Dynodroid: An Input Generation System for Android Apps

Aravind MacHiry

Rohan Tahiliani

Mayur Naik

Georgia Institute of Technology
{amachiry, rohan_tahil, naik}@gatech.edu

ABSTRACT

We present a system Dynodroid for generating relevant in-
puts to unmodified Android apps. Dynodroid views an app
as an event-driven program that interacts with its environ-
ment by means of a sequence of events through the Android
framework. By instrumenting the framework once and for
all, Dynodroid monitors the reaction of an app upon each
event in a lightweight manner, using it to guide the gener-
ation of the next event to the app. Dynodroid also allows
interleaving events from machines, which are better at gen-
erating a large number of simple inputs, with events from
humans, who are better at providing intelligent inputs.

We evaluated Dynodroid on 50 open-source Android apps,
and compared it with two prevalent approaches: users man-
ually exercising apps, and Monkey, a popular fuzzing tool.
Dynodroid, humans, and Monkey covered 55%, 60%, and
53%, respectively, of each app’s Java source code on aver-
age. Monkey took 20X more events on average than Dyno-
droid. Dynodroid also found 9 bugs in 7 of the 50 apps, and
6 bugs in 5 of the top 1,000 free apps on Google Play.

1. INTRODUCTION

Mobile apps—programs that run on advanced mobile
devices such as smartphones and tablets—are becom-
ing increasingly prevalent. Unlike traditional enterprise
software, mobile apps serve a wide range of users in het-
erogeneous and demanding conditions. As a result, mo-
bile app developers, testers, marketplace auditors, and
ultimately end users can benefit greatly from what-if
analyses of mobile apps.

What-if analyses of programs are broadly classified
into static and dynamic. Static analyses are hindered
by features commonly used by mobile apps such as code
obfuscation, native libraries, and a complex SDK frame-
work. As a result, there is growing interest in dynamic
analyses of mobile apps (e.g., [2,13,14,26]). A key chal-
lenge to applying dynamic analysis ahead-of-time, how-
ever, is obtaining program inputs that adequately exer-
cise the program’s functionality.

We set out to build a system for generating inputs
to mobile apps on Android, the dominant mobile app
platform, and identified five key criteria that we felt

such a system must satisfy in order to be useful:

e Robust: Does the system handle real-world apps?

e Black-box: Does the system forgo the need for app
sources and the ability to decompile app binaries?

o Versatile: Is the system capable of exercising im-
portant app functionality?

e Automated: Does the system reduce manual effort?

e FEfficient: Does the system generate concise inputs,
i.e., avoid generating redundant inputs?

This paper presents a system Dynodroid that satisfies
the above criteria. Dynodroid views a mobile app as an
event-driven program that interacts with its environ-
ment by means of a sequence of events. The main prin-
ciple underlying Dynodroid is an observe-select-execute
cycle, in which it first observes which events are rele-
vant to the app in the current state, then selects one
of those events, and finally executes the selected event
to yield a new state in which it repeats this process.
This cycle is relatively straightforward for Ul events—
inputs delivered via the program’s user interface (UT)
such as a tap or a gesture on the device’s touchscreen.
In the observer stage, Dynodroid determines the layout
of widgets on the current screen and what kind of input
each widget expects. In the selector stage, Dynodroid
uses a novel randomized algorithm to select a widget
in a manner that penalizes frequently selected widgets
without starving any widget indefinitely. Finally, in the
executor stage, Dynodroid exercises the selected widget.

In practice, human intelligence may be needed for
exercising certain app functionality, in terms of gener-
ating both individual events (e.g., inputs to text boxes
that expect valid passwords) and sequences of events
(e.g., a strategy for winning a game). For this reason,
Dynodroid allows a user to observe an app reacting to
events as it generates them, and lets the user pause the
system’s event generation, manually generate arbitrary
events, and resume the system’s event generation. Our
overall system thereby combines the benefits of both
the automated and manual approaches.

We discussed how Dynodroid handles Ul events, but
significant functionality of mobile apps is controlled by
non-UI events we call system events, such as an incom-
ing SMS message, a request by another app for the de-
vice’s audio, or a notification of the device’s battery
power running low. Satisfying our five desirable criteria
in the presence of system events is challenging for two
reasons. First, the number of possible system events
is very large, and it is impractical to generate all pos-
sible permutations of those events. For instance, the
Gingerbread version of Android supports 108 different
broadcast receivers, each of which can send notifications
called intents to an app. Second, many system events
have structured data that must be constructed and dis-
patched correctly to the app alongside an intent. For
example, generating an incoming SMS message event
entails constructing and sending a suitable object of
class android.telephony.SmsMessage.

A distinctive aspect of mobile apps is that all such
apps, regardless of how diverse their functionality, are
written against a common framework that implements a
significant portion of the app’s functionality. Dynodroid
exploits this aspect pervasively in observing, selecting,
and executing system events, as we describe next.

Dynodroid addresses the problem of handling a very
large number of possible system events by using the
observation that in practice, a mobile app typically re-
acts to only a small fraction of them we call relevant
events. An event is relevant to an app if the app has
registered a listener for the event with the framework.
Determining when an app registers (or unregisters) a
listener for a system event does not require modifying
the app: it suffices to instrument the framework once
and for all. The observer monitors the app’s interac-
tion with the framework via this instrumentation, and
presents the selector only events that the app has reg-
istered to listen. Finally, the executor constructs any
data associated with the selected event and dispatches
it to the app. An important aspect of Dynodroid is that
it constructs this data organically. For instance, the lis-
tener for network connectivity change events expects
an object of class android.net.NetworkInfo describ-
ing the new status of the network interface. Simulating
this event in an Android emulator is delicate as Dyno-
droid cannot arbitrarily create such objects; it must
instead obtain them from a pool maintained by system
service android.net.ConnectivityManager. Finally,
whenever an event is executed, any previously relevant
event may become irrelevant and vice versa, for the next
observe-select-execute cycle.

We implemented Dynodroid for the Gingerbread ver-
sion of Android and applied it to 50 diverse, real-world,
open-source apps. We compared the performance of
Dynodroid in terms of each app’s Java source code cov-
erage to two prevalent approaches: one involving expert

Android users manually exercising these apps, and an-
other using Monkey [8], a popular fuzzing tool for An-
droid apps. Dynodroid, humans, and Monkey covered
55%, 60%, and 53% code, respectively, on average per
app. Dynodroid was able to cover 83% of the code cov-
ered by humans per app on average, demonstrating its
ability to automate testing. Also, Dynodroid achieved
peak coverage faster than Monkey, with Monkey requir-
ing 20X more events on average, showing the effective-
ness of our randomized event selection algorithm. Fi-
nally, Dynodroid revealed 9 bugs in 7 of the 50 apps.
In a separate experiment, we applied Dynodroid to the
top 1,000 free apps in Google Play, and it exposed 6
bugs in 5 of those apps, demonstrating its robustness.
We summarize the main contributions of our work:

1. We propose an effective system for generating in-
puts to mobile apps. The system is based on a
novel “observe-select-execute” principle that effi-
ciently generates a sequence of relevant events. To
adequately exercise app functionality, it generates
both UI events and system events, and seamlessly
combines events from human and machine.

2. We show how to observe, select, and execute sys-
tem events for Android in a mobile device emulator
without modifying the app. The central insight is
to tailor these tasks to the vast common frame-
work against which all apps are written and from
which they primarily derive their functionality.

