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Preface 
 
This technical report contains the 14 accepted papers presented at the Workshop on Goal Reasoning, 
which was held as part of the 2015 Conference on Advances in Cognitive Systems (ACS-15) in Atlanta, 
Georgia on 28 May 2015. This is the fourth in a series of workshops related to this topic, the first of 
which was the AAAI-10 Workshop on Goal-Directed Autonomy; the second was the Self-Motivated 
Agents (SeMoA) Workshop, held at Lehigh University in November 2012; and the third was the Goal 
Reasoning Workshop at ACS-13 in Baltimore, Maryland in December 2013.   

Our objective for holding this meeting was to encourage researchers to share information on the study, 
development, integration, evaluation, and application of techniques related to goal reasoning (GR), 
which concerns the ability of an intelligent agent to proactively reason about, formulate, select, and 
manage its own goals/objectives. GR differs from frameworks in which agents are told what goals to 
achieve, and possibly how goals can be decomposed into subgoals, but not how to dynamically and 
autonomously decide what goals they should pursue. This constraint can be limiting for agents that solve 
tasks in complex environments when it is not feasible to manually engineer/encode complete knowledge 
of what goal(s) should be pursued for every conceivable state. Yet, in such environments, states can be 
reached in which actions can fail, opportunities can arise, and events can otherwise take place that 
strongly motivate changing the goal(s) that the agent is currently trying to achieve. 

This topic is not new; researchers in several areas have studied GR (e.g., in the context of cognitive 
architectures, intelligent agents, automated planning, game AI, and robotics). However, it has 
infrequently been the focus of intensive study, and (to my knowledge) no other series of meetings has 
focused specifically on GR. As shown in these papers, providing an agent with the ability to reason 
about its goals (independently of whether an initial set is provided) can increase performance measures 
for some tasks. Recent advances in hardware and software platforms (involving the availability of 
interesting/complex simulators or databases) have increasingly permitted the application of intelligent 
agents to tasks involving partially observable and dynamically-updated states (e.g., due to unpredictable 
exogenous events), stochastic actions, multiple agents, and other complexities. Thus, this is an 
appropriate time to foster dialogue among researchers with interests in GR.  

GR research is still in its early stages; no deployed application of it yet exists (e.g., for controlling 
autonomous unmanned vehicles or in a deployed decision aid). However, it appears to have a bright 
future. For example, leaders in the automated planning community argue that GR has a prominent role 
among intelligent agents that act on their own plans, and it is gathering increasing attention from 
roboticists and cognitive systems researchers. 

The papers in this workshop relate to, among other topics, initial applications, formal models, meta-
reasoning, narrative intelligence, emotion and personality, rebel agents, and self-motivated systems. The 
authors discuss a wide range of issues pertaining to GR, including representations and reasoning 
methods for dynamically revising goal priorities. We hope that readers will find that this theme for 
enhancing agent autonomy to be appealing and relevant to their own interests, and that these papers will 
spur further investigations on this important topic. 

Many thanks to the participants and ACS for making this event happen! 

David W. Aha 
Atlanta, GA (USA) 

28 May 2015 
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Goal Reasoning and Narrative Cognition

Tory S. Anderson TORYS.ANDERSON@GATECH.EDU

Digital Media, Georgia Institute of Technology, Atlanta, GA 30332 USA

Abstract
Narrative cognition is central to how humans reason and make sense of their experiences. We create
personal or natural narratives from the events of our lives which become a resource for future
knowledge, beliefs, and goal reasoning. This paper is chiefly concerned with natural narrative,
as opposed to traditional formal narratives of books, film, or theater. It focuses on the meaning-
making functions of cognitive narrative and introduces a model of personal narrative generation
from event perception. Several possibilities are elaborated by which the model can contribute to
goal reasoning.

1. Introduction

In addition to being the primary content of the media we consume on a daily and hourly basis,
narrative plays a key role in our cognition in making sense of our everyday experiences. This natural
narrative that is a currency of cognition is distinguished from formal narrative that is composed
and conveyed through media. Unlike many systems which serve intelligence—systems natural
and artificial—narrative is definitively general: it is essentially cross-domain and polymorphic (i.e.
non-expert). This fact is demonstrated by its ubiquity, by the use of concepts like “genre” which
are necessary to distinguish between the breadth of possibilities exhibited by narratives, and by
the heavy interaction narratives have with cognitive processes like analogy, upon which traditional
narrative forms like allegory and metaphor are based. Although narrative itself is not necessarily
goal driven, goal reasoning (GR) within humans is likely to draw significantly from the resources of
narrative cognition. Formulations of GR benefit from qualities that are either provided by or shared
with narrative cognition. This paper starts by providing a basic introduction to the literature and
concepts of narrative cognition and narrative intelligence, followed by a consideration of narrative
cognition in conjunction with GR. Related work is presented in which functions related to narrative
cognition are applied in GR systems. Next is introduced a model for implementing basic narrative
intelligence for long-lived agents, based upon the event segmentation theory for event perception.
We conclude with a discussion of applications of this model to goal reasoning and suggestions for
future work.

1.1 Narrative Cognition and Narrative Intelligence

Some of the earliest known precedents for narratology started with Aristotle, whose reflections
on narrative came part and parcel with his philosophy of the dramatic arts (Butcher et al., 1961).
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His work provided a definition of narrative structure as that with a beginning, a middle, and an
end. Though this notion has been challenged by more recent literary and artistic movements it
remains influential and, honoring the intuitive appeal of that simple definition, is retained as one
of the core concepts of narrative in modern cognitive narratology. Within the last century serious
philosophies of individual and society have descended from Aristotle’s dramatic approach. These
include Kenneth Burke’s dramatism (Burke, 1969) and Walter Fisher’s narrative paradigm (Fisher,
1984), which take literally Shakespeare’s “All the world’s a stage” and are broadly influential in the
fields of social communication. Narrative cognition spans all of these and is a categorical term for
cognition that applies or specifically works upon narrative.

In more recent years literary critics have also referred to the reality-negotiating importance of
narrative. David Herman, one of the leading proponents of the term and field of cognitive narra-
tive, recognized the key role narrative plays in the mind and suggested five core functions narrative
plays in human cognition (Herman, 2007; Herman, 2013): 1) sense-making by segmenting expe-
rience into useful chunks, 2) causally linking events, 3) typifying phenomena to determine norms,
4) sequencing actions (including planning), and 5) distributing intelligence across time and space,
including the function of communication. Although each of these five functions has significant
implications for cognition and goal reasoning, and any system exhibiting narrative cognition will
contribute to each of these, this work highlights the first function: sense-making of experience.

The ability to interpret experience in narrative is a form of narrative cognition called narrative
intelligence by Mateas and has been recognized as a particularly desirable aspiration for AI systems
(Mateas & Sengers, 1999). Modern AI as a whole owes significant parts of its ancestry to efforts in
narrative comprehension (Brewer, 1982; Schank & Abelson, 1977). Work on narrative comprehen-
sion includes Schank and Abelson’s pioneering AI work and modern systems aiming, for example,
at news story and blog summarization (Cullingford, 1978; Mani, 2013; van Erp, Fokkens, & Vossen,
2014). These systems continue to be the focus of considerable research effort; however, less atten-
tion has been given to the capability of long-lived agent-based systems to make narrative sense of
their experiences in something like the way of humans. As perhaps the most important form of
narrative intelligence for us, the ability to negotiate reality by reflecting upon our experiences is the
subject of Living Narrative (Ochs & Capps, 2009), a hallmark consideration of personal narratives
in children and adults as a sense-making tool. As children mature they improve in the selection,
complexity, and expressive power of their personal narratives (also explored in (Botvin & Sutton-
Smith, 1977) and (Wigglesworth, 1997)). As shall be discussed, the improvement and growing
sophistication of these narratives most likely coincides with the accumulation of narrative struc-
tures like scripts and schema in semantic memory. The accumulation of experiences into episodic
memory provides the basis for the narrative store with which narrative intelligence in children starts
(Anderson, 2015).

1.2 Narrative Intelligence and Goal Reasoning

Goal reasoning, as surveyed in breadth in (Vattam et al., 2013), requires architectures with three
fundamental features: explicit goals, goal formulation, and goal management. None of these are
strictly required in formal narrative; post-modern non-structural approaches to literature and film
have specifically explored narratives that offer as little of these as possible. To this extent narrative
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cannot, of itself, provide the architecture necessary for goal reasoning, nor does it suggest goal
reasoning as one of the functions upon which it relies. However, more can be said for the four
challenges to traditional planning which motivate GR:

1. Non-deterministic partially observable environments

2. Dynamic environments

3. Incomplete knowledge

4. Knowledge engineering

The first and third points each indicate the kind of incomplete knowledge that drives narrative as
well. This is particularly true of personal narratives, the first-person accounts that result from reflec-
tion upon experience. As analyzed by Ochs and Kapps the reality-negotiation of personal narratives
are driven by the tension “between narrators’ yearning for coherence of life experience and their
yearning for authenticity” (Ochs & Capps, 2009, p. 24), a product of agents which have incomplete
knowledge working in domains that disallow omniscience. One of their examples is of a woman de-
scribing and revising the story of her experience of being paid what she thought might be too much
by a day-care client while her husband argued that the payment was correct; whether the payment
was correct, what were the intentions of the payer, and what moral conclusion to ascribe were all in
flux as the personal narrative was refined and revised.

The second point refers to environments which are subject to change, with or without intentional
manipulation by the agent. This quality of change echoes the requirements of the theory of narrative
cognition to be elaborated below, which suggests that the fundamental building-block of narratives
are the product of prediction failures within the environment. Like GR, narratives seem to require
dynamic environments.

Finally, point four refers to the real-world constraint imposed by unlimited richness, which is
related to the second’s point indicating nearly intractable knowledge problems. Humans are un-
dergoing constant internal knowledge engineering via learning, largely via experience. The storage
of this experience for analysis and reflection is the evolutionary role of episodic memory (Allen
& Fortin, 2013; Tulving, 2002) and narrative intelligence. Implementing and improving narrative
intelligence within agents is therefore a method of addressing the challenge of a rich domain.

2. Related Work

Related to the work of generating personal narratives are explanation systems, which perform some
form of reasoning over their previous operations to communicate to the user the reasons for deci-
sions or activities. As a form of narrative cognition explanation generation has been found to be a
method for improving learning in humans (Fukaya, 2013). Computational explanation generation
systems aim to provide users with insight into what is otherwise a black box of reasoning. Such sys-
tems face the challenge of distilling from the compiled knowledge of an expert system a sensible and
accurate account of reasoning to a human operator, which may require substantial knowledge engi-
neering beyond the knowledge with which the system is performing its tasks (Matheson, Coghill, &
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Sripada, 2012). Some approaches almost entirely divorce the explanation from the activities of the
system (Wang, 2012). Explanation generation systems differ from human explanation generation,
and from human narrative cognition, in that usually the explanations are of no use to the systems
themselves, and therefore do not provide the benefits of learning, reflection, or metacognition.

A reasoning method that does seek to benefit the agents is abductive reasoning by which an
agent refines its beliefs by reflecting upon the past, deriving explanations for its own benefit. A
prime example is DiscoverHistory (Molineaux, Kuter, & Klenk, 2012), which is designed with GR
problem domains in mind and is able to ascertain novel facts about its world by detecting errors
in prediction. Abductive reasoning in humans can be considered alongside analogy as a primary
instrument to be applied in narrative cognition.

Narrative generation, which is a function of narrative cognition when it occurs in a cognitive
system, is a major trend in AI, often for computer games; this work can bring to bear analogy (Zhu,
2011), planning (Riedl & Young, 2006; Riedl & Young, 2010), and other dramatic and theoretical
creativity-based approaches (e.g. (Gervás, 2009; Pita, Magerko, & Brodie, 2007; O’Neill & Riedl,
2011)). Several of the leading systems in narrative generation employ planners to generate their
narratives. These plausibly define a narrative as a causal sequence of events that can be represented
as a partially ordered plan. Systems have been developed to specialize typical planning algorithms to
the added tasks of coherence necessary for narrative (Riedl & Young, 2004; Riedl & Young, 2010).
Planning is one of the functions of narrative cognition; however, conventional narrative generation
approaches are not cognitively oriented and are primarily concerned with fiction generation, and as
such require a controlled set of inputs. They do not directly provide the potential for learning or
internal reasoning.

3. Towards a Model of Narrative Intelligence

The model for narrative cognition to be elaborated takes a simple concept of narrative similar to
those used by narrative generation approaches: that a narrative consists of a sequence of one or
more causally related events. These events can be provided by the experience of the agent, in which
case they are stored in some form of episodic memory. After reviewing some computational im-
plementations of episodic memory we introduce Zacks’ event segmentation theory, which provides
the basis for segmenting events from the perceptual stream. We then consider the generation of
narratives from the events that have been generated.

3.1 Semantic and Episodic Memory

Tulving introduced the terms semantic memory and episodic memory to distinguish between distinct
memory systems in our declarative memory (also called “explicit memory,” storing contents that
can be consciously recalled) (Tulving, 1972). Semantic memory stores general facts which are not
dependent upon location or time, while episodic memory encodes experiences.

Both semantic memory and episodic memory play key roles in narrative cognition. Narrative
structures, particularly scripts and schema, are stored in semantic memory. The evidence of chil-
dren’s narratives improving with age indicates that the acquisition of these structures is a key product
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Figure 1. A high-level view of EST, image from (Zacks et al., 2007). Information flows along gray arrows
and error detection leads to resetting of event models, which is the only time sensory input is gated to them.

of experience (Ochs & Capps, 2009, ch. 2). These structures are learned as episodic memory grows
with experience, and influence human reconstruction of memories (Bartlett, 1932).

Episodic memory has received significant attention from researchers in recent years. It is be-
lieved to be the storage place for temporally contextualized data, including personal experiences,
attended experiences (experiences depicted in stories), and prospective memory (Schacter, Addis,
& Buckner, 2007; Tulving, 2002). Distinctions have been made including autobiographical mem-
ory, a subset of episodic memory that is specifically concerned with personal memories exhibiting
autonoetic consciousness (Wheeler, 2000).

Computational systems often overlook episodic memory, and implementations of episodic mem-
ory are usually simplistic. For example, the Soar cognitive architecture (Laird, 2012) only recently
implemented episodic memory, and is one of the only cognitive architectures to support episodic
memory. In Soar, similar to most systems that do have a form of episodic memory, the implemen-
tation consists of time-stamping of recorded states from the operation of the system. This differs
from the concept of narrative earlier given in a significant detail: while sequentiality is preserved,
such time line recordings provide no concept of “event.” Such episodic sequences are nondilineated
streams of external perception and/or internal state.

3.2 Event Segmentation Theory

Event Segmentation Theory (EST ) (Zacks et al., 2007; Kurby & Zacks, 2008; Radvansky & Za-
cks, 2014) suggests an approach to the problem of dividing a non-delineated sequence of states into
events that could become the constituents of narratives. In humans, event segmentation is an ongo-
ing process occurring simultaneously at multiple time/action granularities. According to EST, event
segmentation occurs as an effect of ongoing perceptual prediction. During the process of perception
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two structures participate in parsing the situation and forming predictions: long-term knowledge is
brought to bear in the form of event schemata, which are similar to Schanks’ and Abelson’s scripts
(Schank & Abelson, 1977) and represent the way actions or events normally unfold in similar sit-
uations; and working-memory is brought to bear by event models, which are an interpretation of
the specific situation at hand. In addition, behavioral models may be used so that predictions can
be made based on the presumed goals of the actors in a situation, and world models that account
for physical expectations (e.g. the trajectory of an object in free motion). The interplay between
the semantic and episodic long-term memory systems in this process is cyclical: semantic memory
provides the structures and models to help make episodes from experience, while these episodes are
committed to episodic memory where, over time, they help distill further knowledge of semantic
structures.

As perception occurs, a cognitive system selects from its knowledge of usual event schemas
and uses assumptions about the goals and processes at work in the attended situation to generate
expectations of what will happen next. As long as these predictions are mostly fulfilled, the current
event model is assumed to continue and no segmentation occurs. However, when the predictions
are wrong by some margin of significance, the current event is considered to end and a new event
to begin in the process of selecting or generating a new event model. These explanations of event
segmentation have been supported by evidence from studies of segmentation of event boundaries in
written and video narratives (Zacks et al., 2007). Narratives are constructed as segmentation occurs
at broader granularities over episodic memory, to the point of eventually contributing to production
of the life-long autobiographical memories that “make up our own personal narrative of who we are
and what we have experienced” (Radvansky & Zacks, 2014, ch. 8).

3.3 Generating Personal Narratives

The events produced by EST can be seen as constituting the fundamental building blocks of a narra-
tive, a sequence of events. Narratives can be produced at either of two times: at storage time, useful
for short-term reasoning that will operate in conjunction with working memory and is primarily
dependent upon the narrative structures provided by semantic memory, and at reflection time. We
consider production time narratives to be first-order narratives. The latter we call meta-narratives,
which are of particular interest for meta-cognition and for the development of a life story or narrative
identity (King, 2000), as well as for broad understanding of situations that draw upon constellations
of narratives over time. In parsimony with the hierarchical nature of perception, personal narra-
tive is hierarchical and recursive such that repeated reflection can produce increasingly complex
compounds of narratives. This process, in which the recognizable and (in humans) presumably in-
teresting narratives are formed, occurs on-demand. In particular, meta-narratives are formed when
narrative cognition is called upon to fulfill one of the duties elaborated by Herman, such as casually
linking events or sense-making (generating a new event model after prediction error).

4. Conclusion

Although narrative as a whole is not primarily goal directed it is essentially concerned with the
same problems that necessitate GR. This collocation of interests also underscores the potential of
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narrative to provide the environment or resources in which goal reasoning can occur, potentially
contributing functions of narrative cognition that have developed for the purpose of addressing the
challenges previously mentioned.

Goal Reasoning and narrative cognition are collocated in dynamically rich, under-specified,
limited-information domains. Within these domains narrative cognition performs a number of func-
tions that serve to increase knowledge and generate predictions capable of informing GR processes.
A particular affordance of a system performing narrative intelligence via EST is concurrent goal
reasoning. Models of GR share with EST the use of prediction errors to cue activities. Running in
parallel goal reasoning can itself become a producer of events over which narrative cognition can
work.

In addition, goal reasoning itself constitutes a sequential process, for example as imaged by the
goal life cycle of (Roberts et al., 2014). Applied to such a goal-reasoning process narratives of goal
reasoning itself could be generated. Imagined verbally these narratives would resemble the internal
dialogues we sometimes have with ourselves as we struggle with decisions, and the application of
functions of narrative cognition to these processes offer a promising avenue for future work.
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Abstract
Knowledge goals are used by reasoning entities to fill in information required for decision making
and are an important part of computational understanding systems. Simple knowledge goals can
be solved through traditional information retrieval techniques or database queries. In order to solve
complex knowledge goals, however, a plan must be composed and executed in an investigative
manner. During computational investigation, goals of both the system and the user can change,
resulting in goal trajectories that may inform future goal solutions. In this paper, we propose an
interactive reasoning system that leverages a case-based methodology to solve complex knowledge
goals represented as natural language queries.

1. Introduction

A knowledge goal represents the purposeful need to acquire information in order to fill in gaps of
world knowledge for a reasoning entity or to extend the database of a computational understanding
system (Ram & Hunter, 1991). For humans, knowledge goals are most easily represented as ques-
tions, and current research on dialog-driven question and answer systems focuses on the semantic
parsing of a natural language question to a structured database query (Yahya et al., 2012) or lambda
calculus representation (Berant et al., 2013). These parsing approaches are making headway in
the solution of simple knowledge goals, where the primary task is a retrieval from some structured
knowledge base; especially goals that ask who, what, when, or where. This approach, however,
cannot solve complex knowledge goals including aggregations, opinions (recommendations), or ex-
planations for why or how questions. As a result, even though information retrieval systems and
search have made information easily accessible, there has been the growth of community-driven
question sites such as Quora (Wang et al., 2013) to connect users to the more nuanced answers they
are looking for.

We claim that humans solve complex knowledge goals through investigation, dividing harder
questions into simpler sub-knowledge goals with more easily obtained solutions. When solving
knowledge goals, humans also take into account context and approach new problems by leveraging
techniques that have worked in the past. A system that models how humans investigate questions
will deconstruct a complex goal, integrate relevant knowledge, and reuse methods of investigation.
Investigation can be represented as a plan to solve the larger knowledge goal, and if the tasks or sub-
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goals of knowledge acquisition plans are simple knowledge goals that can be solved via structured
data retrieval, then a system can be said to solve complex knowledge goals through a planning
process that involves the purposeful combination of simpler knowledge goals.

In this paper we present a vision for an interactive knowledge-goal reasoning system that uses
a case-based reasoning methodology to deconstruct complex knowledge goals based on previous
cases for similar questions. The system will provide users with goal-driven solutions to natural lan-
guage queries by proposing plans for simpler knowledge goals, which can be satisfied by computa-
tionally tractable tasks like database queries or document retrieval. The system takes into account
the context of the goal by leveraging semantic resources applied to the question and utilizes a wide
array of data sources to perform retrieval tasks–from database queries, to search, to providing other
user responses for complex questions. As subtasks are selected by the initiating user, the case-based
reasoning system reinforces and indexes how the plan was solved in order to provide more relevant
plans or responses in the future.

Because this type of system is interactive and adaptive it is subject to goal changes, where the
original knowledge goal is changed or refined slightly while the user interactively follows a solution
plan. The complete case for solving a complex knowledge goal therefore represents a goal trajec-
tory. Goal trajectories are important for refining future cases, ranking plan solutions, and having the
system anticipate knowledge goals to propose better plans. Furthermore, the combination of goal
trajectories can be seen as a creative process, leading to the extension of not only the casebase, but
also to extend automatically the knowledge base of the system.

To explore interactive knowledge-goal reasoning, we will first discuss knowledge goals and goal
trajectories in detail. This discussion will lead to a brief taxonomy of questions, which is vital to
understanding the many types of cases in a natural language query system. In the second section, we
will describe our proposed case-based methodology, including the case representation, acquisition,
and management. Finally, we will present three case studies that demonstrate how an interactive
knowledge-goal reasoning system might be employed.

2. Knowledge Goals

In information retrieval systems, the input is a query that usually takes the form of a Boolean combi-
nation of keywords and the expected output is a ranked list of documents that have a high relevance
to the keyword combination. Similarly, in database management systems the input is a formal query
that must conform to the logical structure of the information, and the output is a set of records or ag-
gregations that also conform to the schema. While these systems are important in the management
of large-scale, multi-modal information sets, they do not represent the way that humans formulate
knowledge goals: questions. Although search and structured database queries may be viewed as
stand-ins for knowledge goals, they only embed the execution context or task of the knowledge
goal, whereas natural language queries express more information related to the goal and can be both
simple and complex where formal languages are not as flexible.

We can define simple knowledge goals as questions that are directly tied to a retrieval task and
whose solution may be found either through traditional information retrieval or through structured
queries. Consider the question “Who won the World Cup?” The goal of this question is to determine
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the Country entity that won the most recent World Cup and possibly also the Result in the form
of the competing teams and final score. Search methodologies would find documents with a high
relevance to the tokens in the text of the question, particularly “World Cup”. A structured database
query upon some knowledge base would require semantic parsing to determine the relationship
between the FIFA World Cup topic, and a specific Country topic. Even with these challenges,
the result of both search and database query would fulfill the knowledge goal.

Complex knowledge goals, on the other hand, cannot be solved simply through a single retrieval
task and are generally related to questions that require investigation, opinion, explanation, or knowl-
edge generation. Consider the question “Where should I go to dinner?” This question is not a simple
retrieval task because although restaurant reviews and geographic proximity searches might narrow
the search space to dozens of possible candidate restaurants, selecting a dining option involves a
reasoning process that may lead to solutions that do not involve restaurants at all, like going on
a picnic. Moreover, this routine question will have different responses when asked by the same
user multiple times, depending on context like geographic location, the season, or changing user
preferences. Other complex knowledge goals are used to generate information, for example “Can
a crocodile complete a steeplechase?”, a fact that is probably not part of most knowledge bases.
Unless someone has already investigated this question, the goal will have to be decomposed into
lines of questioning related to the physical requirements of completing a steeplechase compared to
the athletic ability of crocodiles.

2.1 Knowledge Goal Representation

The representation of a knowledge goal can be described by its objective: the type of the expected
response (concept specification) and how the information will be used (task specification) (Ram,
1991). To create a plan to solve a knowledge goal, a computational system must be able to rep-
resent knowledge goals in a structured manner, and identify and parse the structure from a natural
language query. We extend this representation to leverage the additional components available in
an interactive knowledge-goal reasoning system. Knowledge goals are composed of three primary
features: a set of concepts, a task, and a specific context.

1. Concept: The knowledge goal is relevant to a specific set of structured semantic concepts,
both entities and predicates, which are either directly specified or implied. The concept of the
question identifies the domain of the query plan as well as the expected response.

2. Task: The task indicates the purpose of the knowledge goal and is usually implied in a natural
language query and related to the motivation of the questioner. For example, in the case
of simple knowledge goals the task may be search or database query; for more complex
knowledge goals the task may be explanation or knowledge generation. It is by task that
different types of knowledge goals are categorized in the taxonomy below.

3. Context: Knowledge goals are not specified in isolation, but are directly related to the ques-
tioner and as such must be considered in relation to their context. Contextual information
includes temporal, geographic, hysteretic, and preference information and is essential for
plan refinement and to resolve ambiguity.
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In the question “When is the next flight to Paris?” the concept explicitly includes the topic Air
Travel as well as a city, Paris. Implied concepts might include Paris, France, the most
popular city named Paris, and Charles de Gaulle Airport. The task can generally be
defined as a simple database query or search, but more specifically the return of a specific Flight
record. The context is critical as well, especially the geographic context (the next flight to Paris
from the city where the user is currently located) and the temporal context (in order to determine
when the next flight might be).

Many applications simplify one or more components of a knowledge goal in order to be ef-
fective. Domain-specific applications reduce ambiguity in concepts and context by allowing only
specifically relevant knowledge goals. More commonly, applications simplify the task and are de-
signed to return only a single type of result. However, the widespread availability of large knowl-
edge bases combined with timely contextual information from mobile devices mean that complete,
personalized question and answer systems are becoming computationally tractable and knowledge
goal simplification should no longer be used as an approximation for goal reasoning systems.

2.2 Solving Knowledge Goals

An important step in the development of dialog-driven question and answer systems was the cre-
ation of large-scale structured knowledge bases like Freebase (Bollacker et al., 2008) and Yago2
(Suchanek, Kasneci, & Weikum, 2007). These databases represent a wealth of information gen-
erated from collaboratively edited encyclopedic sites like Wikipedia and provide the means with
which to make factual queries about the world. Semantic parsers can take advantage of hierarchi-
cal, relational ontologies which allow for a generalization in the domain or concept component of a
question. For simple knowledge goals, semantic parsers can transform natural language questions
into structured queries like SPARQL or SQL (Yahya et al., 2012), a lambda-calculus representation
(Berant et al., 2013), or simply a template to directly search other answers (Unger et al., 2012).

However, these parsers will struggle with even slightly more complex natural language queries
tasked with a database lookup in a knowledge base, such as “Who was the King of England when
Thomas Jefferson was President?” This knowledge goal is a factual retrieval that can be solved
by chaining subqueries to first solve which years Thomas Jefferson was President of the United
States, then use the result to determine the King of England during that time period. Similarly,
knowledge goals that require aggregation, such as “How many countries have won three consecutive
gold medals in a single sport?”, may be able to be transformed into a series of simpler sub queries
which contribute information to a final result.

The decomposition method of solving fact-based retrieval questions can also be applied to com-
plex knowledge goals whose task is not simply a query or search. When a complex knowledge goal
is reduced to one or more simpler sub-goals, the result is a hierarchical plan to solve the original
knowledge goal. If the final leaf nodes of such a plan are simple knowledge goals which can be
transformed into a query or a search, then a system can said to solve complex knowledge goals
through the computationally tractable combination of simpler knowledge goals.

Consider an example complex knowledge goal “What courses should I take next semester?”
outlined in Figure 1. This knowledge goal is routine, executed by the same user on a regular interval
and common enough that a casebase of solutions is readily available. The task of this knowledge
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Figure 1. Interactive knowledge goal reasoning on the complex goal “What courses should I take next
semester?” The system resolves context dependencies and then proposes a plan of simpler sub-goals that
lead to database queries using information from prior goals (represented as $VAR). Depending on interac-
tion, goal trajectories can modify the original goal to “Can I graduate next semester?” continuing the process.

goal is to create a list of courses which are available next semester and which the student will
presumably be able to register for. The concept of the question is the domain of courses that are
available at a particular university during a particular semester. The context for a user determines
preference in terms of the selected major or course level as well as geographical context (which
specific university) and temporal context (which specific semester).

In order to solve this knowledge goal, a plan of simpler sub-knowledge goals may be offered to
the user. If contextual information is missing, the system might respond with ambiguity resolution
goals of its own (e.g. “Have you selected a major?”). Otherwise simpler sub-knowledge goals
could include “What days and times would you prefer?”, “Are there any academic subjects you’re
interested in?”, or “Do you have any academic requirements?” Responses to these sub-knowledge
goals would lead to even simpler knowledge goals which can be eventually be queried against a
course catalog, such as “Which Economics courses are available on Monday and Wednesday?”

2.3 Goal Trajectories

The solution to complex knowledge goals is an interactive reasoning approach where a complex
knowledge goal is broken down into a hierarchical plan involving simpler sub-goals and tasks. In
an interactive reasoning system, the user selects the next step of plans proposed by the reasoner,
and continues to chain sub-goals together to work towards a larger solution. During this process,
the plan is adaptable and subject to change as the user proceeds in selecting and executing the
simpler goals. Goals, like plans, are also subject to change and can be transformed (Cox & Veloso,
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1998), therefore we propose that the original knowledge goal itself is also subject to change; and
that as knowledge goals change during interactive reasoning, the path that led to the solution of new
knowledge goals from the original can be represented by a goal trajectory.

Goal trajectories can be influenced either through the direct interactive manipulation of goals
(Cox & Zhang, 2007) or via other users in the system issuing similar queries that provide the basis
for recommending new goals through collaborative filtering (Hayes, Cunningham, & Smyth, 2001).
State changes in the system via monitoring of new information or relevant data that has been added
to the knowledge base can also lead to new, interactive responses. In either case, goal changes can
be seen as a planning problem where knowledge goals are not static, and an interactive reasoning
system must be responsive to goal changes.

The concept of goal trajectories can then be used to explicitly define relationships between
knowledge goals as cases for future solutions. In the example from Figure 1, a goal trajectory is
demonstrated by the proposed sub-knowledge goal “Do you have any academic requirements?”
This leads the user to change the goal to “Can I graduate next semester?” This goal trajectory can
then be used in future cases to propose graduate related sub-goals to those who may be close to
finishing their degree.

2.4 Knowledge Goal Taxonomy

In the next section, we will discuss the solution of knowledge goals by decomposing a complex
knowledge goal into subsequently simpler knowledge goals. However, in order to determine an
execution plan for knowledge goals, some idea of the types of knowledge goals that might be in
a system as well as their relative complexity is required. Knowledge goals as described in (Ram,
1990; Ram & Hunter, 1991) are presented with a categorization based on the task that they arise
from. Similarly, we will extend this taxonomy with our planning framework, given the components
of a knowledge goal discussed in the last section.

2.4.1 Simple Knowledge Goals

The simplest knowledge goals should be computationally tractable, such that they can be solved with
a minimal amount of user involvement. Simple knowledge goals have tasks that range from search
to database queries to computational tasks like parsing, aggregation, or inference. In an interactive
system, both users and the system have simple knowledge goals. The system uses knowledge goals
to resolve ambiguity through dialog boxes or through other types of feedback.

1. Textual: Questions related to both semantic or syntactic analysis of text, usually as a response
to ambiguity. Tasks related to text questions include anaphora resolution or word sense dis-
ambiguation. Users may ask to define a word; the system may ask to clarify a concept.

2. Contextual: Questions designed to specify the result of a knowledge goal according to the
user’s context, such as queries related to preference, geography, or time. Similar to textual
questions, these types of questions are "meta-questions" that are used to tailor the execution
of a knowledge goal solution.
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3. Rhetorical: Questions that should not return an answer. Questions that are used as place-
holders or to express frustration are important to identify as simple knowledge goals because
they identify terminal tasks in question plans.

4. Retrieval: Questions that expect a single fact returned from the database and may be trans-
formed into a structured query. These types of questions may perform aggregations or filtering
upon the knowledge base, but typically only return a single result or a small list of results.

5. Search: Questions that require a larger scope or domain and whose expected results are a list
of relevant documents.

The tasks related to these simple knowledge goals are all able to be computed on behalf of a
user. Knowledge goals that fall into these categories are the simplest goals that may be involved in
an interactive knowledge-goal reasoning system.

2.4.2 Complex Knowledge Goals

Complex knowledge goals must be reasoned upon rather than computed directly, and cannot be
directly parsed into a executable representation. Instead, a plan must be developed in order to solve
complex knowledge goals which leverages the context and concepts in the goal. The types of tasks
for complex knowledge define the categorization of these goals as follows:

1. Explanation: Questions that require an explanation and return an explanatory data structure.
Tasks include the detection and resolution of anomalies as well as the construction of an
inferential or causal explanation.

2. Relevance: These questions are designed to expand the current knowledge framework by
adding relevance links between questions and related entities, answers or other questions.
Relevance can be used in later processing as a shortcut to retrieval from a casebase.

3. Socratic: Socratic questions return a question as an answer, or rather a plan that consists of
knowledge goals that are designed to answer the larger question.

4. Research: These types of questions are designed to add information to a knowledge base,
either by adding facts or creating knowledge from other knowledge sources. The system
should identify research questions based on unsatisfactory queries and add them to the system
for later investigation.

5. Routine: Questions that are routine are asked frequently or on a specific interval. However
the required answer will differ based on the context or timing of the question and will most
likely not return the same answer as a previous instance of the question.

Tasks related to solving complex knowledge goals require some learning framework to mimic
how humans solve similar goals. In an interactive reasoning system, the learning framework can
include the use of similar cases or solutions to goals to propose a plan to solve the complex goal, or
to connect related users as they investigate similar goals.
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Figure 2. An architecture for interactive knowledge-goal reasoning. The goal reasoning system decomposes
complex knowledge goals expressed as natural language queries into plans for simpler goals.

3. Case-Based Reasoning for Knowledge Goals

Our proposed solution for complex knowledge goals is a case-based reasoning (CBR) (Kolodner,
1993; Lopez De Mantaras et al., 2005) system which reuses past experience in an interactive fash-
ion. Interactive CBR operates similarly to conversational case-based reasoning systems, which
incrementally elicits a target problem through an interactive dialog with the user, attempting to min-
imize the number of questions before a solution is reached (Aha, McSherry, & Yang, 2005). In
order to provide an adaptable, investigative system, the methodology we are exploring guides the
user through goal trajectories, removing the requirement to minimize session length in order to fa-
cilitate an ongoing discovery process. Additionally, the system itself is a learning agent with the
goal of predicting future knowledge goals, and acquiring the information in advance.

An interactive knowledge-goal reasoning system would require the ability to correctly identify
concepts through some semantic parsing task. Knowledge goal concepts would be used to identify
similar knowledge goals in the casebase for retrieval. The system would also require the ability to
classify the task of the question in order to determine the execution context and to reuse previous
cases. Finally the system would utilize the context of the questioner to adapt or revise cases for the
specific scenario. Knowledge goals and their trajectories would be retained in the casebase along
with their relationships such that the system learns over time and can anticipate future knowledge
goals, for example by detecting common goal trajectories and proposing shorter paths to those
anticipated goals. The required components and architecture of such an interactive knowledge goal
system are described in Figure 2.
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The input to the system is a natural language question, which is parsed to extract explicit top-
ics defining the concept of the question. Concepts involved in the question are directly tied to a
structured knowledge base and ontology, providing the ability to query implicit concepts such as re-
lationships to other topics or entities. Once the concepts have been resolved, the system leverages a
casebase to find similar questions. Those similar questions will be adapted with the current context
of the user, for example if the user asks “When is the next home game?” the system can adapt pre-
vious questions regarding sporting events with seasonal context (football vs. baseball), or the user’s
team preference. If there is missing context, the system responds with a contextual knowledge goal
to fill in the gap. Once the context has been added, the task for the case is identified via a taxonomic
classifier using the taxonomy described in Section 2.4. If the task is a simple knowledge goal, it is
executed against the knowledge base or via search. If the task is complex, then then new, similar
questions based on the cases in the casebase are proposed to the user, the process continues in an
interactive fashion until the session is complete.

3.1 Case Representation

Individual cases in our methodology would be composed of knowledge goals and their related goal
trajectories. The representation can be either frame-based or objectual but would require a log of
all questions in the system by user, and their resolution. For every natural language question, the
case knowledge goal would include the text of the question, the concepts that were directly added
to the question as part of the interactive process and any required context. The task for each case
would also be added either as related knowledge goals, executed searches, or database queries.
For example, given the case “Where should I go to dinner?” the representation might include the
topics Dinner and Restaurant; the context requirements location, restaurant genre
preference, and price preference; and a task which includes the sub-goal “What are the
closest restaurants to my location?”

The choice to use semantic topics or concepts is not simply because of the availability of struc-
tured knowledge bases like Freebase. The concept of each knowledge goal case would be used
to generalize the case topically through some hierarchical ontology in order to find similar ques-
tions or cases. This generalization would take the form of templates, where topics generalized
at several levels of their ontological hierarchy would be placed in context with surrounding text.
For example, consider the knowledge goal “When does Georgia play Georgia Tech?” If the con-
cepts University of Georgia and Georgia Institute of Technology are added
to the casebase (both are instances of the topic College/University), then this question could
be applied more generally to knowledge goals related to intercollegiate activities. Furthermore if
the concepts Georgia Bulldogs Basketball and Georgia Tech Yellow Jackets
Basketball, both instances of the topic School Sports Team, are added to the case, then
this question can be specified to basketball or football through contextual clues, or to professional
sports in the more general case.

In order to enhance retrieval for the casebase, questions related through the concept hierarchy
or through selected sub-knowledge goals during an interactive session with the user will be linked
to each other through a supplementary casebase. These linkages are intended to represent potential
goal trajectories. By selecting related cases through trajectories, the system will be able to more
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quickly present potential sub-knowledge goals to the user during an interactive session. Further-
more, the combination or transformation of goal trajectories can be seen as a creative process with
which to generate new information in the system.

3.2 Case Acquistion

Cases will be acquired two ways: through direct user input during interactive investigative sessions
and by the automatic generalization of cases through their concepts and related goal trajectories.

Acquiring cases from users directly inputting natural language questions into the casebase is the
most obvious method of case acquisition. Users interact with the knowledge goal reasoning system
in investigative sessions where the user specifies an initial knowledge goal, responds to system plan
proposals, and finally finishes the investigative session when some solution for a set of knowledge
goals has been reached. Sessions provide a finite time within which the specific knowledge goals
can be evaluated in relation to each other; if all questions for a user were evaluated, it would be
difficult to consider their relationships. Furthermore, sessions provide the reasoning system the
ability to track goal trajectories, either by identifying changes to the initial knowledge goal through
the explicit restart of an investigative session following a session with no solution, the explicit
annotation of the user providing information about their goals, or through implicit inference based
on user interaction.

The second way that cases are acquired is through the automatic generalization of cases. Users
necessarily create cases that are extremely specific and cannot be applied generally to other prob-
lems with ease. Since the reasoning system is interactive, the system cannot passively wait for some
density of cases in order to begin responding with proposed plans for knowledge goal solution, and
must instead anticipate or plan for knowledge goal trajectories. Generalization happens through the
linking of related questions, primarily through the template extraction process wherein concepts are
inferred through the ontological hierarchy, properties, or relations.

3.3 Case Management

In a robust interactive knowledge-goal reasoning system, the casebase can become extremely large,
requiring many system resources for adequate performance in both retrieval and adaptation of cases.
Interactive systems especially will be affected by any slowdown in performance. Growth in the
casebase is the result of both the automatic generalization of cases, and the natural specificity with
which users ask questions. In order for the system to respond effectively to user queries, some
technique is required to rank cases in the casebase or to collect similar cases into a single case.

The first step for good case management is the deduplication of natural language questions.
This is essential for many question and answer systems where user responses are indexed, but is
not an easy task. For example the questions “What is the best restaurant in Seattle?” and “Where
is the best place to eat in Seattle?” are similar questions and must be considered duplicates for
the purposes of the casebase. Most collaborative question and answer systems prompt the user at
question time whether or not they are asking an already asked question; others use textual similarity
scores to determine whether or not such questions are related.
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Cases that are added to the casebase via generalization, however, cannot be prompted to a user
to determine similarity. Generalization itself is a qualitative process that can generate many poor
cases. Some quantitative process must be used to evaluate proposed cases, and to decay old cases
such that the success of automatically generated cases is constantly evaluated and reinforced in the
system. Metrics such as how connected a case is in goal trajectories, or how many specific cases
can be subsumed by a general case, may indicate how successful general cases are.

Both user-added cases as well as those generalized by the system must be ranked through user
feedback and relevance scoring. In an interactive reasoning system, the interaction is the strongest
signal to good reasoning. As cases become less used in the system, they should decay by first reduc-
ing their rank in solution proposals and finally by being archived off the casebase. By analyzing user
interaction as the primary metric for case relevance, the casebase can be maintained at a specificity
required to quickly solve knowledge goals, but at a generality that allows for easy adaptation.

4. Case Studies and Applications

In order to acquire a casebase with which to study interactive knowledge-goal reasoning systems
in the context of goal trajectories, we have created a web application called Kyudo to generate a
dataset of goals, questions, and answers. Kyudo takes the form of a community-driven question and
answer system, demonstrated by the screenshot in Figure 3. Users ask natural language questions
and search for related questions. Each question is parsed syntactically; then, a lightweight semantic
parser identifies noun phrases using a rule-based mechanism and proposes them to the user as the
concepts related to the question. Users can annotate the concepts according to Freebase topics, add
additional concepts through a Freebase search, and add details about the question.

Asked questions are then answered by other users who can specify free text about how the
knowledge goal should be solved. Answers can be in the form of a Freebase topic (to simulate
database retrieval questions), or a proposed plan of simpler knowledge goals which can be asked on
behalf of the questioner and linked to the original question. Both the concepts and the parse can be
annotated by the user. Furthermore both questions and answers can be "upvoted" and "downvoted"
to indicate relevance. Questions can be tagged with their expected task, and related questions can
be directly added by users to connect similar knowledge goals or knowledge goals that may be part
of the same goal trajectory. Through all of these user annotation mechanisms, we intend to generate
a small casebase with the representation described in an earlier section.

Although we intend to create a generally applicable system, we have found that in the initial
generation of a casebase, where the user is required to specify many details and annotations, a spec-
ified task to guide case acquisition simplifies the process considerably. In this section we identify
and describe the three tasks which we have given to a pilot study of 17 graduate student users for
our initial casebase generation. These tasks can also be seen as case studies of how an interactive
knowledge-goal reasoning system might operate within a specific domain.

4.1 Conceirge

Concierge staff are expected to be available to answer questions from tourists who are unfamiliar
with the city that they are staying in. Often, they go much further than simple responses to questions
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Figure 3. A screenshot of Kyudo, our preliminary case acquisition system.

such as “How do I get to the Eiffel Tower?”–they suggest places to eat or other interesting things to
see, warn of “tourist traps”, and generally work not only to answer the question that is being asked,
but to identify the larger goals of the travelers in order to make their stay excellent.

In this task, the users of the system are expected to ask questions as though they are travelers
speaking to a concierge. Other users should respond to the questions as though they are a concierge,
giving tips, feedback, suggestions, and recommendations in addition to answering the primary ques-
tion. To obtain more specific questions, the questions are framed as though the task is taking place
in a hotel in downtown Washington DC.

Knowledge goal trajectories are readily apparent in this task because most of the questions are
related to advice or opinion. For example, one of the questions in the system “Are the food carts
ever a source of food poisoning?” led to an interactive session where other users determined that the
traveller was interested in foodie experiences related to a popular television travel show. In order to
identify gourmet food trucks, they proposed a truck tracker app for the traveller’s iPhone. This led
to a discussion of other local apps and eventually the traveller was receiving advice about how to
use the Metro and Smithsonian apps.

4.2 Presidential Briefer

The second case acquisition task simulated the creation of a presidential briefing. The role of the
presidential briefer is to prepare a report on the day’s news and intelligence activities to be reported
to POTUS first thing in the morning. The goal is to deliver as much information as possible in a
short amount of time. As such, the briefer must anticipate the questions that the president might
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have and prepare answers in advance. The final product is the “brief book”: a book with an executive
summary, then detailed information designed to respond to questions.

In this task, users are expected to anticipate questions that the president might ask when they
brief him, specifically from news stories that they are preparing the briefing for. Users should pre-
pare questions related to specific news stories, and include the news stories as background in the
details section of the question. “Answers” to these questions should be detailed, and also anticipa-
tory of “follow-on” questions that the president might ask.

This task was designed to capture not only knowledge goal trajectories in the form of follow-on
questions, but also to expand the variety of tasks from the knowledge goal taxonomy. In partic-
ular, because these knowledge goals were related to specific news items, textual and contextual
knowledge goals would be implicitly added to the case. From the part of the user, our preliminary
observations suggest that the primary follow-on question was a relevance goal; e.g. given a briefing
about an investigation into corporation “What might the impact on the economy be if this company is
broken up?” is a knowledge goal attempting to associate the information given to economic impacts
in the case of a drastic decision.

4.3 Undergraduate Adviser

The final task is directly related to the example question that we posed in this paper. Users should
pose questions to the system as though they are an undergraduate student asking for advice from an
adviser or guidance counsellor. Questions in this task can be varied, including issues about courses,
plans of study, policy (medical leave, absence, etc.), or even personal issues.

Undergraduate advisers must have a large amount of domain-specific knowledge, from Univer-
sity policy, to course requirements and schedules, to other personal matters. They not only answer
questions that undergraduates pose to them, but also respond with detailed, specific instructions for
students to carry out. Due to the specificity of this domain, this task allows the capture of more
related knowledge goals and allows the use of an institution-specific ontology to simplify concepts.

5. Related Work

This work is most closely related to the work in conversational case-based reasoning, where inter-
active dialogs are used to specify the case upon which to reason (Aha, McSherry, & Yang, 2005).
Goal-driven conversational case-based reasoning is explored in (McSherry, 2005) to identify rele-
vant questions posed to the user in order to target cases. The use of semantic networks and ontolog-
ical concepts is used in (Gu & Aamodt, 2005) to map questions to features in order to find relations
among cases. Finally, the integration of case-based reasoning with task decomposition was explored
in (Muñoz-Avila et al., 2001), showing how the generation of plans can result in goal changes.

