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Summary

The bioorthogonal copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction

exhibits complex but well-defined kinetics in aqueous and organic solution for solu-

ble azides, alkynes, and ligand-bound copper(I). The kinetic profile in two dimensions,

however, for CuAAC systems within a lipid bilayer membrane, has yet to be defined.

The effect of triazole formation with lipid membrane-bound components on membrane

properties such as fluidity and permeability is also of interest. Azide- and alkyne-

functionalized lysolipids were synthesized and incorporated into non-fluid vesicles, which

were then subject to CuAAC. The rate order for membrane-bound lipid substrates in

non-fluid vesicles was observed to be comperable to that of the reaction in solution.

Reactions between vesicles showed evidence of lipid transfer between non-fluid mem-

branes, which has not been previously reported. For intervesicular and intravesicular

reactions in non-fluid membranes, the observed reactivity was found to be opposite that

of previously published reactions between nucleophiles and electrophiles in fluid lipid

systems. Applications of this work include the potential for novel symmetric membrane

leaflet labeling, bioorthogonal manipulation of cell and tissue function, and the cre-

ation of membranes with precisely controlled properties that may not be available in

naturally-occurring membranes.
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Chapter 1

Introduction

Beveridge, J.M., Finn, M.G.

1.1 Introduction to Copper(I)-Catalyzed [3+2] Azide-Alkyne

Cycloaddition

Copper(I)-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) is a regioselective and

bioorthogonal reaction through which an azide and a terminal alkyne form a

1,4-disubstituted-1,2,3-triazole when in the presence of a copper(I) catalyst and

copper(I)-binding ligand, as shown in Figure 1.1.1

.

Figure 1.1: CuAAC reaction scheme for alkyl and aryl R1 and R2

This reaction is wide in scope, meaning it is compatible with a large number of

other functional groups, and is tolerant to both aqueous and organic solvents.1,2

The kinetics of this reaction in the solution phase, are well-defined. With excess

copper, the reaction exhibits first order kinetics with respect to azide and between

1Rostovtsev, V.V., Green, L.G., Fokin, V.V., Sharpless, K.B. A Stepwise Huisgen Cycloaddition Pro-
cess: Copper (I)-Catalyzed Regioselective Ligation of Azides and Terminal Alkynes. Angew. Chem. Int.
Ed. 41, 2596-2599, doi: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4 (2002).

2Kolb, H.C., Finn, M.G., Sharpless, K.B. Click Chemistry: Diverse Chemical Function from
a Few Good Reactions. Angew. Chem. Int. Ed. 40, 11, 2004-2021. doi: 10.1002/1521-
3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 (2001).

1



Figure 1.2: Catalytic Cycle proposed by Worrell et. al. for CuAAC

first and second order kinetics with respect to alkyne. With catalytic copper,

the system displays second order kinetics with respect to copper.3 Though the

mechanism for CuAAC is belived to be somewhat understood for soluble reactants

as seen in Figure 1.2,4 the reaction between azide and alkyne held in a two-

dimensional matrix such as the lipid bilayer may not necessarily proceed via the

same mechanism, or may be inhibited by the geometrical or dynamic limitations

of membranes.

Fluid lipid bilayers allow for true two-dimensional reactivity because lipids are

able to diffuse throughout the membrane within the same leaflet,5 whereas with

solid, non-membrane supports, the substrates are tethered to the support and the

system lacks movement parallel to the support surface.6

3Rodionov, V.O., Fokin, V.V., Finn M.G.. Mechanism of the Ligand-Free Cu(I)-Catalyzed Azide-
Alkyne Cycloaddition Reaction. Angew. Chem. Int. Ed. 44, 2210-2215, doi: 10.1002/anie.200461496
(2005).

4Worrell, B.T., Malik, J.A., Fokin, V.V. Direct Evidence of a Dinuclear Copper Intermediate in Cu(I)-
Catalyzed Azide-Alkyne Cycloadditions. Science, 340, 6131, 457-460, doi: 10.1126/science.1229506
(2013).

5O’Leary, T.J. Lateral Diffusion of Lipids in Complex Biological Membranes. Proc. Natl. Acad. Sci.
84, 429-433 (1987).

6Hodge, P. Polymer-supported Organic Reactions: What Takes Place in the Beads? Chem. Soc.
Rev. 26, 417-424, doi: 10.1039/CS9972600417 (1997).

2



1.2 Biological Importance of Lipid Membranes

Lipids self-assemble in aqueous solution to form noncovalently arranged structures,

with the polar hydrophilic headgroups facing outward toward the aqueous media

and the nonpolar, hydrophobic tails segregated from the aqueous environment,

thereby minimizing the hydrocarbon-water contact and lowering the free energy

of the system.7 This self-assembly is dictated by both the hydrophobic forces that

drive the isolation of the hydrocarbon chains and the ionic and/or steric repulsion

of the polar headgroups from one another. The type of structure (vesicles, micelles,

flat bilayers) formed by lipids in aqueous solutions depends on headgroup area,

chain volume, and chain length.8 Lipid bilayers, of course, play a vital role in

cell organization and compartmentalization, making up the cellular and organelle

membranes, and are involved in trafficking and regulating the movement of ions

and organic molecules.9 Biological membranes also contain cholesterol, membrane-

associated proteins, and glycosylated lipids and proteins which work together to

execute membrane-related processes.10

1.3 Chemical Reactivity of Membrane-Bound Substrates

Studies of the dynamic behavior of membranes has led to the proposal of lipid

microdomains, in which lipids phase separate, with portions of the membrane ex-

hibiting characteristics of both liquid- and gel-phase lipids.11 This dynamic behav-

ior has prompted much research into the formation and role of lipid microdomains

in cellular processes, and suggests a need for further studies into membrane be-

7Ruckenstein, E., Nagarajan, R. Thermodynamiccs of Amphilar Aggregation into Micelles and Vesi-
cles. Micellization, Solubilization, and Microemulsions, Vol. 1, Plenum Press: New York (1977).

8Lindblom, G., Wennerström, H. Amphiphile Diffusion in Model Membrane Systems Studied by
Pulsed NMR. Biophys. Chem. 6, 2, 167-171 (1977).

9Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P. Molecular Biology of the Cell,
5th Ed., Garland Science: New York (2007).

10Lillemeier, B.F., Pfeiffer, J.R., Surviladze, Z., Wilson, B.S., Davis, M.M. Plasma Membrane-
Associated Proteins are Clustered into Islands Attached to the Cytoskeleton. Proc. Nat. Acad. Sci.
103, 50, 18992-18997, doi: 10.1073/pnas.0609009103 (2006).

