
Clustering Social Event Images using Kernel Canonical Correlation Analysis

Unaiza Ahsan
uahsan3@gatech.edu

Irfan Essa
irfan@cc.gatech.edu

Georgia Institute of Technology, Atlanta, GA, USA

Abstract

Sharing user experiences in form of photographs, tweets,
text, audio and/or video has become commonplace in so-
cial networking websites. Browsing through large collec-
tions of social multimedia remains a cumbersome task. It
requires a user to initiate textual search query and manu-
ally go through a list of resulting images to find relevant in-
formation. We propose an automatic clustering algorithm,
which, given a large collection of images, groups them into
clusters of different events using the image features and
related metadata. We formulate this problem as a ker-
nel canonical correlation clustering problem in which data
samples from different modalities or ‘views’ are projected
to a space where correlations between the samples’ projec-
tions are maximized. Our approach enables us to learn a
semantic representation of potentially uncorrelated feature
sets and this representation is clustered to give unique so-
cial events. Furthermore, we leverage the rich information
associated with each uploaded image (such as usernames,
dates/timestamps, etc.) and empirically determine which
combination of feature sets yields the best clustering score
for a dataset of 100,000 images.

1. Introduction

The recent growth of social media/networking sites such
as Facebook, YouTube, Flickr and Instagram have led to
new ways in which people share their experiences. Events
ranging from social or political occurrences to natural disas-
ters result in a large amount of multimedia being uploaded
to social media platforms. We seek to develop an automatic
approach to group images from different sources and users,
who are at the same event. We leverage image features and
available metadata to determine clusters of unqiue events.
A unique event cluster is one that comprises all the images
captured at that particular event. We cast this problem as
a multi-view clustering problem, where each ‘view’ corre-
sponds to each source of information such as titles of im-
ages and descriptions.

Clustering in high dimensions is a challenging prob-
lem due to the ‘curse of dimensionality’ and has resulted
in proposals for projecting data samples onto fewer di-
mensions (dimensionality reduction) and clustering in the
new reduced space. Principal Component Analysis (PCA)
[10] addresses this by projecting data points to a lower-
dimensional space where the points’ variance is maximized.
Random projection addresses this by projecting data sam-
ples to a lower dimensional space using a random matrix
with unit length columns [4]. Canonical Correlation Anal-
ysis (CCA) [8] addresses this by projecting data samples
to a lower-dimensional space such that the projected data
samples’ correlations are maximized. The disadvantage of
using standard dimensionality reduction methods like PCA
or random projections is that they don’t take into account
multiple modalities or ‘views’ of the data; they only pre-
serve the pairwise distances/variances between the samples.
We propose the use of kernel CCA [8] to reduce the dimen-
sionality of social multimedia and learn a reduced semantic
representation of social events. This learned space can then
be clustered to produce unique social events.

CCA computes a set of canonical variates which are
the orthogonal linear combinations of the features from
two sources of information. The computed canonical vari-
ates (lower dimensional features) are representative of ‘two
views’ since the computation is based on mutual correla-
tions between data samples in the views. Thus the re-
duced feature space represents the underlying semantics of
the data [8]. Any standard clustering algorithm such as k-
means [12] can be applied in this space to determine groups
of similar data points. Our approach to address the event
clustering problem in social multimedia uses each image’s
visual content, user-provided data (such as titles, descrip-
tions, usernames etc.), and automatically generated content
(metadata from the camera) with social multimedia in order
to group unique events.

Real world datasets are highly non-linear. Linearly pro-
jecting feature sets of social multimedia to a lower dimen-
sional space and then clustering in that space do not yield
meaningful results. Thus, we use kernel CCA [8] in order to
map the feature sets to a high dimensional space, and then
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Figure 1. Overview of our proposed approach to aggregate unique event clusters

apply linear CCA in that space to obtain the lower dimen-
sional feature space.

Specifically, we propose using kernel CCA to formulate
social event aggregation as a multi-view clustering problem
where we consider five different ‘views’ of the data: visual
content, dates uploaded, usernames of people who shared
the image, tags and titles/descriptions associated with an
image. We perform kernel CCA on two views at a time
and present an empirical comparison between different fea-
ture combinations. We do not rely on pairwise similarity
metrics to group different event images because they do not
scale well. To the best of our knowledge, this technique
has not been applied in the social event clustering context
to group unique event images.

