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ABSTRACT
The WriteBuffer (WB) Tree is a new write-optimized data
structure that can be used to implement per-node storage in
unordered key-value stores. The WB Tree provides faster writes
than the Log-Structured Merge (LSM) Tree that is used in many
current high-performance key-value stores. It achieves this by
replacing compactions in LSM Trees, which are I/O-intensive,
with light-weight spills and splits, along with other techniques.
By providing nearly 30× higher write performance compared
to current high-performance key-value stores, while providing
comparable read performance (1-2 I/Os per read using 1-2B per
key of memory), the WB Tree addresses the needs of a class of
increasingly popular write-intensive workloads.

1. INTRODUCTION
Handling write-heavy interactive workloads is becoming

increasingly important for key-value stores. For example, at Ya-
hoo!, typical key-value store workloads have transitioned from
being 80-90% reads in 2010 to only 50% reads in 2012 [28]. In
this paper, we present a new write-optimized data structure, the
WriteBuffer (WB) Tree, that provides more than an order higher
write performance than other state-of-the-art write-optimized
stores while also supporting random access queries. For com-
parison, to write 64B records, the WB-Tree provides nearly
7× the write throughput of LevelDB [17] along with equal or
better read performance.

Earlier key-value stores targeted two categories of workloads:
low-latency workloads that were typically read-intensive, such
as those enabled by memcached, and latency-insensitive work-
loads that allowed efficient batch insertion, such as non-realtime
analytics or the earlier versions of Google’s MapReduce-based
indexing. However, the increasing demand for real-time results
breaks these models. Twitter’s real-time search makes a tweet
searchable 10s after creation [7]. Google’s Percolator [26] and

Continuous Bulk Processing (CBP) [23] also seek to perform
incremental updates to large datasets (e.g. web search indexes)
efficiently (i.e., without having to run a large MapReduce job).
To support such functionality, key-value storage systems must
ingest incoming data at a high rate as well as allow analysis
codes and/or front-ends to query this data. For this purpose,
Percolator uses BigTable [8].

In previous work, two data structures are popular choices for
implementing single-node data stores and databases: B+ Trees
are used in systems more similar to conventional databases (e.g.
BerkeleyDB [24]). The Log-Structured Merge (LSM) Tree [25],
however, has emerged as the data structure of choice in single-
node storage for many “NoSQL” systems. Systems in which
the per-node storage is provided by an LSM variant include
HBase [1], Hyperdex [13], PNUTS [10, 28], BigTable [8], and
Cassandra [20].

The B+ Tree is used in when low-latency reads are required.
Reads from a B+ Tree typically require a single I/O from disk
(by caching the frequently-accessed higher levels in memory).
Its drawback is that updates to existing keys are performed by
writing the new data in place which leads to poor performance
due to many small, random writes to disk. The LSM Tree
avoids this by performing disk I/O in bulk. It organizes data
into multiple, successively larger components (or levels); the
first component is in-memory and the rest are on disk. When
a component becomes full, data is moved to the succeeding
component by performing a compaction. Compactions ensure
that each component contains at most one copy of any key1.
Unlike B+ Tree reads, which only check one location on disk,
an LSM Tree read might check all components. By protecting
components with in-memory filters [17, 28], LSM Trees can
provide reads that mostly require only one disk I/O per read.

The drawback of an LSM tree is that its compactions are
very I/O-intensive (§2.3). Briefly, if M = size of component i+1

size of component i , a
compaction performs 2 ·M ·B bytes of I/O to compact B bytes of
data from component i to i+1. Since ongoing compactions can
stall writes, this can lead to low and bursty write throughput.

WB Trees are a new unordered data structure that make two
main improvements over LSM Trees. First, WB Trees replace
compactions with cheaper primitives called spills and splits.
This relaxes the constraint in LSM Trees that a component can

1Some LSM Tree implementations (e.g. LevelDB) relax this
constraint for the first disk-based component for faster inserts.
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contain at most one copy of each key. This relaxation provides
a significant increase in write throughput, as explained in §3.2.

The second improvement is a technique called fast-splitting.
Compactions have two objectives: (a) they ensure that no future
compaction becomes very expensive (because compactions can
block inserts); and (b), they reclaim disk space by deleting
outdated records. The nature of the compaction is such that it
cannot separate the two objectives. Instead, fast-splitting allows
separate mechanisms to be used for (a) and (b). Fast-splitting
allows the more expensive but less critical garbage collection
to run less frequently. This provides higher and less-bursty
write throughput, in exchange for using additional disk space,
as explained in §3.3.

At a high level, the B+ Tree, LSM Tree and WB Tree ap-
proaches can be viewed as occupying a spectrum of increasing
write performance as well as increasing degrees of freedom in
the location of a given record on disk. A consequence of this
is that a naive implementation of random reads in WB Trees
can result in very poor performance (owing to more locations
to search).

As a solution, after considering various alternatives (§3.4),
we adopt a technique also used by some LSM Tree imple-
mentations [17, 28] and protect each possible location using
in-memory Bloom filters. During a read, the filter for each
possible location is tested first, and only positive tests result in
I/Os. This allows the WB Tree to use just 1-2 I/Os per read,
providing similar throughput and latency as LSM-Tree reads,
with a memory overhead of about 1-2B/key. Thus, when or-
dered access to keys is not required, the WB Tree can replace
the LSM Tree because it achieves similar read latencies and
throughput while offering significantly higher write throughput.

The WB Tree is unordered, in that it does not store keys
in lexicographical order. Instead, keys are stored in order of
hashes of keys. While this decision improves write performance
(by avoiding expensive string comparisons) and simplifies index
design, the WB Tree only supports random read queries.

