
SSIOTA: A SYSTEM SOFTWARE FRAMEWORK FOR THE
INTERNET OF THINGS

A Thesis
Presented to

The Academic Faculty

by

David J. Lillethun

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
College of Computing

Georgia Institute of Technology
May 2015

Copyright c© 2015 by David J. Lillethun



SSIOTA: A SYSTEM SOFTWARE FRAMEWORK FOR THE
INTERNET OF THINGS

Approved by:

Professor Umakishore Ramachandran,
Advisor
College of Computing
Georgia Institute of Technology

Professor Karsten Schwan
College of Computing
Georgia Institute of Technology

Professor Mustaque Ahamad
College of Computing
Georgia Institute of Technology

Dr. Flavio Bonomi
IoXWorks, Inc.
Georgia Institute of Technology

Professor Santosh Pande
College of Computing
Georgia Institute of Technology

Date Approved: 24 March 2015



To my mother, Marjean

who taught me the value of education

and always supported my many years of school

iii



ACKNOWLEDGEMENTS

Completing a dissertation is a long and difficult road that I never could have navigated

alone. There are too many people I must thank, but a few deserve special note.

First and foremost is my advisor, Kishore Ramachandran, without whose research ad-

vice, unwavering support, and constant encouragement I never could have done this. He

always believed in me, even through the rough times.

I’d also like to thank my committee, Karsten Schwan, Mustaque Ahamad, Santosh

Pande, and Flavio Bonomi whose guidance kept me on the right track and whose critical

eye kept me honest about my work. I’d also like to thank Mostafa Ammar who served on

my proposal committee.

I am grateful for the support of the National Science Foundation and the University

of Stuttgart. Thanks also to Prof. Kurt Rothermel and his lab for great collaboration

opportunities and an enjoyable and productive exchange of ideas. I am also grateful to

all of the companies that have provided me with internships during my study, but most

especially to Cisco, and specifically to Flavio Bonomi and Ashok Moghe, for helping me to

contextualize my research and ground it in real world needs.

I’d like to thank everyone at the Center for the Enhancement of Teaching and Learning,

most especially Dia Sekayi, Esther Jordan, Alexandra Coso, and Carol Subiño Sullivan, for

their guidance and constant efforts to help me become a better teacher. Not only are they

passionate about teaching and learning, but they sincerely care for others who share that

passion.

Thanks to my frequent research collaborators, Kirak Hong and Beate Ottenwälder, with
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SUMMARY

Sensors are widely deployed in our environment, and their number is increasing

rapidly. In the near future, billions of devices will all be connected to each other, creating an

Internet of Things. Furthermore, computational intelligence is needed to make applications

involving these devices truly exciting. In IoT, however, the vast amounts of data will not

be statically prepared for batch processing, but rather continually produced and streamed

live to data consumers and intelligent algorithms. We refer to applications that perform

live analysis on live data streams, bringing intelligence to IoT, as the Analysis of Things.

However, the Analysis of Things also comes with a new set of challenges. The data

sources are not collected in a single, centralized location, but rather distributed widely

across the environment. AoT applications need to be able to access (consume, produce,

and share with each other) this data in a way that is natural considering its live streaming

nature. The data transport mechanism must also allow easy access to sensors, actuators,

and analysis results. Furthermore, analysis applications require computational resources

on which to run. We claim that system support for AoT can reduce the complexity of

developing and executing such applications.

To address this, we make the following contributions:

• A framework for systems support of Live Streaming Analysis in the Internet of Things,

which we refer to as the Analysis of Things (AoT), including a set of requirements for

system design

• A system implementation that validates the framework by supporting Analysis of

Things applications at a local scale, and a design for a federated system that supports

AoT on a wide geographical scale

• An empirical system evaluation that validates the system design and implementation,

including simulation experiments across a wide-area distributed system
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We present five broad requirements for the Analysis of Things and discuss one set of

specific system support features that can satisfy these requirements. We have implemented

a system, called SSIoTa, that implements these features and supports AoT applications

running on local resources. The programming model for the system allows applications to

be specified simply as operator graphs, by connecting operator inputs to operator outputs

and sensor streams. Operators are code components that run arbitrary continuous analysis

algorithms on streaming data. By conforming to a provided interface, operators may be

developed that can be composed into operator graphs and executed by the system. The

system consists of an Execution Environment, in which a Resource Manager manages the

available computational resources and the applications running on them, a Stream Registry,

in which available data streams can be registered so that they may be discovered and used by

applications, and an Operator Store, which serves as a repository for operator code so that

components can be shared and reused. Experimental results for the system implementation

validate its performance.

Many applications are also widely distributed across a geographic area. To support

such applications, SSIoTa must be able to run them on infrastructure resources that are

also distributed widely. We have designed a system that does so by federating each of the

three system components: Operator Store, Stream Registry, and Resource Manager. The

Operator Store is distributed using a distributed hast table (DHT), however since temporal

locality can be expected and data churn is low, caching may be employed to further improve

performance. Since sensors exist at particular locations in physical space, queries on the

Stream Registry will be based on location. We also introduce the concept of geographical

locality. Therefore, range queries in two dimensions must be supported by the federated

Stream Registry, while taking advantage of geographical locality for improved average-case

performance. To accomplish these goals, we present a design sketch for SkipCAN, a modi-

fication of the SkipNet and Content Addressable Network DHTs. Finally, the fundamental

issue in the federated Resource Manager is how to distributed the operators of multiple

applications across the geographically distributed sites where computational resources can

execute them. To address this, we introduce DistAl, a fully distributed algorithm that

xii



assigns operators to sites. DistAl also respects the system resource constraints and appli-

cation preferences for performance and quality of results (QoR), using application-specific

utility functions to allow applications to express their preferences. DistAl is validated by

simulation results.
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CHAPTER I

INTRODUCTION

Sensors are widely deployed in our environment, and their number is increasing rapidly. In

the near future, billions of devices will all be connected to each other, creating an Internet

of Things. There are predicted to be 25 billion devices connected to the Internet by the end

of 2015, and 50 billion by 2020 [11]. Among these devices will be millions or billions [11] of

ubiquitous sensors with myriad sensing capabilities. Some of these devices, such as vehicles,

are not even traditionally thought of as computers.

However, the Internet of Things (IoT) is much more than these endpoint devices con-

nected by a network infrastructure. They are also connected to the physical world through

sensors and actuators. To truly realize IoT, these devices (sensors, actuators, and user de-

vices) must coordinate and collaborate. Furthermore, computational intelligence is needed

to make applications involving these devices truly exciting. In the present world, we al-

ready see the impact of big-data analytics, where vast amounts of statically collected data

are correlated to produce new knowledge that empowers intelligent applications. In IoT,

however, the vast amounts of data will not be statically prepared for batch processing, but

rather continually produced and streamed live to data consumers and intelligent algorithms.

We refer to applications that perform live analysis on live data streams as Live Streaming

Analysis applications.

Live Streaming Analysis is a broad category of applications that are applicable in many

contexts, including situation awareness, cyberphysical systems, and financial analysis. How-

ever, when Live Streaming Analysis is applied to bring intelligence to the Internet of Things,

we call this the Analysis of Things.

The Analysis of Things (AoT) presents an opportunity for exciting new kinds of intel-

ligent applications, such as traffic monitoring that combines vehicular sensors from many
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vehicles, roadside sensors, and traffic cameras to optimize flow and perform live traffic en-

gineering. Another example is using in-store sensors to provide live retail analysis, helping

customers (while making more sales) in individual stores, and making inventory and mar-

keting decisions on multi-store regional and global scales. Walmart is already experimenting

with such a retail application using multimodal sensors with computer vision and analysis

logic created by Shopperception [20].

However, AoT also comes with a new set of challenges beyond even traditional Live

Streaming Analysis applications. The data sources are not collected in a single, centralized

location, but rather distributed widely across the environment. AoT applications need to

be able to access (consume, produce, and share with each other) this data in a way that

is natural considering its live streaming nature. The data transport mechanism must also

allow easy access to sensors, actuators, and analysis results.

Furthermore, analysis applications require computational resources on which to run.

The resources should be elastic to support the dynamic nature of AoT, and should also

enable resource sharing between different tenants. While these are strengths of cloud com-

puting, and the cloud has been used effectively for big-data analytics on static data, it is not

the most effective solution to stream thousands or more widely distributed sensor streams

to a single cloud data center in order to analyze them. Notably, a significant portion of

them may not even produce any “interesting” data at a given moment, making it wasteful

to send their data to the cloud. Instead, widely distributed sensors, actuators, and user

devices suggest the need for widely distributed computational resources to run analysis

applications. Furthermore, an execution environment should provide convenient access to

these computational resources, while facilitating the development and deployment of AoT

applications.

1.1 Motivation

There is a great deal of complexity involved in creating and executing Analysis of Things

applications. Systems support can help to reduce that complexity by managing difficult

functionality that applications commonly require. Table 1 shows some examples of systems

2



that simplify development of distributed applications by providing data access functionality

or managing execution on distributed computational resources. For example, systems such

as the Google File System [13] and Dynamo [9] provide batch computing applications with

access to data on distributed persistent storage. Meanwhile, MapReduce [8] simplifies the

development of batch computing by providing a simple programming model and a system

to execute applications on distributed computational resources.

Table 1: Systems Support Reduces the Complexity of Creating and Executing Applications
by Abstracting Data Access and Computation Management

Data Access Computation

Batch Processing GFS, Dynamo MapReduce, Hadoop

Live Streaming Analysis StampedeRT / PTS,
Publish-Subscribe

System S / InfoSphere
Streams, MillWheel

Systems support for live streaming data access includes publish-subscribe systems [10],

StampedeRT [17], which provides time indexed streams to facilitate stream synchronization

and correlation, and Persistent Temporal Streams (PTS) [18], which further adds the ability

to provide persistent storage for streams and seamlessly access historical stream data. There

are also systems that support execution of Live Streaming Analysis on distributed resources,

including System S1 [5, 12] and MillWheel [4]. However, these systems lack the support

needed to address the unique challenges of the Internet of Things. Specifically, they lack

the flexibility and extensibility to support any computation on any stream from any sensor.

They also schedule execution only on closely distributed resources, such as a compute

cluster, and provide no support for widely distributed computational resources that are

required for the Internet of Things.

Data center computing, and cloud computing in particular, has become a common

method for deploying applications. However, most applications that exist today, including

web applications and mobile apps, operate on a client-server model, where each end device

communicates with the server in the cloud and not directly with each other. The “server”

in the cloud may, in fact, be a set of distributed systems (such as in the classic 3-Tier or

1 System S is available commercially under the name InfoSphere Streams. This document will use the
term System S to refer generically to both the research and commercial versions.
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N-Tier models) in order to scale computation and storage with the load. However, since a

data center exists at one particular geographic point, it cannot scale with the volume of data

that will be provided with the explosion of devices that will be connected and participating

in applications in the Internet of Things.

Fortunately, unlike traditional applications, real-world geography has significance in the

Internet of Things – end devices (sensors, actuators, and user devices) will be most interested

in collaborating with other end devices that are near themselves, while analyses correlating

more distant sensors will tend to be more latency-tolerant and use digested forms of data.

This gives us an opportunity to avoid converging all the data at one point for analysis

by filtering out unimportant data locally and using data of local importance locally, thus

only sending data to the cloud that is both important and globally interesting. In order to

accomplish this, resources such as computation and storage need to be available locally as

well as in the cloud. In other words, those resources need to be pushed to the edge of the

network.

Fog computing [7] is the idea that widely distributed resources, such as computing and

storage, will be available throughout the network. They will have a hierarchical arrangement

that mirrors the structure of the Internet (e.g., access, aggregation, core networks). Like

the cloud, these resources will be virtualized to support elasticity and multi-tenancy. The

Analysis of Things can help by performing the live analysis needed by applications at local

and regional scales and by analyzing sensor streams, including “rich” sensor streams (e.g.,

audio, video, radar, etc.), to determine which should be filtered or sent on to the cloud

for global analysis. Systems support for AoT, therefore, needs to manage and schedule

applications on widely distributed resources, such as those provided by Fog computing.

Because applications may include local, regional, and global analysis, it is not sufficient to

run independent systems at different locales in the Fog, but rather the systems must be a

federated network of sites that are able to both manage local resources and work together

seamlessly to support applications that span locales.
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1.2 Thesis Statement and Contributions

Thesis Statement: Systems support for Live Streaming Analysis in the Internet of Things

can reduce the complexity of developing and executing such applications on computational

resources and using end devices that are widely distributed at the edge of the network.

Live Streaming Analysis applications in the Internet of Things, which we have dubbed

the “Analysis of Things”, can be very complex. They require deep expertise in a number

of different domain areas and may involve complex structures and interactions between al-

gorithms. They also must deal with an extremely large number of heterogeneous sensors

distributed throughout the Internet, including yet-to-be-developed types of sensors. De-

velopers must be able to find the ones they need and then access them. Meanwhile, the

applications must ultimately be deployed on distributed computational resources that are

spread throughout all parts of the Internet. Fortunately, appropriate systems support can

aid users by abstracting away system issues at run time and facilitating their dealing with

development complexity.

Contributions:

• A framework for systems support of Live Streaming Analysis in the Internet of Things,

which we refer to as the Analysis of Things (AoT), including a set of requirements for

system design

• A system implementation that validates the framework by supporting Analysis of

Things applications at a local scale, and a design for a federated system that supports

AoT on a wide geographical scale

• An empirical system evaluation that validates the system design and implementation,

including simulation experiments across a wide-area distributed system
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CHAPTER II

BACKGROUND

In this chapter, we provide background for system support for the Analysis of Things by

discussing the Internet of Things in more detail and by considering state-of-the-art systems

for Live Streaming Analysis.

2.1 The Internet of Things

The basic definition of the Internet of Things (IoT) is that applications will be aware not

only of virtual concepts but also of real things in the physical world. Although the original

idea was proposed using RFID to provide awareness of physical objects [6], the myriad types

of sensors developed since then have added opportunities to gain much richer awareness of

many more types of objects. From this base definition, what IoT actually is has been

elaborated and refined in many different ways, thus meaning different things to different

people. We now present our concept of the Internet of Things, which is what we mean

by the term throughout this dissertation, and elaborate upon it by discussing some of the

characteristics of IoT (according to our definition).

In the traditional Internet that exists today, end devices are predominately user devices,

e.g., PCs, laptops, smart phones, tablets, etc. Many of these devices are mobile as well.

In the Internet of Things, the proportion of user devices that are mobile will continue to

increase. More to the point, however, end devices will not only be user devices but also

sensors and actuators that are capable of creating digital representations of the physical

world, and then using digital information to produce physical effects on the world. While

user devices may be involved, IoT opens the opportunity for many machine-to-machine

(M2M) interactions where a human is not necessarily in the loop. In particular, IoT can

enable a vast array of cyberphysical systems, where applications can sense the environment

and take action on their own.
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There are a number of connectivity-related characteristics to IoT. As mentioned, mo-

bility will be commonplace, not only for user devices but for sensors and actuators too, in

some cases. Consider an intelligent, connected vehicle; such a platform may include many

sensors to report the vehicle state, actuators to control the vehicle, as well as user devices –

all of which are necessarily mobile with the vehicle. Furthermore, wireless connectivity will

become predominant at the edge of the network, not only to support mobility but also to

allow sensor deployments in environments where wired connections are difficult to support.

