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SUMMARY

The condition monitoring of multi-component systems utilizes multiple sen-

sors to capture the functional condition of the systems, and allows the sensor infor-

mation to be used to reason about the health information of the systems or compo-

nents. This thesis focuses on modeling the relationship between multi-sensor infor-

mation and component-level degradation, so as to prediction both system-level and

component-level lifetimes. In addition, this thesis also investigates the dynamic con-

trol of component-level degradation so as to control the failure times of individual

components based on real-time degradation monitoring.

The research topic that Chapter 3 focuses on is identifying component degrada-

tion signals from mixed sensor signals in order to predict component-level residual

lives. Specifically, we are interested in modeling the degradation of systems that

consist of two or more identical components operating under similar conditions. The

key challenge here is that a defect in any of the components will excite the same

defective frequency, which prevents an effective separation of the degradation signals

of defective and non-defective components. To the best of our knowledge, no exist-

ing methodologies have investigated this research topic. In Chapter 3, we propose

a two-stage vibration-based prognostic methodology for modeling the degradation

processes of components with identical defective frequencies. The first stage incor-

porates the independent component analysis (ICA) to identify component vibration

signals and reverse their original amplitude. The second stage consists of an adap-

tive prognostics method to predict component residual lives. In the simulated case

study, we investigate the performance of the signal separation stage and that of the

final residual-life prediction under different conditions. The simulation results show
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reasonable robustness of the methodology.

In Chapter 4, we focus on characterizing the interactive relationship between

product quality degradation and tool wear in multistage manufacturing processes

(MMPs), in which machine tools are considered as components and the product

quality measurements are considered as condition monitoring information. Due to

the sequential structure of MMPs, the degradation status of a tool affects the product

quality current stage, which, on the other hand, may affect the degradation of tools

at subsequent stages. To the best of our knowledge, although existing literature

has modeled the impact of product quality on the tooling catastrophic failure, no

published work has targeted on the impact of product quality on the actual process of

tool wear. To address this research topic, we propose an high-dimensional stochastic

differential equation model to capture the interaction relationship between the process

of tool wear and product quality. We then leverage real-time quality measurements

to on-line predict the residual life of the MMP as a system. In the simulation study,

we conclude that our methodology consistently performs better than a benchmark

methodology that does not consider the impact of product quality on the process of

tool wear or utilize real-time quality measurements.

Chapter 5 explores a new research direction, which is the dynamic control of

component-level degradation in the parallel multi-component system, in which each

component operates simultaneously to achieve an engineering objective. This parallel

configuration is usually designed with some level of redundancy, which means when

a small portion of components fails to operate, the remaining components can still

achieve the engineering objective by increasing their workloads up to the designed

capacities. Consequently, if the component degradation can be controlled, we can

achieve better utilization of the redundancy to ensure consistent system performance.

To do this, Chapter 5 assumes that the degradation rate of a component is directly

related to its workload and develops a strategy of dynamic workload adjustment in

xii



order to on-line control the degradation processes of individual components, and thus

to control their failure times. The criterion of selecting the optimal workloads is to

prevent the overlap of component failures. We conduct a simulated case study to

evaluate the performance of our proposed methodology under different conditions.
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CHAPTER I

INTRODUCTION

1.1 Research Background

Condition monitoring is the process of monitoring the health condition of a func-

tioning system using real-time sensing technology. Based on the observed health

information of the system, the fault or failure of the system may be predictable,

which will reduce economy loss due to unexpected failure and emergencies. In ad-

dition, with system failure time being predictable, maintenance and control strategy

can be determined with respect to the prediction. Due to the development of sensing

technology, sensors become cheaper, more easily to be installed, this allows condition

monitoring to be developed rapidly and applied to various of complicated industrial

systems such as wind farms [3, 46, 75], machining systems [22, 70, 84], and civil

engineering systems [39, 64, 71], etc.