More concretely, our contributions are as follows:

• We introduce a new write-optimized data structure called
the WB Tree which provides up to 30× and 160× higher
write performance than two popular LSM Tree imple-
mentations: LevelDB and bLSM, respectively.
• We introduce new primitives called spills and splits to

replace compactions, which bias the read-write perfor-
mance tradeoff towards writes compared to compactions.
• We introduce a new technique called fast-splitting that

further improves write performance.
• We show that, as with LSM Trees, Bloom filters effec-

tively augment the WB Tree to reduce the number of I/Os
required per read to 1-2, and provide read performance
equal to that of LSM Trees.

In the remainder of the paper, the WB Tree is often inter-
changeably used to refer to both the data structure as well as
the key-value store build around the data structure. We pro-
vide background including a description of the LSM Tree in
Section 2. The WB Tree design, along with write and read
optimizations, is discussed in Section 3. We provide an com-
parisons with other single-node key-value stores along with a
deep-dive into WB Tree performance in Section 4.

2. BACKGROUND

2.1 Terminology
The tradeoff between read and write performance is a recur-

ring theme in this paper. The read and write performance of
key-value stores depends, to a great extent, on read and write
amplification respectively. We define write amplification as,
write amplification = Total I/O performed to write record

size of record

B+ Tree variants and other in-place update schemes such
as external hashing have a write amplification ≥ 1. However,
write-optimized stores batch multiple records into a single write
leading to an amortized write amplification� 1.

We use two metrics for read performance: the worst case
number of seeks and read amplification. Read amplification is
defined as

read amplification = Total I/O performed to read record
size of record

Data structures such as buffer trees [3] also buffer reads
allowing read amplification to be� 1. However, we are only
concerned with low-latency reads for which the preferred value
for the number of seeks and read amplification is 1.

2.2 Write-Optimized Key-Value Stores
In-place update data structures such as variants of the B+

Tree provide low worst-case read latency. By using high
fanouts, B+ Trees require less memory as up to 99% of the data
can reside in the leaves [18]. By caching the upper levels of
the tree in the page cache, B+ Trees typically require a single
I/O for reads. However B+ Trees, like other in-place update
structures, suffer from poor write performance especially for
small records.

Write-optimized data stores are gaining prominence because,
as noted earlier, workloads are increasingly write-heavy, and
the relatively high capacity of DRAM in modern clusters allows
a greater proportion of reads to be satisfied from memory (e.g.
using memcached) while writes must be persisted to disk.

Historically, log-structured systems have been used for write-
heavy workloads; among these, insert-ordered and key-ordered
log-structured stores may be distinguished. Insert-ordered
stores, such as the Log-Structured File System (LFS) [27],
FawnDS [2] etc., write data to disk immediately. These have
excellent write throughput, but suffer from latency spikes due
to garbage collection, have poor scan performance, and require
a large amount of memory to support low-latency reads. Key-
ordered log-structured stores buffer updates in memory and
sort them before writing to disk; key-ordered log-structured
stores have lower write throughput compared to insert-ordered
stores [29]. Examples of key-ordered stores include Buffer
Trees [3] and Log-Structured Merge (LSM) Trees [25].

Among these, LSM Trees have typically provided a practical
tradeoff between read and write performance. They provide sig-
nificantly better write performance than in-place update stores,
and provide random read performance comparable to B+ Trees
with a modest cost in memory. Many state-of-the-art systems
including BigTable [8], PNUTS [10, 28], and HBase [1] use
variants of the LSM Tree, which we detail next.
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Table 1: Comparison of I/Os (assuming no caching) per-
formed by various data structures to GET the value associ-
ated with a key or INSERT a new key-value pair: h is the
height of the tree, e is the length of the record, p is the
unit size of data movement between disk and memory, B is
node size for WB Trees and partition size for LSM Trees,
M = size of Ci+1

size of Ci
for LSM Trees or the fan-out for WB Trees,

and N is the total number of unique keys.
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Figure 1: Compaction in LSM Tree at component Ci: Trig-
gered when total size of nodes in Ci exceeds a threshold.

An LSM Tree consists of multiple tree-like components Ci.
The C0 component is memory-resident and allows in-place up-
dates whereas the remaining components reside on disk and are
append-only. The components are ordered by freshness; newest
data is present in C0 and age increases with i. For specificity,
we consider an LSM variant that stores each component as a B+
Tree, with the size of each tree node B bytes, and the maximum
sizes of the components fixed such that size of Ci+1

size of Ci
= M.

For writes into an LSM Tree, records are inserted into C0
until it fills to capacity. When any component Ci fills to capacity,
merges or compactions are performed between components
Ci and Ci+1 as shown in Figure 1. During the compaction,
records from some range of keys, represented by node n in
the figure, from Ci are read into memory along with records in
the same key range from Ci+1 and merged (steps 1 - 3 ). The

newly-merged records replace the records for the key range in
component Ci+1 (step 4 ). Except C0, the nodes of all other
components are not modified in-place. The records are written
back as new nodes to disk and the replaced nodes are garbage-
collected. By avoiding in-place updates for on-disk components
and only performing I/O in large, sequential chunks, LSM Trees
achieve significantly better write performance than B+ Trees.

Unfortunately, the compaction operation is extremely I/O-
intensive. Recall that each node is sized B; because Ci+1 has
around M times the number of nodes as Ci, the number of nodes
in Ci+1 that contain keys overlapping with keys in node n is
also close to M. This means moving B bytes from Ci to Ci+1
during a compaction requires (M+1)×B bytes to be read and
the same number written back to disk after merging into Ci+1,
resulting in high write amplification as shown next.