Systems that leverage large data sets of community organized questions and answers focus on
the task of question similarity. Statistical models based on both the question text as well as the
answers are discussed in (Jeon, Croft, & Lee, 2005), work that culminates in a statistical model
for retrieval of answers based on query-similarity likelihoods (Xue, Jeon, & Croft, 2008). Answer
selection or ranking from the retrieval is typically based on heuristic methods, especially reputation-
based mechanisms where other users evaluate answers directly (Wang et al., 2013). Original natural
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language knowledge navigation used case-based reasoning to direct user queries to FAQ files as in
(Hammond et al., 1995; Burke et al., 1997b; Burke et al., 1997a). While these systems engage
users collaboratively to explore questions not easily answered by search, they don’t directly inform
a congnitive reasoning system.

On the other end of the spectrum, there has been work designed to translate natural language
queries directly to a structured query that can operate on fact based semantic knowledge bases, usu-
ally into a SPARQL query as in (Yahya et al., 2012; Unger et al., 2012) and (Berant et al., 2013).
These automatic approaches rely heavily on semantic disambiguation and entity resolution, evalu-
ating the query itself against the knowledge base (Zheng et al., 2012). Other approaches include the
derivation of proto-queries directly from the knowledge base (Frank et al., 2007), akin to question
indexing a structured data set. Retrieval mechanisms like predictive annotation and type coercion
have led to the success of Watson and other agent-based knowledge systems (Prager et al., 2006;
Kalyanpur et al., 2011). However, these systems are restricted only to the retrieval of facts from a
database and usually perform little inference or planning concerning the query.

Finally, the theoretical work is based off of (Lehnert, 1977) who proposes a model of computa-
tional story-telling question and answering as well as (Ram, 1991), who provides a foundation for
the theory of knowledge goals.

6. Conclusion

Knowledge goals, especially those represented as natural language queries embed goal-related in-
formation in three components: structured, semantic concepts, questionner-specific context, and the
relevant task or purpose of the knowledge goal which is usually represented as the expected result.
Simple knowledge goals are those where the task is computationally feasible - such as a database
query or a search. In order to solve a simple knowledge goal, the concept and the context must be
parsed into a representation that can be executed such as a structured database query like SPARQL.
Recent research into the semantic parsing of questions has shown that simple information retrieval
questions are tractable from large, community built knowledge resources.

Complex knowledge goals, on the other hand, must be decomposed into a hierarchy of simpler
knowledge goals, each branch of which contributes information to the final result. In an interactive
knowledge-goal reasoning system, users participate alongside the system to solve complex goals
by asking questions and responding to proposals of plans for simpler goals that may contribute to
the final result. Such systems enhance investigative sessions to generate information, to explain
recently acquired knowledge, or to generate solutions to routine questions. When interacting with
a system in this way, users may discover that their original knowledge goals change, and that they
discover creative results by following goal trajectories of adapting sub-knowledge goal plans.

In this paper we proposed a vision for an interactive case-based reasoning system that could
solve knowledge goals similar to conversational case-based systems. This system uses lightweight
semantic parsers and a structured knowledge base in coordination with a casebase to represent
knowledge goal cases, generalizes them for adaptation, indexes them by relationship for fast re-
trieval and ranks them to manage and decay stale or ineffectual cases. This knowledge-driven ap-
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proach primarily relies on the discovery of the concepts in the question combined with a taxonomic
classifier for identifying tasks relative to specific user contexts.

To date, we have built a case acquisition system called Kyudo to begin generating a casebase
for further exploration. In the future we intend to refine and develop our ideas related to the case
representation, indexing of case relations, knowledge-based generalization and case adaptation, and
to explore the use of goal trajectories for creative investigative processes.
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Abstract 
The new Rebel Agent paradigm is meant to help achieve character believability in various forms 
of interactive storytelling. Rebel agents may refuse a goal or plan that they assess to be in a 
conflict with their own dynamic motivation model: we call such conflict situations “motivation 
discrepancies”. We are currently in the process of implementing a Rebel Agent prototype in 
eBotworks, a cognitive agent framework and simulation platform. In order to identify motivation 
discrepancies in the environment in a believable way, eBotworks agents need to be able to 
perceive the environment in ways both influenced by emotion and capable of eliciting emotion, as 
the relationship between emotion and perception has been theorized in psychology literature to be 
bidirectional. We explore ways in which such emotion-influenced perception might be achieved in 
the eBotworks framework for the purposes of implementing believable Rebel Agents. 

1.  Introduction  
Rebel Agents (Coman and Muñoz-Avila, 2014) constitute a new goal-reasoning (Vattam et al., 
2013) agent paradigm that is based on three premises: 

1. Rebel agents are goal-reasoning agents; that is, they reason on which goals to achieve 
next. 

2. Rebel agents have their own motivations. These motivations can be seen as general 
guidelines that the agent will follow. 

3. Rebel agents may refuse a goal, plan, or subplan (e.g., one suggested by another agent or 
the user) that they assess to be in a conflict with their own motivations. 

The main intended purpose for Rebel Agents is to help achieve character believability in various 
forms of interactive storytelling. Believable characters, in stories in any medium, act in 
accordance with personal memories and motivations, which are shaped by events occurring 
throughout a given narrative. Motivation and memories should evolve as the story progresses, so 
as to create plausible and engaging character growth. Character believability (Bates, 1994) is 
considered to be one of the key requirements of a successful narrative, be it interactive or 
traditional. 

Given this intended context, the sort of motivation these agents would be endowed with 
would be based primarily on subjective aspects, e.g. simulation of feelings and emotions, 
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autobiographical memory and coping mechanisms, etc., rather than more pragmatic ones, as 
presented by Coddington (2006), e.g. needs pertaining to survival and task efficiency. However, 
the potential use cases of Rebel Agents can be expanded to include any context that calls for 
autonomous agents that are endowed with motivation which informs their actions. 

An additional concept that we introduced in the context of Rebel Agents is that of 
“motivation discrepancies” referring to incongruities such as those between a character’s changed 
motivation and the character’s previously-assigned goal and/or course of action. When a 
motivation discrepancy occurs, the Rebel Agent may generate a new goal that safeguards its 
motivations. For example, if the agent is assigned the task of going to a location, but, along the 
way, it encounters a friend in distress, it will find that continuing on its way while ignoring its 
friend is a motivation violation. In such a situation, it generates a new goal (e.g., “help friend”). 

In our ongoing work, we are developing a conceptual framework for Rebel Agents. To 
ground our research efforts, we are also in the process of implementing a Rebel Agent prototype 
in eBotworks, a cognitive agent framework and simulation platform not previously used for 
character believability, interactive storytelling, and related tasks (Gupta and Gillespie, 2015). Our 
ideas for work proposed herein have emerged from this process, notably from conceptual and 
technical challenges that arose while finding ways to integrate believable agents into eBotworks. 

For the purpose of motivation discrepancies, the world needs to be perceivable and 
interpretable not just in terms of (literal) targets, obstacles, and pathways, but also in terms of 
encounters and incidents potentially causing joy and grief, wonder and regret, etc. Perception, 
hence, needs to be more nuanced, subjective, and, as it turns out, narrower. 

eBotworks bots are instantiated or “born” omniscient and indifferent. By default, they can 
access information about the entire environment map, but filters can be used to restrict what they 
perceive. For our purposes, these filters must arguably be informed by mechanisms of human 
perception. 

In eBotworks, perception of objects’ properties occurs by getting hold of the object first and 
then accessing its properties, with all of the properties being equally well accessible at once. 
However, as shown in our review of related literature, people do not instantly and perfectly 
perceive scenes in their entirety. Perception occurs in a gradual manner and can be characterized 
either by global-precedence or by local-precedence. Furthermore, the tendency towards global or 
local precedence has been found to be influenced by emotion and motivation. How we perceive 
objects and their properties can also be argued to be a function of the object itself, our perception 
(which can be impaired or enhanced in various ways), and other external and internal factors, like 
fog and emotion. Simulating this perceptive style in eBotworks is one of the challenges we are 
addressing. Peters and O’Sullivan (2002) also make the point that omniscience about the 
environment in artificial autonomous agents is not a realistic model of human perception, hence it 
does not lead to believable behavior. 

Our intention is for our prototype Rebel Agent to be endowed with motivation based on 
emotionally-charged autobiographical memories. For example, a bot that reaches a location at 
which something traumatic happened in the past might undergo a goal change, with subjectivity 
overtaking the objectively assigned goal. The retrieval of autobiographical memories is to initially 
occur based on location-specific memory cues. Gomes, Martinho, and Paiva refer to this locative 
form of memory as “location ecphory” (2011). We note that Gomes et al. use exact physical 
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locations (i.e. map coordinates) as memory cues. While this is easier from a practical standpoint, 
the authors admit it does not accurately reflect the way location ecphory works in humans. 
Location coordinates (unless physically perceived with some emotional associations) are unlikely 
to awaken memories and incite strong emotion. Instead, it is the sights, sounds, smells, tastes, and 
tactile sensations pertaining to a place that work to achieve this recollection. Thus, if these traits 
change beyond recognition, the location’s function as memory cue is invalidated. While location 
coordinates are easy for eBotworks bots to retrieve, “visual” perception is perhaps too 
indiscriminate, while notions like that of “smell” are meaningless. How we handle these issues, 
and to what extent we need to, are open questions. A possible approach is to endow bots with 
different sensors for different object properties and to make it possible for the sensors to be 
impaired by factors both internal and external to the bot (which is generally the case with robots 
operating in the physical environment). Then, perceptions of different kinds (which may or may 
not map to actual types of human perception) could be used as varied memory cues. In this work, 
we focus on the perception aspect of this model, leaving a detailed analysis of the memory 
aspects of it for future work. 

As can be seen, a key characteristic of our endeavor is that we are not attempting to create a 
“human-like” bot from scratch, but to somewhat “humanize” an already “robot-like” bot, having 
it grow a modest psyche, and observing the fabric of its being shift, contract, and expand at 
various levels (perception, memory) as it does so. We do not, however, aim to endow bots with a 
complex model of cognition. Believable observable behavior remains our aim, and the concept of 
Rebel Agent remains our primary focus and the context within which we explore perception and 
memory. 

2.  Perceptual Differentiation, Emotion, and Motivation in Psychology 

Herein, we provide an overview of various theories regarding perception differentiation in 
psychology literature. We will, for now, focus on work dealing with visual perception.     
  Perceptual differentiation deals with the steps of the gradual formation of a percept. Navon 
(1977) distinguishes between three general approaches to perceptual differentiation:  

- “Instantaneous and simultaneous” perception of “all visual information at once, no 
matter how rich it is”, an approach attributed to a subset of the work falling under Gestalt 
Psychology, and described by Navon as “probably too naïve”. 

- “Feature-by-feature” perception. 
- Gradual perception, which falls somewhere between the above two.  

  Of the latter, there are multiple variations, corresponding mostly to global-precedence and 
local-precedence approaches. According to the global-precedence approach, perception begins 
with global features, with local ones becoming increasingly clear in later stages. According to the 
local-precedence approach, perception begins from local features. 

According to Smith (1924), the two stages of perception differentiation are (1) “an immediate 
interpretation of the object as a whole” and (2) “an analysis of this vaguely apprehended whole 
into its component parts”. 
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In Dickinson’s (1926) view, perceptual differentiation consists of three stages: (1) “visual 
pattern” (“a thereness, clear in contour but lacking in logical meaning”), (2) the “generic object” 
stage, and (3) the “specific object” stage. 

Citing Winston (1973) and Palmer (1975), Navon sees perceptual differentiation as 
“proceeding from global structuring towards more and more fine-grained analysis”. As to what 
makes a feature global, rather than local, he describes a visual scene as a hierarchical network, 
each node of which corresponds to a subscene. Global scenes are higher up in the hierarchy than 
local ones, and can be decomposed into local ones. 

More recently, it seems to be agreed upon that, while a widespread tendency towards global-
first processing is observed, neither global precedence nor local precedence can be established as 
a general rule applying to all individuals (Zadra and Clore, 2011). 

Individuals with certain personality disorders have been hypothesized to be inclined towards 
either global or local precedence. Yovel, Revelle, and Mineka (2005) state that obsessive-
compulsive personality disorder has been connected to “excessive visual attention to small 
details”, as well as “local interference”: an excessive focus on small details interfering with the 
processing of global information. The same preference for local processing has been associated 
with autism spectrum disorders (Frith, 1989). 
 The tendency towards global or local processing has also been theorized to be culture-
specific: certain cultures have been shown to favor local precedence (Davidoff, Fonteneau, and 
Fagot, 2008).  
 Our initial intention was for perception to be included in our framework solely as a means to 
an end: we needed agents to react to perceived objects and scenes “emotionally”, so that their 
motivation may manifest and potentially lead to rebellion. Perception was simply necessary in 
order to identify motivation discrepancies in the environment. 

However, in psychology, the connection between emotion/motivation and perception has 
been shown to be bidirectional: (1) perception can elicit emotion, and (2) perception is, in its turn, 
affected by emotion. As a result of these findings, perception now plays a more significant role in 
our design of the Rebel Agent. 

Connections between perception, emotion, and motivation are discussed at length by Zadra 
and Clore (2011). Their survey covers the effects of emotion and mood on global vs. local 
perception, attention, and spatial perception. 

Percepts of various types can elicit emotional responses (Clore and Ortony, 2008); a picture 
of a childhood scene can bring about nostalgia, while witnessing a display of violence might elicit 
fear. 

On the other hand, emotion and motivation have been shown to influence perception. 
Negative emotions, such as stress and sadness, have been argued to favor a local perceptual style, 
while positive ones, such as happiness, are claimed to make the use of a global perceptual style 
more likely (Easterbrook, 1959, Gasper and Clore, 2002, Zadra and Clore, 2011). It has also been 
shown that strong motivation can induce local-first processing (Gable and Harmon-Jones, 2008).   
In addition to emotion, perception has also been found to be subject to influence by internal 
factors (e.g. expectations of what the input might be) and external factors (e.g. the dynamic nature 
of the input). 

29



BELIEVABLE EMOTION-INFLUENCED PERCEPTION: THE PATH TO MOTIVATED REBEL AGENTS  

 

An additional interesting connection between emotion and the process of perception 
differentiation has been hypothesized. “Perception microgenesis” is defined by Flavell and 
Draguns (1957) as being “the sequence of events which are assumed to occur in the temporal 
period between the presentation of a stimulus and the formation of a single, relatively stabilized 
cognitive response [in this case, a percept] to this stimulus.” In their study of microgenesis of 
perception, the authors describe the concept of “Vorgestalt”, one of the phases of perception (in 
which the percept becomes increasingly clear and differentiated) according to Undeutsch (1942). 
Vorgestalt is the intermediary percept corresponding to the stage just before the final percept is 
formed. It is described by Flavell and Draguns as being “more undifferentiated internally, more 
regular, and more simple in form and content than is the final form which is to follow it.” 
Interestingly, this phase is also described as being distinctively “emotionally-charged” and 
accompanied by “decidedly unpleasant feelings of tension and unrest which later subside.” What 
is noteworthy about this connection between perception and emotion is that it does not appear to 
depend upon the perceived scene: it is simply emotion associated with the act of perception itself. 

As the relationship between emotion and perception is believed to be bidirectional, an 
accurate model of the interaction between the two would have not just emotion be elicited by 
perception, but also perception be influenced by emotion.  

3.  Perception and Memory in eBotworks  
eBotworks (Gupta and Gillespie, 2015) is a software platform for designing and evaluating 
communicative autonomous systems in simulated environments. “Communicative” autonomous 
systems are those that can interact with the environment, humans, and other agents in robust and 
meaningful ways, including the use of natural language. 

We chose to use eBotworks as our initial research and implementation tool due to its open 
and extendable nature. For example, the platform has a flexible embodied agent architecture with 
swappable simulated robotic components such as chassis, sensors, and motors. This means we 
can create custom components (e.g., sensors and any other perceptual systems) to better 
investigate how agents could perceive in ways similar to those found in psychology literature. 

Additionally, the platform provides swappable and extendable cognitive components to 
control these autonomous agents, including motion planners, mappers, and language 
understanding components. Our extended agents can then potentially be modified to have 
autobiographical memories. These cognitive components, especially the ones involving language 
understanding, could also lend themselves well to the interactive story-telling (narration and 
communication) aspects of our research. 

3.1  eBotworks Perception 

Perception in eBotworks, by default, is omniscient. Agents that perceive are given an instance of 
an “ObjectSensor” component through which they see the environment. Given the nature of a 
perfect simulation, a standard ObjectSensor instantly perceives all of the objects in the world, 
even those that are out of view. This is an even more extreme (and unrealistic) version of the 
Gestalt view expressed in the previous section. 
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For obvious reasons, this is not the ideal perception style for modeling more realistic or 
human-like systems. To narrow down what objects are perceived, filters of various types can be 
added to an ObjectSensor. We provide a few example filters below: 

• Distance Filter: Do not perceive objects more than x meters away. 
• Directional Filter: Do not perceive objects directly behind (some degrees) the agent. 
• Occlusion Filter: Do not perceive objects the agent does not have line-of-sight with. 

  These filters, along with any new ones created, can be combined to make a more realistic 
perception behavior for our agents. For instance, if you combined the three aforementioned 
filters, you would have a perception system loosely modeling that of a human. 

The objects “perceived” by an ObjectSensor are returned to the agent (or more specifically, 
the cognitive component of the agent requesting the information) with basic simulation-level 
information. We are handed the I.D. or label of the object, such as “Box1”, the type of object it is, 
such as “Wooden_Box,” and the physical location and bounds of the object. Additionally, further 
properties can be retrieved from an object database (known as the ObjectLibrary) using the 
object’s type as a key. These include exact object “mass”, a property not included in typical 
human visual perception. Table 1 shows some example object information returned by an object 
sensor “scan” and follow-up queries to the object database. 

Table 1. Example perception and select query results for objects in an eBotworks scene 

ID TYPE LOCATION DATABASE PROPERTIES 
Box1 Wooden_Box (1, 2, 0.5) {“Color” : Brown , “Mass” : 5kg} 
Box2 Wooden_Box (4, 2, 0.5) {“Color” : Brown , “Mass” : 5kg} 

Cone1 Traffic_Cone (-3, 1, 0.5) {“Color” : Orange , “Mass” : 2.5kg} 

 
  This information has been used by cognitive components to do a variety of tasks. For 
example, the positional and boundary information has been logged and interpolated in order to 
perform obstacle avoidance by predicting future locations of moving objects (Gupta and 
Gillespie, 2015).  
 Figure 1 shows an example indoor environment with an eBot making use of these obstacle 
avoidance cognitive components. 
 While the default perception system is, in its current omniscient form, not yet tailored 
to our use case, the flexibility it provides would allow us to form more emotionally-
driven and psychologically-accurate representations for the purposes of the Rebel Agent. 

3.2  eBotworks Memory 

In eBotworks, memory is a simple concept used primarily by cognitive components allowing for 
data to be stored between runs for later use. Structurally, it is defined as a general framework for 
data serialization and deserialization, and supports a variety of predefined data types in addition 
to custom data types. 
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Figure 1. An eBotworks scene with an eBot performing obstacle avoidance. 

  Memory has also been used in the creation of the aforementioned obstacle avoidance system. 
More specifically, it has been used to add a very basic ability to learn from previous experiences. 
An avoidance agent service was created in order to track objects (using the ObjectSensor) and 
detect if they were in a collision course with the agent. 

The service behavior was simple: if an obstacle was about to hit the agent, the agent would 
self-issue a command to move out of the way. Additionally, this service kept a memory, or 
history, of the obstacles avoided and in what world they were avoided. In future runs, this 
memory was loaded back into the agent and could be used in various ways. Notably, if the agent 
has often needed to avoid objects of type X (e.g. a ball), it could try to distance itself further from 
these objects to avoid more near-collision scenarios.  Figure 2 provides an example of a very 
simple avoidance history that includes the object avoided, the avoidance “look ahead” setting 
(how many future time ticks it predicts object locations and detects collisions), and the world in 
which the avoidance took place. 
 

<Memory> 
    <Avoidance object_type="Inflated_Ball" look_ahead="30" world_id="indoor_simple"/> 
    <Avoidance object_type="Inflated_Ball" look_ahead="30" world_id="indoor_simple"/> 
    <Avoidance object_type="Wooden_Box" look_ahead="30" world_id="indoor_simple"/> 
</Memory> 

Figure 2. A simplified example of historical obstacle avoidance memory in XML format 

 Given this specific memory, an agent introduced to the same world or a similar one may 
behave differently around objects of type “Inflated_Ball” and try to path further away from them. 
 While the existing memory framework in eBotworks is not inherently driven by 
psychological concepts, we believe it is extensible enough to model the autobiographical 
memories we wish to endow Rebel Agents with, as in the scenarios presented in Section 4. 
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4.  Psychology-Inspired Perception Scenarios in eBotworks 
To illustrate the difference between human perception and the current approach to perception in 
eBotworks, we introduce several psychology-inspired scenarios and present several approaches to 
making these scenarios possible in eBotworks. 

For the scenarios, we assume a simplified psychological model based on several of the above-
mentioned theories on perception, emotion, and local/global processing. We make the following 
assumptions: 

- The agent is a Rebel Agent (Coman and Muñoz-Avila, 2014). 
- The agent is endowed with an autobiographical memory model in which memories are 

connected to emotions.   
- Default perception is global-first.  
- Agents have current “moods” (emotional states), which can be neutral, positive or 

negative, with the “neutral” mood being the default one. 
- Moods can change as a result of perceiving scenes evoking autobiographical memories 

with emotional associations. 
- Mood affects perception in the ways described in the previous section.  
- All scenarios take place on the same map. 
- In all scenarios, the agent has been assigned a goal that involves movement to a target 

location on the map. Based on its reaction to scenes perceived on its way to the target, the 
agent may or may not rebel. When a rebellion threshold is reached, the agent does rebel. 

- In all scenarios, the agent perceives two scenes on its way to the target. The perception of 
the first scene may or may not affect the agent’s current mood, which, in turn, may 
influence how the second scene is perceived.  

The scenarios are named based on the emotional state of the agent after perceiving the first scene 
and on the type of perception that the agent uses for the second scene. We do not discuss details 
of how the first scene is perceived: it is assumed that this first instance of perception follows the 
same rules as the perception of the second scene (e.g., had the bot’s initial mood not been neutral, 
it would have affected perception). 

1) Neutral – global: On the way to its target location, the agent perceives a box. This evokes 
no emotions, as there are no connections to the box in the autobiographical memory of the 
agent. Then, the agent perceives the second scene: a traffic-cone-lined driving course, using 
global-precedence perception. The agent’s emotion changes to a slightly-positive one, as it 
“enjoys” driving through traffic cone-lined driving courses. This does not elicit a goal 
change.  

2) Positive – global: On the way to its target location, the agent perceives a box. In the 
agent’s autobiographical memory, the box has positive emotional associations (the agent 
previously met a friend agent near the box). This changes the agent’s mood to a positive 
one. Positive moods favor global perception, so they do not change the agent’s default 
perception type. The agent perceives the traffic-cone-lined driving course using global-
precedence perception. The agent’s mood remains positive. This does not elicit a goal 
change. 
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3) Negative – local: On the way to its target location, the agent perceives a box. In the agent’s 
autobiographical memory, the box has negative emotional associations (perhaps, in the 
past, the agent did not successfully avoid collision with it and got “hurt”). Therefore, the 
agent’s current mood changes to a negative one. Soon afterwards, the agent perceives the 
traffic-cone-lined driving course. Due to the agent’s mood, local interference occurs, and 
the agent largely ignores the overall scene, while focusing on the color of the cones (which 
is similar to that of the box), which reminds it of a sad occurrence from the past, like a 
collision. This changes the agent’s mood to a more intensely negative one, which causes 
the rebellion threshold to be reached and the agent to “rebel”. 

  The above scenes can be built and simulated in eBotworks with little additional effort as they 
require little to no new models to be made. The more difficult task will be tying in perception and 
memory in the way we have outlined in the scenarios into the agents and simulation. 

First, we will address perception. All objects, and their properties (through lookups), are 
perceived. Filters will then be added in order to narrow the agent’s view. With a few visibility 
filters, we can easily simulate local interference. 

To handle memory, we can give agents a very basic concept of autobiographical memory 
based on either objects or scenes. For instance, the object “box” could be tied to an emotional 
memory label that is an enumerated GOOD, BAD, or NEUTRAL. Additionally, such a label 
could be given to groups of objects or entire rooms, such as the cone-lined driving course. 

Now let’s consider the Negative – local scenario we have just introduced. If an object elicits 
a negative emotional response from the agent, we could potentially tie that object’s properties (or 
a subset of them) with that negative response. For instance, let’s say the box that creates this 
negative response is orange. In the following scene, when the agent is in its “bad mood,” it may 
only be capable of seeing the orange cones in the driving course, or maybe even just the color 
orange. This narrow perception that ignores the rest of the scene could successfully mimic local 
interference. 

While eBotworks bots are not endowed with human-like memory and perception faculties by 
default, we claim the above techniques will help make a more realistic and emotionally motivated 
agent. 

5.  Conclusions and Future Work 
We are in the process of implementing Rebel Agents to help achieve character believability in 
various forms of interactive storytelling. However, in order to completely achieve this 
believability, the agents’ perception and memory need to also function in a believable manner. 

We have provided a brief survey of perception differentiation and the relationship between 
emotion and perception in psychology literature, and used it as the basis for creating and 
proposing scenarios showcasing emotion-influenced perception for possible future 
implementation in eBotworks. We have also discussed how the implementation of these scenarios 
might be achieved with existing components of the framework. 

In future work, we would like to explore the memory aspects of eBotworks in a way similar 
to the way perception was analyzed in this paper. We will also work on building implementations 
based on the proposed scenarios or similar ones. With psychology-inspired perception and 
memory in place, we can work to achieve a more believable Rebel Agent. 

34



A. COMAN, K. GILLESPIE, AND H. MUÑOZ-AVILA 

References 
Bates, J. (1994). The role of emotion in believable agents. Communications of the ACM, 37(7), 

122-125. 
Clore G.L., & Ortony A. (2008) Appraisal theories: How cognition shapes affect into emotion. In 

Handbook of Emotion 3, 628–642 New York: Guilford Press.. 
Coddington, A. (2006). Motivations for MADbot: A motivated and goal directed robot. 

Proceedings of the Twenty-Fifth Workshop of the UK Planning and Scheduling Special Interest 
Group (pp. 39-46). 

Coman, A., & Muñoz-Avila, H. (2014). Motivation discrepancies for rebel agents: Towards a 
framework for case-based goal-driven autonomy for character believability,. Proceedings of the 
22nd International Conference on Case-Based Reasoning (ICCBR) Workshop on Case-based 
Agents. 

Davidoff, J., Fonteneau, E., & Fagot, J. (2008) Local and global processing: Observations from a 
remote culture. Cognition;108(3):702–709. 

Dickinson, C. A. (1926) Experience and visual perception. Amer. Jour. Psychol., 37, 330. 
Easterbrook J. (1959) The effect of emotion on cue utilization and the organization of behavior. 

Psychol. Rev., 66(3):183–201. 
Flavell, J.H., & Draguns, J. (1957) A microgenetic approach to perception and thought, 

Psychological Bulletin, 54, 198-199. 
Frith, U. (1989) Autism: Explaining the enigma. Oxford, UK: Blackwell Scientific Publications. 
Gable P.A., & Harmon-Jones E. (2008) Approach-motivated positive affect reduces breadth of 

attention. Psychol. Sci., 19:476–482. 
Gasper K, & Clore G.L. (2002) Mood and global versus local processing of visual information. 

Psychol. Sci., 13:34–40 
Gomes, P.F., Martinho, C., & Paiva, A. (2011) I’ve been here before! Location and appraisal in 

memory retrieval. Proceedings of the Int. Conf. on Autonomous Agents and Multiagent 
Systems. (AAMAS 2011). 

Gupta K. M., & Gillespie K. (2015) eBotworks: A software platform for developing and 
evaluating communicative autonomous systems. AUVSI Unmanned Systems, Atlanta, GA. 

Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. 
Cognitive Psychology. 9(3):, 353–383.  

Palmer, S.E. (1975) Visual perception and world knowledge: Notes on a model of sensory-
cognitive interaction. In D. A. Norman , D. E. Rumelhart, and the LNR Research Group, 
Explorations in cognition, San Francisco, CA: Freeman. 

Peters, C.,& O’ Sullivan, C. (2002) Synthetic vision and memory for autonomous virtual humans. 
Computer Graphics Forum, 21(4):743–753. 

Smith, F. (1924) An experimental investigation of perception. Brit. Jour. Psychol., 6, 321. 
Undeutsch, U. (1942) Die Aktualgenese in ihrer allgemeinpsychologischen und ihrer 

charakterologischen Bedeutung. Scientia, 72, 37-42; 95-98. 
Vattam, S., Klenk, M., Molineaux, M., & Aha, D.W. (2013). Breadth of approaches to goal 

reasoning: A research survey. In D.W. Aha, M.T. Cox, & H. Muñoz-Avila (Eds.) Goal 

35



BELIEVABLE EMOTION-INFLUENCED PERCEPTION: THE PATH TO MOTIVATED REBEL AGENTS  

 

Reasoning: Papers from the ACS Workshop (Technical Report CS-TR-5029). College Park, 
MD: University of Maryland, Department of Computer Science. 

Winston, P.H. (1973) Learning to identify toy block structures. In R.L. Solso (Ed.) Contemporary 
issues in cognitive psychology: The Loyola Symposium, Washington D.C. 

Yovel I., Revelle W., & Mineka S. (2005). Who sees trees before forest? The obsessive 
compulsive style of visual attention. Psychological Science, 16, 123-129. 

Zadra J.R., & Clore G.L. (2011) Emotion and perception: The role of affective information. Wiley 
Interdisciplinary Reviews: Cognitive Science. 

 
 
 

36



2015 Annual Conference on Advances in Cognitive Systems: Workshop on Goal Reasoning 

 

Toward a formal model of planning, action, and interpretation  

with goal reasoning 
 

Michael T. Cox MICHAEL.COX@WRIGHT.EDU 
Wright State Research Institute, Wright State University, Dayton, OH 45435 USA 

Abstract 
Many algorithms have been presented in artificial intelligence for problem solving and planning. 
Given a goal, these algorithms search for solutions that achieve a goal state by actions or interactions 
with an environment. However a major assumption is that goals are given, usually by a user directly 
as input or as part of the problem definition. Furthermore, once given, the goals do not change. Here 
we formalize the notion that goal specification and goal change are themselves major parts of the 
problem-solving process. We apply this model to learning in a goal reasoning context. 

1.  Introduction 

In virtually all AI systems, goal states are predefined and exogenously provided by an external user. 
But to have a continuing existence in time, agents must be flexible to survive and to continue to be 
useful. Recent work on goal reasoning (Aha, Cox, & Munoz-Avila, 2013) has started to examine 
how intelligent agents can reason about and generate their own goals instead of always depending 
upon a human user directly. Much of this previous work has been situated within the context of the 
automated planning community and has borrowed some of their formal notations as a theoretical 
framework. This paper will further extend the standard planning formalism to account for 
mechanisms of goal-reasoning and goal-driven autonomy. The result integrates notations for 
planning, action, and interpretation within the scope of goal reasoning. 

As an example, consider a package delivery domain (e.g., see Figure 1) having the following 
characteristics. There is a network of locations 
connected by roads; and from time to time, 
vehicles may need to transport objects from one 
location to another as requests come in. Deliveries 
may be accomplished, for example, by picking up 
and delivering packages (e.g., in Figure 1, 
delivering pallets of bottles to a cola bottling 
plant). AI planning research has considered similar 
but simplified domains in which the world is static 
(i.e., no states change unless the agent performs an 
action), there is a given fixed goal to achieve (e.g., 
the delivery of certain specified packages), and the 
planning problem ends at any world state in which 

Atlanta

Coke

Birmingham

Chattanooga
McCaysville

Pepsi

Bottle
Distr.

Greenville

Sugar Distr.

Dalton

Bank1

Bank2

Figure 1. Package delivery domain 
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the goals are satisfied. In some sense, routine delivery of packages on a route is hardly a problem 
requiring intelligence. These problems omit any consideration of why those goals need to be 
achieved and what the agent should do after they have been achieved. In a more realistic model, 
bottles need to be delivered to the bottling plant when the inventory is low, and it might be 
necessary for an agent to explain and hence understand this and to generate a new goal when 
inventory is unexpectedly low. 

We begin this paper with a section that provides our formal representations for goal reasoning 
and shows how it frames the research using a simple blocks world example. The subsequent section 
examines the formalism within a kind of goal reasoning called goal-driven autonomy. Then we 
look at learning within this context and apply it to the logistics example above. This section is 
followed by related research. A brief summary concludes the article. 

2.  Formal Representations for Goal Reasoning 

Much of the research in AI planning has focused on a restricted case called classical planning, in 
which all actions have deterministic effects, and the task is to generate a plan that reaches any of a 
predefined set of goal states. 

2.1  Classical Planning Theory 

A classical planning domain is typically defined (Ghallab, Nau, & Traverso, 2004) as a finite state-
transition system in which each state 𝑠𝑠∈  𝑆𝑆 = {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛} is a finite set of ground atoms of a 
function-free, first-order language 𝓛𝓛.1 A planning operator is a triple o = (head(o), pre(o), eff(o)), 
where pre(o) and eff(o) (o’s preconditions and effects, respectively) are sets of literals (logical 
atoms and negated logical atoms), and head(o) is a syntactic term of the form name(args), where 
name is the operator’s name and args is a list of the variables in pre(o) and eff(o). Each action is a 
ground instance of a planning operator.  

An action 𝛼𝛼 ∈ 𝐴𝐴 is executable in a state s if s ⊨ pre(𝛼𝛼), in which case the resulting state is (s − 
eff−(𝛼𝛼)) ∪ eff+(𝛼𝛼), where eff+(𝛼𝛼) and eff−(𝛼𝛼) are the atoms and negated atoms, respectively, in 
eff(𝛼𝛼). A plan π = 〈 𝛼𝛼1,…, 𝛼𝛼n〉 is executable in 𝑠𝑠 if each 𝛼𝛼i is executable in the state produced by 
𝛼𝛼i−1. 

For a classical planning domain, the state-transition system is a tuple Σ = (𝑆𝑆,𝐴𝐴, γ), where 𝑆𝑆 is 
the set of all states and 𝐴𝐴 is the set of all actions as above. In addition, gamma is a state transition 
function 𝛾𝛾: 𝑆𝑆 × 𝐴𝐴→ 𝑆𝑆 that returns the resulting state of an executable action given a current state. 
Thus from any given state and action, one can infer the subsequent state 𝛾𝛾(𝑠𝑠,α) → 𝑠𝑠′ that follows 
after the action is executed.  

A classical planning problem is a triple 𝑃𝑃 = (Σ, 𝑠𝑠0,𝑔𝑔), where Σ is a state transition system, 𝑠𝑠0 is 
the initial state, and 𝑔𝑔 (the goal formula) is a conjunction of first-order literals.  A goal state 𝑠𝑠𝑔𝑔 
satisfies a goal if 𝑠𝑠𝑔𝑔 ⊨ 𝑔𝑔. A plan π represents a (possibly empty) sequence of plan steps (i.e., 
actions) 〈𝛼𝛼1𝛼𝛼2 … 𝛼𝛼𝑛𝑛〉  that incrementally changes the state of the world. Here we will use a notation 
that enables indexing of the individual steps or sub-sequences within the plan. In equation (1) we 
use the subscript 𝑔𝑔 to indicate a plan that achieves a specific goal. A plan is composed of the first 
action 𝛼𝛼1 followed by the rest of the plan 𝜋𝜋𝑔𝑔[2 . .𝑛𝑛]. 
                                                 
1 Most classical planning implementations use the language PDDL (Fox & Long, 2003) based loosely on 
function-free first order languages. 
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𝜋𝜋𝑔𝑔[1. .𝑛𝑛] = 𝛼𝛼1 | 𝜋𝜋𝑔𝑔[2 . .𝑛𝑛] =  〈𝛼𝛼1𝛼𝛼2 … 𝛼𝛼𝑛𝑛〉      (1) 

Now we recursively redefine gamma as mapping either single actions or plans to states. Hence 
𝜋𝜋𝑔𝑔 is a solution for 𝑃𝑃 if it is executable in 𝑠𝑠0 and 𝛾𝛾(𝑠𝑠0,𝜋𝜋𝑔𝑔) ⊨ 𝑔𝑔. Recursively from the initial state, 
execution of the plan results in the goal state (see equation 2). 

 
𝛾𝛾�𝑠𝑠0,𝜋𝜋𝑔𝑔� = 𝛾𝛾 � 𝛾𝛾(𝑠𝑠0,α1),  𝜋𝜋𝑔𝑔[2. . 𝑛𝑛]� → 𝑠𝑠𝑔𝑔      (2) 

2.2  Planning with Nondeterminism 

In the research literature on planning, uncertainty about the possible outcomes of actions has been 
dealt with mainly in two different ways: using Markov Decision Processes (MDPs) (Kaelbling, 
Littman, & Cassandra, 1995; Dean, Kaelbling, Kirman, & Nicholson, 1995; Boutilier, Dean, & 
Hanks, 1999) and using model-checking techniques (Cimatti, Roveri, & Traverso, 1998; Aiello et 
al., 2001; Bertoli, Cimatti, and Traverso, 2006) like those used for program verification. Which 
approach is best depends on the situation: MDPs are useful when the transition probabilities are 
important (e.g., when it is desired to maximize expected utility), and model-checking is useful when 
the transition probabilities are unknown or unimportant (e.g., if it is necessary to achieve a goal 
regardless of which nondeterministic outcome occurs). In both approaches, an action with multiple 
possible outcomes is often (though not always) represented as a nondeterministic classical operator 
o = (head(o), pre(o), eff1(o), eff2(o), …,effk(o)) that has multiple possible sets of effects. When this 
representation is used with MDPs, each set of effects effi(o) will have a probability pi(o), where p1 
+ p2 + … + pk = 1. Instead of a sequential plan π that achieves a goal, MDPs learn a policy π (i.e., 
a mapping from states to actions) that maximizes expected utility. In this paper we will use the 
classical definition for clear illustration of the extension to interpretation and goal reasoning.2 

2.3  Interpretation and Goal Reasoning 

Broadly construed, the topic of goal reasoning concerns cognitive systems that can self-manage 
their goals (Vattam, Klenk, Molineaux, & Aha, 2013). Goal reasoning has recently extended the 
classical formulation by relaxing the assumption that the goal is always given by an external user 
(Cox, 2007; see also Ghallab, Nau & Traverso, 2014). Although the planning process may start 
with an exogenous goal, a dynamic environment may present unexpected events with which the 
system must contend. In response a goal reasoner must be able to generate new goals at execution 
time as situations warrant.  

Formally, the function beta (see 3a) returns a (possibly) new goal formula 𝑔𝑔′ given some state 𝑠𝑠 
and a current goal 𝑔𝑔. As such, beta is a state interpretation process that perceives the world with 
respect to its goals. It is central to goal formulation and goal management. 

𝛽𝛽(𝑠𝑠,𝑔𝑔) → 𝑔𝑔′          (3a) 

2.3.1 Goal transformation  

Unlike classical planning models that assume goals to be static and given externally, the goal 
reasoning model views goals as malleable and subject to change (Cox & Zhang, 2007). For example 

                                                 
2 Note also that we are ignoring in the classical model the set of exogenous events 𝐸𝐸 that are similar to actions 

but are outside the control (and possibly the observation) of the reasoning system. 
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a chess player may start out with the goal to achieve checkmate (𝑔𝑔ch). But given a series of 
unsuccessful opening moves (i.e., 𝜋𝜋𝑔𝑔𝑐𝑐ℎ[1. . 𝑘𝑘] where 𝑘𝑘 < 𝑛𝑛), the player may change the goal to 
draw (𝑔𝑔dr). We represent this goal transformation as a specialization of (3a) shown in (3b). 

 𝛽𝛽�𝛾𝛾(𝑠𝑠0,𝜋𝜋𝑔𝑔𝑐𝑐ℎ[1. .𝑘𝑘]),𝑔𝑔𝑐𝑐ℎ� → 𝑔𝑔𝑑𝑑𝑑𝑑        (3b) 

Goals can undergo various transformations including priority shifts and goal abandonment (Cox 
& Veloso, 1998). Over time goals follow arcs or trajectories through a space of goals (Bengfort 
and Cox, this volume). Most importantly goals can be created or formulated given a problem state.  

2.3.2 Goal formulation 

From some initial state 𝑠𝑠0 and no goal state, an agent formulates a new goal as shown in 
expression (3c).  

𝛽𝛽(𝑠𝑠0,∅) → 𝑔𝑔           (3c) 

In one sense, this can still entail user-provided goals. If the input state is one resulting from a 
speech act whereby a human requests a goal to be achieved, the function of beta is to interpret the 
intention of the human and to infer the goal from the utterance. In another sense, however, this 
significantly differs from the classical formulation of a problem. For goal reasoning in its simplest 
form, a planning problem can be cast as the tuple 𝑃𝑃 = (Σ, 𝑠𝑠0). Given a state transition system and 
an initial state, the goal-reasoning task is to formulate a goal (if a problem indeed exists in the initial 
state) and create (and execute) a plan to achieve it. Under classical planning (indeed under most 
planning schemes), the system halts when the goal state is achieved (or even when a plan is simply 
found). In goal reasoning, an agent can search for new problems once all goals are achieved by 
interpreting the final goal state 𝑠𝑠𝑔𝑔. In this case, expression (3c) becomes as in (3d). 

 𝛽𝛽�𝑠𝑠𝑔𝑔,∅� → 𝑔𝑔′          (3d) 

Of course, and as we will see, goals can potentially be formulated from any current state. 

2.4  A Model of Plans, Actions, and Interpretation 

A plan to achieve a goal 𝛽𝛽(𝑠𝑠,∅) can now be written as 𝜋𝜋𝛽𝛽(𝑠𝑠0,∅). Using this notation, we combine 
planning, action (plan execution), and interpretation in equation (4). 

𝛾𝛾�𝑠𝑠0,𝜋𝜋𝛽𝛽(𝑠𝑠0,∅)� =  𝛾𝛾 ( 𝛾𝛾(𝑠𝑠0,α1),  𝜋𝜋𝛽𝛽�𝛾𝛾(𝑠𝑠0,α1),𝛽𝛽(𝑠𝑠0,∅)�[2. .𝑛𝑛])    (4) 

When beta generates an exogenous initial goal 𝑔𝑔1 from the initial state 𝑠𝑠0 and simply returns the 
input goal from all other states (i.e., 𝑔𝑔′ = 𝑔𝑔 in 3a), the formalization reduces to classical planning 
with a user-given goal. That is, equation (4) is equivalent to (2) because (3a) represents a trivial 
boundary case. However when goals change (or new ones are added), plans may need to change as 
well. 

The problem with the current formalization then is that, in the recursive right-hand side of (4) 
above, the plan is not static as defined in (1). That is, it is not necessarily of size 𝑛𝑛 − 1. Instead, 
because the goal may change due to beta, the goal reasoner may need to re-plan and alter the length 
and composition of the remainder of the plan.3  To cover this contingency, we define a (re)planning 
function phi that takes as input a state, goal, and current plan as in (5).  

                                                 
3 I thank Don Perlis for pointing out this anomaly. 
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𝜑𝜑�𝑠𝑠,𝑔𝑔′,𝜋𝜋𝑔𝑔[1. .𝑛𝑛]� →  𝜋𝜋𝑔𝑔′[1. .𝑚𝑚]       (5) 

Note that in the general case 𝑔𝑔′ may or may not be equal to 𝑔𝑔. Inserting the re-planning function 
into (4), we obtain equation (6) below that resolves the anomaly indicated above.  

𝛾𝛾�𝑠𝑠0,𝜋𝜋𝛽𝛽(𝑠𝑠0,∅)� =  𝛾𝛾 ( 𝛾𝛾(𝑠𝑠0,𝛼𝛼1),𝜑𝜑�𝛾𝛾(𝑠𝑠0,𝛼𝛼1),𝛽𝛽�𝛾𝛾(𝑠𝑠0,𝛼𝛼1),𝛽𝛽(𝑠𝑠0,∅)�,𝜋𝜋𝛽𝛽(𝑠𝑠0,∅)[2. .𝑛𝑛]�)  (6) 

Given phi, the formalism is general across different variations of goal reasoning and (re)planning.  
  𝜋𝜋𝑔𝑔1            𝜋𝜋𝑔𝑔2 
 
𝛾𝛾 �𝑠𝑠0, 𝜑𝜑(𝑠𝑠0,𝛽𝛽(𝑠𝑠0,∅),∅)� = 𝛾𝛾 (𝛾𝛾(𝑠𝑠0,𝛼𝛼1), 𝜑𝜑�𝛾𝛾(𝑠𝑠0,𝛼𝛼1),𝛽𝛽�𝛾𝛾(𝑠𝑠0,𝛼𝛼1),𝛽𝛽(𝑠𝑠0,∅)�,𝜑𝜑(𝑠𝑠0,𝛽𝛽(𝑠𝑠0,∅),∅)[2. .𝑛𝑛]�)  

  𝑔𝑔1     𝑠𝑠1           𝑠𝑠1  𝑠𝑠1   𝑔𝑔1  𝜋𝜋𝑔𝑔1 

             𝑔𝑔2       𝜋𝜋𝑔𝑔1[2..n] 

2.5  A Blocks World Example 

Many details are buried within the 
beta interpretation function. Just 
consider a situation where goals are 
given to the agent by a human user in 
natural language. In this case, beta 
does not just input a goal in first-order 
predicate form. Instead it must 
translate an utterance or the results of 
a speech act into a predicate 
representation. That it, it must infer 
the intent of the user from the current 
state of the world and what was said. 
Indeed when a user both states 
imperatives and asks questions, the 
illocutionary act intended is often a 
request for the agent to assume a 
goal.4 Consider the utterance “Put 
block-B on block-C.” Although 
spoken as an action, the intent is 
actually for the agent to assume the 
goal on the behalf of the speaker to 
achieve the state of the block B on top 
of C. Although we will not discuss the 
specific details here, Figure 2 shows 
how the formalism organizes the 
context of a dialog between human 
and agent so that intent of the last 
utterance “Add one more” is possible. 

                                                 
4 For questions, the intended goal is a knowledge goal (Bengfort & Cox, in press; Ram, 1990). 

Figure 2. Partial context for blocks example 
(read from the bottom up) 
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Figure 2 hides many details as 
well. Plan 𝜋𝜋1 has two actions that are 
executed sequentially, not 
concurrently in one invocation of 
gamma as the figure suggests. A more 
realistic depiction of the plan 
execution is shown in Figure 3. Here 
we see that the execution of the first 
action results in an intermediate state. 
From that state no new goal is 
formulated, and subsequently no new 
re-planning is performed. The goal is 
achieved in the next state 𝑠𝑠2 and beta 
evaluates the goal achievement, 
returning the null goal.  

