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Abstract— Pose graph optimization is an elegant and efficient
formulation for robot localization and mapping. Experimental
evidence suggests that, in real problems, the set of measure-
ments used to estimate robot poses is prone to contain outliers,
due to perceptual aliasing and incorrect data association. While
several related works deal with the rejection of outliers during
pose estimation, the goal of this paper is to propose a grounded
strategy for measurements selection, i.e., the output of our
approach is a set of “reliable” measurements, rather than
pose estimates. Because the classification in inliers/outliers is
not observable in general, we pose the problem as finding the
maximal subset of the measurements that is internally coherent.
In the linear case, we show that the selection of the maximal
coherent set can be (conservatively) relaxed to obtain a linear
programming problem with `1 objective. We show that this
approach can be extended to (nonlinear) planar pose graph
optimization using similar ideas as our previous work on linear
approaches to pose graph optimization. We evaluate our method
on standard datasets, and we show that it is robust to a large
number of outliers and different outlier generation models,
while entailing the advantages of linear programming (fast
computation, scalability).

I. INTRODUCTION

A pose graph is a model for single and multi robot
localization and mapping. The standard setup in the literature
considers a graph where each node is associated to a pose
(or configuration) xi, and the edges E are associated to the
available measurements. For each edge (i, j) ∈ E , we have
available the measurement

zij = h(xi,xj) + εij , (1)

where the function h returns the pose difference (in the Lie
group sense), and εij is additive zero-mean Gaussian noise.

The objective of pose graph optimization is to compute
an estimate of the nodes configuration x = (x1, . . . ,xn)
that maximizes the likelihood of the measurements. This is a
nonconvex optimization problem, which has been extensively
studied with various approaches (see, e.g., [1–5]). Some ready-
to-use implementations are available online [6, 7].

Optimization “back-ends” (methods that solve the pose
graph optimization problems) should be robust to mistakes
of the “front-end” (methods that create the pose graph
from the robot’s sensory data), that may introduce spurious
measurements that do not follow the nominal model (1).
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Fig. 1. Pose graph optimization must be robust to outliers created by
perceptual aliasing (to the left, visually similar corridors create spurious loop
closures). However, in general, it is unobservable whether a measurement is
an outlier or an inlier (to the right, an example of outlier that is coherent
with the measurements). In this paper we abandon the notion of “inlier” or
“outlier” and we seek for the maximal “coherent” set of measurements. We
describe a fast and accurate convex relaxation of the combinatorial problem
of selecting a maximal set of coherent measurements.

One particularly troubling source of spurious data arises
from perceptual aliasing: if a robot visits two places that
look similar, the front-end might generate spurious loop
closure constraints; moreover, in ambiguous environments we
might find groups of spurious loop closures that are locally
coherent (Fig. 1a).

Several techniques have been proposed to identify and
discard spurious constraints [8–10]; these are all based
on iterative nonconvex optimization, which means that the
robustness of the solution depends on the quality of the initial
guess, and the computational cost does not scale well.

Contribution: We describe an approach to outlier rejection
in planar pose graph optimization based on linear techniques,
which allows to have a fast and global solution; in practice,
the approach is as accurate as state-of-the-art techniques,
while not relying on the availability of an initial guess.

In Section II we introduce our formulation, which slightly
differs from related work. We do not focus on deciding
whether a measurement is an “outlier” or “inlier”, because this
distinction is in general unobservable; rather, we look for the
maximal set of measurements that are internally “coherent”.

In Section III we consider the linear case. The problem
of finding the largest coherent set can be written as an `0
problem with linear constraints, thanks to the “big M” trick.
Moreover, we show that the `0 problem can be relaxed to a
linear program (LP) minimizing an `1-norm objective, which
is easily solvable with mature techniques, and scales well
with problem size.

In Section IV we show the application to planar pose graph
optimization. Here, we build on our previous work on linear
approaches to planar pose graph optimization [5, 11, 12]. We
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solve the problem in two stages: a first stage considering
only the angular constraints, and a second phase considering
a joint problem of Cartesian and angular constraints.

The experiments in Section V show that this purely linear
formulation is able to obtain results as accurate as the state-
of-the-art, while being much faster, and not depending on an
accurate initial guess.

Classical approaches to outlier rejection in estimation:
The lack of robusteness in estimators such as least squares
was early recognized [13] and prompted the development
of robustified alternativates, such as M-estimators and the
Least Trimmed Squares estimator, proposed by Rousseeuw and
Leroy [14]. More modern alternatives, such as the Penalized
Trimmed Squares estimator [15], are based on minimization
of a cost including squared errors and penalty for discarding
measurements. This approach is sensitive to the penalty for
measurement removal and requires solving a quadratic mixed-
integer problem (NP-hard). Zioutas et al. [16] combine new
penalty functions with the idea of ε-insensitive loss function
from support vector machine, to improve efficiency.