An inserted record moves progressively from C0,C1, . . . to
Ch−1, where h is the number of components or “height” of the
tree; therefore, the total I/O performed for the record is the sum
of the I/O performed at each component. During a compaction
from Ci−1 to Ci, the total I/O performed is (M+1)×B bytes
read plus an equal amount written. This is amortized across the
B/e records in the node being compacted where e is the size of
each record. This yields a per-record I/O cost of (M+1)× e
bytes read plus written. From §2.1,

write amplification ≤ 1
e

h

∑
i=1

2(M+1)B
B/e

= 2h(M+1)

During an LSM Tree GET, the in-memory component C0 is
first searched (recall that the age of records in component Ci
increases with i). If the queried key is not found in C0, then the
disk-based components C1,C2, . . . are progressively searched.
As a result of the compaction process, the LSM Tree maintains
the invariant that there is at most one record for any key in each
component. This leads to a worst-case read cost of h seeks.
Nodes can be protected with Bloom filters to avoid wasteful
I/Os for a modest memory cost [17, 28]. Table 1 shows the I/O
requirements (without the page cache) of some data structures.

In this paper, for discussion, we consider an LSM Tree with
partitioned, exponentially-sized levels such as used in Lev-
elDB [17]. We also evaluate a second variant without partition-
ing in Section 4.

3. WRITE BUFFER TREE
This section introduces the WB Tree, an unordered key-value

store optimized for high insert performance while maintain-
ing fast random read access. The tree’s key novel elements
are its replacement of performing compactions with cheaper
spills and splits realized via mechanisms described in §3.2. Fur-
ther, fast-splitting substantially improves write performance,
as explained in §3.3. The WB Tree includes indexes that limit
read amplification to 1-2 I/Os per read (§3.4). Finally, garbage
collection (§3.5), logging and recovery are discussed (§3.6).

3.1 Overview of the basic WB Tree
The WB Tree exports a simple API: INSERT(key, value),

for both insertion and update, GET(key), and DELETE(key).
It also supports bulk insertion and deletion for high throughput.
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The WB Tree maintains a single root node. The root node is
unique in that it consists simply of a single in-memory buffer of
size B. Non-root nodes are divided into leaf nodes and internal
nodes. Each non-root node contains one or more lists of sorted
records on disk; a list is similar to an SSTable [8], but does not
contain any indexing information. The total size of the lists in
a node must be less than or equal to its capacity, B.

The WB Tree uses high fan-out, which means that a large
proportion of nodes are leaf nodes. For example, for a fan-out
of 256, around 99.2% of the nodes are leaf nodes2. A high
fan-out helps reduce write amplification by reducing the height
of the tree. The write amplification depends on the height of
the tree, because as records progress down the tree, they are
read and written at each level.

As mentioned before, the WB Tree uses hashes of the actual
keys to route records within the tree, i.e. the hash of the key
in each record decides the location of the record in the tree.
Therefore, the sub-tree rooted at each node is responsible for a
subset of the hash-space. Each node’s hash-space is partitioned
between the children of the node (i.e. hash-spaces for sibling
nodes do not overlap).

An empty WB Tree consists of only the root node. To
INSERT a key-value pair (record) into the WB Tree, the tuple
〈hash, size, record〉 is appended to the memory buffer of
the root node; hash is a hash of the key, and size is the size of the
record. To DELETE a key is to actually INSERT the key with a
special tombstone value τ , i.e., DELETE(k) = INSERT(k,τ).
Discussion of the GET operation is deferred until §3.4.

The two primitives in the WB Tree are spills and splits.
Recall that, in an LSM Tree, when the total size of a component
exceeds a threshold, data is compacted from that component
to the next. In the WB Tree, when the total size of any non-
leaf node reaches its capacity of B, it undergoes a spill. This
operation performs a similar function as the compaction, in that
it moves inserted data progressively down the tree. However, it
differs in that it simply appends the spilled data to the nodes in
the next level of the tree and performs no reading or merging
of data that a compaction does. In this manner, a spill performs
substantially less I/O than a compaction.

Leaf nodes, instead, split when full. Conceptually, a split
converts a full leaf node into two half-full leaf nodes, making
room to receive further spills from the parent node.

The strict enforcement of a spill or a split when a node
reaches its capacity ensures non-bursty insert performance. A
long-running spill or split can block insertions, similar to how
compactions can block insertions in an LSM Tree. Before we
discuss mechanisms for spills and splits (§3.2), we describe
collapsing, which is used in both operations.

Collapsing Given a sorted list with buffered operations, the list
can be collapsed by replacing multiple operations on the same
key with a single operation. For example, a DELETE appearing

2Let there be l leaf nodes and let fan-out be f = 256, then
there are at least l/128 nodes in the level above the leaf nodes,
l/1282 in the level above that and so on until a single root
node. The total number of nodes is therefore N = l+dl/128e+
dl/1282e+ · · ·+1≤ l× 1

1−1/128 . Therefore, l/N ≥ 0.9921, i.e.
more than 99.2% of the nodes are leaves

Non-leaf node P is full Merge + split lists of

merge lists 
into merge 
buffer 

cb

Write lists into children

P

P

partition into 
new lists 
using child 
key-ranges

P
P

New lists appended 
to existing lists

1 2

of3

read lists of P 
into memory

4

P Q
R

Split children of P
with new node Q
 if fan-out is exceeded

Figure 2: Spilling in a WB Tree at Internal Node P: Trig-
gered when total size of lists in Node P exceeds node size.

after an INSERT can be replaced by a DELETE, or two INSERTs
for the same key can be replaced by the later one. Collapsing is
important as it allows disk space to be reclaimed from outdated
records. Collapsing is intra-list garbage collection; we intro-
duce a new term to differentiate it from the garbage collection
of entire lists (§3.5).

Collapsing can be performed in a single pass over the list
because the list is sorted by hash. However, due to hash col-
lisions, it is possible for colliding keys to be interleaved in
the list (e.g. for different keys a and b, the following or-
der might occur: {ha,INSERT(a,1)}, {hb,INSERT(b,3)},
{ha,DELETE(a)} where ha = hb). These are handled using a
separate hashtable for colliding keys whenever a collision is
detected. A stable sorting algorithm (we use a fast radix sort
because integer hashes are being sorted) ensures that insertion
order is preserved for records with the same key.

