
A Simulation Engine to Predict Multi-Agent Work

in Complex, Dynamic, Heterogeneous Systems

Amy R. Pritchett

School of Aerospace Engineering

Georgia Institute of Technology

Atlanta, Georgia 30332–0150

Email: amy.pritchett@ae.gatech.edu

H. Claus Christmann

School of Aerospace Engineering

Georgia Institute of Technology

Atlanta, Georgia 30332–0150

Email: hcc@gatech.edu

Matthew S. Bigelow

School of Aerospace Engineering

Georgia Institute of Technology

Atlanta, Georgia 30332–0150

Email: mattbig@gatech.edu

Abstract—This paper documents a simulation engine developed
to accurately and efficiently simulate work by multiple agents in
complex dynamic systems. Agents (human or mechanical) are
modeled as responding to, and changing, their environment by
executing the actions that get and set the value of resources in the
environment. Each action comprises the processes that need to
be evaluated at the same time by the same agent, which are used
to reference (get) resources, consider them according to simple
or complicated processes, and then interact back on the environ-
ment by setting resources appropriately. This paper specifically
addresses timing within the simulation. The simplest approach
would update all actions at the smallest unit of conceivable time,
an approach that is not only computationally inefficient, but also
not an accurate representation of situated behavior. Instead, every
action declares its next update time as required to accurately
model its internal dynamics and the simulation engine executes
them asynchronously. Thus, an action and the resources it ’gets’
from the environment are not inherently contemporary; instead,
each action also specifies, for each resource value that it gets,
the quality of service required in terms of its temporal currency.
This reflects dynamics of the real processes being simulated:
when, in actual operations, would the environment be sampled,
and how accurately must its state be known? Additionally, this
also reflects dynamics of environmental resources how often (or
how fast) does each inherently change? Using these constructs,
the list of actions to be simulated are sorted by the simulation
engine according to their next update time. Each action, when its
time comes, is given to their agent model to be executed, and then
is sorted back into the action list according to its self-reported
next update time. Thus, actions are each updated when they need
to be. In situations where, for example, action Y needs to get a
resource which, because action X has not set it recently, does not
meet action Ys required Quality of Service. The simulation engine
will invoke action X immediately before action Y, mimicking
cases in the real system where one process calls on another to
establish the conditions it needs. The presented simulation engine
is a complete redevelopment, designed and written from scratch
at the Cognitive Engineering Center at the Georgia Institute of
Technology.

I. INTRODUCTION

This paper describes simulating work in complex, het-

erogeneous dynamic systems that include humans, physical

systems, computer agents and regulatory requirements. We

define ‘work’ as ‘purposeful activity acting on, and responding

to, the environment.’ The purpose of this research is to

form computational models suitable for the description and

prediction of real, complex work domains in which situated

cognition is fundamental to performance. Thus, these models

are not directed at any specific theory of situated cognition,

but instead are driven by their engineering utility in supporting

analysis and design of complex, multi-agent systems.

Multi-agent simulation has been previously used for such

analysis [1], [2], [3]. However, these simulations modeled the

behavior of components. For example, air traffic simulations

created a model of an air traffic controller, of aircraft, and

of pilots; each component model described its behavior sepa-

rately such that components did not directly act on a shared

environment using shared constructs. In contrast, this paper

describes a simulation engine that enables detailed models

of the collective work (and interaction) of multiple agents

towards clear work goals. This work has inherent patterns and

structures as established by the physical environment and by

a procedural environment defined by established work prac-

tices, procedures and regulatory requirements. Any number

of agents may collectively perform the work; each may be

human or automated. In these models, cognition is assumed

to be embodied such that agent knowledge is represented

as the ability to perform the actions achieving the work

goals, without necessarily distinguishing between physical and

cognitive activities. At its most atomic, these simulations

represent work as actions that evaluate the current situation,

and then change environmental variables as appropriate. For

example, an air traffic controller scans a radar display (i.e.,

gets values from the environment), and then calls for changes

to aircraft headings to avoid conflicts (i.e. sets values in the

environment).

This paper specifically focuses on the insights provided

by simulating such models - and on the temporal constructs

required to adequately capture the timing and interplay of

actions situated in a model of the environment. The Cognitive

Engineering Center1 at Georgia Tech developed the simulation

engine described in this paper to address two requirements.