Wireless sensor networks (WSNs) will become commonplace, but will not constitute

the whole of sensing in IoT. Indeed, we have considered the connected vehicle as a sensor

platform that is not a WSN – devices within the vehicle are wired to each other, and

only the vehicle as a whole is connected wirelessly to allow mobility. Many sensors and

actuators may also be infrastructure-connected, rather than WSNs, such as traffic cameras

that monitor the highways or security cameras in airports.

Much work in IoT is focused on various issues of connectivity. Besides the mobility and

wireless issues discussed, important issues of addressing and routing need to be resolved.

However, even with every device - every sensor and every actuator - able to communicate

with each other, we do not consider the Internet of Things to be complete. In order for

truly useful things to happen in IoT, applications must consume and process the sensor

data. Therefore, components of IoT include not only end devices and connectivity, but also

data access and resources for processing, i.e., compute and storage resources.

Furthermore, IoT will use a combination of simple and rich sensing. A temperature

sensor (i.e., thermometer or thermostat) is an example of a simple sensor. It senses a single

value and provides it in a structured form, such as a single floating point value. Compound

simple sensors are also possible, such as a single package that contains temperature, humid-

ity, and air pressure sensors and provides their data in a structured form – perhaps XML

or JSON containing fields for the three values. “Rich” sensors, on the other hand, consume

complex data from the environment and provide it in an unstructured form. These sensors

are “rich” because they can provide a great deal more information about the environment,

but at the same time, they need to be processed and interpreted in order to extract that
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information from the raw sensor data. Cameras are a prime example of rich sensing. Much

can be learned about the environment from video, but significant processing of the raw

video stream is required in order to determine what is occurring in the scene. Other rich

sensors include microphones and radar / lidar.

There is some work on providing data access to sensors, allowing elaborate queries

against multiple sensors so that applications can get right to the sensor data they most

need. These can even allow queries against the actual sensor data streams, but only for

simple sensors. Rich sensors require advanced and custom processing in order to extract

information from the sensor data that can be queried against, but such data access systems

do not provide facilities for such processing of data streams as part of the query. Therefore,

while these contributions are important and useful for the Internet of Things, IoT also

requires facilities for custom, compute-intensive analysis of sensor streams that can extract

features and events from rich sensors, and/or by correlating features/events between sensors.

The ability to run useful business logic that turns these events into results, possibly driving

actuators in M2M applications, is also necessary.

Therefore the Internet of Things consists of not only various end devices (sensors, ac-

tuators, and user devices) with wireless and mobile connectivity, but also data access, Live

Streaming Analysis, and resources for applications to use, particularly compute and storage.

Only when computational intelligence using both simple and rich sensors and advanced, cus-

tom algorithms (e.g., machine learning and computer vision) can be performed on available

computational resources is our vision of IoT actually achieved.

Having thus defined the Internet of Things, we will now consider some of the character-

istics of IoT. We have already mentioned the massive scale, both in terms of the number of

end devices and their variety, as well as the prevalence of mobile devices and wireless access.

We also briefly mentioned M2M and cyberphysical systems, which include a closed loop of

sense-process-actuate (with the loop completed between actuation and sensing through the

medium of the physical environment). Such interactions must involve live analysis and live

interactions – the physical world proceeds in real time, and IoT applications must keep up.

This further indicates the importance of low latency in IoT. Excessive delays could result in
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outdated data being used to make poor decisions, or perhaps worse due to the closed loop

nature of many such applications.

In addition to the massive quantity of end devices, these devices will be geographically

widely distributed. While user devices in the traditional Internet are also widely distributed,

this is of much greater importance in IoT due to the low latency requirement as well as

location sensitivity. Unlike the traditional Internet, the location of IoT devices in the

physical world matters a great deal. For example, a user (or a user’s vehicle) may be

greatly concerned about traffic, construction, and accidents along his/her route driving

from Atlanta to New York City, but there is no need to retrieve or process data from the

roads in California. Such location-sensitive circumstances will be common in the Internet

of Things, so devices and applications will have to be location-aware.

It may prove helpful, however, that another characteristic of IoT applications is their

hierarchical nature. Different results are desired on local, regional, and global scales. Ap-

plications will perform a great deal of local processing, using local sensor data to make local

decisions and drive local actuators. Such local processing will be highly latency sensitive,

whereas regional and global decision making will be progressively more latency tolerant.

Furthermore, decisions further up the hierarchy will also require input from a lower density

of sensors and higher-level information. This could allow local processing to filter sensor

data and perform initial sensor processing to allow a smaller portion of the sensor data, as

well as higher-level events, to be sent up the processing hierarchy. This may aid in stemming

the tide of data from the massive quantity of sensors that otherwise would have to all be

sent to a central location for processing.

As applications become more latency tolerant as they move up the processing hierarchy,

so too increases the time scale on which they consider data and make decisions. Related to

this, the liveliness of sensor data is also affected by the hierarchy. Specifically, data used in

local processing is short-lived, while regional processing may use long-lived data and global

processing will use long-lived and persistent data. The rule for exactly how long lived the

data is or how latency sensitive each level of the hierarchy is is not hard-and-fast. For that

matter, we discuss “local”, “regional”, and “global”, but there are not necessarily a strict
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three levels to the hierarchy, and different applications may not all use the same levels.

Rather, we wish to relate the general principle that there exists some hierarchy, and moving

up the hierarchy increases the time scale and decreases latency sensitivity, while moving

down it decreases the time scale and increases latency sensitivity.

2.2 Live Streaming Analysis Systems

Several Live Streaming Analysis systems exist, including System S [5, 12], S4 [24], Mill-

Wheel [4], and Storm [2]. These systems are capable of performing analysis of streaming

data in motion and can apply advanced and custom business logic. However, they all bear

a common assumption: streams are structured and operators on streams are (mostly) se-

lected from a set of predefined operator types. The predefined operators are often flexible,

so a great variety of logic can be achieved with them, but only provided they are operating

on structured data. However, unstructured data streams, such as those produced by “rich”

sensors, require completely custom-built operators, as do advanced algorithms, such as ma-

chine learning. Even where such systems allow limited use of custom operators, they lack

the flexibility and extensibility to support any computation on any stream from any sensor.

These systems also schedule computation on closely distributed resources, such as a

compute cluster. They lack support for the geographically widely distributed and hierar-

chical resources needed to support the Internet of Things. Furthermore, they run statically

defined applications on statically allocated resources and lack support for the dynamism

needed for IoT. For all these reasons, the Analysis of Things requires a purpose-built sys-

tem that can meet the particular requirements of live streaming analysis in the Internet of

Things.
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CHAPTER III

ANALYSIS OF THINGS DESIGN REQUIREMENTS

Having motivated the need for the Analysis of Things and for a system to support it in

Section 1.1, we now consider how to approach this in detail. First we describe the design

principles that we feel should govern AoT. Then we create a set of concrete requirements

for a system that supports AoT and ground those requirements in our design principles.

Together, these constitute a framework for the design of systems support for the Analysis

of Things.

3.1 Design Principles

Based on our consideration of the Internet of Things in Section 2.1, we have identified the

following design principles as key to a successful Analysis of Things environment:

1. Standing on the Shoulders of Giants (Sharing)

(a) developers and administrators can leverage the work of others, allowing them to

focus on their areas of expertise

(b) share algorithms (operators)

(c) share sensor data

(d) share analysis results (output from running operator graphs)

2. Flexibility

(a) any streaming algorithm (operator)

(b) any type of stream

(c) any edge device (e.g., sensors and actuators)

(d) any operator graph (composition of operators/algorithms, edge devices, and data

streams that connect them)
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3. Scalability

(a) scalable computational resources (scales with amount of computation)

(b) scales with the number of devices

(c) scales with geographical distribution

4. Extensibility

(a) develop new algorithms (operators)

(b) define new stream types

(c) interact with new types of edge devices (e.g., sensors and actuators)

5. Dynamism

(a) edge devices may come or go

(b) new operators may be made available or removed

(c) operators and operator graphs may be instantiated or terminated

(d) computational resources may be added or removed

The Standing on the Shoulders of Giants principle is about the ease of developing and

deploying applications in the Analysis of Things. Each user (i.e., developer or administra-

tor) should be able to focus on his/her area of domain or business logic expertise, delegating

problems in other areas to appropriate experts. Critically, no user should need to concern

him/herself with system details needed to manage computational resources, deploy appli-

cations on those resources, or provide stream transport between application components

running on those resources.

The Flexibility principle is about allowing users to develop and run any kind of Live

Streaming Analysis application in the Analysis of Things. Specifically, this necessitates

being able to develop operators that run any arbitrary code (with the reasonable constraint

that it perform Live Streaming Analysis), and being able to compose any operator graph

from the set of available operators (with the reasonable constraint that input/output types
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are compatible). In addition, streams must support any arbitrary type of streaming data,

even opaque, unstructured data, such as that provided by “rich” sensors. Finally, any sort

of edge device (e.g., sensors and actuators) or other data source or sink for operator graphs

should be able to be used by AoT applications.

Scalability naturally suggests scaling with the amount of computation being performed

by scaling out the amount of computational resources available. However, in addition to

this, the scale of the Internet of Things demands that AoT applications be able to scale

with the number of edge devices (sensors and actuators), and since those devices are spread

out broadly across the physical environment, they must also scale with the geographically

distributed area.

Extensibility means that new things (resources, sensors, algorithms, etc.) can be added

to the system without restriction. This is necessary to support the wide variety of future

applications and yet-to-be-developed algorithms that may come about. It is also necessary

to support the variety of present and future sensors that will become available in the Internet

of Things.

Dynamism reflects the fact that the application environment changes over time, while

AoT applications are running. Edge devices, such as sensors and actuators, may be added

or removed, operators providing new algorithm implementations may also be added or

removed, and new operator graphs providing analyses may be started or terminated. In

addition, this interacts with the Scalability requirement as new computational resources

may be made available or removed. The Analysis of Things must behave gracefully in the

face of this turmoil, and any AoT system must allow for such changes to occur at runtime.

3.2 System Requirements

Inspired by the AoT design principles of the previous section, we have come up with the

following requirements for systems support for AoT. Each requirement (or sub-requirement)

has the relevant design principles noted in parentheses, according to the principle’s number

in the list in Section 3.1.
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1. Abstract away system-level issues such as managing distributed resources, deploy-

ing applications on resources, and stream transport between application components

(DP1)

2. Component-based design

(a) operators can include arbitrary, novel code (DP2)

(b) operators can leverage third-party code, such as libraries (DP1&2)

(c) operators can be reused and shared (DP1&4)

(d) operators can be shared and unshared at run time (DP5)

(e) operator graphs (or parts of them) may be the input for other operator graphs

(DP1)

3. Execute applications on distributed resources (DP3)

(a) take advantage of the natural parallelism in these applications (DP3)

(b) execute arbitrary operator graphs (DP2)

(c) allow starting and terminating operator graphs at run time (DP5)

(d) Allow adding and removing resources at run time (DP5)

4. Provide efficient and scalable stream transport in the distributed environment (DP3)

(a) streams contain any type of data, including opaque, unstructured data (DP2)

(b) a stream’s multiple consumers may include different operators in the same oper-

ator graph, as well as other operator graphs (DP1)

5. Enable stream registration and discovery (DP1&4)

(a) allow dynamically adding and removing stream registrations (DP5)

(b) allow describing and querying for streams with arbitrary, novel types (DP2&4)

6. Enable connecting operator graphs to arbitrary external (i.e., not operators) inputs

and outputs (e.g., sensor and actuators) (DP2&4)
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7. Widely distributed architecture, specifically a federated architecture

(a) provides scalability over a large number of external devices and a geographically

distributed area (DP3)

The design principle of Standing on the Shoulders of Giants is satisfied by both alleviat-

ing developers from having to deal with system-level issues and by allowing them to share

the effort of developing complete applications. Specifically, system requirement 1 alleviates

the need for developers to deal with system-level issues. System requirement 2.c allows

operators to be shared and reused, allowing operator developers to focus on their own areas

of domain expertise and alleviating operator graph developers from having to understand

the implementation details of any individual operators. Requirement 2.b further allows

operator developers to rely on the work already done by others in the form of third-party

code, such as shard libraries. For example, an operator developer working in C++ may wish

to use the boost library, or one developing a video analysis operator may wish to use the

OpenCV computer vision library. System requirements 2.e and 4.b together allow synthesis

of applications by combining operator graphs. The output of an operator graph may be an

analysis that is a useful input to another operator graph. The AoT system should provide a

mechanism for such sharing of operator graph output, while alleviating the developer of the

latter graph from needing to know the internal details of the former one in order to make

use of its output. Finally, requirement 5 allows applications to discover and use sensors

that were created and deployed by others.

The Flexibility design principle suggests that an AoT system must be sufficiently generic

to handle the variety of Live Streaming Analysis Applications that may be created. Sys-

tem requirements 2.a-b state that operators must be allowed to be created that perform

arbitrary functions, including the use of third-party code, and the system must be able

to deploy and run operator graphs consisting entirely of such operators. Furthermore, the

system must be able to execute operator graphs containing arbitrary1 compositions of the

available operators, as stated in requirement 3.b. Flexibility further demands supporting all

1 This is naturally subject to common sense limitations, such as meeting the operators’ contracts for
number and types of allowed inputs and outputs.
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kinds of streaming data, including “rich” sensor and feature data that may be unstructured

and therefore opaque to the system. Requirement 4.a states that the stream transport sys-

tem must support such streams, while requirement 5.b states that the system must allow

descriptions for all kinds of streams, so that they may be registered and queried. Finally,

Flexibility demands that operator graphs must be able to use all kinds external sources or

sinks (i.e., not just using other operators for input and output) regardless of what protocol

or other mechanism is needed to communicate with them (requirement 6).

The design principle, Scalability, requires the computational resources and stream trans-

port system to be scalable to support increasingly heavy loads from operator graphs. Op-

erator graph scaling may result from the number of graphs running simultaneously, the size

of the graphs (i.e., number of operators and complexity of their interconnections), or from

the use of more heavy-weight operators in the graphs. To this end, system requirement 3

states that scalable, distributed resources should be used for the execution of operators,

while requirement 4 states that the streaming system must be scalable, specifically, with

the number of concurrent streams and the number of consumers on each stream. However,

the Internet of Things provides an additional scalability requirement for an AoT system,

due to the immense number of edge devices (e.g., sensors, actuators, and end-user devices)

and the geographical distribution of those devices. In order to support devices in far-flung

areas working together in a single Analysis of Things application, an AoT system must be

widely distributed, as expressed in requirement 7.