Outlier rejection in SLAM and related fields: Early work
entrusted outlier rejection to the front-end [17, 18]: mea-
surements are tested against the current belief and unlikely
observations are rejected as outliers. These techniques can
usually reject a large portion of the outliers; the problem is
that even a single outlier can compromise the estimate.

Sünderhauf and Protzel [8] propose to augment the opti-
mization problem with latent variables that are responsible
for deactivating outliers. Agarwal et al. [19] avoid the intro-
duction of slack optimization variables by acting directly on
measurement covariances. Olson and Agarwal [9] discuss the
use of a max-mixture distribution to accommodate multiple
hypotheses on the noise distribution of a measurement.
Latif et al. [10] recognize that, rather then solving a joint
problem, a good outlier rejection strategy should look for
“internally consistent” constraints. The two concepts of inter
and intra-cluster consistency guide the selection of a good
subset of constraints; however, testing each subset requires
solving a nonconvex optimization problem. Sünderhauf and
Protzel [20] present a comprehensive comparative study of
existing approaches [8–10].

Casafranca et al. [21] propose to minimize the `1-norm of
the residual errors in pose graph optimization, and show
that this formulation is less sensitive to the presence of
spurious measurements. Lee et al. [22] discuss an expectation
maximization (EM) approach and use a Cauchy function for
the choice of the weights. Indelman et al. [23] apply EM
in multi robot scenarios. We also remark that robust kernels
are implemented in state-of-the-art SLAM libraries [7]. All
these approaches use nonconvex optimization at their core.
In practice this means that the output heavily depends on the
initial guess, hence no guarantees are available.

Outlier rejection has been addressed in other fields with
problems similar to pose graph optimization, such as multiview
geometry problems. Li [24] formulates `∞ triangulation as
an LP-type problem (a generalization of linear programs)
and proposes a technique to discard κ outliers from the
measurement set. The same work also discusses limitations of
standard algorithms like RANSAC, which hold for pose graph

optimization as well. Other approaches to outlier rejection
based on nonlinear optimization or heuristics include Dalalyan
and Keriven [25] and Day et al. [26]. Shames et al. [27]
apply robust regression to fault detection on graphs.

Our approach shares some ideas with these works. For
example, the idea of not penalizing measurements with small
residual error is similar to Zioutas et al. [16]; however,
the final formulation is radically different as we do not
mix the two terms (error minimization and penalty for
measurement removal) in the cost function and we obtain an
LP problem instead of a mixed-integer problem. The idea of
using the `1-norm as a sparsifier is at the basis of the Dantzig
selector [28] and appears in related work [27]. Our approach
also shares some similarities with RRR [10]. The method
in [10] can be interpreted as a brute force approach to deal
with the combinatorial complexity of selecting a subset of
“good” measurements: measurements are clustered and each
combination is tested for consistency. We show that we can
avoid the combinatorial complexity using a (conservative) `1
relaxation, making measurement selection reliable and fast.

II. FROM “OUTLIER” REJECTION TO SELECTION OF
COHERENT MEASUREMENT SETS

The problem of outlier rejection is hard because, in general,
it is unobservable whether a measurement is an outlier or an
inlier. In this section we describe this fundamental problem,
and we present an alternative formulation that focuses on
finding subsets of measurements that are “internally coherent”.

A. The distinction between inlier and outlier is unobservable

Consider the ideal case in which we know the true
configuration x◦. Then, to test whether a measurement zij
could be generated by the nominal model (1), we could test
if it satisfies ∥∥zij − h(x◦i ,x◦j )∥∥ ≤ βij , (2)

where βij is a suitable bound, e.g. a 3σ confidence interval.
We are not specifying the nature of the norm ‖·‖ in (2) as
the discussion can be easily generalized to different choices,
the most common being the Mahalanobis distance.

If the test fails, we can conclude that the measurement is an
outlier, with a confidence given by the choice of βij . However,
if the test succeeds, we cannot conclude anything, because the
measurement could be generated by a model different from (1),
but can still satisfy the bound (2). Note that a measurement
that succeeds at the inlier test is still “dangerous”: in fact, an
estimator that includes spurious measurements will in general
lose the property of consistency (it is more confident than it
should be) and, depending on how the spurious measurements
are generated, other properties such as unbiasedness. Thus,
we cannot reliably distinguish between inliers and outliers,
even if we knew the true configuration.

