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SUMMARY

Designing and developing complex engineering systems is a collaborative ef-

fort. In Model-Based Systems Engineering, this collaboration is supported through

the use of formal, computer-interpretable models, allowing stakeholders to address

their particular concerns of interest using well-defined modeling languages. However,

because concerns cannot be separated completely, implicit relationships and depen-

dencies among the various models describing a system are unavoidable. Given that

models are typically co-evolved and only weakly integrated, inconsistencies in the

agglomeration of the information and knowledge encoded in the various models are

frequently observed. The challenge is to identify such inconsistencies in an automated

fashion.

In this research, a probabilistic approach to abductive reasoning about the exis-

tence of specific types of inconsistencies and, in the process, semantic overlaps (rela-

tionships and dependencies) in sets of heterogeneous models is presented. The basis

for the approach is Bayesian probability theory. A prior belief about the manifesta-

tion of a particular type of inconsistency within a specific context is updated with

evidence, which is collected by extracting specific features from the models by means

of pattern matching. Pattern matching across heterogeneous models is enabled by

translating the information and knowledge encoded in models to a common, graph-

based representational formalism. Results of the inference procedure are then utilized

to improve future predictions by means of automated learning. The primary focus of

the investigation is the development of a mathematically sound framework as a basis

for a formal computational method. The effectiveness and efficiency of the approach

is evaluated through a theoretical complexity analysis of the underlying algorithms,

xix



and through application to a case study. A prototypical, semantic web inspired im-

plementation of supporting software tools was developed as a basis for performing the

necessary accompanying measurements. As a case study, randomly generated sets of

disparate, heterogeneous models of railway systems are considered. These generated

sets of models are algorithmically injected with inconsistencies, and with features rep-

resenting the result of human error and incompleteness. Numerous experiments are

conducted for the purpose of characterizing and evaluating the proposed approach.

Insights gained from these experiments, as well as the results from a comparison to

a state-of-the-art deterministic reasoning approach have demonstrated that the pro-

posed inexact reasoning method is a significant improvement over the status quo of

inconsistency identification in Model-Based Systems Engineering.
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CHAPTER I

INTRODUCTION

This dissertation focuses on the topic of identifying inconsistencies in models of en-

gineered systems. Modern technical systems such as aircraft or spacecraft systems

are typically developed collaboratively by a great number of people, each using their

particular set of interests and skills to address specific concerns by focusing on par-

ticular aspects of a system under consideration. This is necessary due to the often

overwhelming complexity of technical systems, which makes it impossible for a single

human being to understand every aspect in detail.

Allocating concerns is a necessary means of managing the complexity of a larger

overall problem by decomposition. However, this decomposition does not completely

decouple the various sub-problems assigned to different stakeholders. This necessi-

tates that proper communication paths are put in place and interfaces among the

different stakeholders are managed. Not managing these interfaces appropriately can

lead to bad decisions being made due to the use of outdated or even misinterpreted in-

formation. This can lead to the agglomeration of information and knowledge captured

about a particular system being inconsistent (i.e., not in agreement and in conflict).

Such inconsistencies can result in costly rework, the termination of a project, or, in

the worst case, loss of life or mission failure. Therefore, a crucial part of managing

interfaces among stakeholders is the early detection of inconsistencies.

In this dissertation, a novel approach to identifying inconsistencies based on

Bayesian probability theory is introduced and evaluated. The need for a method

for identifying inconsistencies and the reasons for choosing a probabilistic approach

are motivated further in the remainder of this chapter. Specifically, in section 1.3, the
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objectives of the research, investigated research questions and associated hypotheses

are introduced. Section 1.4 briefly discusses the strategy used to evaluate the ap-

proach. The chapter ends with section 1.5, where an outline of the dissertation is

presented.

1.1 Context & Motivation

On December 11, 1998, the National Aeronautics and Space Administration (NASA)

launched the USD 200 million Mars Climate Orbiter (MCO) mission as part of the

Mars Surveyor ’98 program. Its mission was to study the Martian weather, climate,

and water and carbon dioxide budget. Furthermore, it was to act as a relay satellite

for a lander, the Mars Polar Lander (MPL), whose mission was to investigate the

composition of the soil near the South Polar ice cap on Mars [205]. The orbiter was to

enter an elliptical orbit around Mars. Ground control was able to track the spacecraft

visually up to the point when it vanished behind the planet. It was expected that

the orbiter would reappear shortly after the orbit insertion maneuver. Unfortunately,

the spacecraft never reappeared from behind the planet.

It was only several months after the incident that the reason for the failure of

the mission was discovered. A peer review led by NASA’s Jet Propulsion Laboratory

(JPL) revealed that a supplier had made different assumptions in regards to what

units were to be used for some of the calculations. JPL had used the International

System of Units (SI), while the supplier of the ground station had assumed the use

of the British Gravitational System (BGI). However, since the supplier assumed that

BGI was the system of units used throughout the project, no unit conversions were

ever performed. The result was an altitude error of about 150km: behind the planet,

the MCO reached an altitude of only 57km as opposed to the intended 226km. The

gravitational pull of Mars was too strong for the MCO to escape, and the vehicle

burned up in the atmosphere.
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Why do seemingly obvious errors such as these remain undiscovered, particularly

when measures are put in place to prevent such errors from happening in the first

place? NASA’s official report states that “[...] contributing causes include inadequate

consideration of the entire mission [...] as a total system, inconsistent communications

[...] and lack of complete end-to-end verification of navigation software and related

computer models”. One reason listed as a primary source of the failure was that

“some communications channels among project engineering groups were too informal”

[151, 205].

The case of the Mars Climate Orbiter is only one of many documented cases, where

inconsistent information used in designing and developing a system has lead to costly

or catastrophic outcomes. For instance, when Airbus assembled the first Airbus A380

in Toulouse, a pre-assembled wiring harness produced in the Hamburg, Germany plant

failed to fit into the airframe [193]. Other examples include the Panama radiation

overdose incident [235] and the failure of the Mariner 1 mission [139]. Clearly, there

is a need for a mechanism detecting inconsistencies in an automated fashion.

1.2 Inconsistency Identification in Model-Based Systems
Engineering

To avoid problems such as those encountered in the case of the Mars Climate Orbiter,

systems engineering practices such as reviews, tests and, more generally, verification

& validation activities are typically employed in the design, development and man-

agement of complex systems over their life cycle. Yet, because of the overwhelming

complexity of some systems, and the lack of formality and rigor of current systems

engineering practices [72], errors, costly rework, and mission failures are still com-

monplace. However, recent developments in software engineering, and the transition

of some of these methods to the domain of systems engineering have inspired the vi-

sion of Model-Based Systems Engineering (MBSE), which has opened a path towards

computer-aided systems engineering practices and has, hence, provided a basis for
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automated identification of inconsistencies.

1.2.1 Model-Based Systems Engineering

Systems engineering is a multi-disciplinary approach to developing balanced system

solutions in response to diverse stakeholder needs [120, 72]. It includes the application

of both management and technical processes to achieve this balance and mitigate risks

that can impact the success of the project. The management process is applied to

ensure that development cost, schedule, and technical performance objectives are

met. Typical management activities include planning the technical effort, monitoring

technical performance, managing risk and controlling the system technical baseline.

The technical processes are applied to specify, design and verify the system to be

built [72]. Systems Engineering, as we know it today, began to evolve as a branch of

engineering during the late 1950’s [120].

While considered mature from a methodological perspective, the tools and meth-

ods used in the typically employed document-centric systems engineering approach

are informal and ad hoc in nature. For instance, text documents, spreadsheets, in-

formal drawings and presentation slides are commonly used to communicate with

other stakeholders, document system architectures, record traceability information

and specify subsystem interfaces [72]. Such informal documents are not only difficult

to maintain, they are also vague and ambiguous. This is due to a lack of a well-defined

underlying formalism (e.g., notation used and meaning of symbols). The lack of a

formalism leaves room for interpretation by the stakeholder exposed to the document

[24]. For instance, if the notation used in a diagram on a presentation slide is not

explicitly defined and understood by the audience, different people may interpret the

diagram differently, or even not understand it at all.

Oftentimes misinterpretations of documents are only discovered at decision points

or during infrequently held review activities. Reviews are activities held mainly for
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the purpose of verifying & validating the integrity, coherence and consistency of inde-

pendently evolved parts of a system. Also, during such activities the use of outdated

documents may first become apparent. This can lead to costly rework due to bad

decisions having previously been made – possibly on the basis of inconsistent infor-

mation and knowledge. The advent of computational engineering tools and network

infrastructures has given rise to the possibility of developing formal, computer-aided

methods for this purpose. Model-Based Systems Engineering (MBSE) is a recent

paradigm shift in systems engineering, where a key principle is the formalized ap-

plication of modeling to support system requirements, design, analysis, verification,

and validation activities beginning in the conceptual design phase and continuing

throughout development and later life cycle phases [119].

Models are represented in many forms, including physical prototypes, graphics,

mathematical equations and logical statements. Within the context of this disserta-

tion, we restrict ourselves to formal, computer-interpretable models (henceforth re-

ferred to as models and formal models). Therefore, we do not consider any models that

take a physical form. By using the word formal, the existence of a relation to some

well-defined underlying formalism – such as mathematical logic – is implied. This also

implies a well-defined symbolic representation (syntax ) and basis for interpreting the

meaning (the semantics) of well-formed syntactic constructs1 [92]. Kepler’s laws of

planetary motion (see, e.g., [228]) are examples of models expressed in a mathemati-

cal formalism. In systems engineering, functional flow diagrams and schematic block

diagrams are examples of commonly used types of models for representing abstract

processes or structures. The use of only formal models throughout the life cycle has a

significant advantage over the use of informal documents: models can be interpreted

by a computer, opening up the possibility to reason about properties of the system

under consideration in an automated fashion [72].

1For a more elaborate definition of formal models, see section 2.1.
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1.2.2 Inconsistency Identification & Related Challenges

Two views on the problem are taken in related research efforts: ensuring the ab-

sence of inconsistencies by construction, and the identification of specific instances

of inconsistencies. In this dissertation, the latter view is taken. The primary rea-

son for taking this view is that previous work has shown that consistency cannot be

guaranteed [102].

1.2.2.1 What is an Inconsistency?

Before discussing what inconsistency identification in MBSE encompasses, an (infor-

mal) definition of inconsistency is given. Numerous definitions for, and interpreta-

tions of, the term inconsistency exist. Inconsistency is typically understood to be a

(behavioral) quality, and as the state of being inconsistent. This is evident from the

definition given by the Merriam-Webster dictionary [118]:

• Not always acting or behaving in the same way

• Not continuing to happen or develop in the same way

• Having parts that disagree with each other

• Not in agreement with something

Merriam-Webster further defines inconsistent as the quality of a statement being

“not compatible with another fact or claim”, an argument “containing incompatible

elements”, being “incoherent or illogical in thought or actions”, and, when referring to

a set of mathematical equations or inequalities, being “not satisfiable by the same set

of values for the unknowns”. In this context, incompatibility is defined as “not being

able to exist together without trouble or conflict” and “not able to be used together” as

in two propositions “not both [being] true”. Incoherence is defined as “not logical or

well-organized”. Within the context of mathematical logic, an inconsistency is also

frequently defined as a logical contradiction [115].
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In the related literature, similar definitions for the term inconsistent can be found.

For instance, Nuseibeh et al. define an inconsistency as “any situation in which a

set of descriptions does not obey some relationship that should hold between them

[...] expressed as a consistency rule against which the descriptions can be checked”

[158]. Spanoudakis and Zisman define inconsistencies as “a state in which two or

more overlapping elements of different software models make assertions about aspects

of the system they describe which are not jointly satisfiable” [200].

It is interesting to note that all of these definitions for inconsistency share a

common property: that a state of conflict, marked by the presence of a contradiction,

illogical statement or disharmony exists2. Indeed, given sufficient information, all of

these definitions imply that the state of inconsistency is marked by the presence of

contradicting and overlapping statements. Interesting is also that one can argue that

the quality of being inconsistent can be viewed as an overarching term for numerous

other, perhaps more specific types or states of inconsistency of some system such

as incompatibility, incoherence and unsatisfiability. From a value-based perspective,

it can be argue that an inconsistency is marked by a decrease in value (e.g., of the

artifact).

1.2.2.2 Inconsistency Identification

Inconsistency identification is the process of detecting, locating and classifying in-

consistencies [158]. It is a “vehicle for integrating views [models]” [159]. Therefore,

inconsistency identification can be viewed as an analysis of (in the case of Model-Based

Systems Engineering) formal models. This requires, similar to any other analysis task,

knowledge on how to perform the analysis – i.e., knowledge on how to derive an in-

consistency from the given model-based description of a system. As will be explained

2A more formal definition of the term inconsistency as interpreted within the context of this
dissertation will be given in section 4.2.2 after having introduced the necessary terminology and
background in section 2.
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in detail in chapter 5, models can be viewed as encoding information and knowledge

(as a set of propositional statements) about the system under consideration. Hence,

the knowledge required to identify inconsistencies – the inconsistency identification

knowledge – must be phrased in such a fashion that inconsistencies can be derived

from the statements encoded in the models to be analyzed. That is, given a set of

models and knowledge about how to identify inconsistencies in these models, one must

be able to formulate an argument – that is, reason – about why an inconsistency is

present (or absent) (detection), where (i.e., what part of the model(s)) and in what

form the particular inconsistency manifests (locating), and what class (according to

some taxonomy) the particular inconsistency belongs to (classification).

1.2.2.3 Challenges in Identifying Inconsistencies

Identifying inconsistencies in MBSE is challenging for a variety of reasons. Firstly,

stakeholders create a variety of models and use a number of different modeling lan-

guages (often modeling languages specific to their respective domains), which are

based on different formalisms. The nature of these models may also vary: some mod-

els may be descriptive – e.g., for the purpose of specification – while others may be

analytical – that is, are used for the purpose of analysis. From a computational stand-

point this heterogeneity of models presents a challenge, since it hardens the problem

of symbolic processing across different models and interpretation of the models. In

addition, the sheer complexity stemming from having to interpret and work with a

very large amount of data collected during the life cycle of a system has to be taken

into account. Analyzing large numbers of models for inconsistencies is challenging,

since it requires some level of automation which, in turn, is expected to incur a large

computational cost. From a methodological perspective, automating some (or all) of

the analysis processes related to identifying inconsistencies is a challenge by itself,

since the underlying models are likely to be incomplete, inconsistent and incoherent,

8



possibly leading to erroneous identifications.

Other challenges arise from the fact that, during the design and development of

complex systems, multiple versions of models, may exist at the same moment in time.

Similarly, the consideration of multiple system variants leads to additional challenges.

In both cases, the specific version(s) of each model to be collected and checked for

inconsistencies must be identified. In addition to different versions of models, a

number of system variants may be under consideration at the same time. This poses

an additional challenge since each variant by itself should be free of inconsistencies,

but multiple variants may be described with one model.

Additional challenges stem from a need to manage the inconsistency identifica-

tion knowledge: since one can expect the knowledge required to identify all types of

inconsistencies (that are deemed valuable to identify) to be very large, issues related

to ensuring internal consistency and maintenance of the inconsistency identification

knowledge become important to consider as well.

1.2.3 Desired Characteristics of an Approach to Inconsistency Identifica-
tion

Based on the challenges identified in the previous section, a number of desired char-

acteristics of an effective approach to inconsistency identification are presented in the

following. These desired characteristics are considered independent of any specific

solution approach to inconsistency identification within the context of MBSE.

1.2.3.1 Automated Identification across Heterogeneous Models throughout Life
Cycle

In current practice, limited computational support for identifying inconsistencies ex-

ists. Modeling tools offer some support for checking the syntactical well-formedness

of models (where non-well-formedness is considered an inconsistency). However, in-

consistencies spanning multiple models, which, as practice shows, typically have the

the greatest consequences associated with them [205, 193], are, to a large extent,
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only detected by human inspection during activities such as formal reviews [150].

Such activities are vital for any verification and validation process, but are also very

costly to implement. In addition, because these reviews are typically done very infre-

quently, inconsistencies are often detected very late in the development process, and

at a stage at which (potentially bad) decisions based on this inconsistent information

and knowledge may have already been made. Therefore, an objective, and desired

characteristic for developing a novel approach to inconsistency identification should

be the introduction of a higher degree of automation compared to the status quo.

Automatically checking for inconsistencies across heterogeneous models requires

an approach that enables symbolic processing and manipulation of the information

and knowledge encoded in the various heterogeneous models describing a system.

This includes the need for a mechanism that enables the retrieval of those parts of a

set of models that represent manifestations of inconsistencies, and the ability to define

semantic relations between models (i.e., model overlap). Ideally, the identification of

such overlap should also be fully automated.

In addition, in order for an approach to identifying inconsistencies to be effective

over the full life cycle of a system, the approach should be capable of handling in-

complete models – that is, incomplete descriptions of a system – which are, to some

extent, likely to be ambiguous, and a number of properties of the system uncertain.

1.2.3.2 Provision of Rationale & Traceability

An approach to automatically identifying inconsistencies should also provide insight

into the cause of an inconsistency. That is, it should be capable of providing the ra-

tionale that lead to the conclusion that an inconsistency is present. This is necessary

for a variety of reasons: firstly, it allows for the accuracy of an inconsistency identi-

fication mechanism and the identification knowledge used to be evaluated. Secondly,

the information can be utilized to implement strategies aimed at avoiding future
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occurrences of the same, or similar inconsistencies.

Depending on the concrete underlying reasoning method, conclusions may not

always be logically correct, but may be best explanations or best guesses, poten-

tially influenced by heuristics. It is not unlikely that some results determined by

an automated reasoning mechanism may seem unintuitive to a human at first glance.

Providing rationale allows for a better understanding of why the computational mech-

anism reached the particular conclusion, and aids in deciding whether a refinement

of the reasoning knowledge is required. For a comprehensive inconsistency manage-

ment strategy, rationale may also be useful for acting on an inconsistency (e.g., how

the inconsistency should be resolved, or whether it is worth ignoring it for the time

being).

Storing the rationale is not only useful for understanding the reasoning behind

the conclusion of an automated inconsistency identification mechanism, but also to

identify the underlying cause of the inconsistency. Recent research has shown that

the cause may not always be trivial to identify, since a particular inconsistency may

be the result of another, which represents the root cause [88, 180].

1.2.3.3 Flexible Formulation of Inconsistency Criteria & Knowledge Reuse

The definitions of the term inconsistency given in section 1.2.2.1 are fairly abstract.

This signifies a great variety of possible inconsistencies, each of which manifests in

some identifiable form. Therefore, it is expected that it is possible to identify a

set of types of inconsistencies, instances of which may be contained in (parts of)

models. Such types of inconsistencies may be specific to a language, domain or

application. A mechanism that specifically seeks out inconsistencies should be capable

of differentiating between different kinds of inconsistencies, and be flexible enough to

identify a large variety of inconsistencies.

One approach to this is to explicitly define how different types of inconsistencies
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manifest in models, and seeking out inconsistencies based on this definition. This

leads to the specification of criteria that, when fulfilled, indicate the presence of the

particular type of inconsistency. A part of the definition of such criteria is the context

in which an inconsistency manifests.

1.2.3.4 Extensibility & Continuous Improvement of Accuracy

In addition, an effective approach should consider aspects of maintaining and refin-

ing inconsistency identification knowledge. As knowledge about a system and its

environment grows, it is expected that knowledge about possible inconsistencies that

strongly influence the value of a system also grows. In addition, by analyzing the

conclusions reached by the inconsistency identification mechanism, the accuracy and

relevance of future conclusions can be improved.

Therefore, an effective approach should define methods for not only acquiring, but

also refining existing inconsistency identification knowledge so that performance can

be improved over time. This should include the ability to learn from previous con-

clusions reached – e.g., by making use of the reasoning rationale identified previously

as important to store.

1.2.4 Current Limitations & Research Gap

Even though a well-known problem, and explored extensively in the related literature,

inconsistency management is still an open research challenge [68, 82, 96, 177]. Partic-

ularly the findings in [102, 200] suggest that there is value in performing additional

research.

In the related literature, a number of approaches to managing inconsistencies have

emerged: these can be broadly categorized as approaches that represent models in a

logical database to check for contradictory propositions [71], approaches that actively

check (negative) constraints [96, 188], and approaches that make use of procedural

or model-based rules to check for inconsistencies [142, 221]. Rule- and model-based

12



approaches, which have been used extensively in more recent related work, have

proven to be both effective and pragmatic. However, this is only the case in a limited

number of scenarios. In particular, this is due to the inability of rules to deal with

unexpected input and the resulting high cost associated with maintaining large sets

of complex rules. In addition, rules can lead to erroneous conclusions when the

information and knowledge being reasoned over is incomplete, vague, ambiguous or

incoherent.

Most of the related research (with very few exceptions: see, e.g., [79, 80, 97,

102, 175]) stems from software engineering research. However, most of the proposed

methods expect a (at least locally) complete description of a system and, in some

cases, an unambiguous mapping to a target reality. This is due to these methods

relying on logically correct deductions. Only recently have methods emerged that

take into account incomplete, vague and ambiguous models of software systems for

verifying and validating models of (software) systems at early life cycle phases (see,

e.g., [186, 65]). However, since descriptions of systems with physical properties are

inherently incomplete, this issue is more prominent in MBSE [102]. A gap in the

current research is the identification of an appropriate and sound method for reasoning

over models of technical systems under these conditions and within the context of

MBSE. In addition, most software engineering research is concerned only with a

single modeling language and formalism, and is therefore not addressing the additional

challenges stemming from the omnipresent heterogeneity of models in MBSE.

While a number of approaches to identifying inconsistencies in an automated

fashion are presented in the related literature, the automated detection of a semantic

overlap remains an open challenge. Several methods have been reported in the related

literature (see, e.g., [200] for an overview), but either require manual input, or make

very strong assumptions and are error prone.
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In related MBSE research, no methods have been reported for reasoning about in-

consistencies and semantic overlap that specifically take the heterogeneity and incom-

pleteness (partiality) of models into account. In software engineering and information

systems research, alternatives have been investigated that specifically account for the

incompleteness of models: e.g., probabilistic methods [186]. These investigations have

lead to promising results. However, such methods have not been applied to semantic

overlap detection or inconsistency identification within the context of MBSE.

1.3 Research Objectives & Approach

Based on the previous motivations, the limitations of related work, and the identified

research gap, the following motivating research question is formulated:

Motivating Research Question. How, and to what extent, can inconsistencies in

a collection of distributed, disparate and heterogeneous models be identified automat-

ically?

The primary hypothesis of the research presented in this dissertation is that a

probabilistic analysis can overcome the challenges and mitigate the limitations of

state of the art approaches identified in sections 1.2.2 and 1.2.4. A basis for the

formulation of this hypothesis is the inherent incompleteness, abstract nature and

heterogeneity of models used to describe complex systems in MBSE: incompleteness

and abstraction imply the presence of unknown and uncertain quantities and qualities,

some of which may be derivable (with certainty) given sufficient knowledge. However,

other conclusions (and it is hypothesized that this is the case for most) may not be

reachable with certainty given just the state of information at a particular moment

in time, and are instead merely possible conclusions – that is, they are uncertain.

Because the motivating research question is too broad to be answered in a single

research study, it merely serves as a starting point to identify several more specific

and focused research questions. In this dissertation, three research questions are
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addressed in an effort to build a basis for a focused investigation. To further narrow

the focus and define the scope of the investigation, simplifying assumptions are made

explicit in section 1.3.5.

Research Question 1. What are the characteristics of typical inconsistencies in

engineering models? What kinds or types of inconsistencies can be identified, and

what unsatisfied semantic relationships are these a result of?

Research question 1 is aimed at identifying qualities by which the completeness of

an approach to inconsistency identification can be measured. One part of answering

this research question focuses on identifying characteristics of inconsistencies – that

is, how inconsistencies manifest in models. Another part is related to answering the

question of what kinds and types of inconsistencies exist, and whether this set is

finite.

Closely related to a classification of inconsistencies, and important to investigate,

is the identification of the primary cause of, and important context information for

identifying an inconsistency. This leads to the formulation of the second research

question:

Research Question 2. How can semantic overlap and semantic relationships be

identified effectively and efficiently, and to what degree can this be automated?

One important aspect of identifying inconsistencies is the detection of (semantic)

overlap among models. This is a non-trivial but essential component of any inconsis-

tency identification strategy, largely due to the disparity and heterogeneity of models.

The disparity and heterogeneity, and the fact that models are commonly co-evolved

in practice, lead to the third research question:

Research Question 3. What is an effective way of aiding modelers in the process of

efficiently detecting inconsistencies in a set of collaboratively developed, heterogeneous
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and distributed formal engineering models? How can we improve upon the status quo

of rule-based approaches?

The third research question primarily focuses on identifying a suitable approach

for identifying inconsistencies under conditions that are common to practical design

and development scenarios: co-evolution of heterogeneous models and distributed

model repositories. However, it also focuses on the aspect of interpreting the results

of an inconsistency identification algorithm for the purpose of notifying a modeler of

inconsistencies relevant in the current context.

1.3.1 Characterizing & Classifying Inconsistencies

One important step in developing a comprehensive framework for inconsistency iden-

tification is characterizing and classifying inconsistencies. This part of the overall

research will address research question 1. The characterization will lead to a (formal)

definition of inconsistencies, while the classification focuses on identifying different

kinds and, abstracted from that, types (classes) of inconsistencies. Classifying and

characterizing inconsistencies is also necessary for the purpose of defining the com-

pleteness of the approach and, in part, the scope of the kinds and types of inconsis-

tencies to which the proposed research can be claimed to apply.

In section 1.2.2, a definition for inconsistencies is given. Based on this definition,

the following hypothesis is formulated about the characteristics of an inconsistency:

Hypothesis 1. A state of inconsistency is influenced by the presence (or absence) of

a number of syntactic and semantic properties that are in conflict. These syntactic

and semantic properties manifest as propositions, and a configuration of conflicting

propositions can be abstracted by a pattern. Furthermore, these properties can be un-

derstood to represent evidence to suggest the presence (or absence) of a particular

type of inconsistency. A conflicting set of such properties (i.e., a match to a corre-

sponding pattern) represents a manifestation of a particular type of inconsistency iff
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(if and only if) it entails the inconsistency.

A second hypothesis, designed to be a response to the second part of research

question 1, is formulated as follows:

Hypothesis 2. It is possible and practical to differentiate between different types of

inconsistencies. There exists both a finite, closed set, and an open, infinite set of

types of inconsistencies and related types of semantic overlap.

Both hypotheses 1 and 2 are investigated in chapter 4. The validity of hypothesis 1

is further explored in chapter 5. To support the hypotheses, findings from expert

consultation and results from brainstorming are compared to the related literature.

The hypothesis is also further supported by the findings and insights gained from

a quantitative, case study driven evaluation. The results of this are presented in

chapter 8.

1.3.2 Enabling Symbolic Processing across Heterogeneous Models

In MBSE practice, engineers (and other stakeholders) use tools and create models

allowing them to address very specific concerns about specific aspects of a system

under consideration. Typically, these models are also specific to a particular domain.

While this allows stakeholders to work efficiently and in familiar environments, it

also brings about a challenge for consolidating and checking for inconsistencies in the

agglomeration of all models. Largely, this is due to the heterogeneity and disparity

of the models. Such results in a variety of models, whose underlying concepts and

formalism are incompatible, even if two models express similar or equivalent con-

cepts, but in a (syntactically) different manner, or using a different organization of

knowledge and structuring of information. This is one reason why model integration

infrastructures are not commonplace [2].

Tool chains (or point-to-point integrations) are a common practice in MBSE imple-

mentations for integrating models, and ensuring the absence of select inconsistencies.
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These enable individual models to be integrated with one another within a specific

context. However, such infrastructures are very costly to maintain, ad hoc, and frag-

ile [24]. An alternative is offered by the concept of model transformations. However,

the implementation of such approaches requires making strong assumptions about

the organization of knowledge in the model, and necessitates the encoding of a large

amount of knowledge in the transformation. Inconsistency identification requires that

models can be accessed at any level, and that any part of a model can be retrieved

that is deemed relevant to a certain task. Specifically, this is necessary for identifying

inconsistencies that involve a variety of models, and for a mechanism for creating rela-

tionships among models. In other words, a very flexible mechanism for data retrieval,

manipulation and integration is required. Identifying such a method is part of the

answer to research questions 2 and 3. The hypothesis is that representing models in

a common representation formalism that allows for symbolic processing across model

boundaries is valuable:

Hypothesis 3. A prerequisite to an effective method for identifying inconsistencies

in heterogeneous models is the transformation of the models to a common representa-

tional formalism, thereby allowing symbolic processing across the models regardless of

their nature, underlying formalisms, and organization of the encoded knowledge and

information.

Evidence in support of hypothesis 3 is primarily gathered in chapter 5 and, by

application to an example, as part of the quantitative evaluation of the approach in

section 8.2.

1.3.3 Identifying Inconsistencies Under Uncertainty

One of the important insights from section 1.2.2.3 is that models of systems (at least

within the context of MBSE) are inherently incomplete. That is, they are always

18



abstractions of reality and incorporate assumptions. In addition, not all informa-

tion and knowledge is captured explicitly: some may be implicit or tacit. This is

particularly the case for decision rationale. Models can also become ambiguous as a

result.

For an entity that is not aware of the tacit and implicit knowledge, as well as

the assumptions that went into creating a model, arguing about the presence of

inconsistencies is difficult. Generally speaking, two options can be considered: either

a “yes” / “no” answer is provided that is based on sufficient conditions, or it can be

attempted to analyze parts of the given models more closely and derive how probable

a particular answer is given the information and knowledge available for reasoning.

This leads to derivations and answers to questions such as “is X inconsistent?” being

treated as statements with uncertain truth values. A sound basis for such an approach

is Bayesian probability theory – and, in particular, the concept of Bayesian updating

– where the explicitly available information and knowledge can be used as evidence

to support or oppose the probability of a given premise.

Since models evolve over time, vagueness and ambiguity should reduce over time

as well, as more information and knowledge becomes available. This leads to beliefs

about inconsistencies being updated over time. A concrete method implementing

these concepts acts as part of the answer to research question 3. Based on these

insights, the following hypothesis about what method an effective approach to incon-

sistency identification should be based on can be formulated:

Hypothesis 4. An effective method for identifying inconsistencies throughout the

life cycle that is capable of drawing conclusions from an incomplete, but continuously

refined description of a system should be based on Bayesian updating.

The technical feasibility and viability of using a Bayesian approach to reach con-

clusions from model-based data is investigated in chapter 6. The specific application

to inconsistency identification is discussed in chapter 7. Further evidence in support
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of the hypothesis is collected in chapter 8, where the approach is applied to a case

study and compared to a state-of-the-art deterministic approach.

1.3.4 Refining Inconsistency Identification Knowledge over the Life Cycle
using Machine Learning

By nature of the approach and the assumptions made, the identification of probable

inconsistencies suggests reasoning based on incomplete knowledge, and the reaching

of conclusions that are not necessarily logically correct. However, as knowledge about

a system grows, one may ultimately have a better idea and more accurate depiction

about what particular evidence strongly suggests the presence (or absence) of a par-

ticular type of inconsistency. Therefore, it is prudent to assume that it is necessary to

evolve and refine the knowledge used in identifying inconsistencies over time. In other

words, as one learns more about a particular system and its environment, one may

also learn more about what kind of inconsistencies can occur in the given context,

how they manifest, and what their impact is.

Numerous methods can be envisioned for refining reasoning knowledge over time.

Given the previous hypotheses, the application of one particular (semi-)automated

approach from machine learning – specifically, Bayesian learning – is investigated

within the scope of this dissertation:

Hypothesis 5. An effective approach to inconsistency identification should consider

the aspect of learning from experience. Granting hypothesis 4, methods for encoding,

integrating and processing relevant past experience and expert knowledge for the pur-

pose of refining inconsistency identification knowledge should make use of (Bayesian)

machine learning.

Hypothesis 4 is primarily evaluated through interpretation of the results gathered

from applying the approach to a case study in chapter 8. There, the effect of learning

(i.e., giving feedback to the probabilistic reasoning mechanism) is analyzed in detail.
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1.3.5 Simplifying Assumptions

As discussed in the previous sections, a very large number of considerations must

be made when developing an inconsistency identification approach that accounts for

all facets of MBSE. To reduce the investigation to a manageable scope, a number

of simplifying assumptions are made throughout the thesis. The main, overarching

assumptions are as follows:

• Only those inconsistencies that can manifest as parts of one or more models are

considered

• Conclusions are drawn (primarily) from static information and knowledge (that

is: only the static content of a model is considered, and not the results of

executing, e.g., an analysis)

• Versioning is not considered, and only the latest version of the models that,

together, are intended to form a coherent set of models describing a system are

considered

• Variant management is not considered

Given these assumptions, no claim about the completeness of the approach devel-

oped and investigated in this dissertation is made. However, the results are deemed

a significant leap towards a more generally applicable framework.

1.4 Evaluation Strategy

The probabilistic approach to inconsistency identification presented in this disserta-

tion is evaluated both quantitatively and qualitatively. For purposes of quantitative

evaluation, proof-of-concept tool support is developed.

In chapter 7 and chapter 8 (specifically section 8.3.1), the developed approach

is evaluated qualitatively. This is done through a theoretical complexity analysis of
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the underlying algorithms, as well as a scalability analysis of the approach in prac-

tice, through interpretation of empirical performance measurements. Chapter 7 also

evaluates aspects of maintenance and re-usability of the inconsistency identification

knowledge.

The developed approach is evaluated quantitatively in chapter 8, where the devel-

oped concepts are applied to a case study. A basis for reasoning is provided by the

automated generation of sets of heterogeneous models, and by injecting these with

random manifestations of inconsistencies, incompletenesses, and features intending

to represent the result of human error. Different properties and characteristics of the

approach are then analyzed by performing a series of measurements to determine,

e.g., the number of identified inconsistencies, and the accuracy and precision of the

method. Impacts of choosing different scopes of reasoning knowledge, (automated)

refinement of the knowledge and changes to the boundary conditions are also inves-

tigated.

As part of the evaluation, the approach is also compared to a status-quo (deter-

ministic) reasoning approach by comparison of the incurred costs of each (which, as

is explained in detail in the chapter, is an indicator and basis for the comparison of

the value (i.e., utility) of the approaches). This gives insight into the overall value

of the approach, and the conditions under which (significant) improvements over the

application of status-quo methods can be achieved.

It should be noted that a full validation of the approach is deemed impossible

(particularly based on insights gained from previous research [102]). Validation entails

the consideration of every possible application scenario and circumstance under which

the approach could possibly be utilized. This is impossible to do within the scope of

a single dissertation. Instead, the approach is evaluated under specific conditions.
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1.5 Outline of Dissertation

The remainder of this dissertation is organized into three major parts: background and

related work, both of which act as a foundation for the development of a probabilistic

reasoning method and its application to inconsistency identification. Finally, the last

part of the dissertation is concerned with the evaluation of the developed concepts.

More specifically, the remaining chapters of this dissertation are organized as follows:

• Chapter 2 introduces important background on automated reasoning in formal

systems, formal modeling languages and Bayesian probability theory.

• Chapter 3 provides on overview of the related literature on inconsistency man-

agement, and introduces the state of the art of inconsistency identification and

semantic overlap detection in MBSE, software engineering and related disci-

plines.

• Chapter 4 introduces fundamental aspects of inconsistencies, and presents their

characterization and classification, as well as a framework for inconsistency

identification in MBSE.

• Chapter 5 presents a conceptual basis for a common representation formalism

allowing the capture, retrieval and manipulation of information and knowledge

encoded in heterogeneous models.

• Chapter 6 is one of the most important chapters of this dissertation. It intro-

duces a novel approach to inexact, probabilistic reasoning. The approach uses

the concepts developed in chapter 5 as a basis for implementing the initial ideas

from chapter 4.

• Chapter 7 represents the second most important chapter of this dissertation. In

the chapter, the application of the concepts developed in chapter 6 to inconsis-

tency identification and semantic overlap detection are discussed. The chapter
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presents important implications of using inexact reasoning for the identification

of inconsistencies.

• Chapter 8 illustrates the value and power of the developed inconsistency iden-

tification method through application to a case study and examination of the

performance of the approach.

• Chapter 9 summarizes the main insights gained and contributions made by this

dissertation.

• Appendix A lists important material used in the process of evaluating the ap-

proach.

Readers familiar with the concepts of formal languages, formal systems automated

reasoning may want to skip the first part of chapter 2. Readers primarily interested

in the developed inexact reasoning method should focus on chapters 5 and 6. If

the application to inconsistency identification and semantic overlap detection is of

interest as well, it is recommended to first read chapter 4 (specifically section 4.3).

The application of the reasoning method to inconsistency identification and semantic

overlap detection can then be found in chapter 7. Results from applying the method,

as well as important insights gained are presented in chapter 8.
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CHAPTER II

BACKGROUND

In this chapter, relevant background material is introduced. The chapter starts with

the introduction of formal languages and formal modeling languages. Thereafter,

automated reasoning in formal systems is introduced, which includes a discussion on

the interplay with semantics. To provide a formal and mathematically sound basis

for inexact reasoning, Bayesian probability theory and related aspects of machine

learning are introduced thereafter.

The primary purpose of this chapter is to introduce a number of relevant and

important concepts from formal methods. Formal methods employ techniques from

mathematical logic and discrete mathematics for the development, specification, ver-

ification and construction of systems [206, 127]. This allows one to write down the

behavior of the system under consideration using a well-defined mathematical formal-

ism and to express properties about the system. While this requires all assumptions

to be explicitly addressed, it also allows conclusions to be drawn (i.e., reasoning to

be done) within the given formal framework. Understanding automated reasoning

within the context of formal models requires a brief introduction into some of the ba-

sic concepts related to formal languages and the constituents of a modeling language.

The second part of the chapter then introduces Bayesian reasoning, which is used

as a basis for the inexact reasoning method for reasoning over formal models that is

introduced with this research.

2.1 Formal Models & Modeling Languages

In contrast to documents written in natural language, formal methods are based on

formal languages and require the explicit and concise notation of all assumptions. An
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understanding of formal methods and formal languages is essential to understanding

automated inconsistency identification.

This section is not intended to give a complete introduction to the vast field of

formal methods, but merely introduces the most important concepts which aid in

understanding the remainder of this dissertation. For greater depth, a variety of

books and articles on formal methods are available (e.g., [31, 44]).

2.1.1 Formal Languages

A formal language L is a set of well-formed syntactic expressions. These well-formed

expressions are constructed from concatenations of symbols from some alphabet Σ.

Formal languages are often represented in a compact form using a grammar. Gram-

mars can be analytical or generative. Analytical grammars are used in deciding

whether an arbitrary sequence of symbols is a well-formed expression. Generative

grammars define a set of production rules that, when applied, generate only well-

formed expressions – i.e., elements of the language. Meaning can be given to utter-

ances of a formal language through the definition of language semantics. Examples

of formal languages include the set of all Java programs, and the set of all words from

the dictionary. Note that many of following notations and definitions are adopted

from [115].

2.1.1.1 Definitions

In the following, definitions relevant to formal languages are introduced. An alphabet

Σ is a finite set of symbols. A word over Σ is a finite sequence of symbols from Σ. The

empty word is typically represented by the symbol ε. Words are produced through

concatenation of symbols: if u and v are words, then uv is their concatenation.

Likewise, if w is a word, then wn is defined by w0 = ε and wn+1 = wwn. For example,

(ab)3 = ababab. The length of a word – i.e., the number of symbols – is denoted by

|w| [115].
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Σ∗ is the set of all possible words over Σ, where ∗ is the Kleene-star [115]. A

formal language over an alphabet Σ is a subset L ⊆ Σ∗. Note that Σ∗ is countable if

Σ is finite – that is, if one can define a bijective mapping between elements of the set

Σ∗ and a subset of N (the natural numbers). Many well-known languages, such as

most logics, are not countable due to the arbitrary number of symbols representing

variables [115].

There are two basic constituents to any formal language: syntax and semantics.

Syntax is the study of producing sentences of a language – that is, the study of

how symbols are concatenated to produce valid elements of L. Semantics, on the

other hand, is the study of meaning. That is, semantics focuses on interpretation of

utterances of a language.

Note that, in the following, the terms word, sentence, statement and well-formed

formula may be considered equivalent. Also note that alphabets are not restricted to

single letters, but can be considered a general set of expressions. For this reason, the

term vocabulary and alphabet may be used synonymously.

2.1.1.2 Abstract & Concrete Syntax

The term syntax is used whenever one refers to the notation of a language. Syntax

focuses purely on notational aspects, and disregards meaning.

Traditionally, syntax is partitioned into abstract and concrete syntax. Abstract

syntax is a machine’s internal representation and captures the essence. That is, any

details that are unnecessary in order for a machine to be able to compute with a

syntactical object are removed. Abstract syntax is independent of any particular

representation. Concrete syntax, on the other hand, adds additional details to the

abstract syntax that are used for representation purposes (typically for human con-

sumption).

In computer languages, abstract syntax is typically stored in a tree structure called
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the abstract syntax tree. Concrete syntax contains additional details that may be im-

plicit to the tree structure or unnecessary: for instance, most programming languages

feature parentheses for grouping expressions. A transformation to an abstract syntax

in the form of a tree structure typically removes these parentheses due to the grouping

being inherent in the tree structure.

2.1.1.3 Syntactic Structure & Well-Formedness: Regular Expressions & Gram-
mars

Grammars are compact notations for formal languages. There are two main types

of grammars: analytical and generative grammars. Analytical grammars are used

in determining or checking whether a given expression is a valid utterance of a cor-

responding formal language. Generative grammars, on the other hand, are used in

producing expressions of a language. Expressions that are valid utterances of a formal

language are also referred to as being well-formed.

In the following, two mechanisms for generating and analyzing expressions of a

(decidable) formal language are introduced briefly: regular expressions and context-

free grammars [115, 129]. Regular expressions are compact notations using which

regular languages can be described. Context-free grammars are grammars capable

of producing exactly the set of context-free languages. According to the Chomsky

hierarchy, all regular languages are also context-free, and both regular languages and

context-free languages are subsets of all decidable languages. Therefore, a context-free

grammar can be defined for any regular expression.

Regular expressions (REs) are defined inductively:

• For every a ∈ Σ, a is a regular expression

• If α and β are regular expressions, then so are αβ, α|β and α∗ (and β∗)

Note that, as before, αβ denotes the concatenation of two expressions – in this

case, regular expressions. α|β is used for representing an “or” decision: for the case
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of generating expressions, either α or β may be used. Analytical grammars allow for

either expression to appear in the input word. ∗ denotes the Kleene-star. Regular

expressions allow for the use of parentheses to group regular expressions. In grouping,

the rule applies that the binding of the Kleene-star is greater than concatenation,

whose binding is greater than that of parentheses.

The languages described by regular expressions are defined recursively:

• L(a) = {a}

• L(αβ) = L(α)L(β)

• L(α|β) = L(α) ∪ L(β)

• L(α∗) = L(α)∗

A language is regular iff a discrete finite automaton (DFA) can be constructed that

accepts it [115]. Therefore, any regular language is also decidable. All finite languages

are regular [115]. In practice, regular expressions are often used as a means for

pattern matching, particularly for textual expressions. For this purpose, automatons

are constructed that accept words conforming to exactly the regular expression. This

is detailed in [115].

Not all languages are decidable. Of those that are decidable, only some are regular.

A larger set of decidable languages are context-free languages. Context-free languages

can be described using context-free grammars.

A context-free grammar is a tuple G = (V,Σ, P, S), where V is a set of non-

terminal symbols (also referred to as variables), Σ is an alphabet of terminal symbols

(disjunct with V ) and P ⊆ V × (V ∪ Σ)∗ a finite set of productions. S ∈ V is the

starting symbol. As a convention, non-terminal symbols are denoted by capital letters

from the alphabet – i.e., A,B,C, ... – and terminal symbols are denoted by lower case

letters and special characters. Letters from the Greek alphabet are used to denote
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expressions formed by (V ∪ Σ)∗. Productions are replacement rules, which replace a

given left-hand side with a right-hand side. Productions are written A → α rather

than (A,α) ∈ P . Furthermore, the notion of the logical “or” is adopted to write

A→ α1 | α2 as a shorthand for the two separate productions A→ α1, A→ α2.

An example of a context-free grammar for arithmetic expressions can be con-

structed in the following way (this example is taken from [115]): Let V = {E, T, F},

Σ = {a,+, ∗, (, )} and S = E. Furthermore, let:

P =


E → T | E + T

T → F | T ∗ F

F → a | (E)


A chain of productions can then be applied to form expressions such as a or

a ∗ (a + a). This can be formalized to the general principle of an induced deduction

relation in G denoted as →G: α →G β – that is, β can be deduced from α. This is

the case whenever there exists a production A→ γ in P , and words α1, α2 such that

α = α1Aα2 and β = α1γα2. For instance, relating back to the example of arithmetic,

let α = a+T +a and β = a+T ∗F +a (where α1 = α2 = a). Then β can be deduced

from α – that is, α→G β – because of the production T → T ∗ F .

Chains of deductions – i.e., deductive relations over multiple productions – are

denoted using the conventions for expressing the reflexive transitive hull : α →n
G β,

where n ≥ 0 is an indicator of the number of production steps. For n = 0: α →0
G α,

and generally for an n > 0 one uses the notation α→+
G β. In spirit with the definition

of the Kleene star, one denotes α→∗G β for n ≥ 0 productions.

Given a context-free grammar G, the language produced using G can then be

defined as L(G) = {w ∈ Σ∗ | S →∗G w}. Note that, in general, there exists infinitely

many grammars for a particular, given language1.

1A simple way of thinking about this is to add productions to a grammar that simply concatenate
the empty word.
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2.1.1.4 Semantics

Syntax is concerned with purely syntactical aspects of a formal language. Syntactic

expressions are used for communicating information [91]. Often, the meaning of such

information is “obvious” to a user from the syntactic representation alone. This is

because syntactic expressions are used that a human is familiar with and can easily

interpret (e.g., functions from the standard library in C, or API function names

are good examples of this). However, in order for a computer (and other people

not familiar with the terms used) to do something useful with the expression, it

needs to have the same semantic interpretation of the syntactic structure. Semantic

interpretation is especially problematic because sometimes two semantically identical

things can be expressed in two different ways syntactically: e.g., “01/17/1986” and

“The third Friday in the first month of the year 1986” refer to the same date, but

are syntactically very different. Ideally, in the process of communicating information,

both communicating entities must interpret syntactic expressions of a language in

exactly the same way. Formally, meaning can be given to utterances of a formal

language by defining formal semantics.

Broadly, for an arbitrary sequence of symbols, semantics assign the meaning of

the expression being sensical or non-sensical under the given interpretation. The

semantic definition for a language L, or simply semantics, consists of a semantic

domain of discourse D and a semantic mapping v : L → D from the syntax to the

semantic domain. Using the example of arithmetic expressions, the meaning of an

arithmetic expression α would be a number. Therefore, one possible definition for

the semantic domain is D = N. The semantic mapping (sometimes also referred to as

the valuation function) can then be defined by v : α→ N. Such mappings can often

be defined in an inductive fashion by providing the meaning of complex expressions

in terms of meanings of simpler expressions (e.g., to represent the meaning of the

addition of two numbers): for instance, v(“a+b′′) = v(“a′′)+v(“b′′), where the symbol

31



“+” is mapped to mathematical addition. This is a way of defining compositional

semantics [165]. For most (if not all) languages, mathematics provides a standard

semantic domain as a basis for semantic mapping.

Semantics are not only useful in defining behavioral aspects [92]: both behavior

and structure need semantics. Behavioral semantics are typically much harder to de-

fine. This is because deciding upon a specific semantic domain of discourse requires

deciding upon the kinds of things we want our language to express. For example,

standard semantic domains used for describing behavioral semantics are trace seman-

tics [110], input/output relations [143], and streams and stream processing functions

[25].

A semantic domain specifies the very concepts that exist in a universe of discourse

and is a prerequisite for comparing different semantic definitions. Therefore, the

explicit and formal definition of a semantic domain is crucial. However, in practice

this is often (if not mostly) not the case: for instance, the Unified Modeling Language

(UML) allows for semantic variation points, but no formal way of defining semantics

[91]. In some cases it is also not required: the degree of formality used when defining

semantics depends on the intended audience (for instance: users, language developers

and tool vendors) and can be, at least partly, a sociological process [92].

2.1.1.5 Meta-Languages

As shown in the previous sections, certain conventions and symbols are used in defin-

ing languages. These conventions and symbols are a part of another language. There-

fore, a language must exist using which other languages can be described. Tarski first

published this observation by proposing the following [214]: “If the language under

discussion (the object language) is L, then the definition should be given in another

language known as the meta-language, call it LM”. A meta-language can be defined
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as a language for describing grammars, where a grammar is a sentence in the for-

mal meta-language. At least one well known [115] standardized language for writing

context-free grammars is the Backus-Naur Form (BNF).

Note that a meta-language is not only required for syntax, but also for semantics

– that is, a syntactic representation of a semantic domain and semantic mapping.

This is required in order for a computer to process formal semantics. Therefore, to

properly define the semantic domain and semantic mapping, a language for describing

each in is required, too. This is problematic, since the syntax and semantics of

a meta-language must be defined through a meta-meta-language, and so on. This

chain of meta-languages terminates if a language is capable of describing itself (a so

called bootstrapping language). In the literature, a variety of rigorous notations for

semantic domains exist. Note that these have varying degrees of formality: expressing

semantics in a natural language is an informal, but often sufficient way. Often used

are also the language Z [201] or pure mathematics. For languages utilizing graph

structures, graph transformations are a formal way of defining semantics and semantic

mappings [115, 57].

2.1.2 Modeling Languages & Meta-Modeling

Given the definitions from the previous section, the notion of a modeling language

can now be formalized. Modeling languages are sometimes also referred to as iconic

or diagrammatic languages due to their graphical syntax. Modeling languages can

be more intuitive than textual languages, where basic syntactic expressions are put

together in linear sequences. However, modeling languages can also be confusing if

the icons are used in abundance [91] (hence making a compositional mechanism for

both syntax and semantics similar to that described for compositional semantics of

textual languages desirable).

The definition of a formal modeling language is practically identical to that of a
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(textual) formal language. Indeed, from a theoretical perspective, there is no principal

difference between textual and diagrammatic languages [91]. Similar to the definition

of formal languages, a modeling language is a set of utterances, which can be produced

through, or verified for well-formedness by a corresponding grammar. The primary

difference to other formal languages is that modeling languages typically have a visual

syntax (e.g. graphical, geometrical or topological) as opposed to textual [82].

Both the abstract syntax and the concrete syntax of a formal modeling language

is typically defined (at least in part) by a so-called meta-model. A meta-model is

a model itself and, hence, must conform to a meta-modeling language. There are

a variety of ways to define meta-models for modeling languages. A commonly used

approach is to treat a meta-model as a type graph. Elements of the language described

by such a meta-model are then instance graphs. In order for the particular model to

conform to the given language, there must be a morphism – i.e., a structure preserving

mapping – between an instance graph (the model) and the given type graph (the

meta-model). In practice, Entity Relationship Diagrams (ERD) and Class Diagrams

(which add inheritance to ERDs) are commonly used as meta-modeling languages

[82]. Due to their limited expressiveness, these are commonly used in combination

with a separate, often textual, constraint language (one example of such a language

is the Object Constraint Language (OCL) [164]).

A second, more general approach defines a meta-model through a set of produc-

tion (or (model) transformation) rules. These can be used two-fold: transformation

rules can be used to generatively build a model (similar to generative grammars

introduced in section 2.1.1.3) by applying a series of transformations either to an

existing, non-empty, or to an empty model. Transformation rules can also be used to

analytically check whether a particular given model is a valid utterance of a formal

language through the process of reduction2. Commonly used for this purpose are

2In mathematics, reduction is the process of rewriting an expression (in this case, a graph) to a
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Figure 1: Modeling languages as sets of graphs (adapted from [82]).

graph grammars [57, 132], particularly due to their expressiveness and formality.

Since meta-models are models themselves, they are also defined by a modeling lan-

guage. The meta-model corresponding to a given meta-model is then referred to as the

meta-meta-model. The meta-meta-model has the same definition as a meta-model.

Therefore, the term meta is relative, and one could continue the meta-hierarchy in-

finitely [82]. However, in practice this is commonly done to a point where a modeling

language can be used for the purpose of describing itself – i.e., the language is self-

referential and can bootstrap itself (see, e.g., the Meta-Object Facility (MOF) [163]).

As mentioned in section 2.1.1.4, the semantic domain and semantic mapping for a

given language whose syntax is based on graph structures can be defined using graph

transformations (or graph production rules), given that the semantic domain can be

expressed using graph structures as well. Since both the syntactic utterances and the

simpler form.
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corresponding grammar of a modeling language can be described using type graphs,

instance graphs and graph transformations, a natural way for describing the semantic

mapping of modeling languages is using graph transformations [91].

Figure 1 summarizes the application of meta-models and transformations for de-

scribing both syntax and semantics of modeling languages.

2.2 Automated Reasoning in Formal Systems

In this section, fundamentals of, and methods related to automated reasoning (i.e., the

process of automating deductions (see section 2.1.1.3)) are introduced. Automated

reasoning (or, as it is often referred to, theorem proving with computer support) con-

cerns the mechanization of deductive reasoning within a formal system. In practice,

a variety of automated theorem provers that are based on numerous proof meth-

ods (e.g., direct proofs (similar to applying production rules to find an expression),

mathematical induction, or proof by contradiction) have been developed (e.g., SPASS

[230], Isabelle [155] and Gandalf [213]).

The following sections briefly summarize important principles of automated proof

theory and principles related to automated reasoning. Towards the end, important

properties of formal systems are introduced.

2.2.1 A Simple First-Order Language

To illustrate the concepts of automated proofs, and to act as a reference for a simple

logical formalism in later chapters, a simple first-order language is introduced in the

following. The language is based on the first-order language introduced in [189].

Consider an alphabet Σ which defines variables (X1, X2, ...), constants (a1, a2, ...),

(syntactic) function symbols (f1, f2, ...), logical connectives and quantifiers (∨,∧,¬,→

,∀,∃), and punctuation symbols ((, ), “,′′) (where the last character is a comma). A

term ti can be constructed from elements of this alphabet using the following rules: (1)

variables and constants are terms and (2) if fi is a function symbol and t1, t2, ..., tn are
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terms, then fi(t1, ..., tn) is a term. Let the set of all terms be constructed by these two

rules. Since, in a (first-order) logic, terms are typically interpreted as objects (that

is, things which have properties), predicate symbols are used as a means of making

assertions. An atomic formula is defined as pi(t1, ..., tm). These atomic formulas are

the simplest expressions in the language. More complex formulas can be constructed

using the logical connectives.

In the language, any well-formed formula3 (wff) is defined by the following two

rules: (1) any atomic formula is a wff and (2) for wff’s A and B, the formulas ¬A,

A ∨B, A ∧B, A→ B, ∀Xi(A) and ∃Xj(A) are well-formed.

2.2.2 Model Theory

Formal languages are entirely syntactic in nature but may be given semantics that give

meaning to the elements of the language. For instance, in mathematical logic, the set

of possible formulas of a particular logic is a formal language, and an interpretation

assigns a meaning to each of the formulas – usually, a truth value. A basis for semantic

interpretation, and the relation of semantics to formal languages has already been

introduced in section 2.1.1.4. This initial discussion is built on in the following.

As mentioned in section 2.1.1.4, the study of interpretations of formal languages

is called formal semantics. Semantics of formal (modeling) languages are typically

defined in terms of model theory [189, 29]. Of particular importance are the concepts

of logical consequence, validity, completeness, and soundness. In model theory, the

terms that occur in a formula are interpreted as mathematical structures (e.g., groups,

fields or graphs), and fixed compositional interpretation rules determine how the truth

value of the formula can be derived from the interpretation of its terms.

Model theory works with three levels of symbols: logical constants, variables and

symbols which have no fixed meaning, but are assigned meaning by being applied to a

3Note that in most logics, it is customary to refer to utterances of a logic as a formula.
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particular structure. Examples of the latter are non-logical constants such as relation

symbols and function symbols, as well as quantifiers. As introduced in section 2.1.1.4,

an interpretation of a wff requires a domain of discourse D and a mapping relative to

D which assigns semantic meaning to each well-formed constituent of that formula to

be defined. For instance, for a logic, TRUE or FALSE can be assigned to a wff.

Once again referring to the example of a logic, a model for a wff is an interpretation

I of terms such that the formula becomes TRUE. Determining this truth value requires

additional information: say a wff A is given. If information is provided that allows one

to assign a truth value to A, then A is said to be interpreted. A language is interpreted

if there exists some systematic way (e.g., using semantic rules) to interpret each wff

of a language. Given such a systematic way of interpreting wff’s, one can calculate

the truth value of each formula (under the given interpretation). In model theory, a

formula A is said to be satisfiable under interpretation I if there exists at least one

valuation v for which v(A) evaluates to TRUE. A is said to be valid if every valuation

for every I yields TRUE, in which case A is referred to as a tautology [189].

Referring back to the example of mathematical addition from section 2.1.1.4,

as well as using the first-order language defined in section 2.2.1, consider the term

plus(X1, X2). Note that plus represents a function symbol with two variables X1

and X2 as arguments (where, as defined in section 2.2.1, variables are also terms).

The valuation of the term requires mathematics as a semantic domain. The semantic

mapping is defined in such a way that plus maps to the mathematical operator of

addition, and the values bound to the variables are interpreted as numbers in the

semantic domain. Therefore, for v(X1) = three and v(X2) = four, where three and

four are constants, v(plus(three, four)) = v(three) + v(four) = 3 + 4 = 7. Note the

compositional definition of semantics as discussed in section 2.1.1.4. Now consider

the wff v(plus(X1, four)) > six, where v(six) = 6. This wff is satisfiable because

there exists at least one model – i.e., one interpretation – for which the formula is true
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(e.g., v(X1) = three). However, the formula is not considered valid – that is, it is not

a tautology. This can be shown through a proof by contradiction: let v(X1) = one

under a given interpretation (where v(one) = 1). Then v(plus(X1, four)) > six is no

longer satisfied.

Also note that only the basic principles of model theory required for understanding

the argumentation in the remainder of this dissertation are discussed. For more a more

elaborate introduction to model theory, the interested reader is invited to consult the

related literature (e.g., [29]).

2.2.3 Formal Systems, Theories & Reasoning

A formal system (typically also referred to as a calculus) consists of a formal language

and a deductive system. A deductive system is composed of axioms (i.e., statements

of a language which are taken as factual) and a set of inference rules. These inference

rules are used in deriving further statements (called theorems). The set of axioms

and inference rules is called a deductive system, a set of axioms with all derivable

theorems from it is a theory T . All elements of a theory are well-formed expressions

of a language. A proof is a series of purely syntactic transformations according to

the inference rules. Therefore, the concept of a formal theorem is fundamentally

syntactic. ` ψ (where ψ is a formula) means that ψ is a theorem in the given formal

system (that is, ψ is provable from the axioms). Sometimes the axioms used as a

starting point are made explicit by stating the initial assumptions Ai. In this case,

and in case additional assumptions are made, one writes A0,A1, ...,An ` ψ instead.

As mentioned in section 2.1.1, statements of a language may be broadly classified

into nonsense and well-formed expressions. Well-formed expressions are typically

divided into theorems and non-theorems. However, most formal systems simply define

all well-formed formulas as theorems [113]. This subdivision of concatenations of

symbols from an alphabet into nonsensical expressions, well-formed expressions and
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Figure 2: Types of syntactic entities constructable from a given alphabet.

theorems is depicted in figure 2.

The concept of a formal theorem is fundamentally syntactic. This is in contrast

to the notion of a sentence that is true (a sentence with a truth value is also called

a proposition), which introduces semantics: depending on the presumptions of the

derivation rules, different deductive systems can yield different interpretations. This

shows the interplay between proof theory and model theory: let I be a set of in-

terpretations for a calculus and ψ be a sentence (i.e., well-formed expression) of the

calculus. As mentioned in section 2.2.2, ψ is satisfiable (under I) if and only if at least

one interpretation of I valuates ψ to true. ψ is (universally) valid, written |= ψ, if

and only if every interpretation in I valuates ψ to true [127]. Model-based deduction

techniques use algorithms which try to systematically test all valuations of a formula

(propositional satisfiability test, model checking, etc.). This is only possible if the

domain is finite (or has finite model properties) [27].

2.2.3.1 Forward and Backward Chaining

A classic example to illustrate the process of a proof, and its purely syntactic nature,

is that of proving that Socrates is mortal [81]. Let mortal be a property of the object

Socrates. Then, using the same formalism introduced in section 2.2.1, one can express
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the fact that Socrates is mortal in the following way:

mortal(Socrates)

Let the above expression be the term t. A proof is now constructed to determine

whether the above statement is a logical conclusion that can be reached using the

axioms and inference rules of the formal system. To do so, let the formal system

under consideration be composed of the following axiom:

man(Socrates)

Furthermore, let the following inference rule be a part of the formal system. The

inference rule is written in the form of a logical implication, which is, essentially4, a

production rule which states that if the left hand side is true, then the right hand

side must also be true.

man(X) −→ mortal(X)

The fact that Socrates is mortal can be proven using a variety of methods. One

method consists of producing all possible statements by starting from the axioms

and applying inference rules until the statement to be proven has been produced.

In that manner, one starts off with the axiom man(Socrates). Then the inference

rule is applied, where X is a variable which, when assigned the value Socrates leads

to the implication man(Socrates) −→ mortal(Socrates). Since the left hand side of

the implication is known to be true (the known axiom), the statement on the right

hand side can be inferred to be true also. This inferred statement corresponds to the

statement to be proven. Hence, it has been proven that mortal(Socrates) – i.e., that

Socrates is mortal.

4Production rules and logical implications are not quite the same concept, but they are highly
related: in a production system such as that used in section 2.1.1.3, production rules were used to
construct all utterances of a language. This is a generative concept. Here, such rules are employed
for the purpose of reaching logical conclusions given a set of premises through inference, and proving
that a given statement is a theorem. Although similar in application, the connotation is slightly
different in that an expression is never explicitly produced, but its producability verified.
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Starting from the axioms and applying inference rules until a target theorem has

been derived is also referred to as forward inference or, if multiple rules of inference

are applied sequentially, forward chaining. It is one of the two main methods used in

practice for performing inference – or reasoning. Logically, it is a repeated application

of the Modus Ponens. The opposite of forward chaining is backward chaining. In

backward chaining, the set of inference rules is searched until a rule is found whose

consequent (i.e., right hand side) matches the statement to be proven. The antecedent

(i.e., left hand side) is then compared to the set of axioms. If no match is found, the

process is repeated by attempting to prove the antecedent of the rule. Ultimately, a

successful proof results in the sequence of backward inductions terminating with an

axiom.

2.2.3.2 Deductive, Inductive and Abductive Inference & Monotonicity in Rea-
soning

Deductive, inductive and abductive inference are the three major types of inference

[46]. In deductive inference the inferred statements are necessarily true if the premises

from which it is inferred are also true. That is, deductive inferences are based on

relations between premises that are logically valid. Therefore, the truth of premises

guarantees the truth of conclusion. This is similar to the example used in the previous

section, where the statement Socrates is mortal was inferred from the premises that

Socrates is a man and all men are mortal. Reasoning based on deductive inference

is sometimes referred to as exact reasoning.

Inductive and abductive inference differ from deductive inference in that the con-

clusions drawn are not guaranteed to be correct – that is, the conclusions are uncer-

tain. For instance, consider the premises Socrates is a philosopher and Most philoso-

phers do not believe in free will. Using inductive reasoning, one can now conclude

that Socrates does not believe in free will based on the given premises. However,

the truth of the conclusion is not guaranteed – in fact, in this case, the conclusion
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drawn is wrong, since Socrates was an advocate of the concept of free will (see, e.g.,

his dialogue “Phaedo” [224]). Therefore, the concept is often seen as being statis-

tical in nature. Abduction is a similar concept (and some conceive induction as a

special case of abduction [93]), but is explanatory in nature. In [46] the example is

given that one may have observed many gray elephants, but no non-gray ones. From

this one infers that all elephants are gray, because it provides the best explanation

for the observations made. This explanatory link is absent in inductive inference.

Explanatory reasoning also allows for diagnostic reasoning by exploiting the causal

links. Reasoning based on inductive or abductive inference is sometimes referred to

as inexact reasoning.

Deductive inferences are monotonic: that is, once it has been established that a

derived premise is true, no other inferences can prove otherwise (unless the deductive

system is inconsistent5). Inductive and abductive inference, on the other hand, have

the interesting property that they are not monotonic. That is, there are conclusions

that cannot be drawn from a formal system as a whole, but they can be drawn when

considering only a subset of the premises.

Theorem provers typically use deductive inference due to the intended use of pro-

ducing a proof that is guaranteed to be correct under fixed assumptions. However,

much research has also been conducted in automated reasoning using inductive and

abductive inference. Typically, due to the inherent uncertain nature of the con-

clusions, inductive and abductive inference is typically based on methods such as

Bayesian reasoning [18], Dempster-Shafer Theory [190] and Fuzzy reasoning [130].

5Recall the definition for inconsistency in section 1.2.2.1, where an inconsistency was also defined
as a logical contradiction: that is, one can derive from a formal system that a statement is both true
and false.
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2.2.4 Properties of Formal Systems

Three important properties of formal systems are consistency, completeness and de-

cidability. As hinted in the previous section, (logic) formal systems are consistent if

it is not possible to derive both a formula and its negation.

Formal systems are (syntactically) complete if for every well-formed expression A

either A or ¬A is a theorem. That is, all elements of a formal language can also be

derived using the inference rules and axioms. A logic calculus is semantically complete

with respect to an interpretation I if all well-formed formulas of the formal system

that are true in I are also theorems (i.e., are models6 (see section 2.2.2)) [204].

