achieving the reconciliation capacity might not lead to

achieving the secret-key capacity. In this section, we identify special cases for which

independence holds between reconciliation and privacy amplification. Specifically, we

prove that independence holds for the two-way one-round SK capacity, the one-way

WSK capacity in the case of binary symmetric degraded sources, and the one-way

WSK capacity in the case of Gaussian degraded sources. As a side result, we obtain

an expression for the two-way rate-limited reconciliation capacity and a closed-form

expression for the secret-key capacity CWSK(R1, 0) in the case of degraded binary

symmetric sources.

2.5.1 Two-way rate-limited SK capacity

In this section, we consider the two-way rate-limited SK capacity. That is, the eaves-

dropper has no correlated observation of the source.
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We first show that the two-way rate-limited SK capacity is equal to the two-way

rate-limited reconciliation capacity in the following proposition.

Proposition 2.5.2. Let (XY , pXY ) be a MS. For R1, R2 ∈ R+, the rate-limited rec-

onciliation capacity Crec(R1, R2) is

Crec(R1, R2) = CSK(R1, R2).

Proof. See Appendix 2.C.

Hence, by Proposition 2.5.2, the auxiliary random variables that achieve the recon-

ciliation capacity, also achieve the secret-key capacity; combined with Theorem 2.4.5,

we obtain the following corollary.

Corollary 2.5.3. Let (XY , pXY ) be a MS and R1, R2 ∈ R+. The two-way rate-limited

SK capacity CSK(R1, R2) is achievable by a sequential strategy, moreover, reconcili-

ation and privacy amplification steps can be handled independently, as defined in

Section 2.3.4.

2.5.2 One-way rate-limited WSK capacity for degraded binary symmetric
sources

In this section, we assume a degraded DMS. We first refine Proposition 2.5.2 and

Theorem 2.3.1.b in the following proposition.

Proposition 2.5.3. Let (XYZ, pXY Z) be a DMS such that X—Y—Z. Assume R1 ∈

R+ and R2 = 0. We tighten the rate constraint in (4), (6) and the range constraint

in (5), (7) as follows.

(a) The one-way rate-limited reconciliation capacity is

Crec(R1, 0) = max
U

I(Y ;U)

subject to R1 = I(X;U |Y ), (4)

U—X—Y,

|U|6 |X |. (5)
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(b) The one-way rate-limited secret-key capacity is

CWSK(R1, 0) = max
U

(I(Y ;U)− I(Z;U))

subject to
R1 = I(X;U |Y ), (6)

U—X—Y—Z,

|U|6 |X |. (7)

Proof. See Appendix 2.D.

Remark 2.5.3. The expression of the WSK capacity in Proposition 2.5.3.b is ob-

tained from Theorem 2.3.1.b and is due to Watanabe [60]. We refine this result by

proving that equality holds in the rate constraint and by improving the range con-

straint of U ; The argument used to show the equality in the rate constraint of Propo-

sitions 2.5.3.a and 2.5.3.b, is one that applies to various convex maximization prob-

lems: the maximum principle (see Appendix 2.D). This refinement is critical for the

analysis of binary sources, especially to solve the optimization problem for the WSK

capacity in Proposition 2.5.4, and thus to determine the WSK capacity for degraded

binary symmetric sources in Example 2.5.2.

Remark 2.5.4. As soon as R1 is at least H(X|Y ), Crec(R1, 0) (resp. CWSK(R1, 0))

attains the same maximum I(X;Y ) (resp. I(X;Y ) − I(X;Z)) as in the case R1 =

+∞.

The solution of the maximization problem in Proposition 2.5.3.b can be obtained

explicitly, when the source has symmetry properties.

Proposition 2.5.4. Let (XYZ, pXY Z) be a DMS such that X—Y—Z. Assume that

|X |= 2 and let R1 ∈ R∗+.

If the channels pY |X and pZ|X are symmetric [64], then the auxiliary random

variable U achieving CWSK(R1, 0) in Proposition 2.5.3.b, is such that the test-channel

33



0

1

0

1

Z0

1

0

1⇠ B(1/2)
p q

X1 X2

Figure 9. Binary DMS studied in Example 2.5.2.

pU |X is a BSC with parameter β0, with β0, any of the two symmetric solutions of

R1 = I(U ;X)− I(U ;Y ).

Proof. See Appendix 2.E.

Although the result stated in Proposition 2.5.4 seems intuitive and non-surprising,

the proof is not straightforward, as a crucial step is the improvements proposed in

Proposition 2.5.3. Hence, if the channels pY |X and pZ|X are symmetric, by Proposi-

tion 2.5.4, the auxiliary random variable U achieving Crec(R1, 0) in Proposition 2.5.3.a

also achieves CWSK(R1, 0) in Proposition 2.5.3.b; combined with Theorem 2.4.4, we

obtain the following corollary.

Corollary 2.5.4. Let (XYZ, pXY Z) be a DMS such that X—Y—Z and |X |= 2. Let

R1 ∈ R∗+. We assume the channels pY |X and pZ|X to be symmetric. The one-way rate-

limited WSK capacity CWSK(R1, 0) is achievable by a sequential strategy, moreover,

reconciliation and privacy amplification steps can be handled independently, as defined

in Section 2.3.4.

The following example illustrates Proposition 2.5.4 and Corollary 2.5.4.

Example 2.5.2. As depicted in Figure 9, assume that X and Y (respectively Y and

Z) are connected by a binary symmetric channel (BSC) with crossover probability p

(respectively q). We also assume X ∼ B(1/2) to obtain simpler expressions; however,

the application of Proposition 2.5.4 remains valid for X ∼ B(α), α ∈ [0, 1]. By
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Figure 10. Reconciliation capacity Crec(R1, 0).

Proposition 2.5.4, the reconciliation capacity is

Crec(R1, 0) =





1−Hb(p ? β0), if R1 6 H(X|Y ),

1−Hb(p), if R1 > H(X|Y ),

and the WSK capacity is

CWSK(R1, 0) =





Hb (p ? β0 ? q)−Hb(p ? β0), if R1 6 H(X|Y ),

Hb(p ? q)−Hb(p), if R1 > H(X|Y ),

with β0, any of the two symmetric solutions of the equation Hb(p ? β0)−Hb(β0) = R1

and where, for p, q ∈ [0, 1], we have defined the following associative and commutative

operation p ? q , p(1− q) + (1− p)q; observe that [0, 1] is closed with respect to ?.

Figure 11 (resp. Figure 10) illustrates Remark 2.5.4 and the fact that the reconcili-

ation capacity Crec(R1, 0) (resp. the secret key-capacity CWSK(R1, 0)) is monotonically

increasing in the communication rate constraint.
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Figure 11. WSK capacity CWSK(R1, 0) (q = 0.2).
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Figure 12. Binary erasure channel studied in Example 2.5.2.

Corollary 2.5.4 states that choosing a test-channel pU |X as a BSC with parameter

β0, achieves Crec(R1, 0) and CWSK(R1, 0), so that reconciliation and privacy amplifi-

cation can be designed independently. Consequently, for any other channel pZ|Y , as

long as pZ|X stays symmetric, the reconciliation capacity and the optimal reconcili-

ation protocol for sequential key-generation remains the same. It is for instance the

case if we choose pZ|Y as a binary erasure channel (BEC), as depicted in Figure 12.

Moreover, in this case, Proposition 2.5.4 still allows us to determine the WSK capac-

ity:

C
(erasure)
WSK (R1, 0) =





ε(1−Hb(p ? β0)), if R1 6 H(X|Y ),

ε(1−Hb(p)), if R1 > H(X|Y ),
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where ε is the erasure probability characterizing pZ|Y .

Remark 2.5.5. We can show that the sequential strategy used in this section can also

be applied to similar models for biometric secrecy [65].

2.5.3 One-way rate-limited WSK capacity for degraded Gaussian sources

In this section, we consider a degraded Gaussian MS with one-way rate-limited pub-

lic communication. We assume that X, Y , and Z are zero-mean correlated Gaussian

sources on R, and that Alice, Bob, and Eve know the covariance matrix of (X, Y, Z).

We first refine the reconciliation capacity and the secret-key capacity to give the

counterpart of Proposition 2.5.3. We then provide the reconciliation capacity and

the secret-key capacity, and show that reconciliation and privacy amplification can

be treated independently. We also briefly discuss the performance of vector quanti-

zation compared to scalar quantization for the reconciliation step, thereby providing

a counterpart of Remark 2.5.4.

Proposition 2.5.5. Let (XYZ, pXY Z) be a zero-mean Gaussian MS such that

X—Y—Z. Assume R1 ∈ R+ and R2 = 0.

(a) The one-way rate-limited reconciliation capacity is

Crec(R1, 0) = max
U

I(Y ;U)

subject to
R1 = I(X;U |Y ), (8)

U—X—Y, .

(b) The one-way rate-limited WSK capacity is

CWSK(R1, 0) = max
U

(I(Y ;U)− I(Z;U))

subject to
R1 = I(X;U |Y ),

U—X—Y—Z,
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Figure 13. Reconciliation capacity Crec(R1, 0) for different correlation coefficients ρXY .
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Figure 14. WSK capacity CWSK(R1, 0), for different correlation coefficients ρXY (ρXZ =
0.1, ρY Z = 0.4).
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Proposition 2.5.5 follows from Proposition 2.5.6.

Proposition 2.5.6. Assume that (XYZ, pXY Z) is a degraded zero-mean Gaussian

source. Let R1 ∈ R+.

The auxiliary random variable U achieving Crec(R1, 0) in Proposition 2.5.5.a is a

zero-mean Gaussian with variance

σ0 , σx
(
1 + (1− ρXY )(e2R1 − 1)−1

)

that satisfies the rate-constraint (8), where ρXY is the correlation coefficient between

X and Y . Moreover, the same auxiliary random variable U achieves CWSK(R1, 0) in

Proposition 2.5.5.b.

(a) The one-way rate-limited reconciliation capacity is given by

Crec(R1, 0) =
1

2
log2

1−
(
ρXY e

−R1
)2

1− ρ2
XY

.

(b) The one-way rate-limited WSK capacity is

CWSK(R1, 0) =
1

2
log2

(1− ρ2
Y Z)(1− ρ2

XZ)− (ρXY − ρY ZρXZ)2 e−2R1

(1− ρ2
Y Z)(1− ρ2

XZ)− (ρXY − ρY ZρXZ)2 .

Proof. (b) is due to Watanabe [60], and the proof of (a) is similar to the one of (b).

Proposition 2.5.6 states that both arguments of the maximum for the auxiliary

random variable U , in (a) and (b) of Proposition 2.5.5 are identical; combined with

Theorem 2.4.4, we deduce the following corollary.

Corollary 2.5.5. Assume that (XYZ, pXY Z) is a degraded zero-mean Gaussian source.

Let R1 ∈ R+. The one-way rate-limited WSK capacity CWSK(R1, 0) is achievable by

a sequential strategy, moreover, reconciliation and privacy amplification steps can be

handled independently, as defined in Section 2.3.4.
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As shown by Proposition 2.5.6.a (resp. Proposition 2.5.6.b), and as illustrated in

Figure 13 (resp. Figure 14), the reconciliation capacity (resp. the WSK capacity)

does not reach I(X;Y ) (resp. I(X;Y ) − I(X;Z)) when R1 exceed a certain value.

As mentioned in [60] and Remark 2.5.4, unlike the case of discrete random variables,

Crec(R1, 0) (resp. CWSK(R1, 0)) can only approach I(X;Y ) (resp. I(X;Y )−I(X;Z))

asymptotically. Nevertheless, we show in the following proposition a continuous coun-

terpart of Remark 2.5.4.

The achievability of CWSK(R1, 0) with our sequential strategy is based on Wyner-

Ziv coding. For a practical implementation, additional structure needs to be intro-

duced, for instance with vector quantization. Since scalar quantization is the simplest

and often the most computationally efficient type of quantization, it is natural to ask

how scalar quantization performs compared to vector quantization. We answer this

question in the following proposition.

Proposition 2.5.7. Let n ∈ N∗, and a > 0. Define U as a uniformly quantized

version of X. Specifically,

∀k ∈ J1, nK, pU(uk) ,
∫ tk+1

tk

pX(x)dx, with tk , a(2 k−1
n−1
− 1).

If n is large enough, then

|I(X;Y )− I(Y ;U)|6 ε(a) + a ·Keh(X|Y )−R1 ,

where R1 is the communication rate constraint, K is a constant, and ε(a) decreases

exponentially fast to zero as a goes to infinity.

Proof. See Appendix 2.F.

Proposition 2.5.7 gives a continuous counterpart of Remark 2.5.4. Indeed, when

R1 > h(X|Y ), by Proposition 2.5.7, if X is quantized finely enough, then I(Y ;U)

approach I(X;Y ) exponentially fast as R1 increases.
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Hence, the improvement of vector quantization compared to scalar quantization

decays rapidly as the communication rate increases beyond h(X|Y ). Note that, in

practice, we can optimize the scalar quantization, so that the loss could be even

smaller than predicted by Proposition 2.5.7. Figure 15 illustrates this point by com-

paring the reconciliation capacity with numerical values of achievable rates obtained

when X is scalar-quantized.4 Nevertheless, for low communication rates, Figure 15

shows that vector quantization improves the performance; in this case, we could im-

plement, for instance, trellis coded vector quantization (TCVQ) [66].

4We have increased the number of interval of quantization of X from 2 to 15 and chosen their
bounds by a standard gradient method to maximize I(XQ;Y ).
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2.6 Concluding remarks

We have shown that the one-way rate-limited capacity is achievable by a sequential

strategy that separates reliability and secrecy thanks to a reconciliation step followed

by a privacy amplification step with extractors; in the case of two-way communication,

the sequential design seems to suffer a loss of performance compared to the joint

design and similar secret key rates have only been established for degraded sources or

when there is no side information at the eavesdropper (SK capacity). We have also

qualified robustness of sequential strategy to rate-limited communication, by showing

that achieving the reconciliation capacity in a sequential strategy is, unlike the case of

rate-unlimited communication, not necessarily optimal. We further provide scenarios

for which it stays optimal. As a side result, we have extended known bounds of

the WSK capacity for a discrete source model to the case of a continuous source

model, and derived a closed-form expression of the one-way rate-limited capacity for

degraded binary symmetric sources.

A strength of sequential key-generation is to easily translate into practical de-

signs. Even more interestingly, the proposed scheme can be made very flexible with

the following modifications.

Rate-compatible reconciliation: We can adapt to the characteristics of the legitimate

users by the use of rate-compatible LDPC codes, to perform the reconciliation phase,

as demonstrated in [67, 68]. Note, however, that vector quantization might be re-

quired, which could complexify the reconciliation phase.

Rate-compatible privacy amplification: Privacy amplification can also be performed

with universal families of hash functions, in which case the counterpart of Theo-

rem 2.3.2 is found in [24].5 Hence, one can design privacy amplification methods eas-

ily adjustable to the characteristics of the eavesdropper’s observations, if we make k

5However, it requires more random bits than extractors, on the order of n random bits, since
functions must be chosen at random in universal families. Consequently, our scheme needs to be
adapted to account for it.
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vary in the following universal family of hash functions H = {GF(2n)→ {0, 1}k, x 7→

(k bits of the product xy)|y ∈ GF(2n)}, where the k bits are fixed but their position

can be chosen arbitrarily [69].
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APPENDICES

2.A Proof of Theorem 2.4.3

2.A.1 Discrete case

Let ε > 0. Let R1, R2 ∈ R+. Let m,n ∈ N, and define N , nm. Let k ∈ N to be

determined later. Consider a sequential key-distillation strategy SN that consists of

• m repetitions of a reconciliation protocol Rn based on Wyner-Ziv coding. The

protocol Rn operates as described in Appendix 2.C.2. Hence, after one repeti-

tion of the protocol, Alice obtains Sn , UnV̂ n, whereas Bob has Ŝn , ÛnV n

and P[Ŝn 6= Sn|Rn] 6 Pe(ε, n).6 In addition, the information disclosed over the

public channel during the m repetitions of the reconciliation protocol is upper

bounded by

log|A|m+ log|B|m= N(I(U ;X)− I(U ;Y ) + I(V ;Y |U)− I(V ;X|U) + r0(ε)),

with limε→0 r0(ε) = 0.7 An additional round of reconciliation is then per-

formed to ensure P[(Ŝn)m 6= (Sn)m|Rn] 6 δe(m), where limm→∞ δe(m) = 0,

for any fixed n. We note log|C|m the information communicated to perform

this last step. Hence, the overall information disclosed is upper bounded by

lrec , log(|A|N |B|N |C|m), that is

lrec = N(I(U ;X)− I(U ;Y ) + I(V ;Y |U)− I(V ;X|U) + r1(ε, n)), (9)

with r1(ε, n) , 1 + ε

n
H(Sn|Ŝn) + r0(ε) (10)

arbitrarily small for n large enough by Fano’s inequality, so that the communi-

cation rates R1 and R2 remain asymptotically unchanged.

• privacy amplification, based on extractors with output size k, at the end of which

6By Appendix 2.C.2, Pe(ε, n) decreases exponentially to zero as nε2 goes to infinity.
7r0(ε) , 6εH(U) + 12εH(V |U) by Appendix 2.C.2.
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Alice computes her key K , g(SN , Ud), while Bob computes K̂ , g(ŜN , Ud),

where Ud is a sequence of d uniformly distributed random bits.

The total information available to Eve after reconciliation consists of her observation

ZN , the public messages Am and Bm, respectively sent by Alice and Bob, the pub-

lic message Cm, and Ud. The strategy SN is also known to Eve, but we omit the

conditioning on SN for convenience.

We first show that, for a suitable choice of the output size k, the quantity

k − H(K|UdZNAmBmCm) vanishes to zero for N large enough. Then, we show

that the corresponding WSK rate achieves the lower bound on the WSK capacity of

Theorem 2.3.1. We first state Lemma 2.1.1, a refined version of the results in [23,25],

that is obtained by using the notion of robust typicality developed in the appendix

of [61], to later extend our result to the continuous case.

Lemma 2.1.1 ( [23, 25], Refined version). Consider a DMS (XZ, pXZ) and define

the random variable Θ as

Θ ,





1 if (Xn, Zn) ∈ T n2ε(XZ) and Zn ∈ T nε (Z),

0 otherwise.

Then, P[Θ = 1] > 1 − δ0
ε (n), with δ0

ε (n) , 2|SX |e−ε2nµX/3 + 2|SXZ |e−ε2nµXZ/3, where

SX , {x ∈ X : p(x) > 0} and µX , minx∈SX p(x) . Moreover, if zn ∈ T nε (Z),

H∞(Xn|Zn = zn,Θ = 1) > n(H(X|Z)− δ0(ε)) + log(1− δ1
ε (n)),

where δ0(ε) , εH(X|Z) and δ1
ε (n) , 2|SX,Z |e−ε2nµX,Z/6.
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Let us start by defining the following random variables

Θ ,





1 if (SN , ZN) ∈ T m2ε (UnV nZn) and ZN ∈ T mε (Zn),

0 otherwise.

Υ ,





1 if H∞(SN |zN , am, bm, cm,Θ = 1) > H∞(SN |zN ,Θ = 1)− lrec −
√
N,

0 otherwise.

By Lemma 2.1.1 applied to the DMS (UnVnZn, pUnV nZn), P[Θ = 1] > 1− δ0
ε (m), and

by [25, Lemma 10], P[Υ = 1] > 1−2−
√
N . Hence, P[Υ = 1,Θ = 1] > 1−δ0

ε (m)−2−
√
N ,

and

H(K|UdZNAmBmCm) >
(

1− δ0
ε (m)− 2−

√
N
)

×H(K|UdZNAmBmCm,Υ = 1,Θ = 1). (11)

To lower bound H(K|UdZNAmBmCm,Υ = 1,Θ = 1), we first lower bound

H∞(SN |zN , am, bm, cm,Θ = 1,Υ = 1) to be able to use Theorem 2.3.2. By definition

of Υ,

H∞(SN |zN , am, bm, cm,Θ = 1,Υ = 1)

> H∞(SN |ZN = zN ,Θ = 1)− lrec −
√
N

(a)

> m(H(Sn|Zn)− nr2(ε, n,m))− lrec, (12)

where (a) follows from Lemma 2.1.1 with

r2(ε, n,m) , ε
H(Sn|Zn)

n
−N−1 log(1− δ1

ε (m)) +N−1/2.8 (13)

8The m repetitions of the protocol Rn allow us to link H∞(·) to H(·).
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We now lower bound H(Sn|Zn).

H(Sn|Zn) = H(Ŝn|Zn) +H(Sn|ŜnZn)−H(Ŝn|SnZn)

(b)

> H(Ŝn|Zn)− δε(n)

= I(Y n; Ŝn|Zn) +H(Ŝn|Y nZn)− δε(n)

= H(Y n|Zn)−H(Y n|ZnŜn) +H(Ûn|Y nZn)

+H(V n|Y nÛnZn)− δε(n)

(c)
= nH(Y |Z)−H(Y n|ZnŜn) +H(Ûn|Y nZn)− δε(n), (14)

where (b) follows from Fano’s inequality where limn→∞ δε(n) = 0 by the exponential

decrease of Pe(ε, n) with ε2n, and (c) holds because V n is a function of (Y nÛn), and

the Yi’s and Zi’s are i.i.d.. We first lower bound H(Ûn|Y nZn).

H(Ûn|Y nZn) = H(Un|Y nZn) +H(Ûn|UnY nZn)−H(Un|ÛnY nZn)

(d)

> H(Un|Y nZn)− δε(n)

> I(Xn;Un|Y nZn)− δε(n)

(e)
= nH(X|Y Z)−H(Xn|Y nZnUn)− δε(n), (15)

where (d) follows from Fano’s inequality where limn→∞ δε(n) = 0 by the exponential

decrease of Pe(ε, n) with ε2n, and (e) holds since the Xi’s, Yi’s , and Zi’s are i.i.d..

Then, define

Γ ,





1 if (Xn, Un, Y n, Zn) ∈ T n2ε(XUY Z),

0 otherwise.

∆ ,





1 if (Xn, Un) ∈ T nε (XU),

0 otherwise.
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so that,

H(Xn|Y nZnUn)

6 H(XnΓ∆|Y nZnUn)

= H(Γ∆|Y nZnUn) +H(Xn|Y nZnUnΓ∆)

6 2 +
∑

δ,γ∈{0,1}

P[Γ = γ|∆ = δ]P[∆ = δ]H(Xn|Y nZnUn,Γ = γ,∆ = δ)

(f)

62 +H(Xn|Y nZnUn,Γ = 1,∆ = 1) + n(2δ2
ε (n) + δ4

ε (n)) log|X |, (16)

where (f) holds since P[∆ = 0] , δ2
ε (n),9 and P[Γ = 0|∆ = 1] 6 δ4

ε (n).10 In-

deed, we can apply Markov Lemma [70] (see the version given in [61]), since we have

Un—Xn—Y nZn and for every (xn, yn, zn), p(ynzn|xn) =
n∏

i=1

pY Z|X(yizi|xi). Then,

H(Xn|Y nZnUn,Γ = 1,∆ = 1)

=
∑

yn,zn,un

p(yn, zn, un|1, 1)H(Xn|yn, zn, un,Γ=1,∆=1)

6
∑

yn,zn,un

p(yn, zn, un|1, 1) log|T n2ε(X|yn, zn, un)|

6
∑

yn,zn,un

p(yn, zn, un|1, 1)(nH(X|Y ZU)(1 + 2ε))

6 nH(X|Y ZU)(1 + 2ε). (17)

Hence, combining (15), (16), and (17), we obtain

H(Ûn|Y nZn) > n(H(X|Y Z)−H(X|Y ZU)− r3(ε, n)), (18)

where

r3(ε, n) , 2H(X|Y ZU)ε+ (2δ2
ε (n) + δ4

ε (n)) log|X |+2/n+ δε(n)/n. (19)

9We have δ2ε (n) 6 Pe(ε, n) by Appendix 2.C.2.
10By Markov Lemma, we have δ4ε (n) , 2|SUXY Z |e−ε

2nµUXY Z/6.
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We now lower bound the term −H(Y n|ZnŜn) in (14). Define

Γ1 ,





1 if (Y n, Ûn, V n, Zn) ∈ T n2ε(Y UV Z),

0 otherwise.

∆1 ,





1 if (Y n, Ûn, V n) ∈ T nε (Y UV ),

0 otherwise.

We can write

H(Y n|ZnŜn)

6 H(Y nΓ1∆1|ZnŜn)

= H(Γ1∆1|ZnŜn) +H(Y n|ZnŜnΓ1∆1)

6 2 +
∑

δ1,γ1∈{0,1}

P[Γ1 = γ1|∆1 = δ1]P[∆1 = δ1]H(Y n|ZnŜn,Γ1 = γ1,∆1 = δ1)

(g)

62 +H(Y n|ZnŜn,Γ1 = 1,∆1 = 1) + n(2δ3
ε (n) + δ5

ε (n)) log|Y|, (20)

where (g) holds since P[∆1 = 0] , δ3
ε (n),11 and P[Γ1 = 0|∆1 = 1] 6 δ5

ε (n).12 In-

deed, we can apply Markov Lemma, since we have for every (yn, zn), p(zn|yn) =
n∏

i=1

pZ|Y (zi|yi), and (ÛnV n)—Y n—Zn, which follows from the assumptionX—Y—Z.13

H(Y n|ZnŜn,Γ1 = 1,∆1 = 1) =
∑

zn,ŝn

p(zn, ŝn|1, 1)H(Y n|zn, ŝn,Γ1 = 1,∆1 = 1)

6
∑

zn,ŝn

p(zn, ŝn|1, 1) log|T n2ε(Y |zn, ŝn)|

6
∑

zn,ŝn

p(zn, ŝn|1, 1)(nH(Y |ZUV )(1 + 2ε))

6 nH(Y |ZUV )(1 + 2ε). (21)

11We have δ3ε (n) 6 Pe(ε, n) by Appendix 2.C.2.
12By Markov Lemma, we have δ5ε (n) , 2|SUV Y Z |e−ε

2nµUV Y Z/6.
13Note that the assumption of degraded sources is only necessary here. The use of this hypothesis is

the weakness, at least for two-way communication (for one-way communication this assumption is not
necessary), of a proof that consists of a successive design of reconciliation and privacy amplification,
rather than a joint design as in [16], where the joint design is exploited to get the joint typicality of
(V n, Y n, Ûn, Zn).
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Hence by (20), (21),

H(Y n|ZnUnV n) 6 n(H(Y |ZUV ) + r4(ε, n)), (22)

where

r4(ε, n) , 2H(Y |ZUV )ε+ (2δ3
ε (n) + δ5

ε (n)) log|Y|+2/n. (23)

Combining (14), (18), (22),

H(Sn|Zn) > n[H(Y |Z) +H(X|Y Z)−H(X|Y ZU)

−H(Y |ZUV )− r3(ε, n)− r4(ε, n)]− δε(n). (24)

Then, remark that

H(Y |Z) +H(X|Y Z)−H(X|Y ZU)−H(Y |ZUV )

= I(Y ;UV |Z) + I(X;U |Y Z)

= H(U |Z) +H(V |UZ)−H(V |UY Z)−H(U |XY Z)

(h)

>H(U |Z) +H(V |UZ)−H(V |UY )−H(U |X)

= I(U ;X)− I(U ;Z)− I(V ;Z|U) + I(V ;Y |U), (25)

where (h) holds because conditioning reduces entropy. Hence, by (9), (12), (24),

and (95)

H∞(SN |zN , am, bm, cm,Θ = 1,Υ = 1)

> N [I(U ;Y ) + I(V ;X|U)− I(U ;Z)− I(V ;Z|U)− r5(ε, n,m)], (26)

where

r5(ε, n,m) , r1(ε, n) + r2(ε, n,m) + r3(ε, n) + r4(ε, n) + δε(n)/n. (27)

Set k to be less than the lower bound in (26) by
√
N :

k , bN [I(U ;Y ) + I(V ;X|U)− I(U ;Z)− I(V ;Z|U)− r5(ε,N)]−
√
Nc. (28)
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Now with (26) and (28), we can apply Theorem 2.3.2 to lower bound

H(K|UdZNAmBmCm,Υ = 1,Θ = 1) by k − δ∗(N), where

δ∗(N) = 2−
√
N/logN

(
k +
√
N/logN

)
.

Thus, we can finally lower bound H(K|UdZNAmBmCm) in (11):

H(K|UdZNAmBmCm) >
(

1− δ0
ε (m)− 2−

√
N
)

(k − δ∗(N))

= k − r6(ε, n,m),

where

r6(ε, n,m) ,
(

1− δ0
ε (m)− 2−

√
N
)
δ∗(N) +

(
δ0
ε (m) + 2−

√
N
)
k.

Moreover, the leakage is such that

I(K;UdZ
NAmBmCm) = H(K)−H(K|UdZNAmBmCm) 6 r6(ε, n,m), (29)

with r6(ε, n,m) vanishing to zero for a fixed n as m goes to infinity. The keys com-

puted by Alice and Bob are asymptotically the same for a fixed n as m goes to infinity,

since

P[K 6= K̂] 6 P[(Sn)m 6= (Ŝn)m] 6 δe(m). (30)

Then, by (10), (13), (19), (23), (27), we have that r5(ε, n,m) vanishes to zero

for n large enough and as m goes to infinity, thus the secret key rate R , k/N is

asymptotically as close as desired to

I(U ;Y )− I(U ;Z) + I(V ;X|U)− I(V ;Z|U).

Note that it is not exactly the bound proposed in Theorem 2.3.1.a for the WSK ca-

pacity. We finish the proof as follows. If I(V ;X|U) 6 I(V ;Z|U), in the reconciliation

we set R2 = 0 so that the asymptotic secret key rate is now as close as desired to

I(U ;Y )− I(U ;Z) + [I(V ;X|U)− I(V ;Z|U)]+.
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Then, if I(U ;Y ) 6 I(U ;Z), in the reconciliation protocol, we choose Sn = V n (see

the beginning of the proof), and we assume that UN is provided by a genie to Eve.

Consequently, we obtain instead of Equation (12),

H∞(V N |zN , uN , bm, cm,Θ = 1,Υ = 1)

> m(H(V n|ZnUn)− nr2(ε, n,m))−N(I(V ;Y |U)− I(V ;X|U)− r1(ε, n)),

and conclude in the same manner, to obtain an asymptotic secret key rate as close as

desired to

[I(U ;Y )− I(U ;Z)]+ + [I(V ;X|U)− I(V ;Z|U)]+.

2.A.2 Continuous case

We use the following lemma to extend the result to the continuous case by means of

quantization.

Lemma 2.1.2 ( [71–73]). Let X and Y be two real-valued random variables with

probability distribution PX and PY respectively. Let E∆1 = {Ei}i∈I, F∆2 = {Fj}j∈J
be two partitions of X and Y such that for any i ∈ I,PX(Ei) = ∆1, for any j ∈

J ,PY (Fj) = ∆2, where ∆1,∆2 > 0. Let X∆1, Y∆2 be the quantized version of X, Y

with respect to the partitions E∆1, F∆2 respectively. Then, we have

I(X;Y ) = lim
∆1,∆2→0

I(X∆1 , Y∆2).

Note that a quantization of the eavesdropper observation Zn might underestimate

its knowledge from the legitimate users point of view and implicitly increase the

leakage. However, by Lemma 2.1.2, for any δ > 0, if the quantized version Zn
∆n of Zn

is fine enough, then the leakage is not compromised and

|I(K;MZn)− I(K;MZn
∆n)|< δ.

This argument is also used in [6, 74,75].
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We perform the quantization as follows. As in Lemma 2.1.2, we jointly quantify

X, Y , Z, U and V to form X∆X
, Y∆Y

, Z∆Z
, U∆U

, V∆V
such that ∆X = ∆Y = ∆Z =

∆U = ∆V = l−b and |X∆X
|= |Y∆Y

|= |Z∆Z
|= |U∆U

|= |V∆V
|= lb with b > 0. We now

apply the proof of the discrete case to the random variables X∆X
, Y∆Y

, Z∆Z
, U∆U

,

V∆V
. By Lemma 2.1.2, we can fix l large enough such that

|I(U∆U
;Y∆Y

)− I(U ;Y )|< δ/4,

|I(V∆V
;X∆X

|U∆U
)− I(V ;X|U)|< δ/4,

|I(U∆U
;Z∆Z

)− I(U ;Z)|< δ/4,

|I(V∆V
;Z∆Z

|U∆U
)− I(V ;Z|U)|< δ/4,

and Equation (28) becomes

k > bN [I(Y ;U)− I(V ;X|U)− I(U ;Z)− I(V ;Z|U)− r5(ε, n,m)− δ]−
√
Nc.

At this point, we cannot conclude with the last inequality. Indeed, in the term

r5(ε, n,m) are hidden the following terms:

H(X∆X
|ZY∆Y

U∆U
)ε (see (19)),

H(Y∆Y
|Z∆Z

U∆U
V∆V

)ε (see (23)),

H(U∆U
)ε and H(V∆V

|U∆U
)ε (by definition of r0(ε)),

which do not vanish to 0 as l get large. Now, if we choose ε = n−a, where a ∈]0, 1/2[,

so that for i ∈ {0, 1, 2, 3, 5}, δiε(n) vanishes as n get large for l fixed,14 then the

asymptotic secret-key rate, for n large enough and as m goes to infinity becomes as

close as desired to

I(Y ;U)− I(V ;X|U)− I(U ;Z)− I(V ;Z|U).

Moreover, the leakage in (29), and the key error probability between Alice an Bob

in (30), still vanish to zero for n large enough and as m goes to infinity.

14Recall that Pe(ε, n) decreases exponentially to zero as nε2 goes to infinity.
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2.B Proof of Theorem 2.4.4

As in [4], Theorem 2.4.4 is not directly deduced from Theorem 2.4.3. We first consider

the case of one-way public communication, in which Alice sends messages to Bob, a

first time with rate R′1 and a second time with rate R′2. For this scenario we note C∗rec

the reconciliation capacity.

We can modify the proof of Proposition 2.5.2 to obtain for R′1, R
′
2 ∈ R+,

C∗rec(R
′
1, R

′
2) > max

U,V
[I(U ;Y ) + I(V ;Y |U)]

subject to
R′1 > I(X;U |Y ) (31)

R′2 > I(V ;X|Y U) (32)

U—X—Y, V—UX—Y.

Then, we can modify the proof of Theorem 2.4.3 to prove that we can achieve the

rate

R∗WSK(R′1, R
′
2) , max

U,V

(
[I(Y ;U)− I(Z;U)]+ +[I(Y ;V |U)− I(Z;V |U)]+

)
,

subject to rate constraints (31), (32) and Markov conditions

U—X—Y Z, V—UX—Y Z, (33)

by a reconciliation phase followed by a privacy amplification phase performed with

extractors, and this time without the assumption X → Y → Z. Note that Markov

condition

U—V—X—Y Z, (34)

implies Markov conditions (33), and that if Markov condition (34) holds, then the

rate constraint (32) becomes

R′2 > I(X;V |U)− I(Y ;V |U) > I(X;V )− I(Y ;V )−R′1.
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Hence, for R′1, R
′
2 > 0 satisfying R′1 +R′2 = R1,

R∗WSK(R′1, R
′
2) > max

U,V
[I(Y ;V |U)− I(Z;V |U)],

subject to rate constraint R1 > I(X;V ) − I(Y ;V ) and Markov condition (34). We

conclude by observing that CWSK(R1, 0) > R∗WSK(R′1, R
′
2).

2.C Proof of Proposition 2.5.2

2.C.1 Converse

Let R1, R2 ∈ R+. We first establish the rate constraints on R1 and R2. We have

nR1 > H(A)

> I(A;Xn)− I(A;Y n)

(a)
= n[I(A;XJ |Ũ)− I(A;YJ |Ũ)]

(b)
= n[I(U ;XJ)− I(U ;YJ)], (35)

where (a) holds by [76, Lemma 4.1], if we set Ũ , XJ−1Y N
J+1J and J is a random

variable uniformly distributed on J1, nK, independent of all previous random variables,

(b) holds if we set U , AŨ , since XJ and Ũ are independent.

Similarly, we have

nR2 > H(B|A)

(c)

> H(B|Xn) +H(Ŝ|S)− nδ(ε)
(d)

> I(Ŝ;B|Xn) +H(Ŝ|BXn)− nδ(ε)

= H(Ŝ|Xn)− nδ(ε) (36)

= H(Ŝ|A)− I(Ŝ;Xn|A)− nδ(ε)
(e)
= I(Ŝ;Y n|A)− I(Ŝ;Xn|A)− nδ(ε)
(f)
= n[I(V ;YJ |U)− I(V ;XJ |U)]− nδ(ε),
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where (c) holds because A is a function of Xn and by Fano’s inequality, since for any

ε > 0, there exists a reconciliation protocol such that P[S 6= Ŝ] 6 δ(ε),15 (d) holds

since S = ηa(X
n, B), (e) holds since Ŝ = ηb(Y

n, A), (f) holds by [76, Lemma 4.1] and

if we set V , Ŝ.

We now determine the reconciliation capacity bound.

I(Ŝ;Xn) =
n∑

i=1

I(Ŝ;Xi|X i−1)

(a)
=

n∑

i=1

I(ŜX i−1;Xi)

6
n∑

i=1

I(ŜX i−1Y n
i+1;Xi)

= n
n∑

i=1

P[J = i]I(ŜXJ−1Y n
J+1;XJ |J = i)

= nI(ŜŨ ;XJ |J)

6 nI(V U ;XJ), (37)

where (a) holds because the Xi’s are i.i.d.. Then,

H(Ŝ)−H(AB) = I(Ŝ;Xn) +H(Ŝ|Xn)−H(A)−H(B|A)

(b)

6 nI(V U ;XJ)−H(A) + nδ(ε)

(c)

6 n[I(V ;XJ |U) + I(U ;YJ) + δ(ε)],

where (b) holds by (37) and since H(Ŝ|Xn) 6 H(B|A) + nδ(ε) by (36), and (c) holds

by (35).

For a DMS, standard techniques [76] show that |U|6 |X |+2 and |V|6 |Y|.

2.C.2 Achievability

The proof for a DMS is similar to Wyner-Ziv coding [77], we only describe the proto-

col. In the following, for n ∈ N and ε > 0, we note T nε (X) the set of ε-letter-typical

sequences [78] (also called “robustly typical sequence” in [61]) with respect to pX . We

15δ(ε) denotes a function of ε such that limε→0 δ(ε) = 0.
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also define conditional typical sets as follows, T nε (Y |xn) , {yn : (xn, yn) ∈ T nε (XY )}.

We note µX , minx∈supp(pX) pX(x). Let ε > 0, and define ε1 , 1
2
ε, ε2 , 2ε.