B. Selection of coherent measurements

In this paper we do not use the concept of “inlier” and
“outlier”; rather, we use the concept of “coherent” measure-
ment set. A measurement subset is coherent if there exists a
configuration that explains those measurements. We know that
the set of “inliers” is a coherent subset. However, there are,



in general, other subsets of measurements that are coherent
but include some “outliers”.

Definition 1 (Coherent Measurement Set): Given the mea-
surement model (1) and an upper bound βij on the tolerance
for each edge, a measurement subset S ⊆ E is internally
coherent if there exists a configuration x = (x1, . . . ,xn)
such that

‖zij − h(xi,xj)‖ ≤ βij , for all (i, j) ∈ S. (3)

Our definition of coherent set depends on the choice of
an upper bound βij . In the UBB (Unknown-But-Bounded
noise [29]) interpretation this is the bound on the magnitude
of the noise. In a probabilistic interpretation, this is a notion
of risk of accepting an “inlier” as incoherent.

If a set is coherent, all its subsets are coherent as well.
Therefore, it makes sense to ask for the maximal subsets.
S is maximal if there does not exist another internally
coherent subset S ′ such that S ⊂ S ′. Many small subsets of
measurements are coherent but not interesting. For example,
the empty set is coherent (though not maximal), and the set
composed by one outlier is coherent as well. Therefore, we
impose the requirements that the sets are large enough to
guarantee observability of the configuration.

Definition 2 (Observable Subset): A measurement subset
S ⊂ E is observable if the configuration x is observable
given the measurements zij , (i, j) ∈ S.

Finally, we put in the formulation the possibility that
some of the measurements are trusted. For example, in pose
graph optimization, we know that the edges corresponding
to odometry measurements are not corrupted by outliers.
Therefore, we partition the edges E in the subsets of “trusted”
measurements Eo (in our case, odometric edges) and the
subset of “untrusted” measurements EL (loop closures).

Thus the most general way to pose the outlier rejection
problem is to ask for all possible subsets that are coherent,
observable, and maximal.

Problem 1 (Coherent Measurement Sets Detection):
Given:

• the measurement model (1);
• a partition of the edges E = Eo ∪ EL;
• the measurements zij for all edges (i, j) ∈ E ;
• an upper bound βij on each measurement;

find all subsets of E that satisfy the following:

1) They contain all trusted edges Eo;
2) They are coherent (Definition 1);
3) They are observable (Definition 2);
4) They are maximal with respect to ⊂.
Note that this is a very hard problem to solve, being

combinatorial in nature; however, it is the only proper way to
approach the problem without making more assumptions on
how outliers are generated. The key innovation of this paper
is to focus on the problem of selecting coherent subsets of
measurements. Rather than trying to solve an optimization
problem that jointly solves for the removal of the outliers
and for an estimate of the poses, our objective is to select a
set of coherent measurements by solving feasibility problems
rather than optimization problems.

III. COHERENT SET DETECTION IN THE LINEAR MODEL

This section describes an approach to detect coherent
measurement sets for the linear case, using convex relaxation.

The algorithm we propose builds upon a few ideas:
1) It is natural to look for the largest coherent set, as it is

the one that most likely contains the least outliers.
2) This combinatorial problem can be written as an op-

timization problem in the `0 norm, using the “big M”
trick.

3) The `0 problem can be (conservatively) relaxed to obtain
an `1 problem that can be efficiently solved.

In the end we obtain a linear program that minimizes an `1
proxy for the number of measurements to exclude.

A. Linear measurement model on graphs
Consider the case in which each node configuration xi is a

real number and the measurements are of the form h(xi, xj) =
xj − xi, thus giving the measurement model

zij = (xj − xi) + εij , for (i, j) ∈ E . (4)

All results could be extended to the vector case (xi ∈ Rd,
d > 1), but for simplicity we continue in the scalar case.

The model (4) can be written compactly using the vector
notation. We stack the m measurements zij in a vector z ∈
Rm (|E| = m), and the configuration in the vector x ∈ Rn.

We then define the incidence matrix A of the graph [30].
The incidence matrix A is an n×m matrix, with elements
taking values in the set {−1, 0,+1}. The element Aik is +1
if node i is the head of edge k, −1 if node i is the tail of edge
k, and it is 0 otherwise. Using this notation, (4) becomes

z = ATx+ ε. (5)

B. Checking coherence of a measurement set
If the measurements follow model (5), then checking

whether the set E is coherent according to Definition 1
corresponds to solving a linear feasibility program.