The Extensibility design principle means that the system must accommodate stream

types, algorithms, and devices not only from a finite set of known ones, but in fact from all

possible ones that do exist or might in the future. In short, one must be able to “extend” the

system with new stream types, algorithms, and devices. Requirement 2.c allows creating

new algorithms in the form of operators that can be used by applications run within the

system. Requirements 5 and 6 allows extending the system to connect to any kind of

device, even yet-to-be-invented ones. Finally, the system can be extended to support any

type of stream by the ability to describe any new stream type for registration and discovery

(requirement 5.a).
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The Dynamism design principle demands that all the various elements managed by

the system be able to be added and removed at run time. The system should not need

to be manually reconfigured or restarted in order to allows such additions or removals.

Requirement 2.d means that operators can be added and removed while the system runs.

Requirement 3.c allows applications to be started and terminated, while 3.d allows adding

and removing the compute resources for applications to run on. Finally, requirement 5.a

means streams can be created and registered, or deregistered at run time.
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CHAPTER IV

SYSTEM SUPPORT FOR THE ANALYSIS OF THINGS

In order to validate our framework, presented in Chapter 3, we designed and implemented

a system system that enables Analysis of Things applications within a limited geographic

scope, which we call SSIoTa1. We now discuss how SSIoTa fulfills the requirements discussed

in Section 3.2 and describe the system’s components and mechanisms as necessary. Discus-

sion of requirement 7, “widely distributed architecture,” is omitted from this chapter as it

is the subject of Chapter 5.

4.1 System Design

Our system design is based on our earlier work [22, 27], but also includes additional work

performed since then. The system described here is our latest design.

4.1.1 Requirement 1: Abstract away system-level issues

Requirement 1 is to, “abstract away system-level issues such as managing distributed re-

sources, deploying applications on resources, and stream transport between application

components.” This is achieved through a combination of our programming model and the

system’s execution environment.

4.1.1.1 Programming Model

Applications in our AoT system are expressed as compositions of operators2. Examples of

such operator graphs are shown in Figures 1 and 2. Operators are individual algorithms,

represented by code that conforms to a standard interface and optional state, that take

streaming inputs and produce streaming outputs. The operator graph for an application,

therefore, specifies how operator outputs are connected to the inputs of other operators

1 “systems support for IoT analytics”
2 In [27] and [22], operators are referred to as “transformations” or “transformers”. However, in this

document we have updated the terminology in order to be consistent with our more recent work.
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Figure 1: Example AoT Application: Sensor Thresholding – circles are operators, which in-
clude summation/mean and thresholding; text in braces describes stream contents; external
sensors and actuators are outside the SSIoTa environment

with matching output/input stream types. A particular operator can be used multiple

times in an application (or different applications), representing different instantiations of

the algorithm, each with its own inputs and run time state.

An application is specified in a multi-line string or text file, with each line representing

an operator instance, including the operator name, input streams, and output streams.

A short example of such an application file is given in Appendix A. While we have not

developed one, we imagine that a graph-builder GUI or IDE could be used to aid in the

development of applications, outputting the correct text representation for the operator

graph that was designed graphically.

Operators are developed as reusable code modules, which allows them to be devel-

oped independently of the applications that use them and facilitates sharing and reuse.

Specifically, operators are dynamically linkable code modules (e.g., .so, .dll, .jar, etc.) that

implement a system-provided interface. They contain declarations for run time state, an

initialization routine that allows some initial state or configuration to be provided, and a

handler routine to run the operator’s algorithm. This handler will be called by the system
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Figure 2: Example AoT Application: Video Object Tracking – circles are operators, which
include video decoding and computer vision; text in braces describes stream contents; ex-
ternal sensors and actuators are outside the SSIoTa environment

each time a synchronized set of inputs3 is ready. Helper functions may also be defined and

used within the module.

To create an application, all that needs to be done is to create a set of algorithms in

the form of operators, specify how to compose those operators with each other and with

sensor inputs, and finally run the application. Neither operator nor application developers

need to be concerned with managing distributed computational resources, deploying the

operator instances on those resources, transporting data streams to or between operators,

or synchronizing the several input streams to each operator. These issues are all handled

by the execution environment and streaming subsystem.

4.1.1.2 Execution Environment

The execution environment consists of two main components: a Resource Manager and

several Worker Nodes, which are shown in Figure 3. Worker Nodes (or “Workers” for short)

are conceptual machines - running on a native OS on a physical machine or a guest OS on a

virtual machine - and provide the computational (CPU, memory, etc.) resources for running

3 Note that “synchronization” of zero or one input is essentially a no-op.

20



Worker 
Node 

Worker 
Node 

Worker 
Node 

Worker 
Node 

Resource 
Manager 

Operator 
Store 

Stream 
Registry 

Operator 
Code 

Operator 
Graph 

Figure 3: SSIoTa System Architecture – blue circles represent system processes, green
squares represent machines or VMs, and red objects with a cut out corner represent
developer-provided application logic

operators. The Resource Manager is a server process that is responsible for managing

all the Worker Nodes, scheduling and deploying operator instances on the Workers, and

instantiating streams in the streaming subsystem (described below) to connect the operator

outputs and inputs.

The Resource Manager exposes a public API through a remote procedure call (RPC)

mechanism4 that allows users to run and terminate applications (i.e., operator graphs).

When it receives an application to run, it chooses Worker Nodes to provide the computa-

tional resources, decides which operator instances in the application should run on each of

those Workers (referred to as “scheduling”), creates streams in the streaming subsystem for

the outputs of all the operator instances, and then instructs each Worker to start executing

its assigned operators.

Worker Nodes are shown in more detail in Figure 4. Each Worker Node has a system-

private RPC interface that allows the Resource Manager to control it. When a Worker

4 our implementation uses Apache Thrift for RPC, but this could easily be replaced with another RPC
implementation, or another mechanism that allows stateless procedure calling, e.g., REST interfaces
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running operator instances; the operators’ dotted borders indicate that there is not a process
boundary; two operator container processes are shows to indicate that any number may be
run concurrently on a Worker

receives instructions from the Resource Manager to start an operator instance, it first down-

loads the operator module, i.e., the dynamically linkable shared object, from the Operator

Store (described below). Then it creates endpoint connections to the input and output

streams for the operator, and begins executing an instance of the operator. Execution of an

operator consists of creating the instance, calling it’s one-time initialization routine (into

which will be passed any initialization data specified in the application description), and

then running the operator instance’s main loop: 1) system code reads a synchronized set

of inputs from the input streams (waiting for input if necessary, e.g., if the operator code

is faster than the input stream rate), 2) the developer-provided operator handler is called,

and passed the input data, 3) the operator algorithm is executed and the handler code may

contain calls to the system API to place items in the output streams, 4) repeat.

Thus the Resource Manager and Worker Node handle a lot of system-level details and

keep the application developers’ focus on the overall application logic and on creating the

individual algorithms. Furthermore, most of the work is performed at setup time, with only
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minimal involvement by the system in the critical path during steady-state execution of an

application. This provides good application performance, despite the system not knowing

the internals of the application algorithms or the contents of the streams.

4.1.1.3 StampedeRT : the Streaming Subsystem

We have thus far described without detail how the system uses a streaming subsystem to ab-

stract away the details of stream transport across a distributed system. For this subsystem,

we have implemented the core functionality of the StampedeRT stream abstraction [17],

which we will now describe briefly.

StampedeRT provides applications (which is SSIoTa, in this case) with a software ab-

straction for data streams and a standard API for accessing those streams. The API may

be invoked to access any stream from any StampedeRT node in the distributed system, and

stream transport is handled transparently behind the scenes.

Streams are represented as ordered sequences of data items, each of which is stored as

a binary object (i.e., byte array) and indexed by wall-clock time. Using a binary represen-

tation leaves the responsibility for interpreting the stream contents, as well as serialization

and deserialization of data items, to the application. The advantage of this approach is that

the system is not dependent on the structure of the data in the streams and can support

any arbitrary type of streaming data, including unstructured data, such as that from “rich”

sensors (e.g., video, audio, etc.). Consumers of a StampedeRT stream are not restricted

to receiving each data item in sequence, but may request items that occurred at a certain

time, or all items that occurred in a certain time interval. However, using wall-clock time

rather than virtual time is important for the ability to synchronize streams, such as sensor

or event streams that need to be correlated. For example, analyzing a scene using stereo

cameras requires correlating two video frames that were captured at the same instant, and

detecting a certain situation may require detecting that two different events in different

event streams both occurred within a certain time interval. For further details, we refer the

reader to the StampedeRT literature [17, 18].
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4.1.2 Requirement 2: Component-based design

The ecosystem of third-party code for traditional applications (e.g., software libraries) has

served those applications well. We foresee needing a similar ecosystem for the Internet of

Things that allows the creation and use of third-party IoT code. Furthermore, we believe

the right level of abstraction for third-party code in IoT is the operator. Therefore, our

system aims to provide mechanisms that can support such an ecosystem of operators.

At the same time, we wish to continue to leverage the existing ecosystem of third-

party libraries in the development of individual operators. For example, an operator that

extracts features from a camera stream may wish to use the libjpeg (e.g., to decode a M-

JPEG stream) and OpenCV libraries. Since operator code is simply executed as a shared

object library, it has full access to use any third-party libraries. Furthermore, this allows

operators to do anything that can be expressed in the language in which they are written5.

This satisfies requirements 2.a-b.

Requirement 2.e says that the output of an operator graph should be able to be used

as the input to another – thus allowing operator graphs to also be composable. Since

all operator graphs use the same StampedeRT streaming substrate, there is no barrier at

the streaming level - an operator in one operator graph may produce on a stream from

which an operator in another graph consumes. The only barrier, therefore, is discovering

available streams produced by other operator graphs from which they may consume. This is

supported by the Stream Registry, which we will describe in detail below, when we address

requirement 5.

4.1.2.1 Operator Store

The remaining question, posed in requirements 2.c-d, is how to enable the operator ecosys-

tem by allowing operators to be shared and discovered. This is addressed by the Operator

Store, which is shown in Figure 3.

Once a developer creates an operator, e.g., one that implements an analysis algorithm in

5 Currently, our implementation only supports C++ code shared as a .so shared object library. However,
in principle, we could implement support for any language or type of dynamically linkable object.
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their area of expertise, and then compiles it into a reusable code module with the appropriate

interface, he/she can upload it to the Operator Store. Along with the code module itself,

the developer who uploads the operator gives it a unique name and a description of the

types of streams that it takes as inputs and produces as outputs. The way to describe

streams will be addressed in more detail below, when we discuss the Stream Registry.

Once an operator is stored in the Operator Store, others can query the operators based

on name and/or input and output types. This facilitates discovery of available operators by

application developers. Once discovered, the code module implementing an operator can

be retrieved from the Operator Store. However, this will not normally need to be done by

the application developer him/herself. Instead he/she specifies the operator name in the

application description (i.e., operator graph), and the Worker Node running an operator

instance will automatically retrieve the code module prior to executing the operator, as

described earlier.

4.1.3 Requirement 3: Execute applications on distributed resources

The distributed Worker Nodes in our execution engine enable the natural parallelism in

streaming operator graphs. Furthermore, since each operator instance is run within its own

process, parallel resources (such as multi-core / multi-processor) can be exploited. This

also means that Worker Nodes on different VMs can provide parallel execution even if those

VMs are running on the same hardware (assuming that hardware provides parallel resources

for the VMs to run on). The separate process model for operators also means that pipeline

parallelism (sequential operators) as well as task-level parallelism (parallel operators) in the

operator graph may be exploited. This fulfills requirement 3.a.

Another advantage of the separate process model is that any valid6 operator graph can

be executed on the Worker Nodes. This allows requirement 3.b to be met.

Requirement 3.c is met trivially by the previously described public interface to the

Resource Manager that allows starting and stopping applications (operator graphs).

Finally, requirement 3.d demands that additional resources can be added (or removed)

6 Operators’ input streams must exist or be provided by other operators in the graph, and the stream
types of connected operator outputs and inputs must be compatible.
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at run time. Worker Nodes are aware of the Resource Manager that manages them, and

when they start up they automatically register themselves with the Resource Manager;

when they shut down they similarly deregister themselves7. Thus the Resource Manager

can keep track of the available resources even as they are added or removed at run time.

4.1.4 Requirement 4: Provide efficient and scalable stream transport

The streaming subsystem was described previously, and we refer you to the related literature

on StampedeRT [17] and Persistent Temporal Streams (PTS) [18] for experimental results

validating its performance and scalability, including the scalability of streams with multiple

consumers.

As mentioned earlier, these streams contain arbitrary, opaque binary data, and neither

StampedeRT nor our system needs to understand the structure of the stream contents. It

is left to operator developers to understand the structure of the streams they consume and

produce. However, our system does provide flexible and extensible stream descriptions that

allow developers to know if streams are compatible with their operators, as will be described

in the next subsection. This satisfies requirement 4.a.

Requirement 4.b is satisfied by this stream sharing capability combined with the ability

to discover streams produced by other operator graphs using the Stream Registry, which is

described in the following subsection.

4.1.5 Requirement 5: Enable stream registration and discovery

Requirement 5 states that stream registrations can be dynamically added and removed at

run time, and that they may describe streams with arbitrary and novel types. Furthermore,

these stream descriptions may be queried at run time to allow stream discovery. These

stream descriptions provide information about the stream, but do not necessarily describe

the stream structure. Specifically, this means that the system does not require a description

such as “the first 32 bits are an integer describing this, and the next 64 bits are a floating

7 Deregistering is not without its dangers and should be used with caution - specifically, bad things
happen to applications that happen to be running on that Worker at the time. While the system can check
for this condition in some cases, such as the graceful shutdown of the Worker daemon process, it cannot
prevent, e.g., someone unplugging the hardware on which a Worker is running.
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point number describing that,” but rather just describes the stream contents, such as, “video

at 720p resolution with H.264 encoding.” The way to handle stream contents based on the

provided description is left as a matter for standards to dictate. This is helpful for complex

streams, such as video, where it is easier to describe the stream and leave it to a standard to

specify the byte-wise structure of that stream than to require AoT users to have to describe

“the first four bytes are the first pixel, the next four are the second pixel, etc.” We also

note that some existing standards, such as that for H.264-encoded streaming video, may be

leveraged.

4.1.5.1 Stream Registry

The Stream Registry is shown in Figures 3 and 4. A stream may be registered with the

Stream Registry by specifying the handle (i.e., the connection information needed to produce

or consume data on the stream), a unique name, the stream type, and the sensor type.

Application developers may then query the name, stream type, and sensor type to find

streams (from sensors or analysis results) that are of interest to them.

Stream types describe the contents and format of the stream, whereas sensor types

describe the properties of the sensor producing the stream8. For example, a camera may

produce a stream whose type is video with a resolution of 640x480, at 10 frames per second,

MPEG encoded, etc. The sensor type for the same camera may describe properties such

as the sensor’s type (e.g., camera), capabilities (e.g., color and PTZ9), and location. The

operator descriptions use the same concept of stream type when describing the input and

output streams. In fact, the output stream type of an operator can be copied directly when

registering the stream type of its output stream.

A very large variety of sensors exist in the Internet of Things, including many yet to be

invented. Therefore, it is important not to define the specific properties used to describe

stream and sensor types, but rather to provide an extensible stream and sensor description

language. We originally proposed using extensible collections of name-value pairs for this

8 For fusion analysis results, the sensor type would be some derivative of the sensors whose data con-
tributed to the analysis.