Code construction: Fix a joint probability distribution pUX on U × X and pUV Y

on U × V × Y .

• Define Ru = I(X;U |Y ) + 6εH(U),

R′u = I(Y ;U)− 3εH(U).

Generate 2n(Ru+R′u) codewords, labeled un(ω, ν) with (ω, ν) ∈ J1, 2nRu K×J1, 2nR′uK,

by generating the symbols ui(ω, ν) for i ∈ J1, nK and (ω, ν) ∈ J1, 2nRu K ×

J1, 2nR′uK independently according to pU .

• Define Rv = I(V ;Y |XU) + 6ε2H(V |U),

R′v = I(V ;X|U)− 3ε2H(V |U).

For each (ω, ν), generate 2n(Rv+R′v) codewords, labeled vn(ω, ν, k, l) with (k, l) ∈

J1, 2nRv K × J1, 2nR′vK, by generating the symbols vi(ω, ν, k, l) for i ∈ J1, nK and

(k, l) ∈ J1, 2nRv K× J1, 2nR′vK independently according to pV |U=ui(ω,ν).

Step1. At Alice’s side:

• Given xn, find a pair (ω, ν) s.t (xn, un(ω, ν)) ∈ T nε (XU). If we find several

pairs, we choose the smallest one (by lexicographic order). If we fail we choose

(ω, ν) = (1, 1).

• Define sn1 , un(ω, ν).

• Transmit a , ω.

Step2. At Bob’s side:

• Given yn and a, find ν̃ s.t (yn, un(ω, ν̃)) ∈ T nε (Y U) and define ŝn1 , un(ω, ν̃). If

there is one or more such ν̃, choose the lowest, otherwise set ν̃ = 1. Find a pair
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(k, l) such that (ŝn1 , y
n, vn(ω, ν̃, k, l)) ∈ T nε2 (UY V ). If there is one or more such

(k, l), choose the lowest, otherwise set (k, l) = (1, 1).

• Transmit b = k.

• Define ŝn2 , vn(ω, ν̃, k, l) and ŝn , (ŝn1 , ŝ
n
2 ).

Step3. At Alice’s side:

• Given sn1 = un(ω, ν) and b, find l̃ s.t (xn, sn1 , v
n(ω, ν̃, k, l̃)) ∈ T nε2 (XUV ). If there

is one or more such l̃, choose the lowest, otherwise set l̃ = 1.

• Define sn2 , vn(ω, ν̃, k, l̃) and sn , (sn1 , s
n
2 ).

We can show by standard arguments that there exists a code, such that after one

repetition of the protocol, Alice obtains Sn = UnV̂ n, whereas Bob has Ŝn = ÛnV n

with P[Ûn 6= Un] 6 δε(n),16 P[V̂ n 6= V n] 6 δε(n), P[Ŝn 6= Sn|Rn] 6 Pe(ε, n)17

and (Un, Xn), (Ûn, Y n), (Ûn, Y n, V n), (Un, V̂ n, Xn) jointly typical with probability

approaching one for n large.

To extend the result to a CMS, we proceed as in the proof of Theorem 2.4.3.

2.D Proof of Proposition 2.5.3

2.D.1 Proof of Part i)

The achievability and converse proof can be found in [56], it remains to prove that

equality holds in the rate constraint (4) and that |U|6 |X |.

2.D.1.1 Equality constraint

We start with the following lemma.

Lemma 2.4.3. f(U) , I(Y ;U) and f1(U) , I(X;U |Y ) are convex in pU |X .

Proof. Let λ ∈ [0, 1], let U1, U2 defined by pU1|X and pU2|X respectively, be s.t.

U1—X—Y and U2—X—Y .

16δε(n) denotes a function of ε and n such that limn→∞ δε(n) = 0.
17We can show that Pe(ε, n) decreases exponentially to zero as nε2 goes to infinity.
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We introduce the random variable Q ∈ {1, 2} independent of all others and set

U = UQ.

Q ,





1 with probability λ,

2 with probability 1− λ.

I(Y ;U) 6 I(Y ;UQ)

= I(Y ;Q) + I(Y ;U |Q)

(a)
= I(Y ;U |Q)

= λI(Y ;U1) + (1− λ)I(Y ;U2),

where (a) holds since Y and Q are independent.

I(X;U |Y ) 6 I(X;UQ|Y )

= I(X;Q|Y ) + I(X;U |Y Q)

(b)
= I(X;U |Y Q)

= λ(I(X;U1|Y ) + (1− λ)(I(X;U2|Y ),

where (b) holds because H(X|Y Q) = H(X|Y ), since Q and (X, Y ) are independent.

By Lemma 2.4.3, f(U) and f1(U) are convex in pU |X . Define ∆ , {u ∈ R|U||X | :

∀i, j ∈ J1, |U|K× J1, |X |K,∑|U|k=1 ukj = 1, uij > 0}, and C , {u ∈ ∆ : f1(u) 6 R1}.

We first show that C is convex compact, with extreme points in {u ∈ ∆ : f1(u) = R1}:

• C is the preimage of [0, R1] by the continuous function f1, thus C is closed. We

deduce that C is compact, since C ⊂ [0, 1]|U||X | and [0, 1]|U||X | is compact.

• C is convex by convexity of f1, since the sublevels of a convex function are

convex sets.

59



• Let u1 ∈ C s.t. f1(u1) = R1 − δ, with δ > 0. By continuity of f1, ∃ε0,∀u ∈

B(u1, ε0), |f1(u) − f1(u1)|< δ. Let u0 ∈ B(u1, ε0)\{u1}, λ ∈
{
−1

2
,+1

2

}
and

uλ = λu0 + (1− λ)u1.

Then ||uλ−u1||= ||λ(u0−u1)||6 |λ|ε0, which means uλ ∈ C. Hence, 1
2
uλ=+1/2 +

1
2
uλ=−1/2 = u1, and we conclude that u1 is not an extreme point. Hence, the

set of extreme points of C is a subset of {u ∈ ∆ : f1(u) = R1}.

Since f is continuous, it reaches a maximum umax on the compact C. Then, since f is

convex and C is a convex compact, by the Krein-Milman Theorem,18 umax is a convex

linear combination of extreme points of C (existence of such extreme points comes

directly from the Krein-Milman theorem, since C 6= ∅ ). Hence, umax =
∑n

k=1 λkuk,

with
∑n

k=1 λk = 1 , λ1, λ2, . . . , λn > 0 and u1,u2, . . . ,un extreme points of C. By

convexity of f ,

f(umax) 6
n∑

k=1

λkf(uk) 6
n∑

k=1

λkf(umax) = f(umax),

thus
n∑

k=1

λk(f(umax)− f(uk)) = 0,

which means that there exists i ∈ J1, nK s.t f(umax) = f(ui). We conclude that umax

is an extreme point of C. This result is known as the maximum principle [79].

2.D.1.2 Cardinality bound |U|6 |X |

This result is a special case of a more general one that we prove in Appendix 2.D.2.2.

2.D.2 Proof of Part ii)

The proof is partially found in [60] and all that remains to be proved are the equality

in the communication rate constraint and the range constraint |U|6 |X |.

2.D.2.1 Equality in the constraint

To prove that equality holds in the constraint for the argument of the maximum in

Proposition 2.5.3.b, we can reuse the proof of Proposition 2.5.3.a in Appendix 2.D.1.1,

18A compact convex subset of a locally convex topological vector space is the closed convex hull
of the set of its extreme points. Actually, only a weaker version is used since a finite dimensional
space is considered.
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so that we only need to show that f(U) = I(Y ;U) − I(Z;U) is convex in pU |X .

To obtain the convexity of f , we replace (X, Y ) by (Y, Z) in the function f1 of

Lemma 2.4.3.

2.D.2.2 Range constraint |U|6 |X |

The proof relies on a technique used in [80].

Define

R , {(R,R1) : R > I(Y ;U)− I(Z;U),

R1 > I(X;U)− I(Y ;U), with U—X—Y—Z} ,

C , {(R,R1) : R > I(Y ;U)− I(Z;U),

R1 = I(X;U)− I(Y ;U), with U—X—Y—Z} .

Note that the capacity region C is from Proposition 2.5.3.b and that the equality in

the communication rate constraint is crucial to make it a subset of R. By [80, Lemma

3],

R =
{

(R,R1) : ∀λ1, λ2 ∈ R+, λ1R + λ2R1 > G(λ1, λ2)
}
,

where ∀λ1, λ2 ∈ R+,

G(λ1, λ2) , inf
U s.t

U—X—Y—Z

[λ1(I(Y ;U)− I(Z;U)) +λ2(I(X;U)− I(Y ;U))] .

Consequently G(λ1, λ2) is sufficient information to describeR. Then, we show that for

all λ1, λ2 ∈ R+, G(λ1, λ2) can be achieved by considering a discrete random variable

U such that |U|6 |X |.

Let λ1, λ2 ∈ R+, let P in [80, Lemma 2] be the |X |-dimensional probability sim-

plex, and let X = {xi}|X |i=1. Consider P as a set of elements of the form

(P[X = x1|U = u],P[X = x2|U = u], . . . , P[X = x|X ||U = u]
)
,

with u ∈ U . Then, each probability distribution on U defines a measure µ on P .

Define HP (X), HP (Y ), and HP (Z) as the entropies of X, Y , and Z respectively,
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when the distribution of X is P ∈ P . Define

f1(P ) , λ1(HP (Z)−HP (Y )) + λ2(HP (Y )−HP (X))

fj(P ) , P (xj), for j ∈ J2, |X |K.

Let P ∗X achieve G(λ1, λ2), and let µ∗ be such that
∫
P Pµ

∗(dP ) = P ∗X . Denote by

H∗(X) the entropy of X under probability distribution P ∗X . Then, by [80, Lemma 2],

there exists P1, P2, . . . , P|X |, and α1, α2, . . . , α|X | such that,
∑|X |

i=1 αi = 1,

∀j ∈ J2, |X |K, P ∗X(xj) =

∫

P
fj(P )µ∗(dP ) =

|X |∑

i=1

αifj(Pi),

and,

λ1(H∗(Z|U)−H∗(Y |U)) + λ2(H∗(Y |U)−H∗(X|U))

=

∫

P
f1(P )µ∗(dP ) =

|X |∑

i=1

αif1(Pi).

From P ∗X(xj), j ∈ J2, |X |K, we can compute H∗(X), H∗(Y ), and H∗(Z), then

λ1(H∗(Y )−H∗(Y |U)−H∗(Z) +H∗(Z|U))

+ λ2(H∗(X)−H∗(X|U)−H∗(Y ) +H∗(Y |U))

= λ1(I∗(Y ;U)− I∗(Z;U)) + λ2(I∗(X;U)− I∗(Y ;U))

= G(λ1, λ2).

We have thus shown that we can choose U such that |U|6 |X | to achieve G(λ1, λ2).

Consequently, it is enough to consider U such that |U|6 |X |, to form the set R, as

well as the set C, since C ⊂ R.

2.E Proof of Proposition 2.5.4

If R1 > H(X|Y ), then by Proposition 2.5.3.b CWSK(R1, 0) = I(X;Y ). Assume

R1 ∈]0;H(X|Y )[ in the following. We note X = {0, 1} and by Proposition 2.5.3.b, we
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can assume U = {u1, u2}. We note β1 = p(X = 1|U = u1) and β2 = p(X = 0|U = u2).

We can write

I(U ;X)− I(U ;Y )− (H(X)−H(Y ))

= −
∑

i=1,2

p(ui)[H(X|U = ui)−H(Y |U = ui)]

= −
∑

i=1,2

p(ui)[Hb(βi)−H(Y |U = ui)]

= −
∑

i=1,2

p(ui)
[
Hb(βi) +

∑
y∈Yp(y|ui) log p(y|ui)

]
, (38)

with ∀y ∈ Y ,

p(y|u1) = (1− β1)p(y|X = 0) + β1p(y|X = 1), (39)

p(y|u2) = β2p(y|X = 0) + (1− β2)p(y|X = 1). (40)

Moreover, since the channel pY |X is symmetric, there exists a permutation π ∈ S|Y|

such that

∀y ∈ Y ,∀x ∈ X , p(y|x) = p(π(y)|x⊕ 1), (41)

where ⊕ denotes the modulo 2 operation. Thus by (38), (39), (40), (41) there exists

gY |X
19 such that H(Y |U = u1) = gY |X(β1), H(Y |U = u2) = gY |X(β2). Then,

I(U ;X)− I(U ;Y )− (H(X)−H(Y )) = −
∑

i=1,2

p(ui)
[
Hb(βi)− gY |X(βi)

]
. (42)

Similarly, by using that the channel pZ|X is symmetric, there exists gZ|X such that

H(Z|U = u1) = gZ|X(β1) and H(Z|U = u2) = gZ|X(β2). Thus, we also have

I(U ;Y )− I(U ;Z)− (H(Y )−H(Z)) = −
∑

i=1,2

p(ui)
[
gY |X(βi)− gZ|X(βi)

]
. (43)

19The exact description of gY |X is not important here, what matters is that H(Y |U = u1) and
H(Y |U = u2) can be expressed with the same function.
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Consider the region R1 ,
⋃

β0∈[0,1]

Rβ0 and R2 ,
⋃

(β1,β2)∈[0,1]2

Rβ1,β2 , with

Rβ0 , {(R,R1) : R 6 H(Y )−H(Z)− gY |X(β0) + gZ|X(β0),

R1 6 H(X)−H(Y )−Hb(β0) + gY |X(β0)
}
,

Rβ1,β2 , {(R,R1) : R 6 I(Y ;U)− I(Z;U), R1 6 I(X;U)− I(Y ;U)} .

We can verify that both regionsR1 andR2 are convex and thatR1 ⊂ R2. We will use

a similar technique as in [81], based on Lemma 2.5.4, to show that R1 = R2.20 Then,

thanks to the refinement proposed in Proposition 2.5.3.b (equality in the constraint),

we will be able to conclude for any R1 ∈ R+,

CWSK(R1,0)= max
β0∈[0,1]

(
H(Y )−H(Z)−gY |X(β0)+gZ|X(β0)

)

such that R1 = H(X)−H(Y )−Hb(β0)+gY |X(β0).

Lemma 2.5.4 ( [81] [79]). Let C ⊂ Rd be convex. Let C1 ⊂ C2 be two bounded convex

subsets of C, closed relative to C. If every supporting hyperplanes of C2 intersects with

C1, then C1 = C2.

Let (R,R1) ∈ R2, and let α ∈ [0, 1], then we have by (42), (43)

αR + (1− α)R1 6 α(I(Y ;U)− I(Z;U)) + (1− α)(I(X;U)− I(Y ;U))

=
∑

i=1,2

p(ui)[α(H(Y )−H(Z)− gY |X(βi) + gZ|X(βi))

+ (1− α)(H(X)−H(Y )−Hb(βi) + gY |X(βi))]

6 α(H(Y )−H(Z)− gY |X(β∗) + gZ|X(β∗)) + (1− α)

× (H(X)−H(Y )−Hb(β
∗) + gY |X(β∗)), (44)

20Note that the fact that R1 and R are both lower bounds in R1 and R2 is crucial to show
R1 = R2. The same argument cannot apply if R is a lower bound and R1 an upper bound, whence
the importance of the equality in the constraint shown in Proposition 2.5.3.b.
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where

β∗ , argmax
β

(α(H(Y )−H(Z)− gY |X(β) + gZ|X(β))

+ (1− α)(1−H(Y )−Hb(β) + gY |X(β))).

With the last inequality, we show that every supporting plane of R2 intersects R1.

Note that the weight coefficients of (R,R1) have been taken of the form (α, 1 − α)

with α ∈ [0, 1], because by positivity and convexity of R2, we only needed to consider

hyperplanes (lines) with negative slope to apply Lemma 2.5.4.

Let (R0, R0
1) be a boundary point of R2. There exists a supporting hyperplane H0 at

(R0, R0
1) defined by (α0, 1− α0). By Equation (44), there exists β∗0 ∈ [0, 1] such that

α0R0 + (1− α0)R0
1 6 α0R∗ + (1− α0)R∗1,

where

(R∗, R∗1) , (H(Y )−H(Z)−gY |X(β∗0)+gZ|X(β∗0), H(X)−H(Y )−Hb(β
∗
0)+gY |X(β∗0)).

Then, since (R∗, R∗1) ∈ R1 ⊂ R2, we also have, by definition of H0

α0R∗ + (1− α0)R∗1 6 α0R0 + (1− α0)R0
1.

Hence, α0R∗ + (1− α0)R∗1 = α0R0 + (1− α0)R0
1, and thus (R∗, R∗1) ∈ H0.

2.F Proof of Proposition 2.5.7

Consider X ∼ N (0, σ2
x), N ∼ N (0, σ2

n), Y = X +N . We have σ2
y = σ2

x + σ2
n and

pX(x) =
1√

2πσ2
x

exp

[
− x2

2σ2
x

]
,

pX|Y (x|y) =
1√
2π

σy
σxσn

exp

[
− 1

2σ2
n

σ2
y

σ2
x

(
x− σ2

x

σ2
y

y

)2
]
.

Let l ∈ N∗ and k ∈ J1, lK. Define tk , a(2k−1
l−1
− 1) and ∆ , 2a

l−1
. Let U be a scalar

quantized version of X, defined as follows.

pU(uk) ,
∫ tk+1

tk

pX(x)dx = pX(x̄k)∆,

∀y ∈ Y , pU |Y (uk|y) , pX|Y (x̄k|y)∆,
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where x̄k ∈ [tk, tk+1] by the mean value theorem for integration. Hence,

H(U) = SU − log ∆, with SU , −∆
∑

k

pX(x̄k) log pX(x̄k).

Observe that SU is a Riemann sum that approaches h(X) = −
∫
pX log pX . Thus, if

we set f(x) , −pX(x) log pX(x), we can show that for any a ∈ R+,21

|h(X)− SU | =
∣∣∣∣
∫
f − SU

∣∣∣∣

6
∣∣∣∣
∫ −a

−∞
f +

∫ +∞

a

f

∣∣∣∣+

∣∣∣∣SU −
∫ a

−a
f

∣∣∣∣

6 ε1(a) +K1(a)∆,

with K1(a) , amax[−a,a]|f ′|, ε1(a) , e
− a2

2σ2x [α1a+ β1], and α1, β1 constants.

Similarly, if we define

SU |Y , −∆
∑

k

∫

y

pXY (x̄k, y) log pX|Y (x̄k|y)dy,

and g(x) ,
∫
pXY (x, y) log pX|Y (x|y)dy, then, as previously, we can show that for any

a ∈ R+,

|h(X|Y )− SU |Y |6 ε2(a) +K2(a)∆,

with K2(a) , amax[−a,a]|g′|, ε2(a) , e
− a2

2σ2x [α2a+ β2], and α2, β2 constants. Thus,

log ∆− (ε2(a) +K2(a)∆) 6 h(X|Y )−H(U |Y ) 6 log ∆ + ε2(a) +K2(a)∆.

Hence, for any a ∈ R+, if we take ∆ small enough, then |log ∆|� ε2(a) + K2(a)∆,

such that h(X|Y )−H(U |Y ) ≈ log ∆, and

|I(X;Y )− I(Y ;U)| = |h(X)− SU + SU |Y − h(X|Y )|

6 ε(a) +K(a)∆

6 ε(a) +K(a) exp[h(X|Y )−H(U |Y )]

= ε(a) +K(a) exp[h(X|Y )−R1],

21We used a standard Riemann sum error bound, and erfc(x) 6 e−x
2

.
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where ε(a) , ε1(a) + ε2(a), K(a) , K1(a) +K2(a).

To sum up, ∆ chosen small enough ensures that I(Y ;U) approaches I(X;Y )

exponentially fast as R1 > h(X|Y ) increases.
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CHAPTER 3

POLAR CODING SCHEMES FOR SECRET-KEY
GENERATION

3.1 Summary

Practical implementations of secret-key generation are often based on sequential

strategies, which, as seen in the previous chapter, handle reliability and secrecy in

two successive steps, called reconciliation and privacy amplification. In this chap-

ter, we propose an alternative approach based on polar codes that jointly deals with

reliability and secrecy. Specifically, we propose secret-key capacity-achieving polar

coding schemes for the following models: (i) the degraded binary memoryless source

(DBMS) model with rate-unlimited public communication, (ii) the DBMS model

with one-way rate-limited public communication, (iii) the 1-to-m broadcast model

and (iv) the Markov tree model with uniform marginals. For models (i) and (ii)

our coding schemes remain valid for non-degraded sources, although they may not

achieve the secret-key capacity. For models (i), (ii) and (iii), our schemes rely on

pre-shared secret seed of negligible rate; however, we provide special cases of these

models for which no seed is required. Finally, we show an application of our results

to secrecy and privacy for biometric systems. We thus provide the first examples of

low-complexity secret-key capacity-achieving schemes that are able to handle vector

quantization for model (ii), or multiterminal communication for models (iii) and (iv).

This chapter is based on the results obtained in [82,83].

3.2 Introduction

This chapter presents low-complexity secret-key capacity-achieving schemes based on

polar codes [37] for some classes of source models. Note that polar codes have already

been successfully used for secrecy in the context of the symmetric wire-tap channel

68



model [38, 39,84–86], and for the Slepian-Wolf coding problem [87–90], which is par-

ticularly relevant to secret-key generation. Note also that in [91], the journal version

of [89], a first application of polar coding to a basic secret key generation setting

was proposed. Unlike sequential methods, which successively handle reliability and

secrecy, our schemes jointly deal with reliability and secrecy (see Definition 3.3.2 for

more details). Both the sequential reliability-secrecy approach, and the direct ap-

proach with polar codes have their advantages. On the one hand, we have seen in

Chapter 2 that sequential methods offer flexibility in design by separating reliabil-

ity and secrecy and, unlike polar coding schemes, remain optimal for two-way rate-

limited communication and continuous non-degraded sources. On the other hand,

polar coding schemes may be easier to design and operate at lesser complexity in

some scenarios. They also appear to be convenient to deal with vector quantization

when the public communication is rate-limited.

The main result of this chapter is to develop polar coding schemes that achieve

the secret-key capacity for the following models.

• The degraded binary memoryless source (DBMS) model with rate-unlimited

public communication;

• The DBMS model with one-way rate-limited public communication;

• The 1-to-m broadcast model;

• The Markov tree model with uniform marginals.

For the first two models, the proposed polar coding schemes may also be used to

generate secret keys for non-degraded sources, although they may not achieve the

secret-key capacity. For the first three models, we assume that the legitimate users

initialize their communication with a shared secret seed,1 whose length is negligible

1If one assumes an authenticated public channel [2, 3] a shared small secret seed in the order of
the logarithm of the length of the messages is also required for authentication [8].
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compared to the number of source samples used to generate a key. As shown in

Sections 3.5-3.7, there also exist special cases of the source statistics for which no

seed is required.

Note that [92], obtained independently from the present work, develops an alterna-

tive polar coding solution for the BMS model with rate-unlimited public communica-

tion. The major difference between their approach and ours is that their construction

is sequential, i.e., it successively deals with reliability and secrecy by means of recon-

ciliation and privacy amplification, whereas our approach jointly deals with reliability

and secrecy. The construction in [92, Th. 7] has the advantage of not requiring a

seed. On the other hand, our protocol only requires one “polarization layer,” whose

construction is efficient, whereas the sequential approach of [92] requires an inner

and an outer layer, the latter having no known efficient code construction as discussed

in [92, Section III.C].

The remainder of the chapter is organized as follows. Section 3.3 formally intro-

duces some notation and recall the general multi-terminal secret-key generation prob-

lem, which encompasses all the models specialized in subsequent sections. Section 3.4

describes polar coding primitives used in our proposed schemes. Section 3.5, describes

a secret-key capacity-achieving scheme with polar codes for the DBMS model with

unlimited communication rate. Section 3.6 provides a secret-key capacity-achieving

scheme with polar codes for the DBMS model with one-way rate-limited public com-

munication. Section 3.7 develops a secret-key capacity-achieving scheme with polar

codes for the 1-to-m broadcast model. Section 3.8 studies a Markov tree model with

uniform marginals and provides a secret-key capacity-achieving scheme with polar

codes in special cases. Finally, Section 3.9, shows how to apply the results to the

related problem of privacy and secrecy for some biometric systems.
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3.3 Definitions and notation

We start by introducing some notation used throughout the chapter. For n ∈ N

and N , 2n, we let GN ,
[

1 0

1 1

]⊗n
be the source polarization transform defined

in [87]. We note the components of a vector, X1:N with superscripts, i.e., X1:N ,

(X1, X2, . . . , XN). For any set A , {ij}|A|j=1 of indices in J1, NK, we define U1:N [A] ,
[
U i1 , U i2 , . . . , U i|A|

]
.

We now describe the general model for multiterminal secret-key generation intro-

duced in Section 1.2.1 in a more formal way. Let m > 2 be the number of termi-

nals that wish to generate a common secret-key. Set M , J1,mK, and let Z and

Xi, for i ∈ M be arbitrary finite alphabets. Define XM as the Cartesian product

of X1,X2, . . . ,Xm. Consider a discrete memoryless multiple source (XMZ, pXMZ),

where XM , (X1, X2, . . . , Xm) and the Cartesian product XM ×Z is abbreviated as

XMZ. For i ∈M, Terminal i observes the component Xi of (XMZ, pXMZ), whereas

an eavesdropper observes the component Z. The source is assumed to be outside the

control of all parties, but its statistics are known to all parties. Communication is

allowed between terminals over an authenticated noiseless public channel with com-

munication rate Rp ∈ R+∪{+∞}. A key-generation strategy is then formally defined

as follows.

Definition 3.3.1. Let Rp ∈ R+ ∪ {+∞}. Let K be a key alphabet of size 2NR. The

protocol defined by the following steps is called a (2NR, N,Rp) key-generation strategy

with public communication, and is denoted by SN .

1. Terminal i, i ∈M, observes X1:N
i .

2. The m terminals communicate, possibly interactively, over the public channel.

All the public inter-terminal communications are collectively denoted by F and

satisfy H(F) 6 NRp.

3. Terminal i, i ∈M, computes Ki(X
1:N
i ,F) ∈ K.
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Let K be a random variable taking values in K. The performance of a key-

generation strategy SN that allows the terminals in M to agree on the key K is

measured in terms of the average probability of error between the keys

Pe(SN) , P[∃i ∈M : K 6= Ki],

the information leakage to the eavesdropper

L(SN) , I(K;Z1:NF),

the uniformity of the key

U(SN) , logd2NRe −H(K).

Definition 3.3.2. A secret-key rate R is achievable if there exists a sequence of

(2NR, N,Rp) key-generation strategies {SN}N>1 such that

lim
N→∞

Pe(SN) =0, (reliability)

lim
N→∞

L(SN) =0, (strong secrecy)

lim
N→∞

U(SN) =0. (uniformity)

Moreover, the supremum of achievable rates is called the secret-key capacity and is

denoted CWSK(Rp). In the special case where Eve has no access to the component Z

of the source, the secret-key capacity is denoted CSK(Rp). One also says that perfect

secrecy is achieved if L(SN) = 0.

In this chapter, we develop low-complexity secret-key capacity-achieving schemes

based on polar codes for special cases of the general model presented in Defini-

tion 3.3.1. In the following, the blocklength, N , used by the legitimate users is a

power of 2. Moreover, we say that the legitimate users share a secret seed, if they

share a secret sequence of dN ∈ N uniformly distributed bits, and we define the seed

rate as dN/N . To avoid modifying the secret-key capacity with the introduction of a

seed, we only consider schemes with vanishing seed rate.
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3.4 Polar coding primitives for secret-key generation

We describe two polar coding primitives that capture the essence of our secret-key

generation schemes. The first one implements source coding with side information,

while the second one implements privacy amplification. Unlike the previous chapter,

polar coding constructions will allow us to perform these two steps simultaneously

instead of successively, as we will see in the next sections.

Later, in Chapter 5, a connection between these polar coding primitives and ran-

dom binning will also be developed and exploited in our polar coding schemes for the

wiretap channel.

3.4.1 Source polarization

Consider a discrete memoryless source defined by the distribution (XY , pXY ), where

N is a power of two and |X |= 2. Polar source coding [87] can be seen as the decom-

position of X1:N , into N bit sources. Specifically, for i ∈ J1, NK, the i-th source is

defined by U i, where U1:N , X1:NGN . As N goes to infinity, any of these N resulting

source has either an entropy essentially equal to one or essentially equal to zero, that

is, is either totally random or deterministic. More formally, for δN , 2−N
β
, β < 1/2,

we define the set of “high entropy bits” given Y 1:N as

HX|Y , {i ∈ J1, NK : H(U i|U1:i−1Y 1:N) > δN}.

The following theorem shows how asymptotically optimal lossless compression of X1:N

can be performed.

Theorem 3.4.1 ([87]). X1:N can be reconstructed with error probability in O(NδN)

from U1:N [HX|Y ] and Y 1:N by successive cancellation decoding, whose complexity is

in O(N logN). Moreover, the encoding rate is optimal because

lim
N→∞

|HX|Y |
N

= H(X|Y ).
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3.4.2 Privacy amplification

Consider a discrete memoryless source defined by the distribution (XZ, pXZ), where

N is a power of two and |X |= 2. Similar to source polarization, we define U1:N ,

X1:NGN . We also define, for δN , 2−N
β
, β < 1/2, a set of “very high entropy bits”

given Z1:N as

VX|Z , {i ∈ J1, NK : H(U i|U1:i−1Z1:N) > 1− δN}.

The rate of |VX|Z | is given in the following lemma.

Lemma 3.4.1. The set VX|Z is such that

lim
N→+∞

|VX|Z |
N

= H(X|Z).

Proof. See Appendix 3.A.3.

Note that limN→+∞|HX|Y |/N = H(X|Y ) follows from [87], but Lemma 3.4.1

requires a different proof based on Lemma 3.1.16 in the appendix.

We claim that the bits U1:N [VX|Z ] are almost uniformly distributed and indepen-

dent from Z1:N . We make this statement clear in the following proposition.

Proposition 3.4.1. Define K , U1:N [VX|Z ]. We have

I
(
K;Z1:N

)
6 NδN (independence with Z1:N),

|K|−H(K) 6 NδN (uniformity).

Moreover, the rate of K = U1:N [VX|Z ] is optimal because

lim
N→+∞

|VX|Z |
N

= H(X|Z).
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Proof. We write

I
(
K;Z1:N

)
+ |K|−H(K)

= |U1:N [VX|Z ]|−H
(
U1:N [VX|Z ]|Z1:N

)

= |VX|Z |−H
(
U1:N [VX|Z ]|Z1:N

)

(a)

6 |VX|Z |−
∑

i∈VX|Z

H(U i|U1:i−1Z1:N)

(b)

6 |VX|Z |δN

6 NδN ,

where (a) holds because conditioning reduces entropy, (b) holds by definition of VX|Z .

Proposition 3.4.1 thus provides a polar coding counterpart to privacy amplification

performed with extractors in Section 2.3.3.2.

3.5 Model 1: Secret-key generation with rate-unlimited pub-
lic communication

The precise model and known results are described in Section 3.5.1. Our proposed

polar coding scheme is given in Section 3.5.2 and analyzed in Section 3.5.3.

!
DEC

ENC 
DEC

Alice Bob

Eve

Encoder
Decoder Decoder

Encoder
K1 K2

noiseless authenticated public channel with unlimited rate

BMS
X1:N Y 1:N

Z1:N

Figure 16. Model 1: Secret-key generation for the BMS model with rate-unlimited
public communication.
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3.5.1 Secret-key generation model

As illustrated in Figure 16, Model 1 consists of m = 2 legitimate terminals. We use

X instead of X1 and Y instead of X2 for convenience. We assume that X = {0, 1}

and that the public channel has an unlimited communication rate Rp = +∞. We call

this setup the BMS model with rate-unlimited public communication. The following

results are known for this model.

Theorem 3.5.2 ([2, 3]). Consider a BMS (XYZ, pXY Z). If X → Y → Z, then the

secret-key capacity CWSK(+∞) is

CWSK(+∞) = I(X;Y )− I(X;Z).

Moreover, the secret-key capacity can be achieved by one-way communication.

When the eavesdropper has no access to the source component Z, one obtains the

following expression for the secret-key capacity.

Corollary 3.5.1 ( [2, 3]). Consider a BMS (XY , pXY ). The secret-key capacity

CSK(+∞) is

CSK(+∞) = I(X;Y ).

Moreover, the secret-key capacity can be achieved using only one-way communication.

Such a model is motivated by the sources of randomness that can be generated

from wireless communication channel gains [5–7]. In such settings, the wireless chan-

nel gains cA→B characterizing the channel from Alice to Bob, cB→A characterizing the

channel from Bob to Alice, and the pair (cA→E, cB→E), characterizing the channels

to Eve, may be used as the variables X, Y , and Z, respectively, of Model 1.

3.5.2 Polar coding scheme

In the following, we assume that I(X;Y )− I(X;Z) > 0 but we do not assume that

X → Y → Z forms a Markov chain; we discuss at the end of the section how the

coding scheme simplifies when X → Y → Z holds.
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Let n ∈ N and N , 2n. Set U1:N , X1:NGN . For δN , 2−N
β
, where β ∈]0, 1/2[,

define the following sets

VX|Z ,
{
i ∈ J1, NK : H

(
U i|U1:i−1Z1:N

)
> 1− δN

}
,

HX|Y ,
{
i ∈ J1, NK : H

(
U i|U1:i−1Y 1:N

)
> δN

}
.

The exact encoding and decoding algorithms are given in Algorithm 1 and Algo-

rithm 2, respectively, and we provide here a high-level discussion of their opera-

tion. The set HX|Y is the set of indices containing “high-entropy bits” such that

U1:N [HX|Y ] allows Bob to near losslessly reconstruct U1:N from Y 1:N [87]. In our

coding scheme, Alice therefore publicly transmits U1:N [HX|Y ] to allow Bob to recon-

struct U1:N . By construction, the set VX|Z is the set of indices containing “very-

high entropy bits” such that U1:N [VX|Z ] is almost uniform and independent of the

eavesdropper’s observations Z1:N . Consequently, the secret-key should be chosen as

a subvector of U1:N [VX|Z ]; specifically, since U1:N [HX|Y ] is publicly transmitted, it

is natural to use U1:N [VX|Z\HX|Y ] as the secret key. Unfortunately, HX|Y 6⊂ VX|Z
in general, so that the public communication of U1:N [HX|Y ] leaks some information

about U1:N [VX|Z\HX|Y ]. To circumvent this issue, our protocol uses a secret seed to

protect the transmission of the bits in positions HX|Y \VX|Z with a one-time-pad. In

addition, our scheme operates over k blocks of size N to handle non-degraded sources

and to make the seed rate negligible. In every Block i ∈ J1, kK Alice generates a

secret key Ki together with a seed K̃i used in the next block. Overall, Alice obtains a

vector of secret keys K1:k , [K1, K2, . . . , Kk] while Bob obtains a vector of estimates

K̂1:k , [K̂1, K̂2, . . . , K̂k].

Remark 3.5.1. For convenience, Algorithm 1 does not distinguish the last block from

the others; however, there is no need to create a seed in Block k, so that one may

actually use U1:N
k [VX|Z\HX|Y ] as the key Kk and slightly increase the key rate. For a

large number of blocks k, this distinction has negligible impact on the achievable rates.
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Algorithm 1: Alice’s encoding algorithm for Model 1

Require: K̃0, a secret key of size |HX|Y \VX|Z | shared by Alice and Bob
beforehand; for every Block i ∈ J1, kK, the observations X1:N

i from
the source; AXY Z a fixed subset of VX|Z\HX|Y with size
|HX|Y \VX|Z |.

1 for Block i = 1 to k do
2 U1:N

i ← X1:N
i GN

3 K̃i ← U1:N
i [AXY Z ] {Fraction of the key used as a seed for the next block}

4 Ki ← U1:N
i [(VX|Z\HX|Y )\AXY Z ]

5 Fi ← U1:N
i [VX|Z ∩HX|Y ]

6 F ′i ← U1:N
i [HX|Y \VX|Z ]

7 Transmit Mi ← [Fi, F
′
i ⊕ K̃i−1] publicly to Bob

8 end

return : K1:k ← [K1, K2, . . . , Kk]

Algorithm 2: Bob’s decoding algorithm for Model 1

Require: K̃0, a secret key of size |HX|Y \VX|Z | shared by Alice and Bob
beforehand; the set AXY Z defined in Algorithm 1; for every Block
i ∈ J1, kK, the observations Y 1:N

i from the source and the message Mi

transmitted by Alice.

1 for Block i = 1 to k do

2 Form U1:N
i [HX|Y ] from Mi and K̃i−1

3 Create an estimate Û1:N
i of U1:N

i with the successive cancellation decoder
of [87]

4 K̂i ← Û1:N
i [(VX|Z\HX|Y )\AXY Z ]

5 K̃i ← Û1:N
i [AXY Z ]

6 end

return : K̂1:k ← [K̂1, K̂2, . . . , K̂k]
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Remark 3.5.2. The need for a seed is not an artifact of our proof, but a fundamental

requirement of our single polarization approach to generate secret keys and public

messages. In fact, a memoryless source cannot be near losslessly compressed at a

rate close to the entropy and simultaneously ensure that the encoded messages are

nearly uniformly distributed in variational distance [93, Section V]. In the context of

secret-key generation with polar codes, this translates into the condition HX|Y 6⊂ VX|Z
and in the impossibility of simultaneously ensuring strong secrecy and reliability. Our

solution follows ideas from Section 4.4 in Chapter 4, showing that the impossibility

may be circumvented if the encoder and the decoder share a small seed beforehand;

without seed, only weak secrecy would be ensured.

As shown in Section 3.5.3, a careful analysis of the algorithms leads to the following

result.

Theorem 3.5.3. Consider a BMS (XYZ, pXY Z). Assume that Alice and Bob share

a secret seed. The secret-key rate I(X;Y ) − I(X;Z) is achieved by the polar coding

scheme of Algorithm 1 and Algorithm 2, which involves a chaining of k blocks of size

N , and whose computational complexity is O(kN logN). Moreover, the seed rate can

be chosen in o
(
2−N

α)
, α < 1/2.

Proof. See Section 3.5.3.

Corollary 3.5.2. When X → Y → Z, the secret-key capacity of Theorem 3.5.2 is

achieved by the polar coding scheme of Algorithm 1 and Algorithm 2. Moreover, one

does not need to encode over several blocks, i.e., one can choose k = 1, and the seed

rate is o(N). However, encoding over several blocks for this case allows one to reduce

the seed rate from o(N) to o(2−N
α
), α < 1/2.

Proof. See Appendix 3.A.1.