To see this, note that, according to Definition 1, the set E
is coherent if |zij − (xj −xi)|≤ βij for all (i, j) ∈ E and for
some choice of x. We write this in vector form by stacking
all bounds βij in a vector β, obtaining the feasibility problem

find x, subject to
∣∣z −ATx

∣∣ ≤ β. (6)

We use “≤” to denote component-wise inequality.
While solving this (linear) feasibility problem can be used

as a check on the original set of measurements E , in the
following we discuss the case in which E contains spurious
measurements and we want to detect a maximal coherent
subset of E .

C. Indicator variables and the “big M” trick
We use an indicator variable bij ∈ {0, 1} for each

measurement (i, j) ∈ EL that is not trusted. If bij is 0 then
the measurement is selected, and if bij is 1 it is excluded.

Given such indicator variables, there are multiple ways to
incorporate them in the problem. For example, Sünderhauf
and Protzel [8] use indicator variables in the cost function
to multiply the penalty for each untrusted edge. In our
formalization we do not have a cost function, as we focus on



solving a feasibility problem, but we could use the indicator
variables to deactivate the inequality, by writing the untrusted
constraints as

(1− bij) |zij − (xj − xi)| ≤ βij , for all (i, j) ∈ EL.

If bij is 1, the constraint is automatically satisfied. The
drawback of this approach is that it destroys the linearity
of the problem.

An alternative is using the “big M” trick, which is used
in the optimization literature to show the equivalence of
variable selection problems to integer programming [31]. In
this approach we add to the right-hand side of the inequality
a large constant M that multiplies the indicator variable:

|zij − (xj − xi)| ≤ βij +M bij , for all (i, j) ∈ EL. (7)

If bij is 0, then we obtain the original constraint. If bij is 1,
then the constraint is irrelevant, provided that M is large
enough. Therefore, indicator variables control the activation
of constraints without losing the linearity property.

D. The `0 formulation

In this section we introduce a first relaxation of Problem 1.
While Problem 1 requires to compute all maximal subsets that
are coherent and observable, we now only look for the largest
subset of measurements that is coherent and observable.

Just like the edges E are split in the subsets Eo (odometric
edges) and EL (loop closures), we split the measurements z
in zo and zL, and the bounds β in βo and βL. Similarly, we
split the matrix A in two submatrices: A = [Ao AL] .

For the trusted edges in Eo, the bounds are written in the
original form:

∣∣zo −AT
ox
∣∣ ≤ βo.

For the untrusted edges in EL we use the “big M” trick.
We stack the binary variables bij , (i, j) ∈ EL in a single
vector b ∈ {0, 1}`, where ` = |EL|= m−n+1 is the number
of cycles in the graph. Writing (7) in vector form gives∣∣zL −AT

Lx
∣∣ ≤ βL +M b.

With this notation we can state the following proposition.
Proposition 3 (`0 Coherent Measurement Set Detection):

A maximum-cardinality coherent and observable measurement
set S? ⊆ E can be obtained from a solution (x?, b?) of the
following optimization problem:

min
x, b

‖b‖0, b ∈ {0, 1}`, (8)

subject to
∣∣zo −AT

ox
∣∣ ≤ βo,∣∣zL −AT

Lx
∣∣ ≤ βL +M b.

by setting S? = Eo ∪ {(i, j) : b?ij = 0}.
Proof: For every b? that solves (8), x? is an admissi-

ble configuration, hence the resulting set is coherent. The
objective minimizes the number of deactivated constraints,
hence b? describes a maximum-cardinality subset. Regarding
observability, the set of trusted (odometric) edges defines a
spanning path, which guarantees observability of x [11].

E. `1 relaxation
Problem (8) is nonconvex and combinatorial in nature,

so one cannot expect to solve large problem instances in
small time. We formulate a relaxed version using an `1-norm
objective, which is known to encourage sparsity as it is a
convex proxy of the `0-norm [32].

Proposition 4 (`1 Coherent Measurement Set Detection):
A coherent and observable measurement set S? ⊆ E can
be obtained from a solution (x?, b?) of the optimization
problem

min
x, b

‖b‖1, b ∈ R`, (9)

subject to
∣∣zo −AT

ox
∣∣ ≤ βo,∣∣zL −AT

Lx
∣∣ ≤ βL +M b.

by setting S? = Eo ∪ {(i, j) : b?ij = 0}.
We omit a formal proof as it is clear that when b?ij =

0 the corresponding constraint in (9) is satisfied and the
corresponding measurement is in the coherent set. The
observability requirement proof is the same as the `0 case.

After the `1 relaxation, the elements of b? quantify how
much a given constraint needs to be enlarged to be feasible.
We expect the `1 norm to give small values for measurements
in the coherent set and large values to the outliers (Fig. 2).