The first is computational time - it is easy to construct a

simulation with a run-time too long to estimate meaningful

statistics about real systems. The second requirement is that

the behaviors are not only represented correctly in a static

sense, but also that their temporal semantics are defined and

1http://www.cognitiveengineering.gatech.edu/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/77095195?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1. Schematic of an asynchronous simulation with resynchronization.
Each arrow represents the incremental next update time reported by each
model.

applied correctly: any model should update only at that time

where it would in the real system, as well as ensuring that

each model can have a contemporary view of environmental

resources as required.

This paper starts by reviewing prior simulations of complex,

dynamic systems such as air traffic control, noting how they

tended to focus on component models, rather than situated

behavior captured by a work model describing fluid interaction

between action and environment within a team of agents.

The work models and agent models are briefly reviewed

to illustrate how they provide the (static) representation of

situated cognition inherent in work models and agent models;

for fuller descriptions, see [4], [5]. Then, this paper describes a

simulation engine that enables asynchronous timing of actions

within the work model. Specific considerations are outlined

that ensure that actions act upon the environment at the times

needed for other actions to have sufficiently-contemporary

values. Finally, further timing constructs describing time in

models of resources and and agents are described.

II. BACKGROUND: SIMULATION OF COMPLEX, DYNAMIC,

HETEROGENEOUS SYSTEMS

Hybrid-system simulations have been described suitable to

examine systems comprising heterogeneous behaviors, i.e.,

behaviors best described as including both continuous-time

and discrete-event dynamics. Previous studies have highlighted

the range of behaviors that a hybrid-system simulation must

accurately model; for example, see [3] reviewing hybrid-

system simulation applied to examine air traffic control.

A simulation engine should capitalize upon those capa-

bilities shared by these disparate model forms: to update

themselves when required; to report when their next update

is required; and to report interactions with other objects that

warrant a joint update. All other dynamics can remain internal

to the models. This can be considered a feature, as it prevents

fundamental restrictions on the type of model allowed in the

simulation, and as such it allows for the simulation to model

those aspects of a complex, dynamic, heterogeneous system

at a range of resolutions as required by the task at hand.

Further, without placing undue restrictions on model forms, the

simulation engine also needs to support interactions between

models.

In large-scale simulations integrating multiple models of

disparate forms, concerns with computational efficiency extend

beyond making each model individually efficient. Overall

efficiency is achieved when each model updates only when

needed to accurately model its interior dynamics and interact

correctly with other models. Any unnecessary updates of

models may be considered wasted use of the processor. Thus,

the timing method that commands updates of each model is

a primary determinant of both computational efficiency and

accuracy in model interactions.

Several timing methods can be defined [3]. For example,

the ‘Synchronous Fixed Time-Step’ timing method updates all

models at the same time, with the time step externally fixed

through the simulation. This method is commonly used in

current flight simulation techniques, where the time step may

be fixed by conservative analysis of the fastest dynamics in the

system, or by the system clock in real-time simulation. This

method provides conservative results that can be guaranteed

to not miss any interactions between models. However, it

also forces all models to update at a rate governed by a

conservative, worst-case estimate of the fastest dynamics in

the system, which is computationally inefficient. Similarly, the

‘Synchronous Variable Time-Step’ timing method has all the

models update at the same time but varies the update time from

one time step to the next to meet the needs of the simulation.

For instance, the update time may be chosen by polling all

models for their desired time step, and then selecting the

worst-case (smallest) time step. This method still forces some

models to update more often than they would require when

running alone, but it can relax the time step when conditions

allow.

Of particular interest here, the timing method ‘Asynchronous

with Resynchronization’ allows for models to be updated

independently according to their own update times [3]. This

is shown schematically in Fig. 1 for a simulation with four

aircraft, a radar unit and a conflict detection algorithm; the

aircraft and radar update at their own rates until the conflict

detection algorithm requires synchronization. This method

allows models with fast dynamics to update frequently without

requiring other objects to be bound by such small time steps,

yet also resynchronizes the relevant models when interactions

require values from temporally co-located models.

The computational benefits of asynchronous timing methods

have been described previously in [3], and such simulations

have been used to analyze for emergent safety concerns in

new air traffic control concepts of operation [1], [2], [3].