Note that, in the special case of a symmetric degraded BMS,2 Corollary 3.5.2 may

2That is, when X, Y , and Z are connected by symmetric channels.
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be indirectly obtained from wiretap codes and [39], following the approach of [2], [23,

Section 4.2.1]. However, this indirect proof might not translate into practical imple-

mentations because it requires much more public channel communication.

Although the seed rate in Theorem 3.5.3 or Corollary 3.5.2 may be made arbitrarily

small, it is valuable to identify examples for which no seed is required. We provide two

such examples in Proposition 3.5.2, which corresponds to the privacy amplification

setting of [24], and in Proposition 3.5.3, which corresponds to a case when the source

has uniform marginals and the eavesdropper has no access to correlated observations

of the source.

Proposition 3.5.2. Consider a BMS (XYZ, pXY Z). Assume that Alice and Bob have

the same observations, i.e., X = Y ; then the secret-key capacity CWSK = H(X|Z) is

achievable with a polar coding scheme, whose computational complexity is O(N logN).

Proof. See Section 3.4.2.

Proposition 3.5.3. Consider a BMS (XY , pXY ) with X ∼ B(1/2). The secret-key

capacity CSK(+∞) given in Corollary 3.5.1 is achievable with perfect secrecy with a

polar coding scheme, whose computational complexity is O(N logN).

Proof. See Appendix 3.A.2.

Note that the model studied in Proposition 3.5.3 includes [34, Model 1] as a

special case, and does not require the construction of a standard array, whose size

grows exponentially with the blocklength.

3.5.3 Analysis of polar coding scheme: proof of Theorem 3.5.3

A functional dependence graph of the block encoding scheme of Section 3.5.2 is de-

picted in Figure 17 to help the reader identify the dependencies among the variables

introduced by the block-coding scheme.
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Figure 17. Functional dependence graph of the proposed block encoding scheme

3.5.3.1 Existence of AXY Z
Observe that |VX|Z\HX|Y |−|HX|Y \VX|Z |= |VX|Z |−|HX|Y |. Hence, by Lemma 3.4.1

and [87], we have

lim
N→∞

(|VX|Z\HX|Y |−|HX|Y \VX|Z |)/N = H(X|Z)−H(X|Y ).

Since I(X;Y )− I(X;Z) > 0 by assumption, we conclude that

|VX|Z\HX|Y |−|HX|Y \VX|Z |> 0

for N large enough and AXY Z exists.

3.5.3.2 Asymptotic key rate

The length of the overall key generated is

|K1:k| =
k∑

i=1

|Ki|

= k|(VX|Z\HX|Y )\AXY Z |

= k(|VX|Z\HX|Y |−|HX|Y \VX|Z |)

= k(|VX|Z |−|HX|Y |).

Hence, by Lemma 3.4.1 and [87], the asymptotic key rate is

lim
N→∞

|K1:k|
kN

> I(X;Y )− I(X;Z).
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3.5.3.3 Reliability

Let i ∈ J2, kK. Note that F ′i is correctly received only when Bob possesses a correct

estimate of the seed K̃i−1, i.e., when U1:N
i−1 is correctly reconstructed. We note F̂ ′i the

estimate of F ′i formed by Bob from Û1:N
i−1 and define the event EF ′i , {F ′i 6= F̂ ′i}. Then,

P[Ki 6= K̂i] 6 P[U1:N
i 6= Û1:N

i ]

= P[U1:N
i 6= Û1:N

i |EcF ′i ]P[EcF ′i ] + P[U1:N
i 6= Û1:N

i |EF ′i ]P[EF ′i ]

6 P[U1:N
i 6= Û1:N

i |EcF ′i ] + P[EF ′i ]

6 P[U1:N
i 6= Û1:N

i |EcF ′i ] + P[U1:N
i−1 6= Û1:N

i−1 ]

(a)

6 NδN + P[U1:N
i−1 6= Û1:N

i−1 ]

(b)

6 (i− 1)NδN + P[U1:N
1 6= Û1:N

1 ]

(c)

6 iNδN ,

where (a) follows because Bob can reconstruct U1:N
i from (Fi, F

′
i ) = U1:N

i [HX|Y ] and

Y 1:N
i with error probability less than NδN [87], (b) holds by induction, (c) holds

by [87] and because K̃0 is known to Bob. Using the union bound,

Pe(SN) = P[K1:k 6= K̂1:k]

6 P[
k⋃

i=1

(Ki 6= K̂i)]

6
k∑

i=1

P[Ki 6= K̂i]

6
k∑

i=1

iNδN

=
k(k + 1)

2
NδN . (45)

3.5.3.4 Key uniformity

We first prove the uniformity of the key in each block i using the following lemma.
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Lemma 3.5.2. In every block i ∈ J1, kK, the vector [Ki, K̃i] is nearly uniform, in the

sense that

|Ki|+|K̃i|−H(KiK̃i) 6 NδN .

In particular, |K̃i|−H(K̃i) 6 NδN and |Ki|−H(Ki) 6 NδN .

Proof.

|Ki|+|K̃i|−H(KiK̃i) = |Ki|+|K̃i|−H(U1:N
i [VX|Z\HX|Y ])

(a)

6 |Ki|+|K̃i|−
∑

j∈VX|Z\HX|Y

H(U j
i |U1:j−1

i )

(b)

6 |Ki|+|K̃i|−
∑

j∈VX|Z\HX|Y

(1− δN)

= (|Ki|+|K̃i|)δN

6 NδN ,

where (a) holds because conditioning reduces entropy, (b) holds by definition of VX|Z
and because conditioning reduces entropy. Finally, note that since |Ki|−H(Ki|K̃i) >

0, we have

|K̃i|−H(K̃i) 6 |K̃i|−H(K̃i) + |Ki|−H(Ki|K̃i)

= |Ki|+|K̃i|−H(KiK̃i).

It remains to show that the overall key K1:k is uniform, as well. Specifically, we
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have

H(K1:k) =
k∑

i=1

H(Ki|K1:i−1)

(a)
=

k∑

i=1

H(Ki)

(b)

>
k∑

i=1

(|Ki|−NδN)

= |K1:k|−kNδN ,

where (a) holds because X1:N
i is independent of of X1:N

1:i−1 for any i ∈ J1, kK, and (b)

holds by Lemma 3.5.2. Hence,

U(SN) = |K1:k|−H(K1:k) 6 kNδN . (46)

3.5.3.5 Strong secrecy

We first show that secrecy holds for each block using the following lemma .

Lemma 3.5.3. For each Block i ∈ J1, kK, [Ki, K̃i] is a secret key. Specifically,

I
(
KiK̃i;MiZ

1:N
i

)
6 2NδN .
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Proof. We have

I(KiK̃i;FiZ
1:N
i )

= H(KiK̃i)−H(KiK̃i|FiZ1:N
i )

6 |Ki|+|K̃i|−H(KiK̃iFi|Z1:N
i ) +H(Fi|Z1:N

i )

6 |Ki|+|K̃i|+|Fi|−H(KiK̃iFi|Z1:N
i )

(a)
= |VX|Z\HX|Y |+|VX|Z ∩HX|Y |−H(U1:N

i [(VX|Z\HX|Y ) ∪ (VX|Z ∩HX|Y )]|Z1:N
i )

= |VX|Z |−H(U1:N
i [VX|Z ]|Z1:N

i )

(b)

6 |VX|Z |−
∑

j∈VX|Z

H(U j
i |U1:j−1

i Z1:N
i )

(c)

6 |VX|Z |−
∑

j∈VX|Z

(1− δN)

= |VX|Z |δN

6 NδN , (47)

where (a) holds by definition of Ki, K̃i, and Fi, (b) holds because conditioning reduces

entropy, (c) holds by definition of VX|Z . Therefore, we obtain

I(KiK̃i;MiZ
1:N
i )

(d)
= I(KiK̃i;Fi(F

′
i ⊕ K̃i−1)Z1:N

i )

= I(KiK̃i;FiZ
1:N
i ) + I(KiK̃i;F

′
i ⊕ K̃i−1|FiZ1:N

i )

(e)

6 NδN + I(KiK̃iFiZ
1:N
i F ′i ;F

′
i ⊕ K̃i−1)

= NδN +H(F ′i ⊕ K̃i−1)−H(F ′i ⊕ K̃i−1|KiK̃iFiZ
1:N
i F ′i )

= NδN +H(F ′i ⊕ K̃i−1)−H(K̃i−1|KiK̃iFiZ
1:N
i F ′i )

= NδN +H(F ′i ⊕ K̃i−1)−H(K̃i−1)

6 NδN + |K̃i−1|−H(K̃i−1)

(f)

6 2NδN ,

where (d) holds by definition of Mi, (e) holds by (47), (f) holds by Lemma 3.5.2.
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We now state two lemmas that will be used to show that secrecy holds for the

global scheme.

Lemma 3.5.4. For i ∈ J1, kK, we have for N large enough

I(Ki; K̃i) 6 δ∗N ,

where

δ∗N , −3
√

2N log 2×N2−N
β/2 log2

(
3
√

2N log 2× 2−N
β/2
)
. (48)

Proof. See Appendix 3.A.4

Lemma 3.5.5. For i ∈ J2, kK, define

L̃1:i
e , I

(
K1:iK̃i;M1:iZ

1:N
1:i

)
.

We have

L̃1:i
e − L̃1:i−1

e 6 I
(
KiK̃i;MiZ

1:N
i

)
+ I

(
Ki−1; K̃i−1

)
.

Proof. See Appendix 3.A.5.

We thus obtain

L(SN) = I(K1:k;M1:kZ
1:N
1:k )

6 L̃1:k
e

=
k∑

i=2

(L̃1:i
e − L̃1:i−1

e ) + L̃1
e

(a)

6
k∑

i=2

(
I
(
KiK̃i;MiZ

1:N
i

)
+ I

(
Ki−1; K̃i−1

))
+ L̃1

e

6
k∑

i=1

I
(
KiK̃i;MiZ

1:N
i

)
+

k∑

i=2

I
(
Ki−1; K̃i−1

)

(b)

6 2kNδN + (k − 1)δ∗N , (49)

where (a) follows by Lemma 3.5.5, (b) follows by Lemma 3.5.4 and Lemma 3.5.3.
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Figure 18. Model 2: Secret-key generation for the BMS model with one-way rate-
limited public communication.

3.5.3.6 Seed rate

The seed rate required to initialize the coding scheme is negligible since

lim
k→∞

lim
N→∞

|HX|Y \VX|Z |
kN

6 lim
k→∞

H(X|Y )

k
= 0.

Note that the seed rate may be chosen to decrease exponentially fast to zero with

N since we may choose k = 2N
α
, α < β and still have limN→∞Pe(SN) = 0 by (45),

limN→∞Ue(SN) = 0 by (46), and limN→∞ Le(SN) = 0 by (49) and (48).

3.6 Model 2: Secret-key generation with rate-limited public
communication

We now move to the second key generation model, which differs from Model 1 by

restricting the public communication to be rate-limited and one way from Alice to

Bob. The organization follows that of Section 3.6.

3.6.1 Secret-key generation model

As illustrated in Figure 18, we set again m = 2 and we use X instead of X1, Y

instead of X2 for convenience. We assume that X = {0, 1} and that Alice and Bob

are constrained to only use one-way communication over an authenticated noiseless

public channel with limited rate Rp ∈ R. We call this setup the BMS model with

rate-limited public communication. The following results are known for the model.
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Theorem 3.6.4. Let (XYZ, pXY Z) be a BMS and Rp ∈ R+ be the public commu-

nication rate. If X → Y → Z, then the one-way rate-limited secret-key capacity

is3

CWSK(Rp) = max
U

(I(Y ;U)− I(Z;U))

subject to
Rp = I(U ;X)− I(U ;Y ),

U → X → Y → Z,

|U|6 |X |.

Closed form expressions of the secret-key capacity are only known for specific

sources. See the following example.

Example 3.6.1. Assume X = Y = Z = {0, 1} and X ∼ B(1/2). Set Y , X ⊕ B1

and Z , Y ⊕B2, with B1 ∼ B(p), B2 ∼ B(q), where ⊕ denotes the modulo-2 addition.

Then, by Example 2.5.2 in Chapter 2, the secret-key capacity is

CWSK(Rp) ,





Hb(p ? β0 ? q)−Hb(p ? β0), if Rp 6 H(X|Y ),

Hb(p ? q)−Hb(p), if Rp > H(X|Y ),

where β0 must satisfy4

Hb(p ? β0)−Hb(β0) = Rp, (50)

Hb(·) is the binary entropy function, and the associative and commutative operation

? is defined as p ? β0 = (1− β0)p+ β0(1− p).

When the eavesdropper has no access to the source component Z, one obtains the

following expression for the secret-key capacity.

3See Proposition 2.5.3 and Remark 2.5.3 in Chapter 2.
4Note that (50) has two symmetric solutions.
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Corollary 3.6.3. Let (XYZ, pXY Z) be a BMS and Rp ∈ R+ be the public communi-

cation rate. The one-way rate-limited secret-key capacity is

CSK(Rp) = max
U

I(Y ;U)

subject to
Rp = I(U ;X)− I(U ;Y ),

U → X → Y,

|U|6 |X |.

The practical justification for Model 2 is similar to that for Model 1; however,

Model 2 allows us to account for rate-limited communication constraints, which is

relevant in applications with stringent bandwidth constraints, such as wireless sensor

networks. We will also see in Section 3.9 that such constraint may account for privacy

leakage constraints in biometric systems.

The main challenge in designing a coding scheme for Model 2 is to address the

problem of vector quantization with side information at the receiver. Previous polar

coding results on lossy source coding with lossless reconstruction of the vector quan-

tized version of the source are reported in [94,95]; our contribution is to extend these

results when side information is available at the receiver, and to show how to apply

such technique to secret-key generation with rate-limited public communication.

3.6.2 Polar coding scheme

Let n ∈ N and N , 2n. Fix a joint probability distribution pXU such that I(Y ;U)−

I(Z;U) > 0, but we do not assume X → Y → Z. Denote V 1:N , U1:NGN , the

polar transform of a vector U1:N with i.i.d components according to the marginal
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distribution pU . For δN , 2−N
β
, where β ∈]0, 1/2[, define the following sets.

HU ,
{
i ∈ J1, NK : H

(
V i|V 1:i−1

)
> δN

}
,

VU |Z ,
{
i ∈ J1, NK : H

(
V i|V 1:i−1Z1:N

)
> 1− δN

}
,

VU |Y ,
{
i ∈ J1, NK : H

(
V i|V 1:i−1Y 1:N

)
> 1− δN

}
,

HU |Y ,
{
i ∈ J1, NK : H

(
V i|V 1:i−1Y 1:N

)
> δN

}
,

HU |X ,
{
i ∈ J1, NK : H

(
V i|V 1:i−1X1:N

)
> δN

}
.

The encoding and decoding algorithms are given in Algorithm 3 and Algorithm 4.

The high-level principles are similar to that of Algorithm 1 and Algorithm 2, and

we only highlight here the differences. Instead of directly operating on the source

symbols, Alice first constructs a vector quantized version Ṽ 1:N of X1:N , whose distri-

bution is close to that of V 1:N . This statement is made more precise in Lemma 3.6.6,

but a crucial part of the proof is to introduce a stochastic encoder, as in successive

cancellation encoding for lossy source coding [94, 95]. The randomness R1 used in

the encoder is publicly transmitted to Bob and reused over several blocks so that its

rate vanishes to zero as the number of blocks increases; however, reusing R1 creates

additional dependencies between the variables of the different blocks, which must be

carefully taken into account in the secrecy analysis. The choice of public messages

and keys is then similar to those in Section 3.5.2, using Ṽ 1:N instead of X1:N .

Remark 3.6.3. One may actually use U1:N
k [VU |Z\HU |Y ] as the key Kk and slightly

increase the key rate in Algorithm 3. However, one does not distinguish the last block

from the others for convenience – see Remark 3.5.1.

As shown in Section 3.6.3, the analysis of Algorithm 3 and Algotithm 4 leads to

the following result.

Theorem 3.6.5. Consider a BMS (XYZ, pXY Z). Assume that Alice and Bob share

a secret seed and let Rp ∈ R+ be the public communication rate. The secret-key rate
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Algorithm 3: Alice’s encoding algorithm for Model 2

Require: K̃0, a secret key of size |(HU |Y \VU |X)\VU |Z | shared by Alice and
Bob beforehand; for every Block i ∈ J1, kK, the observations X1:N

i

from the source; AUY Z a subset of VU |Z\HU |Y with size
|(HU |Y \VU |X)\VU |Z |; a vector R1 of |VU |X | uniformly distributed bits.

1 Transmit R1 publicly to Bob
2 for Block i = 1 to k do
3 Ri ← R1

4 Ṽ 1:N
i [VU |X ]← Ri

5 Given X1:N
i , successively draw the remaining bits of Ṽ 1:N

i according to

p̃V 1:N
i X1:N

i
,
∏N

j=1 p̃V ji |V
j−1
i X1:NpX1:N with

p̃V ji |V
1:j−1
i X1:N (vj|Ṽ 1:j−1

i X1:N
i )

,
{
pV j |V 1:j−1X1:N (vj|Ṽ 1:j−1

i X1:N
i ) if j ∈ HU\VU |X

pV j |V 1:j−1(vj|Ṽ 1:j−1
i ) if j ∈ Hc

U

. (51)

6 K̃i ← Ṽ 1:N
i [AUY Z ]

7 Ki ← Ṽ 1:N
i [(VU |Z\HU |Y )\AUY Z ]

8 Fi ← Ṽ 1:N
i [(HU |Y \VU |X) ∩ VU |Z ]

9 F ′i , Ṽ 1:N
i [(HU |Y \VU |X)\VU |Z ]

10 Transmit Mi ← [Fi, F
′
i ⊕ K̃i−1] publicly to Bob.

11 end

return : K1:k ← [K1, K2, . . . , Kk]
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Algorithm 4: Bob’s decoding algorithm for Model 2

Require: The secret-key K̃0 and the set AUY Z defined in Algorithm 3; for
every Block i ∈ J1, kK, the observations Y 1:N

i from the source, the
message Mi. transmitted by Alice; the vector R1 transmitted by
Alice.

1 for Block i = 1 to k do

2 Form Ṽ 1:N
i [HU |Y ] from Mi and K̃i−1

3 Create an estimate V̂ 1:N
i of V 1:N

i with the successive cancellation decoder
of [87]

4 K̂i ← V̂ 1:N
i [(VU |Z\HU |Y )\AUY Z ]

5 K̃i ← V̂ 1:N
i [AUY Z ]

6 end

return : K̂1:k ← [K̂1, K̂2, . . . , K̂k]

defined by

max
U

(I(Y ;U)− I(Z;U))

subject to Rp = I(U ;X)− I(U ;Y ),

U → X → Y,

|U|6 |X |.

is achieved by the polar coding scheme of Algorithm 3 and Algorithm 4, which involves

a chaining of k blocks of size N , and whose computational complexity is O(kN logN).

Moreover, the seed rate can be chosen in o
(
2−N

α)
, α < 1/2.

Proof. See Section 3.6.3.

The following corollary states sufficient conditions to avoid block encoding.

Corollary 3.6.4. If X → Y → Z, X ∼ B(1/2), and the test-channels pY |X and pZ|X

are symmetric,5 then the secret-key capacity of Theorem 3.6.4 is achieved by the polar

coding scheme for Block 1 in Algorithm 3 with AUY Z = ∅, R1 a constant sequence,

and a seed rate in o(N).

5As in Example 3.6.1 for instance
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Figure 19. Functional dependence graph of the block encoding scheme

Proof. See Appendix 3.B.1.

Finally, the following proposition provides sufficient conditions to avoid block

encoding and a pre-shared seed. The proof is similar to that of Theorem 3.6.5 and

Corollary 3.6.4 and is omitted.

Proposition 3.6.4. If the eavesdropper has no access to correlated observations of

the source, X ∼ B(1/2), and the test-channel pY |X is symmetric, then the secret-key

capacity of Corollary 3.6.3 is achieved by the polar coding scheme for Block 1 in Al-

gorithm 3 with AUY Z = ∅, Z = ∅, F ′1 = ∅, K1 , Ṽ 1:N
1 [Hc

U |Y ], F1 , Ṽ 1:N
1 [HU |Y \VU |X ],

and R1 a constant sequence.

3.6.3 Analysis of polar coding scheme: Proof of Theorem 3.6.5

A functional dependence graph for the coding scheme of Section 3.6.2 is depicted in

Figure 33 for convenience.

3.6.3.1 Preliminary result

Lemma 3.6.6. For every i ∈ J1, kK, the random variable Ṽ 1:N
i resulting from Algo-

rithm 3 has a joint distribution p̃X1:N
i V 1:N

i
, p̃V 1:N

i |X1:NpX1:N with X1:N
i such that

D(pX1:NV 1:N ||p̃X1:N
i V 1:N

i
) 6 NδN ,
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Hence, by Pinsker’s inequality

V(pX1:NV 1:N , p̃X1:N
i V 1:N

i
) 6

√
2 log 2

√
NδN .

Proof. See Appendix 3.B.2.

3.6.3.2 Existence of AUY Z
Observe that

|VU |Z\HU |Y |−|(HU |Y \VU |X)\VU |Z | = |VU |Z |−|HU |Y |+|(HU |Y ∩ VU |X)\VU |Z |

> |VU |Z |−|HU |Y |.

Hence, by Lemma 3.4.1 and [87], we have

lim
N→∞

(|VU |Z\HU |Y |−|(HU |Y \VU |X)\VU |Z |)/N > H(U |Z)−H(U |Y ).

Since I(Y ;U) − I(Z;U) > 0, |VU |Z\HU |Y |−|(HU |Y \VU |X)\VU |Z |> 0 for N large

enough, and we conclude that AUY Z exists.

3.6.3.3 Communication rate

The total communication is

|R1|+
k∑

i=1

(|Fi|+|F ′i |) = |R1|+
k∑

i=1

|HU |Y \VU |X |

= |VU |X |+k|HU |Y \VU |X |

= |VU |X |+k(|HU |Y |−|VU |X |)

where the last equality holds because U → X → Y and thus VU |X ⊂ VU |Y ⊂ HU |Y .

Hence, the communication rate is by Lemma 3.4.1 and [87],

lim
N→∞

|VU |X |+k(|HU |Y |−|VU |X |)
kN

= I(X;U)− I(Y ;U) +
H(U |X)

k
.
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3.6.3.4 Key rate

The length of the key generated is

|K1:k| =
k∑

i=1

|Ki|

= k|(VU |Z\HU |Y )\AUY Z |

= k(|VU |Z |−|HU |Y |+|(HU |Y ∩ VU |X)\VU |Z |)

> k(|VU |Z |−|HU |Y |).

Hence, the key rate is by Lemma 3.4.1 and [87],

lim
N→∞

|K1:k|
kN

> I(Y ;U)− I(Z;U).

3.6.3.5 Reliability

For i ∈ J1, kK, Bob forms V̂ 1:N
i from (Fi, F

′
i , Ri) = Ṽ 1:N

i [HU |Y ] and Y 1:N
i with the

successive cancellation encoder of [87]. Consider an optimal coupling [94,96] between

p̃V 1:N
i

and pV 1:N
i

such that P[E ] = V(p̃V 1:N
i
, pV 1:N

i
), where E , {Ṽ 1:N

i 6= V 1:N
i }. For

i ∈ J2, kK, note that F ′i is correctly received only when Bob has K̃i−1, i.e., when Ṽ 1:N
i−1

is correctly reconstructed. We note F̂ ′i the estimate of F ′i formed by Bob from Ṽ 1:N
i−1
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and define EF ′i , {F ′i 6= F̂ ′i}. We then have

P[V̂ 1:N
i 6= Ṽ 1:N

i ]

= P[V̂ 1:N
i 6= Ṽ 1:N

i |E ∪ EF ′i ]P[E ∪ EF ′i ] + P[V̂ 1:N
i 6= Ṽ 1:N

i |Ec ∩ EcF ′i ]P[Ec ∩ EcF ′i ]

6 P[E ∪ EF ′i ] + P[V̂ 1:N
i 6= Ṽ 1:N

i |Ec ∩ EcF ′i ]

6 P[E ] + P[EF ′i ] + P[V̂ 1:N
i 6= Ṽ 1:N

i |Ec ∩ EcF ′i ]

= V(p̃V 1:N
i
, pV 1:N

i
) + P[EF ′i ] + P[V̂ 1:N

i 6= Ṽ 1:N
i |Ec ∩ EcF ′i ]

= V(p̃V 1:N
i
, pV 1:N

i
) + P[EF ′i ] + P[V̂ 1:N

i 6= V 1:N
i |Ec ∩ EcF ′i ]

6 V(p̃X1:N
i V 1:N

i
, pX1:N

i V 1:N
i

) + P[EF ′i ] + P[V̂ 1:N
i 6= V 1:N

i |Ec ∩ EcF ′i ]
(a)

6
√

2 log 2
√
NδN + P[EF ′i ] + P[V̂ 1:N

i 6= V 1:N
i |Ec ∩ EcF ′i ]

(b)

6
√

2 log 2
√
NδN + P[EF ′i ] +NδN

6
√

2 log 2
√
NδN +NδN + P[V̂ 1:N

i−1 6= Ṽ 1:N
i−1 ]

(c)

6 (i− 1)(
√

2 log 2
√
NδN +NδN) + P[V̂ 1:N

1 6= Ṽ 1:N
1 ]

(d)

6 i(
√

2 log 2
√
NδN +NδN),

where (a) holds by Lemma 3.6.6, (b) holds because P[V̂ 1:N
i 6= V 1:N

i |Ec ∩ EcF ′i ] 6 NδN

by [87], (c) holds by recurrence, (d) holds by [87] and because K̃0 is known to Bob.

Hence, P[Ki 6= K̂i] 6 i(
√

2 log 2
√
NδN + NδN). Then, similar to Section 3.5.3.3,

we obtain with a union bound

Pe(SN) 6 k(k + 1)

2
(
√

2 log 2
√
NδN +NδN). (52)

3.6.3.6 Key uniformity

We first show the key is nearly uniform for every block in the following lemma.

Lemma 3.6.7. For every block i ∈ J1, kK, the vector [Ki, K̃i, Fi, R1] is nearly uniform,

in the sense that

V(pKi,K̃i,Fi,R1
, qU

K,K̃,F,R
) 6 2

√
2 log 2

√
NδN ,

where qU
K,K̃,F,R

is the uniform distribution over J1, 2|(VU|Z\HU|Y )∪((HU|Y \VU|X)∩VU|Z)∪VU|X |K.
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Proof. We have

V(pKi,K̃i,Fi,Ri , qUK,K̃,F,R)

(a)

6 V(p̃V 1:N
i [VU ], qUVU )

(b)

6 V(p̃V 1:N
i [VU ], pV 1:N

i [VU ]) + V(pV 1:N
i [VU ], qUVU )

(c)

6
√

2NδN log 2 + V(pV 1:N
i [VU ], qUVU )

(d)

6
√

2 log 2
√
NδN +

√
2 log 2

√
D(pV 1:N

i [VU ]||qUVU )

=
√

2 log 2
√
NδN +

√
2 log 2

√
|VU |−H(V 1:N

i [VU ])

(e)

6 2
√

2 log 2
√
NδN ,

where (a) holds because VU |Z ⊂ VU and VU |X ⊂ VU with qUVU the uniform distribution

over J1, 2|VU |K, (b) holds by the triangle inequality, (c) holds by Lemma 3.6.6, (d)

holds by Pinsker’s inequality, (e) holds because similar to the proof of Lemma 3.5.2

|VU |−H(V 1:N
i [VU ]) 6 NδN .

From Lemma 3.6.7, we derive the following lemmas.

Lemma 3.6.8. For i ∈ J1, kK, we have for N large enough

|Ki|+|K̃i|−H(KiK̃i) 6 δ
(1)
N ,

where

δ
(1)
N , 2

√
2 log 2

√
NδN(N − log2(2

√
2 log 2

√
NδN)). (53)

In particular, we also have |Ki|−H(Ki) 6 δ
(1)
N and |K̃i|−H(K̃i) 6 δ

(1)
N .

Proof. See Appendix 3.B.3.

Lemma 3.6.9. For i ∈ J1, kK, we have for N large enough

I(Ki; K̃iR1) 6 δ
(2)
N and I(K̃i;R1) 6 δ

(2)
N ,

where

δ
(2)
N , 6

√
2 log 2

√
NδN(N − log2(6

√
2 log 2

√
NδN)). (54)
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Proof. See Appendix 3.B.4.

We now show that the global key K1:k is uniform. Specifically, we have

H(K1:k) =
k∑

i=1

H(Ki|K1:i−1)

>
k∑

i=1

H(Ki|K1:i−1R1)

(a)
=

k∑

i=1

H(Ki|R1)

=
k∑

i=1

H(Ki)−
k∑

i=1

I(Ki;R1)

(b)

>
k∑

i=1

H(Ki)− kδ(2)
N

(c)

>
k∑

i=1

(|Ki|−δ(1)
N )− kδ(2)

N

= |K1:k|−k(δ
(1)
N + δ

(2)
N )

where (a) holds becauseKi → R1 → K1:i−1 for any i ∈ J1, kK, (b) holds by Lemma 3.6.9,

(c) holds by Lemma 3.6.8. Hence,

U(SN) = |K1:k|−H(K1:k) 6 k(δ
(1)
N + δ

(2)
N ). (55)

3.6.3.7 Strong secrecy

Because of the successive cancellation encoding, the secrecy analysis is more involved

than for Model 1.

Lemma 3.6.10. For i ∈ J1, kK, we have for N large enough

I(Ṽ 1:N
i [VU |Z ];Z1:N

i ) 6 δ
(3)
N ,

where

δ
(3)
N , 3

√
2 log 2

√
NδN(N − log2(3

√
2 log 2

√
NδN)). (56)

Proof. See Appendix 3.B.5.
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The following lemma shows that secrecy holds for each block.

Lemma 3.6.11. For each Block i ∈ J1, kK, [Ki, K̃i] is a secret key in the sense that

I
(
KiK̃i;R1MiZ

1:N
i

)
6 2δ

(1)
N + δ

(2)
N + δ

(3)
N .

Proof. By the proof of Lemma 3.6.7, we have

V(p̃V 1:N
i [VU|Z ], qUVU|Z ) 6 2

√
2 log 2

√
NδN ,

where qUVU|Z is the uniform distribution over J1, 2|VU|Z |K, and by the proof of Lemma 3.6.8,

we have

|VU |Z |−H(V 1:N
i [VU |Z ]) 6 δ

(1)
N . (57)

We have

I(KiK̃i;R1FiZ
1:N
i )

= H(KiK̃i)−H(KiK̃i|R1FiZ
1:N
i )

6 |Ki|+|K̃i|−H(KiK̃iR1FiZ
1:N
i ) +H(R1FiZ

1:N
i )

= |Ki|+|K̃i|−H(KiK̃iR1Fi|Z1:N
i ) +H(FiR1|Z1:N

i )

6 |Ki|+|K̃i|+|Fi|+|R1|−H(KiK̃iR1Fi|Z1:N
i )

(a)

6 |VU |Z |−H(Ṽ 1:N
i [VU |Z ]|Z1:N

i )

= |VU |Z |−H(Ṽ 1:N
i [VU |Z ]) + I(Ṽ 1:N

i [VU |Z ];Z1:N
i )

(b)

6 δ
(1)
N + I(Ṽ 1:N

i [VU |Z ];Z1:N
i )

(c)

6 δ
(1)
N + δ

(3)
N , (58)

where (a) holds because (Ki, K̃i, R1, Fi) is a subvector of Ṽ 1:N
i [VU |Z ] noting that

VU |X ⊂ VU |Z since U → X → Z, (b) holds (57), (c) holds by Lemma 3.6.10.
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Then, we obtain

I(KiK̃i;R1MiZ
1:N
i )− I(KiK̃i;R1FiZ

1:N
i )

(d)
= I(KiK̃i;F

′
i ⊕ K̃i−1|R1FiZ

1:N
i )

(e)

6 I(R1KiK̃iFiF
′
iZ

1:N
i ;F ′i ⊕ K̃i−1)

= H(F ′i ⊕ K̃i−1)−H(F ′i ⊕ K̃i−1|R1KiK̃iFiF
′
iZ

1:N
i )

= H(F ′i ⊕ K̃i−1)−H(K̃i−1|R1KiK̃iFiF
′
iZ

1:N
i )

(f)
= H(F ′i ⊕ K̃i−1)−H(K̃i−1|R1)

6 |K̃i−1|−H(K̃i−1|R1)

= |K̃i−1|−H(K̃i−1) + I(K̃i−1;R1)

(g)

6 δ
(1)
N + δ

(2)
N , (59)

where (d) holds by definition of Mi, (e) holds by the chain rule and positivity of

mutual information, (f) holds because K̃i−1 → R1 → KiK̃iFiF
′
iZ

1:N
i , (g) holds by

Lemma 3.6.8 and Lemma 3.6.9. Finally, we conclude combining (58) and (59).

We now state a lemma that will be used to show that secrecy holds for the global

scheme.

Lemma 3.6.12. For i ∈ J2, kK, define

L̃1:i
e , I

(
K1:iK̃i;R1M1:iZ

1:N
1:i

)
.

We have

L̃1:i
e − L̃1:i−1

e 6 I
(
KiK̃i;R1MiZ

1:N
i

)
+

i−1∑

j=1

I (Kj;R1) + I
(
Ki−1; K̃i−1R1

)
.

Proof. See Appendix 3.B.6.
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We thus obtain

L(SN)

= I(K1:k;M1:kZ
1:N
1:k )

6 L̃1:k
e

=
k∑

i=2

(L̃1:i
e − L̃1:i−1

e ) + L̃1
e

(a)

6
k∑

i=2

(
I
(
KiK̃i;R1MiZ

1:N
i

)
+

i−1∑

j=1

I (Kj;R1) + I
(
Ki−1; K̃i−1R1

))
+ L̃1

e

(b)

6
k∑

i=2

(
I
(
KiK̃i;R1MiZ

1:N
i

)
+ iδ

(2)
N

)
+ L̃1

e

=
(k − 1)(k + 2)

2
δ

(2)
N + L̃1

e +
k∑

i=2

I
(
KiK̃i;R1MiZ

1:N
i

)

(c)

6 (k − 1)(k + 2)

2
δ

(2)
N + k(2δ

(1)
N + δ

(2)
N + δ

(3)
N ) (60)

where (a) follows from Lemma 3.6.12, (b) holds by Lemma 3.6.9, (c) holds by Lemma 3.6.11.

3.6.3.8 Seed rate

The seed rate required to initialize the coding scheme is

lim
k→∞

lim
N→∞

|(HU |Y \VU |X)\VU |Z |
kN

6 lim
k→∞

H(U |Y )

k
= 0.

Note that the seed rate could be chosen decrease exponentially fast to zero with N ,

since we may choose k = 2N
α
, α < β, and still have limN→∞Pe(SN) = 0 by (52),

limN→∞Ue(SN) = 0 by (55), and limN→∞ Le(SN) = 0 by (60) along with (53), (54),

(56).

3.7 Model 3: A multiterminal broadcast model

In this section, we develop a polar coding scheme for a multiterminal broadcast model.

Sections 3.7.1- 3.7.3 analyze a model with an arbitrary number of terminals but

specific source statistics. The extension of the model to general sources is discussed

in Section 3.7.4 for the case of three terminals.
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Figure 20. Model 3: Secret-key generation for the 1-to-m broadcast model

3.7.1 Secret-key generation model

As illustrated in Figure 20, we assume that every Terminal i ∈ M\{1} observes a

degraded version of the observation of Terminal 1. For i ∈ M, we assume that Xi =

{0, 1} and for i ∈M\{1}, we setXi = X1⊕Bi, withX1 ∼ B(p) andBi ∼ B(pi−1), pi ∈

[0, 1], independent of X1. Furthermore, we suppose that the eavesdropper does not

have access to an observation of the source. We call this setup the 1-to-m broadcast

model, and we recall expression of the secret-key capacity in the next proposition.

Proposition 3.7.5 ( [16]). Consider the 1-to-m broadcast model. The secret-key

capacity CSK(+∞) is given by

CSK(+∞) = min
i∈M\{1}

I(X1;Xi).

3.7.2 Polar coding scheme

Define imin , argmini∈M\{1}I(X1;Xi) such that imin − 1 = argmaxi∈M\{m}pi. Let

n ∈ N and N , 2n. We set U1:N , X1:N
1 GN . For δN , 2−N

β
, where β ∈]0, 1/2[,

define for j ∈M\{1} the sets

HX1|Xj ,
{
i ∈ J1, NK : H

(
U i|U1:i−1X1:N

j

)
> δN

}
.
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We also define the sets

VX1
,
{
i ∈ J1, NK : H

(
U i|U1:i−1

)
> 1− δN

}
,

HX1 ,
{
i ∈ J1, NK : H

(
U i|U1:i−1

)
> δN

}
.

The encoding and decoding algorithms are given in Algorithm 5 and Algorithm 6,

respectively. The high-level principle behind the operation of the algorithm is the

following. The set HX1|Xi contains the indices such that U1:N [HX1|Xi ] allows Ter-

minal i ∈ M\{1} to near losslessly reconstruct U1:N from X1:N
i by [87]. Using a

universality argument formalized in Lemma 3.7.13, we will show that it is actually

sufficient to transmit U1:N [HX1|Ximin
] to allow all the terminals to near losslessly re-

construct U1:N . The secret key common to all terminals may then be chosen as a

subset of U1:N [VX1 ]; since U1:N [HX1|Ximin
] has been publicly transmitted, the secret-

key is chosen as U1:N [VX1\HX1|Ximin
]. In general, HX1|Ximin

6⊂ VX1 , and the public

communication may leak some information about the key; consequently, as in Model

1 and Model 2, the protocol requires a pre-shared seed to protect the transmission of

U1:N [HX1|Ximin
\VX1 ].

Algorithm 5: Encoding algorithm for Terminal 1 in Model 3

Require: K̃, a secret key of size |HX1|Ximin
\VX1| shared by all terminals

beforehand; the observations X1:N
1 from the source.

1 U1:N ← X1:N
1 GN

2 K ← U1:N [VX1\HX1|Ximin
]

3 F , U1:N [VX1 ∩HX1|Ximin
]

4 F ′ , U1:N [HX1|Ximin
\VX1 ]

5 Transmit M ← [F, F ′ ⊕ K̃] publicly to Terminals {Xj}j∈M\1
return : K

As shown in Section 3.7.3, we have the following result.

Theorem 3.7.6. Consider the 1-to-m broadcast model of Section 3.7.1. Assume

that all terminals share a seed, whose rate can be chosen in o(N). The secret-key
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Algorithm 6: Decoding algorithm for Terminal j ∈M \ {1} for Model 3

Require: K̃, a secret key of size |HX1|Ximin
\VX1| shared by all terminals

beforehand; the observations X1:N
j from the source, the message M

transmitted by Terminal 1.