3.  Goal-Driven Autonomy 

Goal-driven autonomy (GDA) (Aha, 
et al., 2010; Cox, 2007; 2013; Klenk, 
Molineaux, Aha, 2013; Munoz-Avila, 
et al., 2010) is a kind of goal reasoning 
that focuses on goal formulation and 
explanation. In the GDA framework, 
the current goal 𝑔𝑔c is a distinguished 
member of the set of all goals the 
agent currently desires (equation 7), 
but differs in that the agent has 
selected it for planning. Also in the GDA framework, the goal reasoner produces not only a plan, 
π, but also a set of expectations, X = {𝑥𝑥1, … , 𝑥𝑥𝑘𝑘} that represent constraints on the states resulting 
from each of the i=1..k actions 𝛼𝛼i. When any currently observed state, 𝑠𝑠𝑐𝑐, diverges from the 
system’s expected state, 𝑠𝑠𝑒𝑒 = 𝑥𝑥𝑐𝑐∈ X, a discrepancy, d ∈ D, is said to occur.  

G = { 𝑔𝑔1, 𝑔𝑔2, …𝑔𝑔c, …𝑔𝑔n}        (7) 

Given a discrepancy, a new goal may be warranted, so the system will retrieve an abductive 
explanation 𝜒𝜒 of d to determine a cause in the context of 𝑠𝑠𝑐𝑐. The explanation is performed to resolve 
the discrepancy. Finally given d, χ, and 𝑠𝑠𝑐𝑐, goal generation seeks to determine a new current goal, 
𝑔𝑔c, that seeks to remove the discrepancy d by either changing the state 𝑠𝑠𝑐𝑐 to 𝑠𝑠𝑒𝑒 or by learning a new 
expectation that justifies 𝑠𝑠𝑐𝑐. As such we now define a GDA planning problem as a 5-tuple in (8). 

Pgda = (∑, 𝑠𝑠𝑐𝑐, 𝑔𝑔c, 𝑠𝑠𝑒𝑒, G)         (8) 

In the case where plan execution outcomes equal expectations (i.e., 𝑠𝑠𝑐𝑐 = 𝑠𝑠𝑒𝑒 = 𝑠𝑠0) and thus no 
explanation is necessary (i.e., 𝜒𝜒 = Ø) and the current goal is given (i.e., 𝑔𝑔𝑐𝑐 = 𝑔𝑔), Pgda devolves into 
a classical planning problem P. 

Figure 3. The execution of 𝜋𝜋1. Here we drop the user 
imperative in Figure 2 to put A on B. 
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According to Cox (2007), the explanation5 𝜒𝜒: 𝛿𝛿→…→ 𝑠𝑠𝑐𝑐 contains a salient antecedent 𝛿𝛿 that 
represents the root cause of the problem signaled by the discrepancy. The goal then is to remove 
the cause of the problem, hence 𝑔𝑔c = ¬δ. Goal insertion is thus a search for an explanation that 
operationalizes the problem in terms of root causes. See Table 1 for the algorithm and Cox (2013) 
for a cognitive architecture that instantiates the algorithm. 

Table 1: GDA algorithm for adding new goal to current goal set 

function goal-insertion (𝑠𝑠𝑐𝑐 : STATE; 𝛼𝛼i : OPERATOR; G: SET): SET; 

1. 𝑠𝑠𝑒𝑒 ← expects(𝛼𝛼i) 
2. Detect discrepancy, d: 𝑠𝑠𝑐𝑐 ≠ 𝑠𝑠𝑒𝑒 
3. If ∄d, then 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛(G) 
4. Find an explanation, 𝜒𝜒:𝛿𝛿 → ⋯ → 𝑠𝑠′,  

such that 𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑠𝑠(𝑠𝑠′, 𝑠𝑠𝑐𝑐) 
5. 𝜎𝜎 ← 𝑟𝑟𝑛𝑛𝑢𝑢𝑢𝑢𝑢𝑢(𝑠𝑠′, 𝑠𝑠𝑐𝑐) 
6. 𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟(𝜎𝜎,𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑛𝑛𝑝𝑝(𝜒𝜒)) 
7. if  𝑠𝑠𝑠𝑠𝑟𝑟𝑢𝑢𝑠𝑠𝑢𝑢𝑢𝑢𝑟𝑟𝑝𝑝�𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑛𝑛𝑝𝑝(𝜒𝜒)� 

then G  ← G  ∪  ¬𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟(𝜎𝜎, 𝛿𝛿)  
8. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛(G) 

So consider again the blocks world example. When told to put A on B, the system easily creates 
a plan to clear A, pick it up, and place it on B. During the planning it had to solve the subgoal of 
having A clear before picking up the block. But B is already clear and it expects it to stay that way. 

                                                 
5 The explanation is actually a graph 𝜒𝜒 = (𝑉𝑉,𝐸𝐸) with 𝛿𝛿∈ 𝑉𝑉 an element of the source nodes and 𝑠𝑠𝑐𝑐∈ 𝑉𝑉 a 

distinguished element of the sink nodes. See also Cox (2011). 

Figure 4. Explanation-based goal formulation 
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Now suddenly assume that block B catches on fire and is no longer clear (see Figure 4 and Paisner, 
Cox, Maynord & Perlis, 2014 for an extended domain description).  

Figure 4 shows state 𝑠𝑠2 after the agent unstacked pyramid D from block A during the execution 
of plan 𝜋𝜋2.  The agent is still holding D, and B is on fire and hence no longer clear. Here the 
expectation 𝑠𝑠𝑒𝑒 is clear(B), whereas the current observed state 𝑠𝑠𝑐𝑐 is ¬clear(B). A very simple 
explanation is that a block being on fire causes it not to be clear. 

𝜒𝜒: 𝑐𝑐𝑛𝑛_𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟(𝑢𝑢)→ ¬ 𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠𝑟𝑟(𝑢𝑢) 

Given the substitution set 𝜎𝜎 =  {𝑢𝑢 ↦ 𝐵𝐵}, the goal ¬𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟(𝜎𝜎, 𝛿𝛿) becomes the achievement of 
¬𝑐𝑐𝑛𝑛_𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟(𝐵𝐵) and is added to the goal set G={𝑔𝑔2}. Planning then can create a sequence of actions 
to put out the fire before continuing. The planning function represented by phi needs to be 
intelligent enough to infer that the putdown action is duplicated in both plans 𝜋𝜋2 and 𝜋𝜋3. However 
for beta to be equally intelligent, it should have been informed of the current plan. Therefore, we 
redefine (3a) as follows. 

𝛽𝛽(𝑠𝑠,𝑔𝑔,π) → 𝑔𝑔′          (3a’) 
In (3a’), beta can use the current plan for expectations. Indeed, we stated in the example above 

that 𝑠𝑠𝑒𝑒, the expectation that B will remain clear, occurred during planning for  𝜋𝜋2. With such input, 
beta can also generate a goal to retry a failed plan step during execution (e.g., vacuum cleaner did 
not remove all the dirt during a particular sweep). Furthermore, goal reasoning can be clear when 
trying to determine under unexpected and dynamic contexts (e.g., sudden resource reductions) 
whether plan adaptation or goal adaptation is the most rational choice. In this way too, planning is 
not only informed by goals from interpretation, interpretation is informed by planning.  

4.  GDA and the Learning of Goals 

Beta is less about planning per se than about understanding the larger context within which a 
planning agent finds itself. If planning and interpretation are to be successful, learning must also 
be taken into consideration. Technically learning in this context is about inducing a set of goal 
states and applicability conditions from observed behavior of an execution system; and the main 
role for planning is to enable a GDA agent to infer which of the possible goal states are achievable 
within the expected costs and rewards of achieving those goals.  

In the simplest sense, goal formulation can be cast as a novel classification task. An agent is 
given a state transition system, ∑, and a current state, 𝑠𝑠𝑐𝑐, and it must infer the current goal, 𝑔𝑔c. 
Using a naïve supervised learning approach, one can present the system with many positive and 
negative examples of the tuple (𝑠𝑠,𝑔𝑔). From these examples, a learning algorithm can then learn a 
mapping in the form of a decision tree with goals at the leaves (see Maynord, Cox, Paisner, & 
Perlis, 2013 for an implementation of this approach). However the time it takes to learn such 
relations and the effort it takes to prepare suitable examples may not be available. Instead another 
approach is to exploit failure in performance by explaining why expectations do not apply in new 
situations and then using these explanations to learn appropriate goal orientations (i.e., to learn 𝐺𝐺, 
the set of useful goal states).  

But we do not limit ourselves to goal generation alone, because if so the human burden of 
providing an external goal is shifted to the human specification of the complete range of goal 
representations. Instead if it is to be effective, the agent should also learn the classes of states in the 
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world that constitute useful goals. This general approach represents a new conception of 
autonomous behavior. 

Reconsider the planning domain from the introduction section and Figure 1. If a GDA-based 
agent interacts with other agents performing actions, it may observe a sugar distributor make a 
delivery to an Atlanta cola plant and then watch the manufacturer produce Coca-Cola at that 
location. The Coca-Cola is then delivered to Greenville where an advertising campaign has 
concluded. Sales then are observed to produce profits. Given these exogenous-event observations 
from the execution of πCoke and πSDistr, the GDA-agent can understand the causal relations by 
performing a goal regression (Veloso, 1994; Waldinger, 1981) upon the goal-subgoal graph 
entailed by ∑ and the observations (see Figure 5). Each node in the graph is an instantiated action-
operator whose preconditions must be satisfied before the action can be executed. A tree of 
conjuncts can then be extracted to give the causal explanation structure shown in Figure 6. For 
example the state at(Cola-5, Coke) exists because the conjunct has(Coke, $) ∧ at(Bottles-2, 
Coke) ∧ at(Sugar-1, Coke) has been satisfied. If any term is unsatisfied, then the explanation 
structure collapses. 

Now a subsequent series of observations may violate the expectations present in this causal 
structure. For example the system may expect Coke to have further profits in Greenville, but Coke 
might lack the sales. Sugar may be delivered and promotions may occur, but without bottles, no 
cola is produced and hence no deliveries arrive for sale. In this case, the goal insertion algorithm 
(Table 1) would detect the discrepancy between the expectation has(Coke, sales) and the 
observation ¬has(Coke, sales). An explanation process would then use the prior explanation 
(from Figure 6) to derive a relational sequence responsible for the impasse. The resulting causal 
chain is shown in Figure 7.  

         

Figure 7. Failure causal chain 
 

Sell
actor: Coke

Promote
actor: Coke

Make-drink
actor: Coke

Deliver
actor: Coke

has(Coke,Sales-11)

advertised(Cola) at(Cola-5, Greenvl)

at(Cola-5,Coke)
has(Coke,$)

at(Sugar-1,SDistr.)

Deliver
actor:SDistr

at(Bottles-2,Coke) at(Sugar-1,Coke)

Figure 6. Causal explanation 
structure 

Figure 5. Goal-subgoal graph 

advertised(Cola) at(Cola-5, Greenvl)

at(Sugar-1,SDistr.)

has(Coke,$)

at(Cola-5,Coke)

at(Bottles-2,Coke) at(Sugar-1,Coke)

has(Coke,Sales-11) ¬ has(Coke,Sales-11)

¬ at(Cola-5, Greenvl)

¬ at(Cola-5,Coke)

¬ at(Bottles-2,Coke)
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The goal insertion process would use the extracted failure chain to generate a goal and to add it 
to the agent’s current set of desired goals G. In Figure 7 the salient causal antecedent δ of the 
explanation is ¬at(Bottles-2, Coke), that is, the bottles are not at the plant (and that is ultimately 
why Coke lost profits). The new goal, 𝑔𝑔c, is therefore to obtain the state of bottles being at this 
location (equation 9).  

𝑔𝑔c = ¬ (¬at(Bottles-2, Coke)) = at(Bottles-2, Coke)     (9) 

Given a cooperative agent domain where the GDA agent represents a bottle distributor (i.e., 
BDistr) that coordinates with the sugar distributor and the cola manufacturers, the GDA agent can 
solve the new goal by generating a plan to perform the delivery method. That is, it will load the 
bottles at the McCaysville location, drive the load to Atlanta, go to Coke, and unload the shipment 
there. However a number of technical problems remain. Two in particular that we will discuss now 
concern issues of goal generalization and of goal anticipation. 

4.1  Goal Generalization 

First the goal above must be generalized. It is not useful to learn an overly specific goal of getting 
a particular shipment to a destination. Rather the agent must generalize the shipment to any 
available instance of type bottles. Furthermore, and this is a bit more subtle, the agent must 
eventually generalize the destination to any cola manufacturer in the domain (and not to just any 
location). That is Pepsi as well as Coke require bottle stock. By doing so, this simple explanation-
based generalization rules out many irrelevant potential goal states such as at(bottles,bank) or 
at($,Dalton). Here we intend to induce the goal expression 𝑔𝑔c in equation (10) and to add 𝑔𝑔c ∈ G. 

𝑔𝑔c = at(b,m) ∧ bottles(b) ∧ cola-manufacturer(m)     (10) 

4.2  Goal Anticipation 

Second the agent needs to anticipate the conditions under which the causal chain in Figure 7 might 
re-occur and plan to prevent it in the future. It should not wait until Coke sales fail each time. Thus 
in this example the GDA agent learns to generate the goal, 𝑔𝑔c, when the bottles are low in inventory, 
not waiting until bottles run out and sales plummet. The agent learns a characterization of the state, 
𝑠𝑠𝑐𝑐, in tuples (𝑠𝑠𝑐𝑐, 𝑔𝑔c), that is a rule 𝑔𝑔c ← 𝑠𝑠′. This is the problem of learning goal-selection criteria 
(Powell, Molineaux, & Aha, 2011). 

Unlike Powell and colleagues who use human guidance to acquire goal-selection knowledge, we 
suggest that an agent can learn this through unsupervised means. For example the state of inventory 
at manufacturers may include the predicates surplus, low, very-low, and out-of. The GDA agent 
should learn that bottles should be delivered when the supplies are low or very low, rather than 
waiting until they are out or trying to deliver when a surplus exists. In another instance of failure 
driven learning, the GDA agent would learn to rule out the expression surplus(m,b) ∧ bottles(b) 
∧ cola-manufacturer(m) after it attempts to deliver bottles to a manufacturer having a bottle 
surplus. In this case we assume that the unload operation would not be given permission at the 
destination. Essentially the learned rule asserts the goal 𝑔𝑔c when bottles at the manufacturer are 
low. This is what we meant when we stated previously that the agent should be able to explain that 
bottles need to be at the bottling plant because the inventory is low.  
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4.3  Deciding Which Goals Are Worth Generating 

Just because a goal state 𝑠𝑠𝑔𝑔 would be a desirable state to be in, there are several situations in which 
𝑔𝑔 may not be a useful goal for a goal reasoning agent to formulate. For example, 𝑠𝑠𝑔𝑔 may be 
impossible to achieve; or in a nondeterministic domain, it may be impossible to guarantee that 𝑠𝑠𝑔𝑔 
will always (or usually) be achieved. Even if 𝑠𝑠𝑔𝑔 is achievable, there may be another goal state 𝑠𝑠𝑔𝑔′ 
that is nearly as desirable as 𝑠𝑠𝑔𝑔 and can be achieved at much lower cost than 𝑠𝑠𝑔𝑔. In such a situation 
it may be better for GDA to insert 𝑔𝑔′ into its agenda rather than 𝑔𝑔. In general it is an open research 
question as to the best way to learn which goals are worth formulating and which to commit to first.  

5.  Related Research 

An alternative formal model (Roberts et al., 2014; in press) treats goal reasoning as goal refinement. 
Using an extension of the plan-refinement model of planning, Roberts and colleagues model goal 
reasoning as refinement search over a goal memory M, a set of goal transition operators R, and a 
transition function delta that restricts the applicable operators from R to those provided by a 
fundamental goal lifecycle. Unlike the formalism here that represents much of the goal reasoning 
process with the single function beta, Roberts proposes a detailed lifecycle consisting of goal 
formulation, goal selection, goal expansion, goal commitment, goal dispatching, goal monitoring, 
goal evaluation, goal repair, and goal deferment. Thus many of the differential functionalities in 
beta are distinct and explicit in the goal reasoning cycle. However the model here tries to distinguish 
between the planning and action side of reasoning (i.e., phi and gamma) and the interpretation and 
evaluation components inherent in goal reasoning (i.e., beta). We can roughly note, however, that 
phi relates to Robert’s goal expansion and repair, whereas beta relates to goal formulation, 
monitoring, and deferment. Missing in my current analysis is the processes of goal dispatching, 
commitment, and evaluation.  

Additionally Roberts proposes a more complex goal structure. A goal node includes not only the 
desired state but also super-ordinate and subordinate goal linkages, goal constraints, quality 
metrics, and pointers to the current plan associated with the node. We have been more circumspect 
regarding the syntactic structure of a goal. In section 2.1 on classical planning, we defined the goal 
formula to be a conjunction of first-order literals. More generally we would also allow universally 
quantified predicate conjuncts as in Cox & Veloso (1998; Veloso, Pollack & Cox, 1998). Thus in 
a package delivery domain we allow ∀𝑝𝑝 | (𝑝𝑝𝑠𝑠𝑐𝑐𝑘𝑘𝑠𝑠𝑔𝑔𝑟𝑟 𝑝𝑝) ∧  ∃ 𝑝𝑝|(𝑝𝑝𝑟𝑟𝑠𝑠𝑟𝑟𝑢𝑢𝑛𝑛𝑠𝑠𝑟𝑟𝑢𝑢𝑐𝑐𝑛𝑛 𝑝𝑝 𝑝𝑝) ∧
(𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑟𝑟𝑢𝑢𝑐𝑐𝑛𝑛 𝑝𝑝 𝑝𝑝) as a goal to deliver all packages to their destination. Under the scope of this goal 
expression, new goals (𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑟𝑟𝑢𝑢𝑐𝑐𝑛𝑛 𝑝𝑝 𝑝𝑝) may arise during planning or plan execution time as 
additional packages arrive at the warehouse for delivery. See also Talamadupula, Benton, 
Kambhampati, Schermerhorn, & Scheutz (2010) for their concept of open world quantified goals. 
But overall, much exists in common with the representations here and with Roberts including an 
association with learning (see Roberts & Aha, this volume). 

The two problems of goal generalization and goal anticipation make the learning task as we 
discuss it here considerably different from related research. Planning research is concerned with 
generating an action sequence to carry out a goal that is given to a system by an external user (see 
survey in Ghallab, Nau, & Traverso, 2004). In the larger scope of integrated cognitive systems, we 
intend to better understand autonomy as the capacities (1) to recognize novel problems and (2) to 
independently form the desire to remove these problems. Goal anticipation and goal generalization 
are instrumental processes associated respectively with these two aspects of autonomy. However 

47



M. COX 

unlike bottom-up, data-driven learning approaches, the top-down explanation of anomalies is a 
central pivot in our learning approach (Cox, 2011).  

The explanation-based approach we take to learning should not be confused with the older, 
mainly deductive approach called explanation-based learning (DeJong & Mooney, 1986; Mitchell, 
Keller, & Kedar-Cabelli, 1986). We use explanation techniques (Cox, 2011; Cox & Ram, 1999; 
Roth-Berghofer, Tintarev, & Leake, 2011) that depart significantly from earlier work, being more 
abductive, knowledge rich, and case-based. The idea is to retrieve a graph structure called an 
explanation pattern given a discrepancy and a context, to instantiate it and to bind it to the 
discrepancy, and then to adapt it to the context. This also departs from other GDA systems (e.g., 
ARTUE, Molineaux, Klenk & Aha, 2010) which use abductive causal inference in the form of an 
assumption-based truth maintenance system or ATMS (de Kleer, 1986) for explanation. 

As mentioned previously, goal formulation or generation has been an instrumental task in 
research on goal reasoning and goal-driven autonomy. In the ARTUE system, goal formulation 
occurs as a response to discrepancy detection and is based upon knowledge structures called 
principles (Klenk, Molineaux, & Aha, 2013). Other approaches rely upon links between specific 
states and a priori goal candidates (Dill & Papp, 2005) or triggering schemas based on the current 
state (Talamadupula, Benton, Schermerhorn, Kambhampati, & Scheutz, 2009). In the EISBot 
interactive game-playing system, association rules called goal formulation behaviors link 
discrepancy-explanation types to goal types (Weber, Mateas & Jhala, 2010). Here we discussed the 
use of the negation of explanation root causes to generate new goals. On the other hand, the learning 
of goal state information and its generalization is novel. The closest research is that of learning goal 
selection knowledge (Jaidee, Munoz-Avila, & Aha, 2011; Powell, Molineaux, & Aha, 2011). 

6.  Conclusion 

This research attempts to reconcile some of the existing research on goal reasoning with theoretical 
frameworks in the automated planning and the intelligent agents communities. The resulting goal-
reasoning formalism augments notions of planning and plan execution with formal models of re-
planning and both goal generation and goal change. In situations where goals are given at initialize 
time and do not change throughout the process and where plans execute as expected, the model 
devolves into a classical planning formalism. We have extended the model to a kind of goal 
reasoning called goal-driven autonomy, and we have applied the model to the explanatory learning 
of those goals worth pursuing. 
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Abstract 
Autonomous agents are beginning to play larger roles within team-oriented tasks and missions in 
various domains.  Many reasoning agents are designed to perform in or assist with a single, static 
goal or task within an environment.  Our aim is to design and develop an autonomous squad 
member that assists a squad with conducting a surveillance mission by identifying and reacting 
dynamically to changing situations and goals.  We present a goal reasoning system for this agent 
that integrates natural language processing, explanation generation, and plan recognition 
components to recognize these changing situations and the squad’s responses to them.  Our system 
uses goal selection and plan generation to respond to such changes.  We describe the architecture 
we use to integrate these components and provide a case study that demonstrates how they work 
together to make a robust and adaptive autonomous agent. 

1.  Introduction 
Robots are increasingly being added to teams to improve their ability to accomplish specific tasks 
and missions (ARL, 2011; Kott et al., 2010).  Most instances involve a single task or objective for 
the agent or team to complete that is static and uninterrupted.  This may suffice for simple tasks 
and environments, but in more realistic situations the team’s goals are dynamic and can be 
interrupted or changed at any time. 
 Our objective is to design and develop an autonomous squad member (ASM) that can 
accompany and assist a squad of soldiers on military missions.  These missions can be, and often 
are, conducted in hazardous and hostile areas.  In such environments, unexpected events (e.g., 
encountering enemy fire, explosives, and other obstacles) can occur at any moment without 
warning.  Therefore, the ASM must identify and react to highly dynamic and unpredictable 
environments to coordinate with its team.  Furthermore, as its human teammates will typically 
react quickly and instinctively to such changes, the ASM must also recognize rapid changes in 
team behaviors. 
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Meeting these needs requires the ASM to have multiple reasoning capabilities.  First, it must 
recognize any relevant situational and environmental changes that have occurred.  We address 
this need by bolstering standard observational capabilities (e.g., static environmental and map 
information, a priori mission knowledge) with natural language understanding (NLU).  Next, the 
agent must recognize local events and the actions its squad is performing based on this 
observational data.  We handle this problem by using explanation generation to abductively infer 
actions and events that may have been responsible for the ASM’s observations.  Using this 
information, the ASM can infer the current goals and plans of other squad members by 
performing plan recognition in situ using the history of recognized actions.  Based on the team's 
inferred goals, the ASM’s goal selection algorithm should then choose a new goal for the agent 
that coordinates with the team.  Plan generation then creates a sequence of actions to accomplish 
this goal.  Finally, the ASM should act in accordance with its plan.  We detail each of these steps 
and their supporting techniques in this paper. 

In Section 2 we examine related goal reasoning (GR) systems and discuss military programs 
that promote autonomous agents as teammates.  Section 3 provides a more detailed description of 
the ASM domain and its inherent challenges, while Section 4 describes our GR process and its 
major components.  Section 5 introduces our demonstration scenario and showcases an initial 
proof of concept in that domain.  We conclude and discuss future research plans in Section 6. 

2.  Related Work 
Numerous GR agents have been created and applied to control unmanned autonomous systems, 
some of which adapt to unexpected events and situations.  For example, Coddington et al. (2005) 
describe MADbot, an agent that can change its goals dynamically.  It offers insight into supplying 
agents with underlying drives and (primarily internal) motivations that can initiate goal change.  
We agree with the importance of motivated goal changes, but aim to generate goals based not 
only on internal motivations but also external factors such as the actions of team members and 
exogenous events in the environment. 
 Other GR agents have been designed to respond to dynamic problems and tasks (e.g., 
Talamadupula et al., 2011).  While these reason about situation changes, they do not always 
detect and recognize them in intuitive ways.  Instead, they often require structured interfaces to 
communicate goal changes with the agent.  For instance, Talamadupula et al. use a “Problem 
Update” structure to communicate new sensory information and goal changes to the agent, but in 
real-world situations such information is not always made available so easily and quickly. 

Work has been done, however, to extend these technologies with natural language processing 
and understanding techniques.  Cantrell et al. introduce a full architecture (DIARC) that is 
designed to handle natural language and dialogue processing (2012).  While this work does 
integrate natural language into a larger goal reasoning architecture, it mainly focuses on language 
and capability-related commands.  For instance, telling an agent it can open a door to enter a 
room (Cantrell et al., 2012).  We feel it is important for the ASM, in its military mission-related 
domain, to understand language not necessarily directed at it or in command form.  Consider a 
scenario where one of the agent’s teammates encounters an improvised explosive device (IED) 
near a convoy: the agent may simply sense the teammate yell “IED” or “Explosive.”  Therefore, 
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while there has been notable NLU work applied to GR, we feel that our domain requires handling 
more simple and overheard styles of language.  We respond to this challenge by forming domain-
appropriate NLU techniques to incorporate into the ASM. 

A related problem to explanation is diagnosis of discrete-event systems (Sampath et al., 
1995), also referred to as history-based diagnosis (Gspandl et al., 2011), which finds action or 
event histories that account for a series of observations including observed events.  Aside from 
representations, our formal model of explanations differs from the standard discrete-event system 
diagnosis model in the following ways: (1) we distinguish actions from events (which are 
deterministic), to better understand which actors are responsible for which actions and to predict 
unavoidable consequences; (2) we provide a formal model of ambiguous occurrences and a way 
to characterize their correctness, and (3) we assume that only partial states, and never actions or 
events, are observable.  Diagnosis efficiency is considered a major issue in this community; 
recent efficient systems convert diagnosis problems to satisfiability or planning problems and 
adopt efficient techniques for solving the new problem (Grastien et al., 2011; Sohrabi et al., 
2010). 

Aside from more general GR research, several military programs are investigating the use of 
autonomous agents alongside teams of humans.  One of these, the Safe Operations in Urban and 
Complex Environments (SOURCE) (Kott et al., 2010) Program, aims to develop collaborative 
autonomous agents to assist warfighters in dynamic environments in a safe and trustworthy 
manner. Similarly, the Robotic Collaborative Technology Alliance Army Program calls for the 
research and development of perceptive, intelligent autonomous vehicles that can interact with 
human teams (ARL, 2011).  However, many of the collaborative systems proposed by these 
programs have not progressed beyond single-objective tasks with little to no external interference 
or danger.  This presents a significant limitation, as more realistic missions like reconnaissance 
tasks (Section 5) are dynamic and can involve unexpected and dangerous events.  A primary 
objective of our work on the ASM is to address such events. 

We extend this diverse body of research on GR and autonomy by laying the groundwork for a 
more adaptive ASM. 

3.  Challenges in Real World Domains and Missions 
The domain and mission characteristics for our proposed ASM present realistic and difficult 
challenges to GR and autonomy in general.  When teams of warfighters undergo missions, such 
as reconnaissance, the mission environment is often hazardous and almost always dynamic. 

Dynamic environments pose a major threat to autonomous systems that cannot adapt on the 
fly to changing conditions.  For instance, a priori information about the world may be given in the 
form of maps and satellite images that may be inconsistent with the real-time state of the mission 
environment.  Unforeseen obstacles, such as downed trees and boulders, can block a mission 
route.  For an agent to collaborate effectively with its team it must react to dynamic environments 
such as these, and plan to act and assist in whatever way it can (e.g., help pull the tree out of the 
road or calculate a new route to the current destination). 

In addition to being dynamic, in these environments a team may encounter unexpected and 
anomalous situations throughout a given mission (e.g., a squad can encounter enemy mortar fire 
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while en route to a given destination).  An agent cannot always be expected to perceive or sense 
the physical mortar shells being fired, nor can its teammates be expected to stop what they are 
doing and tell the agent what is happening (e.g., via some structured user interface).  Instead, a 
robust autonomous agent must understand and explain what is happening around it based on 
observations and context clues, including those coming from its teammates in the form of natural 
language.  For example, recognizing that its squad leader has yelled “Mortar fire incoming” can 
provide insight into what is currently happening, as well as how the rest of the team is expected to 
respond.  The ASM can process these events without requiring focused operator input. 

While we do not claim to have a complete solution to these issues that are inherent in realistic 
mission scenarios, but our system takes steps towards handling such scenarios. 

4.  Autonomous Squad Member Goal Reasoning Process 
Our GR process includes five primary steps, represented by five distinct components: (1) a 
Natural Language Interpreter, (2) an Explanation Generator, (3) a Plan Recognizer, (4) a Goal 
Selector, and (5) a Plan Generator.  Figure 1 displays the ASM’s decision cycle, which involves 
using these components.  Observations originate from the world (or simulation) the agent 
inhabits, which we label as the Environment.  Ultimately, the agent’s actions feed back into the 
Environment, completing the decision cycle.  We outline and describe each of the five primary 
components in the remainder of this section. 

 
 

Figure 1. The Autonomous Squad Member’s Goal Reasoning Process. 

55



 GOAL REASONING FOR AN AUTONOMOUS SQUAD MEMBER  

 

4.1  Natural Language Interpreter 

The ability to interpret natural language uttered by teammates is a key capability for 
understanding nearby events, both expected and anomalous, in many domains.  We begin the 
interpretation process by parsing spoken utterances using a domain-specific grammar and a chart 
parser from the Natural Language Toolkit (NLTK) (Bird, 2006).  We keep the grammar small by 
considering only semantic categories related to the mission and potential anomalies that could be 
encountered (e.g., utterances regarding the recon mission, sniper encounters, teammate status).  
While a grammar is inherently limited in its vocabulary, the structured and well-known 
terminology of the military domain (e.g., NATO phonetic alphabet, device and role terminology) 
allows us to cover large portions of standard mission-related conversation and phrases in a 
compact manner.  This grammar, coupled with a chart parser from the NLTK, produces parses for 
the raw utterances heard by the ASM.  It reformulates these parses into semantically tagged 
structures that denote utterance types (e.g., mission-related, anomalous-event-related, squad-
related) and content.  Finally, these semantic structures are mapped to ontological information 
representing the implications and meanings of the utterance(s) being processed.  We refer to this 
generated information as interpreted utterances. 
 Table 1 displays a few example utterances that could be overheard during a mission, as well 
as some interpretations that could be generated from each.  For example, if the ASM senses a 
teammate saying “Enemy Sniper,” it can assume the teammate means that there exists an enemy 
in the world that is holding a sniper rifle.  Variables in Table 1 are indicated by a leading question 
mark (e.g., ?enemyA and ?teammateA), and are implicitly existentially quantified.  As output, 
the language understanding process generates semantic interpretations in the form of facts about 
the world, which are passed to the Explanation Generator for further processing. 

Table 1. Example semantic interpretations for several sample utterances. 

Utterance Example Interpretations 
“Enemy Sniper” (exists ?enemyA) 

(holding ?enemyA sniper-rifle) 
(is-self ?self) 
(on-team ?self ?teamA) 
(not (on-team ?enemy ?teamA)) 

“Incoming Mortar” (exists ?enemyB) 
(holding ?enemyB mortar) 
(fired ?enemyB mortar) 

“Man Down” (exists ?teammateA) 
(on-team ?teammateA ?teamA) 
(is-self ?self) 
(on-team ?self ?teamA) 
(status ?teammateA injured) 

4.2  Explanation Generator 

For the ASM to understand what its teammates are doing at any given moment, it needs to 
monitor its environment to recognize their individual actions.  The Explanation Generator is 
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responsible for this task; it accepts as input state information about the world in the form of 
observations and interpreted utterances from the Natural Language Interpreter.   

To perform this task, we use a modified version of the DiscoverHistory algorithm 
(Molineaux, Kuter, & Klenk, 2012).  DiscoverHistory is appropriate because it is designed to 
function in a partially observable environment and infer exogenous events and actions based on 
static observations (Molineaux & Aha, 2014).  Unlike most other algorithms for explanation 
generation, DiscoverHistory operates efficiently by incrementally constructing explanations, and 
by maintaining explanations as new observations arrive rather than processing large batches.  
Additionally, it recognizes the difference between actions and events, and can ascribe particular 
world changes to the actions of known actors.  This is important to support plan recognition in 
circumstances where individual actors may have different and even competing goals. 

DiscoverHistory detects and resolves inconsistencies in existing explanations by applying one 
of the following inconsistency resolution methods to update the explanation: 

• Hypothesize a new event or action 
• Bind an unbound variable 
• Remove an event or action 
• Assume a property of the initial state 
• Constrain the ordering of two unordered occurrences 

DiscoverHistory conducts a search through explanation space; at each step of the search, it selects 
an inconsistency and applies all possible inconsistency resolutions to find successor nodes in the 
search space.  This search terminates when a pre-specified number of explanations are found with 
only ambiguous inconsistencies, which are inconsistencies that can be resolved by binding a 
variable in multiple ways, and are considered trivial because the required conditions are met by 
several existing objects. 
 To properly integrate the partial knowledge discovered by the Natural Language Interpreter, 
we extended DiscoverHistory with the ability to incorporate existential quantifiers in its 
observations, which can in turn be bound during the explanation generation process.  This 
resolves, or grounds, the semantic interpretations generated by the Natural Language Interpreter.  
Binding steps in the explanation process unify the variables in the interpreted utterances with 
existing (or newly discovered) entities in the environment.  To illustrate this process, let’s revisit 
the example interpretation in Table 1, namely the “Enemy Sniper” utterance.  Suppose the ASM is 
aware of an enemy sniper nearby, and has labeled it person1.  DiscoverHistory would 
recognize that the assertion (holding ?enemyA sniper-rifle) is inconsistent with 
existing knowledge, and resolves that inconsistency by binding the variable ?enemyA to the 
value person1.  This reconciles the inconsistency, as (holding ?enemyA sniper-rifle) 
is supported by prior observations.  This contextualizes the remaining information, allowing the 
inference that person1, who holds a sniper-rifle, is not on the same team as self (i.e., 
the robot).  Thus, the situation-agnostic interpretation is integrated with other observations of the 
current environment. 
 The modified DiscoverHistory algorithm also uses the predicted plan from the Plan 
Recognizer (Section 4.3) to help infer actions.  Assuming that these predictions are correct, this 
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speeds up the explanation generation process by removing several otherwise unnecessary search 
steps to find correct actions. 

The primary output of the Explanation Generator is the set of actions that were inferred to be 
performed by the ASM’s teammates.  These actions are then given as input to the Plan 
Recognizer. 

4.3  Plan Recognizer 

Once the ASM has inferred the actions of its teammates, it can attempt to identify the higher-level 
plans and goals they are trying to accomplish via these actions.  The task of identifying an ASM’s 
plans based on their actions is referred to as plan recognition. 

We extend and use a plan recognizer called the Single-Agent Error-Tolerant Plan Recognizer 
(SET-PR) (Vattam, Aha, & Floyd, 2014; 2015) to infer the plans (and goals) of the ASM’s 
teammates.  SET-PR’s case-based approach to plan recognition is designed to robustly tolerate 
observational input errors, including missing, mislabeled and extraneous actions.  This capability 
is especially useful when partial and imperfect observability conditions exist that are typical in 
the simulations and scenarios that we use to test our GR agent. 

SET-PR learns to recognize plans from a given plan library 𝐶 (i.e., a set of cases), where each 
case is a tuple 𝑐 = 𝜋!,𝑔! , 𝜋! is a known plan, and 𝑔! is its corresponding goal.  Each case’s 
plan 𝑐.𝜋! is modeled as an action-state sequence  𝕤 = 𝒂𝟎, 𝒔𝟎 ,… , 𝒂𝒏, 𝒔𝒏 , where each action 
𝒂𝒊 is a ground operator in the planning domain, and 𝒔𝒊 is a ground state obtained by executing 𝒂𝒊 
in 𝒔𝒊!𝟏, with the additional caveat that 𝒔𝟎 is an initial state, 𝒂𝟎 is null, and 𝒔𝒏 is a goal state.  Plan 
𝑐.𝜋! does not store the propositional representation of 𝕤.  Instead, 𝕤 is encoded as an action 
sequence graph ℇ𝕤 and then stored in 𝑐.𝜋!.  Vattam et al. (2014; 2015) introduce the action 
sequence graph representation for plans and discuss the reasons for using this representation in 
SET-PR.  Inputs to SET-PR are sequences of actions performed by an observed agent and the 
resulting states.  Like plans in cases, these observed sequences are modeled as action-state 
sequences and represented as action sequence graphs.  Input graphs are then used to retrieve 
matching cases from the case base.  SET-PR uses approximate graph matching techniques, 
described to compare an input against each case’s plan 𝑐.𝜋! and assign a score to 𝑐.  The case 
with the highest score is returned; SET-PR predicts that the agent is following the plan 𝑐.𝜋! to 
achieve the goal 𝑐.𝑔!. 
 We adapted SET-PR, a general-purpose plan recognizer, to fit into the ASM agent 
architecture.  First, to operate in a multi-agent domain, we modified it to recognize a team’s plan 
(containing individual team members’ actions) and a team’s goal (containing individual team 
members’ goals).  In particular, we modified SET-PR’s plan representation by adding an actor to 
each action as its first argument.  Furthermore, 𝑐.𝑔! now represents a team goal and contains a 
set of goal propositions, one per team member.  Second, the input to SET-PR is no longer 
provided by the environment, but is instead provided by the Explanation Generator.  Explanations 
contain the set of all inferred actions and events, from which the subset of team members’ actions 
are extracted and used as input to SET-PR. 

From the Plan Recognizer we obtain the most likely plans and goals of the ASM’s 
teammates.  To illustrate, suppose that the output of the Explanation Generator consists of the 
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following three observed actions of the ASM’s teammates: (follow MEMBER2 MEMBER1), 
(follow MEMBER3 MEMBER1), and (move MEMBER1 ROUTE1)).  Using this an input, 
SET-PR returns the following recognized team goal: 

MEMBER1 -> (investigate-route MEMBER1 ROUTE1) 
MEMBER2 -> (investigate-route MEMBER2 ROUTE1) 
MEMBER3 -> (investigate-route MEMBER3 ROUTE1)   

SET-PR also returns the following recognized plan, which contains the predicted actions of team 
members: 

((follow MEMBER2 MEMBER1),(follow MEMBER3 MEMBER1), 
 (move MEMBER1 ROUTE1), 
 (DIRECT MEMBER1 (DIRECTIVE investigate-checkpoint)), 
 (gesture MEMBER1 POINT), 
 (move MEMBER2 LOCA), (move MEMBER3 LOCB),…). 

4.4  Goal Selector 

The Goal Selector determines a goal for the ASM based on the goals of its teammates.  If the 
robot has 𝑛 teammates, the goal tuple 𝑇 = (𝑔!,𝑔!,… ,𝑔!) contains the currently recognized goal 
𝑔! of each teammate.  Our current implementation uses a static goal (i.e., no goal selection is 
performed) but we are currently investigating several alternative goal selection strategies. 
 As future work, we plan to implement a goal selection strategy where the ASM selects its 
goal based on its teammates’ current goals (i.e., 𝑔𝑜𝑎𝑙𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛:  𝒯 → 𝒢, where 𝒯 is the set of all 
goal tuples and 𝒢 is the set of all goals).  However, we also plan to investigate a strategy that 
examines how the teammates’ goals have changed over time.  The ASM would use the currently 
observed goals 𝑇! at time 𝑡 and the sequence of previously observed goals 〈𝑇!!!,𝑇!!!,… 〉 to 
select a new goal (i.e., 𝑔𝑜𝑎𝑙𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛:  𝒯  ×    𝒯  ×…  ×  𝒯 → 𝒢).  For example, the ASM could 
observe a teammate that historically has scouting goals but now has a goal reserved for squad 
leaders.  This would allow the robot to infer that something has happened to the original squad 
leader and act accordingly (e.g., inform central command). 

Goal selection strategies require criteria governing when the ASM’s goal should be changed.  
Our initial plan is to use selection criteria provided by a domain expert.  We prefer this in our 
domain because it avoids introducing additional error into the ASM (e.g., if it attempted to learn 
goal selection criteria) and prevents switching to an incorrect goal.  If the ASM switches to an 
incorrect goal, it could impact the squad’s ability to complete their task or mission.  However, we 
also plan to explore strategies for learning goal change criteria in situations where criteria from an 
expert are not available or incomplete.  The majority of our Goal Selector remains future work.  

The selected goal is then sent as input to the Plan Generator, which uses the goal to generate a 
plan containing the ASM’s future actions. 

4.5  Plan Generator 

Plan Generation takes the intended goal of the ASM, changed or unchanged, and determines the 
best way of accomplishing it.  Whenever the goal is changed during goal selection, a new plan is 
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generated for the selected goal.  Replanning also occurs when an existing plan becomes 
inadmissible due to unexpected environment changes.  In this situation, the generated plan 
attempts to fulfill the goal of the prior plan.  In both cases, new plans are generated by the 
continuous time HTN planner SHOP2-PDDL+ (Molineaux, Klenk, & Aha, 2010).  This enables 
the ASM to react to both the changing goals of the squad, and unexpected changes to the 
environment, as guided by task decomposition knowledge. 
 SHOP2-PDDL+ is ideal for use as the Plan Generator in the ASM domain for several 
reasons.  First, it can represent continuous time and exogenous events that predictably occur after 
a time, such as a requested air strike or arrival of other agents at a location.  Most planners can 
represent continuous changes to an environment only through durative actions, which don't 
properly represent how the choices of others affect the world.  Second, SHOP2-PDDL+ is fast 
relative to other continuous-time planners, due to the task decomposition knowledge it uses 
internally to guide search and eliminate large areas of the search space.  This is important due to 
the need for frequent replanning introduced by goal changes and unexpected environment change.  
Third, SHOP2-PDDL+ is effective in partially observable domains.  The integration of SHOP2-
PDDL+ with DiscoverHistory, both of which use the same knowledge representation, has been 
demonstrated in past studies as an effective means of understanding hidden information and 
creating plans that rely on it (Molineaux et al., 2012; Wilson et al., 2013; Molineaux & Aha, 
2014).  To support this, agent beliefs about hidden states generated by the explanation system are 
combined with observations from the environment.  Together, these are sent to the Plan Generator 
as the initial state. 

The plan generated by the Plan Generator is the decision output by the decision cycle, and 
replaces any prior plan generated in a previous cycle.  Plans are enacted by sending actions to the 
environment at appropriate intervals.  Enacting a plan fulfills the goal found in goal selection, 
which in turn relies on the environment interpretation generated by the first three components in 
the cycle.  This entire cycle is continuously repeated, generating and enacting new plans as 
necessary, for as long as the agent inhabits its environment. 

5.  Integration Proof of Concept 
In this section, we describe our proof-of-concept system, focusing on our demonstration scenario 
and a discussion of the system’s performance. 

5.1  Integration Scenario 

To demonstrate the effectiveness of our GR agent, we created a scenario that encompasses both 
the standard mission-based objective that our domain normally contains and a characteristic 
anomalous event that disrupts mission execution. 
 The ASM accompanies a squad on a typical reconnaissance mission.  Figure 2 shows an 
example mission map with checkpoints and routes labeled.  A squad performs this mission by 
moving between checkpoints on a pre-specified route (e.g., Start Area, CP Alpha, CP Bravo).  At 
each checkpoint, the squad splits into smaller teams or sub-squads that perform investigations of 
nearby areas, each of which follows a pre-determined investigation route (e.g., RA1, RA2, RB1, 
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RB2).  The mission is complete when the final checkpoint on the main route has been 
investigated.  Our scripted scenario occurs as follows: 

1. Squad receives a reconnaissance mission 
2. Squad moves to checkpoint Alpha 
3. Squad members investigate routes RA1 and RA2, and then return to Alpha 
4. Squad begins moving to checkpoint Bravo 
5. Squad encounters an enemy sniper 
6. Squad members eliminate the enemy sniper 
7. If casualties have occurred, mission is aborted 
8. Squad continues on to checkpoint Bravo 
9. Squad members investigate routes RB1 and RB2, and then return to Bravo 
10. Mission complete 

The sniper encounter is an unplanned event that causes the squad to abandon their existing goals 
in favor of new ones, such as running for cover and attempting to locate the enemy.  The 
autonomous agent must recognize these changes based on observations and natural language and 
act accordingly.  Further, a member of the team will announce that the enemy has been 
neutralized, which the agent must recognize and use to update its understanding of the situation.  
Finally, the squad members continue on their mission and complete it, resuming their previously 
interrupted goal. 
 
 
 

Figure 2. Reconnaissance Scenario. 
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5.2  Demonstration Walkthrough 

Below we provide a walkthrough of our demonstration in the form of data snapshots (for one 
cycle through the GR process) as we progress through the scenario.  Explanation generation was 
requested to generate two explanations at each opportunity. 
 The initial goals of the team members are given as follows: 

 
At this point, member1 and member3 are at checkpoint alpha and member2 is about to 
investigate route-alpha1. 
 The Natural Language Interpreter receives the following utterance as input: 
 

 
…and generates the following interpretation as output: 
 

 
This interpretation tells us that there is a person ?teammate on the robot’s team ?myTeam that 
is injured, along with some information about the utterance ?utterance.  It is then passed 
along as input to the Explanation Generator. 

Before the utterance was made, the Explanation Generator had the following explanation 
about the environment: 
 

 
In this explanation, it is believed that teammate member2 was starting to move along route 
route-alpha1 when an unknown person #v795 fired a shot towards his/her location. 

(observe-environment s=392) 
(move route-alpha1 location-alpha member2 s=393) 
(gps-observe-location member2 location-alpha s=394) 
(observe-environment s=415) 
(shoot-toward location-alpha #v795 s=416) 
(observe-environment s=438) 

... 
(is-person ?teammate) 
(on-team ?teammate ?myTeam) 
(person-has-property ?teammate injured) 
(is-utterance ?utterance) 
((utterance-text ?utterance) “Man down”) 
((utterance-type ?utterance) statement) 

Utterance: "Man down" Time: 600.013 Speaker: member3 

Goal, member1: (investigate-route route-1) 
Goal, member2: (investigate-route route-1)  
Goal, member3: (investigate-route route-1) 
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 Adding the utterance interpretation from the Natural Language Interpreter (along with other 
observed information) to this existing explanation results in the following inconsistencies:  

 
The inconsistencies indicate that the new observations include information not explained by prior 
events: 

• A previously unknown person #v958 was injured 
• member3 uttered a sentence 
• A sound occurred at location-alpha 

It also generates the following ambiguities: 
 

 
The ambiguities indicate that new observations include information not bound to prior 
knowledge: 

• A previously unknown person #v958 is on some team #v957 
• The robot is on team #v957 

The Explanation Generator attempts to resolve these inconsistencies and ambiguities by deriving 
two possible explanations (new information is shown in bold). 
 