Our main contributions are:

• Learning a semantic representation of social multi-
media content via kernel CCA and clustering in the
learned space.

• Determining the most discriminative feature represen-
tations which combine to give the best clustering score.

In the next section we describe the related work, fol-
lowed by a brief overview of CCA and kernel CCA. We
proceed to describe our approach and experiments and con-
clude with a discussion of our results.

2. Related Work
CCA was first proposed by [9], and then Hardoon et al.

formulated canonical correlation analysis to solve an image
retrieval problem and extended it to use kernels [8]. Multi-
view clustering [3] approaches have also been explored for
data which can be divided into two (or more) attributes or
‘views’.

Event clustering on social web has been addressed in
a number of ways on many different platforms using text,
such as Twitter and blogging platforms. Social event clus-
tering using images and associated metadata has also been

approached using different techniques. Becker et al. [2]
learn document similarity metrics for different attributes of
Flickr data to cluster social events. We also pose the so-
cial event detection problem as a clustering one, but do not
attempt to learn similarity metrics for all attributes.

Kernel CCA with a clustering algorithm has been used in
very few domains. Chaudhuri et al. [6] use CCA to cluster
data samples generated from a mixture of Gaussian distri-
butions and apply this to clustering Wikipedia articles and
audio-visual speaker data. Trivedi et al. [17] use the same
technique to cluster similar webpages by exploiting textual
content and tags. Our work is different from these applica-
tions of kernel CCA-based clustering as we tackle a differ-
ent problem; that of aggregating social multimedia to iden-
tify unique events, and we exploit a rich set of information
along with images and text.

Blaschko and Lampert [5] have used kernel CCA with
spectral clustering to perform image categorization using
images with captions. They cluster images belonging to 9
categories, so the number of clusters is already known. In
this paper, we have a completely unsupervised kernel CCA-
based clustering approach. Furthermore, we address a prob-
lem where the number of clusters can potentially reach tens
of thousands.

3. Kernel Canonical Correlation Analysis

We briefly present the theoretical foundations of kernel
CCA and also introduce our notation. For more details,
please see [8].

3.1. CCA

Canonical correlation analysis solves an eigenvector
problem to determine the lower dimensional subspace on
which the multiview data is projected [7]. Let M =
{m1,m2, ...,mn} and T = {t1, t2, ..., tn} be the feature
matrices corresponding to data from source 1 (say, visual
data) and data from source 2 (say, textual data) where n is
the number of event images. CCA determines two vectors
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Figure 2. Sample event images from Social Event Detection
dataset [15]

vm and vt with the constraint that the projected matrices’
correlations with the vectors i.e. vm

>M and vt
>T are mu-

tually maximized. Thus from [8],

ρ = argmax
vm,vt

(
vm
>Cmtvt√

vm
>Cmmvmvt

>Cttvt

)
(1)

such that the following constraints are satisfied:

vm
>Cmmvm = 1, and vt

>Cttvt = 1

Here, Cmm and Ctt denote the within-sets covariance ma-
trices of M and T respectively and Cmt refers to the
between-set covariance matrix of M and T . Hence, the
maximum canonical correlation is the maximum of ρ with
respect to the two sets of directions vm and vt. Forming
the Lagrangian and computing the derivatives of it w.r.t vm

and vt lead to the solution:

vt =
C−1tt Ctmvm

λ
(2)

Here, we assume Ctt to be invertible. The solution for
vm is obtained by solving the generalized eigenproblem of
the form Am = λBm,

CmtC
−1
tt Ctmvm = λ2Cmmvm (3)

Thus, by solving Eq. 3 and substituting the values of vm

in Eq. 2 we can obtain the sequence of vt and obtain the
two canonical correlation vectors vm and vt. These vec-
tors correspond to the directions in which the image feature
matrix M and text feature matrix T are projected to, such
that their mutual correlations in the projected space is max-
imized.