9 pan-tilt-zoom control
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purpose [22]. However, we now use JSON because a JSON object is, at its core, a set of

extensible name-value pairs. However, it also provides some limited data typing for values

and allows non-primitive types, such as lists, arrays, and nested JSON objects.

Extensible attributes create the problem of how to interpret a description. For exam-

ple, a video stream’s resolution could be represented in JSON as {resolution : 640x480},

{resolution x : 640, resolution y : 480}, or {resolution : {x : 640, y : 480}}. We envision

the community of sensor and other device manufacturers, developers, and other users cre-

ating standards for what names and structures should be used to describe different types of

sensors and streams, and how to interpret their values. Our design goal is simply to provide

the extensible property naming system that enables such standards to be created and used.

4.1.6 Requirement 6: Enable connecting operator graphs to arbitrary external
inputs and outputs

There are a wide variety of heterogeneous sensors and actuators available today, and even

more variety coming in the future. Requirement 6 states that AoT applications should be

able to connect to arbitrary external inputs and outputs (i.e., that are not other operators).

This is necessary to provide interoperability with the variety of sensor and actuator devices,

as well as other data sources and sinks. To support heterogeneous external devices, we

take a cue from traditional operating systems that help applications to deal with the wide

variety of different types of computer hardware including different models from different

manufacturers, in other words, device drivers. A hardware manufacturer can provide a

device driver to an operating system for their hardware, which gives the operating system

the ability to interact with the hardware and present applications with standard interfaces

for using hardware of different types. We propose a similar model of “drivers” for AoT,

where the creators of external sources and sinks (e.g., sensors and actuators) can provide

code modules that allow AoT applications to interact with them10. However, we do not

need to create a new mechanism for these “drivers” - rather, a driver is simply a particular

10 There are also sensors and actuators that use one or another protocol or standard, but even then there is
no single standard that all IoT devices use. We anticipate the community-driven creation of AoT “standard”
drivers that allow AoT to interact with devices using common standards or protocols.
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kind of operator and need not be treated any differently by the system than other operators,

as will now be described in detail.

4.1.6.1 Source and Sink Drivers for External Sensors and Actuators

It is simple for an operator graph to take input from sources that use the same streaming

system (i.e., StampedeRT). The sources merely need to register themselves with the Stream

Registry, and then the operator graph description specifies those stream names as operator

inputs. Likewise, if a sink can read data from the streaming subsystem then it is simple

to connect it to an operator graph’s output. The output stream will automatically be

registered with the Stream Registry, so a sink can either use the stream name or perform a

query to find the stream to consume from.

However, it is also possible for an operator graph to receive input from sources (e.g.,

sensors) and provide output to sinks that use other communication methods. Since opera-

tors can run arbitrary code provided by the operator developer, special operators may be

created that use custom code to connect to other inputs or outputs that do not use the

streaming system. We call such operators drivers, and specifically, operators that connect

to sources are source drivers and operators that connect to sinks are sink drivers.

For example, if a sensor provides data using a custom protocol over UDP, an operator

could be created that takes zero inputs11. The operator container will call the opera-

tor method repeated in a loop, and the developer-created method could receive a UDP

datagram, parse the custom application-level protocol to extract the desired information,

serialize it into a data item, and submit the item to its output stream. Since the output

stream is registered with the Stream Registry, this additionally allows the sensor data to

be shared. The use of such driver operators is demonstrated in the example applications

shown in Figures 1 and 2.

Since operators can be shared easily, we envision that the community will create publicly

available source and sink drivers that use standard protocols. Furthermore, sensor, actuator,

and other device manufacturers may develop AoT drivers to provide to customers along with

11 meaning zero input streams, because it takes it input by another method
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their hardware, just as many device manufacturers do for OS drivers today.

4.2 Experimental Results

Our previous work [22] presents experimental results on the computational performance of

the MediaBroker. However, we do not present those experiments here because they are

somewhat dated in that the hardware used is old by today’s standards, and the implemen-

tation used at the time is not the current implementation, described in Section 4.1. Still,

the new code base is not sufficiently different from the MediaBroker in relevant ways so as

to make repeating these experiments intellectually interesting. Therefore we merely suggest

that the general trends of the MediaBroker experiments still hold, and briefly summarize

them now.

The results from our previous work [22] show that performance scales well (nearly lin-

early) as more operator graphs12 are executed simultaneously, up to the point where the

computational hardware is saturated. After that point, performance degrades gracefully

according to how overloaded the hardware becomes. The results further show that exploit-

ing the natural parallelism in operator graphs improves performance up to the point where

the degree of parallelism exceeds the available hardware resources, at which point perfor-

mance becomes only marginally better than executing each operator graph’s operators in

serial. Finally, we showed that sharing computational results can greatly improve perfor-

mance when it is possible to do so, as it reduces the total computational load by avoiding

repeated, identical computation in different operator graphs.

We now present experimental results for the performance of the Stream Registry. We

note that this again is not the same code base described above, and in particular has some

features (namely, continuous queries) not included in the current code base due to their

being a unnecessary for the primary purpose of this work. It also used a RESTful interface

rather than RPC. Therefore, we suggest that it is fully reasonable that the current code base,

being a simplification of the one used in these experiments, has equal or better performance.

These experiments were performed using the Amazon Elastic Compute Cluster (EC2).

12 operator graphs were called “dataflow graphs” in the MediaBroker
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We used 64-bit Linux systems running on Extra Large Instances (4 virtual cores with 2

EC2 Compute Units (ECUs)13 each, and 15 GB system memory) [1]. The server ran on

one Extra Large Instance, while the clients ran together on another Extra Large Instance.

Running the clients together facilitated the communication of timing information that had

to be correlated in order to find the total delay for callbacks, as well as allowing the rapid

execution of large numbers of calls.

Although the sensor registry system can be run as a RESTlet server, exposing REST

APIs to the clients for maximum interoperability, we instead chose to run the system as a

Java RMI14 server with clients calling RMI APIs. This choice was made due to the relative

performance of RESTlets and RMI. RESTlets have a significantly higher mean delay and

variance (on the order of hundreds of milliseconds) that would dominate the results, masking

the true overhead and scalability of the backend system with that of RESTlets. Although

applications may submit RESTful callbacks to the system, we instead chose to use RMI

callbacks for the same reason.

In our first experiment, we measured the time required to make query API calls to the

system. The experimental client first registered a variable number of sensors’ metadata

then measured the mean time to submit 4096 dynamic, continuous queries.

Figure 5 shows how the mean time to make the API calls in milliseconds scales with

the number of sensors registered in the system. Each data point represents the mean of

4096 calls, and each has a 95% confidence interval of ±0.023ms or less. The figure shows

that query API calls scale linearly with the number of sensors registered with the system

(R2 = 0.997). We omit any discussion of the “Update Query” and “Stop Query” APIs, as

they pertain to the continuous query feature that is present in the earlier version but not

in our current implementation.

For our second experiment, we measured the time required to make sensor metadata

registration API calls. The experimental client first started a variable number of continuous

queries. Next, it measured the mean time to register 4096 sensors. Then it updated each

13 “EC2 Compute Unit (ECU) – One EC2 Compute Unit (ECU) provides the equivalent CPU capacity
of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor.” [1]

14Remote Method Invocation
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Figure 5: Time to Query the Stream Registry

of the sensor’s metadata and measured the mean time to make the update calls. Finally, it

measured the mean time to make the call to remove the sensor’s metadata, before stopping

all the continuous queries running in the sensor registry. Since our current implementation

does not use continuous queries, we direct your attention to the data with the minimal

number of continuous queries running.

Figure 6 shows how the mean time to make the API calls in milliseconds scales with the

number of continuous queries running in the system. Each data point represents the mean

of 4096 calls, and each has a 95% confidence interval of ±0.0092ms or less. The figure shows

that all three registration API calls scale linearly with the number of continuous queries

registered with the system (R2 = 0.985, 0.990, and 0.960 for the Register, Update, and

Remove calls, respectively).

The Register and Update sensor calls take time proportionate to the number of contin-

uous queries running because both operations require a full check of the sensor metadata

(or newly updated sensor metadata) against all the continuous queries. Removing a sensor

registration is nearly a constant time operation because it does not need to run the contin-

uous queries. In our experiment, it does scale very slightly with the number of continuous

queries only because each sensor matches a number of continuous queries proportionate
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Figure 6: Time to Register / Update / Remove Sensor Metadata in the Stream Registry

to the number running, and the Remove call needs to send a callback to each matching

continuous query.

In summary, these experiments show that the sensor registry system can scale to thou-

sands of continuous queries and tens of thousands of registered sensors, while maintaining

acceptable performance. Specifically, delays are on the order of tens of milliseconds for both

API calls and callbacks, before accounting for the overhead of RESTlets.

In our current implementation that does not include continuous queries, we expect to

see constant performance similar to the data present for the minimal number of continuous

queries. For these operations, as well as the query operation presented earlier, the per-

formance of the underlying database management system (DBMS), MongoDB in both our

implementations, is the limiting factor.
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CHAPTER V

FEDERATED ANALYSIS OF THINGS

The system presented in Chapter 4 is a useful tool to provide tightly-coupled distributed

resources, as in a data center, for the Analysis of Things. However, in order to make the

Analysis of Things possible within the Internet of Things, issues of scale must be addressed.

Not only does the system need to scale with the computational load, available computational

resources, number of operators available, and the vast number of sensors in IoT, it must

also scale geographically. In this chapter, we present our design for a federated system to

support AoT over a widely distributed area, thus fulfilling the final requirement 7.

5.1 Motivation

The Internet of Things is not something that will occur in just one location, nor in several

discrete locations isolated from each other, but rather it will be pervasive. Sensors will be

abundant in all environments and locations, and it will be useful to incorporate sensors in

different areas into the same computation.

For example, data from the various sensors in the many cars on the road, along with

roadside sensors may be analyzed on a local stretch of road to detect hazardous situations

and warn drivers (or perhaps even allows cars to automatically apply the brakes). This

will not happen only on one small stretch of road, but on every mile of most of the roads

around the globe. In addition to these local decisions, sensor data may be analyzed across

an entire region to provide dynamic traffic engineering, such as controlling signals and

instructing vehicles to take different routes or drive in different lanes to improve the overall

flow. Furthermore, data may be analyzed across entire metro areas, counties, or states to

assist departments of transportation, urban planners, and government officials in making

decisions about transportation maintenance and improvements.

Consider also a retail analysis system, such as the one being deployed in Walmart [20].
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Sensors can monitor store shelves to observe which products customers are looking at, in-

teracting with, and ultimately purchasing. Local analysis could, for example, determine

when a customer is considering a product and use an on-shelf display to inform the cus-

tomer that a similar item has a coupon available and even display a QR code allowing the

customer to collect the e-coupon for the item. Store-wide analysis can help with inventory

management, as well as determining popular items. Store-wide and regional analysis can

help determine product placement strategies (e.g., which products should get the prime

shelf space) and product synergies (e.g., customers who buy this item also tend to buy that

item). Company-wide analysis, correlating data from all stores nationally or globally, can

help determine corporate product strategies, advertising strategies, and so on.

These examples typify the Analysis of Things applications that will be present in the

Internet of Things, and they illustrate several important points. First, sensors will be

incredibly numerous and will be everywhere. Furthermore, their number ensures that the

amount of data produced will be overwhelming, when taken in aggregate across all sensors.

Second, the environment is hierarchical, with AoT applications performing analyses that

correlate sensor data across local, small regional, large regional, and national and global

areas. Third, live analysis on live streaming data must produce timely results. For example,

the retail application must offer the customer a coupon while the customer is standing in

front of the shelf, making a purchasing decision. More critically, a vehicle safety application

must alert drivers to problems in time for corrective action to be taken (e.g., braking).

For these reasons, it is important to perform computation locally, near the sensors,

actuators, and user devices, while still allowing regional and global analyses to consider

sensor data from diverse locales. To illustrate the need for local processing over centralized

processing, we present the following experiment showing the latency to transport data to

the cloud for computation, and the results back again.

5.1.1 Network Latency Experiments

One potential roadblock to using a public cloud for the Internet of Things is the latency of

sending streaming data over the Internet to reach the cloud. Streaming even heavy-weight

35



data, such as video, across the Internet has become commonplace. However, while many

services such as Netflix and YouTube stream a great deal of video every day, they are

prerecorded streams. Even in the case of “live” streams intended for viewing, the primary

QoS metrics are jitter and quality – things that affect the viewing experience. A small

delay of a few seconds is permissible even for “live” streams, if it allows some buffering that

reduces jitter. In contrast, the primary QoS metric for IoT applications is latency. In this

way they are more comparable to interactive streaming applications, such as video calls and

video conferences, where a delay in the video stream can make the interaction cumbersome.

However, video conferences normally consist of a small number of streams, whereas each

IoT application may scale out to hundreds or even thousands of streams. In this way, they

have a unique characteristic among streaming applications in that they combine latency

sensitivity with scaling out to large numbers of streams. To investigate the performance

of these applications on current networking systems, we ran two experiments with a video

application to quantify the streaming latency to Amazon EC2 and found that the latency

for streaming to the cloud is directly related to the raw ping-time to the cloud, and scales

gracefully both with video size and the number of streams. Thus, we conclude that the ping

latency is an accurate predictor of the streaming latency.
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We instantiated a Cluster Compute instance in Amazon’s Virginia data center (us-

east-1a region) for these experiments. To test the effective latency, we ran an experiment

streaming our actual application data from the Georgia Tech campus in Atlanta to both

the cloud and to a local cluster on campus. Streaming to the cloud traverses the public

Internet, and streaming to the local cluster remains on the campus network and traverses

two router hops. To get a baseline, we first performed a simple ping, which can be seen

for both the cloud and the cluster as the horizontal lines on Figure 7. Next, we created a

simple process that receives streamed video frames and immediately returns them to the

sender. At the video server, we computed the round trip time per frame. Video was sent

at 10 frames per second. The results of this can be seen in Figure 7 as “Cloud Echo” and

“Cluster Echo”. As the graph shows, latency per frame to the cloud scales up with the size

of the video frame in much the same way as it does when streaming to the local cluster.
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Next we wanted to examine how the latency is affected as we scale up the number of

video streams. For this experiment, we hold the video size constant (just under 6 KB

per frame and 10 fps, or 480 kbps bitrate) and scale up the number of concurrent video

streams. We also scale up the number of receiver nodes proportionately to the number of

video streams, so that the bandwidth of the receiver hosts is not the scaling bottleneck.
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We compare the round trip latency for Cluster Compute instances (Cloud Compute), High-

CPU Extra Large instances (Cloud XLarge), and our local cluster (Cluster) in Figure 8.

This shows that the latency per stream holds constant as the number of concurrent streams

increases in the cloud as in the cluster.

Finally, we wanted to examine the source of the added latency to the cloud to discover

how much is inherently due to the cloud environment, and how much is merely due to

traversing the public Internet. To accomplish this, we performed a bidirectional traceroute

and found the last hop before entering Amazon’s data center. We then compared ping

times from our streaming source to the last hop router with ping times to our running

instance inside the cloud. As expected, the difference in ping times is minimal, indicating

that there is nothing inherent in cloud technology or the data center that adds to latency.