 
 
 
 

inconsistency  
 condition: person-has-property (#v958 injured) 
   prior: <none>  
   next: (observe-environment s=461) 
inconsistency  
 condition: utterance ("man down" 600.013 member3) 
   prior: (observe-environment s=438) 
   next: (observe-environment s=461) 
inconsistency  
 condition: sound-occurs (600.013 speech location-alpha) 
   prior: (observe-environment s=438) 
   next: (observe-environment s=461) 

ambiguity  
 condition on-team (#v958 #v957) 
   prior: (observe-environment s=438) 
   next: (observe-environment s=461) 
ambiguity  
 condition: on-team (robot1 #v957) 
   prior: (observe-environment s=438) 
   next: (observe-environment s=461) 

63



 GOAL REASONING FOR AN AUTONOMOUS SQUAD MEMBER  

 

Explanation 1  
This first explanation indicates that a previously unknown person at location-4 was shot. 

 
Explanation 2 
The second explanation indicates that someone was injured earlier, and member3 is commenting 
on it now. 
 

 
The Explanation Generator maintains these plausible explanations, and a single most-plausible 
explanation is given as input to the Plan Recognizer.   

At this time, the goals of member1 and member3 have changed.  However, the Plan 
Recognizer is unable to immediately detect these changes.  Further observations lead to 
refinements of these explanations.  Subsequently, the Plan Recognizer is provided with the 
following history of actions and events: 
 

(assume-initial-value (object-location #v958) location-4 s=1) 
... 
(observe-environment s=392) 
(move inv-routea1 loca member2 s=393) 
(gps-observe-location member2 inv-routea1 s=394) 
(observe-environment s=415) 
(shoot-toward loca #v795 s=416) 
(person-clipped #v958 s=(interval :start 417 :end 460)) 
(observe-environment s=438) 
(speak-aloud "man down" member3 s=439) 
(human-hears member3 "man down" s=440) 
(human-hears member1 "man down" s=440) 

(assume-initial-value (person-has-property #v958 injured) s=1) 
... 
(observe-environment s=392) 
(move inv-routea1 loca member2 s=393) 
(gps-observe-location member2 inv-routea1 s=394) 
(observe-environment s=415) 
(shoot-toward loca #v795 s=416) 
(observe-environment s=438)  
(speak-aloud "man down" member3 s=439) 
(human-hears member3 "man down" s=440) 
(human-hears member1 "man down" s=440) 

... 
(speak-aloud "man down" member3 s=439) 
(human-hears member3 "man down" s=440) 
(human-hears member1 "man down" s=440) 
(assume-defensive-position tree1 member3 s=462) 
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…and is able to recognize the following changed goals: 
 

 
These statements reflect a correct recognition, namely that an enemy is sniping the team, and two 
team members are now responding to the sniper instead of their previous goal (i.e., to investigate 
the route). 

6.  Conclusions and Future Work 
We have demonstrated how a goal reasoning agent, the autonomous squad member (ASM), 
cooperates with teammates during a squad mission. The ASM recognizes and reacts to 
unexpected and anomalous events, processes natural language, infers and assumes unobserved 
facts about the world (via explanation generation), and recognizes the plans of its own teammates. 
In future work, goal selection will allow the agent to choose collaborative goals that are 
appropriate for its changing circumstances. Plan generation will then determine a means to 
accomplish these selected goals. 
 Our demonstration scenario suggests that the integration of these components is effective. In 
future work, we will conduct a formal empirical study to test this claim. These experiments will 
be distinguished into two categories, integration testing and individual component testing. In 
these experiments, we will measure the precision and recall of natural language interpretation, 
plan recognition, and explanation generation, as well as mission success criteria for determining 
overall performance. Integration testing experiments will measure whether the ASM performs 
best with all components present. For example, in an ablation study we will compare the precision 
and recall of explanation generation and plan recognition with and without natural language 
interpretation. Our objective is to show that the ASM performs better as a whole than any subset 
of its components. The other category, individual component testing, will test whether our 
implementation for each component is a good choice for the overall system.  For example, we 
will swap out our Explanation Generator for a simpler deductive reasoner and compare the 
performance of the overall system using each. 
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ABSTRACT

This paper describes how a cognitive agent for cyber defense forms sensing goals through a process of active
perception. Loosely following a beliefs-desires-intentions (BDI) model (Bratman, 1987), we show how this
agent arrives at the desire for more information, based on its beliefs about the current state of the defended
network resulting from prior observations. The system translates these desires into intentions by identifying
sensing goals, and a subset of these goals that best cover the most important attack targets with the existing
resources. We identify two important classes of information goals for cyber defense systems: forensic and
proactive. Forensic goals arise when the system identifies possible attack events, but does not have enough
evidence to accept or reject these hypotheses. Proactive goals arise when the system anticipates attacks of a
particular nature, or attacks on a particular target(s). In this case the system will want to ensure that it has
deployed sensors that can detect the anticipated attacks. We discuss the process of forming sensor goals,
and the knowledge representation which underlies them.

1. Introduction

The STRATUS system (Thayer et al., 2013; Robertson, Laddaga, & Burstein, 2013) embodies a cognitive
architecture for autonomous cyber defense. STRATUS receives information about security-related events
in the defended network from noisy intrusion detection sensors. It fuses reports together to identify likely
intrusion events, and reasons about the resulting trust status of network assets (hardware/software systems
playing roles in a mission) in order to decide how to use use spare resources to improve resilience. STRA-
TUS uses models of the network, its computational tasks and data flows, and possible attacker actions to
generate plausible adversarial attack plans, which it uses to project attackers’ likely next steps and prepare
mitigations for those steps. Figure 1 shows the overall system and data flows.

In this paper we focus specifically on how STRATUS uses active perception, the dynamic formation
of information gathering or sensing goals to resolve interpretation questions. Our approach loosely follows
a beliefs-desires-intentions (BDI) model (Bratman, 1987), where an agent arrives at the desire for more
information, based on its beliefs about the current state of the defended network and its priorities for self-
protection. It translates the desires into intentions, represented by sensing goals. STRATUS then chooses a
subset of these goals that best serves its goal of protecting its most important ongoing tasks. We identify two
important classes of information goals for cyber defense systems: forensic and proactive. Forensic goals
arise when the system identifies possible attack events, but does not have enough evidence to accept or reject
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Figure 1: STRATUS architecture and information flow. The figure divides the architecture into three
vertical slices, from the bottom the communications and sensing infrastructure, the tactical
response loop, and the strategic loop. Legends on arcs in the main part of the figure describe
the content of information flows. To the left is a list of the model content used by STRATUS.

these hypotheses. Proactive goals arise when the system anticipates attacks of a particular nature, or attacks
on a particular target(s). In this case the system will want to ensure that it has deployed sensors that can
detect the anticipated attacks.

The general flow of information and reasoning in STRATUS is as follows: Sensor reports are combined
by STRATUS’ MIFD component into attack event hypotheses which get used diagnostically to explain prior
events, and proactively to anticipate likely new attack points. Initially, STRATUS just absorbed all of the
sensor information that was sent to it. However, over the course of the project, we have recognized the need
to actively manage our network sensors, through dynamic formation of sensing goals, in order to improve
the accuracy of STRATUS’ hypotheses. For example, some sensors (such as binary auditors of executables)
are too expensive to run routinely everywhere. But they might be appropriate for use either to confirm or
disconfirm indications of a possible attack, or to carefully watch assets that are critical to the network’s task
performance.

In this paper, we briefly review our inspiration for active perception, then outline how the functioning
of STRATUS has been improved by adopting active perception. We focus on how one of STRATUS’s
components, MIFD, generates information seeking goals to improve its information fusion capability.

2. Inspiration

In most existing cyber security systems and machine perception systems, the sensor components are stati-
cally configured, so that sensor data is processed in the same, bottom-up manner each sensing cycle. The
parameters of such systems are also statically tuned to operate optimally under very specific conditions. If
higher level goals, context, or the environment change, the specific conditions for which the static configu-
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ration is intended may no longer hold. As a result, the static systems are prone to error because they cannot
adapt to the new conditions: they are too inflexible. The results for cyber security are either too many false
positives or too many false negatives, both disastrous. In other systems, including many computer vision
systems, the results of sensing are so unreliable as to be unusable.

Inspiration for our approach, active perception, comes from biology. We have learned that high level
context plays a key part in how images are interpreted (Oliva & Torralba, 2006). Context is the key to
managing noisy sensors in image understanding and the hypothesis presented in this paper is that this is true
for sensor systems in general – even for sensors operating in artificial systems such as cyberspace.

If context is key how do we get things started? It turns out that biology has an answer to that, too. Two
ideas are key to the bootstrapping of contexts. The first is that of level skipping information flow where low
level information skips some levels or processing to a higher level. In the brain these levels are different
regions of the cortex. The surprising finding was that simple low level processing on sensor data, specifically
image sensor data, is enough to characterize image type, or at least a set of possible candidate image types.
This jumping to a (set of) conclusions has been called gisting (Oliva & Torralba, 2006). We can infer the gist
of an image without discovering any of its contents with simple statistical methods on the low level data.

Gisting allows vision systems to identify the context of an image, and then these systems can use context
to find content in the image. The presence of a context allows many false positives to be avoided. The upshot
is that with active perception, we can do a better job of working with noisy and unreliable sensors.

Active perception draws on models for many purposes (Figure 2):

• to inform context-dependent tuning of sensors,

• to direct sensors towards phenomena of greatest interest,

• to follow up initial alerts from cheap, inaccurate sensors with targeted use of expensive, accurate
sensors,

• and to intelligently combine results from sensors with context information.

Our model-based approach deploys sensors to build structured interpretations of situations to meet mission-
centered decision making requirements.

Much work has been done on applying these ideas in the area of computer vision (Hofmann & Robert-
son., 2015), in this paper we discuss the architecture of a system that takes the same approach to interpreting
noisy cyber attack sensors with the goal of producing high quality interpretations of sensor data and thereby
avoiding the false positives that make today’s systems ineffective (because people disable them if there are
too many false positives).

Figure 2 shows the active perception loop, superimposed on a diagram describing the integration of
top-down and bottom-up processing in vision.1 Details of the visual processing are not important. The key
ideas are that gisting starts the process of active perception, by activating top-level hypotheses/interpretation
(here the presence of a dog in the image). The activation of the high-level hypothesis enables both priming
to cause certain features to become more salient, and deployment of specialized sensors that are known to
work well with the context in question.

3. STRATUS

STRATUS’s goal is to use modest added overhead in computational resources to diagnose an attack, switch
rapidly to computed backup contingencies, and predict downstream events by attackers with enough robust-
ness to make mission critical functions resilient to those attacks (Thayer et al., 2013; Robertson, Laddaga, &

1. The original diagram is from Serre (Serre, 2006).
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Figure 2: Active Perception uses model-based top-down reasoning, as well as bottom-up computation,
to guide sensing actions. This figure is adapted from a talk by Thomas Serre (Serre, 2006).

Burstein, 2013). The features of STRATUS described in this section are fully implemented, but STRATUS
is the focus of ongoing development and, in particular, the sensor choice module described in this paper is a
work in process, and exists only as a not yet integrated proof of concept.

STRATUS is model-driven, using an ontology containing models of:

• Missions: a time-phased schedule for use of software systems.
• Components: software systems and their communications requirements.
• Vulnerabilities: known types of attacks on systems, and their likelihoods.
• Trust levels for hardware and software resources given attack evidence.
• Attack Plan schemas for multi-step attacks.
• Host and cluster organization for reasoning about how colocation2 or network proximity can con-

tribute to the possibility of vulnerability.

These models enable STRATUS to develop expectations about how observed problems might indicate
attacks, and how attacks might proceed to adversely impact some mission(s). The overall architecture is
shown in Figure 1.
Tactical Detection and Response: The lower half of the architecture in Figure 1 shows how STRA-
TUS relies on features provided by the Communications Security Enforcement (CSE) infrastructure layer,
an object- and model-based secure communications platform. The cloud computation infrastructure that
STRATUS defends is decomposed into a set of communicating CSE components, each of which is a soft-
ware application that can be redeployed and replicated by the CSE infrastructure. CSE enables STRATUS to

2. e.g., software components on the same (virtual) host as a known intrusion are less trustworthy.
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monitor and redirect communications, to install and utilize redundant copies of software systems, and even
to rewind and replay communication. It can transparently reconnect the communication channels between
functioning components and those components being replaced by copies on more trustworthy platforms.

CSE uses models of component communications protocols, elements of which are typed objects from
an ontology, to monitor for signs of corruption or software failure. When it detects these signs, it sends
reports to STRATUS’s sensor fusion subsystem, MIFD, which is based on the earlier Scyllarus (Goldman &
Harp, 2009) system. The most recent version of Scyllarus developed by SIFT, Adventium and Honeywell,
was able to run at scale for weeks at a time. It used Bayes nets and qualitative probability to filter the large
numbers of weak reports of intrusion evidence to identify the most likely attack events. MIFD similarly
filters and fuses sensor reports to develop hypotheses of intrusion events.

Intrusion events considered significant are used by both the tactical and strategic parts of the system.
STRATUS will use them first to respond tactically to signs of corruption in key components, and strategically
to look for longer attack plans in progress. The first step in the tactical processing is to identify the effect
on mission components’ health of the events identified by MIFD. The diagnosis module, DAD (Laddaga &
Robertson, 2013), uses these MIFD’s event messages to develop trust scores for each software component.
These trust scores represent the likelihood that a component will perform properly in its various roles, in
the present and near future. The components most likely to be compromised are considered by MOTHER
when deciding whether to shift to alternate placements of components on different hosts, or to bring backups
online to be ready to quickly replace compromised components in order to support key mission functions.
Strategic Threat Anticipation: MIFD’s intrusion events are also used in the strategic process of rec-
ognizing attacker plans. STRATUS’sattack planner, RAPPA, uses diverse planning techniques (Srivastava
et al., 2007) to generate a set of possible attack plans. This is a set of plans to defeat mission goals by
attacking the current mission software elements, and the hosts those elements were assigned to run on. This
set of possible plans is then summarized into a plan library using hierarchical task network (HTN) plan
learning methods (Hogg, Muñoz-Avila, & Kuter, 2008; Hogg, Kuter, & Muñoz-Avila, 2009; Hogg, Kuter,
& Muñoz-Avila, 2010). This plan library, in turn, is used by STRATUS’splan recognizer, PAPR, a system
based on techniques developed by Geib and Goldman (Geib, 2009; Geib & Goldman, 2011; Geib, Maraist,
& Goldman, 2008). PAPR does not try to identify a single specific attacker plan, instead picking out the
most likely next steps in possible attack plans. This information is used to inform DAD’s model of future
component trustworthiness, and from there, inform MOTHER’s countermeasure planning.

The upper portion of Figure 1 shows the components responsible for the strategic aspect of STRA-
TUS, centered around PAPR, which does the attack plan recognition. Responses to attacks in progress are
generated by MOTHER using alternate resource configurations generated by the resource reasoner, SQRL.

4. MIFD

MIFD, like its predecessor Scyllarus, views sensor fusion as an abductive, or diagnostic process. That is, a
process of reasoning to the best explanation. MIFD’s sensor fusion is particularly tailored to fusing reports
from Intrusion Detection Systems (IDSes). When it receives sensor reports (IDS reports), MIFD forms
event hypotheses to explain those sensor reports. Note that this is not a simple one-to-one process: MIFD
fuses multiple sensors, so there will in general be multiple sensor reports providing support for a single
event hypothesis. Sensors are often ambiguous, so there may be multiple alternative event hypotheses that
would explain a single sensor report. Finally, events may be components of complex event hypotheses. For
example, a single denial of service attack event hypothesis might explain multiple flooding attacks on a set
of web servers. Note that the set of event hypotheses need not be exhaustive: some sensor reports are simple
false positives.
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The sensor reports and the event hypotheses that could explain them constitute a Bayes network.3 We
refer to the process of constructing this Bayes network as clustering. There is also a separate process
of assessment, in which MIFD uses the evidence in the Bayes networks to assign a qualitative likelihood
ranking to each of the event hypotheses. We will not discuss assessment further in this paper; for more
details see (Goldman & Harp, 2009).

As described above, the two key data items in the cluster preprocessor are sensor reports and event hy-
potheses. The sensor reports are issued by various sensor programs, and consist of a report type, which
specifies the condition that the sensor claims to be detecting. We say “claim to” because our experience
indicates that even the most expert security analysts cannot reliably identify what their sensors will detect.
IDSes must generally infer the existence of a security-related event from data (e.g., packet headers) that pro-
vides only very indirect and noisy indications. Such sensors often have a high false positive rate, and detect
conditions (both other intrusions and benign events that resemble intrusions in some way) that their design-
ers had not anticipated. Sensor reports also contain information about the location of the detection. Because
STRATUS operates on a virtual network defined by the CSE middleware, location specifications are primar-
ily in terms of source component(s), destination component(s), and CSE channel(s).4 Host information can
be inferred from the CSE components.

The clustering process generates event hypotheses to explain or interpret the sensor reports. The event
hypotheses similarly have event types. These event types disambiguate the sensor reports. For example, in
an early deployment of Scyllarus, we encountered a sensor report that claimed to identify network scanning,
but that in fact also detected a class of software update, and traffic from Microsoft’s print server. Each
would be an alternate event hypothesis. The event hypotheses also contain location information, but MIFD
attempts to disambiguate the source and destination information on the sensor reports into attacker(s) and
target(s). We have found that IDSes are erratic in the way that they assign “source” and “destination.”
Sometimes, especially for network-based IDSes (NIDS), these track the direction of packet flow, sometimes
an attempt is made to infer a directionality for a session rather than a particular packet (or set of packets), and
sometimes the IDS author tries to assign a more semantic notion that parallels the attacker/target distinction.
For example, a successful phishing attack might involve a session in which the target is the “source” in the
sense that the target computer initiates an HTTP session that requests download of malware. Alternatively, a
NIDS might see the malware flowing in the HTTP response, and report the web server hosting the malware
as the source, and so on.

The process of forming event hypotheses, populating them, and linking them to sensor reports and to
each other is mediated by background information in hypothesis matchers. See Figure 3. An individual hy-
pothesis matcher, M pairs a phenomenon, P (M), a sensor report type or an event type, with an explanation,
E(M) event type. Hypothesis matchers perform a rule-like function. To a first approximation, a hypothesis
matcher records the following inference pattern (Charniak & Goldman, 1988):

∀x : P (M)(x)→ E(M)(x)

For example, one hypothesis matcher we use represents the following inference: “If there is a sensor
report of type unexpected component restart, hypothesize an event of type compromised
component.”

There are two ways a hypothesis matcher can link a phenomenon to an explanation event hypothesis: it
can either cause a new event to be hypothesized, or it can match an existing event hypothesis, and cause the
new phenomenon to be linked in as additional evidential support. This is how hypothesis matchers can serve
to fuse information from multiple sensors. In order to control this information fusion, hypothesis matchers

3. Typically, this Bayes network is not completely connected: there are multiple connected components, each its own Bayes
network. For example there may be some events occurring at host H1 that are independent of what’s going on at H2

4. The predecessor system, Scyllarus, had sensor reports with location information conforming to more conventional network
architectures: source IP addresses, destination IP addresses, port numbers, etc.

73



KNOWLEDGE REPRESENTATION FOR DYNAMIC FORMATION OF SENSING GOALS IN CYBER DEFENSE

Hypothesis*Matcher*

Sensor*Report*(type)* Event*Hypothesis*(type)*

premise' consequent'

…proper&es...) …proper&es...)

Slot'checking'and'filling'

Provides)
Evidence)

For)

Hypothesis*Matcher*

Sensor*Report*(type)* Event*Hypothesis*(type)*

…proper&es...) …proper&es...)
NOP'sled'in'email'

SRC:'MSRV1'
DST:'IntelAn12'

NOP'sled'in'email'
!'Phishing'ADack'

DST'!'TGT'

Phenomenon* Explana:on*

Hypothesis*Matcher*

Sensor*Report*(type)* Event*Hypothesis*(type)*

…proper&es...) …proper&es...)
NOP'sled'in'email'

SRC:'MSRV1'
DST:'IntelAn12'

Phishing'ADack'
'

NOP'sled'in'email'
!'Phishing'ADack'

DST'!'TGT'

Phenomenon* Explana:on*

Hypothesis*Matcher*

Sensor*Report*(type)* Event*Hypothesis*(type)*

…proper&es...) …proper&es...)
NOP'sled'in'email'

SRC:'MSRV1'
DST:'IntelAn12'

Phishing'ADack'
TGT:'IntelAn12'

NOP'sled'in'email'
!'Phishing'ADack'

DST'!'TGT'

Figure 3: The function of hypothesis matchers.

contain data checks, which typically match location properties. For example, in order for an additional
sensor report to support (be explained by) the compromised component hypothesis in our previous
example, the data check would require the destination component of that sensor report to be the
same as the target component of the compromised component hypothesis.

Finally, when creating a hypothesis or adding support to it, we copy information from the supporting
report or event. For example, when we initially create the compromised component event, we copy
the destination component value from the unexpected component restart sensor report
into the target component of the hypothesis.

5. The Need for Sensing Goals

As our work on STRATUS has progressed, we have become convinced that dynamic, context-sensitive
control of sensors is a critical capability for autonomous cyber defense. Existing IDSes typically have very
high false positive rates. MIFD’s fusion of multiple heterogeneous IDSes mitigates this problem, but even
after fusion, there are many cases where follow-up “forensic” investigation is required. The type of sensing
actions that a security analyst does in this more in-depth event investigation are too expensive to be deployed
as routine, “always on” sensors. For example, after a possible intrusion, one might check cryptographic
hashes of system binaries. There are also some cases where there are sensing actions that are too expensive
to perform routinely, or which can be performed routinely, but produce too much information for constant
processing. Sensors like these might be reserved for the most high-value targets. In conventional network
defense, one would identify such targets a priori and statically. STRATUS uses mission models to identify
high value assets dynamically, in order to support defense of cloud style networks in which computational
resources are fungible, and computational tasks can be moved around the network more or less at will.
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For these reasons, we determined that STRATUS should be able to dynamically control its sensing. We
decided that STRATUS components desiring more information about particular (possible) events should be
able to issue sensor requests. These sensor requests might be termed “information desires” if we adopt the
jargon of BDI (belief-desire-intention) modeling. It will be the job of the MOTHER component to reason
about the importance of these desires or requests, and determine whether to turn them into “intentions” and
act upon them.

6. Forming Sensing Goals

STRATUS will form two kinds of sensing goals: forensic sensing goals, which attempt to find more evidence
to reason about existing event hypotheses, and proactive sensing goals, that seek to place sensors to monitor
expected threats. Here we describe the reasoning processes, and in the following section we describe the
supporting knowledge representation.

The formation of forensic knowledge goals may be triggered when MIFD finds an event hypothesis
whose uncertainty it can’t resolve: it neither thinks it likely nor unlikely. In this circumstance, MIFD will
examine the model of the event hypothesis to determine how critical the event is: i.e., how bad it would be
if the hypothesis was true. STRATUS event type models contain impact specifications which indicate what
security goals would be compromised when the event occurs. In the event of a high-criticality unresolved
event hypothesis, MIFD will move to form sensor goals.

MIFD will invoke the sensor selection module (described in the following section) to identify sensors
that could provide additional information to resolve the uncertainty about the event in question. If it finds
such sensors, MIFD will publish a sensor goal, requesting this additional sensing. The STRATUS MOTHER
module, responsible for resource management, will receive the sensor request, assess the criticality to the
mission of the resource(s) to be examined, and consider the available sensing and sensor processing re-
sources. Based on this information, MOTHER will decide whether or not to grant the sensing request. If
MOTHER grants the sensing request, it adds additional information needed to realize the goal and publish
it to CSE. The CSE infrastructure will carry out the necessary actions to implement the requested sensing.

Forming proactive sensing goals is a more open-ended process, open to arbitrary STRATUS subsystems.
Proactive sensing will begin when a STRATUS subsystem, S identifies an event (an attack on a particular
component or from a particular component) that it deems likely. This component might be DAD (Laddaga &
Robertson, 2013) using its diagnostic reasoning to identify network components to which a current infection
is likely to spread. DAD’s reasoning can exploit information about the topology of the network, the nature
of the network assets (what else is likely to be vulnerable to the current attack?), etc. Alternatively, S might
be an element of the strategic subsystem, which identifies likely next targets based on its reasoning about the
attacker’s likely goals. The next targets in plans for likely attacker goals are considered to be under threat.

After this STRATUS module, S, identifies events and locations that it considers of interest, per the above
reasoning, it will build representations for that information, as described in Section 7. This information will
be used to query the sensor selection module, and find appropriate sensors and placements. From here the
processing proceeds as per forensic sensing requests: the requests are published to MOTHER, which will
evaluate them in the light of available resources and criticality of the possible targets. If MOTHER decides
to grant the requests, they will be published to CSE for implementation.

7. KR to support sensing goal formation

We have developed a KR scheme to support formulating sensor requests assuming that STRATUS com-
ponents will know what they want to see, and where they are interested in looking for it. The requesting
components will also specify whether they have a one-shot, forensic interest in the information, or whether
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Figure 5: Forming sensor requests.

they want ongoing sensor coverage. Given this information, our KR allows the requestor to identify candi-
date sensor prototypes and formulate requests. Figure 4 gives a diagram of the underlying KR.

We are adding to MIFD a sensor selection module that will allow clients to request information about
events of a particular type at a specific location (see Figure 5(a)). Finding the appropriate sensor prototypes
based on the desired events types is a relatively straightforward extension of the existing KR for MIFD
(see Section 4): the only work necessary here is to modify the existing representation, which has opaque
procedures for the data checks and slot writers, to be more declarative, to permit us to invert the existing
inference from supporter to event, and reason from event to possible supporters (see Figure 5(b - c)). Finally,
the information about the requested sensor will be embedded in a sensor request (Figure 5(d)), which will
be published to MOTHER for enactment or rejection.
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8. Related work

Assessing the cost and benefit of observations is a core part of the project of decision analysis. For example,
Raiffa’s introductory textbook, Decision Analysis treats the cost and benefit of seismic testing in the now-
canonical “oil wildcatter” problem (Raiffa, 1968). However, work in this area has focused more on choosing
which tests to run, rather than on finding the set of relevant tests, as in our work. Typically, in decision
analysis, the set of available tests is treated as given, as part of the framing of the problem. Some decision
analysis texts (e.g. (Keeney, 1996; Hammond, Keeney, & Raiffa, 1998) discuss how to frame problems, but
as a human process, rather than an automated one. Often decision problems are represented using Bayes
networks and Influence diagrams.

Partially-observable Markov Decision Processes (POMDPs) provide a theoretical framework for reason-
ing about active perception (Cassandra, 1994). POMDPs are closely related to influence diagrams, but stress
sequential decision over time rather than structuring by causal influence. POMDPs are typically solved using
methods that stress infinite horizon problems and discounted reward, so in practice are applied to different
problems than influence diagrams, which tend to be used for finite-horizon, single-shot decision problems.
POMDP algorithms tend to scale poorly and be usable only for very small problems, unless substantial
simplifications are made.

Ahmad and Yu propose a POMDP-based approach to active perception in the context of visual percep-
tion (Ahmad & Yu, 2013), but their test examples feature very small decision spaces (e.g., three-location
visual search). Eidenberger, et al. (Eidenberger, Grundmann, & Zoellner, 2009) also propose a POMDP-
based approach to active vision, this time embedded in a robot, where they tradeoff information gain against
control action costs, but their work aims at continuous action spaces, rather than the discrete on/off decisions
we address here. All of these approaches, like the decision analytic approaches described earlier, take the
set of possible information-gathering actions as given, so are complementary to the work described here,
which focuses on finding the set of appropriate possible sensing actions.

We have been influenced by neuroscience work on perception in humans and other animals. Recent
research has stressed the important role of expectation, active management of attention, and integration
of higher cognition with low level sensing (Borji, Sihite, & Itti, 2011). This research overturns an earlier
paradigm which stressed unidirectional, feed-forward processing that incrementally built higher and higher
level interpretations.

Our work on STRATUS relates to other work on systems with goal directed autonomy (GDA) (Molin-
eaux, Klenk, & Aha, 2010). STRATUS is like Molineaux, et al.’s ARTUE GDA system in attempting to
address a dynamic, adversarial environment with substantial issues of partial observability. Until recently,
Unlike ARTUE, STRATUS has not focused on generating goals on the fly, since STRATUS’sgoals are sub-
stantially computed from the fixed mission goals that the computational infrastructure serves. A key issue
that distinguishes our current work is focus on choice of sensing behaviors. We believe that this is due to
the large set of sensors available in cyber space, their widely varying qualities, and weaknesses in sensor
quality and domain models.5

There has been a limited amount of related work in the planning literature. Work at the University of
Washington on the Unix SoftBot stressed the ability to incorporate sensing actions into plans, but focused
more on representation of the sensing actions, and on efficiently updating the belief state of the observing
agent (Etzioni, Golden, & Weld, 1997; Golden, 1997). Petrick and Bacchus have revived and adapted
this work for today’s more capable planners (Petrick & Bacchus, 2004). There is related work in action
modeling that addresses more expressive reasoning about sensing actions, but we do not know of any work
that has succeeded in making it efficient enough for use in actual programs (Scherl & Levesque, 1993).
Alford, et al. address the problem of choosing information-producing actions particularly for reasoning

5. Cyber attacks tend to occur precisely at points of modeling weakness, since exploits typically arise from incorrectly imple-
mented specifications, or leaky specifications.
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about uncontrolled agents in the environment (Alford et al., 2015). Their work applies an approximated
POMDP model to an air-to-air combat simulation, and effectively shows that inference about the attacker’s
intentions is useful in leading to better outcomes. In this domain, however, there are no distinguished sensing
actions: only actions that as a side-effect cause the adversary to expose its intentions.

In the proceedings of this workshop, Bengfort and Cox (“Interactive Knowledge-Goal Reasoning”) dis-
cuss formation of knowledge goals as part of an interactive question-answering system. Their work differs
from ours in handling more complex knowledge goals, which can profitably be decomposed by subgoaling.
Rather than a model-based approach, they use case-based reasoning to find previous methods of question-
answering that match present knowledge requirements, and they work interactively with a human in the
loop. Another important difference is that the purpose of the knowledge-seeking is outside the scope of
consideration (their system serves a human user who has information needs), whereas our knowledge goals
are strictly in the service of action. This is why our information goals are subject to evaluation by MOTHER,
the action-choosing component of STRATUS: STRATUS’sinformation goals are of different priorities de-
pending on whether they serve to choose an action, and depending on how important that action choice is.
For example, there’s no point in further sensing if the action choice is the same whether or not a particular
component has been compromised (e.g., perhaps its downstream components are known to be corrupted,
so its work is useless). Or, if a particular component is of low importance, it may be best to simply shut it
down, rather than commit resources to further investigation.

9. Conclusions

In this paper we have described a method of forming and processing sensor goals in order to actively manage
sensing for cyber defense. This process will allow STRATUS to appropriately develop situation awareness
by allowing it to employ a combination of cheap and likely noisy sensors, and more accurate sensors that
are too expensive to employ everywhere and at all times.

The work described in this paper is very much in progress. We have developed a preliminary imple-
mentation of the model, which provides both KR and automatically-generated CSE communications stubs.
We are currently working on the sensor selection module and its API, and are developing test scenarios.
We have already carried out experiments on abstract models of active perception, which show its value in
situation with the observation characteristics of cyber defense. We expect to publish the results of those
experiments in the near future.
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Abstract
This paper describes our approach to anticipating and recognizing potential cyber threats in order to
provide timely responses to those threats. Our approach anticipates attacks on distributed systems
by generating a diverse set of attack plans on key system components and then determining the
probabilities that these attacks may threaten those components or others that are stepping stones
to those systems. The results enable our overall system, STRATUS, to defend these systems by
preparing backups and controlling communications pathways appropriately. We present a prelimi-
nary empirical study of our techniques, demonstrating their promise.

1. Introduction

Strategic resilience in an adversarial environment requires not just the ability to respond in a timely
fashion to detected problems, but also an ability to predict potential threats. A system for strategic
resilience must identify potential threats to key mission objectives before they happen, use that
analysis to recognize threats as they unfold, and pre-plan so that it can respond quickly when these
threats actually occur. Current IDSs do not predict attacks; they do not provide early warning. They
report the type and properties of an attack after (sometimes long after) it has happened. While
recognition of attacks is an important ability, it falls short of the community’s vision for security
systems that predict future hacker actions and automatically and correctly respond to attacks in a
timely manner.

This paper reports on our work on reasoning a priori about attacker actions and plans for their
otherwise dynamic and unexpected effects on a cyber mission and its goals during the mission
execution (Vattam et al., 2013; Klenk, Molineaux, & Aha, 2013). In particular, we describe our
approach to probabilistic plan recognition using diverse planning to generate a graphical model of
hypothetical attack goal/surfaces for a cyber mission and probabilistic plan recognition that uses this
diverse graphical model. Our work resides within the context of a larger, multi-component cognitive
architecture called STRATUS (Strategic and Tactical Resiliency Against Threats to Ubiquitous Sys-
tems) (Burstein et al., 2012) that we are developing to provide resilience for cyber missions in large
computer networks. STRATUS’s goal is to use modest added overhead in computational resources
to diagnose an attack, switch rapidly to computed backup contingencies, and predict downstream
events by attackers with enough robustness to make mission critical functions resilient to those at-
tacks. STRATUS uses models of missions, software and network elements and attack types to
develop expectations about how observed problems might indicate attacks, and how attacks might
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Figure 1. Abstract view of STRATUS information flow architecture.

proceed to adversely impact some mission(s). An abstract functional overall architecture is shown
in Figure 1.

Because of the myriad ways an attacker can get into a computer network, and the limited re-
sources available to respond, effective cyber response requires recognizing the attacker’s potential
goals, and focusing responses on protecting those assets most critical to the defender’s own goals.
When we are resource-limited, network assets that serve only low-priority goals can be sacrificed
to focus on the essentials. Combining information about targets affected by particular attacks and
information about the importance of particular resources to a network’s mission, we can focus the
system’s attention on those attacks that would have the greatest impact, and then look specifically
for indicators of those attacks. By identifying the critical attacks and their goals, we can pre-plan to
ensure we are prepared to respond appropriately.

We are developing two sister systems, RAPPA (Rapid Attack Plan Path Analysis) and SPAR
(Simple Probabilistic Attack Recognizer). RAPPA uses a combination of planning and learning
techniques to identify likely attack goals and plans, into models needed for attack plan recognition
and countermeasure planning. Using the attack plan libraries generated by RAPPA as a model
of attacker behavior, SPAR quickly estimates the conditional probability of potential attacks on
different mission components, given (noisy) observations of attacker actions. SPAR can explain the
reasoning behind its probabilistic goal recognition, using regression techniques over probabilistic
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attack paths. We present a preliminary evaluation of RAPPA and SPAR, demonstrating the promise
of the attack goal and behavior reasoning and recognition capabilities.

2. Motivating Scenarios

We have been developing a family of scenarios, based on a simplified model of the computational
aspects of the planning and execution of missions on large computer networks. Figure 2 shows a set
of cloud clusters (LANs), and mission software components for a simple demonstration network.
The upper half of the diagram contains a set of cloud clusters for handling imagery and mission-
related databases and computational resources, while the lower half shows the human user client
systems that access and manage those resources during the mission.

Figure 2. Mission resources and configuration in a computer network. The objective is to recognize dis-
tributed attack goals and plans. Circled components denote nodes that have been observed to be compro-
mised. Red-bordered components are the potential goals of attacks. Paths of potential attack are dashed red.
Other colored links denote normal mission processing.

In one example of an attack goal against the mission in this scenario, an attacker intends to gain
access to the PlanServer database to exfiltrate information. In another, a virus is introduced from
the web that ’powns’ some of the software resources used and generates an internal DDoS attack on
one of the critical Image Processing servers.

A planning problem for RAPPA is a initial situation assessment of the computer network, mis-
sion specifications, as well as potential known attacker capabilities, actions, and resources. In this
approach, we follow Shrobe (Shrobe, 2002a; Shrobe, 2002b) in driving attack plan generation from
models of the defended system, its missions, and known exploits. As an example, such attacker
models based on the models of the defended system in Figure 2 would include compromising a
component in the network by exploiting a combination of known properties of the user machines,
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that are exposed to the outside cyber world, and network internal servers known to be heavily-used
for computation and which, therefore, are potential targets for a denial of service attacks.

Using such models, RAPPA generates possible attack goals in the network by exploring the
potential attack surface using AI planning techniques. For example, an attack path plan (marked as
blue) in our scenario starts from the VideoDisplay user machine, and transmits malware over the
network to the Image Hi-Resolution Processing Server to corrupt it.

RAPPA not only generates such attack goals but further categorizes and conceptualizes them
into abstract classes. As we describe in the subsequent sections, we use both Hierarchical Task
Network (HTN) learning and concept learning algorithms to achieve this capability. Figure 3 shows
an illustration of such conceptualizations in terms of HTN methods.

!"##$%&'()&)'

!"*%#"*+,-'./+-0&12",&' !"##$%&'()&)'

!"*%#"*+,-''
2",&1."*%"0-0&' !"##$%&'()&)'

!"*%#"*+,-'
."*%"0-0&'

!"##$%&'
("30,&#-)*'()&)'

!"*%#"*+,-'
."*%"0-0&' !"##$%&'()&)'

!"##$%&'()&)'

4'
!"#$%&'()**+%,-.)-"/001""+21#3-0)4*5)4+"1--
.(1-%1.6)57-0)4*)%1%."-/%8#-.(1-$9$07-51$0(1"-
.)-*)+%.-6(151-+.-$+4"-.)-&+"5/*.-.(1-+%.1,5+.3-

'5'!"#$%&'(!67789:1(;:;'
''''!)*+*"#$#+,(((5<)$&"=>'1'!6?96@A@:B'
''''!-*+,(5'<)$&"=C'1'!6?96@A@:''<)$&"=D'1'!E;@@AF''
'''' '''''''<)$&"=GH'1'!6?96@A@:'''<)$&"=GG'1'!E;@@AFB'
''''!)+#.&/'01&/((
'''''''5')0I'5'!;@198JFKLE'<)$&"=C'<)$&"=D'B''
''''''' '''''''''5'L8JL!7KJA('<)$&"=>'<)$&"=D'B''

'' '5'!;@198JFKLE'<)$&"=GH'<)$&"=GG'B''
' '5'L8JL!7KJA('<)$&"=C'<)$&"=GG'B''
' '5'9M@A('<)$&"=GH'B'B'

''''!,23$*,4,(
''''5'5'N!6?976?KLA1!6?96@A@:'<)$&"=GG'<)$&"=C'<)$&"=GH'B'
''''''5'!67789:1(;:;'<)$&"=>'BBB'

:%1-);-.(1-+%;1551&-<=>-41.()&"-?3-@ABBA-
;)5-+%.1,5+.3-$9$07"C-

@10/5"+21#3-&10)4*)"1-+%.)-"/?.$"7"D-
6(+0(-$51-"4$##15-$9$07-*#$%"-

=$"7-+"-&10)4*)"1&-)%#3-+;-
.(1-*510)%&+8)%"-$51-.5/1-

!"##$%&'()&)'

<=>-*#$%-;)5-.(1-+%.1,5+.3-$9$07-,)$#-E:@@FB=+%,-GA=AC-

H+%$#-$9$07-*)+%.-.($.-
&+"5/*."-.(1-+%.1,5+.3-);-.(1-
4+""+)%-

Figure 3. An illustration of an HTN plan library and HTN plan inferred by RAPPA on an Integrity (corrupting
data) objective.

The HTN method shown on the right in the figure is one of the methods RAPPA produces from
attack plans for the goal of corrupting a component in the network. On the left is an illustration of
how to unfold the HTN plan into a hierarchical representation. This represents the CORRUPT-DATA

task as consisting of two subtasks: (1) compromising the client host to enter to the system and (2)
recursively attempting to accomplish the CORRUPT-DATA task from there. Successive decomposi-
tions of the CORRUPT-DATA task enable island-hopping through the network, compromising other
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components so as to reach to target. Note that such sequences of attack actions are achieved by
recursive definition of the HTN method on the righthand side of the figure.

Once a set of possible attack goals are generated by considering subtask priority in a mission
specification, further reasoning estimates the likelihood of these events as we observe some initial
set of attack events occuring. We assume that observed events correspond to the abstract attack
actions that RAPPA uses to reason about threats. For example, the COMPROMISE-COMPONENT

attack action shown in the hierarchy of Figure 3 is also an event that we can indirectly observe in
the network by fusing evidence from sensor reports. STRATUS’ MIFD component does exactly
that.

As observations are obtained from the sensors in the network, and fused by MIFD into hy-
potheses about the attack events that may have occurred, SPAR uses RAPPA’s attack plan and goal
libraries to identify which components in the network are threatened, and estimates the likelihood
of possible attacks on those components. STRATUS uses that information to help decide where
additional backups or other defense maesures might be needed. For example, in Figure 2, if it is
observed that Surveillance-Img-Analyst machine is compromised (shown as circled at the lower
right portion of the network), then among the many alternative possible attack goals that SPAR con-
siders, three can are deemed more likely than others, namely IRCServer, PlanServer, UAV Image
Hi-Resolution Processing server. The rationale for this is that IRCServer is a central component in
the network and the other two directly affect how the top-level mission how mission objectives the
mission are achieved. These components are given back-ups so that they can be quickly restored if
one of those eventualities occurs.

The subsequent sections provide the technical details on RAPPA and SPAR.

3. Adversarial Planning for Reasoning about Attack Goals

When a plan is to be executed in a cyber environment, it has be to protected against potential threats,
which may disrupt or prevent the execution of a mission’s goals. We developed techniques for
recognizing critical attacks and their goals, which typically cause such disruptions, by combining
diverse planning, hierarchical learning, and conditional threat reasoning: RAPPA (Rapid Attack
Plan Path Analyzer) develops a diverse set of attack plans to prime the plan recognition component,
SPAR (Simple Probabilistic Attack Recognizer) (see Section 4), and simultaneously identifies a
set of mission-specific attack targets to inform the decision model used to allocate resources to the
mission.

3.1 Attack Scenario Modeling in PDDL

We can characterize attacks abstractly as attempts to violate three primary security goals. In the
following list, we give the security goal, and the countervailing attack goal/task:

• (C) Confidentiality / exfiltration;

• (I) Integrity / corruption; and

• (A)Availability / denial of service.
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We will refer to these as the CI&A goals. Some additional security goals that are sometimes for-
mulated include accountability, authenticity, non-repudiation, and reliability. These may be thought
of as partial decompositions of the top three.

Vulnerabilities translate to actions available to the attacker. We use PDDL – Planning Domain
Description Language – models for such attack actions. Consider an action example, from our
motivating scenarios discussed in the previous section:

(:action compromise-component
:parameters (?ch - channel ?task - task

?target-comp ?source-comp - component
?target-host - host)

:precondition
(and (runs-on ?target-comp ?target-host)

(runs-on ?source-comp ?source-host)
(component-task ?target-comp ?task)
(can-publish ?source-comp ?ch)
(subscribed ?target-comp ?ch)
(pwned ?source-comp)
;; additional items
(machine-os ?target-host WINDOWS))

:effect (and (pwned ?target-comp)))

Through its effect and precondition expressions, this action model describes that an attacker
that controls (pwned) a component, source-comp, can gain control of a target component target-
comp if source-comp can publish to a channel, ch, to which target-comp subscribes, as long as
the target-comp is running on Windows. This action allows an attacker to establish control over a
component, recorded as (pwned component). The establishment of control allows the attacker to
do "island-hopping," establishing more and more control until she can reach her real target(s). The
real targets, recall, are to compromise one of the CI&A security goals. We have developed PDDL
models of different attacker actions for all of the CI&A goal categories as above. These models are
used in our planning systems that generate diverse plans, described below.

3.2 Diverse Plan Generation

Given a mission model and a network specification, RAPPA treats every possible condition that the
mission’s execution might depend on as a potential attack goal. Thus, RAPPA we initially considers
a disjunctive goal, in which each disjunct simply is the negation of a mission condition. SPAR, later
on, generates a conditional probability ranking over this disjunction, which can be used to focus on
only a small subset of the disjuncts in the original goal expression, eliminating those attack goals
that are not likely.

Given a model of possible attack actions, RAPPA’s objective is to generate attack plans that are
interestingly-different than each other so as to provide the recognizer with as broad as possible a set
of attack plans it might recognize. This set should ideally cover the possible attack space to be able
to reason, plan, learn, and recognize the widest set of attacks.
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We developed a set of new algorithms for diverse planning, each of which translates the diversity
metric into a cost measure for planning alternatives and describes how to update iteratively the costs
of the actions in the domain model, in order to generate diverse plans. This approach allows any
classical planner to generate diverse plans, without modifying the planner, as long as the classical
planner can reason with simple numeric costs on actions. For this, we integrated LPG-d (Srivastava
et al., 2007) for diverse planning in RAPPA. LPG-d also serves as a baseline diverse planner for our
ongoing experiments .

For measuring diversity, we have started with existing plan-plan distance measures developed
previously:

• Action Counting. This is the most common diversity measure used by the existing works
mostly because it is the most easy one to compute as a search control mechanism. Basically,
one uses the length of the plan in number of ground actions as the similarity measure (Nguyen
et al., 2012).

• Edit Distance. The edit distance (a.k.a., Levenshtein Distance) between two strings is de-
fined as the minimum number of edits needed to transform one string into the other, with
the allowable edit operations being insertion, deletion, or substitution of a single character
(http://en.wikipedia.org/wiki/Levenshtein_distance).

We demonstrated that these diversity measures can provide inconsistent results on the same
plans. Based on this observation, we developed a plan-plan distance metric based on Kolmogorov
(Algorithmic) complexity, where we define the diversity of plans in terms of how surprising one
plan is given another or, its inverse, the conditional information in one plan given another (Gold-
man & Kuter, 2015). Kolmogorov complexity provides a domain independent theory of conditional
information. While Kolmogorov complexity is not computable, a related metric, Normalized Com-
pression Distance (NCD), provides a well-behaved approximation. Thus, we introduced NCD as
an alternative diversity metric, and analyzed its performance empirically, in comparison with pre-
vious diversity measures, showing strengths and weaknesses of each. We also examined the use of
different compressors in NCD.

In (Goldman & Kuter, 2015), we also demonstrated how NCD can be used to select a training set
for HTN learning, giving an example of the utility of diversity metrics. The details of this work can
be found in (Goldman & Kuter, 2015); however, this result forms the foundation of our approach in
RAPPA: by generating diverse sets of attack plans and goals, and categorizing them into hierarhical
representations, RAPPA is able to provide a reasonable coverage to the potential vulnerabilities and
attack events in a computer network.