Particularly, the condition monitoring of complex engineering systems that consist

of multiple components, here after referred to as “multi-component systems”, requires

multiple sensors in order to capture overall information from different individual com-

ponents. For example, in vibration monitoring of an aircraft engine system, multiple

accelerometers are required to monitor the vibration from different components such

as the fan, the motor, and the gearbox [25, 26]. Other examples of condition moni-

toring of multi-component systems can be found in monitoring gearboxes [11, 49, 83]

and monitoring the product quality of manufacturing systems [91, 103, 110]. Con-

sequently, it is very important to incorporate the condition monitoring information

from different sensors to reason about the health condition of a system so as to predict

the future performance (prognostics), such as system-level failure or component-level
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failure.

An effective way to utilize condition monitoring is to construct a quantitative

signal that can represent the health condition of the system in the past and provide

information on how the system is likely to propagate in the future. Such a quantitative

signal is referred to as a degradation signal in many literatures [42, 80]. Usually, the

amplitude of a degradation signal may indicate the severity of a defect, and the

increasing trend can capture the propagation of the defect. Therefore, to construct a

mathematical model that can characterize this increasing form will help to predict the

future performance of a system. Such a model is referred to as a degradation model

in the literature [36, 43, 42, 76, 82, 106, 108]. Particularly, the degradation rates of

identical systems may exihbit some variability. Gebraeel et al. [41, 42] proposed to

model this phenomenon using a prior distribution of degradation rate and proposed

a Bayesian approach to update the posterior distribution of the degradation rate

associated with individual component .

In the case of a single-component system, (i.e., the degrading system consists of

only one component), the degradation signal of the system is the same as that of the

component. However, in a multi-component system, the degradation of the system

(system-level degradation) is not necessarily equivalent to the degradation of individ-

ual components (component-level degradation). In fact, the system-level degradation

is usually a consequence of the component-level degradation. For example, in vibra-

tion monitoring of a gearbox, the increasing trend of overall vibration, which can

represent the system-level degradation, is usually due to the degradation of some

specific bearings or gears [84].

Modeling the component-level degradation accurately may achieve confident pre-

diction of system-level failure time (or lifetime). In addition, in some cases, even if

a multi-component system may not encounter complete failure, some of its critical

components may already be failed. For example, in a gearbox system, the vibration
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level of a bearing is very small compared to the overall vibration, so the failure of the

bearing may not be detected from system-level degradation monitoring. However, a

failed bearing may cause severe damage in the future [84]. In this case, predicting

component-level failure is also necessary. The objective of Chapter 3 in this thesis

is to construct and model component-level degradation signals from condition mon-

itoring information of a multi-component system, so as to predict component-level

failures.

Compared to predicting component-level failure, predicting system-level failure

from condition monitoring information seems to be a more straightforward approach.

We may consider the entire system as a single “component” and use condition moni-

toring information to construct the degradation signal for prediction. However, this

approach may not yield the prediction as accurate as considering the hidden effect

of component degradation. Particularly, if the underline degradations of individual

components exhibit complicated inter-relationship, simply ignoring this relationship

will not accurately capture the degradation condition of the entire system. Chapter

4 of this thesis considers a scenario in which component degradation are interactive,

i.e. the degradation status of one component may affect the degradation rate of an-

other component. The objective of Chapter 4 is to prediction system-level failure by

modeling this interactive hidden effect.

Another potential research direction is to control the component-level degradation

in order to control their failure times. This is particularly necessary when a multi-

component system does not allow several components to fail closely. For example, in a

manufacturing system, it is common to have several identical workstations operating

in parallel to meet a high demand. The specific workload on an individual workstation

may affect its degradation rate and ultimately its failure time. If several workstations

fail at the same time, the demand may no longer be satisfied. In order to prevent this

unproductive situation, it is necessary to develop a control strategy to dynamically
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adjust the workload on different components to control their failure times. Chapter

5 of this thesis considers the dynamic control problem in the application of parallel

multi-component systems. The object of this research is to dynamically adjust the

workloads of individual components to prevent the overlap of component failures.

In the following section, we will introduce each of the three aforementioned re-

search topics in sequence.