However, to date these simulations modeled ‘components’

each as a separate model, an approach with several conceptual

and pragmatic limitations. First, the various component models

did not have a shared view of their collective work and did not

have shared work environment, except to the extent that they

passed information to each other during resynchronizations.

Second, they could not fluidly coordinate their responses to



the environment, such as collectively adopting new strategies

in response to emerging affordances. Third, changes in team

design or allocation of functions across the team required re-

programming the component models, rather than more-directly

re-assigning work models to different agents.

III. SIMULATION CONSTRUCTS TO MODEL WORK

In contrast to simulations of complex, dynamic, hetero-

geneous systems comprised of component models, this sim-

ulation focuses on the construct of ‘work’, modeled here

as actions responding to, and acting upon, a shared work

environment. The basic constructs used to model and simulate

work are detailed in [4], and may be summarized as:

The Environment is the aggregation of resources required

to describe the dynamics of the work. This may include

both physical and social/cultural/policy constructs. An agent

does work by sampling and changing the environment. The

environment may have some inherent dynamics within itself;

these dynamics are guided by the agents’ actions.

Each Resource represents a tangible state of the envi-

ronment, such as speed, altitude etc. The collective set of

resources represents the current state of the environment. A

resource may represent a physical aspect of the environment

with continuous dynamics, or may be a discrete value rep-

resenting a categorization of the state of the environment

or a policy decision such as specification of a particular

function allocation between agents within the team. In the

computational model, a resource also has data type, such as

double, int, or bool or, for resources best described by

multiple variables, its data type can be a structure or a vector.

Each Action is temporally and organizationally atomic in

that it represents work performed by one agent at the same

time. Actions sample the environment by ‘getting’ resources

and change the environment by ‘setting’ resources. Actions

represent the knowledge of ‘work’ and are represented in the

work model, but are not autonomous and may not execute

by themselves - instead, they are passed to agent models or,

for dynamics within the environment, a default executor of

actions.

A special class of actions, Decision Actions, respond to

the environment by selecting strategies based on contextual

factors (environmental, team design and within-agent). Their

decisions serve to ‘manage the work in response to the sit-

uationn’ by activating/deactivating actions, assigning actions

to agents, and identifying which resources an action gets and

sets during its functioning.

A simple example of two actions and two resources is

shown in Fig. 2. The action ‘updateSineWaveValue’ models

temporal dynamics that update a continuously-valued resource

‘sineWaveValue’; the decision action ‘checkSineWaveSign’

models a decision to be implemented when an environmental

resource affords it (in this case, when the sine wave changes

value), and sets the discrete resource ‘SineWaveSign’ accord-

ingly. These actions may be executed by different agents.

Even this simple model illustrates how interactions be-

tween actions can arise when they reference a shared set

Fig. 2. Two interacting actions and resources.

of environmental resources. Going even further, modeling

work in complex, heterogeneous dynamic systems generates

a vast number of actions and resources. This complexity is

inherent to the work, and requires both modelers and the

workers themselves to develop more aggregate abstractions

that describe the work according to inherent structures in the

work as it relates to the team’s goals. Therefore, actions can be

aggregated into progressively higher-level ‘functions’, building

on cognitive engineering models representing work, such as

the abstraction hierarchy established by work domain analysis

[6], [7].

IV. SIMULATING A WORK MODEL

Once a work structure is created, the simulation engine

translates it into the construct needed for efficient simulation: a

list of actions sorted according to their next update time. Fig. 3

illustrates such a translation as a work structure described

statically within an abstraction hierarchy is assembled into an

action list for dynamic simulation. Those actions which are

known to be ‘active’ at the start are listed at the top of the

action list in the order they are referenced when evaluating the

work structure. Ultimately, all actions in the work structure are

included in the action list, but if not ‘active’ at the start they

are given an unknown update time and, thus, placed at the

bottom of the action list.

Thus, once the entire work structure is parsed at the

start of a simulation run, the simulation starts advancing its

clock. Each action, when its time comes, is given to their

agent model to be executed. For example, in the figure the

decision action ‘Configuration of Control?’ from a higher-

level function in the work model sets configuration variables

that determine the strategies that will be selected at lower-

levels. Then, the decision action ‘How to Control Speed?’

assigns several actions to the agent Pilot and schedules the

decision action ‘Need to Set Autopilot Targets?’. Finally, once

all strategies have been selected by executing decision actions

within progressively-lower-level functions, the other actions

start to be invoked, such as the ‘Update Target Speed’ action

setting the resource ‘Target Airspeed’ to 200 knots. Once each

action has completed its process, it is sorted back into the

action list according to its self-reported next update time.