3. We present extensive empirical evaluation of the
system, comparing it to the prevalent approaches
of manual testing and automated fuzzing, using
metrics including code coverage and number of
events, for diverse Android apps including both
open-source apps and top free marketplace apps.

The rest of the paper is organized as follows. Sec-
tion 2 surveys related work. Section 3 describes the
overall architecture of our system. The next three sec-
tions present its three main parts: Section 4 the execu-
tor, Section 5 the observer, and Section 6 the selector.
Section 7 presents our experimental results. Section 8
discusses limitations and finally Section 9 concludes.

2. RELATED WORK

There are broadly three kinds of approaches for gen-
erating inputs to mobile apps: fuzz testing, which gen-
erates random inputs to the app; systematic testing,
which systematically tests the app by executing it sym-
bolically; and model-based testing, which tests a model
of the app. We elaborate upon each of these three ap-
proaches in this section.

Fuzz Testing. The Android platform includes a
fuzz testing tool Monkey [8] that generates a sequence
of random UI events to unmodified Android apps in

a mobile device emulator. Recent work has applied
Monkey to find GUI bugs [16] and security bugs [19]
in apps. Fuzz testing is a black-box approach, it is
easy to implement robustly, it is fully automatic, and it
can efficiently generate a large number of simple inputs.
But it is not suited for generating inputs that require
human intelligence (e.g., constructing valid passwords,
playing and winning a game, etc.) nor is it suited for
generating highly specific inputs that control the app’s
functionality, and it may generate highly redundant in-
puts. Finally, Monkey only generates Ul events, not
system events. It would be challenging to randomly
generate system events given the large space of possible
such events and highly structured data that is associ-
ated with many of them.

Systematic Testing. Several recent efforts [10,17,
23] have applied symbolic execution [12,15,18] to gen-
erate inputs to Android apps. Symbolic execution au-
tomatically partitions the domain of inputs such that
each partition corresponds to a unique program behav-
ior (e.g., execution of a unique program path). Thus,
it avoids generating redundant inputs and can generate
highly specific inputs, but it is difficult to scale due to
the notorious path explosion problem. Moreover, sym-
bolic execution is not black-box and requires heavily
instrumenting the app in addition to the framework.

Model-based Testing. Model-based testing has
been widely studied in testing GUI-based programs [11,
21,22,27] using the GUITAR framework [5]. GUITAR
has been applied to Android apps, IPhone apps, and
web apps, among others. In general, model-based test-
ing requires users to provide a model of the app’s GUI
[25, 28], though automated GUI model inference tools
tailored to specific GUI frameworks exist as well [9,24].
One such tool in the Android platform, that Dynodroid
also uses for observing relevant Ul events, is Hierarchy
Viewer [6]. Model-based testing harnesses human and
framework knowledge to abstract the input space of a
program’s GUI, and thus reduce redundancy and im-
prove efficiency, but existing approaches predominantly
target Ul events as opposed to system events.

3. SYSTEM ARCHITECTURE

This section presents the system architecture of Dyno-
droid. Algorithm 1 shows the overall algorithm of Dyno-
droid. It takes as input the number n of events to gen-
erate to an app under test. It produces as output a list
L of n events it generates. The first generated event is
to install and start the app in a mobile device emulator.
The remaining n — 1 events are generated one at a time
in an observe-select-execute cycle. Each of these events
constitutes either a Ul input or non-Ul input to the app,
which we call Ul event and system event, respectively.
The two kinds of events are conceptually alike: each
event of either kind has a type and associated data. We

Algorithm 1 Overall algorithm of Dynodroid.
INPUT: Number n > 0 of events to generate.
OUTPUT: List L of n events.

L := empty list
e := event to install and start app under test
s := initial program state
for ¢ from 1 to n do
append e to L
// Execute event e in current state s to yield updated state.
$:= EXECUTOR(e, s)
// Compute set E of all events relevant in current state s.
E := OBSERVER(s)
// Select an event e € E to execute in next iteration.
e := SELECTOR(E)
end for

distinguish between them because, as we explain below,
Dynodroid uses different mechanisms to handle them.
The EXECUTOR executes the current event, denoted e,
in the current emulator state, denoted s, to yield a new
emulator state that overwrites the current state. Next,
the OBSERVER computes which events are relevant in
the new state. We denote the set of relevant events F.
Finally, the SELECTOR selects one of the events from E
to execute next, and the process is repeated.

Figure 1 presents a dataflow diagram of Dynodroid
that provides more details about the mechanisms it uses
to implement the EXECUTOR, the OBSERVER, and the
SELECTOR on the Android platform.

The EXECUTOR triggers a given event using the ap-
propriate mechanism based on the event kind. It uses
the Android Debug Bridge (adb) to send the event to an
Android device emulator that is running the app under
test. For UI events, the ADB host talks to the ADB
daemon (adbd) on the emulator via the monkeyrunner
tool. Note that this tool, which is used to send events
to an emulator via an API, is unrelated to the Monkey
fuzz testing tool, which runs in an adb shell directly on
the emulator. For system events, the ADB host talks to
the Activity Manager tool (am) on the emulator, which
can send system events as intents to running apps. Sec-
tion 4 describes the EXECUTOR in further detail.

The OBSERVER computes the set of events that are
relevant to the app under test in the current emulator
state. It consists of two parts to handle the two kinds
of events: the Hierarchy Viewer tool for Ul events, and
the instrumented framework (SDK) for system events.
Hierarchy Viewer provides information about the app’s
GUI elements currently displayed on the device’s screen.
The OBSERVER computes the set of relevant Ul events
FE¢ from this information. The instrumented SDK pro-
vides information about broadcast receivers and system
services for which the app is currently registered. The
OBSERVER computes the set of relevant system events

Initial event e (install and start app)

Selected event e from E

e is system
event Activity

T Manager T\

eis Ul
event

ADB Host

ADB Daemon
|

y
A\ 4

Executor

App under test

Device Emulator

Intercepted System
calls from events
E
Instrumented apps to SDK 2 All relevant
. events A
g Y E-E,UE, 8
@ > S
8 b
Hierarchy .
i - ul
=
C L I L. g events
| E;

Figure 1: Dataflow diagram of Dynodroid for the Android platform.

E5 from this information. It provides the set of all rel-
evant events ¥ = E1 U F5 to the SELECTOR. Section 5
provides more details about the OBSERVER.

The SELECTOR selects an event from FE as the next
event to be triggered. Dynodroid implements various
selection strategies that one can choose from upfront,
including deterministic vs. randomized, and history de-
pendent vs. history oblivious strategies. Section 6 de-
scribes these strategies and Section 7 evaluates them on
a code coverage client for 50 open-source apps.

4. EXECUTOR

Dynodroid allows both machine and human to gen-
erate events in order to combine the benefits of auto-
mated and manual input generation. Figure 2 shows
how Dynodroid allows switching between machine and
human. The EXECUTOR listens to commands from a
console and starts in human mode, in which it does not
trigger any events and instead allows the human to ex-
ercise the app uninterrupted in the emulator, until a
RESUME command is received from the console. At this
point, the EXECUTOR switches to machine mode and
generates events until the given bound n is reached or a
PAUSE command is received from the console. In the lat-
ter case, the EXECUTOR switches to human mode again.
Human inputs do not count towards the bound n. Also,
nothing prevents the human from exercising the app in
machine mode as well, along with the machine. Finally,
the STOP command from the console stops Dynodroid.