11Simons, K., Vaz, W.L.C. Model Systems, Lipid Rafts, and Cell Membranes. Annu. Rev. Biophys.
Biomol. Struct. 33, 269-295, doi: 10.1146/annurev.biophys.32.110601.141803 (2004).

3



havior in both liquid- and gel-phases,12,13 because these microdomains are vital

chemically reactive sites within the membrane.14,15 Lipid involvement in the or-

ganization of these microdomains is particularly relevent for cell signalling and

communication.16

Lipids and interactions between lipids have been documented to play a large

role in controlling neuronal communicaiton and behavior,17 which suggests the

need for understanding reactivity between lipid membranes. Reactivity between

membrane-bound substrates in two independent vesicles, as well as within the

same vesicle, have been evaluated by Menger using a cholesterol-bound hydroxa-

mate nucleophile and a p-nitrophenyl ester electrophile by Menger. For the fluid

lipid system employed, it was observed that intravesicular reactions proceed faster

than solution-solution reactions and solution-vesicle reactions, with intervesicular

reactions proceeding the most slowly, as shown in Figure 1.3.18

Figure 1.3: Reactivity of Nucleophile-Electrophile Pairs with Fluid Lipid Membranes.

When the same cholesterol-bound hydroxamate nucleophile was reacted with a

lipid analogue of a quinolium ester, collisions between vesicles led to a transfer of

the the lipid electrophile from one vesicle to another, which was then followed by

12Eggeling, C., et al. Direct Observation of the Nanoscale Dynamics of Membrane Lipids in a Living
Cell. Nature 457, 1159-1162, doi: 10.1038/nature07596 (2009).

13Pierce, S.K. Lipid Rafts and B-cell Activation. Nat. Rev. Immun. 2, 96-105, doi: 10.1038/nri726
(2002).

14Radhakrishnan, A., Anderson, T.G., McConnell, H.M. Condensed Complexes, Rafts, and the
Chemical Activity of Cholesterol in Membranes. Proc. Natl. Acad. Sci. 97, 23, 12422-12427, doi:
10.1073/pnas.220418097 (2000).

15Young, R.M., Holowka, D., Baird, B. A Lipid Raft Environment Enhances Lyn Kinase Activity by
Protecting the Active Site Tyrosine from Dephosphorylation. J. Bio. Chem. 278, 20746-20752, doi:
10.1074/jbc.M211402200 (2003).

16Fessler, M.B., Parks, J.S. Intracellular Lipid Flux and membrane Microdomains as Organizing
Principles in Inflammatory Cell Signalling. J. Immunol. 187, 1529-1535, doi: 10.4049/jimmunol.1100253
(2011).

17Di Paolo, G., Moskowitz, H.S., Gipson, K., Wenk, M.R., Voronov, S., Obayashi, M., Ravell, R.,
Fitzsimonds, R.M., Ryan, T.A., De Camilli, P. Impaired PtdIns(4,5)P2 Synthesis In Nerve Terminals
Produces Defects in Synaptic Vesicle Trafficking. Nature 431, 415-422, doi: 10.1038/nature02896 (2004).

18Menger, F.M., Azov, V.A. Cytomimetic Modeling in Which One Phospholipid Liposome Chemically
Attacks Another. J. Am. Chem. Soc.122, 6492-6493, doi: 10.1021/ja000504x (2000).

4



a rapid intravesicular reaction.19 This observation of lipid transfer without assis-

tance from proteins to facilitate exchange was not the first of its kind. Spontaneous

lipid transfer, via monomer diffusion or transient contact, has been observed in

many model fluid membrane systems with both phospholipids and lysolipids.20,21

The observed rate of cholesterol and lipid transfer, however, varies greatly depend-

ing on the lipid. It has been reported to be as fast as an exchange half time of

2.3 hours for [4-14C]cholesterol or as slow as 48 hours for 1-palmitoyl-2-oleoyl [1-

14C] phosphatidylcholine.22 Membranes, therefore, are two-dimensional systems

of great biological importance that exhibit variable fluidity and are chemically

addressible.

1.4 [3+2] Azide-Alkyne Cycloaddition with Membrane-Bound

Substrates

Lipids are biologically vital molecules, and interest in studying lipid membrane dy-

namic behavior makes the ability to observe lipid membrane behavior, alter mem-

brane composition, and selectively target lipid membranes useful. Some research

has been done toward these aims. Neef and others created strained cyclooctyne-

based lipids, able to undergo cycloaddition to form 1,2,3-triazoles with suitable

azide fluorophores in live cells without copper;23 however, these strained cyclooc-

tyne systems are sterically bulky and may perturb the dynamics of lipid system

being observed. Alternatively, several researchers have made lipid analogues com-

patible with CuAAC. The ability to perform CuAAC with lipid membrane-bound

substrates provides a platform for studying the reaction in a two-dimensional sys-

tem, a tool for symmetric membrane labeling of lipid membrane leaflets, and a

19Menger, F.M., Caran, K.L, Seredyuk, V.A. Chemical Reaction between Colliding Vesicles.
Angew. Chem. Int. Ed. 40, 20, 3905-3907, doi: 10.1002/1521-3773(20011015)40:20¡3905::AID-
ANIE3905¿3.0.CO;2-B (2001).

20Sleight, R.G. Intracellular Lipid Transport in Eukaryotes. Ann. Rev. Physiol. 49, 193-208, doi:
10.1146/annurev.ph.49.030187.001205 (1987).

21Needham, D., Zhelev, D.V. Lysolipid Exchange with Lipid Vesicle Membranes. Ann. Biomed. Eng.
23, 287-298, doi: 10.1007/BF02584429 (1995).

22McLean, L.R., Phillips, M.C. Mechanism of Cholesterol and PHosphatidylcholine Exhange or Trans-
fer between Unilamellar Vesicles. Biochemistry 20, 10, 2893-2900, doi: 10.1021/bi00513a028 (1981).

23Neef, A.B., Schultz, C. Selective Fluorescence Labeling of Lipids in Living Cells. Angew. Chem.
Int. Ed. 48, 1498-1500, doi: 10.1002/anie.200805507 (2009).

5



Figure 1.4: Previously Synthesized Azide and Alkyne Functionalized Lipds by Neef,
Gubbens, Gaebler, Smith, and others.

means for targeting membranes directly. CuAAC-capable lipids include the azide

tail-modified phosphtidylcholine analogs created by Gubbens et al.,24 the alkyne

tail-modified phospholipid created by Gaebler et al.25 and Neef and Schultz,23 the

azide head-modified lipid analogue from Smith et al.,26 (see Figure 1.4) and the

commercially available Pac FA GalCer from Avanti which features a alkyne mod-

ified tail, as well as DSPE-PEG(2000) that features a polyethylene glycol linker

between lipid and azide.