3.2 Spills and Splits

3.2.1 On Spilling
The spill procedure works differently for root nodes and

internal nodes. For the root node, the root buffer is, first, sorted
and collapsed. Then, the root node spills into its children by
partitioning the in-memory buffer according to the hash-spaces
handled by each of its children, and writes each partition as a
new list to a child node. If the root is the only node in the tree,
it is a leaf and would be split not spilled.

An internal node may contain many lists – one from each
spill of its parent. A spill of node P is depicted in Figure 2. The
lists of node P (already sorted) are read into memory (step 1 ).
In step 2 , the lists are merged into a merge buffer, collapsing
the list during the merge. After the merge, the contents of the
merge buffer are partitioned according to the key-ranges of P’s
children and written as new lists in the children in step 3 .
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Figure 3: Slow-split operation for leaf node X .

After each spill, if the number of children of P is greater
(see §3.2.2 for when the number of children of a node might
increase) than the maximum fan-out allowed, then a new node
Q is created and half of P’s children are transferred to Q. Node
Q is then added as a child to P’s parent. If P is the root, then
a new root is created, increasing the height of the tree by one
(step 4 ). Node P is empty after a spill, so there is no data
buffered in P that requires splitting.

3.2.2 On Splitting
For a leaf node, when the total size of all lists reaches the

capacity, the node undergoes a split to form a new leaf node,
just like a B+ Tree. The new leaf is added as a child to the
parent of the split leaf.

One way to perform the split is to read the on-disk lists of the
leaf into memory, merge them into a merge buffer, and split the
merge buffer into two lists. One list replaces the list being split
in the current leaf and the second is added to the new leaf. Both
lists are written to disk. This approach, termed a slow-split, is
shown in Figure 3.

3.2.3 Spills and Splits Replace Compactions
Compactions in an LSM Tree and spills in the WB Tree

perform the same function, i.e., moving B bytes of data from
one level to the next. Compaction, however, requires signifi-
cantly more I/O. As explained in §2.3, during each compaction,
to move B bytes from component Ci to Ci+1, requires read-
ing (M + 1)×B bytes and writing (M + 1)×B bytes, where
M = size of Ci+1

size of Ci
. In contrast, both a spill and a split read only B

bytes to fetch all the lists from a node into memory and write
back B bytes for the new lists in the split leaves (slow-split).
Thus, for the WB Tree,

write amplification ≤ 1
e

h

∑
i=1

2B
B/e

= 2h

The WB Tree performs a factor of (M + 1) less I/O per
write. In practice, this replacement yields a 6× improvement
in INSERT throughput over LevelDB (§4.3).

3.3 Fast-Splits
As noted earlier, the WB Tree uses a large fan-out to reduce

write amplification, leading to a large proportion of nodes be-
ing leaves. Because leaf nodes undergo splits and not spills,
improving the performance of splits is crucial.

Slow-splits, while cheaper than compactions, still incur sig-
nificant I/O (B bytes to read the lists and B bytes to write back
the split halves of the merged list). We provide a simple so-
lution to speed up splitting – fast-splits. The basic idea of a
fast-split is to avoid reading the leaf from disk; instead, the
splitting offset in each list is marked and stored in the new leaf.

Mechanism Figure 4 illustrates the operation of a fast-split on
Node X , which is a full leaf node. The median hash in a random
list from X is selected as the separator, which is used to split
each list in X . Because each list is sorted, finding the median is
fast (logarithmic number of seeks) using binary search. Each
list in the node is partitioned using the separator value, and one
partition assigned to the new leaf (step 3 ). Unlike slow-split,
this process avoids bulk data movement and is fast. When X’s
parent node P spills for the next time, the new lists are written
into the correct nodes (step 4 ).

Further splits of X are handled similarly. Steps 6 - 8 show
the creation of new leaf Z. Various heuristics can be used to
decide how many fast-splits to perform on a node before a
slow-split is required. Next, we provide some intuition behind
why fast-splitting works.

Intuition Consider what a slow-split accomplishes: (1) when
a leaf reaches size B, it converts the multiple lists in the leaf
to a single list and collapses the list; and (2) it splits the list
into two parts of equal size and assigns one part each to the
split leaves. The latter effect crucially allows the parent node
to continue spilling into the newly-created leaves. The former
effect frees disk space by deleting outdated versions of records
during collapsing.

Fast-splitting splits a leaf into two without merging its lists,
i.e., it splits the leaf and ensures that insertions do not block,
but avoids the more expensive task of reclaiming disk space
occupied by outdated records. Instead of the 2B bytes of I/O
for a slow-split, a fast-split requires only O(logB) random I/Os.
As explained briefly in Section 1, fast-splits provide improved
write performance by trading off extra disk space. The outcome
is superior, consistent and non-bursty write performance.

The advantages of fast-splitting are subtle. It may seem that
slow-splitting less frequently might yield the same benefits, but
that is not the case. For example, suppose that leaf nodes were
4× the size of other nodes, i.e., 4B; this would result in 4×
fewer slow-splits of leaves. However, each split would now
cost 8B bytes of I/O (4B to read and 4B to write), which is 4×
the cost of slow-splitting a B-sized leaf. Table 2 shows the I/O
performed by slow-splits, slow-splits with larger leaves, and
fast-splits (4 fast-splits per slow-split). Starting with just 1 leaf,
the table shows how each scheme causes leaves to split as data
is spilled into the leaves. Using fast-splits performs the least
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Data
spilled

slow-split slow-split (4) fast-split (4:1)
Leaves I/O Leaves I/O Leaves I/O

B 1→ 2 2B 1 − 1→ 2 logB
+B 2→ 4 4B 1 − 2→ 4 2logB
+2B 4→ 8 8B 1→ 2 8B 4→ 8 4logB
+4B 8→ 16 16B 2→ 4 16B 8→ 16 8logB
+8B 16 →

32
32B 4→ 8 32B 16 →

32
32B

Total
16B 63B 56B 32B

Table 2: Comparison of splitting schemes: Fast-splits per-
form the least I/O while splitting.

amount of I/O. Using larger leaves for slow-splits requires less
I/O, but this causes bursty write performance as INSERTs can
block, waiting for a large leaf to slow-split.

