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Abstract. In this work, we experimentally investigate the problem of computing
the relative transformation between multiple vehicles from corresponding inter-
robot observations during autonomous operation in a common unknown environ-
ment. Building on our prior work, we consider an EM-based methodology which
evaluates sensory observations gathered over vehicle trajectories to establish ro-
bust relative pose transformations between robots. We focus on experimentally
evaluating the performance of the approach as well as its computational com-
plexity and shared data requirements using multiple autonomous vehicles (aerial
robots). We describe an observation subsampling technique which utilizes laser
scan autocovariance to reduce the total number of observations shared between
robots. Employing this technique reduces run time of the algorithm significantly,
while only slightly diminishing the accuracies of computed inter-robot transfor-
mations. Finally, we provide discussion on data transfer and the feasibility of
implementing the approach on a mesh network.

1 Introduction and Related Work

In this work, we investigate the problem of computing the relative transformation be-
tween multiple vehicles based on corresponding inter-robot observations developed
during autonomous operation in a common unknown environment. Applications that
rely on distributed mapping and coordinated control must, in general, assume the exis-
tence of a shared environment representation in order to establish a common reference
frame for integration of distributed observations and joint cooperative control decisions.
Therefore, a fundamental capability required by these applications is a robust strategy
to establish the relative pose between individual vehicles.

Several approaches exist to address the problem of establishing a consistent ref-
erence frame in the multi-robot SLAM literature based on landmarks [1], direct rela-
tive inter-robot observations [2], and multi-robot data association [3]. Landmark-based
strategies require additional prior knowledge of the environment or a means to instru-
ment the environment (e.g., beacons [4]). Approaches that leverage direct inter-robot
observations, such as when one robot detects the relative presence of another robot us-
ing onboard vision [5, 6] or RF ranging [7], assume that vehicles will proximally operate
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at the same time. In this work, we focus on environments and systems that do not admit
prior or external instrumentation as well as temporal assumptions on spatial operation.
Such scenarios can occur in complex or expansive environments where vehicles operate
independently with the expectation of frequent and infrequent interactions (e.g., tun-
nel networks [8], large buildings [9]) or at disparate time schedules. Consequently, we
assume that vehicles autonomously navigate the unknown environment, concurrently
estimating their location and the map of the environment, and opportunistically coor-
dinate with other vehicles toward furthering the application objective. For this reason,
techniques most related to the emphasis of this work build on data association methods
which seek to establish a consistent relative transform based on the existence of mutual
environment observations made by each vehicle. Cunningham et al. [10] and Montijano
et al. [11] propose robust methods for establishing a relative inter-robot transformation
without requiring prior knowledge of the initial relative inter-robot pose based on vari-
ations of the RANSAC algorithm. Indelman et al. [12] suggest an alternative method
based on the observation that vehicles will share common incremental observations in
areas historically traversed by multiple vehicles, and pursue an EM-based methodol-
ogy which evaluates present and historic observations developed along the trajectory
transited by the vehicles.

In this work, we pursue an experimental sequel to the method presented by Indel-
man et al. [12]. The study focuses on analyzing the correctness of the resulting relative
transformation as well as the relationship between the algorithm’s computational com-
plexity, shared data requirements, and team size, using trials of multiple autonomous
vehicles (aerial robots). We briefly summarize the technical approach in Sect. 2. Sec-
tion 3 details experiments designed to evaluate the technique using a multi-robot sys-
tem. The experiments assess the correctness and robustness of the approach as well as
key considerations toward reducing its computational complexity for real-time perfor-
mance. Specifically, we describe an observation subsampling approach which utilizes
laser scan autocovariance to select salient scans for sharing, and discuss considerations
for implementing the approach over a capacity constrained network. Section 4 reports
on the accuracy of inter-robot transforms resulting from three indoor and outdoor multi-
robot trials, and analyzes the impact of laser scan saliency on both accuracy, and time
consumed by individual algorithmic steps. Section 5 closes with a discussion and sum-
marization of the experimental design and results.