3.3 Inferring Plan Libraries for Recognition

RAPPA uses a combination of techniques to translate attack plans it generates into the models
needed for attack plan recognition and countermeasure planning, building on our previous work
on HTN-Maker (Hogg, Muñoz-Avila, & Kuter, 2008; Hogg, Kuter, & Muñoz-Avila, 2009; Hogg,
Kuter, & Muñoz-Avila, 2010), for generalizing linear plans into hierarchical task networks. HTN-
Maker generalizes from single examples of attack plans by recognizing partial orders: places where
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actions in the plan can be executed in multiple different orders. It will also recognize the underlying
goals that explain why actions have been incorporated in the attack plans.

To consider multiple concurrent and interleaved attacks, we developed PDDL models that can
support this kind of planning and showed the ability of RAPPA to generate diverse plans with those
models. These test domains revealed a crucial shortcoming in the RAPPA architecture with respect
to the plan library generation. In particular, although HTN-Maker was able to generate plan libraries
as shown in Figure 3 for simple attack formulations, the algorithm was limited to learning strictly
less expressive grammars than needed for recognition in our scenario domains.

To alleviate this shortcoming, we developed a concept learning algorithm, called Anchored Hi-
erarchical Learner (AHL), for RAPPA that produces attack categories for recognition. In particular,
given attack plans, AHL first attempts to identfy possible plan anchors in those plans, by extracting
the causal structure of an attack plan given the PDDL models of the attack actions and the partic-
ular attack goals the plan accomplishes. It then generates the causal structure for every attack plan
in its input diverse plan set. Then, the algorithm walks over these causal structures and compares
them to identify those actions, called anchors (Geib, 2009; Geib & Goldman, 2011), that are highly
distinctive in those plans.

Once the anchors are identified, AHL starts from the plan anchor actions in the attack plan, and
infers a plan library around those anchors successively. Given a plan anchor, the algorithm first
learns its parent and possible siblings. The anchor action and siblings constitute a portion of the
plan from which the system learns. The learner then replaces this portion with the parent learned
for the anchor action, creating an abstract plan, and marks that parent as the new anchor in that
abstracted plan. The learning process continues in this manner until no new parents can be learned
(or if given, the root nonprimitive task is reached).

We are currently testing this implementation and investigating ways to inductively generalize
the hierarchical structures learned to produce more efficient plan libraries for recognition.

4. SPAR: Simple Probabilistic Attack Recognizer

SPAR is a new probabilistic recognition algorithm we developed in order to probabilistically recog-
nize the potential goals of an attack as it progresses. SPAR attempts to quickly but directly estimate
the conditional probability of attacks on all mission components, given the observations seen so far.

Algorithm 1 shows a high-level description of SPAR. The input includes a plan library Π of pos-
sible attacks (generated by RAPPA). D is the planning domain which describes the set of planning
operators. G is the set of probabilistic goals, i.e., a partial mapping from possible attack goals in
the network to probability values. O is the set of probabilistic observations, i.e., a partial mapping
from possible intrusion event hypotheses to probability values.

Some explanations about G and O are in order. As in attacks in the physical world, some
components in a cyber network are higher value targets compared to others. SPAR can take as
input such information as a priori beliefs on how likely it is that a network component will be
attacked. The input G models these beliefs as probability values and the algorithm incorporates
this probability into its conditional estimation for that component as a possible attack goal. Note
that the probabilistic belief over goals does not necessarily specify a probability distribution over

88



REASONING ABOUT ATTACK GOALS FOR CYBER RESILIENCE

Algorithm 1: The SPAR algorithm.
Procedure SPAR(Π, G,O,D);1
begin2
P ← ∅;3
foreach plan π ∈ Π do4

foreach action a ∈ π do5
pos← position index of a in π;6
if ∃o ∈ O such that o |= a then7

apriori← p0;8
else9

apriori← 0.5;10
cond_aposteriori← apriori × expdecay(pos, |π|);11
insert (a, π, cond_aposteriori) into P;12

foreach goal (g, pg) ∈ G do13
C ← {all of the conditions (a, π, p) ∈ P|π achieves g};14
probability(g)← noisyOR (C) × pg;15
insert (g, probability(g)) into T ;16

return T ;17
end18

the network components. Instead, the probability values attached to some of the components model
weights, denoting how much the user believes a component is a likely target of an attack. If the
input does not specify such a probabilistic weight for a component, SPAR uses 0.5 (no bias) as a
default weight for that component.

Given this input, SPAR iterates over every attack plan π in the plan library generated by RAPPA.
SPAR checks which actions of a plan were observed in the network. If an action was observed then
SPAR uses the probability value specified in the input as an a priori belief in that observation. If no
such probability is given, SPAR again uses 0.5 as default, which models that the algorithm does not
have a bias towards whether the observation really occurred or not.

Once SPAR decides on a value for the likelihood of the observation, it uses an exponential
decay function to propagate that probability value over the rest of the actions in the attack plan. We
used exponential decay functions for probabilistic inference in this manner since the plan libraries
are causal pathways in a graphical model for an attack surface and they do not include conditional
probability information. If we have conditional probabilities (i.e., a Bayesian Network model), then
this computation can be performed by Bayesian inference and/or chain rule. By default, SPAR uses
a decay rate of 0.9; but this is a hyper-parameter that can be tuned empirically based on the attack
planning domain.

SPAR then computes the probabilities, propagated from the observation to the end action (i.e.,
goal) of the plan, for each plan. Then, the algorithm extracts those plans for each given goal as
input and uses a Noisy-OR computation to aggregate the propagated probabilities over the set of
plans that achieve the same goal. The outcome of this Noisy-OR operation is an estimate for the
conditional probability of that attack goal will happen, given the set of observations.
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5. Preliminary Evaluations and Experiments

We conducted several preliminary experiments with plan recognition using the outcomes of RAPPA’s
diverse planning and plan library learning capabilities, coupling them with SPAR. In all of our ex-
periments, we used LPG-d (Srivastava et al., 2007) as our diverse planner within RAPPA. We used
the STRATUS scenarios described in Section 2 for our experiments. We varied the size of the input
set of observations, in such a way that we started by the earliest possible observation in an attack and
incrementally added new observations in the order they would be observed in an attack execution.
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Figure 4. Probability of recognition of low-value vs. high-value attack targets, as a function the progress of
the attack.

Figure 4 shows the results of an experiment exploring how SPAR differentiates between high-
vs low-value targets given the a priori weights on those as the attack progresses. In this case, an
attack on a Hi-Resolution Image Server is considered a more valuable target than the one with Low
Resolution. In the first two steps of the attack, observations do not provide significant distinction
between the two components, and SPAR believes both components could be targeted. As the attack
progresses, and the evidence piles up towards Hi-Resolution Server, SPAR is able to differentiate
and increases its beliefs that the Hi-Resolution Image Server is much more likely to be attacked, as
opposed to the other component.

Figure 5 shows the results for a similar experiment but the targets in consideration in this case
reside in different clouds in the network.

Finally, we observe that SPAR is fast – on average its run times are within a few milliseconds
for a plan library of size 1296 attack plans, for each event hypothesis. The reason for its efficiency
is because it does not attempt to explain the conditional probabilities; instead, it approximates them
via statistical reasoning over input attack plan libraries.
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Figure 5. Probability of recognition of an attack target as a function of the direction of the attack in the network.

6. Related Work

6.1 Diverse Planning

The most influential work on plan diversity measures is that of Srivastava, et al (Srivastava et al.,
2007), refined in Nguyen, et al (Nguyen et al., 2012). They propose three different distance mea-
sures for comparing plans, and for measuring the diversity of a set of plans: action distance (AD),
causal-link distance (CLD), and state distance (SD). AD and CLD both project the plan, an ordered
set of actions, down to an unordered set, and then compute a set-difference based distance between
these sets.

Nguyen et al., actually provide two alternative definitions for state distance, which differ slightly
in how they handle a difference between l(p) and l(p′); for details see their paper. They provide
two planning algorithms: GP-CSP, which can generate plans that attempt to maximize either action
distance, causal-link distance, or state distance; and a more efficient method, LPG-d, which only
uses action distance. Using GP-CSP, they provide experimental results on several domains to argue
that action distance is the hardest to maximize. In general, later work in diverse planning confines
itself to using action distance; we don’t know of other work that uses CLD or SD.

The measures defined by Nguyen et al all have some problems. While they have the advantage
of being domain-independent, no strong motivation is given, aside from their ready computability.
Another problem is that they are not plan distance metrics, in the mathematical sense. Neither action
distance nor causal-link distance satisfy the identity property, since different plans can give rise to
the same action and causal link sets through reordering (note that action distance and causal-link
distance are metrics over action and link sets, just not over plans). Similarly, in some problems it is
possible for two different action sequences to give rise to the same state sequences. Action distance
does not take into account information in the lifted representation of a domain. To action distance,
the plans p1 = drive(t1, a, b), drive(t1, b, c) and p2 = drive(t2, a, b), drive(t2, b, c) look every bit
as different as p1 and p3 = fly(a1, a, g), drive(t3, g, c). Causal link and state distances also fail to
take such generalizations into account. Further, in the case of state distance, correlated state fluents
– fluents that change in lockstep – can artificially drive up the state difference between plans.
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Other existing approaches to diverse plan generation either used intensive domain specific
knowledge (e.g., (Myers & Lee, 1999; Coman & Muñoz-Avila, 2011)) or they are purely domain
independent (e.g., (Boddy et al., 2005)). In many practical applications, it is hard, and sometimes
not possible, to author the domain theories the former approaches require, and the latter typically
suffers from shallow diversity metrics that may have pathological behavior in comparing plans.

Conceptually, the opposite of diversity is similarity. Similarity analyses has been the foundation
of case-based reasoning from the field’s beginning days (Aamodt & Plaza, 1994).Recently, the
works reported in (Sánchez-Ruiz & Ontanón, 2014; Vattam, Aha, & Floyd, 2015) propose plan
recognition approaches using case-based similarity measures. These works are closely related to
our purposes in this paper: (1) although we have not reported in this paper, we are interested in
hierarchical conceptualization and categorization of possible attacker behaviors in our scenarios
and (2) case-based similarity measures provide a similar conceptualization as diversity measures as
in RAPPA. In fact, we have recently started to develop a case-based similarity, or more generally, an
analogical hierarchical planning, reasoning, and recognition approach for our next steps in RAPPA
and SPAR. We will conduct an extensive comparative study for this work and the existing research
in case-based reasoning.

6.2 Plan Recognition

Kautz’ foundational, graph covering based work on plan recognition (Kautz, 1991), in fact did not
assume perfect observations, but instead fit the best vertex cover to the plan graph. However, this
makes it unable to address a number of issues that SPAR does address including multiple inter-
leaved goals. Other early work using logic based reasoning algorithms (Carberry, 1990; Litman,
1986), while invaluable for formalizing the kinds of inferences that are necessary for efficient plan
recognition. However, being logic based, they were not amenable to extension with probabilities.

ELEXIR (Geib & Steedman, 2007; Geib, 2009; Geib & Goldman, 2011) follows the early work
of (Vilain, 1990) on plan recognition as parsing. However this early work does not actually present
an algorithm or implemented system for plan recognition. Pynadath and Wellman (Pynadath &
Wellman, 2000) formalize plan recognition based on probabilistic context free grammars (PCFGs).
They use the structure of plans captured in a PCFG to build a fixed Dynamic Bayes Net (DBN), an
use the resulting DBN to compute a distribution over the space of possible plans that could be under
execution.

There are several recent works on probabilistic plan recognition generalized the foundational
works by (Ramırez & Geffner, 2009; Ramırez & Geffner, 2010; Ramirez & Geffner, 2011) on plan-
ning for probabilistic goal recognition. The current very successful work on probabilistic activity
recognition using HMMs and CRFs (Hoogs & Perera, 2008; Liao, Fox, & Kautz, 2005; Vail &
Veloso, 2008) is probabilistic however it is addressing a different problem than the plan recognition
problem. These systems are looking for a single label for a sequence of observations. (Ramirez &
Geffner, 2011) have proposed using POMDPs that would directly address the partial observability
of the world state. Like theHMMs and CRFs they attempting to infer a single high level goal that is
the objective of an agent specified by a POMDP.

Targeting planning and human-robot coordination areas for probabilistic plan recognition specif-
ically, the plan recognition approaches introduced in (Chakraborti et al., 2015a; Chakraborti et al.,
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2015b; Talamadupula et al., 2014) build on the observation that probabilistic plan recognition typ-
ically does not commit to a plan, which pre-assumes a particular plan for the other agent, and
therefore, it might be possible to minimize suboptimal (in terms of redundant or conflicting actions
performed during the execution phase) behavior of the autonomous agent. Our approach is similar
to these works in that RAPPA’s diverse plan libraries provide a basis for us to tone down the redun-
dant and conflicting actions in the plans and therefore, SPAR’s probabilistic reasoning mechanisms
are not affected by them. However, a more deeper comparison with RAPPA/SPAR and these new
ground-breaking works are necessary and in order.

6.3 Learning

RAPPA’s AHL algorithm described in the paper uses, in essence, a variant of chart parsing (e.g.,
(Charniak, Goldwater, & Johnson, 1998)) for learning the hierarchy of the plan library from an at-
tack plan. A chart parser is a type of parser suitable for ambiguous grammars (including grammars
of natural languages). It uses a dynamic programming approach - partial hypothesized results are
stored in a structure called a chart and can be re-used. This eliminates backtracking and prevents a
combinatorial explosion in the search space since the parser does not generate the same grammar
rules multiple times in different parts of the search space.

HTN-Maker (Hogg, Muñoz-Avila, & Kuter, 2008) uses explanation-based reasoning techniques
to learn the method’s hierarchy and preconditions while HTN-Learner uses constraint-satisfaction
techniques for this purpose. They both require the task semantics to be given in the form of (precon-
ditions,effects) pairs. These systems exhibit characteristics beyond the scope of this paper: HTN-
Maker and variants are able to learn in domains were actions have non-deterministic effects and take
into account plan quality factors. HTN-Learner (Zhuo et al., 2009), a variant of HTN-Maker, is also
able to learn the operators’ preconditions and effects under partial state observability (i.e., as usual
for most learners, the input is a collection of plan traces annotated with the intermediate states; in
HTN-Learner’s case these states might have missing information).

Camel (Ilghami et al., 2005) assumes that not only the annotated plan traces is given but it also
requires two more inputs: the complete task structure and samples of incorrect uses of the task struc-
tures. Camel uses these inputs and a version space algorithm to learn the method’s preconditions.
Another HTN learner in this category is DiNCAT (Xu & Muñoz-Avila, 2005) (not shown in the
table). Like Camel, it requires the hierarchical structure to be given as input. Unlike Camel it does
not require the incorrect uses of the hierarchy to be given as input; it uses case-based generalization
techniques to learn the method’s preconditions.

ICARUS (Langley & Choi, 2006) and its variant LIGHT (Nejati, Langley, & Könik, 2006) learn
both method’s preconditions and the hierarchical structure. It uses teleoreactive learning techniques
whereby STRIPS planning is used to fill gaps in the knowledge of the methods; when the methods
cannot be used to solve a subproblem, STRIPS planning is used to solve the subproblem and meth-
ods are learned from the subplan generated. Icarus and LIGHT require the skill definitions to be
given as input. These skills provide the semantics of the tasks, which are STRIPS goals.

Algorithms for learning grammars can be capable of generating hierarchical structures if we
map the input plans into strings (i.e., mapping the plan’s actions into the string’s symbols) and the
tasks into the grammar’s variables. The grammar learned could be used to generate the hierarchi-
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cal structures (i.e., by mapping the grammar’s parse trees to HTNs). Grammar learning algorithms
(Oates, Desai, & Bhat, 2002; Sakakibara, 1997) generate a grammar that best maps the input strings.
These techniques are exploited by the Greedy Structure Hypothesizer (GSH), which uses proba-
bilistic context-free grammars learning techniques to learn a hierarchical structure of the input plan
traces. This hierarchy reflects user’s preferences. GSH does not learn preconditions since its goals
are not to generate the grammars for planning but to reflect user’s preferences. In general, grammar
learning algorithms does not consider applicability conditions. Furthermore, the learned hierarchi-
cal structure is a function of commonalities between subsequences in the input traces, regardless of
which tasks they achieve.

X-Learn (Reddy & Tadepalli, 1997) uses bootstrapping learning techniques in which first simple
traces are given to learn methods to achieve these traces. Progressively more complex traces are
given where the knowledge learned in previous iterations can be exploited to simplify the trace and
learn new task decompositions. Tasks correspond to one of the goals that is achieved at the end of
the trace. Hence, its task semantics are defined as the usual STRIPS semantics for goals.

7. Conclusions and Future Work

We have described a system composed of two sister algorithms, RAPPA and SPAR, for reasoning
and recognizing attacker goals in cyber systems. Although such goals are not necessarily part of the
goals of a mission itself, reasoning about them enables mission resilience since we can recognize
and respond to those attack goals in advance. We have presented a preliminary evaluation of the
two algorithms, demonstrating that they are promising for the cyber scenarios of our interest.

We currently working on a new approach which we call R2S2 (RAPPA2 / SPAR2). Unlike
action-based diverse planning techniques in RAPPA, our new approach builds a hierarchical plan-
ning graph, in which actions could be either primitive or abstract. In the latter case, an abstract
action represents a set of plans that are semantically equivalent. Thus, we reduce and replace our
diverse planning capability to generating this compact conceptual planning graph, which represents
the set of all possible diverse abstract plans in a planning domain.

SPAR2 algorithm then performs a backward breadth-first search over this graph, not only gen-
erating conditional probabilities for possible attacker goals, but also explaining those conditional
probabilities causally. We believe that this recognition approach using hierarchical plan graphs, will
also address a limitation in SPAR: larger plan libraries containing longer plans poses a tractabil-
ity issue for SPAR to deal with its joint probability distributions. Hierarchical plan graphs, on the
other hand, as compact and abstract representations of such plan libraries, will naturally alleviate
this issue for SPAR2. This is also important for another direction with SPAR2: reasoning with
partially-observable observation states.
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Abstract
State-of-the-art agents in the real-time strategy game domain currently rely on hand-crafted scripted
strategies, and as a result are inflexible, responding poorly to unexpected events brought on by the
actions of their adversary. A self-introspective agent with goal reasoning could overcome this
challenge, allowing an agent to consider how its strategy has succeeded or failed and what must be
modified as a result of this. We demonstrate such an agent in its initial development, and show that
it performs well against weak to medium strength opponents, though still falls short against well-
scripted play. In addition, we discuss possible extensions and research areas that can be explored
with this base system.

1. Introduction

Real time strategy (RTS) games have been growing in popularity as a challenge domain for artificial
intelligence research. They are abstract economic and military simulations in which players allocate
resources to various infrastructure development, and attempt to steer the game toward the strengths
of their choices and away from the weaknesses. As simulations, they contain many problems that
arise when working in the real-world in adversarial environments, such as the need for flexible and
reactive decision-making, in addition to the requirement to plan ahead and not simply always react
to an opponent’s actions.

Unfortunately, many of the current state-of-the-art agents use scripted logics or small state ma-
chines for high-level strategic decisions, leaving them rigid and poorly able to adapt to new sit-
uations and opponents. The progression from inflexible scripted strategies to systems that reflect
human intelligence and rational decision-making has been a common sight in past challenge do-
mains, and is where we hope to go with this work.

We have created a planning agent for the RTS game Starcraft:Brood War (see section 2), which
uses replanning as a form of goal reasoning in order to adapt its plan to unexpected changes in the
environment due to inaccurate beliefs about the world state or active opposition from an adversary.
In the future, we hope to use this system as a base from which to explore more complex goal
reasoning approaches, adversarial planning, and learning hierarchical models from demonstration.

2. StarCraft:Brood War

Starcraft:Brood War (SC:BW) is a well-known RTS game produced by Blizzard Entertainment.
At a very high level, gameplay consists of allocating resources to grow an economy and military
infrastructure, then using this infrastructure to train an army to destroy your opponent’s troops and
buildings. It can be played with up to eight players, but competitive games traditionally feature
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Figure 1. An example screenshot from SC:BW. Shown is a base with mining worker units, and a portion of
the player’s army.

two players in a head-to-head match. While seemingly simple at first, the interaction of resource
management, terrain considerations, and asymmetric army compositions results in a rich space of
strategies and tactics for players.

In recent years SC:BW has grown in popularity as a research testbed, due to a number of desir-
able properties. It is a real-time environment (or near-real-time, at 60 possible decision points per
second), which is a departure from previous AI challenge games such as Chess or Go. In addition,
it is a game of imperfect information. Only areas of the map that are visible to a player’s units will
be revealed to that player, which means that one is never completely aware of how an opponent is
allocating their resources. The state and action spaces of the game are very large, a rough calcula-
tion of the state space estimating it to be 1011,500 (Weber, 2012). This calculation doesn’t take into
account information states, which would increase it even more.

The conjunction of these properties means that any agent that wishes to play the game well must
be able to make on-the-fly decisions adapting to new information about an opponent’s strategy and
the world state, since it is clearly infeasible to precompute a full state transition strategy. These
requirements are common to real-world problems and still challenging to artificial agents, which is
exactly what we desire in a testbed.

An added benefit of this specific game is its popularity. At its peak, professional leagues existed
with players competing regularly in tournaments with tens of thousands of dollars in cash rewards.
In combination with the ability to save and post replays, this has resulted in large archives of expert-
level play, which can be used as demonstrations for learning systems.

For possible evaluations, multiple tournaments for SC:BW agents are held each year (Churchill,
2013). Additionally, while much of the professional scene has moved on to more modern RTS
games, the game remains popular enough online to have a sustainable test set of human players,
with a competitive online ladder system against which an agent’s performance can be measured
quantitatively.
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Figure 2. Information flow for PlanBot and associated components

3. System

Our system (called PlanBot) is built off of a base platform provided by UAlbertaBot (Churchill &
Buro, 2012) (Churchill & Buro, 2013). We will give a brief overview of UAlbertaBot and how it
operates, then explain the changes that have been made to create our agent.

3.1 UAlbertaBot

UAlbertaBot is a SC:BW agent developed at the University of Alberta. One of the main goals of the
system has been to provide an entry point for developing SC:BW agents that is modular and easily
modifiable. Control has been broken into a number of ‘managers’, which handle internal state for
the agent, and ‘commanders’, which interact with the game itself. For example, the main actor is
the ‘GameCommander’, which queries the ‘StrategyManager’ for the next set of units and buildings
that the agent should train/construct. Given that set, it passes it on to a build order searcher, which
calculates an order in which the set of units should be constructed, optimizing for time. Other
components manage building placement, positioning for fights, and more. Each component uses
its own decision-making process, including scripts, simulation, and game-tree searches. Futher
information on UAlbertaBot, and the code itself can be found at (Churchill, 2015).

This modular structure, while enforcing certain relations between components, is attractive from
an engineering standpoint. For example, a researcher can swap in a new high-level Strategy manager
without needing to interfere with the existing decision process for building placement, if it isn’t
necessary. This has resulted in removing much of the software engineering burden for creating a
fully-functioning SC:BW agent, which can be intimidating for researchers new to the domain, or
those only interested in specific challenge areas.

3.2 PlanBot

The primary change to create PlanBot is a full replacement of the strategy module in UAlbertaBot,
responsible for high-level resource allocation decisions. As mentioned in the example earlier, this
part of the agent is queried by the commander module for a list of units and/or buildings that should
be constructed next, and then search is performed to determine the optimal order to construct the
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Built-in AI Bonjwa UAlbertaBot

PlanBot 98% 72% 12%

Table 1. Winning percentages of PlanBot against a range of opponents.

Built-in AI Bonjwa UAlbertaBot

PlanBot 15:54 ± 1:02 18:31 ± 0:45 10:02 ± 0:36

Table 2. Average game lengths for each opponent.

full set, taking into account prerequisites and resource collection rates. This results in a hybrid of
planning and search approaches, where primitive operators in the planning model consist of sets of
units to train/construct, the order of which is optimized by the search component. This boundary
between search and refining the current plan is a potential point of future investigation. Originally,
the strategy module returned a static choice from a set of fixed if-then evaluations of the current
state. PlanBot instead uses a modified version of a Python implentation of SHOP1 (Nau et al.,
1999) and slightly modified to handle some of the extra domain complexities. The task model used
for planning is handwritten by the authors, and is a candidate for future improvement of the system.

We also modify the commander module, which is responsible for coordinating the other mod-
ules, to reflect the changes in the strategic decision-making of the agent. The original agent simply
queried the strategy module for a new set of buildings/units as soon as it finishes the last set it was
given. Two changes were made to this interaction: first, when the agent is out of things to do and
needs direction, it also passes a flag to the strategy manager indicating one of three things. If the last
task was executed successfully (all units and buildings were constructed), it requests the next step
in the current plan. If the last task was not executed successfully (some units and/or buildings were
destroyed while the task was open), we note that this goal has not been satisfied and request for a
new task that will achieve it in the current state, then continue with the plan. If the state has changed
dramatically from the plan’s expectations, the flag indicates that complete replanning should occur.
Figure 2 shows this information flow, with the PlanBot node representing the high-level commander
module and encapsulating the unchanged modules of UAlbertaBot not discussed here.

As one can see from the description above, the system’s goal reasoning capabilities are currently
limited to evaluation and replanning if required, while not taking advantage of the full goal lifecycle
and opportunities to cycle into different parts of it based on the evaluation of a task’s execution. We
intend to extend the capabilities of PlanBot to include more complex goal reasoning in the future,
as it will likely be necessary in such a complex domain.
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4. Evaluation

Our evaluation was based on simple strength of play in head-to-head matches against other agents,
and is shown in Table 1. Each opponent was played 100 times over 10 different maps. The built-in
AI is, as expected, the AI that is shipped with the game. It generally uses a fairly unoptimized
rushing strategy and does not attempt to grow its economy very much. There are three asymmetric
races to choose from in the game, and most agents select a specific race to build for, but for the
built-in AI we randomized the race, as it is roughly equivalent with each of the three.

Bonjwa is an open-source agent from the 2014 AIIDE tournament, developed by Dustin Dan-
nenhauer. We chose it because it plays the Terran race, while UAlbertaBot (and consequently Plan-
Bot) plays the Protoss race, and we wanted to include an asymmetric matchup with a developed
agent. Furthermore, UAlbertaBot is a very strong player, and we wanted a mid-level challenge to
measure against as well (according to the rankings from the last open tournament). Bonjwa was
forked off an earlier version of UAlbertaBot, and therefore uses the same decision mechanisms,
though it has different hand-coded strategies, as it plays a different race. The final opponent, UAl-
bertaBot, is the unmodified script-based strategy version.

While the results clearly indicate that PlanBot is a capable agent, scoring well against both the
built-in AI and Bonjwa, it is also clear that it performs poorly against its own predecessor, winning
only 12 games out of 100. In order to gain more insight into what these results actually meant, we
watched a number of games from each of the matchups. In general, it seemed that PlanBot did better
the longer the game progressed. UAlbertaBot generally executes an optimized rushing strategy that
PlanBot was unable to hold off, while as long as it could hold off the built-in AI’s initial push, it was
eventually able to outmaneuver it. In light of that, we measured the average game times for each
opponent, and the results, shown in Table 2, seem to support the observations.

On the bright side, this indicates that our goal of being able to adapt as the situation changes and
plans need to be altered is being reflected, but it also means that we are not responding well to early
pressure. In all likelihood, this is the result of an incomplete task model due to the authors’ incom-
plete knowledge of the domain, and could be improved with iterated testing and expanding/refining.
However, rather than obsessing over improving the win rate, we would like to focus on improving
the general intelligence of the system, which we hope to do in the following ways.

5. Future Work

This system is intended to be a base for future research in a number of areas. As mentioned before,
the goal reasoning performed by the system currently is of a fairly basic form. We would like to
deepen the task evaluation functionality in the commander module to support more fine-grained re-
sponses to successful or failed tasks, and the gradations between the two. We believe there are also
interesting areas to explore regarding the adversarial nature of the domain, and being able to differ-
entiate between a task failing due to a mistaken belief about the world state or active interference
from the opponent, and if or how that should affect the agent’s response.

1. Code found at https://bitbucket.org/dananau/pyhop
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We also hope to integrate some of our prior research to improve the general intelligence of the
system. Human players have capabilities that are not reflected in the current agent, such as gen-
eral reasoning about what one’s opponent is doing and how that should affect one’s own strategic
choices, or the interaction between strategic choices and tactical choices. Some amount of opponent
modeling (Leece & Jhala, 2014a) would give the agent a greater idea of when things are straying
away from what was expected when the original plan was generated, and also increase the informa-
tion available to the planner. This would also help in task evaluation, as it could be performed more
accurately mid-task. In addition, we would like to make use of the archives of expert play available
online to attempt to learn the task models directly, rather than needing to hand code them, which we
have begun work on in (Leece & Jhala, 2014b).

Lastly, we would like to implement some consideration of adversarial planning, similar to the
work found in (Meijer & Koppelaar, 2001).

6. Related Work

The strongest predecessor of this project is the work done by Weber et al. on EISBot, a SC:BW
agent that used goal-driven autonomy to make its strategic decisions (Weber, 2012) (Weber, Mateas,
& Jhala, 2011). Written in the reactive programming language ABL, it used a library of states from
human games and case-based reasoning to identify discrepancies and set goals (Weber, Mateas, &
Jhala, 2012). Alternatively, Dannenhauer and Muñoz-Avila presented a Goal-Driven Autonomy
agent that uses ontologies to identify and explain discrepancies, resulting in a more human-like
decision process (Dannenhauer & Muñoz-Avila, 2013). As other projects related to goal reasoning
and in the same domain, we hope to compare and contrast our work with these projects moving
forward.

Some other work with applying planning to real-time games can be found in (Hoang, Lee-Urban,
& Muñoz-Avila, 2005). They combine a strategic planner to direct motion and positioning with a
reactive state machine that controls low-level behavior when handed control from the planner. In a
more real-world domain, Roberts et al. implemented a planning system that automatically generates
finite state machines for heterogeneous teammates based on assigned goals from a coordinating
planner (Roberts et al., 2014). This work could be viewed as similar to our system, in breaking plan
components into things that are tractable to compute more directly, and will be particularly useful
to keep in mind in that it has a better treatment of durative reasoning than our current system.

With regards to our other planned goals for the system, a theoretical basis for learning hierarchi-
cal models from demonstrations can be found in (Garland, Ryall, & Rich, 2001) (Garland & Lesh,
2003), and learning the CaMeL system for learning method preconditions (Ilghami et al., 2002)
(Ilghami et al., 2005), although these both assumes that some of the structure in the training exam-
ples provided has been annotated. Some practical work with entirely unannotated examples, as is
available to us, has been done by Hogg et al. in their work on HTN-Maker (Hogg, Munoz-Avila,
& Kuter, 2008) (Hogg, Kuter, & Munoz-Avila, 2010). In addition, work has been done within the
cognitive systems community itself, due to the fact that most cognitive architectures use some form
of hierarchical reasoning or data storage. An example of this can be found in (Ichise, Shapiro, &
Langley, 2002).
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7. Conclusion

We have created a goal reasoning system for Starcraft:Brood War, a complex adversarial domain
which requires flexible and adaptable reasoning. It performs well against the built-in AI, though
it is still defeated by well-scripted agents. We hope to extend this agent to use more and more
self-introspection regarding its task evaluation process in the future, in addition to using it for other
interesting research areas.
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Abstract 
In ill-structured problem domains, it is common to reason about ‘problem-finding’ or ‘hypothesis 
generation’ before goals can be established. Examples of such domains include design, scientific 
research and mining of ‘big data’. Problem-finding and hypothesis generation may also continue 
throughout the problem-solving process, so identifying goals may be an ongoing process of dis-
covery as well as iterative improvement and refinement. This paper considers the design of cog-
nitive systems that are able to reason in the absence of defined goals. We review a range of ap-
proaches that may complement goal-directed reasoning when an artificial system does not or 
cannot know precisely what it is looking for. We argue that there is a spectrum of approaches 
that can be used for reasoning or making sense of data in the absence of goals.  

1. Introduction   
AI approaches to cognitive systems assume that explicit representations of goals, rewards and 
tasks are integral and provide a focus of attention. Most cognitive systems assume that goals are a 
starting point for reasoning; that reasoning cannot start without goals; and that reasoning ends 
when there are no goals. In contrast, it is possible to characterize reasoning so that goals become 
flexible intermediate structures or implied structures, rather than a predefined and fixed starting 
point (Maher et al., 2011). While the idea of goals as intermediate structures is similar to agent 
systems that reason about goals, goal formulation, and goal management (for example, Jaidee et 
al, 2011), we claim that reasoning in the absence of goals is conceptually different and will lead 
to different cognitive models. By using concepts such as incentive, novelty, difficulty, complexi-
ty, curiosity and surprise, cognitively inspired AI models that mimic human behavior in scenarios 
such as exploratory design, research and lifelong, self-directed learning are possible. The models 
can be applied to any domain in which ‘problem-finding’ needs to occur during problem solving. 
 The remainder of this section overviews existing approaches to goal-oriented behavior in cog-
nitive systems. The next section examines a number of complementary approaches that may work 
in conjunction with goal-directed reasoning, including hypothesis generation, motivation, sur-
prise, novelty and curiosity. We classify these approaches along a spectrum that makes progres-
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sively weaker assumptions about the definition and presence of goals. We argue that in some cas-
es goal-oriented behavior is an intermediate result of problem-finding, rather than a starting point 
for problem solving. In such cases goal-oriented behavior can be an emergent property that does 
not depend on a predefined definition of domain-specific goals. 

1.1 Goal-Oriented Behavior in Cognitive Systems 

Langley et al. (2008) survey cognitive architectures and layout nine functional capabilities that 
are required of a cognitive architecture. While each of these are described in terms of functionali-
ty without reference to specific architectures or implementations, almost all assume that goals and 
tasks are inherent in the description of the functions. This can be seen in the way that Langley et 
al (2008) describe four examples of cognitive architectures:  

• Soar: “All tasks in Soar are formulated as attempts to achieve goals.”  

• ACT-R: “ACT-R 6 is organized into a set of modules, each of which processes a different type 
of information. These include sensory modules for visual processing, motor modules for action, 
an intentional module for goals, and a declarative module for long-term declarative 
knowledge.”  

• ICARUS: “ICARUS … stores two distinct forms of knowledge. Concepts describe classes of 
environmental situations in terms of other concepts and percepts, whereas skills specify how to 
achieve goals by decomposing them into ordered subgoals.”  

• PRODIGY: “On each cycle, PRODIGY uses its control rules to select an operator, binding set, 
state, or goal, to reject them out of hand, or to prefer some over others. In the absence of such 
control knowledge, the architecture makes choices at random and pursues depth-first means-
ends search with backtracking” 

 There are multiple models for goals – including goal lifecycles and type taxonomies (Braubach 
et al., 2005) – and processes for solving goals – including machine learning (Nilsson, 1996), 
planning and rule-based agents (Russell and Norvig, 1995). Braubach et al., (2005) define a 
lifecycle for goals in which goals transition from new to adopted and finished.  
 Braubach et al., (2005) also divide goals into a number of types. Approach goals, for example, 
define states for which an agent should minimize the difference between its current state and the 
goal state. In contrast, avoidance goals define states for which an agent should maximize the dif-
ference between its current state and the goal state. Achievement goals define changes or events 
that the agent should cause to occur. Maintenance goals define properties that the agent should 
hold constant. Other types of goals include optimization, test, query and cease goals. 
 Dignum and Conte (1998) state that truly autonomous, intelligent agents must be capable of 
creating new goals as well as dropping goals as conditions change. They distinguish between ab-
stract, high-level goals and concrete, achievable goals. They describe goal formation as a process 
of deriving concrete, achievable goals – such as ‘driving at the speed limit’ – from high level, ab-
stract goals – such as ‘being good’.  
 Foner and Maes (1994) develop an agent model of unsupervised learning that can self-
determine what facts it should pay attention to as a way of modeling focus of attention. Foner and 
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Maes (1994) distinguish between goal-driven and world-driven focus of attention. In their model, 
the agent can determine what sensory data to learn from based on strategies that are derived from 
world-driven goals, such as what has changed recently and what new data is spatially close. 
These are domain independent strategies that can reduce the number of possible goals an agent 
can pursue at any given time.  
 In general, however, there has been less work on how to represent the high-level, abstract goals 
or world-driven goals that cause new, concrete goals to emerge. The concept of an abstract goal is 
difficult to formalize because of the difficulty of representing high-level objectives such as “being 
good” or “being creative”. A number of alternative approaches use models of motivation to take 
the place of abstract learning goals (Merrick and Maher, 2009; Singh et al., 2005; Kaplan and 
Oudeyer, 2003; Schmidhuber, 1991). Computational models of motivation have also been pro-
posed as an approach to embedding implicit motives in artificial agents to create agents with dif-
ferent preferences for certain kinds of activities (Merrick and Shafi, 2011; Merrick and Shafi 
2013). In a different approach, Barnes and Oudeyer (2010) presented a framework for ‘matura-
tionally-constrained self-adaptive goal generation’ in which an intrinsic motivation module pro-
gressively releases constraints on the learning system. This permits the learning system to explore 
progressively more widely, through the introduction of new goals.  
 Other work has studied the role of emotion and other cognitive moderators in artificial systems 
(Mariner and Laird, 2008). Models of emotion act as modifiers to an agent’s goal-oriented behav-
ior or provide abstract goals that can be mapped onto concrete goals.  
 This paper proposes that reasoning can include reasoning before goals are defined, usually 
based on the current state of the artificial agent and the state of the world. These approaches are 
consistent with current cognitive systems because they ultimately lead to goal-oriented behavior, 
but they complement most cognitive systems because they do not assume that goals are prede-
fined. The next section describes models that fall along a spectrum that make progressively 
weaker assumptions about the definition and presence of goals. 

2. Models that Complement Goal-Directed Reasoning  
In creative domains such as design and research, the ill-defined nature of tasks suggests a distinc-
tion between search and exploration. Maher et al (1996) characterize the difference between 
search and exploration by the input and output of these processes as illustrated in Figure 1. A typ-
ical search process generates a solution as its output with a well-defined problem (or goal) as its 
input. However, an exploration process derives a problem and the corresponding solution from an 
ill-defined problem. Maher et al (1996) expand this idea with a co-evolutionary model of reason-
ing about the problem space and the solutions space in which goals are expressed as requirements  
in the problem space that are added and adapted in response to the evolutionary search in the so-
lution space. 
 If we consider the internal state of an agent to include its goals, then the absence of goals re-
mains a valid state. In many autonomous systems the absence of goals implies idle time, but we 
envisage that a cognitive system can continue to monitor its environment to discover and pursue 
self-generated goals that extend or improve its knowledge base or skill set, during this so-called 
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idle time. This type of activity will cause changes in the agent’s internal and external environment 
and create a feedback loop that fosters continuous adaptation. 
  

 

 
Figure 1.  Input and output of search and exploration (Maher et al. 1996). 

 
While ultimately the processes in cognitive systems are organized with the assumption that be-
havior is goal-directed, we propose that self-directed cognitive systems include the ability to rep-
resent, generate, and reason about what Dignum and Conte (1998) call abstract goals. Rather than 
cast this capability in terms of goals and tasks, however, we identify cognitive models that com-
plement goal-directed reasoning. This is illustrated in Figure 2, where reasoning in the absence of 
goals can lead to action without an explicit representation of goals or it can lead to the definition 
of new goals for goal-directed reasoning. 
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Figure 2: The role of reasoning in the absence of goals in a self-directed cognitive system 

 
 In self-directed reasoning, goals are flexible intermediate structures or implied structures, rather 
than a predefined and fixed starting point for reasoning. Figure 3 shows a spectrum of reasoning 
starting with the traditional goal-directed reasoning that includes domain specific or state-based 
goals and models for achieving them, through an intermediate type of reasoning in which goals 
are implied and may be emergent properties of reasoning, to reasoning without goals in which in-
centives, for example, provide guidance for reasoning about actions. Goals can be flexible, value-
based, intermediate or emergent structures, rather than fixed starting points. This will permit con-
tinuous learning and adaptation to unexpected data or events, or changes in needs, beliefs or de-
sires to become an integral concept in cognitive architectures. This will also recast cognitive sys-
tems from strictly goal-directed behaviors to include creative and exploratory behaviors. 
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Figure 3. Spectrum of models for reasoning with and without goals.  

 
 In this section we begin by looking at models of novelty, curiosity, interest and surprise and the 
role they play in reasoning where goals are abstract, intermediate or emergent structures. We then 
consider a set of weaker models based on incentives and motives that represent only a preference 
for certain types of actions and goals are emergent structures. Finally, we consider models of hy-
pothesis generation that can identify progressively strong patterns and relations in data, when 
there is no a priori knowledge of the structure of the data.   

2.1 Novelty, Interest and Curiosity 

Novelty, interest and curiosity fall in a class of models that allow an agent to characterize, act on 
and learn from changes in the environment. There are many accounts of measuring novelty using 
computational approaches. Marsland et al. (2000) used Stanley’s (1976) model of habituation to 
implement a real-time novelty detector for mobile robots. Like the Kohonen (1993) Novelty Fil-
ter, the real-time novelty detector uses a Self-Organising Map (SOM) as the basis for the detec-
tion of novelty. Habituation and recovery extends a novelty filter with the ability to forget. 
 Models of interest provide a basis for determining if a novel event or state is worth attention. 
Curiosity is when something of interest can distract the process from its current focus of attention. 
Saunders and Gero (2001) drew on the work of Berlyne (1960) and Marsland et al (2000) to de-
velop computational models of curiosity and interest based on novelty. They used a real-time 
novelty detector to implement novelty. Saunders and Gero (2004) model interest using sigmoid 
functions to represent positive reward for the discovery of novel stimuli and negative reward for 
the discovery of highly novel stimuli. The resulting computational models of novelty and interest 
are used in a range of applications including curious agents.  
 Merrick and Maher (2009) present models of motivated reinforcement learning agents that use 
novelty and curiosity as models of intrinsic motivation. These agents exhibit a kind of world-
driven (rather than goal-driven) behavior. The agents (shown in Figure 4) have an experience tra-
jectory Y(t) that models all states S(t), changes in states (events) E(t) , actions that have been en-
countered/experienced by the agent: 

Y(t) = S(1), E(1), A(1), S(2), E(2), A(2), … , S(t), E(t), A(t) 

Explicit/Concrete goals     Implicit/Abstract goals         No goals 

Domain specific 
goals associated 
with (for exam-
ple) rules, poli-
cies, tasks 

Domain inde-
pendent models 
for focus of at-
tention (for ex-
ample) curiosity, 
novelty, surprise, 
interest and oth-
er motivations 

Domain inde-
pendent models 
for (for example) 
hypothesis gen-
eration  
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A dynamic motivated reward signal Rm(t) is computed as a function of novelty and interest. Their 
model of interest, based on the experience trajectory, is a modified version of the Saunders and 
Gero interest function and is based on the Wundt curve shown in Figure 5.  
 

 
Figure 4 Motivated reinforcement learning agents: goals are implied by a dynamic motivation 

signal (Merrick and Maher, 2009).  
 

 
Figure 5 The Wundt curve is the difference between positive and negative feedback functions. It 
peaks at a moderate degree of novelty (Merrick and Maher, 2009). 
 
This curiosity-based reward signal directs the agent to focus its learning on achieving specific sit-
uations at different times, but does not have an explicit representation of tasks or goals. Other mo-
tivation functions studied by Merrick and Maher (2009) within this framework include functions 
for competency and combined competency and curiosity. Experimental studies of curious agents 
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in dynamic environments demonstrated adaptive behaviors through the ability to learn a variety 
of simple and complex behaviors (see Merrick and Maher, 2009 for experimental results). 

2.2 Surprise 

Surprise occurs when an unexpected event occurs. While surprise and novelty are similar, some-
thing may be novel, but necessarily surprising because it is the next expected change. Horvitz et 
al (2005) and Itti and Baldi (2004) have developed probabilistic models for finding surprising 
events in data. Ranasinghe and Shen (2008) have developed a model of surprise for reinforcement 
learning for developmental robots. 
 The Horvitz et al (2005) model of surprise is used in traffic forecasting. They generated a set of 
probabilistic dependencies among a set of random variables, for example linking weather to traf-
fic status. They assume a user model that states that when an event occurs that has less than 2% 
probability of occurring, it is marked as surprising. Surprising events in the past are collected in a 
case library of surprises. This provides the data for forecasting surprises based on current traffic 
conditions. The Itti and Baldi (2004) model of surprise is developed for observing surprising fea-
tures in image data using a priori and posterior probabilities. Given a user dependent model M of 
some data, there is a P(M) describing the probability distribution. P(M|D) is the probability distri-
bution after the data is added, using Bayesian probability. Surprise is modeled as the distance d 
between the prior, P(M), and posterior P(M|D) probabilities.  
 The Ranasinghe and Shen (2008) model of surprise is used as a reward in a model they call 
surprise-based learning for developmental robots. In this model, surprise is used to set goals for 
learning in an unknown environment. The world is modeled as a set of rules, where each rule has 
the form: Condition  Action  Predictions. A condition is modeled as: Feature   Operator 
 Value. For example, a condition can be feature1 > value1 where “greater than” is the operator. 
 A prediction is modeled as Feature  Operator. For example, a prediction can be “feature1 >” 
where it is expected that feature1 will increase after the action is performed. The comparison op-
erators provided for surprise analysis include operators to detect the presence (%) or absence (~) 
of a feature,  and the change in the size of a feature (<, <=, =, >=, >). If an observed feature does 
not match the prediction for the feature, for example, the feature was expected to increase and it 
decreased, then the system recognizes surprise and sets that state as a reward for learning. 
 Grace et al (2014) develop a model of surprise based on predictive models using regression 
analysis or conceptual clustering on product design data. When a new design is encountered that 
violates our expectations, that design is surprising. This work was further developed to character-
ize multiple types of expectation and its effect on ways in which we are surprised (Grace and 
Maher, 2015). 
 These different approaches to modeling surprise are responses to the needs of the context in 
which they are developed. The Horvitz et al (2005) model determines that an event in the past is 
surprising, and then for a collection of surprising events is used to predict future surprising 
events. In the Itti and Baldi (2004) model, the new data is assimilated into the probability distri-
bution, so something is surprising the first time it is introduced. The Ranasinghe and Shen (2008) 
model does not use probabilities and instead finds the first unexpected feature based on predic-
tions of the direction in which the values of features will change and sets a reward to learn about 
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that situation. The Grace et al approach is to characterize a cognitive model of expectations in or-
der to recognize when a new design changes our expectations, and is therefore surprising. The 
role of factors such as curiosity and surprise in information seeking has also been recently con-
sidered (Gottlieb et al., 2013). 
 Surprise serves as a trigger for meta-level reasoning leading to the formation of goals. This 
concept is explored in the context of design by Grace and Maher (2015).  