3.2. Kernel CCA

Since linear CCA does not address the nonlinearities
present in real world datasets, kernel CCA is used to first
project the data onto a potentially infinite dimensional space
and then linear CCA is applied in that space.

Now, vm and vt can be written as the projections onto
the new lower dimensional space with the directions being
α and β. Hence vm =M>α and vt = T>β.

Substituting the above expressions into Eq. 1 gives the
following equation:

Algorithm 1 - Computing cluster IDs of event images
Input: Matrices M and T of size n ×D1 and n ×D2 re-

spectively,
Precision parameter η,
Gaussian kernel parameter σ
Number of clusters k and
Number of canonical variates d

Output: Cluster IDs for each event image
1: Project M and T to higher dimensional space (n × n)

using Gaussian kernel
2: Perform kernel CCA on the two matrices to obtain the

canonical variates α’s and β’s.
3: Take d canonical variates of both views and concatenate

them.
4: Run k-means on the resulting matrix varying k, the

number of clusters.
5: Choose the parameters k, η, σ and d with the best clus-

tering score.

ρ = max
α,β

(
α>MM>TT>β√

α>MM>MM>α.β>TT>TT>β

)
(4)

If Km =MM> and Kt = TT> are the kernel matrices
corresponding to the two views, we can substitute their ex-
pression into Eq. 4, formulate it as an optimization problem
and get the final form as:

(Km + κI)
−1
Kt (Kt + κI)

−1
Kmα = λ2α (5)

where κ is the regularization parameter.
To address computational issues with real world datasets,

[8] decompose the kernel matrices using Partial Gram-
Schmidt Orthogonalization (PGSO) [1] or equivalently, In-
complete Cholesky Decomposition (ICD). We tested both
methods (PGSO and ICD) in early experiments. But in fi-
nal experiments we use ICD only due to the computational
complexities we faced using PGSO. Our multiview cluster-
ing algorithm is described in Algorithm 1

4. Social Event Clustering via kernel CCA
We aim to aggregate unique social events into event clus-

ters. In our approach, the algorithm has to differentiate be-
tween similar event categories (such as concerts) happening
at different times and places. We use the theoretical frame-
work from kernel CCA and cluster in the resulting space.

4.1. Computing Image Features

Several image feature descriptors can be computed for
each image in order to have a representation of image con-
tent and this feature descriptor matrix is one of the ‘views’
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of the social event data. We obtain image feature descrip-
tors via Scale Invariant Feature Transform (SIFT) descrip-
tors [11]. One can also experiment with color- or texture-
based features or holistic features such as GIST (to detect
landmarks in order to identify location-based events as in
[14].

4.2. Computing Textual Features

A simple way to represent text data is term frequencies.
Text data associated with an image includes titles, descrip-
tions, usernames of people who uploaded the image, dates
and timestamps (if treated as text strings). If commonly oc-
curing words are to be weighted less than unique words, one
can also use term frequency inverse document frequency
(TFIDF).

4.3. Kernel CCA and Clustering

The outputs of the feature building steps are two matrices
which are input to the kernel CCA algorithm (See Figure 1)
which outputs two sets of canonical variates. We do a pa-
rameter search and select the top d canonical variates for
each feature combination.

4.4. Evaluation Metric

We evaluate the clustering algorithm’s performance via
normalized mutual information (NMI) [16].

4.4.1 Normalized Mutual Information (NMI)

Mutual information refers to the shared information be-
tween two random variables X and Y . If X and Y are
independent, their mutual information will be zero.

Given two random variables X and Y , NMI is given by
[16]:

NMI =
I(X,Y )

H(X)H(Y )

where I(X,Y ) is the mutual information between X and
Y , H(X) is the entropy of X and H(Y ) is the entropy of
Y . Concretely, the NMI formula can be re-written as [16]:

NMI =

∑m
i=1

∑m
j=1mij log

(
mmij

mi(m̂)j

)
√(∑m

i=1milog
(
mi

m

)) (∑m
j=1 (m̂)j log

(
(m̂)j
m

))
(6)

where mi is the number of elements in ith cluster, (m̂)j is
the number of elements in jth ground truth cluster and mij

is the number of elements that are in both ith cluster as well
as jth ground truth cluster.