1 Form Û1:N from M and K̃ using the successive cancellation decoder of [87].

2 K̂ ← Û1:N [VX1\HX1|Ximin
]

return : K̂

capacity CSK(+∞) given in Proposition 3.7.5 is achieved by the polar coding scheme

in Algorithm 5 and Algorithm 6, whose computational complexity is O(N logN).

Proof. See Section 3.7.3.

The following corollary shows that no seed is required when the source has uniform

marginals.

Corollary 3.7.5. Consider the 1-to-m broadcast model. Assume that the source has

uniform marginal, that is, X1 ∼ B(1/2). The secret-key capacity CSK(+∞) given

in Proposition 3.7.5 is achievable with perfect secrecy with the polar coding scheme

of Algorithm 5 and Algorithm 6 choosing F ′ = ∅ and replacing the set VX1 by HX1

wherever it appears. .

We omit the proof of Corollary 3.7.5, which is similar to the ones of Theorem 3.7.6

and Proposition 3.5.3. Note that the model studied in Corollary 3.7.5 is a particular

case of [34, Model 3]. However, the construction proposed in [34, Model 3] relies again

on a standard array, whose size grows exponentially with the blocklength.

3.7.3 Analysis of polar coding scheme: Proof of Theorem 3.7.6
3.7.3.1 Key rate

Similar to the proof of Theorem 3.6.5, we can show that the key rate is

lim
N→+∞

|VX1\HX1|Ximin
|

N
= I(X1;Ximin

).
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3.7.3.2 Seed rate

Similar to the proof of Theorem 3.6.5, we can show that the seed rate is

lim
N→+∞

|HX1|Ximin
\VX1|

N
= 0.

3.7.3.3 Reliability

We make use of the following lemma.

Lemma 3.7.13. For j ∈M\{1, imin}, we have HX1|Xj ⊂ HX1|Ximin
.

Proof. Let j ∈ M\{1, imin}. We define B̃
(j)
imin

, Bj + ∆j, with ∆j independent

of Bj and such that p
B̃

(j)
imin

= pBimin
. We set X̃

(j)
imin

, X1 + B̃
(j)
imin

. Hence, since

Bimin
∼ B(pimin−1

), we have for any x, y ∈ {0, 1},

p
X̃

(j)
imin
|X1

(x|y) = (1− 1{x = y})pimin−1
+ 1{x = y}(1− pimin−1

)

= pXimin
|X1(x|y),

that is, p
X1X̃

(j)
imin

= pX1Ximin
. We now define the sets

H
X1|X̃(j)

imin

,
{
i ∈ J1, NK : H

(
Ui|U i−1

(
X̃

(j)
imin

)1:N
)

> δN

}
.

By the data processing equality, we have HX1|Xj ⊂ HX1|X̃(j)
imin

but we also have

H
X1|X̃(j)

imin

= HX1|Ximin
since p

X1X̃
(j)
imin

= pX1Ximin
, whence HX1|Xj ⊂ HX1|Ximin

.

By [87, Theorem 3] and by Lemma 3.7.13, for j ∈ M\{1}, Terminal j can

reconstruct K from [F, F ′] = UN [HX1|Ximin
] ⊃ UN [HX1|Xj ] with error probability

Pe(SN) 6 NδN .
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3.7.3.4 Strong secrecy and key uniformity

Secrecy and uniformity hold since,

L(SN) + U(SN) = I (K;F ) + log|K|−H(K)

= |K|−H (K|F )

= |K|−H (KF ) +H(F )

6 |F |+|K|−H (KF )

= |VX1 ∩HX1|Ximin
|+|VX1\HX1|Ximin

|−H(U1:N [VX1 ])

= |VX1|−H(U1:N [VX1 ])

6 NδN ,

where the last inequality can be shown as in the proof of Theorem 3.6.5.

3.7.4 An extension to general sources

The multiterminal model described in Section 3.7.1 only considers binary symmetric

channels between the components of the source. A natural question is whether a

similar coding scheme may be developed for general sources. We answer this by the

affirmative for the case of three terminals; however, the coding scheme is significantly

more involved than the one in Section 3.7.2. In the following, we can assume without

loss of generality that

I(X1;X2) = max
j∈{1,2,3}

min
i∈{1,2,3}\{j}

I(Xj;Xi).

Let n ∈ N and N , 2n. We note U1:N , X2
1:NGN , and for δN , 2−N

β
, where

β ∈]0, 1/2[, we define the following sets

VX2 ,
{
i ∈ J1, NK : H

(
U i|U1:i−1

)
> 1− δN

}
,

HX2|X1 ,
{
i ∈ J1, NK : H

(
U i|U1:i−1X1:N

1

)
> δN

}
,

HX2|X3 ,
{
i ∈ J1, NK : H

(
U i|U1:i−1X1:N

3

)
> δN

}
.
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We also define

KXM , (VX2\HX2|X1)\HX2|X3 and K̄XM , (VX2\HX2|X1) ∩HX2|X3 ,

which are such that VX2\HX2|X1 = KXM ∪ K̄XM and KXM ∩ K̄XM = ∅. Finally, we

define

FX2|X1 , HX2|X1 ∩ VX2 ,

F̄X2|X1 , HX2|X1\VX2 ,

FX2|X3 , HX2|X3 ∩ VX2 ,

F̄X2|X3 , HX2|X3\VX2 ,

which are such that HX2|X1 = FX2|X1 ∪ F̄X2|X1 , FX2|X1 ∩ F̄X2|X1 = ∅, HX2|X3 =

FX2|X3 ∪ F̄X2|X3 , and FX2|X3 ∩ F̄X2|X3 = ∅.

The encoding and decoding algorithms are provided in Algorithm 7, Algorithm 8,

and Algorithm 9. The underlying principle is to make Terminals 1 and 3 reconstruct

X1:N
2 and to choose the secret key as a subset of U1:N . For the public communica-

tion, we perform universal source coding with side information with an idea similar

to [97]. Terminal 2 thus performs encoding over k blocks of size N to transmit the

side information necessary to reconstruct X1:kN
2 at Terminals 1 and 3. Specifically,

Terminal 1 decodes the blocks in order from 1 to k, so that it is able to estimate

U1:N
i [HX2|X1 ] by processing the observations and the public communication in blocks

1 to i. In contrast, Terminal 3 decodes the blocks in reverse order starting from k

down to 1, so that it is able to estimate U1:N
i [HX2|X3 ] by processing the observations

and the public communication in blocks k down to i. One of the challenges is to

extract a uniform key from U1:N
1:k independent of the public communication messages,

which we address by protecting some of the public communication corresponding to

Block i with part of the secret-key extracted in Block i − 1. Moreover, similar to

Algorithms 1, 3, a small secret seed must be shared by the users to protect the bits in

107



positions HX2|X1\VX2 ∪ HX2|X3\VX2 , which must be revealed to allow reconstruction

of the secret-key by Terminals 1, 3, but that may also leak information about the

secret-key.

The following remarks clarify why Algorithms 7, 8, 9 achieve the desired behavior.

Remark 3.7.4. In every block i, Terminal 1 observes Mi = [F
(1)
i ⊕ K̄i−1, F

(2)
i , F ′i ⊕

K̃i]. Using its estimate of the key K̄i from the previous block, Terminal 1 estimates

[F
(1)
i , F

(2)
i , F ′i ], which contains U1:N

i [HX2|X1 ] by construction. Hence, Terminal 1 has

ability to run the successive cancellation decoder and reconstruct U1:N
i .

Remark 3.7.5. In Block k, Terminal 3 has access to F
(2)
k , F ′k, and F̄k using Mk and

K̃k. Since FXM ⊂ FX2|X1\FX2|X3, note that

FX2|X1\FXM = FX2|X1 ∩ F cXM
⊃ FX2|X1 ∩ (FX2|X1\FX2|X3)

c

= FX2|X1 ∩ FX2|X3 .

Hence U1:N
k [FX2|X1 ∩FX2|X3 ] ⊂ F

(2)
k , which combined with F̄k and F ′k allows Terminal

3 to obtain U1:N
k [HX2|X3 ]. Hence, Terminal 3 has the ability to run the successive

cancellation decoder and reconstruct Û1:N
k .

For Block i ∈ Jk − 1, 1K, observe that if Û1:N
i+1 [FXM ] = U1:N

i+1 [FXM ], then we have

[F
(1)
i+1 ⊕ K̄i ⊕ Û1:N

i+1 [FXM ], F
(2)
i , F ′i ]

= [U1:N
i [K̄XM ], F

(2)
i , F ′i ]

= [U1:N
i [FX2|X3\FX2|X1 ], F

(2)
i , F ′i ]

⊃ [U1:N
i [FX2|X3\FX2|X1 ], U

1:N
i [FX2|X1 ∩ FX2|X3 ], F

′
i ]

⊃ U1:N
i [HX2|X3 ].

Consequently, Terminal 3 can form an estimate of U1:N
i [HX2|X3 ] with

[F
(1)
i+1 ⊕ K̄i ⊕ Û1:N

i+1 [FXM ], F
(2)
i , F ′i ]
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and apply the successive cancellation decoder to form Û1:N
i an estimate of U1:N

i .

Theorem 3.7.7. Assume the general setting of Section 3.3 with m = 3, X1 = X2 =

X3 = {0, 1}, rate-unlimited public communication, i.e., Rp = +∞, and Z = ∅, i.e.,

the eavesdropper does not have access to the observation of the source component

Z. Assume that all terminals share a seed, whose rate can be chosen in o(N). The

secret-key rate

max
j∈{1,2,3}

min
i∈{1,2,3}\{j}

I(Xj;Xi)

is achieved by the polar coding scheme of Algorithm 7 and Algorithms 8, 9, which

involves a chaining of k blocks of size N , and whose complexity is O(kN logN).

Proof. See Appendix 3.C.

As a corollary we obtain the following result for a broadcast model with three

terminals.

Corollary 3.7.6. Assume the broadcast setting of Section 3.7.1 with m = 3, X1 =

X2 = X3 = {0, 1}, and an arbitrary distribution pXM. Assume that all terminals share

a seed, whose rate can be chosen in o(N). The secret-key key capacity Cs(+∞) =

min(I(X1;X2), I(X2;X3)) is achieved by the polar coding scheme of Algorithm 7 and

Algorithms 8, 9, which involves a chaining of k blocks of size N , and whose complexity

is O(kN logN).

3.8 Model 4: Multiterminal markov tree model with uniform
marginals

3.8.1 Secret-key generation model

The final model for which we develop a polar coding scheme was first introduced

in [34, Model 3]. We assume that all the observation alphabets are Xi = {0, 1} for

i ∈ M. As illustrated in Figure 21, consider a tree T with vertex set V(T ) , M
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Algorithm 7: Encoding algorithm for Terminal 2 in Model 3

Require: k independent secret keys {K̃i}i∈J1,kK of size |F̄X2|X1 ∪ F̄X2|X3| shared
by all terminals beforehand; for every block i ∈ J1, kK, the
observations (X2)1:N

i from the source. FXM , a subset of
FX2|X1\FX2|X3 with size |K̄XM |.

1 for Block i = 1 to k do
2 if i = 1 then
3 U1:N

1 ← (X2)1:N
1 GN

4 K1 ← U1:N
1 [KXM ]

5 K̄1 ← U1:N
1 [K̄XM ]

6 F1 ← U1:N
1 [FX2|X1 ]

7 F ′1 ← U1:N
1 [F̄X2|X1 ∪ F̄X2|X3 ]

8 Transmit M1 ← [F1, F
′
1 ⊕ K̃1] publicly to all Terminals

9 else if i = k then
10 U1:N

k ← (X2)1:N
k GN

11 Kk ← U1:N
k [KXM ∪ FXM ]

12 F
(1)
k ← U1:N

k [FXM ]

13 F
(2)
k ← U1:N

k [FX2|X1\FXM ]
14 F ′k ← U1:N

k [F̄X2|X1 ∪ F̄X2|X3 ]
15 F̄k ← U1:N

k [FX2|X3\FX2|X1 ]

16 Transmit Mk ← [F
(1)
k ⊕ K̄k−1, F

(2)
k , F ′k⊕ K̃k, F̄k] publicly to all Terminals

17 else
18 U1:N

i ← (X2)1:N
i GN

19 Ki ← U1:N
i [KXM ∪ FXM ]

20 K̄i ← U1:N
i [K̄XM ]

21 F
(1)
i ← U1:N

i [FXM ]

22 F
(2)
i ← U1:N

i [FX2|X1\FXM ]
23 F ′i ← U1:N

i [F̄X2|X1 ∪ F̄X2|X3 ]

24 Transmit Mi ← [F
(1)
i ⊕ K̄i−1, F

(2)
i , F ′i ⊕ K̃i] publicly to all Terminals

25 end

26 end
return : K1:k ← [K1, K2, . . . , Kk].
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Algorithm 8: Decoding algorithm for Terminal 1 in Model 3

Require: Secret keys {K̃i}i∈J1,kK of size |F̄X2|X1 ∪ F̄X2|X3| shared with

Terminal 2; for every block i ∈ J1, kK, the observations (X1)1:N
i from

the source; the set FXM defined in Algorithm 7.

1 for Block i = 1 to k do
2 if i = 1 then

3 Form [F1, F
′
1] from M1 and K̃1 and extract and estimate U1:N

1 [HX2|X1 ]
{See Remark 3.7.4 for a justification}

4 Form Û1:N
1 with the successive cancellation decoder of [87]

5 K̂1 ← Û1:N
1 [KXM ]

6 else

7 Estimate [F
(1)
i , F

(2)
i , F ′i ] from Mi, Û

1:N
i−1 , and K̃i and extract an estimate

of U1:N
i [HX2|X1 ]

8 Form Û1:N
i with the successive cancellation decoder of [87]

9 K̂i ← Û1:N
i [KXM ]

10 end

11 end

return : K̂1:k ← [K̂1, K̂2, . . . , K̂k].

Algorithm 9: Decoding algorithm for Terminal 3 in Model 3

Require: Secret keys {K̃i}i∈J1,kK of size |F̄X2|X1 ∪ F̄X2|X3| shared with

Terminal 2; for every block i ∈ J1, kK, the observations (X3)1:N
i from

the source; FXM used in encoding.

1 for Block i = k to 1 do
2 if i = k then

3 Form [F
(2)
k , F ′k, F̄k] from Mk and K̃k and extract an estimate of

U1:N
k [HX2|X3 ] {See Remark 3.7.5 for a justification}

4 Form Û1:N
k with the successive cancellation decoder of [87]

5 K̂1 ← Û1:N
1 [KXM ]

6 else

7 Estimate [K̄i, F
(2)
i , F ′i ] from Mi, Û

1:N
i+1 , and K̃i and extract an estimate

of U1:N
i [HX2|X3 ]

8 Form Û1:N
i with the successive cancellation decoder of [87]

9 K̂i ← Û1:N
i [KXM ]

10 end

11 end

return : K̂1:k ← [K̂1, K̂2, . . . , K̂k].
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and edge set E(T ). The joint probability distribution pXM is characterized as follows.

∀(i, j) ∈ E(T ),∀xi, xj ∈ {0, 1},

pXiXj(xi, xj) ,
1

2
(1− pi,j)1{xi = xj}+

1

2
pi,j(1− 1{xi = xj}),

which means that pXi = pXj is uniform and the test channel between Xi and Xj is a

binary symmetric channel with paramater pi,j.

Furthermore, we suppose that the eavesdropper does not have access to the ob-

servation of the source component Z. This setup is called the Markov tree model

with uniform marginals. The expression of the secret-key capacity is recalled in the

following proposition.

Proposition 3.8.6 ([16]). Consider the Markov tree model with uniform marginal.

The secret-key capacity CSK(+∞) is given by

CSK(+∞) = I(Xn0 ;Xn1),

where (n0, n1) , argmin(i,j)∈E(T )I(Xi;Xj).

Note that the construction proposed in [34] is not low-complexity since it relies

on the construction of a standard array, whose size grows exponentially with the

blocklength.

3.8.2 Polar coding scheme

We first introduce some notations for the coding scheme. For any i ∈ M, we note

N j(i) the set of vertices in V(T ) that are at distance j from vertex i. Recall that we

note (n0, n1) , argmin(i,j)∈E(T )I(Xi;Xj). We also consider for the encoding process

the tree T as a rooted tree with root Xn0 . An example is depicted in Figure 21.

Let n ∈ N and N , 2n. For j ∈ M, we set U1:N
j , X1:N

j GN . For j1 ∈ M,

j2 ∈M\{j1}, and δN , 2−N
β
, β ∈]0, 1/2[, we define the sets

HXj1 |Xj2 ,
{
i ∈ J1, NK : H

(
U i
j1
|U1:i−1

j1
X1:N
j2

)
> δN

}
.
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Xn0

Xn1,1
Xn1,2

Xn2,1
Xn2,2Xn2,3

Xn2,4
Xn2,5

Xn3,1
Xn3,2 Xn3,3

Xn3,4
Xn3,5

Xn1

Xn3,6

Figure 21. Example of Markov tree model with uniform marginal for m = 15.
Each vertex represent the random variable observed by a given terminal, and
each edge can be seen as a binary symmetric test channel. We have noted
(n0, n1) , argmin(i,j)∈E(T )I(Xi;Xj), N 1(n0) , {n1, n1,1, n1,2}, N 2(n0) , {n2,i}i∈J1,5K, N 3(n0) ,
{n3,i}i∈J1,6K .

The exact encoding and decoding algorithms are given in Algorithm 10 and Algorithm

11. The principle of their operation is to have all terminal reconstruct U1:N
n0

and choose

the key as a subvector of U1:N
n0

. The idea behind the inter-terminal communication,

which is illustrated in Figure 22, is to take advantage of the tree structure to make all

Terminals reconstruct X1:N
n0

; the source uniformity plays a crucial role to develop a

universal result in Lemma 3.8.14, similar to the one obtained for the broadcast model

in Lemma 3.7.13. Although the assumption of uniform marginal is required in our

proof, a side benefit is that no pre-shared seed is needed to ensure strong secrecy.

We note F the set of indices (i, j) for which Fi,j is defined. We note the collective

inter-terminals communication as F , {Fi,j}(i,j)∈F .

The analysis of the scheme in Section 3.8.3 leads to the following result.

Theorem 3.8.8. Consider the Markov tree model with uniform marginals. The

secret-key capacity CSK(+∞) given in Proposition 3.8.6 is achievable with perfect se-

crecy with the polar coding scheme of Section 3.8.2, whose computational complexity

is O(N logN).
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Algorithm 10: Encoding algorithm for Model 4

1 Fn0 ← U1:N
n0

[
HXn0 |Xn1

]
.

2 Terminal n0 transmits Fn0 publicly.
3 Define d as the maximal distance between the vertex n0 and the vertices in
V(T ).

4 for i = 1 to d− 1 do
5 for j ∈ N i(n0) do
6 if N 1(j) ∩N i+1(n0) 6= ∅ then

7 Define j∗ , argmax
j̃∈N 1(j)∩N i+1(n0)

pj̃,j.

8 Fi,j ← U1:N
j

[
HXj |Xj∗

]
,

9 Terminal j transmits Fi,j publicly

10 end

11 end

12 end

return : K ← U1:N
n0

[
Hc
Xn0 |Xn1

]

Algorithm 11: Decoding algorithm for Model 4

Require: Observations from the source, and public messages F.

1 With Fn0 = U1:N
n0

[
HXn0 |Xn1

]
, the terminals in N 1(n0) estimate X1:N

n0
with the

successive cancellation decoder of [87], and then form K̂ an estimate of K.
2 Let k ∈ J1, d− 1K, j ∈ N k+1(n0) and i = N k(n0)∩N 1(j). With Fk,i Terminal j

estimates X1:N
i with the successive cancellation decoder of [87]. By iterating,

Terminal j is successively able to form the estimate of X1:N
ik−1

, X1:N
ik−2

, . . . , X1:N
i1

,

X1:N
n0

, for some i1 ∈ N 1(n0), i2 ∈ N 2(n0), . . . , ik ∈ N k−1(n0).

3 Finally, Terminal j forms K̂ an estimate of K from its estimate of X1:N
n0

.

return : K̂
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Proof. See Section 3.8.3.

Note again that for this model no pre-shared seed is required because the marginal

of pXM are uniform.

3.8.3 Analysis of polar coding scheme: Proof of Theorem 3.8.8
3.8.3.1 Key Rate

From [87], we obtain the key rate

lim
N→∞

|Hc
Xn0 |Xn1

|
N

= 1− lim
N→∞

|HXn0 |Xn1 |
N

= 1−H(Xn0 |Xn1) = I(Xn0 ;Xn1).

3.8.3.2 Reliability

We first show that for k ∈ J1, dK, Terminal j ∈ N k(n0) can reconstruct Xj0 with

j0 , N 1(j) ∩N k−1(n0) from Fk−1,jo . Specifically, we establish the following.

Lemma 3.8.14. Let k ∈ J1, dK, j ∈ N k(n0), j0 , N 1(j) ∩N k−1(n0). Define Dk,j0 ,

N 1(j0) ∩N k(n0), and i∗ , arg max
ĩ∈Dk,j0

pĩ,j0. We have

∀i ∈ Dk,j0 , HXj0 |Xi ⊂ HXj0 |Xi∗ .

Proof. For i ∈ D, define X̄i , Xj0 + Bi, with Bi ∼ B(pi,j0). By Lemma 3.7.13, we

now that for any i ∈ D, HXj0 |X̄i
⊂ HXj0 |X̄i∗

. Then, observe that for any i ∈ D, for

any x, y ∈ {0, 1},

pX̄iXj0 (x, y)

= pXj0 (y)pX̄i|Xj0 (x|y)

=
1

2
(1{x = y}(1− pi,j0) + pi,j0(1− 1{x = y}))

= pXiXj0 (x, y),

Hence, HXj0 |Xi = HXj0 |X̄i
⊂ HXj0 |X̄i∗

= HXj0 |Xi∗

Lemma 3.8.14 is similar to Lemma 3.7.13; however, unlike Lemma 3.7.13, the

proof of Lemma 3.8.14 requires uniform marginals.
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Xn0

Xn1
Xn1,1

Xn1,2

Xn2,1
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Figure 22. Example for the reconstruction process. A dashed-line from Terminal i to
Terminal j represents a public transmission from Terminal i of the information nec-
essary for Terminal j to reconstruct Xi. A dotted-line from Terminal i to Terminal j
represents a “virtual communication” and means that Terminal j is able to reconstruct
Xi from the information corresponding to the dashed-line leaving Terminal i – this illus-
trates Lemma 3.8.14. For this example we have assumed I(Xn1,2 ;Xn2,1) 6 I(Xn1,2 ;Xn2,3),
I(Xn1

;Xn2,5
) 6 min{I(Xn1

;Xn2,i
)}i∈{2,4}, I(Xn2,1

;Xn3,6
) 6 I(Xn2,1

;Xn3,5
), I(Xn2,2

;Xn3,4
) 6

min{I(Xn2,2
;Xn3,i

)}i∈{2,3}. All in all, all the terminals can reconstruct Xn0
.

Now, observe that with Fn0 = U1:N
n0

[
HXn0 |Xn1

]
, all terminals in N 1(n0) can re-

construct X1:N
n0

with error probability O(NδN) by Lemma 3.8.14 and [87]. We then

show by induction that all terminals can reconstruct X1:N
n0

with error probability

O(NδN). Assume that for k ∈ J1, d − 1K, X1:N
n0

can be reconstructed with error

probability O(NδN) from any X1:N
j , where j ∈ N k(n0). Let j ∈ N k+1(n0) and

i = N k(n0)∩N 1(j). With Fk,i Terminal j can reconstruct X1:N
i with error probabil-

ity O(NδN) by Lemma 3.8.14 and [87]. Then, since X1:N
i ∈ N k(n0), Terminal j can

also reconstruct X1:N
n0

with error probability O(NδN) by induction hypothesis.

We conclude that all terminals can reconstructX1:N
n0

and thusK = U1:N
n0

[
Hc
Xn0 |Xn1

]

with error probability Pe(SN) = O(NδN). The global reconstruction process is illus-

trated in Figure 22.

3.8.3.3 Key Uniformity

By definition of the model, Xn0 is uniform, hence, U1:N
n0

and K , U1:N
n0

[
Hc
Xn0 |n1

]
are

also uniform.
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3.8.3.4 Perfect Secrecy

We first introduce an equivalent model as follows. We start by defining for i ∈ N 1(n0),

X̄i , Xn0 + Bi, with Bi ∼ B(pi,n0). Then, for k ∈ J2, dK, for i ∈ N k(n0), define

i0 , N k−1(n0)∩N 1(i), and X̄i , X̄i0 +Bi, with Bi ∼ B(pi,i0). Consequently, similar

to the proof of Lemma 3.8.14, we have

pX̄M = pXM . (61)

Moreover, for j ∈M\{n0}. We have

Ū1:N
j = U1:N

n0

⊕

i∈Pn0,j

B̃1:N
i ,

where Pn0,j denotes the set of vertices that form a path between Xn0 and Xj including

j and excluding n0, B̃N
i , BN

i GN , and Ū1:N
j , X̄1:N

j GN , i ∈ M\{n0}. Recall that

for (i, j) ∈ F ,

Fi,j = U1:N
j

[
HXj |Xj∗

]
.

We define

F̄i,j , Ū1:N
j

[
HXj |Xj∗

]
= U1:N

n0

[
HXj |Xj∗

] ⊕

i∈Pn0,j

B̃1:N
i

[
HXj |Xj∗

]
, (62)

and

F̄ , {F̄i,j}(i,j)∈F . (63)

Lemma 3.8.15. For j ∈M\{n0}, HXj |Xj∗ ⊂ HXn0 |Xn1 .

Proof. Let j ∈ M\{n0}. Let rj be such that pn0,n1 = pj,j∗ ? rj (such rj exists by

definition of (n0, n1)), where ? is defined as in Example 3.6.1. We define ∆
(1)
j ∼

B(pj,j∗) and ∆
(2)
j ∼ B(rj) such that Bn1 = ∆

(1)
j +∆

(2)
j . We define the dummy random

variables ¯̄Xj∗ , Xn0 + ∆
(1)
j and ¯̄Xn1 , Xn0 + ∆

(1)
j + ∆

(1)
j . Then, for any x, y ∈ {0, 1},
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and by uniformity of the marginals of pXM ,

p ¯̄Xj∗Xn0
(x, y) = pXn0 (y)p ¯̄Xj∗ |Xn0

(x|y)

=
1

2
p ¯̄Xj∗ |Xn0

(x|y)

=
1

2
[(1− 1{x = y})pj,j∗ + (1− pj,j∗)1{x = y}]

=
1

2
pXj∗ |Xj(x|y)

= pXj∗Xj(x, y),

so that HXj |Xj∗ = HXn0 |
¯̄Xj∗

. Similarly, we have pXn1Xn0 = p ¯̄Xn1Xn0
so that HXn0 |Xn1 =

HXn0 |
¯̄Xn1

. Hence, by the data processing inequality, we obtain

HXj |Xj∗ = HXn0 |
¯̄Xj∗
⊂ HXn0 |

¯̄Xn1
= HXn0 |Xn1 .

We can now show that perfect secrecy holds as follows.

L(SN)

= I(K; F)

= I
(
U1:N
n0

[
Hc
Xn0 |Xn1

]
; F
)

(a)
= I

(
Ū1:N
n0

[
Hc
Xn0 |Xn1

]
; F̄
)

(b)

6 I
(
Ū1:N
n0

[
Hc
Xn0 |Xn1

]
; Ū1:N

n0

[
HXn0 |Xn1

]
, B̃1:N

J1,mK\{n0}
[
HXn0 |Xn1

])

= I
(
Ū1:N
n0

[
Hc
Xn0 |Xn1

]
; Ū1:N

n0

[
HXn0 |Xn1

])

+ I
(
Ū1:N
n0

[
Hc
Xn0 |Xn1

]
; B̃1:N

J1,mK\{n0}
[
HXn0 |Xn1

]
|Ū1:N

n0

[
HXn0 |Xn1

])

(c)
= I

(
Ū1:N
n0

[
Hc
Xn0 |Xn1

]
; B̃1:N

J1,mK\{n0}
[
HXn0 |Xn1

]
|Ū1:N

n0

[
HXn0 |Xn1

])

6 I
(
Ū1:N
n0

; B̃1:N
J1,mK\{n0}

[
HXn0 |Xn1

])

(d)
= 0,
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Figure 23. Model for biometric secret generation

where (a) follows by (61), (62), and (63), (b) follows from Lemma 3.8.15 and Equa-

tion (62), (c) follows by uniformity of Ū1:N
n0

, (d) holds by independence of Ū1:N
n0

and

B̃1:N
J1,mK\{n0}. We have thus shown perfect secrecy.

3.9 Application to secrecy and privacy for biometric systems

In this final section, we show how the results obtained for Model 2 may be applied

to the related problems of secrecy and privacy for biometric systems [65,98–100]. As

noted in [65], the main difficulty in constructing practical codes for such problems is

the need for vector quantization; we show here that polar codes offer a low-complexity

solution and provably optimal solutionsfor the models studied in [65].

3.9.1 Biometric system models

Consider two biometric sequences X1:N and Y 1:N distributed according to the mem-

oryless source (XY , pXY ). Assume that X1:N is an enrollment sequence and Y 1:N an

authentication sequence observed by an encoder and a decoder, respectively. In [65],

four different models are considered. We only deal with the “generated-secret sys-

tems” and the “generated-secret systems with zero leakage,” as codes for the latter

models can be used for the “chosen-secret systems” and the “chosen-secret systems

with zero leakage” using a masking technique [65].
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3.9.1.1 Generated-secret systems

A biometric secret generation strategy Sbio
N is illustrated in Figure 23 and is formally

defined as follows.

Definition 3.9.3. Let R ∈ R+. Let S be an alphabet of size 2NR. The protocol defined

by the following steps is called a (2NR, N,R) biometric secret generation strategy.

• The encoder observes the enrollment sequence X1:N ;

• The encoder generates a secret S ∈ S from X1:N ;

• The encoder transmits publicly to the decoder helper data M ;

• The decoder observes the authentication sequence Y 1:N , and computes Ŝ ∈ S.

The performance of a biometric secret generation strategy is measured in terms

of

• the average probability of error between the biometric secrets with Pe(Sbio
N ) ,

P[S 6= Ŝ],

• the information leakage of M on S with L(Sbio
N ) , I(M ;S),

• the privacy leakage of M on X1:N with Pc(Sbio
N ) , I(M ;X1:N |S) (conditional

case), or Pu(Sbio
N ) , I(M ;X1:N) (unconditional case),

• the uniformity of the biometric secret U(Sbio
N ) , logd2NRe −H(S).

Definition 3.9.4. For a fixed privacy leakage threshold L, a biometric secret rate

R and information is achievable if there exists a sequence of (2NR, N,R) secret-key
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generation strategies
{
Sbio
N

}
N>1

such that

lim
N→∞

Pe(Sbio
N ) =0, (reliability)

lim
N→∞

L(Sbio
N ) =0, (strong secrecy)

lim
N→∞

Pc(Sbio
N )/N 6L, (privacy leakage)

lim
N→∞

U(Sbio
N ) =0. (uniformity)

Moreover, the supremum of achievable rates is called the biometric secret capacity and

is denoted Cc
Bio(L). For the unconditional case, Pc(Sbio

N ) is replaced with Pu(Sbio
N ),

and the biometric secret capacity and is denoted by Cu
Bio(L).

Note that we require a stronger security metric than in [65]. The biometric secret

capacities are known and recalled below.

Theorem 3.9.9 ([65]). Let (XY , pXY ) be a BMS and L ∈ R+ be a privacy leakage

threshold. The conditional and unconditional biometric secret capacities are equal

Cc
Bio(L) = Cu

Bio(L), moreover,

Cc
Bio(L) = max

U
I(Y ;U)

subject to
L = I(U ;X)− I(U ;Y ),

U → X → Y,

|U|6 |X |.

Remark 3.9.6. The equality L = I(U ;X) − I(U ;Y ) and the range constraint |U|6

|X | are obtained from Proposition 2.5.3.

3.9.1.2 Generated-secret systems with zero leakage

A biometric secret generation strategy with zero leakage SbioZ
N is describes in Figure

24 and is formally defined as follows.
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Figure 24. Model for biometric secret generation with zero leakage

Definition 3.9.5. Let R ∈ R+. Let S be an alphabet of size 2NR. Assume that the

encoder and decoder share a uniformly distributed secret-key P beforehand. The pro-

tocol defined by the following steps is called a (2NR, N,R) biometric secret generation

strategy with zero leakage.

• The encoder observes the enrollment sequence X1:N ;

• The encoder generates a secret S ∈ S from X1:N and P ;

• The encoder transmits publicly to the decoder helper data M which is a function

of X1:N and P ;

• The decoder observes the authentication sequence Y 1:N , and computes Ŝ ∈ S

from Y 1:N and P .

The performance of a biometric secret generation strategy with zero leakage is

measured in terms of

• the average probability of error between the biometric secrets with Pe(Sbio
N ) ,

P[S 6= Ŝ],

• the information leakage of M on S and X1:N with Lc(Sbio
N ) , I(SX1:N ;M)

(conditional case), or Lu(Sbio
N ) , I(S;M) + I(X1:N ;M) (unconditional case),

122



• the length of the secret-key P with H(SbioZ
N ) , |P |−H(P ) ,

• the uniformity of the biometric secret U(Sbio
N ) , logd2NRe −H(S).

Definition 3.9.6. For a fixed secret-key length K, a biometric secret rate R is achiev-

able with zero leakage if there exists a sequence of (2NR, N,R) biometric secret gen-

eration strategies with zero leakage
{
SbioZ
N

}
N>1

such that

lim
N→∞

Pe(SbioZ
N ) =0, (reliability)

lim
N→∞

Lc(SbioZ
N ) =0, (strong secrecy)

lim
N→∞

H(SbioZ
N )/N 6K, (secret-key length)

lim
N→∞

U(SbioZ
N ) =0. (uniformity)

Moreover, the supremum of achievable rates is called the zero-leakage biometric secret

capacity and is denoted Cc
BioZ(L). For the unconditional case Pc(SbioZ

N ) is replaced with

Pu(SbioZ
N ), and the zero-leakage biometric secret capacity and is denoted Cu

BioZ(L).

Note that we require a stronger security metric than in [65]. The zero-leakage bio-

metric secret capacities are known and recalled below.

Theorem 3.9.10 ([65]). Let (XY , pXY ) be a BMS and K ∈ R+ be a fixed length.

The conditional and unconditional zero-leakage biometric secret capacities are equal

Cc
BioZ(K) = Cu

BioZ(K)), moreover,

Cc
BioZ(L) = max

U
I(Y ;U) +K

subject to
K = I(U ;X)− I(U ;Y ),

U → X → Y,

|U|6 |X |.

Remark 3.9.7. The equality K = I(U ;X)− I(U ;Y ) and the range constraint |U|6

|X | are obtained from Proposition 2.5.3.
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3.9.2 Polar coding scheme for generated-secret systems

Let n ∈ N and N , 2n. Fix a joint probability distribution pXU . We note V 1:N ,

U1:NGN . For δN , 2−N
β
, where β ∈]0, 1/2[, define the following sets

HU ,
{
i ∈ J1, NK : H

(
V i|V 1:i−1

)
> δN

}
,

VU ,
{
i ∈ J1, NK : H

(
V i|V 1:i−1

)
> 1− δN

}
,

VU |X ,
{
i ∈ J1, NK : H

(
V i|V 1:i−1X1:N

)
> 1− δN

}
,

HU |Y ,
{
i ∈ J1, NK : H

(
V i|V 1:i−1Y 1:N

)
> δN

}
,

HU |X ,
{
i ∈ J1, NK : H

(
V i|V 1:i−1X1:N

)
> δN

}
.

The scheme proposed is a special case (it corresponds to the case Z = ∅) of the

scheme in Section 3.6.2. However, for completeness and clarity, we provide its detailed

description in Algorithm 12 and Algorithm 13 with the notation of the biometric secret

generation problem. We formally define a biometric key generation strategy Sbio
N as

follows.

Remark 3.9.8. One may actually use S1:N
k [VU\HU |Y ] as the Sk and slightly increase

the biometric secret rate in Algorithm 12. However, one does not distinguish the last

block from the others for convenience – see Remark 3.5.1.

Based on the results established for Model 2 in Section 3.6, we obtain the following.

Theorem 3.9.11. Consider a BMS (XY , pXY ). Assume that the encoder and the de-

coder share a secret seed. For any L ∈ R, the biometric secret capacities Cc
Bio(L), and

Cu
Bio(L), are achieved by the polar coding scheme of Algorithm 12 and Algorithms 13,

which involves a chaining of k blocks of size N , and whose complexity is O(kN logN).

Moreover, the seed rate is in o
(
2−N

α)
, α < 1/2.

Theorem 3.9.11 is a direct consequence of Theorem 3.6.5 for the particular case

Z = ∅, since

max(Pc(Sbio
N ),Pu(Sbio

N )) 6 H(M).
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Algorithm 12: Encoding algorithm for generated secret systems

Require: S̃0, a secret key of size |(HU |Y \VU |X)\VU |; AUXY be any subset of
VU\HU |Y with size |(HU |Y \VU |X)\VU |; Observations X1:N

i in every
block i ∈ J1, kK; a vector R1 of uniformly distributed bits with size
|VU |X |.

1 Transmit R1 publicly.
2 for Block i = 1 to k do

3 Ṽ 1:N
i [VU |X ]← R1

4 Given X1:N
i , successively draw the remaining bits of Ṽ 1:N

i according to

p̃V 1:N
i X1:N

i
,
∏N

j=1 p̃V ji |V
j−1
i X1:NpX1:N with

p̃V ji |V
1:j−1
i X1:N (vj|Ṽ 1:j−1

i X1:N
i )

,
{
pV j |V 1:j−1X1:N (vj|Ṽ 1:j−1

i X1:N
i ) if i ∈ HU\VU |X

pV j |V 1:j−1(vj|Ṽ 1:j−1
i ) if i ∈ Hc

U

(64)

5 S̃i ← Ṽ 1:N
i [AUXY ]

6 Si ← Ṽ 1:N
i [(VU\HU |Y )\AUXY ]

7 Fi ← Ṽ 1:N
i [(HU |Y \VU |X) ∩ VU ]

8 F ′i ← Ṽ 1:N
i [(HU |Y \VU |X)\VU ]

9 Transmit Mi ← [Fi, F
′
i ⊕ S̃i−1, R1] publicly

10 end
return : S1:k ← [S1, S2, . . . , Sk]

Algorithm 13: Decoding algorithm for generated secret systems

Require: The secret-key S̃0, and the set AUXY defined in Algorithm 12;
Observations Y 1:N

i and message Mi transmitted by other party in
every block i ∈ J1, kK, vector R1.

