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Abstract— This work investigates the problem of planning
under uncertainty, with application to mobile robotics. We
propose a probabilistic framework in which the robot bases
its decisions on the generalized belief, which is a probabilistic
description of its own state and of external variables of interest.
The approach naturally leads to a dual-layer architecture: an
inner estimation layer, which performs inference to predict the
outcome of possible decisions, and an outer decisional layer
which is in charge of deciding the best action to undertake.
The approach does not discretize the state or control space,
and allows planning in continuous domain. Moreover, it allows
to relax the assumption of maximum likelihood observations:
predicted measurements are treated as random variables and
are not considered as given. Experimental results show that
our planning approach produces smooth trajectories while
maintaining uncertainty within reasonable bounds.

I. INTRODUCTION

Autonomous navigation in complex unknown scenarios
involves a deep intertwining of estimation and planning
capabilities. A mobile robot is required to perform inference,
from sensor measurements, in order to build a model of
the surrounding environment and to estimate variables of
interest. Moreover, it has to plan actions to accomplish
a given goal. Clearly, if the scenario in which the robot
operates is unknown, robot decisions need to be based on the
estimates coming from the inference process. This problem
is an instance of a partially observable Markov decision
process (POMDP), which describes a decisional process
in Markovian systems, in which the state is not directly
observable. While POMDP are intractable in general [12],
it is of practical interest to device problem-specific solutions
or approximations (e.g., locally optimal plans) that trade-off
optimality for computational efficiency.

The estimation problem arising in robot navigation has
recently reached a good maturity. State-of-the-art techniques
for localization and mapping (SLAM) allow fast solution of
medium-large scenarios [16], [19], [21], [17], using efficient
nonlinear optimization techniques, that exploit the structure
of the underlying problem. On the other hand, planning
under uncertainty is still attracting a consistent attention from
the robotic community as, besides the amount of published
papers, few approaches are able to deal with the complexity
and time-constraints of real-world problems.

Related literature offers heterogeneous contributions on
the topic. A recurrent idea is to restrict the state space or the
control space to few possible values. While this discretization
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prevents obtaining an optimal solution, it allows to frame the
“computation” of a plan into a “selection” of the best plan
among few candidates. In this case, a consistent research
effort has been devoted to design suitable metrics to quantify
the quality of a candidate plan. The problem itself is not
trivial as the metric depends on the representation we use
for the environment and on the inference engine. Examples
of this effort are the work of Stachniss et al. [31], [30],
Blanco et al. [4], and Du et al. [8], in which particle
filters are used as estimation engine. Martinez-Cantin et
al. [23], [24] and Bryson and Sukkarieh [5] investigate
planning techniques in conjunction with the use of EKF
for estimation. Huang et al. [10] propose a model predictive
control (MPC) strategy, associated with EKF-SLAM. Leung
et al. [22] propose an approach in which the MPC strategy
is associated with a heuristic based on global attractors. Sim
and Roy [28] propose A-optimal strategies for solving the
active SLAM problem. Carrillo et al. [6] provide an analysis
of the uncertainty metrics used in EKF-based planning. Other
examples are [18], [32] in which the belief is assumed to be
a Gaussian over current and past poses of the robot.

We notice that, while all the previous approaches are
applied to mobile robot navigation problems (the correspond-
ing problem is usually referred to as active Simultaneous
Localization and Mapping), similar strategies can be found
with application to manipulation and computer vision (e.g.,
next best view problem [26]). A related problem is also
the so-called informative path planning (although in these
problems the estimation aspects are often neglected). A
greedy strategy for informative path planning is proposed
by Singh et al. [29] while a branch and bound approach is
proposed by Binney et al. in [3]. More recently, Hollinger et.
al [9] propose more efficient algorithms, based on rapidly-
exploring random trees and probabilistic roadmaps. These
approaches usually assume that the robot moves in a par-
tially known environment; a remarkable property of these
techniques is that they approach optimality when increasing
the runtime (which is exponential in the size of the problem).