2 Technical Approach

We now briefly review the formulation proposed in our prior work and defer to this work
for a detailed discussion on the approach [12]. We consider a group of R robots deployed
to collaboratively operate in some unknown environment and assume the robots start
from different locations, without knowledge of the existence of other vehicles. Each
robot r is assumed to be capable of estimating its trajectory X r based on observations
Zr from its onboard sensors. We represent this estimation problem in a pose graph
probabilistic formulation

p(X r|Zr) ∝ p(xr
0)∏

i
p
(
ur

i−1,i|xr
i−1,x

r
i
)

(1)
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where xr
i ∈ X r is the robot’s pose at time ti, expressed relative to some reference frame,

and p(xr
0) is a prior term. Since we assume no a priori knowledge about the environment

and the initial pose of the robots, the reference frame of each robot is arbitrarily set to
coincide with the initial pose.

The measurement likelihood term p
(

ur
i−1,i|xr

i−1,x
r
i

)
in (1) involves the relative pose

measurement ur
i−1,i that can be either directly obtained from odometry measurements

or calculated from vision or laser sensor observations at the two time instances ti−1
and ti. We follow the standard assumption in the SLAM community and model the
measurement likelihood as a Gaussian:

p
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i−1,x

r
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)

∝ exp
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−1
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)
with Σ being the measurement noise covariance and h the measurement model that, in
the case of relative pose observations and robot poses expressed in the same reference
frame is h

(
xr

i−1,x
r
i
) .
= xr

i−1	 xr
i . We follow Lu and Milios [13] and use the notation 	

in a	b to express b locally in the frame of a for any two poses a,b.
The maximum a posteriori (MAP) estimate of the rth robot pose X r using only local

information is then given by

X̂ r = argmax
Xr

p(X r|Zr)

We denote by F the set of multi-robot data association, with each individual data as-
sociation (r1,r2,k, l) ∈F representing a relative pose constraint ur1,r2

k,l relating between
the pose of robot r1 at time tk and the pose of robot r2 at time tl . This constraint can
represent both direct observation of one robot pose relative to another robot, and also
the estimated relative pose based on observation of a common scene by two robots. In
the latter case, it is computed from the measurements of the two robots zr1

k ∈ Zr1 and
zr2

l ∈ Zr2 , that can represent, for example, laser scans or image observations.
Assuming multi-robot data association F has been established and appropriate con-

straints ur1,r2
k,l have been calculated, we can write a probabilistic formulation for the

multi-robot joint pdf for the robots as follows:

p(X |Z) ∝ ∏
r

p(X r|Zr) ∏
(r1,r2,k,l)∈F

p
(

ur1,r2
k,l |x

r1
k ,xr2

l

)
(2)

where X and Z represent, respectively, the robot trajectories and the measurements.
As the robots express their local trajectories with respect to different reference sys-

tems, the measurement likelihood term in (2) is
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The notation ⊕ represents the compose operator [13], and T r1
r2 is a transformation be-

tween the reference frames of robots r1 and r2. Since the robots start operating from
different unknown locations, this transformation is initially unknown and arbitrary.

While the formulation (2) assumes multi-robot data association F is given, in prac-
tice it is unknown ahead of time and should therefore be established. In [12], we propose
an expectation-maximization (EM) based framework to reliably infer the multi-robot
data association F in a multi-robot pose SLAM framework, without assuming prior
knowledge on initial relative poses between the robots, i.e., unknown T ri

r j for all pairs
ri,r j ∈ [1, . . . ,R]. The remainder of this work experimentally evaluates the efficacy of
this EM-based methodology to accurately estimate the unknown transformations, T ri

r j ,
for all pairs of robots.