The advantage is that Problem (9) is now convex; indeed,
it is a linear program (LP). LPs can be solved efficiently and
scale well to very large problems; moreover, mature state-of-
the-art solvers are available [33, 34]. While we preserved the
guarantees (observability, coherence), the drawback is that
with the `1 relaxation we cannot guarantee the maximum-
cardinality property. Extensive experimental evidence shows
that the `1-norm encourages sparsity [32], but in general we
cannot guarantee that the solution sets of (8) and (9) coincide.

F. Simultaneous decisions over dependent constraints
We further extend the formulation to account for dependent

constraints. For example, in pose graph optimization, we
want the same decision variable to activate both cartesian
and angular constraints of a given relative pose measurement.
Suppose that there are only s < ` decisions to take, and let
b ∈ Rs. We can let entry of the decision vector b control the
activation of multiple constraints by substituting the term Mb
in (9) with a term Mb, where M is a ` × s matrix, and
Mhk is nonzero if the k-th decision variable controls the h-th
constraint. If different constraints use different units (such as
meters and radians), the nonzero values of M can normalize
all of them to the same unit.

With this extension, Problem (9) becomes:

min
x, b

‖b‖1, b ∈ Rs, (10)

subject to
∣∣ẑo −BT

o x
∣∣ ≤ βo,∣∣ẑL −BT

L x
∣∣ ≤ βL +Mb.

IV. COHERENT SET DETECTION
IN PLANAR POSE GRAPH OPTIMIZATION

In this section we discuss the case of planar pose opti-
mization, where the node configuration lies in SE(2) and the



observations are the relative poses between nodes. We show
that the problem of outlier detection in this nonlinear setting
can be reduced to solving linear problems, just like it has
been shown in previous work in the outlier-free setting [5,
11, 12].

A. The planar pose graph optimization setting

We parametrize the node configuration xi ∈ SE(2) using
the node orientation θi ∈ (−π,+π] and the position pi ∈ R2:

xi = (pi, θi) .

For each edge (i, j) ∈ E we are given noisy observations
of the relative pose x−1i xj . We parametrize these relative
observations using the relative angular measurements δij ∈
(−π,+π] and the relative position measurements dij ∈ R2.

The nominal model for the relative angular measure-
ments δij ∈ (−π,+π] is

δij = 〈θj − θi + εθij〉2π, (11)

where 〈·〉2π is the 2π-modulo operator that normalizes the
angular measurements in the interval (−π,+π]. The noise
εθij is Gaussian with variance σθij . The nominal model for the
relative position measurements dij ∈ R2 is

dij = R(θi)
T(pj − pi) + εpij , (12)

where R(θi) is a planar rotation of an angle θi and εpij is
Gaussian noise with covariance P d

ij . As in [11] we assume
the noises εθij and εpij to be independent.

B. Linear approaches to planar pose graph optimization

Previous work has shown that the problem of planar
pose graph optimization, without outliers, has an efficient
approximated solution using linear estimation [5, 11] and has
global solutions using mixed-integer programming [12].

We summarize the basic ideas that we re-use in this paper:
1) The estimation problem can be decoupled in angular and

translational components because estimating the orientations
θ given only angular constraints gives a very good estimate;
in other words, the posterior p(θ|zθ) is already peaked.

2) If the orientations θ are known, estimating translations
is a linear problem, as can be seen from (12).

3) The problem of estimating the orientations alone is
“almost” linear. The observation model when written in the
form (11) is nonlinear because of 〈·〉2π; however, if we
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Fig. 2. Example of solution b? of the `1 problem. Measurements with index
on the right of the blue vertical line are outliers. (a) INTEL with κ = 1000
outliers and with weight matrix M as in (20); (b) M3500 with κ = 1000
outliers and weight matrix M as in (21).

introduce extra integer variables kij ∈ Z in the formalization,
it can be written as a purely linear observation model:

δij = (θj − θi) + 2π kij + εij . (13)

4) If the angular noise is low, then the values of kij can be
computed by setting them to zero for edges belonging to the
odometric spanning tree, and by rounding errors accumulated
along cycles to the closest multiple of 2π for loop closures.
For a loop closure edge u = (i, j), consider the fundamental
circuit composed by that edge and a subset of edges from
the odometric spanning tree. Define a vector cu ∈ R`, such
that cuv is 0, if the v-th edge does not appear in the fundamental
circuit associated to edge u; and it is 1 (respectively, −1) if
it is traversed forward (respectively, backward) in the circuit.
The approximation for ku is

k̂u =

{
0, if u ∈ Eo,
round

(
1
2π

∑
v c

u
v δv

)
, if u ∈ EL. (14)

The rounding returns the correct value of kij when the
orientation noise is small [11], which is the case for most
SLAM datasets, but it fails when the noise is large [12].