Of these, the commercially available azide and alkyne modified lipid analogues

are costly or place the azide functional group at a great distance from the lipid

bilayer, or buried deep within the membrane. The latter may not be ideal for

studying reaction kinetics for CuAAC at the membrane-water interface as reac-

tion participants require access to the other reactive species. The synthetically

accessible lipids described above can, at times, provide the functionality in a lo-

cation as desired, yet the routes to these synthetic targets are arduous, with some

low yielding steps. It is desired, therefore, to have synthetically accessible azide

and alkyne functionalized lipids by which membrane dynamics can be observed.

24Gubbens, J.et al. Photocrosslinking and Click Chemistry Enable the Specific Detection of Pro-
teins Interacting with Phospholipids at the Membrane Interface. Chemistry & Biology 16, 3-14, doi:
10.1016/j.chembiol.2008.11.009 (2009).

25Gaebler, A.et al. Alkyne Lipids as Substrates for Click Chemistry-Based in vitro Enzymatic Assays.
J Lipid Res. 54, 8, 2282-2290, doi: 10.1194/jlr.D038653 (2013).

26Smith, M.D. et al. Synthesis and Convenient Functionalization of Azide-Labeled Diacylglycerol
Analoges for Modular Access to Biologically Active Lipid Probes. Bioconjugate Chem. 19, 9, 1855-1863,
doi: 10.1021/bc/800102 (2008).
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It is also desirable to create a platform for observing membrane kinetics in two-

dimensions, and for observing the effects of triazole formation on lipid membranes

with membrane-bound CuAAC substrates. This work seeks to create azide and

alkyne functionalized lipids via relatively facile synthetic means and will use them

to observe membrane kinetics and the effect of triazole formation on the lipid

membrane. In the following chapter, the synthetic methods to create the azide

and alkyne functionalized lipids will be described.
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Chapter 2

Synthesis and Characterization of

Clickable Lipid-Like Molecules

Beveridge, J.M., Chenot, H.M., Finn, M.G.

2.1 Overview of Synthetic Strategy

As an alternative to these restrictive synthetic and costly commercially available

azide and alkyne modified lipid analogues, we developed more facile synthetic

options by designing lyso-like lipid analogues. To promote the kinetic study of

their reactions, 7-hydroxy-3-azidocoumarin (λex = 404 nm, λem = 476 nm) was

used. The fluorescence of this compound is quenched, but conversion of the azide

group to the triazole induces relatively strong fluorescence, as seen in Figure 2.1.1

Attachment of a linker to the hydroxyl group changes, but does not abrogate

this convenient activity. Therefore, this fluorophore was incorporated into our

synthetic designs as an azide source for each azide modified lipid analogue.

Cholesterol-based lipids have also been used to study reactions between lipid

bilayers and have been instrumental in assessing reactivity for interliposomal re-

actions.2 As such, cholesterol derivatives were also created for incorporation into

lipid membranes.

1Sivakumar, K., Xie, F., Cash, B.M., Long, S., Barnhill, H.N., Wang, Q. A fluorogenic 1,3-dipolar cy-
cloaddition reaction of 3-azidocoumarins and acetylenes. Org. Lett. 6, 4603-4606, doi:10.1021/ol047955x
(2004).

2Menger, F.M., Azov, V.A. Cytomimetic Modeling in Which One Phosphlipid Liposome Chemically
Attacks Another. J. Am. Chem. Soc., 122, 6492-6493, doi: 10.1021/ja000504x (2000).
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Figure 2.1: 7-hydroxyazidocoumarin exhibits low fluorescence on its own, but when the
azide rects to form a triazole, the resultant product exhibits an intense fluorescence at
476 nm when excited at 404 nm.

The syntheses described herein were not optimized for yield, but rather were

required to produce only small amounts of materials for use. All reagents and

materials used were obtained commercial sources and were used without further

purification, unless otherwise noted.

2.2 Synthesis of 3-azido-2-oxo-2H-chromen-7-yl-2-

(octadecylamino)acetate

Figure 2.2: Synthetic scheme for an azido-modified lyso-like lipid

7-hydroxy-3-azidocoumarin was synthesized as described by Sivakumar et al.1

7-hydroxy-3-azidocoumarin (20 mg, 0.098 mmol, 1 equiv.) and triethylamine (41

μL, 0.3 mmol, 3 equiv.) were stirred in dichloromethane at room temperature in

the dark for 5 minutes before chloroacetyl chloride (16 μL, 0.196 mmol, 2 equiv.)

was added. This was stirred without light for 10 minutes, at which point steary-

lamine (53 mg, 0.196 mmol, 2 equiv.) was added. This was stirred for 1 hour at

room temperature and purified by medium-pressure chromatography over silica

gel (Biotage) with hexane/ethyl acetate gradient (Rf = 0.28 for 1:5 EtOAc/Hex).

The product (Figure 2.2), obtained as a yellow solid with 13% yield, was extremely

photosensitive, especially when dissolved in chloroform.

1H-NMR (CDCl3, 500 MHz): δ (ppm) 0.91 (t, 3H, J= 7 Hz), 1.28 (m, 24H),

1.58 (t, 2H, J= 7 Hz), 3.33 (q, 2H, J= 7 Hz), 4.09 (s, 2H), 4.36 (s, 1H), 6.62 (s,
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1H), 6.58 (m, 1H), 7.19 (s, 1H), 7.32 (d, 1H, J= 8 Hz). IR (cm-1): 3289 (secondary

amine), 2138 (azide), 1697 (carbonyl), 1642 (carbonyl).

2.3 Synthetic scheme for N-(prop-2-yn-1-yl)octadecan-1-

amine

Figure 2.3: Synthetic scheme for an alkyne-modified lyso-like lipid

Stearylamine (50 mg, 0.186 mmol, 1 equiv.) and potassium tert-butoxide (62

mg, 0.557 mmol, 3 equiv.) were combined in DMF (8 mL). The system was purged

with nitrogen and heated to 40 ◦C. Propargyl bromide (18 μL, 0.204 mmol, 1.1

equiv) was added and the solution was stirred overnight at 40 ◦C. The reaction was

quenched with water and extracted with dichloromethane. The solution was dried

over sodium sulfate. Solvent was removed by rotory evaporation with toluene

azeotrope to yield a yellow powder and the compound was purified via flash chro-

matography over silica gel with a hexane/ethyl acetate gradient (Rf = 0.46 for 1:1

EtOAc/Hex). The product (Figure 2.3) was obtained with 56% yield.