3 Experimental Study

3.1 Experimental Design and Approach

We consider the problem of developing accurate relative transforms between multiple
aerial robots while operating in a common environment through shared laser sensor
observations. As the system relies on a capacity constrained network, we focus on ex-
perimental questions relating computational complexity, shared data requirements, and
team size. Toward studying this relationship, we propose a strategy that seeks to reduce
data transfer and algorithmic complexity at the cost of reducing the accuracy of the
computed relative transforms. We show the feasibility of the proposed technique exper-
imentally and extend this discussion to larger teams where mild reductions in accuracy
can permit real-time performance.

Trials of sensory information (laser scans) are captured from fleets of quadrotors
operating in three different environments (Fig. 1). These environments consist of a set
of paths transitioning from a wide open room with clutter to a hallway environment
(trial T1), a series of connected corridors and hallways (trial T2), and an outdoor hedge
maze (trial T3).

T1 Three robots navigating along a path from the same initial pose before diverging
and traveling long distances in different directions.

T2 Three robots navigating through hallways from different starting poses. All robots
meet, and travel in the same direction around a 10×16 meter loop before diverging.

T3 Three robots navigating an outdoor structured environment. Robots navigate low
to the ground to capture laser scans of bushes and walls. Robots 2 and 3 have no
trajectory overlap, but capture laser scans which share features.

Pose estimates along the robot trajectories are generated through local instances of
SLAM running on each quadrotor during operation. We use a laser and inertial based
SLAM implementation similar to that of [14], which leverages ICP for laser odome-
try [15], a histogram filter for localization, and a UKF to fuse estimates [16]. Octomap
is used for 3D mapping capabilities [17].
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(a) (b)

(c) (d)

Fig. 1: (a): Quadrotor platform, equipped with an onboard computer (1.86 GHz Intel Core 2
Duo processor), IMU, laser, and beam deflector mirrors. Stereo cameras are not utilized in the
described experiments. (b), (c), (d): Experiment environments for T1, T2, and T3.

3.2 Implementation

We pursue a centralized implementation where laser scan observations are distributed
to and evaluated by a single vehicle (i.e., client-server model). Each new observation
received by the server is matched against a history of all observations from other robots
using a variant of ICP [18]. If there is a significantly low covariance in any one ICP
match, a data association (ri,r j,k, l) ∈F between the two robots, ri and r j, links the
poses from which the matched scans were captured.

After a specified number of observations are shared by all robots, transform hy-
potheses between pairs of robots are established using EM [12]. For each transform hy-
pothesis generated this way, data associations formed between robot pairs which share
similarity in translation and rotation are separated into a set of inliers. The transform
hypothesis which contains the highest number of inlier data associations is chosen as
the most probable transform. If the number of inliers is small for all transform hypothe-
ses, none are selected, signifying that the robots are operating in disjoint environments.
If a reliable transform has not yet been discovered, hypotheses are constantly generated
and reassessed as new observations are shared between robots.

3.3 Computational Complexity and Saliency of Information

Given this implementation, we choose to evaluate three steps of the algorithm in an
analysis of computational complexity (Table 1). SLAM is executed locally on each
robot, and is therefore omitted. The server is responsible for managing all computations
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in these three steps, and executes them in sequence when presented with new pose and
sensor information from a robot.

Step 1 Updates to a robot’s pose graph to incorporate a new pose and any new data asso-
ciations formed with other robots since the previous update.

Step 2 ICP and transform hypothesis generation between one robot’s history of shared
scans and any new scans recently shared by other robots.

Step 3 Sensor observation autocovariance calculation.

Step 1 Edges are added to the multi-robot pose graph upon individual robot pose
updates as well as multi-robot pose correspondences generated through data associ-
ation. The pose graph is implemented with the GTSAM optimization library [19],
which computes individual updates (nearly) linearly in the number of edges in the
pose graph. Continuing the notation introduced in Sect. 2, the shared pose graph has
E = R(|X r|−1)+ |F | edges if the poses of all robot are updated at a shared frequency.
Since edges are added sequentially during run time, the total number of computations
performed in Step 1 is roughly 1

2 (E
2 +E), resulting in a complexity of O(E2).