Recent literature on planning under uncertainty is trying to
go beyond three limitations that are common to most of the
works mentioned so far. The first limitation is discretization.
Reasoning in terms of a discretized grid world may lead to
suboptimal plans (Figure 1c) as the performance of the cor-
responding approaches heavily depends on grid resolution,
while increasing grid resolution usually implies an increase
in the computational cost of planning. Continuous models
appear as more natural representations for real problems, in
which robot states (e.g., poses) and controls (e.g., steering
angles) are not constrained to few discrete values. In [1], Bai
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et al. avoid discretization by using Monte Carlo sampling
to update an initial policy. Platt et al. [11] apply linear
quadratic regulation (LQR) to compute locally optimal poli-
cies. Kontitsis et al. [20] propose a sampling based approach
for solving a constrained optimization problem in which the
constraints correspond to state dynamics, while the objective
function to optimize includes uncertainty and robot goal.
A hierarchical goal regression for mobile manipulation is
proposed by Kaelbling et al. in [13], [14], [15].

A second limitation regards the assumption that some
prior knowledge of the environment is available and the belief
typically represents only the robot trajectory [2], [27]. In
particular, the Belief Roadmap [27] incorporates predicted
uncertainty of future position estimates into planning, while
assuming the environmental map to be given.

A third limitation is the assumption of maximum likelihood
observations: since future observations are not given at
planning time, the robot assumes that it will acquire the mea-
surements that are most likely given the predicted belief. Van
den Berg et al. [2] relax the maximum likelihood assumption,
while assuming prior knowledge on the environment and on
the state-dependent measurement noise.

This work addresses the three limitations mentioned in the
literature review. We introduce the concept of generalized
belief space (GBS): the robot keeps a joint belief over its
own state and the state of external variables of interest.
This allows relaxing the assumption that the environment
is known or partially known, and enables applications in
completely unknown and unstructured scenarios. Planning
in GBS, similarly to planning in belief space [11], is done
in a continuous domain and avoids the maximum likelihood
assumption that characterizes earlier works. The concept of
generalized belief space is introduced in Section II. Our
planning strategy is then described in Section III. In Section
IV, we present experimental results, comparing the proposed
approach with a planning technique based on state space
discretization. Conclusions are drawn in Section V.

II. GENERALIZED BELIEF SPACE

A. Notation and Probabilistic Formulation
Let xi and Wi denote the robot state and the world state

at time ti. For instance, in mobile robots navigation, xi may
describe robot pose at time ti and Wi may describe the
positions of landmarks in the environment observed by the
robot by time ti. In a manipulation problem, instead, xi may
represent the pose of the end effector of the manipulator, and
Wi may describe the pose of an object to be grasped. The
world stateWi is time-dependent in general (e.g., to account
for possible variations in the environment, or to model the
fact that the robot may only have observed a subset of the
environment by time ti) and for this reason we keep the
index i in Wi. Let Zi denote the available observations at
time ti and ui the control action applied at time ti.

We define the joint state at time tk as Xk
.
=

{x0, . . . , xk,Wk}, and we write the probability distribution
function (pdf) over the joint state as:

p (Xk|Zk,Uk−1) , (1)

where Zk
.
= {Z0, . . . , Zk} represent all the available obser-

vations until time tk, and Uk−1
.
= {u0, · · · , uk−1} denotes

all past controls. The probabilistic motion model given the
control ui and robot state xi is

p (xi+1|xi, ui) . (2)
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Fig. 1: Planning under uncertainty. A mobile robot starts
at the origin without prior knowledge of the environment
and has to reach a sequence of goals, labeled from 1
to 8, while keeping bounded its uncertainty. The figure
shows: trajectories, mapped landmarks, and uncertainties for
different planning approaches. (a) Planning in the GBS;
(b) Planning in the GBS without uncertainty terms in the
objective function; (c) Discrete planning.

We consider a general observation model that involves at
time ti a subset of joint states Xo

i ⊆ Xi:

p (Zi|Xo
i ) . (3)

The basic observation model, commonly used in motion
planning, e.g., [2], involves only the current robot state xi
at each time ti and is a particular case of the above general



model (3). In general Zi may include several observations:
in the next section we consider the case in which Zi =
{zi,1, . . . , zi,ni}, making explicit that at time ti the robot
acquires ni measurements.

The joint pdf (1) at the current time tk can be written
according to motion and observation models (2) and (3):

p (Xk|Zk,Uk−1) = priors ·
k∏
i=1

p (xi|xi−1, ui−1) p (Zi|Xo
i ) .

(4)
The priors term includes p (x0) and any other available prior
information.