Along with a favorable choice of system parameters, these
factors contribute to a 30× improvement in write performance
over LevelDB (§4.3). These performance improvements are
not free. Compactions perform worse because they enforce the
constraint that each component in the LSM Tree, analogous
to a level in the WB Tree, can have only one record per key.
This bounds the number of possible locations for the key when
performing a GET. In the WB Tree, this constraint is relaxed,
and can lead to significantly higher I/O during GETs. Next,
we explain how we limit read amplification to achieve read
performance in WB Trees that is comparable to that of other
key-value stores.

3.4 Higher Read Performance with Indexes
We measure read performance using two metrics: (1) worst

case number of seeks; and (2) read amplification, which is the
total amount of I/O performed to read a record divided by the

size of the record. Ideally we should perform reads with a
single seek and read amplification of 1 (if record size is less
than page size).

Recall from §2.3 that in an LSM Tree, a GET is performed by
successively checking components C0,C1, . . . ,Ch−1, where h is
the number of components. Because each component contains
at most one version of a key, a GET requires at most h seeks in
an LSM Tree with no additional indexes.

By contrast, in the WB Tree, each node can contain more
than one record per key (a key can occur potentially in each
list in a node). In a WB Tree with no indexes, a GET is, there-
fore, performed by starting from the root and proceeding to
search along some root-leaf path in the tree (the specific path is
dependent on the key). Then, in each node, starting from the
last-added list, all the lists have to be searched. Figure 5 shows
an unindexed GET: In step 1 , the root node is searched and
if the record is found, it is returned. If not, step 2 is invoked
recursively until a leaf is reached or the queried key is found.
Because lists of all nodes (except the root) are maintained on
disk, each GET can result in an unacceptably large number of
I/Os. Clearly, to achieve our goal of a single I/O per GET, an
in-memory index is required that maps each key to the list in
the tree that contains the most recent version of the key.

3.4.1 Index for List Selection
The desired properties of such an index are: (a) it must map

a key to the list in the tree that contains the latest record for
the key; (b) it must be fast to construct and update, because
each spill or split causes multiple updates to the index, and
slowing down spills or splits can block insertions; (c) it must
be fast to query, because each GET potentially queries the index
multiple times; and (d) it must be memory-efficient, because
a greater number of keys can be indexed in memory, boosting
GET performance. Design alternatives for such an index are
described next and summarized in Table 3.
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Property Full-Tree Per-Node Per-List
Hashtable Perfect Hashing Bloom filters

Per-key Memory O(size of key) O(size of key) O(1) O(1)
Dynamic Yes Yes Requires keys to recompute

hash function
Yes

Frequency of updates For each INSERT,
spill and split

For each spill and split

Absent keys return “not
found”

Yes Yes No Likely

Table 3: Design alternatives for List-Selection Index: a Bloom filter satisfies all requirements; it needs 10 bits/key for a 1%
false-positive rate, it is dynamic and fast to build.

R

Search root node

X

Search chosen child
1 2

R

X

If record found, return; 
else, choose child to 

search next

X

Search all lists in X 
(newest list first) a

Y

If record 
found, return; 
else, choose 

child to 
search next

b

Figure 5: GET operation in an unindexed WB Tree.

Full-tree index A straightforward design maintains a dictio-
nary data structure (e.g., hashtable) that maps each key in the
tree to the list that contains the most recent record for the key.
Unfortunately, this index would require updating not only for
each spill and split, but also for each INSERT and DELETE. GETs
would have to synchronize with updates to access the index
which results in high synchronization overhead.

Per-node indexes reduce synchronization overhead. An index
can be maintained by each node that stores the list in the node
that contains the latest record for a key for every key in the node.
This index only requires updating when a new list is spilled
to the node or during a split or spill of the node. Because a
node’s (hashed) key-space is partitioned among its children,
the records for any key can only be contained by nodes on
some particular root-leaf path in the tree. In this scheme, a GET
request would, therefore, have to check the per-node index of
each node that occurs on this path.

Hashtables can be used to implement the index, but hashta-
bles are space-inefficient. First, in order to check for colli-
sions, hashtables typically maintain the entire key or a digest
(e.g. SHA-1 hash) in memory. Second, closed hashtables (e.g.
probing for collision resolution) typically avoid filling up the
buckets to capacity to maintain performance, whereas open
hashtables (e.g. chaining-based) use extra space for chaining-
related data structures. This problem of having to store the key
in memory also affects other dictionary data structures such as
red-black trees, skip-lists, etc.

Perfect hashing offers a potential solution to having to store
keys in memory. Perfect hashing maps the elements from a

set S of size n elements to a set of integers with no collisions.
Minimal perfect hashing further constrains the size of the set of
integers to n. The advantage of this idea is that, because there
are no collisions, keys can be stored on disk (instead of mem-
ory). However, in order to make a (minimal) perfect hashing
scheme dynamic, i.e., supporting insertions and deletions, parts
of the hashtable may require rehashing in case of collisions due
to newly inserted keys [12]. Rehashing requires keys, which
have to be read back into memory using multiple random I/Os.
This proves unsustainable for insert-heavy workloads.