Step 2 To identify data associations from arbitrary local robot coordinate frames in a
temporally invariant manner, every laser scan shared by one robot must be compared
against each other robot’s history of laser scans. Assuming robot poses are updated with
a shared frequency, every laser scan shared by an individual robot will be accompanied
by R−1 sensor observations shared by other robots. Growth in the laser scan histories
of each robot results in a growth in the number of ICP comparisons performed between
observations over time. Let each robot r gather a set of observations, Zr, and share a
subset, Z̄r ⊂ Zr, with other robots. Then the total number of ICP comparisons performed
over the duration of the trial run time is

R(R−1)
|Z̄r |

∑
i=1

i

=
1
2
(
R2−R

)(
|Z̄r|2 + |Z̄r|

)
This result implies that the run time complexity of Step 2 is O(R2|Z̄r|2).

Step 3 The dominant source of complexity in Step 2 arises from R2|Z̄r|2 laser scan ICP
comparisons from potentially large initial offsets over the duration of the run time, as
well as EM on a number of transform hypotheses quadratic in |Z̄r|. The algorithm can be
made significantly more efficient through a reduction the number of observations in the

Table 1: Complexities of individual steps of the data association strategy.

Algorithm Step 1 2 3

Complexity O
(
E2) O

(
R2|Z̄r|2

)
O(R|Zr|)
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Fig. 2: Laser scan saliency along a robot’s trajectory with inlaid images of the environment. Ma-
genta corresponds to high saliency, while teal corresponds to low saliency.

set Z̄r as |Z̄r| is not restricted to be equal to |X r|. We therefore propose a subsampling
strategy that seeks to reduce |Z̄r| based on laser scan autocovariance [20], which can
be used as a scalar measure of laser scan saliency. Autocovariance is calculated by
randomly perturbing the pose from which a laser scan was captured, performing ICP to
match the perturbed scan against the original, and storing the resulting transformation
mean and covariance. After N such iterations, autocovariance is computed by

δ =
1

trace(Σ)
,

where Σ is the covariance of the N-Gaussian mixture.
To subsample, we skip nine of ten sequential laser scans and maintain at least 0.1

meters in normed (x,y) pose estimate between scans. Saliencies are calculated for the
remaining set. Only scans with δ greater than a threshold, δs, are shared with other
robots. Because laser scan saliency is only computed once per laser scan, the run time
complexity of Step 3 is O(R|Zr|). Laser scan saliency is plotted along a robot trajectory
from trial T2 in Fig. 2.

3.4 Network Complexity

Constrained network capacity is a concern when requiring the distribution of large
amounts of shared data. Further, mesh networks exhibit a reduced capacity when dis-
tributing packets between multiple systems [21]. A conservative model of three robots
sharing uncompressed scans (approximately 34 kB per scan) limits the data sharing rate
of each robot to approximately 4 Hz. The rate reduces further with the number of robots
where in practice an update rate of 1 Hz is expected for six vehicles [21].
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Fig. 3: Robot trajectories from T1 in a common frame after applying transforms resulting from
data association. Estimates are expressed in the local frame of each robot. Inlier (black) and
outlier (gray dashed) correspondences after a common reference frame has been established are
shown.

4 Results and Discussion

The data association algorithm was used to calculate inter-robot relative transforms
between robots in T1, T2, and T3. All reported transforms, T r1

ri , are expressed as a
rotation followed by a translation from the local coordinate frame of robot ri to that of
robot r1.

We first report on the accuracy of transforms calculated without saliency threshold-
ing on laser scans. Trajectories, inlier data associations, and outlier data associations
from T1 are shown in the local frame of each robot in Fig. 3. Robots begin from the
same initial position and diverge after sharing a large number of laser scans in com-
mon. As such, strong hypotheses are formed in the initial stretch of the trajectory by the
high number of inlier ICP correspondences. In the latter half of each robot’s trajectory,
incorrect data associations are made between robots due to the similarity in laser fea-
tures throughout the hallway environment. However, given the strength of the transform
established in the initial poses, these data associations are considered outliers.