A formal system is decidable if there exists an algorithm that can calculate a

characteristic function χ which can determine whether an arbitrary expression is a

theorem or not. Such a function is defined as:

χL (w) =

 1 if w ∈ L

0 if w /∈ L
(1)

Formal systems are semi-decidable if there exists an algorithm which can recognize

all theorems of formal system, but may not return an answer if the given expression

is not a theorem (i.e., it may not be an effective procedure for checking that a formula

is not a theorem). An example of a decidable calculus is propositional logic. First-

order predicate logic (FOL) is an example of a semi-decidable formal system. As

mentioned in section 2.1.1, not all languages are decidable. Peano arithmetic, for

instance, is an example of an undecidable calculus – that is, a calculus for which

a (single) algorithm for determining whether an arbitrary expression is a theorem

6Note that the use of the word model over the past sections has been used with two different
definitions. To model a phenomenon is to construct a formal theory that describes and explains it.
In a closely related sense, one models a system or structure that one plans to build, by writing a
description of it. These are very different senses of model from that in model theory: the model of
the phenomenon or the system is not a structure, but a theory, often in a formal language. UML,
for instance, is a formal modeling language designed for just this purpose.
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cannot be constructed [113].

2.3 Bayesian Reasoning & Learning

Bayesian probability theory is one of several generally accepted interpretations of

the concept of probability and belongs to the category of evidential probabilities

[18, 212]. Within the context of decision theory, it has been proven that Bayesian

probability provides the only suitable basis for admissible decision rules [212]. In

contrast to the frequentist perspective on probability theory, probabilities are not

treated as frequencies of some phenomenon, but rather as a degree of belief about

a phenomenon [18]. Such phenomena are typically depicted by random variables –

i.e., variables whose values are subject to variations due to randomness. The state

of belief can be interpreted as a willingness to bet on the occurrence of a particular

(randomly occurring) phenomenon [40].

Bayesian probability is sometimes seen as an extension to propositional logic that

enables reasoning with propositions whose truth value is uncertain [125]. This is in

agreement with the definitions given in section 2.2.3.2, where Bayesian probability

theory (and, in particular Bayesian inference) was mentioned to be an inexact reason-

ing method. Unlike in mathematical logic, where theorems are derived starting from

a set of axioms using rules of inference, Bayesian inference is based on the principle

of determining an updated probability distribution starting from a prior belief (ex-

pressed as a probability distribution) and a set of additional observations (i.e., new

information that is received) relevant to the context.

2.3.1 Probability Basics

Before introducing Bayesian inference and Bayesian learning, necessary basic defini-

tions and principles from probability theory are introduced. These include the notion

of a probability space, conditional probability and random variables. It should be

noted that the introduction to probability theory is kept very brief. Further details
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can be obtained from the numerous textbooks on probability theory.

2.3.1.1 Probability Space

Probability theory has to do with experiments that have distinct outcomes which

occur with uncertainty (i.e., at random). An example of an experiment is the flip-

ping of a two-sided coin, in which the outcomes are either heads or tails. Another

example is to pick a (randomly selected) student from a population of students and

determining whether the student is enrolled in a Ph.D. program or not enrolled in

a Ph.D. program. The uncertainty associated with the outcome of an experiment

is indicated by a probability measure, which is simply a real number between 0 and

1. A probability space defines the possible outcomes of an experiment and defines a

probability measure.

Once an experiment is well-defined, the collection of all outcomes is called the

sample space (or outcome space) and is denoted by the symbol Ω. Mathematically,

a sample space is a set and the outcomes are the elements of the set – that is, a

sample space with n outcomes is defined as Ω = {ω1, ω2, ..., ωn}. For brevity, only

finite sample spaces are considered in this introduction to probability theory.

A subset of the sample space is called an event . In the following, the convention

will be used that events are denoted by capital letters from the beginning of the

alphabet (e.g., A or B). A subset containing exactly one outcome is called an ele-

mentary event. Certain sets of events – i.e., certain sets of subsets of Ω – are known

as σ-algebras F . For finite sample spaces, F ⊆ 2Ω, where 2Ω is the power set (i.e., the

set of all subsets including the empty set and the set itself). σ-algebras are used in

constraining the possible sets over which probabilities can be defined. Probabilities

are assigned to events and elementary events using a probability measure, which is a

function P : F → [0, 1] that defines a mapping from elements of F to a real number

from the range 0 to 1.
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Note that in order for a set of subsets of Ω to be a valid σ-algebra, the set F must

fulfill certain conditions:

• F must contain the sample space (i.e., Ω ∈ F)

• F must be closed under complementary events: that is, if A ∈ F , then (Ω \ A) ∈

F must also hold, and as a consequence, ∅ ∈ F

• F must be closed under countable unions: for any elements A1, A2, A3, ... of F ,

it must hold that (
⋃
Ai) ∈ F (i.e., their union must also be an element of the

σ-algebra)

A valid probability measure P must also satisfy a number of conditions. These

conditions are also known as Kolmogorov’s axioms of probability theory [131]:

• For any ωi, it must hold that 0 ≤ P ({ωi}) ≤ 1

•
∑
P ({ωi}) = P (Ω) = 1 (i.e., the sum of the probability of all elementary events

must equal one)

• P must satisfy the countable additivity property: for all sets of pairwise disjoint

(independent) events Ai, the condition must hold that P (
⋃
Ai) =

∑
P (Ai)

Once a sample space Ω has been constructed, and a valid probability measure P

and σ-algebra F have been defined, a valid probability space has also been defined.

Formally, a probability space is denoted by the triple (Ω,F , P ).

2.3.1.2 Conditional Probability

A conditional probability is the probability of an event, given that another event has

occurred. Consider two events, A and B. As introduced previously, both A and B are

sets of outcomes. Say that B ∩A 6= ∅: then sets A and B overlap. This is illustrated

in figure 3 using a Venn Diagram [152]. Intuitively, if all outcomes are equally likely,
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Figure 3: Venn diagram illustrating the intersection of two events A and B.

the probability of the outcome of the experiment being in A given that it is already

known that the outcome is also in B is then the ratio of the outcomes in both A

and B (the overlap), and those in B (since it is known that B has already occurred).

Dividing by the total number of outcomes, the conditional probability can be defined

as a ratio of two probabilities as in equation 2:

P (A | B) =
|A ∩B|
|B|

=
|A ∩B| / |Ω|
|B| / |Ω|

=
P (A ∩B)

P (B)
(2)

Note that, similar to the convention used in section 2.1.1.1, |A| denotes the size of

a set A (i.e., the number of elements). Also note that the condition must hold that

P (B) 6= 0. Furthermore, while derived using the assumption that all outcomes are

equally likely, the rightmost term of equation 2 is also valid for the general case of

outcomes possibly not being equi-probable. Finally, note that, in the following, the

expressions P (Ai∩Aj) and P (Ai, Aj), both denoting the probability of events Ai and

Aj occurring, are used interchangeably.

Events may also be independent. Assume two other events C andD with P (C) 6= 0

and P (D) 6= 0. If P (C | D) = P (C), then C is said to be independent of D. This is a

result from C∩D = ∅. Note that independence is symmetric: i.e., P (D | C) = P (D).

Conditional independence is defined similarly, with the addition that two events

are only independent when given a third event. Say that A and B are independent if

an event F has already occurred. Then, P (A | F ) = P (A | B,F ) and it is said that A

and B are conditionally independent given F . However, as before, P (A | B) 6= P (A).
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An interesting and very useful rule to computer the joint probability of a set of

events Ai (i.e., the probability that all events Ai occur simultaneously) can be derived

from the definition of conditional independence: the chain or multiplication rule [152].

For n events, the chain rule takes the following form:

P (A1, A2, ..., An) = P (A1)P (A2 | A1)P (A3 | A1, A2)...P (An | A1, A2, ..., An−1) (3)

This rule can easily be proven by iteratively simplifying the right hand side using

the definition of conditional probability given in equation 2 (for the full proof see the

related literature, e.g., [152]).

A similar and related rule is the law of total probability [152]. Suppose one is given

n mutually exclusive and exhaustive events E1, E2, ..., En such that Ei ∩ Ej = ∅ for

i 6= j and
⋃
iEi = Ω. Then the law of total probability states that for any other

event F

P (F ) =
n∑
i=1

P (F ∩ Ei) =
n∑
i=1

P (F | Ei)P (Ei) . (4)

2.3.1.3 Random Variables

The last major concept introduced in this brief overview of probability theory is that

of a random variable. Random variables are mathematical variables whose values vary

due to randomness. Mathematically, a random variable is a function on the sample

space Ω that takes on a value from a target space E7:

X : Ω −→ E (5)

A measurable space is a pair (E, ε), where E is some space of values and ε a σ-algebra

on E. For a given probability space (Ω,F , P ), a random variable X defined according

to equation 5 is said to be (F , ε)-measurable and (E, ε)-valued. Note that, for brevity,

7Note that E is not an event.
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only discrete and finite target spaces are considered8. There, the σ-algebra is, similar

to before, defined as ε ⊆ 2E.

Random variables can be defined through their preimage. For any possible value,

or combinations of values x ∈ ε, this preimage is, necessarily, an event over which a

probability is defined: X−1(x) ∈ F . Therefore, through the definition of the preimage

of a random variable X, the mapping of the random variable can be defined:

X−1(x) = {ωi ∈ Ω | X(ωi) = x} (6)

For a random variable, X = x is used to denote the set of all elements ωi ∈ Ω that X

maps to the value x. Note that since random variables are defined over the sample

space, a mapping must be defined for every possible outcome of an experiment – i.e,

for all elements of Ω. Since a random variable typically has a multi-valued target

space and, hence, maps from more than one possible event, the expression p(X) is

used to indicate the probability distribution of X. P (X = x) is then the probability

of X = x. The joint probability distribution is a probability function on the Cartesian

product of the spaces of the random variables. The joint probability distribution of

two random variable X and Y is denoted by p(X, Y ).

Given a joint probability distribution, the law of total probability (see equation 4)

can be applied to obtain the probability distribution of any one random variable

by summing over all values of the other variables. This is known as the marginal

probability (distribution). Say random variables X and Y are given. The marginal

probability for a discrete random variable X for X = x is then:

P (X = x) =
∑
i

P (X = x, Y = yi) (7)

8In most textbooks, random variables are often introduced with numeric target spaces which are
either continuous or discrete (i.e., finite or countable). For instance, for continous random variables,
one often encounters the case of E = R, in which case ε is typically chosen to be the Borel σ-algebra
[18]. While numeric target spaces are very commonplace, target spaces can also be sets of labels, in
which case the random variables are often referred to as categorical.
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The definition of marginal probability distributions for continuous random variables

is analogous. There, the difference is that, instead of summing over all elements,

integration along the dimension(s) to be marginalized is performed.

Throughout this dissertation, random variables will typically (unless specifically

stated) be denoted by capital letters from the end of the alphabet, usually X or Y .

Note that the definition of conditional probability is analogous to that introduced for

events.

2.3.1.4 Moments of Random Variables

Probability distributions are often characterized by specific quantitative measures.

These measures are known as the moments. The zeroth moment is the total proba-

bility (i.e., 1), the first moment is the expected value or mean, and the second moment

is the variance. Here, the latter two are briefly introduced.

If the target space of a random variable X is a subset of the real numbers (e.g.,

the natural numbers), the expected value of X is given by:

E [X] =
n∑
i=1

xipi (8)

Here, xi represents the value in the target space and pi represents the probability

P (X = xi). The expected value is the mean or average value of X that one would

expect if a large number of experiments were performed repeatedly. Note that if the

target space is infinite (but still countable) then n =∞.

For a target space of real numbers, the expected value of a random variable can

be determined using its probability density function (pdf)9 f(x). The integral of the

probability density function between limits a and b is the probability of the random

variable falling within the range [a, b]. Therefore, the expected value for continuous

9Probability density functions are commonly used to describe probability distributions (see the
related literature (e.g., [18]) for a list of probability density functions for common distributions). A
well-known example is the function that describes the “bell”-shaped curve of the normal distribution.
Such functions describe the relative likelihood for a random variable to take on a given value.
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random variables can be defined in a similar way to that of discrete random variables:

E [X] =

∫ ∞
−∞

xf(x) dx (9)

The second moment (or variance) of a random variable measures the spread of the

associated distribution. For example, a variance of zero indicates that all values are

identical. A (in relative terms) small variance indicates that the outcome will be

very close to the mean, whereas large variances indicate a large spread. The variance

is often used as a parameter to describe probability distributions (at least in part).

Variance is the square root of the standard deviation σ, which indicates deviations

from the mean. Hence, variance is formally defined as the expected value of the

squared deviation from the mean:

Var (X) = σ2 = E
[
(X − µ)2

]
= E

[
X2
]
− (E [X])2 (10)

Note that in equation 10 the symbol µ was used to indicate the mean value – i.e., the

expected value of the random variable. For discrete random variables, equation 10

simplifies to:

Var (X) =
n∑
i=1

pi (xi − µ)2 =
n∑
i=1

pix
2
i − µ2 (11)

For the case of continuous random variables with probability density function f(x),

the variance is given by:

Var (X) =

∫
(x− µ)2 f(x) dx =

∫
x2f(x) dx− µ2 (12)

Like before, µ refers to the expected value. Related to the concept of variance is also

that of covariance, which is a measure of how much two random variables change

together.

2.3.2 Bayesian Inference

Bayesian inference provides a probabilistic approach to inference [18]. At its core is

Bayes’ Theorem (see equation 13) [18]. Bayes’ Theorem states that, given two events
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A and B such that P (A) 6= 0 and P (B) 6= 0, the probability of event A occurring,

given that B has been observed can be determined by calculating:

P (A | B) =
P (A) P (B | A)

P (B)
(13)

Note that equation 13 follows directly from the definition of conditional probability

given in equation 2. Within the context of a Bayesian interpretation of probability,

the event that has already occurred (here: B) is also referred to as the evidence or

information for the conditioned event.

Bayes theorem is the cornerstone of Bayesian machine learning methods because

it provides a means of calculating the posterior probability P (X = x | YE = yE) of

an event X = x given some observed evidence YE = yE from the prior probability

P (X = x), and the conditional probability P (YE = yE | X = x) and P (YE = yE). In

machine learning – specifically in the subfield of concept learning – the most likely

event HMAP , and hence the value xMAP of a random variable X that maximizes

the probability is often of interest. The target space of X can be either continuous

or discrete. In the case of a discrete space each element in the target space of X

represents a particular concept (e.g., in the form of a categorical label or proposition).

In some applications of inexact reasoning, the intent of using Bayesian inference is to

identify the most likely event called the maximum aposteriori (MAP) event10 [149].

HMAP ≡ argmax
X=x

P (X = x | YE = yE) (14)

To determine the MAP event, a näıve algorithm would simply compute the probability

for each possible X = x and then select the x for which the probability P (X =

x | YE = yE) is maximal. Depending on whether X is discrete or continuous, and

on the size of the target space of X, this algorithm can be computationally very

expensive. However, for small target spaces – particularly small (finite) discrete

10In the related literature on machine learning, this maximum aposteriori event is also often
referred to as the MAP hypothesis, selected from a space of possible hypotheses.
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spaces – the computation is commonly (at least in most practical cases) tractable.

2.3.3 Bayesian Networks

Bayesian inference is fairly simple if the number of random variables and their target

spaces are very small. However, as the number of variables increases, the num-

ber of terms that need to be made available and computed with rises exponentially.

Bayesian networks [169] reduce the complexity in such cases. If (conditional) indepen-

dence assumptions can be made explicit apriori, then Bayesian networks are compact

representations of the joint probability distributions over the set of random variables

they contains, and, by exploiting some of their properties, allow for efficient inference.

2.3.3.1 Difficulties in Solving Large Instances

Consider the case, where Bayes’ theorem (see equation 13) is applied for computing

the posterior probability distribution for a random variable X given the occurrence

of n events Y1 = y1, Y2 = y2, ..., Yn = yn. Using the chain rule from equation 3, the

following can be shown to hold true:

p(X | Y1 = y1, Y2 = y2, ..., Yn = yn) =
p(X, Y1 = y1, Y2 = y2, ..., Yn = yn)

P (Y1 = y1, Y2 = y2, ..., Yn = yn)

Both the numerator and denominator of this equation are available given the joint

probability distribution over the random variables (where the denominator is deter-

mined using marginalization (see equation 7)). However, in practice this is typically

not the case. Primarily, this is due to the associated challenge of having to capture

a very large number of probabilities. To illustrate this, let X and all Yi be binary

random variables – that is, discrete random variables with 2 values. The number

of possible combinations of values is, in this case, 2(n+1). For a moderate number

of random variables – say 16 – the number of possible combinations and, therefore,

the number of individual probabilities required to fully define the joint probability

distribution over the random variables, is 65, 536. However, this assumes the absence
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of (conditional) independence among random variables, opening up the possibility

that some (if not many) of the 65, 536 entries are redundant.

2.3.3.2 Bayesian Networks: a Definition

Bayesian belief networks – or simply Bayesian networks – address both the problem of

representing the joint probability distribution over a large number of random variables

and performing inference with these variables [170, 153]. Formally, a Bayesian belief

network is a tuple (G, P ), where P is a probability function over a set of random

variables V = {X1, X2, ...}, and G = (V,E) is a directed acyclic graph (DAG) (i.e., a

graph with directed edges where following the edges in the indicated direction from

any starting vertex will never result in reaching the same starting vertex) whose

vertices are variables in V and whose directed edges are defined as E ⊆ V ×V (i.e., a

subset of the set of all pairs of elements from V , where the first element indicates the

source vertex, and the second the target vertex). In addition, (G, P ) must satisfy the

Markov condition: for each variable Xi ∈ V , X is conditionally independent of the

set of all its non-descendants given values for the set of all its parents pa(X) [152].

The result of the Markov condition is that the joint probability distribution rep-

resented by a Bayesian belief network is equal to the product of the conditional

distributions of all random variables (represented by vertices) given values of the

random variables represented by parent vertices11 whenever these conditional distri-

butions exist [170]. Because of the acyclic nature of the graph, the set of parents is

a subset of the set of non-descendants. This reduces the set of unknowns to only the

conditional distributions of the random variables Xi in V given values of their parents

pa(Xi) in the Bayesian network. These distributions are known as the parameters of

a Bayesian network and are typically captured in conditional probability tables.

Figure 4 illustrates an example Bayesian network adopted from [149]. It represents

11Parent vertices in a graph are those vertices that have a directed edge pointing towards the child
vertex.
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Figure 4: An example of a Bayesian network (adapted from [149]) showing condi-
tional independence assumptions, and the conditional probability table for the vertex
Campfire.

the joint probability distribution over the binary random variables Storm, Lightning,

Thunder, ForestFire, Campfire, and BusTourGroup. To name but one example, the

network represents the assertion that Campfire is conditionally independent of its

nondescendants Lightning and Thunder given values for its immediate parents Storm

and BusTourGroup. This means that once the values for Storm and BusTourGroup

are known (through observation), the variables Lightning and Thunder provide no

additional information about Campfire. Figure 4 also illustrates an example of a

conditional probability table. Entries are read in the following manner: for instance,

the entry on the upper left (C and S,B) is the entry representing P (Campfire =

true | Storm = true,BusTourGroup = true) = 0.4.

A Bayesian network is typically developed by first creating a DAG G such that it

is believed that every random variable Xi ∈ V satisfies the Markov condition locally.

Typically, this is done by creating a causal graph – i.e., a graph where the directed

edges indicate causes. This is also known as defining the structure of the Bayesian

network. The conditional probability distributions of each variable given values of

their parents (the parameters) are then elicited. If the joint probability distribution

of all random variables Xi ∈ V is then defined as the product of these conditional

distributions, then the tuple (G, P ) is a Bayesian network.
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2.3.4 Inference in Bayesian Networks

The Markov condition states that each variable is (locally) conditionally independent

of its non-descendants given its parent variables. This condition, along with infor-

mation about the conditional dependence significantly reduces the number of terms

required to fully define the joint probability distribution represented by a Bayesian

belief network. To determine the joint probability, the product of the conditional

probabilities of all random variables Xi ∈ V given values of their parents pa(Xi)

(whenever these conditional distributions exist) can be determined [152] (see equa-

tion 15):

P (X1 = x1, X2 = x2, ...) =
∏
i

P (Xi = xi | pa(Xi)) (15)

This enables the computation of a conditioned posterior probability distribution using

Bayes’ theorem (equation 13) for any combination of random variables represented

by a given Bayesian network. For instance, referring back to the example network

from figure 4, say that one would like to infer the probability of a ForestFire (F )

occurring given that Lightning (L) is observed. In this case, the application of Bayes’

theorem and the reverse chain rule leads to:

P (F | L) =
P (L | F )P (F )

P (L)
=
P (L,F )

P (L)

Note that F and L were used to indicate the events ForestFire = true and Lightning

= true, respectively. The joint probabilities in the numerator and denominator can

be determined through marginalization. For instance, to determine P (L,F ), the

following sum must be determined (see equation 7):

P (L,F ) =
∑

x∈{true,false}

P (L,F ,C = x,B = x,T = x, S = x)

Note that C (Campfire), B (BusTourGroup), T (Thunder) and S (Storm) denote the

remaining random variables in the example Bayesian network. The terms of the sum
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can be computed using equation 15. The inferred probability of a ForestFire occur-

ring given that Lightning is observed is consistent with the beliefs over the network

parameters given the assumptions made about independence, since only the axioms

and theorems of probability theory were applied.

For large Bayesian networks, similar computations can be computationally very

expensive because of the large number of terms involved. Indeed, it was shown that, in

general, exact inference for an arbitrary Bayesian network is NP-hard [34]. Therefore,

in practice, this näıve algorithm (sometimes referred to as näıve enumeration) is

commonly not used. Research related to performing inference in Bayesian networks

has lead to a number of highly efficient algorithms for performing inference in Bayesian

networks. Most of these make use of pre-computations and properties of the graph

associated with a Bayesian network. Well-known are the variable elimination [234]

algorithm, and its generalization, the junction tree (or clique tree) algorithm [134].

Besides exact inference algorithms, there are also inexact inference algorithms which

sacrifice precision to gain efficiency (e.g., Monte-Carlo based [39]).

2.3.5 Learning Bayesian Network Parameters

In the previous section it was assumed that a Bayesian network parameter is specified

through a conditional probability table that is filled out by a human. In this section,

basic principles of Bayesian learning for Bayesian network parameters are introduced.

In other words, methods for updating a prior belief on a network parameter using

data are outlined. It is shown how beliefs can be updated automatically using a series

of observations of the random variables in the corresponding Bayesian network.

To illustrate how Bayesian network parameters can be learned, let (G, P ) be

a simple Bayesian network with one binary random variable X – i.e., represented

by a DAG with V = {X} and E = ∅. Therefore, the only network parameter

of the Bayesian network is the probability distribution over X, which is defined by
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p(X | pa(X)). In this case, pa(X) = ∅, since no other random variables are a part of

the network. Assume that a data set D is a vector of data cases Di, where each data

case is an observation of X (i.e., each Di is either X or ¬X, where X represents the

event associated with X = true and ¬X the event associated with X = false). Let

this data set have n entries and be defined as:

D = {D1 = X,D2 = ¬X,D3 = ¬X, ..., Dn = X}

Let P (X) = θ and P (¬X) = 1 − P (X). θ can now be learned from the data set by

solving the regression problem “find the θ that best fits the given data”.

2.3.5.1 Maximum Likelihood Estimation

One way of looking at this problem is to answer the question: “which value of θ

maximizes P (D | θ)?” In the literature, this is referred to as Maximum Likelihood

Estimation (MLE) [152]. MLE entails finding the θ∗ that maximizes the likelihood

of θ given D, i.e., for L(θ | D) = P (D | θ) find L(θ∗ | D) = supθ L(θ | D). If

independence of the data cases is assumed (which is, for most problems, a valid

assumption [149]), P (D | θ) is simply P (D | θ) =
∏n

i=1 P (Di | θ) = θnX (1 − θ)n¬X ,

where nX is the number of data cases where Di = X and n¬X the number of data

cases where Di = ¬X. To find θ∗, the derivative with respect to θ of the logarithm of

the likelihood is set to zero, leading to the intuitive result θ∗ = nX/(nX + n¬X) (i.e.,

the relative frequency of X in the dataset).

Given that all related assumptions hold, the MLE of θ will (typically) reach the

true value as n → ∞. However, especially for small sets of data, the MLE will not

reflect what one would expect to observe – i.e., it is not a good representation of

one’s beliefs. A good example of this is a limited number of trials in an experiment

where a coin is tossed. In addition, for some cases, the maximum likelihood estimate

can lead to a biased estimator. This is the case if the true value for θ and the value

determined MLE differ. Specifically, this is the case for Gaussian distributions, where,
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when estimating the mean, the true value and the mean determined using MLE differ.

However, if the data set is large, this difference is negligible [149].

Another issue with the MLE is that it can produce unintuitive results for unlikely

events. In such cases, it may be that, even for a large data set, a particular event

is never observed and the probability of the event occurring is determined to be 0.

Therefore, a better approach is to determine the θ that maximizes P (θ | D) rather

than the likelihood of θ. This is known as Bayesian estimation.

2.3.5.2 Bayesian Estimation

As mentioned in the previous section, estimating the probability distributions over

Bayesian network parameters using MLE can be a useful if none of the events are very

unlikely and if the data set is very large. Again, assume the same Bayesian network

as in the previous section. MLE is used in determining a value for θ that maximizes

the likelihood of θ given the data cases provided. From a Bayesian perspective this

makes little sense, since it is not θ that should be a fixed value, but the data set is

fixed. Therefore, it can be concluded that a better way is to determine the θ that

maximizes P (θ | D). However, this requires imposing a distribution over the data

and θ.

Let θ now be a random variable (and no longer a fixed value) – more specifically,

let θ be a representation of our belief on the value of the corresponding network

parameter P (X) (which is any real value from the range [0, 1]). Bayesian estimation

dictates that this prior belief on θ should now be updated (using Bayes’ theorem)

with the provided data cases to form a posterior belief p(θ | D). Given that θ is no

longer fixed, but a random variable, the belief on the Bayesian network parameter

should now be rewritten as:

P (X | D) =

∫ 1

0

P (X, θ = f | D)df =

∫ 1

0

P (X | D, θ = f)P (θ = f | D)df (16)

Equation 16 can be simplified by incorporating the following observations: for one,

60



observing the true value of θ, any additional observations about X should not change

the value of θ. Therefore, P (X | D, θ = f) = P (X | θ = f). Also note that, given

that θ is a representation of our belief on P (X), knowing the true value for θ results

in the additional simplification P (X | θ = f) = f . The only unknown term remaining

then is p(θ | D). However, this term can be computed through application of Bayes’

theorem: p(θ | D) ∝ p(θ)P (D | θ). Under the assumption that all data cases are

independent, P (D | θ = f) = fnX (1 − f)n¬X (see derivation of MLE from previous

section). This leads to the following expression:

P (X | D) = c

∫ 1

0

fP (θ = f)fnX (1− f)n¬Xdf (17)

Here, c is a normalization constant (a result from applying Bayes’ theorem). Note

that the likelihood is binomial. To find a closed form expression for equation 17,

the (continuous) distribution over θ should be from a conjugate family of binomial

distributions. For this purpose, a Beta distribution B(αX , α¬X) is chosen, reflecting

our prior belief on the value of the Bayesian network parameter P (X). It can be

shown that equation 17 then reduces to:

P (X | D) =
nX + αX

nX + αX + n¬X + α¬X
=
nX + αX
n+ α

(18)

The use of Beta distributions for capturing priors on Bayesian network parameters

has the nice side effect that Beta distributions are generally considered to be a good

choice for eliciting beliefs on binary events [152]. Also note that depending on the

choice of αX and α¬X (which can both be > 1), the prior can prevail very strongly,

even if large numbers of data cases are considered12. This allows one to express a

degree of certainty in an event in relation to a population size.

12The sum of the parameters of the Beta distribution are also known as the prior sample size.
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2.3.5.3 Learning Multi-Valued, Discrete Random Variables

A similar result to that from equation 18 can be reached for multi-valued random

variables. Let X now be a random variable with r values. Furthermore, let D =

{D1 = x1, D2 = x4, D3 = x2, ..., Dn = x1}, where Di takes on any value for which

X is now defined. Then, θi is a random variable denoting the uncertain value of

P (X = xi | D). Let θ = (θ1, θ2, ..., θr). The likelihood of P (D | θ) is now no longer

binomial, but multinomial.

To find a closed form expression for P (X |D), a distribution on θ from a conjugate

family of multinomial distributions should be chosen. One such distribution is the

Dirichlet distribution Dir(α1, α2, ..., αr), which reduces to the Beta distribution for

r = 2. It can be shown [152] that the closed form reduces to:

P (X = xi | D) =
ni + αi
n+ α

(19)

Here, α =
∑

i αi and ni is the count of the data cases in D with value xi. Note that,

under the given assumptions, the Bayesian network parameter is simply defined by the

numerical mean of the ith dimension of a distribution Dir(α1+n1, α2+n2, ..., αr+nr).

For brevity, only the end result is shown here. However, the interested reader will

find the full derivation in [152].

2.3.5.4 Learning Parameters of General Bayesian Networks with Discrete Ran-
dom Variables

The results from the previous section can be expanded to the general case of a

Bayesian network with m discrete random variables Xi. Let each data case Di now

be a vector of m values, one for each of the m random variables. This leads to D now

taking the shape of a table. Furthermore, let θijk = P (Xi = j | pa(Xi) = k,D), where

pa(Xi) = k represents a particular configuration of values of the parent variables in

the network (one permutation of the values of the parent random variables).

The derivation of the closed form is similar to that from the case of a single
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multi-valued discrete random variable. In addition to the assumptions made previ-

ously (e.g., independence of data cases), in the derivation it is assumed that the θi..s

are globally independent. In addition, it is assumed that the θi.k are independent –

i.e., that there is a local independence with respect to parent configurations. Im-

plied from this is an independence among Bayesian network parameters. Using these

assumptions, it can be shown [152] that the following closed form expression exists:

P (Xi = j | pa(Xi) = k,D) =
nijk + αijk∑
j (nijk + αijk)

(20)

Note that a very large number of data cases must be considered in order for sensible

estimations of the Bayesian network parameters to be possible.

2.4 Summary

In this chapter, an overview of foundational concepts of formal languages, and exact

and inexact reasoning methods is presented. Three distinct topics are introduced:

fundamentals of formal languages (and formal modeling languages), automated rea-

soning in formal systems, and basic concepts in Bayesian probability theory.

In the first part, fundamentals of formal methods, languages and models are in-

troduced. It is established that there is no principle difference in the definition of

formal languages and formal modeling languages other than the syntax of a formal

modeling language generally being iconic and visual in nature. Formal languages are

purely syntactic in nature and are defined by utilizing meta-languages. The definition

of formal semantics allows meaning to be assigned to utterances of formal languages.

Formal semantics are defined by a domain of discourse, and a mapping from ex-

pressions to this domain of discourse. It is shown that in order to formally define

semantics, a syntactic representation of formal semantics is required (e.g., for the do-

main of discourse). However, it is also explained that the degree of formality of this

representation depends on the intended audience. Finally, graphs and graph trans-

formations are shown to be suitable formalisms for defining the syntax and semantics
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of modeling languages.

The second part introduces the concept of a formal system and automated rea-

soning (automated proofs). Formal systems are composed of a set of axioms and

inference rules, through which well-formed expressions and theorems can be derived.

It is noted that most formal systems define the set of well-formed expression and

theorems as equal. A proof checks whether a given expression is a theorem of the lan-

guage. The interplay between the interpretation of expressions using concepts from

model theory and automated proof theory are also outlined. In model theory, the

terms that occur in an expression are interpreted as mathematical structures (e.g.,

groups, fields or graphs), and fixed compositional interpretation rules determine how

the truth value of the expression can be derived from the interpretation of its terms.

Model-based deduction techniques use algorithms which try to systematically test

all valuations of an expression to determine its satisfiability. Deductive proofs were

shown to always result in logically correct conclusions (given the the underlying for-

mal system is complete and consistent). However, it was also shown that for many

languages, determining whether an arbitrary expression is a theorem is undecidable.

In the third part of the chapter, a brief review of basic concepts from Bayesian

probability theory is given. Among the concepts presented are Bayesian networks,

through which joint probability distributions can be represented in a compact fashion,

and probabilistic inference performed efficiently. Bayesian networks are represented

by acyclic graphs with random variables representing nodes, and directed edges be-

tween nodes representing influence relationships. This graph is known as the structure

of a Bayesian network. In addition to the structure, a Bayesian network is defined by

its parameters, which are defined by (conditional) probability distributions. Towards

the end (in section 2.3.5), core aspects of learning such network parameters from data

are presented.
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CHAPTER III

RELATED WORK ON INCONSISTENCY

MANAGEMENT

In this chapter, results from conducting a review of the related literature in inconsis-

tency management are presented. This includes the introduction of existing frame-

works, and notable approaches to inconsistency identification and semantic overlap

detection from the related literature on software and systems engineering research.

Methods from closely related fields, such as database and information systems are

briefly reviewed also. The presented methods for inconsistency identification and

semantic overlap detection are based on concepts introduced in chapter 2.

The primary purpose of this chapter is to provide an overview of the research

conducted in the field of inconsistency management, with a focus on inconsistency

identification and semantic overlap detection. Closely related approaches – e.g., those

concerned with model integration and transformation – and their relevance to incon-

sistency identification is briefly discussed as well.

3.1 Overview of Related Work on Inconsistency Manage-
ment

Identifying and resolving inconsistencies in formal models (i.e., inconsistency man-

agement) is a well-studied subject in the domain of software engineering. However,

automating the identification (and resolution) of inconsistencies and semantic over-

lap remains an open challenge. This is particularly the case for application scenarios

where multiple, disparate and incomplete models of a (software or physical) system

are considered. Research in the domain of Model-Based Systems Engineering is es-

pecially lacking, where such modeling scenarios are frequent.
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In the following, a review of the related literature on managing inconsistencies in

formal models is presented to reflect the current state of research in inconsistency

management. The review is meant to support the argumentation for the identified

research gap presented in section 1.2.4. Included is notable research from the domains

of software engineering and MBSE (and related domains such as mechatronics).

The earliest work on inconsistency management is from the domain of software

engineering. Finkelstein is often credited with having coined the term inconsistency

management, particularly based on his early work related to managing inconsisten-

cies in modeling environments where multiple views are employed to express various

concerns [69]. Since then, the interest in model-based development in general, and

the problem of model integration has grown tremendously. Particularly in software

engineering research, the maturity and general acceptance of (semi-)formal modeling

languages, such as the Unified Modeling Language (UML) [166] has spawned a variety

of related research efforts. This has led to a number of researchers investigating a

variety of methods for managing inconsistencies.

3.2 Existing Inconsistency Management Frameworks

The first published conceptual frameworks related specifically to what has later be-

come known as inconsistency management [157, 158] were developed by Finkelstein

[69, 71, 70]. In what he has named the Viewpoint-Oriented Systems Engineering

(VOSE) framework, the core principle is the use of viewpoints to partition the sys-

tem specification (e.g., functional hierarchy and system block diagram), development

method (e.g., “top-down” and “bottom-up”) and formal representations used to ex-

press the system specifications [69]. Finkelstein defines viewpoints as compositions of

several components, among which are the representational style, specification, work

plan, and work record. The representational style is, essentially, the representation
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language definition and defines objects and relations that can be used in the specifi-

cation. The work plan is defined to contain assembly actions, check actions and guide

actions. Assembly actions are actions to be used by a developer to build a specifi-

cation (e.g., to ensure well-formedness across the different views). Check actions are

defined as actions (in the form of a rule) to be used to identify any inconsistencies in

the specification. These actions are decomposed into in-viewpoint and inter-viewpoint

checks. Inter-viewpoint checks are required for cases where there is an overlap between

two viewpoints. Once an inconsistency has been discovered, guide actions provide the

developer with guidance on what is to be done as a result. Guide actions also suggest

when to perform which particular check actions. The approach taken by Finkelstein

differentiates itself from others from the same time period in that a single represen-

tation scheme or common data model is not required (but it does assume translation

between viewpoints is possible and defined). Finkelstein et al. refine the approach in

[70]. In what the authors refer to as interference management, nine distinct activities

are identified, the most important of which are: overlap identification, consistency

relation construction, inconsistency detection, and inconsistency resolution.

Nuseibeh and Easterbrook build on the ideas of Finkelstein et al. by developing

a concrete inconsistency management framework in [158]. The framework defines

several activities related to the identification and resolution of inconsistencies. The

core idea is the definition of consistency rules that are applied when monitoring for

inconsistencies. Consistency rules are relationships between descriptions of a system

that should hold. If the relationship is violated, an inconsistency exists. Once an

inconsistency has been detected, it is diagnosed (i.e., located), its cause identified,

and the inconsistency is classified. Thereafter, the inconsistency is handled, which

may result in the resolution (or “fixing”) of the inconsistency, or in tolerating it

(e.g., if the cost of fixing exceeds the benefits). Tolerating can include ignoring,

circumventing and ameliorating the inconsistency. A final step in the process is the
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Figure 5: Framework for inconsistency management proposed by Nuseibeh and East-
erbrook and introduced in [158].

monitoring of the consequences of a particular handling action. The framework also

defines a measuring activity, which is used to measure the degree of inconsistency of

a software specification, as well as an analysis of the impact and risk of a particular

handling action. It is assumed that the set of consistency rules is (manually) extended

over time. The existence of explicit relationships among different artifacts (i.e., the

application of the consistency rules, and hence the definition of overlap relations) is

assumed to be defined manually. Figure 5 illustrates and summarizes this framework.

Spanoudakis and Zisman merge the already introduced work by Finkelstein et al.

[70] with that of Nuseibeh et al. [158, 157], and propose a general framework for in-

consistency management in software engineering in [200]. Six distinct activities make

up the framework: detection of overlap, detection of inconsistencies, diagnosis of in-

consistencies, handling of inconsistencies, tracking of inconsistencies and specification

and application of an inconsistency management policy. Several of the previously dis-

cussed activities have been either merged or sub-divided: for example, the consistency

relation construction mentioned in [70] is a part of the activities of overlap detection
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and inconsistency detection. New is the addition of the tracking of inconsistencies

and the specification and application of an inconsistency management policy. Track-

ing is concerned with the “(a) recording of the reasoning underpinning the detection

of an inconsistency, (b) the source, cause and impact of it, (c) the handling actions

that were considered in connection with it, and (d) the arguments underpinning the

decision to select one of these options and reject the other”. The specification of a

policy includes identifying the relevant stakeholders, identifying the entities respon-

sible for identifying model overlap, and specifying the mechanisms to be used when

identifying, and assessing the impact and cost related to handling an inconsistency.

In conclusion, all of the presented inconsistency management frameworks iden-

tify the need for (1) detecting overlap among models, (2) differentiating between

different types of inconsistencies, and (3) implementing a mechanism for identifying

inconsistencies that allows one to locate the inconsistency, identify to what class of

inconsistencies it belongs, and store the rationale (or argumentation chain) that led

to the decision that an inconsistency is present.

3.3 Approaches to Identifying (Semantic) Overlap

Much research related to the detection of (semantic) overlap (which may be partial)

of models has been conducted in a variety of domains. However, the fully automated

inference of such model relationships remains an open challenge. Models overlap

semantically whenever there exist two or more expressions in models that have a

common semantic meaning - that is, given a set of formal languages L = {L1,L2, ...},

a set of corresponding semantic domains D = {D1,D2, ...} and semantic valuation

functions v = {v1, v2, ...}, the semantically overlapping expressions in each L ∈ L are

those elements of the languages that have identical interpretations: i.e., whenever for

any i, j: vi(φix) = vj(φjy) is true, where φix and φjy are well-formed expressions from

languages Li and Lj respectively.
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Automating the process of identifying semantic overlap is non-trivial, particularly

due to the often informal definition of semantics of modeling languages used in prac-

tice, and because of the problem of formally representing some semantic domains

(refer back to the discussion on this in section 2.1.1.4). Most research in incon-

sistency management suggests that defining such overlap manually or at least with

human assistance is unavoidable [200]. For instance, in his interference management

framework, Finkelstein specifically mentions that overlap identification necessarily re-

quires human intervention [70]. Semantic overlap can only be avoided if the concerns

addressed in the various partial models of a system can be separated completely.

However, this is well-known to be impossible (there is always some relation, no mat-

ter how weak, between various aspects of one and the same system), particularly for

highly complex systems.

In the related literature, four distinct classes of approaches to overlap identification

can be identified: the exploitation of representation conventions, use of a unifying,

domain-spanning ontology, human inspection, and similarity analysis. Each of these

approaches, and notable implementations of these, is presented in the following.

3.3.1 Exploitation of Representation Conventions

The exploitation of (syntactic) representation conventions is the “oldest [sic] and

most commonly used form of detecting a model overlap” [200]. Approaches in this

class are typically based on (syntactic) unification algorithms. Generally, unification

algorithms perform a syntactic matching between terms. For instance, when working

with distributed databases of logical expressions, predicate matching is often used,

where predicate matching is based on symbolic equality of the predicates. This is

employed by Finkelstein et al. in [71], where visual (or iconic) models (i.e., what is,

in the context of this dissertation, generally referred to as a model (see section 2.1.2))

are used as partial representations of a system, and are translated to a first-order
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predicate logic. Overlap among models is then attempted to be identified based on

predicate matching. Similar work is conducted by Easterbrook et al. in [50]. Overlap

identification based purely on name matching is employed for consistency checking of

requirements using model checking techniques in [98].

Another, more recent approach is that of utilizing the correspondences defined

as part of specifying model [36, 37] or graph transformations [132, 184]. Typical for

defining model transformations is the definition of a syntactic correspondence between

elements of a meta-model (see, e.g., [145, 2]). Other related approaches include

the definition of triple graph grammars (TGGs) [132], which also define syntactic

correspondences among (meta-)model elements. Note that the correspondences are (if

done on a meta-level) correspondences among types of things. However, no possibility

(other than näıve inference from type to instance) of identifying that two instances

of these meta-model elements represent identical things exists (provided a semantic

valuation function (see section 2.1.1.4) is not given). The use of TGGs for purposes

of explicitly marking overlap among models is presented in, e.g., [83, 79, 80].

Note that the assumptions made by unification algorithms are typically very

strong, particularly if they are based on syntactic matching. For example, if matching

is done on the basis of names, an overlap cannot be identified if the names are not

identical, a spelling mistake is present, or the names being compared are antonyms (in

which an obvious relation should exist). Also, an overlap is incorrectly identified if the

names of the elements are intended to be used as homonyms. Given the typical het-

erogeneity of models and the typical non-existence of an isomorphism between these,

even the more recent approaches are limited, particularly when wanting to adopt

them for the purpose of identifying inconsistencies. Indeed, in [2] it is mentioned that

parallel development of the models would require labor intensive and manual changes

to the models.
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3.3.2 Use of Unifying, Domain-Spanning Ontologies

Using a common, shared ontology is a second approach to enabling the identification

of overlap between models. This approach requires the authors of the models to tag

model elements with elements from a common ontology shared among all stakehold-

ers. Model elements are then defined as overlapping if they carry the same tag(s).

The approach is used by Boehm and In in [21] for tagging requirement models with

elements from the QARCC ontology, which defines various quality attributes for soft-

ware systems.

In Model-Based Systems Engineering research, this has been demonstrated by

Hehenberger et al. in [97] for the specific case of developing mechatronic systems.

The authors develop a set of concepts and relations for the domain of mechatronics,

which are used in the definition of consistency rules. A similar approach for the

domain of spacecrafts is followed by the Jet Propulsion Laboratory (JPL) [183].

A common practical issue related to using common, shared ontologies is that

ontologies are models themselves and may, hence, be interpreted differently by the

various stakeholders using them (unless, of course, the underlying formalism used for

semantics is well-understood by the intended audience and is sound). In addition,

modelers are also required to commit to the ontology both in terms of accepting the

definitions, and in actively tagging relevant model elements. Particularly the latter

can be very labor intensive.

3.3.3 Human Inspection

A third approach to identifying overlap is the use of human inspection. Typically,

approaches designed for identifying model overlap using human inspection methods

implement a system using which a stakeholder responsible for identifying inconsisten-

cies is aided in some form (e.g., through visual aids, or various ways of representing

the models). An example implementation of such an approach is demonstrated in
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the Synoptic system presented in [48]. There, various methods have been investi-

gated including the provision of visual aids for browsing models, graphical selection

of elements from two partial models, and the recording of overlap. Other, similar

approaches are provided in [123].

Identifying overlap using human inspection can be very exact, but is also highly la-

bor intensive and time consuming [200]. Particularly when developing highly complex

systems using (expectedly) highly interrelated models – such as is the case in Model-

Based Systems Engineering – such an approach is likely to be too costly to employ.

However, there are a number of ongoing research efforts, particularly geared towards

visualizing and enabling the analysis of large data sets (such as sets of heterogeneous

models) (see, e.g., [12]).

3.3.4 Similarity Analysis

Similarity analysis exploits the fact that modeling languages incorporate constructs

which imply or strongly suggest the existence of certain overlap relations [200]. For

instance, the fact that two model elements carry the same name does not entail their

semantic equivalence, but merely serves as evidence to suggest their equivalence.

In [199], Spanoudakis and Finkelstein analyze structural similarity of models to

identify overlap based on the weighted bipartite graph matching problem, where

vertices in the two partitions of the graph denote the elements of the models being

compared, and the edges of the graph represent possible overlap relations. Weights are

then computed based on distance functions, which measure modeling discrepancies

in the specifications of the elements connected by the edge with respect to different

semantic modeling abstractions [200]. No related work using similarity analysis from

the domain of Model-Based Systems Engineering was identified (other than research

published by the author of this dissertation: see [107]).
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Similarity analysis for semantic overlap identification has also been used in re-

search related to ontology matching and database schema matching. For instance,

Ehrig and Sure use a series of similarity rules (e.g., equal names, equal types, equal

sub-concepts) and calculate a weighted similarity score from these [60]. In [17], Berlin

and Motro use a combination of methods from probability theory and a scoring tech-

nique for identifying similarity among database schemas. In fact, some aspects of

machine learning are used in initially finding values for the values of the probabilities

involved. Similar work has been published by Doan et al. in [45].

Similarity analysis is one of the very few techniques where abductive and inductive

inference (see section 2.2.3.2) is employed rather than relying on deductive reasoning.

However, most approaches using similarity analysis use ad-hoc methods for measuring

similarity (e.g., weighted sums, arbitrary scores, incorporation of weak assumptions),

hence putting their general applicability in MBSE in question.

3.4 Approaches to Inconsistency Identification

In the related literature, a number of approaches to identifying inconsistencies are

presented. From the perspective of formal systems and automated proof theory, an

inconsistency is present whenever a proposition φ and its negation ¬φ can be derived

(see sections 2.1.1 and 2.2). This is in line with the definition given in section 1.2.2.1.

However, in practice this is often difficult to apply due to the lack of a formal under-

lying system, and particularly due to the lack of well-founded and formal semantics.

Hence, particularly when considering the agglomeration of a number of (incomplete)

models, each representing a different, but related aspect of a system, identifying an

inconsistency is no longer as simple as finding a logical contradiction.

Where possible, logical databases are utilized in related research. This is particu-

larly the case for earlier work. Other works mitigate the identified challenge of using

purely logical formalisms in a variety of ways. These include rule-based approaches,
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where the match to a pattern representing the antecedent of an inconsistency rule is

sufficient evidence for deducing the presence of an inconsistency. This is sometimes

also referred to as an approach where negative constraints are applied. Other ap-

proaches to inconsistency identification use sets of consistency constraints and define

an inconsistency to be present whenever such a constraint is violated. These con-

straints are typically a constraint on the relationship between two entities. Finally,

approaches very similar to rule-based approaches, but based on model transformation

formalisms are used particularly in more recent work.

3.4.1 Logical Reasoning & Theorem Proving Based Approaches

Approaches based on theorem proving implement the methods presented in sec-

tion 2.2. The goal of such an approach is to show that a statement φ and its negation

¬φ can be inferred from a single formal system, thereby identifying an inconsistency

of the formal system, or to prove that a statement φ is not a theorem.

In early work, Finkelstein uses logical reasoning to identify and resolve inconsis-

tencies. In [71], an approach related to the previously introduced VOSE framework

(see section 3.2) is introduced. First, views (specifications or models) conforming to

viewpoints are translated into, and inter-viewpoint relations are captured as formulas

of a first-order logic system. For example, inter-viewpoint relations can be captured as

rules of inference similar to those presented in section 2.2.3.1. However, Finkelstein

describes this as a (necessarily) largely manual effort [71]. This translation into a

FOL enables the representation of potentially heterogeneous model data in a canoni-

cal form. Once compiled, a theorem prover is used to infer any logical inconsistencies

in the resulting logical database. Since the information in the logical database is

an incomplete representation of a system, reasoning is performed under the Closed

World Assumption (CWA), which assumes that for any proposition φ for which the

truth value is not known (i.e., here: is not in the database), ¬φ necessarily holds. If
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the theorem prover can derive both a statement φ and its negation ¬φ based on the

contents of the logical database and the provided inference rules, an inconsistency is

said to be present.

Approaches to identifying inconsistencies that are based on theorem proving are

the most sound, if the underlying formal system can be defined properly. However,

for practical applications (particularly in MBSE) they are difficult to implement. One

hurdle is the translation of the models used in MBSE to logical formulas. This would

require well-founded semantics and appropriate transformation rules (i.e., mappings).

A second hurdle is the assumption that a respective formal system can be formulated

in the first place (without making weak assumptions, such as the CWA), which would

require a complete set of axioms and inference rules that spans all models and their

respective definitions.

3.4.2 Constraint Satisfaction Based Approaches

Some authors view inconsistency identification from the perspective of a constraint

satisfaction problem. Common among notable approaches from the related literature

is the annotation of models with constraints using a textual constraint language. In

[188], the use of a formal language called the Consistency Constraint Language (CCL)

is described. Conditions are checked based on the current context. This context

includes not only the model, but includes an element of time. The constraints can be

variant or invariant, where invariant constraints always apply, and the applicability of

variant constraints depends on the specified context. Associated conditions may also

be related to a particular view. The language is specific to the AutoFOCUS [116]

modeling language and tool-suite, but similar in syntax to the well-known Object

Constraint Language (OCL) [164], which is used to annotate models that conform to

UML.

When considering inconsistency identification as a constraint satisfaction problem,
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constraints are formulated as (logical) conditions that the model must meet. In other

words, for a constraint to be satisfied (which marks the absence of an inconsistency)

each condition associated with the constraint must evaluate to true. Therefore,

constraints implicitly (but partially) define states of well-formedness for a model.

Mens et al. describe such an approach in [148]. The authors argue that UML

1.5 does not provide adequate support for checking model consistency and model

evolution. As part of the research, the authors introduce a profile for UML model

consistency and translate the UML meta-model (including the custom profile) into a

description logic [7] supported by the knowledge representation, inference and query

engine Loom [144]. Consistency and evolution rules (which act as constraints enforced

at all times and attempt to avoid the introduction of inconsistencies in the first place)

are then formulated as production rules.

3.4.3 Procedural, Rule & Pattern Matching Based Approaches

In [142], Liu et al. use a set of production rules in the form “if [condition] then [ac-

tions]” to check for inconsistencies and take appropriate resolution actions. This was

demonstrated for a subset of UML. The characteristics of a particular inconsistency

are encoded as a pattern in the antecedent (condition) of the rule. The core principle

of the approach is the translation of UML models into a representation that can be

interpreted by an off-the-shelf rule engine – in this case, the Java-based rule engine

Jess [73].

Van Der Straeten et al. demonstrate the use of patterns to extract instances of

inconsistencies from UML models in [222]. In the approach, UML models are first

translated to the Loom [144] knowledge representation language (which, as mentioned

previously, is an implementation of a description logic). Loom has a pattern-based

query processor, which can be used for querying patterns to return the particular

instances of inconsistencies in the models being analyzed for inconsistencies.
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Other work, which also suggests the use of patterns to identify inconsistencies,

includes the work by Hegedüs et al. presented in [96]. A graph-based representation

of models in the Visual Automated Model Transformation (VIATRA) [35] framework

is assumed. Inconsistencies are then defined as graph patterns and interpreted as

negative graph constraints. A set of possible graph transformations are associated

with each inconsistency pattern for the purpose of resolution (see also [105] for a design

space exploration perspective on this problem). Egyed follows a similar approach using

a framework known as the Model/Analyzer [179] in [51, 52, 53].

3.4.4 Approaches Based on Model-Based Rule Definitions

Approaches that consider what may be regarded as model-based definitions of incon-

sistency rules and patterns include the already discussed work by Hegedüs et al. [96]

and the research presented in [2, 79, 80, 83, 147, 208].

Sunetnanta and Finkelstein devise a framework in which consistency checking rules

are defined in a visual manner using conceptual graphs in [208]. Conceptual graphs

are a formalism for knowledge representation and are used in representing conceptual

schemas and facts. Specifically, Sunetnanta and Finkelstein use conceptual graphs

for meta-representations of viewpoints. Both the rules and viewpoint instances are

translated into a first-order logic. This process can easily be automated due to the

well-known relation between conceptual graphs and FOL formulas. The methods

described in section 3.4.1 are then applied to the result.

In [147], Mens et al. present an approach to identifying and resolving incon-

sistencies that is similar to [96] and [105] in the sense that parallel and sequential

dependencies between inconsistency rules are analyzed. In his approach, inconsis-

tency rules are specified as graph transformation rules, where the antecedent of the

rule is a graph pattern that identifies an inconsistency. Therefore, the antecedent acts

as a sufficient condition for the inconsistency.
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Giese and Wagner investigate the use of triple graph grammars for the purpose

of model synchronization in [83]. TGGs are used for defining the correspondences

between meta-models that can be used for the purposes of transformation. A similar

approach is followed by Adourian and Vangheluwe in [2], where model transforma-

tions are used in preserving the consistency between two models. Gausemeier et al.

investigate the use of TGGs for consistency management in [79, 80]. The core idea of

this approach, which, in its application considers models of mechatronic systems, is

the propagation of relevant changes from domain-specific models to a principle solu-

tion, and, from there, into domain-specific models. The principle solution is a model

similar to what is often referred to as a system model in MBSE [72] and acts as a

hub and only point of integration between models. Therefore, some dependencies

between domain-specific models cannot be captured (unless they are a part of the

principle solution). As a result, certain inconsistencies between these models cannot

be identified. Shah et al. counter this disadvantage in similar work by including more

domain-specific model data in the system model [191].

3.5 Summary

In this chapter, the results of conducting a review of the related literature on in-

consistency management is presented. The specific focus of the investigation is work

concerned with identifying semantic overlap in models and identifying inconsisten-

cies. While much related research has been conducted in the domain of software

engineering, very little has been published about the applicability of the methods to

MBSE.

In the first part of the chapter, frameworks for inconsistency management are

introduced. These frameworks stem from the software engineering literature, and all

share a number of traits. For instance, common to all of the reviewed frameworks is

that the detection of overlap is an inevitable prerequisite to identifying inconsistencies.
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Furthermore, the identification of inconsistencies should occur in such a fashion that

an inconsistency can be located and classified for the purposes of diagnosing the

inconsistency (which includes identifying the root cause of it).

The second part of the chapter introduces a number of state-of-the-art approaches

from the related literature on the automated detection of model overlap. The classes

of methods analyzed are methods exploiting representation conventions, the use of

unifying and domain-spanning ontologies, human inspection, and similarity analysis.

Methods that exploit representation conventions are purely syntactic in nature, make

strong assumptions and can be error prone. Using unifying and domain-spanning on-

tologies is identified as a promising method, but requires commitment to the ontology

and incurs additional cost due to the necessity of having to hand-label models. Meth-

ods relying on human inspection focus on developing visual aids to reduce the com-

plexity and cost incurred with manually defining overlap among models. Approaches

using similarity analysis rely on inductive and abductive techniques to identify the

most likely areas of model overlap.

Finally, in the third part, methods for inconsistency identification are introduced

and reviewed. The investigated methods use logical reasoning and theorem proving

(which have been introduced in detail in section 2.2), as well as constraint checking,

and procedural and model-based rule definitions. While methods based on theorem

proving produce logically correct results, a caveat is constructing and proving the

completeness and consistency of an underlying formal system, as well as the transla-

tion of the models to the logical formalism. The other approaches introduced produce

results that are not guaranteed to be logically correct, and, instead, rely on the defi-

nition of sufficient conditions for identifying inconsistencies.
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CHAPTER IV

INCONSISTENCIES & INCONSISTENCY

MANAGEMENT

In this chapter, inconsistency management as a discipline is briefly introduced and

the concept of an inconsistency is elaborated upon. As part of the introduction, and

to underscore the need for inconsistency management, a rationale is given for why it

is valuable to manage inconsistencies rather than attempting to preserve consistency.

It is shown that, while it is desirable to be as consistent as possible – both with respect

to a formal system and with respect to the environment in which the system will be

deployed – it is impossible to prove (global) consistency. This argument is followed by

a formal definition of what an inconsistency is considered to be within the scope of

this dissertation. Then a classification of inconsistencies and related types of semantic

overlap are given. Finally, a framework for identifying inconsistencies is introduced.

Therefore, the primary goal of this chapter is to address research question 1, and to

investigate and evaluate hypotheses 1 and 2.

The concepts introduced in this chapter lay the foundations for developing and

evaluating an inconsistency identification method. The framework introduced is kept

neutral from any specific solution method. By providing a classification of inconsis-

tencies, the completeness of a particular method implementing this framework can

be evaluated quantitatively by testing which types of inconsistencies can not be iden-

tified (under the assumption that the classification is complete). This framework is

inspired by frameworks from the related literature introduced in section 3.2, and is

specifically tailored to the case of multiple, heterogeneous models, where an analysis

of semantic overlap is inevitable.
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4.1 Why Manage Inconsistencies Rather than Consistency?

Within the scope of this research, inconsistency management is defined as the disci-

pline of identifying and resolving inconsistencies in models. Inconsistency manage-

ment provides an alternative view on the problem of consistency management, where

the goal is to either prove the consistency of a set of models, or to ensure that incon-

sistencies are never introduced (e.g., by enforcing constraints during construction of

a model). In inconsistency management, specific instances of types of inconsistencies

are sought out and handled.

As introduced in section 2.2.4, a formal system (and the theory that can be formed

using it) is complete and consistent if no contradictory propositions can be derived

from it and if all true statements of an accompanying formal language can be produced

using only the axioms and inference rules of the formal system. As in accordance with

previous work [102], inconsistencies with respect to formal systems will be referred to

as internal inconsistencies. Inconsistencies with respect to the environment in which

the system will be deployed (e.g., nature) are referred to as external inconsistencies.

These two dimensions are elaborated upon in the following. Thereafter, as a motiva-

tion for inconsistency management, it will be shown that proving internal consistency

and the completeness of a formal system is not always possible. It will also be shown

that proving external consistency is impossible.

4.1.1 Dimensions of Consistency

In the following, two fundamental dimensions of consistency – namely, internal and

external consistency – are introduced. These dimensions have already been derived

and studied in previous work (see [102, 103]), but their definition and impact on the

extents to which consistency can be managed in MBSE applications is expanded upon

in the following.
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The dimension of internal consistency relates to consistency with respect to ax-

iomatic systems that are well understood (e.g., logic systems and mathematics). (For-

mal) modeling languages are considered a part of such systems. Models that are inter-

nally consistent do not violate the axioms and rules of the underlying formal system

since they are theorems of the formal system (see section 2.2.3). External consistency

imposes an additional constraint: the model of the system must be true to (i.e., be

an accurate representation of, and be consistent with) the reality (or world, or en-

vironment) that the system will ultimately be deployed in. Differentiating between

these two dimensions of consistency is practical, since it allows one to differentiate

between consistency issues that occur within the bounds of some well-understood and

formally defined system, and those that do not [102].

4.1.1.1 Internal Consistency

In engineering design, models have two main purposes: to specify and to analyze

systems. In practice, a large variety of models are utilized. Commonly used in MBSE

applications are requirements models, functional models and physical architecture

models [72]. Models that are used in specifying a system, and those that are used

in its analysis, can be thought of as abstractions of a designer’s ideas, beliefs and

preferences [102, 94]. Ideas are a result of a creative process and allow for alternatives

to be specified, whereas beliefs are used in predicting outcomes and are formed based

on observations [94, 95, 18]. Preferences are used in evaluating alternatives and

ranking them. In MBSE, a key idea is to use only formal models for this purpose.

Each model is used to establish one or more views on a system that allows a modeler to

address specific concerns. These views are established based on a viewpoint definition,

which also specifies the modeling languages, and hence the formal systems, to be used

[121, 72].

A model is internally consistent – that is, consistent with respect to a formal
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Figure 6: Models as abstractions of the ideas, beliefs and preferences of a designer,
and related inconsistencies.
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system – if it is well-formed and compatible with some feasible world. Feasible worlds

are based on the axiomatic systems of logic and mathematics. Such systems are

widely accepted to be complete and consistent. Internally consistent models are not

in violation with the axioms and rules of the underlying formal system. That is, it is

possible to construct a formal proof that demonstrates that the model is a theorem

of the system [102].

To exemplify the notion of internal consistency, consider a fair coin toss. A fair

coin toss results, by definition, in two equally likely outcomes: heads or tails, each

with probability 0.5. Assume that one were to assign a probability 0.6 to the event

that the outcome of the experiment is “heads”, and a probability 0.5 to the event

that the outcome is “tails”. This is in contradiction with Kolmogorov’s axioms (see

section 2.3.1.1), since the sum of the probabilities of all elementary events is greater

than 1. Therefore, the model is internally inconsistent with respect to the underlying

formal system – in this case, stochastics and statistics in mathematics.

The consolidation of all models describing a system – in other words, the compo-

sition of these models – can be said to form a third, overarching model1. This model

is internally consistent if both its parts (the models of which it is composed) and the

consolidated information and knowledge encoded in the models are consistent. Since

it is also a model, a corresponding formal modeling language and formal system must

exist.

Consolidating models requires morphisms that translate a formal model from one

modeling language into another (e.g., the language of the overarching model). Such

morphisms – or translations, or transformations – are, in model-based development,

models themselves which are typically referred to as transformation models.

1To exemplify the notion of model composition, consider the two expressions (which may be
separate models) S1 = [a = x+ 1] and S2 = [y = a+ 1]. Composing the two expressions, the
following can be derived through substitution: S = S1⊗S2 = [y = (x+ 1) + 1]. To be complete and
formal, such operations require semantically well-founded languages.
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Figure 6 summarizes the relations between a designer’s beliefs, preferences and

ideas, and models. It also shows important consistency relations.

4.1.1.2 External Consistency

Axiomatizable theories are computable – this was demonstrated in section 2.2.3.

Therefore, in theory, the internal consistency of a formal model should be provable

by computational means (e.g., using a deductive proof). However, what can be even

more challenging is to determine whether or not a model is consistent with what one

would observe in the environment in which the system will be deployed. That is: is

the model an accurate representation of what one would observe in reality? This can

be seen as a separate, but related problem dimension [102]. Consistency issues with

respect to a target environment are referred to as external consistency issues.

To give an example of an external inconsistency consider, once more, the example

of the fair coin toss: an internally consistent model of the experiment of flipping

the coin and determining the probability of either events “heads” or “tails” can be

constructed by assigning probability 0.6 to the outcome “heads” and 0.4 to “tails”.

These probabilities may be accurate reflections of the designer’s beliefs, and may be

consistent with data collected about previous coin tosses with other coins (perhaps,

unknowingly, unfair coins were used for collecting this data). However, the model is

not externally consistent for a fair coin, because the true values for the probabilities

are very different (i.e., a very large number of tosses of the fair coin would yield

different probabilities).

4.1.2 Formal Issues in Proving Internal Consistency: Consistency in Ax-
iomatic Systems

The definition of theorems as elements of a formal language allows for results in proof

theory that study the structure of formal proofs and the structure of provable for-

mulas [113]. The most famous results are Gödel’s incompleteness theorems [84]. By
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representing theorems about basic number theory as expressions in a formal language,

and then representing this language within number theory itself, Gödel was able to

construct examples of statements that are neither provable, nor disprovable from ax-

iomatizations of number theory. Gödel also showed that any consistent axiomatizable

theory which can encode (finite) sequences of numbers, the consistency is not provable

in the system. Both of these results, and important implications for (in)consistency

management, are discussed in the following.

4.1.2.1 Gödel’s Incompleteness Theorems

Typically, it is taken for granted that formal proofs (see section 2.2.3) always deter-

mine with perfect precision whether or not some expression (e.g., a model) belongs

to a particular language – i.e., whether it is consistent with the formal system. How-

ever, it can be shown that this is not the case for all formal systems. In his famous

work, Über Formal Unentscheidbare Sätze der Principia Mathematica und Verwandter

Systeme [84], Gödel has proven that not all formal systems are able to produce all

true statements about themselves. Gödel showed this with his first incompleteness

theorem, which states that “any adequate axiomatizable theory is incomplete”. The

proof can be constructed as follows: let PROV be the set of numbers which en-

code sentences which are provable from a given set of axioms from a formal system.

Thus, for any sentence s, s is in PROV iff s is provable. Now consider the sentence

s = “This sentence is not provable”. Being a truth bearer, this sentence is either

true or false. s is in ¬PROV , since it is, by its semantics, not provable. However,

if s is false, then s is provable. However, this is a contradiction, since provable

sentences are always true [113].

An important conclusion, highly relevant to the management of consistency of

formal models, can be drawn from Gödel’s first incompleteness theorem: “for some

(modeling) languages, there are utterances (models) that are true, but their truth is not
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provable” [84, 113]. In other words, there are some models (or, generally, expressions)

that are true and consistent with an underlying formal system, but any attempt at

proving their consistency leads to a contradiction (i.e., an inconsistency).

Gödel’s second incompleteness theorem states that “in any consistent axiomati-

zable theory which can encode sequences of numbers (and, thus, also the syntactic

notions of “formula”, “sentence” and “proof”) the consistency of the system is not

provable in the system” [84, 113]. This theorem is a result of discovering that the sen-

tence “This sentence is not provable” is provably equivalent to the formal statement

that a system is consistent (see [84] for the full proof).