The EXECUTOR executes an event, chosen by the SE-
LECTOR, on the emulator via the Android Debug Bridge
(adb). It uses separate mechanisms for executing Ul
events and system events, as described next.

User events are triggered using the monkeyrunner
tool. This tool is a wrapper around adb that pro-
vides an API to execute Ul events. We wrote a python
script that takes an input command over a socket con-
nection, executes the command on the emulator using
monkeyrunner, and returns the result of the execution
back over the socket. The script can send UI events such

emulator

g <\executor
machine
¥ mode

—{ P> state transitions

---------- » console commands

__7 eventstoapp

Figure 2: State transition diagram of Dynodroid.

as taps, gestures, and text inputs (see Section 5.1).
System events are triggered using the Activity Man-
ager tool (am). Broadcast events of any type can be
triggered using this tool provided the correct arguments
are supplied. The am tool is incapable of handling ar-
guments containing custom data in binary format. We
modified the tool to handle binary data so that broad-
cast events can be triggered with the required data. We
add extra information before triggering specific broad-
cast events, e.g., the phone number and message text
data for an SMS_RECEIVED event (see Section 5.2).

S. OBSERVER

The OBSERVER computes the set of relevant events
after an event is executed. We consider an event rel-
evant if triggering that event may result in executing
code that is part of the app. The goal of the OBSERVER
is to efficiently compute as small a set, of relevant events
as possible without missing any. This section describes
how the OBSERVER computes relevant UI events (Sec-
tion 5.1) and relevant system events (Section 5.2).

5.1 UI Events

These are events generated by the SDK in response
to interaction by users with the device’s input mech-
anisms. Dynodroid supports two input mechanisms:

Relevant Event
&
=y ?:D 2%
5135 &
If app registers callback:
onClickListener v
onLongClickListener v
onTouchListener VIV Y
onKeyListener v
onCreateContextMenuListener v
If app overrides method:
onTouchEvent VIV Y
performLongClick v
performClick v
onKeyDown N
onKeyUp v

Table 1: Mapping registered callback methods and over-
ridden methods to relevant UI events.

touchscreen and navigation buttons (specifically, “back”
and “menu” buttons). We found these sufficient in prac-
tice, for three reasons: they are the most common input
mechanisms, the mechanisms we do not support (key-
board, trackball, etc.) are device-dependent, and there
is often redundancy among different input mechanisms.

The OBSERVER analyzes the app’s current UI state
in order to compute relevant Ul events. First, it deems
clicking each navigation button as a relevant Ul event,
since these buttons are always enabled. Second, it in-
spects the view hierarchy, which is an Android-specific
tree representation of the app’s UI currently displayed
on the touchscreen. Each node of the tree is an object
of (some subclass of) View, the base class of all UT ele-
ments (buttons, text boxes, etc.). Each non-leaf node is
an object of ViewGroup and serves as an invisible lay-
out containing other Views (or other ViewGroups) that
are represented as its children in the view hierarchy.
The SDK provides two ways by which an app can react
to inputs to a Ul element: by overriding a method of
the corresponding View object’s class, or by registering
a callback with it.

The SDK dispatches each input on the touchscreen
to the root node of the view hierarchy, which in turn
depending on the position of the input dispatches it re-
cursively to one of its children, until the view to which
the input was intended executes a callback and returns
true, denoting that the input was successfully handled.
The OBSERVER obtains the view hierarchy from a ser-
vice called ViewServer that runs on Android devices
having debug support. Once it obtains the view hier-
archy, it considers only the View objects at leaf nodes
of the tree as interesting, as these correspond to visible

Ul elements that users can interact with. It extracts
two kinds of data from each such object about the cor-
responding UT element: (a) the set of callback methods
registered and the set of methods overridden by the app,
for listening to inputs to this UI element, and (b) the
location and size of the UI element on the touchscreen
(the position of its top left corner, its width, height,
and scaling factor). The native Hierarchy Viewer does
not provide all of the above data; we modified the An-
droid SDK source to obtain it. The OBSERVER uses
the data in item (a) to compute which UI events are
relevant, as dictated by Table 1. It supports all com-
mon touchscreen inputs: tap inputs, limited kinds of
gestures, and text inputs. Finally, the OBSERVER uses
the data in item (b) to compute the parameters of each
such event, as dictated by Table 2.

5.2 System Events

These are events generated by the SDK in response
to non-Ul inputs, such as an incoming phone call, a
change in geo-location, etc. The SDK provides one of
two means by which an app can receive each type of
system event: broadcast receiver and system service. In
either case, the app registers a callback to be called by
the SDK when the event occurs. The app may later
unregister it to stop receiving the event.

The OBSERVER uses the same mechanism for extract-
ing relevant system events via broadcast receivers and
system services: it instruments the SDK to observe
when an app registers (or unregisters) for each type
of system event. This instrumented SDK is a file sys-
tem.img that is loaded on the emulator during bootup.
It is produced once and for all by compiling Java source
code of the original SDK that is manually modified to
inject the instrumentation. A system event becomes
relevant when an app registers to receive it and, con-
versely, it becomes irrelevant when an app unregisters
it. As in the case of Ul events, the OBSERVER computes
not only which system events are relevant, but also what
data to associate with each. Unlike for UI events, how-
ever, this data can be highly-structured SDK objects
(instead of primitive-typed data). We next outline how
the OBSERVER handles specific broadcast receivers (Sec-
tion 5.2.1) and system services (Section 5.2.2).

5.2.1 Broadcast Receiver Events

Android provides two ways for an app to register
for system events via a broadcast receiver, depending
on the desired lifetime: dynamically or statically. In
the dynamic case, the receiver’s lifetime is from when
Context.registerReceiver() is called to either until Con-
text.unregisterReceiver() is called or until the lifetime of
the registering app component. In the static case, the
receiver is specified in file AndroidManifest.xml, and
has the same lifetime as the app. In either case, the

Event Type Parameters Description

Tap Tap(l + w/2,t + h/2) trigger Tap at center of view
LongTap LongTap(l + w/2,t + h/2) trigger LongTap at center of view
Drag random one of: Drag(l, t, I[+w, t+h), Drag(l+w, t+h, [, t), | randomly trigger one of gestures:
Drag(l, t+h, 4w, t), Drag(l+w, t, I, t+h), TL to BR, BR to TL, BL to TR,
Drag(l, t+h/2, l4+w, t+h/2), Drag(l+w, t+h/2, 1, t+h/2), | TR to BL, ML to MR, MR to ML,

Drag(l+w/2, t, I4+w/2, t+h), Drag(l+w/2, t+h, l4+w/2, t) MT to MB, MB to MT
Text arbitrary fixed string trigger arbitrary text input

Table 2: User event parameters: [, t, w, h denote left position, top position, width, and height of the view, scaled
by the view’s scaling factor. TL, BR, BL, TR, MB, MT, ML, MR denote top left, bottom right, bottom left, top
right, mid bottom, mid top, mid left, and mid right points of the view.

receiver defines a callback method overriding Broad-
castReceiver.onReceive() that the SDK calls when the
event occurs (we provide an example below). The OB-
SERVER supports both kinds of receivers.