Table 2 displays computed and measured transforms from all three datasets with
no laser scan saliency thresholding. The transform with the largest error among all

Table 2: Computed and measured transformations T r1
r2 and T r1

r3 , with x,y in m and θ in rad.
Trial T1 Trial T2 Trial T3

Transform T r1
r2 T r1

r3 T r1
r2 T r1

r3 T r1
r2 T r1

r3

x: -0.12 0.15 2.62 -4.53 1.41 -13.59
Computed y: -0.03 -0.27 7.45 -4.09 -3.99 -1.24

θ : -0.02 0.03 -1.57 0.00 0.97 2.05
x: 0.00 0.00 2.48 -4.60 1.42 -13.63

Measured y: 0.00 0.00 7.50 -3.99 -3.90 -1.02
θ : 0.00 0.00 -1.57 0.00 1.08 2.01
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trials, T r1
r3 from T1, has a translation error norm of 0.31 meters. Rotational errors in all

computed transforms are between zero and eight degrees.

Figure 4(a) displays saliency plotted across trajectories in T2. Structural symmetries
in the hallway environment cause ICP comparisons to converge to local minima during
autocovariance computation, resulting in low saliency in areas such as four-way cross-
roads and corridors. The set of salient laser scans is roughly a subset of the set of shared
scans that form high numbers of ICP correspondences with other robots (Fig. 4(b)). This
inclusion signifies that autocovariance is a suitable metric for laser scan subsampling.
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Fig. 4: 4(a) Saliency, δ , of shared scans in T2. 4(b) Number of ICP scan correspondences found
between robot pairs in T2, plotted along robot trajectories. Counts mark the number of ICP cor-
respondences made between the scan shared from the marked pose with all scans shared by the
other robot.
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Table 3: Computed and measured transforms before and after saliency thresholding, with ‖x,y‖
in m and θ in rad. ∼ signifies that a transform was not established.

Data set D2 Data set D3
δs Shared scans T r1

r2 error T r1
r3 error Shared scans T r1

r2 error T r1
r3 error

r1 r2 r3 ‖x,y‖ θ ‖x,y‖ θ r1 r2 r3 ‖x,y‖ θ ‖x,y‖ θ

0 75 77 65 0.15 0.00 0.20 0.00 74 55 71 0.09 0.10 0.22 0.05
2×105 22 26 23 0.19 0.00 0.24 0.00 26 18 36 0.22 0.08 0.59 0.13
4×105 22 24 23 0.19 0.00 0.24 0.00 24 16 35 ∼ ∼ 0.59 0.13
6×105 16 18 19 0.18 0.01 0.29 0.02 22 15 31 ∼ ∼ 0.67 0.13
8×105 8 6 4 ∼ ∼ ∼ ∼ 8 1 15 ∼ ∼ ∼ ∼

Transform accuracies for T2 and T3 are shown in Table 3 with varying saliency
thresholds, δs. Thresholding with δs = 2× 105 reduces the average number of scans
used to 36 percent of the total. By increasing the saliency threshold to δs = 4× 105,
there are no longer enough inlier ICP correspondences between robots r1 and r2 from
T2 to compute a transform. While thresholding scans by their saliency increases error
in both translation and rotation, this inscrease, at worst, raises normed (x,y) error by
0.37 meters, and rotation error by 0.08 radians over a trajectory roughly 20 meters in
length. At δs = 8× 105, no robot pairs have enough inlier correspondences to form a
transform.
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Fig. 5: (a), (b): Robot trajectories from T2 and T3 in the frame of r1 after applying transforms re-
sulting from the data association strategy with and without saliency thresholding. Saliency thresh-
olding makes little difference to transform estimates. Laser scans from r1 are shown.
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Table 4: Trial durations, number of shared scans, and mean and maximum sharing frequencies
for δs = 0 and δs = 2×105.