Fig. 3. Translating the work model into the action list used by the simulation engine (figure adapted from [8])

V. ACCURATELY TIMING ACTIONS DURING SIMULATIONS

OF WORK

Action models, to work within this simulation engine, need

to provide two methods: each action needs to do its ‘work’

when executed and, of note here, each action needs report

to the simulation engine when it next needs to be executed.

For models of physical dynamics, the next update time can

be determined by numerical methods (such as numerical

integration) as a factor of allowable computational error. For

models of intermittent dynamics, such as monitoring a varying

signal, the next update time is itself a model of monitoring and

sampling behaviors, which themselves may be an adaptation

to physical dynamics. For example, for a decision action

monitoring when an unpredictable signal crosses zero, the

next update time may be driven both by the precipitating

conditions in the environment and by the prescribed or self-

directed scanning intervals of the agent performing the action.

For example, consider the decision action

‘checkSineWaveSign’, which ‘gets’ the resource

‘SineWaveValue’ and ‘sets’ the resource ‘SineWaveSign’

to a discrete value: +1 if the sine wave is greater than zero

and to −1 if the sine wave is less than zero. Fig. 4 illustrates

its behavior through the simulation if it can declare a next

update time in a smart manner based on a perfect assessment

of the environment. In this case, mirroring more-realistic

models where the exact time of an event can’t be exactly

predicted, this decision action makes a worst case estimate of

its next update time to be the current value of the sine wave

divided by the maximum rate at which it can change. These

times are shown in green in Fig. 4; at each of these times the

decision is evaluated and the next update time is re-estimated.

As the potential time to the event of interest (in this case,

a zero crossing) becomes smaller, the decision action is

evaluated more often for precision; when the potential time to

the event of interest is larger, the decision action is delayed

accordingly for computational efficiency.

Calculation of a ‘next update time’ captures agent execution

of predictable or on-going behaviors. Additionally, actions that

represent unpredictable events can indicate other actions that

they immediately trigger. For example, an ‘air traffic controller

speed command’ action, which may come at an unpredictable

time, may be modeled as triggering the ‘set autopilot target

speed’ action immediately by the pilot agent. For actions

performed by humans, this capability is intended to describe

dependencies between actions where (1) the trigger is rare and

unpredictable from the point of view of the recipient and (2)

the trigger, in the real-world, would generate an interrupt so

salient as to disrupt their current activity.

The just-preceding example provided an illustration of how

an action may predict its required next update time based

on simple knowledge of the dynamics in the environment.

However, the example also assumed that the decision action

‘checkSineWaveSign’ has perfect, contemporary knowledge of

the environmental resource ‘sineWaveValue’. A fuller picture

of timing recognizes that this resource is itself set by the



0 2 4 6 8 10 12 14 16 18

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time t [s]

V
al

u
e

Decision on the Sign of a Value

 

 

True Wave
Used Value
Corresponding Decision
Scheduled Evaluation
Discretized Sign

Fig. 4. The action ‘checkSineWaveSign’ evaluates the resource ‘sineWaveValue’ to evaluate its sign, which is stored as +1 or -1 in the resource ‘sineWaveSign’.
By dynamically computing ∆t, update times focus on the region where the sinewave crosses zero, leading to increased precision while keeping the number
of evaluations low.

action ‘updateSineWaveValue’, which also occurs at discrete

times. As shown in Fig. 5 if the action ‘updateSineWaveValue’

updates only every 4.00 seconds, then the stored value of

the resource ‘sineWaveValue’ would not provide sufficient

resolution for any but the coarsest decisions as to when it

has crossed zero.

To ensure that each action has sufficiently-contemporary

assessments of the environment, additional constructs are also

included in the simulation’s models of actions and resources.