The Gingerbread SDK version we instrumented has
108 different kinds of system events as intents for which
an app may register via a broadcast receiver. For proof
of concept, we chose 25 of them as follows: we counted
the number of top 1,000 free apps in the Google Play
market that statically register a broadcast receiver for
each intent, and we chose those intents that was regis-
tered in this manner by 10 or more apps. Supporting
additional intents is straightforward: it involves iden-
tifying the type of data associated with the intent and
providing valid values for the data. The data includes
an optional URI, and a Bundle object which is a key-
value map that contains any extra information. Finally,
for statically registered receivers, we also explicitly iden-
tify the receiver in the intent, since unlike UI events
which are dispatched to a single View object, broad-
cast intents are by default dispatched to all receivers
(possibly from several apps) that register for them.

Table 3 shows the type and values of the data used by
the OBSERVER for our 25 chosen broadcast intents. For
brevity we abbreviate the name of each intent’s action,
e.g., using SMS_RECEIVED instead of “android.provider.
Telephony.SMS_RECEIVED”. All the data shown, except
those of type URI, are provided in a Bundle object.
For instance, an app may register the following receiver
for the SMS_RECEIVED intent which is broadcast upon
incoming SMS messages:
public class SmsReceiver extends BroadcastReceiver {

@Override public void onReceive(Context c, Intent e) {

Bundle b = e.getExtras();
Object[] p = (Object[]) b.get("pdus");
SmsMessage[] a = new SmsMessage[p.length];
for (int i = 0; i < pdus.length; i++)
a[i]l = SmsMessage.createFromPdu((byte[]) plil);

}
};

To trigger this event, the EXECUTOR serializes the ap-
propriate intent along with a Bundle object that has
a key named “pdus” mapped to a byte array denoting

an array of SmsMessage objects. We supply an array
of a single SmsMessage object with an arbitrary but
well-formed phone number and message text.

5.2.2 System Service Events

System services are a fixed set of processes that pro-
vide abstractions of different functionality of an An-
droid device. We distinguish services whose offered
functionality depends on app-provided data from those
that are independent of such data. We call such ser-
vices internally vs. externally triggered, as they depend
on data internal or external to the app under test. For
instance, the AlarmManager service is internally trig-
gered, as it depends on the alarm duration given by an
app, but the LocationManager service is externally trig-
gered, as it depends on the device’s geo-location. Dyno-
droid only controls externally triggered services as the
app itself controls internally triggered services.

Table 4 shows how Dynodroid handles events of each
externally triggered service. The “Register/Unregister
Mechanism” shows how an app registers or unregisters
for the service, which the OBSERVER observes via SDK
instrumentation. Since services are global components,
the OBSERVER uses the ID of the app under test to
filter out observing other apps that may also register
or unregister for these services. The “Callback Mecha-
nism” shows how the app specifies the callback to han-
dle events by the service. Lastly, the “Trigger Mecha-
nism” shows how the EXECUTOR triggers the callback,
usually via a command sent from the ActivityManager
tool running on the emulator (see Section 4).

The following example showing how an app may use
the LocationManager service:

GpsStatus.Listener 1 = new GpsStatus.Listener() {
@Override public void onGpsStatusChanged(int event) {...

1

LocationManager 1lm = getSystemService(LOCATION_SERVICE);

1m.addGpsStatusListener(1);

1m.removeGpsStatusListener(1);

From the point at which the app registers to listen to
GPS status changes by calling addGpsStatusListener()

Action Name

Data Type : Description

Data Value

APPWIDGET_UPDATE

int[] : IDs of App Widgets to update

random (1-10) sized array of
random (0-1000) ints

CONNECTIVITY_CHANGE

android.net.NetworkInfo : status of
the network interface

random NetworkInfo object from
android.net.ConnectivityManager

PACKAGE_ADDED

int : uid assigned to new package,
bool : true if this follows a ‘removed’
broadcast for the same package

uid of random installed package,
random bool

PACKAGE_REMOVED

int : uid previously given to package,
bool : true if removing entire app,
bool : true if an ‘added’ broadcast
for the same package will follow

uid of random installed package,
random bool,
random bool

PACKAGE_REPLACED int : uid assigned to new package uid of random installed package
URI : path to mount point of media, “/mnt/sdcard”,
MEDIA_MOUNTED . ..
bool : true if media is read-only false

TIMEZONE_CHANGED

TimeZone : time-zone representation

America/Los_Angeles time-zone

MEDIA _BUTTON

android.view.KeyEvent : key event
that caused this broadcast

KeyEvent object with action as
ACTION_UP and value as
KEYCODE_MEDIA_PLAY_PAUSE

SMS_RECEIVED

android.telephony.SmsMessage]] :
array of received SMS messages

array of 1 SmsMessage object with
arbitrary MSISDN and message

MEDIA_UNMOUNTED

URI : path to mount point of media

“/mnt/sdcard”

PHONE_STATE

int : phone state (idle|ringing|offthook), |1 (ringing),
String : incoming phone number

an arbitrary MSISDN

MEDIA_SCANNER_FINISHED URI

“/mnt /sdcard”

NEW_OUTGOING_.CALL

String: outgoing phone number

an arbitrary MSISDN

[BATTERY _[CHANGED|LOW|OKAY] |
ACTION_POWER_[DIS]JCONNECTED |
ACTION_SHUTDOWN | TIME_SET |
AUDIO_BECOMING_NOISY |
DATE_CHANGED | USER_PRESENT |
MEDIA_EJECT | BOOT.COMPLETED)

none

none

Table 3: Broadcast receiver events with associated data as implemented in Dynodroid.

to the point at which it unregisters by calling removeG-
psStatusListener(), the OBSERVER regards GPS status
change as a relevant system event. If the SELECTOR
described in the next section selects this event, then
the EXECUTOR triggers it by sending telnet command
“geo fix G” to the emulator, where G is an arbitrary
geo-location (a triple comprising a latitude, longitude,
and altitude). This in turn results in invoking callback
onGpsStatusChanged() defined by the app.

6. SELECTOR

The SELECTOR selects an event for the EXECUTOR to
execute from the set of relevant events E' computed by
the OBSERVER. We implemented three different selec-
tion strategies in the SELECTOR, called Frequency, Uni-
formRandom, and BiasedRandom. This section describes
these strategies.

The Frequency strategy selects an event from F that
has been selected least frequently by it so far. The ra-

tionale is that infrequently selected events have a higher
chance of exercising new app functionality. A drawback
of this strategy is that its deterministic nature leads the
app to the same state in repeated runs. In practice,
different states might be reached in different runs be-
cause of non-determinism inherent in dynamic analysis
of Android apps, due to factors such as concurrency and
asynchrony (see Section 8); however, we cannot rely on
them to cover much new app functionality.