The difference in streaming latency between the cloud and the cluster is merely due to the

physical limits of network distance.

However, we also observed that our traffic traverses the Internet 2 to get to Amazon’s

data center. We therefore suggest that the 30 ms gap exhibited by our experiments is

a best-case scenario. Other sources that are not as well connected will likely face higher

latencies and more variance.

From this, we conclude that the latency differences for streaming to a centralized cloud

data center over streaming to a local cluster are governed strictly by the raw ping time (RTT

latency). The cloud data center itself does not add substantial network latency beyond that

encountered getting to the data center, latency scales evenly with the number of streams,

and increases gracefully with the stream size (bitrate) in the cloud as it does in the cluster.

As a result, we conclude there is little that can be done to improve the latency charac-

teristics of the cloud. Rather, reducing latency requires reducing the network distance from

sensor data to the computation. In other words, computational resources near the network

edge are needed.
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5.2 Approach to Federation

Federated SSIoTa consists of a number of “sites”, which is an abstraction that includes one

Stream Registry, one Operator Store, and one Resource Manager (with it’s set of managed

Worker Nodes), and has a concept of geographic location (i.e., where it is located in the

physical world). Each of these three major components will be federated between sites

independently, so when a user or component must interact with one of the components, it

will just talk to the local component in the same site. That component will then handle

federated communication and operations behind the scenes.

The federated Resource Manager assigns the operators of an application to different sites

for execution using a fully distributed heuristic algorithm, named DistAl1. To better support

multitenant applications running concurrently, the Resource Manager allows a three-way

tradeoff between quality of results (which we consider as a combination of the data rate and

the output fidelity), application performance, and resource consumption. Applications that

are submitted for execution will include an operator graph specifying the computation to

be done, a fidelity table for each operator that specifies the different fidelity levels at which

they are able to run, and a utility function specific to that application to quantify how

resource usage, performance, and quality of results can be traded off against each other to

best meet that application’s needs. DistAl finds a good schedule by attempting to maximize

the total utility for all operators in all running applications in the federated system, which

it does by making local decisions with partial system knowledge.

For the Stream Registry, streams will be tagged with a location and that location will

be used to determine at which site to register the stream. Queries will include a region

specifying a restricted area within which to query for streams. The region will be used to

direct the query to sites that cover a portion of the region, and those sites will filter the

results using traditional database techniques on the remaining query criteria. The Stream

Registry instance at which the query was placed will concatenate the query results from all

sites before returning them to the requester.

1DISTributed anALysis
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Operators, however, do not have the same natural mapping to physical space. Indeed,

there is no sure way to place operators in the sites where they will be used in the future

since they do not have any properties that may give us clues. Therefore, we recommend a

generic distributed database-based solution for the Operator Store, but note that temporal

locality can be expected in operator access and therefore caching may be of some benefit.

5.3 Federated Operator Store

Since operators do not have any notion of geopysical location, there is no natural way to

distribute them among sites to achieve better performance or scalability. Distributed Hash

Tables (DHTs) are one way to scalably distribute key-value pairs among widely distributed

peers [28, 29, 31], which could allow retrieval of an operator’s code module using its unique

name. Most DHTs are able to route a query to site that holds the data in log(n) hops (for

n = the total number of sites), although Content Addressable Networks [28] uses (d/4)(n1/d)

hops (where d = the number of dimensions in key space). Either option exhibits sub-linear

scalability.

However, we believe that caching can help improve performance even further. Specif-

ically, we anticipate that operators are most likely to be used again at locations 1) from

which they were initially added (i.e., were the put() was issued, which is not necessarily

where it will be stored), and 2) at which they were recently used in the past (i.e., where

get()s were recently issued). The reasoning for #1 is that an operator may have been added

at a particular site because the user wishes to use it immediately. For #2, an application

may use multiple instances of the same operator, each on different input streams. Fur-

thermore, a user may execute several operator graphs bearing some similarities (i.e., using

some of the same operators) within a short span of time. Therefore, we propose to exploit

this temporal locality by caching operators at the local site when they are 1) added to the

Operator Store, and 2) returned by an Operator Store query submitted through this site.

5.4 Federated Stream Registry

Since a geographical area is used to route the query to sites that may hold some of the data,

and filtering based on the remaining criteria is performed locally at the sites, a stream query
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essentially reduces to the problem of being able to find the correct site(s) that correspond

to any location or region. R-Trees [15] and Quad-Trees [30] are commonly used to allow

spatial queries in distributed databases. However, these distributed databases are designed

to support spatial queries but not to be spatially distributed themselves. That is, they are

designed for distribution in a close area, such as a data center, not for wide distribution

across the Internet. Specifically, they tend to use one of two solutions for storing the spatial

tree structure: 1) a singleton tree in a centralized location, which doesn’t scale, or 2) a fully

replicated tree on each database node, which can work in a tightly-coupled environment

but is not suitable for wide distribution where nodes may join and leave.

A scalable, self-organizing method of distributing the data among sites is needed. Dis-

tributed Hast Tables (DHTs) [28, 29, 31] provide these features, as well as being robust

against node failures and providing load balance among the nodes2. However, to support a

federated Stream Registry, they should also allow two-dimensional range queries (i.e., query-

ing a geographic area) and provide geographical locality. On the other hand, load balance

requirements could be loosened for SSIoTa since sites may (and indeed are expected to) pro-

vide unequal amounts of resources. Individual sites may use local distribution techniques,

such as those mentioned above, to scale resources locally. Furthermore, load balancing is

necessarily traded off against performance scalability and geographical locality. Existing

DHTs ignore geographical locality in order to achieve the other two fully, but we suggest

that a federated Stream Registry should instead allow a degree of load imbalance in or-

der to fully provide scalability and geographical locality. A summary of DHT techniques,

including our SkipCAN design, is compared against these requirements in Figure 9.

Geographical locality is a concept that we introduce in order to express the requirements

of the federated Sensor Registry. Traditional DHTs assume that queries for any particular

data item are randomly and evenly distributed, as depicted with the red dots in Figure 10.

Therefore there is no performance benefit to storing the data in any one particular DHT

node over another. The subset of data these queries are looking for may be stored on the

node circled in blue, even though the sensors themselves are far from that node.

2under the assumption that all data items are equally popular
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Feature Reqs Traditional 
DHT

No Hash 
DHT

PHT SkipNet SkipCAN

Self-Organizing      
Scalable      
Robust vs. Node 
Failures      
Load Balance      
Range Queries      
2-Dimensional    *  
Geographical Locality      

Figure 9: Requirements for a federated Stream Registry compared against features of
Distributed Hash Tables, including our SkipCAN design

However, we anticipate queries in the federated Stream Registry to exhibit a different

pattern. Most queries will be searching for sensor streams near themselves, that is, near

the place where the query originated. This is shown in Figure 11, where the red dots

(representing queries) are mostly near the area where the sensors they are querying are

also located. We refer to this locality property as geographical locality. Since those queries

will begin their search at the local site, significant performance and scalability gains can

be achieved by storing sensor stream data at the sites near the streams’ locations, such as

the node circled in blue in the figure. While worst case performance may still require as

many hops as in traditional DHTs, a geographical locality-aware DHT could substantially

improve average case performance.

5.4.1 Related Work in Distributed Hash Tables

A naive approach to supporting range queries would be to simply not hash the keys, which

would group data with similar keys together, rather that distributing it randomly and

evenly. This would allow a simple range query mechanism by finding the nodes that cover
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Sensor Registry Node
Interesting Sensor
Query Origins

sensors stored here

Figure 10: Distributed Hash Tables make an assumption of no geographical locality -
queries for a particular set of data are randomly and evenly distributed

the needed range, but load balancing is lost when keys are not hashed, as indicated in

Figure 9 by the “No Hash DHT” column.

Prefix Hash Tree (PHT) [26] is a solution to allow range queries in a DHT without

sacrificing load balance. A prefix tree, or trie, is built to index the keys. Each key is

stored at the trie leaf node representing the prefix of that key. Since this is based on

actual keys, not hashed keys, nearby keys are stored in the same trie leaf or an adjacent

leaf (by in-order traversal of the trie leaves). The trie is maintained dynamically as keys

are added and removed so that leaves are bounded by a maximum of B keys (where B is

a configurable parameter). The trie leaves are then assigned randomly and evenly to the

DHT nodes by hashing the prefix identifier of the trie leaves, thus achieving load balance.

The trie data structure is distributed, allowing queries to be routed by the trie in log(n)

time (for n total DHT nodes). Since trie leaves hold pointers to the next and previous

leaves (creating a doubly-linked list of leaves), a range query can be performed by finding

the leaf containing the beginning of the range and traversing leaves in order to the end

of the range. Alternatively, branches of the trie could be traversed in parallel to reach all
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Sensor Registry Node
Interesting Sensor
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Figure 11: The federated Sensor Registry is expected to exhibit geographical locality -
most queries will request data about streams near the query origin, i.e., most queries for a
set of data will originate near that data

leaves that overlap the range, thus allowing range queries to be satisfied in log(n) steps

along the critical path.

However, since Prefix Hash Trees assign the key-containing leaves randomly to DHT

nodes by hashing, PHT exhibits no geographical locality. Furthermore, it is not designed

to handle two dimensional data. The authors briefly mention that linearization techniques

(e.g., space-filling curves) could be used to collapse multiple dimensions into one in order

to store them in PHT, but no detailed design is presented. Although the authors do not

discuss multidimensional tries, we believe a quadtrie would be a reasonable way to index

two-dimensional data such as geospatial coordinates, though this approach may not scale

well to many-dimensional data.

SkipNet [16] is another DHT that supports range queries. Keys are assigned directly to

DHT nodes without hashing, allowing easy range queries at the expense of load balance.

Efficient lookup is achieved by using a distributed skip list, where each node knows the
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next node at each level of the skip list, thus allowing retrieval in log(n) hops. The pri-

mary objective of this work is to allow queries to retrieve keys that are part of their own

administrative domain without the messages of the lookup protocol leaving that adminis-

trative domain. (This is desirable in a number of enterprise scenarios, for example, where

a company may not want it’s keys or get/put messages containing its keys traveling to or

through another company’s network or DHT nodes.) To achieve this, nodes also have an

identifier in the same domain as keys. For example, both keys and nodes may be identified

by a Uniform Resource Identifier (URI), and keys may be stored on a node who’s URI is

a prefix of the key’s URI. The authors do not discuss geographical keys or locality, but if

one were to use geographical coordinates as the domain for keys and nodes (rather than

URIs), SkipNet would thus incidentally achieve geographical locality. However, support for

multidimensional data and range queries is not addressed by SkipNet.

Content Addressable Networks [28] is one of the original DHT works from 2001, but

unlike the others (Chord [31] and Pastry [29]), CAN natively supports multidimensional

data. It works by assigning blocks of multidimensional key space to DHT nodes as follows:

When a node joins the system, it chooses a random point in the multidimensional key

space (thus ensuring nodes are probabilistically evenly distributed) and contacts the node

currently holding the block in which that point falls. The two nodes then split the block

between themselves. Keys are assigned to points in the multidimensional space through

hashing, thus ensuring keys are evenly distributed and achieving load balance. Locating

the node that covers a point is achieved by contacting any CAN node, and from there the

request will be forwarded to a neighbor node along one dimension so that it is one step closer

to the requested point. This is repeated until the destination node is reached. Although

this superficially appears to be less performant than other DHTs, routing can be achieved

in fewer steps if the number of dimensions is increased, which has the effect of bringing all

nodes closer together by providing more dimensions to route through. Thus a query can

be performed in d
4(n1/d) hops (for d dimensions), which can achieve similar performance to

other DHTs, depending on the number of dimensions. Since the multidimensional space is

an arbitrary key hash space with no physical analog, dimensionality can easily be increased.
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5.4.2 SkipCAN

We suggest a combination of CAN and SkipNet techniques for the Stream Registry. Since

CAN naturally supports multiple dimensions, a two-dimensional key space can be used

to represent geophysical space. However, since it now represents a physical concept, keys

should not be hashed, but placed in the space according to their location coordinates.

Similarly, nodes should use their own location rather than choosing a random one when

they join the system, although splitting areas to add new nodes may otherwise proceed as in

CAN. These changes allow us to have geographical locality but present two complications:

Adding nodes and keys this way breaks the load balancing features, although this is an

acceptable tradeoff, as discussed earlier. Also, we cannot easily increase the dimensionality

since the space now represents a naturally two-dimensional 3 physical concept.

Figure 12: Multidimensional queries in SkipCAN may result in query splitting (black lines)
and split queries may merge later (red lines), thus necessitating a unique query identifier
for duplicate query removal.

Although leveraging geographical locality alleviates some of the performance scalability

3or possibly three-dimensional, depending on the spatial representation
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concerns, we would nonetheless like to better bound the worst-case performance. To ac-

complish this, we suggest using a distributed skip list, as first proposed by SkipNet. Each

node maintains one skip list for each dimension, thus allowing log(N) performance per di-

mension. Thus each line that varies along only one dimension in the key space is essentially

a SkipNet. Two special notes are warranted, however. First, the space covered by a node

in D−1 dimensions may be covered by multiple nodes further along one of the skip lists, as

shown in Figure 12, so it may have multiple neighbors at some level of its skip list. In this

case, it simply forwards queries in parallel to all neighbors that overlap the query region in

any dimension (but to a minimum of at least one if none overlap). Second, as Figure 12

shows, the reverse situation is also possible, so the parallel queries could be rejoined in the

future. To prevent query multiplication, each query can be tagged with an identifier that

allows nodes to identify and ignore duplicates of the same query. To ensure uniqueness, a

query tag could be the hash of the node where the query originated, the timestamp when

the query was issued, and the query expression itself. This ensures that equivalent queries

can be issued from different nodes at the same time, or issued again from the same node at

a later time, without being discarded.

5.5 Federated Resource Manager

The third and final SSIoTa component to federate is the Resource Manager. In order to

federate the execution environment, all applications’ operators need to be scheduled, or

assigned to the different sites where they will execute. The Resource Manager at each

site can then schedule them on specific worker nodes, as described in Section 4.1. We

do not address stream transport explicitly because StampedeRT is capable of transporting

streaming data between sites as well as between worker nodes within a site.

5.5.1 System Model

In the context of our application space, scheduling means to create a mapping from a set of

resources to multiple applications, where a “good” mapping does not violate any constraints

(e.g., not exceeding the available CPU throughput of any resource), minimizes the end-to-

end delay from application input to final results being ready, and also maximizes the quality
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of the results (QoR).

5.5.1.1 Application Model

An application consists of a directed acyclic operator graph, Gapp = (V app, Eapp), where the

vertexes represent operator instances and the directed edges represent data streams from

operator outputs to inputs. Each operator instance, vappi ∈ V app, is a continuously running

algorithm that takes one or more input streams4 and produces one output. Each edge,

eappi,j = (vappi , vappj ) ∈ Eapp, represents a data stream from the output of operator vappi to the

input of operator vappj .