The second incompleteness theorem has several interesting implications for formal

theories. In particular, a theory T1 cannot prove the consistency of any other theory

T2 that proves the consistency of T1. This is because such a theory T1 can prove that

if T2 proves the consistency of T1, then T1 is in fact consistent. If T1 were in fact

inconsistent, then T2 could prove that there exists a contradiction in T1. But, if T2

also proved that T1 is consistent, T2 itself would be inconsistent. This reasoning can

be formalized in T1 to show that if T2 is consistent, then T1 is consistent. Since, by

the second incompleteness theorem, T1 does not prove its consistency, it cannot prove

the consistency of T2 either. This means that it is impossible to prove, for example,

the consistency of Peano Arithmetic (PA) [113] using any finitistic means that can

be formalized in a theory of which the consistency is provable in PA. For example,

the theory of Primitive Recursive Arithmetic (PRA), which is widely accepted as an

accurate formalization of finitistic mathematics, is provably consistent in PA. Thus

PRA cannot prove the consistency of PA [113].

The interest in proving consistency lies in the possibility of proving the consistency

of a theory Ti in some other theory Tj, which, in some sense, is less doubtful, or weaker,

than Ti. However, if Tj were in fact inconsistent, Ti can be proven to be consistent,

since inconsistent theories prove everything [138, 69], including their own consistency.
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Proving the consistency of Tj requires some other consistent theory Tk, and so on.

For managing the consistency of a formal model, this result has the important

implication that any attempt at proving consistency (which requires a consistent

theory) is, at least formally, in vain. An underlying formal system cannot be proven

to be consistent and is, due to its axiomatic nature, provably incomplete. Therefore,

proving the consistency of a formal model is impossible2.

4.1.2.2 Composing Formal Models

In MBSE, the complexity associated with designing a technical system is typically

managed, in part, by some decomposition mechanism. In practice, this leads to the

various stakeholders involved in the design and development process to establish views

on the system from different perspectives by creating models to address their specific

concerns of interest. This leads to an often large number of partially overlapping and

different models which, at least in practice, are typically based on different modeling

languages.

Since it is impossible to completely separate concerns and decouple models, mod-

els will always overlap or be dependent on one another in some form [106, 174].

Therefore, (in)consistency proofs should not be limited to individual models, but the

agglomeration of all models should be analyzed. Hence, an important part of manag-

ing the consistency of a set of models is forming their composition. Composition and

related consistency issues have been briefly investigated from a theoretical standpoint

in [106, 104] and their importance for model integration is further outlined in [24]. In

the following, a brief overview is given to introduce relevant terminology.

Assuming there exist n models mi that are to be composed, then a model msys

2Note that this does not rule out consistency proofs altogether, nor does it diminish the impor-
tance of proof theory. The only consistency proofs that should be ruled out are those that can be
formalized in the theory which is proved consistent.

89



encompassing all aspects captured about a system can be defined as:

msys = m1 ⊗m2 ⊗ ...⊗mn .

Here, the operator ⊗ is used to denote the composition operation for models of various

types. A similar composition operator can be defined for the composition of the

accompanying languages (say there are m formal languages under consideration):

Lsys = L1 ⊗ L2 ⊗ ...⊗ Lm .

Implementing composition operators in a formal fashion requires that the formal lan-

guages being composed are semantically well-founded [24, 104]. Without this quality,

simpler statements cannot be folded into more complex ones. Such operations re-

quire an understanding of the models and their parts. For instance, there may be

expressions in two distinct languages that are syntactically different, but have the

same meaning. As an example, consider the syntactically different, but semantically

equivalent statements about a date from section 2.1.1.4. Composing n semantically

related expressions leads to the formation of a (n+1)th expression, possibly syntacti-

cally different, which carries the combined meaning of the n expressions. Composition

must be defined in terms of the target language Lsys, which carries its own syntactic

representation. Formally, a composition can be viewed as a morphism hc : Ls → Lt

from a set of source languages Ls = {L1,L2, ...} to a target language Lt. Therefore,

one can also think of a composition (at least in a directional sense) as a translation

operation.

In practice, the semantics of such compositions are often defined in an ad hoc

fashion due to the lack of formality in the definition of modeling language semantics.

For instance, most tool chains implement such mechanisms using procedural code,

supporting only a limited set of modeling languages, and making weak assumptions

about the structure of the corresponding models. Composition-related consistency

issues are also, to some degree, a motivating factor for the more formal model and
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graph transformations. These can be seen as the implementation of the corresponding

morphisms (or mappings), either for the purpose of model synchronization (e.g., using

triple graph grammars (TGG) [132, 79, 83]) or translation between formal systems

(see, e.g., [168, 202, 191, 109]), often for the purpose of model integration. However, a

limitation is that these transformations are typically only defined for pairs of modeling

languages and, in most cases, assume the existence of a structural isomorphism. In

addition, strong assumptions about the structure of the target model are made (such

as shown as a limitation in [2]), which is, in part, a result of a lack of formality

of the definition of the semantics of the modeling languages. Therefore, in general,

while valuable for certain cases, they are not true implementations of the underlying

composition operators, but mere ad hoc translations based on structural properties.

In summary, a prerequisite for proving the internal consistency of a set of het-

erogeneous models – that is, models that are utterances of different formal modeling

languages with incompatible meta-models – is the definition of an additional language

(and formal system) using which the result of composing the models can be repre-

sented. In addition, the theory constructed using this additional formal system would

need to be consistent. However, as discussed in the previous section, this is impos-

sible to prove in all cases. From a practical perspective, defining such a language is

non-trivial; in the related literature, research has been done towards identifying such

a formalism [87, 210, 181]. However, all of these have, to the date of writing this

dissertation, limitations with respect to their expressiveness and interpretative qual-

ities (i.e., the definition of their formal semantics). Furthermore, the expressiveness

of these languages is generally limited in that only a limited subset of composeable

modeling languages is supported.
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4.1.3 Formal Issues in Proving External Consistency

Models are, by definition, abstractions [82]. Being an abstraction, a number of as-

sumptions also flow into models. Therefore, the challenging question is: does a model

accurately reflect and appropriately abstract a process that takes place in a particular

reality? In other words: is a model externally consistent?

For technical systems, this question cannot be answered with certainty. A designer

abstracts his or her beliefs using models. These beliefs are informed by observations

of nature (i.e., scientific data). Models can be derived from scientific data using a

variety of methods: for example, regression is a popular technique in engineering [30].

However, while models may “fit” certain observations, they may not be accurate

representations of reality due to erroneous initial assumptions or structural errors.

For instance, Johannes Kepler observed the motion of the planets and derived models

for planetary motion by abstracting the scientific data he collected during many

long nights [64]. Therefore, he has abstracted a process that takes place in nature.

Others before him have tried to do the same and constructed very different models.

However, his models predict the actual behavior more accurately3. However, they do

not describe the actual process with perfect precision [64, 228].

Although based on logical operations, similar observations can be made about

models of software systems. Software is deployed on platforms that perform compu-

tations based on binary logic. Theoretically, valid computer programs are therefore,

in some sense, deterministic in their behavior. However, when considering the hard-

ware that a software code is designed to run on, stochastic processes are revealed.

Physically, state changes between 1’s and 0’s happen based on a stochastic process

and are, hence, non-deterministic. Accounting for the randomness involved in the

3One of the reasons for this is that he did not use a geocentric perspective (such as was the case
in the Ptolemaic system of astronomy, for instance). In other words, he did not assume that the
stars and planets move around Earth, but that celestial bodies move around the Sun [64].
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accompanying events requires an abstraction of this process – i.e., a model – to be

created. In the (highly unlikely, but theoretically still possible) event that a bit is

interpreted wrong, the software produces non-deterministic results.

In practice, a small deviation from observed behavior is acceptable in most cases.

Such models are considered “sufficiently accurate” and valuable models of real pro-

cesses. However, such models are typically only valid under very specific conditions

and hold only if a set of relevant assumptions hold true. These conditions and assump-

tions show the dependence of a model on time, place and other boundary conditions4.

Assumptions are necessary, since humans lack perfect knowledge of nature and the

processes therein. However, the downside of this is that models cannot be proven con-

sistent with respect to the respective (not fully understood) environment [113, 102].

Therefore, formally proving the consistency of a model, and proving its validity with

respect to the target environment, is impossible. The best one can do is to attempt

to identify mismatches between reality and the model – that is, identify certain types

of possible (and relevant) external inconsistencies.

4.2 Characterizing & Classifying Inconsistencies in For-
mal Models

In the previous section, two distinct dimensions of consistency are introduced: internal

and external consistency. Internal consistency refers to the state of consistency of an

axiomatizable formal system, while external consistency refers to actual processes in

some reality or target environment (e.g., nature). The conclusion of the previous

section is that (complete, global) consistency cannot be claimed. However, what is

possible is to prove inconsistency. This motivates the need for, and demonstrates the

value of, inconsistency management.

4A classical example from aero- and fluid-dynamics for this is the use of different models for
describing flow of a medium at different Mach numbers: different models are valid under different
flow conditions.
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In the following, inconsistencies are characterized and classified. Based on this

characterization and classification, a definition for the term “inconsistency” is given.

As part of the characterization, features and other observable properties are extracted

from a number of example inconsistencies, which are studied in depth. A classification

of inconsistencies is then presented, which is based not only on the characterization,

but also the critically evaluated inconsistency classifications from the related litera-

ture.

4.2.1 Examples of Inconsistencies

In section 1.2.2.1, inconsistencies are defined as the quality of “having parts that

disagree with each other” and as “assertions about aspects of the system [...] which

are not jointly satisfiable”. Given that these definitions are quite broad, an exhaustive

list of examples of inconsistencies in models is impossible to present within the scope

of this dissertation. Instead, several representative examples that are believed to

cover a broad spectrum of types of inconsistencies will be introduced: a language

well-formedness violation, the violation of a guideline, and a situation where facts (or

assertions) that cannot jointly be true exist.

4.2.1.1 Example 1: Well-Formedness Violation

The first example describes a well-formedness violation and is adopted from [56].

In the example scenario, a UML class diagram and UML sequence diagram have

been constructed. In the example depicted in figure 7, the cardinality of the relation

between the classifiers does not match the specific scenario described in the sequence

diagram. That is, in the sequence diagram, a destroy call would lead to a cardinality

0 for the particular instance which, by definition of the underlying model, is not well-

formed. This can be understood as a type of violation of a structural or syntactical

constraint defined by a corresponding modeling language.
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Figure 7: Example inconsistency with respect to well-formedness: cardinality of
generic classifiers does not match specific scenario (adapted from [56]).

This particular example is a representative scenario of a situation where a com-

position of the two diagrams (or models5) would lead to an expression that is not

well-formed. One can think of this as a scenario where there are two statements that

cannot jointly be true by comparing the statements “every guest must have exactly

one account” and “Peter (a guest) has no account”. While such an inconsistency may,

by some, be considered to be a more prominent example of limited tool-support for a

modeling language, it is, nonetheless, realistic in practical scenarios. Inconsistencies

such as these are common due to the often (semi-)formal nature of some modeling

languages. This is particularly the case for general purpose, and extensible modeling

languages such as the UML [166], where semantic variation points are allowed. For

instance, the concept of stereotyping introduces the possibility of adding additional

syntactic constructs. However, UML has no formal means of defining the semantics

5Note that in the software engineering community, a great number of authors consider diagrams,
such as UML diagrams and UML sequence diagrams, to be separate models.
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Figure 8: Example scenario where the consolidated set of information available about
a distinct entity in two separate models is inconsistent, here modeled as SysML in-
stances.

of these relationships, which leads to the introduction of ambiguous concepts.

4.2.1.2 Example 2: Conflicting Assertions

A second example of an inconsistency is that of a pair of conflicting assertions in

two separate models about a semantically identical entity. Representative of such

an inconsistency is the situation where two statements are made that constrain a

semantically equivalent property. Consider the example from figure 8: there, two sets

of personal information are given (for purposes of simplicity, both are represented as

SysML [160] instances). The information represented in these two instances overlaps,

because assertions involving semantically equivalent (functional) properties are made.

These sets are in conflict because both specify an age (a functional property (every

person has only one age)) for (semantically) the same person, but the ages do not

match.

Detecting such inconsistencies is non-trivial, since it also requires knowledge about

meta-level constraints: firstly, it must be known that any person can only have one age

(i.e., one property that, semantically, refers to the age of a person). If this constraint

were not explicitly known, the inconsistency cannot be detected since the available

information and knowledge does not allow one to conclude that a person with two

ages cannot exist. However, if knowledge about such constraints is given, then an
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inconsistency (or conflict) can, at least in theory, be derived by comparing the ages.

The consolidated set of assertions is inconsistent if both constraints on the property

“age” are not equivalent. However, a prerequisite to this is the identification that the

property “age” refers to the semantically identical property in this case; that is, not

only is it the same type of property (a property denoting the age of a person), but it

is also the same instance of it. That is, the context is the same. For the example in

figure 8, this is non-trivial to detect for a variety of reasons: while, as a human, one

may infer that the person is indeed the same, a human might conclude this based on

analyzing the semantic context and implicitly known relations. To a computer, this is

more challenging: analyzing the context computationally, one would reveal that the

type of the predicated entities (Subscriber and Person) are not equivalent (however,

to a human, these would, in all likelihood, be related in some fashion). A computer

would need to understand that the concept of a person implies an age and, at least

in the United States, a social security number (ssn) uniquely identifies each person.

The computer would also need to understand that a subscriber refers to a person who

is committed to something.

4.2.1.3 Example 3: Violation of a Standard Practice

Another example of what, within the scope of this dissertation, is considered an

inconsistency is the violation of a standard practice, best practice, convention or

guideline. Guidelines and best practices are important for a variety of reasons: for

instance, for capturing expert knowledge (e.g., Design for Manufacturing (DFM) rules

[209]) and the readability and maintainability of development artifacts (e.g., coding

or style guidelines, and part numbers). The example studied is that of the violation of

a naming convention which may be classified under violations of style guides or best

practices. Naming conventions are used throughout practice in development processes,

both in software engineering and in large complex system development. Primarily,
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Figure 9: Illustration of an example inconsistency with respect to a specified naming
convention for SysML blocks.

these are used for readability and to ensure compatibility with legacy systems.

In software and systems engineering, naming conventions are often used for pur-

poses of readability: for instance, a common standard is to use the UpperCamelCase

convention for names of SysML blocks and UML classes, and the camelCase conven-

tion for names of class attributes (properties) and function names. In figure 9 an

example is given where such a naming convention is explicitly stated and expected

to be followed, but has not been followed. This represents an inconsistency because,

similar to the examples given beforehand, the rule and the model are “not in agree-

ment with one another” (see definitions in section 1.2.2.1), and allowing for both to

be true at the same time leads to a contradiction.

In the domain of mechanical engineering a similar example can be found: part

numbers typically follow a certain convention so that parts can more easily be iden-

tified (i.e., uniquely). However, in practice, part numbering standards are frequently

not followed, leading to ambiguity in part number assignments and potential rework6.

Note that in practice naming conventions (and other standard practices and guide-

lines) are wide spread and very common in their use. However, very few methods exist

for enforcing, or checking the conformance thereto. In most instances, naming con-

ventions are stored in textual form, the convention primarily explained by example,

6That this is a realistic (and, in terms of automation, unsolved) problem in practice has been
discovered by the author during numerous conversations with experts from industry at countless
summits, workshops and conferences.
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and designed only for a human to understand.

4.2.2 Characterization & Definition

In section 1.2.2, the notion of inconsistency and what it means to be inconsistent is

first introduced. There, the definitions given are left, intentionally, quite open, broad

and verbose. However, now that sufficient background has been introduced, a more

formal definition can be given. To do so, features and properties of the inconsistencies

presented in the previous section are first extracted. Thereafter, the notion of what

is defined as an inconsistency within the scope of this dissertation is formalized.

4.2.2.1 Features & Properties

In the following, features indicative of an inconsistency are extracted from the pro-

vided examples. Thereafter, general features of inconsistencies are derived.

Example 1 (see figure 7) is illustrative of an inconsistency with respect to well-

formedness of a model. In the example, the constraints defined by a model of two

related entities (which are imposed on a model of a specific scenario in which there

exist specific instances of these entities) are violated. One prominent feature of this

example is that the models overlap: “Peter” and “Guest” are related to one another,

as are “a1” and “a2” to “Account”. The overlap is signified by a number of instance

of relations between the diagrams – more specifically, “Peter” is an entity in the

class of “Guest”s, and “a1” and “a2” are entities in the class of “Account”s. This

requires an interpretation of the diagrams. Additionally, more complex relations exist.

Strongly related to the illustrated inconsistency is the relation between the number

of instances of “Account” that are associated with “Peter” in the given scenario,

and the number of such relations that are allowed. Determining the former requires

an interpretation of the class diagram, and for the latter, an interpretation of the

sequence diagram. Identifying the inconsistency requires an interpretation of the

relation between the two values: in order for them to be not inconsistent, they must
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be equal. The prominent feature in the example is that there exists a state in which

an assertion is made about an individual belonging to a class, which is not compatible

with an assertion made about all individuals of the class.

The second example (see figure 8) illustrates a similar scenario, with the difference

being that an inconsistency exists at the same level. In this case, similar assertions

are made about semantically equivalent entities (or, philosophically speaking, objects

[135]), and the assertions cannot jointly be true. Note the use of the word similar : in

both cases, assertions are made about a property referred to as “age”. Semantically,

this is the age of a specific person (i.e., an individual in a class of people). The

statement that a person’s age is 83, and the statement that a person’s age is 54 are

semantically different – i.e., not equivalent – and suggest that a different person is

referred to (since any person can only be associated with one age) (and unless 54 is

equivalent to 83 which, according to a standard mathematical interpretation is not

satisfiable). Standing alone, these statements are not inconsistent. However, given

the additional information that, in both cases, the age of one and the same person is

being asserted, and that a member of the class of Persons can only have one age, the

statements are inconsistent. This additional information asserts that the syntactic

properties “age” are semantically equivalent and, by inference, the value assigned to

these must be semantically equivalent as well, unless an interpretation of these values

leads to the conclusion that they are not. Note that a particularly interesting feature

of this example is that the class of things being referred to when considering the fact

that a person may only have one age, is neither the Person, nor the Subscriber class.

Clearly, both classes are different syntactic types. However, both diagrams contain

statements that are, when interpreted, related to the semantic concept of a person

and his or her age.
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Example 3 (see figure 9) is an example of an inconsistency due to the non-

conformance to a standard. This situation can analogously be interpreted as a situa-

tion in which assertions are made about a general class of things – here, expressed as

a constraint on the names of SysML blocks – and an individual that is intended to be

an individual in the class. Note the use of the word intended : semantically speaking,

both statements are different. However, when considered together, and assuming that

the constraint is quantified over all SysML blocks considered, the particular SysML

block is intended to be an individual of the class of well-formed SysML blocks (well-

formed with respect to all imposed constraints), but is not a member of it since it

violates at least one constraint that is imposed over it. Again, a situation arises in

which assertions about related things are made that cannot jointly be true. Partic-

ularly interesting about this example is that it is similar to the situation in which

a requirement is violated – generally, requirements constrain a specification. Here,

the naming convention may be interpreted as such a requirement on the structure of

SysML models.

Overall, all three examples demonstrate situations in which statements are made

that cannot jointly be true. The compared statements can be about classes of things

and individuals in a class, where the class can refer to both the syntactic and se-

mantic notion of a class. This is indicative of the existence of semantic relations.

Additionally, in all three examples, the specific parts of the models involved in the

inconsistency require some level of interpretation. Furthermore, a general property of

these inconsistencies is that certain assumptions need to be made when formulating

and argument about the presence of a particular inconsistency, and that only the

information and knowledge that is explicitly modeled, and that can be interpreted,

can be used for identifying an inconsistency. Finally, the examples from section 4.2.1

can be abstracted and generalized to form types or classes of inconsistencies.
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4.2.2.2 Defining “Inconsistency”

In the previous section, features and properties were extracted from examples of

inconsistencies. This section abstracts these features and proposes a definition for the

term inconsistency that is meant to be valid within the context of this dissertation:

Definition 4.1. An inconsistency is a state of conflict in which, under an interpre-

tation, two or more related statements are accepted as true, that cannot jointly be

true. Given the information and knowledge available for reasoning, and a consistent

interpretation, sufficient evidence exists to conclude that no situation exists in which

the particular set of statements under consideration can be true.

The first part of the definition is directly derived from the common observation of

the example inconsistencies. Similar to the classical definition of an inconsistency in a

formal deductive apparatus, an inconsistency is said to exist whenever two expressions

are derivable that, given an interpretation, cannot jointly be true. The second part of

the definition refers to the fact that assumptions are necessary when concluding that

an inconsistency exists. This is the case when the definition of the underlying formal

system is incomplete, the (model theoretic) interpretation is defined only partially

(particularly that of the agglomeration of models), and to acknowledge the fact that

axiomatizable theories are (generally) incomplete (see section 4.1.2.1). Note that the

phrase “consistent interpretation” is used to indicate that different formal models

generally have different interpretations, but the interpretation of the product of com-

posing the models must be consistent in itself. This results in a recursive definition of

inconsistency, since (as explained in detail in section 2.1.1) formal semantics (semantic

domain and mapping) are defined by a corresponding formal system themselves. The

second part of the definition is also practical for an abductive view on inconsistency

identification, such as is the case on this research. Definition 4.1 may be viewed as a

generalization of the definitions for inconsistency from the related literature given in
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section 1.2.2.1.

4.2.3 Classification of Inconsistencies

Various examples of inconsistencies have been presented in section 4.2.1. However,

as mentioned previously, each of these may be viewed as a specific instance from a

distinct class of inconsistencies. This observation already supports hypothesis 2. In

this section, a classification of inconsistencies is presented that is based on the insights

of the previous sections.

4.2.3.1 Classifications from the Related Literature

In the related literature, numerous inconsistency classifications and dimensions of

(in)consistency are proposed [62, 220, 148, 188]. Common to these is a dimension

which differentiates syntactic and semantic inconsistencies.

In [148], Mens et al. propose a classification of UML model inconsistencies, in

which three distinct dimensions are differentiated: the first dimension distinguishes

between horizontal, evolution and vertical consistency, the second dimension between

syntactic and semantic consistency and the third dimension between observation and

invocation consistency. A distinction is also made between various kinds of struc-

tural and behavioral inconsistencies. Note that, in the presented work, horizontal

and vertical refer to levels of abstraction in UML models. Egyed [52] uses rules

to identify and resolve inconsistencies (see section 3.4.3) and differentiates between

domain- and application-specific rules, where some relate to instance level objects,

while others relate to meta objects. In his doctoral dissertation, Egyed derives a

more elaborate classification of inconsistencies – however, this classification is specific

to the considered case of UML model inconsistencies [56]. A more general classi-

fication of inconsistencies, independent of any modeling language, can be found in

[200]: the types of inconsistencies considered are inconsistencies with respect to well-

formedness, description identity (of which figure 8 is a concrete example), application
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domain, development compatibility (e.g., existence of unified data types), and devel-

opment process compliance.

In summary, most proposed classifications are the result of research in software

engineering and, in most cases, strongly related to UML models, which introduces a

bias towards specific aspects and features of UML. Therefore, a different classification

is proposed in the following, where the aim is to formulate inconsistency types that

are independent of specific modeling languages.

4.2.3.2 A Classification for Inconsistencies in Model-Based Systems Engineering

In the presented examples, the class of well-formedness violations, contradicting state-

ments and non-conformance to a style guideline were identified. Well-formedness

violations can be both syntactic and semantic in nature. Contradicting statements

are a specialization of logical contradictions, in that two propositions are compared.

Related to this are the class of inconsistent predictions : given identical prior beliefs

and observations, as well as identical causal assumptions, predictions are inconsistent

if they yield a different result.

All of these types of inconsistencies have a profound effect on the value of both

a set of models and the artifact intended to be described, since it is impossible for

the described system to exist in any logical (or rational) world. Since this entails

that the system cannot possibly exist in any feasible world, it must, by inference, be

inconsistent with perceived reality. In contrast to this, a violation of a best practice,

guideline or style guide has an impact on the value of the models and the system, but it

is not necessarily impossible for the system to be deployed in a target reality. In light

of this, a distinction is made between strong inconsistencies and weak inconsistencies.

Figure 10 illustrates the classification for inconsistencies developed as part of this

research. The classification is depicted by a class diagram, where arrows denote gen-

eralization relationships. Note that, in addition to the classes introduced so far, a
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number of additional types of inconsistencies may be identified: two of these are

mismatches between model and test data and semantic incompatibility. A mismatch

between model and test data can be seen as a class of external inconsistencies, which

prove that a model is inconsistent with respect to a set of observations. Semantic

incompatibility refers to the issue of incompatible interpretations. That is, it is im-

possible to construct an interpretation that is free of inconsistencies when forming

the composition of two models. Contrary to some classifications from the related

literature, model evolution inconsistencies are not taken into account. The rationale

for this is that only the state of the most up-to-date information should be considered

when checking for inconsistencies. Process-related inconsistencies were also not made

explicit, since these are considered inconsistencies with respect to a particular model

of the process.

Instead of defining classes related to style guide violations and violations of best

practices, these classes of inconsistencies are abstracted further and the classes of

domain-, application-, company- and user-specific inconsistencies are suggested.

Note that, in general, the conclusion of this research is that a closed set of in-

consistencies cannot be identified. The category of strong inconsistencies can be

interpreted as forming a closed subset – however, this is only valid under the assump-

tion that all modeling languages under consideration have a formally defined syntax

and semantics, and that there exists a universally valid composition operator. A set

of inconsistencies that is open (by definition) is the set of weak inconsistencies.

An interesting quality of the classification is its recursive nature and interplay

between kinds of inconsistencies. To illustrate this, refer back to the example incon-

sistency from figure 9: the constraint imposed over names of inconsistencies is a model

for satisfiable names of SysML blocks. However, being a model, it is subject to the

types of inconsistencies identified in the classification. Secondly, consider the inter-

play between Model Inconsistency and Model Composition Inconsistency : the result
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of a composition is a model, which is subject to Model Inconsistencies. However, the

morphism used is subject to Model Composition Inconsistencies. With the definition

of models and model compositions being models themselves, they are subject to the

same types of inconsistencies as illustrated in the figure.

4.3 Inconsistency Identification: a Framework

Based on the identified limitations of consistency proofs, and the characterization

and classification of inconsistencies, a framework for identifying inconsistencies is

presented in the following. The framework takes into account the tasks that were

identified as essential to any method for inconsistency identification in MBSE.

4.3.1 Practical Limitations of Deductive Proofs in MBSE

As outlined in section 2.2, proving the consistency of an expression (say, a formal

model) with a formal system entails a process of (logically) demonstrating that the

expression is a theorem of the formal system. That is, the expression must be well-

formed, and, if accepted as true, it must be true under the given interpretation. The

syntactical proof of well-formedness can be done in one of two ways: either by starting

from the axioms, successively applying inference rules to produce expressions until

the target expression is reached (forward chaining), or by working backwards from the

inference rules to axioms (backward chaining). However, while this leads to logically

correct conclusions about the syntactic well-formedness of the expression, its practical

application is non-trivial: firstly, the underlying formal system must be complete and

consistent (see section 2.2.4). Secondly, there must exist some algorithm that can

determine, in finite time, whether or not the given expression is well-formed. The

latter is strongly related to decidability and terminability.

Recalling the discussion in section 4.1, one of the primary motivations for incon-

sistency management is the fact that the consistency and completeness of a formal

system cannot be proven in general. Furthermore, recalling the properties of formal
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systems discussed in section 2.2.4, not all languages are decidable – that is, it is not

possible to construct a single algorithm for all languages that results in the (logically

correct) conclusion that the expression is a theorem or non-theorem. In fact, in many

cases, formal systems are only semi-decidable or undecidable, leading to the problem

that an attempt to prove the (in)consistency of a non-theorem (i.e., an expression

that is inconsistent with a given formal system) may result in the corresponding al-

gorithm to never terminate (recall from section 2.1.1 that all but a simple subset of

languages are infinite, hence leading to an infinite number of possible expressions that

can be formed).

Logically correct proofs, such as those outlined above, require the use of a deduc-

tive apparatus, which necessitates that the mentioned properties of formal systems

must be satisfied. Even if satisfied, the problem of decidability still severely limits

the applicability of the use of theorem proving for inconsistency identification. These

limitations apply especially to the case of MBSE, where the management of inconsis-

tencies in the agglomeration (result of composition) of a set of heterogeneous models

is of interest. A complete and consistent underlying formal system for the result of

the composition of a set of models is non-trivial to define7, partly due to the disparity

and multi-disciplinary nature of engineering systems, and hence the heterogeneity of

the models used.

4.3.2 Identifying Probable Inconsistencies using Abductive Reasoning

In this research, an abductive rather than a deductive perspective on identifying

inconsistencies is taken. That is, rather than attempting to logically deduce the

(in)consistency of an expression with a formal system, an argument is formulated to

reason about the possible inconsistency of an expression with a formal system. Re-

calling the introduction to abductive reasoning in section 2.2.3.2, abductive reasoning

7Recall the discussion in section 4.1.2.2, where difficulties of, and attempts at formulating a
universal formal system are briefly introduced.
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is an inexact reasoning method that is explanatory in nature. That is, the conclusion

is accepted to be the best explanation for the observations made. This is different

from deductive inference, where a conclusion is logically entailed from an underlying

set of axioms and inference rules. Note that this also means that conclusions drawn

from abductive reasoning are not guaranteed to be logically correct.

Within the presented framework, the space over which observations for abductive

arguments can be made is the space of all formal models under consideration. That

is, an observation manifests as a particular part of one or more models. Therefore,

an abductive argument about an inconsistency in a model starts with a number

of observations about models and, based on the observations made, leads to the

conclusion that an inconsistency is probable or not.

To exemplify this method of reasoning about inconsistency, re-consider the exam-

ple from figure 8. Ultimately, the reason that an inconsistency is present is entailed

from the observation that the values assigned to the property “age” differ. However,

this conclusion is drawn based on the additional assumptions and arguments that any

person can only have one age, and that, in both models, the same predicted entity

(i.e., the same person) is being referred to. The latter is a result of an argument

based on the premise that a person’s uniqueness is identified by their name and social

security number. Indeed, only if the truth of the conclusion that one and the same

person is being referred to holds, can the models ever be inconsistent. This overlap

among the models is particularly difficult to derive using just the given information

and knowledge about the semantic concept of a person. Indeed, additional informa-

tion may even lead one to conclude something completely different8. Note that this

8Say that, at some later point in time, the additional information was supplied that jamesT
actually stands for James Thomas, and not James Tiberius. This may lead to the conclusion that
the models do not talk about the same person, and that it is therefore impossible for the ages
to be inconsistent. However, in this case it would actually be the social security numbers that are
erroneously defined, since the same social security number cannot be assigned to two different people
– a different inconsistency, but derived based on similar, abstract premises.
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also shows the non-monotonic quality of abductive reasoning.

A prerequisite to a computational method for abductive reasoning over a set of

formal models is a mechanism for extracting the relevant information (observations)

from the models under consideration. Furthermore, a mechanism for (computation-

ally) processing these observations is required. This is in addition to the prerequisite

that a language or formalism exists through which abductive arguments can be rep-

resented.

4.3.3 Inconsistency Types as Patterns

Within the scope of this research, the observations that lead to the conclusion of

whether an inconsistency is present or not are considered part of a model of an

inconsistency. Here, the term model is used make explicit that its application does

not guarantee that the conclusion drawn from it is logically correct. That is, it is an

abstract representation of an inconsistency, which is used in analyzing sets of formal

models for (probable) inconsistencies.

In section 4.2.3, a classification of inconsistencies is presented. This classification

was constructed on the premise that there exists a related set of recurring features

that leads one to conclude that a particular type of inconsistency is present. There-

fore, it is postulated that models of specific instances of inconsistencies (i.e., a set

of statements about one or more entities, used in concluding their inconsistency or

non-inconsistency) can be abstracted as patterns which quantify over certain classes

of objects. Per their classical definition, “patterns provide proven [sic] solutions to

recurring problems [sic] in a specific context” [3]. Here, patterns are used as (proven

or accepted) solutions to deducing the inconsistency of a particular set of entities.

The context in which the pattern applies is defined as part of the model of an incon-

sistency.

It is hypothesized that, for each type of inconsistency, a related pattern can be
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identified that acts as a basis for (abductively) concluding that an inconsistency is

likely to be present in a particular (set of) formal model(s). A prerequisite for evaluat-

ing the validity of this hypothesis (quantitatively) requires a mechanism for extracting

the relevant observations from the set of models under consideration, and in a repre-

sentation that a (computational) entity is capable of interpreting and processing so

that an abductive argument can be formulated.

Note that the use of patterns to identify inconsistencies does not rely on the

properties of completeness or consistency of an underlying formal system. A set of

inconsistency patterns can be seen as a partial definition of a formal system, since

these allow one to identify models that are not a theorem. A set of inconsistency

patterns is complete exactly if it is able to discover all non-theorems of a formal sys-

tem. A set of inconsistency patterns is consistent if their application does not lead to

contradictory conclusions (i.e., an expression is inconsistent, and is not inconsistent).

However, by definition of inconsistency management, a set of inconsistency patterns

must not be complete. How complete a set of inconsistency patterns is, is a question

of value, and is considered outside the scope of this dissertation.

Using an abductive approach to reasoning about inconsistencies using patterns

has an additional interesting quality: for finite models, a check for an inconsistency

(i.e., an application of the pattern) will always terminate. That is, for any input,

an answer can always be computed. However, depending on the concrete data struc-

ture, algorithms and assumptions, it may be intractable9. Note the similarity of the

approach to rule-based approaches from the related literature (see section 3.4.3). In

rule-based approaches, matching an antecedent pattern of a rule is sufficient evidence

to conclude that an inconsistency is present. Here, a similar argument is made, with

additional observation and acknowledgment that the conclusion drawn from matching

9Intractability refers to problems that are theoretically solvable (given large, finite time), but any
(known, best) algorithmic implementation terminates only after a very long time (where very long
refers to too long for practical applications).
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such a pattern is not guaranteed to logically entail an inconsistency.

4.3.4 Detecting Semantic Overlap by Analyzing Similarity

An essential premise on which the arguments for inconsistency of each of the examples

from figure 7 to 9 are based is the existence of an overlap. In some cases, this overlap

is explicitly stated as part of a model (e.g., in the example in figure 7, it may be

assumed that the instance of relations are explicitly known), in which an argument

for its existence is trivial. However, in other cases, such as in the example from

figure 8, the overlap is not explicitly stated, and also not obvious. In fact, as argued

in the previous section, the overlap cannot be logically entailed. Therefore, within the

scope of the presented framework, semantic overlap is identified by abductive means

whenever it cannot be logically entailed (e.g., using explicit knowledge of these).

Abductive reasoning about (semantic) overlap is non-trivial. In the related liter-

ature on ontology and database schema matching, inexact approaches to reasoning

about such overlap is typically performed by measuring the similarity (sometimes

referred to as semantic distance) [59] of certain properties of the involved entities.

This similarity is then used for the purpose of formulating an argument about how

likely the overlap is. Commonly used as a property for similarity is the identifier of

an element – i.e., its name. This is typically based on string similarity measurements

such as the Levenshtein distance [137] or Hamming distance [90], which are measures

of how many operations must be performed on a string to convert one to the other.

Typically, similarity of the semantic context is also measured. For instance, in a

modeling language that supports the concept of part-whole relations, the similarity

of the name of the owner is commonly accounted for as well. Other known semantic

relations, such as hyponymous (type of ), may also be considered. Other common

measurements of semantic similarity are (similarly) of a topological nature. A vari-

ety of similarity measurements are typically combined (e.g., as a weighted sum) to
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determine the how likely it is for two given expressions to overlap (semantically).

The application of a number of commonly used similarity measurements for ontology

matching can be found in, e.g., [60].

Within the context of this research, arguments about a possible model overlap are

utilized as intermediate arguments in support (or opposition) of the conclusion that a

particular type of inconsistency is present. Therefore, similarity measurements, and

patterns of expressions suggesting the presence of a (semantic) overlap are considered

a part of the model of an inconsistency.

4.3.5 Learning from Experience

Abduction is, as recognized previously, a reasoning process that is not guaranteed to

lead to a (logically) correct outcome. In practice, it may very well be that important

evidence (i.e., an explanatory reason) to suggest the presence of an inconsistency in a

particular context is not considered, or the impact of such evidence (i.e., its strength)

is misjudged. In such cases, the corresponding model of an inconsistency should be

revised. Being based on the observation that unfavorable results were achieved (e.g.,

too many wrong conclusions were drawn), a revised model of the inconsistency that

results in improved results is said to be the result of having learned from experience.

Learning is an important part of inexact reasoning approaches, since it can influ-

ence the accuracy of the conclusions positively. Within the context of this framework,

learning is understood as both a manual and a computational process. The latter is

a classical method from the domain of machine learning.

4.4 Summary

In this chapter, fundamentals of inconsistency and inconsistency management are

presented. Inconsistency management is defined as the discipline of identifying and

resolving inconsistencies in models. Inconsistency itself is defined as “a state of con-

flict in which, under an interpretation, two or more related statements are accepted
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as true, that cannot jointly be true. Given the information and knowledge available

for reasoning, and a consistent interpretation, sufficient evidence exists to conclude

that no situation exists in which the particular set of statements under consideration

can be true”.

In the first part of the chapter, the value (i.e., utility) of inconsistency manage-

ment is defended by showing that, in general, it is impossible to prove consistency.

Implications on MBSE of these insights, initially derived from formal language theory

and automated proof mechanisms, are then outlined in detail. For instance, charac-

teristics and properties that result from composing formal models are presented in

great detail.

The definition of the term inconsistency is derived based on a review of existing

definitions, and by analyzing the characteristics of practical inconsistencies in models.

For the latter, a number of examples of inconsistencies are presented. In addition to

being characterized, a classification of inconsistencies is presented. In this classifica-

tion, a differentiation is made between strong and weak inconsistencies, the latter of

which forms an open set.

Finally, a framework for inconsistency identification is presented. Abductive rea-

soning is proposed as a means to derive possible model overlap and inconsistencies.

Due to the nature of abductive reasoning, the use of machine learning techniques is

introduced as a possible strategy for improving results over time.
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CHAPTER V

REPRESENTING & REASONING OVER

HETEROGENEOUS MODELS

In this chapter, a conceptual basis for representing, performing symbol manipula-

tion in, and reasoning over heterogeneous models is presented. Model heterogeneity

manifests itself in three dimensions: firstly, the different types of models and their

nature (specification or analysis, process or artifact) that are used in each domain;

secondly, incompatibility of meta-models; and thirdly, an extensive tool landscape

with very limited integration. The concepts developed in this chapter constitute the

necessary fundamental basis for a probabilistic reasoning framework in Model-Based

Systems Engineering, as it enables the analysis of engineering models by computa-

tional means regardless of their corresponding language, formalism or nature. The

goal of the chapter is to answer, in part, research questions 2 and 3, and to investigate

hypothesis 3.

A common formalism, which is necessary for symbolic processing across hetero-

geneous models, is derived in the first part of the chapter. This common formalism

is based on directed, labeled multi-graphs. Methods for retrieving and manipulating

information and knowledge from models represented in this common representational

formalism are introduced and formalized in section 5.3. This is followed by sec-

tion 5.4, in which methods for performing reasoning and inference in the common

formalism are introduced. Finally, in section 5.5, a semantic abstraction mechanism

enabling higher-level reasoning is introduced. The chapter closes with a summary of

the developed concepts.
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5.1 Data, Information & Knowledge and Formal Models

As established in chapter 4, a prerequisite to identifying inconsistencies in models is

an ability to interpret and analyze models. This requires a mechanism for symbolic

manipulation in models, which is non-trivial to define for the case of heterogeneous

models. In this section, the foundations for a common, unifying formalism allowing

symbolic processing across heterogeneous models are laid.

5.1.1 Processing and Reasoning with Symbolic Expressions

As introduced in section 2.1.1.1, symbols are elements of formal languages. Symbols

are used as marks that stand for or represent something [203]. Therefore, symbols

can represent objects, qualities, processes or quantities from various domains. For

example, in section 2.1.1.1 alphanumeric characters (the set of which is called the

alphabet) were concatenated to form words, formulas and sentences. On the other

hand, in section 2.1.2 lines, arcs and text (all different kinds of markings) were used to

form symbols and, ultimately, utterances of the language. The issue of what markings

constitute a symbol is intimately bound up in how a person or machine recognizes it.

Saying that something is a symbol implies the choice of a recognizer.

Computers are designed to process symbols and expressions (i.e., arrangements of

symbols) stored in memory. The symbols stored in memory can be recognized by the

machine. However, without an interpretor (and only a recognizer) no context is pro-

vided, and the symbols and expressions are mere data. Therefore, data are recorded

(captured and stored) symbols without context [140]. When data are processed or

analyzed (e.g., by a computer program), they become information. Information is

a message, which contains relevant meaning, implication, or input for a decision or

action [140]. How different pieces of information relate to one another is known as

knowledge. Knowledge is the cognition or recognition (know-what), capacity to act

(know-how) and understanding (know-why).
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Figure 11: Sample OMG SysML [160] model (block definition diagram) illustrating
the encoding of information in formal models.

To elaborate on the notion of data, information and knowledge and their relations

to symbols, consider the following example: say one is given the expressions “F86” and

“J47”. These expressions are meaningless data without context. However, messages

are formed by adding context and stating, e.g., that F86 is an aircraft, and J47 is a

turbojet engine. This also adds semantics. Given relevant knowledge, one can then

form the additional piece of information that links these two expressions through a

relationship: the engine type of the F86 aircraft is the J47 turbojet engine.

The ability to interpret expressions allows one to do various kinds of reasoning on

the information and knowledge encoded using expressions. Typically, computational

systems that allow for such interpretation have an ability to retrieve, compare and

write symbols. In section 2.2, a logical formalism was used to explain such automated

reasoning processes using deductive techniques. There, information and knowledge

are encoded as propositions using (compounded) predicated statements and impli-

cations. These are ways of encoding information in a formal language (rather than

natural language), and the expressions are represented and structured in such a way

that a particular interpretor understanding this formal language can process them.

Logics are not the only formalisms through which information and knowledge can
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be captured: (formal) models also encode information and knowledge. Consider the

SysML (Systems Modeling Language [160, 72]) block definition diagram from figure 11.

Given appropriate means to interpret the symbols represented on the diagram (i.e.,

an understanding of the syntax and (at least to some degree) semantics), statements

very similar to those given in the previous example can be extracted. For example,

F86 is an instance of (a type of) aircraft, the latter being denoted by a type of SysML

block that is labeled “Aircraft”. The fact that this is possible should not come as

a surprise, since models are used for the purpose of communication. This includes

making statements, as well as encoding information and knowledge about a particular

system that is to reside and be deployed in a particular environment [72, 26]. For this

purpose, models have a defined structure for organizing the relationships between,

and contextualizing data.

5.1.2 Interpreting & Reasoning over Heterogeneous Models

Textual statements and iconic diagrams are two possible ways of capturing and repre-

senting information and knowledge. Given appropriate means to extract the relevant

information and knowledge, and interpret the expressions, reasoning can be done.

As has been established in chapter 4 and section 3.4, both a recognition and an in-

terpretation mechanism are necessary for identifying inconsistencies. However, the

fact that several representations for information and knowledge are used in a typical

systems engineering or design scenario brings about additional challenges. Primarily,

the challenge lies in the fact that multiple interpretors are required which must also

interplay.

In practice, this has led to ad hoc systems such as tool chains or point-to-point

model transformations to be implemented [24]. In both cases, the information and

knowledge contained in the involved models is typically processed using procedural

code. A much more desirable, but also more complex approach to addressing this

118



issue is the use of a common representation (and interpretation) technique, and the

transformation from the various formalism to such a common formalism. Modern ex-

amples of this are the Generic Modeling Environment (GME) [136], Soley (booggie)

[99, 100], VIATRA (and VIATRA2) [35] and the approaches mentioned in [181, 168].

These approaches have in common that an attempt is made to create a single modeling

language (and formal system), using which the information and knowledge encoded

in a number of other models can be represented and correctly interpreted. This model

then represents the product of the composition of the various heterogeneous models.

However, as discussed in section 4.1.2.2, constructing such languages and appropriate

morphisms from (and to) other languages is non-trivial. It is therefore no surprise

that these approaches are limited (often severely) in their representational and inter-

pretation qualities, as well as some non-functional qualities such as visualization of

the product of the composition [12].

Since the identification of inconsistencies in heterogeneous models requires the

extraction and interpretation of the relevant information from a potentially very large

number of models, a unified technique for representing and extracting information and

knowledge from models is desirable. In addition, a way of capturing knowledge on how

to process the extracted information (for the purpose of identifying inconsistencies)

should be incorporated into the same formalism. One such possible formalism based

on graphs and graph transformations is introduced in the following.

5.2 Representing Models by Graphs

In 1982, Brian Smith, a pioneer in artificial intelligence, presented his knowledge

representation hypothesis [198]:

“Any mechanically embodied intelligent process will be comprised of

structural ingredients that (a) we as external observers naturally take to

represent a propositional account of the knowledge that the overall process
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exhibits, and (b) independent of such external semantical attribution, play

a formal but causal and essential role in engendering the behavior that

manifests that knowledge.”

This hypothesis underlies most modern work in artificial intelligence [138]. Grant-

ing it, a key property that must be satisfied is that it must be possible to interpret

the structures that represent and encode information and knowledge as propositions

(i.e., as truth bearing statements).

In the artificial intelligence community, particularly within the context of expert

systems [81], automated reasoning and knowledge representations are well-studied

subjects. Many forms of information and knowledge representation exist, logical for-

mulas and graphs being the most prominent types. Well-known techniques from the

literature include logical databases, semantic nets, frames1 and object-attribute-value

triples [81, 203] (see, e.g., the expert system MYCIN [194]). While these repre-

sentation techniques use very different symbols, all can be understood to encode

information and knowledge in some propositional form.

5.2.1 Propositional Graph Triples

Propositions can always be represented in a form that has three elemental parts:

a subject, predicate and object (at least at some level of abstraction) [152]. Such

structures are generally referred to as triplets (or triples). In this form, propositions

represent information and knowledge, because a basic structure for organizing the

relationships (using predicates) between different subjects (and objects) exists. This

is similar in spirit to object-attribute-value triples.

If a subject-predicate-object triplet is represented by two vertices (one each for the

subject and object) and these vertices are connected by a directed edge (to indicate

1Object-oriented modeling languages such as OMG UML and OMG SysML can be interpreted
as being based on the frames paradigm.
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Figure 12: Subject-predicate-object triplet denoting a proposition, represented by a
graph.

the predicate, and differentiate between subject and object), it is only natural to think

of a triplet as a graph. Graphs can be defined as follows (note that the definitions of

graphs that follow are loosely based on definition from [231, 184]):

Definition 5.1. A simple directed graph is a tuple G = (V,E), where V = {v1, ..., vn}

is a finite set of vertices, and E is a set of tuples over the relation E ⊆ V × V . E is

a set of ordered pairs (vi, vj), each denoting an edge from a vertex vi to a vertex vj.

The graph representing the proposition encoded in figure 11 has two vertices and

one edge. Formally, this graph is GS1 = (VS1, ES1) where VS1 = {“F86′′, “Aircraft′′}

and ES1 = {is a}, and where is a = (“F86′′, “Aircraft′′). For simplicity, the vertices

are defined as (and identified by) strings of symbols, and a shorthand label is used as

an identifier for the edge.

Capturing propositions in graph form is similar to the idea behind semantic nets

(sometimes referred to as propositional nets) [152, 176]. In figure 12, the proposi-

tion F86 is a type of Aircraft, denoted as the triplet (F86, is a, Aircraft)2, is

represented by a graph triplet.

Note that even simple statements asserting a state or quality of a subject can be

represented in such a manner. For instance, consider a proposition that states that the

F86 aircraft flies. One way of representing this statement is: F86 flies. However, given

that “flies” is an action (or perhaps state, depending on the context and information

available), the proposition can also be represented as F86 performs action flies, where

performs action is the predicate. In a similar manner, complex, interlinked statements

2In a predicate logic, this proposition would typically be represented as a predicated statement
in the following form: is a(F86, Aircraft).
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Figure 13: Complex, interlinked set of propositions represented by a graph.

can be represented by breaking a larger proposition into smaller ones and relating

them with predicates. For instance, in figure 13, the information The F86, which

is a type of Aircraft with a Jet Engine, has a Jet Engine of type J47 is divided up

into a set of four propositions, which are represented by a single graph. Notice how

multiple statements are made about the subject “F86”. Also, “J47” acts as a subject

in one proposition (J47 is a type of Jet Engine), and as the object in another (F86

has engine of type J47 ).

5.2.2 Directed, Labeled Multi-Graphs

In the given examples (see figures 11 and 13)), vertices and edges were identified

by simple strings as labels. However, names are not always appropriate means for

uniquely identifying objects, but should be considered attributes of vertices and edges.

Therefore, definition 5.1 is expanded upon to incorporate the more generic notion of

labels for vertices and edges, which provides a basis for attribution. In addition,

concepts from formal languages from section 2.1 are incorporated.

To allow for labels in a directed graph, the use of directed, labeled multi-graphs

[231] is proposed as a means for meaningfully capturing information and knowledge.

Here, the term multi-graph indicates that the graph may contain cycles. Similar to

the classical definition of formal languages (see section 2.1.1.1, an alphabet is used

as a basis for forming terms (here: graphs). Let Σ be such an alphabet, and let ΣN

represent the subset that contains only the non-logical constants of Σ. Directed and
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labeled multi-graphs over an alphabet of non-logical constants ΣN can be defined as

follows:

Definition 5.2. A directed and labeled multi-graph over an alphabet ΣN is a tuple

G = (V,E, e, L, lV ), where V = {v1, v2, ..., vn} is a finite set of vertices, and E =

{e1, e2, ..., em} is a multiset denoting edges, where each edge ei ∈ E : ei ∈ V × V

is defined as a tuple (ordered pair) of vertices, the first element denoting the source

and the second element the target vertex for a directed edge. The partial function

e : E → V assigns edge definitions to vertices. L ⊆ Σ∗N is a set of labels and

lV : V → L a partial function that assigns vertices to labels.

Definition 5.2 has been inspired by the definition of E-Graphs given in [58], and

is an expanded version of the definition previously published by Herzig and Paredis

in [106]. In the definition, graphs have vertices, which are connected by edges. These

edges are captured as ordered pairs, where the first element represents the source ver-

tex, and the second element the target vertex. Vertices can be associated with a label

which is, similar to the definition of terms, an element of the set of all combinations

of symbols from the alphabet used. Edges are given a definition by associating each

edge with a particular vertex (where one vertex can act as the definition for more

than one edge). This gives edges an identity and allows for more complex definitions

of edges (and is similar to a typing system for edges), since vertices defining edges

can have relations to other vertices.

A sample graph constructed following definition 5.2 is visualized in figure 14.

Note that, in the following, the shorthand notation is used as illustrated previously

in figure 11, which eliminates the edges that indicate assignments of labels to vertices

and edges to vertices, and shows the labels associated with vertices rather than the

vertex number (similar for edges, where the label of the vertex associated with the

edge is used as an edge label).
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Figure 14: Sample graph visualizing the given definition of directed, labeled multi-
graphs.

5.2.3 Formal Models as Propositional Graphs

Formal models are typically created for the purpose of capturing statements about

a particular system. These statements are factual (i.e., facts) in that their truth

value is known. Therefore, to represent a proposition by a graph triple, it is sufficient

to capture it in subject-predicate-object form, assuming that the truth value of the

statement is always true unless proven otherwise. These factual statements are of

primary interest for the purpose of identifying inconsistencies.

The agglomeration of all statements made (i.e., the information and knowledge

available about a system) should be representable by a graph. This leads to the

following proposition:

Proposition 5.1. At some level of abstraction, the information and knowledge en-

coded in any model can be represented by a graph.

There are a number of reasons why the representation of models (and, hence, also

propositions) by graphs is advantageous. For one, using graph-based representations

of propositions extracted from models can be more intuitive than a representation

in a textual language [91]. This is because complex relations can be extracted more

easily, for instance, when collecting all statements made about a particular subject.

Also, graphs are mathematically elegant and formal structures, and the retrieval and

124



manipulation of graphs is well-studied [184]. As discussed in section 2.1, both syntax

and semantics can be defined using graph transformations (i.e., operations on graphs

that modify a source graph).

The validity and viability of proposition 5.1 is strongly supported by the fact that

(as discussed in section 2.1.2) the meta-model of any model can be represented by

a graph (recall that this is referred to as the type graph) [82], and by the generally

accepted fact that for all formal languages a meta-model is definable (or identifiable).

Therefore, an instance of a graph-based meta-model (i.e., a model) must also be

representable by a graph. Note that a meta-model is a model that makes statements

about the language, while the model makes statements about an utterance of the

language. For instance, the meta-model of UML makes statements about entities

such as UML Classes and UML Properties, while a UML model makes statements

about instances of these entities – i.e., entities related to, e.g., a particular software

system.

In the related literature, the representation of models by graphs is not uncommon.

As discussed in chapter 3, VIATRA (and VIATRA2) is an example of a model-based

development framework and tool that supports graph based representations of models.

VIATRA2 also supports the importing of models based on other standard meta-

modeling cores [9] such as OMG Meta-Object Facility (MOF) [163]. This supports

the viability and practicality of graph-based models.

5.2.4 Transformation & Interpretation

A graph-based representation of a model can be constructed by defining a morphism

g : M → G between a model M and a corresponding graph representation of the

model G. In the limit, such a morphism is an isomorphism. That is, every expression

from a formal modeling language is translated to a graph-based form. For formal
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modeling languages, this includes both syntax and semantics, where syntactic ex-

pressions can be translated to static graphs, and the semantics (including structural

well-formedness constraints) to a series of graph transformation rules (which conform

to some standard graph transformation language with high expressivity for which an

interpretor exists).

For the purpose of identifying inconsistencies, a full translation of the language-

specific semantics is not always meaningful. This has mostly practical reasons, in that

most modeling tools have the ability to check, e.g., the syntactical well-formedness

of a model. In addition, a complete translation of the semantics (semantic domain

and semantic mapping) requires a graph transformation formalism to be available,

which must possess sufficient expressiveness to represent every type of semantics

(e.g., execution semantics). Therefore, the translation of semantics considered in the

following is not claimed to be complete.

As argued in section 4.3, inconsistencies can be discovered through the appli-

cation of negative constraints, i.e., through the matching of patterns. Since such

pattern matches are purely syntactical, the focus set in the following is on translating

syntactical expressions. Therefore, most semantic inconsistencies are assumed to be

identifiable from the syntactic context provided.

5.2.4.1 Choosing a Level of Abstraction

Morphisms for transformations from a model to a graph-based representation are

not restricted to isomorphisms (such as is common in model-to-model transformation

scenarios). That is, not all of the contained propositions (i.e., information associ-

ated with a model) should necessarily be translated to the target formalism. Non-

isomorphic morphisms can result in the loss of information. However, for the purpose

of identifying inconsistencies, translating all information and knowledge contained in

a model may not always be meaningful. When thinking of inconsistencies as patterns

126



(such as was done in section 4.3), only the information that can trigger a match to

a pattern (i.e., that could, potentially, be part of a match to a pattern) is of value.

Theoretically, any information and knowledge that is not a part of any match to a

part of a pattern (representing a type of inconsistency) can be disregarded.

To give a concrete example, consider the case where the only inconsistency of

interest is a mismatch between a part hierarchy in a CAD model and a block hierarchy

in a SysML model. In this case, information such as that related to polygons and

their spacial location is not of interest for the particular case at hand. However,

including the information would not harm the identification of an inconsistency – it

would merely provide a larger set of propositions as a basis for reasoning, most of

which will never be relevant for identifying inconsistencies.

5.2.4.2 Syntactic Transformation

The transformation of a formal model to a graph-based representation follows a simple

pattern: for every relevant element (which includes concepts, relations, individuals,

classes and other syntactic entities used in modeling languages) a vertex is created,

which acts as the definition for the particular element. Every element that is related

explicitly to another element in some form (including known type relations such as

instance-of ) is then indicated by an edge between the vertices defining these ele-

ments, where bidirectional relations are made possible through creating two directed

edges. These edges are then mapped to the vertices defining the edges. Note that

this transformation results in a graph where the various meta-levels are mixed and,

without an appropriate interpretation, the different meta-levels are (syntactically)

not differentiable from one another.

To strengthen the understanding of this transformation pattern, consider the case
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where an isomorphic image of a model and its meta-model are to be translated3 (in-

cluding the instance relationships between the two models). Furthermore, assume

knowledge of the meta-meta-model. Also assume that this meta-meta-model is that

for class diagrams (which, as established in section 2.1 is the de-facto standard for

meta-modeling). Every meta-meta-model class, and every meta-meta-model rela-

tionship is represented by a vertex with the label corresponding to the name of the

corresponding element. Meta-models and models are translated in a similar fashion.

The concept of instance-of relations is translated using the corresponding language-

specific vocabulary to a vertex, which is given the appropriate label representing this

construct, and edges semantically representing these relations are associated with the

vertex. The process is analogous for other relations.

Note that the transformation to the provided formalism expects a graph-like struc-

ture of the underlying model to be present (or at least formable). However, as men-

tioned in section 2.1, this is, at least in theory, always possible.

5.2.4.3 Transformation of Semantics & Interpretation

Given that a reference exists between a syntactic expression in a formal modeling

language and the corresponding generated graph-based representation, the semantics

of the graph-based representation can simply be defined in a translational manner.

Whenever this is not possible (or not practical) certain flavors of semantics can be

translated to a graph-based representation by translating interpretative functions to

graph transformation rules. However, this, in turn, requires a language for expressing

these graph transformations, which must be expressive enough for the purpose of

translating the semantics and for which an interpretor must exist.

For the purpose of identifying inconsistencies, the (often language-specific) seman-

tics relevant to identifying inconsistencies (i.e., that affect related patterns) should

3Whether the required information is extracted through a tool API, or is made available in some
other form is considered an implementation-specific issue.
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always be translated. This includes commonly encountered language semantics for

relations, which include transitivity, reflexivity and symmetry.

5.2.4.4 Interpretation of Compositions of Graph-Based Models

When translating a single model to a graph-based representation, the semantics of

the graph-based model are, as explained in the previous section, simply translational.

However, the semantics of the graph-based model become non-trivial when multiple,

heterogeneous models are transformed, and the results of all transformations to the

graph-based formalism are considered as one graph. In such a case, the formal system

of which (at least implicitly) the graph-based model is a part, and those from each

individual translated model, are no longer equivalent. This is because of the disparity

and heterogeneity of the models, and (as often encountered in practice) lack of explicit

knowledge about the relations between the models (i.e., the model overlap, which is

primarily of a semantic nature).

Identifying a semantic domain and semantic mapping for such a set of composed

graph-based models is non-trivial, and, at least in practice, a universal semantic do-

main is unlikely to be definable due to the associated complexity. In theory, such

a universal domain would require the ability to explain all phenomena with perfect

precision, which is unlikely, particularly due to the findings from section 4.1.2 and

as published by Herzig et al. in [102]. The approach for identifying inconsisten-

cies introduced in section 4.3 can be understood as an enabler for a partial check

for (in)consistency using an incomplete definition of a formal system. Contrary to

the approach outlined in section 2.2, the approach taken in this research (which is

first introduced in section 4.3) is not to prove the consistency of an expression (i.e.,

a subgraph), but prove its inconsistency. Therefore, the formal system is defined

only partially by a limited set of axioms and inference rules, and only certain non-

conformances of a statement to the formal system can be proven.
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Figure 15: (a) Example model, meta-model and meta-meta-model defined using a
(simplified and hypothetical) class diagram syntax, and (b) the corresponding graph-
based representation.

5.2.5 Example: Translating a Multi-Level Model with a Class Diagram
Like Syntax

To exemplify the translation of a formal model to the introduced graph-based for-

malism, a hypothetical model and its meta-model and meta-meta-model are consid-

ered (see figure 15a). It is assumed that the formal model to be translated to the

graph-based formalism has been created using a class diagram-like formalism, where

the meta-meta-model is defined to be reflective (i.e., self-describing) similar to the

Meta-Object Facility (MOF). Note that the example does not discuss any concrete

serialization of the graph-based model, but is merely meant to serve as an illustration

example of the proposed procedure of constructing a graph-based model.

The graph-based representation of the model depicted in figure 15a is depicted in

figure 15b, with the translation defined in accordance with the schema defined in sec-

tion 5.2.4.2. In the example, both the notion of an element (MClass, Class, Property,

Group and Person) and that of a relation between such elements (MRelation, type,
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attributes, members) exists. As outlined in section 5.2.4.2, for each of these el-

ements and relations a corresponding vertex is created (for semantically equivalent

elements or relations only one vertex is created). The syntactical names used in the

source model are added to the set of labels, and the mappings from vertices to labels

are defined (which, by the introduced convention, are not shown). Thereafter, for

each relation, a corresponding edge is created between the affected elements. Map-

pings are then defined between these newly created edges and the relevant vertices

(similar to the mappings of vertices to labels, these mappings are, by the introduced

convention, not shown).

In order for the transformation to be possible, a mechanism must exist through

which the information in the given model can be extracted. In a practical application,

this extraction mechanism is enabled by an application programming interface (API),

or through parsing and interpretation of a serialization of the model in a well-defined

format (e.g., using the extensible markup language (XML)). The latter is common

in model transformation environments where languages such as QVTO [162] aid in

defining the transformation, while taking care of the parsing of a (standardized)

serialization of the model in the background (see, e.g., [109] for an example).

Note that what information is transformed to the graph-based representation is, as

discussed before, arbitrary to some degree and defined by the morphism. However, at

least all information relevant to identifying particular types of inconsistencies should

be transformed. In the limit, all information and knowledge extractable from a model

should be transformed. In this case, all of the abstract syntactical information was

extracted.

As outlined in section 5.2.4.2, following this transformation scheme leads to a

representation of a model in which the various meta-layers are no longer clearly dis-

tinguishable without an interpretation of the graph. That is, without knowledge of

the semantics of the type relationship, the meta-levels are not distinguishable.
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5.3 Querying Graph-Based Models

In the previous section a model for representing the (syntactic) information and

knowledge contained in heterogeneous formal models in a common, graph-based for-

malism is introduced. The result is a static and syntactic translation of a model.

However, in order to interpret the constructed graph-based model, mechanisms for

extracting and manipulating information and knowledge contained in a graph-based

model are needed. Such mechanisms are enabled by posing queries and executing

transformation rules, the basis of which is pattern matching. A pattern matching

formalism and a mechanism for retrieving information from a graph-based model is

introduced in the following.

5.3.1 A Graph Pattern Formalism

Patterns are utilized for the purpose of locating information in a constant structure

[203]. Here, this constant structure is the data graph considered – i.e., the graph-

based representation of a set of formal models. Hence, a pattern identifies one or more

subgraphs. Key to the definition of patterns are the concepts of variables and constants

(see section 2.2, where it was identified that alphabets consist of constants (logical and

non-logical) and variables). Hence, the definition of a formalism for defining patterns

should, at minimum, define symbols for both variables and constants. Information is

located by (syntactically) matching constants defined in a pattern to corresponding

constants in a data graph. Pattern variables act as wildcards4 and can be bound to

any matching vertices (or edges).

Within the context of this dissertation, patterns which incorporate only constants

and variables are referred to as simple patterns. To define the notion of simple pat-

terns, let Σ be the same alphabet as used in the definition for directed, labeled

4A wildcard is a symbol that may be substituted for any other symbol from a defined set (here,
the set of non-logical constants).
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Figure 16: Example pattern, and bindings of constants and variables in the graph
pattern to a data graph.

multi-graphs (see definition 5.2). Furthermore, let Σvar ⊆ Σ and ΣN ⊆ Σ, where ΣN

is the subset of non-logical constants over Σ and Σvar the set of variables, where ΣN

and Σvar are disjoint. Simple graph patterns are then defined as:

Definition 5.3. A simple graph pattern PS is a directed, labeled multi-graph PS =

(VP , EP , eP , LP , lVP ) with VP = VN ∪ Vvar as the set of vertices composed of the two

disjoint sets VN and Vvar. VN represents the set of vertices with constant labels and

Vvar the set of vertices denoting variables. The set of edges is defined by EP , which

are assigned vertices through the function eP . LP is the set of labels defined by L ⊆

Σ∗N ∪ Σvar. Vertices are assigned labels through the mapping lVP .

Similar to the definition of the target data graph from which information is to

be retrieved, patterns are defined as labeled, directed subgraphs. However, their

definition is extended by allowing for both non-logical constants and symbols denoting

variables as labels (by definition of the partial function lVP , any vertex can at most

be assigned one label and can hence represent only either a constant or a variable).

Matching simple patterns is done by mapping from the data graph to the elements

with constant labels while treating variables as wildcards.
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Definition 5.3 is an enhancement of a previously published definition by Herzig and

Paredis [106], originally inspired by the definition in [76]. An example of a simple

graph pattern is given in figure 16, where a pattern is defined with two variables

(?a and ?e) and three constants (“engine type”, “is a” and “Aircraft”). One set of

possible bindings to elements from the target data graph is illustrated.

Using only variables and constants in defining patterns limits their expressiveness.

In practice, this is typically mitigated by incorporating logical operators and functors,

which are simply functions evaluated in addition to matching the simple pattern that,

when interpreted, return either TRUE or FALSE. For this purpose, the notion of simple

graph patterns is extended in definition 5.4 to that of complex graph patterns.

To define complex graph patterns formally, (a subset of) the logical constants from

the alphabet Σ are now considered as well. Let ΣL ⊂ Σ be a set of logical constants

that is disjoint from ΣN and Σvar, and which represents a set of functors. Complex

graph patterns can then be defined in the following way:

Definition 5.4. A complex pattern P is a tuple P = (PS, C) where PS is a simple

pattern and C is a labeled hypergraph C = (VC , EC , A, a, LC , lC). VC is a set of

vertices for which VP ⊆ VC (where VP is from PS) and EC a set of hyperedges defined

by the power set of VC ∪E, where E is the set of possible edges from the definition of

PS: i.e., EC ⊆ (VC ∪ E)2. A is a set of tuples denoting possible function arguments,

and is defined as a subset of the union of all possible Cartesian products over EC:

A ⊆
⋃n
i=1

(
×ij=1EC

)
, where n = |VC |. vertices are assigned arguments through the

partial function a : (VC \ VP ) → A. LC is a set of labels defined by LC ⊆ ΣL. The

labeling function lC is a partial function assigning functor labels to vertices from the

set VC \ VP and is defined by lC : (VC \ VP )→ LC.