B. Generalized Belief Space (GBS)

Our goal is to compute an optimal control action over L
look-ahead steps. This control action will depend in general
on the belief over the time horizon. The belief at the lth
look-ahead step involves the distribution over all the states
so far, accounting for all the commands and observations
until that time. For example, the belief at the planning time
tk is exactly given by Eq. (4). However, for computing the
control policy we also need to predict the belief at future
time instances tk+1 until tk+L whose general expression for
the lth look-ahead step is given as follows:

gb (Xk+l)
.
= p (Xk+l|Zk,Uk−1, Zk+1:k+l, uk:k+l−1) , (5)

where we separated actions Uk−1 and observations Zk oc-
curring until the planning time tk from the actions uk:k+l−1

and observations Zk+1:k+l from the first l look-ahead steps
(tk+1 until tk+l).

We consider the case of motion and observation models
with additive Gaussian noise:

xi+1 = f (xi, ui) + wi , wi ∼ N (0,Ωw) (6)

zi,j = h
(
Xo
i,j

)
+ vi , vi ∼ N (0,Ωv) , (7)

where zi,j represents the jth observation at time ti (recall
that Zi = {zi,1, . . . , zi,ni

}, where ni is the total number
of observations acquired at time ti); observation model for
the measurement zi,j involves the subset of states Xo

i,j .
For instance, zi,j could represent observations of the jth
landmark. For notational convenience, we use ε ∼ N(µ,Ω)
to denote a Gaussian random variable ε with mean µ and
information matrix Ω (inverse of the covariance matrix). For
simplicity we assume the same measurement model h (·) and
noise vi for all the observations at time ti, although the above
formulation can be easily generalized.

The complexity stems from the fact that it is unknown
ahead of time whether or not an observation zi,j will be
acquired. For example, if the robot is far away from the
jth landmark there will be no measurement zi,j in practice.
For this reason, we introduce a binary random variable
γi,j for each observation zi,j to represent the event of
this measurement being acquired. Furthermore, even if the
measurement zi,j is acquired, its actual value is unknown
ahead of time, and therefore we also treat zi,j as random

variable. Therefore, we can define a joint probability density
over the random variables in our problem:

p (Xk+l,Γk+1:k+l, Zk+1:k+l|Zk,Uk−1, uk:k+l−1) , (8)

where Γi
.
= {γi,j}ni

j=1, with ni being the number of possible
observations at time ti. In our mobile robotics example ni
is simply the number of landmarks observed thus far.

We refer to (8) with the term generalized belief as now
the probability distribution is defined over the robot and
world state (included in the vector Xk+l), as well as over the
random variables Γk+1:k+l, and Zk+1:k+l. Using the chain
rule and taking the standard assumption of uninformative
priors yields

p (Xk+l,Γk+1:k+l, Zk+1:k+l|Zk,Uk−1, uk:k+l−1) =

p (Xk+l,Γk+1:k+l|Zk,Uk−1, Zk+1:k+l, uk:k+l−1) .

Since the belief (5) is defined only over the states, we
marginalize the latent variables Γk+1:k+l and get

gb (Xk+l) = (9)∑
Γk+1:k+l

p (Xk+l,Γk+1:k+l|Zk,Uk−1, Zk+1:k+l, uk:k+l−1) .

We represent this belief by a Gaussian

gb (Xk+l) ∼ N
(
X∗k+l, Ik+l

)
, (10)

where the mean of the normal distribution is set to the
maximum a posteriori (MAP) estimate

X∗k+l = arg max
Xk+l

gb (Xk+l) = arg min
Xk+l

− log gb (Xk+l) .

(11)

While in this section we introduced the concept of gen-
eralized belief space, we did not provide computational
procedures to compute the Gaussian approximation of the
belief (10). A computationally efficient technique to compute
the belief constitutes the inference layer of our planning
approach and is detailed in Section III-B.

III. PLANNING IN GBS
In our receding horizon approach, we want to compute

an optimal control action over L look-ahead steps. The
control action has to minimize the general objective function
Jk (uk:k+l−1):

Jk (uk:k+L−1)
.
= (12)

E
Zk+1:k+L

{∑L−1
l=0 cl(gb (Xk+l) , uk+l)+cL(gb (Xk+L))

}
,

where cl is a general immediate cost for each of the L look-
ahead steps. The expectation is taken to account for all the
possible observations during the planning lag, since these are
not given at planning time and are stochastic in nature. Since
the expectation is a linear operator we rewrite (12) as

Jk (uk:k+L−1)
.
=

L−1∑
l=0

E
Zk+1:k+l

[cl (gb (Xk+l) , uk+l)] +

E
Zk+1:k+L

[cL (gb (Xk+L))] . (13)



The optimal control u∗k:k+L−1
.
=
{
u∗k, . . . , u

∗
k+L−1

}
is the

control policy π:

u∗k:k+L−1 = π (gb (Xk)) = arg min
uk:k+L−1

Jk (uk:k+L−1) . (14)