1 for Block i = 1 to k do

2 Form Ṽ 1:N
i [HU |Y ] from (Fi, F

′
i ) = Ṽ 1:N

i [HU |Y \VU |X ] and

R1 = Ri = Ṽ 1:N
i [VU |X ].

3 Create estimate V̂ 1:N
i of Ṽ 1:N

i with the successive cancellation decoder
of [87]

4 Ŝi ← V̂ 1:N
i [(VU\HU |Y )\AUXY ]

5 S̃i ← V̂ 1:N
i [AUXY ]

6 end

return : Ŝ1:k , [Ŝ1, Ŝ2, . . . , Ŝk].
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Note also that for i ∈ J0, k − 1K, S̃i = o(N).

3.9.3 Polar coding scheme for generated-secret systems with zero leakage

The encoding and decoding algorithms are given in Algorithm 14 and Algorithm 15.

The difference with the scheme of Section 3.9.2 is that the public communication is

protected with a secret-key shared by the encoder and the decoder.

Algorithm 14: Encoding algorithm for generated secret systems with zero leak-
age

Require: k secret keys {Pi}i∈J1,kK of size |HU |Y \VU |X |; observations X1:N
i in

every block i ∈ J1, kK; a vector R1 of uniformly distributed bits with
size |VU |X |.

1 Transmit R1 publicly.
2 for Block i = 1 to k do

3 Ṽ 1:N
i [VU |X ]← R1

4 Given observations X1:N
i , successively draw the remaining bits of Ṽ 1:N

i

according to p̃V X defined by (64).

5 Fi ← Ṽ 1:N
i [(HU |Y \VU |X) ∩ VU ]

6 F ′i ← Ṽ 1:N
i [(HU |Y \VU |X)\VU ]

7 Si ← [Ṽ 1:N
i [VU\HU |Y ], Fi]

8 Transmit Mi ← [Fi, F
′
i ]⊕ Pi publicly

9 end
return : S1:k ← [S1, S2, . . . , Sk]

Algorithm 15: Decoding algorithm for generated secret systems with zero leak-
age

Require: the secret key Pi, Mi transmitted by other party, observations Y 1:N
i

in every block i ∈ J1, kK, and vector R1.

1 for Block i = 1 to k do

2 Form Ṽ 1:N
i [HU |Y ] from (Fi, F

′
i ) = Ṽ 1:N

i [HU |Y \VU |X ] and

R1 = Ri = Ṽ 1:N
i [VU |X ].

3 Create estimate V̂ 1:N
i of Ṽ 1:N

i with the successive cancellation decoder
of [87]

4 Ŝi ← [V̂ 1:N
i [VU\HU |Y ], Fi]

5 end

return : Ŝ1:k , [Ŝ1, Ŝ2, . . . , Ŝk].

The performance of the algorithms is ensured by the following result.
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Theorem 3.9.12. Consider a BMS (XY , pXY ). For any P ∈ R, the zero-leakage

biometric secret capacities Cc
BioZ(K), and Cu

BioZ(K), are achieved by the polar coding

scheme of Algorithm 14 and Algorithms 15, which involves a chaining of k blocks of

size N , and whose complexity is O(kN logN).

Remark that one only needs to prove that Cc
BioZ(K) is achieved in Theorem 3.9.12,

since a code that achieves Cc
BioZ(K) also achieves Cu

BioZ(K) by [65]. The proof of

Theorem 3.9.12 for Cc
BioZ(K) is similar to the proof of Theorem 3.6.5 and is thus

omitted. To show that Si = [Ṽ 1:N
i [VU\HU |Y ], Fi], i ∈ J1, kK, is uniform one can use

Lemma 3.6.7, then, similar to Theorem 3.6.5, one can show that S1:k is also uniform

and that strong secrecy holds. Note also that for i ∈ J0, k − 1K, F ′i = o(N).
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3.10 Conclusion

We have proposed low-complexity secret-key capacity-achieving schemes based on

polar coding for several classes of sources. Our schemes jointly handle secrecy and

reliability, which contrasts with sequential methods that successively perform rec-

onciliation and privacy amplification. Although sequential methods apply to more

general classes of sources, our polar coding schemes may be easier to design and may

operate with lesser complexity. Nevertheless, the price to be paid for low complexity

is that our schemes often require a pre-shared seed, whose rate is negligible compared

to the blocklength. When the eavesdropper has no access to correlated observations

of the source, and when the source has uniform marginals, we have identified several

configurations, including multiterminal models, for which no pre-shared seed is re-

quired. Finally, we have applied our polar coding schemes to privacy and secrecy for

some biometric systems.

Our polar coding schemes are particularly convenient to handle rate-limited public

communication and vector quantization, which are often the major hurdle in designing

optimal key-generation schemes.

128



APPENDICES

3.A Proofs for Model 1 in Section 3.5

3.A.1 Proof of Corollary 3.5.2

We perform the same encoding as in Section 3.5.2 for Block 1. Define the set

HX|Z ,
{
i ∈ J1, NK : H

(
U i|U1:i−1Z1:N

)
> δN

}
.

We have

|F ′1| = |HX|Y \VX|Z |
(a)

6 |HX|Z\VX|Z |
(b)
= |HX|Z | − |VX|Z |,

where (a) holds because HX|Y ⊂ HX|Z since we have assumed X → Y → Z, (b) holds

because VX|Z ⊂ HX|Z .

We conclude by Lemma 3.4.1 and [87] that |F ′1|= o(N).

3.A.2 Proof of Proposition 3.5.3
3.A.2.1 Polar coding scheme

Let δ > 0, β ∈]0, 1/2[. Let n ∈ N and N , 2n. We set U1:N , X1:NGN . We define

for δN , 2−N
β
, β < 1/2, the following sets

HX|Y ,
{
i ∈ J1, NK : H

(
U i|U1:i−1Y 1:N

)
> δN

}
,

HX ,
{
i ∈ J1, NK : H

(
U i|U1:i−1

)
> δN

}
.

We define a key-generation strategy SN as follows. Define the key as K ,

U1:N [HX\HX|Y ], and the public message as F , U1:N [HX|Y ].

3.A.2.2 Scheme analysis

Observe that HX|Y ⊂ HX , because conditioning reduces entropy. We thus have

by [87], a key rate equal to

lim
N→+∞

|HX\HX|Y |
N

= lim
N→+∞

|HX |−|HX|Y |
N

= H(X)−H(X|Y ) = I(X;Y ).
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Note that the key K is uniform because X1:N is uniform, that is

Ue(SN) = 0.

Then, by [87, Theorem 3], Bob can reconstruct K from F with an error probability

satisfying

Pe(SN) 6 NδN .

Finally, by the key uniformity and because (HX\HX|Y ) ∩HX|Y = ∅ , we have

H(K|F ) = H
(
U1:N [HX\HX|Y ]|U1:N [HX|Y ]

)
= H

(
U1:N [HX\HX|Y ]

)
= H(K),

which means that we obtain perfect secrecy, that is

L(SN) = I(K;F ) = H(K)−H(K|F ) = 0.

3.A.3 Proof of Lemma 3.4.1

As in [87], for a pair of random variables (X, Y ) distributed according to pXY over

X × Y , we define the Bhattacharyya parameter as

Z(X|Y ) = 2
∑

y

pY (y)
√
pX|Y (0|y)pX|Y (1|y).

We will need the following counterpart of [87, Proposition 1] that is proved using the

same technique as [94, Lemma 20].

Lemma 3.1.16. If (X1, Y1) and (X2, Y2) are two independent drawings of (X, Y ),

then

Z
(
X1 ⊕X2|Y 2

1

)
>
√

2Z(X|Y )2 − Z(X|Y )4.

Proof. We have for any v1, v2 ∈ X , y1, y2 ∈ Y ,

pX1⊕X2,X2,Y1,Y2(v1, v2, y1, y2) = pXY (v1 + v2, y1)pXY (v2, y2).
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Hence,

Z
(
X1 ⊕X2|Y 2

1

)

= 2
∑

y1,y2


∑

v2

pXY (v2, y1) pXY (v2, y2) ·
∑

v′2

pXY (1 + v′2, y1) pXY (v′2, y2)




1/2

,

which can be rewritten as

Z
(
X1 ⊕X2|Y 2

1

)

=
1

2
Z (X1|Y1)Z (X2|Y2)

×
∑

y1,y2

P1 (y1)P2 (y2)

√
A (y1)2 + A (y2)2 − 4,

where, for i ∈ J1, 2K,

Pi (yi) ,
2
√
pXY (0, yi) pXY (1, yi)

Z (Xi|Yi)
and

A (yi) ,
√
pXY (0, yi)

pXY (1, yi)
+

√
pXY (1, yi)

pXY (0, yi)
.

As observed in [94, Lemma 20], for i ∈ J1, 2K, A (yi)
2 > 4, by the arithmetic-geometric

inequality, and x 7→
√
x2 + a is convex for a > 0. Hence, since for i ∈ J1, 2K, Pi defines

a probability distribution over Y , by Jensen’s inequality applied twice

Z
(
X1 ⊕X2|Y 2

1

)

> 1

2
Z (X1|Y1)Z (X2|Y2)

×
√

(EP1 [A (y1)])2 + (EP2 [A (y2)])2 − 4.

We conclude by substituting EPi [A (yi)] = 2
Z(Xi|Yi) , for i ∈ J1, 2K.

Let α ∈]β, 1/2[. Define the sets

FX|Z ,
{
i ∈ J1, NK : Z

(
U i|U1:i−1Z1:N

)
> 1− 2−N

α}
,

HX|Z ,
{
i ∈ J1, NK : H

(
U i|U1:i−1Z1:N

)
> δN

}
.
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Similar to [94, Theorem 19], which relies on the result in [101], we can show with

Lemma 3.1.16

lim
N→+∞

|FX|Z |/N = H(X|Z).

But, by [87, Proposition 2], forN large enough, |FX|Z |6 |VX|Z |, hence, limN→+∞|VX|Z |/N >

H(X|Z). Since we also have limN→+∞|HX|Z |/N = H(X|Z), by [87], and VX|Z ⊂

HX|Z , we conclude

lim
N→+∞

|VX|Z |/N = H(X|Z).

3.A.4 Proof of Lemma 3.5.4

Let i ∈ J1, kK, we note qU
K,K̃

the uniform distribution over J1, 2|Ki|+|K̃i|K. We have,

V
(
pKiK̃i , pKipK̃i

) (a)

6 V
(
pKiK̃i , qUK,K̃

)
+ V

(
qU

K,K̃
, pKipK̃i

)
,

(b)

6 V
(
pKiK̃i , qUK,K̃

)
+ V

(
qU

K,K̃
, qUKpK̃i

)
+ V

(
qUKpK̃i , pKipK̃i

)

= V
(
pKiK̃i , qUK,K̃

)
+ V

(
qU

K̃
, pK̃i

)
+ V (qUK , pKi)

6 3V
(
pKiK̃i , qUK,K̃

)

(c)

6 3
√

2N log 2× 2−N
β/2, (65)

where (a), (b) hold by the triangle inequality, (c) holds by Pinsker’s inequality and

Lemma 3.5.2.

Then, for N large enough (|K̃|> 4), we have

I(Ki; K̃i) 6 V(pKiK̃i , pKipK̃i) log2

|K̃|
V(pKiK̃i , pKipK̃i)

6 V(pKiK̃i , pKipK̃i) log2|K̃|−V(pKiK̃i , pKipK̃i) log2 V(pKiK̃i , pKipK̃i)

6 δ∗N ,

where δ∗N , −3
√

2N log 2×N2−N
β/2 log2

(
3
√

2N log 2× 2−N
β/2
)

by (65) and because

x 7→ x log x is decreasing for x > 0 small enough.
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3.A.5 Proof of Lemma 3.5.5

Let i ∈ J2, kK. By applying the chain rule of mutual information repeatedly, we obtain

L̃1:i
e = αi + βi + γi, (66)

where

αi , I
(
KiK̃i;MiZ

1:N
i

)
,

βi , I
(
K1:i−1;Z1:N

i Mi|KiK̃i

)
,

γi , I
(
K1:iK̃i;Z

1:N
1:i−1M1:i−1|Z1:N

i Mi

)
.

Then, note that

γi 6 I
(
K1:iK̃i−1:iZ

1:N
i Mi;Z

1:N
1:i−1M1:i−1

)

= I
(
K1:i−1K̃i−1;Z1:N

1:i−1M1:i−1

)
+ I

(
KiK̃iZ

1:N
i Mi;Z

1:N
1:i−1M1:i−1|K1:i−1K̃i−1

)

= L̃1:i−1
e , (67)

where the last equality follows from KiK̃iZ
1:N
i Mi → K1:i−1K̃i−1 → Z1:N

1:i−1M1:i−1.

We also have,

βk 6 I
(
K1:i−1;Z1:N

i MiK̃i−1|KiK̃i

)

= I
(
K1:i−1; K̃i−1|KiK̃i

)
+ I

(
K1:i−1;Z1:N

i Mi|KiK̃i−1:i

)

(a)
= I

(
K1:i−1; K̃i−1|KiK̃i

)

(b)

6 I
(
K1:i−1; K̃i−1

)

= I
(
Ki−1; K̃i−1

)
+ I

(
K1:i−2; K̃i−1|Ki−1

)

6 I
(
Ki−1; K̃i−1

)
+ I

(
K1:i−2; K̃i−1Ki−1

)

6 I
(
Ki−1; K̃i−1

)
+ I

(
X1:N

1:i−2;X1:N
i−1

)

(c)
= I

(
Ki−1; K̃i−1

)
(68)
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where (a) holds by K1:i−1 → KiK̃i−1:i → Z1:N
i Mi, (b) holds by K1:i−1 → K̃i−1 →

KiK̃i, (c) holds by independence between X1:N
1:i−2 and X1:N

i−1 .

Finally, we conclude combining (66), (67), and (68).

3.B Proofs for Model 2 in Section 3.6

3.B.1 Proof of Corollary 3.6.4

We perform the same encoding as in Section 3.6.2 for Block 1. Note that CWSK(Rp) is

obtained for U uniform by Proposition 2.5.4 since X is uniform and the tests-channel

pY |X and pZ|X are uniform. Hence, the rate R1 of randomness to perform successive

cancellation encoding can be set equal to zero by [94]. We also have

|F ′1| = |(HU |Y \VU |X)\VU |Z |
(a)

6 |HU |Z\VU |Z |
(b)
= |HU |Z | − |VU |Z |,

where (a) holds because HU |Y ⊂ HU |Z since we have assumed X → Y → Z, (b) holds

because VU |Z ⊂ HU |Z .

We conclude by Lemma 3.4.1 and [87] that |F ′1|= o(N).
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3.B.2 Proof of Lemma 3.6.6

Using the notation of [73] for conditional relative entropy, we have for i ∈ J1, kK

D(pX1:NU1:N ||p̃X1:N
i U1:N

i
)

(a)
= D(pX1:NV 1:N ||p̃X1:N

i V 1:N
i

)

(b)
= D(pV 1:N |X1:N ||p̃V 1:N

i |X1:N )

(c)
=

N∑

j=1

D(pV j |V 1:j−1X1:N ||p̃V ji |V 1:j−1
i X1:N )

(d)
=

∑

j∈VU|X

∑

j∈HcU

D(pV j |V 1:j−1X1:N ||p̃V ji |V 1:j−1
i X1:N )

(e)
=

∑

j∈VU|X

(1−H(V j|V 1:j−1X1:N))

+
∑

j∈HcU

(H(V j|V 1:j−1)−H(V j|V 1:j−1X1:N))

6 |VU |X |δN +
∑

j∈HcU

H(V j|V 1:j−1)

6 |VU |X |δN + |Hc
U |δN

6 NδN ,

where (a) holds by invertibility of Gn, (b) and (c) hold by the chain rule for divergence,

(d) and (e) hold by (51) and by uniformity of the components of Ṽ 1:N
i in VU |X .

3.B.3 Proof of Lemma 3.6.8

We have by [102]

|Ki|+|K̃i|−H(KiK̃i) 6 V(pKiK̃i , qUK,K̃ ) log2

|Ki|+|K̃i|
V(pKiK̃i , qUK,K̃ )

6 NV(pKiK̃i , qUK,K̃ )− V(pKiK̃i , qUK,K̃ ) log2 V(pKiK̃i , qUK,K̃ )

6 2
√

2 log 2
√
NδN(N − log2(2

√
2 log 2

√
NδN)),

where the last inequality holds for N large enough by Lemma 3.6.7 and because

x 7→ x log x is decreasing for x > 0 small enough.
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3.B.4 Proof of Lemma 3.6.9

We only prove the first inequality, the other is obtained similarly. Let i ∈ J1, kK. We

have,

V
(
pKiK̃iR1

, pKipK̃iR1

)

(a)

6 V
(
pKiK̃iR1

, qU
K,K̃,R

)
+ V

(
qU

K,K̃,R
, pKipK̃iR1

)
,

(b)

6 V
(
pKiK̃iR1

, qU
K,K̃,R

)
+ V

(
qU

K,K̃,R
, qUKpK̃iR1

)
+ V

(
qUKpK̃iR1

, pKipK̃iR1

)

= V
(
pKiK̃iR1

, qU
K,K̃,R

)
+ V

(
qU

K̃,R
, pK̃iR1

)
+ V (qUK , pKi)

6 3V
(
pKiK̃iR1

, qU
K,K̃,R

)

(c)

6 6
√

2 log 2
√
NδN , (69)

where (a), (b) hold by the triangle inequality, (c) holds by Pinsker’s inequality and

Lemma 3.6.7.

Then, for N large enough (|K̃|> 4), we have

I(Ki; K̃iR1)

6 V(pKiK̃iR1
, pKipK̃iR1

) log2

|K̃|
V(pKiK̃iR1

, pKipK̃iR1
)

6 NV(pKiK̃iR1
, pKipK̃iR1

)− V(pKiK̃iR1
, pKipK̃iR1

) log2 V(pKiK̃iR1
, pKipK̃iR1

)

6 δ
(2)
N ,

where δ
(2)
N , 6

√
2 log 2

√
NδN(N − log2(6

√
2 log 2

√
NδN)) by (69) and because x 7→

x log x is decreasing for x > 0 small enough.
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3.B.5 Proof of Lemma 3.6.10

We have

V(p̃V 1:N
i [VU|Z ]Z1:N

i
, pV 1:N

i [VU|Z ]Z1:N
i

)

6 V(p̃V 1:N
i X1:N

i Z1:N
i
, pV 1:N

i X1:N
i Z1:N

i
)

= V(p̃Z1:N
i |V 1:N

i X1:N
i
p̃V 1:N

i X1:N
i
, pZ1:N

i |V 1:N
i X1:N

i
pV 1:N

i X1:N
i

)

= V(p̃Z1:N
i |X1:N

i
p̃V 1:N

i X1:N
i
, pZ1:N

i |X1:N
i
pV 1:N

i X1:N
i

)

= V(p̃V 1:N
i X1:N

i
, pV 1:N

i X1:N
i

)

6
√

2 log 2
√
NδN , (70)

where the last inequality follows by Lemma 3.6.6, and

V(pV 1:N
i [VU|Z ]Z1:N

i
, p̃V 1:N

i [VU|Z ]pZ1:N
i

)

6 V(pV 1:N
i [VU|Z ]Z1:N

i
, pV 1:N

i [VU|Z ]pZ1:N
i

) + V(pV 1:N
i [VU|Z ]pZ1:N

i
, p̃V 1:N

i [VU|Z ]pZ1:N
i

)

(a)

6 V(pV 1:N
i [VU|Z ]Z1:N

i
, pV 1:N

i [VU|Z ]pZ1:N
i

) +
√

2 log 2
√
NδN

(b)

6
√

2 log 2
√

D(pV 1:N
i [VU|Z ]Z1:N

i
||pV 1:N

i [VU|Z ]pZ1:N
i

) +
√

2 log 2
√
NδN

=
√

2 log 2
√
I(V 1:N

i [VU |Z ];Z1:N
i ) +

√
2 log 2

√
NδN

6
√

2 log 2
√
|VU |Z |−H(V 1:N

i [VU |Z ]|Z1:N
i ) +

√
2 log 2

√
NδN

(c)

6 2
√

2 log 2
√
NδN , (71)

where (a) holds by (70), (b) holds by Pinsker’s inequality, (c) holds because similar

to the proof of Lemma 3.5.3 |VU |Z |−H(V 1:N
i [VU |Z ]|Z1:N

i ) 6 NδN .

Hence, by (70) and (128)

V(p̃V 1:N
i [VU|Z ]Z1:N

i
, p̃V 1:N

i [VU|Z ]pZ1:N
i

)

6 V(p̃V 1:N
i [VU|Z ]Z1:N

i
, pV 1:N

i [VU|Z ]Z1:N
i

) + V(pV 1:N
i [VU|Z ]Z1:N

i
, p̃V 1:N

i [VU|Z ]pZ1:N
i

)

6 3
√

2 log 2
√
NδN , (72)
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and for N large enough

I(Ṽ 1:N
i [VU |Z ];Z1:N

i )

6 V(p̃V 1:N
i [VU|Z ]Z1:N

i
, p̃V 1:N

i [VU|Z ]pZ1:N
i

) log2

|VU |Z |
V(p̃V 1:N

i [VU|Z ]Z1:N
i
, p̃V 1:N

i [VU|Z ]pZ1:N
i

)

6 3
√

2 log 2
√
NδN(N − log2(3

√
2 log 2

√
NδN)).

3.B.6 Proof of Lemma 3.6.12

Let i ∈ J2, kK. By applying the chain rule of mutual information repeatedly, we obtain

L̃1:i
e = αi + βi + γi, (73)

where

αi , I
(
KiK̃i;R1MiZ

1:N
i

)
,

βi , I
(
K1:i−1;R1MiZ

1:N
i |KiK̃i

)
,

γi , I
(
K1:iK̃i;M1:i−1Z

1:N
1:i−1|R1MiZ

1:N
i

)
.

Then, note that

γi
(a)

6 I
(
K1:iK̃i−1:iMiZ

1:N
i ;M1:i−1Z

1:N
1:i−1|R1

)

= I
(
K1:i−1K̃i−1;M1:i−1Z

1:N
1:i−1|R1

)
+ I

(
KiK̃iZ

1:N
i Mi;M1:i−1Z

1:N
1:i−1|R1K1:i−1K̃i−1

)

(b)
= I

(
K1:i−1K̃i−1;M1:i−1Z

1:N
1:i−1|R1

)

6 I
(
K1:i−1K̃i−1;R1M1:i−1Z

1:N
1:i−1

)

(c)

6 L̃1:i−1
e , , (74)

where (a) and (c) hold by the chain rule and positivity of mutual information, (b)

holds because KiK̃iZ
1:N
i Mi → R1K1:i−1K̃i−1 →M1:i−1Z

1:N
1:i−1.
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We also have,

βi
(d)

6 I
(
K1:i−1;R1MiZ

1:N
i K̃i−1|KiK̃i

)

= I
(
K1:i−1; K̃i−1R1|KiK̃i

)
+ I

(
K1:i−1;MiZ

1:N
i |KiK̃i−1:iR1

)

(e)
= I

(
K1:i−1; K̃i−1R1|KiK̃i

)

(f)

6 I
(
K1:i−1; K̃i−1R1

)

= I (K1:i−1;R1) + I
(
K1:i−1; K̃i−1|R1

)

= I (K1:i−1;R1) + I
(
Ki−1; K̃i−1|R1

)
+ I

(
K1:i−2; K̃i−1|Ki−1R1

)

(g)
= I (K1:i−1;R1) + I

(
Ki−1; K̃i−1|R1

)

6 I (K1:i−1;R1) + I
(
Ki−1; K̃i−1R1

)

= I (K1:i−2;R1|Ki−1) + I (Ki−1;R1) + I
(
Ki−1; K̃i−1R1

)

(h)

6 I (K1:i−2;R1) + I (Ki−1;R1) + I
(
Ki−1; K̃i−1R1

)

(i)

6
i−1∑

j=1

I (Kj;R1) + I
(
Ki−1; K̃i−1R1

)
(75)

where (d) holds by the chain rule and positivity of mutual information, (e) holds

because K1:i−1 → KiK̃i−1:iR1 → MiZ
1:N
i , (f) holds because K1:i−1 → K̃i−1R1 →

KiK̃i, (g) holds because K1:i−2 → Ki−1R1 → K̃i−1, (h) holds because K1:i−2 → R1 →

Ki−1, (i) holds by recurrence.

Finally, we conclude combining (73), (74), and (75).

3.C Proof of Theorem 3.7.7

1) Existence of FXM: The set FXM exists because we have assumed I(X2;X1) 6

I(X2;X3), i.e., H(X2|X1) > H(X2|X3). Indeed,

|FX2|X1\FX2|X3|−|K̄XM | = |FX2|X1\FX2|X3|−|FX2|X3\FX2|X1|

= |FX2|X1|−|FX2|X3|,
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and limN→∞(|FX2|X1|−|FX2|X3|)/N = H(X2|X1)−H(X2|X3) by Lemma 3.4.1 and [87].

2) Key Rate: The key rate is

|KXM |+(k − 1)|KXM ∪ FXM |
kN

(a)
=
|KXM|+(k − 1)(|KXM |+|FXM |)

kN

=
|KXM|+|FXM |

N
− |FXM |

kN

=
|KXM|+|K̄XM |

N
− |K̄XM |

kN

=
|VX2\HX2|X1|

N
− |K̄XM|

kN

> |VX2\HX2|X1 |
N

− |VX2\HX2|X1|
kN

N→∞−−−→ I(X1;X2)

(
1− 1

k

)

k→∞−−−→ I(X1;X2),

where (a) holds because FXM ∩ KXM = ∅, and where we have used Lemma 3.4.1

and [87] for the first limit.

3) Reliability: We only detail the reliability analysis for Terminal 3, since relia-

bility for Terminal 1 is similar.

Let i ∈ J1, k−1K. Note that Terminal 3 forms an accurate estimate of U1:N
i [HX2|X3 ]

only when U1:N
i+1 is correctly reconstructed. We note Û1:N

i [HX2|X3 ] the estimate of

U1:N
i [HX2|X3 ] formed by Terminal 3 and define Ei , {Û1:N

i [HX2|X3 ] 6= U1:N
i [HX2|X3 ]}.
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Hence,

P[Ki 6= K̂i] 6 P[U1:N
i 6= Û1:N

i ]

= P[U1:N
i 6= Û1:N

i |Eci ]P[Eci ] + P[U1:N
i 6= Û1:N

i |Ei]P[Ei]

6 P[U1:N
i 6= Û1:N

i |Eci ] + P[Ei]

6 P[U1:N
i 6= Û1:N

i |Eci ] + P[U1:N
i+1 6= Û1:N

i+1 ]

(a)

6 NδN + P[U1:N
i+1 6= Û1:N

i+1 ]

(b)

6 (k − i)NδN + P[U1:N
k 6= Û1:N

k ]

(c)

6 (k − i+ 1)NδN ,

where (a) holds because by [87], Terminal 3 can reconstruct U1:N
i from U1:N

i [HX2|X3 ]

and (X3)1:N
i with error probability less than NδN , (b) holds by recurrence, (c) holds

similarly as previous equations.

Then, by the union bound,

Pe(SN) = P[K1:k 6= K̂1:k]

6 P[∪ki=1(Ki 6= K̂i)]

6
k∑

i=1

P[Ki 6= K̂i]

6
k∑

i=1

(k − i+ 1)NδN

=
k(k + 1)

2
NδN .

4) Key Uniformity: Similar to Lemma 3.5.2 we have the key uniformity for each

block.

Lemma 3.3.17. Uniformity of [Ki, K̄i] holds for each block, where i ∈ J1, k − 1K.

Specifically,

|Ki|+|K̄i|−H(KiK̄i) 6 NδN .
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Hence, we also have

|K̄i|−H(K̄i) 6 NδN ,

|Ki|−H(Ki) 6 NδN .

The global key K1:k is asymptotically uniform as, similar to the proof of Theorem

3.5.3 in Section 3.5.3.4, we have

U(SN) = |K1:k|−H(K1:k) 6 kNδN .

5) Strong Secrecy: Similar to Lemma 3.5.3, we obtain the following result showing

that secrecy holds for each block.

Lemma 3.3.18. Let i ∈ J1, kK. For each Block i, secrecy of [Ki, K̄i] holds. Specifi-

cally, we have

I
(
KiK̄i;Mi

)
6 2NδN .

Similar to Lemmas 3.5.4 and 3.5.5 we also have the following lemmas.

Lemma 3.3.19. For i ∈ J1, kK, we have for N large enough

I(Ki; K̄i) 6 δ∗N ,

where

δ∗N , −3
√

2N log 2×N2−N
β/2 log2

(
3
√

2N log 2× 2−N
β/2
)
.

Lemma 3.3.20. For i ∈ J2, kK, define

L̃1:i
e , I(K1:iK̄i;M1:i).

We have

L̃1:i
e − L̃1:i−1

e 6 I
(
KiK̄i;Mi

)
+ I

(
Ki−1; K̄i−1

)
.
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Similar to the proof of Theorem 3.5.3, using Lemmas 3.3.18, 3.3.20, 3.3.19, we

obtain

L(SN) 6 2kNδN + (k − 1)δ∗N .

6) Seed Rate: The seed rate is

∑k
i=1|K̃i|
kN

=
k|F̄X2|X1 ∪ F̄X2|X3|

kN

6 |F̄X2|X1|+|F̄X2|X3|
N

N→∞−−−→ 0,

where we have used Lemma 3.4.1 and [87].
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CHAPTER 4

MULTIPLEXING PUBLIC AND CONFIDENTIAL
MESSAGES OVER THE WIRETAP CHANNEL

4.1 Summary

In this chapter, we propose and analyze a source-channel coding architecture over a

wiretap channel, in which secrecy is achieved by multiplexing public and confiden-

tial messages. Our main contribution is to circumvent the assumption that random

numbers with perfectly uniform distributions are available, and to show that strong

secrecy may be achieved “at negligible cost”, in the sense of maintaining the overall

communication rate of the same channel without secrecy constraints. Our source-

channel coding architecture relies on a standard wiretap code combined with a modi-

fied source code, which we call a “uniform compression code,” in which a small shared

secret seed is used to enhance the uniformity of the source code output. We carry

out an extensive analysis of uniform compression codes and characterize the optimal

size of the seed.

4.2 Introduction

The objective of this chapter is to show that the cost of secrecy can be made negligible

in the sense that it needs not incur a reduction in overall communication rate and

need not require extra randomness resources. The crux of our approach is to ana-

lyze the wiretap channel model illustrated in Figure 25. Unlike the wiretap channel

model presented in Section 1.3.1, here, the encoder is deterministic and is only used

to multiplex a confidential source with a public source, and the objective is then to

maximize the sum-rate of secret and public communication. The idea of multiplexing

messages to achieve secrecy already implicitly appears in the original work of Csiszár

and Körner [36], and is explicitly formalized in [48, 49]; however, our approach dif-

fers in that we relax the common assumption that messages are exactly uniformly
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Alice

Encoder

Decoder

Bob

Y n

EveZn

Xn
pY Z|X

V n
p

V n
c

V̂ n
c

V̂ n
p

Figure 25. Multiplexing of confidential and public sources in the absence of additional
local randomness at the transmitter. The confidential source must be reconstructible
by the receiver and kept secret from the eavesdropper. The public source should be
reconstructible by the receiver, and information may be leaked to the eavesdropper.

distributed, which is unrealistic even if messages are compressed with optimal source

codes [93, 103], and we consider a strong notion of security.

The main contribution of this chapter is a source-channel coding architecture

that achieves information-theoretic secrecy over this channel model. Our scheme,

illustrated in Figure 26, combines a wiretap code designed to operate with perfectly

uniform randomization with a modified source encoder, which compresses data while

simultaneously ensuring good uniformity properties. This architecture explicitly re-

quires the encoder and the decoder to share in advance a small secret seed K; however,

we will see in Section 4.5 that the seed rate can be made arbitrarily small. Note that

a secret key is anyway required for authentication [104,105].

The remainder of the chapter is organized as follows. In Section 4.3, we formally

describe the communication model under consideration. In Section 4.4, we show how

to render the output of a source code nearly uniform. In Section 4.5, we prove that the

architecture shown in Figure 26 achieves near-optimal performance using the result

of Section 4.4. Finally, Section 4.6 concludes the chapter with some perspectives for

future work.
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Figure 26. Proposed architecture to multiplex secure and public sources.

4.3 Preliminaries and Problem Statement

4.3.1 Wiretap channel model

Let X , Y and Z be finite alphabets. As illustrated in Figure 25, we consider a discrete

memoryless wiretap channel
(
X , pY Z|X ,Y × Z

)
. The channel

(
X , pY |X ,Y

)
is called

the main channel while the channel
(
X , pZ|X ,Z

)
is called the eavesdropper’s channel.

We assume that the transmitter, Alice, wishes to transmit the realizations of the

DMSs (Vc, pVc) and (Vp, pVp). Both sources are to be reconstructed without errors by

the receiver observing Y n, Bob, while the source (Vc, pVc) should be kept secret from

the eavesdropper observing Zn, Eve.

Definition 4.3.1. A code for Cn the wiretap channel consists of the following.

• A deterministic encoding function fn : Vnc × Vnp → X n, which maps n symbols

of the confidential source and n symbols of the public source to a codeword of

length n;

• A decoding function gn : Yn → (Vnc ×Vnp ), which maps a sequence of n channel

output observations to n symbols of the confidential source and n symbols of the

public source.
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The performance of Cn is measured in terms of the average probability of error

Pe(Cn) , P
[
(V n

c , V
n
p ) 6= gn(Y n)

]
,

and in terms of the secrecy metric

S(Cn) , max
vnc ∈Vnc

V
(
pZn|V nc =vnc , pZn

)
.

4.3.2 Source-channel coding theorem

Theorem 4.3.1. Consider a confidential DMS (Vc, pVc) and a public DMS (Vp, pVp)

to be transmitted over a wiretap channel
(
X , pY Z|X ,Y × Z

)
. For any random variable

U ∈ U such that U −X − Y Z, if




H(Vc) +H(Vp) < I(X;Y )

H(Vc) < I(X;Y |U)− I(X;Z|U)

H(Vp) > I(X;Z|U)

,

then there exists a sequence of codes {Cn}n>1 such that

lim
n→∞

Pe(Cn) = lim
n→∞

S(Cn) = 0.

Conversely, if there exists a sequence of codes {Cn}n>1 such that limn→∞ Pe(Cn) =

limn→∞ S(Cn) = 0, then there must exist a random variable U ∈ U such that U −X−

Y Z and




H(Vc) +H(Vp) 6 I(X;Y )

H(Vc) 6 I(X;Y |U)− I(X;Z|U)

H(Vp) > I(X;Z|U)

.

Although the result might seem intuitive, the achievability proof does not follow

from standard arguments and known results because we do not assume the existence

of a local source of uniform random numbers; consequently, the encoder must only

operate on the sequences emitted by the sources. The main contribution of this

chapter is the achievability proof detailed in Section 4.5 using the architecture of

Figure 26. The converse follows by combining the proofs in [45,46].
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Remark 4.3.1. Unlike the capacity region of the broadcast channel with confidential

messages, the information constraints in Theorem 4.3.1 do not include an auxiliary

random variable V such that U − V −X − Y Z. This result is not surprising, as this

extra random variable accounts for the addition of artificial noise (channel prefixing)

in the encoder, which is not allowed by our model, as we require all encoder inputs to

be decoded at the receiver. The random variable U is merely a time-sharing random

variable [46, 55].

4.4 Uniform compression codes

Consider a DMS (X , pX). Let n ∈ N, dn ∈ N, and let Udn be a uniform random

variable over Udn , J1, 2dnK, independent of Xn. In the following we refer to Udn as

the seed and dn as its length. As illustrated in Figure 27, our objective is to design

a source code to compress and reconstruct the DMS (X , pX) with the assistance of a

seed Udn .

Definition 4.4.2. A (2nR, n, 2dn) uniform compression code Cn for a DMS (X , pX)

consists of

• A message set Mn , J1,MnK, with Mn , 2nR,

• A seed set Udn , J1, 2dnK,

• An encoding function φn : X n × Udn →Mn,

• A decoding function ψn :Mn × Udn → X n.

Xn

Udn

M , �n(Xn, Udn
)

 n(M, Udn
)Encoder Decoder

Figure 27. Source encoder and decoder with uniform outputs.
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The performance of the code is measured in terms of the average probability of

error and the uniformity of its output as

Pe(φn, ψn) , P[Xn 6= ψn(φn(Xn, Udn), Udn)],

Ue(φn) , V[pφn(Xn,Udn ), pUMn ],

where UMn has uniform distribution over Mn.

Remark 4.4.2. Uniformity could be measured with the stronger metric U ′e(φn) ,

D[pφn(Xn,Udn ), pUMn ], where D(·, ·) is the Kullback-Leibler divergence; however, by [102,

Lemma 2.7], Ue(φn) can be replaced by U ′e(φn), if lim
n→∞

nUe(φn) = 0, which will be the

case.

Definition 4.4.3. A rate R is achievable, if there exists a sequence of (2nR, n, 2dn)

uniform compression codes {Cn}n>1 for the DMS (X , pX), such that

lim
n→∞

1

n
logMn 6 R, lim

n→∞

dn
n

= 0, lim
n→∞

Pe(φn, ψn) = 0, and lim
n→∞

Ue(φn) = 0.

Our main result in this section is the characterization of the infimum of achievable

rates with uniform compression codes as well as the optimal scaling of the seed length

dn. In the following, we use the Landau notation to characterize the limiting behavior

of the seed scaling, with the convention that for any real functions f and g, f = Ω(g)

means f = o(g) is false.

Proposition 4.4.1. Let (X , pX) be a DMS. Then,

inf{R : R is achievable with a uniform compression code} = H(X).

Moreover, the optimal seed length dn for (2nR, n, 2dn) code verifies

dn ∈ Ω(n1/2) ∩O(n1/2+ε) for any ε > 0. (76)

Proof. See Appendix 4.A.
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As a first attempt to develop a more practical scheme for uniform compression

codes, we propose an achievability scheme for Proposition 4.4.1 based on invertible

extractors [106]. We start by recalling known facts about extractors.