1H-NMR (CDCl3, 500 MHz): δ (ppm) 0.90 (t, 3H, J = 7 Hz), 1.28 (m, 26H),

1.53 (p, 2H, J= 7 Hz), 2.28 (t, 1H, J= 2 Hz), 2.60 (t, 2H, J= 7 Hz), 3.51 (d,

2H, J = 2 Hz). 13C-NMR (CDCl3, 500 MHz) δ (ppm) 13.94, 22.52, 26.94, 27.11,

29.19, 31.75, 41.87, 52.84, 73.40. Mass Spec: (M + K+) 346.50. IR (cm-1): 3290

(alkyne), 3120 (secondary amine), and 2120 (terminal alkyne).
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2.4 Synthesis of 6-azido-7-oxo-7,8-dihydronaphthalen-2-yl

((3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-

6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,

17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)

carbonate

Figure 2.4: Synthetic scheme for azidocoumarin-labeled cholesterol.

7-hydroxy-3-azidocoumarin was synthesized as described by Sivakumar et al.??

and dissolved in dichloromethane. Potassium tertbutoxide (15 mg, 0.13 mmol, 1.5

equiv.) was added and the solution was stirred under nitrogen at room temper-

ature. Chloesteryl chloroformate (40 mg, 0.09 mmol, 1 equiv.) was dissolved in

dry dichloromethane and stirred overnight. Solvent was removed by rotary evap-

oration and purified via silica gel column with a hexane/ethyl acetate gradient.

(Rf= 0.79 for 1:5 EtOAc/Hex). The product (Figure 2.4), a yellow powder, was

obtained with 29% yield.

1H-NMR (CDCl3, 500 MHz): δ (ppm) 0.69 (s, 3H), 0.92 (d, 3H, J= 7Hz),

0.97-1.57(m), 1.71-2.02 (m) 2.49(m, 2H), 4.61(septet, 1H, 5 Hz), 5.43 (doublet,

1H, J= 5 Hz), 7.16 (doublet of doublets, 1H, J= 2, 9 Hz), 7.20(s, 1H), 7.25 (d,

1H, J= 2Hz), 7.43 (d, 1H, J=9 Hz).
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Figure 2.5: Synthetic scheme for coumarin triazole.

2.5 Synthesis of 7-hydroxy-3-(4-(2-hydroxypropan-2-yl)-1H-

1,2,3-triazol-1-yl)-2H-chromen-2-one

7-hydroxy-3-azidocoumarin was synthesized as described by Sivakumar et al.??

and was mixed (40 mg, 0.20 mmol, 1 equiv.) in water (10 mL) with 2-methyl-3-

butyn-2-ol (57 μL, 0.59 mmol, 3 equiv.), copper(II) sulfate (3 mg, 0.02 mmol, 0.1

equiv.), and THPTA (43 mg, 0.10 mmol, 0.5 equiv.). To this was added sodium

ascorbate (39 mg, 0.2 mmol, 1 equiv.), and the solution was stirred at room tem-

perature for 3 hours. Product was extracted with ethyl acetate, washing with

water thrice. Solvent was removed by rotary evaporation and further dried by

lyophilizer. (Rf=0.10 for 1:1 EtOAc/Hex). The product, a brown powder was

obtained in 90% yield.

1H-NMR (d4-methanol, 500 MHz): δ (ppm) 1.31 (s, 6H), 3.59 (s, 1H), 4.55

(s, 1H), 6.85 (d, 1H, J=2 Hz), 6.92 (d of d, 1H, J=2, 9 Hz), 7.67 (d, 1H, J= 9

Hz), 8.45 (s, 1H), 8.51 (s, 1H). IR (cm-1): 3345 (alcohol), 1709 (carbonyl), 1604

(alkene), 1252, 1150, 1120 (C-O stretch).
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Chapter 3

Creation and Characterization of

Small Unilamellar Vesicles

Beveridge, J.M., Baksh, M.M., Chenot, H.M., Finn, M.G.

3.1 Choice of Lipid System

When considering lipid systems with which to evaluate CuAAC kinetics, many

platforms are available. We small unilamellar vesicles (SUVs), approximately 75

nm in diameter)for their relatively facile preparation and their consistency with

respect to composition and size distribution, relative to larger vesicles, which are

usually subject to greater variability in properties.

Initially, we attempted to introduce our artificial lipids into a relatively fluid

lipid system comprised of L-alpha-phosphatidylcholine (Egg PC) and 1,2-dimyristoyl-

sn-glycero-3-phospho-L-serine (DMPS), which are both fairly inexpensive and easy

to use for vesicle formation; however, these experiments resulted in the formation

of micelles, in addition to vesicles, characterized by average radii of approximately

10 nm as observed by dynamic light scattering (DLS) (Figure 3.1). Note that

as smaller objects are less sensitibely detected by DLS, the observed distribution

indicates a significant population of micelles in these samples.

Experiments performed in micelles would be expected to be subject to aggrega-

tion effects rather than by distribution of reactants in ”two-dimensional” bilayers.
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Figure 3.1: Observation of Micelle Formation upon Introduction of Artificial Lipids into
Egg PC Lipid System

This type of phase separation and segregation has been observed in other lipid sys-

tems1,2 and was resolved by creating a more uniform lipid system with a less fluid

lipid, 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC). Vesicles formed

from a mixture of DPPC and the synthetic lyso-like lipids described in Chapter 2

showed no evidence of micellular formation (Figure 3.2).

3.2 Preparation of Small Unilamellar Vesicles

Small unilamellar vesicles were prepared similar to the method described by Abram-

son, Katzman, and Gregor.3 The previously described lyso-like lipids were dis-

solved in chloroform and mixed with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine

(DPPC, Avanti Polar Lipids) and stearylamine such that DPPC made up 99% of

the overall lipid concentration and the synthesized lipids and stearylamine made up

1% of the total lipid concentration. In instances where synthesized azide, alkyne,

and copper-binding ligand were all used in the same vesicle, no stearylamine was

1Haluska, C.K., Baptista, M.S., Fernandes, A.U., Schroder, A.P., Marques, C.M., Itri, R. Photo-
activated Phase Separation in Giant Vesicles Made from Different Lipid Mixtures. Biochim. Biophys.
Acta 1818, 3, 666-672, doi: 10.1016/j.bbamem.2011.11.025 (2011).