2.3 Incentives, Motives, and Motivation 

In motivational psychology, incentive is defined as a situational characteristic associated with 
possible satisfaction of a motive (Heckhausen and Heckhausen, 2010). Incentives can be internal 
or external. Examples of internal incentives that depend on an individual’s experiences include 
the novelty, difficulty or complexity of a situation. Examples of external incentives include mon-
ey or other kinds of external ‘payoff’. Associations between incentive and motivation can be 
learned, but there are also certain associations between incentives and motivation that have been 
found to be common across individuals. These include the associations between: 

• Task difficulty and achievement motivation 

• Risk and power motivation 

• Risk and affiliation motivation 

• Novelty and curiosity  

Suppose we represent a situation encountered by an agent at time t as S(t). Then the incentives as-
sociated with a situation can be represented as I(t) = (i1, i2, i3…). Each value in represents a differ-
ent incentive. For example, i1 may describe the novelty of S(t), i2 may describe the complexity of 
S(t), i3 may describe risk and so on.  
 Internal incentive values such as novelty, difficulty and complexity can be computed by an 
agent while it is reasoning about its environment using computational models such as novelty-
detectors (Marsland et al., 2000) or achievement based on error calculations on learned policies 
(Merrick and Maher, 2009). This means that the incentives associated with a situation will change 
based on the agent’s experiences. External incentive values are interpreted from the current state 
of the environment S(t). These values will change based on changes in the environment. Both 
types of incentive have the possibility of satisfying the agent’s motive. 
 Implicit motives are innate preferences for certain kinds of incentives. Because different indi-
viduals have different implicit motives, they will interpret the same situation incentives different-
ly (Merrick and Shafi, 2013). For example, individuals with strong achievement motivation favor 
moderate difficulty. Likewise, high curiosity is associated with moderate novelty. Individuals 
with strong power motivation favor high risk. In contrast, individuals with strong affiliation moti-
vation avoid situations with high risk. We can represent different motives M1, M2, M3… as a func-
tion of incentive Mm(t) = Mm(I(t)). These scalar motivation values Mm(t) can be used in isolation, for 
example as a reward signal in learning, or combined. For example, they can be summed to give a 
resultant motivational tendency based on a complex motive profile of multiple motives (Merrick 
and Shafi, 2011). 
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Tres(t) = M1(t) + M2(t) + M3(t) + … 

 The resultant value can then be used by the agent to identify the most highly motivating situa-
tions and act, learn to act or plan to act to achieve those situations. This action, learning or plan-
ning may involve formation of explicit concrete goal structures, but this is not strictly necessary.  
 In summary, models of incentives and motives are able to reason about the synergy of the ex-
ternal environment and the internal state and preferences of the agent to provide a basis for decid-
ing what to do next. They do not represent goal structures although we may recognize emergent 
goal-directed behavior.  

2.4 Autonomous Hypothesis Generation 
Advances of computational power, data collection and storage techniques are making large vol-
umes of new data available every day. In some situations, data are collected without a priori sup-
position or imposition of a specific research goal or hypothesis. Sometimes domain knowledge 
for this type of problem is also limited. For example, in sensor networks, sensors constantly rec-
ord data. In these data, expectations about relationships cannot be described in advance. Moreo-
ver, the environment may change without a priori knowledge. 
 While finding patterns in data is achieved with data mining tools and algorithms, there are in-
creasingly situations in which the observational data is collected without specific data mining 
goals in mind. Big data (Manyika et al., 2011) is a relatively new phenomena that has arisen in 
cases where very large data sets are accumulated as the result of daily recordings (such as twitter 
data, phone location data, etc.) for which no specific research purpose was set when the data were 
recorded. People are interested in analysing the data, however, the questions such an analysis 
might answer are not initially evident. Hypothesis generation helps to form initial questions that 
can guide the search for patterns in such accumulated data. 
 An example is in the field of intelligent systems in which sensors on mobile devices or those 
embedded in the physical environment record activity data from the environment and can perform 
pre-defined tasks to adapt to human activities through machine learning techniques. Such tasks 
can be developed manually when we know the common activities in typical scenarios, e.g., offic-
es or lecture theatres. However, we need new ways for an intelligent environment agent to hy-
pothesise about how to adapt to non-standard scenarios for which knowledge about what the ob-
servational data are describing is not available (Merrick et al., 2008). 
 A similar situation occurs in cyber security in which, due to the constant evolution of hacking 
activities, previous knowledge about abnormal activities in log data can get outdated. How to use 
log data to actively acquire updated insights into a system is an interesting research direction for 
which an agent that can generate new hypotheses from data could be an advantage (Shafi, 2008). 
 All of these scenarios pose open-ended questions about data. The abstract goal is to make sense 
of data, but there is an absence of concrete goals to achieve this. We thus argue that our increas-
ing data stores will require new classes of algorithms that tend towards the right hand end of the 
spectrum shown in Figure 3 and permit reasoning in the absence of goals. 
 Traditional scientific research (or knowledge discovery) starts with a hypothesis suggesting an 
interpretation or description of a phenomenon. This hypothesis becomes the foundation for all 
further inferences and experiments. Its construction is heavily dependent on a researcher’s vision 
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and skills, such as observation, domain knowledge, reasoning, imagination and creativity. Once 
constructed, a hypothesis leads to the design of the experiments and data collection required to 
test it. Therefore, this type of research is often called hypothesis-testing research (or hypothesis-
driven research). 
 Hypothesis generation (Kell and Oliver 2003; King et al., 2004), which complements conven-
tional hypothesis testing, occurs under circumstances where limited domain knowledge or the 
size of the data makes it difficult or impossible for a researcher to have well formed expectations 
or to propose precise hypotheses.  There has been research considering hypothesis generation in 
different fields where hypotheses comprise patterns in the data or machine learning models. Na-
bel explains this as the methods for hypothesis generation and relates them to the specific envi-
ronment under study (Nabel, 2009).     
 In the study carried out by Heintz and Doherty (Heintz and Doherty, 2004), a hypothesis is rep-
resented by certain linkage structures, which incrementally grow with additional sensor infor-
mation being collected. The integration of such structures into agents’ functionalities enables the 
agent to gain awareness of its environment; therefore it provides a basis for other high level goals 
to emerge.  In computer vision, hypotheses often refer to possible matches between two regions 
of interest (ROI) (Wheler  et al. 1995; Chin et al.  2011; Armbruster 2008). 
 In a computational approach to evaluating the quality of citizen science data, an example of a 
case in which very large volumes of data are collected, the challenge is determining when an un-
expected data item is due to low quality data or if it is the basis for a new hypothesis and there-
fore is high quality data. This is being explored using concepts from computational creativity and 
design to search for patterns that are categorized as outliers and harbingers (Maher and Mahzoon, 
2015). An outlier is a data item that is unexpected. An outlier is also a harbinger when that data 
item is the beginning of a new trend in the data, and therefore becomes a pattern that forms a new 
hypothesis: an indicator to collect more data in that space or to search that space for similar pat-
terns. 
 Wang et al. (2015) consider the problem of hypothesis generation in continuous data, with the 
context being situations in which data can be collected about an unknown system. The unknown 
system is measured by a set of variables. However, limited a priori knowledge is available for 
characterising the structure and dynamics of system. Wang et. al. define the autonomous hypothe-
sis generation problem in continuous domains in terms of two sub-processes: associative hypoth-
esis generation (AHG) and causal hypothesis generation (CHG). In the case of human knowledge 
discovery, causation discovery is a progressive process, with the understanding of the causal law 
behind a system beginning with the observation of associations, which leads to an inquiry into 
causal relations..  
 Figure 6 shows the model for hypothesis generation where: The input to the AHG process is X, 
the set of all data. The output of the AHG process is F, a set of associative hypothesis of the form 
XA => XB. The output of the CHG process is G, a causal graph describing relationships among 
variables in X. Associative hypotheses can potentially reduce the number of variables that need to 
be examined when forming causal hypotheses and, because their generation procedures exclude 
irrelevant variables, the CHG can take advantage of the output from AHG to form a causal hy-
pothesis in a reduced variable space. Alternatively, without a priori knowledge about the system, 
it is possible that there are no specific causal relations between its variables and, if so, it is not 
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necessary to proceed to CHG. In this way, autonomous hypothesis generation can identify pro-
gressively stronger patterns in data, when the initial structure and relations in data are unknown 
(Wang, 2014).  

 
Figure 6 Hypothesis generation identifies progressively stronger hypotheses about data.  

 

3. Summary 
This paper has presented several approaches to reasoning in the absence of goals as an alternative 
to goal reasoning. Introducing computational models of curiosity, interestingness, and motivation 
lead to alternative models for agents to reason about actions that are not dependent on explicitly 
represented goals and goal structures. Goals then become intermediate or possibly emergent 
properties of reasoning. Foner and Maes (1994) distinguish between goal-driven and world-
driven attention focus. The models presented in this paper are similar to Foner and Maes (1994) 
concept of world-driven focus for creating goals or acting when there are no pre-defined explicit 
goals directing the agent in a learning or problem solving situation.  Emergent goal-driven behav-
ior is critical for cognitive systems that can use ‘idle time’ effectively by continuing to monitor 
their environment to discover and pursue self-generated goals that extend or improve their 
knowledge base or skill set. 
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Abstract 

We describe a 3-layer architecture for an automated Real-Time Strategy game player. In these 

kinds of games, opponent players create and manage large armies of units to defeat one another 

requiring strategic thinking. Players give commands asynchronously, requiring rapid thinking and 

reaction. Our 3-layer architecture builds on current automated players for these kinds of games, 

which focuses on rapid control. The first layer is the control layer that implements the standard 

reactive player in RTS games. The second layer is a goal reasoning mechanism; it selects goals 

that are executed by the control layer. The second layer reasons at the cognitive level; it introduces 

symbolic notions of goal and examines the outcomes of its own decisions. The third layer 

introduces a meta-reasoning layer that reasons strategically on long-term plans. Our ideas are 

grounded by using the MIDCA cognitive architecture. 

1.  Introduction 

Like chess, real-time strategy (RTS) games are a form of simulated warfare, where players must 

maneuver their “pieces” (called “units” in the RTS games parlance) to defeat an opponent. 

However, RTS games are much more complex than chess due to the following 4 factors: (1) the 

size of the search space; (2) the partial observability of the state; (3) an infinite number of initial 

game configurations; and (4) the asynchronous nature of gameplay. We will expand later on these 

points but the increase in complexity can be illustrated by the fact that, whereas the best 

automated chess player defeated the best human chess player 10 years ago, top human RTS 

games players easily defeat the best automated players. Indeed for the RTS game StarCraft,
1
 the 

winner of the AIIDE-13 automated player competition was defeated by a 50
th
 ranked player in the 

world in about 10 minutes in games where equally skilled human players could take 30 minutes 

or longer as witnessed during that competition by the authors. This, in spite of the fact that the 

automated player could issue moves at a rate about 3 times faster than the human player (the 

exact measure is called APM – or actions per minute). 

                                                 
1 http://en.wikipedia.org/wiki/StarCraft 
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 The combination of the 4 factors above suggests that we will not see automated players that 

play at the human level by brute force any time soon. The fact that expert humans defeat so easily 

expert automated players despite having a much lower APM measurement also suggests the need 

for automated players that can reason at a high-level of granularity; not only at the object level 

(i.e., reasoning about individual unit’s moves) but also more abstractly (e.g., reasoning about the 

strategic notion of “defense”).  

Motivated by these observations, we explore the idea of using cognitive architectures that we 

hypothesize will result in more advanced automated players. We are particularly interested in 

examining how these architectures can be used to create goal reasoning mechanisms of varied 

levels of granularity. We will examine general properties of cognitive architectures and see how 

they match the needs for effective automated players in RTS games. We also examine challenges 

of using cognitive architectures for this purpose. Finally, we provide an example highlighting the 

potential use of the MIDCA cognitive architecture to create an automated player. 

2.  Real-Time Strategy Games 

Real-time strategy game players perform 4 kinds of actions: harvest, construct, build, and destroy. 
The player needs to harvest resources by using specialized units to collect these resources. These 

resources can be used to construct structures such as barracks, factories and defensive towers 
(these structures attack enemy units within their range). Structures such as barracks and factories 
are needed to build units such as foot soldiers (assembled in barracks) and tanks (built in 
factories). Building these units also consume resources. Units are used to attack the opponent 
during combat (when enemy units and/or buildings are within range of friendly units or 
buildings). Combat follows a paper-rock-scissor model where some class of units are strong 

against units of another class but weak themselves against a third class. This encourages using a 
variety of tactics since no class of units is stronger than all others. Furthermore, as a rule, units 
that are relatively stronger than other units consume more resources when built. Hence, players 
must reason for particular situations if it will be more cost effective to build more of the weaker 
units or fewer of the strong units. 

As mentioned in the introduction, there are four elements that makes RTS games more 

complex than chess. We now analyze these challenges in some level of detail. 

2.1  Size of Search Space 

In Chess, players compete in an 8x8 grid with each player controlling 32 pieces. In contrast, 

players can control around 100 units (each can be one of dozens of classes), dozens of structures 

(again multiple classes), and the game takes place in 100x100 grids in RTS games such as 

StarCraft. More recent games such as Supreme Commander, allow players to control hundreds of 

units on 1000x1000 grids. Furthermore, each cell in the grid can be of different types including 

mountain (an impassable obstacle by land units), water (only passable by naval units), and 

mineral resources (which can be harvested). A careful analysis shows that the game tree for turn-

based versions of RTS games is several orders of magnitude larger than chess (Aha, Molineaux & 

Ponsen, 2005). Briefly, whereas in an average game of chess a player can make around 80 moves, 

in a strategy game players can make several hundred. Furthermore, the average branching factor 

of the game tree for chess is 27, whereas for a strategy game, it is on the order of 200. The latter 
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can be illustrated by the fact that a strategy player at any point must decide where to move its 

units, whether to construct buildings and where to place them, whether to spend resources on 

research to upgrade units and if so, choose which kind of research, among other possible 

decisions. 

2.2  Starting Game Configurations 

Games are played on a grid or map that may have a number of geographical features including 

mountains (impassable for land units), rivers, lakes and oceans (also impassable for land units), 

and resources that players can harvest. If the size of the map is fixed, say 1000x1000 cells, and 

there are 2 resources then the number of map configurations is 5
1000x1000

. If the size of the map 

varies and is unbounded, then the number of maps is infinite. In addition, each player can start 

with a base (a collection of buildings placed contiguous to one another) and some units. 

Typically, the starting base consists of a single building (a town center, which can produce 

worker units) and a worker (which can harvest resources or build structures).  

2.3  Partial State Observability 

In RTS games, players only see the area that is in visual range of their units and buildings 

(typically a few cells around the unit/building). When the game starts, this means that the player 
only see its base and surrounding areas. As the player moves its units, it will uncover the map 
configuration. However, opponent’s units will remain unseen unless they are in visual range of 
the player’s own units. This is referred to as the fog of war since the opponent’s movements 
might be hidden. 

2.4  Asynchronous Nature of Gameplay 

In RTS games, players make their moves (i.e., commands) asynchronously. These commands 
include directing a unit to move to a cell or ordering a worker to construct a building in a location 
(typically a group of contiguous cells forming a rectangular shape). This means that the speed to 

issue the commands is an important success factor. Alleviating this is the fact that the game 
engine automates some actions. For example, a worker tasked with harvesting resources will 
continue to do so until it is issued new commands or is killed by an opponent or the resources are 
exhausted. Importantly, units will attack opponent’s units unless the player explicitly has 
command them not to do so. Nevertheless, in human competitions, particularly in later stages of 
the game where each player is controlling hundreds of units and dozens of buildings spread out 

over a map, players can be seen frantically issuing orders. 

3.  Automated RTS Players at the Object Level 

For the purposes of this discussion, we distinguish between reasoning about the environment and 

the environment itself that constitutes the ground level. We further distinguish between reasoning 
at the object (i.e., cognitive) level and at the meta-level (i.e., metacognition) (Cox & Raja, 2011). 
The ground level refers to the maps, units, and player’s actions. Existing automated players (such 
as those used in commercial RTS games or those used in the StarCraft automated player 
competition) all reason at the object level about the ground level. These programs can exhibit 
complex strategies: some will try to attack the opponent continuously draining the opponent’s 
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resources, while others slowly build a powerful army to attack the opponent at a later stage of the 
game. Others analyze the map and methodically take control of resources until they control most 
resources enabling them to overwhelm the opponent by producing large numbers of units that the 

opponent cannot possibly counter. These systems still reason at the object level; the strategies, 
while undoubtedly complex, are selected based solely on circumstances of the ground level. The 
control-resource-strategy for example, will pick the nearest resource to the base that is 
undefended, and expand in that direction. Hardcoded doesn’t mean lack of flexibility; the 
automated player will change its strategy adapting to previously foreseen circumstances. 

4.  Goal Selection in RTS Games at the Object Level 

A key characteristic of cognitive systems is the capability for high-level cognition and goal 

reasoning. That is, the capability of selecting goals of multiple levels of abstraction, determining 

how to achieve those goals with multi-step reasoning mechanisms and introspectively examine 

the results of those decisions. 

 Recent efforts on RTS game research have begun to explore cognition at the object level. 

Specifically, we examine agents that exhibit goal-driven autonomy (GDA) (Aha, Klenk, Munoz-

Avila, Ram, & Shapiro, 2010; Cox, 2007; Klenk, Molineaux, Aha, 2013; Munoz-Avila, Aha, 

Jaidee, Klenk, & Molineaux, 2010). GDA agents are those that (1) generate a plan to achieve the 

current goal; (2) monitor the execution of the plan and detect any discrepancy between the 

expectations (e.g., a collection of atoms that must be true in the state) and the actual state; (3) 

explain reasons for this discrepancy; and (4) generate new goals for the agent to achieve based on 

the explanation generated. The following are three instances of automated GDA agents for RTS 

games: 

 

 Weber, Mateas, and Jhala (2012) learns GDA knowledge while playing the RTS game 

StarCraft. The architecture of the automated player uses the idea of tasks managers which are 

components specialized for tasks such as combat and construction (we will expand on these 

task managers later on). Most of these task managers are hardcoded but the manager 

responsible for building units uses GDA. This enables the automated player to dynamically 

change the production of units to accommodate for changes in the environment. Weber 

(2012) uses vectors of numbers as its representations. These numbers represent counters for 

elements in the game such as number of soldiers. So when a discrepancy occurs because, say, 

the system expected to have 12 soldiers but it only has 8, it will generate a new goal to 

generate 4 soldiers.  

 Jaidee, Munoz-Avila, and Aha (2011) learns and reasons with expectations, goals and how to 

achieve those goals. It has two main differences in comparison to Weber, Mateas, and Jhala: 

(1) it neither learns nor reasons with explanations for failure reasons; and (2) GDA is used to 

control all aspects of the gameplay as opposed to only production of new units. It uses 

multiple-agents, one for each type of unit or building in the game. The GDA cycle assigns 

goals for each of these agents to achieve ensuring coordination between the agents. 

 Dannenhauer and Munoz-Avila (2013) showcases a GDA agent that takes advantage of 

ontological information in games. This enables the system to reason with notions such as 
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controlling a region. A rule can define the concept by indicating that a region is controlled by 

agent A, if at least one unit of agent A is in the region and no unit of agent B is present. The 

GDA cycle uses these notions as part of its reasoning with expectations process. 

Each of these three agent variations have been shown to perform well against hard-coded 

opponents in a variety of experimental settings.
2
 

5.  High-Level Goal Reasoning 

GDA agents exhibit some of the characteristics of cognitive systems (Langley 2012). In 

particular, they use a structured representation of knowledge: 

 

 Symbolic structures. GDA systems frequently use the notion of goals, states and plans based 

on the STRIPS formalism, as such these symbols are interpretable symbolic mechanisms. In 

the context of games, goals refer to conditions in the state that must be held true. For 

example, controlling a resource in a specific location (e.g., having two or more units and a 

building around the resource). As such goals refer to conditions at the object level. 

 Complex relations. For example, a plan is a sequence of interrelated actions and their 

sequencing is dependent on cause-effect relations between the tasks. For instance, a plan to 

control a resource might call to produce a mixture of units and when these units are produced, 

send them to the location of the resource. 

 

Another characteristic of cognitive systems, GDA systems perform heuristic search; they 

cannot guarantee optimal solutions in these kinds of highly dynamic environments and very large 
decision spaces. While mini-max algorithms, which guarantee some form of optimal behavior to 
counter an opponent’s move, have demonstrated to be useful to RTS games (Churchill, Saffidine, 
& Buro, 2012), they focus on small combat encounters involving a handful of units. Similarly, 
learning algorithms have been used to determine best opening moves in the game that maximize 
economic output within the first few minutes of the game but these involve only early 

construction of buildings and worker resource harvesting tasks; they are based on the premise that 
(1) at early stages in the game there will be no combat and (2) gameplay decisions are localized 
around the starting base. Cognitive systems introspectively examine their own decisions based on 
the interactions with the environment and their own knowledge to tune its own decision making. 

 High-level cognition enables abstract reasoning that goes beyond reasoning at the object 

level. This is a significant departure from existing RTS automated players. We will ground our 

ideas providing discussions by basing the agent on the MIDCA cognitive architecture. 

6.  The MIDCA Cognitive Architecture 

Computational metacognition distinguishes reasoning about the world from reasoning about 

reasoning (Cox, 2005). As shown in Figure 1, the Metacognitive, Integrated, Dual-Cycle 

                                                 
2 They have not been tried in competition settings because competition rules would need to be refined to account for the 

fact that these agents learn their knowledge. 
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Architecture (MIDCA) (Cox, Oates, & Perlis, 2011; Cox, Oates, Paisner, & Perlis, 2012) 

consisting of “action-perception” cycles at both the cognitive (i.e., object) level in orange and the 

metacognitive (i.e., meta) level in blue. The output side of each cycle consists of intention, 

planning, and action execution; the input side consists of perception, interpretation, and goal 

evaluation. At each cycle, a goal is selected and the agent commits to achieving it. The agent then 

creates a plan to achieve the goal and subsequently executes the planned actions to make the 

domain match the goal state.
3
 The agent perceives changes to the environment resulting from the 

actions, interprets the percepts with respect to the plan, and evaluates the interpretation with 

respect to the goal. At the object level, the cycle achieves goals that change the environment or 

                                                 
3 Note that this does not preclude interleaved planning and execution. The plan need not be fully formed before action 

execution takes place. 
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ground level. At the meta-level, the cycle achieves goals that change the object level. That is, the 

metacognitive perception components introspectively monitor the processes and mental-state 

changes at the cognitive level. The action component consists of a meta-level controller that 

mediates reasoning over an abstract representation of the object-level cognition. 

 

Furthermore, and unlike most cognitive theories, our treatment of goals is dynamic. That is, 

goals may change over time; goals are malleable and are subject to transformation and 

abandonment (Cox & Zhang, 2007; Cox & Veloso, 1998). Figure 1 shows goal change at both 

the object and meta-levels as the reflexive loops from goals to themselves. Goals also arise from 

Figure 1. Metacognitive, Integrated, Dual-Cycle Architecture (MIDCA) 
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traditional sub-goaling on unsatisfied preconditions during planning (the thin black back-pointing 

arrows on the left of both blue and orange cycles). Finally new goals arise as MIDCA detects 

discrepancies in the input given its expectations. It explains what causes the discrepancy, and 

generates a new goal to remove the cause (Cox, 2007). This type of operation, called goal 

insertion, is indicated by the thin, black arrows from the interpretation processes in the figure.  

Goal insertion is the fundamental GDA process in MIDCA and occurs at both the object and 

meta-levels. At the object level, perception provides observations, and plans from memory to 

provide the expectations. The interpretation process detects discrepancies when observations 

conflict with expectations and will then explain what caused the discrepancy and will generate a 

new goal. At the meta-level, monitoring provides an observation of a trace of processing at the 

object level and a self-model provides the expectations. Like the object-level GDA process, 

interpretation produces an explanation of why the reasoning at the object level failed and uses the 

explanation to generate a learning goal to change the knowledge or reasoning parameters of the 

object level. An explanation in MIDCA is a causal knowledge structure, 𝜒, consisting of a set of 

antecedents that together cause the discrepancy.
4
 

 

𝜒 = 𝛿… 𝑠𝑐 

According to Cox (2007; this volume), the explanation contains a salient antecedent, 𝛿, that 

represents the root cause of the problem signaled by the discrepancy. The goal, 𝑔c = ¬ 𝛿, is then 

to achieve the negation of this antecedent, therefore removing the discrepancy and solving the 

problem. 

Numerous ways exist that the meta-level can affect the object level. The meta-level can act 

as an executive function in a manner similar to CLARION (Sun, Zhang, & Mathews, 2006). It 

can decide between object-level parameters, it can allocate resources between competing object-

level processes, and it can set priorities on object level goals, swap object-level processes (i.e., 

change the planner with a different one) and it can also insert goals at the object level. 

7.  MIDCA in RTS Games 

The premise of our idea to apply MIDCA in RTS games is for the lower level cycle to act on the 

RTS action (ground) level and the higher level on the RTS reasoning (object) level. That is, the 

MIDCA cycle at the object level, monitors the situation at the ground level and generates goals 

and the plans to achieve those goals. Since planning in RTS games is a complex activity within 

itself we will borrow the idea of managerial tasks (Scott, 2002), used by many automated RTS 

games, to generate and execute these plans. Managerial tasks are performed by the following 

components: 

 

1. Building. In charge of structure building, including keeping track of the order in which 

buildings must be constructed (e.g., a factory requires barracks). 

                                                 
4 The explanation is actually a graph 𝜒 = (𝑉, 𝐸) with 𝛿 𝑉 an element of the source nodes and 𝑠𝑐 𝑉 a distinguished 

element of the sink nodes. See Cox (2011) for further details. 
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2. Units. Responsible of creating new units and prioritizing the order in which units are 

created.  

3. Research. Responsible for creating new technology that enables the creation of more 

powerful units. 

4. Resource. Responsible for gathering resources (i.e., minerals and vespene gas), which is 

needed to construct units, buildings and invest on research. 

5. Combat. Responsible for controlling units during combat; determining which units to 

attack, or whether to defend. 

6. Civilization. Responsible for coordinating the managers.  

Each of these components could be a learning component although for a first implementation 

we are going to use hard-coded implementations of these. This will enable us to directly use 

existing automated players such as Skynet or UAlbertaBot and have the MIDCA architecture 

build on top. This is how we implemented our GDA agent playing StarCraft (Dannenhauer & 

Munoz-Avila, 2013). But unlike that agent, MIDCA will enable meta-reasoning. 

For the higher-level cycle, MIDCA will monitor the decisions made at MIDCA’s object level 

and intervene (by changing or assigning new goals, or by adjusting parameters in object level 

components such as the planner similar to Dannenhauer, Cox, Gupta, Paisner & Perlis, 2014). 

The higher level acts as a long-term, “broad perspective” reasoning mechanism. It reasons not 

only on information about the object level but also on the knowledge used by the object-level 

MIDCA to generate its goals. We believe this is a crucial reasoning capability, one that is missing 

in existing automated players. 

Our automated player performs asynchronous decision-making at three levels. We describe 

them from the most concrete to the most abstract: 

 

 Object-level reactive control. The player decisions are made by the six managers described 

above. This ensures immediate and continuous control of all units and buildings. This is the 

level programmed by most commercial RTS players and entries to the automated player 

tournaments. It controls everything from the production of units, harvesting of resources and 

combat. The civilization manager ensures that a default strategy, such as the systematic 

control of resources in the map, is pursued. 

 Object-level goal formulation. This is performed by the object level from MIDCA and is 

reminiscent of GDA automated players in the sense that it monitors the current state of the 

game and triggers new goals and the means to achieve them (i.e., plans). But, unlike existing 

GDA players, it has a symbolic model of the goals achieved by the object-level reactive 

controller and their outcomes. This enables the goal formulation component to monitor the 

execution and formulate new goals. For example, if the opponent launches an assault on a 

base built around resources, by default, the object-level reactive control might direct nearby 

units to defend the base. The object level goal formulator might detect that the opponent is 

gaining the upper hand and will take control of the resource. The goal formulator might 

generate a new goal: to re-take the resource or to, instead, take over an opponent’s controlled 
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resource that is less defended. This goal will supplement the default strategy of the object-

level reactive control; tasking, with higher priority, the managers to take actions towards 

achieving the new goal. This ensures consistent behavior where these goals are given priority 

but other goals, either from the default strategy or previously stated goals are still being 

pursued (but with less priority). 

 Meta-level long-term control. This is performed by the MIDCA’s metacognitive level. It 

monitors the decisions of the object level goal formulation and the object level reactive 

control and might override decisions made and tasks new goals to achieve. For example, the 

cognitive level might invalidate the goal to re-take or to take an alternative resource because 

it determines that the reactive control is about to take the enemy starting base and therefore 

end the game in victory. In this case, it will invalidate the new goal as accomplishing it will 

consume resources that might detract from the imminent victory. The meta-cognitive level 

reasons at a higher level of granularity reasoning on the lower level’s own reasoning and 

considering long-term implications.  

Because of the real-time nature of the games, these modules operate in parallel to the MIDCA 

level. This guarantees that the automated player, MIDCA-RTS, will always react to immediate 

changes in the situation (e.g., a sudden attack on our base) while the metacognition level reasons 

on strategic decisions that go beyond immediate game occurrences.  

8.  Example Scenarios 

8.1  Detecting a Feign Attack 

A common situation that occurs in RTS games is for the enemy to harass your harvesting units, 

often with a single worker unit of their own. This behavior has also occurred during automated 

player matches (Skynet is known for using a worker to harass enemy workers very early in the 

game). In this scenario, there are two common approaches that are problematic for the defending 

player. First, the player could ignore the enemy probe, but this will cause workers to be killed. 

The second is to send all worker units to attack the probe. This is problematic because the probe 

will lead the workers on a chase (as seen in Figure 2) and resource harvesting will be nearly 

stopped. The orange object level will be able to respond to the discrepancy of the enemy probe, 

but the meta-cognitive blue layer will figure 

out / learn which approach is the best, which is 

usually to send 1 of our workers to attack the 

enemy worker, and let the rest keep harvesting. 

8.2  Performing a Feign Attack  

Using the concept of distract, MIDCA could 

perform strategies at a higher level, such as 
distracting the enemy with a small force of 
units at the front of their base and concurrently 
sending units via dropships behind the enemy 
base. In Figure 3, air ships have entered the 
back of the base from the left side and have 

Figure 2. The workers following an enemy’s probe 
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dropped units to destroy buildings (in this 
image some buildings have already been 
destroyed and two are on fire). This is 

happening while the base’s defenses are busy 
with the ‘distract’ group at the front of the 
base (not seen in the picture). This example 
motivates the benefit of higher level concepts 
such as distract, used by a cognitive 
architecture such as MIDCA. 

8.3  Performing a Feign Attack 

In RTS matches, there are often crucial points 
on the map that are strategically important. 
The concept of ‘defense’ is another high-level 

concept that a cognitive architecture such as 
MIDCA could infer. While some automated bots already exhibit this behavior in specific 
situations, it is not an explicit concept. The agent will be able to carry out more sophisticated 
attacks if the notion of defense is explicit and flexible, because one could imagine not only 
defending a chokepoint (see Figure 4) or map 
location, but also a particularly strong 

offensive unit vulnerable to specific enemies. 
For example, it is common to pair a siege tank 
with melee units to protect the tank from 
enemies that get close enough to damage the 
tank without being fired upon.  

9.  Final Remarks 

While attaining automated players for RTS 

games that can play at the human level are an 

interesting challenge in their own right, they 

also can be seen as a challenge for agents that 

can exhibit high-level cognition. The latter is 

one of our main motivations with this 

research. We believe that the three layer architecture proposed will guarantee the reactive 

behavior needed for these kinds of games, while the meta-cognition will enable new high-level 

capabilities currently not exhibited in existing automated players. 
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Abstract 

Goal reasoning (GR) is the study of free agents; they can autonomously and dynamically 

deliberate on and select what goals/objectives to pursue (Cox, 2007; Muñoz-Avila et al., 2010; 

Klenk et al., 2013; Vattam et al., 2013; Roberts et al., 2014). Endowing agents with this capability 

is particularly appropriate when the domain in which they operate is complex (e.g., partially 

observable, dynamic, multiagent), preventing the anticipation of all possible states and the precise 

pre-encoding of contingent plans for those states. Most GR agents monitor and assess the current 

state with respect to potential expectation violations or motivation triggers (Coddington et al., 

2005). This deliberation may result in selecting an alternative to the goal(s) currently being 

pursued, requiring a planner to generate a corresponding set of actions for a controller to schedule 

and execute. In this paper, we study domain-independent goal selection, extending a method that 

combines motivations which was implemented in the GR agent M-ARTUE (Wilson et al., 2013). 

In particular, we relax the assumption that all motivations contribute equally to goal selection, and 

investigate the relationship between domain properties and motivator contribution in a 

paradigmatic domain. We view this as a step towards a deeper understanding of how motivations 

affect agent performance. Future work includes automatically learning motivator weights.  

1.  Introduction 

In complex (e.g., partially observable, dynamic, and multiagent) environments, an autonomous 

agent may need to alter its own goals to be successful.  For instance, an agent that flies an 

unmanned aerial vehicle may need to change its goal to refuel or recharge if it encounters 

unexpectedly strong headwinds.  We refer to agents that can deliberatively select their own goals 

as goal reasoning (GR) agents. A crucial problem in GR is that of goal selection (i.e., deciding 

which goal(s) the agent should choose to pursue when it is appropriate to pick a new goal).  One 

possible approach to goal selection is the use of domain-independent motivators, which encode 

high-level drives and rely on the agent’s own internal models, as used by the M-ARTUE GR 

agent (Wilson et al., 2013). We refer to agents that employ such motivators as examples of 

motivated agents. M-ARTUE selects its goals according to a function defined on the following set 

of motivators: 
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 Social Motivator: This chooses user-provided goals.  

 Exploration Motivator: This chooses goals that best expand the agent’s world knowledge. 

 Opportunity Motivator: This chooses goals that that maximize the agent’s opportunity to act 

during plan execution, such as by conserving resources. 

One way for an agent to combine these motivators is for it to assign the same weight to each 

motivator and repeatedly: (1) achieve some of the user’s goals, (2) perform some exploration 

(from time to time), and (3) take action to conserve resources as necessary. However, this strategy 

might not work well in many situations. 

For example, suppose an agent’s user-provided goals involve delivering packages in a graph-

like world where locations are nodes and edges are direct connections between locations with 

associated traversal costs. Suppose also that agents consume gas proportionally to these costs, 

gasoline stations are available in some (but not all) locations, and some information (e.g., some 

connections and the location of some gasoline stations) is initially unknown to the agent. In 

extreme situations, as in the Buridan’s ass paradox,1 the agent might oscillate between the three 

motivators, achieving few of the goals and (literally) running out of gas. Indeed, we hypothesize 

at least three scenarios where the balanced strategy might be inadequate: 

1. Observable Environment: Most of the information is known to the agent. That is, most of the 

connections and gasoline station locations are known. In this case, performing exploration is 

not advisable as resources will be consumed for likely little benefit. Instead the agent should 

follow the social motivation to achieve the maximum number of user-provided goals, and use 

opportunity motivation to conserve resources otherwise. In this case no weight should be 

given to exploration. 

2. Hidden Environment: Most of the information is not known by the agent. That is, the agent 

only knows about a fraction of the connections and gasoline station locations. Then the agent 

should emphasize exploration and place less emphasis on the Social and Opportunity 

Motivators until sufficient information has been gathered to fulfill most or at least many of 

the user-provided goals. 

3. High Resource Capacity: The agent can retain a large quantity of resources that may be spent 

to achieve goals. In this case, it should emphasize the Opportunity Motivator and gather as 

many resources as possible for achieving social goals. 

Figure 1 illustrates these three boundary cases. This raises the question of what kind of weight 

relations will exist among these motivators for the intermediate cases. 

                                                 
1 The Buridan's ass (Rescher, 1959) is a philosophical paradox of an animal that is very thirsty and very 

hungry and can’t decide between drinking from a nearby water fountain and eating from a nearby stack of 
hay that is located in the opposite direction from the fountain. The animal dies of hunger and thirst, never 
able to make a decision. 
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In this paper, we describe preliminary work on strategies for assigning different weights to 

the motivators in an M-ARTUE agent. Specifically, we study the relation between motivator 

weights and agent performance in different contexts, with the future objective of automatically 

learning weight settings that denote the relative, scenario-specific importance of the motivators. 

We present results from an initial investigation on the interaction of certain domain properties 

with the effects of motivator weight mixtures on agent performance. After summarizing related 

work (Section 2) and reviewing the M-ARTUE agent (Section 3), we report on a study (Section 

4) using the Metric Transportation domain, a new variant of the Logistics Transportation domain 

(Veloso, 1994) whose characteristics were outlined above and are detailed further in Section 4. In 

our study, we found support that a motivated agent’s performance varies when its motivators are 

given different weights, and that an agent’s performance varies predictably based on domain and 

problem properties. We conclude and discuss future work in Section 5. 

2.  Related Work 

Standard planning techniques can be used to solve problems in which all state information is 

known (Ghallab et al., 2004). In this situation, the planner can be tasked with achieving all 

package-delivery goals. The planner will attempt to achieve all the goals and backtrack as needed. 

If the planner is complete, it will generate one plan to achieve all of the goals, or indicate that 

such a plan doesn’t exist. This can be interpreted as an instance of the motivators where all 

weight is given to the Social Motivator and no weight is given to the Exploration and the 

Opportunity Motivators. 

Planning research has relaxed this “all-or-none” requirement for achieving the goals. 

Oversubscription planning attempts to find the maximum number of goals that can be achieved 

for a particular problem (Smith, 2004). Techniques such as expanding a planning graph, a 

compact representation of a set of solution plans, to select a subset of the goals to achieve has 

been explored for this purpose (Do et al., 2007). This can also be interpreted as an instance where 

all weight is given to the Social Motivator. 

Figure 1. Boundary Cases for three Motivators 
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Our research is also related to planning for information gathering. In this form of planning, 

the agent navigates a partially observable state. Frequently, the fact that information must be 

gathered is explicitly expressed in a planning language as attached conditions to the actions 

(Draper et al., 1994) or as subgoals (Pryor & Collins, 1996). As a result, plans are generated that 

perform information-gathering tasks. This is akin to giving significant weight to the Exploration 

and Social Motivators in our work. A major difference with our work is that, in planning for 

information gathering, the amount of exploration will depend on the static encoding of the 

symbolic representation of the domain. In contrast, we are interested in the behavior of agents as 

weights for exploration and social activities, along with other behavior, are independently varied. 

Domains such as the Metric Transportation domain have been a focus of optimal planning, 

which is the generation of plans that minimize or maximize some metric such as minimizing 

gasoline use (Williamson & Hanks, 1994). Optimal planning has been subject to extensive 

research (Kuffner, 2004) including using Djikstra-like search procedures that guarantee that the 

optimal solution will not be missed but at a potentially high computational cost of carrying out an 

exhaustive search in the plan space. As a result, optimal algorithms are computationally much 

less efficient than their non-optimal counterparts. Furthermore, partial observability has not been 

studied in the context of plan optimality, whereas in our work it is a central topic. 

Our work is also related to replanning (Stentz, 1995), where a plan is modified as a result of 

changes in the environment. Techniques for replanning include using heuristics to determine the 

best way to complete a plan from the state where the change was detected. Most of the work on 

replanning concentrates on failures (e.g., the plan expected to find gasoline at a location but upon 

arrival it finds none). In contrast, we are considering an Exploration Motivator, which can be 

viewed as “exploring for the sake of exploring” even in situations where the current goals could 

be achieved. Our objective is to develop robust systems in which, for example, even when the 

goals change (e.g., new packages must be picked up and delivered) the system has pro-actively 

gathered information that enables it to react to goal changes. 

Finally, our work is also related to cognitive architectures and goal reasoning agents. Some 

cognitive architectures (Langley et al., 2009) use rules of the form if conditions then goal, which 

trigger the next goals to achieve depending on the current conditions. Here conditions can be 

broadly constructed to include annotations about the world state and actions in the current plan. 

The continuous-concept matching employed by Choi (2011) extends this representation to permit 

arbitration between current goals based on priority values dynamically computed from the degree 

of match offered by a goal’s conditions. This serves a similar role to the fitness functions 

employed by M-ARTUE, but is based on domain-specific rules encoded in the agent’s conceptual 

knowledge, whereas M-ARTUE employs domain-independent motivators. Others, such as 

MADBot (Coddington et al., 2005) or ARTUE (Klenk et al., 2013), represent motivations using 

domain knowledge to encode thresholds or conditions for known variables that the agent can 

observe. Thus, the goal selection knowledge is hard-coded in the rules. In contrast to these efforts, 

motivated agents prioritize goals according to the different motivators. This provides flexibility 

for learning because the relation between goals and goal selection is not hardcoded. Other goal 

reasoning systems such as LGDA (Jaidee et al., 2011) use reinforcement learning (RL) techniques 

to learn goal selection knowledge. Since these systems are guided by a user-defined reward 

function, they can be viewed as achieving social motivations in our parlance. As RL systems they 
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perform exploration and exploitation of the search space, which in this case is goal selection 

knowledge. 

 

3.  The M-ARTUE Agent 

M-ARTUE is an extension of the ARTUE GR agent. ARTUE implements Goal-Driven 

Autonomy (GDA), a GR model extending Nau’s (2007) model of online planning. The GDA 

model is depicted in Figure 2. 

ARTUE is composed of an online Controller, which interacts with a Planner and a State 

Transition System Σ = (𝑆, 𝐴, 𝐹, 𝛾), with possible states 𝑆, actions available to the agent 𝐴, 

exogenous events that may be triggered by the environment 𝐹, and state transition function 𝛾: 𝑆 ×
(𝐴 ∪ 𝐹) → 𝑆. The Planner receives as input the current state 𝑠𝑐, the current goal 𝑔𝑐, and a model 

of the State Transition System 𝑀Σ; it produces as output a sequence of actions 〈𝑎𝑐+1, … , 𝑎𝑐+𝑛〉 
and a corresponding sequence of expectations 〈𝑥𝑐+1, … , 𝑥𝑐+𝑛〉, where 𝑥𝑖 is the state expected to 

follow 𝑎𝑖 during execution.  

As the agent executes a plan returned by the Planner, it performs four GR steps: 

 Notable Event Detection: The agent executes the current plan and compares observed states 

from the environment with the sequence of expected states produced by the Planner. If the 

current observation differs meaningfully from the expected state, the agent notes the 

discrepancy and performs the following steps. 

 Notable Event Explanation: The agent produces an explanation for a given discrepancy, 

where the explanation is frequently an adjustment to the agent’s beliefs that incorporates 

unobserved (but abduced) facts and exogenous events. 

 Goal Formulation: The agent produces a new goal, if necessary, that is deemed an 

appropriate response to a given explanation. 

 Goal Management: The agent selects a goal or goals to pursue from goals that were 

formulated during a current or previous GR sequence. 

M-ARTUE extends ARTUE by performing goal selection (i.e., goal formulation and goal 

management) through the application of motivators. When a notable event is detected and 

Figure 2. The Goal-Driven Autonomy Model implemented by M-ARTUE 
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explained, M-ARTUE evaluates all possible goals for the agent using its motivators and selects 

the goal with the best combined score. Although the goal-driven autonomy model is planner 

agnostic, ARTUE implementations have historically used hierarchical task network (HTN) 

planners. Thus, possible goals for M-ARTUE are enumerated from a list of tasks in an HTN that 

are designated as top-level tasks for the domain. Any grounding of such a task in the current state 

for which a plan can be constructed is considered a possible goal, and M-ARTUE uses the 

constructed plans to evaluate their respective goals. 

3.1  Motivators 

Each motivator calculates an urgency value that indicates how important it is to fulfill its current 

needs. Urgency is defined as a function 𝑢𝑚: 𝑆−> ℝ, which expresses how urgent a particular 

motivator 𝑚’s needs are in the current state 𝑠𝑐 ∈ 𝑆. Each motivator evaluates the fitness of each 

goal 𝑔 for satisfying its domain-independent needs by applying a motivator-specific fitness 

function 𝑓𝑚: 〈𝑥𝑐 , 𝑥𝑐+1, … 𝑥𝑐+𝑛〉 → ℝ to the expectations 𝑥𝑐+1, … 𝑥𝑐+𝑛 generated by the Planner. 

Finally, for each goal, a weighted sum over the motivators is calculated, defined as: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑔) = ∑ 𝑢𝑚𝑚 (𝑠𝑐) × 𝑓𝑚(𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛𝑠(𝑔, 𝑠𝑐)), 

where 𝑔 is a goal and 𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛𝑠(𝑔, 𝑠𝑐) is the list of expectations 𝑋 returned by the Planner 

when given a goal 𝑔 in state 𝑠𝑐. The goal 𝑔 with the highest 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑔) is selected. 

3.1.1  Social Motivator 

The Social Motivator captures the need to achieve the user-designated goals. Currently, these are 

represented by a list of state conditions that must be true to satisfy a user-designated goal. The 

Social Motivator’s urgency is a sawtooth function that increases over time until a user-defined 

goal is fulfilled. This function biases goal selection toward social conditions when they have not 

been achieved in some time. It is defined by the function:  

𝑢𝑠𝑜𝑐𝑖𝑎𝑙(𝑠𝑐) = {
𝐶𝑠𝑜𝑐𝑖𝑎𝑙𝑢𝑠𝑜𝑐𝑖𝑎𝑙(𝑠𝑐−1), 𝑖𝑓 𝑅(𝑠𝑐) ≤ 𝑅(𝑠𝑐−1)

0.1, 𝑖𝑓 𝑅(𝑠𝑐) > 𝑅(𝑠𝑐−1)
, 

where 𝑠𝑐 is the state at the time of goal selection, 𝑅(𝑠𝑐) is the percentage of user-provided goals 

that have been satisfied in 𝑠𝑐 or some prior state 𝑠𝑖(𝑖 < 𝑐) visited, and 𝐶𝑠𝑜𝑐𝑖𝑎𝑙 > 1 is a constant of 

social motivation that is tuned to the domain. 

The fitness function for the Social Motivator biases goal selection toward goals that achieve 

the most social conditions with the fewest actions. It is calculated as:  

𝑓𝑠𝑜𝑐𝑖𝑎𝑙(𝑋) = 𝐶𝑠𝑜𝑐𝑖𝑎𝑙−𝑓𝑖𝑡𝑛𝑒𝑠𝑠
𝑅(𝑥𝑐+𝑛)−𝑅(𝑠𝑐)

𝑛
, 

where 𝑋 is the sequence of expected states as defined above, 𝑛 is the plan’s length, 𝐶𝑠𝑜𝑐𝑖𝑎𝑙−𝑓𝑖𝑡𝑛𝑒𝑠𝑠 

is a constant of social fitness that is tuned to the domain, and 𝑥𝑐+𝑛 is the expected state after the 

plan executes. 
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3.1.2  Exploration Motivator 

The urgency of the Exploration Motivator is biased to increase when the most recent action has 

not visited a new unique state, and to be large when fewer states overall have been visited (i.e., 

exploration is most valued when little to no exploration has been done).  It is defined as: 

𝑢𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛(𝑠𝑐) = 1 −
𝑉(𝑠0, 𝑠1, … , 𝑠𝑐)

𝑉(𝑠0, 𝑠1, … 𝑠𝑐−1) + 𝐶𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛
 , 

where 𝑉(𝑆) is the number of distinct states in a list 𝑆 and 𝐶𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 is a constant of exploration 

that is tuned to the domain. 