The UniformRandom strategy circumvents the above
problem by selecting an event from E uniformly at ran-
dom. This is essentially the strategy used by the Mon-
key fuzz testing tool, with three key differences. First,
Monkey can only generate Ul events, preventing it from
covering app functionality controlled by system events.
Second, Monkey does not compute relevant events and
can send many events that are no-ops in the current
state, hindering efficiency and conciseness of the gener-
ated event sequence. Third, Monkey does not compute

Service Register/Unregister Callback Mechanism Trigger Mechanism
Mechanism
registerMediaButton- send KeyPress event with
EventReceiver(C) / invoke component denoted by keycode of randomly
Audio- unregisterMediaButton- ComponentName object C chosen MEDIA_BUTTON
EventReceiver() via monkeyrunner
Manager - - : - :
. call onAudioFocusChange() in simulate incoming phone call
request AudioFocus(L) / . . -
abandon AudioFocus() AudioManager.OnAudioFocus- from a fixed MSIDN N via
ChangeListener object L telnet command “gsm call N’
. . -1 i
addGpsStatusListener(L) / call onGpsStatusChanged() in set geo-location .tO
removeGpsStatusListener() GpsStatus.Listener object L fixed value G via
' telnet command “geo fix G”
addNmeaListener(L) / call onNmeaReceived() in send fixed NMEA data S via
removeNmeaListener() GpsStatus.NmeaListener object L | telnet command “geo nmea S”
Location- addProximityAlert(G, P) / . - set geo—l9cat10n to reglgtered
Manager . trigger PendingIntent P proximal value G via
removeProximity Alert () w ,
telnet command “geo fix G
if LocationListener specified, call set geo-location twice, via
. on[Location|Status]Changed() or commands “geo fix G;” and
requeizl;noocjm;{? n(ii’jg;es() / onProvider[Enabled|Disabled](); “geo fix G2”; G is random
p else call PendingIntent or post to geo-location, G5 is based on
message queue of given Looper (1 and registered criteria.
requestS{ngleUpdate() / same as above same as above
auto unregister after update
. . 3 lues f
Sensor- registerListener(L, S) / call on[Accuracy|Sensor]Changed() set randorp Vaiues T, y, z 1or
. . . . sensor S via telnet command
Manager unregisterListener() on SensorEventListener object L . ;
sensor set S x:y:7
. trigger state change via
Telephone- listen(L, S), with call onDat:L Activity() or any of telnet command “gsm C D”;
several on*Changed() methods .
Manager state S non-zero / zero . . C'is random gsm command
on PhoneStateListener object L .
and D random valid data.

Table 4: Handling of events of externally triggerable system services in Dynodroid.

a model of the app’s Ul, which has pros and cons. On
one hand, it prevents Monkey from identifying obser-
vationally equivalent Ul events (e.g., taps at different
points of the same button that have the same effect, of
clicking the button) and hinders efficiency and concise-
ness; on the other hand, Dynodroid sends mostly fixed
inputs (see Table 2) to a widget, and may fail to ade-
quately exercise custom widgets (e.g., a game that in-
terprets taps at different points of a widget differently).

A drawback of the UniformRandom strategy is that
it does not take any domain knowledge into account:
it does not distinguish between UI events and system
events, nor between different contexts in which an event
may occur, nor between frequent and infrequent events.
For instance, an event that is always relevant (e.g., an
incoming phone call event) stands to be picked dis-
proportionately more often than an event that is rele-
vant only in certain contexts (e.g., only on a particular
screen of the app). As another example, each navi-
gation button (“back” and “menu”) is universally rel-
evant, but it typically has very different behavior on

different screens. These observations motivate our final
and default selection strategy BiasedRandom.

This strategy is shown in Algorithm 2. Like the Fre-
quency strategy, it maintains a history of how often each
event has been selected in the past, but it does so in a
context-sensitive manner: the context for an event e at
a particular instant is the set E of all relevant events
at that instant. This history is recorded in global vari-
able G that maps each pair (e, F) to a score. The map
starts empty and is populated lazily. At any instant, the
score for a pair (e, E) in the map is either —1, meaning
event e is blacklisted in context E (i.e., e will never be
selected in context E), or it is a non-negative integer,
with higher values denoting lesser chance of selecting
event e in context E in the future. We found it suitable
to use the set of relevant events E as context because it
is efficient to compute (the OBSERVER already computes
E) and it strikes a good balance between factoring too
little and too much of the state into the context.

Each time the SELECTOR is called using this strategy
in an observe-select-execute cycle, it runs the algorithm

Algorithm 2 Event selection algorithm BiasedRandom.

1: var G : map from (event, set of events) pairs to int
2: G := empty map
3: INPUT: Set E of relevant events.
4: OUTPUT: An event in F.
5: for each (e in E) do
6: if ((e, E) is not in domain of G) then
7 // Initialize score of event e in context E.
8: G(e, FE) := init_score(e)
9: end if
10: end for
11: var L : map from events to int
12: L := map from each event in F to 0
13: while true do
14: e := event chosen uniformly at random from F
15: if (L(e) = G(e, F)) then
16: // Select e this time, but decrease its chance of being
17: // selected in context E in future calls to SELECTOR.
18: G(e,E):=G(e,E)+ 1
19: return e
20: else
21: // Increase chance of selecting e in next iteration in
22: // current call to SELECTOR.
23: L(e) := L(e) +1
24: end if

25: end while

26: procedure init_score(e) : int
27: case (e) of

28: Text event: return -1
29: non-Text Ul event: return 1
30: system event: return 2

31: end case

on lines 3-25, taking as input the set of relevant events
FE from the OBSERVER and producing as output the se-
lected event e € E for the EXECUTOR to execute. It
starts by mapping, for every e € E, the pair (e, E) to
its initial score in global map G, unless it already exists
in G. We bias the initial score (lines 26-31) depending
on the kind of event. If e is a Text event, its initial score
is —1. In other words, text inputs are blacklisted in all
contexts. Intuitively, the reason is that text inputs are
interesting only if they are followed by a non-text input,
e.g., a button click. Hence, we forbid selecting text in-
puts in the SELECTOR altogether, and instead require
the EXECUTOR to populate all text boxes in the current
UI before it executes the selected non-Text event. We
distinguish between two kinds of non-Text events: non-
Text UI events and system events. We choose initial
score of 1 for the former and 2 for the latter, reducing
the relative chance of selecting system events. This bias
stems from our observation that system events tend to
be relevant over longer periods than UI events, with

Feature Value
4 GB
All features enabled
except GPU emulation
1 GB
pdf:2, img:2, vcf:11, arr:2, zip:4,
3gp:1, m4v:1, mov:1, mp3:3

Feature Name
Device RAM size
Emulator hardware
features
Sdcard size
Files on Sdcard
(type:count)

Table 5: Emulator configuration used in our evaluation.

UI events typically being relevant only when a certain
screen is displayed. A hallmark of our algorithm, how-
ever, is that it never starves any event in any context.
This is ensured by lines 11-25, which repeatedly pick an
event e from E uniformly at random, until one satisfies
condition L(e) = G(e, E), in which case it is returned as
the event selected by the current SELECTOR call. Just
before returning, we increment G(e, E) to reduce the
chance of picking e in context F in a future SELECTOR
call. L is a local map that records the number of times
event e was randomly picked by the above process in the
current SELECTOR call but passed over for not satisfy-
ing the condition. Thus, the lesser the number of times
that e has been chosen in context F in past SELECTOR
calls, or the higher the number of times that e has been
passed over in context E in the current SELECTOR call,
the higher the chance that e will be selected to execute
in context E in the current SELECTOR call.

7. EMPIRICAL EVALUATION

We evaluated the performance of Dynodroid on real-
world Android apps, and compared it to two state-of-
the-art approaches for testing such apps: manual test-
ing and automated fuzzing. Detailed results of our eval-
uation are at http://dynodroid.gatech.edu/study,
including: a VHD file containing Dynodroid’s sources
and binaries; feedback from a user study we conducted;
and a portal allowing users to run Dynodroid on arbi-
trary provided apps.

All our experiments were done using the Gingerbread
version (Android 2.3.5 - API Level 10) which is the most
popular version, used by 50% of all devices that recently
accessed Google Play [7]. All experiments were done on
64-bit Linux machines with 128GB memory and dual-
socket 16-core AMD Opteron 3.0GHz processors. Ta-
ble 5 shows the emulator configuration (called Android
Virtual Device or AVD) that we used in all experiments.
For each run, an app was given a freshly created em-
ulator along with only default system applications and
the above configuration. After every run, we destroyed
the emulator to prevent it from affecting other runs.