In definition 5.4, functors are defined as vertices in a graph with labels that rep-

resent logical constants. For each functor, zero or more arguments are defined. The

number of arguments defines the arity of a functor. For instance, in the example
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Figure 17: Example complex pattern that is a combination of the simple pattern
from figure 16 and the functor notEqual used for finding Aircraft instances that do
not have the engine type F414. Note that in this example, the argument (a1, a2) ∈ A
is assigned to notEqual, where a1 = {v?e} and a2 = {vF414}. Hence, notEqual has
arity 2.
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given in figure 17, matches to the simple pattern defined in figure 16 are restricted

to those for which the functor notEqual evaluates to true (where the semantics of

notEqual are assumed defined). Here, semantics for notEqual are assumed that inter-

pret notEqual as true for all of those cases where the vertex in the data graph bound

to ?e is not the same as the vertex with the label “F414”. Note that definition 5.4

allows for arbitrary subgraphs to be used as arguments for the functors, hence also

allowing for functors to be defined that evaluate to true for negative matches – i.e.,

whenever a pattern is not found. In such cases, PS would be an empty graph, and

only a functor with a subgraph is defined. The semantics of functors can formally be

defined by mapping to a well-defined formal system such as a logic.

In definition 5.4, hypergraphs [231] are used to define arguments of functors. Hy-

pergraphs are simply graphs that allow for edges that connect more than one vertex.

Arguments for functors are then tuples where each entry in a tuple represents a hyper-

edge. Tuples are used for this purpose since the order of arguments is, in the general

case, not arbitrary (except for unary operators, or, e.g., symmetric relations). Note

that by including functor vertices in the definition of the set of possible hyperedges

EC , arguments of functors may also include other functors. In figure 17, the functor

notEqual has two arguments, each of which is a subgraph with just one vertex.

Note that a match to a simple pattern can be interpreted as the evaluation of a

default functor matches which carries the simple pattern as its only argument and

returns TRUE if a match to a pattern was found in a target data graph.

5.3.2 Pattern Matching in Graphs

A single match to a simple graph pattern is a set of bindings from vertices and edges

in the simple graph pattern to vertices and edges in a target data graph. This is

illustrated for one particular combination of bindings in figure 16. Vertices of the

simple graph pattern that have labels consisting of constant symbols can map to
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vertices in the target data graph that are associated with a label that is symbolically

equal. Edges are mapped in a similar fashion. If the label is not a constant, but a

variable, the mapping is defined as a mapping from the variable vertex (or edge) to

all vertices (or edges) in a target graph.

In order for a vertex-edge-vertex triple of a graph pattern to match a vertex-edge-

vertex triple in the data graph, the mappings of the three graph elements must be

consistent for each tuple of mappings. That is, even though the vertex variable ?a in

figure 16 could (if considered alone) map to all vertices of the data graph, matching

the vertex-edge-vertex triple (?a, is a, Aircraft) restricts the mappings for ?a to

those for which there exists an outgoing edge with the label is a, which is connected

to a vertex with label Aircraft. In the case of figure 16, ?a could therefore map to

the vertex with the label F86 or the vertex with the label F/A-18E. Therefore, one

must consider a number of mappings at the same time, where the mappings from the

elements of the graph pattern to the elements of the data graph must be consistent.

For instance, for the two example matches, the mapping of the edge labeled is a in the

pattern must map to the edge is a in the data graph that is consistent with the other

mappings (note that by definition 5.2 that both edges and vertices are not unique by

their labels).

To define this process of pattern matching formally, a number of definitions are

introduced in the following. Let mE be a mapping from edges of the simple graph

pattern to edges of the target data graph mE : EP → E, where mE is defined by

label equality; that is, mE is a non-surjective, non-injective function defined for those

edges (vPk, vPl) = eP i ∈ EP for which there exists at least one mapping for which

lVP (eP (eP i)) = lV (e (ej)), where ej ∈ E are edges in the target data graph. Edges

with variable symbols as labels map to all edges of the target data graph. Similarly,

let mV : VP → V be a non-injective, non-surjective mapping from the vertices in the

simple graph pattern PS to the vertices in the target data graph. mV is also defined
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by label equality, where mV (vPk) = vl is true for all vertices in the simple graph

pattern and target data graph for which lVP (vPk) = lV (vl). Analogously, vertices

in PS with variable symbols as labels map to all vertices in the target data graph.

Furthermore, let T = {(vi, ek, vj) | vi, vj ∈ V and(vi, vj) = ek ∈ E} denote the set of

triples in the target data graph and, analogously defined, TP be the set of triples in

the simple graph pattern. A match to a triple can then be defined in the following

way:

Definition 5.5. The mapping mt representing matches to a triple tP ∈ TP is defined

by the tuple of mappings mt = (mV ,mE,mV ), where mt maps a pattern triple tP =

(vPi, ePk, vPj) ∈ TP to a target data graph triple t = (vi, ek, vj) ∈ T whenever mV (vPi),

mV (vPj) and mV (ePk) are defined.

Note that mt can be regarded as a mapping pointing from one triple in the graph

pattern (e.g., (?a, is a, Aircraft)) to zero or more triples in the data graph (e.g., (F86,

is a, Aircraft) and (F/A-18E, is a, Aircraft)). Using these definitions, matching of

triples can now be generalized to the case of matching sets of (related) triples (i.e.,

the simple graph pattern as a whole):

Definition 5.6. A set of matches MPS ,G to a simple graph pattern PS in a tar-

get data graph G is an exhaustive set of sets of graph triples which can be con-

structed from MPS ,G = {TMi
| TMi

= m(TP )}, where m : TP → T is a tuple of

sub-mappings (mt1,mt2, ...,mt|TP |) where, for each mapping, all sub-mappings are

unique and consistent, i.e., ∀ tPi, tPj | vPix = vPjy : mV (vPix) = mV (vPjy) and

∀tPi, tPj | ePkx = ePly : mE(ePkx) = mE(ePly).

The uniqueness and consistency criteria ensure that the same elements from the

co-domain are used across all shared vertices and edges in the pattern. That is, for

the pattern in figure 16, it is ensured that across the two pattern triples (?a, is a,

Aircraft) and (?a, engine type, ?e), the same bindings for ?a are used in one match
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(i.e., ?a does not map to F86 for the one triple and to F/A-18E in the other, but ?a

maps to either one).

Note that MPS ,G is a set of sets of graph triples. Together, the triples in each

of the subsets of MPS ,G form a (sub-)graph of the target data graph. The above

definitions are also valid for the subgraph isomorphism problem if a simple graph

pattern is defined that has no vertices with variable symbols as labels.

In practical implementations of pattern matching procedures, the target data

graph must be traversed in order to define the various mappings. In the literature,

there exist a variety of algorithms to find candidate expressions for possible matching,

which traverse the graph in different ways. Many of these are specifically designed and

optimized for graphs with specific properties (e.g., acyclic graphs or tree structures).

In [33], a number of algorithms are mentioned including the most general class of

tree search algorithms [219, 133] (note that these algorithms do not assume that the

underlying data graph has a tree like structure), where the basic idea is the iterative

expansion of a initially empty partial match by adding new pairs of matched vertices.

The general problem of finding a subgraph in a target data graph can be shown to

be in the complexity class of NP-complete problems [231, 219].

Matching of complex patterns relies on an interpretation I for C. Similar to the

definitions given in sections 2.1.1.4 and 2.2.2, a valuation function v is defined which

inductively assigns values from a semantic domain D to vertices and edges defined

by C. Here, {TRUE, FALSE} ⊆ D. Let a basis for I and v be a simple logic similar

to 2.2.1. For brevity, only the semantics of top level functors – that is, functors which

are not part of an argument of other functors – are detailed. Valid top level functors

must valuate to either TRUE or FALSE.

Finding matches to a complex pattern is similar to that of finding matches to

simple graph patterns, but with additional constraints imposed. For each match to a

simple graph pattern, each functor from C is evaluated. Only if the logical conjunction
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of all top level functors evaluates to TRUE is the subgraph considered a match. For

example, in figure 17, a complex pattern is illustrated. Two matches to the simple

pattern can be identified. The semantics of the (fictitious) top level functor notEquals

dictate that if the labels of the bound vertices specified as first and second arguments

are symbolically equal, the functor evaluates to FALSE and TRUE otherwise. For one

of the two possible matches, in which ?e binds to the vertex labeled F414, the functor

notEquals evaluates to FALSE under interpretation I and the match is not considered

valid.

To strengthen the understanding of how complex patterns are matched, consider

the anonymous functor matches which evaluates to TRUE for each match M to the

simple pattern PS (and also to TRUE if the simple graph pattern is empty). Further-

more, assume a set of top level functors fi with arbitrary sets of arguments Ai. Then,

a match to a complex pattern is found if, after forming the logical conjunction of the

various functors, the logical expression matches(M) ∨ (
∨
i fi(Ai)) evaluates to TRUE.

The section is concluded with the following definition for matches to complex

graph patterns:

Definition 5.7. A set of matches MP,G = {T1, T2, ..., Tn} to a complex graph pattern

P in a target data graph G is an exhaustive set of matches to the simple graph

pattern PS defined through P for each of which, under an interpretation I, the top

level functors evaluate to TRUE. That is, a single match to a complex pattern is a set

of triples Ti ∈MP,G that is satisfiable under interpretation I.

5.3.3 Formulating Queries

In the following, the notion of queries is introduced briefly. By definition, a query is an

inquiry for the purpose of retrieving information. Queries are typically formulated as

questions posed to an information source. For instance, one could pose the following

question to the example data graph used throughout this section:

140



Figure 18: Example graph pattern query with two sample query results.

“Which aircrafts have which jet engines?”

Looking at figure 16, the answer should be that “The F86 has a J47 engine, and

the F/A-18E has a F414 engine”. Analyzing the question, one notices two things:

firstly, information about the context of the question is given. Secondly, there are

references to what information is to be returned. In the case of the given query,

things identified as types of aircrafts (context), and things identified as jet engines

(context) that are related to the respective type of aircraft (context) are to be returned.

To retrieve an answer computationally, the relevant information must be retrieved

from the data graph. For this purpose, graph patterns can be used. In this case, the

pattern defined in figure 16 can be reused and will, as discussed in the previous

section, returns two subgraphs. The relevant information now needs to be extracted

from the subgraphs.

Extracting information from a query computationally requires an interpretation

of the language that the query conforms to. A formal definition of such a language

for queries is not necessary for an understanding of the remainder of this dissertation

and is considered outside the scope. Therefore, only a simple query mechanism is
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introduced, where queries, at their core, are said to consist of two parts: a part

defining what should be returned, and a part that defines the context of what is to

be returned. For the simple query mechanism, a (complex or simple) graph pattern

with at least one variable vertex (or edge) is used in defining the context. Returned

are the bindings to any number of variables from the context pattern. This pattern

mechanism is illustrated in figure 18. Note that, in essence, such a query mechanism

allows one to filter the information contained in a match to a pattern by returning

only a subset of the bindings between the elements of the simple graph pattern and

the data graph.

Within the scope of this dissertation only a simple query mechanism is considered,

which is used to retrieve bindings to variables in matches. In the following, the notion

of a simple query query and query result are defined more formally.

Definition 5.8. A simple query is a tuple Q = (P, QV ,G), where P is a complex

graph pattern and G a target data graph. QV = {qv1, qv2, ..., qvm} is a subset of the

vertices from P that denote the variables for which bindings should be returned.

The execution of a query involves the matching of the associated pattern in a

data graph. The result of this matching is, as introduced a set of sets of triple Ti.

Here, the mapping from variable vertices of interest to vertices in the data graph are

assumed preserved for each match and are depicted by the set of mappings mv =

{mv1 ,mv2 , ...,mvk} where k = |MP,G|. Each mapping is defined by mvi : QV → VTi ,

where VTi is defined as the set of all unique vertices in the triples ti ∈ Ti that represent

matches to the graph pattern. A simple query result can now be formalized as:

Definition 5.9. A simple query result is a tuple Qr = (Q,MP,G,mv), where Q depicts

the associated query, MP,G is the set of matches to the pattern defined by the query

and mv is an ordered set of mappings from variable vertices defined in the graph

pattern associated with Q to vertices over a corresponding match VTi.

142



5.4 Inference Mechanism

So far, unified mechanisms for representing and retrieving information from heteroge-

neous models have been introduced. These mechanisms were based on the proposition

that all formal models can, at some level of abstraction, be represented by a directed,

labeled multi-graph. Such graph-based models were constructed through a purely syn-

tactical transformation. However, no mechanism has been introduced to this point

that allows for an interpretation of the graph-based models. In the following, such

a mechanism is introduced for the purpose of performing inference in graph-based

models.

In section 2.2, inference is introduced as the process of deriving logical conclusions

from a set of premises by applying a series of rules. Several examples are given where

the application of such inference rules lead to new statements being formed. For

the case of graph-based structures, one can view such applications of inference rules

as transformations of a graph through the process of adding (or possibly removing)

vertices and edges. In the following, graph transformation rules are introduced as an

enabling method for performing inference in graph-based structures. Graph transfor-

mation rules are also applied as a tool for semantic interpretation of the graph-based

model, primarily by example.

5.4.1 Graph Transformations

The main idea behind graph transformations is the rule-based modification of graphs.

Similar to the production rules first introduced in section 2.1, graph transformation

rules (or graph rewriting rules) are defined with an antecedent and a consequent. For

graph transformation rules, the antecedent (also known as the pattern graph) defines

the context of the rule match, and the consequent (also known as the replacement

graph) defines the modifications to be performed. In their typical definition, graph

transformations enable two types of modifications: (1) adding and (2) deleting vertices
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Figure 19: Illustration of the mathematical concept of a pushout (adapted from
[184]).

and edges. A set of graph transformation rules is also called a graph rewriting system

[184].

Formally, a graph transformation rule is a production p : L→ R, where L and R

are complex patterns (see definition 5.4). L is known as the left-hand side and R as

the right-hand side of the rule. Applying a rule p means finding a match to L in a

source graph G and replacing the match to L by R, thus producing a target graph H.

This transformation from a source graph G to a target graph H is typically depicted

by G
p⇒ H [184].

In the related literature, a number of formal definitions for graph transformations

exist. Commonly used in both model-based software and systems engineering is

the algebraic approach based on double-pushout constructions [57]. A pushout is a

mathematical concept from category theory [101] and can be defined in the following

way: for two morphisms with common domains f : A → B and g : A → C the

pushout over f and g is defined by a pushout object D and morphisms f ′ : C → D

and g′ : B → D, for which f ′ ◦ g = g′ ◦ f . Furthermore, the pushout must be

universal, meaning that for any other pushout object X and morphisms h : B → X
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Figure 20: Illustration of a double-pushout. For the double-pushout based definition
of graph transformations, G is the source graph and H the target graph produced
after replacing a match m(L) to the complex graph pattern L with a replacement
graph R. K is the gluing graph and is defined as the common subgraph of L and R.
D is the context graph, defined through (G \ m(L)) ∪m(K) (adapted from [184]).

and k : C → X for which k ◦ g = h ◦ f there exists a unique morphism x : D → X

such that x ◦ g′ = h and x ◦ f ′ = k. D is then typically referred to as the gluing of B

and C. The definition of a pushout is illustrated in figure 19.

The double-pushout approach uses two gluing constructions to model a graph

transformation. In this approach, the definition of a production is similar to before,

with an additional graph K added: p = (L,K,R). As before, L represents the pre-

condition (i.e., the left-hand side to be matched) and R the post-condition (i.e., the

right-hand side defining the replacement). K is defined as the interface between L

and R (and of p) and can be thought of as the common subgraph of L and R. K is

commonly referred to as the gluing graph. Therefore, the graph L \ K describes the

part to be deleted, and the graph R \ K the part to be added when producing the

target graph H. K is needed for context preservation when replacing the match to L

with R.

In figure 20, a double-pushout diagram is shown. The double-pushout approach to

graph transformations consists of two steps: first, construct a context graph D such

that the gluing of L and D via K is equal to the source graph G. The context graph

D is the source graph G minus the match to the left hand side L, unionized with the
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gluing graph K – i.e., D = (G \ m(L)) ∪m(K), where m(L) represents the match

to the pattern L and m(K) is the part of the match to L that is also shared with R.

Thereafter, the gluing of R and D is constructed via K, leading to the target graph

H. Note that if L is fully contained in R – i.e., L ⊆ R – no vertices or edges are

deleted when forming H5.

A concrete example of a graph transformation rule applied to a data graph, and

relations of the individual parts of the rule and data graph to definitions from the

double-pushout approach are illustrated in figure 21. In the example, a graph trans-

formation rule is utilized for adding a relationship “installed in” as the inverse re-

lationship of “engine type” for any object that is known to be a particular kind of

Aircraft (where, as done throughout this chapter, the relationship “is a” signifies the

type-of relationship).

Note that only an abbreviated version of the definition of the double-pushout ap-

proach to graph transformations is given. A more elaborate version can be found

in [184]. It should be noted that a number of commonly applied graph transfor-

mation formalisms such as triple graph grammars (TGG) are closely related to this

definition. Also, in practice, there exist a wide number of implementations of graph

transformation frameworks (based on various graph models), many of which are used

in Model-Based Systems Engineering research and applications (see, e.g., VIATRA

[35], GReAT [8], booggie [100], FUJABA [154] and eMoflon [6]).

5.4.2 Inference using Graph Transformation Rules

As outlined in section 2.2, (deductive) inference is the process of opening new paths

for inquiry by iteratively deriving statements through application of a set of rules to

axioms and previously inferred statements. In the introduction to inference, examples

5Recall from chapter 2 that in the definition of production rules it is assumed that the left-hand
side of the rule is preserved – this is a subtle, but important difference to the definition of graph
transformation rules given here.
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Figure 21: Graph transformation rule as an inference rule for inferring the inverse of
the “engine type” relation and its application to a graph G from which a graph H is
derived.
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Figure 22: Graph transformation rule for inference of transitive relations (not show-
ing the gluing graph K) (top) and a sample application to a data graph with inferred
relations (bottom).

are given where implications written in a first-order language are applied. Here, the

use of graph transformation rules for the same purpose are demonstrated.

Graph transformation rules, as defined in the previous section, can readily be

applied for inference. Figure 22 depicts an example of a graph transformation rule

for inferring relations as a result of the transitive nature of relation rt and calculating

the transitive hull of the relation rt. Note that this is an example of the use of a

graph transformation rule for interpreting language semantics – specifically, transitive

constructs.

Graph transformation rules should be applied in combination with a data graph

for identifying matches to a pattern without necessitating an exhaustive application

of the graph transformations (i.e., the data graph should be considered as a repre-

sentation of a set of axioms and theorems that are used in combination with a set

of graph transformation rules which represent inference rules). This avoids having
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to expand a data graph by exhaustively applying all graph inference rules prior to

extracting information from it (i.e., querying, or pattern matching) as would be done

in a typical application of model transformations in MBSE. Similar to the discussion

in section 2.2.3.1, such a mechanism can make use of forward- and/or backward-

chaining, thereby also allowing for the inclusion of recursive inference rules (i.e., rules

similar to those used for defining the sample context-free grammar in section 2.1.1.3),

while still maintaining decidability for the membership problem (i.e., is φ ∈ L? ).

Otherwise, attempting to exhaustively apply a set of recursive graph transformation

rules would lead to an infinite number of inferences and non-termination of the cor-

responding algorithm. Note that this is in alignment with the fact that only a very

small set of languages is actually finite (see section 2.1.1).

5.5 Semantic Abstraction Mechanism

So far, mechanisms for translating information and knowledge encoded in heteroge-

neous formal models to a common, graph-based representation have been introduced.

This introduction included a mechanism for performing basic inference in such graph-

based models. However, since, per the presented mechanism, the formal models are

transformed based on the terminology used in the corresponding language definitions,

and semantic domains and mappings may not be transformed or unknown, little to

no relations and interactions among the various models are known. This leads to a

set of disconnected (or, in the best case, weakly connected) graph-based models. This

problem is addressed by the introduction of a semantic mediation mechanism in the

following.

The concept of semantic mediation described in this section is not a fundamentally

novel concept. It has been inspired by concepts from the semantic web (see, e.g.,

[122]) and their application to tool integration [192]. However, its use for semantic

abstraction and the formation of related semantic domains is novel.
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5.5.1 Semantically Similar Concepts in Heterogeneous Models

While using different symbols, it can be argued that most languages share (at some

level of abstraction) certain semantic concepts. In reference to the discussion in

section 5.2, one commonality among formal modeling languages is the (abstract)

concept of describing objects that have properties. Objects typically denote classes,

subclasses or individuals of a class. Properties may be unary properties defining a

state or quality of an object, or be defined as mappings.

To exemplify such commonalities, consider the concepts of a SysML block and a

Part in the proprietary CAD tool Siemens NX. Parts are objects in the NX language

representing physical components. SysML blocks, on the other hand, may represent

such physical components (depending on the modeling context and interpretation of

the model) – however, in itself, the concept of a SysML block is far more abstract.

Yet, both Part and SysML block share the common semantics that they represent

a predicable object – i.e., something for which properties may be defined. For both

Parts and SysML blocks a common property is that of an identifier: i.e., a name.

The concepts of object and property are fundamental and are among the most

general concepts known to mankind [135]. While seemingly abstract, the fact that

both Parts and SysML blocks can be identified as objects that carry certain properties,

the semantics of which may be identical (such as the identifier of the object (i.e., its

name)), lets one express basic (yet still semantically abstract) relationships among

formal models. This enables the differentiation of some terms – even if just to a

limited extent – and the identification of membership of a particular class of things.

This is useful for reasoning at a higher level of abstraction. In the following, a set of

common terms (such as object and property) that syntactic expressions are mediated

to is referred to as a mediation vocabulary.
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5.5.2 Mediating Expressions

Within the context of this dissertation, semantic mediation is defined as the process

of relating elements of models that have a specific semantic meaning to a concept that

has an equivalent, or more abstract (or general) meaning. Semantic mediation takes

into account a-priori definable similarities among languages based on their semantic

interpretation. Mediation acts as a translation and semantic abstraction mechanism.

An entity mediating expressions is defined as a mediator.

In alignment with the framework presented in this chapter, concepts from the

mediation vocabulary are represented as graph structures. Mediation occurs through

the application of a graph inference rule (see section 5.4). This graph inference rule

adds a relationship (in the form of a graph edge) to a particular syntactic element,

thereby representing the explicit mapping of the syntactic element to an concept from

the mediation vocabulary.

5.5.3 Base Vocabulary

As part of the research, a semantic mediation vocabulary defining concepts that are

shared among commonly used engineering models was empirically derived. The basis

for this was formed by analyzing common features of class diagrams and object-

oriented models. In addition, the related literature from the domain of language the-

ory was analyzed for classifications of semantic relationships common to all languages

(of which part-whole, predecessor-successor, instance of, and synonym are four exam-

ples [207, 86]). Furthermore, theories related to design and systems engineering, such

as the Rational Design Theory [216] have served as a source for inspiration. Lastly,

language definitions of well-known calculi, such as various flavors of description logic

[7], were analyzed (particularly due to their use in information and knowledge cap-

turing), as well as widely accepted modeling languages such as UML. Initial findings

of the investigation are reported in [173] and, partially, in [67].
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It should be noted that the empirical evaluation and continued evolution of the

vocabulary (and aspects of the mediation mechanism in general) were conducted as

part of a joint research effort between the Institute of Automation and Information

Systems, Institute of Product Development, and Chair for Information Systems at the

Technische Universität München (TUM), and the Model-Based Systems Engineering

Center (MBSEC) at the Georgia Institute of Technology. Initial results are published

in [67]6. With the evaluation being based only on an empirical investigation consisting

of the application of the mediation vocabulary to a single system (a pick-and-place

unit [225]) for the purpose of performing analyses across heterogeneous models, no

claim for completeness of the vocabulary is made (however, it is applied in a case

study in chapter 8 where a different system is under study).

5.5.3.1 Base Concepts

In MBSE, the process of specification and analysis is supported through the applica-

tion of formal modeling [72]. As described in section 5.5.1, two fundamental semantic

concepts encountered in any formal modeling language are that of an object and that

of a property. In the base vocabulary, these concepts are denoted Entity and Rela-

tionship, which are marked explicitly as specializations of the most general term of

Base Concepts. This is illustrated in figure 23.

The rationale behind choosing Entity rather than the previously used term Object

is that, in object-oriented design and model-based engineering, the term Object is

typically understood to be “an entity that has state, behavior, and identity” [22].

Object is related to the term Class in that “the structure and behavior of similar

objects are defined in their common class” [22]. Here, the term Entity is intended to

6Note that the full extent of the results of this joint work are unpublished as of the date of
writing this dissertation. Aside from the author of this dissertation, the researchers involved are
Stefan Feldmann, Konstantin Kernschmidt, Thomas Wolfenstetter, Daniel Kammerl, Dr. Ahsan
Qamar, Prof. Dr. Christiaan Paredis, Prof. Dr. Birgit Vogel-Heuser, Prof. Dr. Helmut Krcmar,
Prof. Dr. Lindemann
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Figure 23: Inheritance hierarchy of base concepts in the base vocabulary in standard
class diagram notation.

be an overarching concept for Object and Class, thereby removing the relative notion

of the context-specific “instance of” relationship between Objects and Classes (which,

recalling from section 2.1, can be thought of in relative terms in defining modeling

languages using multiple levels). The base concept Relationship is used in denoting

the general concept of something that represents a kind of property of an object,

which can be thought of as a relation to either itself or between two or more entities.

Fundamental to designing (engineering) systems are the processes of specification

and analysis. Specification involves constraining an initially infinite set of alterna-

tives by restricting the ranges of properties of a system to be designed (by imposing

constraints), where properties may be of a structural or numeric nature. Within

the context of engineering, analysis involves the careful study of, and prediction of

qualities and properties of a system that are (potentially) subject to uncontrollable

(or unaccountable) environmental influences, unforeseen phenomena, or simply ran-

domness (e.g., variance of mass and length dimensions of a machined part, cost of

a system over its lifecycle, and demand for a product). Predictions of outcomes of
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a real world process are inherently uncertain rationalDesignTheory. These concepts

are made explicit with the base concepts Constraint and Prediction, which are to be

understood to be imposed over properties.

The concept of an Entity is further specialized into two subclasses: Element and

Interface. Elements are distinguished from Interfaces mainly for practical purposes

and to enable a clear distinction between abstract definitions from their concrete

implementations, thereby also allowing for the concept of references. Clearly, an In-

terface is related to one or more Elements, but is not a concrete implementation of

such. Primitive types typically encountered in modeling languages, such as string lit-

erals, are interpreted to be Elements. Relationships are further refined into Propertys

and Connections. Propertys are relationships that can be unary in nature, and are

understood to be an integral part of the definition of a particular concept. Connec-

tions, on the other hand are not part of the definition of a concept and merely relate

two concepts to one another – e.g., through an interface. Constraints are further

specialized into the mathematical concepts of imposing a single value (EqualityCon-

straint) or a range of values (LowerThanConstraint and GreaterThanConstraint).

The concept of a Prediction is not specialized further.

Note that the base terms imply a slightly broader spectrum of concepts than

that typically utilized by model-based (and model-driven) software engineering ap-

proaches. These approaches are typically based on incorporating concepts from math-

ematical logic, whereas the concepts outlined in this section refer to concepts from a

broader subset of mathematics – for instance, the concept of predictions is from the

mathematical domain of probability theory. This is necessary, since the base vocabu-

lary is meant as a basis for developing models of physical systems, select properties

of which are inherently uncertain.
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Table 1: Overview of standard properties defined in the base vocabulary (instances
of the base concept Property).

Property Domain Range Description

type BaseConcept BaseConcept
Instance relation; relation
between a general concept
and individual instances.

contains BaseConcept BaseConcept
(Weak) containment rela-
tion (e.g., part-whole or
object-property).

containedIn BaseConcept BaseConcept Inverse of above.

generalizationOf BaseConcept BaseConcept
Hyponymous relation; de-
notes (sub-)class member-
ship.

specializationOf BaseConcept BaseConcept Inverse of above.

domain Relation BaseConcept
The source domain of a rela-
tion.

range Relation BaseConcept
The target domain of a rela-
tion.

equivalentTo BaseConcept BaseConcept

Semantic equivalence of base
concept; synonymy; identi-
fies that both source and
target elements have the
same meaning.

differentFrom BaseConcept BaseConcept Inverse of above.

5.5.3.2 Standard Properties

Table 1 lists a number of concrete properties (i.e., instances of Property) that various

concepts may possess (indicated by the domain). Note that the set of properties

and concepts is meant to be a self-referential set, enabling the bootstrapping of the

vocabulary similar to the idea of bootstrapped (meta-)models (see section 2.1). For

instance, the property type, denoting an instance-of relationship, is defined by itself

as an instance of a Property. The addition of domain and range in the table constrain

the well-formedness of base expressions and must be adhered to when mediating to

expressions from the base vocabulary.
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Table 2: Overview of standard properties in the base vocabulary introduced for
conveniently expressing common concepts.

Property Domain Range Description

name BaseConcept Element Identifier object.

value Constraint Element
Value associated with a con-
straint.

unitType Constraint Entity
Unit type associated with a
constraint value.

constrainedBy BaseConcept Constraint An applied constraint.

The list of concrete properties accounts for part-whole relations, instance-of rela-

tions, hyponymous relations (generalization / specialization) and synonymous rela-

tions. Note that relations such as those denoting the predecessor-successor relation-

ship are not included and are assumed outside the realm of the base vocabulary (since

these are specific to certain types of models, rather than being common to all, or com-

mon to relations across models). Not included are also common relationships from

the related language literature denoting the concepts of a homonym and antonym,

since the applications and uses of the base vocabulary have not shown a significant

need for these.

Table 2 lists an additional set of properties, which are introduced primarily for

convenience and due to their wide use in modeling languages. This includes an

attribute denoting the name of a concept (or its instance), which acts as an identifier.

Furthermore, concepts related to Constraints are included. Note that, fundamentally,

the concept of a Constraint and that of an attribute (which, here, is modeled as

a Property) are closely related, in that both are mappings to a range (where, for

Constraints the range is defined by its value, and for non-unary Propertys, the value

is assigned explicitly through a constraint). However, in the empirical evaluation,

the differentiation between the concepts has shown to be practical. Additionally,
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the concept of a unitType property has been introduced, allowing for the explicit

expression of unitized values. This is similar to how OMG SysML treats units [72,

160]. In the initial exploration, this has shown to be more convenient and pragmatic

than expressing unitized types as specializations of numeric base types such as is done

in the Modelica language [74] (hence eliminating the need for separate unit types).

Note from table 2 that not only Propertys can be constrained, but any Base

Concept. The reason for this is to allow for the representation of constraints on

concepts such as Relations – e.g., for the purpose of indicating cardinality constraints.

The use of Constraints for this purpose has not yet been explored, but is planned in

future research.

5.5.3.3 Mediation Example

Figure 24 illustrates an example mediation of a graph-based model to the base vocab-

ulary. The example model used is an illustrative part of the model used in demon-

strating the translation to the graph-based representation as depicted in figure 15.

Note that the meta-meta model elements are not shown. Note in figure 24 (b) how

the mediation of the property members results in the construction of two additional

nodes (for which the label is irrelevant), one of which is a concrete instance of the

property members, the other being a concrete Constraint over the property.

Note that for reasons of brevity and to aid readability, not all mediations are

shown. A universally valid set of mediation rules cannot be constructed, since each set

of mediation rules is specific to a particular modeling language. Such transformations

must necessarily be created by an entity that is capable of interpreting the language

to be mediated (in addition to the base vocabulary terms). Hence, it is assumed that

a human defines a set of mediation rules (as graph inference rules) for each involved

modeling language.
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Figure 24: Mediation of an illustrative part of the model from figure 15. Gray nodes
and edges represent elements from the base vocabulary. Note that such mappings are
language-specific and must be defined by an external entity based on the understand-
ing of the language to be mediated. Here, only an illustrative subset of the mediations
is shown: (a) shows the mediation of model elements of type Class to Element, where,
by definition of an externally defined mapping, all instances of a Class are also Ele-
ments (transitivity of type); (b) demonstrates the mediation of properties, which are
assigned to the predicated objects through a containment relation (properties define
objects and are part of the definition of an object). Note that all type (denoting
“instance of”) relations native to the language definition of the translated model are
mediated to the type concept from the base vocabulary.
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It should also be noted that a mediation must not necessarily be complete7. The

key motivating factor behind mediation is, as outlined previously, to aid in mak-

ing information available to mechanisms that perform reasoning at higher levels of

semantic abstraction. However, no assumption is made about the completeness of

this information, which is in line with the concept of abstraction. Only very few

well-formedness constraints are imposed.

5.5.4 Domain- & Language-Specific Vocabularies

While the concepts introduced in the previous section are common to most (if not all)

heterogeneous models and their respective modeling language definitions, there are

some sets of related concepts that are only common to defined subsets of models and

modeling languages. Within the context of this dissertation, mediation vocabularies

that contain such concepts are referred to as domain vocabularies. It is assumed that

no closed set of such domain vocabularies can be elicited. Rather, it is assumed that a

(possibly infinite) number of partially, or fully overlapping domain vocabularies exist.

Domain vocabularies are similar to a base vocabulary for a specific language,

application, or domain. Examples of domain vocabularies include a vocabulary for

the domain of mechatronics, or for the domain of requirements. A vocabulary for the

domain of requirements may include concepts such as a Requirement, which maps

to the semantically less precise concept of an Element in the base vocabulary. Two

or more vocabularies may also overlap: for instance, a vocabulary for the domain of

systems engineering may overlap partially with both of these (either syntactically, or

by definition of mediation rules between the respective vocabularies).

Note that per this definition of various sets of vocabularies, the vocabularies used

in translating formal models from their corresponding serializations or representations

to a graph-based representation can be thought of as language-specific vocabularies.

7This is one of the reasons why the introduction of a meta-model for the base vocabulary or a
representation as an ontology was avoided.
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Figure 25: Illustration of the concept of multiple semantically overlapping media-
tion vocabularies. Note that Rational DOORS is a requirements management tool,
and SysML a general purpose modeling language. Arrows denote sets of semantic
mediations.

These language-specific vocabularies may include terms relevant to one or more known

domain vocabularies: for instance, a subset of the language vocabulary for SysML

overlaps with the concepts described in a domain-specific vocabulary for requirements.

Introducing multiple, related vocabularies allows for multiple levels of semantic

abstraction to be defined at the same time. Which level of semantic abstraction is

being referred to depends on which terms from the vocabulary are being referred to.

This leads to a variance in semantic precision starting from the base vocabulary over

various domain vocabularies to language-specific vocabularies. This is illustrated in

figure 25.

Note that the concept of multiple vocabularies also increases reusability, and pos-

itively supports maintainability and extensibility. Once a mediation from a domain-

specific vocabulary to the base vocabulary has been defined, the mediation from a

language-specific vocabulary to the base vocabulary is implicitly defined once a me-

diation to a domain-specific vocabulary has been defined.
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5.5.5 Unit Mediation

The concept of mediation is not limited to a static mapping to syntactic constructs

(representing semantic concepts) from a vocabulary. In some cases, it makes sense

to define mediation rules that allow for dynamic conversions to be performed by

inference. For instance, in the performed research, a (partial) domain vocabulary for

physical units was constructed (based on [111]). This vocabulary defines the concepts

of units, quantity kinds and dimensions. The developed vocabulary also defines feet,

meters and kilometers, where meters is marked as a base unit. Similar to before,

mediation rules from language-specific definitions of physical units to expressions

from this vocabulary of physical units are defined. All physical units have an attribute

denoting a conversion factor. Whenever a value with a defined unit is encountered,

and the unit is not a base unit, an equivalent value corresponding to a base unit type

can be inferred through a defined graph transformation rule that uses the conversion

factor.

5.6 Summary

In this chapter, a formal and sound basis for representing, retrieving information from

(querying), and manipulating (transforming) information and knowledge encoded in

heterogeneous models is presented. The first part, comprised of sections 5.1 and 5.2,

discusses the (syntactical, propositional) representation of the information and knowl-

edge encoded in formal models, and how syntax and semantics can be transformed to

a unifying, graph-based formalism. The second part, comprised of sections 5.3 and 5.4

discuss the retrieval of information and manipulation (for purposes of transformation

and inference) of models that are represented by graphs. The last part of the chapter

introduces a semantic abstraction mechanism, which allows for higher level reasoning.

The common representational formalism is built on concepts from graph theory
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and graph transformations. Directed, labeled multi-graphs are utilized for represent-

ing the information and knowledge encoded in models in propositional form. Graphs

are a practical model for this: in general, atomic propositions can be represented by a

subject-predicate-object triplet. If the subject and object are depicted by vertices, and

the predicate is a directed edge between the vertices, the proposition is represented

by a graph. Pattern matching and graph queries are formally introduced as means

to retrieve information from such graph-based representations of models. Graph

transformations are then formally introduced as a basis for performing inference in,

and generally transforming graph-based models. The use of graph transformations

and graph structures for defining formal semantics is discussed as well. Using the

developed concepts as a basis, a formal system for heterogeneous models can be con-

structed.

Finally, a semantic mediation mechanism is introduced. The process of mediation

and, in particular the introduced base vocabulary, enables heterogeneous models to

interface and interact. A key concept and property of the presented approach is the ex-

ploitation of language-specific concepts to infer semantic information for higher-level

reasoning applications (e.g., reasoning over all entities in models considered objects

rather than just all SysML blocks). To some degree, the concept of semantic media-

tion is similar to that of tagging models with elements from one or more ontologies

(see section 3.3.2). However, it is different in the sense that it is a largely automated

process, where the (semantic) mapping from syntactic expressions to elements of the

ontology (which can be understood to be a representation of the semantic domain

(see section 2.1.1.4)) is defined by graph inference rules.
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CHAPTER VI

PROBABILISTIC INEXACT REASONING OVER

GRAPH-BASED MODELS

In this chapter, a generic approach to inexact probabilistic reasoning over graph-

based models allowing the abductive inference of propositions with uncertain truth

values is presented. The approach is based on a combination of pattern matching

in graphs, logical inference and Bayesian inference. Therefore, it builds on the con-

cepts introduced in chapter 5, and is a concrete underlying method for implementing

the inconsistency identification framework from section 4.3. As briefly discussed in

chapter 3, approaches to reasoning under uncertainty in ontology and database mod-

els have been reported in the related literature, but only very few are sound (and

Bayesian), and none address the case of reasoning over heterogeneous models.

The goal of this chapter is to address, in part, research question 3. In doing so, a

generic approach to applying Bayesian inference to reasoning over graph based models

(see hypothesis 4) is presented, and its technical feasibility and viability demonstrated

by the introduction of an algorithm. In previous chapters, the necessary background

and basis for the developed concepts herein are already introduced. Section 2.3 intro-

duces the necessary background in probability theory and Bayesian reasoning, and

chapter 5 develops an approach for representing, retrieving, modifying and logically

inferring statements from information and knowledge encoded in heterogeneous mod-

els.

The chapter is outlined as follows: first, a brief review of inexact reasoning meth-

ods, and a rationale for choosing a Bayesian approach is presented. Thereafter, an

overview of the proposed approach is introduced in detail. Part of this introduction
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is also a discussion on what a probabilistic inexact reasoning model is, and how it can

be set up in practice. In addition, aspects of how the argument chain can be stored

in a graph-based fashion is discussed. The approach is demonstrated using a simple

example from the literature. Towards the end of the chapter, algorithmic procedures

for implementing the approach are presented (section 6.3.1). The chapter closes with

a brief summary of key aspects of the approach and the most important insights.

6.1 Inexact Reasoning

A formal deductive apparatus assumes a set of factual statements (i.e., the axioms)

and inference rules as its basis for deriving statements and reaching conclusions (see

section 2.2). Derived statements are logically valid conclusions (entailments) based

on the relationships between true statements and those that (logically) follow from

these statements. As mentioned in section 2.2.3, such a deductive apparatus is the

basis for forming a theory. Given a definition of the formal semantics, each well-

formed formula and each relationship between true statements have an unambiguous

meaning. Reasoning under these assumptions is introduced in section 2.2.3.2 as exact

reasoning.

Inexact reasoning is reasoning performed using inductive or abductive inference,

and covers reasoning tasks in situations where there is any one, or a combination, of

the following conditions present [81]:

• Inexact or vague statements and rules (i.e., the truth or well-formedness of some

statement φ is not clear, but a belief about its truth is quantifiable)

• Incomplete statements and rules

• Contradictory statements or rules (i.e., somehow φ and ¬φ are both considered

sufficiently likely to be true)
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In inexact reasoning the antecedent, the conclusion and even the meaning of an in-

ference rule can be uncertain [81]. An inexact reasoning mechanism for formal models

is meaningful, since models of systems with physical properties are inherently abstract

and incomplete. When evolved concurrently, incorrectnesses may also be introduced.

Furthermore, assumptions flow into models, and the relations among models are not

known explicitly. These assumptions, in addition to the incompleteness of models,

results in the interpretation of models no longer being unambiguous. This leads to

ambiguity in the definition of the underlying formal system resulting from composing

the various models describing a system, as well as complex, implicit relations among

models that are not known with certainty.

In the following, three predominant approaches to inexact reasoning from the

literature that are based on probability theory are briefly introduced and compared.

The goal of this section is to offer a rationale for selecting Bayesian probability as

the basis for an inexact reasoning method. This is primarily done by making issues

in the formality of the approaches explicit.

6.1.1 Approaches to Probabilistic Inexact Reasoning

In the related literature, numerous approaches to inexact reasoning over ambiguous

databases – that is, databases of statements with uncertain truth values – are reported

(e.g., [215, 65, 186, 17]). However, while acceptedly the most sound [81], very few

of the approaches used in practice are based on Bayesian probability theory. Well-

studied and commonly applied approaches to probabilistic inexact reasoning include

certainty factor (CF) theory [194, 1] and Dempster-Shafer theory [190]. In the fol-

lowing, these approaches are introduced and the rationale for their use in practice is

discussed and compared.
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6.1.1.1 Bayesian Probability Theory

Fundamentals of Bayesian probability theory and Bayesian reasoning have been intro-

duced in section 2.3. Within this framework, the cornerstones for inexact reasoning

are the definition of conditional probability (see equation 2) and, in particular, the

application of Bayes’ theorem (see equation 13). Bayes’ theorem is used for updating

a prior belief with observed evidence to form a posterior belief. In machine learning

applications, Bayesian inference is commonly applied to diagnostic reasoning (par-

ticularly in the medical field [81]). Given a model of a probabilistic experiment,

diagnostic reasoning is the process of evaluating the truth of a possible (but unob-

served) event, given a prior belief about this event and a set of related events. For

instance, a common example from the medical domain is determining whether or not

a particular patient has cancer. The probability of a random patient having cancer

(given no observations about the patient, other than the acknowledgement of his or

her existence) is, acceptedly, very low. However, after observing a patient, and gath-

ering evidence in support or opposition of the hypothesis that the patient in question

has cancer, this prior belief is updated. For instance, the observation of whether or

not the patient has a history of smoking is information that updates the prior be-

lief about the patient having cancer. This updating can be done by applying Bayes’

theorem.

Bayesian inference is widely regarded to be the most formal, and (mathemati-

cally) sound approach to inexact reasoning. Therefore, it is no surprise that it is

also one of the earliest concepts used in artificial intelligence and machine learning.

However, in machine learning practice, the fact that a large number of (consistent)

values are required for defining the probabilities needed in applying Bayes’ theorem

is often considered to hinder its practicality. Typically, Bayesian inference is only

applied if large datasets are available, from which frequencies can be extracted that

are considered sufficiently accurate representations of probabilities for future events.
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Bayesian inference is also used if assumptions about the independence of events can

be made (see the motivation behind Bayesian networks described in section 2.3.3).

6.1.1.2 Certainty Factor Theory

Certainty factor theory was originally developed for the medical diagnosis expert

system MYCIN. CF theory was developed on the premise that a consistent set of prob-

abilities is “difficult if not impossible [sic]” to elicit [81]. The difficulty in identifying a

consistent set of probabilities was discovered by the developers of MYCIN when asking

medical experts to judge the accuracy of inferred beliefs. For instance, in [81] the fol-

lowing example is mentioned: “say that (1) the stain of the organism is gram positive

and (2) the morphology of the organism is coccus and (3) the growth conformation of

the organism is chains then (c) the identity of the organism is streptococcus with prob-

ability 0.7”. It was found that, while the medical experts agreed that this conclusion

is correct, they were not ready to accept the probability of the mutually exclusive

event. That is, medical experts did not agree that “the identity of the organism is

not streptococcus” with probability 0.3 is consistent with their beliefs.

The conclusion drawn by Shortliffe and Buchanan is that, while a set of obser-

vations E influence the probability of an event H, the same set of observations may

not influence the complementary event ¬H [195]. Based on Carnap’s theory of con-

firmation [28], Shortliffe introduced the concept of certainty factors as a degree of

confirmation, which he defined as the difference between belief and disbelief1:

CF(H,E) = MB(H,E)−MD(H,E)

In the above equation, MB is the measure of increased belief in H due to E and MD

is the measure of increased disbelief in H due to E. These measures are defined in

1The definition was altered slightly in later work, where the term MB(H,E) − MD(H,E) is
divided by 1 − min(MB,MD) to “soften the effect of a single piece of disconfirming evidence on
many confirming pieces [sic] of evidence” [81].
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the following way:

MB(H,E) =
max [P (H | E), P (H)]− P (H)

max[1, 0]− P (H)

MD(H,E) =
min [P (H | E), P (H)]− P (H)

min[1, 0]− P (H)

Note that for the case of P (H) = 1, CF theory states that MB(H,E) = 1. Similarly,

for P (H) = 0, CF theory states that MD(H,E) = 0. Certainty factors are defined in

the interval −1 ≤ CF(H,E) ≤ 1, where CF(H,E) is the case of “no evidence”. The

event with the higher certainty factor is then considered true.

It is important to understand that CF theory was developed as a basis for an ad hoc

method to determine the applicability of a deductive rule [81]. In MYCIN, for instance,

any time the value of the certainty factor is determined to be CF(H,E) > 0.2, the

antecedent of a rule is considered true, thereby deducing the truth of the consequent.

While MYCIN was, reportedly, successfully applied in diagnosing diseases, it is an ad

hoc method that lacks an underlying formal theory, and it is impossible to guarantee

that the use of CF theory produces valuable results for similar applications. A major

formal flaw is the fact that, while CF theory is based (partially) on probability theory,

it violates one of the basic axioms of probability theory (see Kolmogorov’s axioms in

section 2.3.1.1). This can lead to non-sensical deductions, such as that it is possible

for a disease H1 to have a higher conditional probability P (H1 | E) than a disease

H2 (i.e., P (H1 | E) > P (H2 | E)) given the same observations, but, at the same time

also a lower certainty factor (i.e., CF(H1, E) < CF(H2, E))2.

6.1.1.3 Dempster-Shafer Theory

Dempster-Shafer theory (also known as theory of belief functions and evidence theory)

is based on the idea of modeling uncertainty by a range of probabilities rather than

2A concrete example of this can be derived by computing the certainty factor using the assumed
values P (H1) = 0.8, P (H2) = 0.2 and P (H1 | E) = 0.9, P (H2 | E) = 0.8.
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a single probabilistic number [41, 190]. Dempster-Shafer theory is generally accepted

to have a “good [sic] theoretical foundation” [81].

A fundamental concept in DS theory is the notion of an environment and frame

of discernment. Environments are (finite) sets θ = θ1, θ2, ..., elements (or subsets) of

which are interpreted as “possible answers to a question” [190]. Elements of such an

environment are considered mutually exclusive and the set itself is assumed exhaus-

tive. Note that the null-set ∅ is not considered a valid answer by assumption of the

exhaustiveness of the environment. An environment is called a frame of discernment

if its elements are possible answers to a question, but only one answer is correct.

Fundamentally different between the concept of (Bayesian) probability theory and

Dempster-Shafer theory is the treatment of ignorance. For instance, if no prior knowl-

edge exists, the principle of indifference states that the probability of each event is

equally likely. Even if a probability is assigned to only one event A out of two possible

events A and ¬A, the laws of probability theory “force” [sic] the assignment of a proba-

bility to ¬A through P (¬A) = 1−P (A) “even if there is no evidence for this” [sic] [81].

Dempster-Shafer theory does not force a belief to be assigned: instead, probabilities

are assigned to only those subsets of the environment to which one wishes to assign a

belief. Any belief not assigned to a specific subset is considered a nonbelief associated

with the environment. For instance, assume an environment θ = {θ1, θ2, θ3, θ4}. A

belief is now elicited on the subset θ1, θ3. Say this belief is m({θ1, θ3}) = 0.6; the

nonbelief associated with the environment is then m(θ) = 1 − 0.6 = 0.4. Note that

m is known as the mass function which assigns a number in the interval [0, 1] to any

element of the power set of θ. The sum of all masses must equal 1 (note the similarity

to the probability measure from section 2.3.1.1). Nonbelief is interpreted as “neither

belief nor disbelief in the evidence to a degree of 0.4” [81] – i.e., 0.4 is not specifically

assigned to any subset of θ. This is also where the difference of the definition of the

mass function and that of the probability measure becomes evident (i.e., if θ were
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the set of possible outcomes of an experiment, the probability of θ is, by definition,

1).

Evidence is combined in DS theory using Dempster’s rule of combination. One

form of this rule is:

m3(Z) = m1 ⊕m2(Z) =
∑

X∩Y=Z

m1(X)m2(Y )

The formed mass m3 is a consensus of the original evidence and “tends to favor

agreement rather than disagreement” [81]. An important characteristic of the rule is

that it is used to combine evidence that has independent errors, which is not meant

to be understood as independently gathered evidence. Note that in some cases, the

sum of the masses defined by m3 may not equal 1 after combining them. In such

cases, the results are normalized to 1.

The contribution of a belief in an event is made explicit using the concept of an ev-

idential interval EV. Evidential intervals are defined by a minimum and a maximum

belief in an event. Such belief measures are computed as the mass assigned to a set

and all its subsets (for cases when no mass is assigned to a subset, the mass is simply

0). For instance, the belief Bel({θ1, θ2}) = m({θ1}) +m({θ2}) +m({θ1, θ2}). The ev-

idential interval is then defined as EI({θ1, θ2}) = [Bel({θ1, θ2}), 1−Bel(θ \ {θ1, θ2})].

An evidential interval [1, 1] may be interpreted as completely true, and [0, 1] as indif-

ferent.

DS theory is typically used for data fusion (e.g., when data from sensors is col-

lected), and whenever this data is uncertain or imprecise data (see, e.g., [182] for

an application). While attractive from the perspective that the assignment of masses

does not have to be complete – i.e., it can be done over an arbitrary subset of events –

Dempster-Shafer theory has a fundamental flaw: as mentioned earlier, there are cases

in which the sum of the masses does not equal 1. Normalization is one possibility

of ensuring that this criteria is fulfilled. However, it is exactly this normalization of

beliefs that can lead to unintuitive, and unexpected results: Zadeh shows this in [233]
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using an example from diagnostic reasoning in medicine [81]. Say there are two doc-

tors, A and B, each of which has beliefs on the patient’s illness. The beliefs of doctor A

may be expressed as follows: mA(meningitis) = 0.99, mA(braintumor) = 0.01. Doc-

tor B’s beliefs take the form of mB(concussion) = 0.99 and mB(braintumor) = 0.01.

Therefore, θA = {meningitis, braintumor} and θB = {concussion, braintumor}.

Combining these beliefs leads to mAB(braintumor) = 0.0001. All other values of m3

are 0. However, since the sum of all values assigned by m3 must equal 1, it follows, af-

ter normalization, that mAB(braintumor) = 1, which is unintuitive and non-sensical,

since both doctors agree that the probability of a brain tumor is very low.

6.1.2 Comparison of Approaches

As is evident from the identified limitations, Bayesian probability theory is the only

mathematically sound and formally correct framework for inexact reasoning among

the three introduced approaches. CF theory is generally acknowledged to be ad hoc

[81] and Dempster-Shafer theory – while claimed to be formal and sound – can,

under specific circumstances, produce unintuitive results. Additionally, the degree of

formality is often based on the claim that Dempster-Shafter theory is a generalization

of Bayesian probability theory [42]. However, it can be shown that this assumption

actually leads to an inconsistency in Dempster-Shafer theory [229]. While DS theory

has been used in research related to information fusion and artificial intelligence with

success, evidence exists that its validity and soundness is not a given. This is partially

due to the aforementioned reasons. However, it is also due to its non-applicability to

general evidence combination, and only to certain types of scenarios (which are not

clearly identified) [43].

CF theory is motivated by the fact that, given the same observations, inferred

probabilities are not always intuitive to a human. However, it can be argued that

this is either a result of (1) an incomplete definition of the underlying experiment or
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(2) an inappropriate belief elicitation process. Even if (1) were the case, (2) may still

be problematic. In support of (2), the accepted method for eliciting subjective beliefs

is that originally devised by de Finetti [40], where probabilities are not interpreted as

frequencies, but as a willingness to bet on the occurrence of a phenomenon: i.e., as a

rate at which an individual is willing to bet on the occurrence of an event [187, 178].

Recall that the method used for eliciting knowledge in MYCIN did not make use of

this.

The use of reasoning methods that lack a sound mathematical foundation is prob-

lematic due to their ad hoc nature and the typical absence of explicitly stated (and

complete set of) underlying assumptions made. While methods based on these the-

ories can produce adequate results, the methods generally only work in a limited

number of cases. This stems from the lack of a complete theory that guides the

application or warns of inappropriate situations. Therefore, it is concluded that an

approach to inexact probabilistic reasoning should be based on a mathematically

sound theory. Such is Bayesian probability theory.

6.2 Proposed Methodology

In the following, a method for inexact probabilistic reasoning over graph-based mod-

els is introduced. This method is based on Bayesian probability theory and makes

extensive use of Bayesian inference. To reason about graph-based models (which,

by their definition from section 5.2, encode propositional statements), random vari-

ables with propositional target spaces are defined. Specifically, the elements in the

target spaces are graph patterns (and, therefore, sets of subgraphs) that represent

(conjuncted) propositional statements about (classes of) entities in the graph-based

models. Inferring the probability of an event associated with a random variable there-

fore results in determining the probability of the truth of a corresponding proposition.

This process is also known as classification in machine learning [149].
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To set up a reasoning model, a sample space is defined and a set of random

variables (and corresponding patterns) is elicited. Thereafter, a Bayesian network

(see section 2.3.3) is constructed to make the (conditional and global) independence of

variables explicit. Once the structure has been defined, beliefs on network parameters

are elicited and represented by Dirichlet distributions (primarily for convenience (see

section 2.3.5)). For each outcome to an experiment, observations about the outcome

are made and evidence is collected in support or opposition of a hypothesis. This is

done by polling the graph-based model by matching patterns associated with random

variables, or by consulting external information sources. A hypothesis (or set of

hypotheses) can either be determined by considering all unobserved random variables

(i.e., those random variables for which none of the patterns associated with events lead

to a match), or pre-defined (e.g., when the questions of interest can be defined a-priori,

such as “How probable is it that the outcome represents an inconsistent part of the

graph-based model?”). Once the hypothesis (or question of interest) has been defined,

the Bayesian network can be utilized for inferring a probability of the hypothesis

being true. This results in the (rational and sound) inference of a proposition (in the

form of a subgraph) whose truth value is uncertain. This process is presented in more

detail in the following.

6.2.1 Simplifying Assumptions

The proposed approach is an initial exploration into using a combination of Bayesian

inference and pattern matching for abductive reasoning over graph-based models.

Therefore, to demonstrate the value and (technical) viability of the proposed approach

in a manageable form, its complexity is reduced through a number of assumptions.

Firstly, it is assumed that a mutually exclusive graph pattern can be identified

for any of the events defined over the considered random variables. This subsumes

that graph patterns can be identified for all defined events, and limits the associated
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propositions to statements describable by the graph-based model. The importance of

the mutual exclusivity assumption is that the mapping of an outcome to the target

space of each random variable must be unique. In other words, each random variable

must be defined in such a way that every outcome of the experiment maps to exactly

one value of the random variable (recall the definition of random variables as mappings

from the sample space to respective target spaces).

Secondly, the assumption is made that only discrete random variables are con-

sidered when defining reasoning knowledge. The rationale for this is, primarily, a

reduction in the expected computational complexity of probabilistic inference (recall

from section 2.3.4 that inference in general Bayesian networks is NP-hard), so that

the approach can be analyzed sufficiently within the scope of this dissertation.

Thirdly, the assumption is made that the random variables of interest for infer-

ence are known a-priori and are two-valued (i.e., binary) discrete random variables.

This assumption is meaningful, since the inferences of interest for applications to

inconsistency identification (inconsistent or not inconsistent, and overlapping or not

overlapping) are all binary. Furthermore, most existing tools for evaluating such

classifiers apply to binary classifiers only.

6.2.2 Illustrative Reasoning Scenario

To illustrate the general concepts underlying the proposed approach, an example

often cited in the related literature on machine learning is adapted. This example

stems from the field of medical research and is introduced in the following.

In medical research, Bayesian inference is often used as an abductive reasoning tool

for performing diagnostic reasoning. A classical example from the literature is that

of inferring the probability of a patient having lung cancer. Here, an adaptation of

the example described in [152] is used. In the example, five (binary) discrete random

variables are defined. The random variables with their respective (propositional)
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Table 3: Example set of random variables with propositional target spaces used for
diagnostic reasoning in medicine (adapted from [152]).

Variable Propositional Target Space Values

H The patient has a history of smoking,
The patient has no history of smoking

B The patient has bronchitis,
The patient does not have bronchitis

L The patient has lung cancer,
The patient does not have lung cancer

F The patient experiences fatigue,
The patient does not experience fatigue

C The patient’s Chest X-ray is positive,
The patient’s Chest X-ray is negative

target spaces are depicted in table 3. Note that, as before, the convention is used

that X represents the first event and ¬X the second event.

By definition, the propositional values for the random variables are measurable

(or testable) qualities or properties of a random outcome of an associated experiment.

Here, the outcome of such an experiment is a (randomly selected) patient from a set

of patients. A doctor has prior beliefs on all of the associated events: e.g., a doctor’s

belief on the event that a randomly selected patient has lung cancer may be expressed

as P (L) = 0.001.

Independence assumptions among the random variables are made explicit using

the Bayesian network depicted in figure 26. Note that the variables of interest for

inference are depicted as vertices with colored background. It is assumed that all

beliefs on network parameters have been determined in an elicitation process. For

brevity, only the prior beliefs on L and B (i.e., the network parameters for L and B)

are shown. This is justified by the fact that, for purposes of demonstrating the core

concepts of the proposed method, it is sufficient to assume any values for the network

parameters.
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Figure 26: Bayesian network for the running example used in illustrating the pro-
posed methodology. Vertices with colored backgrounds indicate variables of interest
for inference. Note that only the beliefs on network parameters for L and B are given
for brevity.

Given a randomly selected patient, a doctor gathers information about the pa-

tient by observing, testing or polling the patient. For instance, whether or not the

particular patient has a history of smoking can be elicited from the patient directly.

Since any patient either has, or does not have, a history of smoking (i.e., these are

mutually exclusive events), the doctor is given information about the value of H for

this particular patient. The value of F can be determined analogously. Additionally,

whether or not the chest X-ray is positive can be determined by performing an asso-

ciated test. It is assumed that a record of this patient data exists in the form of a

graph-based model. An extract depicting a sample patient record as a graph-based

model is illustrated in figure 27.

6.2.3 Using a Graph-Based Model as a Source for Information

Note that each of the propositional target space values in table 3 refer to a patient.

Such a (randomly selected) patient was also described to be the outcome of the

experiment. Epistemologically, the term “the patient” can be understood to represent

176



Figure 27: Sample patient record as a representative example of a graph-based model.

an individual from a class of patients. Therefore, the sample space for the conducted

experiment consists of elements that represent patients.

Consider the graph-based model depicted in figure 27. Assuming an intuitive

understanding of the relationships is a, outcome and tests performed, one can easily

extract information about the individual John Doe who is a patient, and can be

regarded as a single outcome of the probabilistic experiment. Now, one can use

the Bayesian network from figure 26 to determine the probability of John Doe having

lung cancer by updating the prior belief about any patient having lung cancer P (L) =

0.001 with the observations made about John Doe:

P (L | F,¬H,C) =
P (L)P (F,¬H,C | L)

P (F,¬H,C)
=
P (L, F,¬H,C)

P (F,¬H,C)

Using the methods introduced in section 2.3.4, this probability can be inferred (com-

putationally) from the provided Bayesian network. The interesting question is now:

how would a computer perform these observations – i.e., how can the evidence be

collected computationally – to determine John Doe’s probability of lung cancer? Re-

calling the methods introduced in chapter 5, such information can be extracted from

a given graph-based representation of a model by means of graph pattern matching

and querying (see section 5.3).
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Formally, the validity of this can be argued using the definition of a random

variable through its pre-image. Recall from section 2.3.1.3 that random variables are

mappings from the set of outcomes to a measurable target space – e.g., X : Ω→ E,

where X is a random variable, Ω is the sample space and E is a target space. The

preimage of a random variable X is then defined as:

X−1(x) = {ωi ∈ Ω | X(ωi) = x}

Here, X−1(x) is defined by the set of outcomes (that is contained in the σ-algebra

F) – i.e., an event – for which X maps to x. ωi is an outcome and, therefore,

ωi ∈ Ω. As a concrete example, consider the random variable C, which takes

on one of two values for a random outcome: “The patient’s Chest X-ray is pos-

itive” or “The patient’s Chest X-ray is negative”. The events are mutually ex-

clusive and, by definition of a random variable, any outcome of the experiment

must map to either value. Let c0 = The patient’s Chest X-ray is positive and c1 =

The patient’s Chest X-ray is negative. Then:

C−1(c0) = {ωi ∈ Ω | C(ωi) = c0} = Ω \ C−1(c1)

John Doe is defined as one possible patient selected at random (i.e., one possible

outcome). Let the outcome denoting John Doe be defined as ωJD. One possible

source of information about John Doe is the graph-based model depicted in figure 27.

Using this graph-based model, one can determine that (among other information):

C−1(c0) = {..., ωJD, ...}

In other words, it is known from the information available in the graph-based model

that C(ωJD) = c0. Now consider the graph patterns depicted in table 4. Let the graph

pattern associated with the event The patient’s Chest X-ray is positive be depicted by

PC=c0 , and the sample graph-based model be depicted by G. Then, a set of matches

MPC=c0
,G to the graph pattern PC=c0 is the set of sets of triples depicting subgraphs
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Table 4: Target space values (possible events) and associated graph patterns for the
random variable C.

Event Associated Graph Pattern

The patient’s Chest X-ray is positive

The patient’s Chest X-ray is negative
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Figure 28: Query for retrieving information about John Doe.

of the graph-based model which describes patients and their relation to a positive

outcome on a chest X-ray test. Formulating this as a query (see section 5.3), one can

retrieve the bindings to the variable vertex depicted by ?p for each match, each of

which denotes a patient, and, therefore, an outcome. The set of all bindings to ?p

in the graph pattern is then the set of outcomes which are known to be elements of

the pre-image of C = c0. Repeating this process for other random variables leads

to sets of observations about patients. Note that the variable bindings in a set of

observations about each patient must be consistent (i.e., the same). Also note that,

in order to refer to a patient (and, the same patient in each case), a common base

pattern is required that is shared by all patterns. Here, this base pattern is (?p, is a,

Patient).
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Note that, depending on the information available in the graph-based model, and

depending on the definition of the sample space, the result of such a query will only

return a subset of the respective pre-image. It is tempting to define one pattern

for event c0, and to assume that all patients that are not returned as a result of

matching the pattern in the graph must therefore be elements of C = c1. However,

this assumes knowledge about the patient that is neither justified nor supported

by the information source. Instead, one should treat a case where a patient is in

neither set as a case where it is unknown whether the patient is a part of either pre-

image. Formally, this is equivalent to saying that using the given means, and using

the graph-based model as the only source of information, it is impossible to determine

with certainty whether the patient is a part of the event C = c0 or C = c1, and such

signifies a state of incomplete information. This does not mean that it cannot be

determined: for instance, a doctor may have not performed a chest X-ray test on a

particular patient because information about the outcome of the test may not have

significantly influenced the probability of lung cancer (or bronchitis), given the other

observations. When computing a posterior probability in such cases, the variable

is simply marginalized. Note that this was already done for the variable B (which

denotes whether a patient has bronchitis or not) when P (L | F,¬H,C) was inferred

from the Bayesian network.

6.2.4 Storing Results of Abductive Inference

Once information about an outcome has been received, prior beliefs can be updated.

To illustrate this, suppose that it was determined (using appropriate patterns) that

John Doe (1) has no history of smoking, (2) experiences fatigue, and that (3) the result

of a chest X-ray test is positive. This information can now be used to update the

prior belief about John Doe having lung cancer. That is, one can now determine the

posterior belief p(L | ¬H,F,C). This posterior distribution can be inferred using the
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Table 5: Target space values (possible events) and associated graph patterns for the
random variable L.

Event Associated Graph Pattern

The patient has lung cancer

The patient does not have lung cancer

Bayesian network and computed using the inference methods for Bayesian networks

introduced in section 2.3.4.

The result of an abductive reasoning process over the graph-based model is a

propositional statement (e.g., John Doe has lung cancer) whose truth value is uncer-

tain. This inferred proposition is produced by instantiating the associated pattern.