Calculating the optimal control policy (14) involves the
optimization of the objective function Jk (uk:k+L−1). Ac-
cording to (12), the objective depends on the (known)
GBS at planning time tk, on the predicted GBS at
time tk+1, . . . , tk+L, and on the future controls uk:k+L−1.
Since in general the immediate costs cl (gb (Xk+l) , uk+l)
are nonlinear functions, E

Zk+1:k+l

[cl (gb (Xk+l) , uk+l)] 6=

cl

(
E

Zk+1:k+l

[gb (Xk+l)] , uk+l

)
, and we have to preserve

the dependence of the belief gb (Xk+l) on the observations
Zk+1:k+l. As anticipated in Section II-B, these observations
are treated as random variables.

A. Approach Overview

In order to optimize the objective function (13) we resort
to an iterative optimization approach, starting from a given
initial guess on the controls. The overall approach can be
described as a dual-layer inference: the inner layer performs
inference to calculate the GBS at each of the look-ahead
steps, for a given uk:k+L−1. The computation of the GBS
is done via (11), by applying a computationally efficient
technique, based on expectation-maximization and a Gauss-
Newton method. The outer layer performs inference over the
control uk:k+L−1, minimizing the objective function (13). In
the next sections we describe in detail each of these two
inference processes, starting from the inner layer: inference
in the generalized belief space.

B. Inner Layer: Inference in GBS

In this section we discuss the computation of the Gaussian
approximation (10), whose mean value coincides with the
MAP estimate (11). As this inference is performed as part
of the higher-level optimization over the control (see Section
III-A), the current values for uk:k+l−1 are given in the inner
inference layer. There are several complications arising when
one tries to solve (11). First, in order to obtain the distribu-
tion gb (Xk+l) one has to marginalize the latent variables
Γk+1:k+l, according to (9). Second, contrarily to standard
estimation problems (in which one would resort to numerical
optimization techniques to solve (11)) the predicted belief
gb (Xk+l) is a function of Zk+1:k+l, which are unknown
at planning time. Therefore, rather than computing a single
vector representing the MAP estimate, here the objective
is to compute a vector-valued function of Zk+1:k+l, which
gives the MAP estimate for each possible value of Zk+1:k+l.
We solve these two complications exploiting two tools:
expectation-maximization and a Gauss-Newton approach.

According to the expectation-maximization (EM) ap-
proach, instead of minimizing directly the probability in (11)
(which requires marginalization of Γk+1:k+l), we minimize

the following upper bound of − log gb (Xk+l):

X∗k+l = arg minXk+l
(15)

E
Γk+1:k+l|X̄k+l

[−log p (Xk+l,Γk+1:k+l|Zk,Uk−1, Zk+1:k+l, uk:k+l−1)],

where the expectation is computed assuming a given nominal
state X̄k+l. EM guarantees convergence to a local minimum
of the cost in (11), see e.g., [25] and the references therein.
We now want to compute explicit expressions for the ex-
pectation in (15). The jont pdf over Xk+l,Γk+1:k+l can be
written as

p(Xk|Zk,Uk−1)

l∏
i=1

p(xk+i|xk+i−1, uk+i−1)p
(
Zk+i,Γk+i|Xo

k+i

)
(16)

and the measurement likelihood term p
(
Zk+i,Γk+i|Xo

k+i

)
at

each look-ahead step i can be further expanded as∏
j

p
(
zk+i,j |Xo

k+i,j , γk+i,j

)
p
(
γk+i,j |Xo

k+i,j

)
(17)

Plugging in Eqs. (16)-(17) into Eq. (15), recalling the Gaus-
sian motion and observation models (6)-(7), and taking the
expectation, results in

X∗k+l = arg min
Xk+l

∥∥∥Xk − X̂∗k
∥∥∥2

Ik
+

l∑
i=1

‖xk+i − f (xk+i−1, uk+i−1)‖2Ωw
+

l∑
i=1

ni∑
j=1

p
(
γk+i,j = 1|X̄k+l

) ∥∥zk+i,j − h
(
Xo
k+i,j

)∥∥2

Ωv
,

(18)

where we used the standard notation ‖y − µ‖2Ω =

(y − µ)
T

Ω (y − µ) for the Mahalanobis norm, with Ω be-
ing the information matrix. We also exploited the fact
that the latent variable γk+i,j is binary and, by definition,
no observation is taken for γk+i,j = 0. The expression
p
(
γk+i,j = 1|X̄k+l