We choose to use this metric because evaluating cluster-
ing algorithms based on information-theoretic methods is
more reliable than methods based on counting pairs [18].

5. Experiments
5.1. Dataset

We test our approach on the Social Event Detection
dataset provided by MediaEval2013 [15] and consists of
around 300,000 publicly shared Flickr images uploaded be-
tween Janurary 2006 and December 2012. Each image rep-
resents a snapshot of an event which the user attended and
then uploaded on Flickr (see Figure 2).

Each image has the following metadata: username, date
taken/uploaded, title, description, tags and geotags (pro-
vided for only a quarter of the dataset). We do not use geo-
tags in our experiments.

The ground truth of each image is a unique label which
MediaEval2013 has provided. The dataset does not contain
images that are associated with multiple social events.

5.2. Experimental setup

In experimenting with this dataset, our goal is to apply a
multiview clustering technique which would yield compet-
itive results in terms of cluster quality. Hence, we choose
a subset of this dataset (100,000 images and their associ-
ated metadata) to test our clustering algorithm. To compute
image features, we use the standard Bag of Words (BoW)
model and build a visual vocabulary by selecting ~30,000
images as training images for computing the SIFT feature
vector. Hence, we obtain each image’s feature vector and
compute the matrix of image features vectors to be input to
the kernel CCA algorithm. We compute standard TFIDF
vectors for each line of text associated with an image. The
text is preprocessed by removing punctuation marks, stop
words and HTML tags. We also take the dates and time
stamps of the images and concatenate them as strings and
use term frequency as features. Thus, we test the cluster-
ing performance for the following combinations: usernames
and tags, text and tags, dates and text, dates and usernames,
tags and dates, text and usernames, visual and text, visual
and tags, visual and usernames, and visual and dates

The input to the algorithm are two matrices (for two
views) and the output is two sets of canonical variates
(vectors) to which the two matrices have been projected.
We concatenate the top d directions obtained from the two
views and perform standard k-means clustering on it to pro-
duce the final clustering result (See Algorithm 1).

5.3. Parameter Selection

We use the Gaussian kernel function in order to implic-
itly map the data samples to a high dimensional space, and
perform CCA in that space. Besides that, we have a preci-
sion parameter which we set to 10−6 according to the sug-
gestion of [8]. Furthermore, we need to choose number of
clusters k and number of canonical variates d. In our exper-
imental setup, we run a heuristic parameter search to select
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Table 1. Clustering results using Gaussian kernel with best param-
eters for each feature combination

Feature types k σ d NMI
usernames+tags 5000 0.6 22 0.9166
text+tags 5000 2.1 12 0.8176
dates+text 3800 3.6 22 0.6110
dates+usernames 5000 3.6 22 0.7480
tags+dates 5000 3.6 22 0.6470
text+usernames 5000 4.1 12 0.8913
visual+text 5000 2.0 12 0.6230
visual+tags 5000 2.0 22 0.8117
visual+usernames 2000 1.5 02 0.8933
visual+dates 3500 0.5 22 0.5000

the most optimal parameters which gives the best clustering
performance.

The Gaussian kernel, also known as Radial Basis Func-
tion (RBF) kernel is a non-linear mapping, parameterized
by σ and given by:

K(X,Y) = exp

(
−‖X− Y‖22

2σ2

)
where X and Y are two sets of data samples.

The parameters we need to choose with Gaussian kernel
based CCA clustering are: Gaussian parameter sigma (σ),
number of clusters (k) and number of canonical variates (d).
The best parameters for each combination of features are
given in Table 1.

6. Results and Discussion
Table 1 shows the clustering performance (in terms of

NMI scores) for different combinations of features com-
puted on this dataset using Gaussian kernel. The results give
us important insights about this problem and the proposed
solution.

Choice of features We combine features from several dif-
ferent sources to leverage as much available information as
possible. Also, we aim to empirically discover the most dis-
criminative features in the social event data that yield a good
clustering score. Table 1 is divided into two parts. The up-
per part shows results based on textual features, and the bot-
tom part shows results based on the combination of visual
and textual features. We note that textual feature combina-
tions yield the best NMI score of 0.92. Visual features com-
bined with text-based features give us the best NMI score of
0.89. There are several reasons for this performance.