This is similar to how production (see section 2.2.3) and graph inference rules (see

section 5.4) produce concrete inferred propositions (by instantiating a pattern that

represents the consequent of such a rule). Table 5 contains patterns for the events

The patient has lung cancer and The patient does not have lung cancer. By creating

a set of triples in which the variable vertices are replaced with the mappings common

to these variables in all patterns, a new instance is created. For example, given a

match to the pattern associated with the event The patient’s Chest X-ray is positive,

the variable binding of ?p and ?t can be determined. To instantiate either of the

patterns from table 5, this same mapping to the data graph for the common variable
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Figure 29: Illustration of how the inferred uncertain proposition John Doe has lung
cancer is stored as a reified statement, and as part of the graph-based model.

?p is utilized.

One difference to inference rules where the consequent is accepted to be either

true or false is that, here, a probability is associated with the truth value of the

proposition. Therefore, one no longer has just a (subject, predicate, object) triple, but

a quadruple (subject, predicate, object, probability). To represent this in the graph-

based formalism introduced in chapter 5, the concept of reification is used. Reification

entails creating a vertex in the graph that denotes an Uncertain Statement, which

points to a subject, predicate and object in the graph, and, in addition, points to

a corresponding probability. This is illustrated in figure 29 for the proposition John

Doe has lung cancer

Note the use of the predicate probabilityTableEntry in figure 29. Näıvely, one

could have simply pointed to a numeric value representing the probability of the

proposition being true. However, doing so results in a loss of information about

what the probability value represents and on what evidence it was based. That is, the

argumentation chain is missing. Therefore, the entry in a probability distribution
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(i.e., one particular mapping of an associated probability mass function) is pointed

to instead. Such entries have a reference to the value of the random variable and a

probability. Collectively, these entries define a Distribution, which is associated with

an (Inferred) Belief. Such beliefs are on one or more Random Variables. Information

used in updating a prior belief on the respective random variable is made explicit

by pointing to Events using the predicate given. These events are associated with

random variables and, collectively, define all events over random variables.

The devised method for representing the full deduction of an uncertain statement

and the associated probability is exemplified for the simpler case of P (L | ¬H) in

figure 30. Note the inclusion of an influences statement between L and H. By includ-

ing such relations among random variables, the Bayesian network is fully represented

by the graph-based model as well. Note that, for each uncertain statement, only

the most informed state should be stored. In other words, for each outcome, all of

the observations available about the outcome should be incorporated. It would be

irrational to do otherwise [18].

Note that the number of possible distributions stored as part of the graph-based

model is finite, and is defined by the Bayesian network. By storing not only a propo-

sition with an uncertain truth value and the corresponding probability, but also the

evidence that was used in computing a posterior belief from a prior belief, the full

rationale is captured also.

In table 6, the vocabulary used for constructing uncertain (reified) statements and

storing associated probabilities is summarized. Note that the vocabulary is generally

applicable for discrete random variables. As mentioned in section 6.2.1, the use

of discrete random variables is a simplifying assumption. The vocabulary must be

extended if continuous variables are to be included.
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Figure 30: Depiction of how the inferred probability distribution for P (L | ¬H) is
represented by a graph-based model. Note the influence relationship between random
variables L and H: together, all random variables and influence relationships between
random variables implicitly represent the Bayesian network.
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Table 6: Vocabulary used for storing propositions with uncertain truth values and
the corresponding argument chain.

Vocabulary Term Description

UncertainStatement An uncertain statement.

subject Pointer to the subject of an uncertain statement.

predicate Pointer to the predicate of an uncertain statement.

object Pointer to the object of an uncertain statement.

probabilityTableEntry Pointer to a ProbabilityTableEntry instance.

RandomVariable A random variable.

Event
A value of a random variable, leading to the for-
mation of an event.

(Inferred)Belief An (inferred) belief.

Distribution
A probability distribution, defined by one or more
ProbabilityTableEntrys.

ProbabilityTableEntry
An entry in a probability distribution, defined by
the value of an associated random variable and a
probability.

probability
Predicate used for associating a Probabili-
tyTableEntry with a probability.

value
Predicate used for associating a Probabili-
tyTableEntry with a value of a random variable.

entry
Assigns a ProbabilityTableEntry to a distribution
(more than one per Distribution possible).

event
Assigns an object of type Event to a RandomVari-
able.

on Defines the random variable that the belief is on.

given
Pointer used in denoting the evidence used in com-
puting the distribution associated with an (In-
ferred)Belief.

distribution
Predicate used in assigning a distribution to an
(Inferred)Belief.

influences Influence relationship between RandomVariables.
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6.2.5 Gathering Additional Evidence from External Sources

In the previous sections, an abductive reasoning method based on Bayesian inference

and pattern matching is introduced for the retrieval of supporting (and opposing)

evidence for a given hypothesis from a graph-based model. It is concluded that pat-

tern queries can be used for retrieving information about individual outcomes of an

associated experiment, but noted that one cannot always determine all possible infor-

mation. That is, if information about a particular outcome (in the given example, a

patient) allowing one to determine the value of a particular random variable is simply

missing from the graph-based model, it cannot be determined using the introduced

pattern matching based method alone. Indeed, it may not even be valuable to query

a particular pattern in the first place if the cost associated with executing the pattern

query exceeds the benefit gained from receiving additional information. This argu-

ment will be built upon in the following by considering additional information sources

– that is, means of retrieving information outside the realm of the single graph-based

model considered so far.

One way to quantify these thoughts is presented in the following and is based on

Value of Information (VoI) theory. In general, it is rational to always use all of the

available information. However, acquiring information in addition to what is readily

available (i.e., known) invokes a cost. For the case of querying graph-based models,

this cost is the cost of executing a query / matching a pattern. In the following,

assume that a set of information sources is available, as well as methods for retrieving

information from these. Say a decision D is to be made. For illustrative purposes,

let D represent the decision by the doctor to inform the patient that he or she has

been diagnosed with lung cancer. Say that the decision is made based on information

k (which may be any combination of evidence considered in the previous sections).

For illustrative purposes, let this information k represent the fact that the patient

is known to have a history of smoking and is experiencing fatigue. Let j depict a

187



quantity that provides additional perfect (that is, certain) information which may

influence (that is, potentially change) D, and let i be a source for this information.

Let j represent the outcome of the chest X-ray test, and i the X-ray procedure itself.

The expected value of information EV I for retrieving information about j is then:

EV I = E [V (Dpost−j)]− E [V (Dpre−j)]

Here, V (Dpost−j) and V (Dpre−j) denote the value (or payoff) of the decision made after

and before acquiring information about j, respectively. Therefore, the expected value

of information is the difference in expected values of a decision made in either state

of information. Acquiring information about j – that is, performing a test required

to retrieve information about j – invokes a cost Crji of retrieving information about

j from information source i. Within the context of the illustrative example, Crji is

the cost associated with performing the X-ray procedure. Therefore, one should only

invest this cost Crji if j influences the decision to such an extent that the decision

changes, and the benefit (value) gained from this exceeds the cost. If j does not

change the decision, or the cost exceeds the gain in value, retrieving information

about j adds no value and i should not be polled for j.

Note that, within the context of the method proposed in this chapter, decisions D

may be considered classification decisions. As will be demonstrated in more detail in

section 7.3.1, such classifications include deciding whether or not an inconsistency is

to be reported to a user. There, decisions, and the corresponding expected value take

into account the (true) probability of making a wrong decision and the associated

consequences (invoked costs).

For practical purposes, it can be assumed that the cost of retrieving information

from the graph-based model by means of pattern matching is very low compared to

its benefit. Note that this does not necessarily represent an accurate assumption for

the general case (e.g., for very large graphs, and a given pattern matching algorithm,

retrieving information may be very expensive (computationally)). Also, in some cases,
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where classification decisions are made that have a high impact (such as determining

whether an inconsistency is present), it may be valuable to poll external information

sources such as a human. Since these are considerations that are only meaningful

to explore in specific contexts, this will be discussed further and more concretely

in chapter 7, where the approach presented in this chapter is applied to identifying

inconsistencies.

6.3 Algorithmic Implementation

In the following, an algorithmic implementation of the abductive reasoning procedure

described in the previous section is presented. The algorithm is intended for an

exhaustive application (rather than simply querying for observations about a single

outcome of a single run of an experiment) and is robust to the extent that outcomes

do not have to be a single entities (such as a patient) but can be more complex

constructs, such as pairs of entities (e.g., pairs of patients). A number of simplifying

assumptions are made:

• The expected cost of matching any pattern associated with a given Bayesian

network is negligible compared to the expected benefit gained.

• All patterns associated with the Bayesian network contain a common sub-

pattern that identifies the outcome of an associated experiment.

• The inference is applied exhaustively to all entities from a specified (sub-)graph

that can be identified as possible outcomes of an associated experiment.

The first assumption can be argued to be valid on average. The assumption

simplifies the reasoning process considerably by not requiring the decision process

(i.e., the classification process) to be incorporated into the algorithm itself. This

classification decision may be based on a heuristic, or require input from a human,

and is likely to vary between application scenarios. The second assumption is formally
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correct if it is assumed that the algorithm simply performs a sufficient number of trials

to select each identifiable outcome in the provided (sub-)graph at least once.

6.3.1 Algorithm Overview

Two primary operations need to be carried out by an algorithmic implementation

of the abductive reasoning method introduced in section 6.2: pattern matching in

directed multi-graphs, and inference in a Bayesian network. As mentioned in sec-

tion 5.3.2, pattern matching is NP-complete, and, as mentioned in section 2.3.4,

inference in Bayesian networks is NP-hard.

Given the complexity of these operations, an incremental algorithm (see algo-

rithm 1) is proposed. Specifically, this means that only the changes made to an input

graph are considered. For simplicity, and because this is a first exploration of such an

algorithm, the incremental behavior of algorithm 1 is only valid for additive changes

to the graph. A deletion or modification of an existing statement requires a complete

re-evaluation of the algorithm over all relevant triples. Four inputs are provided to

the algorithm: a data graph G (i.e., the graph-based model acting as a source of

information), a set of triples T added to the graph, a Bayesian network B = (G, P ),

and a deductions graph GD where all deductions are stored. Note that T is the set

of all triples in G if all deductions about all identifiable outcomes in the graph-based

model are to be re-evaluated. T ⊂ G if the incremental behavior of the algorithm

is made use of, or if the algorithm is to be evaluated over only a subset of the data

graph. Also note that all deductions are removed – i.e., GD is cleared – if existing

triples in G are modified or deleted. A preliminary version of this algorithm has been

published by the author of this dissertation in [107].

Verbally, algorithm 1 (in conjunction with algorithm 2) performs the following

actions: for each triple t from T , observations local to t are stored in a map. Local,

in this context, means that, for each of the patterns associated with the target space
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Algorithm 1: Infer propositions with uncertain truth values given a data graph,
a set of changes to the graph, a Bayesian network, and a deductions graph.

1 Algorithm doInference(Graph G, Triples T , BayesNetwork B, Graph GD)

2 for t ∈ T do
3 for rv ∈ B.RandomVariables do

// Retrieve information about rv from the graph in the context of t

4 Obs[outcome] ←− Obs[outcome] ∪ observe(t, rv, G) ;

5 end

6 end
7 Outcomes ←− Observations.Keys ;

// Iterate through the observations about each identified possible outcome

8 for outcome ∈ Outcomes do
9 for observation ∈ Obs[outcome] do

// Compute a list of random variables about which an observation

was made

10 ObservedRVs ←− ObservedRVs ∪ observation.RandomVariable ;
// Store this observation as a tuple consisting of a random

variable and the observed value

11 m ←− (observation.RandomVariable, observation.Value) ;
12 Measurements ←− Measurements ∪ m ;

// Compute the union of all (variable) bindings

13 AllBindings ←− AllBindings ∪ observation.match.Bindings ;

14 end
// The unobserved random variables are those of interest for inferring

propositions with uncertain truth values

15 UnobservedRVs ←− B.RandomVariables \ ObservedRVs ;
16 for rv ∈ UnobservedRandomVariables do

// Retrieve any related prior deduction (note that in the event of

deleting, or modifying existing statements in the graph, the

deductions graph is cleared)

17 prior ←− retrieveBeliefAbout(rv, AllBindings, GD) ;
// Additionally consider newly found evidence

18 inf ←− B.updateBelief(rv, AllBindings, Measurements, prior) ;
// Create graph-based representation of deduction

19 GSD ←− updateDeduction(rv, AllBindings, inf) ;
// Add to deductions graph

20 GD ←− GD ∪ GSD ;

21 end

22 end
23 return GD
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Algorithm 2: Using a triple t as a hook, retrieve a set of matches to each of
the patterns associated with the specified random variable. Return a map with
a reference to the outcome as the key, and a set of tuples as the entry, each
of which consists of a subgraph (representing a single match to the pattern),
bindings (including variable bindings), and random variable value.

1 Algorithm observe(Triple t, RandomVariable rv, Graph G)
// Iterate through each target space value

2 for value ∈ rv.Values do
3 pattern ←− value.AssociatedPattern ;

// Attempt to match t against the current pattern

4 TBindings ←− match(t, pattern) ;
5 if TBindings 6= ∅ then

// If successful, use t as a hook by binding a part of the pattern

to t, and find all possible matches to the pattern in the

context of t

6 Matches ←− findMatches(pattern, TBindings, G) ;
// Iterate through the set of matches

7 for match ∈ Matches do
// Extract the outcome from the match by extracting the

bindings to the common sub-pattern

8 outcome ←− extractOutcome(match) ;
9 observation ←− (match, rv, value) ;

// Store the specific observation made about rv by associating

it with the outcome

10 Obs[outcome] ←− Obs[outcome] ∪ observation ;

11 end

12 end

13 end
14 return Obs
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values of the random variables, an attempt is made to match t against the pattern.

If this succeeds, one part of the respective pattern is bound to t. Recall that t is a

triple in the data graph G. If the pattern consists of only one triple, then all possible

matches to the pattern in the data graph G are comprised of the single match to

t. However, if the pattern is more complex, there may be more than one match

to the pattern in the context of t. For example, consider the situation depicted in

figure 31. There, the triple t matches the provided pattern partially – that is, ?p binds

to JohnDoe, and the constant vertices is a and Patient map to the respective label-

equivalent vertices. However, a full match to the pattern requires additional bindings.

These are identified in the data graph (note that the triple t is intended to reference a

part of the data graph). In the situation depicted, the variable ?t would, for instance,

bind to Test1 for one particular match. If the data graph contains multiple chest X-

rays for John Doe, then multiple matches become part of the set computed in line 6

of algorithm 2 (which, here, by definition of the associated random variable, would

be illegal unless both matches represent semantically identical concepts3).

For each of the matches, the associated outcome is extracted, and by the as-

sumptions made, all patterns associated with the Bayesian network share a common

sub-pattern identifying a possible outcome of the associated experiment. In figure 31,

this common sub-pattern is the triple (?p, is a, Patient). Recall from the examples

given in section 6.2, and specifically from table 5, that the patterns associated with

the different target space values all shared this triple. Given information about the

associated outcome, it can now be claimed that one particular observation has been

made about the particular outcome. Before this observation is used, it is stored in

a map, which stores a set of observations and associates this set with a particular

outcome.

Once all observations have been computed, one can easily determine for which

3This, and other related issues are investigated in more detail in chapter 7.
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Figure 31: Illustrative example of a partial pattern match: matching a single triple
t in a graph pattern.
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random variables no information was available in the graph-based model. To illustrate

this using the running example, this means that for the outcome John Doe (i.e., ωJD),

all observations available in the data graph (e.g., that the chest X-ray test outcome

was positive) are stored in the set Obs [ωJD]. However, whether John Doe has lung

cancer or not, or bronchitis or not, is not stored in the data graph. Such unobserved

random variables are computed through intersection of the set of all random variables

in the Bayesian network and the set of observed random variables (see line 15 of

algorithm 1). Each of the patterns associated with the target space values of the

unobserved random variables can now be instantiated using the bindings from the

observed patterns (given that this set of bindings is sufficient for instantiating the

pattern), and a posterior probability can be computed from a prior belief on the

random variable and the observed evidence. Once again, this probability can be

inferred from the Bayesian network. Finally, a graph-based representation of the

deduction is constructed according to the rules described in section 6.2.4.

6.3.2 Handling the Arrival of New Information

As outlined in the previous section, the proposed algorithm is of an incremental na-

ture. This means that, once triples are added to the data graph, any new observations

are added to previously made observations, and the probability is re-computed. How-

ever, as mentioned previously, once existing statements are removed from the data

graph (or modified), a full re-evaluation is required. This is illustrated in algorithm 1

on line 17, where evidence collected previously is retrieved. This previously collected

information is taken into account when calculating the posterior on line 18. Note

that if the new information leads to a situation in which there are two different ob-

servations about a random variable, it is indicative of either an inconsistency in the

model, or an incompleteness of the pattern. These issues are discussed in more detail

in the next chapter.
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6.4 Summary

In this chapter, a generic method for inexact (abductive) probabilistic reasoning over

graph-based models is presented. The method is based on concepts from Bayesian

probability theory (such as Bayesian inference) and pattern matching in graphs.

Three main aspects are covered in this chapter: the first part reviews various inexact

reasoning methods from the literature and provides rationale for using a Bayesian

approach. The second part introduces the proposed method in detail. Finally, the

third part presents algorithmic procedures for implementing the approach in practice.

As an argument for using Bayesian probability theory, two well-researched ap-

proaches to inexact (probabilistic) reasoning are reviewed and compared to Bayesian

probability theory: certainty factor theory (CF theory) and Dempster-Shafer the-

ory (DS theory). While both methods have been applied with success in practice,

a concern related to their formality and soundness is raised. It is argued that the

restricted applicability of the methods is a reason for choosing Bayesian probabil-

ity instead. However, while acceptedly the most formal approach, potential issues

with regards to the elicitation of the required reasoning knowledge are identified and

acknowledged.

The second part of the chapter introduces the proposed approach to inexact (ab-

ductive) probabilistic reasoning over graph-based models. The basis for representing,

retrieving and manipulating the underlying graph are the concepts from chapter 5.

In the approach, graph-based models are treated as a source of information. Obser-

vations about outcomes (defined by a base pattern) are made by evaluating matches

to graph patterns. These graph patterns are associated with the target space values

of random variables. Graph patterns associated with the same random variable must

necessarily (by definition of random variables) lead to mutually exclusive outcomes.

Bayesian networks are proposed as compact representations of the joint probability

distribution over the random variables, and for the purpose of efficiently inferring
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probabilities. Using the Bayesian network, a posterior probability can efficiently be

calculated from a prior and a set of evidence (i.e., observations). Based on the ob-

servations made, updated beliefs about unobserved events are calculated, and the

associated patterns instantiated in the graph using the variable bindings from the

base pattern and observations. These inferred propositions are then stored as reified

graph triples with a reference to the probability of the truth value of the represented

statement.

The third part of this chapter introduces algorithmic procedures for a practical

implementation of the approach. The introduced algorithms are incremental in nature

due to the expected complexity of the approach (based on the theoretical complexity

of the underlying methods used). A re-evaluation of all deductions is only necessary

in certain circumstances.

197



CHAPTER VII

BAYESIAN INCONSISTENCY IDENTIFICATION

In previous chapters, a foundation is laid for reasoning over heterogeneous models

(chapter 5), and a method for inexact probabilistic reasoning is introduced (chapter 6.

This is done in an effort to support the concretization and evaluation of the framework

to inconsistency identification proposed in chapter 4. The aim of this chapter is

to discuss the application of the developed concepts and methods for identifying

(probable) inconsistencies in heterogeneous models.

The chapter is outlined as follows: first, the characteristics of an inexact proba-

bilistic (abductive) approach to reasoning about inconsistencies are introduced, and

the characteristics of the associated reasoning knowledge are detailed. The secondary,

but nonetheless important, aim of this first section is to discuss the impact of such

an approach on the life-cycle of a system. Thereafter, methods are suggested for

acquiring and eliciting the required knowledge for reasoning about inconsistencies.

Important special facets of eliciting inconsistency identification knowledge, such as

eliciting beliefs about highly unlikely events, are detailed. Part of the discussion in-

cludes how making certain assumptions can, in certain cases, lead to a significant

reduction in complexity. Aspects of reusability of the inconsistency identification

knowledge are also briefly outlined. The last part of this chapter is concerned with

the interpretation and presentation of the inference results.

7.1 Inexact Inference of Inconsistencies

From a deductive reasoning perspective, an inconsistency is (provably) present if it

can be shown that some statement A and its negation are both true. In chapter 4,

this view on inconsistencies was generalized to define an inconsistency as a state of
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conflict where sufficient evidence exists to conclude that an inconsistency is present.

This view is supported by the fact that, for the case of reasoning across a set of

disparate, heterogeneous models, an underlying formal system capable of describing

the result of the composition of the various models is non-trivial (if not impossible)

to identify (in practice).

In the following, the characteristics of inconsistencies and reasoning knowledge

used in identifying inconsistencies within the proposed abductive inference framework

are detailed. Additionally, the process of inconsistency identification, and acquisition

and refinement of the required reasoning knowledge is presented to illustrate the

role and impact of inconsistency identification on the life-cycle of a system. Finally,

assumptions about the supporting infrastructure are made explicit.

7.1.1 Inconsistency Identification Knowledge

The section starts with a brief definition of inconsistency identification knowledge.

Inconsistency identification knowledge is considered the agglomeration of all knowl-

edge utilized for the process of identifying inconsistencies. Specifically, this knowledge

includes:

• A description of the class of the entity (or entities) associated with an instance

of a particular type of inconsistency (i.e., the definition of the outcome of an

experiment)

• The definition of the structure and parameters of a Bayesian network

• Patterns associated with the target space values of the random variables in the

Bayesian network

While arguably only a prerequisite, the knowledge required for translating formal

models to the proposed common representational formalism (section 5.2), mediation
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(section 5.5), and inference rules enabling the (partial) interpretation of the graph-

based models (e.g., to calculate the transitive hull for some predicates) should also

be considered a part of inconsistency identification knowledge. This is due to the

inherent dependence of the inexact reasoning method on the underlying represen-

tational formalism. Note that the degree to which these inference rules need to be

defined externally (i.e., external to the patterns associated with a Bayesian network)

depends on the expressiveness of the concrete pattern language used. Some pattern

formalisms allow for basic inferences to be incorporated as a part of the pattern (e.g.,

by allowing for edge production through the use of regular expressions (see, e.g., the

concept of property paths defined as part of the pattern formalism for the query lan-

guage of SPARQL 1.1 [226])). Therefore, the following is explicitly considered a part

of inconsistency identification knowledge also:

• Transformation definitions for translating formal models to produce representa-

tions in a concrete implementation of a graph-based representational formalism

• Mediation rules allowing for the semantic abstraction of the produced graph-

based models

• Graph inference rules for interpreting the semantics of models at query time

An accompanying infrastructure allowing for the interpretation of the inconsis-

tency identification knowledge is subsumed, but considered outside the definition of

inconsistency identification knowledge.

7.1.2 Characteristics of Abductively Inferred Inconsistencies & Related
Reasoning Knowledge

As introduced in section 2.2.3.2, abduction is an explanatory view on inference, the

result of which is the best explanation for a set of observations made. Abductive

inferences are not necessarily logically correct. That is, they cannot be proven to
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be logically correct. In the proposed framework, this is considered an advantage

rather than a disadvantage, since it allows reasoning with incomplete and abstract

information and knowledge. However, the reasoning knowledge used for applying the

method introduced in chapter 6 must be carefully crafted to avoid erroneous, or even

inconsistent states of the reasoning knowledge itself.

The proposed Bayesian framework considers discrete random variables with dif-

ferent propositional target spaces. By definition of a discrete random variable, the

values for a random variable must be mutually exclusive and exhaustive. That is, for

every possible outcome to an experiment, the random variable must take on exactly

one value given a mechanism for measuring the random variable, and sufficient infor-

mation. Since, in the proposed framework, values of random variables are associated

with patterns, which in turn are used as one possible mechanism for measuring the

random variable, the interesting question to consider is: what happens if, for a given

outcome, more than one pattern associated with the same random variable results in

a match? This would be in contradiction with the definition of a random variable.

There are two possible sources for such erroneous states: the graph-based model

being reasoned over, and the reasoning knowledge (here: inconsistency identification

knowledge) itself. If the source is the reasoning knowledge, it is a likely indication that

the reasoning knowledge is either inconsistent or incomplete. Proving the inconsis-

tency of reasoning knowledge is difficult at best: an intuitive definition of inconsistent

reasoning knowledge is that, given an inconsistency free graph-based model, two mu-

tually exclusive events can be identified. However, whether this truly marks a state of

inconsistency, requires a proof that the patterns used in identifying the mutually ex-

clusive states are necessary and sufficient conditions for these states. If this is not the

case, the reasoning knowledge is likely incomplete or underspecified, which requires

refinement of the knowledge. Indeed, this could also be an indicator that the values

are not exhaustive. If the reasoning knowledge itself is (provably) not inconsistent,
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it is likely that the graph-based model itself is inconsistent, since it describes two

mutually exclusive states.

These observations about the reasoning knowledge utilized in the proposed ap-

proach are important, since they highlight the necessity of making the assumption

that the reasoning knowledge is sufficiently free of inconsistencies and complete, un-

less it can be demonstrated otherwise – that is, unless it can be shown that an

inconsistency is present. In practice this would be considered verification and valida-

tion of inconsistency identification knowledge. Claiming consistency of the reasoning

knowledge is subject to the same limitations as identified for any formal models in

chapter 4.

Similar arguments can be made about deterministic, rule-based approaches from

the related literature (see chapter 3). However, note that, unlike in the proposed

approach, such deterministic approaches limit themselves to the assumption that the

pattern identifying an inconsistency is a sufficient condition for the inconsistency

itself. That is, it is assumed that the pattern implies an inconsistency. Since devising

a proof that the pattern logically entails the particular inconsistency is typically not

given, no claim can be made about the pattern being both a sufficient and necessary

condition for the state of inconsistency. Yet, the patterns are used to classify specific

parts of models as inconsistent by looking for a very specific, fixed set of conditions.

This, expectedly, leads to a potentially large number of inconsistencies that remain

undetected.

7.1.3 Difficulties Associated with Identifying Inconsistencies of Semanti-
cally Overlapping Statements

A prerequisite to identifying some types of inconsistencies is the identification of a

(semantic) overlap among two or more models. However, as argued throughout the

dissertation, such semantic overlap is (typically) not explicitly defined, and must

either be inferred or manually identified by a human. For instance, re-consider the
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example from chapter 4 (figure 8), where two conflicting assertions are made about

the age of a person. One particularly grave issue in identifying a semantic equivalence

in such cases is that, by nature of an inconsistency, both assertions are semantically

different (i.e., both statements have a different semantic meaning). However, in

reasoning about the inconsistency, it is assumed that the intent is to have semantically

equivalent statements.

Identifying something that is not inconsistent as semantically overlapping is eased

by the fact that more evidence is available in support of a semantic equivalence.

However, if a semantic overlap is to be determined for something that is, in fact,

inconsistent, then there is less evidence in support of the semantic equivalence and,

in fact, some evidence that opposes this hypothesis. This complicates the problem

of identifying an inconsistency in such cases, since concluding that an inconsistency

is present requires sufficient evidence to also conclude that a semantic overlap is

intended to be present.

Similarly, if the evidence of something being semantically equivalent outweighs

the evidence of something being inconsistent, an inconsistency remains undetected.

This is indicative of a trade-off that must be considered when developing reasoning

knowledge. In the proposed framework, this trade-off can be accounted for quite

naturally by specifying how strongly specific pieces of evidence influence a conclusion.

7.1.4 A Process Perspective

Ensuring that the knowledge used for reasoning about inconsistencies is free of in-

consistencies and sufficiently complete (see sections 7.1.2 and 7.1.3), and is capable

of producing adequate results1, is, in most practical cases, dependent on a contin-

uous knowledge refinement process that should be applied throughout the life-cycle

of a system. Continuous refinement of the reasoning knowledge is also required by

1Here, adequate results refers to a desirable outcome of applying the inconsistency identification
knowledge. How this can be measured concretely is discussed in the last section of this chapter.
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Figure 32: Life-cycle wide process encompassing continuous refinement and appli-
cation of inconsistency identification knowledge. Boxes with rounded corners denote
activities, and arrows between activities denote logical flows. The starting activity is
intended to be the activity denoting refinement.

nature of the approach. Since the reasoning knowledge used leads to conclusions that

are not necessarily logically correct, the knowledge used is often either incomplete or

over-specified.

A suggestion for a supporting process to inexact probabilistic reasoning about

inconsistencies is depicted in figure 32. The actual resources committed for each

activity in each cycle, and the actual frequency with which this process is to be

applied is a question of how much value the process adds. Therefore, it is highly

dependent on the system being developed.

The process defines four activities: refine reasoning knowledge, apply reasoning

knowledge, measure outcome, and intepret & learn. The application of reasoning

knowledge is considered an automated process, in which models are algorithmically

translated, mediated, and instances of inconsistencies identified. This is unlike the

remaining three activities which may require human intervention.

Refining reasoning knowledge primarily entails the acquisition and elicitation of

knowledge from experts or datasets. Refinement of the knowledge required for iden-

tifying inconsistencies entails both the consideration of additional knowledge and the

removal of knowledge, starting from an empty collection of knowledge or an existing

set of reasoning knowledge. While mostly a human process, advances in data mining

allow for some automation of this activity. For instance, the structure (that is, the
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influence relationships) [152] and, as introduced in section 2.3.5, the parameters of a

Bayesian network can be learned, provided that representative data is available (which

must be considered an accurate representation of future data produced). One could

even envision the process of automatically extracting patterns [33] from hand-labeled

sets of inconsistent models.

Once inconsistency identification knowledge has been defined, it can be applied for

the task of reasoning about possible instances of inconsistencies. As mentioned, this is

considered an automated process. However, once complete, a potentially large num-

ber of propositions with uncertain truth values have been produced (see section 6.2.4).

How accurate and precise, and how complete the inconsistency identification knowl-

edge is should then be measured by analyzing these results using appropriate means.

This entails, to some degree, the manual inspection of the results. The value of the

reasoning knowledge, and the value added by refining the knowledge, should then

be determined using appropriate means. In the literature, a number of measures ex-

ist for evaluating classifiers (such can be considered the inconsistency identification

knowledge) (see, e.g., [124]). These are examined in more detail in chapter 8, where

a value-based perspective is introduced also.

Finally, the results of the reasoning process should be used for purposes of learning

– that is, the conclusions reached by the reasoning process must be interpreted and

appropriate actions taken. This may entail explicitly devising a strategy used in

subsequent refinement (if any) of the inconsistency identification knowledge. However,

the conclusions may also go beyond the boundaries of inconsistency identification.

This means that learning from the outcome of the inconsistency identification process

does not necessarily entail a refinement of the reasoning knowledge. Indeed, it is

possible that no refinement is conducted during the subsequent refinement stage, and

that design decisions (or decisions made about the further development of the system

as a whole) are impacted. If it is deemed, based on the information and knowledge
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available for reasoning, that the cost incurred by the inconsistencies (determined in

a separate, but related process) is greater than the benefit gained by resolving them,

the appropriate course of action may be the cancellation of the project.

In conclusion, the acquisition, elicitation, refinement and application of inconsis-

tency identification knowledge should be treated as an integral part of the life-cycle of

a system developed using a Model-Based Systems Engineering related methodology.

The implications and impact on the life-cycle are very similar to those of software

testing : an up-front investment in an infrastructure, and a commitment to contin-

uously refining the reasoning knowledge throughout the life cycle of the system are

necessary [150].

7.2 Eliciting Inconsistency Identification Knowledge

In the following, methods and suggested practices for eliciting inconsistency identifi-

cation knowledge are presented. Here the focus is primarily on eliciting the structure

and parameters of the Bayesian network, as well as the patterns associated with the

values of the random variables.

7.2.1 Overview

When eliciting inconsistency identification knowledge, three important questions must

be considered: firstly, which stakeholders are involved in eliciting inconsistency iden-

tification knowledge? Secondly, what must be elicited from whom? And thirdly, how

should one elicit the required knowledge?

Who the appropriate stakeholders are for acquiring the relevant reasoning knowl-

edge for a particular type of inconsistency depends on the type of inconsistency.

For instance, recalling the classification from section 7.3.1, eliciting knowledge about

identifying inconsistencies specific to a particular domain should always involve ex-

perts from the particular domain. Primarily, this includes the elicitation of random
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variables, their target spaces and, given sufficient understanding of the required vo-

cabularies involved (see section 5.5), associated patterns2.

The acquisition and elicitation of inconsistency identification knowledge should

start by first defining the type(s) of entity (or entities) affected. This defines the

possible outcomes of an associated experiment, where one such entity is selected

at random. To identify such an outcome in the graph-based model, a base pattern

should be defined. This base pattern builds the foundation for all other patterns, as

it provides the context in which the particular type of inconsistency being reasoned

about may manifest. Each type of inconsistency should have its own set of reasoning

knowledge. For each such set of reasoning knowledge exactly one base pattern must

be defined. Across various types of inconsistencies, this base pattern may be identical.

After defining the base pattern, direct and indirect causes for, or evidence in

support or opposition of, an inconsistency and related events must be elicited. This

is an iterative process which terminates once a sufficiently complete state has been

reached. In practice, this is marked by experts deeming the further refinement of

the inconsistency identification knowledge as not valuable. Within the scope of the

introduced framework, eliciting such causes entails the definition of random variables

and appropriate mutually exclusive, yet exhaustive target space values. That is, one

must account for all possible states. The process also involves identifying influences

of the causes on one another (i.e., if the probability of a particular event occurring

is influenced by the occurrence of another, this should be made explicit). Once

all random variables have been defined, beliefs on the network parameters must be

elicited.

2Note that also the acquisition of knowledge about a domain for purposes of building a domain
vocabulary (see section 5.5.4) should involve these stakeholders. However, building mediation rules
to a domain vocabulary requires the collaborative effort of stakeholders familiar with the vocabulary
being mediated to, who are also familiar with the source vocabulary. Note that this is not considered
in detail in this chapter.
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7.2.2 Defining the Experiment & Base Pattern

One of the key ingredients of any formally defined probabilistic experiment is the

definition of the probability space. Recalling the definition given in section 2.3.1.1,

a probability space is defined by a sample space Ω, a σ-algebra F and a probability

measure P .

The set of possible outcomes of a probabilistic experiment is defined by the sam-

ple space Ω. An outcome ωi ∈ Ω may be a part of any number of (known) events,

which are defined by the σ-algebra F . Within the scope of the approach to inexact

probabilistic inference of inconsistencies, the outcomes are understood to be the ele-

ments that inherently define the context in which a particular type of inconsistency

manifests. The outcomes are also those quantities that one is interested in measuring

in order to collect evidence.

To illustrate this, say one is interested in inferring the probability of a particular

property (denoted by an edge) holding between any pair of nodes contained in the

graph-based model. In this case, the sample space is defined as the set of all ordered

pairs of nodes:

Ω = V × V = {(vi, vj) | vi, vj ∈ V }

Note that this is just one example of a sample space that may be used. However, it

is representative for reasoning over graph-based models. Depending on the reasoning

task at hand, Ω may be more restrictive than the formula above, or even more open.

For instance, in practice, one may only be interested in pairs of nodes describing

specific types of BaseConcepts (see section 5.5) (such as Propertys). In such a case,

the sample space is defined by all pairs of elements that can be identified as (base)

Propertys. The identification of elements that should be a part of the sample space

requires answering the fundamental question:

“For a given type of inconsistency, what type of entities are directly
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affected by the inconsistency – i.e., what type of entities can be said to be

inconsistent?”

Identifying elements in the graph-based model requires the definition of an ap-

propriate accompanying graph pattern. This pattern must be created based on a

fundamental understanding of the representation of information in the graph-based

model (i.e., an understanding of how data is organized). Recall the example from

chapter 6, where patient records were analyzed and the probability of lung cancer

was determined based on the information available about the patient. For this exam-

ple, the sample space can be defined by the set of all patients. These can be identified

by the pattern (?p, is a, Patient), where, for all matches to the pattern, ?p binds

to nodes in the graph-based model that represent individual patients. Therefore, the

pattern defines the sample space, and the set of matches to the pattern represents

the set of (or a subset of) the possible outcomes3.

Figure 33 illustrates two example base patterns. The pattern illustrated by fig-

ure 33a defines the set of entities in the graph that denote Elements from the base

vocabulary (see section 5.5.3). Figure 33b shows an example base pattern (in the

form of a complex graph pattern (see section 5.3.1)) allowing the identification of all

different pairs of entities in the graph-based model which are known to be (base)

Propertys. The functor notEqual ensures that only matches are returned where ?p1

and ?p2 do not point to the same node in the graph-based model.

Given that Ω is finite, the σ-algebra F can be defined as a subset of the power set

of Ω (as was done in section 2.3.1.1). To define the probability measure, a Bayesian

network is created. This encompasses the definition of a number of random variables

and their respective target spaces.

3Note that whether the graph-based model contains all possible outcomes depends on the under-
lying assumptions made, which cannot be generalized.
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Figure 33: Example base patterns used for identifying possible outcomes to an ex-
periment in a graph-based model. Note that the same coloring convention is used
as in section 5.5 to differentiate statements inferred using the semantic mediation
mechanism. Matching pattern (a) leads to identifying all entities in the graph-based
model known to be Elements. Matching pattern (b) results in all pairs of different
properties to be matched.

7.2.3 Elicitation of Inconsistency Causes & Related Reasoning Knowl-
edge

Once it has been established what type(s) of entity (or entities) are being reasoned

about and can be said to be inconsistent, the evidence in support (and opposition) of

the particular type of inconsistency can be elicited. This includes creating the struc-

ture of the Bayesian network used in reasoning about inconsistencies, and defining

patterns to be associated with random variable values.

7.2.3.1 Eliciting Elements of the Problem Domain

Eliciting the type of evidence considered valuable for reasoning about inconsistencies

can be viewed as a two-step process: the first step encompasses determining the possi-

ble information that can be collected about any possible outcome, and the second step

involves identifying which pieces of information (strongly) influence the probability

of an inconsistency (directly or indirectly).

210



Determining the type of information that can be used for reasoning about the

inconsistency of any outcome fundamentally requires an interpretation of the type of

inconsistency and the entities involved. For instance, if the type of inconsistency be-

ing reasoned about involves the comparison of two or more entities, information and

knowledge enabling this comparison must be determined (this includes information

that can be extracted about the objects to be compared, and knowledge on how to

compare the information). Therefore, the elicitation of reasoning knowledge requires

the repeated answering of the question: what measurable quality of any possible out-

come causes this (or negatively or positively supports this)?. This question must be

answered repeatedly and, inherently, requires expert knowledge.

In the related literature, a number of methods for eliciting expert knowledge are

proposed [112]. Most of these involve the gathering of knowledge either through ob-

servation of an existing process, answering a series of questions, or through discussion.

For instance, concept mapping is a method of eliciting expert knowledge by generat-

ing (informal) models of domain knowledge through the definition of concepts and

relationships between these. While ad hoc, many of the methods from the related

literature (and, in particular, concept mapping) have empirically been shown to be

effective in practice [112].

A helping aid in eliciting (relevant) inconsistency identification knowledge is an

understanding of how information about an outcome (or parts thereof) is represented

in the graph-based model, as well as the consideration of the statements of which an

outcome may be a part. For instance, say that the space of outcomes is defined by

the graph pattern depicted in figure 33b. From the definition of a (base) Property

in section 5.5.3, it is known that elements that are types of Propertys are related

to objects that represent Constraints. It is also known that a Property – like any

other BaseConcept – can have a name depicted by the attribute name. Therefore,

associated Constraints and names can be utilized as part of the reasoning knowledge.
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This is part of the information that can be extracted from the local context of any

entity depicting a (base) Property. Information that indirectly relates to the relevant

property can be extracted from the larger context: for instance, since Elements are

known to contain Propertys, information about the parent of a property may also

be extractable and used for purposes of reasoning about the respective inconsistency.

Once an initial set of reasoning knowledge has been determined, it must be com-

pleted by identifying related mutually exclusive events. In the simplest case, this

leads to the identification of complementary events (if not already defined). The end

goal of the elicitation process is to identify:

• A set of (related) random variables deemed valuable in the process of reasoning

about the existence of an inconsistency

• A mutually exclusive, and exhaustive set of values for each random variable

The elicitation process may be complemented by investigating previously collected

concrete manifestations of types of inconsistencies, so as to explore the context of the

inconsistency and extract individual explanatory statements from it.

7.2.3.2 Defining Appropriate Patterns

Once it has been determined what information is valuable to consider when reasoning

about a specific type of inconsistency, graph patterns associated with the various

values of the random variables must be defined. Here, the graph patterns represent

how the information manifests in the graph-based model. This requires knowledge

about how the information is stored in the graph, a source for which is the definition

of the transformations of formal models to the graph-based formalism and the various

mediation rules.

Patterns should be defined for all random variables. This means that, in some

instances, graph patterns are defined that represent how information should be repre-

sented in a graph (recall the example for such a case from section 6.2.4). For instance,
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Figure 34: Graph patterns associated with the mutually exclusive random variable
values The properties are inconsistent and The properties are not inconsistent. Note
that by convention from chapter 5, base vocabulary elements are marked in gray,
and elements from an (arbitrary) vocabulary for denoting inconsistency relationships
between two entities is denoted in blue.

the graph patterns associated with the complementary events The properties are in-

consistent and The properties are not inconsistent (see figure 34) are likely never

matched (unless information about a particular inconsistency is explicitly stored as a

fact in the graph-based model), but by providing a pattern, a reified instance of the

pattern can be created for corresponding deductions (see section 6.2.4).

Note from figure 34 that the patterns contain the base pattern as a sub-graph.

This is intended, since it allows for a common point of reference to be established

across all patterns associated with the Bayesian network (see section 6.2.3).

An issue related to defining patterns associated with values of random variables is

having to ensure that the matches to the pattern are mutually exclusive and exhaus-

tive. That is, for every match to the base pattern, no more than one pattern associated

with a random variable may refer to the same outcome. For simple complementary

events (such as illustrated in figure 34) this is relatively manageable. However, more

complex patterns that consider the larger context around the outcome must be crafted

more carefully.
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Due to the nature of the reasoning approach, validating the exhaustive and mutu-

ally exclusive nature of the patterns and values associated with random variables is

challenging. Within the context of this dissertation, it is assumed that the patterns

always fulfill these criteria, unless it can be demonstrated otherwise.

7.2.3.3 Independence Assumptions

Given a set of elicited random variables and associated patterns, a Bayesian network

can now be constructed to make independence assumptions explicit. This encom-

passes the definition of causal (or influence) relationships. Causes can be defined as

“the one, such as a person, an event, or a condition, that is responsible for an action

or a result” [152]. This definition sheds light on an operational method for identify-

ing causal relationships. That is, if the action of making a random variable take on

some value from its target space (sometimes) changes the value taken on by another

random variable, then the first random variable can be assumed to be responsible

for (sometimes) changing the other’s value. Thereby, one can conclude that the first

random variable is a cause of the second. Say X1 and X2 are such random variables.

More formally, one would say that X1 causes X2 if there is some manipulation of

X1 (i.e., forcing X1 to take on some value) that leads to a change in the probability

distribution of X2 [152].

Aside from building a general Bayesian network, which includes all elicited in-

fluences, it is sometimes practical to make the assumption that all evidence for a

particular event is independent. This is known as the näıve Bayes model. This

assumption simplifies both the process of eliciting reasoning knowledge (since, by

definition, all influence relationships are defined a priori), and the process of perform-

ing inference with the Bayesian network. The assumption is valid due to the principle

of maximum entropy [18]. However, by the nature of computing with independent

events, the inferred probabilities tend to be much lower than the true probabilities,
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particularly if a large number of events is considered4. Nonetheless, the näıve Bayes

model is widely used in machine learning practice. For instance, modern spam filters,

which make use of Bayesian inference to determine whether or not an incoming e-mail

should be considered spam, use this model as a basis (often in combination with ad

hoc heuristics that “soften” the effect of multiplying a large number of probabilities

with one another), primarily to simplify computation and to be able to easily extend

the reasoning knowledge base.

To illustrate the differences of the two models, consider the Bayesian networks

in figure 35. Both are Bayesian networks designed for the task of reasoning about

the inconsistency of two properties. Both also use the result of comparing the values

assigned to the properties, as well as their names and the names of their parents

as evidence. However, the network in figure 35a explicitly differentiates between

evidence used in identifying a semantic overlap, and considers this overlap and the

result of comparing the values of the properties as evidence for the properties being

inconsistent. It also considers the effect of two properties as less likely to be equivalent,

if their assigned values are not the same. This is not the case for the network in

figure 35b, which explicitly assumes that any evidence collected from the graph-

based model is independent (note that the random variables EquivalentProperties and

SimilarParents were left out, by assumption of this information not being explicitly

contained in the graph-based model).

7.2.4 Elicitation of Beliefs on Network Parameters

Given a set of random variables and assumptions about their independence, one can

now construct the structure of a Bayesian network. However, to fully specify the

Bayesian network, the network parameters need to be specified also. As discussed

in section 2.3, these parameters can be learned from a set of representative data

4This is because the joint probability of independent events is the product of the associated
probabilities.
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Figure 35: Illustration of a (a) full Bayesian network and a (b) Bayesian network
making use of the näıve Bayes assumption. Both networks are meant to be used
for the purpose of reasoning about the state of inconsistency of a randomly selected
pair of properties, but in the case of (b) it is assumed that all evidence directly (or
indirectly) related to two properties being inconsistent is independent.
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cases. However, from a subjective Bayesian perspective it makes sense to impose a

distribution which is a result of eliciting one’s belief on the value of the network pa-

rameter. These distributions can then be updated with data, if desired. As discussed

in section 2.3.5, a convenient parametric distribution to use for capturing beliefs on

Bayesian network parameters is the Dirichlet distribution.

Discrete probabilities can be elicited by considering one’s willingness to bet on

an event. Specifically, the elicitation of subjective beliefs entail asking the following

question:

“How much would you be willing to pay for a gamble in which you earn

$1 if the (given) event occurs and $0 if it does not?”

Let $b be the amount one is willing to pay. The subjective probability can then

be expressed as p = $b/$1. Note that one must be willing to both buy and sell the

bet – that is, it must be a fair price for the bet.

Eliciting beliefs in the manner described above has its caveats. Primarily, a num-

ber of biases influences the selection of a fair price. Examples of such biases are

motivational bias, where the true believe may not be expressed due to there being an

incentive to bias the distribution in a particular direction, and a bias with respect

to availability of information, where the assessment of the probability that an event

will occur is linked to the ease with which a stakeholder can remember similar events

[217, 126, 95]. Additionally, if the occurrence of the particular event being considered

is very low (or, similarly, very high) (i.e., P (E) < 0.01 or P (E) > 0.99), determining

a probability that is close to the true value and not off by one or more orders of

magnitude – which can have a significant impact on the inferences – is difficult, since

humans are not very good at quantifying such probabilities. Indeed, humans tend to

generally underweight outcomes [126, 217]. Therefore, it can be valuable to update

the probability distributions on such network parameters by learning from data that
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is incrementally collected, so that any bias is mitigated. However, as discussed in

section 2.3.5 the amount of data required for this is typically very large.

To exemplify the introduced concepts and concerns, consider, once more, the

Bayesian networks from figure 35. The distribution associated with one of the network

parameters is defined by p(InconsistentProperties). Assuming that there are only

two possible states – inconsistent, and not inconsistent – it suffices to ask the above

question for one of the two possible events. That is, how much would you be willing to

pay for a gamble in which you earn $1 if a pair of properties that is randomly selected

from a given sample space is inconsistent, and $0 if it is not inconsistent?. For a

randomly selected pair of properties, this probability is likely going to be very small

and difficult to assess correctly.

One possible practical way of mitigating issues related to eliciting beliefs on highly

infrequent events is to modify the Bayesian network in such a way that the associated

network parameters are easier to elicit. For instance, it may be much easier to assess

the probability of a randomly selected pair of properties being inconsistent given the

knowledge that the properties are also semantically equivalent.

7.2.5 Reuseability of Inconsistency Identification Knowledge

Particularly in model-based development scenarios where a large number of heteroge-

neous models are used, or the cost invoked by undetected inconsistencies is very high,

the cost incurred by eliciting inconsistency identification knowledge is not negligible.

Therefore, strategies should be put in place that reduce this cost. One aspect which,

arguably, has a high impact on this, is the reuse of previously defined inconsistency

identification knowledge.

Given that some types of inconsistencies are independent of a domain, application

or use-specific context (see section 7.3.1), it is conceivable that at least a part of

the knowledge elicited for the purpose of identifying such inconsistencies (e.g., the
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Bayesian network structure and associated patterns) can be reused across various

system developments. However, whether all knowledge can be reused depends on the

expected boundary conditions. Of particular concern are the network parameters:

since the network parameters encode believed frequencies of certain events (such as

the expected degree of inconsistency), the same (or at least highly similar) frequencies

must be expected in the scenario where the knowledge is reused. That is, the belief

on the network parameters must remain unchanged. However, it can be argued that

this is unlikely the case in practice (at least in general) since it assumes no learning

effect.

Reuse of patterns is enabled by the semantic abstraction mechanism (see sec-

tion 5.5). For maximum reuse across different development scenarios, patterns should

not be overly specific, and not too broad. That is, they should (ideally) represent

necessary and sufficient conditions for the property of the outcome that they imply.

Refinement of the knowledge over the course of the life cycle intends to support this.

Generally, patterns using language-independent vocabularies can be said to be more

reusable across scenarios, since they do not depend on possible frequent changes to

language specifications, and only need to be updated if the domain or base vocabulary

changes (which is assumed infrequent).

7.3 Interpreting & Presenting Inference Results

By nature of the suggested reasoning approach (see chapter 6), the number of inferred

propositions (with uncertain truth values) can be very large. For instance, when

reasoning about the inconsistency of pairs of properties, and using a base pattern

similar to the base pattern from figure 33b, a pairwise comparison is performed.

That is, (without the notEquals functor) n2 comparisons are performed for n unique

properties. Even for a relatively modest number of properties distributed across the

various models (say n = 500), a very large number of possible inconsistencies (with
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non-zero probability) are inferred (for n = 500 this would result in 2502 = 250, 000

deductions).

Note that only a small fraction is expectedly relevant; the probability that any

randomly selected pair of properties is inconsistent is, arguably, very small. By nature

of the approach, it is vital that possible inconsistencies are investigated by a human

(who is assumed to be able to identify whether or not an instance of a particular in-

consistency is present with perfect accuracy) (or some other oracle) since the inferred

statements cannot be claimed to be logically correct (even if the determined proba-

bility is very high) (see chapter 6). However, manually checking every deduction is

very costly5. Therefore, it is prudent to investigate whether it is possible to restrict

the set of possible inconsistencies presented to a human for confirmation and, if so,

by what means. This is discussed in the following.

7.3.1 Classification Heuristics

A commonly used method for inexact reasoning approaches is the use of a cutoff

value for deciding whether or not it is valuable to present a result to a user. This

can be considered a classification heuristic (or decision heuristic) that is used for

deciding which class a particular outcome belongs to (i.e., here: inconsistent or not

inconsistent). For binary classifiers, its implementation is fairly simple: given a

cutoff value c, the event with a probability higher than or equal to the cutoff value is

considered to be true (i.e., IF P (Event) ≥ c THEN Event ELSE ¬Event).

While the use of a cutoff value can considerably reduce the number of statements

(by “cutting off” cases with low probability), choosing a sensible value for the cutoff

is non-trivial. Choosing a value that is too low results in a potentially large number

of results being presented to a user that were wrongly classified as inconsistencies.

On the other hand, choosing a value that is too high may result in not detecting some

5This claim is investigated in chapter 8.
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actual inconsistencies. The selection of a cutoff value also depends on the expected

cost incurred by wrong classifications and missed inconsistencies. Therefore, the

value (or utility, or benefit gained by) of some cutoff values is higher than that of

others. By nature of inconsistencies, it is expected that the cost incurred by an

actual inconsistency that remains undetected due to not being a part of the set of

cases investigated by a human is much higher than the cost incurred by being exposed

to a wrongly classified case.

An alternative to using a cutoff value is the heuristic of always choosing the MAP

event (see section 2.3.2). That is, the event with the highest probability is chosen for

each outcome. This is a common approach in machine learning, but is known to, in

general, only produce sensible results if the true frequency of the events is at least

similar [149].

7.3.2 Presenting Inference Results

Since all inferred propositions have a probability associated with them, it is sensible

to rank order the results in descending probability. Results with higher probabilities

can be argued to have been derived on the basis of more (or more strongly) supporting

evidence. Similarly, the derived statements may be clustered by grouping them by

probability ranges (e.g., statements with probability 0.8 to 1.0 may be grouped under

cases that are to be investigated with high priority). Within a group, rank ordering

may be utilized as well.

While rank ordering and clustering are sensible options to decrease the complexity

and limit the cost associated with having to confirm instances of inconsistencies, it

is not always an effective means of presenting only the most relevant results. For

instance, if a large number wrong conclusions are presented to a user, this may be an

indicator that refinement of either the structure (and / or patterns), or the parameters

of the Bayesian network is necessary.
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7.3.3 Learning Network Parameters & Refining Reasoning Knowledge

Since, by nature of the approach, the conclusions reached about an instance of an in-

consistency being present cannot be claimed to be logically correct, humans (who are

assumed to be able to identify inconsistencies with perfect precision), or some other

mechanism capable of perfectly identifying inconsistencies (similar to what would be

considered an oracle in software testing [150]), must review at a minimum the subset

of the inferred statements deemed the most relevant or most valuable to investigate

further. This investigation of individual results potentially reveals more information

about a particular outcome. Therefore, it is sensible to use what has been learned

from the process of investigating the particular cases to improve future classifications.

In particular, the results can be used for updating the distributions on the network

parameters, which can be done using the methods introduced in section 2.3.5.

It should be noted that primarily using instances of one class (especially if these

instances are infrequent among the set of possible outcomes), the network parameters

may be biased towards certain cases. Ideally, training should occur by uniformly

sampling from the set of inferred statements to conserve a consistent sample size across

the Bayesian network [152]. However, as argued before, such an approach requires a

very large number of cases to be considered to improve classification accuracy.

7.4 Summary

In this chapter, implications of inexact reasoning about inconsistencies in sets of

heterogeneous models using the proposed method from chapter 6 are discussed. The

first part of the chapter introduces the notion of inconsistency identification knowledge

which, per the given definition, consists primarily of a description of the class of the

entity (or entities) associated with an instance of a particular type of inconsistency

(i.e., the definition of the outcome of an experiment), the definition of the structure

and parameters of a Bayesian network, and the patterns associated with the values
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of the random variables in the Bayesian network. In the second part of the chapter,

the elicitation of this inconsistency identification knowledge is discussed. Finally, the

third part discusses important aspects of interpreting and presenting inference results.

An important insight from the first part of this chapter is the problem of having to

identify an intended semantic overlap as part of identifying an inconsistency. Detect-

ing such intended overlap is non-trivial since an inconsistency can lead to very different

semantic interpretations of the involved entities. The elicited reasoning knowledge

must account for this. A conclusion drawn from the discussion is that, in practice,

this may lead to a (necessary) reduction of precision of the approach, since weaker

assumptions must be made when measuring similarity. A second important insight is

that inconsistency identification knowledge should be refined over the course of the

life-cycle to improve both accuracy and precision.

The second part of the chapter is concerned with the elicitation of knowledge. A

number of methods are suggested for eliciting both the structure and parameters of the

Bayesian network, as well as methods for eliciting patterns. Important is the insight

that the elicitation of the network parameters is non trivial due to the possibility of

some events associated with inconsistency identification being expectedly rare (e.g.,

the probability of any pair of properties being inconsistent is very small). The non-

triviality stems from the empirical observation by researchers that humans are not

very good at quantifying the probability of such rare events: humans tend to generally

underweight outcomes, which is representative of one of several identified biases.

Because the elicitation of inconsistency identification knowledge is expected to be

high, aspects of knowledge reuse are briefly discussed.

In the last part of the chapter, the interpretation and presentation of inferred

probable inconsistencies is discussed. It is acknowledged that the set of possible

inconsistencies (and semantic relationships) is, in general, very large. A need is

identified for preparing the results in such a manner that they can be inspected
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more easily. Proposed are rank ordering (according to (posterior) probability) and

clustering, as well as the use of decision (or classification) heuristics.
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CHAPTER VIII

EVALUATION & CASE STUDY

In this chapter, the inexact probabilistic reasoning approach introduced in chapter 6

is applied to the case of inconsistency identification, and its characteristics within this

context are investigated. Specifically, the expected behavior discussed in chapter 7 is

analyzed. Factoring in the evidence presented in section 4.1, a global validation is, as

discussed in section 1.4, impossible. Therefore, both a qualitative and a quantitative

analysis is conducted to collect as much evidence in support (and opposition) of the

effectiveness and efficiency of the approach.

The primary aim of this chapter is to provide both qualitative and quantitative

results for assessing the overall effectiveness and efficiency of the approach. The

results act as evidence to assess the validity of hypotheses 1 through 5. A qualitative

evaluation is done by examining the theoretical computational complexity of the

underlying algorithms. The approach itself is evaluated quantitatively by measuring

the performance of the classifier. For this purpose, a prototypical implementation of

the underlying algorithms and a supporting infrastructure has been developed. To

measure the performance, several measures and metrics are defined, through which

the approach is evaluated and comparative analysis performed.

The chapter is structured as follows: in section 8.1, the supporting tool infras-

tructure is introduced briefly. Thereafter, the utilized case study and results of the

quantitative evaluation are presented in section 8.2. Finally, in section 8.3 the com-

plexity of the underlying algorithms is analyzed both theoretically and empirically.

225



8.1 Proof-of-Concept Tool Support

A semantic web [19] inspired approach was selected as a basis for implementing the

concepts developed in chapters 5 and 6. The use of a web-based approach as a basis

for the implementation of an inconsistency identification tool-suite is advantageous,

in that an environment is used that was designed – from the start – for the pur-

pose of storing, linking and retrieving information and knowledge from distributed

sources. This is useful, since, in practice, models are typically scattered across various

repositories and on various physical machines. The core focus of the semantic web

is the “integration / combination of data from diverse sources, whereas original Web

concentrated on interchange of documents” [19]. This is an added benefit, since the

integration and combination of data subsumes interpretation – hence, semantic web.

An initial version of the proof-of-concept tool infrastructure is published in [108].

8.1.1 Leveraging RDF as a Concrete Implementation of a Common Graph-
Based Formalism

For semantic web applications, the World-Wide Web Consortium (W3C) recommends

the use of the Resource Description Framework (RDF) as a knowledge representa-

tion method. RDF is compatible with the representational aspects of the concepts

introduced in chapter 5 and can act as a concrete implementation of a common rep-

resentational formalism. In part, this is due to (a convenient mental model for) RDF

being graph-based and allowing for individual propositions to be expressed as subject-

predicate-object triples. RDF 1.1 makes use of Internationalized Resource Identifiers

(IRIs) (a subset of which are Uniform Resource Locators (URLs)) as a means of

uniquely identifying resources (subjects, predicates or objects).

RDF defines several Classes and Properties (see [227] for a full listing). The

semantics of RDF are intentionally very weak, with only a few structural constraints

being enforced (e.g., datatype violations). RDF defines a simple typing mechanism,

in which type-of (instance / individual - of) relations are defined. Furthermore,
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specialization (subclass) relationships are defined, which are, by the RDF semantics,

transitive.

8.1.2 Logical Inference Engine & Query Processor

The developed prototypical tool support builds on the open source RDF handling

framework Apache Jena1 (henceforth only referred to as Jena). Jena is divided into a

variety of components: one large part of the Jena framework is a rule-based reasoning

system, which supports a syntax similar to standard datalog implementations as a

rule formalism. Supported are both forward and backward deductions. The imple-

mentation of the inference mechanism is appropriate for the given context, since it

allows for the definition of functors (similar to those that are introduced as part of

complex patterns (see section 5.3.1)). Jena’s generic rule reasoner is used for imple-

menting the semantic abstraction mechanism. A second major component of Jena

is ARQ, which is an implementation of a SPARQL 1.1 [226] compliant RDF query

processor.

8.1.3 Bayesian Reasoning Engine

As a basis for the Bayesian reasoning engine, a library supporting the construction

of, and performing inference in Bayesian networks (named JBayNeT ) was developed.

The library supports discrete random variables and various inference methods: näıve

enumeration, variable elimination, and the junction tree algorithm. Bayesian net-

works can be exported in the Bayesian Network Interchange Format (BIF) version

0.3 format, which is supported by most commercial and open source Bayesian net-

work tools. The library also supports learning of general Bayesian networks. Note

that while open source implementations of Bayesian network libraries exist, none were

found to support all required features2.

1http://jena.apache.org
2The source code for this library or the Bayesian reasoner has not been released at the time of

writing this dissertation, but there are plans of doing so in the future.
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A large part of the proof-of-concept implementation is also the implementation

of a reasoning engine based on the algorithms presented in chapter 6. For this pur-

pose, a reasoner implementing Jena’s Reasoner interface was built. The Reasoner

interface is an interface used by Jena’s forward- and backward-chaining rule reasoner

implementations. By ensuring compatibility with Jena’s reasoning framework, the

expressiveness for defining patterns using the Jena Datalog-like rule language is pre-

served by internally rewriting the patterns used for measuring random variables as

rules with empty rule headers. This allows for implementation reuse of Jena’s pattern

matching algorithms.

8.2 Quantitative Approach Evaluation

In the following, the presented Bayesian approach to inconsistency identification is

evaluated quantitatively. This is done in order to assess characteristics (such as effec-

tiveness) and measure qualities of the approach which cannot be done by theoretical

evaluation of the underlying algorithm alone. As part of the quantitative evaluation,

the influence of the size of the evidence set considered, as well as the effect of learning

is investigated.

The evaluation is based on the proof-of-concept implementations of supporting

software tools introduced in the previous section. Additional software has been writ-

ten for the purpose of creating a controlled environment, collecting data points and

computing evaluation metrics.

8.2.1 Overview & Evaluation Goals

The overall goal of the quantitative evaluation is to investigate the validity of the

proposed hypotheses of this research. Of primary interest is investigating whether

the approach is capable of identifying those inconsistencies and associated semantic

overlap that cannot be effectively entailed by deterministic rules. This includes test-

ing the ability to identify inconsistencies and semantic overlap under conditions of
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incompleteness and under the presence of inconsistent information. However, also

included is the evaluation of how much knowledge must be encoded and elicited in

order to identify certain kinds of inconsistencies and semantic overlap, as well as the

value of the probabilistic deductions. In particular, the latter allows for an assess-

ment of how much human involvement is required, and whether the approach can

be economical. Lastly, a goal of the quantitative evaluation is to identify current

limitations and potential for future research.

Assessing the characteristics and making assertions about properties of the pre-

sented approach requires a large number of data points. For this purpose, a number

of sets of related (and overlapping) heterogeneous models of Railway Systems are

generated and injected with inconsistencies, incompletenesses and other random er-

rors that are intended to simulate concurrent evolution of the models (and human

error / preferences). The information and knowledge encoded in these models is then

mediated to the abstract vocabulary of the base ontology presented in section 5.5.

Reasoning under different assumptions and using different Bayesian networks is then

performed. During this process, a number of measurements are taken which are used

in evaluating the hypotheses of this research.

Using only expressions from the base ontology, two Bayesian networks and asso-

ciated patterns are created, each of which is independently used in reasoning about

inconsistencies and semantic equivalence of pairs of properties. Both of the Bayesian

networks predict the probability of semantic equivalence and inconsistency, but con-

sider a different set of evidence and context. While the one network uses information

that is mostly syntactical in nature, the other uses semantic information from the

larger context around the properties (such as information about the entities own-

ing the properties). This is done to assess the amount of knowledge required to be

encoded to effectively identify inconsistencies and semantic equivalences. In a sec-

ond set of tests, the prior beliefs on the parameters of the Bayesian networks are
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updated incrementally by informing the network with instances of actual semantic

equivalences and inconsistencies. In a third set, this experiment is repeated, but a set

of uninformed beliefs on the Bayesian network parameters is assumed. These tests

are performed to assess the impact of learning, and whether an improvement can be

observed over using subjectively elicited beliefs.

8.2.2 Case Study: Analysis of Heterogeneous Models of Railway Systems

In the following, the structure and nature of the various randomly generated models of

railway systems are introduced. Details about the nature of the introduced semantic

overlap, as well as the types of inconsistencies and incompletenesses that are randomly

injected, are also given.

8.2.2.1 Scenario

Railway systems are an important part of the public transportation infrastructure of

most major cities and countries. While railroad tracks are (at least in some countries)

owned by the state or some other external entity, privately owned companies typically

lease, and are responsible for serving particular routes that are part of a railway

system. A route can be defined as a series of segments between various stations, the

length of which is variable. In addition to track segments, switches are a typical

part of a network of track elements, which branch off other routes. The positions

of switches determine which route is actively being served. In practice, routes are

often marked by signals (which have different states) at the respective start- and

end-points.

Various concerns must be addressed when designing railway systems. These con-

cerns are both technical and economical in nature, making it a suitable case study for

(model-based) systems engineering: for instance, the cost of maintaining a route is an

important consideration in determining the fare price. However, this is also influenced

by the size of the railway network and length of potential routes, which may only be
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Figure 36: Meta-model used in generating system models for railway system designs,
in standard class diagram notation (adapted from [218]).

available from an external stakeholder (i.e., the owner of the railway track network).

Other concerns, primarily of a technical nature, include the placement of signals and

positions of switches for serving various routes. While the former concerns require

only little detail about the route, addressing the latter makes a detailed description

of the route and the various components placed along it inevitable.

To illustrate and simulate a scenario in which models of different granularity and

levels of abstractions are used simultaneously in a system design process, three distinct

types of models are considered: system models to describe the railway system and

the routes from an abstract point of view, detailed route models to outline technical

details of a single route that is a part of the railway system, and track network models

to describe the infrastructure available for planning routes. It is assumed that models

of all three types are developed by different stakeholders and using different modeling

languages. Inconsistencies in the models are to be identified.