First, each update to a resource value is time-stamped as to

when it was last updated (this is annotated in the resource

blocks shown in Fig. 2). Second, each resource ‘knows’ which

action(s) can be called to update its value to the current time

when required (this linkage between resource and actions-that-

set-it can be dynamically changed through the course of the

simulation to reflect new strategies or courses of action in re-

sponse to context). Third, each action ‘knows’ which resources

it needs to ‘get’ as its assessment of the environment. With

this information, when an action (such as ‘checkSineWaveSign’

in this example) attempts to get a resource value that is ”too

old” (‘sineWaveValue’ in this example), the simulation engine

scans the aspects of the environment that the action needs and

calls on other actions to update resources accordingly (in this

example, if the stored value of ‘sineWaveValue’ is too old, the

simulation engine will call the action that can set its value to

the immediate time, ‘updateSineWaveValue’).

This effect is shown in Fig. 6 for the case where the

action ‘updateSineWaveValue’ declares for its internal pur-

poses a series of next update times (shown in green) that

does not provide the currency in the resource ‘sineWave-

Value’ needed by the other action, ‘checkSineWaveSign’. So,

when ‘checkSineWaveSign’ updates according to the next

update time calculation described earlier, the simulation engine

automatically first calls ‘updateSineWaveValue’ anytime the

resource ‘sineWaveValue’ is considered too old. The resulting

record of ‘sineWaveValue’ is shown in red, and provides the



J

0 2 4 6 8 10 12 14 16 18 20

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time t [s]

V
al

u
e

Sinusoidal Wave 0.8sin(2pt/13.0)

 

 

True Wave
Wave Evaluation
Scheduled Evaluation
Discretized Value

Fig. 5. Comparing the true value of a sine wave to a the value of the resource ‘sineWaveValue’ when action ‘updateSineWaveValue’ is called every 4.00s.

0 2 4 6 8 10 12 14 16 18

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time t [s]

V
al

u
e

Sinusoidal Wave 0.8sin(2pt/13.0)

 

 

True Wave
Wave Evaluation
Scheduled Evaluation
Discretized Value

Fig. 6. While the action ‘updateSineWaveValue’ schedules itself for evaluation every 4.00s, the action ‘checkSineWaveSign’ needs its outcome to be reflected
in the resource ‘sineWaveValue’ at additional times. The simulation engine recognizes this need and calls for ‘updateSineWaveValue’ to execute when needed
by other actions.



temporal resolution required by all the actions that sample it.

To further improve computational efficiency, each action

can also define a maximum ‘age’ for each of the resource

values that it samples (gets) from the environment. If this

maximum age is set to ‘zero,’ then the actions setting these

resources will be invoked. However, it is often more realistic

to set this maximum age to model the temporal variance in the

environment. For example, a pilot’s decisions when controlling

an aircraft are based on a range of information sampled via

a scan pattern potentially lasting several seconds; thus, it is

inaccurate based their decision on an assessment of the envi-

ronment where every resource value is exactly contemporary.

Thus, temporal variance in the simulation can serve as a

surrogate for temporal variance in the real work. In addition,

where it is conceptually appropriate to specify such maximum

‘ages,’ profound improvements in computational efficiency can

be achieved, as every update to an action that interacts with

another (through their ‘get’ and ‘set’ relationships to a resource

value) will no longer always trigger updates of the other.

In complex work models, calling of ‘Action A’ may identify

an interaction with ‘Action B,’ which may have an interaction

with ‘Action C,’ and so on. Thus, the simulation engine

assembles the list of action-dependencies required to estab-

lish immediate values in required resources. These heuristics

prevent circular-dependencies within this list:

1) An action may not trigger an interaction with itself, even

when it ‘gets’ and evaluates a resource that it then ‘sets’.

2) Any action that does not require other actions to update

(due to its aspects of the environment being sufficiently

current) is immediately executed, so that it can establish

current resource values needed by other actions.

3) Any action that is earlier in the list of action-

dependencies cannot identify actions already in the list

after its earlier listing.

Consider, for example, the case where the simulation ad-

vances to the next update time of Action A and finds that

Action A requires Actions B and C to be updated and a

temporary list of action-dependencies at that point contains

C-B-A. Action B is evaluated next and is found to invoke no

dependencies; it is immediately executed, leaving the list of

action-dependencies to be C-A. Action C is then evaluated

and is found to invoke Action D (list of action-dependencies

is enlarged to D-C-A), and finally Action D is evaluated and

is found to circularly invoke Action A (the list of action-

dependencies becomes A-D-C-A). At that point, the simulation

engine recognizes that no further evaluation is required as

the dependencies of A either have been resolved (the case of

Action B) or will be resolved by the end of the execution of the

list. The actions are executed in the order A, D, C and finally

A again; the double-execution of ‘A’ illustrates resolution of

a circular dependency.