Performance Resources

Quality

Use Closer Resources with Faster Processors

Use Farther Resources with Slower Processors

Figure 13: Tradeoffs between quality of results (QoR), application performance (end-to-end
delay), and consuming fewer resources.

In addition to the operator graph, the application description contains information about

the resource requirements for each of the operators. However, many operators are able

to trade their quality of results (QoR) and performance against resource demands. For

example, a computer vision algorithm may be able to process up to 30 frames per second

4Special source and sink operators have no inputs or no outputs, respectively. We use these as “stub”
operators to represent the ingestion points for sensor data and the final destination for the application’s
output. In practice, these operators may be the driver operators for the external source and sink devices.
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(fps), but could also process only 10 fps for a third the resource requirements. It may

also be able to process video of different resolutions, saving resources at the expense of

output quality at lower input resolutions. The quality of results is a combination of the

data rate and fidelity. We assume these are adjustable for all operators and will use this

fact, as described in Section 5.5.2.3, to accommodate multiple concurrent applications while

meeting resource constraints. Each application also provides a utility function that is used

to trade off performance and quality in order allow multitenancy and maintain constraints.

This will be discussed further in Section 5.5.2.1.

Figure 13 shows the possible tradeoffs between quality of results (QoR), application per-

formance in terms of end-to-end delay, and resource consumption. Resource consumption

can be reduced by decreasing quality either in terms of the rate or fidelity. It can also be

reduced by spreading the computation over more resource nodes, but this may come at a

performance cost since more distant nodes may have to be used (adding network latency)

and/or less powerful nodes (adding computational latency). Quality can also be traded

to improve performance by reducing the fidelity since this will reduce the computational

latency, although the data rate is not related to performance since we are considering end-

to-end delay rather than throughput. In an ideal world, every application could run at full

quality, finish instantly, and require no resources. However, in a real world where multi-

tenant applications are sharing limited resources, some of these ideals must be sacrificed5.

Each application may have different preferences for where it would like to fall in this trian-

gle, and the ability to allow each application to specify its own utility function allows our

system to take those preferences into account.

5Alternatively, admission control could help here, but one of our design goals is avoiding strict admission
control.
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Table 2: Fidelity Level Table for a Fore-

ground Detector (FD) Operator

Level Cycles per Item Value

0 386 M 100

1 97 M 50

2 24 M 25

3 6 M 12.5

For each operator, a table of possible fi-

delity levels must be provided, similar to

the example shown in Table 2. This table

includes the amount of resources required

to processes a single input item and the fi-

delity value of the output for each fidelity

level that the operator can support. The

fidelity value is an abstract number repre-

senting the “goodness” of the operator’s output. In our implementation, we used the con-

vention that the best fidelity level always has value 100, and other levels are less, as appro-

priate for their proportionate qualities. Effectively, this can be thought of as “percentage

of maximum fidelity”. The fidelity value must necessarily be abstract because the meaning

of “goodness” varies depending on what the operator does and what the data type of its

output is. However, adopting a convention such as ours makes the fidelity values of different

operators scale together and compare in a reasonable way.

A complete application description, therefore, is A = (Gapp, F, u). Gapp is the applica-

tion’s operator graph, F is the set of fidelity tables, and u is the application-specific utility

funciton. Fi ∈ F is a schedule of possible fidelity levels for operator vi. The utility funciton

will be described in greater detail in Section 5.5.2.1.

5.5.1.2 Resource Model

The resources available to run applications are represented by an undirected resource graph,

Gres = (V res, Eres), where the vertexes, vresi ∈ V res, are compute nodes capable of running

operators (i.e., SSIoTa sites). Each compute node has pi processors (or cores), and each

processor on node vi runs at yi cycles per second6.

The edges, eresi,j = (vresi , vresj ) ∈ Eres, form an overlay network between resource nodes.

While we assume all nodes are reachable over the network from all other nodes for purposes

streaming application data between operators, nodes that are connected in the overlay are

6Although we only consider homogeneous resources in a node, heterogeneous nodes may be modeled as
two or more collocated nodes.
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considered neighbors for purposes of our algorithm. This limits the scope of communica-

tion rather than nodes simply broadcasting to all other nodes in the scheduling algorithm.

Finally, the network latency between every pair of nodes, li,j∀i, j, is known even for pairs

where there is no eresi,j (i.e., that are not neighbors).

Since our algorithm runs continuously and responds to changes in the environment even

during application run time, we do assume that resource nodes are able to perform live

migrations of operators between neighbor nodes. Such migrations should be rare in the

steady state. However, when a new application starts, its operators will likely experience

numerous and rapid relocations until it has settled into a good operator placement. To

address this, we propose simply moving references to operators rather than migrating real

operators. After the application’s placement has been optimized, the resource nodes with

operator references can retrieve the code for the referenced operators from the Operator

Store and begin executing the application. This does come at the cost of some initial delay

when starting a new application, which we address in Section 5.5.3.2.

5.5.2 System Design

5.5.2.1 Utility Function

In order to allow scheduling multiple live analysis applications on the same set of resources

without strict admission control, a sacrifice in performance and quality of results (QoR) is

necessary. As shown in Figure 13, by reducing data rate or fidelity, resource requirements

are reduced. Resource power can also be traded against application performance (i.e., us-

ing weak nearby resources vs. powerful but distant resources). To optimize the overall

“goodness” of all running applications, it is necessary to quantify the value of application

performance and quality of results. It is also necessary to understand how these two prop-

erties are valued relative to each other. However, each application may have different needs

– fast end-to-end delay may be important to one application, while another may value ac-

curate results more highly. To address this, we allow each application to provide its own

utility function that quantifies the value (utility) of varying levels of performance and QoR.

For purposes of this research, we assume all utility functions output values in the range
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[0, 1].

Since the system is fully distributed, the utility of an application must be calculated in

a distributed manner as well, rather than at a centralized location. Therefore, the utility

function provided by the application in fact computes the utility of an individual operator in

that application, which allows utility to be calculated at a node using only local information.

The utility of the total application is taken to be the sum of the utilities of all its operators

and the total utility of the system is the sum of the utility of all operators running on all

nodes. This also means that an improvement in the utility of a single operator corresponds

to an equal improvement in both the application’s utility and the total system utility, which

is exploited by our algorithm, as will be described in Section 5.5.2.3.

5.5.2.2 Example Utility Function

An example utility function is shown in Equation 1. The four terms represent (from left to

right) network latency, latency of computation, reduction in rate, and reduction in fidelity.

U is the weighted average (with weights A,B,C,D) of these four terms, each of which is

crafted to have a value in the range from 0 (bad) to 1 (good). Thus U itself is also in the

range [0, 1].

l̄ is the average network latency (in ms) of all this operator’s inputs, x/y is the time

to run the operator on a single input item (x is the cycles required by the operator, and

y is the processor speed), ro/ri is the ratio of output rate (ro) to the rate of the slowest

input (ri), both expressed as the number of items per second, and fo/fi is the ratio of

output fidelity value (fo) to the fidelity value of the worst input (fi). Both x and fo come

from the operator’s fidelity table, as discussed in Section 5.5.1, and fi comes from the input

operator’s fidelity table. The latencies used to compute l̄ and the processor speed y come

from the resource model.

U =

A
1+l̄

+ B
1+x/y + C ro

ri
+ D fo

fi

A + B + C + D
(1)

The first two terms in Equation 1 therefore represent the application performance (how

much time is spent on the network and in computation, respectively). The latter two terms
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represent the quality of results (data rate and fidelity). By adjusting the term weights, the

relative value of these factors to a particular application can be specified. Not only can

performance / quality tradeoffs be evaluated, but the relative value of data rate and fidelity

are also captured, allowing DistAl to choose levels for both quality attributes as appropriate

to the application.

While Equation 1 presents a function that increases smoothly with the four parameters

(i.e., more is always better), it may be desirable for many applications to use a slightly more

complicated utility function. For example, many applications may have a concept of “good

enough” for the level of quality or performance, and therefore may want utility to be an S-

curve with an inflection point around the “good enough” level. Applying S(x) = 1/(1+e
α−t
β )

to relevant terms should allow this variant. Furthermore, utility functions do not have to

be continuous, so other variants could be created to provide sharp cutoffs (e.g., a step

function). Many other variations are also possible, and this is just an example of how it is

easy to customize utility functions in our system to suit different applications’ needs.

5.5.2.3 Algorithm

DistAl runs continuously on all resource nodes, iteratively making one-step improvements

in operator placement (i.e., by moving an operator to one of its neighbors), as shown in

Algorithm 1, the high-level pseudocode overview of DistAl. (Complete pseudocode for

DistAl is provided in Appendix B.) Since each step causes improvement in the total system

utility, the algorithm converges over time, but since it continues to explore the space, it

can dynamically adapt by finding and exploiting opportunities to increase utility when the

environment changes (i.e., changes in the running applications or resource network). By

using this approach, the algorithm is fully distributed, using only state known locally and

to a small set of neighbor nodes that can easily be queried (line 8). This allows scaling with

the number of neighbors, rather than the size of the entire resource network.

We know the algorithm converges, absent changes to the applications or resource net-

work, because the system wide utility necessarily improves each time a change to the sched-

ule is made, thus ensuring it always moves towards a maximum. While it is possible to
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Algorithm 1 DistAl selects a local operator (line 2), queries all its neighbors to find the
utility change for moving it to that neighbor (lines 7–13), and then moves the operator
to the neighbor where it will give the greatest utility improvement (line 14). The delay
between checks has a configurable duration (line 15).

1: while true do
2: op← ChooseOperator(host)
3: myUtilityDelta← increase quality until constraints(host)
4: − UtilityFunction(op)
5: bestUtilityDelta← −∞
6: bestNewHost← ∅
7: for all neighbor ∈ Neighbors(host) do
8: neighborUtilityDelta← QueryNeighborForUtilityDelta(neighbor, op)
9: if neighborUtilityDelta > bestUtilityDelta then

10: bestUtilityDelta← neighborUtilityDelta
11: bestNewHost← neighbor
12: end if
13: end for
14: if bestUtilityDelta + myUtilityDelta > 0 then

MoveOperator(op, bestNewHost)
15: end if

OptionalDelay(duration)
16: end while

converge on a local maximum in the short term, this condition persists only while the sys-

tem state remains static. The dynamic nature of the environment over time affects the

underlying optimization space, thus having the opportunity to perturb any states that are

temporarily stuck. Furthermore, many classic methods of avoiding local maxima run the

risk of either sacrificing scalability by increasing the number of nodes queried at each step,

or losing the useful property that every step improves the total utility (i.e., there is never a

“step backwards” in DistAl).

Each resource node continuously runs the loop described in Algorithm 1, where it chooses

an operator to try and move, finds the neighbor that will gain the most utility by receiving

the operator, and if that is more than the utility this node will lose by giving up the operator,

it moves the operator to that neighbor. To find the neighbor with the most utility gain,

this node queries all its neighbors to run the application’s utility function on the candidate

operator. A query handler on each node receives such query messages, runs the calculation,

and responds with the utility change. Although our method to choose a candidate operator

on each iteration uses a queue of newly arrived operators with an additional second-chance
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queue, DistAl can also work with other methods of choosing an operator. A delay between

iterations of different candidate operators can be used to control the rate of operator churn

as well as the resource overhead required by the algorithm. The delay could even be variable,

allowing more churn when new applications are being started and lots of moves are required,

but reducing overhead when the situation is relatively stable and few candidate operators

are expected to actually be moved.

When a node is asked to accept an operator, it may find that the new operator would

exceed the resource constraints of the node. This is unacceptable since streaming analysis

applications depend on throughput keeping up with their data rate. In this case, the node

will adjust the quality levels of its local operators until the resource constraints are met,

thus providing adequate throughput while avoiding strict admission control. Of course there

is a cost to the utility when quality is reduced. Thus an iterative algorithm is again applied

to minimize the utility loss while meeting the resource constraints. The node makes a one-

step reduction in the rate or fidelity (but not both) of a single operator, choosing the step

that provides the greatest reduction in resource pressure per amount of utility lost for the

change, and repeats this until the constraints are met. The utility losses needed to keep

within resource constraints are also accounted for when a node informs its neighbor of how

much utility it will gain from accepting a new operator. Thus nodes with a lot of resource

pressure are less likely to be given new operators since, while they may gain the utility of

the new operator, they will lose utility from decreasing the quality of other operators.

Meanwhile, when a node is giving up an operator, this relieves resource pressure. It uses

an algorithm similar to the one just discussed, only in the reverse direction, to increase it’s

operators’ rates and fidelities until they are as high as possible without violating resource

constraints. Each step chooses the change that maximizes the utility gain per additional

resources used. Thus as operators pile up on a node and apply pressure to its resources,

the probability of it giving up an operator increases since it has more opportunity to gain

utility by increasing other operators’ qualities when it gives up an operator.

Considering the utility function in Equation 1, the node placement algorithm affects

the first two terms (network and computation latencies) by determining on which node an
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operator is placed, and the quality adjustment algorithms affect the latter two terms (rate

and fidelity). An application’s choice of utility function therefore can affect whether it’s

operators prefer crowded but powerful, low-latency nodes, or nodes that are weaker and

farther but have little competition for their resources. It can also affect how far away an

application is willing to go in order to use a more powerful node (i.e., trading network

performance against compute performance) and whether it should prefer to lose data rate

or fidelity when quality must be sacrificed. Furthermore, maximizing the total utility in

the system means that the needs of all running applications are collectively met as best as

possible, according to the preferences expressed in each of their utility functions.

Since our algorithm is an iterative optimization algorithm, new applications need an

initial placement before DistAl can begin to refine its operator placement. We use a naive

algorithm to create a simple initial placement. It begins by pinning the sources to the

nodes where the sensors are closest – DistAl will not move these since sensors are fixed in

physical space. Similarly we pin the sink that consumes the analysis results to a node. Then

operators that use the sources’ data are placed on the same nodes, then operators that use

those operators’ outputs are placed on the same nodes, and so on until all operators are

placed. Operators with multiple inputs will be placed on the same nodes as whichever of

its inputs happens to come up first as the algorithm runs. As operators are placed together

on the same nodes in excess of the node’s resources, operator qualities are reduced until the

resource constraints are met. Thus the initial placement tends to bunch operators together

on the same resource nodes (incurring little network latency), tends to place them on nodes

near the application’s sensors, and tends to set them to lower quality levels than an optimal

schedule. However, other initial placement schemes are possible and DistAl works with any

valid initial placement.

5.5.3 Performance Evaluation

We have qualitatively argued that DistAl meets the desirable requirements for scheduling

live streaming analysis applications on geographically distributed resources, namely (a) a

fully distributed algorithm, that (b) continuously adapts to changes in the environment, (c)
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meets resource constraints while placing operators, (d) avoids admission control (specifically,

by trading off quality of results to meet resource constraints), and (e) uses a utility function

to optimize performance and quality according to each application’s needs.