We next describe two studies we performed: measur-
ing app source code coverage (Section 7.1) and finding
bugs in apps (Section 7.2).

Books &

Tools Reference

System Communication

Productivity \ Education
8

Phone & SMS -

Entertainment

%
4%

Personalization Games

Music & Audio Media & Video

Figure 3: Distribution of open-source apps by category.

7.1 Study 1: App Source Code Coverage

The first study we performed measures the app source
code coverage that different input generation approaches
are able to achieve. We randomly chose 50 apps from
the Android open-source apps repository F-Droid [4]
for this study. These 50 apps are sufficiently diverse
as evidenced in Figure 3. The SLOC of these apps
ranges from 16 to 21.9K, with a mean of 2.7K. The
number of components (activities, services, broadcast
receivers, and content providers) listed in the Android-
Manifest.xml file of these apps ranges from 1 to 38, with
a mean of 6.7.

Measuring Coverage. We obtained app coverage
metrics by using Emma [3], a popular Java source code
coverage tool. Emma generates detailed line coverage
metrics to the granularity of branches, and provides cov-
erage reports in different formats that assist in anal-
ysis and gathering statistics. By default, it produces
coverage reports after the app under test terminates.
To generate an intermediate coverage report, a method
dumpCoverageData() must be called from the target
Java process. As we need to measure code coverage
at arbitrary points, a mechanism is needed to inject a
method call within the app testing process. To achieve
this, we use the Android broadcast intent delivery and
broadcast receiver invocation mechanisms, a broadcast
receiver with a custom action which calls the above
method. To enable Emma, we run each app through an
instrumentation activity which starts the main activity
of the app. Finally, we change the app’s AndroidMani-
fest.xml file by adding the above broadcast receiver and
instrumentation activity to it.

Evaluated Approaches. We evaluated the follow-
ing five approaches in this study: Dynodroid using each
of the three selection strategies (Frequency, UniformRan-
dom, BiasedRandom); the Monkey fuzz testing tool pro-
vided in the Android platform; and manual testing con-
ducted in a study involving ten users. Table 6 shows the
setup we used for each of these five approaches on each
app. We ran each of the three variants of Dynodroid
for 2,000 events, we ran Monkey for 10,000 events, and

10

Approach #Events | #Runs
Dynodroid Frequency 2,000 1
Dynodroid UniformRandom 2,000 3
Dynodroid BiasedRandom 2,000 3
Monkey 10,000 3
Humans no limit > 2

Table 6: Testing approaches used to test each app.

Event Type Proportion
Touch 15%
Motion 10%
Trackball 15%
Minor Navigation 25%
Major Navigation 15%
System keys 2%
Apps Switch 2%
Others (keyboard, volume, 16%

and camera buttons)

Table 7: Kinds of Ul events triggered by Monkey.

we allowed the users in our study to manually generate
an unlimited number of events.

We used different numbers of events for Dynodroid
and Monkey because those are the numbers of events
that the two tools were able to generate in roughly the
same duration in three hours for each of the 50 apps
on average. Dynodroid runs 5X slower than Monkey
primarily due to performance issues with the version
of the off-the-shelf Hierarchy Viewer tool it calls after
each event (see Section 8). On the plus side, as we show
below, Dynodroid achieves peak code coverage much
faster than Monkey, requiring far fewer than even the
2,000 events we generated.

Monkey triggers a large variety of Ul events but no
system events. Table 7 summarizes the kinds and pro-
portions of Ul events it triggers in its default configura-
tion that we used. The kinds of UI events that Monkey
can generate is strictly a superset of those that Dyno-
droid can generate (see Section 5.1).

All ten users that we chose in our study are gradu-
ate students at Georgia Tech who have experience with
not only using Android apps, but also developing and
testing them using Android developer tools. We pro-
vided each of them with each app’s source code, the
ability to run the app any number of times in the An-
droid emulator, and the ability to inspect app source
code coverage reports produced from those runs. They
were allowed to provide any kind of GUI inputs, in-
cluding intelligent game inputs and login credentials to
websites. They were also allowed to modify the envi-
ronment by adding/removing files from the emulator’s
Sdcard, to manually trigger system events via a termi-
nal by studying the apps’ source code, etc.

We ensured that each app was assigned to at least
two users. Likewise, we ran each automated approach
involving randomization (Monkey, and the UniformRan-
dom and BiasedRandom strategies in Dynodroid) three
times on each app. We considered the highest cover-
age that a user or run achieved for each app. Perhaps
surprisingly, for certain apps, we found fairly significant
variation in coverage achieved across the three runs by
any of the random approaches. Upon closer inspection,
we found certain events in these apps that if not se-
lected in a certain state, irreversibly prevent exploring
entire parts of the app’s state space. Two possible fixes
to this problem are: (i) allowing a relatively expensive
event during testing that removes and re-installs the
app (Dynodroid currently installs the app only once in
a run); and (ii) to simply run the app multiple times
and aggregate their results.

Finally, Android apps may often call other apps such
as a browser, a picture editor, etc. To prevent the auto-
mated approaches in the study from wandering far be-
yond the app under test, we prevented both Dynodroid
and Monkey from exercising components not contained
in the app under test. In Dynodroid, we achieve this
by simply using the “back” navigation button whenever
the app under test starts an activity that does not be-
long to that app. In Monkey, we achieve this by restrict-
ing “App Switch” events (see Table 7) to only activities
in the app under test.

Coverage Results. The results of our code coverage
study for the 50 apps are summarized in the three plots
in Figure 4. To enable comparisons for a particular
app across plots, each point on the X axis of all three
plots denotes the same app. We next elaborate upon
the results in each of these plots.

Figure 4a compares the code coverage achieved for
each of the 50 apps by Dynodroid vs. Human, where
Human denotes the user who achieved the best cover-
age of all users in our user study for a given app, and
Dynodroid uses the BiasedRandom strategy. The bar for
each app has three parts: the bottom red part shows
the fraction of code that both Dynodroid and Human
were able to cover (i.e., the intersection of code covered
by them). Atop this part are two parts showing the
fraction of code that only Dynodroid and only Human
were able to cover (i.e., the code covered by one but not
the other).

Both Dynodroid and Human cover 4-91% of code per
app, for an average of 51%. Dynodroid exclusively cov-
ers 0-26% of code, for an average of 4%, and Human
exclusively covers 0-43% of code, for an average of 7%.
In terms of the total code covered for each app, Hu-
man easily outperforms Dynodroid, achieving higher
coverage for 34 of the 50 apps. This is not surprising,
given that the users in our study were expert Android
users, could provide intelligent text inputs and event se-

11

quences, and most importantly, could inspect Emma’s
coverage reports and attempt to trigger events to cover
any missed code.

But all the ten users in our study also reported te-
diousness during testing, how easy it was to miss combi-
nations of events, and that it was especially mundane to
click various options in the settings of apps one by one.
Dynodroid could be used to automate most of the test-
ing effort of Human, as measured by what we call the
automation degree, measured as the ratio of coverage
achieved by the intersection of Dynodroid and Human,
to the total coverage achieved by Human. This ratio
varies from 8% to 100% across our 50 apps, with mean
83% and standard deviation 21%. These observations
justify Dynodroid’s vision of synergistically combine hu-
man and machine. It already provides support for in-
telligent text inputs, where a user with knowledge of
an app can specify the text that it should use (instead
of random text) in the specific text box widget prior
to execution, or can pause its event generation when it
reaches the screen, key in the input, and let it resume
(as described in Section 4).