5) In the outlier-free case, given the integers kij , an estimate
for θ can be computed via linear least squares.

C. Coherent set detection in planar pose optimization
In the following we propose an approach to detect a

coherent measurement set in a planar optimization problem.
The method works in two stages. In the first stage

(Section IV-D) we consider only the relative rotation measure-
ments. We use the regularization terms given in (14) to obtain
a purely linear problem for the orientations θ. Therefore, we
can directly apply the result in Proposition 4 that returns a
set of observable and coherent measurements. This set can
be then used to estimate the nodes orientations in SO(2).

In the second stage (Section IV-E), we use the angular
estimates from the first stage to reformulate the relative pose
measurements using a linear model. Then we use (10) to
take simultaneous decisions over angular and translational
components of a relative pose measurement. The output
of the second stage is a pair (x?, b?). The vector b?

represents the (relaxed) selection of the coherent measurement
set. The configuration x? is merely a by-product in our
formulation, and can be disregarded, used as pose estimate,
or used to bootstrap nonlinear estimation using the coherent
measurement set.

D. First Stage: selection of coherent set of relative rotations
We use (14) to obtain the regularization terms kij . Given

these regularization factors we rewrite the observation
model (11) as in (13). Model (13) is linear, therefore we can
use the approach presented in Section III for the detection of
a coherent measurement set.

Call ẑθ the vector obtained by stacking all the regularized
orientation measurements, i.e., δij − 2πkij . Using ẑθ we can
write the (nominal) measurement model (13) as

ẑθ = A
Tθ + εθ, (15)

which is identical to the linear model assumed in (5). There-
fore, it is straightforward to use Proposition 4 to compute an
observable and coherent set of angular measurements.



We can then use this set of measurements to compute
an estimate of the nodes’ orientations: using standard linear
estimation over the coherent set we obtain an estimate of the
rotations θ̂ and the corresponding covariance Pθ.

1) Impact of Outliers on Regularization: Note that so
far we are somehow assuming a correct computation of the
regularization terms kij . Since the integers kij are computed
from the measurements, and those are possibly outliers, this
point deserves a remark. According to (14), the regularization
terms for the odometric edges will be all zeros. This is
a first advantage, as the choice of kij cannot influence
the odometric edges (assumed to be inliers), making them
untrusted. Moreover, the regularization term for the loop
closure (i, j) only depends on the loop closure itself and on
a set of odometric edges; this implies that if the loop closure
is not an outlier, the computation of the regularization term
will be correct. If the loop closure is an outlier, an incorrect
computation of the regularization term will only offset the
measurement of a multiple of 2π, while our approach will
be in charge of deciding on his coherence with respect to the
other measurements.

E. Second Stage: Selection of Coherent Set of Relative Poses
In the second stage we assume to have an estimate of the

orientations θ̂ and their covariance matrix Pθ.
1) Linear model for translations: Let us rewrite the

nominal model (12) by using the approximation θi = θ̂i
as to obtain

dij = R(θ̂i)
T(pj − pi) + εpij . (16)

Multiplying both sides by R(θ̂i) we obtain

R(θ̂i)dij = (pj − pi) +R(θ̂i) ε
p
ij . (17)

The noise ε̂pij
.
= R(θ̂i) ε

p
ij is exactly Gaussian only for

a fixed θi. Nevertheless, we can obtain a conservative
approximation as a Gaussian variable by computing first and
second-order moments, using the uncertainty in θ̂, described
by the covariance Pθ, and the original distribution of εpij .

Rewrite the left hand-side as d̂ij
.
= R(θ̂i)dij . We

have obtained a purely linear measurement model for the
translations:

d̂ij = (pj − pi) + ε̂pij . (18)

2) Joint measurement model: We can now combine the
linear models (5) and (18) to define the joint (nominal) linear
model involving both orientation and position measurements.
To do so we need to define a configuration x ∈ R3n that
contains both angular and positional variables, a vector of
observations ẑ ∈ R3m that contains the relative angular and
translation measurements, and a joint noise vector ε̂ that
contains the noise terms. Finally, we define a matrix B with
entries in {−1, 0,+1} derived from the incidence matrix A
and write the joint measurement model as

ẑ = Bx+ ε̂. (19)

As before, we divide the measurements in trusted and
untrusted, and distinguish quantities related to odometric edges
(ẑo, Bo, βo) from those related to loop closures (ẑL, BL,
βL).