Per-list index Another alternative is to extend the idea of a
per-node index to a per-list index. Instead of using an index
that maps a key to a list, a per-list index stores membership
information only. A GET would check all lists along some root-
leaf path in order of age. Recall that each key (more precisely,
its hash) maps to some specific root-leaf path in the tree.

Owing to the deficiencies of the first two alternatives, the
WB Tree opts for a per-list index. For membership, a per-list
index must implement a set data structure for the keys in the list.
The data structure must be memory-efficient, without requiring
entire keys to be stored in memory. Additionally, it must be
fast to construct and query.

Bitmaps using hashes can potentially be used, but become
inefficient for lists that sparsely populate the hash-space. Com-
pressed bitmaps are efficient for sparse lists and provide fast
queries, but are slow to build. The WB Tree, instead, opts for
Bloom filters. Bloom filters are compact (10 bits/key), and fast
to build and query. The tradeoff is that a Bloom filter can yield
a small percentage of false positives (but never false negatives).

3.4.2 Index for List Offsets
Having explained the design of a List-Selection index to

select the list that contains the most recent record for a key, we
now explain how to find the record within the list itself.

Given that each list in the WB Tree can be large, to main-
tain low read amplification, for each list, a List-Offset index
determines the offset within a list at which the record is located.
Recall that lists in the WB Tree are sorted by hashes of the keys.
This makes it possible to maintain a simple index, called the
first-hash-index which stores in memory the hash of the key of
the first record in each page (e.g., 4kB) of the list.

Searching for a key in a list then proceeds by: Binary search
the in-memory first-hash-index to find the page that contains
the queried key. Read this page into memory and search se-
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quentially until the target key is found or the end of the page
is reached. Binary-searching within the page is not possible
because the size of the record is stored with the record on disk.

3.5 On Garbage collection
Each list in the WB Tree is backed by a separate file on disk.

For an internal node, the files that back lists in that node can
be deleted after the node has completed spilling. In the case of
leaves that undergo slow-split, the files that back the original
lists of the leaf can safely be deleted after the new lists, created
by the slow-split, have been written to disk. Fast-splitting
complicates garbage collection: the file containing the original
list is now pointed to by multiple leaf nodes. We solve this
problem by maintaining ref-counts for each file and deleting
the file only after no lists reference it any longer.

3.6 Logging and Recovery
The WB Tree uses a write-ahead log to write all INSERT

and DELETE operations to disk before successfully returning to
the client. The system also supports synchronous operation, in
which fsync() is invoked on the log before returning from an
INSERT or DELETE operation. When the root node spills to its
children (or splits, forming a new root), its contents are written
as lists in the children nodes; the log can be cleared after this.
Recovery consists of replaying the contents of the log.

4. EVALUATION
This section compares the performance of the WB Tree with

two LSM Tree variants: LevelDB and bLSM. bLSM differs
from LevelDB in that it uses only three components in its LSM
Tree and allows the overlap factor, M, to vary. Further, while
LevelDB seeks to use small partitions to reduce the worst-case
compaction time, bLSM opts not to use partitioning and instead
relies on a more sophisticated compaction scheduler.

The experiments use a 12-core server (two 2.66GHz six-core
Intel X5650 processors) with 12GB of DDR3 RAM. The disk
used is an Intel 520 SSD. We report the median of three runs of
each experiment. We use the jemalloc [14] memory allocator
for all experiments. We use bulk interfaces for insertion. Write-
ahead logging is enabled for all systems (fsync() is invoked
on the log file before returning to the client). The Yahoo!
Cloud Serving Benchmark (YCSB) [11] tool is used to generate
workload traces, which are replayed in a light-weight workload
generator. The dataset used is denoted as (U,R,e,S) where U is
the number of unique keys, R is the average number of repeats
for each key, e is the record size and S is the total size of the
dataset. We use uniformly distributed data for experiments.

4.1 Tuning
WB Tree We use a fan-out of 256 and node size of 600MB. As
explained in §4.3, using relatively high fan-outs and node sizes
favors INSERT performance.

LevelDB We found that allocating memory to the page cache
(instead of a special LevelDB write buffer) improves insert per-
formance. Compression is turned off. The creation of Bloom
filters is enabled for fast reads. We use the default values for the
overlap factor M = 10 and partition size (2MB); the heat-map

in Figure 9b shows that, unlike the WB Tree, relatively small
values for these parameters provide better insert performance.

bLSM For bLSM, insert performance improves if a large in-
memory component C0 is used [28]. We allocate 6GB of mem-
ory to C0 and the remaining to the buffer cache.

4.2 Full System Benchmarks
Figure 6 shows the throughput of each key-value store. The

datasets used are: D1: (2×109, 2, 16B, 42GB), D2: (5×108, 8,
64B, 42GB), and D3: (108, 2, 256B, 48GB) for 16B, 64B and
256B records respectively. Figure 7 compares the key-value
stores in terms of memory use and performance of negative
GETs. Four important observations stand out:

• INSERT throughput in the WB tree is nearly 30× and
160× faster than LevelDB and bLSM for small (16B)
records. For 64B records, the improvements are 6.6×
and 14× respectively. For 256B records, the improve-
ment are 1.5× and 3.3× respectively.
• As the record size increases, the number of INSERTs per

second achieved by the WB Tree drops as expected. The
net amount of data written (= INSERTs/sec. × record
size) actually increases from 45MB/s to 65MB/s. The
INSERTs/sec. remains almost constant for both LevelDB
and bLSM, which seems to indicate that some other
process (e.g., compactions or locking), rather than disk
bandwidth, is the bottleneck.
• The WB Tree offers equal or slightly higher GET through-

put than LevelDB and bLSM, with similar GET latencies.
• For the 50%-INSERT workload, the WB Tree and Lev-

elDB perform similarly. The runtime for this workload
is dominated by the GET operations.