)
represents the probability of acquiring

measurement j at time ti assuming that the state is X̄k+l.
This probability may depend on the sensor equipment of the
robot, although there are grounded ways to compute it: for
instance, one can assume that the probability of observing a
landmark j decreases with the distance of the robot from the
landmark (recall that X̄k+l contains estimates of both robot
and landmark positions) and becomes zero outside a given
sensing radius. If we define Ω̄ijv = p

(
γk+i,j = 1|X̄k+l

)
Ωv ,

we can rewrite (19) as:

X∗k+l=arg min
Xk+l

∥∥∥Xk−X̂∗k
∥∥∥2

Ik
+

l∑
i=1

ni∑
j=1

∥∥zk+i,j−h (Xo
k+i,j

)∥∥2

Ω̄ij
v

+

l∑
i=1

‖xk+i−f(xk+i−1, uk+i−1)‖2Ωw
, (19)

which suggests the following interpretation: taking the ex-
pectation over the binary variables produces a scaling ef-
fect over the measurement information matrices Ωv; in



particular, according to Ω̄ijv = p
(
γk+i,j = 1|X̄k+l

)
Ωv ,

a low probability p
(
γk+i,j = 1|X̄k+l

)
is naturally mod-

eled in EM by decreasing the information content of the
measurement. In the limit case p

(
γk+i,j = 1|X̄k+l

)
=

0, the matrix Ω̄ijv only contains zeros, and the term∥∥∥zk+i,j − h
(
Xo
k+i,j

)∥∥∥2

Ω̄ij
v

disappears from the sum, cor-

rectly modeling that if p
(
γk+i,j = 1|X̄k+l

)
= 0, then the

measurement j is not actually acquired.
The EM framework allowed to transform the original prob-

lem (11) into (19). However, problem (19) is still difficult to
solve, since, in general, f(·) and h(·) are nonlinear functions.
In estimation a standard way to solve the minimization
problem (19) is the Gauss-Newton method, where a single
iteration involves linearizing the above equation about the
current estimate X̄l+l, calculating the delta vector ∆Xk+l

and updating the estimate X̄l+l ← X̄l+l + ∆Xk+l. This
process should be repeated until convergence. While this
is standard practice in information fusion, what makes it
challenging in the context of planning is that the observations
Zk+1:k+l are unknown and considered as random variables.
In order to perform a Gauss-Newton iteration on (19), we
linearize the motion and observation models in Eqs. (6)
and (7) about the linearization point X̄k+l (uk:k+l−1). The
linearization point for the existing states at planning time is
set to X̂k, while the future states are predicted via the motion
model (7) using the current values of the controls uk:k+l−1:

X̄k+l (uk:k+l−1) ≡


X̄k

x̄k+1

x̄k+2

...
x̄k+l

 .
=


X̂k

f
(
x̂k|k, uk

)
f (x̄k+1, uk+1)

...
f (x̄k+l−1, uk+l−1)

 .

(20)
Using this linearization point, Eq. (19) turns into:

arg min
∆Xk+l

‖∆Xk‖2Ik +

l∑
i=1

∥∥∥∆xk+i − Fi∆xk+i−1 − bfi
∥∥∥2

Ωw

+

+

l∑
i=1

ni∑
j=1

∥∥Hi∆X
o
k+i − bhi,j

∥∥2

Ω̄ij
v
, (21)

where the Jacobian matrices Fi
.
= ∇xf and Hi

.
= ∇xh are

evaluated about X̄k+l (uk:k+l−1). The right hand side vectors
bfi and bhi,j are defined as

bfi
.
= f (x̄k+i−1, uk+i−1)− x̄k+i , (22)

bhi,j (zk+i,j)
.
= zk+i,j − h

(
X̄o
k+i,j

)
(23)

Note that bhi,j is a function of the random variable zk+i,j .
Also note that under the maximum-likelihood assumption
this terms would be nullified: assuming maximum likelihood
measurements essentially means assuming zero innovation,
and bhi,j is exactly the innovation for measurement zk+i,j . We
instead keep, for now, the observation zk+i,j as a variable and
we will compute the expectation over this random variable
only when evaluating the objective function (13). In order to
calculate the update vectors ∆Xk and ∆xk+1, . . . ,∆xk+l,

it is convenient to write Eq. (21) in a matrix formulation,
which can be compactly represented as:∥∥∥Ak+l(uk:k+l−1)∆Xk+l−b̆k+l(uk:k+l−1, Zk+1:k+l)