3) Joint coherent measurement detection: We have ob-
tained a joint linear measurement model for both translations
and rotations. Note, however, that the measurements are
now dependent, because each edge corresponds to three
measurements (one angular, two cartesian). Hence we use
the extension described in Section III-F to let one decision
variable control three constraints. Thus we write (10) with a
3`× ` matrix M , as we have 3` constraints for ` decision
variables. The three rows in M corresponding to the k-th
relative pose measurement are zero everywhere, except for
the k-th column.

There are many possibilities to choose the nonzero entries
in M , as they act similarly to weights in the `1 objective.
Candes et al. [32] have shown that varying the weights
enhances the effectiveness of the `1-norm to enforce sparsity.

In our formulation we need to weight the elements of each
block to normalize Cartesian and angular measurements; but
we can choose the relative importance for each constraint.

The naive choice is to simply choose the elements to be
be proportional to the standard deviations. The only nonzero
elements in M are those corresponding to entries (3k+a, k)
(using zero-based indices), and take the value

M3k+a,k = σ̂3k+a. (20)

Here, k ranges from 0 to `− 1, and a ranges in {0, 1, 2}.
A smarter strategy exploits graph structure. As each

untrusted measurement corresponds to a loop closure we
use the absolute value of the error accumulated along the
corresponding loop in the corresponding row ofM . Using the
notation for the fundamental circuits introduced in Section IV-
B the elements of M can be written as

M3k+a,k =
∣∣∑

k′ c
k
k′ ẑ3k′+a

∣∣ . (21)

Note that in the noiseless case, measurements sum to zero
along circuits [11]. Intuitively, in the noisy case, (21) promotes
nonzero entries in b? for the loops that accumulate large errors.
Examples of b? for the two choices of M are shown in Fig. 2

F. Summary of guarantees and approximations
The application of Proposition 4 to the linear model (10),

allows to draw the following conclusion: the zero entries
of the optimal solution b?, computed from (9), describe a
coherent set of relative pose measurements. Because of the `1
relaxation we cannot conclude that the set is maximal and we
discuss in the experimental section the practical implications
of this fact.

We remark two underlying assumptions that ensure validity
of (10). First, the estimator θ̂ is Normally distributed, with
covariance Pθ; this assumption can be challenged by the
fact that we may have outliers in the coherent set computed
in the first stage: this suggests to set strict bounds for the
first stage, so to select only measurements generated by the
nominal model. Second, we are assuming that the noise on the
relative measurements (17) can be approximated as Gaussian;
this assumption is mild, as in our approach the covariances
only guide the selection of the bounds β. Experiments show
that when we choose β close to nominal bounds (3σ), we
may obtain “open-minded” results, like in Fig. 1b. When we
choose β to be more conservative (e.g., 2σ), we obtain results



qualitatively similar to methods in the literature, in the sense
that the “outliers” are rejected, and we can robustly estimate
trajectories close to the optimal outlier-free estimate.

Finally, the choice of β is complicated by the fact that the
covariance information in datasets is typically unreliable.

V. EXPERIMENTS ON ROBUST POSE GRAPH
OPTIMIZATION

1) Datasets: The Bicocca datasets (n = 8358, m varies be-
tween 8380 and 8804 depending on the problem instance) [35]
contains 41 problem instances with different loop closing
edges due to different thresholds for detection of place
similarity [10]. Outliers are due to sensory aliasing (Fig. 1a).
Ground truth is provided by differential GPS [36]. The INTEL
dataset (n = 943, m = 1837) is a real dataset without outliers.
The M3500 dataset (n = 3500, m = 5598) is a synthetic
dataset without outliers. For INTEL and M3500 we used the
version published on the Vertigo website [37] and we take as
ground truth the optimized trajectory of the outlier-free data.

2) Outlier generation model: We use the outliers genera-
tion models described by Sünderhauf & Protzel [8] and their
software Vertigo [37] to add outliers to the datasets INTEL and
M3500. The four models we used are: A (random), B (local),
C (randomly grouped, in groups of 20), D (locally grouped).
We vary the number of outliers κ as 20, 100, 500, 1000.

3) Implementation notes: Our approach is implemented
in Matlab and uses CVX-MOSEK [34, 38] as parser/solver
for the `1 problems. After solving the `1 problem we select
the constraints with b?ij = 0 to create a new outlier-free
dataset, which is then optimized using g2o. The choice of
the back-end once outliers are rejected is not critical, and
we use g2o for having a direct comparison with the results
in [20]. Experiments are run on a Desktop computer with
Intel i7 processor (3.4Ghz).