Using these constructs, each action is completed the instant

it is called. An action can be listed as having a duration for the

sake of tracing what ‘work’ was happening in the environment

at each point in time. However, the notion of an action having

a duration does not change the dynamics of the simulation.

VI. OTHER TIMING PARAMETERS

The previous section described the timing parameters de-

scribing actions, and how they are used by the simulation

engine to propagate time forward. This section describes

additional timing parameters considered by the simulation

engine that describe aspects of resources and of the agent

models.

A. Time Parameters in Resources

When an action sets a resource value, a specified ‘setting

delay’ defines how long from current time until the new value

will be listed in the resource. This replicates, for example,

inertia in a resource or delay between an initiating action and

its conclusion. For example, when an aircraft landing gear is

deployed it simply takes time before the locks engage and

the landing gear is truly “down.” This is implemented in the

simulation engine by a dynamic record of ‘future updates’

within a resource that will be invoked once the simulation

clock catches up to them.

‘Resource unavailability’ is defined by two parameters

marking the start and end times during which a resource is

“not available.” This construct can be used by actions whose

dynamics may be driven by resource availability. For example,

in communications between pilots and air traffic controllers,

the voice frequency can be listed as ‘unavailable’ for another to

‘speak’ on (set) during the duration of a voice communication

initiated previously. The construct of (non-)availability is not

absolute, however; continuing the example, a high priority

voice communication may interrupt a lower priority one.

B. Timing in Representing Agent Behavior

While the knowledge needed to conduct the work is de-

scribed in a work model external to any agent model, during

simulations agents serve as the executers of actions. The

default perfect agent model executes actions exactly and

immediately; where appropriate, the simulation engine can

also accommodate the addition of agent behavior as applied

to all actions. This is similar to Laughery and Corkers concept

of ‘first-principle modeling of human-performance’ in which

the same aspects of human performance are applied by the

simulation framework to all tasks to which they are assigned

[9]. These extensions are discussed in more detail in [5], [8].

Of interest here are the timing dynamics which an agent

model can add to the execution of actions. For example, an

agent may add a simple ‘execution delay’ which postpones the

execution of its actions; this delay may be fixed or vary with

workload or number of resources that the action gets and/or

sets. Likewise, an action may be listed as having a duration

during which it ‘occupies’ an agent and the number of actions

currently ‘occupying’ the agent can be recorded and traced:

when a new action is commanded it is added to this list and an

action whose completion time has passed is dropped. Further

examining this list of active actions, if the effective taskload

‘requirement’ of each is parameterized, the taskload of actions

active within the agent can be summed, recorded and traced,

with potential workload limits or saturation events flagged.



VII. CONCLUSION

The objective of this work, as noted in the introduction,

is to simulate (and thereby predict) the behavior of real,

complex, heterogeneous systems involving teams of agents in

which situated cognition is fundamental to performance. In

contrast to previous multi-agent approaches in which behavior

and knowledge was encapsulated within agent and component

models, this paper describes detailed models of the collective

work (and interaction) of multiple agents towards clear work

goals in which the work has inherent patterns and structures

as established by the physical environment and by a proce-

dural environment as defined by established work practices,

procedures and regulatory requirements. At its most atomic,

these simulations represent work as actions that evaluate the

current situation, and then change environmental resources.

Any number of agents may perform the work, with agent

knowledge represented as the ability to perform the actions

assigned them from the work model, perhaps ‘managing’ their

actions in the face of excessive taskload and interruptions.

Thus, these models are not intended to validate any specific

theory of situated cognition, but instead are driven by their

engineering utility in supporting analysis and design of com-

plex, multi-agent systems. Given the emphasis on dynamic

simulation here, a unique aspect of this newly developed

simulation engine is the explicit representation of time. Each

action must be able to report its next update time. For actions

describing work on and within the environment, this captures

the natural frequency of the environmental dynamics; for

actions describing teamwork, this mirrors the triggers and

timing of inter-agent communication and coordination; and for

decision actions selecting strategies, this mirrors the dynamics

of affordances in the environment, the agent’s attention to these

dynamics, and the required precision in timing.