∥∥∥2

,

(24)
where Ak+l is built by stacking the appropriate Jacobian
matrices in (21), and b̆k+l is obtained by stacking the right
hand side vectors bfi and bhi,j . The update vector ∆Xk+l, that
minimizes (24), is given by

∆Xk+l(uk:k+l−1, Zk+1:k+l)
.
=
(
ATk+lAk+l

)−1ATk+lb̆k+l.
(25)

Using the vector ∆Xk+l in (25) we can update the nominal
state X̄k+l:

X̂k+l (uk:k+l−1, Zk+1:k+l) = X̄k+l + ∆Xk+l (26)

We can also compute a local approximation of the informa-
tion matrix of the estimate as:

Ik+l (uk:k+l−1)
.
= ATk+lAk+l, (27)

The estimate X̂k+l (uk:k+l−1, Zk+1:k+l) is the outcome of a
single iteration of the nonlinear optimization (19).
We note that the (random) measurements zk+l,j only
appear in b̆k+l. Moreover, since b̆k+l is obtained by
stacking vectors bfi and bhi,j , and observing that each
bhi,j is a linear function of the corresponding mea-
surement zk+l,j , it follows that each entry in b̆k+l is
a linear function of the measurements Zk+1:k+l. This,
in turn, implies that ∆Xk+l (uk:k+l−1, Zk+1:k+l) and
X̂k+l (uk:k+l−1, Zk+1:k+l) are also linear functions of the
measurements. This fact greatly helps when taking the
expectation over Zk+1:k+l of the immediate cost function
(13). Considering more iterations would better capture the
dependence of the estimate on the measurements; however,
more iterations would make X̂k+l (uk:k+l−1, Zk+1:k+l) a
nonlinear function of the measurements, making it challeng-
ing to devise explicit expressions for (13). We currently
assume a single iteration sufficiently captures the effect of
the measurements for a certain control action on the GBS.
Therefore,

X̂∗k+l (uk:k+l−1, Zk+1:k+l)=X̂k+l (uk:k+l−1, Zk+1:k+l).
(28)

Thus, according to the derivation in this section we are now
able to compute a predicted belief at the l look-ahead step,
which is parametrized as a Gaussian with mean (28) and
information matrix (27). In the next section we discuss how
to use the predicted belief in the outer layer of our approach.

C. Outer Layer: Inference over the Control

Finding a locally-optimal control policy u∗k:k+L−1 corre-
sponds to minimizing the general objective function (13).
The outer layer is an iterative optimization over the non-
linear function Jk (uk:k+L−1). In each iteration of this layer
we are looking for the delta vector ∆uk:k+L−1 that is used
to update the current values of the controls:

u
(i+1)
k:k+L−1 ← u

(i)
k:k+L−1 + ∆uk:k+L−1, (29)



where i denotes the iteration number. Calculating
∆uk:k+L−1 involves computing the GBS of all the L
look-ahead steps based on the current value of the controls
u

(i)
k:k+L−1. This process of calculating the GBS is by itself

a non-linear optimization and has been already described
in Section III-B. The GBS gb (Xk+l), given the current
values of the controls uk:k+L−1, is represented by the mean
X̂∗k+l (Zk+1:k+l) and the information matrix Ik+l. The mean
is a linear function in the unknown observations Zk+1:k+l.
The immediate cost function, in the general case, may
involve both the mean and the information matrix, and is
therefore also a function of Zk+1:k+l. Taking the expectation
over these random variables produces the expected cost that
is only a function of uk:k+L−1 and captures the effect of
the current controls on the lth look-ahead step.

We conclude this section by noting that the control update
(29) is performed in a continuous domain and can be real-
ized using different optimization techniques (e.g., dynamic
programming, gradient descent, Gauss-Newton).

IV. EXPERIMENTS

We evaluate our approach in a simulated scenario where
the robot has to navigate to different goals in an unknown
environment, assuming no sources of absolute information
are available (e.g., no GPS). Results were obtained on an
Intel i7-2600 processor with a 3.40GHz clock rate and 16GB
of RAM, using a single-threaded implementation.