2Johnsson, M., Edwards, K. Liposomes, Disks, and Spherical Micelles: Aggregate Structure in Mix-
tures of Gel Phase Phosphatidylcholines and Poly(Ethylene Glycol)-Phospholipids. Biophys. J. 85, 6,
3839-3847, doi: 10.1016/S0006-3495(03)74798-5 (2003).

3Abramson, M. B., Katzman, R. & Gregor, H. P. Aqueous Dispersions of Phosphatidylserine: Ionic
Properties. J. Biol. Chem. 239, 70-76 (1964).
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Figure 3.2: No Micelle Formation Observed upon Introduction of Artificial Lipids into
DPPC Lipid System

added. When synthesized azide and alkyne were used but the copper-binding lig-

and was not lipid-bound, the molar ratio that the copper-binding ligand would

have comprised was replaced by an equivalent molar ratio of stearylamine. Sim-

ilarly, in each instance where a vesicle was created to be lacking azide, alkyne,

or copper-binding ligand, the molar ratio of the lacking component was replaced

with an equivalent molar ratio of stearylamine for consistent lyso-lipid composition

between samples. Precise lipid compositions are detailed in Table 3.1.

Table 3.1: Vesicle Types and Composition

Vesicle Type [DPPC] (mM) [Azide-Lipid] (μM) [Alkyne-Lipid] (μM) [Stearylamine] (μM)

1.7 48 0.0 53

1.7 0.0 48 53

1.7 48 48 5.0

Vesicle creation is depicted in Figure 3.3. Lipds were mixed in chloroform as
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described above, and solvent was removed by evaporation in a round-bottom flask

to form a thin lipid film. The lipids were rehydrated in a 0.2 M pH 7 sodium

phosphate buffer overnight at 4 ◦C and then warmed gently with heating from

a heat gun until fully rehydrated as determined by visual inspection. They were

then sonicated with a probe tip sonicator under inert atmosphere and centrifuged

at 160,000 x g for 2 hours. The top 20 μL was removed carefully with a pipette

and discarded. The remainder of the supernatant was isolated and used within 24

hours for experimentation.

Figure 3.3: Fabrication of Small Unilamellar Vesicles

Thus, relatively uniform vesicles were created with azide- and alkyne-functionalized

lipids doped in at specific concentrations to a primarily DPPC membrane, to be

used further experimentation.

3.3 Copper Catalyzed Azide-Alkyne Cycloaddition of

Membrane-Bound Substrates

CuAAC was carried out by mixing equal volumes of azide, alkyne, THPTA, cop-

per(II) sulfate, and sodium ascorbate stock solutions. When one of the reaction

substrates was vesicle bound, the concentrations used for the membrane-bound

component were those as prepared in the lipid preparations described above. Oth-

erwise, default stock concentrations were as follows: 200 μM azidocoumarin, 1.9

mM 2-methyl-3-butyn-2-ol, 57 μM copper(II) sulfate, 300 μM THPTA, and 13 mM

sodium ascorbate. The final concentrations of each in the reaction solutions are

as follows: 40 μM azidocoumarin, 370 μL 2-methyl-3-butyn-2-ol, 12 μM copper(II)

sulfate, 60 μM tris(3-hydroxypropyltriazolylmethyl)amine (THPTA), and 2.5 mM

sodium ascorbate.
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3.4 Characterization of Small Unilamellar Vesicles

Vesicles were characterized by the average of eight DLS measurements and three

Zeta Potential measurements for each sample, both pre- and post-CuAAC. In

general, vesicles were relatively uniform in size and typically ranged from 30 to 45

nm in radius, depending on the artificial lipid. The vesicles tended to be slightly

positively charged, as evaluated by Zeta Potential.

Table 3.2: Vesicle Characterization

Vesicle Type Radius (nm) Zeta Potential (mV)

40.3 ± 10.1 4.06 ± 0.25

33.0 ± 5.8 5.27 ± 0.09

32.6 ± 6.0 5.13 ± 0.35

With non-fluid lipids in gel-phase (with experiments performed at room tem-

perature) and with the long octadecyl chains anchoring the synthetic lipids to the

membrane, it was anticipated that DLS would show an increase in vesicle size

upon triazole formation via CuAAC, due to vesicle aggregation. This, however,

was not the case.

The lack of vesicle size change (Figure 3.4), coupled with an increase in fluo-

rescence upon triazole formation, as will be detailed next chapter, suggests a lipid

transfer from one vesicle to another, similar to that observed by Menger.4 To this

4Menger, F.M., Caran, K.L., Seredyuk, V.A. Chemical Reaction between Colliding Vesicles.
Angew. Chem. Int. Ed. 40, 20, 3905-3907, doi: 10.1002/1521-3773(20011015)40:20<3905::AID-
ANIE3905>3.0.CO;2-B (2001).
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author’s knowledge, this is the first such report of lipid transfer between non-fluid

vesicles or between lipid bilayers in gel phase.

Figure 3.4: Vesicle Size Pre- and Post-CuAAC

Figure 3.5: Zeta Potential Pre- and Post-CuAAC

As expected, the Zeta Potential of the system was not affected by triazole

formation, although the slightly positive charge of vesicles could provide positive-

positive charge repulsion between vesicle surfaces, which may make lipid transfer

more energetically favorable than vesicle aggregation.

18



Chapter 4

Kinetics with Membrane-Bound

Lipid Substrates

Beveridge, J.M., Chenot, H.M., Baksh, M.M., Finn, M.G.

4.1 Kinetics Experimental

A comparison of the CuAAC reaction in lipid membranes vs. in solution can be

done informatively by comparing the kinetic rate order in various components.

Figure 4.1: Illustration of Kinetics Experimental Setup

Kinetics were carried out for lipid systems in 96-well plates and were initated

by the addition of 40 μL sodium ascorbate (see Figure 4.1) to a 160 μL solu-

tion of azide, alkyne, copper(II) sulfate, and THPTA, with the lipid azide and
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alkyne components described eariler, or with water-soluble analogues. When one

of the reaction substrates was vesicle bound, the highest concentrations used for

the membrane-bound component were those described in Table 3.1. Otherwise,

the default concentrations in the reaction solution are as follows: 40 μM azido-

coumarin, 370 μL 2-methyl-3-butyn-2-ol, 12 μM copper(II) sulfate, and 60 μM

THPTA. The amount of the reactive species of interest was then diluted by two,

while all other concetrations were held constant, so that kinetics were observed for

the half the concentration of the species of interest, and this was repeated for sev-

eral dilutions for each species of interest. Fluorescence measurements were made

by a ThermoFisher Varioscan plate reader. The rate of each CuAAC reaction was

monitored via changes in fluorescence intensity (λexc = 404 nm, λem = 476 nm)

of the coumarin fluorophore.