Definition 4.4.4 ( [106]). Let ε > 0. Let m, d, l ∈ N and let t ∈ R+. A polynomial

time probabilistic function Ext : {0, 1}m × {0, 1}d 7→ {0, 1}l is called a (m, d, l, t, ε)-

extractor, if for all binary source X satisfying H∞(X) > t, we have

V(pExt(X,Ud), pUl) 6 ε,

where Ud is a sequence of d uniformly distributed bits, Ul is the uniform distribution

over {0, 1}l.

Moreover, a (m, d, l, t, ε)-extractor is said invertible if the input can be reconstructed

from the output and Ud.

It can be shown [106,107] that there exists explicit invertible (m, d,m, t, ε)-extractor

such that

d = m− t+ 2 logm+ 2 log
1

ε
+O(1). (77)

The following proposition shows that one can establish optimal uniform compression

codes using such invertible extractors.

Proposition 4.4.2. Let (X , pX) be a binary memoryless source. For any R > H(X)

and for any ε > 0, the rate R can be achieved with a sequence of uniform compression

codes such that

• the seed length scales as dn = Θ(n1/2+ε);

• the encoder φn : X n×Udn →Mn is composed of a typical-sequence based source

code combined with an invertible extractor as described in Figure 28.

Proof. See Appendix 4.B.
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S

Encoding Decoding

EXT0

Udn

V n
p

EXT0(S)

S
EXT�1

0
bV n
pSource decoderSource encoder

Figure 28. Encoding/Decoding scheme for Proposition 4.4.2. The encoder/decoder is
obtained from a typical-sequence based source code, and EXT0 is an invertible extrac-
tor.

Unfortunately, this scheme is not fully explicit because it relies on a typical-

sequence based compression. To provide at least one explicit example, we finally de-

velop a uniform compression code based on polar codes for a binary memoryless source

(X , pX), X , {0, 1}. Let β ∈]0, 1/2[, n ∈ N, N , 2n, and δN , 2−N
β
. Let GN ,

[
1 0

1 1

]⊗n
be the source polarization transform defined in [87], and set AN , XNGN .

For any set A , {ij}|A|j=1 of indices in J1, NK, we define AN [A] ,
[
Ai1 , Ai2 , . . . , Ai|A|

]
.

We also define the sets

VX ,
{
i ∈ J1, NK : H

(
Ai|Ai−1

)
> 1− δN

}
,

HX ,
{
i ∈ J1, NK : H

(
Ai|Ai−1

)
> δN

}
.

A polar-based uniform compression code is obtained by defining the encoding function

φN as follows.

φN : (XN , U|HX\VX |) 7→
(
AN [VX ], AN [HX\VX ]⊕ U|HX\VX |

)

Proposition 4.4.3. Let (X , pX) be a binary memoryless source. For any R < H(X),

the rate R is achievable with a sequence of polar-based uniform compressions codes

with length N such that the seed length |HX\VX | scales as o(N). In addition, the

complexity of the encoding is O(N logN).

Proof. See Appendix 4.C.
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4.5 Source-channel coding architecture based on uniform com-
pression codes

Recall that our objective is to circumvent the impossibility of generating uniform

random numbers with source codes [93, Theorem 4]. The approach to overcome this

impossibility is to introduce a small shared uniformly distributed sequence, which we

call a “seed”, and to use the result of Section 4.4. While, the price paid is that the

emitter and the receiver must now share a seed of negligible rate, we will show how

to further reduce the seed rate.

4.5.1 Achievability of Theorem 4.3.1 based on uniform compression codes

The uniform compression codes of Section 4.4 may now be combined with known

wiretap codes (as depicted in Figure 26), whose properties we recall in the following

lemma.

Lemma 4.5.1 (Adapted from [46, Proposition 1]). Consider a Discrete Memoryless

Channel (DMC) (X , pY Z|X ,Y × Z), in which a message M ∈ J1, 2nRK is encoded

by means of a uniform auxiliary message Mp ∈ J1, 2nRpK. If there exists a joint

distribution pUXY Z that factorizes as pUpX|UpY Z|X such that

R +Rp < I(X;Y ) (78)

R < I(X;Y |U)− I(X;Z|U) (79)

Rp > I(X;Z|U), (80)

then there exists a sequence of wiretap codes {Cn}n>1 such that

lim
n→∞

max
m

P
[
M̂c 6= Mc|Mc = m

]
= 0,

lim
n→∞

max
m

P
[
M̂p 6= Mp|Mc = m

]
= 0,

lim
n→∞

max
m

V
(
pZn|Mc=m, pZn

)
= 0.

Let ε > 0. Going back again to the setting of Section 4.3.1, we encode the

confidential DMS using a traditional source code, and the public DMS using a uniform
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compression code as in Proposition 4.4.1. The corresponding source encoder-decoder

pairs are denoted (f cn, g
c
n) and (fpn, g

p
n), respectively, and we set Mc , f cn(V n

c ) ∈

J1, 2nRcK and Mp , fpn(V n
p ) ∈ J1, 2nRpK. We assume n large enough so that

P[(V n
c , V

n
p ) 6= (gcn(Mc), g

p
n(Mp))] 6 ε, (81)

V
(
pMp , pUnRp

)
< ε, (82)

where UnRp is uniformly distributed over J1, 2nRpK. Under the conditions (78)-(80) of

Lemma 4.5.1, which are met whenever

H(Vc) +H(Vp) < I(X;Y ),

H(Vc) < I(X;Y |U)− I(X;Z|U),

H(Vp) > I(X;Z|U),

for n sufficiently large there exists a wiretap code Cn so that for any mc, and for M̃p

distributed according to pUnRp , the uniform distribution over J1, 2nRpK,

P
[

ˆ̃Mp 6= M̃p|Mc = mc

]
< ε, (83)

P
[

ˆ̃Mc 6= Mc|Mc = mc

]
< ε, (84)

V
(
p̃Zn|Mc=mc , p̃Zn

)
6 ε, (85)

where ( ˆ̃Mp,
ˆ̃Mc) is the estimate of (M̃p,Mc) by the decoder of Cn, and for any zn,

p̃Zn(zn) ,
2nRc∑

mc=1

2nRp∑

mp=1

pZn|Mc=mc,Mp=mp(z
n)pMc(mc)pUnRp (mp).

Note that (83)-(85) holds by Lemma 4.5.1 because we have assumed M̃p uniformly

distributed. We now study the consequences of using the wiretap code Cn with Mp

(not exactly uniformly distributed) instead of M̃p. Specifically, we note (M̂p, M̂c) the

resulting estimate of (Mp,Mc) by the decoder of Cn, and define for any zn,

pZn(zn) ,
2nRc∑

mc=1

2nRp∑

mp=1

pZn|Mc=mc,Mp=mp(z
n)pMc(mc)pMp(mp).
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We then have for any mc,

V
(
pZn|Mc=mc , pZn

)

(a)

6 V
(
pZn|Mc=mc , p̃Zn|Mc=mc

)
+ V

(
p̃Zn|Mc=mc , p̃Zn

)
+ V(p̃Zn , pZn)

(b)

6 ε+ V
(
pZn|Mc=mc , p̃Zn|Mc=mc

)
+ V(p̃Zn , pZn)

(c)

6 ε+
∑

zn

∑

mp

pZn|Mc=mc,Mp=mp(z
n)
∣∣∣pMp(mp)− pUnRp (mp)

∣∣∣+ V(p̃Zn , pZn)

= ε+ V
(
pMp , pUnRp

)
+ V(p̃Zn , pZn)

(d)

6 2ε+ V(p̃Zn , pZn)

(e)

6 2ε+
∑

zn

∑

mc,mp

pMc(mc)pZn|Mc=mc,Mp=mp(z
n)
∣∣∣pMp(mp)− pUnRp (mp)

∣∣∣

= 2ε+ V
(
pMp , pUnRp

)

(f)

6 3ε, (86)

where (a), (c), and (e) follow by the triangle inequality, (b) holds by (85), (d) and (f)

hold by (82).

Consider then an optimal coupling [96] between Mp and M̃p such that P[E ] =

V(pMp , pUnRp ), where E , {Mp 6= M̃p}. We have for any mc,

P
[
M̂p 6= Mp|Mc = mc

]

= P
[
M̂p 6= Mp|Mc = mc, Ec

]
P [Ec] + P

[
M̂p 6= Mp|Mc = mc, E

]
P [E ]

6 P
[
M̂p 6= Mp|Mc = mc, Ec

]
+ P [E ]

= P
[
M̂p 6= Mp|Mc = mc, Ec

]
+ V(pMp , pUnRp )

6 2ε,

where the last inequality follows from (82) and (83). Similarly, using (82) and (84),

we have for any mc,

P
[
M̂c 6= Mc|Mc = mc

]
6 2ε.
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Encoding the sources into codewords as fn(f cn(V n
c ), fpn(V n

p )), and forming estimates

from the channel output Y n as V̂ n
c , gcn(gn(Y n)), and V̂ n

p , gpn(gn(Y n)), we obtain

again

P[(V n
c , V

n
p ) 6= (V̂ n

c , V̂
n
p )]

6 P[(V n
c , V

n
p ) 6= (V̂ n

c , V̂
n
p )|(M̂p, M̂c) = (Mp,Mc)] + P[(M̂p, M̂c) 6= (Mp,Mc)]

6 5ε,

and for any vnc ∈ Vnc , by noting that pZn|V nc =vnc = pZn|V nc =vnc ,Mc=fcn(vnc ) = pZn|Mc=fcn(vnc ),

where the last equality holds because Zn →Mc → V n
c , we have by (86)

V
(
pZn|V nc =vnc , pZn

)
6 3ε.

Since ε > 0 can be chosen arbitrarily small, we obtain again the achievability part of

Theorem 4.3.1.
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4.6 Conclusion

We have proposed and analyzed a source-channel coding architecture for multiplexing

confidential and public messages that achieves information-theoretic secrecy over the

wiretap channel. Our architecture exploits uniform compression codes that output

nearly uniform messages. By showing that secrecy can be achieved without extra ran-

domness resources, and without reducing the overall rate of reliable communication,

we show that secrecy can be achieved at negligible cost and provide a step towards

integrating physical-layer security into communication systems.

While our architecture introduces a new coding scheme at the application layer,

another approach consisting in modifying the physical-layer of the protocol stack,

could be possible relying on wiretap codes that do not require uniform randomiza-

tion [46]. This topic is left for future work and will be addressed in [108].

An important issue that we have not addressed is the design of universal wiretap

codes that merely require that the public message carries enough randomness, and do

not require the knowledge of the statistics. Some results in this direction are already

available in [47].
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APPENDICES

4.A Proof of Proposition 4.4.1

4.A.1 Achievability

There exists a sequence of (2nR, n, 2dn) uniform compression codes {Cn}n∈N∗ such that

C is achievable with a seed length dn scaling as

dn = Θ(n1/2+ε),

where ε > 0 is arbitrary.

Proof. Let ε1 > 0, ε > 0, n ∈ N, dn ∈ N, R > 0. Define Mn , 2nR andMn , J1,MnK.

Consider a random mapping Φ : X n × Udn → Mn, and its associated decoder Ψ :

Mn × Udn → X n. Given (m,udn) ∈ Mn × Udn , the decoder outputs x̂n if it is the

unique sequence such that x̂n ∈ T nε1 (X) and Φ(x̂n, udn) = m; otherwise it outputs

an error. We let M , Φ(Xn, Udn), and define Pe , P[Xn 6= Ψ(Φ(Xn, Udn), Udn)],

Ue , V
(
pM , pUMn

)
.

• We first determine a condition over R to ensure EΦ [Ue] 6 ε. Remark that

∀m ∈Mn, pM(m) =
∑

xn

∑

u

p(xn, u)1{Φ(xn, u) = m},

hence, on average ∀m ∈Mn, EΦ [pM(m)] = 2−nR, which allows us to write

EΦ [Ue] = EΦ

[∑

m

|pM(m)− EΦ [pM(m)]|
]

6
2∑

i=1

EΦ

[∑

m

∣∣∣p(i)
M (m)− EΦ

[
p

(i)
M (m)

]∣∣∣
]
, (87)

where ∀m ∈Mn, ∀i ∈ J1, 2K,

p
(i)
M (m) =

∑

xn∈Ai

∑

u

p(xn, u)1{Φ(xn, u) = m},
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withA1 , T nε1 (X) andA2 , Ac1. After some manipulations we bound the second

term in (87) as follows

EΦ

[∑

m

∣∣∣p(2)
M (m)− EΦ

[
p

(2)
M (m)

]∣∣∣
]
6 4|X |e−nε21µX , (88)

with µX = min
x∈supp(PX)

PX(x). Then, we bound the first term in (87) by Jensen’s

inequality

EΦ

[∑

m

∣∣∣p(1)
M (m)− EΦ

[
p

(1)
M (m)

]∣∣∣
]
6
∑

m

√
VarΦ

(
p

(1)
M (m)

)
. (89)

Moreover, after some manipulations, we obtain

VarΦ

(
p

(1)
M (m)

)
=

∑

xn∈T nε1 (X)

∑

u

p(xn, u)2VarΦ (1{Φ(xn, u) = m})

6
∑

xn∈T nε1 (X)

∑

u

p(xn, u)2EΦ

[
(1{Φ(xn, u) = m})2

]

=
∑

xn∈T nε1 (X)

∑

u

p(xn, u)2EΦ [1{Φ(xn, u) = m}]

=
∑

xn∈T nε1 (X)

∑

u

p(xn)2p(u)22−nR

=
∑

xn∈T nε1 (X)

p(xn)22−d2−nR

6
∑

xn∈T nε1 (X)

exp2 [−2n(1− ε1)H(X)] 2−d
1

Mn

6 exp2 [n(1 + ε1)H(X)] exp2 [−2n(1− ε1)H(X)] 2−d2−nR

6 exp2 [−n(1− 3ε1)H(X)] 2−dn2−nR. (90)

Thus, by combining (89) and (90), we obtain

EΦ

[∑

m

∣∣∣p(1)
M (m)− EΦ

[
p

(1)
M (m)

]∣∣∣
]

6
∑

m

√
exp2 [−n(1− 3ε1)H(X)] 2−dn2−nR

=
√
Mn exp2

[
−n

2

(
(1− 3ε1)H(X) +

dn
n

)]

6 exp2

[
n

2

(
R− (1− 3ε1)H(X)− dn

n

)]
. (91)
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Hence, if R < H(X) + dn
n
− 3ε1H(X), then asymptotically EΦ [Ue] 6 ε by (88)

and (91).

• We now derive a condition over R to ensure EΦ[Pe] 6 ε. We define E0 , {Xn /∈

T nε1 (X)}, and E1 , {∃x̂n 6= Xn,Φ(x̂n, U) = Φ(Xn, U) and x̂n ∈ T nε1 (X)} so that

by the union bound, EΦ[Pe] 6 P[E0] + P[E1]. We have

P[E0] 6 2|X |e−nε21µX , (92)

and defining P(xn, x̂n, u) , P[∃x̂n 6= xn,Φ(x̂n, u) = Φ(xn, u) and x̂n ∈ T nε1 (X)],

we have

P[E1] =
∑

xn

∑

u

p(xn, u)P(xn, x̂n, u)

6
∑

xn

∑

u

p(xn, u)
∑

x̂n∈T nε1 (X)

x̂n 6=xn

P[Φ(x̂n, u) = Φ(xn, u)]

=
∑

xn

∑

u

p(xn, u)
∑

x̂n∈T nε1 (X)

x̂n 6=xn

2−nR

6
∑

xn

∑

u

p(xn, u)|T nε1 (X)|2−nR

6
∑

xn

∑

u

p(xn, u) exp2 [nH(X)(1 + ε1)] 2−nR

6 exp2 [n(H(X)(1 + ε1)−R)] . (93)

Hence, if R > H(X) + ε1H(X), then asymptotically EΦ(Pe) 6 ε by (92) and

(93).

All in all, if R is such that

H(X) + ε1H(X) < R < H(X) +
dn
n
− 3ε1H(X),

then asymptotically by the selection lemma, EΦ[Ue] 6 ε and EΦ[Pe] 6 ε. Thus, we

choose dn such that

4nε1H(X) < dn 6 4nε1H(X) + 1,
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to obtain

H(X) + ε1H(X) < H(X) +
dn
n
− 3ε1H(X).

We can also choose ε1 = n−1/2+εb , with any εb > 0,1 so that for any εa > εb

4nεb−εaH(X) <
dn

n1/2+εa
6 4nεb−εaH(X) + n−1/2−εa ,

which means dn = o(n1/2+εa). Finally, by means of the selection lemma applied to Pe

and Ue, there exists a realization of Φ such that Ue 6 ε and Pe 6 ε.

4.A.2 Converse

We first show that any achievable rate R must satisfy R > H(X). Assume that R is

an achievable rate. We note M , φn(Xn, Udn). We have

nR > H(M)

= H(M |Udn) + I(Udn ;M)

= I(Xn;M |Udn) + I(Udn ;M)

= H(Xn|Udn)−H(Xn|MUdn) + I(Udn ;M)

(a)
= H(Xn|Udn) + I(Udn ;M)− nδ(ε)
(b)

> H(Xn|Udn)− nδ(ε)
(c)
= nH(X)− nδ(ε),

where (a) holds by Fano’s inequality and limε→0 δ(ε) = 0, (b) holds by positivity of

the mutual information, and (c) holds by independence of Xn and Udn .

Hence it remains to show an upper bound for the optimal scaling of dn. It is

done by means of a second order asymptotic study. We consider an arbitrary source

X , {Xn}∞n=1, where Xn is a random variable taking values in X n subject to PXn .

Specifically, we generalize some results of [93] to our setup, and show that if dn =

o(
√
n), with n the code length, then the trade-off between error probability and

1See Equations (88) and (92).
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uniformity of [93] cannot be improved. In the following, we use the notation Pe ,

Pe(φn, ψn) and Ue , Ue(φn), for a code Cn , (φn, ψn,Mn).

For the fixed-length source coding problem, for ε > 0, for d , {dn}n ∈ RN
+ and

for a code Cn , (φn, ψn,Mn), we define the following first order asymptotics

a0 , R(d, ε|X) , inf
{Cn}

{
lim

[
1

n
logMn

]
: lim Pe < ε

}
,

a+
0 , R+(d, ε|X) , inf

{Cn}

{
lim

[
1

n
logMn

]
: lim Pe < ε

}
,

as well as the following second order asymptotics

R(d, ε, a0 |X) , inf
{Cn}

{
lim

[
1√
n

log
Mn

ena0

]
: lim Pe < ε

}
,

R+(d, ε, a+
0 |X) , inf

{Cn}

{
lim

[
1√
n

log
Mn

ena
+
0

]
: lim Pe < ε

}
.

For the intrinsic randomness problem, for ε > 0, for d ∈ RN
+, and for a code C ′n ,

(φn,Mn), we define the following first order asymptotics

a , S(d, ε|X) , sup
{C′n}

{
lim

[
1

n
logMn

]
: lim Ue<ε

}
,

a− , S−(d, ε|X) , sup
{C′n}

{
lim

[
1

n
logMn

]
: lim Ue<ε

}
,

as well as the following second order asymptotics

S(d, ε, a|X) , sup
{C′n}

{
lim

[
1√
n

log
Mn

ena

]
: lim Ue<ε

}
,

S−(d, ε, a−|X) , sup
{C′n}

{
lim

[
1√
n

log
Mn

ena−

]
: lim Ue<ε

}
.

We express the first order and the second order asymptotics, defined above, in the

following lemmas.

Lemma 4.1.2. Let ε > 0. Let d ∈ RN
+. The first order asymptotics have the following
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expression

R(d, ε|X) = H(0, 1− ε|X),

R+(d, ε|X) = H(0, 1− ε|X),

S(d, ε|X) = H(d, ε|X),

S−(d, ε|X) = H(d, ε|X),

where,

H(d, ε|X), inf
x

{
x : lim P

[
1

n
log

1

PXn(Xn)
<x− dn

n

]
> ε

}
,

H(d, ε|X), inf
x

{
x : lim P

[
1

n
log

1

PXn(Xn)
<x− dn

n

]
> ε

}
.

Proof. We proceed as in [93] with the lemmas derived in the proof of Proposition 4.1.3.

Lemma 4.1.3. Let ε > 0. Let d ∈ RN
+. The second order asymptotics have the

following expression

R(d, ε, a0|X) = H(0, 1− ε, a0|X),

R+(d, ε, a+
0 |X) = H(0, 1− ε, a+

0 |X),

S(d, ε, a1|X) = H(d, ε, a1|X),

S−(d, ε, a−1 |X) = H(d, ε, a−1 |X),

where,

H(d, ε, a|X),inf
x

{
x : limP

[
1

n
log

1

PXn(Xn)
<a+

x√
n
−dn
n

]
>ε
}
,

H(d, ε, a|X),inf
x

{
x : lim P

[
1

n
log

1

PXn(Xn)
<a+

x√
n
−dn
n

]
>ε
}
.

Proof. Let ε > 0. If we decide not to use the additional randomness available, then

by [93] we obtain

R(d, ε, a|X) 6 R(0, ε, a|X) = H(0, 1− ε, a|X),

R+(d, ε, a|X) 6 R+(0, ε, a|X) = H(0, 1− ε, a|X),
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We proceed as in [93, Theorem 3], using [109, Lemma 1.3.2], which remains unchanged

when additional randomness is available at encoder and decoder, to obtain

R(d, ε, a|X) > H(0, 1− ε, a|X),

R+(d, ε, a|X) > H(0, 1− ε, a|X).

From [109, Lemma 2.1.2] we now derive a lemma similar to [93, Lemma 4] for the

metrics Ue.

Lemma 4.1.4. For any φn : X n × Udn →Mn and for any γn ∈]0,Mn[

Ue > P
[
PXn(xn) >

2dn

γn

]
− γn
Mn

.

Proof. Let φn : X n×Udn →Mn. We apply [109, Lemma 2.1.2] to φn so that for any

n ∈ N, for any a, for any γ > 0

Ue = V[φn(Xn, Udn),UMn ]

> P[(Xn, Udn) /∈ S ′n(a)]− P[UMn ∈ Tn(a+ γ)]− e−nγ

= P[Xn /∈ Sn(a− dn/n)]− P[UMn ∈ Tn(a+ γ)]− e−nγ,

where

S ′n(a) ,
{

(xn, udn) ∈ X n × Udn :
1

n
log

1

PXnUdn
(xn, udn)

> a

}

=

{
(xn, udn) ∈ X n × Udn :

1

n
log

1

PXn(xn)
> a− dn

n

}
,

Sn(a) ,
{
xn ∈ X n :

1

n
log

1

PXn(xn)
> a

}
,

Tn(a) ,
{
u ∈ UMn :

1

n
log

1

PUMn (u)
< a

}
.

for any γn ∈]0,Mn[, we choose γ , 1
n

log Mn

γn
and a , 1

n
log γn, such that a + γ =
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1
n

logMn and P[UMn ∈ Tn(a+ γ)] = 0. Hence, we obtain

Ue > P[Xn /∈ Sn(a− dn/n)]− e−nγ

= P
[

1

n
log

1

PXn(xn)
< a− dn/n

]
− e−nγ

= P
[

1

n
log

1

PXn(xn)
<

1

n
log(γn × 2−dn)

]
− γn
Mn

.

Then, with Lemma 4.1.4 we proceed as in [93, Theorem 3] to obtain

S(d, ε, a|X) 6 H(d, 1− ε, a|X),

S−(d, ε, a|X) 6 H(d, 1− ε, a|X).

Finally, from [109, Lemma 2.1.1] we derive a lemma similar to [93, Lemma 3] for the

metric Ue.

Lemma 4.1.5. For any Mn > 0 and for any γn > Mn, there exists φn : X n ×Udn →

Mn such that

Ue 6 P
[
PXn(xn) >

2dn

γn

]
− Mn

γn
.

Proof. By [109, Lemma 2.1.1], there exists φn : X n×Udn →Mn such that for any a,

for any γ > 0

Ue = V(φn(Xn, Udn),UMn)

6 max (P[(Xn, Udn) /∈ S ′n(a+ γ)],P[UMn ∈ Tn(a)]) + e−nγ

6 max (P[Xn /∈ Sn(a+ γ − dn/n)],P[UMn ∈ Tn(a)]) + e−nγ,

For any γn > Mn, we choose γ , 1
n

log γn
Mn

and a , 1
n

logMn, such that a + γ =

1
n

log(γn) and P[UMn ∈ Tn(a)] = 0. Hence, we obtain

Ue 6 P[Xn /∈ Sn(a+ γ − dn/n)] + e−nγ

= P
[

1

n
log

1

PXn(xn)
< a+ γ − dn/n

]
+ e−nγ

= P
[

1

n
log

1

PXn(xn)
<

1

n
log(γn)− dn/n

]
+
Mn

γn
.
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We conclude, as in [93, Theorem 3], using Lemma 4.1.5, that

S(d, ε, a|X) > H(d, 1− ε, a|X),

S−(d, ε, a|X) > H(d, 1− ε, a|X).

From the first order and the second order asymptotics derived in Lemma 4.1.2 and

Lemma 4.1.3, we study the trade-off between Pe and Ue, for i.i.d. sources following

the same method as in [93]. We consider the intrinsic randomness problem for the code

C ′n = (φn,Mn) and the fixed-length source coding for the code Cn = (φn, ψn,Mn). We

want to know whether there exists a sequence of triplet {(φn, ψn,Mn)}n∈N such that

lim Pe = ε and lim Ue = ε′, where ε, ε′ ∈]0, 1[ can be chosen arbitrarily small, while

ensuring dn negligible compared to n. We first simplify the first order asymptotics of

Lemma 4.1.2, when dn = o(n).

Lemma 4.1.6. Let d ∈ RN
+. Assume i.i.d. sources and assume dn = o(n). Then,

H(0, ε|X), H(0, ε|X), H(d, ε|X), H(d, ε|X), H(0, ε|X), H(0, ε|X) are all equal to

H(X).

Proof. By the law of large number we already have

{
H(0, ε|X), H(0, ε|X), H(0, ε|X), H(0, ε|X)

}
= {H(X)}.

Then, for any ε0 > 0, since dn = o(n), we have

limP
[

1

n
log

1

PXn(Xn)
< x− dn

n

]
> limP

[
1

n
log

1

PXn(Xn)
< x− ε0

]
,
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thus,

H(d, ε|X) = inf
x

{
x : limP

[
1

n
log

1

PXn(Xn)
< x− dn

n

]
> ε

}

6 inf
x

{
x : limP

[
1

n
log

1

PXn(Xn)
< x− ε0

]
> ε

}

= ε0 + inf
x

{
x : limP

[
1

n
log

1

PXn(Xn)
< x

]
> ε

}

= ε0 +H(0, ε|X). (94)

We also have by Proposition 4.1.2

H(d, ε|X) = S−(d, ε|X) > S−(0, ε|X) = H(0, ε|X), (95)

hence, by (94), (95), since ε0 is arbitrary, we have

H(d, ε|X) = H(0, ε|X).

Similarly,

H(d, ε|X) = H(0, ε|X).

Proposition 4.1.4 (Converse). Let d ∈ RN
+. Assume i.i.d. sources. If dn = o(

√
n),

then

lim Pe + lim Ue > 1.

Proof. We prove the two statements in order. Note that, for i.i.d. sources, by

Lemma 4.1.2 and Lemma 4.1.6, all the first asymptotics considered are equal, hence

by definition of the second order asymptotics, the following must hold

S−(d, ε′, a|X) > lim

[
1√
n

log
Mn

ena

]
> R(d, ε, a|X), (96)

S(d, ε′, a|X) > lim

[
1√
n

log
Mn

ena

]
> R+(d, ε, a|X). (97)
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Assume dn = o(
√
n). By Equations (96), (97), we have by Lemma 4.1.3

H(d, ε′, a|X) > H(0, 1− ε, a|X), (98)

H(d, ε′, a|X) > H(0, 1− ε, a|X). (99)

Remark that for any ε0 > 0, since dn = o(
√
n), we have

lim P
[

1

n
log

1

PXn(Xn)
< a+

b− dn/
√
n√

n

]
> lim P

[
1

n
log

1

PXn(Xn)
< a+

b− ε0√
n

]
,

hence,

H(d, ε′, a|X)

= inf
b

{
b : limP

[
1

n
log

1

PXn(Xn)
<a+

b− dn/
√
n√

n

]
>ε
}

6 inf
b

{
b : limP

[
1

n
log

1

PXn(Xn)
<a+

b− ε0√
n

]
>ε
}

= ε0 + inf
b

{
b : limP

[
1

n
log

1

PXn(Xn)
<a+

b√
n

]
>ε
}

= ε0 +H(0, ε′, a|X),

and similarly

H(d, ε′, a|X) 6 ε0 +H(0, ε′, a|X).

Thus, by (98), (99), we have

ε0 +H(0, ε′, a|X) > H(d, ε′, a|X) > H(0, 1− ε, a|X),

ε0 +H(0, ε′, a|X) > H(d, ε′, a|X) > H(0, 1− ε, a|X),

which means

H(0, ε′, a|X) > H(0, 1− ε, a|X),

H(0, ε′, a|X) > H(0, 1− ε, a|X),

since ε0 is arbitrary. Thus, for i.i.d. sources, since H(0, ε, a|X) and H(0, ε, a|X) are

continuous and increasing w.r.t. ε, we find that

lim Pe + lim Ue > 1.
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4.B Proof of Proposition 4.4.2

Let ε > 0, δ > 0 and n ∈ N. Let t, m, and dn to be expressed later. We know

from [106, 107] that there exists an invertible (m, d,m, t, ε)-extractor EXT0, such

that (77) is satisfied. Assume that the emitter and the receiver share a sequence

Udn of dn uniformly distributed bits. As described in Figure 28, we proceed in two

steps to encode Xn. First, we perform a typical sequence based compression of Xn

to form S, we note this operation φ′n : X n → M′
n, such that S , φ′n(Xn), and we

note ψ′n :M′
n → X n the inverse operation such that

lim
n→∞

P[Xn 6= ψ′n ◦ φ′n(Xn)] = 0. (100)

Note that this compression implies

lim sup
n→∞

1

n
log||φ′n||6 H(X) + δ. (101)

Then, we apply the extractor EXT0 to S and Udn , to form the encoded message

M = EXT0(S, Udn). We define the encoding function φn : X n × Udn →Mn as

φn(Xn, Udn) ,M = EXT0(φ′n(Xn), Udn),

and the decoding function ψn :Mn × Udn → X n as

ψn(M,Udn) , ψ′n(EXT−1
0 (M,Udn)) = ψ′n(S) = ψ′n ◦ φ′n(Xn), (102)

which is possible since EXT0 is invertible. Note that by (100), (102), we have

lim
n→∞

P[Xn 6= ψn(φn(Xn, Udn), Udn)] = lim
n→∞

P[Xn 6= ψ′n ◦ φ′n(Xn)] = 0,

and since the sizes of the input and output of the extractor are the same, by (101),

we have

lim sup
n→∞

1

n
log||φn||6 H(X) + δ.
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Moreover, [106, 107] also shows that Ue 6 ε. It remains to show that for any εb > 0,

we can choose dn , Θ(n1/2+εb). Let ε0 > 0. We first compute

pS(s) = P[(Xn = s ∈ T nε0 (X)) or (Xn /∈ T nε0 (X) and s is chosen uniformly in T nε0 (X))]

6 2−n(1−ε0)H(X) +
δε0(n)

|T nε0 (X)|

6 2−n(1−ε0)H(X) +
δε0(n)

1− δε0(n)
2−n(1−ε0)H(X)

= 2−n(1−ε0)H(X)

(
1 +

δε0(n)

1− δε0(n)

)
,

where T nε0 (X) is the ε0-letter-typical set with respect to pX [78], δε0(n) , 2|X |e−nε20µX ,

with µX , min
x∈supp(pX)

pX(x).

Hence,

H∞(S) = − log(max pS(s)) > n(1− ε0)H(X)− log

[
1 +

δε0(n)

1− δε0(n)

]
.

We define

t , n(1− ε0)H(X)− log

[
1 +

δε0(n)

1− δε0(n)

]
. (103)

Thus, since the input size m of the extractor verifies m 6 dn(1 + ε0)H(X)e, by (77)

and (103) we obtain

dn 6 n(1 + ε0)H(X)− t+ 2 log[n(1 + ε0)H(X)] + 2 log
1

ε
+O(1)

= 2nε0H(X) + log

[
1 +

δε0(n)

1− δε0(n)

]
+ 2 log[n(1 + ε0)H(X)] + 2 log

1

ε
+O(1).

Then, we choose ε0 = n−1/2+εb and εb > 0,2 such that for any εa > εb

dn
n1/2+εa

6 2nεb−εaH(X) +
2

n1/2+εa
log

1

ε
+O

(
log n

n1/2+εa

)
,

which means dn = o(n1/2+εa).

2The probability of error of the compression scheme is dominated by a term similar to δε0(n).
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4.C Proof of Proposition 4.4.3

Let β ∈]0, 1/2[. Let n ∈ N and N , 2n. We set AN , XNGN . We define the

following sets.

VX ,
{
i ∈ J1, NK : H

(
Ai|Ai−1

)
> 1− δN

}
,

HX ,
{
i ∈ J1, NK : H

(
Ai|Ai−1

)
> δN

}
.

These sets cardinalities satisfy the following properties.

Lemma 4.3.7. The sets HX and VX verify

1. limN→+∞|HX |/N = H(X),

2. limN→+∞|VX |/N = H(X),

3. limN→+∞|HX\VX |/N = 0.

Proof. 1) follows from [87]. 2) follows from Lemma 3.4.1. 3) holds by 1) and 2) since

VX ⊂ HX .

Lemma 4.3.8. The output of the encoder AN [VX ] is near uniformly distributed in

divergence.

Proof. We have

H
(
AN [VX ]

)
=
∑

i∈VX

H
(
Ai|Ai−1[VX ]

)
>
∑

i∈VX

H
(
Ai|Ai−1

)
> |VX |(1− δN) ,

where the first inequality holds because conditioning reduces entropy and the last

inequality follows from the definition of VX . We thus obtain

log 2|VX | −H(AN [VX ]) 6 |VX |δN 6 NδN .

Finally, by [87], the receiver can reconstructXN fromAN [VX ] and I0 , AN [HX\VX ],

where I0 is encrypted via a one-time pad with the uniform seed shared by Alice and

Bob. Hence, by Lemmas 4.3.7, 4.3.8, we obtain a polar code construction for a uni-

form compression code, whose seed length scales as o(N).
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CHAPTER 5

POLAR CODING SCHEMES FOR THE BROADCAST
CHANNEL WITH CONFIDENTIAL MESSAGES

5.1 Summary

We develop a low-complexity polar coding scheme for the discrete memoryless broad-

cast channel with confidential messages under strong secrecy and randomization con-

straints. This model encompasses the wiretap channel model presented in Section 1.3.

Our scheme extends previous work by using an optimal rate of uniform randomness

in the stochastic encoder, and avoiding assumptions regarding the symmetry or de-

graded nature of the channels. The price paid for these extensions is that the encoder

and decoders are required to share a secret seed of negligible size and to increase

the block length through chaining. We also highlight a close conceptual connection

between the proposed polar coding scheme and a random binning proof of the secrecy

capacity region. This chapter is based on the results obtained in [110,111]

5.2 Introduction

In this chapter, we develop a low-complexity polar coding scheme for the broadcast

channel with confidential messages [36]. Rather than view randomness as a free

resource, which could be used to simulate random numbers at arbitrary rate with no

cost, we adopt the point of view put forward in [46,55], in which any randomness used

for stochastic encoding must be explicitly accounted for. In particular, our proposed

polar coding scheme exploits the optimal rate of randomness identified in [55] and

relies on polar codes for channel prefixing.

When specialized to Wyner’s wiretap model (see Section 1.3), our scheme is also

related to [92], but with a number of notable distinctions. Specifically, while no pre-

shared secret seed is required in [92], the coding scheme therein relies on a two-layer

construction for which no efficient code construction is presently known [92, Section
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3.3]. In contrast, our coding scheme requires a pre-shared secret seed, but at the

benefit of only using a single layer of polarization.

The remaining of the chapter is organized as follows. Section 5.3 formally intro-

duces the notation and the model under investigation. Section 5.4 develops a random

binning proof of the results in [55], which serves as a guideline for the design of the po-

lar coding scheme. Section 5.5 describes the proposed polar coding scheme in details,

while Section 5.6 provides its detailed analysis. Section 5.7 offers some concluding

remarks.

5.3 Problem statement

5.3.1 Notation

For n ∈ N and N , 2n, we let Gn ,
[

1 0

1 1

]⊗n
be the source polarization transform

defined in [87]. We note the components of a vector, X1:N , of sizeN , with superscripts,

i.e., X1:N , (X1, X2, . . . , XN). When the context makes clear that we are dealing

with vectors, we write XN in place of X1:N .

5.3.2 Channel model and capacity region

We consider the problem of secure communication over a discrete memoryless broad-

cast channel (X , pY Z|X ,Y ,Z) illustrated in Figure 29. This model generalizes the

wiretap channel model presented in Section 1.3. The marginal probabilities pY |X

and pZ|X define two DMCs (X , pY |X ,Y) and (X , pZ|X ,Z), which we refer to as Bob’s

channel and Eve’s channel, respectively.

Definition 5.3.1. A (2NRO , 2NRM , 2NRS , 2NRR , N) code CN for the broadcast channel

consists of

• a common message set O , J1, 2NROK

• a private message set M , J1, 2NRM K

• a confidential message set S , J1, 2NRSK
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Alice

Encoder

Decoder

Bob

Eve

pY Z|X

Y N

O

R

M
S

bS

bO
cM

bbO

XN

ZN

Decoder

common message

private message
confidential message

randomness

O
M
S
R

=

=

=

=

Figure 29. Communication over a broadcast channel with confidential messages. O is
a common message that must be reconstructed by both Bob and Eve. S is a confi-
dential message that must be reconstructed by Bob and kept secret from Eve. M is
a private message that must be reconstructed by Bob, but may neither be secret nor
reconstructed by Eve. R represents an additional randomization sequence used at the
encoder.

• a randomization sequence set R , J1, 2NRRK

• an encoding function f : O ×M × S × R → XN , which maps the messages

(o,m, s) and the randomness r to a codeword xN

• a decoding function g : YN → O ×M × S, which maps each observation of

Bob’s channel yN to the messages (ô, m̂, ŝ)

• a decoding function h : ZN → O, which maps each observation of Eve’s channel

zN to the message ˆ̂o

For uniformly distributed O, M , S, and R, the performance of

a (2NRO , 2NRM , 2NRS , 2NRR , N) code CN for the broadcast channel is measured in

terms of its probability of error

Pe(CN) , P
[
(Ô, M̂ , Ŝ) 6= (O,M, S) or

̂̂
O 6= O

]
,

and its leakage of information about the confidential message to Eve

Le(CN) , I(S;ZN).
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Definition 5.3.2. A rate tuple (RO, RM , RS, RR) is achievable for the broadcast chan-

nel if there exists a sequence of (2NRO , 2NRM , 2NRS , 2NRR , N) codes {CN}N>1 such that

lim
N→∞

Pe(CN) = 0, (reliability condition)

lim
N→∞

Le(CN) = 0.(strong secrecy)

The achievable region RBCC is defined as the closure of the set of all achievable rate

quadruples.