Figure 4b compares the code coverage achieved for
each of the 50 apps by Dynodroid vs. Monkey. It is
analogous to Figure 4a with Monkey instead of Hu-
man. Both Dynodroid and Monkey cover 4-81% of
code per app, for an average of 47%. Dynodroid ex-
clusively covers 0-46% of code, for an average of 8%,
which is attributed to system events that only Dyno-
droid can trigger. We note that many Android mal-
wares are triggered only when specific system events are
triggered [29]; Monkey would not be able to expose such
malwares. Monkey exclusively covers 0-61% of code, for
an average of 6%, which is attributed to the richer set
of UTI events that Monkey can trigger (see Table 2 vs.
Table 7). Another reason is that Dynodroid only gen-
erates straight (Drag) gestures but Monkey combines
short sequences of such gestures to generate more com-
plex (e.g., circular) gestures. Finally, Dynodroid uses
fixed parameter values for Ul events whereas Monkey
uses random values, giving it superior ability to exer-
cise custom widgets. In terms of the total code covered
for each app, however, Dynodroid outperforms Monkey,
achieving higher coverage for 30 of the 50 apps.

Figure 4c compares the minimum number of events
that were needed by each automated approach—Monkey,
and Dynodroid using each of the selection strategies—
to achieve peak code coverage for each of the 50 apps
(recall that we ran Monkey for 10,000 events and Dyno-
droid for 2,000 events). To strike a good tradeoff be-
tween measurement accuracy and performance, we in-
voke Emma to aggregate coverage after every 100 events
for each approach on each app, and hence the minimum
number of reported events is 100. It is evident that all
three strategies in Dynodroid require significantly fewer

100

[| S common
A)
K 1 only Dynodroid
K L _
80 = ~ _ | R X34 only Human
5 B g : i AN R
K] A B K K B
‘ Q f § gy _ B ¥ 7 mE
o) 5 K0 o K o Nl R B % d
<) &4) o M X e} 6Kl K
@ 4 - H K o] 5 * B T o
: | T W ¢ el
K| &] i] -
3 60f 1 jliE i 8 " -
() K K K X K
K %] | “ Kl
® b tl L] K
° = 4 < &
=3 K g
3 5 ok K Blg
a 40 5 iR s i -
=3 g K K H K Il s
< B X 0 o S LR
2 I T f K g
a1 K i K
(5 Kl K N
S i K i H
20 £ i B o -
K] ¢ - Kl 2
_ K 9 K
% M Kl
e & X
0
(a) Code coverage achieved by Dynodroid (BiasedRandom) vs. Human.
100
I common
[only Dynodroid
80 Nn (R - H XK only Monkey [~
2 R I R K
o M o an o B B
& = o K An &K K
g BE. N d 4 (] B & 4
[S g K 5 % b‘ I:‘
3 60 - L el N . % -
] K
o 2 i g . - I
I Kl i g B
[} K % M X
° M B 5
Q M 9 [y %
o o K - K
a 40 Kl R K -
Jox 5 ki K]
< K R ':
°] Kl = . =
Kl
Kd
20 | b -
b -
b
e Kl
M
Kl
b -
a] [
0
(b) Code coverage achieved by Dynodroid (BiasedRandom) vs. Monkey.
10000 g RS &) B B b o —& -
n : Y g B g . i 1 BiasedRandom —e— |-
; . I - : v ,
| o \ Umformlgandom e | -
; o] ; o a] ! -
8 : . M o H 8 Frequency - |
: Y B ; Y) o o8 . Monkey 8- | _
[2]
2
fe
[
>
i
-
o
i
[}
o
S
S
4

(¢) Minimum number of events needed for peak code coverage by various approaches.

Figure 4: Results of the app source code coverage study. Each point on the X axis in all three plots denotes the same
app from the 50 open-source apps used in the study. Figure 4a shows that Dynodroid can be used to automate to a
significant degree the tedious testing done by humans. Figure 4b shows that Dynodroid and Monkey get comparable
coverage, but Figure 4c shows that Monkey requires significantly more events to do so. Note that the Y axis in
Figure 4c uses a logarithmic scale.

12

App Name # Bugs Kind Description
PasswordMakerProFor Android 1 NULL_PTR Improper handling of user data.
com.morphoss.acal 1 NULL_PTR Dereferencing null returned by an online service.
hu.vsza.adsdroid 2 NULL_PTR Dereferencing null returned by an online service.
cri.sanity 1 NULL_PTR Improper handling of user data.
com.zoffcc.applications.aagtl 2 NULL_PTR Dereferencing null returned by an online service.
org.beide.bomber 1 ARRAY_IDX Game indexes an array with improper index.
com.addi 1 NULL_PTR Improper handling of user data.
com.ibm.events.android.usopen 1 NULL_PTR | Null pointer check missed in onCreate() of an activity.
com.nullsoft. winamp 2 NULL_PTR |Improper handling of RSS feeds read from online service.
com.almalence.night 1 NULL_PTR | Null pointer check missed in onCreate() of an activity.
com.avast.android.mobilesecurity 1 NULL_PTR | Receiver callback fails to check for null in optional data.
com.aviary.android.feather 1 NULL_PTR | Receiver callback fails to check for null in optional data.

Table 8: Bugs found by Dynodroid in the 50 open-source

apps from F-Droid and the 1,000 top free apps from Google

Play. The two classes of apps are separated by the double line, with all the open-source apps listed above. NULL_PTR
denotes a “null pointer dereference” exception and ARRAY_IDX an “array index out of bounds” exception.

events than Monkey; in particular, Monkey requires
20X more events than BiasedRandom on average. This
is despite Dynodroid considering both system and UI
events at each step. The reason is that Dynodroid only
exercises relevant events at each step and also because
it identifies observationally equivalent events. Finally,
of the three selection strategies in Dynodroid, Biase-
dRandom performs the best, with each of the other two
strategies requiring 2X more events than it on average.

7.2 Study 2: Bugs Found in Apps

The second study we performed shows that Dyno-
droid is an effective bug-finding tool and is also robust.
To demonstrate its robustness, we were able to suc-
cessfully run Dynodroid on the 1,000 most popular free
apps from Google Play. The popularity metric used is
a score given to each app by Google that depends on
various factors like number of downloads and ratings.
These apps are uniformly distributed over all 31 app
categories in Google Play: the minimum, maximum,
mean, and standard deviation of the number of apps in
these categories is 26, 55, 40.3, and 6.3, respectively.

We also found that Dynodroid exposed several bugs
in both the 50 open-source apps we chose from F-Droid
and the 1,000 most popular free apps from Google Play.
Table 8 summarizes these bugs. We mined the Android
emulator logs for any unhandled exceptions that were
thrown from code in packages of the app under test
while Dynodroid exercised the app in the emulator. To
be conservative, we checked for only FATAL EXCEPTION,
as this exception is the most severe and causes the app
to be forcefully terminated. We manually ascertained
each bug to eliminate any false positives reported by
this method but found that all the bugs were indeed
genuine and did cause the app to crash.

8. LIMITATIONS

This section outlines the limitations of Dynodroid
and suggests ways to overcome them.