To validate our design and algorithm, we implemented resource networks and applica-

tions in the OMNeT++ v4.6 simulation framework [33]. While it would be ideal to compare

it to a theoretically optimal operator placement, computing such a schedule at the scale

of resources and application size we’re considering would have been infeasible. Therefore,

we will demonstrate that the algorithm is effective by showing that it improves both utility

and application performance from a naive initial state. We further consider the cost of our

method by looking at the startup time required for DistAl to run to convergence.

5.5.3.1 Experimental Scenario

For our experiments, we use a randomly generated resource network and two different

application structures. In the random network, 100 nodes each have a random number of

neighbors with a mean of 6 neighbors (except for experiments where we explicitly varied this

parameter). Computational resources are allocated to nodes by sampling processor speed

and the number of cores each from a normal distribution of possible resource amounts –

the mean processor speed is 2.8GHz and the mean number of cores per node varies for

different scenarios as described below. Network latencies between neighbors are sampled

from a normal distribution with a 100ms mean (except for experiments where we explicitly

varied this parameter). All experimental results that follow are the mean results of 100

different resource networks that were randomly generated using the same parameters.

Our simulation models the resource network but not the full transport network beneath

it. Therefore, the latency between two non-neighbor nodes was taken as the sum of the

latencies along the shortest path in the resource overlay. This does not affect our experi-

mental results except when varying the number of neighbors, since higher connectivity in

the overlay graph thus reduces the latency between non-neighbors. We discuss the effect

this has on our specific experimental results in Section 5.5.3.2.
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Figure 14: Kernel of “Parallel”, an embarrassingly parallel suspect tracking application

For the applications, we have created two different kernels of the suspect tracking ap-

plication that represent two different ways that parts of the application may be structured.

The first application kernel, called “Parallel” and shown in Figure 14, analyzes video cam-

era data in an embarrassingly parallel manner, consolidating results only as the analysis

of each camera is completed. Figure 15 shows the second application kernel, called “Com-

bining”, that performs similar analysis, but attempts to consolidate the data as quickly as

possible. The dotted line inputs in both figures indicate that there are additional operators

at the lower levels that are not shown for readability, thus increasing the scale beyond what

is shown in the figures (to a total of 124 operators in “Combining”, and 171 operators

in “Parallel”). Both applications use Equation 1 as their utility function, with weights

A = 3, B = 3, C = 5, D = 1. Although we have not built a complete suspect tracking appli-

cation, we believe these two are representative of the kinds of computation and application
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Figure 15: Kernel of “Combining”, a suspect tracking application that fuses data

structures that can be expected in such applications.

In these applications, MotionD is a motion detector, Collage is a fusion operator that

concatenates image data without filtering, FD/FR is a face detection and recognition al-

gorithm, FG is a foreground detection operator that creates a foreground mask which is

required for the Tracker, Tracker is an algorithm to track moving objects through a camera

frame, and Comp is a comparator operator that can determine if an object in a camera’s

view is the same as an object recently seen in another camera’s view. Table 3 shows the

computational requirements to run each operator at full fidelity on a single item (i.e., video

frame). An example complete fidelity table for FG is presented in Table 2, but the other

operators’ fidelity tables are omitted for brevity. The numbers for MotionD, Collage, and

FD/FR are taken from Wolenetz et al. [34], while FG, Tracker, and Comp are from one of

our previous papers [19].
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Table 3: Operator Resource

Requirements

Operator Cycles per Item

MotionD 1009 K

Collage 803 K

FD/FR 1959 M

FG 386 M

Tracker 154 M

Comp 200 M

We also vary the amount of resources available in the

resource network according to the applications running in

each experiment in order to produce three different sce-

narios: “Enough Local” is the scenario in which there are

enough resources to run all applications’ operators at full

quality (i.e., rate and fidelity) at resource nodes very near

the application’s initial placement. For one instance of each

application type running on the random network, the mean

number of cores per node is 32. The “Enough Global” sce-

nario provides enough resources globally to run all applica-

tions at full quality, but there is contention for local resources between nearby applications.

There are 16 mean cores per node in the Enough Global scenario. Finally, the “Not Enough

Global” scenario does not have enough total resources in the network to run all applications

at full quality, so a significant quality tradeoff is needed simply to avoid admission control

that would deny an application the right to run at all. Node resources were sampled from

a normal distribution with a mean of 10 cores.

5.5.3.2 Results

Although there are related algorithms in Grid Computing and Wireless Sensor Network re-

search, their inability to trade off quality of results or support multitenancy with application-

specific utility functions prevents them from being directly comparable with our algorithm.

Therefore, to demonstrate the effectiveness of our algorithm, we show the improvement in

utility, quality, and application performance from the initial operator placement (before

DistAl is run) to the final placement (after DistAl has converged), averaged over all ap-

plications running. The application performance metric is end-to-end delay, defined as the

longest latency path from any sensor input until the result arrives at the sink, including

both the network latencies and the latency of computation for all operators.

Figures 16 and 17 show the improvement (as percent increase) in the mean per-application

utility. Our algorithm is effective at improving the utility in resource-rich scenarios (Enough
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Figure 16: Percent Change in Average Application Utility from Initial Placement (before
DistAl) to Final (after DistAl) as a Function of Network Latency on a Random Resource
Graph with Both Applications
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Figure 17: Percent Change in Average Application Utility from Initial Placement (before
DistAl) to Final (after DistAl) as a Function of the Number of Neighbors on a Random
Resource Graph with Both Applications
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Local), but improves utility even more when resources are constrained (Not Enough Global).

Figure 16 shows that our algorithm is equally effective at improving utility regardless of

the network latency. Figure 17 shows a small increase in utility as the number of neighbors

increases. This is mostly due to the increased latency improvement shown in Figure 21, as

Figure 19 demonstrates that the change in quality improvement is slight.
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Figure 18: Percent Change in Average Application Quality from Initial Placement (before
DistAl) to Final (after DistAl) as a Function of Network Latency on a Random Resource
Graph with Both Applications

We considered the improvement in per-application quality by taking the rate as a fraction

of maximum rate and fidelity value as a fraction of maximum fidelity value, averaged for each

operator in the application. This is measured differently from the way quality is accounted

for in the utility function so that this metric is not merely reflecting what we already

measured with the change in utility (Figures 16 and 17), but rather is an independent
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Figure 19: Percent Change in Average Application Quality from Initial Placement (before
DistAl) to Final (after DistAl) as a Function of the Number of Neighbors on a Random
Resource Graph with Both Applications
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measure of quality. Nevertheless, we found that quality improvement very closely correlates

with utility improvements, as shown in Figures 18 and 19. Unsurprisingly, network latency

has little impact on quality. Figure 19 shows a small increase in quality improvement as

resource nodes are given more neighbors, owing to the fact that operators are better able

to find more powerful nodes with available resources, but the effect is slight.
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Figure 20: Percent Change in Average Application Quality and End-to-End Delay from
Initial Placement (before DistAl) to Final (after DistAl) as a Function of Network Latency
on a Random Resource Graph with Both Applications

Figure 20 shows that there is only slightly less relative improvement in average applica-

tion end-to-end delay as network latency increases. This is because improved or worsened

network latency affects both the initial and final placements proportionately, so it is can-

celed out in any relative comparison. The small reduction still seen is because the initial
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Figure 21: Percent Change in Average Application Quality and End-to-End Delay from
Initial Placement (before DistAl) to Final (after DistAl) as a Function of the Number of
Neighbors on a Random Resource Graph with Both Applications
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placement is closer to optimal as network latency increases. Our method of choosing ini-

tial placement tends to bunch operators together, incurring less network latency at the

expense of having to reduce quality to run all the operators on relatively few nodes. At

low network latencies, this is a bad scheme because operators may be spread out to use

more powerful computational resources at relatively low cost, reducing computation latency

enough to make up for the added network latency. However, as network latency increases,

the penalty for spreading out the operators becomes greater and a schedule similar to the

initial placement avoids paying those steep penalties.

However, Figure 21 shows that the total end-to-end delay is affected by the number of

neighbors. As discussed earlier, this has the side effect of bringing nodes closer in terms

of actual network distance due to the way our simulation is formulated. This has two

benefits: First, the source sensor locations and the sink location for the applications may

be brought closer together, reducing the total network distance that must fundamentally

be traveled. Second, when compute nodes are heterogeneous, it may bring more powerful

compute nodes close by, allowing their compute power to be used without incurring as much

network penalty. We see diminishing returns because as neighbor connections are added,

more distant nodes are linked first becoming close nodes, and next the nodes remaining

distant are linked (which were the ones originally only moderately distant).

The cost for improved performance is the additional delay from the initial placement

until the application can be started. Therefore we considered how long it takes from the

first operator move DistAl makes until the last operator move before convergence completes.

Figure 22 shows that while this does vary somewhat with the network latency, the delay

stays relatively steady between 1 - 1.5 minutes due to the number of moves needed to

converge being fewer in the higher latency configurations, which compensates for the higher

delay in sending messages. As discussed earlier, the optimal schedule becomes more similar

to the initial placement as network latency increases due to our choice of initial placement

algorithm, which tends to bunch operators together, and the increasing costs of placing

operators on different nodes as network latency increases.

Figure 23, on the other hand, shows that the startup delay increases as the number
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Figure 22: Startup Delay (in sec.) from Initial Placement (before DistAl) to Final Place-
ment (after DistAl) for Both Applications (Started Simultaneously) as a Function of Net-
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Figure 23: Startup Delay (in sec.) from Initial Placement (before DistAl) to Final Place-
ment (after DistAl) for Both Applications (Started Simultaneously) as a Function of the
Number of Neighbors on a Random Resource Graph with Both Applications
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of neighbors in the overlay network is increased (although it remains around 2 min. with

16 neighbors and just over 3 min. even with 24). This may seem counterintuitive but is

explained by the fact that the total work increases because the amount of work necessary to

take a single step is proportionately larger. (Every neighbor is contacted for each considered

move, and no decision can be made until the slowest of those neighbors has responded.)

This supports our idea that each node have a limited number of neighbors in the resource

overlay network, even though the underlying physical network may be fully connected.

We argue that a 1 - 2 minute startup delay is acceptable if it improves the performance

and quality of continuous, long-running applications. For example, this startup delay is

only a fraction of a percent overhead for an application that runs continuously for just one

full day. Furthermore, this is comparable to the real startup delays involved in bringing

up new VM instances in some real-world compute clouds. It should also be noted that

DistAl can run continuously and make refinements even after the application starts, so it

may not always be necessary to wait for the full startup delay before data can be processed,

if some sacrifice in the performance and quality can be accepted (at least temporarily) in

order to do so. Furthermore, since DistAl uses iterative improvement, each individual step

taken increases global system utility, thus an application may be started at any point before

convergence without fear that it is a worse schedule, globally, than a previous step.

Once an application is started, DistAl continues to run on all resource nodes and inspect

operators for potential improvements. Assuming the distributed algorithm converged before

the application was started, this will not result in any further changes to the schedule unless

something perturbs the system, such as adding a new application, adding resources to a

node, or adding a new node to the resource network. Even when this happens, the actual

changes should be small since the new optimal schedule will only be slightly different from

the previous one. It should also be noted that the overhead of the continually running

algorithm is fully configurable by setting how often a resource node will choose an operator

to investigate, though this comes at the cost of slower adaptation to the changing situation.
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5.5.3.3 Summary of Results

In summary, our results demonstrate that:

• DistAl is able to improve both application performance and quality of results for

multiple, concurrent, complex (hundreds of operators) applications on a large resource

network (hundreds of nodes) vs. a reasonable, but naive initial placement.

• By trading off quality, DistAl is able to run applications in resource-constrained en-

vironments, where other approaches would have to apply admission control (“Not

Enough Global” scenario).

• Startup delay is a reasonable overhead for continuous, long-running applications.

• Limiting the number of neighbors in the resource overlay helps keep startup delay

low.

5.5.4 Related Work in Streaming Graph Scheduling

Prior work has investigated mapping streaming analysis applications onto distributed re-

sources in mainly two areas: Grid computing and wireless sensor networks (WSNs).

In Grid computing, Streamline uses a list scheduling hueristic [3], Zhu and Agrawal use

graph isomorphism [32], Zhang et al. use a genetic algorithm [36], and Gu and Wu [14]

and SWAMP [35] both use layer-oriented dynamic programming (LDP) to maximize frame

rate. SWAMP also has an alternative Recursive Critical Path algorithm that minimizes

end-to-end delay. All of these have a few things in common. Firstly they are centralized

algorithms that use global knowledge about the application and resource network states.

This is acceptable in the Grid environment because they are only scheduling operators

onto the resources that have already been allocated to the application, and therefore scale

is limited. However, these algorithms are not involved in the resource allocation step,

and therefore can help efficiently assign operators to particular allocated nodes but cannot

ensure that the nodes have been allocated in a manner efficient for streaming applications.

Furthermore, they are designed with scientific computing applications in mind and thus

optimize for throughput (e.g., maximum frame rate). Only a few, such as SWAMP [35],
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allow an option to optimize for minimum end-to-end delay. However, in many modern

live analysis applications, end-to-end application delay is the key performance metric, and

throughput is simply a constraint to be met minimally.

Role assignment in wireless sensor networks (WSNs) is similar to mapping an operator

graph onto distributed resources. DFuse [21] uses a fully distributed, iterative algorithm

to assign fusion nodes to sensors by making local decisions with partial knowledge. Frank

and Römer [36] use a similar algorithm, but their system is applicable to a wider variety

of role assignment problems. Manoj et al. [23] uses a greedy A* algorithm to search the

space of role assignments, but unlike the others, this requires global knowledge and does not

run continuously to adapt to the dynamic environment. These algorithms tend to put the

focus on optimizing for energy, except Manoj et al. who emphasize reliability, though they

still consider energy as a factor since this is a primary source of sensor failure. However,

our problem does not consider energy since we are focused on infrastructure resources, and

instead we focus on performance and quality of results. Furthermore, in a WSN application,

a sensor node can only have one role, while a node in our resource model can run many

operators at once.

Some key differences both the WSN and Grid work have from DistAl are 1) that they

only consider a single application running on the resources they schedule, and do not ex-

plicitly address multiple applications, 2) they either assume adequate resources exist for the

application or apply strict admission control, and 3) only consider optimizing performance,

and do not consider trading off quality of results against performance within resource con-

straints. DFuse is also the only related work that uses a cost function, much like our utility

function, to customize how an application should be optimized.

Finally, SBON [25] is a system to place operators for distributed stream-processing

systems. It uses a fully distributed algorithm based on spring relaxation on the operators

in a cost space. This system does explicitly support multiple running applications, but

still assumes adequate resources exist and does not consider adjustable quality levels. How

different factors being optimized are considered relative to each other are baked into the

cost space and not customizable with a utility function as in our system.
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5.5.5 Discussion

We have presented the problem of scheduling live streaming analysis on geographically

distributed resources as well as DistAl, our method and algorithm for such scheduling. We

have also argued for the necessity of such scheduling for applications such as situation-

awareness, cyberphysical systems, complex event processing, and the Internet of Things.