Figure 7 shows the memory use of the different systems
along with negative GET throughput and latency on dataset D2.
LevelDB and WB Tree require about 1.5B per key; bLSM re-
quires about 3B. The figure also shows throughput and latency
for GET requests for absent keys. LevelDB’s latency is lower
because it checks fewer Bloom filters. bLSM uses unparti-
tioned components, so for positive Bloom filter tests, it must
sequentially search a part of the component for the key. For
negative GETs, this can be expensive. While the mean latency
is just 0.2ms (not shown), 95th percentile latency is high.

4.3 Write Performance
In this section of the evaluation, we demonstrate the effects of

various optimizations on write performance. Figure 8 compares
the WB Tree and LevelDB write performance. LevelDB uses
default settings for file size (2MB) and overlap factor (10). The
Baseline WB Tree uses a node size of 2MB and a fanout of
10. Using spills and splits instead of compactions allows a 6×
performance improvement.

Write performance depends on keeping write amplification
low. For the WB Tree, reducing the height of the tree reduces
write amplification. Figure 8 shows that a careful choice of WB
Tree parameters significantly increases write performance.

Figure 9a shows that, generally, increasing the fan-out in-
creases throughput. This is because a high fan-out decreases
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the height of the tree which leads to lower write amplification.
An exception is small node sizes, where high fan-outs lead to
mostly small, random writes. Increasing the node size also
decreases the height of the tree and generally improves write
performance. However, extremely large nodes lead to bursty
write performance (not shown).

Crucially, the same improvements cannot be applied to LSM
Trees. Recall from §2.3 that the upper bound on write ampli-
fication for LSM Trees is 2h(M+1) where h is the height of
the tree and M = size of Ci+1

size of Ci
, is the overlap factor. Increasing

the overlap factor reduces the height of the tree, but leads to
poorer write performance due to more expensive compactions
as shown in Figure 9b. Therefore, using relatively small M and
partition sizes works best for LSM Trees.

Figure 8 shows that fast-splitting yields a further improve-
ment of nearly 2× in both cases. One possible heuristic to
decide when to fast-split is to use a fixed fast-split / slow-split
ratio. Figure 10 shows that the write throughput of the WB
Tree increases with increasing values of this ratio.
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Figure 8: Write performance contributions: Large fan-
out/node sizes and fast splitting are both significant.

4.4 Read Performance
To understand GET performance, Figure 11 shows heat-maps

for GET throughput, 95th percentile GET latency and I/Os per
GET. The following observations can be made:

• Figure 11a and 11b show that the fan-out-node-size com-
bination that maximizes GET throughput and minimizes
latency is the same, viz. small values of fan-out and node-
sizes. Also, the combination that works best for reads,
unfortunately, minimizes write throughput (Figure 9a).
• The trend is partially explained by the heat-map in Fig-

ure 11c which shows the number of I/Os per GET. Large
fan-outs and small node sizes increase the number of
lists per node, which, in turn, incurs more false-positives
from the Bloom filters protecting the lists. False positives
cause wasted I/Os leading to lower GET throughput and
higher latencies. An exception is low fan-out with large
node sizes: this incurs few I/Os per GET, but the large
node sizes increase latency from cache misses while
searching the List-Offset index.
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Figure 10: Write throughput increases with an increase in
the fastsplit / slowsplit ratio.

GET performance depends primarily on the number of I/Os
performed per GET operation. The number of I/Os performed
depends on the total number of lists that have to be checked.

4.5 Summary
When to use WB Trees The WB Tree’s INSERT throughput
for small records is 5− 30× higher than LevelDB’s, and it
has slightly better GET throughput with similar latency. The
memory cost is a modest 1-2B per key. For large records, the
WB Tree provides a more modest improvement of 1.5− 2×
higher INSERT throughput.

When to use LSM Trees If a key-ordered store is needed. Also,
if memory is insufficient for List-Selection and List-Offset in-
dexes, an LSM Tree will provide higher GET throughput.

How to use the WB Tree Figure 9 and Figure 11 show that sys-
tem parameters trade between INSERT and GET performance.
For high INSERT performance, high fan-out and large node
sizes must be used; For high GET performance, small fan-out
and small node sizes must be used. A fast-split / slow-split ratio
of 8 or 16 can be used, as higher values can lead to excessive
lists in each node which degrades GET performance.
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Figure 11: GET performance is helped by low fan-outs and
relatively small node sizes.

5. RELATED WORK

5.1 Write-Optimized Stores
There is substantial previous work that has sought to improve

upon the write throughput of systems that use in-place update
indexes such as the B+tree [24], and Extendible hashing [15].

The Log-Structured Merge (LSM) Tree [25] is a data struc-
ture that uses multiple disk-based components of increasing
size to buffer updates and progressively move data down the
tree using efficient bulk I/O. It incorporates the general tech-
nique of using exponentially-sized components proposed by
Bentley [6] to make static data structures dynamic with only
logarithmic increases in query and insertion time. Many real-
world systems including BigTable [8], bLSM [28] are variants
of the LSM tree. FD-Trees are LSM Trees that optimize for
SSDs [21]. Many implementations of LSM Trees (e.g., Lev-
elDB) also use partitioning [19] as a means to limit compaction
activity to heavily-written key-ranges for inputs non-uniformly
distributed over the key-space.

The WB Tree replaces I/O-intensive compaction operations
in LSM Trees with cheaper spills and splits that allow sig-
nificantly faster inserts, and extends the idea of relaxing the
number of possible locations for a record with fast-splitting.

The Sorted Array Merge Tree (SAMT) used in Cassandra
and GTSSL [30] is the closest to the WB Tree. The SAMT uses
exponentially-sized levels and, similar to WB Trees, writes mul-
tiple possibly-overlapping ranges from one component to the
next before having to perform a compaction. GTSSL develops
techniques to adapt to changing read-write ratios and adapting
to hybrid disk-flash systems.