8.2.2.2 Meta-Models

Meta-models for all three types – system models, detailed railway route models, and

track network models – are depicted in figures 36 – 38 in standard class diagram no-

tation. These meta-models are adapted from the domain-specific modeling language

for railway routes developed as part of the MOGENTES EU FP7 project, which was

also used by Ujhelyi et al. in testing the performance of retrieving information from

large model instances within the IncQuery framework [218]. The meta-models are

designed in such a way that they contain most constructs typically used in class di-

agrams. Railway related concepts, relationships and constraints on the syntactical

well-formedness of the models were sourced from experts from the railway domain.
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Figure 37: Meta-model used in generating detailed railway route descriptions, in
standard class diagram notation (adapted from [218]).

The system model is used in describing the various routes that are a part of

a particular railway system. It is assumed that a railway system must necessarily

have at least one route defined. For this purpose, the meta-model of the system

model defines two classes: Route and RailwaySystem. The class RailwaySystem

has one attribute named routes, which signifies its relationship to the class Route

through a directed association relationship with cardinality 1..* (i.e., one or more

of ). Therefore, a railway system model is well-formed iff it defines at least one

instance of RailwaySystem and at least one instance of Route, where all instances

of Route are related to exactly one instance of RailwaySystem. The meta-model for

railway system models is depicted in figure 36.

Detailed route models are used in refining the description of railway routes. Each

route model describes exactly one route. Routes have signals, which mark their entry

and exit point. Signals either allow trains to pass through (state go), request trains

to stop (state stop), or require maintenance (state failure). Routes are defined by a

series of sensors, which are installed next to track elements. These track elements are
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Figure 38: Meta-model used in generating models of railroad track networks, in
standard class diagram notation (adapted from [218]).

connected to one another and can be either track segments or switches. Segments

have a defined length and accompanying unit (of meters, kilometers or feet). Switches

mark points at which other routes may branch off. Switches can be in one of four

states, defining their set direction (left, straight, right) and status (failure). In a

larger network of tracks, the segments and positions of switches define a route.

The meta-model used in creating (detailed) models of routes is depicted in figure 37

and defines eleven classes, three of which are enumeration kinds: SignalStateKind is

used in describing the state in which a Switch can be, SwitchStateKind to describe

the state of a Switch, and LengthUnitKind to specify the length unit when defining

the length of a Segment. Segments and Switches are special kinds of TrackElements,

both of which may be connected to other TrackElements. In order for a detailed

route model to be well-formed, the model must be a valid instance of the meta-

model, and meet the following additional constraints: all instances of class Switch

must be related to at least one instance of class Sensor, and the length attribute of

each Segment instance must be greater than zero. It is assumed that a length unit

must not be specified.

Finally, to model railway track networks, the meta-model depicted in figure 38 is

used. Similar to the models describing routes, the meta-model for track models defines

classes for TrackElements, which may be connected to other TrackElements. These
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TrackElements may be either Segments or Switches. Unlike the models of routes, no

sensors or signals are defined. However, a track network model is assumed to define

more than just those segments and switches found in detailed models of routes – it

is meant as a model of a railway infrastructure irrespective of routes defined in any

other models. Railway track network models are interesting to study not only because

of their overlap with the other models describing the railway system, but also due to

the fact that track networks typically contain cycles. Such cyclical models provide an

interesting case for testing and evaluating the performance of reasoning algorithms.

It should be noted that the meta-models are not comprehensive enough (and,

hence, the models derived from these are not expressive enough) for commercial ap-

plications. However, they are sufficiently complex for evaluating the approach. This

can be justified by the following: firstly, most of the commonly used elements of class

diagrams are employed (as mentioned in section 2.1, these are the de-facto standard

for defining meta-models of modeling languages). Secondly, while the meta-models

overlap partially, there is no obvious 1-to-1 correspondence between their instances.

The latter makes it particularly hard for a model-to-model transformation mecha-

nism to be employed for synchronization purposes, unless all possible instance-level

correspondences are known a priori (which is assumed to not be the case). Thirdly,

because certain attributes (such as the length unit) are optional, the models cannot

be assumed to be complete. Therefore, a semantic interpretation of the models is

inevitable.

8.2.2.3 Generation of Random Instances

Model instances are generated algorithmically based on the meta-models introduced

in the previous section. For this purpose, the Eclipse Modeling Framework (EMF) is

used, and the respective meta-classes generatively transformed to Java classes. An

algorithm was implemented that allows for the automated generation of instances of
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Figure 39: Sample instance of the detailed railway route description meta-model.

these models. During this process, all known semantic equivalences are stored in a

list, but are not made accessible to the Bayesian reasoning algorithm.

The first step in generating the models is the generation of a railway system model,

which encompasses generating one instance of class RailwaySystem, and nr instances

of class Route. Next, nr models detailing each of the routes defined in the system

model are generated. This is done by first generating two instances of class Signal,

which mark the entry and exit points of the route. nsen instances of class Sensor are

then generated. For each of these sensors, nseg+nsw track elements are added, at least

one of which is an instance of class Switch, the rest being instances of class Segment.

For each instance of class Switch, a linked instance of class SwitchPosition is created

as well. Figure 39 shows an example of one detailed route model instance, illustrating

a typical route served by the German railway system from Frankfurt to Munich.
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In a third step, a railway network of a random size is generated. This network

contains instances of segments and switches that are semantically equivalent to those

created in the process of generating route models, and features additional track ele-

ments due to branching off at the switches. The number of track elements is chosen

at random. Note that in the algorithmic implementation, the routes are generated

in such a fashion that the entry point of one route is the exit point of the previously

created one, looping the exit point of the last route back to the first route, thereby

creating a ring of routes. Note that the fact that the first and last segments of dif-

ferent routes may be connected is not represented in the detailed route models, but

only in the track network model.

To give the instances of each class sensible names, Princeton University’s WordNet R©

[171] database is polled for random sets of nouns. Free for academic use, WordNet R©

is a large lexical database of English nouns, verbs, adjectives and adverbs, all of which

are grouped into sets of cognitive synonyms (so called synsets), each expressive of a

distinct concept. Synsets are interlinked by means of conceptual semantic and lexical

relations.

Each of the random nouns extracted from the WordNet R© database are intended

to reflect a particular location in a railway network. Routes, signals, segments and

switches are given names that reflect the noun chosen for the particular location. For

instance, the names of the entry and exit signals each contain words that reappear in

the name of the route. The first and last track element of a route also contain these

nouns. Names given to switches reflect the single destination to which all connected

segments lead, or from which they branch off. This naming scheme is exemplified in

figure 39 with names of cities in Germany. Values to attribute slots are also provided

according to a specific schema: the length of each segment is determined by choosing

a random number between 1 and 1000 (from a uniform distribution of integers), with

the unit of length being LengthUnitKind.KILOMETERS in all instances. A value for
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the slot indicating the state of a switch is chosen at random.

Finally, unique identifiers for each element are created and each element is asso-

ciated with a particular model. The unique identifiers are simply a random number.

The association with a particular model is done based on a generated name of a model.

Model names are unique for a system model, for each route model, and for the railway

track network model, and are generated by a similar pattern. For instance, the name

of a railway track network model is prefixed with “RailwayNetwork ”, then concate-

nated with a randomized form (see next section) of the name of the railway system.

This string is then appended with one or all of the following (and, at random, syn-

onymous variations of these): with a probability of 0.3, the word “-v” followed by a

random number between 0 and 9 signifying the version of the model, and (at random,

with probability 0.5) either the word “original”, “final”, “draft”, or “forReview”. A

domain name is also generated for each model, signifying a part of a resource location

(such as a folder, drive, or network location). The name generation for each model is

designed to mimic a typical naming scheme observed in practice.

The number and size of models describing railway systems can be varied by al-

tering the overall number of routes (nr), the number of sensors (nsen), the number

of segments (nseg) and the number of switches (nsw). This enables the collection of

data from models that have similar characteristics (determined by the algorithmic

construction), but are different in size and, to some extent, topology.

8.2.2.4 Semantic Overlap of Models & Randomly Injected Inconsistencies and
Incompletenesses

Both the meta-models and their generated instances overlap semantically. This over-

lap is illustrated in figures 40 and 41.

As mentioned in section 8.2.2.2, both a system model instance and the various

instances of the route models allow for specific routes to be defined. Therefore, both

models allow for individuals belonging to the class of railway routes to be created.
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Figure 40: Type-level semantic overlap (correspondences between meta-models)
across the different meta-models used. Note that correspondences between enumera-
tion classes are left out for brevity, but are analogously defined.
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For this purpose, both of these meta-models incorporate syntactic elements whose

meaning is defined by the semantic concept of a route. However, no relations to

other concepts from the railway domain (or other related domains) are shared by the

meta-models. Similarly, the concept of track elements – and specifically segments

and switches – are a part of both the meta-model for defining detailed models of

routes and of the meta-model used in generating models of railway track networks.

Dissimilar to the previous case, these meta-models do share some attributes and

relations to other concepts from the railway domain: a length and accompanying

unit is defined for segments in both cases, and switches are given a “state” attribute.

The meta-models also share the ontological relation connectsTo, which represents the

relationship between individual track elements. However, relations such as those from

individual track elements to individual sensors are not shared by the track network

meta-model. These meta-model correspondences are summarized in figure 40.

Note that the meta-model correspondences are identified based on an assumed se-

mantic mapping from meta-model elements to elements from an assumed universally-

accepted, well-understood, and likely finite railway domain model. This domain

model contains all concepts and their relations that are relevant to the railway do-

main (for practical purposes this can be thought of as an ontology). The semantic

interpretation of the meta-model elements – and, hence, the types of things rep-

resentable in the language – is relatively straightforward, given a formal represen-

tation of the railway domain (refer to section 2.1.1.4 for a discussion on semantic

domains and the necessity of a syntactic representation of these). However, the

semantic interpretation of the possible utterances of the respective meta-models re-

quires a different semantic domain. For instance, while one can entail that the object

FrankfurtToMunich:Route in figure 39 is a kind of (or of type) Route (for which

the existence of a semantic mapping is assumed), one cannot establish the semantic

difference (or equivalence) to other routes – say, DüsseldorfToFrankfurt:Route –
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Figure 41: Instance-level semantic overlap (“same thing”) across system model, route
models, and track network model. Note that type-level overlap (“same kind of thing”)
is not shown (see figure 40 for an illustration of these).

without an appropriate definition of a semantic domain that distinguishes the two

(to a human sometimes “obviously”) different routes. On the other hand, defining

such a semantic domain is non-trivial – if at all possible – due to the great number of

possible instances that can be created. This complicates the problem of identifying a

semantic overlap of such instance-level models.

Figure 41 illustrates the nature of the semantic overlap between system models,

detailed route models and track network models. Note the use of different units and

values (e.g., 92.5 kilometers and 92500 meters) and the synonymous expressions used

(e.g., FrankfurtAmMain instead of Frankfurt). Even though syntactically different,
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some expressions are semantically equivalent. As established in section 2.1.1.4 al-

ready, this can only be determined with certainty given an appropriate interpretation

function. The challenge for the Bayesian approach to inconsistency identification is

to identify this overlap and any possibly inconsistent expressions.

To simulate situations similar to those illustrated in figure 41, a combination of

one or more variations of spellings, synonyms, spelling mistakes, and variations of

naming conventions are integrated at random. In addition, prefixes and postfixes

such as random numbers or appropriate syntactic expressions (e.g., “RT” for routes)

are added at random. For instance, the name of a route from Frankfurt to Munich

may become FrankfurtToMunichRoute by default during the process of generating

model instances, but is, post-generation, changed in one or more models to variations

such as RTfrankfurtAmMianMunich (note the spelling mistake: “Mian” instead of

“Main”). Synonyms are extracted from the synsets provided by the WordNet R©

database. Similar variations are done for all generated names.

In addition to varying names, incompletenesses are also introduced: at random,

units associated with length properties of segments that are semantically equivalent

are removed. This is not considered an introduction of an inconsistency, since it rep-

resents a mere omission of information. In addition to removing units, the length and

unit of length are also converted between different units and unit systems at random.

This is done prior to removing units to allow for cases where two semantically equiva-

lent properties have a different numeric value for the length due to a prior conversion

between units (say from meters to feet for one of the units). Such a case would be

present if, for instance, in figure 41 the property lengthUnit were omitted from the

segment StuttgartToUlm. Such random introductions of incompletenesses and errors

are introduced to convolute the problem of identifying semantic equivalence.

Finally, inconsistencies are injected at random into the model. Primarily, incon-

sistent constraints on properties are introduced. For the length property, this is done
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by adding a random number to the length, or by randomly changing the unit (or

both). For switch states, a random switch state is chosen for one of the equivalent

switch state properties (one of which is determined randomly). Due to the associated

challenges, inconsistencies in semantically equivalent properties are the primary type

of inconsistency considered. Identifying the semantic equivalence and possible state of

inconsistency of two length properties requires analyzing the semantic context, such

as the possibility that the owning segments are semantically equivalent – a challenge,

given the potentially very large number of segments in one set of models. Similar to

the introduced semantic equivalences, all injected inconsistencies are stored in a list,

which is not made available to the Bayesian reasoning algorithm.

8.2.2.5 Translation to, and Representation in RDF

Once generated, the models and meta-models are transformed to a graph formalism

by translating the Java objects and classes to an appropriate RDF representation.

As mentioned in section 8.1, RDF is an appropriate set of specifications that matches

the desired characteristics of the common graph-based representational formalism for

heterogeneous models developed in chapter 5. The translation is done algorithmically

through a set of reflective rules. The reflective RDF counterparts of the respective

Java constructs utilized are summarized in table 7. Note that rdf, rdfs and xsd

refer to the namespaces for RDF, RDF Schema and XML Schema Definition [227],

respectively.

Using the rules from table 7, every Java class representing a meta-level construct

is converted to a corresponding RDF/RDFS resource of type RDFS Class. The

general pattern followed is that every meta-class is translated to a resource of type

RDFS Class, and every related relationship (e.g., attributes, links and relationships)

is translated to a resource of type RDF Property. Inheritance relationships, such as

those between Segment and Switch, and TrackElement, are represented by utilizing
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Table 7: Reflective translation rules of meta-model and instance elements from Java
classes and objects to RDF constructs.

Java Concept RDF / RDFS Concept

Class rdfs:Class

Class Inheritance rdfs:subClassOf

Attribute / Field rdf:Property

Owning Class of Attribute rdfs:domain

Attribute Value Type rdfs:range

Object rdfs:Class

Primitive Data Type Instances rdfs:Literal

Primitive Data Type xsd:string, xsd:int, ...

Class-Object Instance Relationship rdf:type

the RDFS subClassOf property. The domain and range of attributes (and generally

relationships) are expressed using RDFS Domain and RDFS Range predicates. Enu-

meration classes, such as LengthUnitKind, are also translated to a resource of type

RDFS Class. Enumeration literals are represented as resources with a value and an or-

dinal, where the value is the enumeration literal string (e.g., METERS), and the ordinal

a numeric value. To identify the constructs of the railway meta-models uniquely, the

namespace http://railway/ns# is used. To this namespace, the name of the meta-

class and, in the case of attributes and relationships, both the name of the owning class

and the name of property are appended to generate a unique URI (e.g., the attribute

length of class Segment is assigned the URI http://railway/ns#Segment/length).

Note that, for simplicity, the same namespace is used for all meta-models. The result

of translating the railway track network meta-model to RDF is shown in figure 42.

Elements of the generated models (i.e., instances of the respective meta-model

elements) are also given unique URIs as identifiers. These URIs are generated based

on the name of the associated model and model domain (see section 8.2.2.3), as well as
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the generated unique ID. Instances of relevant attributes (and relationships) outlined

in the meta-models (see figures 36 to 38) are created for each individual instance of

a meta-class. This is equivalent to the creation of a slot for a particular attribute

value. The generation of the RDF data follows a similar pattern to that of the meta-

model, with the exception that the created resources are instances of the respective

meta-model element resources rather than just the relevant RDF/RDFS element. An

example translated instance of a Segment and its length and lengthUnit attributes is

illustrated in figure 43.

Note that the name of each element translated to RDF is made explicit using a

special predicate name in the railway namespace (http://railway/ns#name). This

is done for both meta-model elements and their instances, as well as any attributes,

relationships and slots.

The generated RDF representations of the models are typically highly complex and

can be non-intuitive to a human if not abstracted by filtering out details. Figure 44

illustrates a generated track network model, showing only resources that are segments

and switches, as well as their respective connections. Meta-model information, as

well as the other attributes (length, length unit and switch state), have been left out.

Such figures have been created for the purpose of verifying both that the generative

algorithm produces instances that conform to the desired properties (e.g., branching

off at switches, ring of routes (see section 8.2.2.3)), and that the defined mapping to

RDF works as intended.

8.2.2.6 Mediation to Base Vocabulary & Unit Conversion

The following inference rules are used for mediating both the meta-model elements

and instances thereof to the base vocabulary: all meta-classes (and instances thereof)

except enumeration classes are assigned the additional type base:Element. All at-

tributes (and relationships) and slots are assigned the additional type base:Property.
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Figure 43: Graph depicting the RDF representation of an instance of a Segment and
related slots for length and lengthUnit (model unique identifiers are not shown in
URIs to conserve space; visualized using Gephi [13]).
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Figure 44: Example of a generated track network transformed to a RDF graph (only
segments, switches and connections are shown; visualized using Gephi [13]).
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Names expressed using the name predicate from the railway namespace are mediated

to base:name predicates. Similar to the case presented in detail in section 5.5.2, this

means that, by inference, all elements carrying a statement with the predicate name

from the railway namespace have a semantically equivalent statement with predicate

base:name which carries the same literal value as the object.

Similar to the description of the mediation to the base vocabulary given in sec-

tion 5.5.3, slot values are mediated to constraints imposed on a property. The process

is identical to that illustrated in figure 24. The length of a segment is treated as a

special case, since a related property defining the unit may exist. Therefore, the

length and length unit are aggregated to a single length property with the corre-

sponding constraint carrying a value for the base:unitType that is identical to the

value assigned to the lengthUnit slot value.

Equivalent base constraints (see section 5.5.5) are inferable for constraints for

which sufficient knowledge for a unit type conversion exists (in the form of a logical

implication / rule). Results from the Quantities, Units, Dimensions and Data Types

Ontologies (QUDT) project3 (developed by TopQuadrant and the NASA AMES re-

search center) were utilized as a basis for defining types of units (e.g., feet, kilometers

and inches) and conversion multipliers to a base unit (e.g., meters). QUDT is a col-

lection of ontologies that define base classes, properties, and instances for modeling

physical quantities, units of measure, and their dimensions in various measurement

systems. QUDT uses the expressiveness of the Web Ontology Language (OWL) to

provide for automated conversion (given an appropriate interpretor). These state-

ments were removed, and only the core statements, which are written in a format

that conforms to RDF, were used.

For the purpose of mediating the translated RDF data, a number of inference rules

have been written. The syntax of these inference rules corresponds to that accepted

3http://www.linkedmodel.org/catalog/qudt/1.1/index.html
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by the Generic Rule Reasoner from the Jena framework (which is an implementation

of Datalog). The exact rules are not presented in this document due to their sheer

length and complexity. However, a copy may be requested from the author of this

dissertation.

8.2.3 Infrastructure & Environment Setup

For the purposes of generating (inconsistent) models and collecting data, a number

of Java-based programs and classes were implemented in addition to the reasoning

infrastructure introduced in section 8.1. These include a parameterized generator

of railway models, a program that transforms railway models into corresponding

RDF representations, data storage capabilities (for storing gathered data points in

Microsoft Excel (.xls) format) and post-processing functions. In addition, a number

of functions have been implemented in Matlab to post-process and visualize results.

To ensure reproducibility of the results, the software versions used, as well as the

specifications of the hardware utilized for running the experiments is documented in

the following. In addition, relevant enhancements to the reasoning infrastructure are

summarized.

8.2.3.1 Software Versions Used & Hardware Configuration

All proof-of-concept software was implemented and tested in the development envi-

ronment Eclipse Indigo (build 20110615-0604). The compiler, language specification

and libraries associated with Java Development Kit (JDK) 7 (1.7.0 01, 64 bit) were

used in writing all software. Maven 3.2.3 was used for managing Java project de-

pendencies. Windows 7 (64-bit) was used as an operating system environment. In

addition to the reasoning infrastructure and JBayNeT, the following external libraries

(with their respective versions) were used:

• JUnit 4.11
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• Apache Jena 2.10.1

• Apache Fuseki 1.1.1

• Apache Commons Lang 3.3.2

• Apache Commons Math 3.2

• Apache Commons Collections 3.2

• Apache POI 3.11

• Apache Log4J 2.0-rc1

• JGraphT 0.9.1

• MapDB 1.0.6

• JavaBayes 0.346

• WordNet 3.1 (database files only)

• RiTa 1.0.68

• JAWS 1.3

All experiments were performed on a standard office PC with an Intel R©CoreTMi7-

2600 CPU running at 3.40GHz with 16GB DDR2 RAM and a 7200 rpm hard disk.

8.2.3.2 Implemented Software Performance Enhancements & Critical Resource
Utilization Mitigation Strategies

Because of the expected long runtime of the reasoning algorithm (see section 6.3.1) due

to the expected complexity of the operations performed (primarily pattern matching

and Bayesian network inference), JBayNeT was configured to use the junction tree al-

gorithm by default for Bayesian network inferences. In addition, to save computation

cycles, the reasoning engine was provided with hints. These hints take the form of a

250



heuristic, which results in the reasoning engine skipping an attempt to match patterns

associated with random variables that are deemed unobservable (e.g., the patterns as-

sociated with the random variables InconsistentProperties and EquivalentProperties

(see figures 62 and 46)).

In addition to reducing CPU cycles, an effort has been made to reduce the mem-

ory consumed during each execution of the reasoning engine. Mainly, this was done

through an additional hint, which forces the reasoning engine to store inferences

related to only a select number of random variables (e.g., inferences about inconsis-

tency and semantic equivalence). Because the information stored for this purpose is

expected to grow with O(n2), the hash tables used for storing the information are

partially cached on the hard disk using cached tree maps from the project MapDB.

While the latter will result in reduced computational performance, it enables the

processing of larger models.

8.2.4 Evaluation Metrics

One of the primary goals of the quantitative evaluation is to collect sufficient evidence

to make assertions about the performance of the Bayesian approach to inconsistency

identification introduced in chapters 6 and 7. Collecting such evidence and mak-

ing assertions about qualities of the approach requires the collection of data points

and their interpretation which, in turn, requires performance metrics. A basis for

the accompanying measurements is provided by the already-introduced generation of

overlapping heterogeneous models of railway systems which are injected with incon-

sistencies (see section 8.2.2). In the following, relevant metrics are introduced that

provide a basis for making assertions about various qualities of the approach and

define the data to be collected.
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Table 8: Table summarizing the definitions of true positives (TP), false positives
(FP), true negatives (TN) and false negatives (FN). This is also known as the confu-
sion matrix.

Actual Condition

Positive Negative

T
e
st

/
C

la
ss

ifi
ca

ti
o
n Positive

True Positive
(TP)

False Positive
(FP)

Negative
False Negative

(FN)
True Negative

(TN)

8.2.4.1 True Positives, False Positives, True Negatives and False Negatives

A basis for (most) measures of quality of a classifier for a two-class prediction problem

is the number of correctly and wrongly classified elements. For the Bayesian approach

to inconsistency identification, a correct classification means one of two things: either

an outcome (e.g., a pair of properties) was correctly classified as being inconsistent,

or correctly classified as being not inconsistent. A wrong classification refers to one

of the following: either an outcome was classified as inconsistent, even though it is

not, or an outcome was classified as not inconsistent even though it is. Here, the term

correctly and incorrectly refer to the actual state, and classified refers to the outcome

of applying a decision heuristic (e.g., if the probability of inconsistency of a particular

pair of properties given the observed evidence is greater than a cutoff value c, then

the pair of properties is classified as inconsistent).

Elements that are correctly classified are referred to as true positives (TPs) and

true negatives (TNs). Within the context of the Bayesian approach to inconsistency
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management, a TP corresponds to a correctly identified inconsistency. A TN corre-

sponds to the case where an outcome was correctly identified as being not inconsis-

tent. The third and fourth cases are known as false positives (FPs) and false negatives

(FNs). The result of a classification produces a FP if it identifies an outcome as in-

consistent, even though it is not. A FN is the result of classifying an outcome as not

inconsistent even though it is in fact inconsistent. As discussed in section 7.3 the

last case has the most impact on utility. In statistics, the production of a FP leads

to a type I error. Type II errors are defined by the occurrence of a FN. From the

Bayesian point of view, a type I error is one that looks at information that should

not substantially change a prior belief, but does. A type II error is one that looks at

information which should change a prior belief, but does not.

The notion of TP, FP, TN and FN is summarized in table 8. This table is also

known as the confusion matrix [124]. There, the term “positive” may be replaced

with “inconsistent” or “semantically equivalent”, and the term “negative” with “not

inconsistent” or “semantically different”4. Note that, within the context of inconsis-

tency identification, the sum of the number of true positives and false negatives must,

by definition, equal the number of actual inconsistent (or semantically overlapping)

outcomes. Similarly, the sum of the number of false positives and true negatives must

correspond to the number of outcomes that are not inconsistent (or not semantically

overlapping).

8.2.4.2 Derived Metrics

Various metrics can be derived from the notions of TPs, TNs, FPs and FNs. Relevant

metrics from the related literature include the recall, precision, specificity, F-measure

and fallout. These metrics are introduced in the following pages.

4The terms “positive” and “negative” are commonly used within this context due to their roots in
medical research, and their relation to diagnosing diseases by using the outcome of tests as evidence.
There, as already introduced in chapter 6, the use of Bayesian reasoning is commonplace.
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Recall Recall is also known as the sensitivity in biomedical research, and sometimes

referred to as the hit rate or true positive rate in machine learning applications. It

measures the number of TPs in relation to the number of actual cases [124]. In other

words, it measures the accuracy of a classification heuristic, since it measures the

number of correctly identified elements in relation to the actual occurrences. Within

the context of inconsistency identification this means that a recall gives an indication

of what fraction of actual inconsistencies were identified. Therefore, recall can be

defined in the following way:

recall =
TP

TP + FN
(21)

A recall value of 1.0 is indicative of a classification heuristic with perfect accuracy.

In other words, a recall of 1.0 indicates that no false negatives are produced. A recall

of 0.0, on the other hand, indicates that no correct classifications were made. Note

that a recall value of 1.0 is easily achievable by setting the cutoff value to 0 (i.e.,

if every outcome is classified as inconsistent). However, as discussed in section 7.3

this is not very useful, since a large number of false positives would be produced,

which potentially incurs a very high cost. Therefore, additional measures must be

considered when evaluating the performance of a classifier.

Precision Related to recall is the notion of precision. Precision is a measure of how

well a classifier is able to distinguish between TPs and FPs [124]. Within the context

of inconsistency identification, precision is a measure of the fraction of outcomes

classified as inconsistent which in reality were inconsistent. Precision is also known

as the positive predictive value and is defined in the following way:

precision =
TP

TP + FP
(22)

Similar to recall, a high precision value is desirable, since a high value is indicative

of a low number of false positives relative to the number of true positives. However,
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precision does not take into account the number of false negatives which, as discussed

in section 7.3 typically incur a much higher cost than false positives. Therefore, high

values in precision can be achieved with high cutoff values, since the number of false

positives expectedly declines with the cutoff value.

Specificity Specificity is a measure of performance of a classifier that considers the

proportion of negatives which are correctly identified as such [66]. Within the context

of this research, specificity refers to the fraction of outcomes that were correctly

classified as being inconsistent (or semantically overlapping). Therefore, specificity

can be defined as the number of true negatives, divided by the sum of the number of

false positives and true negatives. Specificity is the true negative rate.

specificity =
TN

FP + TN
(23)

Within the context of this research, a classifier with specificity 1.0 identifies all out-

comes that are not inconsistent (or not semantically overlapping) as such. The value

is high if the classifier can correctly classify non-inconsistent outcomes well.

Fallout Complementary to specificity is the fallout rate (sometimes also referred to

as the false positive rate) [66, 124]. It measures the proportion of positives correctly

identified as such. Therefore, within the context of inconsistency identification and se-

mantic overlap detection, the fallout rate is the fraction of outcomes that were wrongly

classified as being inconsistent, divided by the total number of non-inconsistent out-

comes.

fallout =
FP

FP + TN
= 1− specificity (24)

A good classifier should have a low fall-out rate, since it is indicative of a low number

of cases in which an outcome was wrongly classified as being inconsistent. However, as

with other measures, the fallout rate must be considered in relation to other measures

and the cost associated with incorrect classifications.
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F-Measure One commonly employed measure in the related literature on informa-

tion theory, ontology matching, and database schema matching is the F-measure (or

F1-score, F-score). It is a derivative of the effectiveness measure proposed by Van

Rijsbergen in [223], and its general form is:

Fβ = (1 + β2) · precision · recall

(β2 · precision) + recall
(25)

Typically, the F-measure is defined as the harmonic mean of precision and recall. The

harmonic mean puts the same emphasis on precision and recall, and can be formed

by setting β = 1:

F1 = 2 · precision · recall

precision + recall
(26)

More emphasis is put on precision by setting β < 1, and more emphasis on accuracy

with β > 1. The F-measure is a standard measure used in identifying an adequate

value for the classification cutoff. Its widespread use is due to it taking into account

the trade-off between precision and recall. However, since the value for β is an

arbitrary weight, it is merely a heuristic. Therefore, and as can be concluded from

the discussion in section 7.3, better results can likely be achieved by taking into

account the costs associated with producing FPs and FNs, and the costs of polling

external information sources.

8.2.4.3 Receiver Operating Characteristic

To judge the performance of a classifier, the receiver operating characteristic (ROC)

(also known as the ROC curve) is typically employed in machine learning applications

[66]. The ROC curve is simply a plot of the intuitive trade-off between sensitivity

and specificity, with the horizontal axis flipped for historical reasons. Therefore, the

ROC is a plot of the sensitivity against the fallout ratio (1 - specificity) for various

cutoff values. ROC analysis provides the most comprehensive description of diagnostic

accuracy because it estimates and reports all of the combinations of sensitivity and

specificity that a classification is able to provide [61].
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Figure 45: Qualitative representation of several receiver operating characteristic
(ROC) curves. The ROC is commonly used in evaluating machine learning classifi-
cation performance.
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A qualitative ROC curve is illustrated in figure 45. If sensitivity and specificity is

equal for all cutoff values, the classification is considered uninformative and random.

If the observer was completely uninformed, then the ROC curve would be a straight

line connecting the lower left to upper right corners (see figure 45, and the area

under this curve would be 0.5. This line then corresponds to a 50% probability of

the observer correctly classifying a random outcome. In the related literature, the

area under the curve is considered a measure of accuracy (sometimes referred to

as the average accuracy) or goodness of a classifier: it is indicative of the rate of

distinguishing a true positive from a false positive. Therefore, the larger the area, the

“better” a classifier. Perfect classification is indicated by an area of 1.0. The area

under the curve is interesting from the perspective that it is a measure for the accuracy

of the classifier that is independent of the cutoff value chosen when interpreting the

inference result.

ROC analysis addresses the variance of sensitivity and specificity due to variance

in interpretation thresholds. However, it is still subject to some limitations: first, only

binary classifications can be considered, such as the presence or absence of inconsis-

tencies. Secondly, ROC analysis still requires a reference standard that indicates the

true state (e.g., whether a pair of properties is inconsistent or not). Imperfect refer-

ences standards would introduce a bias. In addition, the area under a ROC curve is

not a good measure of performance if the cost of misclassifying examples in one class

(e.g., “is inconsistent”) is very different from misclassifying examples in the other

class (e.g., “is not inconsistent”), or the occurrence of one class is much rarer than

the other [47].

8.2.4.4 Value-Based Comparison of Classifiers

In this section, an alternative measure of performance for a binary classifier based on

its value is introduced. The value of a classifier can act as a basis for comparison of
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two or more alternative classifiers. Determining the value of a classifier requires taking

into consideration the value of the mission – here: the identification of inconsistencies

– and subtracting the invoked cost. This invoked cost depends on the cutoff value, the

cost of testing, and the number of correctly and wrongly classified elements. One way

of determining the value of a classifier is to calculate the expected value of classifying

a single outcome at a particular cutoff value c = i:

E [Vc=i] = E [Vmission] − Cinv,c=i (27)

The invoked cost Cinv,c=i is dependent on the expected cost of performing the test (i.e.,

collecting the evidence about the outcome from the graph-based model by matching

various patterns), the expected cost of verifying a true positive Cver,TP , the expected

cost of verifying a false positive Cver,FP , and the expected cost incurred by a false

negative CFN . Determining the expected cost incurred by a classifier also requires

knowledge about the (true) expected frequency of TPs, FPs and FNs occurring at

various cutoff values. These frequencies are denoted by PTP,c=i, PFP,c=i and PFN,c=i.

Note that the cost is not dependent on true negatives. Therefore, the expected cost

incurred per sample can be expressed as follows:

Cinv,c=i = Ctest + PTP,c=iCver,TP + PFP,c=iCver,FP + PFN,c=iCFN (28)

Note that one can assume that Cver,TP = Cver,FP since, in both cases, a verification

of an inferred statement is required, and it can be argued that the cost of verification

does not depend on whether a true positive or false positive is found. Furthermore,

by nature of inconsistencies, the cost of not identifying an inconsistency is expectedly

much larger than the cost of verification of a TP or FP. Therefore, CFN � Cver,TP .

However, Cver,TP is non-negligible if PFN,c=i � (PTP,c=i + PFP,c=i). This assumption

is deemed acceptable for the general case, particularly in cases where a very large

number of inferences are expectedly performed (e.g., in the case with identifying
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inconsistent pairs of properties), and the inconsistency identification knowledge has

been carefully crafted.

To compare two or more classifiers, a number of additional simplifying assumptions

can be made. Firstly, for a single application context (i.e., the development of a

particular system), the value of the mission can be said to be equal across all classifiers.

This leads to the conclusion that a comparison of the classifiers can be based on the

incurred cost. Secondly, it can be assumed that Ctest is constant on average for each

sample and in relation to the size of the graph-based model being polled. In summary,

given the cost of two classifiers with an identical mission (here: identification of

inconsistencies) that are applied in the same context (a single system), the classifier

that invokes the least cost should be preferred, since, by the assumptions made, it is

of the highest value.

8.2.5 Experiments & Results

In the following pages, the results from performing a series of experiments are outlined.

The primary goal of the experiments is to characterize the behavior of the proposed

inconsistency identification approach. This is done by using the proposed approach

for the purpose of identifying inconsistent (and, in the process, overlapping) pairs

of properties. The collected results act as evidence for determining the validity of

hypotheses 3, 4 and 5, and aid in answering research questions 2 and 3.

The basis for the measurements in each experiment are a number of automatically

generated sets of railway models. The data collected for each experiment is averaged

over 35 generated sets of sets of models. Each set of heterogeneous railway models

describes:

• 2 to 5 routes

• 4 to 12 segments per route

• 1 to 3 switches per route

260



• 1 to 3 sensors per generated switch

• 6 to 14 additional track elements per switch in the track network

The exact number is determined by sampling uniformly and independently from

each range. In the process, 2 + n (where n = #routes) models are generated (1

system model, n detailed route models, 1 track network model). The probability of

potentially introducing an inconsistency to a pair of equivalent properties is set at

0.3 (recall from section 8.2.2.4 that it is possible for an inconsistency to be intended

to be introduced, but because of the circumstances encountered, the inconsistency

may not be introduced). Note that 0.3 was chosen based on research by the National

Institute of Standards and Technology (NIST), which showed that under stressful

working conditions humans tend to have an error rate of 30 percent.

For each experiment, the following data is stored for purposes of post-processing:

• The Bayesian network structure and parameters used

• For each generated set of models:

– A list of the actual semantic equivalences (i.e., model overlap)

– A list of the actual inconsistencies

– The specific parameters used in generating the model

– The raw, generated models in RDF

In addition to the metrics above, experiment-specific measurements and any sup-

plementary (generated) data is stored as well.

8.2.5.1 Initial Setup & Bayesian Network Used

To characterize the proposed approach, and to compare it to existing approaches, the

Bayesian network illustrated in figure 46 is primarily used for the following experi-

ments. Note that this network ignores much of the larger semantic context around the
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Figure 46: Compact Bayesian network used in reasoning about the inconsistency
and semantic equivalence of distinct pairs of properties.

properties, and an analysis of representation conventions and syntactic similarity is

used as the primary evidence for semantic equivalence (similarity of the names of the

properties, and similarity of the names of the owners of the properties). Whether or

not a pair of properties is inconsistent is then determined by the probability of seman-

tic equivalence and by comparing the (base) constraints on the properties. Therefore,

the assumptions made are comparable to those made by state-of-the-art automated

approaches to identifying model overlap, such as pattern- (or negative constraint-)

based inconsistency identification approaches (see chapter 3). The possible target

space values and patterns associated with the random variables, and elicited network

parameters are detailed in appendix A.1.

The “similarity score” referred to in the Bayesian network is a normalized value

between 0 and 1 that is calculated based on the Levenshtein distance [137] developed

(but not exhaustively investigated) as part of this research. The Levenshtein distance

measures the difference of two expressions e1 and e2 by determining the number of
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edit operations (insertions, deletions, or substitutions) that are required to transform

one expression into another. Therefore, a Levenshtein distance of 0 is indicative of

the two expressions being equal, and a distance of n with |e1| = n and |e1| ≥ |e2|

indicates the highest possible dissimilarity value. The normalized similarity score s

of e1 and e2 is defined by:

s(e1, e2) = 1− lev(e1, e2)

max {|e1|, |e2|}
(29)

Note that max {|e1|, |e2|} is the maximum Levenshtein distance between two expres-

sions. Dividing by this value leads to a normalized form of the Levenshtein distance,

where 0.0 indicates equality of the expressions and 1.0 indicates complete dissimilar-

ity. The similarity score introduced here is then simply the inverse of this, where a

similarity of 1.0 is defined as complete equality. For the calculation of the Levenshtein

distance lev(e1, e2), the implementation provided by the Apache Commons Lang 3.3.2

library (static method in class StringUtils) is utilized.

8.2.5.2 Initial Measurements

As an initial starting point, the Bayesian network introduced in the previous section

is utilized for identifying inconsistencies (and semantic equivalences) in 35 sets of

generated models. It should be emphasized that no explicit knowledge about semantic

equivalences are entered into the models or made available to the reasoner in any way.

For each generated set of models, all deductions are stored. These deductions

are then analyzed to determine the number of true positives, false positives, true

negatives and false negatives. This is done by comparing deductions to the list of

true inconsistencies and equivalences. By doing so, the number of TP, FP, TN and

FN produced at each cutoff value can be determined. From these values, the recall,

precision, specificity, F-measure and cost incurred are then calculated. Note that

only cutoff values between 0.01 and 0.99 (inclusive) are considered, with increments

of 0.01.
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Figure 47: Recall, precision, specificity, F-measure and cost incurred by the classifier
for inconsistency identification, averaged over 35 runs and plotted over different cut-
off values.

The averaged values (over 35 runs) for recall, precision, specificity, F-measure

and normalized cost (i.e., cost divided by the maximum cost over all cutoff values)

are plotted for classifying inconsistencies in figure 47 and for classifying semantic

equivalences in figure 48. Note that for the cost incurred by an inconsistency, it is

assumed that CFN,incon = 10000 Cver,incon – i.e., the cost incurred by not identifying

an inconsistency is 10000 times higher than the cost of verifying a sample manually.

For equivalences, it is assumed that CFN,equiv = 0.05 CFN,incon = 500 Cver,equiv.

Note that in both figures 47 and 48 the incurred cost first decreases, and then

increases again. The initial increase in cost can be correlated with the (comparatively)

larger number of false positives produced (indicated by the precision) if the cutoff

value is low. However, the cost rises again once the cutoff value is too large, which is

an effect of the classifier producing a larger number of false negatives (indicated by a

decreasing recall). Note that the F-Measure – a common metric used for determining
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Figure 48: Recall, precision, specificity, F-measure and cost incurred by the classifier
for semantic overlap detection, averaged over 35 runs and plotted over different cut-off
values for classification.

an appropriate cutoff value – is close to the optimum determined by the incurred cost,

but tends to suggest a higher value. However, this can be explained by the fact that

equal weight is put on precision and recall in the case of the plotted F-Measure.

Also interesting to note is the very high specificity, even for small cutoff values

(note that the specificity is never 0, since 0.0 was not considered as a cutoff value). As

mentioned, the number of pairwise comparisons performed by the classifiers is large.

Therefore, a high specificity is indicative of a very high number of true negatives as

compared to false positives. To illustrate the effect of this on the performance of

the classifier, the ROC curve is plotted in figure 49. Note that the large area under

the curve (which, visually inspected, is close to 1) is indicative of good performance

of the classifier. This is interesting, and somewhat surprising, since relatively näıve

assumptions have been made in building the classifier.

Finally, a particularly interesting observation about the inconsistency classifier
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Figure 49: Receiver operating characteristic (ROC) for inconsistency identification
averaged over 35 runs (linear interpolation between points).

(figure 47) is that the recall is 0 for any cutoff value ≥ 0.5. However, for the same

cutoff value, it is non-zero for the case of classifying equivalences, but there is a

significant drop at the same point (figure 48). It seems then that, for cutoff values

> 0.49 the evidence for a pair of properties being inconsistent outweighs the evidence

for the pair of properties being equivalent. That is, the evidence collected about

a pair of properties indicates semantic difference so strongly (due to the degree of

inconsistency or, rather, mismatch in information), that the hypothesis of the pair of

properties (intendedly) being equivalent and inconsistent is rejected. This supports

the discussion from section 7.1.3.

8.2.5.3 Impact of Strong Supporting Evidence for Inconsistency on Semantic
Overlap Detection

Based on the observations made in the initial experiment, a hypothesis can be for-

mulated that removing observations about the similarity of the constraints imposed
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Figure 50: Effect of removing the dependence of constraint similarity on the (in-
tended) semantic equivalence of a pair of properties.

over a pair of properties should lead to a higher recall for a cutoff value of 0.5. To

investigate this, the node ConstraintSimilarity and the corresponding influence rela-

tionship to EquivalentProperties is removed from the Bayesian network, the Bayesian

network parameters are updated accordingly, and the procedure for measurements as

detailed in the initial experiment is repeated. Note that, for reasons of performance,

and without impact on the accuracy, the node InconsistentProperties was removed

also. Figure 50 shows the result for the updated classifier for semantic equivalence.

As suspected, leaving out the comparison of constraints has led to a higher recall

value at 0.5. However, it is also interesting to observe that more FPs are produced at

lower cutoff values than previously, with a sudden spike of the precision at 0.6, and a

sudden downfall of the recall at 0.78. The sudden spike in precision can be explained

by the fact that whether or not the owning entities (parents) of the pair of properties

are similar provides strong evidence in support of the properties being equivalent,

given that the names of the properties are also similar. The sudden decline in the
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recall can be explained by the fact that, based solely on the name, it cannot be said

with certainty whether the owning objects are equivalent (for a score of 0.8 to 1.0 the

probability of the parents being equivalent is elicited as 0.8). Combining this with

an elicited probability of 0.98 for the properties being equivalent given that their

names have a similarity score value of 0.8 to 1.0 and their parents are equivalent,

this leads to a value below 0.8. Note that the equivalence of owning parents is never

observed explicitly in the graph-based model. Also note that, for brevity, the full set

of modified network parameters is not included as a part of this manuscript.

8.2.5.4 Impact and Sensitivity of Prior Beliefs

To this point, a Bayesian network has been utilized for which the network parameters

are specified through capturing subjective beliefs on them. However, the resulting

probabilities are not likely to be the true probabilities (see the discussion in sec-

tion 7.2.4). Therefore, the impact and sensitivity of the prior beliefs on the network

parameters is investigated in this section. The hypothesis is that the average precision

and accuracy can be improved by selecting probabilities for the network parameters

that are closer to the true value.

To investigate the validity of the hypothesis, the true network parameters for

the Bayesian network from figure 46 are determined. This is done by comparing

the deductions made about all pairs of properties by the reasoner to the true state

(as stored during the model generation process). From this, a set of complete data

cases5 can be generated. To compute network parameters that are as close to the

true ones as possible, 123 sets of models were generated and analyzed. By doing

so, 5, 516, 490 samples (i.e., unique pairs of properties) were made available. For

brevity, the computed network parameters are not included as part of this dissertation

document.

5In Bayesian learning, a complete data case is a data case (see section 2.3.5) in which a value is
known for every random variable in the network.
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Figure 51: Average recall, precision, specificity, F-measure and incurred cost for
the Bayesian network, with true values for the network parameters (inconsistency
classification).

Figure 52: Average recall, precision, specificity, F-measure and incurred cost for
the Bayesian network, with true values for the network parameters (semantic equiv-
alence).
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Using the acquired true network parameters, the recall, precision, specificity, F-

Measure and incurred cost are determined using the same procedure as in the initial

experiment (averaged over 35 runs). The results are illustrated in figures 51 and 52.

Immediately visible is the very large difference in precision and almost constant,

very high value for specificity, over a wide range of cutoff values. Precision drastically

rises even with little evidence considered. This strongly indicates that false positives

can be reduced by refining the probability distributions on the network parameters.

The effect is also visibly dominant in the incurred cost. Here, the curve is monotonic

and no longer convex, suggesting a negligible impact of FPs.

Secondly, for the inconsistency classifier, note the almost immediate decline in

the recall. The decline happens slightly earlier than the one observed in figure 47.

Analyzing the Bayesian network in both cases, it can be observed that the decline

seems to coincide with cutoff values above the prior belief on any pair of properties

being inconsistent (from the Bayesian networks, one can determine this probability

(of inconsistency, given no observations) as pinitial = 0.04178 and ptrue = 0.04121).

This may be an indication of an incompleteness (or, rather, underspecification) of the

inconsistency identification knowledge (possibly the patterns) which leads to some in-

frequently occurring manifestations of an inconsistency not being detected. However,

this is very likely the result of a relatively rare, but nonetheless possible case when

injecting the generated models with inconsistencies. As outlined in section 8.2.2.4, it

is possible for the length of two semantically equivalent segments to have the same

value, but different intended units – that is, no units are specified (in either case),

but the modelers intended to use different units (which are not explicitly represented

in the model). The hypothesis that this observation is a result of this rare type of

inconsistency is supported by the fact that, in figure 52, the recall value for seman-

tic equivalences is still 1.0 at that point. Note that such inconsistencies are almost

impossible to identify without further information, and only by choosing a very low
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Figure 53: Incurred cost by classification of inconsistencies by the Bayesian network
with elicited beliefs on the network parameters compared to the cost incurred using
the true frequencies.

cutoff value (here, a cutoff value corresponding to the prior belief) and accepting the

production of a large number of FPs.

In the case of the equivalence classifier (figure 52), what is particularly noticeable

is that for none of the cutoff values between 0.01 and 0.99 is the recall 0. That is,

certain features are considered very strong indications of semantic equivalence. This

is an effect of truly fitting the parameters to the generated set of models.

It is interesting to compare the difference in value of the classifiers for the cases

of using the true probabilities and degrees of belief on the network parameters. As

mentioned in section 8.2.4.4, the cost incurred by two classifiers can be used as a

direct comparison (if the context in which they are applied is the same). Figure 57 is

a plot of the cost incurred by the classifier for inconsistencies with elicited subjective

beliefs, and the cost incurred by a classifier with the true network parameters over the

full range of cutoff values. The costs can be compared since the models are generated
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under the exact same conditions.

Note that even though a lower minimum cost can be achieved by using a classifier

with the true values for the distributions on the network parameters, the classifier

with the elicited distributions seems to be more robust, and can achieve similar per-

formance for a wider range of cutoff values. It is also capable of correctly classifying

inconsistencies in this range at the expense of producing more false positives. This

very likely results from a human’s tendency to underweight outcomes, as is described

in section 7.2.4.

Lastly, it should be noted that, given the observations made, the determined pa-

rameters are likely not the true values, but merely close to the truth. An investigation

of the network parameters revealed that few data points were available about certain

events, suggesting that some events are very infrequent, hence producing sub-optimal

results. However, the determined parameters are deemed accurate enough to depict

the trends, and are, nonetheless, useful in comparing with the case of using subjective

beliefs. It is hypothesized that as the number of samples reaches infinity, the values

for precision, recall and cost will be constant. A value for the recall or precision

below 1.0 would then clearly indicate an under- or over-specification of the structure

of the network and / or patterns. If recall and precision reach 1, the network and

patterns are capable of entailing inconsistencies in a logically correct fashion (given

the conditions under which the models are generated).

8.2.5.5 Impact of Incremental Learning

From the observations made in the previous experiment, it can be deduced that the

production of FPs can be lowered by refining the Bayesian network parameters in

such a way that they get closer to the true values. In section 2.3.5, a method for

automatically updating the beliefs on network parameters was introduced using data

cases. That is, starting from a set of prior beliefs on the network parameters, the
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distributions representing these beliefs are updated (incrementally) using vectors of

values for each of the random variables in the network. In practice, one can replicate

this process by uniformly sampling from the deductions made by the reasoner, and

manually verifying whether, for the given sample, an inconsistency or equivalence is

present. This leads to values for all random variables, which can then be used to

update the distributions. Theoretically, this should decrease the number of FPs.

To verify this hypothesis, 50 sets of models were generated and analyzed. After

every generation of a set of models, 10% of the deductions (up to a maximum of

2500) were analyzed by comparing them to the lists of actual equivalences and in-

consistencies to generate data cases (individual cases were determined by uniformly

sampling from the set of all deductions). These data cases were then stored in an Ex-

cel spreadsheet (for later verification and post-processing) and used in updating the

distributions on the network parameters incrementally. These updated distributions

were then used in reasoning over the model in the successive generation of a set of

models. This process is repeated for all 50 sets of models, leading to the generation of

101, 019 data cases. Note that, in the process, the elicited distributions were updated

incrementally. To better see the impact of learning on the prior distributions, an

equivalent sample size (see section 2.3) of 100, 000 is used for the prior distributions.

This is representative of how strong one’s belief is [152] (i.e., how large the pool of

observed samples is).

The updated network parameters determined after successively learning from 10%

of the deductions of 50 sets of generated models were then used in reasoning about

inconsistencies and semantic equivalences in 35 newly generated sets of models. This

is done to determine averages for recall, precision, specificity, F-measure and incurred

cost (depicted in figures 54 and 55).

Immediately noticeable in both plots is an overall increase in precision and speci-

ficity. Additionally, it appears as though the trend of the precision curve is becoming
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Figure 54: Average recall, precision, specificity, F-measure and incurred cost after
learning from 10% of the deductions of 50 sets of generated models (inconsistency
classification).

Figure 55: Average recall, precision, specificity, F-measure and incurred cost af-
ter learning from 10% of the deductions of 50 sets of generated models (semantic
equivalence).
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more similar to that observed in figures 51 and 52. However, also noticeable is a de-

crease in recall for lower cutoff values. It is suspected that this is a result of too few

data cases considered to accurately define the network parameters – indeed, compar-

ing the network parameters of the various investigated cases more closely, it appears

that some of the true distributions are very different than those elicited from a hu-

man. This is suspected to be an effect of regression: when eliciting the beliefs over

the network parameters, the algorithmic injection of inconsistencies and incomplete-

nesses is not considered (although there almost certainly is still a slight bias). For

instance, consider the belief on the event “The parents of the properties are simi-

lar with probability 0.8 if the constraints imposed on the properties are exactly the

same, and the names of the parent entities have a similarity score value between 0.6

and 0.8”. This is an extremely rare event and, for the case of the generated mod-

els, produces a large number of false positives. Indeed, the true probability of this

event can be determined analytically to be 0.0072, which is accurate given the specific

parameters used for generating models, and the specific circumstances under which

inconsistencies and incompletenesses are introduced (i.e., the probability is a result

of fitting the parameters to the data). However, while statistically correct, it does

not reflect the belief on future outcomes and is outside of the realm of the generated

models.

Lastly, what is also very noticeable is a sharp decline in the precision at about

0.71. The curve stops at 0.8, since the value for precision is undefined for the case of

no TPs and no FPs (this would lead to 0/0). This coincides with the drop in the recall

value (note that the recall does not fall to 0 until after 0.8 – for the case of no TPs,

precision would be 0), which means that the ratio of TPs to FPs is comparatively

high. This, once again, is a likely indicator that the Bayesian network and patterns

should be refined. Some pairs of properties are recognized as relatively likely to be

semantically equivalent, even though they are not in actuality.
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Figure 56: Differences in average recall, precision and incurred cost of the incon-
sistency classifier after learning from 10% of the deductions of 1 set of generated
models.

The experiment is repeated for the case of learning from 10% of the samples of

just one set of generated models. As a prior sample size, 2, 500 is used. The resulting

smaller set of deductions used as datacases (approximately 2500) represents a more

realistic case. Given that the prior sample size is of an approximately equally large

quantity, the prior is still prevailed. Similar to the previously performed experiment,

averages of recall, precision and cost were computed by applying the updated in-

consistency identification knowledge to 35 sets of generated models. The results are

plotted in figure 56, where the performance is also compared to the results of the

initial measurements.

What is immediately visible is a significant reduction in incurred cost (up to

approximately 13%) for cutoff values below 0.08. Further investigation reveals that

this is due to the reduction in the number of false positives. This can be seen by the

shift in the curve of precision towards the trend recognized previously. Note that the
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Figure 57: Incurred cost by classification of inconsistencies by the Bayesian network
with elicited beliefs on the network parameters compared to the cost incurred using
the true frequencies.

slight reduction in recall is a result of a statistical error stemming from the use of

different set of generated sets of models for determining the average measures (this

is done to emulate learning from previous experience, and applying the results to a

similar, but not identical situation).

Finally, the cost incurred after learning is compared to the cost incurred before

learning, and to the cost incurred by a classifier that has the true network parameters.

These various costs are plotted in figure 57. Note that it is valid to compare the

(normalized) costs due to the identical conditions under which these curves were

created (same model generation parameters, same cost ratios).

Note from figure 57 that, as noted previously, the minimum cost is evidently

smaller in both the case of incrementally updating the prior distributions on the

network parameters and in the case of using the true network parameters. However,

similar to the case of using the true network parameters, the fact that FNs are
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produced earlier leads to a higher expected cost for small cutoff values. The fact that

the cost incurred by the classifier with subjective beliefs on the network parameters

performs better for a wide range of cutoff values as opposed to the other classifiers

could be due to two reasons: either a sampling error (i.e., 35 generated models is too

few), or simply a result of under-weighing outcomes. The latter is supported by the

fact that the recall value is higher, and the precision value lower, in this range for the

classifier with subjective beliefs. This means that the classifier is more conservative

in predicting an inconsistency and is capable of producing more TPs for a wider range

of cutoff values. This is, once again, an indication of the robustness of the classifier.

It also means that it is sometimes more valuable to produce more false positives in

order to avoid false negatives.

Interesting to observe in the case of using large numbers of data cases is the shift

of the sudden cost increase cost for lower cutoff values. As discussed previously, this

is likely the result of learning with comparatively few data cases. For instance, for the

case of the previously mentioned event “The parents of the properties are similar with

probability 0.8 if the constraints imposed on the properties are exactly the same, and

the names of the parent entities have a similarity score value between 0.6 and 0.8,”

the probability will decrease as more data cases are considered, while the distributions

on other parameters may increase.

8.2.5.6 Impact of Cost Ratio

One of the observations made about the behavior of the classifier in the initial ex-

periment, is that the cost first decreases (and is initially large due to a large number

of FPs), and then increases again due to the production of FNs. Interesting to in-

vestigate is the impact of Cver/CFN . This ratio is highly dependent on the expected

impact of a FN compared to a FP: for instance, in cases where the impact of an undis-

covered inconsistency leads to drastic consequences (e.g., mission failure in the case
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Figure 58: Relative effect of various cost ratios on the incurred cost over the range
of cutoff values.

of the MCO (see chapter 1)), this ratio is very small and, hence, (Cver/CFN) → 0.

It is expected that the impact of a FP diminishes in cases of very low ratios, and

dominates for small cost ratios.

To investigate this hypothesis, the gathered data (e.g., generated models and

deductions made) from the initial experiment are re-used, and the cost incurred

under the assumption of various cost ratios are plotted for the case of inconsis-

tency classification. Four ratios are considered: Cver/CFN = 0.1, Cver/CFN = 0.01,

Cver/CFN = 0.0001 and Cver/CFN = 0.000001. The result of this is illustrated in fig-

ure 58. Note that different scaling values are used for each curve (i.e., the maximum

actual cost incurred is much higher for the ratio 0.000001 than for 0.01). The aim of

plotting the various cost ratios is to illustrate the relative effect of FPs and FNs on

the incurred cost.

The non-negligible impact on the incurred cost by the FPs even for relatively low

ratios (e.g., 0.0001) is interesting since it shows the importance of carefully having to
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Figure 59: Incurred cost as a function of the cutoff value and cost ratio Cver/CFN .

select cutoff value that is neither too low, nor too high. However, as suspected, for

extreme cases (e.g., 0.000001), the relative impact of FPs diminishes. Also striking

is that the shape of the curve for very small ratios approaches the shape of the curve

identified for the true network parameters. This is a logical consequence of equa-

tion 28. However, important to observe is that, as the relative impact of FNs rises,

the value of refining network parameters in an effort to reduce FPs likely diminishes.

One additional interesting observation is that a plateau seems to exist in which

the cost is comparatively low, irrespective of the cost ratio. This is likely a behavior

specific to the classifier (that is, the Bayesian network and patterns). Remembering

figure 47, the recall is relatively constant for the same range of probabilities. Given

that false negatives have the largest impact, the plateau is no surprise. However,

what is striking is that, even for relatively small cost ratios, the impact of FPs is

fairly low in this region, even though the precision is very low (and hence the number

of false positives is high compared to true positives).

This, combined with the previous observations is indicative of the fact that there
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is only a relatively small range of cost ratios in which the impact of FNs and FPs

are comparable (hence, requiring a trade-off). However, regardless of the cost ratio,

there seems to be some range of cutoff values which are always favorable. As men-

tioned previously, it can be hypothesized that this is likely a behavior specific to the

particular classifier used. Figure 59, is a plot of different cost ratios, cutoff values and

actual incurred cost (i.e., not normalized). Note the steep incline of the cost as the

ratio nears 0 and the cutoff value is large. This is due to the high impact of FNs as

compared to FPs. The incurred cost is very small for low cost ratios and high cutoff

values due to a low number of FPs and due to an almost negligible effect of the cost

incurred by FNs compared to the cost incurred by FPs.

8.2.5.7 Impact of Size of Inconsistency Identification Knowledge

In this section, the effects of using a larger set of inconsistency identification knowledge

is investigated. For this purpose, a second, more comprehensive Bayesian network is

used and the results gathered are compared to the network used in previous experi-

ments. This is done to further investigate the hypothesis that the observed behavior

is classifier-specific, and that the plateau is an indicator of humans under-weighing

outcomes. In addition, it is determined whether considering more a greater variety

of information still leads to the evidence of inconsistency outweighing the evidence

of semantic equivalence (see section 8.2.5.2). Models are generated under identical

conditions as before, and the same incurred costs by FPs, TPs and FNs are assumed,

so that both cases can be compared.

The Bayesian network is illustrated in figure 62. Random variables, target space

values, associated patterns and elicited distributions on the network parameters are

detailed in appendix A.2. The primary difference from the network used previously

is the consideration of the larger semantic context around a pair of properties. For

example, the similarity of a property’s range is considered, as well as the similarity
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Figure 60: Recall, precision, specificity, F-measure and cost for inconsistency identifi-
cation averaged over 35 runs and plotted over different cut-off values for classification
(comprehensive Bayesian network).

of the types of the owners of the properties. In addition to a similarity score, a check

is performed whether the expressions being compared (here: names) are synonyms.

This check for synonyms is performed by polling the previously introduced WordNet R©

database. As before, the similarity score defined by equation 29 is used for comparing

the similarity of two (textual) expressions. Note that some influence relationships

which one may expect to exist in actuality (e.g., between SameRelationType and

RelationTypeNamesSimilar) are left out. This is done to reduce the overall complexity

of the network parameters. For parts of the Bayesian network, this leads to conditions

similar to those which exist when using a näıve Bayes model (see section 7.2.3.3)).

Figures 60 and 61 depict the averages (again, over 35 generated sets of models)

of recall, precision, specificity, F-measure and cost for the case of classifying pairs of

properties as inconsistent and as semantically equivalent, respectively. Comparing the

plots to the results gathered using the compact Bayesian network (figures 47 and 48),
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Figure 61: Recall, precision, specificity, F-measure and cost for semantic overlap de-
tection averaged over 35 runs and plotted over different cut-off values for classification
(comprehensive Bayesian network).

what immediately becomes evident is the much lower precision over a wide range of

cutoff values (and, hence, the much larger impact of FPs on the cost as compared to

the FNs). This indicates that a much larger number of false positives are produced as

compared to the network that made arguably more näıve assumptions. The reason for

this is suspected to be the much larger amount of evidence considered, most of which is

not a strong indicator of either inconsistency or semantic equivalence, yet gradually

increases the belief. In the case of the inconsistency classifier, this hypothesis is

supported by the fact that there is a noticeable increase in precision, followed by a

sharp drop in the recall value at around 0.6 (recall that similar observations were made

in the case of the compact Bayesian network). The reason for this is that semantic

equivalence strongly influences the probability of inconsistency. Sufficient evidence

indicating this is suspected to reduce the number of FPs drastically at a cutoff value

of 0.56 to 0.58. This is followed by a reduction in the recall value, which indicates
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that at that point (similar to before) evidence that the properties are semantically

different (in some sense inconsistent) outweighs evidence that they are (intended to

be) equivalent. This is, once again, supported by the sharp drop in the recall value

for the semantic equivalence classifier (figure 61), which indicates that those pairs of

properties that are intended to be semantically equivalent, but are also inconsistent,

are no longer classified as inconsistent or semantically equivalent (due to these being

considered too different by either classifier).

One additional interesting observation is a slight decrease in the recall value at 0.2

for identifying inconsistencies, but not semantic equivalences. It is suspected that this

is due to a relatively rare, but nonetheless possible case that can be introduced when

injecting the generated models with inconsistencies. As outlined in section 8.2.2.4, it

is possible for the length of two semantically equivalent segments to have the same

value, but different intended units – that is, no units are specified, but the modelers

intended to use different units. Such cases are, of course, almost impossible to identify

without further information, or by choosing a low cutoff value (here, a cutoff value

below 0.2) and accepting the production of a large number of FPs.

An effect of the (comparatively) very low precision over a wide range of cutoff

values is also a lower specificity over this range. As before, this is indicative of a

need to revise the inconsistency identification knowledge and, in particular, the dis-

tributions imposed over the network parameters. Such is (by inference from previous

observations) expected to reduce the number of false positives.

Even though the precision is evidently low for a wide range of cutoff values, plot-

ting the ROC curve for the inconsistency classifier still indicates a very good perfor-

mance of the classifier. This is striking, since the cost curve seems to suggest the

necessity of refining the classifier. Also note the maxima for the F-measure: in the

case of the inconsistency classification (figure 60), the F-measure is at a maximum

when the cost is also at a minimum. However, for the equivalence classification, the
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Figure 63: Receiver operating characteristic (ROC) for inconsistency identification
averaged over 35 runs (comprehensive Bayesian network).

F-measure suggests a much higher cutoff value (≈ 0.93) than does the cost curve

(≈ 0.58). This indicates that – at least for the case of inconsistency identification –

the commonly used F-measure is not a very good metric to be used for identifying

an adequate value for the classification cutoff value, but that a value-based metric

is better on average. This also avoids having to artificially tune the parameter β of

the F-measure (to put more weight on either recall or precision) for producing results

comparable to the value-based measure.

To better illustrate the impact on the costs, those incurred by the inconsistency

classifier and semantic equivalence classifier are depicted in figures 64 and 65 respec-

tively, where they are compared to the cost curve of the compact Bayesian network.

Note that in producing the curves, it is assumed that the cost of the test Ctest is equal

in both cases. This is a strong assumption, given the larger number of possible states

across the comprehensive Bayesian network and the associated increase in computa-

tional cost for pattern matching. However, from a practical point of view, the cost
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Figure 64: Comparison of cost incurred by the inconsistency classifiers (compact and
comprehensive Bayesian network).

Figure 65: Comparison of cost incurred by the semantic equivalence classifiers (com-
pact and comprehensive Bayesian network).
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is negligible with respect to the relatively modest size of the models considered and

in relation to the cost incurred by verification of TPs and FPs, and the cost incurred

by FNs. Whether this is a generally valid assumption is investigated in a subsequent

experiment (see section 8.3.2).

Notice that in the cost plots depicted by figures 64 and 65, the minimum cost

incurred by the comprehensive Bayesian network classifier(s) is slightly higher than

that incurred by the compact classifier(s). However, the consideration of additional

evidence formed a plateau wider than that of the compact classifier(s). That is,

because of the additional evidence considered, the sensitivity of incurred cost with

respect to choosing a cutoff value is noticeably smaller for a wide range of cutoff values.

This is because the impact of individual observations that act as weak evidence in

support or opposition of inconsistency or equivalence is generally smaller. However,

this does not mean that considering more evidence is always better, since the cost

incurred by setting up and maintaining the inconsistency identification knowledge is

expectedly much larger. Also, the cost of a test is a significant consideration. This

results in a trade-off that must be considered.

8.2.6 Comparison to Deterministic Case

One of the conclusions reached in the previous section is that the initial and main-

tenance cost, as well as computational cost, associated with the application of the

approach influences the size of the inconsistency identification knowledge and, specif-

ically, the size of the Bayesian network and pattern complexity. However, one ques-

tion that has not yet been investigated is whether the proposed method outperforms

a state-of-the-art deterministic, pattern- (or negative constraint-) based approach.

This question is investigated in this section.

To compare the approach as best as possible, a pattern was constructed that

makes similar assumptions to the (compact) Bayesian network utilized in the last
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section. That is, semantic equivalence is based on representation conventions, where

properties are deemed semantically equivalent if their names, and the names of their

owners match. This is similar to the assumptions made by the fully automated

approaches described in section 3.3. To ensure comparability, the pattern was queried

over the same set of models generated during the initial experiment (section 8.2.5.2).