1.2 Specific Research Topics

1.2.1 Vibration-Based Prognostics of Multi-Component Systems with Iden-
tical Degrading Components

The condition monitoring of engineering systems involves collecting sensor signals,

such as temperature, vibration, crack propagation, etc., to enable fault detection (di-

agnostics) and facilitate remaining lifetime predictions (prognostics). One of the most

popular condition monitoring techniques is vibration monitoring, which is well-suited

for many applications, such as machine tools [59], power transformers [21], engines

[13], electronic motors [79], wind turbines [25], and even structural systems [38]. De-

pending on the frequency range and other system characteristics, vibration can be

measured in displacement, velocity, or acceleration. Typically, a sensor measures a

mixture of vibration signals generated by the components of the system. This mixture

can be transformed using signal processing techniques, such as the discrete Fourier

transformation (DFT), into a spectrum of individual frequencies that are related to

individual components. Some of these frequencies are generated only when specific

faults or component defects occur. Examples of defects include imbalance, misalign-

ment, bearing defects, gear defects, etc. The frequency associated with a specific

defect is referred to as the “defective frequency” in this thesis.

It is not uncommon to observe a correlation between the amplitude of the defective

frequency and the severity of the defect that is generating that frequency. In fact,

there are several examples in the literature where amplitudes of defective frequencies
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have been used to develop degradation signals for predicting failure times [12, 42, 53].

In Chapter 3, we are interested in modeling the degradation of systems that consist

of two or more identical components operating under similar conditions, for example,

two identical bearings mounted on the same shaft. The key challenge here is that a

defect in any of the components will excite the same defective frequency. Without

having dedicated sensors uniquely located near each component, it is not possible

to distinguish between the defective and non-defective components simply from the

spectrum analysis of sensor vibration signals. In this case, sensor vibration signals are

considered as “inseparable” signals under traditional signal processing techniques. In

reality, physical or structural constraints often create strong limitations for installing

sensors close to each component of interest, thus presenting significant challenges in

modeling degradation processes.

Chapter 3 proposes a two-stage vibration-based prognostic methodology for mod-

eling the degradation processes of components with identical defective frequencies.

The first stage uses independent component analysis (ICA) to separate component

vibration signals from sensor vibration signals. ICA is a blind signal separation (BSS)

technique that is used to separate mixtures of signals without necessarily relying on

information about component signals themselves or the process by which the signals

are mixed [23, 24, 57]. In our model, we assume that the signal measured by each

sensor is a mixture of the vibration signals generated by individual components. We

develop a novel approach that relies on signal transformation and ICA to separate the

“inseparable mixtures” of component signals, i.e., vibrations signals with the same

frequency. Once the signals are separated, they are used to construct the degradation

signal for each component.
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1.2.2 Interaction Between Tool Wear and Product Quality Degradation
in Multistage Manufacturing Processes

Multistage manufacturing processes (MMPs) are widely known for their high through-

put rates and relative flexibility. MMPs produce parts/products through a sequence

of manufacturing stages that are equipped with tools for performing specific fabrica-

tion tasks. The performance and efficiency of an MMP are usually monitored via the

quality of manufactured products. Typically, quality characteristics may be measured

on the final products and/or at intermediate stages of the MMP. Deviations from the

nominal values of these measurements (hereafter referred to as “quality degradation”)

are used to assess the efficiency of the MMP, which is deemed operational as long as

the quality measurements of the manufactured products are within the engineering

specification limits (i.e., parts are classified as conforming). Once these measure-

ments exceed such pre-specified thresholds, parts are classified as nonconforming and

the MMP is shutdown. Common causes of nonconforming products include errors in

locating, tool wear, fixture errors, and other random factors [29, 34, 35, 51, 61, 116].

Tool wear has traditionally been seen as one of the most important factors that

affect product quality degradation, and has been studied extensively in the literature.