These improvements are orthogonal to the ones discussed
in this paper and the WB Tree focuses on offering better write
performance through fast-splitting.

There are many other write-optimized schemes we are un-
able to cover in detail. The log-structured file system (LFS)
introduced many of the ideas used in write-optimized systems.
The Buffer Tree [3] offers excellent write and read throughput
if good amortized read performance is sufficient.

5.2 Read Performance
With respect to read performance, LSM Trees require each

component to be checked for a read. To improve performance,
datastores typically (a) cache frequently accessed data in mem-
ory, (b) protect components with Bloom filter to prevent waste-
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ful accesses (e.g. LevelDB, Cassandra, bLSM), and (c) use
fractional cascading [9], where partial results from searching
one component are used to speed up searching following com-
ponents (e.g. Cache-Oblivious Lookahead Arrays (COLA) [5]).

While WB Trees benefit from caching of frequently-accessed
data in memory, caching is not the focus of this paper. WB
Trees adopt the use of Bloom filters to protect each list in every
node. In addition, WB Trees use additional indexes to store the
offset of a record within a list, since lists can be quite large.

The List-Selection index (§3.4.1) maps each key in the WB
Tree to the level in the tree that stores the key. This index can
be implemented using hashtables, but even a memory-efficient
hashtable like Sparsehash [16] is space-inefficient for this func-
tion as it has to store entire keys in memory (for collision
resolution). SILT [22] includes an immutable index that uses
minimal perfect hashing that maps n keys to the consecutive
integers 0 . . .n− 1 with no collisions; this does not require
the keys to be present in memory for non-mutating accesses.
However, for dynamic perfect hashing, keys are required to be
present in memory to allow rehashing parts of the hashtable in
case of inserts that may cause collisions [12]. The WB Tree,
instead, constructs the List-Selection index by using Bloom
filters to protect each list.

6. DISCUSSION
Providing ordered access. While many systems require

only per-object retrieval, many also benefit from the range query
support provided by an ordered store. While the fundamental
notion of spills and splits applies naturally to both ordered
and unordered stores, extending the design of the WB tree
to support ordered access is important future work that will
require non-trivial engineering to do well while preserving the
structure’s high performance.

Bounding worst-case memory per key. Being parsimo-
nious with memory is particularly important when dealing with
many small key/value pairs. Here we consider two possible sce-
narios where the memory used per key can become amplified.
We show that the problem is non-existent in the first scenario
and provide a solution for the second.

For records smaller than the page size the memory used per
key is due, predominantly, to the Bloom filters used in the
List-Selection index (the List-Offset index uses only 8 bytes
per (4kB) page of records). For each key in a list, the Bloom
filter protecting the list requires about 10 bits for a 1% false
positive ratio. If a key appears in multiple lists in the WB Tree,
then the memory used for that key would be 10 bits per list.
This amplification of memory can occur in two scenarios: (a)
repeats in different nodes in the tree, and (b) repeats in different
lists within a single node. We consider each case separately.

In the former case, the problem of memory amplification
does not arise. For ease of analysis, suppose that copies of all
keys in the WB Tree are present in the leaf level (i.e., level 0).
As shown by the analysis in Section 3.1, with large fan-outs
(e.g., 256), the proportion of leaf nodes in the tree is close to
1. This means that the memory used by the non-leaf nodes is
small (less than 1%) of that of the leaf nodes.

In the latter case, if the number of lists in a node is l, a
key could occur in each of l lists amplifying the memory used

by l. To solve this problem, we need an estimate of α =
number of unique keys in node
total number of keys in node . The ratio α provides a measure of

memory amplification in the node. If α is 1, then no keys repeat;
if α = 1

l , then all keys repeat l times. If an estimate of α can
be maintained, then memory amplification can be bounded by
forcing a spill or slow-split on the node when α reaches the
desired threshold. To bound the memory amplification to 2, for
example, a node is spilled or slow-split whenever α becomes
less than 1/2. Next, we provide a method for estimating α .

Suppose that L1,L2, . . . ,Ll are sets containing the keys in
each list; the number of unique keys in the node is |L1∪L2∪
·· ·∪Ll |. Computing the union of the lists is difficult, because
when the list corresponding to set Li is spilled from the parent,
all older lists in the node have already been written to disk.
To solve this, we propose the use of cardinality estimators.
K-Minimum Values (KMV) [4] is a cardinality estimator that
can estimate the cardinality of a list of elements by inspecting a
small fraction of the list. Assuming that a hash function exists
that uniformly distributes the elements of the list, intuitively, if
there are n elements in the list, the average spacing between the
hash values would be 1/n-th of the range of hash values. KMV
uses this idea to maintain a digest of the k-smallest hash values
seen in the list; the average distance between these k-successive
hashes yields an estimate of the cardinality of the list. For a
union of m lists, the digest of each list can simply be merged
and truncated to k to obtain a digest for the union. This solution
works well for WB Tree lists because the sorted hashes of all
keys in a list are already available.

7. CONCLUSION
This paper presents the WriteBuffer (WB) Tree, a new data

structure that forms the basis of a write-optimized, single-
node key-value store. State-of-the-art write-optimized key-
value stores are typically based on variants of the popular
Log-Structured Merge (LSM) Tree. The WB Tree replaces
the I/O-heavy primitive in the LSM Tree, the compaction, with
new light-weight primitives called spills and splits. Further, a
novel technique called fast-splitting is proposed to improve the
performance of splits. Using these techniques, the WB Tree’s
insert throughput is up to 7× and 14× faster than LevelDB and
bLSM, two LSM Tree implementations, for 64B records. The
tradeoff is that unindexed read performance in a WB Tree is
worse than unindexed LSM Tree performance. A solution to
restore read performance is then proposed: a new set of indexes
for the WB Tree allow reads to be performed with 1-2 seeks
using less than 2B/key for the index.
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