The patterns (and queries) used are written as SPARQL 1.1 [226] compliant queries,

and are made available in appendix A.3.

Queries were written for both identifying inconsistencies and semantic equiva-

lences, and for determining the number of TPs and FPs. The quantity of FNs is

determined by subtracting the number of TPs from the number of actual inconsisten-

cies or semantic equivalences. Note that the number of TNs were not computed. The

number of TPs, FPs and FNs were determined for all 35 generated sets of models and

their averages computed. From these, recall and precision are calculated and the av-

erages for inconsistency identification and semantic overlap detection are depicted in

figures 66 and 67 respectively. There the results of the deterministic case are overlaid

with the results from the initial experiment.

Note the relatively high precision of the deterministic classifier for inconsistencies.

This is due to the fact that all (base) properties are considered, including those

with non-numeric values. For instance, semantically equivalent Segments may have

semantically equivalent connectsTo attributes. However, since the range of these

properties is non-numeric, the connected instance is not comparable by simple value

equality. Interesting to observe about the deterministic inconsistency classifier is that

it is impossible for it to identify all cases. While the recall is comparatively high, it is,

unlike the Bayesian classifier, not capable of identifying all (or more) inconsistencies

at a slightly higher incurred cost.

For the case of semantic overlap detection, the precision of the deterministic clas-

sifier is fairly high. This is because, unlike in the case of the Bayesian network, the

289



Figure 66: Comparison of recall and precision of a deterministic classifier vs. the
proposed Bayesian classifier (illustrated for the case of inconsistency identification).

Figure 67: Comparison of recall and precision of a deterministic classifier vs. the
proposed Bayesian classifier (illustrated for the case of semantic overlap detection).
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Figure 68: Comparison of value (based on cost incurred) of a deterministic clas-
sifier vs. the proposed Bayesian classifier (illustrated for the case of inconsistency
identification).

values assigned to the pair of properties are not compared and have no influence.

Also, it is very unlikely for two non-equivalent properties with equal names, whose

parents also have the same name to be generated. Note that the recall is also fairly

highly but, similar to the case of inconsistency identification, instances where syn-

onyms are used, or spelling mistakes introduced (along with other such modifications)

are impossible to detect by the pattern. Therefore, unlike the Bayesian classifier, the

deterministic classifier is incapable of identifying all semantically overlapping pairs

of properties.

To better compare the deterministic and probabilistic case, consider figures 68

and 69 which depict the cost incurred by either type of classifier, given the same cost

ratio as used throughout the previous experiments. Note that the cost of the test is not

included, and setup and maintenance costs are not factored. Judging by these results,

and comparing them to previous comparisons of classifier cost (see, e.g., figure 53),
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Figure 69: Comparison of value (based on cost incurred) of a deterministic classifier
vs. the proposed Bayesian classifier (illustrated for the case of semantic overlap
detection).

it appears that for certain cutoff values the Bayesian classifier invokes less cost while

achieving a higher precision and recall. For instance, consider the cutoff range of 0.18

to 0.48: there, the cost of either Bayesian classifier is lower (and, hence, its expected

value higher) than that of the deterministic classifier. In the same range, the recall of

the Bayesian classifier is also higher than that of the deterministic classifier (at the

expense of lower precision). Note that this is the case for even this relatively simple

scenario, where the simulated degree of inconsistency and incompleteness is relatively

moderate.

The observations suggest the following: compared to a deterministic classifier,

using a Bayesian classifier can be more preferred. However, this depends on how

important it is to be able to identify all inconsistencies (e.g., how large the impact of

FNs is on the incurred cost), and is, therefore, strongly related to the system under
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development. In conjunction, the preferred classifier also depends on how inconsis-

tent the underlying models are expected to be. A Bayesian classifier is capable of

providing useful results with partial evidence, while a deterministic classifier requires

the full antecedent to act as a sufficient condition for an inconsistency. This would

expectedly lead to a decrease in recall (and, potentially, precision) as the degree of

inconsistency of the models increases. Additionally, compared to a Bayesian classifier,

using a deterministic classifier has the disadvantage that very large, complex patterns

need to be created and maintained, and that separate patterns are required for re-

lated reasoning tasks. For instance, for performing the experiments in this section,

separate patterns had to be created for semantic overlap detection and inconsistency

identification (which embedded the pattern for semantic overlap detection) (see the

patterns in appendix A.3). However, only one Bayesian network had to be created

for the same task. In practice, it is likely that variants of these patterns will be

created to account for special cases. This is a common issue with deterministic clas-

sifiers which lead to higher expected maintenance costs. This is a known issue with,

e.g., rule-based spam filters [5]. Expectedly, this maintenance cost is smaller for a

comparably expressive Bayesian classifier.

8.3 Algorithm Evaluation

In this section, the complexity of algorithms 1 and 2 introduced in section 6.3.1 is

evaluated. This is done from a standpoint of theoretical complexity, and through

empirical performance measurements.

8.3.1 Complexity Analysis

To determine the theoretical complexity of the algorithms, the uniform cost model

is used [146]. In the following pages, τj,i denotes the number of time units used for

executing line i of algorithm j. In general, it is assumed that atomic operations, such

as equality checks and assignments have a worst-case runtime of O(1) (that is, for
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these operations τ = 1). Note that, in the following, the behavior of the algorithm

with respect to the number of triples being reasoned over is analyzed.

Let t be the number of triples added and tG the number of triples in the data graph.

Furthermore, let r be the number of random variables in the Bayesian network, v the

largest number of target space values among all random variables, and p the number

of clauses (triples and functors) in the largest pattern associated with the Bayesian

network. Additionally, let o denote the number of possible outcomes in the data graph

and ob the largest number of observations made about any outcome. The complexity

in terms of time units of algorithm 1 can then be expressed as:

t(r(τ1,4)) + τ1,7 + o(ob(
13∑

k=10

τ1,k) + τ1,15 + (r − 1)(
20∑
l=17

τ1,l)) (30)

Similarly, the complexity of algorithm 2 can be determined to be:

v(τ2,3 + τ2,4 + τ2,6 + ob(τ2,8 + τ2,9 + τ2,10)) (31)

For simplicity, it is assumed that τ1,k = 1 for k = 7, 10, 11, 12, 13, 15, 17, 18, 19, 20 and

τ2,l = 1 for l = 3, 8, 9, 10. Note that this is a strong assumption for most of these lines

(except k = 7, 11 and l = 3, 9). For instance, for the union and difference operations,

the runtime is closer to n log(n) (given a hashing strategy) with n denoting the size of

the list, since lookups are performed rather than just adding values to a list. However,

for practical cases, it is deemed negligible compared to other operations involved.

Furthermore, for probabilistic inference in the Bayesian network, this assumption is

also very strong. However, the runtime of the junction tree algorithm is independent

of the number of triples added to the graph, and can be considered negligible compared

to the pattern matching operations for most practical situations (i.e., very large data

graphs and comparatively small Bayesian networks). Assuming τ1,4 is purely dictated

by the runtime of algorithm 2, and making use of the assumptions stated previously,

equations 30 and 31 reduce to the following single expression:

t(r(v(1 + τ2,4 + τ2,6 + ob(1 + 1 + 1)))) + 1 + o(ob(4) + 1 + (r − 1)(4))
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τ2,4 involves a lookup in the list of triples tG. Therefore, one can say that the op-

eration is O(t). τ2,6 involves matching clauses against the data graph. Assuming a

comparison of each clause in the pattern to each triple in the data graph, this op-

eration is O(p · t). Assuming the worst case of t = tG, the (approximate) algorithm

complexity can be said to be O(t2r(v+ p) + tob3p+ 1 + o(ob + 1 + 4(r− 1)) under the

given assumptions. Finally, assuming a constant Bayesian network (with associated

patterns), the simplified complexity is then O(c1t
2 + c2t+ c3) or simply:

O(t2) (32)

8.3.2 Empirical Performance Measurements

To verify the actual performance and compare it to the theoretical performance deter-

mined in the previous section, CPU timing measurements collected while performing

the experiments from section 8.2.5 are presented in this section. In addition, the peak

memory consumption of the algorithm is analyzed.

Figure 70 depicts the CPU time required for the probabilistic inexact reasoning

engine to exhaustively reason about all possible outcomes over the full data graph for

123 generated models. The results from the data collected in the experiment described

in section 8.2.5.4 are used for this purpose. The figure depicts the total CPU time

required (in seconds), which is plotted against the number of triples in the graph being

reasoned over (here: the data graph with all mediations applied). Note that the CPU

time is the sum of the user time and system time. User time is the time spent to run

an application’s code, and system time is the time spent by the processing unit to

run OS code on behalf of the application (e.g., disk input/output)6. Note that there

is some spread of data points, which is particularly noticeable as the models grow

in size. This is an effect of the built-in, non-deterministic garbage collection process

6Measuring system and user time is not simply the difference in two timer values. These more
sophisticated tools for timing are available since Java 5 (Java 1.5).
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Figure 70: Measured CPU time utilized during the execution of the Bayesian rea-
soner, plotted against the number of graph triples in the data graph (with mediation
rules applied exhaustively, and all RDF/RDFS inferences applied).

executed by the Java virtual machine at non-controllable points in time.

To verify whether the data exerts the trend suggested in the previous section

(O(t2)), a log-log plot can be constructed. This is illustrated in figure 71. In a log-log

plot, both the measured CPU time and number of triples reasoned over are scaled

logarithmically. If the resulting graph follows the expected trend of O(t2) the slope

should then be ≈ 2 (note that the use of “approximately” is useful here due to the

strong assumptions made when deriving the theoretical complexity). Inspecting the

plot visually, this seems to be the case.

Using the regression tools for fitting curves to scatter plots from Microsoft Excel

2010, the best fitting equation (with R2 = 0.992) was determined to be ypower =

8 · 10−8x2.3297 (where y refers to the y-axis (i.e., reasoning time) and x refers to

the number of triples. A polynomial with order 2 has a similarly good fit with

R2 = 0.9758. The polynomial determined is ypoly = 2 · 10−6x2 − 0.0036x + 2.5245.
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Figure 71: Measured CPU time utilized during the execution of the Bayesian reasoner
(log-log plot).

This coincides well with the expected results.

Since a second Bayesian network was utilized during the experiments, results

from reasoning using this (considerably more complex) Bayesian network are plotted

in figure 72. Note that only 35 data points as opposed to the previously used 123

data points were available. The determined best fitting curve (with R2 = 0.9974)

is y = 2 · 10−6 · x2.3494. Note that the power values are very close in both cases.

Indeed, their difference is less than 1% which is, considering that fewer data points

were available in the second case, a very close match. This indicates a mere change in

the multiplicative constant if different Bayesian networks are used over similarly sized

models, such as is predicted by the theoretical complexity analysis (see equation 32).

Note that the mediation time is negligible compared to the time required for the

probabilistic inexact reasoning process to fully execute. The CPU times required for

exhaustively applying all mediation rules to 123 generated models is illustrated in

figure 73. This illustrates the considerably higher computational complexity of the
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Figure 72: Measured CPU time utilized during the execution of the Bayesian reasoner
(comprehensive Bayesian network), plotted against the number of graph triples in the
data graph (with mediation rules applied exhaustively, and all RDF/RDFS inferences
applied).
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Figure 73: Measured CPU time utilized for exhaustively applying all mediation rules,
plotted against the number of graph triples in the raw data graph.

inexact probabilistic reasoning process as compared to the logical reasoning process,

each of which uses the same pattern formalism and pattern matching algorithms.

In addition to the CPU times, the peak heap memory consumption (as measured

by the Java virtual machine) was stored during each experiment. Figure 74 depicts

this consumption (in megabytes (MB)) as a function of the number of triples in the

model to which the inexact probabilistic reasoner was exposed.

Note that memory consumption is fairly high by nature of the algorithm, which

intentionally stores results of pattern matches about individual outcomes in a hashed

map for processing in a final phase. In the implementation of the reasoner, MapDB is

used for this purpose, which has a hash map implementation with a smaller overhead

(and hence, smaller memory footprint per entry) and is capable of caching parts

of the map on disk. Note that the Java virtual machine was limited to 7, 168MB

of heap memory (7 gigabytes), hence requiring MapDB to cache any entries on the

disk beyond that point. This advantage has the tradeoff of a slightly slower average
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Figure 74: Peak heap memory consumption measured during the execution of the
Bayesian reasoner plotted against the number of triples in the graph (with mediation
rules applied exhaustively, and all RDF/RDFS inferences applied). Note that the
memory consumption does not indicate a clear trend due to uncontrolled (random)
garbage collection by the Java virtual machine, and due to the use of a hash table
that is partially stored on the hard disk.
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runtime. Finally, note that the data points are spread very far due to MapDB, the

non-deterministic garbage collector, and the documented interaction between MapDB

and the garbage collector (see the documentation of MapDB7).

8.4 Summary

In this chapter, the proposed approach to identifying inconsistencies using abduc-

tive reasoning is characterized and evaluated. Specifically, the method introduced in

chapter 6 is applied to the task of identifying inconsistencies and detecting semantic

overlap.

In the first part of the chapter, a quantitative analysis of the approach is per-

formed. The chapter introduces and reviews a variety of evaluation metrics and

measures from the related literature. In addition, a value-based metric for comparing

different inconsistency identification approaches (and different classifiers) is intro-

duced. As a basis for taking measurements, heterogeneous models of railway systems

are automatically generated and injected with inconsistencies and imperfections (e.g.,

spelling mistakes and incompletenesses). Thereafter a series of experiments are con-

ducted, and the approach is compared to a status-quo deterministic approach.

For the characterization and evaluation, inconsistency identification knowledge

is created and six distinct experiments are performed. First, initial measurements

are taken for subsequent comparisons. The initial measurements already indicate

that the approach is capable of identifying all introduced inconsistencies. However,

it also clearly indicates the suspected problem related to having to infer intended

model overlap (see chapter 7). A follow-up experiment is conducted, where features

strongly indicating the presence of an inconsistency that also have an influence on

the probability of semantic overlap are removed from the reasoning knowledge. The

observations made confirm the hypothesis that, under certain conditions, evidence

7http://www.mapdb.org
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supporting inconsistency can outweigh evidence of semantic equivalence. A subse-

quent experiment investigates the impact of prior beliefs on the conclusions drawn

by the algorithm. It was conducted by comparing the performance of a classifier

with subjective beliefs, to those of a classifier with highly-informed priors (informed

through previously observed instances of inconsistencies in generated models). To

test the amount of information required to improve the average accuracy, reduce the

number of false positives, and reduce the sensitivity of the results, a fourth experiment

investigates the effects of incremental learning. It is concluded that a considerable

amount of data is necessary to significantly improve the performance of the classifier.

A fifth experiment investigates the impact of different cost ratios of producing false

positives, true positives and false negatives. It is demonstrated that under certain

circumstances, it is preferable to produce a larger number of false positives rather

than invoking the cost associated with a false negatives. However, it is also shown

that there is generally a trade-off that must be considered in practice. Finally, the

sixth experiment explores the impact of the quantity of inconsistency identification

knowledge on the performance characteristics. This is done by creating a second,

much more comprehensive Bayesian network, and comparing the results from the

previous experiments to those gathered using the larger network.

After conducting the experiments for purposes of characterizing the proposed

methods, the inexact reasoning method is compared to a status-quo deterministic

method. This is done by comparing the results gathered during the experiments to

the performance of a deterministic classifier (which is implemented by a series of

SPARQL queries). It is clearly demonstrated that the proposed method can lead to

significantly better results.

In the last part of the chapter, the performance of the algorithmic procedures

underlying the approach are evaluated. This is comprised of a theoretical complexity

analysis and the presentation of empirically gathered performance results. It is shown
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that the theoretical results align well with the theoretical complexity. Both CPU time

and memory consumption are investigated. It is concluded that, given the polynomial

time behavior of the algorithm, an incremental reasoning strategy is practical.
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CHAPTER IX

CONCLUSION

In this chapter, a reflection is made on the research questions and hypotheses from

section 1.3 by summarizing the insights gained from the results presented in the

previous chapters. The primary objective of this chapter is to evaluate the stated

hypotheses by considering the evidence collected in support (and opposition) of each,

and to investigate the extent to which the various research questions have been an-

swered. In addition, the research contributions are made explicit, and limitations of

the proposed methods are identified. Finally, suggestions for future work are outlined,

followed by closing remarks.

9.1 Recapitulation

In chapter 1, the motivating question for this research is expressed as:

Motivating Research Question. How, and to what extent, can inconsistencies in

a collection of distributed, disparate and heterogeneous models be identified automat-

ically?

The primary hypothesis of the presented research is that a probabilistic approach

can overcome the challenges and mitigate the limitations associated with apply-

ing state-of-the-art approaches to inconsistency identification within the context of

MBSE. One such challenge is that state-of-the-art approaches do not account for the

typical heterogeneity of models encountered in MBSE applications. A related chal-

lenge is the inherent and unavoidable (semantic) overlap of models, the automated

detection of which is subject to very strong assumptions in current practice. There-

fore, the primary focus of the presented research is the development, investigation
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and evaluation of an approach and its characteristics to aid in the (semi-)automated

detection of semantic overlap and inconsistencies within the context of MBSE.

Because the motivating research question is too broad to be answered in a single

research study, a number of more specific and focused research questions are intro-

duced and developed in section 1.3. These research questions are re-stated in the

following pages, and the degree and means to which these have been answered by the

presented research is outlined. This includes presenting the accompanying hypotheses

and a summary of the evidence gathered in their support (and opposition).

A fundamental basis for developing a (probabilistic) method for identifying incon-

sistencies in disparate, heterogeneous models is an understanding of what an incon-

sistency is and how it manifests. This insight leads to research question 1:

Research Question 1. What are the characteristics of typical inconsistencies in

engineering models? What kinds or types of inconsistencies can be identified, and

what unsatisfied semantic relationships are these a result of?

Two hypotheses are formulated as a response for this question: firstly, it is hy-

pothesized that “a state of inconsistency is influenced by the presence (or absence) of

a number of syntactic and semantic properties that are in conflict. These syntactic

and semantic properties manifest as propositions, and a configuration of conflicting

propositions can be abstracted by a pattern. Furthermore, these properties can be un-

derstood to represent evidence to suggest the presence (or absence) of a particular

type of inconsistency. A conflicting set of such properties (i.e., a match to a corre-

sponding pattern) represents a manifestation of a particular type of inconsistency iff

it entails the inconsistency.”. In response to the second part of research question 1,

the hypothesis is formulated that “it is possible and practical to differentiate between

different types of inconsistencies. There exists both a finite, closed set, and an open,

infinite set of types of inconsistencies and related types of semantic overlap”.

The research question, and the validity of the hypotheses, is investigated primarily
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in chapter 4. Characteristics of inconsistencies are identified by investigating funda-

mentals of consistency within the scope of formal modeling and its application to

the design of complex systems, as well as by analyzing several examples. The main

supporting evidence gathered for the first hypothesis is as follows:

• The related literature reviewed in chapter 3 establishes patterns as a potentially

meaningful method for representing and identifying different types of inconsis-

tencies.

• In the first part of chapter 4, it is shown that it is generally impossible to prove

consistency of a set of models, particularly within the context of MBSE. Those

types of inconsistencies that are detectable based solely on the information

and knowledge encoded in a model manifest as a part of the model. These

manifestations represent identifying features which, by definition, must either

be of a syntactic or semantic nature.

• Further evidence for the first hypothesis is provided in section 4.2.1. There, a

number of example inconsistencies are detailed, from which identifying features

of the inconsistency that are specific to the example are first extracted, and

then abstracted. In all cases, the problem is shown to be reduceable to a set of

conflicting assertions about semantically related entities.

• Chapter 2 and, in particular, section 2.2 detail the derivation of an inconsistency

from the perspective of proof theory: if a statement and its negation can be

inferred from the same formal system, the formal system is inconsistent. If an

expression can be proven to not be well-formed, it is inconsistent with the formal

system (given a consistent and complete formal system). It is shown that this

problem is intractable, and even undecidable for most languages. This makes

it non-practical within the considered context due to the semi-formal nature

of most modeling languages. An alternative view is introduced in section 4.3,
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where an abductive apparatus, rather than a deductive one is assumed. Ab-

duction implies identifying the best explanation for a set of observations. Here,

these observations are considered the identifying features of an inconsistency. It

is demonstrated how these identifying features can be combined and abstracted,

and how they represent a pattern.

• In chapter 5, it is shown that semantic and syntactic properties can be repre-

sented by propositions. Hence, types of inconsistencies manifest as configura-

tions of conflicting propositions, further support for which is gathered through-

out the application of the concepts in chapter 8.

The second part of the research question is investigated by means of reviewing

classifications of inconsistencies from the related literature and by considering funda-

mental aspects of the definition of formal models and modeling languages. In addition,

current modeling practices are considered. In summary, the main supporting evidence

gathered for the second hypothesis is as follows:

• In the related literature, distinguishing between various types of inconsistencies

is considered practical since it allows for better assessment of the impact of a

particular discovered inconsistency, and since it aids in taking appropriate steps

in resolving the inconsistency (in a later stage).

• The classifications of semantic relations and inconsistencies reviewed in sec-

tion 4.2.3 are specific to languages, domains or applications. Given the obser-

vation that all inconsistencies are the result of conflicting assertions, this im-

plies a closed set. However, similar to what most authors argue in the related

literature on semantic relations, any attempt at more concretely classifying in-

consistencies will necessarily lead to an open set due to the infinite nature of

most languages.
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Explicit knowledge of semantic relations and model overlap is crucial for identify-

ing inconsistencies. However, specifying these manually is costly, and their automated

inference remains a challenge. This insight has led to the formulation of the second

research question:

Research Question 2. How can semantic overlap and semantic relationships be

identified effectively and efficiently, and to what degree can this be automated?

The research question is primarily investigated in chapter 5, and further supported

by evidence gathered in chapters 6 and 8.

Two relevant hypotheses are formulated as a response to the research question.

The first hypothesis is that “a prerequisite to an effective method for identifying

inconsistencies [and semantic overlap] in heterogeneous models is the transformation

of the models to a common representational formalism, thereby allowing symbolic

processing across the models regardless of their nature, underlying formalisms, and

organization of the encoded knowledge and information”. In summary, the evidence

gathered in support of this hypothesis is as follows:

• In chapter 5, the first hypothesis is supported by the fact that the automated

identification of inconsistencies requires a symbolic processing capability across

models. This does not necessarily entail translation to a common representa-

tional formalism, but such a common formalism is shown to be more effective

and maintainable than ad hoc tool integrations.

• The definition of heterogeneous models given in chapter 5 also further supports

the first hypothesis: heterogeneous models imply the existence of incompati-

ble meta-models, varying formalism, different serialization formats, and differ-

ent modeling tools. This increases the complexity and negatively impacts the

maintainability of point-to-point integrations.
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• A common representational formalism has shown promise in chapters 5 and 6,

where the patterns defined for identifying inconsistencies span information and

knowledge in multiple models. This requires a pattern formalism that is capable

of incorporating data from models irrespective of their nature, formalism and

organization of encoded knowledge and information.

• The value and practicality of using a common formalism is also supported by

the application and evaluation in chapter 8, where the methods proposed in

chapters 5 and 6 are successfully applied.

The second hypothesis is that “an effective method for identifying inconsistencies

[and semantic overlap] throughout the life-cycle that is capable of drawing conclusions

from an incomplete (but continuously refined) description of a system should be based

on Bayesian updating.” This leads to the development of the method detailed in

chapter 6, and an investigation of the results from applying this method in chapter 8.

The main evidence gathered in support of the hypothesis is as follows:

• How Bayesian updating can be applied within the context of reasoning about

syntactic and semantic properties of models is detailed in chapter 6. The devel-

oped concept acts as supporting evidence since it demonstrates the feasibility

of such a method. The technical feasibility is demonstrated through the devel-

opment of a proof-of-concept tool support in chapter 8.

• The developed concepts are applied to an example inconsistency identification

scenario in chapter 8 (specifically section 8.2.5). The results clearly indicate the

capability of the method to identify inconsistencies and semantic overlap.

• In the same section (8.2.5), it is also demonstrated that the approach is capa-

ble of overcoming the challenge of detecting an intended semantic overlap of

inconsistent entities. This challenge is first identified in chapter 7.
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• The experiment conducted in section 8.2.6 clearly illustrates that a Bayesian-

updating-based method for identifying inconsistencies in sets of potentially in-

complete and inconsistent models is capable of identifying more inconsisten-

cies than a comparable deterministic approach. Particularly, the value-based

comparison indicates that the value of applying probabilistic reasoning can be

considerably higher than the value of deterministic reasoning.

• Discussions and references to the literature in chapter 7, and insights gained

from the experiments conducted in chapter 8 indicate improved maintainability

of the reasoning knowledge over using a set of deterministic rules.

Finally, the third research question is formulated as follows:

Research Question 3. What is an effective way of aiding modelers in the process of

efficiently detecting inconsistencies in a set of collaboratively developed, heterogeneous

and distributed formal engineering models? How can we improve upon the status quo

of rule-based approaches?

Given that the approach to both the identification of semantic overlap and in-

consistencies is the same, the third research question is closely related to the second.

However, it focuses more specifically on the identification of inconsistencies, and the

interpretation and continuously learning from the results of applying the proposed

inference method. Therefore, for the first hypothesis – that Bayesian updating is an

effective method for the purpose of identifying inconsistencies – evidence has already

been presented. The second hypothesis is that “an effective approach to inconsis-

tency identification should consider the aspect of learning from experience. Granting

hypothesis 4, methods for encoding, integrating and processing relevant past experience

and expert knowledge for the purpose of refining inconsistency identification knowl-

edge should make use of (Bayesian) machine learning”. The following evidence is

collected in support of this hypothesis:

310



• In chapter 8 (specifically section 8.2.5.5) it is demonstrated that using Bayesian

learning (i.e., generating data cases and automatically updating Bayesian net-

work parameters) has a positive impact on several metrics, most notably the

number of FPs produced.

• Identifying a suitable cutoff probability is identified in chapter 7 as an appropri-

ate classification measure to aid a human in interpreting the results. Not using

such a heuristic to reduce the number of inferred inconsistencies can lead to a

large number of false positives. This is demonstrated in chapter 8. Different

strategies for presenting the results (e.g., clustering and rank ordering) to aid

in interpreting inference results are discussed in chapter 7.

• The research question is addressed, in part, by the introduction of a semantic

abstraction mechanism in chapter 5. This semantic abstraction mechanism

provides a basic interface between models by introducing (and translating to)

terms whose semantics are more abstract than the terms used in (a subset of)

the models being analyzed. Thereby, the formulation of patterns (an essential

part of inconsistency identification knowledge) is also made more manageable.

This is given through the introduction of terms with varying levels of semantic

abstraction, thereby enabling higher level reasoning over a set of heterogeneous

models.

• From the perspective of efficiency, the need for an incremental reasoning strategy

is identified, and a corresponding algorithm to address this is developed in

chapter 6. Empirical performance measurements presented in chapter 8 clearly

show the gain in efficiency by this strategy.

In opposition of the second hypothesis, it is shown in chapter 8 that, in order

to significantly improve inference results, a considerable number of data cases from
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which to learn must be available. This is a general difficulty of applying Bayesian

learning in practice.

9.2 Contributions

Three primary contributions are made in this dissertation: a common representational

formalism for heterogeneous models (chapter 5), a probabilistic inexact (abductive)

reasoning method over models represented in this common formalism (chapter 6), and

the application of this Bayesian inference based method to the problem of identifying

probable inconsistencies and semantic overlap. In addition, a number of secondary

contributions have been made. In the following sections, important aspects of each

of these contributions is briefly discussed.

9.2.1 Common Representational Formalism for Heterogeneous Models

In MBSE, the use of heterogeneous models is omnipresent. This model heterogeneity

manifests itself in three dimensions: firstly, the different types of models and their

nature (specification or analysis, process or artifact); secondly, the incompatibility

of meta-models; thirdly, an extensive tool landscape with very limited integration,

which hinders their integration. However, reasoning about inconsistencies in such

heterogeneous models requires the ability to perform symbolic processing across model

boundaries. For this purpose, a conceptual basis for a common representational

formalism is developed.

The common representational formalism is introduced in chapter 5. Aspects of

both representing syntactic and semantic structures are discussed. The focus is on

developing a basis for capturing the information and knowledge contained in models

in a propositional form. Directed, labeled multi-graphs are identified as a suitable

mathematical structure for this purpose, where (atomic) propositions are represented

by graph triples. Graph queries and graph transformation rules are presented as

mechanisms for information retrieval and manipulation.
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A mere translation of formal models to this common representational formalism

alone is not sufficient for purposes of integration. To enhance reasoning capabilities,

the concept of mediation is introduced. Mediation is a necessary basis for hetero-

geneous models to interface and interact. A key concept of the approach is the

exploitation of language- and domain-specific concepts to infer semantic information

for higher-level reasoning applications.

9.2.2 Method for Probabilistic Inexact (Abductive) Reasoning over Graph-
Based Models

The second major contribution of this dissertation is a method for probabilistic inex-

act reasoning over graph-based models. The method can be classified as an abductive

reasoning approach, since it is explanatory in nature. As explained in chapters 4

and 6, abductive reasoning has several advantages over deductive reasoning within

the context of MBSE. For instance, while the conclusions reached by an abductive

reasoning apparatus are not always logically correct, the decidability of the abductive

approach guarantees that an answer can be given, and in finite time. In addition,

a provably complete and consistent definition of an underlying formal system is not

required.

Bayesian probability theory along with the concepts developed as part of the

common representation formalism, form the basis for the method, which is developed

in detail in chapter 6. A fundamental idea is the association of graph patterns with

target space values of random variables. Matches to the relevant patterns indicate

set membership in the pre-images of the respective random variables. Chapter 7

discusses the necessity of these matches having to lead to mutually exclusive result

sets. Thereby, evidence can be collected for updating a prior belief about the existence

of a semantic property (such as inconsistency or semantic equivalence) by means

of pattern matching. Updating this belief is done by constructing and performing

probabilistic inference in a Bayesian network. In chapter 8 it is shown that the
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proposed approach can, within the context of MBSE, lead to significantly better

results than using deterministic reasoning mechanisms.

9.2.3 Automated Identification of Probable Inconsistencies and Semantic
Overlap in Graph-Based Models using Abductive Reasoning

A third major contribution of this dissertation is the application of Bayesian inference

to inconsistency identification and semantic overlap detection within the context of

MBSE. Specifically, this includes applying the developed probabilistic reasoning ap-

proach to the problem of automatically identifying inconsistencies and, in the process,

to the automated inference of a probable semantic overlap.

Chapter 7 discusses important characteristics, properties and considerations of

applying inexact reasoning for the task of identifying inconsistencies. This includes a

summary of the knowledge that should be acquired as part of identifying a particular

type of inconsistency. The impact of the characteristics of the approach are investi-

gated in more detail in chapter 8, where the approach is applied to a concrete case

study. As part of the evaluation, the approach is also compared to a deterministic

approach in section 8.2.6.

9.2.4 Secondary Contributions

Several secondary contributions were made as part of this dissertation. These are

briefly summarized in the following pages.

Characterization & Classification of Types of Inconsistencies in Heteroge-

neous Models In the related literature, numerous definitions for the term “incon-

sistency”, and a variety of classifications of types of inconsistencies can be identified.

However, most of these definitions and classifications stem from software engineering

research, and are closely aligned with concepts from UML. However, little to no work

has been done towards characterizing and classifying inconsistencies within the con-

text of Model-Based Systems Engineering. Since this characterization is a vital and
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fundamental basis for developing a method for identifying inconsistencies within the

context of MBSE, an investigation into the fundamental characteristics of inconsis-

tencies as well as a definition for the term “inconsistency” within the scope of this

work is presented in chapter 4. This is followed by a classification of inconsistencies

in section 4.2.3. The important insight gained is that it is practical to differentiate

between different types of inconsistencies, and that it is beneficial to reason about

inconsistencies in an abductive, rather than a deductive fashion.

Semantic Abstraction Mechanism For the purpose of enabling higher level rea-

soning, a semantic abstraction mechanism is presented as part of the developed fun-

damentals of the reasoning framework. The mechanism is presented in more detail

in chapter 5. A key idea of the semantic abstraction mechanism is the introduction

of, and mediation (translation) between a number of language- and domain-specific

vocabularies, as well as a common base vocabulary. While binding concepts from

different languages together at a higher level of abstraction, and enabling a basic

interface between models based on abstract types, the abstraction mechanism also

allows for definitions of patterns that refer to concepts that span different modeling

languages.

Metrics and Procedures for Evaluating Probabilistic Inconsistency & Se-

mantic Overlap Classifiers The method for inexact reasoning about inconsisten-

cies and semantic overlap developed in chapters 6 and 7 is applied to a case study

in chapter 8. There, the overall approach is also characterized and evaluated. The

procedures used are a secondary contribution, since they are applicable to evaluating

any set of inconsistency identification knowledge. This also includes the identification

of appropriate measures and metrics. A number of measures from the related litera-

ture are reviewed (e.g., recall, precision and F-measure), all of which are commonly

applied within the context of machine learning for evaluating similar approaches.
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While informative for making assertions about certain characteristics of applying the

approach, none of the measures were found to be suitable for comparative purposes

and for determining the true value of the approach. One reason for other measures

not being suitable is their inability to demonstrate the potentially large impact of

false negatives (i.e., inconsistencies or semantic equivalences that remain undiscov-

ered). This led to the definition of a value-based metric, which takes into account the

cost incurred by the production of true and false positives, as well as the strongly

adverse impact of false negatives. Using this value-based metric, different sets of in-

consistency identification knowledge are compared. In addition, a comparison to a

state-of-the-art deterministic approach is performed. As a basis for measurements,

sets of heterogeneous models are generated.

Java Library for Constructing, Performing Inference in, and Learning

Bayesian Network Parameters As part of the research, a Java library for rep-

resenting, performing inference in, and learning the parameters of Bayesian networks

was developed. This library can be claimed as a secondary contribution, since, unlike

other notable Java-based Bayesian network libraries such as Weka [5], Mahout [167]

and JavaBayes1, it allows for Dirichlet distributions to be imposed over network pa-

rameters (rather than just specifying values in conditional probability tables) and

supports learning of general Bayesian networks (rather than just näıve Bayes model

learning). At the time of writing this dissertation, the library has not been released

as open source, but plans exist to do so in the near future.

1http://www.cs.cmu.edu/ javabayes/
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9.3 Limitations & Future Work

As evident from the results and insights gained during the quantitative evaluation,

the proposed approach has value within the context of MBSE under certain condi-

tions. However, a number of limitations have also been identified in the process.

Overcoming these requires further research, which is considered outside the scope of

this dissertation. To guide further exploration of the developed concepts, notable lim-

itations of the proposed approach and potential areas for future work are presented

in this section.

9.3.1 Acquiring & Maintaining Inconsistency Identification Knowledge

As discussed in chapter 7, the acquisition and elicitation of the inconsistency identi-

fication knowledge is expected to be a costly process. This can significantly reduce

the value of applying the approach. Relative to other state-of-the-art inconsistency

identification processes, more knowledge must be acquired. For instance, degrees

of belief on the occurrence of a relatively large number of events must be elicited.

Furthermore, if not already available, mediation vocabularies and accompanying in-

ference rules must be defined. Non-negligible is also the process of having to elicit

and verify a series of graph patterns: for each, it must be shown that it (a) implies a

particular intended semantic or syntactic property with sufficient confidence and (b)

that matches to the pattern can be guaranteed to be mutually exclusive of other pat-

terns associated with the same random variable. How this can be done in an efficient

manner is not explored in great depth, but should be investigated in future work.

Non-negligible are also costs associated with refining inconsistency identification

knowledge. This is primarily due to the number of false positives being the only

discernible indicator about the goodness of the current state of inconsistency iden-

tification knowledge. By their nature, false negatives cannot be detected without

a thorough analysis of the underlying model data. Future work should investigate
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this issue of determining at what point a refinement of inconsistency identification

knowledge is valuable.

Within the scope of the dissertation, it is assumed that inconsistency identifi-

cation knowledge is created by humans. A number of methods from the literature

are proposed in chapter 7 that have the potential of aiding in the elicitation of such

knowledge. Also discussed is the potential for reuse of the acquired knowledge across

different application scenarios (see section 7.2.5). However, what has not been ex-

plored, but would serve as an interesting basis for further research, is the automated

extraction of patterns from hand-labeled sets of inconsistent models using techniques

from data mining. Given the availability of such sets, and given that they are accu-

rate reflections of the models to which the inconsistency identification knowledge will

be applied, this could reduce the cost associated with the acquisition of reasoning

knowledge.

9.3.2 Scalability & Performance

In chapter 8 (and in particular section 8.3.2), empirical performance measurements

are presented. These are compared to the theoretical complexity derived in sec-

tion 8.3.1. Recall that the derivation of the theoretical complexity made a number of

strong assumptions, and the result is only valid within the scope of the assumptions

that (a) the underlying graph model is a directed graph and (b) only discrete random

variables are utilized (inference in Bayesian networks with continuous random vari-

ables is computationally more complex). Given the polynomial-time behavior of the

algorithm (polynomial with respect to the number of graph triples), an incremental

strategy such as the one proposed in section 6.3.1 is inevitable. However, for very

large graphs, and for more than just one type of inconsistency (which would involve

a series of Bayesian networks), the runtime could become a severe limitation.

Future work should include further development of the underlying algorithms for
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improving performance. For instance, one possible improvement is the exploitation of

the independence assumptions in the Bayesian network to more intelligently sequence

the procedure of matching patterns, thereby avoiding unnecessary computation cycles

and graph searches. Concretely, this avoids attempting to seek out evidence that,

when used for updating a particular belief, has no influence on the result (given

the other already available evidence). In addition, under certain conditions pattern

matching operations in graphs can be parallelized (see, e.g., the work by Taentzer

[211]). Note that these measures do not reduce the theoretical complexity, but can

significantly reduce the actual inference time.

In addition to the computational complexity, the proposed incremental algorithms

are also highly memory-intensive (see the empirical measurements in section 8.3.2).

This is under the premise that for larger scale applications, technologies such as

distributed computing can be used to increase the available storage (whether in-

memory or on disk). For instance, the Hadoop [196] infrastructure and accompanying

distributed in-memory file system could serve as a promising basis for this2.

Ultimately, from a computational standpoint, scalability and performance are

limited by the available computational resources (primarily CPU frequency), and the

optimality of the underlying algorithms. Beyond just computational considerations,

the cost of gathering the initial reasoning knowledge is non-negligible (see previous

section). Whether applying the proposed approach is valuable strongly depends on

the context in which it is applied. This context includes the expected impact of

false negatives, the degree of inconsistency of the models being reasoned over and the

confidence in the reasoning knowledge being applied.

2Hadoop’s file system (HDFS) is similar in nature to the proprietary distributed file systems used
by popular search engines. By keeping the file system in-memory, these enable quick access to very
large amounts of data, typically spread over a number of physical nodes (queries over this data are
distributed).
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9.3.3 Characterization & Evaluation (Validation) under Controlled Con-
ditions

A limitation of the results presented in this dissertation – particularly those gathered

when evaluating the approach – is the fact that they have been produced under

controlled (laboratory) conditions. In chapter 8, the basis for the experiments are

randomly generated sets of models that are algorithmically injected with (one or more

types of) inconsistencies, incompletenesses and (what are deemed common) features

representing human imperfections (such as misspellings and the use of synonyms).

Two major limitations of this procedure are the potential impact on the conclusions

by the introduction of a possible bias, and the relatively limited scope of the case

study.

Given that the same person has created both the algorithmic generation of the data

being reasoned over and the reasoning knowledge, a bias is unavoidably introduced.

An effort to minimize the degree to which this bias influences the conclusions is the

introduction of a very large number of possible combinations of any one of several

types of inconsistencies and imperfections that are randomly introduced. That this

has succeeded at least to some degree can be observed from the (imperfect) results

gathered, where the measurements gathered using a Bayesian network with the true

values for the Bayesian network parameters are compared to one utilizing subjective

network parameters.

A second limitation is the scope of the models generated. While three types of

models are involved, and the true number of models is random, their expressiveness

is comparatively small. Future work should include the application of the proposed

methods to a larger case study – ideally within an industrial context. To fully assess

the value in realistic scenarios, state-of-the-art approaches (such as the determinis-

tic pattern based approach) should be investigated in parallel, and within a system
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development context of similar scope. Care needs to be exerted in avoiding an intro-

duction of a bias, and in diligently recording the costs involved for both approaches.

This allows a better assessment of the value of the proposed approach outside the

controlled conditions.

9.3.4 Reasoning Scope

The approach, as presented in chapter 6, assumes reasoning within a highly localized

context. That is, for a particular outcome (say, a pair of properties), any probable se-

mantic properties (say, the probability of the properties being inconsistent) depends

solely on observations that can be made within the local graph context. That is,

results of previously made inferences are not accessible to subsequent ones. To ex-

emplify this, assume the existence of two entities A and B, each owning a number

of properties pA,i and pBj
. Now assume that the probability of a particular pair of

properties of A and B being semantically equivalent should depend, among other ev-

idence, on the the probability of the other properties being semantically equivalent.

Accounting for such knowledge requires access to previously made inferences and is

not currently supported. Future work should investigate the value of performing

reasoning on such a global scale.

9.3.5 Application of Concepts Beyond Inconsistency Identification

Given that the approach to probabilistic inexact reasoning (introduced in chapter 6)

is not limited to the inference of inconsistencies, future work should include the ap-

plication of the proposed concepts outside the realm of inconsistency identification.

Generally, the approach can be applied in any scenario where the data being reasoned

over is representable by a graph.
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9.4 Closing Remarks

In this dissertation, a probabilistic approach to identifying inconsistencies is developed

and, in the process, so is the automated inference of semantic overlap using abductive

reasoning in sets of heterogeneous models. The approach represents a novel view on

a problem that, in the related literature, is primarily considered from a deterministic

perspective and using deductive or inductive mechanisms.

Even though a number of limitations are identified in section 9.3, the contribu-

tions from this research are nonetheless significant within the context of identifying

inconsistencies and semantic overlap with computational support, and Model-Based

Systems Engineering. Based on the controlled conditions under which results were

obtained and conclusions drawn, one cannot claim that the investigated approach

represents the best (or rather: most valuable) solution for identifying inconsistencies

in heterogeneous models. However, the experiments performed, results gathered and

insights gained show that the method represents a significant improvement over the

status quo. The gathered results are deemed useful for future investigations extending

the presented method and developing other automated approaches to inconsistency

identification.

322



APPENDIX A

BAYESIAN NETWORKS, CONDITIONAL

PROBABILITY DISTRIBUTIONS & DETERMINISTIC

CLASSIFIERS USED IN EVALUATION OF APPROACH

A.1 Compact Bayesian Network

In the following, the structure and elicited beliefs on the network parameters of the

compact Bayesian network first introduced in section 8.2 are presented in detail. This

network was used as part of the quantitative evaluation of the approach.

A.1.1 Structure

Table 9 lists the random variables, associated target space values, and patterns for

this network. For a visualization of the network, and the influence relations between

the random variables, refer to figure 46.

The network is used for reasoning about the inconsistency and semantic equiv-

alence of distinct pairs of properties (pi, pj) where pi 6= pj. The base pattern is

(?p1 rdf:type bso:Property) (?p2 rdf:type bso:Property) notEqual(?p1, ?p2) (i.e.,

for a successful match to the pattern, the nodes bound to node variables ?p1 and

?p2 must be non-equal (have different URIs), and both bound nodes must be of

type base:Property). Note that the functor similarString calculates the Levenshtein-

distance-based similarity score introduced in section 8.2.5.1 and returns true if it

is within the specified range (lower value is exclusive, except for the case of 0) (the

argument ’i’ indicates case-insensitivity). The functors synonym and notSynonym

return true if the words are synonyms or syntactically equal. All other functors are

built-in to Apache Jena.

323



T
ab

le
9:

R
an

d
om

va
ri

ab
le

s,
ta

rg
et

sp
ac

e
va

lu
es

an
d

as
so

ci
at

ed
p

at
te

rn
s

of
th

e
co

m
p

ac
t

B
ay

es
ia

n
n

et
w

o
rk

u
se

d
in

ev
a
lu

a
ti

o
n

.

R
a
n
d
o
m

V
a
ri
a
b
le

T
a
rg

e
t
S
p
a
c
e
V
a
lu
e

P
a
tt
e
rn

A
re

S
im

il
ar

P
ar

en
tE

n
ti

ti
es

E
n

ti
ti

es
X

a
n

d
Y

w
h
ic

h
a
re

pa
re

n
ts

o
f

P
ro

p
-

er
ti

es
P

1
a
n

d
P

2
a
re

eq
u

iv
a
le

n
t

(?
x

b
as

e:
co

n
ta

in
s

?p
1
)

(?
y

b
a
se

:c
o
n
ta

in
s

?p
2)

(?
x

rd
f:

ty
p

e
b

a
se

:E
le

m
en

t)
(?

y
rd

f:
ty

p
e

b
as

e:
E

le
m

en
t)

(?
x

se
m

:e
q
u

iv
a
le

n
tT

o
?y

)

E
n

ti
ti

es
X

a
n

d
Y

w
h
ic

h
a
re

pa
re

n
ts

o
f

P
ro

p
-

er
ti

es
P

1
a
n

d
P

2
a
re

n
o
t

eq
u

iv
a
le

n
t

(?
x

b
as

e:
co

n
ta

in
s

?p
1
)

(?
y

b
a
se

:c
o
n
ta

in
s

?p
2)

(?
x

rd
f:

ty
p

e
b

a
se

:E
le

m
en

t)
(?

y
rd

f:
ty

p
e

b
as

e:
E

le
m

en
t)

(?
x

se
m

:d
iff

er
en

tF
ro

m
?y

)

A
re

E
q
u

iv
al

en
tP

ro
p

er
ti

es
P

ro
pe

rt
ie

s
P

1
a
n

d
P

2
a
re

eq
u

iv
a
le

n
t

(?
p

1
se

m
:e

q
u

iv
a
le

n
tT

o
?p

2
)

P
ro

pe
rt

ie
s

P
1

a
n

d
P

2
a
re

n
o
t

eq
u

iv
a
le

n
t

(?
p

1
se

m
:d

iff
er

en
tF

ro
m

?p
2
)

A
re

In
co

n
si

st
en

tP
ro

p
er

ti
es

P
ro

pe
rt

ie
s

P
1

a
n

d
P

2
a
re

in
co

n
si

st
en

t
(?

p
1

in
co

n
:i

n
co

n
si

st
en

t
?p

2
)

P
ro

pe
rt

ie
s

P
1

a
n

d
P

2
a
re

n
o
t

in
co

n
si

st
en

t
(?

p
1

in
co

n
:n

o
tI

n
co

n
si

st
en

t
?p

2
)

C
on

st
ra

in
tS

im
il

ar
it

y
P

ro
pe

rt
ie

s
P

1
a
n

d
P

2
h
a
ve

eq
u

iv
a
le

n
t

co
n

-

st
ra

in
ts

(?
p

1
b

a
se

:c
o
n

st
ra

in
ed

B
y

?c
1
)

(?
p

2

b
as

e:
co

n
st

ra
in

ed
B

y
?c

2
)

(?
c1

b
a
se

:u
n

it
T

y
p

e

?u
t1

)
(?

c2
b

a
se

:u
n

it
T

y
p

e
?u

t2
)

(?
c1

b
as

e:
va

lu
e

?v
1
)

(?
c2

b
a
se

:v
a
lu

e
?v

2
)

eq
u

al
(?

u
t1

,
?u

t2
)

eq
u

a
l(

?v
1
,

?v
2
)

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

324



T
a
b
le

9
(c
o
n
ti
n
u
e
d
)

R
a
n
d
o
m

V
a
ri
a
b
le

T
a
rg

e
t
S
p
a
c
e
V
a
lu
e
s

P
a
tt
e
rn

s

P
ro

pe
rt

ie
s

P
1

a
n

d
P

2
h
a
ve

n
o
n

-u
n

it
co

n
-

st
ra

in
ts

w
it

h
eq

u
a
l

va
lu

es

(?
p

1
b

a
se

:c
o
n

st
ra

in
ed

B
y

?c
1
)

(?
p

2

b
as

e:
co

n
st

ra
in

ed
B

y
?c

2
)

n
o
V

a
lu

e(
?c

1

b
as

e:
u

n
it

T
y
p

e)
(?

c1
b
a
se

:v
a
lu

e
?v

1
)

(?
c2

b
as

e:
va

lu
e

?v
2
)

eq
u

a
l(

?v
1
,

?v
2
)

P
ro

pe
rt

ie
s

P
1

a
n

d
P

2
h
a
ve

n
o
n

-u
n

it
co

n
-

st
ra

in
ts

w
it

h
n

o
n

-e
qu

a
l

va
lu

es

(?
p

1
b

a
se

:c
o
n

st
ra

in
ed

B
y

?c
1
)

(?
p

2

b
as

e:
co

n
st

ra
in

ed
B

y
?c

2
)

n
o
V

a
lu

e(
?c

1

b
as

e:
u

n
it

T
y
p

e)
(?

c1
b
a
se

:v
a
lu

e
?v

1
)

(?
c2

b
as

e:
va

lu
e

?v
2
)

n
o
tE

q
u

a
l(

?v
1
,

?v
2
)

P
ro

pe
rt

ie
s

P
1

a
n

d
P

2
h
a
ve

n
o

co
n

st
ra

in
ts

w
it

h
eq

u
a
l

u
n

it
s

a
n

d
va

lu
es

(?
p

1
b

a
se

:c
o
n

st
ra

in
ed

B
y

?c
1
)

(?
p

2

b
as

e:
co

n
st

ra
in

ed
B

y
?c

2
)

(?
c1

b
a
se

:u
n

it
T

y
p

e

?u
t1

)
(?

c1
b

a
se

:v
a
lu

e
?v

1
)

n
o
V

a
lu

e(
?c

2

b
as

e:
u

n
it

T
y
p

e
?u

t1
)

n
o
V

a
lu

e(
?c

2
b

a
se

:v
a
lu

e

?v
1)

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

325



T
a
b
le

9
(c
o
n
ti
n
u
e
d
)

R
a
n
d
o
m

V
a
ri
a
b
le

T
a
rg

e
t
S
p
a
c
e
V
a
lu
e
s

P
a
tt
e
rn

s

E
n
ti

ty
N

am
es

S
im

il
ar

it
y
S

co
re

T
h
e

n
a
m

es
o
f

X
a
n

d
Y

h
a
ve

a
si

m
il

a
ri

ty
sc

o
re

o
f

0
.8

to
1
.0

(?
x

b
as

e:
co

n
ta

in
s

?p
1
)

(?
y

b
a
se

:c
o
n
ta

in
s

?p
2)

(?
x

rd
f:

ty
p

e
b

a
se

:E
le

m
en

t)
(?

y
rd

f:
ty

p
e

b
as

e:
E

le
m

en
t)

(?
x

b
a
se

:n
a
m

e
?n

1
)

(?
y

b
as

e:
n

am
e

?n
2
)

si
m

il
a
rS

tr
in

g
(?

n
1
,

?n
2
,

’0
.8

’,

’1
.0

’,
’i

’)

T
h
e

n
a
m

es
o
f

X
a
n

d
Y

h
a
ve

a
si

m
il

a
ri

ty
sc

o
re

o
f

0
.6

to
0
.8

(?
x

b
as

e:
co

n
ta

in
s

?p
1
)

(?
y

b
a
se

:c
o
n
ta

in
s

?p
2)

(?
x

rd
f:

ty
p

e
b

a
se

:E
le

m
en

t)
(?

y
rd

f:
ty

p
e

b
as

e:
E

le
m

en
t)

(?
x

b
a
se

:n
a
m

e
?n

1
)

(?
y

b
as

e:
n

am
e

?n
2
)

si
m

il
a
rS

tr
in

g
(?

n
1
,

?n
2
,

’0
.6

’,

’0
.8

’,
’i

’)

T
h
e

n
a
m

es
o
f

X
a
n

d
Y

h
a
ve

a
si

m
il

a
ri

ty
sc

o
re

o
f

0
.4

to
0
.6

(?
x

b
as

e:
co

n
ta

in
s

?p
1
)

(?
y

b
a
se

:c
o
n
ta

in
s

?p
2)

(?
x

rd
f:

ty
p

e
b

a
se

:E
le

m
en

t)
(?

y
rd

f:
ty

p
e

b
as

e:
E

le
m

en
t)

(?
x

b
a
se

:n
a
m

e
?n

1
)

(?
y

b
as

e:
n

am
e

?n
2
)

si
m

il
a
rS

tr
in

g
(?

n
1
,

?n
2
,

’0
.4

’,

’0
.6

’,
’i

’)

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

326



T
a
b
le

9
(c
o
n
ti
n
u
e
d
)

R
a
n
d
o
m

V
a
ri
a
b
le

T
a
rg

e
t
S
p
a
c
e
V
a
lu
e
s

P
a
tt
e
rn

s

T
h
e

n
a
m

es
o
f

X
a
n

d
Y

h
a
ve

a
si

m
il

a
ri

ty
sc

o
re

o
f

0
.2

to
0
.4

(?
x

b
as

e:
co

n
ta

in
s

?p
1
)

(?
y

b
a
se

:c
o
n
ta

in
s

?p
2)

(?
x

rd
f:

ty
p

e
b

a
se

:E
le

m
en

t)
(?

y
rd

f:
ty

p
e

b
as

e:
E

le
m

en
t)

(?
x

b
a
se

:n
a
m

e
?n

1
)

(?
y

b
as

e:
n

am
e

?n
2
)

si
m

il
a
rS

tr
in

g
(?

n
1
,

?n
2
,

’0
.2

’,

’0
.4

’,
’i

’)

T
h
e

n
a
m

es
o
f

X
a
n

d
Y

h
a
ve

a
si

m
il

a
ri

ty
sc

o
re

o
f

0
.0

to
0
.2

(?
x

b
as

e:
co

n
ta

in
s

?p
1
)

(?
y

b
a
se

:c
o
n
ta

in
s

?p
2)

(?
x

rd
f:

ty
p

e
b

a
se

:E
le

m
en

t)
(?

y
rd

f:
ty

p
e

b
as

e:
E

le
m

en
t)

(?
x

b
a
se

:n
a
m

e
?n

1
)

(?
y

b
as

e:
n

am
e

?n
2
)

si
m

il
a
rS

tr
in

g
(?

n
1
,

?n
2
,

’0
.0

’,

’0
.2

’,
’i

’)

E
n
ti

ty
T

y
p

eR
el

at
io

n
N

am
es

S
im

il
ar

it
y
S

co
re

T
h
e

n
a
m

es
o
f

th
e

ty
pe

s
o
f

P
1

a
n

d
P

2
h
a
ve

a

si
m

il
a
ri

ty
sc

o
re

o
f

0
.8

to
1
.0

(?
p

1
b

as
e:

ty
p

e
?p

t1
)

(?
p
2

b
a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

as
e:

n
a
m

e
?p

t1
n

)
(?

p
t2

b
a
se

:n
a
m

e

?p
t2

n
)

si
m

il
a
rS

tr
in

g
(?

p
t1

n
,

?p
t2

n
,

’0
.8

’,

’1
.0

’,
’i

’)

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

327



T
a
b
le

9
(c
o
n
ti
n
u
e
d
)

R
a
n
d
o
m

V
a
ri
a
b
le

T
a
rg

e
t
S
p
a
c
e
V
a
lu
e
s

P
a
tt
e
rn

s

T
h
e

n
a
m

es
o
f

th
e

ty
pe

s
o
f

P
1

a
n

d
P

2
h
a
ve

a

si
m

il
a
ri

ty
sc

o
re

o
f

0
.6

to
0
.8

(?
p

1
b

as
e:

ty
p

e
?p

t1
)

(?
p
2

b
a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

as
e:

n
a
m

e
?p

t1
n

)
(?

p
t2

b
a
se

:n
a
m

e

?p
t2

n
)

si
m

il
a
rS

tr
in

g
(?

p
t1

n
,

?p
t2

n
,

’0
.6

’,

’0
.8

’,
’i

’)

T
h
e

n
a
m

es
o
f

th
e

ty
pe

s
o
f

P
1

a
n

d
P

2
h
a
ve

a

si
m

il
a
ri

ty
sc

o
re

o
f

0
.4

to
0
.6

(?
p

1
b

as
e:

ty
p

e
?p

t1
)

(?
p
2

b
a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

as
e:

n
a
m

e
?p

t1
n

)
(?

p
t2

b
a
se

:n
a
m

e

?p
t2

n
)

si
m

il
a
rS

tr
in

g
(?

p
t1

n
,

?p
t2

n
,

’0
.4

’,

’0
.6

’,
’i

’)

T
h
e

n
a
m

es
o
f

th
e

ty
pe

s
o
f

P
1

a
n

d
P

2
h
a
ve

a

si
m

il
a
ri

ty
sc

o
re

o
f

0
.2

to
0
.4

(?
p

1
b

as
e:

ty
p

e
?p

t1
)

(?
p
2

b
a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

as
e:

n
a
m

e
?p

t1
n

)
(?

p
t2

b
a
se

:n
a
m

e

?p
t2

n
)

si
m

il
a
rS

tr
in

g
(?

p
t1

n
,

?p
t2

n
,

’0
.2

’,

’0
.4

’,
’i

’)

T
h
e

n
a
m

es
o
f

th
e

ty
pe

s
o
f

P
1

a
n

d
P

2
h
a
ve

a

si
m

il
a
ri

ty
sc

o
re

o
f

0
.0

to
0
.2

(?
p

1
b

as
e:

ty
p

e
?p

t1
)

(?
p
2

b
a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

as
e:

n
a
m

e
?p

t1
n

)
(?

p
t2

b
a
se

:n
a
m

e

?p
t2

n
)

si
m

il
a
rS

tr
in

g
(?

p
t1

n
,

?p
t2

n
,

’0
.0

’,

’0
.2

’,
’i

’)

328



A.1.2 Network Parameters

Table 10 documents the beliefs on the Bayesian network parameters, elicited as Dirich-

let distributions (see section 2.3). Beliefs were elicited in the form of a willingness

to bet on an event, and in the manner described in section 7.2.4. The following is a

sample elicitation question used in the process:

“Say the outcome of an experiment is a randomly selected pair of prop-

erties (P1, P2), for which it is known that their names are similar (with

a similarity score value between 0.8 and 1.0), their owning entities X and

Y have similar names (with a similarity score value between 0.8 and 1.0),

none of their constraints have unit types specified, and none of these have

equal values. How much are you prepared to stake (in fractions of $1) in

a gamble where you win $1 if the properties P1 and P2 are inconsistent,

and lose your stake if they are not (i.e., win $0)?”

To capture the belief as a probability distribution, Dirichlet distributions are used.

Beta and Dirichlet distributions are particularly well suited for eliciting beliefs due

to the natural way of specifying the parameters [152]. Note that a two-parameter

Dirichlet distribution is equivalent to a Beta distribution.
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A.2 Comprehensive Bayesian Network

In the following, the structure and elicited beliefs on the network parameters of the

comprehensive Bayesian network first introduced in section 8.2 is detailed. This

network was used as part of the quantitative evaluation of the approach.

A.2.1 Structure

Table 11 lists the random variables, associated target space values, and patterns for

this network. For a visualization of the network, and the influence relations between

the random variables, refer to figure 62.

The network is used for reasoning about the inconsistency and semantic equiv-

alence of distinct pairs of properties (pi, pj) where pi 6= pj. The base pattern is

(?p1 rdf:type bso:Property) (?p2 rdf:type bso:Property) notEqual(?p1, ?p2) (i.e.,

for a successful match to the pattern, the nodes bound to node variables ?p1 and

?p2 must be non-equal (have different URIs), and both bound nodes must be of

type base:Property). Note that the functor similarString calculates the Levenshtein-

distance based similarity score introduced in section 8.2.5.1 and returns true if it

is within the specified range (lower value is exclusive, except for the case of 0) (the

argument ’i’ indicates case-insensitivity). The functors synonym and notSynonym

return true if the words are synonyms or syntactically equal. All other functors are

built in to Apache Jena.

345



T
ab

le
11

:
R

an
d

om
va

ri
ab

le
s,

ta
rg

et
sp

ac
e

va
lu

es
an

d
as

so
ci

at
ed

p
at

te
rn

s
of

th
e

co
m

p
re

h
en

si
v
e

B
ay

es
ia

n
n

et
w

o
rk

u
se

d
in

ev
a
lu

a
ti

o
n

.