4.2 Photobleaching and Quenching for Coumarin-Based

Systems and other Experimental Incidentals

The lipid-based coumarin has exhibited strong photosensitivity, with a marked

difference between samples exposed and unexposed to light, both spectroscopically

(Figures 4.2 and 4.3) and visually (Figure 4.4). Due to this noted photosensitivity,

all coumarin based-samples were handled under stringent conditions to minimize

light exposure.

Figure 4.2: NMR Aromatic Region of Ac-
tive Azidocoumarin-Based Lipid

Figure 4.3: NMR Aromatic Region of Pho-
todegraded Azidocoumarin-Based Lipid
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Figure 4.4: Image of Photodegraded (left) and Non-photodegraded (right)
Azidocoumarin-Based Lipid in CDCl3

Upon repeated exposure to excitatory wavelengths, photobleaching was ob-

served. This appeared in kinetic traces as a consistent decrease in fluorescence

after the fluorescence maximum was reached. Photobleaching of solutions of the

isolated triazole product was observable only at high concentrations. This sug-

gests that photobleaching should be minimal at early stages of the reaction, so its

effects were ignored in the determination of kinetic rate constants by pseudo-first

order analysis at early time points.

Additionally, for some data points in a few experiments, the plate reader that

was used to measure fluorescence reported a value of zero for fluorescence, when

even baseline fluorescence for the control was non-zero. When subtracting the

baseline, this yielded a negative value for fluorescence, far below even the intial

values. These points were summarily discarded as machiene error and kinetic

analysis was performed with these points removed (Figures 4.5 and 4.6).

4.3 Kinetics in Solution

To validate that this experimental system was comparable to other kinetics meth-

ods previously used with CuAAC,1 kinetics were performed with all components

1Rodionov, V.O., Fokin, V.V., Finn M.G.. Mechanism of the Ligand-Free Cu(I)-Catalyzed Azide-
Alkyne Cycloaddition Reaction. Angew. Chem. Int. Ed. 44, 2210-2215, doi: 10.1002/anie.200461496
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Figure 4.5: Kinetic traces for lipid-bound azide substrate undergoing CuAAC. Note the
decrease in fluorescence intensity at long times due to photobleaching; the data points
showing negative fluorescence are due to a mechanical or software error in the instrument
and were ignored to generate Figure 4.6.

Figure 4.6: Kinetic traces for lipid-bound azide substrate undergoing CuAAC after
quenched samples and machine error data points are removed

in solution (azide, alkyne, THPTA, CuSO4, and sodium ascorbate). Similar to

previous work, rate constants were via initial rate analysis. By plotting the nat-

ural log of the initial rate, which was determined to be the portion of the kinetic

trace that had a value of no more than 10% of the maximum fluorescence for a

sample, against the natural log of the concentration for a series of dilutions, one

can obtain the reaction order from the plot’s slope.

As expected, and in concurrance with published rate orders for azide and alkyne

components in solution,1 the reaction was approximately first order with respect to

(2005).
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Figure 4.7: Initial Kinetics Plot for 7-hydroxy-3-azidocoumarin in Solution

Figure 4.8: Rate Order Plot for 7-hydroxy-3-azidocoumarin in Solution

azide, and between first and second order with respect to alkyne, under catalytic

copper conditions (Figures 4.7-4.10).
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Figure 4.9: Initial Kinetics Plot for 2-methyl-3-butyn-2-ol in Solution

Figure 4.10: Rate Order Plot for 2-methyl-3-butyn-2-ol in Solution

4.4 Kinetics with Membrane Bound-Lipid Substrates

The same kinetic analysis was performed on membrane-bound lipid substrates in

SUVs that were prepared as described in the previous chapter.

The kinetic measurements show a fairly reliable determination of approximate
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Table 4.1: Reactivity of Azidocoumarin and 2-methyl-3-butyn-2-ol in Solution

[Azide] [Alkyne] [CuSO4] [THPTA] [Ascorbate] Rate Order

7-hydroxy-3-azidocoumarin 40 μL 370 μL 12 μL 60 μL 2.5 mM 0.76 ± 0.1

2-methyl-3-butyn-2-ol 40 μL 370 μL 12 μL 60 μL 2.5 mM 1.79 ± 0.2

Figure 4.11: CuAAC of Membrane Bound Azidocoumarin with Alkyne in Solution Cre-
ates an Increase in Fluorescence

Figure 4.12: Intial Kinetics Plot for Membrane-Bound Azide

Figure 4.13: Rate Order Plot for Membrane-Bound Azide
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Figure 4.14: CuAAC of Membrane Bound Alkyne with Azidocoumarin in Solution Cre-
ates an Increase in Fluorescence

Figure 4.15: Preliminary Initial Kinetics Plot for Membrane-Bound Alkyne

Figure 4.16: Rate Order Plot for Membrane-Bound Alkyne

26



Table 4.2: Reactivity of Membrane Bound Azide and Alkyne

[Azide] [Alkyne] [CuSO4] [THPTA] [Ascorbate] Rate Order

Azide Lipid 9.5 μL 370 μL 12 μL 60 μL 2.5 mM 1.17 ± 0.2
Alkyne Lipid 9.5 μL 594 nM 12 μL 60 μL 2.5 mM inconclusive

first-order dependence on membrane-bound azide in the CuAAC reaction (Figures

4.11-4.13); however, the data for membrane-bound alkyne is less clear. Additional

measurements will have to be done to confirm the preliminary results in Figures

4.15 and 4.16, but it appears that nonlinear “threshold” behavior may dominate

in this case. In other words, the reaction rate at the lowest concentration was very

low, whereas the reaction at the highest concentrations appeared to be relatively

insensitive to lipid-alkyne concentration (Figures 4.14-4.16). This is consistent

with previous conclusions (for reactions in solution) that two Cu centers need to be

brought together to mediate effective catalysis, that the alkyne unit is important

in this self-assembly, and that higher-order aggregates can be inhibitory.2

4.5 Intra-vesicular Reactivity vs. Inter-vesciular Reactiv-

ity

The reactivity of two lipid-bound substrates was evaluated while both lipids were

doped into the same vesicle and while the azide lipid was in one vesicle and the

alkyne lipid was in a second vesicle (Figure 4.17).

Figure 4.17: Intravesicular vs. Intervesicular Reactivity

In a fluid lipid system, Menger found that intravesicular reactivity occurred

more rapidly than intervesicular reactivity for a nucleophile-electrophile reaction.3

2Worrell, B.T., Malik, J.A., Fokin, V.V. Direct Evidence of a Dinuclear Copper Intermediate in Cu(I)-
Catalyzed Azide-Alkyne Cycloadditions. Science, 340, 6131, 457-460, doi: 10.1126/science.1229506
(2013).