For example, The authors in [61, 73] investigated how the wear of locating pins affects

the product quality in sheet metal forming and assembly processes. Another example

can be found in metal cutting (i.e., machining) processes, in which tool wear was

shown to be a main source of quality variation [51, 52, 116]. However, limited research

efforts have been dedicated to investigate the effect of product quality on tool wear.

In MMPs, products are processed on sequential stages. Thus, in addition to the

effect of tool wear on the product quality degradation, the quality degradation of

outgoing products from a preceding stage also impacts the rate of tool wear in sub-

sequent stages. In other words, there is a two-way interaction between tool wear and

quality degradation. Take the cylinder head machining process [52] as an example.
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This process consists of two stages: a drilling stage and a tapping stage. In the first

stage, the tool wear of the drill bit impacts the quality of the hole, such as diameter,

depth, straightness, and orientation, etc., whereas, in the second stage, the quality

characteristics of the drilled hole impacts the wear rate of the tapping tool. Another

example is the doorknob stamping process [60], in which the worn blanking die (tool)

in the second stage generates burr (product quality degradation), which can affect

not only final product quality but also the tool wear in the subsequent stages, as the

burr on the part will accelerate the draw die worn out in the later forming operations.

Although the aforementioned interaction exists widely in MMPs, existing research

has been most geared towards monitoring either tool wear or product quality, sepa-

rately. Very few researchers have addressed the interaction between those two factors.

One example is the QR-chain model proposed in [29], which studied how product

quality degradation from preceding stages affects the probability of tool breakage in

subsequent stages. In this model, the rate of tool wear is assumed to be indepen-

dent from product quality degradation. The same model was implemented in the

automotive body assembly process [31] to investigate how the wear-out of locating

pins affects the assembly quality of outgoing products and how quality degradation

of incoming products increased the probability of locating pin breakage.

In Chapter 4, we generalize the notion of the existing QR-chain model to incor-

porate the impact of quality degradation on the rate of tool wear instead of tool

breakage. According to the literature in tool wear [100], the rate of tool wear tends

to be higher as the “depth of cut” increases and vice versa, and the depth of cut is

correlated to the product quality from preceding stages. For example, in a two-stage

drilling and tapping process, if the diameter of the hole drilled in the first stage is too

small, the tapping tool will cut more material to maintain the final product quality,

which accelerates its tool wear. Our goal is to utilize a stochastic model to predict

the RLD of the MMP by tracking product quality degradation. Within this context,
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the failure of the MMP is assumed to be instigated by the occurrence of any non-

conforming product. Consequently, non-conforming products will trigger the system

shut-down and will not be able to enter subsequent stages. To do this, we develop a

two-way interaction model that captures the interaction between tool wear and prod-

uct quality degradation. The novelty of our work is that it allows us to predict the

performance of the MMP, and thus provide ample time to plan for condition-based

maintenance while preventing unexpected shutdown of the entire system. In addi-

tion, our work will also benefit the inventory management of tools. By monitoring

the product quality characteristics and simultaneously accounting for tool wear, we

can perform accurate prognostics on the MMP systems.

1.2.3 Degradation-Based Control Through Workload Adjustment in Par-
allel Multi-Component Systems

Among multi-component systems, one particular configuration is the one with a par-

allel structure, in which multiple components need to operate independently in par-

allel to simultaneously meet the system requirement. For example, the serial-parallel

multistage manufacturing process consists of several stages, each of which contains

several identical workstations arranged in parallel to simultaneously perform a specific

operation to satisfy high production demand [40].

In a parallel multi-component system, when a component failure occurs, the re-

maining functional components have to be assigned with a heavier-than-usual work-

load to maintain system requirements. For example, in manufacturing systems, the

maximum production rate (i.e., capacity) of a machine is usually designed to be higher

than its normally assigned workloads, i.e., the system exhibits some level of natural

redundancy to compensate for unexpected events. The Federal Reserve reported that

the average redundancy in the US manufacturing industries is estimated to be around

20% [8]. While such redundancy structure by design attempts to provide a robust

production scheme, it is not uncommon in practice that a large number of components
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may possibly exhibit a similar degradation path, especially when similar workloads

are assigned to those components. If the case happens, it will highly likely lead to an

overlap of component failures and eventually result in loss of productivity.