Images shared on Flickr may have very different visual
content, yet, may be taken at the same event, thus belonging
to the same cluster (see Figure 3). Hence, local descriptors
such as SIFT keypoints may be very different for the same

event. This makes it challenging to decide which visual de-
scriptor can work sufficiently well to discriminate between a
majority of clusters. We also experiment with GIST [13] de-
scriptors on this dataset, but do not get useful results, hence
they are not included. Our intuition was that SIFT, being
robust to changes in illumination, rotation and scale of the
image will help in identifying unique event images, espe-
cially if images are captured of a stage where various artists
perform their act and this scene is captured from different
angles. However, social events are not restricted to perfor-
mances on stage. Hence using SIFT or any visual descriptor
that depends on the localized image content is not going to
be highly useful for identifying unique events. Textual fea-
tures are necessary for good clustering performance.

Having said that, in our experiments, combining SIFT
with textual content (usernames in this dataset) associated
with each event image yield the second highest NMI score
when using Gaussian kernel compared to all other combina-
tions. (See Table 1). Usernames in this dataset proved to be
the most discriminative feature even though multiple users
can upload images of the same event and vice versa. We
believe that there is a certain level of certainty that a group
of images are captured at the same event if the usernames
associated with this group of images is the same. Dates and
time stamps with the images do not yield good scores since
this may not be a reliable source of information.

Titles/descriptions with the images and tags are also dis-
criminative sources of information in the social event clus-
tering task. In our experiments, tags are a better feature
choice than text. This is not surprising as users find it easy
to upload images, and add a few words as tags, rather than
write a whole description and long titles with event images.
Hence we see a higher NMI score with tags as one of two
features as opposed to text.

Figure 3. Images belonging to the same cluster (social event)

Choice of kernel Choosing the kernel function on a par-
ticular dataset determines the outcome of a learning prob-
lem. In this paper, we used Gaussian kernel because using a
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kernel which intuitively represents a similarity between the
kernelized features is highly effective in a clustering task. It
is simple to experiment with the Gaussian kernel since it has
one parameter to tune. We determined σ through a search
over possible choices of values.

Number of clusters ‘k’ Our approach is a completely un-
supervised one and hence, choosing the number of clusters
as a parameter is not a trivial task. We run a search through
a range of possible values of k starting from 1000 for each
feature combination. The optimal value for most of our
experiments turns out to be roughly equivalent to the true
total number of clusters. Our experimentally determined
value for k is 5000 (for most feature combinations), and the
true number of clusters (social events) in our data is around
4700.

Number of canonical variates ‘d’ Kernel CCA maps the
original data points first to an infinite dimensional space and
then to a reduced lower dimensional space. The reduced
space is a set of vectors or directions to which the original
data is mapped. The number of these vectors correspond
to d. To determine the optimal d, we again run a search
over possible values and experimentally determine that for
obtaining optimal clustering scores, the top 12-22 canonical
variates are sufficient to yield the social event clusters.

7. Conclusion and Future Work
In this paper, we propose the technique of kernel CCA to

partition a set of event images into unique social events, via
two sets of features or ‘views’ of the data. We show results
for various combinations of features and conclude that the
usernames, tags and visual features combined with the tex-
tual, are discriminative feature combinations for obtaining
unique social event clusters.

We also empirically determine that visual features alone
of an image are not discriminative enough to differentiate
between two different social events (especially, if the two
events belong to the same category such as concerts).

We aim to take this work further and scale it to millions
of images for a potential improvement in clustering results.
For scaling this alogrithm, we will experiment with incre-
mental clustering algorithms so that this technique can be
applied to social streaming multimedia.
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ing tag and word correlations for improved webpage clus-
tering. In Proceedings of the 2nd international workshop
on Search and mining user-generated contents, pages 3–12.
ACM, 2010.

[18] S. Wagner and D. Wagner. Comparing clusterings: an
overview. Universität Karlsruhe, Fakultät für Informatik,
2007.

805