3Menger, F.M., Azov, V.A. Cytomimetic Modeling in Which One Phospholipid Liposome Chemically
Attacks Another. J. Am. Chem. Soc. 122, 6492-6493, doi: 10.1021/ja000504x (2000).
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Table 4.3: Intra-vesicular vs. Inter-vesicular Reactivity

Type of vesicle [Azide Lipid] [Alkyne Lipid] [CuSO4] [THPTA] [Ascorbate] Initial rate (ΔA.U.sec-1)

Intra-vesicular 9.5 μL 9.5 μL 12 μL 60 μL 2.5 mM 3.8 x 10-4

Inter-vesicular 9.5 μL 9.5 μL 12 μL 60 μL 2.3 mM 9.3 x 10-4

For a non-fluid lipid system, where lipids are in gel-phase and not able to translo-

cate within a leaflet as in fluid lipids, the opposite was observed. The rate of

reaction was faster for systems where azide lipid substrates were in one vesicle

and alkyne lipid substrates were in another vesicle than for systems where both

azide and alkyne lipid substrates were in the same vesicle.

For a system where both azide and alkyne lipid substrates were in the same

membrane, one would expect that dominant intravesicular would lead the reaction

rate to be independent of the total vesicle concentration, so long as the concen-

tration of azide and alkyne within the vesicle remained constant.

Figure 4.18: Initial Rate of Reaction for Azide and Alkyne Lipids in the Same Vesicle
is Concentration Dependent, Suggesting an Inter-vesicular Reaction

Preliminary data (Figure 4.18, Table 4.3) suggest that the opposite trend might

be observed. The data is widely scattered, requiring repetition of the experiment

to make sure, but it appears that the reaction rate is dependent on vesicle con-

centration while the ratio of azide to alkyne within the vesicles was held constant.

This suggests that inter-vesicular reactions may play a significant role.

To probe this question, vesicles were constructed bearing only azide, only

alkyne, or an equimolar mixture of the two, where the overall functional group

concentration was 1% of the total lipid. If intra-vesicle reactivity were dominant,

the “mixed” vesicles should undergo CuAAC reaction much faster than a mixture
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of the “pure” vesicles. The opposite was observed. Inter-vesicle reactivity is con-

sistent with this trend, since one may expect a higher probability of productive

azide-alkyne interaction upon the collision of the pure vesicles, as illustrated in

Figure 4.19, at least in the early stages of the reaction that were followed.

Inter-vesicle CuAAC reactions would be expected to lead to vesicle aggrega-

tion and a sharp increase in the observed size of vesicles as the reaction occurs;

however, as noted in Figure 3.4, no significant change in size was observed before

and after the reaction. This suggests that the azide- or alkyne-bearing lipid is

transferred from one vesicle to another. Two general pathways can be envisioned

for this (Figure 4.20), involving lipid transfer before or after CuAAC reaction.

Since vesicles incorporating both azide and alkyne were observed to undergo slow

reaction, we propose that lipid transfer occurs rapidly after triazole formation.

Figure 4.19: Reactive Species in Separate Vesicles Have a Higher Probability of Finding
an Adequate Partner Rapidly
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Figure 4.20: Possible routes for the observed reaction of azide-vesicles with alkyne-
vesicles to produce triazoles without vesicle aggregation.
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Chapter 5

Conclusions and Future Work

Beveridge, J.M., Baksh, M.M., Chenot, H.M., Finn, M.G.

5.1 In Summary

Azide- and alkyne-functionalized lysolipids were synthesized and incorporated into

SUVs with no more than 1% synthesized lipid and 99% DPPC. These lipids, in

vesicles, were then subject to CuAAC to observe the kinetics in two-dimensions

for possible mechanistic differences from the three-dimensional CuAAC reaction

and to study the effects of triazole formation on membrane properties, including

vesicle size and charge.

Experimental results demonstrate that, as expected, triazole formation has no

significant effect on membrane charge. CuAAC between two vesicles also yielded

no significant change in vesicle size, which is suggestive of lipid transfer between

non-fluid lipid vesicles, a phenomenon which has not previously been reported.

Kinetic analysis suggests that for these non-fluid lipid vesicles containing both

azide and alkyne lipid substrates, intravesicular reactivity is effectively dimin-

ished. The concentration dependence of the observed reaction rates suggests that

the observed reactivity derives solely from interactions between two separate vesi-

cles. These findings with non-fluid lipid systems are in contrast to the previously

observed findings with membrane-bound substrates in fluid vesicles, which found

far greater reactivity for intra-vesicular reactions than for inter-vesicular reac-
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tions.1 One explanation for this could be that the intra-vesicular reaction does

not allow the proper geometry for the formation of the requisite binuclear-copper

complex for CuAAC. A simpler alternative may rely on the static nature of lipids

within these membranes. The lack of membrane fluidity could restrict the mobility

of enbedded azide and alkyne species, so the reaction could not transpire unless

they are located within close enough proxmity, which is statistically unlikely. The

reaction of two different vesicles, however, would allow azide and alkyne to react.

5.2 Looking Forward

I have so far evaluated the effect of triazole formation on membrane properties

has only been evaluated thus far for vesicle size and charge. An exploration of

triazole formation on other membrane properties will soon be underway. Proper-

ties to be evaluated include permeability and fluidity, which will be studied via

ratiometric calcium assays with cell-impermeant Fluo-4 dye2 and fluorescent re-

covery after photobleaching (FRAP), respectively. One set of experiments that

will be particularly exciting involves the addition of small amounts of fluid lipids

to the non-fluid lipid bilayers for mixed azide- and alkyne-modified vesicles. By

doping in the fluid lipids, it is hoped that the membrane will achieve some degree

of fluidity and that there will be an observable transition between a preference

for intervesicular reactivity as demonstrated in this thesis, to the preference for

intravesicular reactivity as described in the literature. Evaluating reactivity at

these interfaces between lipid fluid and gel phases is particularly relevant because

biological membrane microdomains exhibit similar interfaces and are areas of vital

reactivity for the cell with respect to signalling.3,4

1Menger, F.M., Azov, V.A. Cytomimetic Modeling in Which One Phospholipid Liposome Chemically
Attacks Another. J. Am. Chem. Soc. 122, 6492-6493, doi: 10.1021/ja000504x (2000).