In models where work involves intricate responses to

changes in the environment, the next-update-time declaration

represents an interesting component of situated behavior. A

perfectly-timed decision occurs at the instant the context

changes. However, this presents two problems: first, com-

putationally, in a simulation of multiple actions being per-

formed asynchronously, such an exactly-contemporary deci-

sion requires synchronous updates of context and decisions

at very fine time intervals, driving up computational load;

second, conceptually, in real multi-agent complex systems

such decisions are rarely perfectly timed, instead often being

based on predictions of when context may change, and thus

have some inherent dynamics. Thus, the next-update-time

of a decision action is often well-modeled as a prediction,

based on attributes of the work environment, of when the

relevant contextual changes will occur. This prediction may be

conservative (based on a worst-case estimate) or not, as reflects

the trade-off between catching a contextual change quickly and

requiring repeated interpretation of context. This provides a

representation of the temporal aspects of situated cognition by

modeling the triggering of decision actions based on properties

of the environment (assuming the agent’s sampling behavior

is accommodated to these properties), as a timing aspect of

attention to the affordances of the environment.

Similarly, a novel aspect of the simulation engine described

in this paper examines the temporal relationships between

actions created when one sets the value of an environmental

resource at one time which another then samples (‘gets’) at

a later time. In large models, these interactions can involve

many actions at any particular time. If a ‘getting’ action re-

quires exact, instantaneous knowledge of the resource’s value,

then the simulation engine will automatically command the

‘setting’ action first to establish a temporally-correct view of

the environment. In addition, this simulation engine allows the

modeler to specify the maximum allowable age of the resource

value when assessed by an action beyond which it will be

automatically updated; this provides another mechanism for

increasing the fidelity of the temporal descriptions of actions’

relationships to resources, as well as enabling computational

efficiency.

Further timing constructs noted here allow for delays be-

tween the initiation of an action and when the values of

environmental resources are changed, as well as noting times

that an action makes a resource unavailable to other actions.

Likewise, agent models may add their own temporal dynamics

to actions, such as delays, and may need constructs such as

the duration for which they are occupied with an action to

enable models of their taskload and task management.

VIII. ACKNOWLEDGMENTS

The models and simulation framework discussed here have

been developed through the support of the NASA Aviation

Safety Program’s Intelligent, Integrated Flight Deck project,

under the technical supervision of Michael Feary and Paul

Schutte.

REFERENCES

[1] A. P. Shah and A. R. Pritchett, Lecture Note in Computer Science. Berlin:
Springer, 2005, ch. Environment Analysis: Environment Centric Multi-
Agent Simulation for Design of Socio-Technical Systems, pp. 65–77.

[2] S. M. Lee, A. R. Pritchett, and K. M. Corker, “Evaluating transforma-
tions of the air transportation system through agent-based modeling and
simulation,” in 7th FAA/Eurocontrol Seminar on Air Traffic Management

Research and Development, 2007.
[3] A. R. Pritchett, S. M. Lee, and D. Goldsman, “Hybrid-system simulation

for national airspace system safety analysis,” Journal of Aircraft, vol. 38,
no. 5, pp. 835–840, 2001.

[4] A. R. Pritchett, S. Y. Kim, S. K. Kannan, and K. M. Feigh, “Simulating
situated work,” in 2011 IEEE Conference on Cognitive Methods in

Situation Awareness and Decision Support (CogSIMA), Submitted.
[5] A. R. Pritchett and K. M. Feigh, “Simulating first-principles models of

situated human performance,” in 2011 IEEE Conference on Cognitive

Methods in Situation Awareness and Decision Support (CogSIMA), Sub-
mitted.

[6] K. Vicente, Cognitive work analysis: Toward safe, productive, and healthy

computer-based work. Lawrence Erlbaum Associates Mahwah, NJ, 1999.
[7] E. Roth, Handbook of Cognitive Engineering. Oxford University Press,

2011, ch. Cognitive Work Analysis.
[8] A. R. Pritchett, Handbook of Cognitive Engineering. Oxford University

Press, 2011, ch. Computer Simulation of Aviation Safety.
[9] K. Laughery Jr and K. Corker, Computer modeling and simulation of

human/system performance, 2nd ed. New York: Wiley, 1997, pp. 1375–
1408.