The fitness function biases goal selection toward goals that visit the most new unique states 

per action. This function is defined as: 

𝑓𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛(𝑋) =  
𝑉(𝑠0,𝑠1,…𝑠𝑐,𝑥𝑐+1,𝑥𝑐+2,…𝑥𝑐+𝑛)− 𝑉(𝑠0,𝑠1,…𝑠𝑐)

𝑛
. 

3.1.3  Opportunity Motivator 

The Opportunity Motivator tries to maximize the agent’s opportunity to act throughout plan 

execution, thus helping the agent to prepare to fulfill future goals. This is evaluated in terms of 

two factors: (1) the branching factor in a given state and (2) the availability of resources relative 

to their historical averages. These factors are combined to determine this motivator’s urgency, 

which biases selection toward opportunity-increasing goals when the agent cannot execute as 

many actions or it does not possess as many resources as have been available historically. This 

function is defined as: 

𝑢𝑜𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦(𝑠𝑐) =  [(1 − 𝑁(𝑠𝑐)

𝑚𝑎𝑥
0≤𝑖<𝑐

𝑁(𝑠𝑖)
) + (1 − 𝐿(𝑠𝑐))] 2⁄ , 

where 𝑁(𝑠) is the number of available actions, and 𝐿(𝑠) is the level of resources relative to 

historical resource levels. A domain defines a set of 𝑘 resources, each of which has a state-based 

level 𝑣𝑟(𝑠). Function 𝐿(𝑠) is defined in terms of these levels as 𝐿(𝑠𝑐) = (∑ [𝑣𝑟(𝑠𝑐) 𝑎𝑟(𝑠𝑐)⁄ ])/𝑘
𝑟=1

𝑘, where 𝑎𝑟(𝑠𝑐) =
∑ 𝑣𝑟(𝑠𝑖)𝑐−1

𝑖=1

𝑐−1
 is the mean of all prior values for 𝑣𝑟(𝑠). 

The Opportunity Motivator’s fitness function biases goal selection toward goals that have the 

most actions available per expected state, and leaves the agent with the most resources and 

actions available when the goal is achieved. This function is defined as:  

𝑓𝑜𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦(𝑋) =
([∑ 𝑁(𝑥𝑐+𝑗)𝑛−1

𝑗=0  ]+ [𝑤×𝑁(𝑥𝑐+𝑛)] )

(𝑛+𝑤)𝑁(𝑠𝑐)
 + 𝐿(𝑥𝑐+𝑛) − 𝐿(𝑠𝑐) − 1, 

where 𝑤1. 

4.  Experiments and Discussion 

We performed experiments to evaluate two hypotheses: 

 H0: Varying motivator weights will affect agent performance. 
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 H1: Agent performance will vary with motivator weights in a predictable fashion as certain 

properties of the evaluation scenario change. Specifically, the scenario properties we 

investigated are: 

o Initial observability: When observability is low, we expect the number of goals achieved 

to be greater when the relative weight of the Exploration Motivator increases, 

encouraging the agent to observe more about its environment. Conversely, when 

observability is high we expect the number of goals achieved to be greater when the 

relative weight of the Social Motivator increases. 

o Resource capacity: When the agent has greater resource capacity, we expect the number 

of goals achieved to increase as the relative weight of the Opportunity Motivator 

increases, encouraging the agent to gather as many resources as possible. Conversely, 

when resource capacity is low, we expect the number of goals achieved to be greater 

when the relative weight of the Social Motivator increases. 

To test these hypotheses, we ran M-ARTUE on scenarios from the Metric Transportation 

domain, a modified version of the Logistics Transportation domain. In this domain, an agent is 

given an initial set of goals by a user, who directs it to deliver a specified set of packages to a set 

of discrete destinations, which are located (as nodes) in a partially-connected graph. To achieve 

these goals, the agent uses trucks and airplanes to move packages. Our modified domain omits 

airports and airplanes, but includes a fuel function on trucks (i.e., a given truck’s current fuel 

level), which decreases as the truck moves between connected locations according to a cost 

function defined on the connections. Additionally, our modifications permit the scenario author to 

initially hide some connections between locations, some gas stations, and some packages’ 

locations. M-ARTUE discovers these hidden facts through the occurrence of observation events 

when a truck moves to a relevant location (i.e., one of the connected locations, a gas station’s 

location, or a package’s location, respectively). To guide M-ARTUE’s goal selection and HTN 

planner, we created an HTN definition encompassing top-level tasks that allow the agent to 

deliver a package to a particular location, drive a truck to a particular location, refuel a truck, or 

do nothing. 

We randomly generate scenarios in this domain according to parameters controlling: the size 

of the graph; the number of trucks, packages, and gas stations; the amount of fuel available to the 

trucks initially and after fueling at stations; and the connectedness of the graph. These parameters 

control the difficulty of the agent’s planning problems. We also individually specify percentages 

of connections, packages, and gas stations that will be visible to the agent initially. These 

parameters impact the difficulty of the agent’s goal-achievement problem. To evaluate the agent’s 

performance, we use as a metric the fraction of total user goals achieved (i.e., the number of 

packages successfully delivered to their destinations).  
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4.1  Motivator Weights and Agent Performance 

To test hypothesis H0, we generated several scenarios with the same parameters.  Specifically, for 

this test we adopted the scenario parameters 𝑛𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 = 20, 𝑛𝑡𝑟𝑢𝑐𝑘𝑠 = 3, 𝑛𝑝𝑎𝑐𝑘𝑎𝑔𝑒𝑠 = 3, 

𝑛𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠 = 3, and 𝑛𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 = 3, with all packages and gas stations initially visible to the 

agent, and 70% of edges initially known to the agent. We generated 25 scenarios using these 

values. In each scenario, we evaluated the agent’s performance at different weight mixtures 

corresponding to combinations that sum to 1 of the values (0, 0.2, 0.4, 0.6, 0.8, 1) for all 

motivators. We limited the test to 500 actions on each scenario-weight pair. (Since the agent can 

continue indefinitely, we chose 500 actions to provide a reasonable tradeoff of running time and 

goal achievement.)  The average fraction of user goals accomplished at each weight mixture is 

shown in Figure 3. 

Visually, the agent performs best in a region dominated by non-zero values of the Social 

Motivator. Additionally, the agent’s performance is better when the Exploration Motivator is 

weighted more heavily than the Opportunity Motivator, indicating that exploration may improve 

agent performance by revealing even a few hidden environmental features (connections between 

locations, in this case). (Occasionally, the agent may deliver a package simply by trying different 

exploratory actions, even when the Social Motivator has no weight, as can be seen by the slight 

improvement in performance at the Exploration Motivator’s corner.) An analysis of variance on 

the average agent performance indicates that the performance differs significantly across the 

range of weights (𝑝 < 5 × 10−8 for all components), supporting hypothesis H0. 

4.2  Motivator Weights and Scenario Properties 

To test hypothesis H1, we altered the 25 scenarios described in Section 4.1 to provide contrast in 

the desired scenario properties. 

Figure 3. Average fraction of user goals achieved with high initial observability across 25 

trials (maximum 500 actions) at indicated weight-mixture points 
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 Observability: We compared the original scenarios with modified versions that initially 

revealed none of the packages, gas stations, or connections, except those relevant to the 

trucks’ starting locations. 

 Resource capacity: We altered the scenarios to provide complete observability of the graph 

(to avoid any impact the Exploration Motivator might have on resource consumption by 

revealing shorter routes). We then compared these completely-observable scenarios using the 

original resource levels with modified versions that provide higher initial fuel levels and fuel 

capacity (95 and 150, compared to 25 and 40, respectively). 

For each alteration to the scenarios, we evaluated the agent as in Section 4.1, using the same 

weight-mixture points and limiting the agent to 500 actions. We then compared the motivators’ 

contributions to agent performance under the differing scenario properties by fitting a canonical 

linear mixture model, 𝑦 = ∑𝛽𝑖𝑥𝑖, to the data for the original scenarios and the alterations. The 

results were as follows:  

 Observability: Figure 4 depicts the motivator coefficients 𝛽𝑖 in the linear fit model. These 

values indicate how strongly each motivator is correlated with agent performance in the 25 

scenarios for the original high-observability scenarios and the matching low-observability 

scenarios. In the high-observability scenarios, the Social Motivator correlates most strongly 

with agent performance. By contrast, the Exploration Motivator correlates most strongly with 

agent performance in the low-observability scenarios, supporting our hypothesis that the 

importance of exploration increases (i.e., the agent achieves more goals when the Exploration 

Motivator is heavily weighted) when the environment exhibits low initial observability, as the 

agent cannot achieve user goals without discovering routes and gas stations, and the need to 

discover those features outweighs the need to conserve resources. In fact, in this extreme 

scenario, conserving resources contributed nothing to agent performance. The smaller 

numerical values of the coefficients in the low-observability scenarios are due to lower 

overall agent performance, as the environment is more challenging. (Note that, while the 

linear fit was significant for all three components in the high observability scenarios, it was 

not significant for the Opportunity Motivator in the low observability scenarios, supporting 

the conclusion that the Opportunity Motivator was not a significant contributor to agent 

performance in those experiments.) 

(a) Scenarios with high observability (b) Scenarios with low observability 

Figure 4. Coefficients of motivator weight for agent performance 
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 Resource capacity: Figure 5 depicts the motivator coefficients 𝛽𝑖 in the linear fit model.  

These values indicate motivator correlation with agent performance in the 25 high-resource 

scenarios and the matching low-resource scenarios. While the Social Motivator is the 

dominant contributing motivator to agent performance in all scenarios, the Opportunity 

Motivator contributes much more to agent performance in the high-capacity scenarios than in 

the low-capacity scenarios, supporting our hypothesis that the importance of resource 

acquisition increases as a function of the agent’s ability to gather and retain more resources to 

assist in achieving goals. (The linear fit was significant for all components in these 

experiments.) 

5.  Conclusion and Future Work 

The paradox of Buridan’s ass exemplifies the need to balance between an agent’s motivations. 

We reviewed a GR agent (M-ARTUE) that reasons with Social, Exploration, and Opportunity 

motivators to deliberate among goal choices. We introduced the Metric Transportation Domain to 

test the motivators’ value in scenarios with varying properties, and showed that (1) varying the 

motivators’ relative weights can impact agent performance and (2) the relative importance of each 

motivator is context-dependent.  

In future work we will investigate the impact of motivator weight settings in other domains 

(e.g., an underwater vehicle domain and a Mars rover domain). We will also investigate the 

effects of the motivator weight settings in other extreme scenarios (e.g., when resource 

consumption is extremely low or resource availability is extremely high). We will use the results 

of these investigations to identify further predictable domain and problem characteristics that 

affect motivators’ correlation with agent performance, and we will pursue the creation of a more 

formal model of domain and problem characteristics and their interaction with motivator weights. 

We will also investigate the effect of motivator weights using alternative metrics of agent 

performance (e.g., how quickly user goals are achieved and how many resources the agent 

expends while achieving them). We will investigate the use of other motivators (e.g., a directed 

information motivator). Finally, we will investigate how an agent can learn weight settings that 

(a) Scenarios with high resource capacity (b) Scenarios with low resource capacity 

Figure 5. Coefficients of motivator weight for agent performance 
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will enable it to outperform its behavior using fixed equal weights. We will do so using fixed 

environmental conditions, as we used for these experiments (e.g., resource capacity is static 

throughout an experiment), and environments in which these conditions may change dynamically.  
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Abstract 

Goal Reasoning concerns actors that deliberate about their own goals, and learning is often applied 

to improve performance of such actors. A recent model of Goal Reasoning proposed by Roberts et 

al. lacks a simplified working example with an explanation of how the model can incorporate 

learning.  We describe a thought experiment modeling the decision making of floor-cleaning 

robots, which are simple goal reasoning actors.  We observe that such robots often have a less-

than-optimal action policy that, though sufficient for cleaning in the limit, could be improved 

through learning to reduce the total cleaning time or reduce energy usage. We start with by 

modeling the straightforward policy for a simple robot named Vacuous. We then ponder a 

hypothetical robot, named KleeneStar, which optimally cleans in the fastest time possible. Finally, 

we describe a model for an improved robot, named Vakleene, which iteratively reduces its 

cleaning time through learning. While these examples are only a thought experiment, this work 

provides a model of a simplistic goal reasoning process that can learn. 

1.  Motivation 

Small, floor-cleaning robots have become a popular home appliance to supplement regular floor 

cleaning performed by a human. These systems are best exemplified by the Roomba, introduced 
by iRobot in 2002. The Roomba contains a front bumper to detect a collision, infrared proximity 
sensors to detect nearby objects or sudden changes in height, and a radio sensor to detect beacons. 
It can clean a variety of floor surfaces for several hours between charges and newer versions use 
radio beacons to navigate multiple rooms, avoid hazards, or return to a self-charging base station.  

Anyone who has interacted with these devices can observe that its task planning is rudimentary. 

The devices exhibit three simple behaviors as shown in Figure 1 taken from the Roomba’s User 
Manual (iRobot 2008). The Spiral behavior allows the device to clean a large area in a spiral 
fashion. The Wall Following behavior traces a wall or another obstacle to the right side while 
cleaning close to the edge. Finally, the Room Crossing behavior randomly turns and crosses the 
room while cleaning. Even with random selection of the actions, the robot should eventually 
traverse the entire floor in the limit. While sufficient, this action selection mechanism could be 

improved with learning that accounts for the room and obstacles within the room. 
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We will show in this paper how a floor-cleaning robot can be modeled as an instantiation of a 

Goal Reasoning process.  We created a Goal Reasoning Model that captures the variety systems 
that perform Goal Reasoning (Roberts et al. 2014, 2015). Our model distinguishes systems by 
their design choices and, thus, facilitates their comparison. For example, instantiations of this 
model can represent iterative plan repair (e.g., Chien et al. 2000), replanning (e.g., Yoon et al. 
2007), and Goal-Driven Autonomy (e.g., Klenk et al. 2013).  

We have two aims in this paper. First, we model the robot vacuum as a Goal Reasoning process 

using the Goal Reasoning Model. Second, we describe how learning could augment this basic 
model to reduce cleaning time. We present a thought experiment to elucidate instantiations of 
Goal Reasoning, using the robot vacuum as a case study. We begin with a brief exposition of the 
model, and then use it to model three robot vacuum agents: (1) Vacuous is a simple robot with a 
straightforward, fixed action selection policy that is extremely suboptimal. (2) KleeneStar

1
 is a 

hypothetical optimal robot vacuum that can guarantee cleaning in the minimal cleaning time but 

whose policy could never be realistically computed on such a limited robot platform. (3) Vaklene 
is a learning-enabled robot vacuum whose cleaning time asymptotically approaches KleeneStar.  

2.  Background: The Goal Reasoning Model 

Deliberating about objectives – how to prioritize and attain (or maintain) them – is a ubiquitous 
activity of all intentional entities (i.e., actors). We apply the Goal Reasoning Model presented by 
Roberts et al. (2014, 2015) that models Goal Reasoning as a State Transition System consisting of 
goal nodes that track a goal’s state and transitions defined by a Goal Lifecycle.  Note that we 
adopt the notation provided by Roberts et al. (2015).   

 Let 𝑔𝑖 be the actor’s 𝑖𝑡ℎ goal of 𝑚 goals (0 ≤ 𝑖 ≤ 𝑚) that the actor wishes to attain (maintain).  

To avoid confusion with the use of the word state as it is typically applied in planning systems, 

we will use 𝐿 to represent the language of the actor, 𝐿 = 𝐿𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 ∪ 𝐿𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙.  Often, 𝐿𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 

will concern external state the actor is tracking (e.g., its location, its sensor values).  𝐿𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 

                                                 
1 With apologies to Stephen Kleene.  

Figure 1. A typical Roomba cleaning pattern from the Roomba User Manual (iRobot 2008). 
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represents the predicates and state required internally to the actor (e.g., the predicates 𝑎𝑡𝑡𝑎𝑖𝑛(𝑔) 

or 𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛(𝑔), the state of all goals).   

A goal 𝑔 is tracked within the actor as part of a goal node 𝑁𝑔 that transitions according to a 
Goal Lifecycle (Figure 2).   Decisions consist of applying a strategy (arcs in Figure 2) to 
transition a goal node among modes (rounded boxes). Goal nodes in an active mode are those that 
have been formulated but not yet dropped. The formulate strategy determines when a new goal 

node is created. Vattam et al. (2013) describe goal formulation strategies. The drop strategy 
causes a goal node to be “forgotten” and can occur from any active mode; this strategy may store 
the node’s history for future deliberation. To select 𝑁𝑔 indicates intent and requires a formulated 
goal node. The expand strategy decomposes 𝑁𝑔 into a goal network (e.g., a tree of subgoal 
nodes) or creates a (possibly empty) set of expansions 𝑋. Expansion is akin plan generation, but is 
renamed here to generalize it from specific planning approaches. The commit strategy chooses an 

expansion 𝑥 ∈ 𝑋 for execution; a static strategy or domain-specific quality metrics may rank 
possible expansions for selection. The dispatch strategy slates 𝑥 for execution; it may further 
refine 𝑥 prior to execution (e.g., it may allocate resources or interleave 𝑥’s execution with other 
expansions). 

Goal nodes in executing modes (Figure 2, dashed lines) can be subject to transitions resulting 
from expected or unexpected state changes. The monitor strategy checks progress for 𝑁𝑔 during 

execution. Execution updates arrive through the evaluate strategy. In a nominal execution, the 
information can be either resolved through a continue strategy or the finish strategy marks the 
goal node as finished. 

During execution, the evaluate strategy determines how events or new information impacts 
goal node and the resolve strategies define the possible responses. If the evaluation does not 
impact 𝑁𝑔, the actor can simply continue the execution. However, if the event impacts the 

current execution then other strategies may apply. One obvious choice is to modify the world 
model using adjust, but this does not resolve the mode of 𝑁𝑔 and further refinements are 
required. The repair strategy repairs expansion 𝑥 so that it meets the new context; this is 
frequently called plan repair. If no repair is possible (or desired) then the re-expand strategy can 
reconsider a new plan in the revised situation for the same goal; this is frequently called 
replanning. The defer strategy postpones the goal, keeping the goal node selected but removing it 

from execution. Finally, formulate creates a revised goal 𝑔′; the actor may then drop the original 
goal 𝑔 to pursue 𝑔′ or it could consider pursuing both goals in parallel; this is similar to the 
concept of goal transformation provided by Cox and Veloso (1998). 

Figure 2: The goal lifecycle (Roberts et al. 2014). Strategies (arcs) denote possible decision points 

of an actor, while modes (rounded boxes) denote the status of a goal (set) in the goal memory. 
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 Goal Reasoning can be modeled as a goal State Transition System Ζ = (𝑀, 𝑅, 𝛿𝐺𝑅), where 𝑀 is 
a goal memory of goal nodes, 𝑅 is a set of refinement strategies that transition goals of the 
system, and 𝛿𝐺𝑅 ∶ 𝑀 × 𝑅 → 𝑀′ is a transition function restricting the allowed transitions for 𝑀.   

A goal memory 𝑀 stores a goal node for each of the 𝑚 goals.  For goal 𝑔𝑖, 𝑁𝑔𝑖 =
(𝑔𝑖, 𝑝𝑎𝑟𝑒𝑛𝑡, 𝑠𝑢𝑏𝑔𝑜𝑎𝑙𝑠 , 𝐶, 𝑜, 𝑋, 𝑥, 𝑞) is a goal node where: 

 𝑔𝑖 is the goal that is to be achieved (or maintained);  

 𝑝𝑎𝑟𝑒𝑛𝑡 is the goal whose subgoals include 𝑔𝑖; 

 𝑠𝑢𝑏𝑔𝑜𝑎𝑙𝑠 is a list containing any subgoals for 𝑔𝑖; 

 𝐶 is a set of constraints on 𝑔𝑖. Constraints could be temporal (finish by a certain time), 

ordering (do x before y), maintenance (remain safe), resource (use a specific resource), or 

computational (only use so much CPU or memory). A partition 𝐶 = 𝐶𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 ∪ 𝐶𝑎𝑑𝑑𝑒𝑑 

separates constraints into those provided to the actor independent of whatever invoked it 

(e.g., a human operator, meta-reasoning process, or coach) and those added during 

refinement. Top-level constraints can be pre-encoded or based on drives (e.g., (Coddington 

et al. 2005; Young and Hawes 2012)). Hard constraints in 𝐶 must be satisfied at all times, 

while soft constraints should be satisfied if possible. 

 𝑜 is the current goal lifecycle mode (detailed below).  

 𝑋 is a set of expansions that will achieve goal 𝑔𝑖. The types of expansions for a goal depend 

on its type. For goals tracking external state, expansions might include a set of plans Π. 

Other goals might expand into a goal network, a task network, a set of parameters for flight 

control, etc. The expand strategy creates 𝑋.  

 𝑥 ∈ 𝑋 is the currently selected expansion, performed with the commit strategy. 

 𝑞 is a vector of one or more quality metrics. For example, these could include the priority 

of a goal, the inertia of a goal indicating a bias against changing its current mode because 

of prior commitments, the net value (e.g., cost, value, risk, reward) associated with 

achieving 𝑔𝑖 using selected expansion 𝑥. 

The refinement strategies 𝑅 are drawn from the Goal Lifecycle (Figure 2). For convenience, we 
sometimes refer to the goal node 𝑁𝑔 as simply the goal 𝑔, though it should be clear that all 
strategies are functions that transition some 𝑁𝑔.  We partition the refinement strategies 𝑅 =
 𝑅𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 ∪ 𝑅𝑎𝑑𝑑𝑒𝑑 ∪ 𝑅𝑙𝑒𝑎𝑟𝑛𝑒𝑑 to distinguish between strategies that the actor was provided 
prior to the start of its lifetime (e.g., through design decisions), representations that were added to 
its model as a result of execution in an environment (e.g., a new object is sensed), and those it 

learned for itself (e.g., the actor adjusts its expectations for an action after experience).  
The transition function 𝛿𝐺𝑅 specifies the allowed transitions between modes because not every 

strategy will apply to every goal or every situation. In a domain-independent fashion, 𝛿𝐺𝑅 is 
defined by the arcs in the lifecycle. However, a system or domain may modify (through 
composition, ablation, or additional constraints) the transitions for 𝑀.  

Once Goal Reasoning is modeled as 𝑍, it is easy to see that it is a process through which 𝑀 is 

iteratively refined through transitions of 𝑅 as restricted by 𝛿𝐺𝑅.  The Goal Reasoning Problem and 
one way of solving it, called Goal Refinement, is defined by Roberts et al. (2014, 2015b).  For 
space reasons, we focus only on the definition of 𝑍 for our cleaning robots in this paper.  
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3.  Modeling the robots  

As mentioned, the available actions of a Roomba include Spiraling, Wall Following, and Room 
Crossing. Here we outline our central assumptions and more carefully define these actions so that 
we can compose them into policies for the three robots Vacuous, KleeneStar, and Vakleene.  

We make several assumptions to perform our analysis: static environment, perfect sensing, 
perfect localization, and deterministic action outcome. These assumptions are unrealistic, given 

that the robotic platform’s sensors and actuators are inexpensive and produce noisy observations. 
Our assumptions are easily violated by the presence of certain furniture (e.g., short legs that cause 
the robot to get stuck under an edge) or dynamic objects (e.g., a pet or person). Nevertheless, 
making these assumptions is necessary to gain traction on our analysis. Because we can model 
each of these assumptions in a simulator, we can accurately measure their impact on our analysis. 

The actuator action space of the robot consists of Vacuum, Turn(radians), and 

Drive(timeInSeconds). Vacuum simply turns on the vacuum motor. Turn is a straightforward 
action that is always possible. Drive is conditioned on sensor observations. The bumper is true iff 
the robot has driven into an obstacle anywhere along its front side. The right obstacle sensor 
returns the distance to any object on the robot’s right side up to 50 centimeters; similarly there are 
left and front obstacle sensors. These sensors are strategically angled toward the floor so that they 
should always return some value within 10 centimeters. If the sensor traverses an edge (e.g., the 

top step of a stairwell) it returns a very large value, indicating a drop that the robot should avoid. 
With these sensors observations, it is possible to define a simple, effective drive action as follows: 
  drive(timeInSeconds) 

   startInSeconds ← getTimeInSeconds() 

   elapsedInSeconds ← 0 

   while (isSafe() && (elapsedInSeconds < timeInSeconds)) 

    move_forward(0.1 seconds) 

    elapsedInSeconds ← getTimeInSeconds() – startInSeconds 

where the function isSafe() returns true if (bumper == false) && (front < 10) && (left < 10) && 

(right < 10) && (front > 3) && (left > 3) && (right > 3). 
 Turn and Drive are composed into the following complex tasks:  

 Sprial(timeInSeconds) is composed of turning on the vacuum and executing a series of 
alternating turn right and drive commands where the radians turned decreases and the time 
driven increases over time.  

 Follow(timeInSeconds) is composed of a loop that ensures the robot is between 3 and 5 

centimeters of an obstacle on the right and drives forward by half-second intervals, 
checking to perform corrective turns as needed. 

 Cross(turnInRadians, timeInSeconds) alternates Turn(turnInRadians) followed by 
Drive(timeInSeconds). If an obstacle is detected during Drive, the robot continues to the 
next Turn action. 

 ReturnToBase() reactively applies Turn and Drive actions to move the vehicle toward the 

Base, which is sending out a beacon signal.  

3.1  Vacuous: The sufficient but sub-optimal robot vacuum 

Let us now define a simple task selection policy to clean a floor for the Vacuous.  This policy 
should eventually traverse the entire floor, though it will cover certain areas repeatedly. There 

may be some cases where obstacles or room shapes cause cycling (partially avoided by using a 
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prime number in the turn radius), in which case it would be easy to add a random component to 
this policy to break such cycling.  

  VacuousPolicy(cleaningTimeInSeconds) 

   startInSeconds ← getTimeInSeconds() 

   elapsedInSeconds ← 0 

   while (isSafe() && (elapsedInSeconds < cleaningTimeInSeconds)) 

    time ← randomInt(30) 

    if (3< right < 5) Follow(time) 

    else  

     task ← randomInt(1) //randomly select either 0 or 1 

     if (task == 0) then Spiral(time) 

     else  

      turn ← −(19 × 
Π 

180
)  // Turn by prime closest to 20 degrees 

      Cross(turn, time) 

    elapsedInSeconds ← getTimeInSeconds() – startInSeconds 

   returnToStation() 

To model this policy as a Goal Reasoning process, we define a system architecture and its 
goals. Figure 3 shows the system architecture of our model. The Goal Reasoner manages goals, 

refines them via strategies, and sends a single instantiated task to the Executive, which applies 
Turn or Drive commands to the robot. The Executive receives sensor readings from the robot and 
abstracts them into updates for the Goal Reasoner. 

We define goals for maintaining safety and signaling that the cleaning time has expired plus a 
goal for each task. All goals in this model have identical formulate and select strategies. When the 
goal memory of Vacuous initializes, it formulates and selects all goals. The goals are then 

triggered by specific events. The TimeExpiredGoal signals the end of the cleaning time. The 
expand strategy is a NoOp and this goal is immediately dispatched. It monitors the system time 
and calls evaluate(TimeExpired) to all other goals. The goal is then marked as finished and 
dropped. The MaintainSafetyGoal ensures the robot remains safe. Similar to the 
TimeExpiredGoal, the expand strategy is a NoOp and this goal is immediately dispatched. It 
monitors the sensor status and, when the bumper is activated or when left/right/front detects a 

drop, it calls evaluate(Unsafe) to all other dispatched goals. Since this goal is central the robot’s 
safety, it is never marked as finished or dropped (i.e., its finish and drop strategies are undefined 
thus prohibiting these transitions).  

The remaining goals are named according to the task they manage: SprialGoal performs the 
Sprial(timeInSeconds) task, FollowGoal performs Follow(timeInSeconds), CrossTaskGoal 
performs Cross(turnInRadians, timeInSeconds), and ReturnToBaseGoal performs 

ReturnToBase(). Each of these goals is selected automatically (as are all goals in this domain) and 
will then cycle through the expanded, committed, dispatched, and evaluated modes during the 
execution of a cleaning cycle. Thus, the strategies of the task-oriented goals form the core 
functionality of this model for controlling the robot. For each goal managing a task, the expand 
strategy creates a single policy that is eventually dispatched to perform its respective task with the 
appropriate random time (or turn) variables. Since only one task can be sent to the Executive at 

Figure 3: The system architecture of the floor-cleaning robot.  
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one time, the goals must coordinate via a global semaphore, ExecutiveLock.  Therefore, the 
commit strategies of the goals check this lock before they commit to performing the task and 
release the lock when applying a resolution strategy that results in moving back to selected (via 

the defer strategy).  This provides an opportunity for other goals to apply commit if they are able 
to do so.  Otherwise, a task goal stays in dispatched until it receives information, via the integrate 
strategy, that it should pause.  The TimeExpiredGoal or MaintainSafetyGoal can signal 
TimeExpired or Unsafe and a goal transition to committed if one of these is active.  At this point, 
any dispatched task goal should apply an evaluate strategy followed by a resolve strategy. 

Once formulating the goals, the Goal Reasoner simply iterates through the goals in the system 

and attempts to apply the next available strategy.  If a goal can proceed, it does.  Otherwise it 
remains in its current mode.   

3.2  KleeneStar: The optimal robot vacuum  

It is straightforward to show that an optimal policy exists for the robot vacuum given the 

simplifying assumptions we made above. We can reduce this problem to the Travelling 
Salesperson Problem (TSP). First, we discretize the floor into cells small enough such that a 
“visit” by the robot equates to having cleaned that cell. We then label each cell and create an 
adjacency map of the entire map. We solve the problem with any algorithm suitable for the TSP.  

Unfortunately, TSP is an NP-Hard problem, and we face some obstacles implementing it on the 
limited computing platform of the robot’s microcontroller. This leads us to our approximation 

using machine learning techniques, as outlined next. 

3.3  Vakleene: The sub-optimal robot vacuum that learns 

We claim that applying learning could improve the cleaning time of Vacuous.  The parameters for 

learning are straightforward in this model, and consist of learning how often to apply each task 
and how long to perform each task.  Let 𝑐𝑙𝑒𝑎𝑛𝑇𝑖𝑚𝑒 be the maximum time for the robot to clean.  
For task 𝑖, let 𝑝𝑖 denote the probability of performing the task, let 𝑡𝑖 =
(minTimei, maxTimei) denote the minimum and maximum time to perform the task where 
0 ≤  minTimei ≤  maxTimei < cleanTime), and let 𝑟𝑖 = (minRadiani, maxRadiani) denote  
the minimum and maximum radians the robot can turn for the task where −𝜋 ≤ minRadiani ≤
 maxRadiani ≤ π . Then an instantiation of the system is determined by the parameters 𝐹 =
(𝑐𝑙𝑒𝑎𝑛𝑇𝑖𝑚𝑒, 𝑟𝑒𝑤𝑎𝑟𝑑, 𝑝, 𝑡, 𝑟), where 𝑟𝑒𝑤𝑎𝑟𝑑 is a count of the number of cells visited, 𝑝, 𝑡, 𝑟 are 
the task probabilities, time and radian values and 𝑝𝑆𝑝𝑖𝑟𝑎𝑙 + 𝑝𝐹𝑜𝑙𝑙𝑜𝑤 + 𝑝𝐶𝑟𝑜𝑠𝑠 = 1. 
 It should be clear that the Vacuous is one instantiation of 𝐹.  The parameters chosen for 
Vacuous may have given the best performance across a variety of rooms and obstacles.  We 
hypothesize that a specific room (and room obstacles) lead to a structure that favors particular 

instantiations of 𝐹.  If true, then Vacuous could be improved by learning 𝐹 for the room that it is 
currently cleaning, leading to Vakleene, a cleaning robot that can learn. 
 Vakleene could apply learning (at least) two ways.  First, it could perform online modification 
of 𝐹 based on how much cumulative reward each task earns over time.  For example, Vacuous 
could proportionally increase the time 𝑡𝑖 for task 𝑖 if, during the past 𝑘 tasks run, it earned more 
reward; it might even adjust 𝐹 as a function of the discounted reward over the past 𝑘 tasks run (cf. 

Kaebling, Littman, & Moore 1996).  Similarly, Vakleene could modify 𝑟𝑖 for a task 𝑖 that is 
getting insufficient reward.  To help it avoid local minima in the parameter space, Vakleene could 
use a stochastic component (e.g., simulated annealing) to broaden its parameter search.  Online 
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learning like this can be modeled as part of the defer strategy, which checks the last 𝑘 tasks run 
and modifies 𝐹 appropriately. 
 There are a number of problems with this approach.  Learning is performed during cleaning, 

when computational resources are probably better spent maintaining the robot’s safety. This 
process is an iterated search over a large parameter space.  Given the relative infrequency of 
interaction with its environment (i.e., daily cleaning), converging to a maximal (or even 
reasonable) policy may likely take many months and Vakleene may traverse many poor 
configurations for 𝐹.  Finally, our solution is brittle from a software engineering perspective 
because changes to the learning procedure require modifying every task goal.   

 Another approach may be to introduce an offline learning goal, which adjusts the parameters 
while the vehicle is charging.  Consider a new goal, ApproximateKleeneStarGoal, which could 
be dispatched during charging to consider the rewards earned during the past 𝑘 runs, consider any 
global constraints for good configurations of 𝐹, consider how often obstacles or drops were 
encountered, etc.  If the robot were provided more accurate localization in a later version, this 
goal could also consider this information.  Software updates to the system then consist of 

patching one or more strategies of ApproximateKleeneStarGoal.  As an advantage, this goal could 
be provided (or learn) a table of common room types to speed up its learning.   
 There are many other ways that learning could be modeled in the Goal Reasoning Model, but 
these two examples suffice to demonstrate our point. 

4.  Related Work on Machine Learning and Goal Reasoning 

Several researchers have investigated methods for applying machine learning techniques to 
improve the performance Goal Reasoning agents. For example, Goal Reasoning has been used in 
the context of learning to compose web services (Burstein et al. 2008).  The most common focus 
is applying learning for goal formulation or goal priorities (Weber et al. 2010, 2012; Powell et al. 

2011; Young and Hawes 2012; Maynord et al. 2013; Silva et al. 2013).  Other researchers have 
studied learning in the context of explanation generation (Molineaux and Aha 2014, 2015) or 
learning a combination of state expectation and goal formulation knowledge (Jaidee et al. 2013).    

The Goal Lifecycle bears close resemblance to that of Harland et al. (2014) and earlier work 
(Thangarajah et al. 2010). They present a goal lifecycle for BDI agents, provide operational 
semantics for their lifecycle, and demonstrate the lifecycle for an agent that controls a simulated 

Mars rover. In future work we plan to characterize how this lifecycle relates to the one we 
presented in (Roberts et al. 2014). Winikoff et al. (2010) have linked Linear Temporal Logic to 
the expression of goals.  

5.  Closing Remarks  

We have applied our Goal Reasoning Model to a floor-cleaning robot and described how learning 
could be incorporated into the model.  Although this model is presented as a thought experiment, 
we plan to implement the model to analyze a comparison of the approaches we outlined for a 
variety of simulated room types.  Future work will also include characterizing when and why 
particular instantiations of Vakleene, the learning robot, outperforms Vacuous, the simple robot.  

We also plan to formally characterize how close Vakleene’s learned policies can approximate 
KleeneStar’s optimal policies.  
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Abstract 

We present a summary of GAIA, an interactive environment for designing game-playing agents. A game-
playing agent in GAIA contains not only knowledge about the game world, but also a model of its own 
goals, methods and knowledge. If and when the agent fails to achieve a goal, it uses its self-model to reason 
about its goals, identifies repairs to its design, and retrospectively adapts itself. We illustrate GAIA through 
experiments in designing agents that play a version of the turn-based strategy game called Freeciv. 

1. Introduction 

The GAIA project explores the use of teleology in modeling agents that play turn-based strategy 
games. Its overall hypothesis is that the use of teleology supports the diagnosis and revision of 
such agents to better adapt them to their game environments. Specific research questions include 
how to represent agent goals, how to relate the goals to the means by which the goals are 

accomplished and how to reason over the models in support of diagnosis and adaptation. 
GAIA itself is an interactive environment for designing game-playing agents. In GAIA, a 

designer interactively designs a game-playing agent in a high-level agent modeling language 
called TMKL2. The designed agent contains not only knowledge about the game world, but also 
models of its goals, methods and knowledge. Given the model of the agent, GAIA automatically 
compiles the agent program code and executes the agent in the game world. If and when the agent 

fails to achieve a goal specified in the model, a meta-reasoning component called REM uses the 
agent’s model to reason about its goals and failures, identifies repairs to its design, and 
retrospectively adapts the agent. We evaluate GAIA, TMKL2 and REM through experiments in 
designing agents that play parts of the turn-based strategy game called Freeciv1. In this paper, we 

                                                 
1 http://freeciv.wikia.com/ 
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present a summary of the GAIA project in order to build a connection with the newly formed 
Cognitive Systems and Goal Reasoning communities.  

2. TMKL2 

TMKL2 is an agent modeling language that is used to express the teleology of an agent’s design 
and the means by which the teleology is realized. TMKL2 includes vocabulary for specifying 
agent goals, the mechanisms to accomplish the goals, and the agent's knowledge of its internal 

design and its external environment. GAIA realizes TMKL2 models using an interpreter. When 
used to model a Freeciv agent, the interpreter is capable of executing a model in conjunction with  
Freeciv's server program to play the game. GAIA assumes that the division between the agent’s 
model and external parts is clearly defined, and that this division takes the form of an 
(Application Programming Interface) API to the external code. GAIA also makes an explicit 
distinction between adaptation-time modeling of the agent and run-time execution of the adapted 

agent: Adaptation takes place on a model of the agent and then the model is interpreted to effect 
agent behavior in the game world. 

1.1. Goals  

TMKL2 comprises three sublanguages for modeling Goals, Mechanisms and 
Environment, corresponding to the Tasks, Methods and Knowledge portions of the earlier 
TMKL language [Murdock & Goel 2008], respectively. The first sublanguage describes the 
agent's goals. A Goal expresses a reason that the agent does what it does, in terms of its intended 
externally visible effects on the agent’s world. Goals may be parameterized, enabling the agent 
to target specific elements of its Environment, such as, for example, a specific city. A Goal is 
expressed via a pair of logical expressions describing the precondition for Goal accomplishment 
(called its Given condition) and the expected effect of Goal accomplishment on the agent's 
Environment (its Makes condition). The final element of a Goal specification is a reference 
to the means by which the Goal is to be accomplished. In this version of TMKL2, each Goal is 
associated with the single Mechanisms by which it is to be achieved. 

1.2. Mechanisms 

The Mechanism portion of a TMKL2 model describes how the agent accomplishes its Goals. 
There are two kinds of Mechanisms, Organizers and Operations, that are each defined 
in terms of two logical expressions describing their precondition for execution (Requires 
conditions) and their effect (Provides condition). An Organizer mechanism is defined as a 
finite state machine comprising States and Transitions. Start, failure and success 
States are all explicitly indicated. States, in turn, refer to subGoals, enabling hierarchical 
refinement of an agent's specification. Transitions may be conditional (dependent on a 
DataCondition) with respect to the agents current perception of the world, as expressed in its 
Environment. The other kind of mechanism is an Operation. Operations are parameterized 
invocations of computational resources provided to the software agent via its API to external 
software, such as the Freeciv server. That is, each Operation models one of the agent's 
computational capabilities. 

1.3. Environment 
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A TMKL2 program includes a description of the agent's understanding of itself and the world in 
which its exists. In particular, the agent's Environment comprises a set of typed Instances 
and Triples (3-tuples) relating the Instances to each other. In order to describe 

Instances and Triples, TMKL2 provides two modeling constructs, Concepts and 
Relations. A Concept is a description of a set of similar Instances. It is defined in terms 
of a set of typed Properties. Moreover, Concepts are organized in a specialization 
hierarchy promoting compositionality and reuse. There is a built-in Concept called Concept. 
When a TMKL2 model is constructed, Instances of Concept are automatically added to it 
for each defined Concept, enabling reflection by the agent over its own definition. A 

Relation describes a set of Triples allowing the modeling of associations among 
Concepts. In particular, an Instance of one Concept can be related to Instance of 
another via a Triple. 

1.4. Semantics 

A TMKL2 model of an agent connects the Goals of the agent to the Mechanisms by which 
the Goals are accomplished. The program is declarative in the sense that all behavior is defined 
in terms of logical expressions (Given, Makes, Requires, Provides). 
Consequentially, one semantic interpretation of a TMKL2 program is that it declaratively 
describes the behavior that a software agent must exhibit in order for it to accomplish a set of top-

level Goals. TMKL2 programs are not just descriptive, however: They can be used to actually 
control the modeled agent. This requires an operational semantics of TMKL2: A TMKL2 model 
prescribes the detailed behavior of the agent in the world. Operationally, a TMKL2 Model can be 
interpreted as a hierarchy of finite state machines controlling communication with the external 
software with which the agent interacts. Superior state machines in the hierarchy effect the 
accomplishment of superior Goals. FSMs corresponding to Goals without any subGoals are 

called leaf FSMs. All state machines execute synchronously; that is, at any given time, each 
machine is in a specific State. At the next virtual clock tick, all pending DataConditions 
for active leaf machines are evaluated, and the outgoing Transitions evaluating to true are 
traversed, resulting in entry into new States. Upon entry into a State, the corresponding 
subGoal and its  Mechanism are interpreted. Mechanism interpretation ultimately resolves 
into Operation invocations and updates to the Environment. After all invocations have 

been processed, the Environment is updated to reflect any changes to the agent’s run-time data 
structures made by the invocations. Interpretation terminates if the Organizer for the top-level 
Goal enters either a success or failure State. 

1.5. An Example of a TMKL2 Model of a Freeciv Agent 

Figure 1 presents part of the model of an agent, called Alice, capable of playing a simplified 
version of Freeciv. The figure illustrates a visual syntax for TMKL2. The partial model includes 
Alice's top level Goals and Organizers. In particular, the top (green) rectangle of the 
diagram denotes Alice's top-level Goal of collecting gold pieces. Contained within this rectangle 
is another (slate blue), depicting an Organizer comprising three States—an initial State 
(black circle), a subGoal reference (gray) and a final State (yellow). The subGoal itself is 

shown as the rightmost of the two (orange) rectangles on the second level. Its Organizer, in 
turn, refers to two subGoals—one that continually mints more gold until enough has been 
produced and the other determining when to end the game. The bottom two rectangles contain  
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Figure 1: A portion of the TMKL2 model of Alice, an agent that plays a part of Freeciv. 

 
Operations (gray), responsible for interacting with the Freeciv server. Complementing the 
Goals and Mechanisms shown in the figure is Alice's Environment (not shown). Example 
Concepts represented by Instances in the Environment include City, Tile, 

Player, and Unit. 

2. GAIA  

TMKL2 models can be constructed, modified and executed using the GAIA interactive 
development environment. GAIA is written in the Java programming language and is built using 
the Eclipse2 software development environment. 

2.1 The GAIA Architecture 

The conceptual architecture for GAIA is presented in Figure 2. In the center left of the figure is 
SAGi, the GAIA user interface. REM is the reasoning module responsible for adapting models. 
Also part of GAIA is the model manager responsible for encapsulating access to agent models 
and persisting them to permanent storage. In-memory representation of TMKL2 models take the 
form of Java objects that are interpreted by the TMKL2 interpreter, which interacts with the 
world via the Runtime Communications Manager and associated queues. 

SAGi invokes the TMKL2 interpreter to execute a model and thereby interact with the Freeciv 
server. The interpreter walks the TMKL2 tree of state machines iteratively until the agent either 
succeeds or fails to achieve its top-level Goals. When the interpreter attempts to accomplish a 
subGoal whose Mechanism is an Operation, it must place into the Operation Request 
Queue a request to the Freeciv server to execute a game action, encoding parameters as necessary. 

                                                 
2 http://www.eclipse.org/ 
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Figure 2: The Conceptual Architecture of GAIA. 

 

 REM is the other major component of GAIA. REM, when given an agent model and a 
situation—either a failed Goal or an altered Environment—produces an updated agent model 
engineered either to successfully accomplish the Goal or to take advantage of the new 
knowledge in the Environment. To achieve retrospective adaptation, REM performs three 
steps: localization (determining which of an agent's subGoals and associated Mechanisms 
were inadequate to accomplish the agent's overall Goal), transformation (devising an alternative 

Goal), and realization (providing/altering a Mechanism to accomplish the alternative Goal). 
Localization is accomplished in REM using a heuristic to find a low-level State in an 
Organizer such that the state's Provides condition suffices to accomplish the failing Goal. 
Further, the detected State must have a failing precondition (Requires condition). The 
presumption is that the State had not been reached, and, if it had been reached, then the agent 
would have succeeded.  

 Realization and transformation are accomplished by matching the failing situation against a 
library of adaptation plans, choosing a candidate transformation from the library and applying the 
result to the agent's model to produce a revised model. REM sits atop the Powerloom3 knowledge 
representation and reasoning system. Powerloom supports automatic classification (truth 
maintenance) as well as natural deduction. TMKL2 logical expressions are easily mapped to/from 
Powerloom, and REM algorithms are easily expressed in Powerloom's variant of first-order logic. 

3. Adaptation Scenarios and Results 

To validate our approach to model-based adaptation, we have conducted several experiments, 
each involving variants of the Alice agent depicted in Figure 1. In the experiments, Alice plays a 

simplified variant of Freeciv against other agents. The simplified game consists of two agents. 

                                                 
3 http://www.isi.edu/isd/LOOM/PowerLoom/ 
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Each agent controls a civilization and is responsible for its government, economy, citizen morale, 
and military. Each civilization has one city, citizens in that city, and a number of warriors. Each 
game tile yields a quantity of food, production, and trade points each turn of the game. Food 

points feed a city's civilians; production points are used to support existing warriors or generate 
new warriors; and trade points are distributed among luxury, tax, and science resources. Initially 
both players start out in year 4000BC, with fifty gold pieces, zero warriors, and one worker that 
collects resources from a nearby tile. A city is either producing a warrior or collecting gold pieces 
on any given turn. Alice can win by collecting a specified number of pieces of gold, and the other 
agent can win by capturing Alice's city. An experiment consists of running Alice against its 

opponent and noting the results. Then, REM is tasked by the experimenter to adapt Alice, and the 
game is rerun. In order to best understand the results, FreeCiv was run deterministically 
throughout the experiments. 