2Juffermans, L.J.M., Dijkmans, P.A., Musters, R.J.P., Visser, C.A., and Kamp, O. Transient Perme-
abilization fo Cell Membranes by Ultrasound-Exposed Microbubbles is Related to Formation of Hydrogen
Peroxide. Am. J. Physiol. Heart Circ. Physiol. 291, H1595-H1601, doi: 10.1152/ajpheaert.01120.2005
(2005).

3Russell, S., Olioro, J. Compartmentalization in T-Cell Signalling: Membrane Microdomains and
Polarity Orchestrate Signalling and Morphology. Immunol. Cell Biol.84, 107-113, doi: 10.1111/j.1440-
1711.2005.01415.x (2006).

4Heneberg, P., Lebduska, P., Draberova, L., Korb, J., Draber, P. Topography of Plasma Membrane
Microdomains and Its Consequences for Mast Cell Signalling. Eur. J. Immunol. 36, 10, 2795-2806, doi:
10.1002/eji.200636159 (2006).
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Copper(I)-binding ligands serve many purposes in CuAAC reactions. They are

able to bind copper(I) and present it to reaction substrates, they are able to help

preserve copper(I) from oxidation or reduction, which would make it no longer

active for CuAAC, and it plays a role in accelerating the reaction.5 Copper(I)-

binding ligands are also able to limit the cytotoxicity of copper(I) species, which

makes it relevant for in vivo CuAAC.6 Some work has been made toward creating

a lipid analogue of an already existing copper(I) binding ligand. This material

has been synthesized and used as a crude material in a membrane system with

some success by assuming that membrane self-purifies, but has not been used

in its pure form. This will be purified in the future and incorporated into lipid

vesicles for lipid-phase CuAAC catlaysis, in the same vesicle as the azide and

alkyne substrate, as well as in separate vesicles. Preliminary experiments with

the crude lipid analogue of the copper(I)-binding ligand observed reactivity, as

measured by a change in fluorescence, when the lipid analogue was in one vesicle

and azide and alkyne were in another vesicle.

Biological membranes are comprised of more than just lipids; cholesterol, pro-

teins, and glycosylated lipids and proteins each play roles in how cells interact

with each other and their environment.7 Cholesterol also plays a large role in the

dynamics of lipid microdomains.8 To this end, azide- and alkyne- functionalized

cholesterol derivatives are of interest, to see how triazole formation between choles-

terol derivatives, or between a lipid and cholesterol molecule will affect membrane

properties. These studies will provide insight into cellular membrane communica-

tion and reactivity, as well as into membrane microdomain behavior and behavior

at the interface of gel- and liquid-phases.

5Rodionov, V.O., Presolski, S.I., Gardinier, S., Lim, Y.H., Finn, M.G. Benzimidazole and Related
Ligands for Cu-Catalyzed Azide-Alkyne Cycloaddition. J. Am. Chem. Soc., 129, 12696-12704, doi:
10.1021/ja072678l (2007).

6Hong, V., Steinmetz, N.F., Manchester, M., Finn, M.G. Labeling Live Cells by Copper-Catalyzed
Alkyne-Azide Click Chemistry.Bioconjug. Chem. 21, 10, 1912-1916, doi: 10.1021/jb100272z (2010).

7Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P. Molecular Biology of the Cell,
5th Ed., Garland Science: New York (2007).

8Riff, J.D., Callahan, J.W., Sherman, P.M. Cholesterol-Enriched Membrane Microdomains Are Re-
quired for Inducing Host Cell Cytoskeleton Rearrangements in Response to Attaching-Effacing Es-
cherichia coli. Infect Immun. 73, 11, 7113-7125, doi: 10.1128/IAI.73.11.7113-7125.2005 (2005).
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Appendix A

Plate Reader Fluorescence Data

The following is the raw fluorescence data, obtained by fluorescence measurements

with a ThermoFisher Varioskan Plate Reader.

Figure A.1: Fluorescence evolution for coumarin substrates undergoing CuAAC.
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Figure A.2: Fluorescence As A Function of Concentration of Coumarin-Triazole

Figure A.3: Fluorescence As A Function of Concentration of Coumarin-Triazole
(Zoomed to lower concentrations)
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Figure A.4: Background Fluorescence Traces for Reactions in Solution (Azide). Raw
data for Figure 4.7.

Figure A.5: Raw Fluorescence Traces for Reactions in Solution (Azide) Raw data for
Figure 4.7.
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Figure A.6: Fluorescence Traces for Reactions in Solution (Azide) with Backgrounds
Substracted. Corresponds to Figure 4.7.

Figure A.7: Background Fluorescence Traces for Reactions in Solution (Alkyne). Raw
data for Figure 4.9.
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Figure A.8: Raw Fluorescence Traces for Reactions in Solution (Alkyne) Raw data for
Figure 4.9.

Figure A.9: Fluorescence Traces for Reactions in Solution (Alkyne) with Backgrounds
Substracted. Corresponds to Figure 4.9.
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Figure A.10: Background Fluorescence Traces for Reaction with Membrane-Bound
Azide. Raw data for Figure 4.12.

Figure A.11: Raw Fluorescence Traces for Reactions with Membrane-Bound Azide. Raw
data for Figure 4.12.
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Figure A.12: Fluorescence Traces for Reactions with Membrane-Bound Azide with Back-
ground Subtracted. Corresponds to Figure 4.12.

Figure A.13: Background Fluorescence Traces for Reaction with Membrane-Bound
Alkyne). Raw data for Figure 4.15.
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Figure A.14: Raw Fluorescence Traces for Reactions with Membrane-Bound Alkyne.
Raw data for Figure 4.15.

Figure A.15: Fluorescence Traces for Reactions with Membrane-Bound Alkyne with
Backgrounds Subtracted. Corresponds to Figure 4.15.

Figure A.16: Background Fluorescence Traces for ”Intravesicular” Reaction. Raw Data
for Figure 4.18 and Table 4.3.
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Figure A.17: Raw Fluorescence Traces for ”Intravesicular” Reaction. Raw Data for
Figure 4.18 and Table 4.3.

Figure A.18: Fluorescence Traces for ”Intravesicular” Reaction with Backgrounds Sub-
stracted. Corresponds to Figure 4.18 and Table 4.3.

Figure A.19: Background Fluorescence Traces for Intervesicular Reaction. Raw Data
for Table 4.3.
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Figure A.20: Raw Fluorescence Traces for Intervesicular Reaction. Raw Data for Table
4.3.

Figure A.21: Fluorescence Traces for Intrervesicular Reaction with Backgrounds Sub-
stracted. Corresponds to Table 4.3.
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