δs = 0 δs = 2×105

Robot Duration (s) |Zr| Max (Hz) Mean (Hz) |Zr| Max (Hz) Mean (Hz)
T2: r1 37.4 75 2.08 2.00 22 1.01 0.59
T2: r2 39.0 77 2.02 1.97 26 1.28 0.67
T2: r3 32.5 65 2.02 2.00 23 0.95 0.71
T3: r1 35.5 71 2.06 2.00 26 0.98 0.73
T3: r2 27.6 55 1.99 1.99 18 1.31 0.65
T3: r3 37.4 74 1.98 1.98 36 1.20 0.96

Trajectories from T2 and T3 are shown in Fig. 5 with and without salient scans
thresholded at δs = 2× 105. Thresholding laser scans from robots in T2 by saliency
leads to a 0.04 meter increase in translation error for both robots, with no difference
in rotation error. In trial T3, thresholding increases translation error by 0.13 and 0.37
meters, and rotation error by −0.02 and 0.08 radians for T r1

r2 and T r1
r3 , respectively.

Without saliency thresholding, the total number of shared scans in all trials remains
below the data sharing limit of 4 Hz described in Sect. 3.4 for three robots (Table 4).
During trials, laser scans were captured on each robot at 20 Hz and uniformly subsam-
pled to one tenth of the original amount. Mean sharing frequency across all robots with
no laser scan subsampling remains within a small margin of 2 Hz, implying no robots
were limited by the 0.1 meter distance constraint between sequential laser scans. After
thresholding shared scans by saliency with δs = 2× 105, the mean sharing frequency
decreases to below 1 Hz for all robots. The maximum sharing frequencies for both val-
ues of δs permit unconstrained data transfer on a mesh network with three robots. With
a mesh network of six robots, the maximum sharing frequencies indicate that durations
of increased sharing would exceed the network transfer limit of 1 Hz per robot by up to
208 percent for δs = 0 and up to 131 percent for δs = 2×105.

Figure 6 shows the proportion of the process run time consumed by each step of
the data association algorithm with δs = {0,2,4,6}× 105 for trials T2 and T3. After
subsampling scans with δs = 2× 105, Step 3 (autocovariance calculations for all laser
scans) increases from 21.5 percent of the total computation time (averaged across both
trials) to 46.3 percent. Because total time devoted to Step 3 is not a function of δs,
thresholding on saliency by δs = 2× 105 decreases the total run time of the algorithm
by 46.4 percent. Note that due to the quadratic complexity of Step 2, this estimate is
only reflective of trajectories of the same length as those in T2 and T3.

5 Conclusion

In this work we investigated the problem of computing relative transformations between
multiple vehicles from shared sensor observation correspondences. Experiments were
developed to evaluate the accuracy, computational complexity, and network complexity
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Fig. 6: Proportion of total run time consumed by each step of the algorithm for (a) trial T2, and
(b) trial T3 with varying values of δs. Time consumed by Step 3 is constant across values of δs,
signifying that as δs increases the total run time of the algorithm decreases.

of a data association strategy introduced by Indelman, et al. [12]. A sensory observation
subsampling strategy based on laser scan autocovariance was introduced to reduce the
number of laser scans shared between robots, therefore reducing the both the computa-
tional complexity of the algorithm as well as the rate of data sharing between robots.

Multi-robot trials were collected onboard quadrotors operating throughout three dis-
similar environments. The trials were used to evaluate the accuracy of the data associ-
ation algorithm in different domains of operation. We showed that by intelligently se-
lecting which laser scans to share over the network, the total run time of the algorithm
could be reduced by over 46.4% for three-robot trajectories on the order of 20 meters in
length. In addition, we demonstrated that the accuracy of transforms resulting from the
algorithm does not suffer significantly from subsampling laser scans based on their au-
tocovariance. Finally, we experimentally evaluated data sharing rates to show that this
approach can be implemented using a mesh network for at least three robots.
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