DistAl is unique in its ability to provide all of the following features that are desirable in

such a scenario:

• Fully distributed algorithm that requires only partial system information to make

local decisions

• Continuously adapts to a dynamic environment

• Creates an operator placement schedule that meets resource constraints

• Avoids admission control by trading off quality of results to meet resource constraints

• Uses application-specific criteria (in the form of a utility function) to optimize perfor-

mance and quality according to each application’s needs

Our implementation uses network latency and computational power to demonstrate

the concepts of resource constraints and accounting for performance in utility functions.

However, other resource and performance measures may be desirable. Bandwidth can be

treated similarly to CPU, both as a constraint (total communication cannot exceed a node’s

bandwidth) and a term in the utility function (output size vs. transmission rate) to account

for the additional delay. This would also require adding a per-item output size to the fidelity

table for each operator. Memory can simply be treated as a constraint, comparing operators’

memory requirements to the available memory on each node. Since our system is already

designed to handle both resource constraints and customizable utility functions, it serves

as a proof of concept and demonstrates that additional resources such as these can easily

be added.
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CHAPTER VI

CONCLUSION

We have presented a set of requirements and a system design in order to address the question,

“What should a system that supports Analysis of Things applications look like?” To that

end, we have designed, implemented, and quantitatively evaluated a system to support

AoT in the local (single-site) scenario. We have also presented detailed requirements for

federating the Stream Registry and Resource Manager. Based on these, we have designed

the federated SSIoTa system and presented simulation results for DistAl, the scheduling

algorithm for the federated Resource Manager.

In order to create and execute an application using SSIoTa, developers must provide the

following:

• an operator graph that specifies the application’s operators, input sensors, and the

connectivity between them (such as the example in Appendix A)

• operator code for each operator in the operator graph

• a fidelity table for each operator

• a utility function for the application

Since the Operator Store enables component-based design, a single developer need not

provide all of these elements. Specifically, operator developers can provide operator code

and corresponding fidelity tables through the Operator Store, allowing the application de-

veloper to focus on the operator graph and utility function. Furthermore, while application-

specific utility functions allow a custom utility function to be created for each application,

we anticipate that developers will in practice settle on a few good utility functions with

tunable parameters. (An example of tunable parameters is the term weights in the exam-

ple utility function presented in Equation 1.) This leaves the application developer’s task
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to simply choosing one of the few common utility functions and adjusting the parameters

appropriately.

Furthermore, the Stream Registry helps application developers to discover sensors to

use in their applications and alleviates their need to manage the sensing infrastructure.

Meanwhile, the execution environment (Resource Manager and Worker Nodes) alleviates

the developer’s need to determine one which resources to execute all the components of

their application, to monitor those resources, and to manage the running application.

Therefore we conclude from our construction that: Systems support for Live Streaming

Analysis in the Internet of Things can reduce the complexity of developing and execut-

ing such applications on computational resources and using end devices that are widely

distributed at the edge of the network.

6.1 Future Work

This area presents many opportunities for future research. We conclude by presenting some

of the most interesting opportunities, though this is by no means an exhaustive list.

While the Stream Registry helps to bring sensors into the SSIoTa ecosystem, there re-

mains a gap between the Stream Registry and the sensors themselves that must be closed

by registering the available sensors. One significant improvement would be a plug-and-play

protocol that, when implemented by sensors, would allow them to automatically register

themselves with the Stream Registry. The protocol should also include a pointer to where

the system can retrieve any driver operators (as presented in Section 4.1.6.1) and automati-

cally add them to the Operator Store. The goal is to allow sensors to be immediately usable

by SSIoTa applications immediately upon their being connected to the network and with

zero configuration required.

Another avenue for research is allowing running applications to dynamically adapt to

changes in the available sensors (i.e., if sensors are added or removed). We propose three

abstractions to be used in combination to achieve this. First, stream groups represent a

collection of streams that contain the same type of data (e.g., all video), which allows the

system to reason about them as a single unit. A stream group could represent streams
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that all come from sensors of the same type, or a set of streams representing intermediate

data after some parallel computation has been performed. An application can create a

stream group by specifying a query on sensors, rather than naming a specific sensor, in the

application description. The sensor streams from all sensors matching the query constitute

a stream group. Second, parallel operators allow applications to specify an operation to

be performed on a stream group. For example, a parallel map operator could specify an

operator to be performed in parallel on all streams in a stream group - one instance of the

operator would be created for each stream in the stream group, and the output streams of

these operator instances would form a new stream group. Other computation patterns also

exist, such as reduction / fusion parallel operators. Finally, the Stream Registry should

allow continuous queries against its set of registered sensors. This would allow stream

groups specified in the application description to be dynamically updated with new or

removed streams and sensors that are added to or removed from the network. As the

system is notified of changes to the continuous sensor query, it must update the stream

group membership, then dynamically adapt any parallel operators using the stream group

as input, then update any stream groups those parallel operators produce as output, and

so forth through the running application.

As we have not yet specifically addressed fault tolerance, this is also an important area

for future research. Two main types of faults need to be addressed: node failure and sensor

failure. In the case of a Worker Node failure, any operators on that node would stop running,

thus halting all applications to which they belong. Such failures must be detected and the

operators restarted on good computational resources as quickly as possible, to minimize

disruption to the applications. Furthermore, this should be done without blatant replication

of all computation, since that dramatically increases the amount of resources consumed

without accomplishing any additional work. Sensor failures should also be detected and the

Stream Registry updated accordingly. With the aforementioned continuous query concept,

applications could automatically adapt to sensor failures so long as the Stream Registry is

promptly updated with the new situation.

Several enhancements to the execution engine would also be beneficial. The first is

76



support for heterogeneous resources on the Worker Nodes, such as GPUs and hardware ac-

celerators. This requires giving the system an awareness of the resources available on each

Worker, as well as providing a mechanism in the programming model for resource needs

of each operator to be specified. Some operators may require certain resources. Others

may consider them optional, providing performance benefits when they are available. The

system must then be able to efficiently schedule operators with different needs on the hetero-

geneous Workers. The second improvement is the ability to dynamically monitor operator

performance and system resources, which could alleviate the developer’s need to precisely

and accurately provide performance characteristics to the system. It would also help to

support operators whose performance may be data dependent. Finally, the programming

model and execution engine could be enhanced to support applications that dynamically

spawn new computation at runtime. This could come up in applications that have situation-

dependent branches in their operator graph, such as a suspect tracking applications that

spawns tracking computation each time a suspect is detected.

Another area for future work is providing additional extensible options in two areas.

SSIoTa automatically synchronizes input streams on behalf of operators, before calling their

handler function. However, there are a number of different ways that synchronization could

be performed. Therefore we propose making the synchronization mechanism an extensible

module, which would allow easy addition of new methods for synchronizing streams. Also,

operators are currently responsible for serializing and deserializing their streaming inputs

and outputs. This puts an extra burden on operator developers, and also results in unnec-

essary duplication of effort since streams of the same type may be used by many operators.

Therefore, the second opportunity for extensibility is to allow modules that marshal streams

of different types. These modules could be registered with the type of stream they handle,

and automatically called by the system when streams of that type are used by operators.

We believe that system support for the Analysis of Things is a fertile area for further

research. It is our hope that these ideas and other future work will prove to practically

benefit AoT applications.
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APPENDIX A

EXAMPLE OPERATOR GRAPH FILE

> TCPSource({MYIP}:30000) > jpeg-video-0

jpeg-video-0 > JpegDecode > video-0

video-0 > DetectForeground > foreground-0

video-0 > SplitFrame > video-0-0, video-0-1, video-0-2, video-0-3

video-0-0 > DetectForeground > foreground-0-0

video-0-1 > DetectForeground > foreground-0-1

video-0-2 > DetectForeground > foreground-0-2

video-0-3 > DetectForeground > foreground-0-3

foreground-0-0,foreground-0-1,foreground-0-2,foreground-0-3 > JoinFrame > foreground-0

video-0, foreground-0 > Track > tracked-0

tracked-0 > JpegEncode > jpeg-tracked-0

jpeg-tracked-0 > TCPSink({MYIP}:30100) > sink-0

> TCPSource({MYIP}:30001) > jpeg-video-1

jpeg-video-1 > JpegDecode > video-1

video-1 > DetectForeground > foreground-1

video-1 > SplitFrame > video-1-0, video-1-1, video-1-2, video-1-3

video-1-0 > DetectForeground > foreground-1-0

video-1-1 > DetectForeground > foreground-1-1

video-1-2 > DetectForeground > foreground-1-2

video-1-3 > DetectForeground > foreground-1-3

foreground-1-0,foreground-1-1,foreground-1-2,foreground-1-3 > JoinFrame > foreground-1

video-1, foreground-1 > Track > tracked-1

tracked-1 > JpegEncode > jpeg-tracked-1

jpeg-tracked-1 > TCPSink({MYIP}:30101) > sink-1
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APPENDIX B

DISTAL PSEUDOCODE

Algorithm 2 Message Handlers

1: function handle move query(Node host, Node sender, Operator op)
2: utilityDelta← reduce quality for constraints(host, op)
3: runOps← RunningOperators(host)

RollbackQualityChanges(runOps ∪ {op})
send(sender,QueryResponse(utilityDelta))

4: end function
5: function handle input query(Node host, Node sender, Operator inputOp, Node

inputNewHost)
6: utilityDelta← 0
7: movedOp← inputOp
8: Host(movedOp) ← inputNewHost
9: for all op ∈ RunningOperators(host) ∩ Outputs(inputOp) do

10: tempOp← op
11: Inputs(tempOp) ← Inputs(tempOp) −{inputOp} ∪ {movedOp}
12: utilityDelta← utilityDelta+ UtilityFunction(tempOp)
13: − UtilityFunction(op)
14: end for

send(sender,QueryResponse(utilityDelta))
15: end function
16: function handle move operator(Node host, Node sender, Operator op)

reduce quality for constraints(host, op)
17: runOps← RunningOperators(host)

CommitQualityChanges(runOps ∪ {op})
18: RunningOperators(host) ← runOps ∪ {op}

send(sender,MoveAck())
19: end function
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Algorithm 3 Greedy Placement

1: function main(Node host)
2: while true do
3: op← ChooseOperator(host)

attempt move(host, op)
4: end while
5: end function
6: function attempt move(Node host, Operator op)
7: RunningOperators(host) ← RunningOperators(host) −{op}
8: myUtilityDelta← increase quality until constraints(host)
9: − UtilityFunction(op)

10: bestUtilityDelta← −∞
11: bestNewHost← ∅
12: for all neighbor ∈ Neighbors(host) do

send(neighbor,MoveQuery(op))
13: queriesMade← 1
14: for all outputHost ∈ Outputs(op) do

send(outputHost,InputQuery(op, neighbor))
15: queriesMade← queriesMade + 1
16: end for
17: neighborUtilityDelta← 0
18: while queriesMade > 0 do

receive(QueryResponse, sender)
19: neighborUtilityDelta← neighborUtilityDelta
20: + UtilityDelta(QueryResponse)
21: queriesMade← queriesMade− 1
22: end while
23: if neighborUtilityDelta > bestUtilityDelta then
24: bestUtilityDelta← neighborUtilityDelta
25: bestNewHost← neighbor
26: end if
27: end for
28: if bestUtilityDelta + myUtilityDelta > 0 then

send(bestNewhost,MoveOperator(op))
receive(MoveAck, sender)

29: runOps← RunningOperators(host)
CommitQualityChanges(runOps)

30: else
31: runOps← RunningOperators(host)

RollbackQualityChanges(runOps)
32: RunningOperators(host) ← runOps ∪ {op}
33: end if
34: end function
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Algorithm 4 Greedy Quality Adjustment pt. 1

1: function reduce quality for constraints(Node host, Operator newOp)
2: Fidelity(newOp) ← MaxFidelity(newOp)
3: Rate(newOp) ← MaxRate(newOp)
4: utilityDelta←UtilityFunction(newOp)
5: while ConstraintsExceeded(host) do
6: improvement← 0
7: changeUtility ← 0
8: changeOp← ∅
9: modifiedOp← ∅

10: for all op ∈ RunningOperators(host) ∪{newOp} do
11: if Fidelity(op) > MinFidelity(op) then
12: tempOp←ReduceFidelityOneStep(op)
13: tempUtility ←UtilityFunction(tempOp)−UtilityFunction(op)
14: tempConstraint←ConstrainedUsage(tempOp)
15: − ConstrainedUsage(op)
16: if ImprovementFn(tempConstraint, tempUtility)
17: > improvement then
18: improvement← ImprovementFn(tempConstraint, tempUtility)
19: changeUtility ← tempUtility
20: changeOp← op
21: modifiedOp← tempOp
22: end if
23: end if
24: if Rate(op) > MinRate(op) then
25: tempOp←ReduceRateOneStep(op)
26: tempUtility ←UtilityFunction(tempOp)−UtilityFunction(op)
27: tempConstraint←ConstrainedUsage(tempOp)−ConstrainedUsage(op)
28: if ImprovementFn(tempConstraint, tempUtility)
29: > improvement then
30: improvement← ImprovementFn(tempConstraint, tempUtility)
31: changeUtility ← tempUtility
32: changeOp← op
33: modifiedOp← tempOp
34: end if
35: end if
36: end for
37: if changeOp 6= ∅ then
38: changeOp← modifiedOp
39: utilityDelta← utilityDelta + changeUtility
40: end if
41: end while

return utilityDelta
42: end function
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Algorithm 5 Greedy Quality Adjustment pt. 2

1: function increase quality until constraints(Node host)
2: utilityDelta← 0
3: madeChange← true
4: while madeChange do
5: improvement← 0
6: changeUtility ← 0
7: changeOp← ∅
8: modifiedOp← ∅
9: for all op ∈ RunningOperators(host) do

10: if Fidelity(op) < MaxFidelity(op) then
11: tempOp←IncreaseFidelityOneStep(op)
12: tempUtility ←UtilityFunction(tempOp)−UtilityFunction(op)
13: tempConstraint←ConstrainedUsage(tempOp)−ConstrainedUsage(op)
14: if ImprovementFn(tempConstraint, tempUtility) > improvement
15: ∧ WouldNotExceedConstraints(tempConstraint) then
16: improvement← ImprovementFn(tempConstraint, tempUtility)
17: changeUtility ← tempUtility
18: changeOp← op
19: modifiedOp← tempOp
20: end if
21: end if
22: if Rate(op) < MaxRate(op) then
23: tempOp←IncreaseeRateOneStep(op)
24: tempUtility ←UtilityFunction(tempOp)−UtilityFunction(op)
25: tempConstraint←ConstrainedUsage(tempOp)−ConstrainedUsage(op)
26: if ImprovementFn(tempConstraint, tempUtility) > improvement
27: ∧ WouldNotExceedConstraints(tempConstraint) then
28: improvement← ImprovementFn(tempConstraint, tempUtility)
29: changeUtility ← tempUtility
30: changeOp← op
31: modifiedOp← tempOp
32: end if
33: end if
34: end for
35: if changeOp 6= ∅ then
36: changeOp← modifiedOp
37: utilityDelta← utilityDelta + changeUtility
38: madeChange← true
39: else
40: madeChange← false
41: end if
42: end while

return utilityDelta
43: end function
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