For Bicocca, which has n = 8358 nodes, we neglect the
uncertainty Pθ in the orientation estimate from the first stage
to avoid inverting a large matrix; in that dataset this is a
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Fig. 3. INTEL dataset: (a) Estimated trajectory for an instance with κ = 1000
randomly grouped outliers; (b) Mean ATE for {20, 100, 500, 1000} injected
outliers and the four generative models (Section V-2). (c) Bar plot of ATE
for κ = 1000. (e) Average computation time in seconds.

good approximation because angular measurements are very
accurate.

4) Performance measures: We use the performance mea-
sures used by [20]. The ATE (Absolute Trajectory Error)
performance measure is the mean of the norm of the Cartesian
errors with respect to the ground truth. For the cases in which
we have a ground truth for the set of outliers (INTEL, M3500)
we compute the ATE with respect to the optimal trajectory
computed from the outlier-free data.

5) Results: For the INTEL dataset we show the results using
1σ bounds in the first stage, 2σ bounds in the second (see
comments in Section IV-F), and the simple choice (20) for
M . The ATE is generally low for all outlier generation models,
with the maximum equal to 0.25 m (Fig. 3b). In general, we
obtain better results for models B (local) and D (locally
grouped). For models A (random) and C (randomly grouped)
the method tends to discard many inliers; this is a lack of
precision rather than catastrophic failure. The ATE appears to
have linear relation with the number of outliers, but it increases
more sharply for models A and C (Fig. 3c). Computation time
appears to increase linearly with the number of outliers and
is between 0.5 to 1.5 seconds for 1000 outliers (Fig. 3d).

For the Bicocca dataset we show the results using 1σ and
2σ bounds in the two stages. The ATE averaged over the 41
runs was 1.65m, while the maximum recorded value was 3m.
These are practically the same results obtained by RRR [35]
which has the best results over other state-of-the-art techniques
as reported by Sünderhauf & Protzel ([20], Table III). Our
method is faster than RRR on comparable machines (1.2 s
vs 2.29 s).

The M3500 dataset is more challenging, as it is less
constrained and thus outliers are more likely to be coher-
ent (Fig. 1b). For this dataset we observed that the declared
covariances, in the version published on the Vertigo web-
site [37], are considerably larger than what can be identified
from the data and the ground truth (actual standard deviation
are 10 times smaller than the declared ones). Thus we use
0.1σ for the first stage, and 0.2σ for the second stage using
the declared σ; this corresponds to use 1σ and 2σ of the
actual covariances.

If we use the naive choice of M (20), we notice the same
trends observed for the INTEL dataset, where models B and D
are handled much better than A and C. However, the ATE is
much larger for this dataset (Fig. 4b) and it is unacceptable.

When we use the weighted M (21), we notice a dramatic
improvement in the ATE (Fig. 4c). (For the INTEL dataset
there is not much difference between using the two strategies
because it is a well constrained dataset.) Intuitively, the second
strategy makes easier to disable loop closures that accumulate
large errors along the corresponding fundamental cycle; from
the optimization perspective, eq. (21) is a good rescaling of
the entries of b, making the `1 relaxation a better proxy of the
`0-norm. We notice that the ATE is absolutely insensitive to the
number of outliers for cases B and D (Fig. 4d). Optimization
time is in the range 2 to 6 s for this dataset (Fig. 4e).

VI. CONCLUSION

If one does not assume a generative model for faulty
measurements, outliers are not observable. As a consequence,
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Fig. 4. M3500 dataset: (a) Estimated trajectory for an instance with κ = 1000 locally grouped outliers; (b) Bar plot of ATE for different generative models
of outliers (κ = 1000), using the naive choice of M (20); (c) Bar plot of ATE for different generative models of outliers (κ = 1000), using M as in (21);
(d) Mean ATE for {20, 100, 500, 1000} injected outliers, using (21), and for generative model A (red), B (green), C (blue), D (magenta); (e) Average
optimization time for {20, 100, 500, 1000} injected outliers, using (21), and for generative model A (red), B (green), C (blue), D (magenta).

in this work, rather than looking for inliers, we define and
provide practical strategies to identify a set of “internally
coherent” measurements. In the linear case, we propose an
`0-norm formulation that returns the largest set of coherent
measurements. As `0-norm minimization is hard, we consider
a convex relaxation of the problem. Our final formulation
is a linear program in which an `1-norm objective function
encourages large (but non necessarily maximal) sets of inliers.
We apply our formulation to planar pose graph optimization
and we show that it allows robust and efficient solution of
large problem instances with many outliers. We leave as
future work a thorough investigation of the impact of the
choice of weights on the `1-norm relaxation.
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