The specific objective function considered in this study is
(12) with the immediate cost functions defined as

cl (gb (Xk+l) , uk+l)
.
= tr

(
MΣI

−1
k+lM

T
Σ

)
+‖ζ (uk+l)‖Mu

cL(gb (Xk+L))
.
=
∥∥∥EGk+LX̂∗k+L−XG

∥∥∥
Mx

+tr
(
MΣI

−1
k+LM

T
Σ

)
,

(30)

where tr(·) returns the trace of a matrix. The immediate
cost function cl, with l ∈ [0, L− 1], involves both the robot
uncertainty and control usage terms, while the terminal cost
cL penalizes over the distance between the robot to a desired
(given) goal XG as well as robot uncertainty. The matrices
MΣ,Mu and Mx are weight matrices; in our example MΣ

is constructed such that it extracts robot covariance at the
appropriate time instant (i.e., robot uncertainty at each look
ahead step) from the overall state covariance I−1

k+l. Likewise,
the matrix EGk+L selects the terminal position of the robot
from X̂∗k+L. The function ζ (u) is some known function
that, depending on the application, quantifies the usage of
control u. For simplicity, we assume the robot can only
control its heading angle while keeping the velocity constant,
and therefore define the function ζ (u) as the change in the
heading angle.

The matrix Mu has a very intuitive function - larger values
induce conservative policies, penalizing for extensive use of
control. The choice of the matrices MΣ and Mx is instead
less intuitive. A balance between these two matrices is crucial
for letting the robot satisfy the concurrent tasks of reaching
a goal and minimizing the estimation uncertainty. Instead
of assuming the weight on the uncertainty and the goal

terms in Eqs. (30) to be constant (i.e., determined by the
matrices MΣ and Mx), we express the tradeoff between these
two aspects by introducing a parameter α that is adaptively
computed, according to the robot uncertainty and a user-

specified uncertainty threshold β, as α =
tr(MΣI

−1
k+LM

T
Σ )

β .
The uncertainty terms in Eqs. (30) are then pre-multiplied by
α and the goal term (in second equation) is pre-multiplied by
(1− α). When robot uncertainty is close to β, α and (1− α)
will be close to 1 and 0 respectively, prioritizing uncertainty
reduction over reaching the goal. As we are not imposing a
hard constraint on tr

(
MΣI

−1
k+LM

T
Σ

)
, this term may become

larger than β and for that reason the final definition of α is

changed into α = min

(
tr(MΣI

−1
k+LM

T
Σ )

β , 1

)
.

The control is found by minimizing the objective function
(12), according to our dual-layer inference approach. We use
a gradient descent method for optimizing the outer layer and
the approach of Section III-B for calculating inference in the
inner layer. The number of look-ahead steps (L) is set to 5.

We assume onboard range and camera sensors that allow
the robot to detect and measure the relative positions of
nearby landmarks, and consider the measurements from these
sensors to be corrupted by a Gaussian noise with standard
deviation of 1 meter and 0.5 pixels, respectively. We use
sensing radius of 1000 meters and consider observations
of landmarks only within this radius. The motion model is
represented by a zero-mean Gaussian with standard deviation
of 0.05 meters in position and 0.5 degrees in orientation. The
robot starts at the origin, without prior knowledge of the
environment, and has to reach a sequence of goals (labeled
from 1 to 8 in Figure 1a-c).

In this study we compare our method to a discrete planning
approach and also demonstrate the importance of incorporat-
ing uncertainty into the planning by dropping the uncertainty
terms from Eqs. (30). In discrete planning we closely follow
Kim and Eustice [18], who recently considered a robotic cov-
erage problem, where the planning generates trajectories to
promising loop-closure candidates and the decision whether
to continue exploration or to pursue one of these trajectories
is made according to the robot current uncertainty and the
expected uncertainty gain by performing a loop closure. The
authors discretize the space and use a global A* algorithm
[7], with the heuristic function weighted by local saliency
of each of the nodes in the grid to prioritize trajectories
going through high-saliency nodes. The reader is referred to
[18] for further details. In our implementation of this discrete
planning approach, we define saliency to be 1 within sensing
radius of an observed landmark and 0 otherwise. Similarly to
[18], to avoid treating each mapped landmark as loop closure
candidate, we perform clustering of nearby landmarks and
consider cluster centers as loop closure candidates.

Figure 1 provides the obtained results in each of the three
compared methods (planning in the GBS, planning in the
GBS without uncertainty, and discrete planning). Each plot
shows the actual and estimated robot trajectories, denoted
respectively by blue and red lines, the robot uncertainties
(at the end of the scenario), the 8 considered goals and



the landmarks. The mapped landmarks and the associated
uncertainty are denoted by green color; ground truth for all
the landmarks is shown in blue.
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Fig. 2: (a) Comparison between trajectories from Figure 1.
Planning in the GBS produces continuous trajectories. (b)
Position uncertainty for each of the compared methods. The
soft uncertainty bound is also shown as a dashed line. (c)
Estimation error when reaching the goals (miss distance).