R
a
n
d
o
m

V
a
ri
a
b
le

T
a
rg

e
t
S
p
a
c
e
V
a
lu
e

P
a
tt
e
rn

A
re

S
im

il
ar

P
ar

en
tE

n
ti

ti
es

E
n

ti
ti

es
X

a
n

d
Y

w
h
ic

h
a
re

pa
re

n
ts

o
f

P
ro

p
-

er
ti

es
P

1
a
n

d
P

2
a
re

eq
u

iv
a
le

n
t

(?
x

b
a
se

:c
o
n
ta

in
s

?p
1
)

(?
y

b
a
se

:c
o
n
ta

in
s

?p
2)

(?
x

rd
f:

ty
p

e
b

a
se

:E
le

m
en

t)
(?

y
rd

f:
ty

p
e

b
as

e:
E

le
m

en
t)

(?
x

se
m

:e
q
u

iv
a
le

n
tT

o
?y

)

E
n

ti
ti

es
X

a
n

d
Y

w
h
ic

h
a
re

pa
re

n
ts

o
f

P
ro

p
-

er
ti

es
P

1
a
n

d
P

2
a
re

n
o
t

eq
u

iv
a
le

n
t

(?
x

b
a
se

:c
o
n
ta

in
s

?p
1
)

(?
y

b
a
se

:c
o
n
ta

in
s

?p
2)

(?
x

rd
f:

ty
p

e
b

a
se

:E
le

m
en

t)
(?

y
rd

f:
ty

p
e

b
as

e:
E

le
m

en
t)

(?
x

se
m

:d
iff

er
en

tF
ro

m
?y

)

A
re

E
q
u

iv
al

en
tP

ro
p

er
ti

es
P

ro
pe

rt
ie

s
P

1
a
n

d
P

2
a
re

eq
u

iv
a
le

n
t

(?
p

1
se

m
:e

q
u

iv
a
le

n
tT

o
?p

2
)

P
ro

pe
rt

ie
s

P
1

a
n

d
P

2
a
re

n
o
t

eq
u

iv
a
le

n
t

(?
p

1
se

m
:d

iff
er

en
tF

ro
m

?p
2
)

A
re

In
co

n
si

st
en

tP
ro

p
er

ti
es

P
ro

pe
rt

ie
s

P
1

a
n

d
P

2
a
re

in
co

n
si

st
en

t
(?

p
1

in
co

n
:i

n
co

n
si

st
en

t
?p

2
)

P
ro

pe
rt

ie
s

P
1

a
n

d
P

2
a
re

n
o
t

in
co

n
si

st
en

t
(?

p
1

in
co

n
:n

o
tI

n
co

n
si

st
en

t
?p

2
)

E
n
ti

ty
N

am
es

S
im

il
ar

E
n

ti
ti

es
X

a
n

d
Y

h
a
ve

si
m

il
a
r

n
a
m

es
(?

x
b

a
se

:c
o
n
ta

in
s

?p
1
)

(?
y

b
a
se

:c
o
n
ta

in
s

?p
2)

(?
x

rd
f:

ty
p

e
b

a
se

:E
le

m
en

t)
(?

y
rd

f:
ty

p
e

b
as

e:
E

le
m

en
t)

(?
x

se
m

:s
im

il
a
rN

a
m

e
?y

)

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

346



T
a
b
le

1
1
(c
o
n
ti
n
u
e
d
)

R
a
n
d
o
m

V
a
ri
a
b
le

T
a
rg

e
t
S
p
a
c
e
V
a
lu
e
s

P
a
tt
e
rn

s

E
n

ti
ti

es
X

a
n

d
Y

h
a
ve

d
is

si
m

il
a
r

n
a
m

es
(?

x
b

a
se

:c
o
n
ta

in
s

?p
1
)

(?
y

b
a
se

:c
o
n
ta

in
s

?p
2)

(?
x

rd
f:

ty
p

e
b

a
se

:E
le

m
en

t)
(?

y
rd

f:
ty

p
e

b
as

e:
E

le
m

en
t)

(?
x

se
m

:d
is

si
m

il
a
rN

a
m

e
?y

)

E
n
ti

ty
T

y
p

es
S

im
il

ar
E

n
ti

ti
es

X
a
n

d
Y

h
a
ve

si
m

il
a
r

ty
pe

s
(?

x
b

a
se

:c
o
n
ta

in
s

?p
1
)

(?
y

b
a
se

:c
o
n
ta

in
s

?p
2)

(?
x

rd
f:

ty
p

e
?x

t)
(?

y
rd

f:
ty

p
e

?y
t)

n
o
tE

q
u

a
l(

?x
t,

b
a
se

:E
le

m
en

t)
n

o
tE

-

q
u

al
(?

y
t,

b
a
se

:E
le

m
en

t)
(?

x
t

rd
f:

ty
p

e

b
as

e:
E

le
m

en
t)

(?
y
t

rd
f:

ty
p

e
b
a
se

:E
le

m
en

t)

(?
x
t

se
m

:e
q
u

iv
a
le

n
tT

o
?y

t)

E
n

ti
ti

es
X

a
n

d
Y

h
a
ve

d
is

si
m

il
a
r

ty
pe

s
(?

x
b

a
se

:c
o
n
ta

in
s

?p
1
)

(?
y

b
a
se

:c
o
n
ta

in
s

?p
2)

(?
x

rd
f:

ty
p

e
?x

t)
(?

y
rd

f:
ty

p
e

?y
t)

n
o
tE

q
u

a
l(

?x
t,

b
a
se

:E
le

m
en

t)
n

o
tE

-

q
u

al
(?

y
t,

b
a
se

:E
le

m
en

t)
(?

x
t

rd
f:

ty
p

e

b
as

e:
E

le
m

en
t)

(?
y
t

rd
f:

ty
p

e
b
a
se

:E
le

m
en

t)

(?
x
t

se
m

:d
iff

er
en

tF
ro

m
?y

t)

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

347



T
a
b
le

1
1
(c
o
n
ti
n
u
e
d
)

R
a
n
d
o
m

V
a
ri
a
b
le

T
a
rg

e
t
S
p
a
c
e
V
a
lu
e
s

P
a
tt
e
rn

s

E
n
ti

ty
T

y
p

eN
am

es
S

im
il

ar
E

n
ti

ti
es

X
a
n

d
Y

h
a
ve

ty
pe

s
w

it
h

si
m

il
a
r

n
a
m

es

(?
x

b
a
se

:c
o
n
ta

in
s

?p
1
)

(?
y

b
a
se

:c
o
n
ta

in
s

?p
2)

(?
x

rd
f:

ty
p

e
?x

t)
(?

y
rd

f:
ty

p
e

?y
t)

n
o
tE

q
u

a
l(

?x
t,

b
a
se

:E
le

m
en

t)
n

o
tE

-

q
u

al
(?

y
t,

b
a
se

:E
le

m
en

t)
(?

x
t

rd
f:

ty
p

e

b
as

e:
E

le
m

en
t)

(?
x
t

b
a
se

:n
a
m

e
?x

tn
)

(?
y
t

rd
f:

ty
p

e
b

a
se

:E
le

m
en

t)
(?

x
t

b
a
se

:n
a
m

e
?y

tn
)

(?
x
t

se
m

:s
im

il
a
rN

a
m

e
?y

t)

E
n

ti
ti

es
X

a
n

d
Y

h
a
ve

ty
pe

s
w

it
h

d
is

si
m

il
a
r

n
a
m

es

(?
x

b
a
se

:c
o
n
ta

in
s

?p
1
)

(?
y

b
a
se

:c
o
n
ta

in
s

?p
2)

(?
x

rd
f:

ty
p

e
?x

t)
(?

y
rd

f:
ty

p
e

?y
t)

n
o
tE

q
u

a
l(

?x
t,

b
a
se

:E
le

m
en

t)
n

o
tE

-

q
u

al
(?

y
t,

b
a
se

:E
le

m
en

t)
(?

x
t

rd
f:

ty
p

e

b
as

e:
E

le
m

en
t)

(?
x
t

b
a
se

:n
a
m

e
?x

tn
)

(?
y
t

rd
f:

ty
p

e
b

a
se

:E
le

m
en

t)
(?

x
t

b
a
se

:n
a
m

e
?y

tn
)

(?
x
t

se
m

:d
is

si
m

il
a
rN

a
m

e
?y

t)

R
el

at
io

n
K

in
d

sA
re

S
im

il
ar

T
h
e

p
ro

pe
rt

y
ki

n
d
s

o
f

P
1

a
n

d
P

2
a
re

si
m

il
a
r

(?
p

1
b

a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e
?p

t2
)

(?
p

t1
se

m
:e

q
u

iv
a
le

n
tT

o
?p

t2
)

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

348



T
a
b
le

1
1
(c
o
n
ti
n
u
e
d
)

R
a
n
d
o
m

V
a
ri
a
b
le

T
a
rg

e
t
S
p
a
c
e
V
a
lu
e
s

P
a
tt
e
rn

s

T
h
e

p
ro

pe
rt

y
ki

n
d
s

o
f

P
1

a
n

d
P

2
a
re

d
is

si
m

-

il
a
r

(?
p

1
b

a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e
?p

t2
)

(?
p

t1
se

m
:d

iff
er

en
tF

ro
m

?p
t2

)

R
el

at
io

n
T

y
p

eN
am

es
S

im
il

ar
T

h
e

ty
pe

s
o
f

p
ro

pe
rt

ie
s

P
1

a
n

d
P

2
h
a
ve

si
m

-

il
a
r

n
a
m

es

(?
p

1
b

a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

a
se

:n
a
m

e
?p

t1
n

)
(?

p
t2

b
a
se

:n
a
m

e

?p
t2

n
)

(?
p

t1
n

se
m

:s
im

il
a
rN

a
m

e
?p

t2
n

)

T
h
e

ty
pe

s
o
f

p
ro

pe
rt

ie
s

P
1

a
n

d
P

2
h
a
ve

d
is

-

si
m

il
a
r

n
a
m

es

(?
p

1
b

a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

a
se

:n
a
m

e
?p

t1
n

)
(?

p
t2

b
a
se

:n
a
m

e

?p
t2

n
)

(?
p

t1
n

se
m

:d
is

si
m

il
a
rN

a
m

e
?p

t2
n

)

H
av

eS
im

il
ar

D
om

ai
n

T
h
e

d
o
m

a
in

s
o
f

P
1

a
n

d
P

2
a
re

si
m

il
a
r

(?
p

1
b

a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

a
se

:d
o
m

a
in

?p
t1

d
)

(?
p

t2
b

a
se

:d
o
m

a
in

?p
t2

d
)

(?
p

t1
d

se
m

:e
q
u

iv
a
le

n
tT

o
?p

t2
d

)

T
h
e

d
o
m

a
in

s
o
f

P
1

a
n

d
P

2
a
re

d
is

si
m

il
a
r

(?
p

1
b

a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e

?p
t2

)(
?p

t1
b

a
se

:d
o
m

a
in

?p
t1

d
)

(?
p

t2
b

a
se

:d
o
m

a
in

?p
t2

d
)

(?
p

t1
d

se
m

:d
iff

er
en

tF
ro

m
?p

t2
d

)

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

349



T
a
b
le

1
1
(c
o
n
ti
n
u
e
d
)

R
a
n
d
o
m

V
a
ri
a
b
le

T
a
rg

e
t
S
p
a
c
e
V
a
lu
e
s

P
a
tt
e
rn

s

H
av

eS
im

il
ar

R
an

ge
T

h
e

ra
n

ge
s

o
f

P
1

a
n

d
P

2
a
re

si
m

il
a
r

(?
p

1
b

a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

a
se

:r
a
n

g
e

?p
t1

r)
(?

p
t2

b
a
se

:r
a
n

g
e

?p
t2

r)
(?

p
t1

r
se

m
:e

q
u

iv
a
le

n
tT

o
?p

t2
r)

T
h
e

ra
n

ge
s

o
f

P
1

a
n

d
P

2
a
re

d
is

si
m

il
a
r

(?
p

1
b

a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e

?p
t2

)(
?p

t1
b

a
se

:r
a
n

g
e

?p
t1

r)
(?

p
t2

b
as

e:
ra

n
g
e

?p
t2

r)
(?

p
t1

r
se

m
:d

iff
er

en
tF

ro
m

?p
t2

r)

S
im

il
ar

C
on

n
ec

te
d

In
st

an
ce

s
T

h
e

co
n

n
ec

te
d

in
st

a
n

ce
s

th
ro

u
gh

P
1

a
n

d
P

2

a
re

si
m

il
a
r

(?
p

1
b

a
se

:c
o
n

st
ra

in
ed

B
y

?c
1
)

(?
p

2

b
as

e:
co

n
st

ra
in

ed
B

y
?c

2
)

(?
c1

b
a
se

:v
a
lu

e

?v
)

(?
c2

b
a
se

:v
a
lu

e
?v

)

T
h
e

co
n

n
ec

te
d

in
st

a
n

ce
s

th
ro

u
gh

P
1

a
n

d
P

2

a
re

n
o
t

si
m

il
a
r

(?
p

1
b

a
se

:c
o
n

st
ra

in
ed

B
y

?c
1
)

(?
p

2

b
as

e:
co

n
st

ra
in

ed
B

y
?c

2
)

(?
c1

b
a
se

:v
a
lu

e

?v
1)

(?
c2

b
a
se

:v
a
lu

e
?v

2
)

is
L

it
er

a
l(

?v
1
)

n
ot

E
q
u

a
l(

?v
1
,

?v
2
)

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

350



T
a
b
le

1
1
(c
o
n
ti
n
u
e
d
)

R
a
n
d
o
m

V
a
ri
a
b
le

T
a
rg

e
t
S
p
a
c
e
V
a
lu
e
s

P
a
tt
e
rn

s

E
n
ti

ty
N

am
es

S
y
n

on
y
m

sO
rE

q
u

al
E

n
ti

ti
es

X
a
n

d
Y

h
a
ve

n
a
m

es
th

a
t

a
re

kn
o
w

n

sy
n

o
n

ym
s

o
r

a
re

eq
u

a
l

(?
x

b
a
se

:c
o
n
ta

in
s

?p
1
)

(?
y

b
a
se

:c
o
n
ta

in
s

?p
2)

(?
x

rd
f:

ty
p

e
b

a
se

:E
le

m
en

t)
(?

y
rd

f:
ty

p
e

b
as

e:
E

le
m

en
t)

(?
x

b
a
se

:n
a
m

e
?n

1
)

(?
y

b
as

e:
n

a
m

e
?n

2
)

sy
n

o
n
y
m

s(
?n

1
,

?n
2
)

E
n

ti
ti

es
X

a
n

d
Y

h
a
ve

n
a
m

es
th

a
t

a
re

n
o
t

kn
o
w

n
sy

n
o
n

ym
s

a
n

d
a
re

n
o
t

eq
u

a
l

(?
x

b
a
se

:c
o
n
ta

in
s

?p
1
)

(?
y

b
a
se

:c
o
n
ta

in
s

?p
2)

(?
x

rd
f:

ty
p

e
b

a
se

:E
le

m
en

t)
(?

y
rd

f:
ty

p
e

b
as

e:
E

le
m

en
t)

(?
x

b
a
se

:n
a
m

e
?n

1
)

(?
y

b
as

e:
n

a
m

e
?n

2
)

n
o
tS

y
n

o
n
y
m

s(
?n

1
,

?n
2
)

E
n
ti

ty
N

am
es

S
im

il
ar

it
y
S

co
re

T
h
e

n
a
m

es
o
f

X
a
n

d
Y

h
a
ve

a
si

m
il

a
ri

ty
sc

o
re

o
f

0
.8

to
1
.0

(?
x

b
a
se

:c
o
n
ta

in
s

?p
1
)

(?
y

b
a
se

:c
o
n
ta

in
s

?p
2)

(?
x

rd
f:

ty
p

e
b

a
se

:E
le

m
en

t)
(?

y
rd

f:
ty

p
e

b
as

e:
E

le
m

en
t)

(?
x

b
a
se

:n
a
m

e
?n

1
)

(?
y

b
as

e:
n

a
m

e
?n

2
)

si
m

il
a
rS

tr
in

g
(?

n
1
,

?n
2
,

’0
.8

’,

’1
.0

’,
’i

’)

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

351



T
a
b
le

1
1
(c
o
n
ti
n
u
e
d
)

R
a
n
d
o
m

V
a
ri
a
b
le

T
a
rg

e
t
S
p
a
c
e
V
a
lu
e
s

P
a
tt
e
rn

s

T
h
e

n
a
m

es
o
f

X
a
n

d
Y

h
a
ve

a
si

m
il

a
ri

ty
sc

o
re

o
f

0
.6

to
0
.8

(?
x

b
a
se

:c
o
n
ta

in
s

?p
1
)

(?
y

b
a
se

:c
o
n
ta

in
s

?p
2)

(?
x

rd
f:

ty
p

e
b

a
se

:E
le

m
en

t)
(?

y
rd

f:
ty

p
e

b
as

e:
E

le
m

en
t)

(?
x

b
a
se

:n
a
m

e
?n

1
)

(?
y

b
as

e:
n

a
m

e
?n

2
)

si
m

il
a
rS

tr
in

g
(?

n
1
,

?n
2
,

’0
.6

’,

’0
.8

’,
’i

’)

T
h
e

n
a
m

es
o
f

X
a
n

d
Y

h
a
ve

a
si

m
il

a
ri

ty
sc

o
re

o
f

0
.4

to
0
.6

(?
x

b
a
se

:c
o
n
ta

in
s

?p
1
)

(?
y

b
a
se

:c
o
n
ta

in
s

?p
2)

(?
x

rd
f:

ty
p

e
b

a
se

:E
le

m
en

t)
(?

y
rd

f:
ty

p
e

b
as

e:
E

le
m

en
t)

(?
x

b
a
se

:n
a
m

e
?n

1
)

(?
y

b
as

e:
n

a
m

e
?n

2
)

si
m

il
a
rS

tr
in

g
(?

n
1
,

?n
2
,

’0
.4

’,

’0
.6

’,
’i

’)

T
h
e

n
a
m

es
o
f

X
a
n

d
Y

h
a
ve

a
si

m
il

a
ri

ty
sc

o
re

o
f

0
.2

to
0
.4

(?
x

b
a
se

:c
o
n
ta

in
s

?p
1
)

(?
y

b
a
se

:c
o
n
ta

in
s

?p
2)

(?
x

rd
f:

ty
p

e
b

a
se

:E
le

m
en

t)
(?

y
rd

f:
ty

p
e

b
as

e:
E

le
m

en
t)

(?
x

b
a
se

:n
a
m

e
?n

1
)

(?
y

b
as

e:
n

a
m

e
?n

2
)

si
m

il
a
rS

tr
in

g
(?

n
1
,

?n
2
,

’0
.2

’,

’0
.4

’,
’i

’)

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

352



T
a
b
le

1
1
(c
o
n
ti
n
u
e
d
)

R
a
n
d
o
m

V
a
ri
a
b
le

T
a
rg

e
t
S
p
a
c
e
V
a
lu
e
s

P
a
tt
e
rn

s

T
h
e

n
a
m

es
o
f

X
a
n

d
Y

h
a
ve

a
si

m
il

a
ri

ty
sc

o
re

o
f

0
.0

to
0
.2

(?
x

b
a
se

:c
o
n
ta

in
s

?p
1
)

(?
y

b
a
se

:c
o
n
ta

in
s

?p
2)

(?
x

rd
f:

ty
p

e
b

a
se

:E
le

m
en

t)
(?

y
rd

f:
ty

p
e

b
as

e:
E

le
m

en
t)

(?
x

b
a
se

:n
a
m

e
?n

1
)

(?
y

b
as

e:
n

a
m

e
?n

2
)

si
m

il
a
rS

tr
in

g
(?

n
1
,

?n
2
,

’0
.0

’,

’0
.2

’,
’i

’)

E
n
ti

ty
T

y
p

eN
am

es
S

y
n

on
y
m

ou
sO

rE
q
u

al
E

n
ti

ti
es

X
a
n

d
Y

h
a

ve
ty

pe
s

w
it

h
sy

n
o
n

ym
o
u

s

o
r

eq
u

a
l

n
a
m

es

(?
x

b
a
se

:c
o
n
ta

in
s

?p
1
)

(?
y

b
a
se

:c
o
n
ta

in
s

?p
2)

(?
x

rd
f:

ty
p

e
?x

t)
(?

y
rd

f:
ty

p
e

?y
t)

n
o
tE

q
u

a
l(

?x
t,

b
a
se

:E
le

m
en

t)
n

o
tE

-

q
u

al
(?

y
t,

b
a
se

:E
le

m
en

t)
(?

x
t

rd
f:

ty
p

e

b
as

e:
E

le
m

en
t)

(?
x
t

b
a
se

:n
a
m

e
?x

tn
)

(?
y
t

rd
f:

ty
p

e
b

a
se

:E
le

m
en

t)
(?

y
t

b
a
se

:n
a
m

e
?y

tn
)

sy
n

on
y
m

s(
?x

tn
,

?y
tn

) C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

353



T
a
b
le

1
1
(c
o
n
ti
n
u
e
d
)

R
a
n
d
o
m

V
a
ri
a
b
le

T
a
rg

e
t
S
p
a
c
e
V
a
lu
e
s

P
a
tt
e
rn

s

E
n

ti
ti

es
X

a
n

d
Y

h
a
ve

ty
pe

s
w

it
h

n
o
n

sy
n

-

o
n

ym
o
u

s
a
n

d
n

o
n

eq
u

a
l

n
a
m

es

(?
x

b
a
se

:c
o
n
ta

in
s

?p
1
)

(?
y

b
a
se

:c
o
n
ta

in
s

?p
2)

(?
x

rd
f:

ty
p

e
?x

t)
(?

y
rd

f:
ty

p
e

?y
t)

n
o
tE

q
u

a
l(

?x
t,

b
a
se

:E
le

m
en

t)
n

o
tE

-

q
u

al
(?

y
t,

b
a
se

:E
le

m
en

t)
(?

x
t

rd
f:

ty
p

e

b
as

e:
E

le
m

en
t)

(?
x
t

b
a
se

:n
a
m

e
?x

tn
)

(?
y
t

rd
f:

ty
p

e
b

a
se

:E
le

m
en

t)
(?

y
t

b
a
se

:n
a
m

e
?y

tn
)

n
ot

S
y
n

o
n
y
m

s(
?x

tn
,

?y
tn

)

E
n
ti

ty
T

y
p

eN
am

es
S

im
il

ar
it

y
S

co
re

T
h
e

n
a
m

es
o
f

th
e

ty
pe

s
o
f

X
a
n

d
Y

h
a
ve

a

si
m

il
a
ri

ty
sc

o
re

o
f

0
.8

to
1
.0

(?
x

b
a
se

:c
o
n
ta

in
s

?p
1
)

(?
y

b
a
se

:c
o
n
ta

in
s

?p
2)

(?
x

rd
f:

ty
p

e
?x

t)
(?

y
rd

f:
ty

p
e

?y
t)

n
o
tE

q
u

a
l(

?x
t,

b
a
se

:E
le

m
en

t)
n

o
tE

-

q
u

al
(?

y
t,

b
a
se

:E
le

m
en

t)
(?

x
t

rd
f:

ty
p

e

b
as

e:
E

le
m

en
t)

(?
x
t

b
a
se

:n
a
m

e
?x

tn
)

(?
y
t

rd
f:

ty
p

e
b

a
se

:E
le

m
en

t)
(?

y
t

b
a
se

:n
a
m

e
?y

tn
)

si
m

il
ar

S
tr

in
g
(?

x
tn

,
?y

tn
,

’0
.8

’,
’1

.0
’,

’i
’)

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

354



T
a
b
le

1
1
(c
o
n
ti
n
u
e
d
)

R
a
n
d
o
m

V
a
ri
a
b
le

T
a
rg

e
t
S
p
a
c
e
V
a
lu
e
s

P
a
tt
e
rn

s

T
h
e

n
a
m

es
o
f

th
e

ty
pe

s
o
f

X
a
n

d
Y

h
a
ve

a

si
m

il
a
ri

ty
sc

o
re

o
f

0
.6

to
0
.8

(?
x

b
a
se

:c
o
n
ta

in
s

?p
1
)

(?
y

b
a
se

:c
o
n
ta

in
s

?p
2)

(?
x

rd
f:

ty
p

e
?x

t)
(?

y
rd

f:
ty

p
e

?y
t)

n
o
tE

q
u

a
l(

?x
t,

b
a
se

:E
le

m
en

t)
n

o
tE

-

q
u

al
(?

y
t,

b
a
se

:E
le

m
en

t)
(?

x
t

rd
f:

ty
p

e

b
as

e:
E

le
m

en
t)

(?
x
t

b
a
se

:n
a
m

e
?x

tn
)

(?
y
t

rd
f:

ty
p

e
b

a
se

:E
le

m
en

t)
(?

y
t

b
a
se

:n
a
m

e
?y

tn
)

si
m

il
ar

S
tr

in
g
(?

x
tn

,
?y

tn
,

’0
.6

’,
’0

.8
’,

’i
’)

T
h
e

n
a
m

es
o
f

th
e

ty
pe

s
o
f

X
a
n

d
Y

h
a
ve

a

si
m

il
a
ri

ty
sc

o
re

o
f

0
.4

to
0
.6

(?
x

b
a
se

:c
o
n
ta

in
s

?p
1
)

(?
y

b
a
se

:c
o
n
ta

in
s

?p
2)

(?
x

rd
f:

ty
p

e
?x

t)
(?

y
rd

f:
ty

p
e

?y
t)

n
o
tE

q
u

a
l(

?x
t,

b
a
se

:E
le

m
en

t)
n

o
tE

-

q
u

al
(?

y
t,

b
a
se

:E
le

m
en

t)
(?

x
t

rd
f:

ty
p

e

b
as

e:
E

le
m

en
t)

(?
x
t

b
a
se

:n
a
m

e
?x

tn
)

(?
y
t

rd
f:

ty
p

e
b

a
se

:E
le

m
en

t)
(?

y
t

b
a
se

:n
a
m

e
?y

tn
)

si
m

il
ar

S
tr

in
g
(?

x
tn

,
?y

tn
,

’0
.4

’,
’0

.6
’,

’i
’)

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

355



T
a
b
le

1
1
(c
o
n
ti
n
u
e
d
)

R
a
n
d
o
m

V
a
ri
a
b
le

T
a
rg

e
t
S
p
a
c
e
V
a
lu
e
s

P
a
tt
e
rn

s

T
h
e

n
a
m

es
o
f

th
e

ty
pe

s
o
f

X
a
n

d
Y

h
a
ve

a

si
m

il
a
ri

ty
sc

o
re

o
f

0
.2

to
0
.4

(?
x

b
a
se

:c
o
n
ta

in
s

?p
1
)

(?
y

b
a
se

:c
o
n
ta

in
s

?p
2)

(?
x

rd
f:

ty
p

e
?x

t)
(?

y
rd

f:
ty

p
e

?y
t)

n
o
tE

q
u

a
l(

?x
t,

b
a
se

:E
le

m
en

t)
n

o
tE

-

q
u

al
(?

y
t,

b
a
se

:E
le

m
en

t)
(?

x
t

rd
f:

ty
p

e

b
as

e:
E

le
m

en
t)

(?
x
t

b
a
se

:n
a
m

e
?x

tn
)

(?
y
t

rd
f:

ty
p

e
b

a
se

:E
le

m
en

t)
(?

y
t

b
a
se

:n
a
m

e
?y

tn
)

si
m

il
ar

S
tr

in
g
(?

x
tn

,
?y

tn
,

’0
.2

’,
’0

.4
’,

’i
’)

T
h
e

n
a
m

es
o
f

th
e

ty
pe

s
o
f

X
a
n

d
Y

h
a
ve

a

si
m

il
a
ri

ty
sc

o
re

o
f

0
.0

to
0
.2

(?
x

b
a
se

:c
o
n
ta

in
s

?p
1
)

(?
y

b
a
se

:c
o
n
ta

in
s

?p
2)

(?
x

rd
f:

ty
p

e
?x

t)
(?

y
rd

f:
ty

p
e

?y
t)

n
o
tE

q
u

a
l(

?x
t,

b
a
se

:E
le

m
en

t)
n

o
tE

-

q
u

al
(?

y
t,

b
a
se

:E
le

m
en

t)
(?

x
t

rd
f:

ty
p

e

b
as

e:
E

le
m

en
t)

(?
x
t

b
a
se

:n
a
m

e
?x

tn
)

(?
y
t

rd
f:

ty
p

e
b

a
se

:E
le

m
en

t)
(?

y
t

b
a
se

:n
a
m

e
?y

tn
)

si
m

il
ar

S
tr

in
g
(?

x
tn

,
?y

tn
,

’0
.0

’,
’0

.2
’,

’i
’)

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

356



T
a
b
le

1
1
(c
o
n
ti
n
u
e
d
)

R
a
n
d
o
m

V
a
ri
a
b
le

T
a
rg

e
t
S
p
a
c
e
V
a
lu
e
s

P
a
tt
e
rn

s

E
n
ti

ty
T

y
p

es
S

am
e

E
n

ti
ti

es
X

a
n

d
Y

h
a
ve

th
e

sa
m

e
ty

pe
s

(?
x

b
a
se

:c
o
n
ta

in
s

?p
1
)

(?
y

b
a
se

:c
o
n
ta

in
s

?p
2)

(?
x

rd
f:

ty
p

e
?x

t)
(?

y
rd

f:
ty

p
e

?y
t)

n
ot

E
q
u

a
l(

?x
t,

b
a
se

:E
le

m
en

t)
n

o
tE

q
u

a
l(

?y
t,

b
as

e:
E

le
m

en
t)

(?
x
t

rd
f:

ty
p

e
b
a
se

:E
le

m
en

t)

(?
y
t

rd
f:

ty
p

e
b

a
se

:E
le

m
en

t)
eq

u
a
l(

?x
t,

?y
t)

E
n

ti
ti

es
X

a
n

d
Y

d
o

n
o
t

h
a
ve

th
e

sa
m

e
ty

pe
s

(?
x

b
a
se

:c
o
n
ta

in
s

?p
1
)

(?
y

b
a
se

:c
o
n
ta

in
s

?p
2)

(?
x

rd
f:

ty
p

e
?x

t)
(?

y
rd

f:
ty

p
e

?y
t)

n
ot

E
q
u

a
l(

?x
t,

b
a
se

:E
le

m
en

t)
n

o
tE

q
u

a
l(

?y
t,

b
as

e:
E

le
m

en
t)

(?
x
t

rd
f:

ty
p

e
b
a
se

:E
le

m
en

t)

(?
y
t

rd
f:

ty
p

e
b

a
se

:E
le

m
en

t)
n

o
tE

q
u

a
l(

?x
t,

?y
t)

C
on

st
ra

in
tS

im
il

ar
it

y
P

1
a
n

d
P

2
h
a
ve

co
n

st
ra

in
ts

th
a
t

a
re

kn
o
w

n

to
be

th
e

sa
m

e

(?
p

1
b

a
se

:c
o
n

st
ra

in
ed

B
y

?c
1
)

(?
p

2
b

a
se

:c
o
n

st
ra

in
ed

B
y

?c
2
)

(?
c1

se
m

:s
a
m

eC
o
n

st
ra

in
t

?c
2
)

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

357



T
a
b
le

1
1
(c
o
n
ti
n
u
e
d
)

R
a
n
d
o
m

V
a
ri
a
b
le

T
a
rg

e
t
S
p
a
c
e
V
a
lu
e
s

P
a
tt
e
rn

s

P
1

a
n

d
P

2
h
a
ve

n
o

co
n

st
ra

in
ts

th
a
t

a
re

kn
o
w

n
to

be
th

e
sa

m
e

(?
p

1
b

a
se

:c
o
n

st
ra

in
ed

B
y

?c
1
)

(?
p

2
b

a
se

:c
o
n

st
ra

in
ed

B
y

?c
2
)

(?
c1

se
m

:d
iff

er
en

tC
o
n

st
ra

in
t

?c
2
)

C
on

n
ec

te
d

In
st

an
ce

N
am

es
S

im
il

ar
it

y
S

co
re

T
h
e

n
a
m

es
o
f

th
e

co
n

n
ec

te
d

in
st

a
n

ce
s

o
f

P
1

a
n

d
P

2
h
a
ve

a
si

m
il

a
ri

ty
sc

o
re

o
f

0
.8

to
1

.0

(?
p

1
b

a
se

:c
o
n

st
ra

in
ed

B
y

?c
1
)

(?
p

2

b
as

e:
co

n
st

ra
in

ed
B

y
?c

2
)

(?
c1

b
a
se

:v
a
lu

e

?v
1)

(?
c2

b
a
se

:v
a
lu

e
?v

2
)

(?
v
1

b
a
se

:n
a
m

e

?n
1)

(?
v
2

b
a
se

:n
a
m

e
?n

2
)

si
m

il
a
rS

tr
in

g
(?

n
1
,

?n
2,

’0
.8

’,
’1

.0
’,

’i
’)

T
h
e

n
a
m

es
o
f

th
e

co
n

n
ec

te
d

in
st

a
n

ce
s

o
f

P
1

a
n

d
P

2
h
a
ve

a
si

m
il

a
ri

ty
sc

o
re

o
f

0
.6

to
0

.8

(?
p

1
b

a
se

:c
o
n

st
ra

in
ed

B
y

?c
1
)

(?
p

2

b
as

e:
co

n
st

ra
in

ed
B

y
?c

2
)

(?
c1

b
a
se

:v
a
lu

e

?v
1)

(?
c2

b
a
se

:v
a
lu

e
?v

2
)

(?
v
1

b
a
se

:n
a
m

e

?n
1)

(?
v
2

b
a
se

:n
a
m

e
?n

2
)

si
m

il
a
rS

tr
in

g
(?

n
1
,

?n
2,

’0
.6

’,
’0

.8
’,

’i
’)

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

358



T
a
b
le

1
1
(c
o
n
ti
n
u
e
d
)

R
a
n
d
o
m

V
a
ri
a
b
le

T
a
rg

e
t
S
p
a
c
e
V
a
lu
e
s

P
a
tt
e
rn

s

T
h
e

n
a
m

es
o
f

th
e

co
n

n
ec

te
d

in
st

a
n

ce
s

o
f

P
1

a
n

d
P

2
h
a
ve

a
si

m
il

a
ri

ty
sc

o
re

o
f

0
.4

to
0

.6

(?
p

1
b

a
se

:c
o
n

st
ra

in
ed

B
y

?c
1
)

(?
p

2

b
as

e:
co

n
st

ra
in

ed
B

y
?c

2
)

(?
c1

b
a
se

:v
a
lu

e

?v
1)

(?
c2

b
a
se

:v
a
lu

e
?v

2
)

(?
v
1

b
a
se

:n
a
m

e

?n
1)

(?
v
2

b
a
se

:n
a
m

e
?n

2
)

si
m

il
a
rS

tr
in

g
(?

n
1
,

?n
2,

’0
.4

’,
’0

.6
’,

’i
’)

T
h
e

n
a
m

es
o
f

th
e

co
n

n
ec

te
d

in
st

a
n

ce
s

o
f

P
1

a
n

d
P

2
h
a
ve

a
si

m
il

a
ri

ty
sc

o
re

o
f

0
.2

to
0

.4

(?
p

1
b

a
se

:c
o
n

st
ra

in
ed

B
y

?c
1
)

(?
p

2

b
as

e:
co

n
st

ra
in

ed
B

y
?c

2
)

(?
c1

b
a
se

:v
a
lu

e

?v
1)

(?
c2

b
a
se

:v
a
lu

e
?v

2
)

(?
v
1

b
a
se

:n
a
m

e

?n
1)

(?
v
2

b
a
se

:n
a
m

e
?n

2
)

si
m

il
a
rS

tr
in

g
(?

n
1
,

?n
2,

’0
.2

’,
’0

.4
’,

’i
’)

T
h
e

n
a
m

es
o
f

th
e

co
n

n
ec

te
d

in
st

a
n

ce
s

o
f

P
1

a
n

d
P

2
h
a
ve

a
si

m
il

a
ri

ty
sc

o
re

o
f

0
.0

to
0

.2

(?
p

1
b

a
se

:c
o
n

st
ra

in
ed

B
y

?c
1
)

(?
p

2

b
as

e:
co

n
st

ra
in

ed
B

y
?c

2
)

(?
c1

b
a
se

:v
a
lu

e

?v
1)

(?
c2

b
a
se

:v
a
lu

e
?v

2
)

(?
v
1

b
a
se

:n
a
m

e

?n
1)

(?
v
2

b
a
se

:n
a
m

e
?n

2
)

si
m

il
a
rS

tr
in

g
(?

n
1
,

?n
2,

’0
.0

’,
’0

.2
’,

’i
’)

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

359



T
a
b
le

1
1
(c
o
n
ti
n
u
e
d
)

R
a
n
d
o
m

V
a
ri
a
b
le

T
a
rg

e
t
S
p
a
c
e
V
a
lu
e
s

P
a
tt
e
rn

s

C
on

n
ec

te
d

In
st

an
ce

N
am

es
S

y
n

on
y
m

sO
rE

q
u

al
T

h
e

n
a
m

es
o
f

th
e

co
n

n
ec

te
d

in
st

a
n

ce
s

o
f

P
1

a
n

d
P

2
a
re

ei
th

er
sy

n
o
n

ym
s

o
r

eq
u

a
l

(?
p

1
b

a
se

:c
o
n

st
ra

in
ed

B
y

?c
1
)

(?
p

2

b
as

e:
co

n
st

ra
in

ed
B

y
?c

2
)

(?
c1

b
a
se

:v
a
lu

e

?v
1)

(?
c2

b
a
se

:v
a
lu

e
?v

2
)

(?
v
1

b
a
se

:n
a
m

e

?n
1)

(?
v
2

b
a
se

:n
a
m

e
?n

2
)

sy
n

o
n
y
m

s(
?n

1
,

?n
2)

T
h
e

n
a
m

es
o
f

th
e

co
n

n
ec

te
d

in
st

a
n

ce
s

o
f

P
1

a
n

d
P

2
a
re

n
ei

th
er

sy
n

o
n

ym
s

n
o
r

eq
u

a
l

(?
p

1
b

a
se

:c
o
n

st
ra

in
ed

B
y

?c
1
)

(?
p

2

b
as

e:
co

n
st

ra
in

ed
B

y
?c

2
)

(?
c1

b
a
se

:v
a
lu

e

?v
1)

(?
c2

b
a
se

:v
a
lu

e
?v

2
)

(?
v
1

b
a
se

:n
a
m

e

?n
1)

(?
v
2

b
a
se

:n
a
m

e
?n

2
)

n
o
tS

y
n

o
n
y
m

s(
?n

1
,

?n
2)

S
am

eR
el

at
io

n
T

y
p

e
T

h
e

p
ro

pe
rt

y
ki

n
d
s

o
f

P
1

a
n

d
P

2
a
re

th
e

sa
m

e
(?

p
1

b
a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e
?p

t2
)

eq
u

al
(?

p
t1

,
?p

t2
)

T
h
e

p
ro

pe
rt

y
ki

n
d
s

o
f

P
1

a
n

d
P

2
a
re

n
o
t

th
e

sa
m

e

(?
p

1
b

a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e
?p

t2
)

n
ot

E
q
u

a
l(

?p
t1

,
?p

t2
) C

o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

360



T
a
b
le

1
1
(c
o
n
ti
n
u
e
d
)

R
a
n
d
o
m

V
a
ri
a
b
le

T
a
rg

e
t
S
p
a
c
e
V
a
lu
e
s

P
a
tt
e
rn

s

R
el

at
io

n
T

y
p

eN
am

es
S

y
n

on
y
m

sO
rE

q
u

al
T

h
e

ty
pe

s
o
f

p
ro

pe
rt

ie
s

P
1

a
n

d
P

2
h
a
ve

n
a
m

es
th

a
t

a
re

sy
n

o
n

ym
s

o
r

eq
u

a
l

(?
p

1
b

a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

a
se

:n
a
m

e
?p

t1
n

)
(?

p
t2

b
a
se

:n
a
m

e

?p
t2

n
)

sy
n

o
n
y
m

s(
?p

t1
n

,
?p

t2
n

)

T
h
e

ty
pe

s
o
f

p
ro

pe
rt

ie
s

P
1

a
n

d
P

2
h
a
ve

n
a
m

es
th

a
t

a
re

n
o
t

sy
n

o
n

ym
s

a
n

d
n

o
t

eq
u

a
l

(?
p

1
b

a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

a
se

:n
a
m

e
?p

t1
n

)
(?

p
t2

b
a
se

:n
a
m

e

?p
t2

n
)

n
o
tS

y
n

o
n
y
m

s(
?p

t1
n

,
?p

t2
n
)

R
el

at
io

n
T

y
p

eN
am

es
S

im
il

ar
it

y
S

co
re

T
h
e

n
a
m

es
o
f

th
e

ty
pe

s
o
f

P
1

a
n

d
P

2
h
a
ve

a

si
m

il
a
ri

ty
sc

o
re

o
f

0
.8

to
1
.0

(?
p

1
b

a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

a
se

:n
a
m

e
?p

t1
n

)
(?

p
t2

b
a
se

:n
a
m

e

?p
t2

n
)

si
m

il
a
rS

tr
in

g
(?

p
t1

n
,

?p
t2

n
,

’0
.8

’,

’1
.0

’,
’i

’)

T
h
e

n
a
m

es
o
f

th
e

ty
pe

s
o
f

P
1

a
n

d
P

2
h
a
ve

a

si
m

il
a
ri

ty
sc

o
re

o
f

0
.6

to
0
.8

(?
p

1
b

a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

a
se

:n
a
m

e
?p

t1
n

)
(?

p
t2

b
a
se

:n
a
m

e

?p
t2

n
)

si
m

il
a
rS

tr
in

g
(?

p
t1

n
,

?p
t2

n
,

’0
.6

’,

’0
.8

’,
’i

’)

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

361



T
a
b
le

1
1
(c
o
n
ti
n
u
e
d
)

R
a
n
d
o
m

V
a
ri
a
b
le

T
a
rg

e
t
S
p
a
c
e
V
a
lu
e
s

P
a
tt
e
rn

s

T
h
e

n
a
m

es
o
f

th
e

ty
pe

s
o
f

P
1

a
n

d
P

2
h
a
ve

a

si
m

il
a
ri

ty
sc

o
re

o
f

0
.4

to
0
.6

(?
p

1
b

a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

a
se

:n
a
m

e
?p

t1
n

)
(?

p
t2

b
a
se

:n
a
m

e

?p
t2

n
)

si
m

il
a
rS

tr
in

g
(?

p
t1

n
,

?p
t2

n
,

’0
.4

’,

’0
.6

’,
’i

’)

T
h
e

n
a
m

es
o
f

th
e

ty
pe

s
o
f

P
1

a
n

d
P

2
h
a
ve

a

si
m

il
a
ri

ty
sc

o
re

o
f

0
.2

to
0
.4

(?
p

1
b

a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

a
se

:n
a
m

e
?p

t1
n

)
(?

p
t2

b
a
se

:n
a
m

e

?p
t2

n
)

si
m

il
a
rS

tr
in

g
(?

p
t1

n
,

?p
t2

n
,

’0
.2

’,

’0
.4

’,
’i

’)

T
h
e

n
a
m

es
o
f

th
e

ty
pe

s
o
f

P
1

a
n

d
P

2
h
a
ve

a

si
m

il
a
ri

ty
sc

o
re

o
f

0
.0

to
0
.2

(?
p

1
b

a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

a
se

:n
a
m

e
?p

t1
n

)
(?

p
t2

b
a
se

:n
a
m

e

?p
t2

n
)

si
m

il
a
rS

tr
in

g
(?

p
t1

n
,

?p
t2

n
,

’0
.0

’,

’0
.2

’,
’i

’)

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

362



T
a
b
le

1
1
(c
o
n
ti
n
u
e
d
)

R
a
n
d
o
m

V
a
ri
a
b
le

T
a
rg

e
t
S
p
a
c
e
V
a
lu
e
s

P
a
tt
e
rn

s

R
an

ge
T

y
p

eN
am

es
S

y
n

on
y
m

sO
rE

q
u

al
T

h
e

n
a
m

es
o
f

th
e

ra
n

ge
s

o
f

P
1

a
n

d
P

2
a
re

sy
n

o
n

ym
s

o
r

eq
u

a
l

(?
p

1
b

a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

a
se

:r
a
n

g
e

?p
t1

r)
(?

p
t2

b
a
se

:r
a
n

g
e

?p
t2

r)
(?

p
t1

r
b

a
se

:n
a
m

e
?p

t1
rn

)
(?

p
t2

r

b
as

e:
n

a
m

e
?p

t2
rn

)
sy

n
o
n
y
m

s(
?p

t1
rn

,

?p
t2

rn
)

T
h
e

n
a
m

es
o
f

th
e

ra
n

ge
s

o
f

P
1

a
n

d
P

2
a
re

n
ei

th
er

sy
n

o
n

ym
s

n
o
r

eq
u

a
l

(?
p

1
b

a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

a
se

:r
a
n

g
e

?p
t1

r)
(?

p
t2

b
a
se

:r
a
n

g
e

?p
t2

r)
(?

p
t1

r
b

a
se

:n
a
m

e
?p

t1
rn

)
(?

p
t2

r

b
as

e:
n

a
m

e
?p

t2
rn

)
n
o
tS

y
n

o
n
y
m

s(
?p

t1
rn

,

?p
t2

rn
)

R
an

ge
T

y
p

eN
am

es
S

im
il

ar
it

y
S

co
re

T
h
e

n
a
m

es
o
f

th
e

ra
n

ge
s

o
f

P
1

a
n

d
P

2
h
a
ve

a
si

m
il

a
ri

ty
sc

o
re

o
f

0
.8

to
1
.0

(?
p

1
b

a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

a
se

:r
a
n

g
e

?p
t1

r)
(?

p
t2

b
a
se

:r
a
n

g
e

?p
t2

r)
(?

p
t1

r
b

a
se

:n
a
m

e
?p

t1
rn

)
(?

p
t2

r

b
as

e:
n

a
m

e
?p

t2
rn

)
si

m
il

a
rS

tr
in

g
(?

p
t1

rn
,

?p
t2

rn
,

’0
.8

’,
’1

.0
’,

’i
’) C

o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

363



T
a
b
le

1
1
(c
o
n
ti
n
u
e
d
)

R
a
n
d
o
m

V
a
ri
a
b
le

T
a
rg

e
t
S
p
a
c
e
V
a
lu
e
s

P
a
tt
e
rn

s

T
h
e

n
a
m

es
o
f

th
e

ra
n

ge
s

o
f

P
1

a
n

d
P

2
h
a
ve

a
si

m
il

a
ri

ty
sc

o
re

o
f

0
.6

to
0
.8

(?
p

1
b

a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

a
se

:r
a
n

g
e

?p
t1

r)
(?

p
t2

b
a
se

:r
a
n

g
e

?p
t2

r)
(?

p
t1

r
b

a
se

:n
a
m

e
?p

t1
rn

)
(?

p
t2

r

b
as

e:
n

a
m

e
?p

t2
rn

)
si

m
il

a
rS

tr
in

g
(?

p
t1

rn
,

?p
t2

rn
,

’0
.6

’,
’0

.8
’,

’i
’)

T
h
e

n
a
m

es
o
f

th
e

ra
n

ge
s

o
f

P
1

a
n

d
P

2
h
a
ve

a
si

m
il

a
ri

ty
sc

o
re

o
f

0
.4

to
0
.6

(?
p

1
b

a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

a
se

:r
a
n

g
e

?p
t1

r)
(?

p
t2

b
a
se

:r
a
n

g
e

?p
t2

r)
(?

p
t1

r
b

a
se

:n
a
m

e
?p

t1
rn

)
(?

p
t2

r

b
as

e:
n

a
m

e
?p

t2
rn

)
si

m
il

a
rS

tr
in

g
(?

p
t1

rn
,

?p
t2

rn
,

’0
.4

’,
’0

.6
’,

’i
’)

T
h
e

n
a
m

es
o
f

th
e

ra
n

ge
s

o
f

P
1

a
n

d
P

2
h
a
ve

a
si

m
il

a
ri

ty
sc

o
re

o
f

0
.2

to
0
.4

(?
p

1
b

a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

a
se

:r
a
n

g
e

?p
t1

r)
(?

p
t2

b
a
se

:r
a
n

g
e

?p
t2

r)
(?

p
t1

r
b

a
se

:n
a
m

e
?p

t1
rn

)
(?

p
t2

r

b
as

e:
n

a
m

e
?p

t2
rn

)
si

m
il

a
rS

tr
in

g
(?

p
t1

rn
,

?p
t2

rn
,

’0
.2

’,
’0

.4
’,

’i
’) C

o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

364



T
a
b
le

1
1
(c
o
n
ti
n
u
e
d
)

R
a
n
d
o
m

V
a
ri
a
b
le

T
a
rg

e
t
S
p
a
c
e
V
a
lu
e
s

P
a
tt
e
rn

s

T
h
e

n
a
m

es
o
f

th
e

ra
n

ge
s

o
f

P
1

a
n

d
P

2
h
a
ve

a
si

m
il

a
ri

ty
sc

o
re

o
f

0
.0

to
0
.2

(?
p

1
b

a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

a
se

:r
a
n

g
e

?p
t1

r)
(?

p
t2

b
a
se

:r
a
n

g
e

?p
t2

r)
(?

p
t1

r
b

a
se

:n
a
m

e
?p

t1
rn

)
(?

p
t2

r

b
as

e:
n

a
m

e
?p

t2
rn

)
si

m
il

a
rS

tr
in

g
(?

p
t1

rn
,

?p
t2

rn
,

’0
.0

’,
’0

.2
’,

’i
’)

S
am

eR
an

ge
T

y
p

e
T

h
e

ra
n

ge
s

o
f

P
1

a
n

d
P

2
a
re

th
e

sa
m

e
(?

p
1

b
a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

a
se

:r
a
n

g
e

?p
t1

r)
(?

p
t2

b
a
se

:r
a
n

g
e

?p
t2

r)
eq

u
a
l(

?p
t1

r,
?p

t2
r)

T
h
e

ra
n

ge
s

o
f

P
1

a
n

d
P

2
a
re

n
o
t

th
e

sa
m

e
(?

p
1

b
a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

a
se

:r
a
n

g
e

?p
t1

r)
(?

p
t2

b
a
se

:r
a
n

g
e

?p
t2

r)
n

o
tE

q
u

a
l(

?p
t1

r,
?p

t2
r)

D
om

ai
n

T
y
p

eN
am

es
S

y
n

on
y
m

sO
rE

q
u

al
T

h
e

n
a
m

es
o
f

th
e

d
o
m

a
in

s
o
f

P
1

a
n

d
P

2
a
re

sy
n

o
n

ym
s

o
r

eq
u

a
l

(?
p

1
b

a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

a
se

:d
o
m

a
in

?p
r1

d
)

(?
p

t2
b

a
se

:d
o
m

a
in

?p
r2

d
)

(?
p

r1
d

b
a
se

:n
a
m

e
?p

r1
d

n
)

(?
p

r2
d

b
as

e:
n

a
m

e
?p

r2
d

n
)

sy
n

o
n
y
m

s(
?p

r1
d

n
,

?p
r2

d
n

)

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

365



T
a
b
le

1
1
(c
o
n
ti
n
u
e
d
)

R
a
n
d
o
m

V
a
ri
a
b
le

T
a
rg

e
t
S
p
a
c
e
V
a
lu
e
s

P
a
tt
e
rn

s

T
h
e

n
a
m

es
o
f

th
e

d
o
m

a
in

s
o
f

P
1

a
n

d
P

2
a
re

n
ei

th
er

sy
n

o
n

ym
s

n
o
r

eq
u

a
l

(?
p

1
b

a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

a
se

:d
o
m

a
in

?p
r1

d
)

(?
p

t2
b

a
se

:d
o
m

a
in

?p
r2

d
)

(?
p

r1
d

b
a
se

:n
a
m

e
?p

r1
d

n
)

(?
p

r2
d

b
as

e:
n

a
m

e
?p

r2
d

n
)

n
o
tS

y
n

o
n
y
m

s(
?p

r1
d

n
,

?p
r2

d
n

)

D
om

ai
n

T
y
p

eN
am

es
S

im
il

ar
it

y
S

co
re

T
h
e

n
a
m

es
o
f

th
e

d
o
m

a
in

s
o
f

P
1

a
n

d
P

2
h
a
ve

a
si

m
il

a
ri

ty
sc

o
re

o
f

0
.8

to
1
.0

(?
p

1
b

a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

a
se

:d
o
m

a
in

?p
r1

d
)

(?
p

t2
b

a
se

:d
o
m

a
in

?p
r2

d
)

(?
p

r1
d

b
a
se

:n
a
m

e
?p

r1
d

n
)

(?
p

r2
d

b
as

e:
n

a
m

e
?p

r2
d

n
)

si
m

il
a
rS

tr
in

g
(?

p
r1

d
n

,

?p
r2

d
n

,
’0

.8
’,

’1
.0

’,
’i

’)

T
h
e

n
a
m

es
o
f

th
e

d
o
m

a
in

s
o
f

P
1

a
n

d
P

2
h
a
ve

a
si

m
il

a
ri

ty
sc

o
re

o
f

0
.6

to
0
.8

(?
p

1
b

a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

a
se

:d
o
m

a
in

?p
r1

d
)

(?
p

t2
b

a
se

:d
o
m

a
in

?p
r2

d
)

(?
p

r1
d

b
a
se

:n
a
m

e
?p

r1
d

n
)

(?
p

r2
d

b
as

e:
n

a
m

e
?p

r2
d

n
)

si
m

il
a
rS

tr
in

g
(?

p
r1

d
n

,

?p
r2

d
n

,
’0

.6
’,

’0
.8

’,
’i

’) C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

366



T
a
b
le

1
1
(c
o
n
ti
n
u
e
d
)

R
a
n
d
o
m

V
a
ri
a
b
le

T
a
rg

e
t
S
p
a
c
e
V
a
lu
e
s

P
a
tt
e
rn

s

T
h
e

n
a
m

es
o
f

th
e

d
o
m

a
in

s
o
f

P
1

a
n

d
P

2
h
a
ve

a
si

m
il

a
ri

ty
sc

o
re

o
f

0
.4

to
0
.6

(?
p

1
b

a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

a
se

:d
o
m

a
in

?p
r1

d
)

(?
p

t2
b

a
se

:d
o
m

a
in

?p
r2

d
)

(?
p

r1
d

b
a
se

:n
a
m

e
?p

r1
d

n
)

(?
p

r2
d

b
as

e:
n

a
m

e
?p

r2
d

n
)

si
m

il
a
rS

tr
in

g
(?

p
r1

d
n

,

?p
r2

d
n

,
’0

.4
’,

’0
.6

’,
’i

’)

T
h
e

n
a
m

es
o
f

th
e

d
o
m

a
in

s
o
f

P
1

a
n

d
P

2
h
a
ve

a
si

m
il

a
ri

ty
sc

o
re

o
f

0
.2

to
0
.4

(?
p

1
b

a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

a
se

:d
o
m

a
in

?p
r1

d
)

(?
p

t2
b

a
se

:d
o
m

a
in

?p
r2

d
)

(?
p

r1
d

b
a
se

:n
a
m

e
?p

r1
d

n
)

(?
p

r2
d

b
as

e:
n

a
m

e
?p

r2
d

n
)

si
m

il
a
rS

tr
in

g
(?

p
r1

d
n

,

?p
r2

d
n

,
’0

.2
’,

’0
.4

’,
’i

’)

T
h
e

n
a
m

es
o
f

th
e

d
o
m

a
in

s
o
f

P
1

a
n

d
P

2
h
a
ve

a
si

m
il

a
ri

ty
sc

o
re

o
f

0
.0

to
0
.2

(?
p

1
b

a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

a
se

:d
o
m

a
in

?p
r1

d
)

(?
p

t2
b

a
se

:d
o
m

a
in

?p
r2

d
)

(?
p

r1
d

b
a
se

:n
a
m

e
?p

r1
d

n
)

(?
p

r2
d

b
as

e:
n

a
m

e
?p

r2
d

n
)

si
m

il
a
rS

tr
in

g
(?

p
r1

d
n

,

?p
r2

d
n

,
’0

.0
’,

’0
.2

’,
’i

’) C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

367



T
a
b
le

1
1
(c
o
n
ti
n
u
e
d
)

R
a
n
d
o
m

V
a
ri
a
b
le

T
a
rg

e
t
S
p
a
c
e
V
a
lu
e
s

P
a
tt
e
rn

s

S
am

eD
om

ai
n

T
y
p

e
T

h
e

d
o
m

a
in

s
o
f

P
1

a
n

d
P

2
a
re

th
e

sa
m

e
(?

p
1

b
a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

a
se

:d
o
m

a
in

?p
r1

d
)

(?
p

t2
b

a
se

:d
o
m

a
in

?p
r2

d
)

eq
u

a
l(

?p
r1

d
,

?p
r2

d
)

T
h
e

d
o
m

a
in

s
o
f

P
1

a
n

d
P

2
a
re

n
o
t

th
e

sa
m

e
(?

p
1

b
a
se

:t
y
p

e
?p

t1
)

(?
p

2
b

a
se

:t
y
p

e
?p

t2
)

(?
p

t1
b

a
se

:d
o
m

a
in

?p
r1

d
)

(?
p

t2
b

a
se

:d
o
m

a
in

?p
r2

d
)

n
o
tE

q
u

a
l(

?p
r1

d
,

?p
r2

d
)

D
er

iv
ed

C
on

st
ra

in
tS

im
il

ar
it

y
B

o
th

co
n

st
ra

in
ts

h
a
ve

u
n

it
ty

pe
s

a
n

d
va

lu
es

d
efi

n
ed

a
n

d
bo

th
a
re

th
e

sa
m

e

(?
p

1
b

a
se

:c
o
n

st
ra

in
ed

B
y

?c
1
)

(?
p

2

b
as

e:
co

n
st

ra
in

ed
B

y
?c

2
)

(?
c1

rd
f:

ty
p

e

b
as

e:
D

er
iv

ed
C

o
n

st
ra

in
t)

(?
c2

rd
f:

ty
p

e

b
as

e:
D

er
iv

ed
C

o
n

st
ra

in
t)

(?
c1

b
a
se

:u
n

it
T

y
p

e

?u
1)

(?
c2

b
a
se

:u
n

it
T

y
p

e
?u

2
)

(?
c1

b
a
se

:v
a
lu

e

?v
1)

(?
c2

b
a
se

:v
a
lu

e
?v

2
)

eq
u

a
l(

?u
1
,

?u
2
)

eq
u

al
(?

v
1
,

?v
2
)

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

368



T
a
b
le

1
1
(c
o
n
ti
n
u
e
d
)

R
a
n
d
o
m

V
a
ri
a
b
le

T
a
rg

e
t
S
p
a
c
e
V
a
lu
e
s

P
a
tt
e
rn

s

B
o
th

co
n

st
ra

in
ts

h
a
ve

u
n

it
ty

pe
s

a
n

d
va

lu
es

d
efi

n
ed

a
n

d
th

e
va

lu
es

a
re

n
o
t

th
e

sa
m

e

(?
p

1
b

a
se

:c
o
n

st
ra

in
ed

B
y

?c
1
)

(?
p

2

b
as

e:
co

n
st

ra
in

ed
B

y
?c

2
)

(?
c1

rd
f:

ty
p

e

b
as

e:
D

er
iv

ed
C

o
n

st
ra

in
t)

(?
c2

rd
f:

ty
p

e

b
as

e:
D

er
iv

ed
C

o
n

st
ra

in
t)

(?
c1

b
a
se

:u
n

it
T

y
p

e

?u
1)

(?
c2

b
a
se

:u
n

it
T

y
p

e
?u

2
)

(?
c1

b
a
se

:v
a
lu

e

?v
1)

(?
c2

b
a
se

:v
a
lu

e
?v

2
)

eq
u

a
l(

?u
1
,

?u
2
)

n
ot

E
q
u

a
l(

?v
1
,

?v
2
)

O
n

e
o
f

th
e

co
n

st
ra

in
ts

d
oe

s
n

o
t

h
a
ve

a
u

n
it

ty
pe

d
efi

n
ed

(?
p

1
b

a
se

:c
o
n

st
ra

in
ed

B
y

?c
1
)

(?
p

2

b
as

e:
co

n
st

ra
in

ed
B

y
?c

2
)

(?
c1

b
a
se

:u
n

it
T

y
p

e

?u
1)

n
o
V

a
lu

e(
?c

2
b

a
se

:u
n

it
T

y
p

e
?u

2
)

B
o
th

co
n

st
ra

in
ts

d
o

n
o
t

h
a
ve

a
u

n
it

ty
pe

s
d
e-

fi
n

ed

(?
p

1
b

a
se

:c
o
n

st
ra

in
ed

B
y

?c
1
)

(?
p

2

b
as

e:
co

n
st

ra
in

ed
B

y
?c

2
)

n
o
V

a
lu

e(
?c

1

b
as

e:
u

n
it

T
y
p

e
?u

1
)

n
o
V

a
lu

e(
?c

2

b
as

e:
u

n
it

T
y
p

e
?u

2
)

369



A.2.2 Network Parameters

Table 12 documents the beliefs on the Bayesian network parameters, elicited as Dirich-

let distributions (see section 2.3). The beliefs were elicited as probability distributions,

and as a willingness to bet on an event (see section 7.2.4). The following is a sample

elicitation question used in the process:

“Say the outcome of an experiment is a randomly selected pair of prop-

erties (P1, P2), for which it is known that they are of a different type, have

no constraints that are known to be semantically equivalent, and their own-

ing entities X and Y are equivalent. How much are you prepared to stake

(in fractions of $1) in a gamble where you win $1 if the properties P1 and

P2 are semantically equivalent, and lose your stake if they are not (i.e.,

win $0)?”

To capture the belief as a probability distribution, Dirichlet distributions are used.

Beta and Dirichlet distributions are particularly well suited for eliciting beliefs due

to the natural way of specifying the parameters [152]. Note that a two-parameter

Dirichlet distribution is equivalent to a Beta distribution.

Note that this Bayesian network illustrates the advantages of Bayesian networks

explained in section 2.3 very well, in that (granting the validity of the independence

assumptions, of course) only 167 beliefs need to be elicited as probability distributions

to fully define the joint probability distribution. This is opposed to having to fill out

a table with all possible combinations of values for the random variables, which would

have 150,994,944 entries.
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A.3 Deterministic Classifiers: SPARQL Queries

A.3.1 Detection of Semantic Overlaps (Identification of TPs)

The following SPARQL query is used in determining the number of TPs for a de-

terministic classification of semantic overlaps. Note that line 9 is used in checking

whether the equivalence of the two properties bound to ?p1 and ?p2 identified using

the pattern specified in lines 10 to 22 is also contained in the list of actual equivalences.

1 PREFIX over lap : <http ://www. mbsec . gatech . edu/ incon /ns/ over lap#>

2 PREFIX incon : <http ://www. mbsec . gatech . edu/ incon /ns/ incon#>

3 PREFIX base : <http ://www. mbsec . gatech . edu/ns/base−s t r u c t u r e#>

4

5 SELECT (COUNT(∗ ) as ? numDist inctPairs )

6 WHERE {

7 SELECT DISTINCT ?p1 ?p2

8 WHERE {

9 ?p1 over lap : equiva lentToActual ?p2 .

10 ?p1 a base : Property .

11 ?p2 a base : Property .

12 FILTER(? p1 != ?p2 )

13 ?x1 base : conta in s ?p1 .

14 ?x2 base : conta in s ?p2 .

15 ?p1 a ? pt1 .

16 ?p2 a ? pt2 .

17 ? pt1 base : name ?propertyName1 .

18 ? pt2 base : name ?propertyName2 .

19 ?x1 base : name ?parentName1 .

20 ?x2 base : name ?parentName2 .

21 FILTER( s t r (? propertyName1 ) = s t r (? propertyName2 ) )

22 FILTER( s t r (? parentName1 ) = s t r (? parentName2 ) )

23 }

24 }
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A.3.2 Detection of Semantic Overlaps (Identification of FPs)

The following SPARQL query is used in determining the number of FPs for a deter-

ministic classification of semantic overlaps. The pattern is similar to that specified

in the previous listing. The condition of the matching pair of properties being a false

positive is ensured using the expressions in lines 22 to 27, which checks explicitly for

non-containment in the list of introduced semantic equivalences.

1 PREFIX over lap : <http ://www. mbsec . gatech . edu/ incon /ns/ over lap#>

2 PREFIX incon : <http ://www. mbsec . gatech . edu/ incon /ns/ incon#>

3 PREFIX base : <http ://www. mbsec . gatech . edu/ns/base−s t r u c t u r e#>

4

5 SELECT (COUNT(∗ ) as ? numDist inctPairs )

6 WHERE {

7 SELECT DISTINCT ?p1 ?p2

8 WHERE {

9 ?p1 a base : Property .

10 ?p2 a base : Property .

11 FILTER(? p1 != ?p2 )

12 ?x1 base : conta in s ?p1 .

13 ?x2 base : conta in s ?p2 .

14 ?p1 a ? pt1 .

15 ?p2 a ? pt2 .

16 ? pt1 base : name ?propertyName1 .

17 ? pt2 base : name ?propertyName2 .

18 ?x1 base : name ?parentName1 .

19 ?x2 base : name ?parentName2 .

20 FILTER( s t r (? propertyName1 ) = s t r (? propertyName2 ) )

21 FILTER( s t r (? parentName1 ) = s t r (? parentName2 ) )

22 FILTER NOT EXISTS {

23 ?p1 over lap : equiva lentToActual ?p2 .

24 }

25 FILTER NOT EXISTS {
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26 ?p2 over lap : equiva lentToActual ?p1 .

27 }

28 }

29 }

A.3.3 Identification of Inconsistencies (Identification of TPs)

The following SPARQL query is used in determining the number of TPs for a deter-

ministic classification of inconsistencies. Note that the pattern embeds the equivalence

condition from the patterns in the previous listings (see lines 13 to 25). A check is

performed whether the matching pattern is a part of the injected inconsistencies in

lines 10 to 12.

1 PREFIX over lap : <http ://www. mbsec . gatech . edu/ incon /ns/ over lap#>

2 PREFIX incon : <http ://www. mbsec . gatech . edu/ incon /ns/ incon#>

3 PREFIX base : <http ://www. mbsec . gatech . edu/ns/base−s t r u c t u r e#>

4 PREFIX qudt : <http :// qudt . org /schema/qudt#>

5

6 SELECT (COUNT(∗ ) as ? numDist inctPairs )

7 WHERE {

8 SELECT DISTINCT ?p1 ?p2

9 WHERE {

10 ? i a incon : I n c o n s i s t e n c y .

11 ? i incon : i n v o l v e s ?p1 .

12 ? i incon : i n v o l v e s ?p2 .

13 ?p1 a base : Property .

14 ?p2 a base : Property .

15 FILTER(? p1 != ?p2 )

16 ?x1 base : conta in s ?p1 .

17 ?x2 base : conta in s ?p2 .

18 ?p1 a ? pt1 .

19 ?p2 a ? pt2 .
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20 ? pt1 base : name ?propertyName1 .

21 ? pt2 base : name ?propertyName2 .

22 ?x1 base : name ?parentName1 .

23 ?x2 base : name ?parentName2 .

24 FILTER( s t r (? propertyName1 ) = s t r (? propertyName2 ) )

25 FILTER( s t r (? parentName1 ) = s t r (? parentName2 ) )

26 ?p1 base : constra inedBy ? c1 .

27 ?p2 base : constra inedBy ? c2 .

28 {

29 ? c1 base : value ?v1 .

30 ? c2 base : value ?v2 .

31 FILTER(? v1 != ?v2 )

32 FILTER NOT EXISTS

33 {

34 ? c1 base : unitType ?u1 .

35 ? c2 base : unitType ?u2 .

36 }

37 }

38 UNION

39 {

40 ? c1 base : value ?v1 .

41 ? c2 base : value ?v2 .

42 FILTER(? v1 != ?v2 )

43 ? c1 base : unitType ?u1 .

44 ? c2 base : unitType ?u2 .

45 FILTER(? u1 = ?u2 )

46 ?u1 a qudt : SIBaseUnit .

47 ?u2 a qudt : SIBaseUnit .

48 }

49 }

50 }

406



A.3.4 Identification of Inconsistencies (Identification of FPs)

The following SPARQL query is used in determining the number of FPs for a deter-

ministic classification of inconsistencies. The pattern is identical to that in the last

listing, with the exception that the condition for a TP is removed, and a check is per-

formed that the matching pair of properties is not in the list of injected inconsistencies

(see lines 47 to 50).

1 PREFIX over lap : <http ://www. mbsec . gatech . edu/ incon /ns/ over lap#>

2 PREFIX incon : <http ://www. mbsec . gatech . edu/ incon /ns/ incon#>

3 PREFIX base : <http ://www. mbsec . gatech . edu/ns/base−s t r u c t u r e#>

4 PREFIX qudt : <http :// qudt . org /schema/qudt#>

5

6 SELECT (COUNT(∗ ) as ? numDist inctPairs )

7 WHERE {

8 SELECT DISTINCT ?p1 ?p2

9 WHERE {

10 ?p1 a base : Property .

11 ?p2 a base : Property .

12 FILTER(? p1 != ?p2 )

13 ?x1 base : conta in s ?p1 .

14 ?x2 base : conta in s ?p2 .

15 ?p1 a ? pt1 .

16 ?p2 a ? pt2 .

17 ? pt1 base : name ?propertyName1 .

18 ? pt2 base : name ?propertyName2 .

19 ?x1 base : name ?parentName1 .

20 ?x2 base : name ?parentName2 .

21 FILTER( s t r (? propertyName1 ) = s t r (? propertyName2 ) )

22 FILTER( s t r (? parentName1 ) = s t r (? parentName2 ) )

23 ?p1 base : constra inedBy ? c1 .

24 ?p2 base : constra inedBy ? c2 .

25 {
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26 ? c1 base : value ?v1 .

27 ? c2 base : value ?v2 .

28 FILTER(? v1 != ?v2 )

29 FILTER NOT EXISTS

30 {

31 ? c1 base : unitType ?u1 .

32 ? c2 base : unitType ?u2 .

33 }

34 }

35 UNION

36 {

37 ? c1 base : value ?v1 .

38 ? c2 base : value ?v2 .

39 FILTER(? v1 != ?v2 )

40 ? c1 base : unitType ?u1 .

41 ? c2 base : unitType ?u2 .

42 FILTER(? u1 = ?u2 )

43 ?u1 a qudt : SIBaseUnit .

44 ?u2 a qudt : SIBaseUnit .

45 }

46 FILTER NOT EXISTS {

47 ? i a incon : I n c o n s i s t e n c y .

48 ? i incon : i n v o l v e s ?p1 .

49 ? i incon : i n v o l v e s ?p2 .

50 }

51 }

52 }
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[80] Gausemeier, J., Schäfer, W., Greenyer, J., Kahl, S., Pook, S., and
Rieke, J., “Management of Cross-Domain Model Consistency During the De-
velopment of Advanced Mechatronic Systems,” in Proceedings of the 17th In-
ternational Conference on Engineering Design (ICED’09), vol. 6, 2009.

[81] Giarratano, J. C. and Riley, G., Expert Systems. PWS Publishing Co.,
1998.

[82] Giese, H., Levendovszky, T., and Vangheluwe, H., “Summary of the
Workshop on Multi-Paradigm Modeling: Concepts and Tools,” in Models in
Software Engineering, Springer, 2007.

[83] Giese, H. and Wagner, R., “From Model Transformation to Incremental
Bidirectional Model Synchronization,” Software & Systems Modeling, vol. 8,
no. 1, 2009.
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