The exact characterization of RBCC was obtained in [55].

Theorem 5.3.1 ( [55]). RBCC is the closed convex set consisting of the quadruples

(RO, RM , RS, RR) for which there exist auxiliary random variables (U, V ) such that

U − V −X − (Y, Z) and

RO 6 min[I(U ;Y ), I(U ;Z)],

RO +RM +RS 6 I(V ;Y |U) + min[I(U ;Y ), I(U ;Z)],

RS 6 I(V ;Y |U)− I(V ;Z|U),

RM +RR > I(X;Z|U),

RR > I(X;Z|V ).

The main contribution of the present work is to develop a polar coding scheme

achieving the rates in RBCC.

5.4 A binning approach to code design: from random bin-
ning to polar binning

In this section, we argue that our construction of polar codes for the broadcast chan-

nel with confidential messages is essentially the constructive counterpart of a random

binning proof of the region RBCC. While random coding is often the natural tool to

address channel coding problems, random binning is already found in [112] to estab-

lish the strong secrecy of the wiretap channel, and is the tool of choice in quantum
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information theory [113]; there has also been a renewed interest for random binning

proofs in multi-user information theory, motivated in part by [114]. In Section 5.4.1,

we sketch a random binning proof of the characterization of RBCC established in [55],

which may be viewed as a refinement of the analysis in [114] to obtain a more precise

characterization of the stochastic encoder. While the results we derive are not new,

we use this alternative proof in Section 5.4.2 to obtain high-level insight into the

construction of polar codes. The main benefit is to clearly highlight the crucial steps

of the construction in Section 5.5 and of its analysis in Section 5.6. In particular,

the rate conditions developed in the random binning proof of Section 5.4.1 directly

translate into the definition of the polarization sets in Section 5.4.2.

5.4.1 Information-theoretic random binning

Information-theoretic random binning proofs rely on the following well-known lem-

mas. We use the notation δ(N) to denote an unspecified positive function of N that

vanishes as N goes to infinity.

Lemma 5.4.1 (Source-coding with side information). Consider a DMS (X×Y , pXY ).

For each xN ∈ XN , assign an index Φ(xN) ∈ J1, 2NRK uniformly at random. If

R > H(X|Y ), then ∃N0 such that ∀N > N0, there exists a deterministic function

gN : J1, 2NRK× YN → XN : (Φ(xN), yN) 7→ x̂N such that

EΦ

(
V
(
pXNXN , pXNgN (Y N )

))
6 δ(N).

Lemma 5.4.2 (Privacy amplification, channel intrinsic randomness, output statistics

of random binning). Consider a DMS (X×Z, pXZ) and let ε > 0. For each xN ∈ XN ,

assign an index Ψ(xN) ∈ J1, 2NRK uniformly at random. Denote by qM the uniform

distribution on J1, 2NRK. If R < H(X|Z), then ∃N0 such that ∀N > N0

EΨ

(
V
(
pΨ(XN )ZN , qMpZN

))
6 δ(N).

One may obtain more explicit results regarding the convergence to zero in

Lemma 5.4.1 and Lemma 5.4.2, but we ignore this for brevity.
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The principle of a random binning proof of Theorem 5.3.1 is to consider a DMS

(U × V ×X × Y ×Z, pUV XY Z) such that U − V −X − Y Z, and to assign two types

of indices to source sequences by random binning. The first type identifies subset of

sequences that play the roles of codebooks, while the second type labels sequences

with indices that can be thought of as messages. As explained in the next paragraphs,

the crux of the proof is to show that the binning can be “inverted,” so that the sources

may be generated from independent choices of uniform codebooks and messages.

Common message encoding. We introduces two indices ψU ∈ J1, 2NρU K and

o ∈ J1, 2NROK by random binning on uN such that:

• ρU > max (H(U |Y ) ,H(U |Z)), so that Lemma 5.4.1 ensures that the knowledge

of ψU allows Bob and Eve to reconstruct the sequence uN with high probability

knowing yN or zN , respectively;

• ρU + RO < H(U), so that Lemma 5.4.2 ensures that the indices ψU and o are

almost uniformly distributed and independent of each other.

The binning scheme induces a joint distribution pUNΨUO. To convert the binning

scheme into a channel coding scheme, Alice operates as follows. Upon sampling in-

dices ψ̃U ∈ J1, 2NρU K and õ ∈ J1, 2NROK from independent uniform distributions, Alice

stochastically encodes them into a sequence ũN drawn according to pUN |ΨUO(ũN |ψ̃U , õ).

The choice of rates above guarantees that the joint distribution pŨN Ψ̃U Õ approximates

the distribution pUNΨUO in variational distance, so that disclosing ψ̃U allows Bob and

Eve to decode the sequence ũN .

Secret and private message encoding. Following the same approach, we intro-

duce three indices ψV |U ∈ J1, 2NρV |U K, s ∈ J1, 2NRSK, and m ∈ J1, 2NRM K by random

binning on vN such that

• ρV |U > H(V |UY ), to ensure that knowing ψV |U , uN , and yN , Bob may recon-

struct the sequence vN ;

176



• ρV |U + RS < H(V |UZ), to ensure that the indices are almost uniformly dis-

tributed and independent of each other, as well as of the source sequences UN

and ZN .

The binning scheme induces a joint distribution pV NUNΨV |USM . To obtain a chan-

nel coding scheme, Alice encodes the realizations of independent and uniformly dis-

tributed indices ψ̃V |U ∈ J1, 2NρV |U K, s̃ ∈ J1, 2NRSK, m̃ ∈ J1, 2NRM K, and the sequence

ũN , into a sequence ṽN drawn according to the distribution

pV N |UNΨV |USM(ṽN |ũN , ψ̃V |U , s̃, m̃).

The resulting joint distribution is again a close approximation of pV NUNΨV |USM , so

that the scheme inherits the reliability and secrecy properties of the random binning

scheme upon disclosing ψ̃V |U .

Channel prefixing. Finally, we introduce the indices ψX|V ∈ J1, 2NρV |X K and r ∈

J1, 2NRRK by random binning on xN such that

• ρX|V < H(X|V Z) to ensure that ψX|V is independent of the source sequences

V N and ZN ;

• ρX|V +RR < H(X|V ) to ensure that the indices are almost uniformly distributed

and independent of each other, as well as of the source sequences V N .

The binning scheme induces a joint distribution pXNV NUNΨX|V R. To obtain a chan-

nel prefixing scheme, Alice encodes the realizations of uniformly distributed indices

ψ̃X|V and r̃, and the previously obtained ṽN into a sequence x̃N drawn according to

pXN |V NΨX|V R(x̃N |ṽN ψ̃X|V r̃). The resulting joint distribution induced is once again a

close approximation of pXNV NUNΨX|V R.

Chaining to de-randomize the codebooks. The downside of the schemes de-

scribed earlier is that they require sharing the indices ψ̃U , ψ̃V |U , and ψ̃X|V , identifying

the codebooks between Alice, Bob, and Eve; however, the rate cost may be amortized
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by reusing the same indices over sequences of k blocks. Specifically, the union bound

shows that the average error probability over k blocks is at most k times that of an

individual block, and a hybrid argument shows that the information leakage over k

blocks is at most k times that of an individual block. Consequently, for k and N large

enough, the impact on the transmission rates is negligible.

Total amount of randomness. The total amount of randomness required for

encoding includes not only the explicit random numbers used for channel prefixing

but also all the randomness required in the stochastic encoding to approximate the

source distribution. One can show that the rate randomness specifically used in the

stochastic encoding is negligible; we omit the proof of this result for random binning,

but this is analyzed precisely for polar codes in Section 5.6.

By combining all the rate constraints above and perform Fourier-Motzkin elimi-

nation, one recovers the rates in Theorem 5.3.1.

5.4.2 Binning with polar codes

The main observation to translate the analysis of Section 5.4.1 into a polar coding

scheme is that Lemma 5.4.1 and Lemma 5.4.2 have the following counterparts in

terms of source polarization.

Lemma 5.4.3 (adapted from [87]). Consider a DMS (X ×Y , pXY ). For each x1:N ∈

FN2 polarized as u1:N , Gnx
1:N , let u1:N [HX|Y ] denote the high entropy bits of u1:N in

positions HX|Y , {i ∈ J1, NK : H
(
U i|U1:i−1Y N

)
> δN} and δN , 2−N

β
with β ∈]0, 1

2
[.

For every i ∈ J1, NK, sample ũ1:N from the distribution

p̃U i|U1:i−1(ũi|ũ1:i−1) ,





1 {ũi = ui} if i ∈ HY |X

pU i|U1:i−1Y N (ũi|ũ1:i−1yN) if i ∈ Hc
Y |X .

and create x̃1:N = ũ1:NGn. Then,

V(pX1:NX1:N , pX1:N X̃N ) = O(NδN),

and limN→∞
1
N

∣∣HX|Y
∣∣ = H(X|Y ).
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In other words, the high entropy bits in positions HX|Y play the same role as the

random binning index in Lemma 5.4.1. However, note that the construction of x̃1:N

in Lemma 5.4.3 is explicitly stochastic.

Lemma 5.4.4 (adapted from Section 3.4.2). Consider a DMS (X×Z, pXZ). For each

x1:N ∈ FN2 polarized as u1:N , Gnx
1:N , let u1:N [VX|Z ] denote the very high entropy bits

of u1:N in positions VX|Z , {i ∈ J1, NK : H
(
U i|U1:i−1Z1:N

)
> 1− δN} and δN , 2−N

β

with β ∈]0, 1
2
[. Denote by qU1:N [VX|Z ] the uniform distribution of bits in positions VX|Z.

Then,

V
(
pU1:N [VX|Z ]Z1:N , qU1:N [VX|Z ]pZ1:N

)
= O(

√
NδN),

and limN→∞
1
N

∣∣VX|Z
∣∣ = H(X|Z) by Lemma 3.4.1.

The very high entropy bits in positions VX|Z therefore play the same role as the

random binning index in Lemma 5.4.2.

This suggests that any result obtained from random binning could also be derived

using source polarization as a linear and low-complexity alternative; intuitively, in-

formation theoretic constraints resulting from Lemma 5.4.1 translate into the use of

“high entropy” sets H, while those resulting from Lemma 5.4.2 translate into the use

of “very high entropy” sets V . However, unlike the indices resulting from random

binning, the high entropy and very high entropy sets may not necessarily be aligned,

and the precise design of a polar coding scheme requires more care.

In the remainder of the chapter, we consider a DMS (U ×V×X ×Y×Z, pUV XY Z)

such that U −V −X − Y Z, I(V ;Y |U)− I(V ;Z|U) > 0, and |X |= |U|= |V|= 2. The

extension to larger alphabets is obtained following ideas in [115]. We also assume

without loss of generality I(U ;Y ) 6 I(U ;Z), the case I(U ;Y ) > I(U ;Z) is treated

similarly.

Common message encoding. Define the polar transform of U1:N , as A1:N ,
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U1:NGn and the associated sets

HU ,
{
i ∈ J1, NK : H(Ai|A1:i−1) > δN

}
, (104)

VU ,
{
i ∈ J1, NK : H(Ai|A1:i−1) > 1− δN

}
, (105)

HU |Y ,
{
i ∈ J1, NK : H(Ai|A1:i−1Y 1:N) > δN

}
, (106)

HU |Z ,
{
i ∈ J1, NK : H(Ai|A1:i−1Z1:N) > δN

}
. (107)

If we could guarantee that HU |Z ⊆ HU |Y ⊆ VU , then we could directly mimic the

information-theoretic random binning proof. We would use random bits in positions

HU |Z to identify the code, random bits in positions VU \ HU |Z for the message, suc-

cessive cancellation encoding to compute the bits in positions VcU and approximate

the source distribution, and chaining to amortize the rate cost of the bits in positions

HU |Z . Unfortunately, the inclusion HU |Y ⊆ HU |Z is not true in general, and one must

also use chaining as to “realign” the sets of indices. Furthermore, only the inclu-

sions HU |Z ⊆ HU and HU |Y ⊆ HU are true in general, so that the bits in positions

HU |Z ∩VcU and HU |Y ∩VcU must be transmitted separately. The precise coding scheme

is detailed in Section 5.5.1.

Secret and private messages encoding. Define the polar transform of V 1:N as

B1:N , V 1:NGn and the associated sets

VV |U ,
{
i ∈ J1, NK : H(Bi|B1:i−1U1:N) > 1− δN

}
, (108)

VV |UZ ,
{
i ∈ J1, NK : H(Bi|B1:i−1U1:NZ1:N) > 1− δN

}
, (109)

HV |UY ,
{
i ∈ J1, NK : H(Bi|B1:i−1U1:NY 1:N) > δN

}
, (110)

VV |UY ,
{
i ∈ J1, NK : H(Bi|B1:i−1U1:NY 1:N) > 1− δN

}
, (111)

MUV Z , VV |U\VV |UZ . (112)

If the inclusion HV |UY ⊆ VV |UZ were true, then we would place random bits iden-

tifying the codebook in positions HV |UY , random bits describing the secret message

in positions VV |UZ \ HV |UY , random bits describing the private message in positions
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VV |U \ VV |UZ , use successive cancellation encoding to compute the bits in positions

VcV |U and approximate the source distribution, and use chaining to amortize the rate

cost of the bits in positions HV |UY . This is unfortunately again not directly possible

in general, and one needs to exploit chaining to realign the indices, and transmit the

bits in positions HV |UY ∩ VcV |U separately and secretly to Bob. The precise coding

scheme is detailed in Section 5.5.2.

Channel prefixing. Finally, define the polar transform of X1:N as T 1:N , X1:NGn

and the associated sets

VX|V ,
{
i ∈ J1, NK : H(T i|T 1:i−1V 1:N) > 1− δN

}
, (113)

VX|V Z ,
{
i ∈ J1, NK : H(T i|T 1:i−1V 1:NZ1:N) > 1− δN

}
. (114)

One performs channel prefixing by placing random bits identifying the code in posi-

tions VX|V Z , random bits describing the randomization sequence in positions VX|V \

VX|V Z , and using successive cancellation encoding to compute the bits in positions

VcX|V and approximate the source distribution. Chaining is finally used to amortize

the cost of randomness for describing the code. The precise coding scheme is detailed

in Section 5.5.3.

5.5 Polar coding scheme

In this section, we describe the details of the polar coding scheme resulting from

the discussion of the previous section. Recall that the joint probability distribution

pUV XY Z of the original source is fixed and defined as in Section 5.4.2. As alluded

to earlier, we perform the encoding over k blocks of size N . We use the subscript

i ∈ J1, kK to denote random variables associated to encoding Block i. The chaining

constructions corresponding to the encoding of the common, secret, and private mes-

sages, and randomization sequence, are described in Section 5.5.1, Section 5.5.2, and

Section 5.5.3, respectively. Although each chaining is described independently, all

messages should be encoded in every block before moving to the next. Specifically, in
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Figure 30. Chaining for the encoding of the Ã1:N
i ’s, which corresponds to the encoding

of the common messages.

every block i ∈ J1, k − 1K, Alice successively encodes the common message, the secret

and private messages, and performs channel prefixing, before she moves to the next

block i+ 1.

5.5.1 Common message encoding

In addition to the polarization sets defined in (104)-(107) we also define

IUY , VU\HU |Y ,

IUZ , VU\HU |Z ,

AUY Z , any subset of IUZ\IUY with size |IUY \IUZ |.

Note that AUY Z exists since we have assumed I(U ;Y ) 6 I(U ;Z). In fact,

|IUZ\IUY |−|IUY \IUZ |= |IUZ |−|IUY |> 0.

The encoding procedure with chaining is summarized in Figure 30.

In Block 1, the encoder forms Ũ1:N
1 as follows. Let O1 be a vector of |IUY |

uniformly distributed information bits that represents the common message to be

reconstructed by Bob and Eve. Upon observing a realization o1, the encoder samples
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ã1:N
1 from the distribution p̃A1:N

1
defined as

p̃Aj1|A
1:j−1
1

(aj1|a1:j−1
1 ) ,





1
{
aj1 = oj1

}
if j ∈ IUY

1/2 if j ∈ VU\IUY

pAj |A1:j−1(aj1|a1:j−1
1 ) if j ∈ VcU

, (115)

where the components of o1 have been indexed by the set of indices IUY for conve-

nience, so that O1 , Ã1:N
1 [IUY ]. The random bits that identify the codebook and

that are required to reconstruct Ã1:N
1 are Ã1:N

1 [HU |Z ] for Eve and Ã1:N
1 [HU |Y ] for Bob.

Moreover, we note

ΨU
1 , Ã1:N

1 [VU\IUY ] = Ã1:N
1 [VU ∩HU |Y ],

ΦU
1 , Ã1:N

1 [(HU |Y ∪HU |Z) ∩ VcU ].

Both ΨU
1 and ΦU

1 are publicly transmitted to both Bob and Eve. Note that, unlike in

the random binning proof, the use of polarization forces us to distinguish the part ΨU
1

that is nearly uniform from the part ΦU
1 that is not. We show later that the rate cost

of this additional transmission is negligible. We also write O1 , [O1,1, O1,2], where

O1,1 , Ã1:N
1 [IUY ∩ IUZ ] and O1,2 , Ã1:N

1 [IUY \IUZ ]. We will retransmit O1,2 in the

next block. Finally, we compute Ũ1:N
1 , Ã1:N

1 Gn.

In Block i ∈ J2, k − 1K, the encoder forms Ã1:N
1 as follows. Let Oi be a vector

of |IUY | uniformly distributed information bits representing the common message in

that block. Upon observing the realizations oi and oi−1, the encoder draws ã1:N
i from

the distribution p̃A1:N
i

defined as follows.

p̃Aji |A
1:j−1
i

(aji |a1:j−1
i ) ,





1
{
aji = oji

}
if j ∈ IUY

1
{
aji = oji−1,2

}
if j ∈ AUY Z

1
{
aji = (ψU1 )j

}
if j ∈ VU\(IUY ∪ AUY Z)

pAj |A1:j−1(aji |a1:j−1
i ) if j ∈ VcU

, (116)
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where the components of oi, oi−1,2, and ψU1 , have been indexed by the set of indices

IUY , AUY Z , and VU\(IUY ∪ AUY Z), respectively. Consequently, note that

Oi = Ã1:N
i [IUY ] and Oi−1,2 = Ã1:N

i [AUY Z ].

The random bits that identify the codebook and that are required to reconstruct

Ã1:N
i are Ã1:N

i [HU |Y ] for Bob and Ã1:N
i [HU |Z ] for Eve. Parts of these bits depend on

messages in previous blocks. For the others, we define

ΨU
i , Ã1:N

i [VU\(IUY ∪ AUY Z)],

ΦU
i , Ã1:N

i [(HU |Y ∪HU |Z)\VU ].

Note that the bits in ΨU
i are reusing the bits in ΨU

1 ; however, it is necessary to make

the bits ΦU
i available to both Bob and Eve, to enable the reconstruction of Oi. We

show later that this entails a negligible rate cost. Finally, we write Oi , [Oi,1, Oi,2],

where Oi,1 , Ã1:N
i [IUY ∩ IUZ ] and Oi,2 , Ã1:N

i [IUY \IUZ ], and we retransmit Oi,2 in

the next block, We finally compute Ũ1:N
i , Ã1:N

i Gn.

Finally, the encoder forms Ã1:N
k in Block k, as follows. Let Ok be a vector of

|IUY ∩ IUZ | uniformly distributed bits representing the common message in that

block. Given realizations ok and ok−1, the encoder samples ã1:N
k from the distribution

p̃A1:N
k

defined as follows.

p̃Ajk|A
1:j−1
k

(ajk|a1:j−1
k ) ,





1
{
ajk = ojk

}
if j ∈ IUY ∩ IUZ

1
{
ajk = ojk−1,2

}
if j ∈ AUY Z

1
{
ajk = (ψU1 )j

}
if j ∈ VU\(AUY Z ∪ (IUY ∩ IUZ))

pAj |A1:j−1(ajk|a1:j−1
k ) if j ∈ VcU

,

(117)

where the components of ok, ok−1,2, and ψU1 have been indexed by the set of indices

IUY ∩ IUZ , AUY Z , and VU\(AUY Z ∪ (IUY ∩ IUZ)), respectively. Consequently,

Ok = Ã1:N
k [IUY ∩ IUZ ], Ok−1,2 = Ã1:N

k [AUY Z ].
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The random bits that identify the codebook and that are required to reconstruct

Ã1:N
k are Ã1:N

k [HU |Y ] for Bob and Ã1:N
k [HU |Z ] for Eve. Parts of these bits depend on

messages in previous blocks. For the others, we define

ΨU
k , Ã1:N

k [VU\(AUY Z ∪ (IUY ∩ IUZ))],

ΦU
k , Ã1:N

k [(HU |Y ∪HU |Z)\VU ],

and note that ΨU
k merely reuses the bits of ΨU

1 . ΦU
k is made available to both Bob

and Eve to help them reconstruct Ok, but this incurs a negligible rate cost.

The public transmission of (ΨU
1 ,Φ

U
1:k) to perform the reconstruction of the common

message is taken into account in the secrecy analysis in Section 5.6.

5.5.2 Secret and private message encoding

In addition to the polarization set defined in (108)-(112), we also define

BV |UY , a fixed subset of VV |UZ with size |VV |UY ∪ ((HV |UY \VV |UY ) ∩ VV |U))|

MUV Z , VV |U\VV |UZ .

The encoding procedure with chaining is summarized in Figure 31.

In Block 1, the encoder forms Ṽ 1:N
1 as follows. Let S1 be a vector of |VV |UZ |

uniformly distributed bits representing the secret message and let M1 be a vector

of |MUV Z | uniformly distributed bits representing the private message to be recon-

structed by Bob. Given a confidential message s1, a private message m1, and ũ1:N
1

resulting from the encoding of the common message, the encoder samples b̃1:N
1 from

the distribution p̃B1:N
1

defined as follows.

p̃Bj1|B
1:j−1
1 U1:N

1
(bj1|b1:j−1

1 ũ1:N
1 ) ,





1
{
bj1 = sj1

}
if j ∈ VV |UZ

1
{
bj1 = mj

1

}
if j ∈MUV Z

pBj |B1:j−1U1:N (bj1|b1:j−1
1 ũ1:N

1 ) if j ∈ VcV |U

, (118)

where the components of s1 and m1 have been indexed by the set of indices VV |UZ
and MUV Z , respectively. Consequently, note that S1 = B̃1:N

1 [VV |UZ ] and M1 =
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Figure 31. Chaining for the encoding of the B̃1:N
i ’s, which corresponds to the encoding

of the private and confidential messages.

B̃1:N
1 [MUV Z ]. The random bits that identify the codebook required for reconstruction

are those in positions HV |UY , which we split as

Ψ
V |U
1 , B̃1:N

1 [VV |UY ∪ ((HV |UY \VV |UY ) ∩ VV |U))],

Φ
V |U
1 , B̃1:N

1 [(HV |UY \VV |UY ) ∩ VcV |U ].

Note that Ψ
V |U
1 is uniformly distributed but Φ

V |U
1 is not. Consequently, we may

reuse Ψ
V |U
1 in the next block but we cannot reuse Φ

V |U
1 . We instead share Φ

V |U
1

secretly between Alice and Bob and we show later that this may be accomplished

with negligible rate cost. Finally, define Ṽ 1:N
1 , B̃1:N

1 Gn.

In Block i ∈ J2, kK, the encoder forms Ṽ 1:N
i as follows. Let Si be a vector of

|VV |UZ\BV |UY | uniformly distributed bits and Mi be a vector of |MUV Z | uniformly

distributed bits that represent the secret and private message in block i, respectively.

Given a private message mi, a confidential message si, ψ
V |U
i−1 , and ũ1:N

i resulting from

the encoding of the common message, the encoder draws b̃1:N
i from the distribution
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p̃B1:N
i

defined as follows.

p̃Bji |B
1:j−1
i U1:N

i
(bji |b1:j−1

i ũ1:N
i ) ,





1
{
bji = sji

}
if j ∈ VV |UZ\BV |UY

1

{
bji =

(
ψ
V |U
i−1

)j}
if j ∈ BV |UY

1
{
bji = mj

i

}
if j ∈MUV Z

pBj |B1:j−1U1:N (bj1|b1:j−1
1 ũ1:N

i ) if j ∈ VcV |U

,

(119)

where the components of si, ψ
V |U
i−1 , and mi have been indexed by the set of in-

dices VV |UZ\BV |UY , BV |UY , andMUV Z respectively, so that Si = B̃1:N
i [VV |UZ\BV |UY ],

Ψ
V |U
i−1 = B̃1:N

i [BV |UY ], and Mi = B̃1:N
i [MUV Z ]. The random bits that identify the

codebook required for reconstruction are those in positions HV |UY , which we split as

Ψ
V |U
i , B̃1:N

i [VV |UY ∪ ((HV |UY \VV |UY ) ∩ VV |U))],

Φ
V |U
i , B̃1:N

i [(HV |UY \VV |UY ) ∩ VcV |U ].

Again, Ψ
V |U
i is uniformly distributed but Φ

V |U
i is not, so that we reuse Ψ

V |U
i in the

next block but we share Φ
V |U
i securely between Alice and Bob. We show later that

the cost of sharing Φ
V |U
i is negligible. In Block k, Alice securely shares (Ψ

V |U
k ,Φ

V |U
1:k )

with Bob. Finally, define Ṽ 1:N
i , B̃1:N

i Gn.

5.5.3 Channel prefixing

The channel prefixing procedure with chaining is illustrated in Figure 32.

In Block 1, the encoder forms X̃1:N
1 as follows. Let R1 be a vector of |VX|V \VX|V Z |

uniformly distributed bits representing the randomness required for channel prefixing.

Given a randomization sequence r1 and ṽ1:N
1 resulting from the encoding of secret and

187



{ eT 1:N
2

contains

{

Vc
X|V

contains
randomness

eT 1:N
1 { eT 1:N

k

bits
almost deterministic

IZU\IY U

contains

Vc
X|V

bits
almost deterministic

contains
randomness from
previous block

contains
randomness

VX|V \VX|V Z

VX|V ZeT 1:N
1 [VX|V Z ] eT 1:N

k�1[VX|V Z ]

contains

Vc
X|V

bits
almost deterministic

contains
randomness from
previous block

contains
randomness

VX|V \VX|V Z

VX|V Z

contains
randomness

VX|V \VX|V Z

VX|V Z

Figure 32. Chaining for the encoding of the T̃ 1:N
i ’s, which corresponds to channel

prefixing.

private messages, the encoder draws t̃1:N
1 from the distribution p̃T 1:N

1
defined as follows.

p̃T j1 |T
1:j−1
1 V 1:N

1
(tj1|t1:j−1

1 ṽ1:N
1 ) ,





1/2 if j ∈ VX|V Z

1
{
tj1 = rj1

}
if j ∈ VX|V \VX|V Z

pT j |T 1:j−1V 1:N (tj1|t1:j−1
1 ṽ1:N

1 ) if j ∈ VcX|V

,

(120)

where the components of r1 have been indexed by the set of indices VX|V \VX|V Z , so

that R1 = T̃ 1:N
i [VX|V \VX|V Z ]. The random bits that identify the codebook are those

in position VX|V Z , which we denote

Ψ
X|V
1 , T̃ 1:N

1 [VX|V Z ].

Finally, compute X̃1:N
1 , T̃ 1:N

1 Gn, which is transmitted over the channel WY Z|X . We

note Y 1:N
1 , Z1:N

1 the corresponding channel outputs.

In Block i ∈ J2, kK, the encoder forms X̃1:N
i as follows. Let Ri be a vector of

|VX|V \VX|V Z | uniformly distributed bits representing the randomness required for

channel prefixing in block i. Given a randomization sequence ri and ṽ1:N
i resulting

from the encoding of secret and private messages, the encoder draws t̃1:N
i from the

188



distribution p̃T 1:N
i

defined as follows.

p̃T ji |T
1:j−1
i V 1:N

i
(tji |t1:j−1

i ṽ1:N
i ) ,





1
{
tji = t̃ji−1

}
if j ∈ VX|V Z

1
{
tji = rji

}
if j ∈ VX|V \VX|V Z

pT j |T 1:j−1V 1:N (tji |t1:j−1
i ṽ1:N

i ) if j ∈ VcX|V

,

(121)

where the components of ri have been indexed by the set of indices VX|V \VX|V Z , so

that Ri = T̃ 1:N
i [VX|V \VX|V Z ]. Note that the random bits describing the codebook

are Ψ
X|V
i , T̃ 1:N

i [VX|V Z ], and are reused from the previous block. Finally, define

X̃1:N
i , T̃ 1:N

i Gn and transmit it over the channel WY Z|X . We note Y 1:N
i , Z1:N

i the

corresponding channel outputs.

5.5.4 Decoding

The decoding procedure is as follows.

Reconstruction of the common message by Bob. Bob forms the estimate

Â1:N
1:k of Ã1:N

1:k as follows. In Block 1, Bob knows (ΨU
1 ,Φ

U
1 ), which contains all the

bits Ã1:N
1 [HU |Y ] by construction. Bob runs the successive cancellation decoder for

source coding with side information of [87] using Y 1:N
1 and Ã1:N

1 [HU |Y ]. In Block

i ∈ J2, kK, Bob estimates Ã1:N
i [HU |Y ] with (ΨU

1 , Â
1:N
i−1[IUY \IUZ ],ΦU

i ), and uses this

estimate along with Y 1:N
i to run the successive cancellation decoder for source coding

with side information.

Reconstruction of the common message by Eve. Eve forms the estimate

̂̂
A

1:N

1:k of Ã1:N
1:k starting from Block k and going backwards as follows. In Block k,

Eve knows (ΨU
k ,Φ

U
k ), which contains all the bits in Ã1:N

k [HU |Z ] by construction.

Eve runs the successive cancellation decoder for source coding with side informa-

tion using Z1:N
k and Ã1:N

k [HU |Z ]. For i ∈ J1, k − 1K, Eve estimates Ã1:N
k−i[HU |Z ] with

(ΨU
1 ,
̂̂
A1:N
k−i+1[AUY Z ],ΦU

k−i), and uses this estimate along with Z1:N
k−i to run the succes-

sive cancellation decoder for source coding with side information.
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Reconstruction of the private and confidential messages by Bob. Bob

forms the estimate B̂1:N
1:k of B̃1:N

1:k as follows starting with Block k. In Block k, given

(Ψ
V |U
k ,Φ

V |U
k , Y 1:N

k , Û1:N
k ), Bob estimates B̃1:N

k with the successive cancellation decoder

for source coding with side information. From B̃1:N
k , an estimate Ψ̂

V |U
k−1 , B̂1:N

k [VV |UY ]

of Ψ
V |U
k−1 is formed. For i ∈ J1, k − 1K, given (Ψ̂

V |U
k−i ,Φ

V |U
k−i , Y

1:N
k−i , Û

1:N
k−i ), Bob estimates

B̃1:N
k−i with the successive cancellation decoder for source coding with side information.

From B̃1:N
k−i , an estimate of Ψ

V |U
k−i−1 is formed. Once all the estimates B̂1:N

1:k have been

formed, Bob extracts the estimates Ŝ1:k and M̂1:k of S1:k and M1:k, respectively.

5.6 Analysis of polar coding scheme

We now analyze in details the characteristics and performances of the polar coding

scheme described in Section 5.5. Specifically, we show the following.

Theorem 5.6.2. Consider a discrete memoryless broadcast channel (X , pY Z|X ,Y ,Z).

The coding scheme of Section 5.4, whose complexity is O(N logN) achieves the region

RBCC.

The result of Theorem 5.6.2, follows in four steps. First, we show that the polar

coding scheme of Section 5.5 approximates the statistics of the original DMS (U ×

V × X × Y × Z, pUV XY Z) from which the polarization sets were defined. Second, we

show that the various messages rates are indeed those in RBCC. Third, we show that

the probability of decoding error vanishes with the block length. Finally, we show

that the information leakage vanishes with the block length.

5.6.1 Approximation of original DMS statistics

Recall that the vectors Ã1:N
i , B̃1:N

i , Ṽ 1:N
i , and X̃1:N

i , generated in block i ∈ J1, kK

do not have the exact joint distribution of the vectors A1:N , B1:N , V 1:N , and X1:N ,

induced by the source polarization of the original DMS (U×V×X ×Y×Z, pUV XY Z).

However, the following lemmas show that the joint distributions are close to one

another, which is crucial for the subsequent reliability and secrecy analysis.
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Lemma 5.6.5. For i ∈ J1, kK, we have

D(pU1:N , p̃U1:N
i

) = D(pA1:N , p̃A1:N
i

) 6 NδN .

Hence, by Pinsker’s inequality

V(pA1:N , p̃A1:N
i

) 6 δ
(U)
N ,

where δ
(U)
N ,

√
2 log 2

√
NδN .

Proof. See Appendix 5.A.

Lemma 5.6.6. For i ∈ J1, kK, we have

D(pV 1:NU1:N ||p̃V 1:N
i U1:N

i
) = D(pB1:NU1:N ||p̃B1:N

i U1:N
i

) 6 2NδN .

Hence, by Pinsker’s inequality

V(pB1:NU1:N , p̃B1:N
i U1:N

i
) 6 δ

(UV )
N ,

where δ
(UV )
N , 2

√
log 2
√
NδN .

Proof. See Appendix 5.B.

Lemma 5.6.7. For i ∈ J1, kK, we have

D(pX1:NV 1:N ||p̃X1:N
i V 1:N

i
) = D(pT 1:NV 1:N ||p̃T 1:N

i V 1:N
i

) 6 3NδN .

Hence, by Pinsker’s inequality

V(pX1:NV 1:N , p̃X1:N
i V 1:N

i
) 6 δ

(XV )
N ,

where δ
(XV )
N ,

√
2 log 2

√
3NδN .

Proof. See Appendix 5.C.

Combining the three previous lemmas, we obtain the following.
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Lemma 5.6.8. For i ∈ J1, kK, we have

V(pU1:NV 1:NX1:NY 1:NZ1:N , p̃U1:N
i V 1:N

i X1:N
i Y 1:N

i Z1:N
i

) 6 δ
(P )
N .

where δ
(P )
N ,

√
2 log 2

√
NδN(2

√
2 +
√

3).

Proof. See Appendix 5.D.

As noted in [116], upper-bounding the divergence with a chain rule is easier than

directly upper-bounding the variational distance as in [94,95].

5.6.2 Transmission rates

We now analyze the rate of common message, confidential message, private message,

and randomization sequence, used at the encoder, as well as the different sum rates

and the rate of additional information sent to Bob and Eve.

Common message rate. The overall rate RO of common information bits trans-

mitted satisfies

RO =
(k − 1)|IUY |+|IUY ∩ IUZ |

kN

=
|IUY |
N
− |IUY \IUZ |

kN

> |IUY |
N
− |IUY |

kN
N→∞−−−→ I(Y ;U)− I(Y ;U)

k
k→∞−−−→ I(Y ;U),

where we have used [87]. Since we also have RO 6 |IUY |
N

N→∞−−−→ I(Y ;U), we conclude

RO
N→∞,k→∞−−−−−−−→ I(Y ;U).

Confidential message rate. First, observe that

|ΨV |U
1 | = |VV |UY ∪ ((HV |UY \VV |UY ) ∩ VV |U))|

6 |VV |UY |+|HV |UY \VV |UY |

= |VV |UY |+|HV |UY |−|VV |UY |

6 |HV |UY |,
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and |ΨV |U
1 |> |VV |UY |. Hence, since limN→∞|VV |UY |/N = H(V |UY ) by Lemma 3.4.1

and

limN→∞|HV |UY |/N = H(V |UY ) by [87], we have

lim
N→∞

|ΨV |U
1 |
N

= H(V |UY ).

Then, the overall rate RS of secret information bits transmitted is

RS =
|VV |UZ |+(k − 1)|VV |UZ\BV |UY |

kN

=
|VV |UZ |+(k − 1)(|VV |UZ |−|BV |UY |)

kN

=
|VV |UZ |−|BV |UY |

N
+
|BV |UY |
kN

=
|VV |UZ |−|ΨV |U

1 |
N

+
|ΨV |U

1 |
kN

N→∞−−−→ I(V ;Y |U)− I(V ;Z|U) +
H(V |UY )

k
k→∞−−−→ I(V ;Y |U)− I(V ;Z|U).

Private message rate. The overall rate RM of private information bits transmitted

is

RM =
k|MUV Z |

kN

=
|VV |U\VV |UZ |

N

=
|VV |U |−|VV |UZ |

N
N→∞−−−→ I(V ;Z|U),

where we have used Lemma 3.4.1.

Randomization rate. The uniform random bits used in the stochastic encoder

includes those of the randomization sequence for channel prefixing, as well as those

required to identify the codebooks and run the successive cancellation encoding. Us-

ing Lemma 3.4.1, we find that the rate required to identify the codebook for the
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common message is

|VU\IUY |
kN

6 |VU |
kN

N→∞−−−→ H(U |Y )

k

k→∞−−−→ 0.

Similarly, the rate required to identify the codebook for the secret and private mes-

sages corresponds to the rate of (Ψ
V |U
k ,Φ

V |U
k ), which is transmitted to Bob to allow

him to reconstruct B̃1:N
1:k ,

|(ΨV |U
k ,Φ

V |U
k )|

kN

=
|B̃1:N

k [HV |UY ]|
kN

N→∞−−−→ H(V |UY )

k
k→∞−−−→ 0,

where we have used [87].

The randomization sequence rate used in channel prefixing is

|VX|V |+(k − 1)|VX|V \VX|V Z |
kN

=
|VX|V \VX|V Z |

N
+
|VX|V Z |
kN

=
|VX|V |−|VX|V Z |

N
+
|VX|V Z |
kN

N→∞−−−→ I(X;Z|V ) +
H(X|V Z)

k
,

k→∞−−−→ I(X;Z|V ),

where we have used Lemma 3.4.1. We now show that the rate of uniform bits required

for successive cancellation encoding in (115), (116), (117), (118), (119), (120), (121)

is negligible trough a series of lemmas.

Lemma 5.6.9. For i ∈ J1, kK, we have

lim
N→∞

1

N

∑

j∈VcU

H(Ãji |Ã1:j−1
i ) = 0.
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Proof. See Appendix 5.E.