As observed in Figure 1a, in the proposed method (plan-
ning in the GBS), the robot continues moving to the goal,
while mapping nearby landmarks, as long as the uncertainty
does not exceed a threshold. Once robot uncertainty is too
high, the planner first guides the robot to previously observed
landmarks to perform loop closure (on the way from goal 4
to goal 5, and from goal 7 to goal 8), and only then the robot
proceeds to the appropriate goal. Uncertainty drops to lower
values each time a loop closure is performed, as shown in
Figure 2b. As we use a soft threshold on the uncertainty,
performing loop closure is determined not only by the robot
uncertainty levels but also by the weight matrices MΣ,Mu

and Mx in Eqs. (30). Therefore, the robot uncertainty can

Method Trajectory length [m] Duration [sec]
GBS 8068 163

GBS no uncertainty 7185 145
Discrete planning 9070 185

TABLE I: Trajectory length and duration.

still exceed the uncertainty threshold by some amount.
Figure 1b shows the results when planning is done without

incorporating uncertainty. While the overall trajectory is
shorter (Table I), the uncertainty of robot pose and of newly-
observed landmarks constantly develops over time (see Fig-
ure 2b) leading to high estimation errors when reaching the
goal (i.e. high miss distance), as shown in Figure 2c.

Discrete planning produces the result shown in Figure
1c. Observe the trajectories are no longer smooth as in the
continuous case and look less natural; see also the trajectories
overlay in Figure 2a. As an example, we elaborate in Figure
3 on the two-phase trajectory segment when traveling from
goal 1 to goal 2. The robot position and observed landmarks
at planning time are shown in Figure 3a, while Figure 3b
illustrates the A*-generated trajectories. As discussed, from
the robot current position, discrete planning engages A* to
generate a trajectory for each of the landmark cluster centers
and to the goal. In the current case, the objective function
evaluated for the goal trajectory yields the lowest cost and
is therefore selected (shown in green). However, instead of
directly going to the goal (as in the continuous planning
case), the generated trajectory involves two segments that
seem unnecessary. Note that saliency is 1 in the entire region
(according to sensing range) and thus does not have any
effect, in this particular case, on the generated trajectories.
We observed a similar underlying behavior also for other
parts in the discrete trajectory that is shown in Figure 1c.

While discrete planning and our continuous planning ap-
proach result in similar levels of robot uncertainty (Figure
2b), in this example the former generates considerably longer
trajectories (Table I). As to the estimation errors, although
no general statements can be made at this point, in the
considered example we observe them to be higher in the
discrete case, as shown in Figure 2c. In this particular case,
the high levels of estimation errors (e.g. goals 2 and 3)
stem from the two-segment trajectory on the way from goal
1 to goal 2, that is longer than the trajectory generated
by planning in the GBS and lead accordingly to further
development of uncertainty.

V. CONCLUSIONS

This work investigates the problem of planning under
uncertainty, and addresses several limitations of the state-of-
the-art techniques, namely (i) state or control discretization,
(ii) assumption of maximum likelihood observations, and (iii)
assumption of prior knowledge about the environment in
which the robot operates. We propose a planning approach
that does not resort to discretization, but directly operates in
a continuous domain. The approach is based on a dual-layer
architecture, with an inner inference layer, that is in charge
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Fig. 3: Discrete planning using A*. (a) Trajectory and
mapped landmarks at planning time. (b) Generated trajec-
tories to the goal and to each of the landmark clusters are
shown in red. Trajectory corresponding to the lowest cost is
shown in green. Robot position at planning time is denoted
by filled blue circle, mapped landmarks are represented by
purple circle marks. Grid resolution is 50 meters.

of predicting the belief on robot and world states, and outer
inference layer, which has to compute an optimal control
strategy using the predictions of the inner layer. In the inner
inference layer, we treat future measurements as random
variables, hence avoiding the assumption of maximum likeli-
hood observations, common in related work. We also include
random binary variables to model the fact that it is not
known in advance whether a measurement is acquired or not.
Therefore, we introduce the concept of generalized belief,
that besides robot and world state, models also the joint
probability distributions over future measurements and latent
binary variables. We evaluate the approach in numerical
experiments and compare it with a recent related work, based
on discretization.
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