3.1. Experiment #1 

The purpose of the first experiment we conducted was to test whether REM could make a trivial 
adaptation to improve Alice's performance versus Freeciv's built-in robot player. In general, a 
player of this reduced game has to make a decision about allocating resources between collecting 
gold and creating warriors to defend its city. At the beginning of the first experiment, Alice's 
strategy was to devote all of her resources to the former pursuit. An obvious adaptation is to 

adjust Alice to balance her resource allocation, and the first experiment tested whether REM 
could make this adaptation. In the experiment Alice played against Freeciv's robot player, which 
we call Frank, configured at its highest skill level. Although Alice had knowledge that Frank 
could win by capturing her city, she was unaware that Frank had more powerful weaponry and 
more production capacity than she had. When played against Frank, unadapted Alice directly 
succumbed to his attacking chariots, legions, and horsemen. Before losing, Alice was able to 

acquire 175 units of gold and lived for 3075 years. However, Alice failed to acquire sufficient 
gold to accomplish her Goal, thereby requiring retrospective adaptation. In this experiment, no 
transformation was needed. That is, the failure was that an Organizer rather than a Goal was 
flawed. Realizing a replacement Organizer took place by interjecting a new State, whose 
success would satisfy the preconditions of a problem State. The new State was created by 
first searching a small library of generic Goal patterns to see if any satisfy the preconditions of 

the problem State. After an instantiated Goal pattern was found it was assigned as the Goal 
of the new State. This new State was then inserted into the localized Organizer just prior 
to the problem State. This guarantees the problem State's precondition is satisfied upon its 
visitation. In Experiment #1, the new State was added with a Goal to build additional 
warriors. This Goal increases the defense of Alice's city if she is visibly outgunned on the game 
map. After performing this adaptation, the new agent, Alice', was tested against Frank. While still 

outgunned, Alice' fared better in longevity and defense. She lasted 3125 years and killed one of 
Franks powerful attacking units. Because some of her resources had been allocated to defense, 
she fared worse in gold acquisition, acquiring only 147 units. The lesson learned was that 
compensating for a well-understood limitation could be accomplished by making use of a simple 
heuristic alteration of a TMKL2 agent model and a small library of patterns. 

3.2. Experiment #2 
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The previous experiment was an example of retroactive adaption in which a failure was 
mitigated. In Experiment #2, proactive adaption was attempted to take advantage of a slightly 
altered game rule. In particular, it now takes more gold units for Alice to win a game. Tests were 

run on Alice to see if Alice's model was still valid after the rule change. REM tested if each 
Mechanism's Provides condition satisfies its parent Goal's Makes condition; that is, if 
the Mechanism was capable of accomplishing the new Goal. If one of these tests failed, REM 
then located the responsible Mechanism. In this experiment, REM localized Alice's GainGold 
Organizer. Next, a replacement Organizer was created to achieve the new win condition. 
To do this, REM used an external planning tool, called Graphplan4. REM translated the initial 

game Environment into a Graphplan facts file. Then all Organizers, Operations, and 
game rules were translated into a Graphplan operators file. After pruning out operators with no 
effects, the resulting Graphplan file contained 10 operators. Next, REM ran Graphplan on the 
facts and operators files. Graphplan generated a three-stage plan capable of accomplishing Alice's 
top-level Goal. This plan was then translated back into an Organizer to replace GainGold. 
The lesson learned from this experiment was that for a simple numeric change, a no-longer valid  

TMKL2 Organizer can be located and adapted using an external planner. 

3.3. Experiment #3 

The first experiment described above was off-line in the sense that the adaptations were made 

after a game was completed. Experiment #3 is an on-line adaption in that Alice is changed while 
she is running. Moreover, her opponent, Barbra is also adapted during the game. In this 
experiment, both Alice and Barbra were reconfigured into two parts, one allopoietic and the other 
autopoietic. These term are borrowed from the literature of self-organizing systems and denote, 
respectively, the part of a system that changes and the part that does the changing. Alice's 
allopoietic part used a parameter, alpha, to determine how Alice should allocate her resources 

between obtaining gold or producing warriors. The autopoietic part of Alice adapted the 
allopoietic part by adjusting alpha to produce gold only if she had sufficient defensive capability 
to fend off Barbra's visible attackers. Similarly Barbra's allopoietic part used a parameter, beta, to 
determine the number of warriors with which to attack Alice's city. The autopoietic part of Barbra 
adapts the allopoietic part by adjusting the number of warriors Barbra attacks Alice. For both 
agents, the autopoietic part was itself a (meta-) agent. In particular, the meta-agent's 

Environment consisted of a description of the allopoietic part, including Goals, 
Mechanisms and (allopoietic) Environment. By monitoring game status, the meta-agent 
could make appropriate adjustments to the base agent's parameter by executing (meta) 
Operations. Running Alice versus Barbra resulted in the agents engaging in an arms race. 
Eventually Alice was able to defeat Barbra. In winning, Alice collected 186 gold units, Barbra 
had 6 dead warriors, Alice had 3 live warriors and never lost a battle. Barbra adapted herself 4 

times, and Alice adapted herself 6 times. The lesson learned was that TMKL2 models allow for 
simple real-time adaptations by using meta Operations to control the agent strategy. 

4. Discussion and Future Work 

The GAIA development environment provides infrastructure enabling exploration of teleological 
modeling and reasoning over goals and the means to realize them. The experiments conducted so 

                                                 
4 http://www.cs.cmu.edu/~avrim/graphplan.html 
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far have been a limited proof of concept. As such, many questions have been raised and future 
topics for research suggested. 
• Language extensions: TMKL2 as described is limited to one Mechanism for each Goal. 

Alternative, possibly concurrent, Mechanisms and the reasoning necessary to choose 
among them might be provided. Also, as currently designed, TMKL2 is primarily aimed at 
expressing achievement Goals. The addition of invariants, along with augmenting REM to 
directly support truth maintenance, would extend GAIA modeling range. Much more 
ambitious is the ability to deal with non-functional concerns, such as performance. 

• Game design: In addition to FreeCiv, we have used GAIA with several other games. For 

example, we have built an agent model to play TicTacToe and a TicTacToe game server. We 
then watch GAIA adapt the agent to play variants, such as misère (play to lose) and allowing 
players to use either X or O on any move. We have added some abilities to GAIA to support 
the designer in specifying game server APIs and generating stub Operations. 
Nevertheless, adding a new game still requires significant work on the part of the designer. 

• Adaptations: The experiments described above illustrate but a few of the many kinds of 

adaptations imaginable. We have cataloged about a dozen such adaptation types, but the list is 
ad hoc. What is lacking is a unifying framework for them using which REM could specialize 
its adaptation capabilities. Also, the framework would enable a more systematic compilation 
of adaptation patterns. 

• Reasoning: As it exists, GAIA makes use of PowerLoom, which is a truth maintenance 
reasoner. As described above, we have also hooked GraphPlan into GAIA, albeit on an ad 

hoc basis. The question then remains as to what reasoning capabilities are required by 
teleological and specifically adaptive questions. Among the possibilities are machine learning 
for better localizing failures from execution logs. Needed also are specialized capabilities for 
determining what existing Mechanism might best be applied (or adapted) to realize a 
modified Goal, and how to formulate a high-level Mechanism that combines existing low-
level Mechanisms. 

• Meta-Reasoning: Experiment #3, described above, was a very simple example of meta-
reasoning, amounting to just parameter tweaking. Nevertheless, the generality of TMKL2’s 
modeling capabilities are such that much more general schemes are possible. In particular, 
imagine a (meta-)agent formulated to deal with specific adaptation opportunities, including 
detection, localization, etc. That is, the process by which the experimenter designed 
Experiment #3’s meta-agent could itself be coded in TMKL2 to deal with this particular class 

of adaptations. 
• Evaluation: The experiments described above do not constitute a thorough evaluation of 

GAIA. Such a study would explore a variety of further questions such as: How robust is 
TMKL2 in dealing with different games? What is the relationship between class of adaption 
and required reasoning power? Important also are issues such as reasoning performance and 
usability of GAIA as a design environment. Ultimately, the key question will be the extent to 

which our approach to teleology, as manifest in the tight connection between Goals and 
Mechanisms, can address the general problem of adaptation. 

5. Related Research 

In this summary paper, we will only briefly cover closely related research; our technical papers 
cover related research in more detail. Our work perhaps is most directly related to research on 
meta-reasoning (Cox & Raja 2011). Much of the research on meta-reasoning for self-adaptation 

163



META-REASONING OVER GOALS  

 

has used self-models of agents that help localize modifications to the agent design, e.g., 
(Anderson et al., 2006; Fox & Leake 2001; Jones & Goel 2012; Murdock & Goel 2008). We can 
trace several themes in model-based self-adaptation in intelligent agents. For example, self-

adaptations can be retrospective, (Anderson et al. 2006; Fox & Leake 2001; Jones & Goel 2012), 
i.e., after the agent has executed an action in the world and received some feedback on the result, 
or proactive (Murdock & Goel 2008), i.e., when the agent is given a new goal similar and related 
to but different from its original goal. As another example, self-adaptations may pertain to 
domain knowledge (e.g., Fox & Leake 2001; Jones & Goel 2012) or reasoning processes 
(Anderson et al. 2006; Murdock & Goel 2008). The GAIA architecture supports both kinds of 

adaptations. 
 Our earlier research on model-based reflection and self-adaptation (Murdock 2008) suggested 
that (1) goal-based models of intelligent agents that captures the teleology of the agent design can 
help localize the changes to the agent design needed for classes of adaptations, and (2) 
hierarchical organization of the goal-based models of the agent designs helped make the above 
localization efficient. The work reported here extends earlier work on self-adaptation in two 

ways. Firstly, the agent specification language TMKL2 has a better defined syntax and semantics 
than its predecessor TMKL (Murdock & Goel 2008). This adds clarity, precision and rigor. While 
many agent specification languages specify the goals, mechanisms, structure and domain 
knowledge of agents, TMKL2 explicitly organizes the agent’s mechanisms and domain 
knowledge around its goals. Together, the goals and the mechanisms that achieve them specify 
the teleology of the agent’s design. Goel & Rugaber (2014) describe GAIA in more detail. 

6. Conclusions 

While much of earlier work on model-based reflection and self-adaptation pertained to agents that 
operated in small, fully-observable, deterministic, and largely static worlds, GAIA operates in 

large, complex, dynamic, partially observable and non-deterministic worlds such as Freeciv. The 
experiments in self-adaptation described here cover a small range of retrospective and proactive 
agent adaptations. They demonstrate that (i) it is possible in principle to design game-playing 
agents so that their teleology can be captured, specified and inspected, (ii) the specification of the 
teleology of the agent’s design enables localization of modifications needed for the three 
experiments in self-adaptation, and (iii) this self-adaption in turn enables the agent to play an 

interactive game, monitor its behavior, adapt itself, play the game again, and so on. 
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Abstract 
The cognitive autonomy capability understood in a certain sense is vital for actors working as 
teams in unpredictable environments with limited communications. Such actors need to be able to 
reason about their goals and decide which to pursue. Therefore, methods of autonomous goal 
reasoning (GR) would be useful in such cases. However, most previously studied models of GR 
are limited in their abilities to reason in situations involving multiple characters, viewing the latter 
from a third-person perspective. In this context, the connection between GR and narrative 
reasoning is beginning to be explored. Recently, a theoretical framework for narrative team 
planning (NTP) has been developed and used to generate character goals (not team goals). This 
approach, however, relies on a global team planning, which may not be suitable for a team 
operating with limited communications and without a central command. Accepting NTP as a 
baseline, here we argue that an appropriate introduction of characters and narratives into a GR 
framework can (in some environments) be beneficial, both conceptually and in terms of 
performance measures. We study this claim analytically using a Character Reasoner model that we 
formulate, and apply it to several example scenarios. This model separates characters from actors 
and employs a hierarchical network for narrative and goal selection. Expected benefits for teams 
of autonomous actors include more efficient and more robust goal reasoning abilities. 
 
Keywords: Goal reasoning; autonomy; narrative intelligence; character arc; metacognition; 
distributed multi-agent reasoning 
 

1.  Introduction 
Goal reasoning (GR) refers to the ability of a cognitive system to deliberate on, generate, and 
select its own goals in unforeseen situations (Vattam et al., 2013; Klenk et al., 2013; Roberts et 
al., 2014). Unlike most research on intelligent agents, GR is inspired by observations of (highly 
autonomous) human cognitive behavior. The high level of cognitive autonomy provided by GR 
can be vital for actors working in teams and/or in unpredictable environments. As an illustration, 
we consider a simple scenario (please see Sections 3 and 5.1 for further details of this example).  

Suppose a team of two combat pilots are engaging an enemy in a 2-versus-2 beyond-visual-
range air combat scenario. At the same moment, they receive information from their commanding 
officer about a developing situation at a distant location. They infer that the immediate help of at 
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least one air vehicle is vital to that situation, is more important than their current mission, and 
requires a vehicle that is fully armed. The team needs to reassess, and possibly formulate, goal(s) 
to pursue. On the one hand, they cannot simply abandon the ongoing engagement: disengaging 
may result in the destruction of friendly assets. Therefore, one option is to pursue the previous 
goal until it is achieved, then switch to the new goal. However, in this case none of the team 
members will be guaranteed to have a full load of offensive assets, so their help at another 
location could be useless. An alternative choice is to arrange for one of the vehicles to escape 
before firing any of its missiles. For this to happen, the pilot of the remaining aircraft must keep 
both enemies engaged, allowing the partner to escape (while still fully loaded). Once the two 
goals are formulated, the associated risks and values can be estimated, and the selection among 
them can be made. This task requires more than traditional planning: for example, the team needs 
to select a top-level goal at the start of their engagement. Moreover, the need for team-level GR 
may repeatedly be required in a dynamically changing scenario, as we exemplify below. Existing 
GR agents aren’t designed for these kinds of open-ended team decision-making scenarios. 

While GR has only recently been an active research topic, many branches of AI research 
relate to it. Examples include topics like intelligent agents and cognitive architectures (Gray, 
2007), motivated agents, narrative planning, intent and plan recognition, self-regulated learning 
(Zimmerman, 2002), and many more. Because it is not our present goal to review all these areas, 
we contrast our approach to only one related topic, namely narrative planning (Riedl et al., 2008; 
O’Neil & Riedl, 2014; Riedl & Young, 2010, 2014; Young et al., 2013) applied in the context of 
a team mission. We refer to it as narrative team planning (NTP) and take it as a baseline. 

The essence of NTP can be outlined as follows. First, the narrative that determines future 
team actions is generated by a planner, given one desired outcome as the goal (some systems 
allow for goal replacement in the case of a plan generation failure; see (Riedl et al., 2008)). 
Second, the actions of each character must be believable (i.e., consistent with individual character 
goals and motives, which are not necessarily consistent with each other or with the team’s goal). 
This constraint allows the actors to execute plans locally within the team. Here “locally” means 
focusing on their individual tasks and tasks of selected peers rather than on the entire team 
mission. Third, plans are generated from a “global” team perspective. The global narrative is 
created by eliminating unmotivated commitments (e.g., by assigning certain individual goals to 
characters, which transforms NTP into a GR process). Finally, the set of NTP characters is known 
a priori and is fixed, because the term “character” is synonymous to the term “actor” in NTP. 

The approach that we introduce here as an alternative to NTP can be characterized as 
“character-oriented narrative goal reasoning”, or, for short, “character reasoning” (CR). A 
character in this case is an abstraction, and is not identical to an actor. We define a Character 
Reasoner as an autonomous, embodied intelligent agent (an actor) capable of (a) formulating 
believable characters applicable to the developing situation, that help with achieving team’s 
goals, and (b) performing roles of selected formulated characters, using narrative GR and 
planning in cooperation with the team. CR relies on the concepts of a narrative, a character, a 
character arc (i.e., a plot or a storyline describing the evolution of a character and its goals in a 
story), and related concepts, which are useful in many (e.g., military) domains (Finlayson & 
Corman, 2013) and are also parts of the NTP formalism (Riedl & Young, 2010; Ware & Young, 
2014). So, what is essentially new in CR, besides separation of characters from actors? 
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To answer this question, we shall return to our example, assuming now that there are N ≥ 2 
vehicles in each team, M vehicles need to escape without firing any of their missiles, and 1≤M<N. 
As explained above, for the air combat team to select a new goal using NTP, the future actions of 
all team members (actors) need to be considered and optimized as a whole. This could make the 
task computationally demanding and practically intractable in the case of a large team size. 
Moreover, the necessary information about all partners may not be available locally to team 
members engaged in NTP. Therefore, an important question is whether and how the global team-
GR task can be effectively decomposed into individual, local GR tasks. This is exactly what the 
present work intends to address (Section 3 explains intuitively how, using the selected example).  

The paper is organized as follows. In Section 3 we show how to perform the decompositions 
discussed above, but only after we provide a minimal background on the topic in Section 2. We 
also explain in Section 3 why CR can be more efficient than NTP, using the selected example at 
an intuitive level. We then formalize CR in Section 4, casting it as a form of narrative GR, and 
consider its likely benefits based on a more detailed analysis of other examples in Section 5. We 
finally discuss implications and summarize the main points in Sections 6 and 7. 

2.  Background and related works 
In narratology, a narrative is defined to have two related components (Bal, 1998; Riedl & Young, 
2010; Schmid, 2010): the fabula, which is a partially ordered set of causally, logically or 
temporally related events that form a consistent story, and the sjuzet, which is a (possibly 
incomplete) linear presentation of this story as viewed from a storyteller perspective1. Narrative 
techniques and their application have received recent attention in AI research, yet not sufficiently 
for team-level GR and planning and military applications (see, however, Young et al., 2013; 
Finlayson & Corman, 2013). At the same time, there is no general consensus on a formal 
definition of narratives, and how they should be generated (Kapadia et al., 2015). Within the 
popular formalism developed by Young’s research group (Riedl et al., 2008; Riedl & Young, 
2010, 2014; Young et al., 2013, Ware & Young, 2014), a fabula is defined as a sound plan with 
the additional requirement of character believability, enforced through the consistency of 
character goals, intentions and actions. Accordingly, within this approach, narratives are 
generated by planning algorithms. However, this use of planning imposes severe limitations on 
the outcome, many of which are identified by the authors themselves (Riedl & Young, 2010).  

Outside this relatively narrow understanding of a narrative, no precise criteria are defined to 
distinguish narrative and non-narrative planning or GR. For example, John McCarthy defined a 
narrative more loosely than a plan: as a temporal partially-ordered collection of related situations 
and events, without requiring their consistency (McCarthy, 1994; McCarthy & Costello, 1998). In 
the situation calculus, narratives are first-order objects. From this point of view, today virtually 
any symbolic cognitive architecture can be regarded as a narrative-based modeling framework. 
McCarthy (1994; 1998) also discussed the concept of a proper narrative, which is a narrative 
without anomalies. Among other formal approaches in narratology, Abell (1987; 1993) represents 
a narrative as a graph, the nodes of which represent actions performed by actors that change states 
                                                 
1 This dichotomy originates from the Russian mechanistic formalism of literary criticism developed early in 

the 20th century. Other terms are also used (e.g., “story”, “discourse”, or “plot”). 
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of the world. Edges of the graph are directed and represent causal or dependency relations, 
indicating, for example, that one action is a prerequisite for another. Some modern authors go 
further and require that a narrative should be understood more narrowly than a plan constrained 
by the believability of characters. Additional requirements include “narrativity”, character 
interaction, a conflict or suspense, struggle, characters changing their goals and values, and more 
(Huhn, 2013; Simon-Shoshan 2013; Haven, 2007). Finlayson and Corman (2013) refer to this 
kind of a narrative as a Level-II narrative.  

In this paper, we distinguish between CR and non-CR approaches (we define CR formally in 
Section 3.2) using the notion of a character, which we contrast with the notion of an actor. For 
Haven (2007), characters are abstractions that are central in understanding a narrative, or story. 
Haven defines a story as a detailed, character-based narration of a character’s struggle to 
overcome obstacles and reach an important goal. A character, according to Haven (2014), is an 
abstraction defined by five elements that can be interpreted (in our words) as follows:  

1. drives, values and motives (the core);  
2. personality type and features;  
3. autobiographical memory and general knowledge;  
4. behavioral activity and capabilities; and 
5. subjective viewpoint, appearance, and self-image. 

A character in a narrative is a perspective and a viewpoint that allows us “to see who is doing 
the action and to gauge relevancy…”, “to interpret emotional state, beliefs, attitudes… to create 
meaning and relevance”. A character’s behavior is necessarily intentional. Character intent is 
composed of two components: the goal (the outcome that is being pursued by the character) and 
the motive (i.e., the reason why this goal is important for the character) (Haven, 2007). 

Thus understood, characters are distinguished from actors (intelligent agents that are given 
entities), as well as from cognitive systems and from objects in the environment. A character is 
understood in this Section and below as an abstraction in the form of a virtual subject (an ego, a 
self, a persona), defined by its subjective perspective, together with a system of values, motives 
(given by top-level guidance and/or bottom-level drives), beliefs (autobiographical and general), 
and capabilities. A character is associated with a particular arc in a narrative, and can be 
performed by an actor.  

Although both the character and the actor could be virtual agents, the notion of an actor is not 
redundant in this context. An actor is a fixed entity for a given specific scenario, while characters 
can be dynamically created, modified and deleted, as they exist in the “minds” of actors. An actor 
may have a suit of characters and make selections among them depending on the situation. In this 
context, “character” is a synonym of “role”. For actors, characters replace goals and 
commitments, while being richer and more powerful constructs. Playing a certain character 
means more than pursuing a certain goal. Typically it involves an evolution of the character’s 
goal(s). This notion of a character is further illustrated using a set of example scenarios in 
Section 5. 

The primary distinction to be made between the present work and related works is that this 
work proposes to use characters as specifically defined narrative structures (distinct from goals 
and actors) to assist GR in complex scenarios (e.g., involving multiple actors and characters). 
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3.  Local decomposition of team-GR using CR: An intuitive preamble 
As the name suggests, character reasoning involves the concepts of a character and a character 
arc. As mentioned in Section 1, we distinguish characters from actors, which is not the case in 
NTP. A character in CR is an abstraction: it is a virtual rational agent with its own goals, 
motives, senses, affordances, knowledge, and recent history. In general, there is no 1-1 
correspondence between actors and characters in CR. One actor can play multiple characters in a 
sequence, and in certain cases in parallel. The purpose of introducing characters in CR is to 
decompose the global team-level GR into local, single-character GR. This decomposition 
involves two steps: (1) separation of the global GR task into two stages (in the first of which 
characters and prototype character arcs are selected that will form the narrative), and (2) 
decomposition of the second stage (which maps characters to actors and further specifies 
character arc details) into individual-character GR tasks (Figure 1). Therefore, in this character-
oriented version of GR, the notion of a character is central and includes the notion of a goal.  

To illustrate how CR works, we extend our example air combat scenario. Two types of 
characters can be identified in our example: one, a “deserter”, who escapes the fight without 
deploying any assets, and another, a “hero”, who keeps the enemy engaged. These characters are 
believable (they act according to their goals and motives), yet their goals, motives, and strategies 
differ. Once defined as a part of the narrative, these two character types essentially determine the 
team’s strategy (we assume that this decision is made independently by both pilots at the 
beginning). Yet, the character mapping to actors may not be decided immediately, is ambiguous, 
and may change over time. If all combat vehicles are identical and the pilots have similar 
expertise, then the choice should be determined by their relative positions. In the absence of a 
central command, team-level GR is performed independently by each actor, who must decide 
which character to play. The choice of each actor should be consistent with the team, and may 
need to be corrected based on observations of the partner’s behavior or communications. For 
example, if you are an actor in the team, then upon noticing that your partner’s behavior is 
inconsistent with your character choice, you can adjust your choice or communicate with your 
partner (i.e., to convince them to change their character choice). Once the mapping of characters 
to actors is decided by the team, each actor assumes the goal, motives, etc. of the selected 
character, and starts planning and acting based on this choice, possibly while keeping only 
marginal awareness of the rest of the team. In other words, the task becomes locally decomposed. 

Both stages of CR in our example are executed locally. Stage-1 CR is performed by each 
actor independently in parallel, producing the same result (deciding that the two character types 
will determine the narrative: suppose that actors produce the same set of character types). Stage 2 
involves local communications (Figure 1). This stage may recur during actor-level plan 
execution. Indeed, imagine that at a certain point swapping the characters becomes advantageous 
for the team (e.g., if both enemies follow the deserter). Character swapping can be performed 
using a global team-level GR. However, it can also be done using local communications, if we 
add the “swapping affordance” as a special privileged action to the deserter’s repertoire (instantly 
switch positions with the partner). When feasible, this action should also transfer the character’s 
current plan and recent memory from one actor to another. This will allow each character to 
preserve continuity, while reasoning locally (we consider the jump as a local action). In either 
case, the task remains decomposed at all times.  
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Figure 1. A general decomposition scheme of the team-level GR problem using character reasoning for the 
N-aircraft example. Each CRi is an individual-character GR process, including the mapping of the character 
to an actor. Horizontal arrows show local communications, possibly including the swapping of characters. 

The practical difference between CR and NTP in this example may be small, given that the 
number 𝑁 of aircraft is 2, but it could be noticeable when 𝑁 is large. For example, suppose there 
must be 𝑀 deserters and 𝑁 −𝑀 heroes, where 𝑀~𝑁

2
≫ 1. Then the number of choices  

 �𝑁𝑀� = 𝑁!
𝑀!(𝑁−𝑀)!

       
grows superexponentially with 𝑁, and could become too large to explore in real time using NTP. 
In contrast, if using CR all choices can be made locally in parallel. While there is some tradeoff 
(communications among team members are required), this does not necessarily assume all-to-all 
individual communications. For example, suppose that a nearly random mapping of character 
types to actors is accepted by the team initially, when each actor decides independently which 
character to play based on his local surrounding, and broadcasts his choice to the team. Then, 
further optimization of the mapping can be obtained using local character swapping. As a result, 
the team can be expected to produce nearly optimal behaviors for large 𝑁 using CR. This 
illustrates a primary distinction of CR and NTP, and applies to other examples. 

4.  General conceptual basis and the CR formalism 
In this section we define CR and its main building blocks formally. We start from a top structure 
that we call a hierarchical narrative network (HNN), related to the notion of a narrative network 
(Pentland & Feldman, 2007), which is defined as the tuple: 

HNN = <S, E, C, A, P>,              (Eq. 1) 

where S is a set of nodes, E is a set of directed edges, C is a set of characters, A is a set of 
character arcs, and P is a set of performing actors. Now we will explain these elements 
intuitively. An HNN includes a graph with a set of nodes S and a set of directed edges E. Here 
nodes represent actual and possible states (see the definition of a state below in this section) and 
fragments (i.e., fragments of the graph), and edges represent causal and temporal relations among 
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nodes, inducing a partial order. Possible states, relations and rules of dynamics are given by the 
domain theory: a knowledge base that is assumed given, yet is not explicitly included in (Eq. 1). 
The network is hierarchical, because some of its nodes represent fragments of the same network. 
Fragments can be collapsed into nodes, and nodes can be expanded into fragments, as necessary. 

In addition to S and E, an HNN (Eq. 1) includes a set of characters C={cj}, a set of possible 
character arcs A={Aj}, and the set of performing actors P = {Pi}. Our intuitive notion of a 
character was introduced in Section 2. Technically, a character c is represented by a tuple 

c = < p, m, A >,               (Eq. 2) 

in which the character is given by the perspective p, motives m, and the arc A. Now we shall 
explain these terms. The perspective p represents the current character’s viewpoint, including 
senses of “now” and “here”, “self” and “others” (own identity), as well as any specific features 
and capabilities, and other contextual variables determined by embodiment (i.e., the performing 
actor Pi). The set of character’s motives m includes drives, values, and top-level guidance, that 
determine the selection of goals and intentions and usually do not change their nature within a 
character arc. A character arch was defined intuitively in Section 2. Formally, the character arc A 
is a set of character’s attitudes {ai}, such as beliefs, goals, intentions, memories, percepts and 
affordances, taken as functions of time. In general, a character c’s attitudes are formed from states 
by attributing them to the character together with a certain modifier, e.g.: 

c.does(s0), c.intends(s1), c.ignored(s2),  
c.achieved(s3), c.saw(s4), c.committed(s5). 

A character in an HNN is not committed to a particular arc or actor, and therefore may not 
have a unique perspective. However, each character c in a given narrative is committed to an arc 
A and to an actor p (the embodiment of c). In the spirit of Abell’s formalism (2009; 2011), we 
define a fabula as any part of an HNN written as the tuple (Eq. 1) that is internally closed (i.e., all 
intentions and actions are motivated and placed into arcs), consistent, and includes exactly one arc 
per character. Here “motivated” means that character intentions can be explained by, or derived 
from character motives. Also, a mapping of performing actors to characters needs to be specified 
in the fabula. Then, we define the sjuzet to be the arc corresponding to the storyteller (usually the 
protagonist or the author; in our case of interest it is the character of the reasoning actor). 

We define a state s ∈ S to be a class of possible physical states of the world, such that a 
particular given fact applies to all those and only those physical states of the world. For example, 
a state can corresponds to a specified place and/or a moment or an interval in time, and/or can 
represent a particular object that is present there, or an event, a condition, a feature or property, 
etc., and any collection of them. States are therefore not necessarily mutually exclusive: for 
example, there may be more than one actual current state represented in the actor’s working 
memory. Fractions and unions of states are themselves states. Therefore, states can be added and 
subtracted as sets. Controlled actions and processes are also states. Due to the hierarchical nature 
of HNNs, HNN fragments are also states, when represented by nodes. When a state is included in 
a narrative, it allows characters to form attitudes based on this state. 

Finally, we define the term Character Reasoner as a system that implements the formalism 
described in Equations 1 and 2, and operates on an HNN, producing characters, character arcs, 
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and a narrative. The architecture of a Character Reasoner is shown in Figure 2. In our case, the 
Character Reasoner is the author, the storyteller and the actor at the same time (e.g., the sjuzet is 
presented from the perspective of its character). The general CR procedure is outlined below 
(here we assume that the set of performing actors P and the domain theory D are given).  
 
The CR procedure: 

(1) Start with populating/updating HNN states and relations, using the available input and 
referring to the domain theory.  

(2) Formulate relevant possible characters. Select characters that will determine a narrative. 
(3) Generate possible expected character arcs for selected characters.  
(4) Combine the arcs into a set of possible narratives (fabula).  
(5) Evaluate and compare generated narratives, select the working narrative.  
(6) Map characters in the working narrative to actors. 
(7) Generate a sjuzet with the selected character(s) as the storyteller(s). 
(8) Use the sjuzet to plan and execute the task at the actor level. 

In a team, the outcomes of (2), (5), and (6) should be confirmed by partners (either explicitly, via 
communications, or implicitly, by observable behavior). Conflicts need to be resolved before plan 
execution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. General architecture of a Character Reasoner that is also an actor. 
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5.  Analysis of examples  
To assess the scope and benefits of our formalism, we consider the following examples at a more 
detailed level, each formulated in a virtual environment, allowing for their future computer 
simulations that will be presented elsewhere. We start with the example already used above. 

5.1  Air combat (one possible scenario) 

Initial situation: the Blue team consisting of two fighter jets, Snake1 and Snake2, are patrolling a 
political border. The Red team (bandits), consisting of two enemy aircrafts, has just crossed the 
border. Each aircraft carries two long-range missiles (we assume that no other weapons are used). 
The bandits fly close to each other, while Snake1 and Snake2 fly at a distance from each other. 
Commanding officer informed Snake1 and Snake2 that two bandits crossed the border and need 
to be eliminated. The initial distance between the two teams is beyond the radar / missile range. 

Original working narrative: 
T1. Bandits search for Blue aircraft using their radars. 
T2. Snake1 and Snake2 search for bandits using their radars. 
T3. Snake2 detects Red radars and communicates to Snake1. 
T4. Snake1 detects Red radars and communicates to Snake2. 
T5. Snake1 and Snake2 triangulate Red coordinates. 
T6. Bandits detect Blue radars. 
T7. Snake2 snoozes the radar. 
T8. Snake1 activates a radar jammer. 
T9. Bandits activate jammers. 
T10. Bandits turn to pursue Snake1 but cannot achieve a missile shot. 
T11. Snake2 fires two long-range missiles at bandits. 
T12. One of the two bandits is destroyed. 
T13. Snake2 illuminates the remaining bandit with a radar, as a distraction. 
T14. The bandit pursues Snake2. 
T15. Snake1 takes a shot at the remaining bandit. 
T16. The bandit is destroyed. 

Working narrative altered at T10, no character-actor separation: 
T10.1. The blue team receives request for help at a distant location. 
T11.1. Snake 2 is set to be the defector, and Snake1 is set to be the hero. 
T12.1. Bandits turn to pursue Snake2. 
T13.1. Snake1 fires two missiles at bandits. 
T14.1. Bandits fire one missile each at Snake2. 
T15.1. One of the bandits is destroyed. 
T16.1. Snake2 is destroyed. 
T17.1. Bandits fire one missile each at Snake1. 
T18.1. Snake1 is destroyed. 

Working narrative altered at T10 with character-actor separation (character swapping allowed): 
T10.2. Snake 2 is set to be a defector, Snake1 is set to be a hero. 
T11.2=T12.1. Bandits turn to pursue Snake2. 
T12.2. Snake1 and Snake2 swap their characters. Snake1 proceeds to escape. 
T13.2=T11. Snake2 fires two long-range missiles at bandits. 
T14.2=T12. One of the two bandits is destroyed. 
T15.2=T13. Snake2 illuminates the remaining bandit using the radar. 
T16.2=T14. The bandit fires two missiles at Snake2. 
T17.2. Snake 2 is destroyed, Snake1 is beyond the radar detection range. 
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5.2  Fruit collection 

Two humanoid robots need to collect fruit (apples and oranges) scattered in equal numbers in a 
square room, placing them separately in two baskets (sorting fruits after collection is not 
allowed). Each robot can collect fruit with both hands, carry one basket and collect fruit with one 
hand, or carry two baskets. One of the robots is weak and unable to carry a heavy basket. A 
challenging situation occurs when this condition is discovered in the middle of task execution. 
The expected solution involves two characters: a basket carrier and a fruit collector. 

Following the CR procedure, the actors will formulate several potentially useful characters: a 
basket carrier, a fruit collector (with a basket), and a fruit collector without a basket who will use 
both hands to collect fruit. The HNN will include the following states. 

State S1: The room contains two robots, two baskets, and 
scattered apples and oranges. 

State G1: All apples are in one basket. 
State G2: All oranges are in one basket. 
Goal = G1 and G2. 

Then, among the generated narratives will be the following: 
Narrative 1: S1 → (Arc1, Arc2) → Goal 

Character1: Apple collector. Performer: Robot1.  
Arc1: Goal=G1. Pick a basket, collect all apples. Reach G1. 
Character2: Orange collector. Performer: Robot2.  
Arc2: Goal=G2. Pick a basket, collect all oranges. Reach G2. 

Narrative 2: State1 → (Arc3, Arc4) → Goal 
Character3: Basket carrier. Goal=G1 & G2. Performer: Robot1. 
Arc3: Pick baskets, follow the partner, carry baskets and 

ensure that each type of fruit is separated. Reach Goal. 
Character4: Fruit collector without a basket. Goal=G1 and G2. 
Performer: Robot2.  
Arc4: Collect apples and oranges, placing them separately in 

baskets carried by the partner. Reach Goal. 

Narrative 1 is potentially more efficient than Narrative 2, and the actors can infer this from 
simulations. Indeed, suppose that each type of fruit is uniformly distributed in one of the two 
equal halves of the square environment, and the distributions do not overlap. Then Narrative 2 
may take approximately twice the time required by Narrative 1. However, Narrative 1 cannot be 
continued when the weak robot has a heavy basket in its hands. When this condition is not known 
a priori and is discovered in the middle of task execution, CR in the weak actor will be triggered, 
resulting in its switching to Narrative 2. When the partner observes the weak robot approaching 
empty handed, it will put its behavior in the context of the two narratives, and will find the 
observed behavior consistent with Narrative 2, not with Narrative 1. Therefore, the robot-partner 
will infer that its partner decided to switch to Narrative 2, and will accept the new choice, even if 
the reason is not understood (the information about weakness may not be available to the partner). 
This example also illustrates how the global team GR is decomposed into local CR. 
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5.3  Bucket brigade 

A firefighting team is distributed in a building affected by fire (Figure 3) where they have limited 
mobility. Because of the fire and building damage, actors are confined in local domains (rooms) 
and cannot easily cross obstacles separating them, but can pass buckets of water to each other 
through holes in the obstacles. Their task is to deliver water from the source to the fire sites, 
returning empty buckets back to the source of water. However, the actors cannot use verbal 
communications due to noise. Only simple gestures can be used to send two possible messages:  
(a) “do not send water here”, (b) “send (more) water here”. Messages can be sent to nearest 
neighbors only. The first message (a) is sent when a full bucket should be returned. It may 
indicate that all fires in that direction are extinguished, or that access to them is blocked. The 
second message (b) is initiated whenever a new fire is detected, and is transmitted along the chain 
toward a water source.  

The team uses a fixed, small number of buckets. All buckets look distinct from each other and 
can be identified by their unique color. Actors have perfect episodic memory. In particular, they 
remember: which buckets they have passed and received; when, to/from whom, and in what 
condition; and when, from whom and in what number did the water requests come. Actors do not 
know the entire floor plan and the locations of fires, but remember how they got to their locations 
from the entrance (which is also the location of the water source; see Figure 3). Therefore, each 
actor knows where to send requests for water.  
 
 
 
 
 
 
 
 
Figure 3. Floor plan of a building under fire with actors {A, B, C} and fires F1-F3. The water source is at 
the building’s entrance. Dotted lines show possible routes of buckets and messages. The red dashed line 
shows the long path of the bucket given by A to B, after F1 was extinguished: B passes the bucket toward 
F1, but the bucket returns full, then it follows through B to F3 (cannot reach F2), back empty to B and to A. 

 
Imagine the following scenario (Figure 3). At the beginning, requests for water arrive from 

F1, F2, and F3. Given that A received two requests from B and one from C, he will send twice as 
many buckets to B than to C. When F1 is extinguished, the cancellation message (a) will not 
reach A, because B will not pass the full bucket back to A: instead, he will pass it toward the 
remaining active fire F3. However, if A tracks individual buckets, then he will notice that it took 
an unusually long time for a bucket to return empty. Then A will interpret this event by 
simulating the bucket as a character, who returned from an extinguished fire and went to the other 
fire (A knows that there were two fires served by B and one served by C). This will explain the 
time increase. Therefore, A will start sending less water to B. In contrast, in a simple-minded 
approach without bucket tracking and without CR, A will not have a reason to change behavior. 
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5.4  Discreet pursuit 

This scenario relates to the times when widespread surveillance was not in use. Suppose that a 
team of secret agents (actors), dressed like ordinary pedestrians, are monitoring a suspect in a 
city. Their goal is to watch the suspect continuously from a distance not exceeding the range of 
visibility (e.g., one block), in order to identify a secret location in the city, toward which the 
suspect is presumably heading. At the same time, their trajectories should be “believable” (not 
causing suspicion) from the suspect’s perspective. We also assume actors immediately see and 
recognize each other (or the suspect) within the range of visibility. They use wireless 
communication to broadcast messages to the team (e.g., a suspect’s coordinates). The suspect 
does not know the secret agents. His goal is to reach a secret location in the city without being 
followed, and he suspects that he might be followed. Therefore, he will change his direction 
randomly several times, and will not proceed to his destination if he observes that somebody 
followed his random turns without an obvious reason. In the initial state, one actor follows the 
suspect, while others are located nearby but outside of range. What strategy should the team use? 

A CR solution can be formulated using three character types: a pedestrian, a shadow, and a 
double. A pedestrian trajectory should be directed toward some location in the city (this location 
may remain ambiguous, but should not change inconsistently or improbably) and should not 
follow the suspect for too long. The shadow (only one) stays within the range from the suspect. A 
double follows the suspect outside of the range (on a parallel street) based on broadcasts. The 
actor who follows the suspect plays the shadow and a pedestrian at the same time; other actors 
play doubles. The current shadow continues following the suspect until the two characters come 
into conflict with each other (e.g., when the suspect makes a random turn). At this moment, the 
actor transfers the shadow character to a double, and continues playing a pedestrian. It would be 
difficult to formulate a solution so concisely without using CR. 

5.5  Black box recovery 

The following scenario illustrates that CR can be useful not only in a team, but also in isolation. 
The actor is an unmanned underwater vehicle (UUV) that autonomously performs a task of search 
of a dead UUV. Upon locating it, the actor will go to the surface and communicate the location of 
the detected UUV to the operator (this operation takes some time). This task requires exploration 
of a large area of the seabed. The actor has already searched exhaustively one half of it, area A. 
The other half, area B, remains unexplored. At this point, the actor receives new information from 
its human operator: a plane has crashed somewhere in the same area. The black box (BB) will 
continue to emit signals for a month, and locating it is very important. Recovery of the UUV is 
equally important, but there is no short deadline associated with it. The two search tasks conflict 
with each other. A search for BB involves listening to a certain frequency of sound that can be 
heard at a greater distance compared to the distance of the UUV’s visibility. Therefore, an 
exhaustive BB-search can be performed faster, although it may not guarantee locating the UUV. 
The area A that is already searched for the UUV may contain BB. Assume that an exhaustive BB 
search of A and B will guarantee locating BB and will take up to 15+15 days. Similarly, assume 
that an exhaustive UUV search of B will guarantee locating the UUV and will also take 30 days. 
In responding to this situation, one approach could be to formulate possible goals and select one 
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of them. In this case, the choice of the first goal would be to search A and B for BB, until it is 
found and its coordinates are communicated to the operator. However, the order in which A and 
B are searched remains ambiguous. Also, with this approach, if a UUV is spotted by chance 
during the BB search, it would be irrelevant to the current goal and will have no effect. An 
alternative approach for the actor is to play two characters in parallel: one is active (searching for 
a BB) while the other is dormant (searching for the UUV). The dormant character will bias 
decision making, attention, and behavior in cases when the active character has no preference. 
Thus, the actor will start its BB search from Area B, and will remember the location of a detected 
UUV to communicate it later (its immediate surfacing will disrupt the BB search). 

6.  Discussion 
We presented a model of a Character Reasoner, which is combined with an actor serving as a 
team member. This means that one and the same cognitive system implemented in a robot needs 
to perform reasoning at multiple levels (Figure 2): (i) the author level, reasoning for the team and 
producing a whole-team fabula; (ii) the storyteller level, translating the fabula into a sjuzet: the 
arc of one character that will guide GR and planning from the local perspective; and (iii) the actor 
level, at which the system performs GR and planning guided by the sjuzet associated with one 
selected character. We illustrated this scheme in use and its benefits in five scenarios (none of 
them were implemented computationally: this is left for a future publication). Their comparison 
and specific points are summarized in Table 1, that also presents a comparison of CR with NTP. 
We see, in particular, that local decomposition of team-GR based on CR is possible in all cases.  
 
Table 1. Comparison of the five scenarios.  *Asterisks mark features that are unavailable in NTP. 

 Sec.5.1 Sec. 5.2 Sec. 5.3 Sec. 5.4 Sec. 5.5 
Feature or characteristic Air 

combat 
Fruit 
collection 

Bucket 
brigade 

Discreet 
pursuit 

Black box 
recovery 

Team-GR decomposed into local actor-GR  ✔    
Team-GR decomposed into local CR* ✔ ✔ ✔ ✔ ✔ 
New characters designed in a new situation* ✔    ✔ 
Characters associated with inanimate objects   ✔   
Team or mission top goal selection ✔    ✔ 
Narrative switching given a new situation ✔ ✔ ✔  ✔ 
Character swapping during task execution* ✔ possible ✔ ✔  
Character’s top goal changes within an arc  ✔ ✔ ✔ ✔ 
Actor performs two characters in parallel*    ✔ ✔ 
Dormant character usage*     ✔ 

 
We used the analyzed abstract examples to illustrate benefits of CR, point by point. Thus, in 

Section 5.2 (fruit collectors), the case of switching from Narrative 1 to Narrative 2 addresses the 
core question: is this model adaptive to changing environments or changing conditions? Our 

178



ALEXEI V. SAMSONOVICH AND DAVID W. AHA 

analysis of the Character Reasoner model gives an answer, explaining how and when the 
switching will occur, and why a global team-level GR may not be required. The analysis in 
Section 5.3 briefly conveyed that applying CR to objects (in this case, buckets) may benefit team 
performance. Section 5.4 further illustrates the capabilities of CR as opposed to NTP; we explain 
how one actor can play two characters simultaneously and benefit from this strategy. Section 5.5 
extends this last point to a scenario involving only one actor in isolation, showing that the 
Character Reasoner model may be useful not only in teams or scenarios involving multi-agent 
interactions. Overall, CR is conceptually distinct from non-CR or non-narrative reasoning. It 
would be informative to compare them empirically using appropriate performance metrics; we 
expect that introducing  characters in GR could be beneficial in some scenarios, as suggested by 
our example scenarios. In this case, the CR method will find applications in various domains. One 
possible example is the virtual football, the state of the art in which does not involve CR or NTP 
(Nadarajah & Sundaraj, 2013). 

More generally, we would like our artificial actors to generate, understand and manage top-
level goals in unpredicted situations. This level of cognitive autonomy is vital in scenarios 
involving multiple actors operating in dynamic unpredictable environments, especially when 
communications are limited. Scenarios usually involve goal-directed behavior that needs to be 
planned. In classical planning, an actor pursues a fixed goal. However, in real-world situations 
goals often need to be reprioritized, altered, or modified (Vattam et al., 2013). Autonomy in this 
case means that actors can perform GR both locally and consistently with their team, which is the 
focus of the CR framework we presented. 

Young and his colleagues have described related work addressing GR in narrative generation 
(e.g., Riedl & Young 2010; Young et al., 2013). Their primary focus was to use automated 
planning to generate narratives and scripts for written or visual storytelling. Their developed NTP 
framework uses planning algorithms to produce desired narratives. As a result, the goals of 
individual characters are generated and managed during this process. Thus, planning can be used 
as a GR device to generate narratives. 

7.  Conclusions 
• This paper introduced CR, a conceptual GR framework that uses narrative techniques to control 

the multi-actor behavior in multi-character scenarios. It extends the state-of-the-art on GR 
research, which previously did not focus on scenarios and solutions of this type (see Klenk, 
Molineaux, & Aha, 2013; Vattam et al., 2013, Samsonovich, 2014).  

• Prior work related to this topic that has been studied in the literature on narrative intelligence 
has focused on planning (Riedl & Young, 2010; Young et al., 2013; Finlayson & Corman, 
2013) and as such, has limitations. We have argued that the potential relative benefits of CR 
include overcoming limitations of the NTP approach identified earlier (Riedl & Young, 
2010), and allowing a team of actors to use local GR instead of a global, team-level GR, 
thereby reducing the time and resources required for GR. 

• We illustrated CR using example scenarios of cooperative problem solving. While we did not 
present empirical or formal analytical proofs in support of our claims, the presented informal 
analysis of selected examples strongly suggests that this topic is worthy of further study. Our 
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informal analyses of these scenarios suggests that reasoning in terms of characters differs 
from reasoning in terms of actors or narratives (when characters are not distinguished from 
actors), and that this may yield practical benefits in these and related scenarios. Future work 
suggestions include empirical computational studies using the formalism introduced here 
applied to examples similar to the analyzed scenarios. 
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