Dynodroid needs significantly fewer number of events
to converge than Monkey (only 5% of Monkey on aver-
age in our experiments) but it is 5X slower than Mon-
key. The primary reason for the slowdown is that the
ViewServer service in Android, which provides the view
hierarchy that is used by the OBSERVER in Dynodroid
to compute relevant Ul events, is slow due to heavy use
of reflection. Recent work claims to have patched this
problem by introducing a new command DUMPQ that
makes ViewServer run 20X-40X faster [1].

Dynodroid restricts apps from communicating with
other apps and reverts to the app under test upon ob-
serving such communication. However, many Android
apps use other apps for shared functionality (e.g., brows-
ing, cropping a picture, etc.). Data is passed between
apps via an object called a Bundle which is a key-
value store of objects. Dynodroid could be extended
with symbolic execution to synthesize relevant Bun-
dle objects. Indeed, the benefits of combining random
and symbolic execution have been shown in other do-
mains [20]. A related issue is that Dynodroid uses arbi-
trary fixed parameter values for most events (e.g., geo-
location or touchscreen coordinates) which can prevent
it from exercising app code that requires different pa-
rameter values. Randomizing and/or symbolically in-
ferring parameter values can address this problem.

Non-determinism in programs is problematic for any
dynamic analysis but it is accentuated in Android by
the fact that apps use concurrency and asynchrony heav-
ily. One simple way to alleviate non-determinism would
be to treat all asynchronous operations synchronously.

Dynodroid currently supports only the Gingerbread
version of Android. This may hinder its adoption for

13

a fast-evolving platform like Android. This problem,
however, is mitigated by the fact that Dynodroid in-
struments the SDK at the Java source level, and a patch
could be created using a diff tool and applied to other
Android versions without significant effort.

9. CONCLUSION

We presented a practical system Dynodroid for gen-
erating relevant inputs to mobile apps on the domi-
nant Android platform. It uses a novel “observe-select-
execute” principle to efficiently generate a sequence of
such inputs to an app. It operates on unmodified app
binaries, it can generate both Ul inputs and system in-
puts, and it allows combining inputs from human and
machine. We applied it to a suite of 50 diverse, real-
world open-source apps, and compared its performance
to two state-of-the-art input generation approaches for
Android apps: manual testing done in a user study in-
volving expert Android users, and fuzz testing embod-
ied in the popular Monkey tool provided by the An-
droid platform. We showed that Dynodroid can signif-
icantly automate testing tasks that users consider te-
dious, and generates significantly more concise input
sequences than Monkey. We also showed its robustness
by applying it to the top 1,000 free apps on Google Play.
Lastly, it exposed a few bugs in a handful of the apps
to which it was applied.

10. REFERENCES

[1] android-app-testing-patches. http://code.google.
com/p/android-app-testing-patches/.

DroidBox: Android application sandbox.
http://code.google.com/p/droidbox/.

EMMA: a free Java code coverage tool.
http://emma.sourceforge.net/.

Free and Open Source App Repository.
https://f-droid.org/.

GUITAR: A model-based system for automated GUI
testing. http://guitar.sourceforge.net/.

Hierarchy Viewer. http://developer.android.com/
tools/help/hierarchy-viewer.html.

Historical distribution of Android versions in use.
http://developer.android.com/about/dashboards/
index.html.

UI/Application Exerciser Monkey. http:
//developer.android.com/tools/help/monkey.html.
D. Amalfitano, A. Fasolino, S. Carmine, A. Memon,
and P. Tramontana. Using GUI ripping for automated
testing of Android applications. In Proceedings of 27th
Intl. Conf. on Automated Software Engineering
(ASE), 2012.

S. Anand, M. Naik, H. Yang, and M. Harrold.
Automated concolic testing of smartphone apps. In
Proceedings of ACM Conf. on Foundations of Software
Engineering (FSE), 2012.

R. Bryce, S. Sampath, and A. Memon. Developing a
single model and test prioritization strategies for
event-driven software. Trans. on Soft. Engr., 37(1),
2011.

2]

3]

14

[12] C. Cadar, D. Dunbar, and D. Engler. KLEE:
Unassisted and automatic generation of high-coverage
tests for complex systems programs. In Proceedings of
8th USENIX Symp. on Operating Systems Design and
Implementation (OSDI), 2008.

W. Enck, P. Gilbert, B.-G. Chun, L. Cox, J. Jung,

P. McDaniel, and A. Sheth. Taintdroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. In Proceedings of 9th
USENIX Symp. on Operating Systems Design and
Implementation (OSDI), 2010.

P. Gilbert, B.-G. Chun, L. Cox, and J. Jung. Vision:
automated security validation of mobile apps at app
markets. In Proceedings of 2nd Intl. Workshop on
Mobile Cloud Computing and Services (MCS), 2011.
P. Godefroid, N. Klarlund, and K. Sen. DART:
Directed automated random testing. In Proceedings of
ACM Conf. on Programming Language Design and
Implementation (PLDI), 2005.

C. Hu and I. Neamtiu. Automating GUI testing for
Android applications. In Proceedings of 6th
IEEE/ACM Workshop on Automation of Software
Test (AST), 2011.

J. Jeon, K. Micinski, and J. Foster. Symdroid:
Symbolic execution for dalvik bytecode, 2012. http:
//www.cs.umd.edu/~jfoster/papers/symdroid.pdf.
J. King. Symbolic execution and program testing.
CACM, 19(7):385-394, 1976.

R. Mahmood, N. Esfahani, T. Kacem, N. Mirzaei,

S. Malek, and A. Stavrou. A whitebox approach for
automated security testing of Android applications on
the cloud. In Proceedings of 7th IEEE/ACM Workshop
on Automation of Software Test (AST), 2012.

R. Majumdar and K. Sen. Hybrid concolic testing. In
Proceedings of 29th Intl. Conf. on Software
Engineering (ICSE), 2007.

A. Memon, M. Pollack, and M. Soffa. Automated test
oracles for GUIs. In Proceedings of ACM Conf. on
Foundations of Software Engineering (FSE), 2000.

A. Memon and M. Soffa. Regression testing of GUIs.
In Proceedings of ACM Conf. on Foundations of
Software Engineering (FSE), 2003.

N. Mirzaei, S. Malek, C. Pasareanu, N. Esfahani, and
R. Mahmood. Testing Android apps through symbolic
execution. In Java Pathfinder Workshop (JPF), 2012.
T. Takala, M. Katara, and J. Harty. Experiences of
system-level model-based GUI testing of an Android
app. In Proceedings of 4th Intl. Conf. on Software
Testing, Verification and Validation (ICST), 2011.

L. White and H. Almezen. Generating test cases for
GUI responsibilities using complete interaction
sequences. In Proceedings of 11th IEEE Intl. Symp. on
Software Reliability Engineering (ISSRE), 2000.

L. Yan and H. Yin. DroidScope: Seamlessly
reconstructing the OS and Dalvik semantic views for
dynamic Android malware analysis. In Proceedings of
21st USENIX Security Symposium, 2012.

X. Yuan, M. Cohen, and A. Memon. GUI interaction
testing: Incorporating event context. Trans. on Soft.
Engr., 37(4), 2011.

X. Yuan and A. Memon. Generating event
sequence-based test cases using GUI runtime state
feedback. Trans. on Soft. Engr., 36(1), 2010.

Y. Zhou and X. Jiang. Dissecting Android malware:
Characterization and evolution. In IEEE Symp.
Security and Privacy, 2012.

(13]

[20]

(21]

(22]

23]

[24]

(25]

[26]

27]

(28]

29]