Lemma 5.6.10. For i ∈ J1, kK, we have

lim
N→∞

1

N

∑

j∈Vc
V |U

H(B̃j
i |B̃1:j−1

i Ũ1:N
i ) = 0.

Proof. See Appendix 5.F.

Lemma 5.6.11. For i ∈ J1, kK, we have

lim
N→∞

1

N

∑

j∈Vc
X|V

H(T̃ ji |T̃ 1:j−1
i Ṽ 1:N

i ) = 0.

The proof of Lemma 5.6.11 is similar to that of Lemma 5.6.10 using Lemma 5.6.7

in place of Lemma 5.6.6.

Hence, the overall randomness rate RR used at the encoder is asymptotically

RR
N→∞,k→∞−−−−−−−→ I(X;Z|V ).

Sum rates. The sum of the private message rate RM and the randomness rate RR

is asymptotically

RM +RR
N→∞,k→∞−−−−−−−→I(V ;Z|U) + I(X;Z|V )

(a)
= H(Z|U)−H(Z|UV ) +H(Z|V )−H(Z|XV )

= H(Z|U)−H(Z|XV )

(b)
= H(Z|U)−H(Z|XU)

= I(X;Z|U),

where (a) and (b) hold by U − V −X − Z.

Moreover, the sum of the common message rate RO, the private message rate RM ,

and the confidential message rate RS is asymptotically

RO +RM +RS
N→∞,k→∞−−−−−−−→I(Y ;U) + I(V ;Z|U) + I(V ;Y |U)− I(V ;Z|U)

= I(Y ;U) + I(V ;Y |U).
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Seed Rate. The rate of the secret sequence that must be shared between the legiti-

mate users to initialize the coding scheme is

|ΨV |U
k |+k|Φ

V |U
1 |

kN

=
|ΨV |U

k |
kN

+
|ΦV |U

1 |
N

6 |HV |UY |
kN

+
|HV |UY \VV |UY |

N

6 |HV |UY |
kN

+
|HV |UY |−|VV |UY |

N
N→∞−−−→ H(V |Y )

k
k→∞−−−→ 0,

where we have used Lemma 3.4.1 and [87].

Moreover the rate of public communication from Alice to both Bob and Eve is

|ΨU
1 |+|ΦU

1:k|
kN

6 |Ψ
U
1 |+k|HU\VU |

kN

=
|VU\IUY |+k(|HU |−|VU |)

kN

6 |HU |Y |+k(|HU |−|VU |)
kN

=
|HU |Y |
kN

+
|HU |−|VU |

N
N→∞−−−→ H(U |Y )

k
k→∞−−−→ 0.

5.6.3 Average probability of error

We first show that Eve and Bob can reconstruct the common messagesO1:N
1:k with small

probability. For i ∈ J1, kK, consider an optimal coupling [94,96] between p̃U1:N
i Y 1:N

i
and

pU1:NY 1:N such that P[EUi,Yi ] = V(p̃U1:N
i Y 1:N

i
, pU1:NY 1:N ), where EUi,Yi , {(Ũ1:N

i , Ỹ 1:N
i ) 6=

(U1:N , Y 1:N)}. Define also for i ∈ J2, kK, Ei , {Â1:N
i−1[IUY \IUZ ] 6= Ã1:N

i−1[IUY \IUZ ]}.
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We have

P[Oi 6= Ôi]

= P[Û1:N
i 6= Ũ1:N

i ]

= P[Û1:N
i 6= Ũ1:N

i |EcUi,Yi ∩ Eci ]P[EcUi,Yi ∩ Eci ]

+ P[Û1:N
i 6= Ũ1:N

i |EUi,Yi ∪ Ei]P[EUi,Yi ∪ Ei],

6 P[Û1:N
i 6= Ũ1:N

i |EcUi,Yi ∩ Eci ] + P[EUi,Yi ∪ Ei]
(a)

6 NδN + P[EUi,Yi ] + P[Ei]
(b)

6 NδN + δ
(P )
N + P[Ei]

6 NδN + δ
(P )
N + P[Û1:N

i−1 6= Ũ1:N
i−1 ]

(c)

6 (i− 1)(NδN + δ
(P )
N ) + P[Û1:N

1 6= Ũ1:N
1 ]

(d)

6 i(NδN + δ
(P )
N ), (122)

where (a) follows from the error probability of source coding with side information [87]

and the union bound, (b) holds by the optimal coupling and Lemma 5.6.8, (c) holds

by induction, (d) holds similar to the previous inequalities. We thus have by the

union bound and (122)

P[O1:N
1:k 6= Ô1:N

1:k ] 6
k∑

i=1

P[Oi 6= Ôi]

6 k(k + 1)

2
(NδN + δ

(P )
N ).

We similarly obtain for Eve

P[O1:N
1:k 6=

̂̂
O

1:N

1:k ] 6 k(k + 1)

2
(NδN + δ

(P )
N ).

Next we show how Bob can recover the secret and private messages. Informally,

the decoding process of the confidential and private messages (M1:k, S1:k) for Bob is

as follows. Reconstruction starts with Block k. Given (Ψ
V |U
k ,Φ

V |U
k , Y 1:N

k , Û1:N
k ), Bob

can reconstruct Ṽ 1:N
k , from which Ψ

V |U
k−1 is deduced. Then, for i ∈ J1, k − 1K, given
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(Ψ
V |U
k−i ,Φ

V |U
k−i , Y

1:N
k−i , Û

1:N
k−i ), Bob can reconstruct Ṽ 1:N

k−i , from which Ψ
V |U
k−i−1 is deduced.

Finally, S1:k can be recovered from Ṽ 1:N
1:k .

Formally, the analysis is as follows. For i ∈ J1, kK, consider an optimal coupling [96]

between p̃U1:N
i V 1:N

i Y 1:N
i

and pU1:NV 1:NY 1:N such that

P[EUi,Vi,Yi ] = V(p̃U1:N
i V 1:N

i Y 1:N
i
, pU1:NV 1:NY 1:N ),

where EUi,Vi,Yi , {(Ũ1:N
i , Ṽ 1:N

i , Y 1:N
i ) 6= (U1:N , V 1:N , Y 1:N)}. Define also for i ∈ J1, k−

1K, E
Ψ
V |U
i

, {Ψ̂V |U
i 6= Ψ

V |U
i }, EŨi , {Û1:N

i 6= Ũ1:N
i }, and E

Ψ
V |U
i ,Ũi

, E
Ψ
V |U
i
∪ EŨi .

For i ∈ J1, k − 1K, we have

P[(Mi, Si) 6= (M̂i, Ŝi)]

(a)
= P[Ṽi 6= V̂i]

= P[Ṽi 6= V̂i|EcUi,Vi,Yi ∩ EcΨV |Ui ,Ũi
]P[EcUi,Vi,Yi ∩ EcΨV |Ui ,Ũi

]

+ P[Ṽi 6= V̂i|EUi,Vi,Yi ∪ EΨ
V |U
i ,Ũi

]P[EUi,Vi,Yi ∪ EΨ
V |U
i ,Ũi

]

6 P[Ṽi 6= V̂i|EcUi,Vi,Yi ∩ EcΨV |Ui ,Ũi
] + P[EUi,Vi,Yi ∪ EΨ

V |U
i ,Ũi

]

6 P[Ṽi 6= V̂i|EcUi,Vi,Yi ∩ EcΨV |Ui ,Ũi
] + P[EUi,Vi,Yi ] + P[E

Ψ
V |U
i ,Ũi

]

6 P[Ṽi 6= V̂i|EcUi,Vi,Yi ∩ EcΨV |Ui ,Ũi
] + P[EUi,Vi,Yi ] + P[E

Ψ
V |U
i

] + P[EŨi ]
(b)

6 P[Ṽi 6= V̂i|EcUi,Vi,Yi ∩ EcΨV |Ui ,Ũi
] + P[EUi,Vi,Yi ] + P[Ṽi+1 6= V̂i+1] + P[Û1:N

i 6= Ũ1:N
i ]

(c)

6 NδN + P[EUi,Vi,Yi ] + P[Ṽi+1 6= V̂i+1] + P[Û1:N
i 6= Ũ1:N

i ]

(d)

6 NδN + δ
(P )
N + P[Ṽi+1 6= V̂i+1] + P[Û1:N

i 6= Ũ1:N
i ]

(e)

6 (i+ 1)
(
NδN + δ

(P )
N

)
+ P[Ṽi+1 6= V̂i+1]

(f)

6 (i+ 1)(k − i)
(
NδN + δ

(P )
N

)
+ P[Ṽk 6= V̂k]

(g)

6 (i+ 1)(k − i+ 1)
(
NδN + δ

(P )
N

)
,

where (a) holds because Ṽi contains (Mi, Si,Ψ
V |U
i−1 ) by construction, (b) holds because

Ṽi+1 contains Ψ
V |U
i by construction, (c) follows from the error probability of loss-

less source coding with side information [87], (d) holds by the optimal coupling and
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Lemma 5.6.8, (e) holds by (122), (f) holds by induction, (g) is obtained similar to

the previous inequalities.

Hence,

P[(M1:k, S1:k) 6= (M̂1:k, Ŝ1:k)]

6
k∑

i=1

P[(Mi, Si) 6= (M̂i, Ŝi)]

6
k∑

i=1

(i+ 1)(k − i+ 1)
(
NδN + δ

(P )
N

)

=

(
k(k + 1)(k + 2)

6
+ k

)(
NδN + δ

(P )
N

)
. (123)

5.6.4 Information leakage

The functional dependence graph for the coding scheme of Section 5.4 is given in

Figure 33. For the secrecy analysis the following term must be upper bounded

I(S1:k; ΨU
1 ΦU

1:kZ
N
1:k).

Note that we have introduced (ΨU
1 ,Φ

U
1:k), since these random variables have been made

available to Eve. Recall that ΦU
1:k is additional information transmitted to Bob and

Eve to reconstruct the common messages O1:k. Recall also that ΨU
1 ⊃ ΨU

i , i ∈ J2, kK,

as it is the randomness reused among all the blocks that allows the transmission of

the common messages O1:k. We start by proving that secrecy holds for a given block

i ∈ J2, kK in the following lemma.

Lemma 5.6.12. For i ∈ J2, kK and N large enough,

I(SiΨ
V |U
i−1 ;Z1:N

i ΦU
i ΨU

1 ) 6 δ
(∗)
N ,

where

δ
(∗)
N ,

√
2 log 2

√
NδN(1 + 6

√
2 + 3

√
3)(N − log2(

√
2 log 2

√
NδN(1 + 6

√
2 + 3

√
3))).

Proof. See Appendix 5.G.
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i
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Figure 33. Functional dependence graph of the block encoding scheme. For Block i, Oi
is the common message, Mi is the private message, Si is the confidential message. Ψ

V |U
i

is the side information retransmitted in the next block to allow Bob to reconstruct Mi

and Si given Φ
V |U
i and its observations Y 1:N

1:k . ΨU
i is the randomness used to form Ũ1:N

i ,

ΨU
i ⊂ ΨU

1 is reused from the previous block. Ri and Ψ
X|V
i represent the randomness

necessary at the encoder to form X̃1:N
i where Ψ

X|V
i = Ψ

X|V
1 is reused from the previous

block. Finally, ΦUi is information, whose rate is negligible, sent to Bob and Eve to allow
them to reconstruct the common messages.
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Recall that for channel prefixing in the encoding process we reuse some randomness

Ψ
X|V
1 among all the blocks so that Ψ

X|V
1 = Ψ

X|V
i , i ∈ J2, kK. We show in the following

lemma that Ψ
X|V
1 is almost independent from (Z1:N

i ,Ψ
V |U
i−1 , Si,Φ

U
i ,Ψ

U
i ). This fact will

be useful in the secrecy analysis of the overall scheme.

Lemma 5.6.13. For i ∈ J2, kK and N large enough,

I(Ψ
X|V
1 ;Z1:N

i Ψ
V |U
i−1 SiΦ

U
i ΨU

i ) 6 δ
(∗)
N ,

where δ
(∗)
N is defined as in Lemma 5.6.12.

Proof. See Appendix 5.H.

Using Lemmas 5.6.12 and 5.6.13, we show in the following lemma a recurrence

relation that will make the secrecy analysis over all blocks easier.

Lemma 5.6.14. Let i ∈ J1, k − 1K. Define L̃i , I(S1:k; ΨU
1 ΦU

1:iZ
1:N
1:i ). We have

L̃i+1 − L̃i 6 3δ
(∗)
N .

Proof. See Appendix 5.I.

We then have

L̃1 = I(S1:k; ΨU
1 ΦU

1 Z
1:N
1 )

= I(S1; ΨU
1 ΦU

1 Z
1:N
1 ) + I(S2:k; ΨU

1 ΦU
1 Z

1:N
1 |S1)

(a)

6 δ
(∗)
N + I(S2:k; ΨU

1 ΦU
1 Z

1:N
1 |S1)

6 δ
(∗)
N + I(S2:k; ΨU

1 ΦU
1 Z

1:N
1 S1)

(b)
= δ

(∗)
N ,

where (a) follows from Lemma 5.6.12, (b) follows from independence of S2:k and the

random variables of Block 1.
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Hence, strong secrecy follows from Lemma 5.6.14 by remarking that

I(S1:k; ΨU
1 ΦU

1:kZ
N
1:k) = L̃1 +

k−1∑

i=1

(L̃i+1 − L̃i)

6 δ
(∗)
N + (k − 1)(3δ

(∗)
N )

= (3k − 2)δ
(∗)
N .
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5.7 Conclusion

Our proposed polar coding scheme for the broadcast channel with confidential mes-

sages and constrained randomization provides an explicit low-complexity scheme

achieving the capacity region of [55]. Although the presence of auxiliary random vari-

ables and the need to re-align polarization sets through chaining introduces rather

involved notation, the coding scheme is conceptually close to a binning proof of the

capacity region, in which polarization is used in place of random binning. We be-

lieve that a systematic use of this connection will effectively allow one to translate

any results proved with output statistics of random binning [114] into a polar coding

scheme.
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APPENDICES

5.A Proof of Lemma 5.6.5

Let i ∈ J2, k − 1K. We have

D(pU1:N ||p̃U1:N
i

)

(a)
= D(pA1:N ||p̃A1:N

i
)

(b)
=

N∑

j=1

D(pAj |A1:j−1||p̃Aji |A1:j−1
i

)

(c)
=
∑

j∈VU

D(pAj |A1:j−1||p̃Aji |A1:j−1
i

)

(d)
=
∑

j∈VU

(1−H(Aj|A1:j−1))

(e)

6 |VU |δN

6 NδN , (124)

where (a) holds by invertibility of Gn, (b) holds by the chain rule, (c) holds by (116),

(d) holds by (116) and uniformity of Oi and Oi−1,2, (e) holds by definition of VU .

Similarly for i ∈ {1, k}, using (115) and (117) we also have

D(pU1:N ||p̃U1:N
i

) 6 NδN . (125)
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5.B Proof of Lemma 5.6.6

Let i ∈ J2, kK. We have

D(pB1:N |U1:N ||p̃B1:N
i |U1:N

i
)

(a)
=

N∑

j=1

D(pBj |B1:j−1U1:N ||p̃Bji |B1:j−1
i U1:N

i
)

(b)
=
∑

j∈VV |U

D(pBj |B1:j−1U1:N ||p̃Bji |B1:j−1
i U1:N

i
)

(c)
=
∑

j∈VV |U

(1−H(Bj|B1:j−1U1:N))

(d)

6 |VV |U |δN

6 NδN , (126)

where (a) holds by the chain rule, (b) holds by (119), (c) holds by (119) and uniformity

of Ψ
V |U
i−1 , Si, and Mi, (d) holds by definition of VV |U .

Then,

D(pV 1:NU1:N ||p̃V 1:N
i U1:N

i
)

(a)
= D(pB1:NU1:N ||p̃B1:N

i U1:N
i

)

(b)
= D(pB1:N |U1:N ||p̃B1:N

i |U1:N
i

) + D(pU1:N ||p̃U1:N
i

)

(c)

6 2NδN ,

where (a) holds by invertibility of Gn, (b) holds by the chain rule, (c) holds by (126)

and Lemma 5.6.5.

Similarly, using (118) and Lemma 5.6.5, we have

D(pV 1:NU1:N ||p̃V 1:N
1 U1:N

1
)62NδN .
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5.C Proof of Lemma 5.6.7

Let i ∈ J2, kK. We have

D(pT 1:N |V 1:N ||p̃T 1:N
i |V 1:N

i
)

(a)
=

N∑

j=1

D(pT j |T 1:j−1V 1:N ||p̃T ji |T 1:j−1
i V 1:N

i
)

(b)
=

∑

j∈VX|V

D(pT j |T 1:j−1V 1:N ||p̃T ji |T 1:j−1
i V 1:N

i
)

(c)
=

∑

j∈VX|V

(1−H(T j|T 1:j−1V 1:N))

(d)

6 |VX|V |δN

6 NδN , (127)

where (a) holds by the chain rule, (b) holds by (121), (c) holds by (121) and uniformity

of the bits in T̃ 1:N
i [VX|V ], (d) holds by definition of VX|V .

Then,

D(pX1:NV 1:N ||p̃X1:N
i V 1:N

i
)

(a)
= D(pT 1:NV 1:N ||p̃T 1:N

i V 1:N
i

)

(b)
= D(pT 1:N |V 1:N ||p̃T 1:N

i |V 1:N
i

) + D(pV 1:N ||p̃V 1:N
i

)

(c)

6 3NδN ,

where (a) holds by invertibility of Gn, (b) holds by the chain rule, (c) holds by (127)

and Lemma 5.6.6.

Similarly, using (120) and Lemma 5.6.6, we have

D(pX1:NV 1:N ||p̃X1:N
1 V 1:N

1
)63NδN .
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5.D Proof of Lemma 5.6.8

We have

V(pU1:NV 1:NX1:NY 1:NZ1:N , p̃U1:N
i V 1:N

i X1:N
i Y 1:N

i Z1:N
i

)

= V(pY 1:NZ1:N |U1:NV 1:NX1:NpU1:NV 1:NX1:N , p̃Y 1:N
i Z1:N

i |U1:N
i V 1:N

i X1:N
i
p̃U1:N

i V 1:N
i X1:N

i
)

(a)
= V(pY 1:NZ1:N |X1:NpU1:NV 1:NX1:N , p̃Y 1:N

i Z1:N
i |X1:N

i
p̃U1:N

i V 1:N
i X1:N

i
)

(b)
= V(pU1:NV 1:NX1:N , p̃U1:N

i V 1:N
i X1:N

i
)

= V(pX1:N |U1:NV 1:NpU1:NV 1:N , p̃X1:N
i |U1:N

i V 1:N
i
p̃U1:N

i V 1:N
i

)

(c)
= V(pX1:N |V 1:NpU1:NV 1:N , p̃X1:N

i |V 1:N
i
p̃U1:N

i V 1:N
i

)

(d)

6 V(pX1:N |V 1:NpU1:NV 1:N , p̃X1:N
i |V 1:N

i
pU1:NV 1:N )

+ V(p̃X1:N
i |V 1:N

i
pU1:NV 1:N , p̃X1:N

i |V 1:N
i
p̃U1:N

i V 1:N
i

)

= V(pX1:N |V 1:NpU1:NV 1:N , p̃X1:N
i |V 1:N

i
pU1:NV 1:N ) + V(pU1:NV 1:N , p̃U1:N

i V 1:N
i

)

(e)

6 V(pX1:N |V 1:NpU1:NV 1:N , p̃X1:N
i |V 1:N

i
pU1:NV 1:N ) + δ

(UV )
N

= V(pX1:N |V 1:NpV 1:N , p̃X1:N
i |V 1:N

i
pV 1:N ) + δ

(UV )
N

(f)

6 V(pX1:N |V 1:NpV 1:N , p̃X1:N
i V 1:N

i
) + V(p̃X1:N

i V 1:N
i
, p̃X1:N

i |V 1:N
i
pV 1:N ) + δ

(UV )
N

= V(pX1:NV 1:N , p̃X1:N
i V 1:N

i
) + V(p̃V 1:N

i
, pV 1:N ) + δ

(UV )
N

6 V(pX1:NV 1:N , p̃X1:N
i V 1:N

i
) + V(pU1:NV 1:N , p̃U1:N

i V 1:N
i

) + δ
(UV )
N

(g)

6 2δ
(UV )
N + δ

(XV )
N ,

where (a) and (c) follow from the Markov condition U → V → X → (Y Z) and

Ũ1:N
i → Ṽ 1:N

i → X̃1:N
i → (Y 1:N

i Z1:N
i ) , (b) follows from pY 1:NZ1:N |X1:N = p̃Y 1:N

i Z1:N
i |X1:N

i

and [117, Lemma 17], (d) holds by the triangle inequality, (e) holds by Lemma 5.6.6,

(f) hold by the triangle inequality, (g) holds by Lemmas 5.6.6 and 5.6.7.
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5.E Proof of Lemma 5.6.9

We have for i ∈ J1, kK, for j ∈ VcU ,

|H(Ãji |Ã1:j−1
i )−H(Aj|A1:j−1)|

6 |H(Ã1:j
i )−H(A1:j)|+|H(Ã1:j−1

i )−H(A1:j−1)|
(a)

6 V(pA1:j , p̃A1:j
i

) log
2j

V(pA1:j , p̃A1:j
i

)
+ |H(Ã1:j−1

i )−H(A1:j−1)|

(b)

6 δ
(U)
N

(
N − log2 δ

(U)
N

)
+ |H(Ã1:j−1

i )−H(A1:j−1)|

6 2δ
(U)
N

(
N − log2 δ

(U)
N

)

, δ
(A)
N ,

where (a) holds by [102], (b) holds by Lemma 5.6.5 and because x 7→ x log x is

decreasing for x > 0 small enough.

Hence, we obtain

∑

j∈VcU

H(Ãji |Ã1:j−1
i )

=
∑

j∈HcU

∑

j∈HU\VU

H(Ãji |Ã1:j−1
i )

6 |HU\VU |+
∑

j∈HcU

H(Ãji |Ã1:j−1
i )

= |HU |−|VU |+
∑

j∈HcU

H(Ãji |Ã1:j−1
i )

6 |HU |−|VU |+
∑

j∈HcU

(H(Aj|A1:j−1) + δ
(A)
N )

6 |HU |−|VU |+|Hc
U |(δN + δ

(A)
N )

6 |HU |−|VU |+N(δN + δ
(A)
N ),

and we obtain the result by Lemma 3.4.1 and [87].

208



5.F Proof of Lemma 5.6.10

We have for i ∈ J1, kK, for j ∈ VcV |U ,

|H(B̃j
i |B̃1:j−1

i Ũ1:N
i )−H(Bj|B1:j−1U1:N)|

6 |H(B̃1:j
i Ũ1:N

i )−H(B1:jU1:N)|+|H(B̃1:j−1
i Ũ1:N

i )−H(B1:j−1U1:N)|
(a)

6 V(pB1:jU1:N , p̃B1:j
i U1:N

i
) log

2j+N

V(pB1:jU1:N , p̃B1:j
i U1:N

i
)

+ |H(B̃1:j−1
i Ũ1:N

i )−H(B1:j−1U1:N)|
(b)

6 δ
(UV )
N

(
2N − log2 δ

(UV )
N

)
+ |H(B̃1:j−1

i Ũ1:N
i )−H(B1:j−1U1:N)|

6 2δ
(UV )
N

(
2N − log2 δ

(UV )
N

)

, δ
(B)
N ,

where (a) holds by [102], (b) holds by Lemma 5.6.6 and because x 7→ x log x is

decreasing for x > 0 small enough.

Then,

∑

j∈Vc
V |U

H(B̃j
i |B̃1:j−1

i Ũ1:N
i )

=
∑

j∈Hc
V |U

∑

j∈HV |U\VV |U

H(B̃j
i |B̃1:j−1

i Ũ1:N
i )

6 |HV |U\VV |U |+
∑

j∈Hc
V |U

H(B̃j
i |B̃1:j−1

i Ũ1:N
i )

= |HV |U |−|VV |U |+
∑

j∈Hc
V |U

H(B̃j
i |B̃1:j−1

i Ũ1:N
i )

6 |HV |U |−|VV |U |+
∑

j∈Hc
V |U

(H(Bj|B1:j−1U1:N) + δ
(B)
N )

6 |HV |U |−|VV |U |+|Hc
V |U |(δN + δ

(B)
N )

6 |HV |U |−|VV |U |+N(δN + δ
(B)
N ),

and we obtain the result by Lemma 3.4.1 and [87].
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5.G Proof of Lemma 5.6.12

We have

V(pB1:N [VV |UZ ]U1:NZ1:N , p̃B1:N
i [VV |UZ ]p̃U1:N

i Z1:N
i

)

6 V(pB1:N [VV |UZ ]U1:NZ1:N , pB1:N [VV |UZ ]pU1:NZ1:N )

+ V(pB1:N [VV |UZ ]pU1:NZ1:N , p̃B1:N [VV |UZ ]p̃U1:NZ1:N )

(a)

6 V(pB1:N [VV |UZ ]U1:NZ1:N , pB1:N [VV |UZ ]pU1:NZ1:N )

+ V(pB1:N [VV |UZ ], p̃B1:N [VV |UZ ]) + V(pU1:NZ1:N , p̃U1:NZ1:N )

(b)

6 V(pB1:N [VV |UZ ]U1:NZ1:N , pB1:N [VV |UZ ]pU1:NZ1:N ) + 2δ
(P )
N

(d)

6
√

2 log 2
√
D(pB1:N [VV |UZ ]U1:NZ1:N ||pB1:N [VV |UZ ]pU1:NZ1:N ) + 2δ

(P )
N

=
√

2 log 2
√
I(B1:N [VV |UZ ];U1:NZ1:N) + 2δ

(P )
N

(c)

6
√

2 log 2
√
NδN + 2δ

(P )
N , (128)

where (a) follows from the triangle inequality, (b) holds by Lemma 5.6.8, (c) holds

by Pinsker’s inequality, (d) holds because using the fact that conditioning reduces

entropy we have

I(B1:N [VV |UZ ];U1:NZ1:N)

= H(B1:N [VV |UZ ])−H(B1:N [VV |UZ ]|U1:NZ1:N)

6 |VV |UZ |−
∑

j∈VV |UZ

H(Bj|B1:j−1U1:NZ1:N)

6 |VV |UZ |+|VV |UZ |(δN − 1)

6 NδN .
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We then obtain

V(p̃B1:N
i [VV |UZ ]U1:N

i Z1:N
i
, p̃B1:N

i [VV |UZ ]p̃U1:N
i Z1:N

i
)

(a)

6 V(p̃B1:N
i [VV |UZ ]U1:N

i Z1:N
i
, pB1:N [VV |UZ ]U1:NZ1:N )

+ V(pB1:N [VV |UZ ]U1:NZ1:N , p̃B1:N
i [VV |UZ ]p̃U1:N

i Z1:N
i

)

(b)

6
√

2 log 2
√
NδN + 3δ

(P )
N , (129)

where (a) holds by the triangle inequality, (b) holds by Lemma 5.6.8, and (128).

Then, for N large enough by [102],

I(SiΨ
V |U
i−1 ;Z1:N

i ΦU
i ΨU

i )

6 I(B̃1:N
i [VV |UZ ];Z1:N

i Ũ1:N
i )

6 V(p̃B1:N
i [VV |UZ ]U1:N

i Z1:N
i
, p̃B1:N

i [VV |UZ ]p̃U1:N
i Z1:N

i
)

× log2

|VV |UZ |
V(p̃B1:N

i [VV |UZ ]U1:N
i Z1:N

i
, p̃B1:N

i [VV |UZ ]p̃U1:N
i Z1:N

i
)

6
√

2 log 2
√
NδN(1 + 6

√
2 + 3

√
3)(N − log2(

√
2 log 2

√
NδN(1 + 6

√
2 + 3

√
3))),

where we have used (129) and that x 7→ x log x is decreasing for x > 0 small enough.

5.H Proof of Lemma 5.6.13

By the triangle inequality we can write

V(pT 1:N [VX|V Z ]U1:NV 1:NZ1:N , p̃T 1:N
i [VX|V Z ]p̃U1:N

i V 1:N
i Z1:N

i
)

6 V(pT 1:N [VX|V Z ]U1:NV 1:NZ1:N , pT 1:N [VX|V Z ]pU1:NV 1:NZ1:N )

+ V(pT 1:N [VX|V Z ]pU1:NV 1:NZ1:N , p̃T 1:N
i [VX|V Z ]p̃U1:N

i V 1:N
i Z1:N

i
)

(a)

6 V(pT 1:N [VX|V Z ]U1:NV 1:NZ1:N , pT 1:N [VX|V Z ]pU1:NV 1:NZ1:N ) + 2δ
(P )
N

(b)

6
√

2 log 2
√

D(pT 1:N [VX|V Z ]U1:NV 1:NZ1:N , pT 1:N [VX|V Z ]pU1:NV 1:NZ1:N ) + 2δ
(P )
N

=
√

2 log 2
√
I(T 1:N [VX|V Z ];Z1:NU1:NV 1:N) + 2δ

(P )
N

(c)

6
√

2 log 2
√
NδN + 2δ

(P )
N , (130)

211



where (a) holds by the triangle inequality and Lemma 5.6.8, (b) holds by Pinsker’s

inequality, (c) holds because using the fact that conditioning reduces entropy and

U − V −X we have

I(T 1:N [VX|V Z ];Z1:NU1:NV 1:N)

6 |VX|V Z |−
∑

j∈VX|V Z

H(T j|T 1:j−1Z1:NU1:NV 1:N)

= |VX|V Z |−
∑

j∈VX|V Z

H(T j|T 1:j−1Z1:NV 1:N)

6 |VX|V Z |+|VX|V Z |(δN − 1)

6 NδN .

Hence,

V(p̃T 1:N
i [VX|V Z ]U1:N

i V 1:N
i Z1:N

i
, p̃T 1:N
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where (a) holds by the triangle inequality, (b) holds by Lemma 5.6.8, and (130).

Then, for N large enough by [102],
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where (a) holds by invertibility of Gn, (b) holds by (131) and because x 7→ x log x is

decreasing for x > 0 small enough.

5.I Proof of Lemma 5.6.14
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where (a) holds by the chain rule and positivity of mutual information, (b) holds

by independence of Si+2:k with all the random variables of the previous blocks, (c)

holds by Lemma 5.6.12, in (d) we introduce the random variable Ψ
V |U
i and Ψ

X|V
i

to be able to break the dependencies between the random variables of block (i + 1)

and the random variables of the previous blocks, (e) holds because S1:iΦ
U
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1:N
1:i →

Ψ
V |U
i Ψ

X|V
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214



CHAPTER 6

CONCLUSION

Secure communication will remain a major concern with the amount of sensitive data

such as medical records, financial transactions, or control information, transmitted

over wireless networks. Information-theoretic security has the potential of enhancing

security of future wireless networks by adding a level of security at the physical layer.

Privacy is also a growing concern with the increasing amount of private informa-

tion collected in databases or the introduction of smart meters by utility providers,

e.g., electricity, gas, water, to monitor individual consumptions. Information-theoretic

security could also provide strong mathematical foundations and practical solutions

to such problems.

However, the limit of many information-theoretic models for secure communica-

tion networks is an over-simplification of the problems studied. Moreover, many

achievability theorems rely on random coding techniques that are impractical for

computationally bounded users. Consequently, the need exists for models with as few

simplifying assumptions as possible and for constructive schemes that could bridge

the gap between information theory and coding theory. A partial answer to theses

issues starts with the study of fundamental primitives for information-theoretic se-

curity, such as secret-key generation between two parties and communication over a

channel tapped by an eavesdropper. Although these problems appeared in the litera-

ture several decades ago, only few practical coding schemes have been proposed until

now.

6.1 Contributions

In Chapters 2, 3, we have addressed the problem of secret-key generation, for which

we have accounted for bandwidth constraint and computationally bounded legitimate

users.
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In Chapter 2, we have studied sequential key-generation strategies, whose strength

is to translate into practical designs – with the caveat of potentially high-complexity

vector quantization required for the reconciliation step. Specifically, we have shown

that the best known bound for rate-limited secret-key capacity are often achievable by

a sequential strategy that separates reliability and secrecy thanks to a reconciliation

step followed by a privacy amplification step with extractors. However, we have also

qualified robustness and flexibility of sequential strategy to rate-limited communica-

tion, by showing that achieving the reconciliation capacity in a sequential strategy is,

unlike the case of rate-unlimited communication, not necessarily optimal. We have

further provided scenarios for which it stays optimal.

In Chapter 3, we have proposed low-complexity secret-key capacity-achieving

schemes based on polar coding for several classes of sources. Unlike the sequential

strategies proposed in Chapter 2, our polar coding schemes jointly handle secrecy and

reliability. The price to be paid for low complexity is that our schemes often require a

pre-shared seed, whose rate is negligible compared to the blocklength. Nevertheless,

our polar coding schemes are the first provably optimal and low complexity scheme

to handle rate-limited public communication and multi-terminal scenarios, which are

often the major hurdle in designing optimal key-generation schemes.

In Chapters 4, 5, we have addressed the problem of secret communication over a

wire-tapped channel, for which we have accounted for computationally bounded legiti-

mate users, bandwidth efficiency, and imperfect and rate-limited randomness available

at the encoder.

In Chapter 4, we have showed that multiplexing unprotected and protected data

allows, first, to avoid the necessity of additional randomness at the encoder and, sec-

ond, to efficiently use the bandwidth available between the legitimate users. Specifi-

cally, the overall communication rate of the same channel without secrecy constraints
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is maintained. The scheme leverage the results about the fundamental limits of loss-

less source coding with uniform encoder output. We have proposed an extension to

multiple access channel in [118].

In Chapter 5, we have proposed a low-complexity and capacity-achieving scheme

based on polar codes for the wiretap channel extended to a broadcast setting, in

which a common message sent over the channel must be reconstructed by two users

and a confidential message must be reconstructed by one user but must remain con-

cealed from the other user. The main contribution, compared to previous works, is a

scheme that deals with potentially asymmetric and non-degraded channels, and that

also takes into account the cost of channel simulation. The resulting scheme is also

optimal in terms of the amount of randomness used at the stochastic encoder.

Finally, the present work on secret-key generation and the wiretap channel model

has generated tools whose interest and application go beyond the area of information-

theoretic security.

Random binning with polar codes. In Chapter 5, we have drawn a parallel between

random binning and polar coding scheme for the wiretap channel. It directly sheds

light on the underlying fundamental mechanisms of the coding scheme, which could,

at first glance, appear very ad hoc. Moreover, this parallel has the potential to allow

a direct translation of any random binning achievability proof to a low-complexity

polar coding scheme.

Data compression with uniform encoder output. It has been widely believed that

the encoder output of compression codes were random number generators until T. S.

Han formally proved it wrong. However, as shown in Chapter 4, this impossibility can

be overcome when encoder and decoder share a seed, i.e., a small sequence of random

numbers. Moreover, we have characterized the optimal length of the latter. We have

also provided a practical coding scheme based on polar codes. Subsequent work in
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collaboration with the co-authors of [119] has shown that a seed is even unnecessary

under lossy reconstruction.

Coding for channel resolvability. Channel resolvability characterizes the amount

of randomness required to simulate a process at the output of a channel and plays

a key role in the analysis of secure communication over wiretap channels. However,

channel resolvability is a primitive that is also useful for the analysis of other problems

such as the common information between random variables, and agents coordination

in network. We have proposed low-complexity channel resolvability codes based on

efficiently invertible extractors in [120], and based on polar codes in [121] using polar

coding techniques developed in Chapter 2 and Chapter 5. We have shown that the

latter construction yields optimal polar coding schemes for the problem of empirical

coordination and strong coordination in two-node network [122].

6.2 Perspectives

As discussed in Chapter 1, many other constraints should be taken into account in

information-theoretic models from a practical point of view. We list, below, some of

them. Being able to successfully tackle all these constraints is highly challenging.

Finite-length regime. Asymptotic settings are of interest as a first approximation,

as they provide insight for practical designs into the optimality of a given strategy.

However, in practical applications, the finite-length regime should be considered to

account for computational and data storage limitations. While several work have

studied this problem, e.g. [14, 26, 27, 123], finding practical coding schemes nearly

optimal in the finite-length regime remains elusive.

Unknown eavesdroppers statistics. The physical position of the eavesdropper, and

thus the statistics of its observations, may not be known by the legitimate users.

Compound models [124] represents an interesting way to model uncertainties about

the eavesdropper statistics. MIMO settings could also be of interest as suggested

by [52, 75], in which the requirement of the eavesdropper’s statistics knowledge to
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ensure secrecy is replaced by a condition on the number of antennas available at the

eavesdropper. Specifically, strictly positive secrecy rate are achievable provided that

the legitimate users have more antennas than the eavesdropper.

Multi-user settings. The study and understanding of multi-users setting is pri-

mordial for large-scale application of information-theoretic security in tomorrow’s

communication networks. As alluded to earlier, the transition from point-to-point to

network communication is a challenging task. Results on closed-form expressions for

the secret-key capacity in multi-user settings, e.g. [4,9,31], or for the secrecy capacity

of wiretap channels in multiple access or broadcast settings, e.g. [125–127], are only

known for very specific scenarios and still remain incomplete in general.

Practical validations. Last but not least, practical implementations or proof of con-

cept need to support theory. Although an increasing number of works have recently

studied practical implementations of information-theoretic security [5,7,128–130], the

gap between theory and practice remains far from being bridged.
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[90] E. Şaşoğlu, “Polar Coding Theorems for Discrete Systems,” EPFL Thesis,

no. 5219, 2011.

[91] E. Abbe, “Randomness and Dependencies Extraction via Polarization, with

Applications to Slepian-wolf Coding and Secrecy,” to appear in IEEE Trans.

Inf. Theory, 2015.

[92] D. Sutter, J. Renes, and R. Renner, “Efficient One-Way Secret-Key Agreement

and Private Channel Coding via Polarization,” arXiv preprint arXiv:1304.3658,

2013.

229



[93] M. Hayashi, “Second-Order Asymptotics in Fixed-Length Source Coding and

Intrinsic Randomness,” IEEE Trans. Inf. Theory, vol. 54, no. 10, pp. 4619–4637,

2008.

[94] S. Korada and R. Urbanke, “Polar Codes are Optimal for Lossy Source Coding,”

IEEE Trans. Inf. Theory, vol. 56, no. 4, pp. 1751–1768, 2010.

[95] J. Honda and H. Yamamoto, “Polar Coding Without Alphabet Extension for

Asymmetric Models,” IEEE Trans. Inf. Theory, vol. 59, no. 12, pp. 7829–7838,

2013.

[96] D. Aldous, “Random Walks on Finite Groups and Rapidly Mixing Markov
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