To address this issue, the objective of Chapter 5 is to provide a dynamic workload

adjustment strategy to prevent the overlap of component failures in parallel multi-

component systems. Specifically, we assume that the degradation rate, which is a

direct cause of the failure time, of a component is directly influenced by its workload.

In other words, a component operating under a higher (lower) workload is assumed

to degrade faster (slower). Based on this assumption, our key idea is to actively

control the components degradation rate as well as the failure time via adjusting the

components workload in real time. If the failure time of individual components can

be accurately predicted and well controlled, then it is possible for us to prevent the

overlap of component failures, which is greatly beneficial to the productivity, logistics,

and maintenance planning.

In Chapter 5, we model the component degradation with a linear stochastic dif-

ferential equation (SDE). To capture the variation in the degradation process due

to material inhomogeneity and manufacturing uncertainty, we further assume that

the degradation rate of an individual component is a random variable that follows

a known prior distribution but the actual value is unknown. Next, at each decision

epoch, we utilize real-time condition monitoring data to obtain an updated posterior

distribution. Based on the updated distribution, we can then calculate the RLD of

each component given a specific workload. With the predicted residual life in hand, an

optimization framework is further proposed to determine the workload for individual

components that prevents the overlap of component failures.

9



1.3 Thesis Organization

This thesis is organized as follows: Chapter 2 reviews existing literature pertaining to

several research areas: the degradation modeling and prognostics of single-component

systems, the condition monitoring of multi-component systems, signal separation

techniques, research related to tool wear and product quality in MMPs, and the degra-

dation modeling and control of MMPs. Chapter 3 introduces the proposed two-stage

prognostics framework that can identify component degradation signals from identi-

cal components in vibration monitoring and predict component-level failure using an

adaptive prognostics model. Chapter 4 describes the proposed interaction model that

captures the interactive effect between product quality degradation and tool wear in

MMPs in order to predict system-level failure based on the proposed model. Chapter

5 introduces the dynamic workload adjustment using real-time degradation moni-

toring information. Chapter 6 summarizes the thesis and introduces future research

directions.
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CHAPTER II

LITERATURE REVIEW

2.1 Degradation Modeling and Prognostics of Single - Com-
ponent Systems

The literature on degradation modeling of single-component systems are relatively

rich, and have relied on numerous statistical as well as stochastic models for char-

acterizing degradation. Examples of such work include non-linear random-coefficient

models developed by [76] to model degradation and estimate time-to-failure distribu-

tions. Other papers have modeled degradation using the Wiener process. For exam-

ple, the authors in [36] proposed a time-scale transformation of the Wiener process to

model the accumulated decay under of a component under variable stress levels. A

similar approach was also presented in [108] where the authors considered two types

of time-transformation, an exponential transformation and a power transformation

suitable for different engineering applications. In [82], the authors utilized the Wiener

process for accelerated degradation modeling and proposed a Bayesian approach to

update the drift parameter as subsequent tests were completed. The model was then

used to estimate a lifetime distribution of the component’s population. Moreover,

the authors in [106] incorporated random effects into the Wiener process to represent

unit-to-unit variability among the degradation processes of different individuals.

Most of the above efforts focused primarily on estimating the lifetime distribution

for a population of components. However, In [42], the authors developed two stochas-

tic degradation models where real-time data from components operating in the field

were used to update the model and estimate RLDs for partially degraded components.

Nonetheless, it is important to note that most of the degradation modeling literature
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have focused uniquely on modeling the degradation of single components. To the

best of our knowledge, there is no existing literature that addresses the degradation

modeling of multi-component systems, especially those with “inseparable” mixtures

of component degradation signals.

2.2 Condition Monitoring of Multi-Component Systems

Literature on the condition monitoring of multi-component systems has addressed

various industrial applications, such as the area of wind farms [3, 46, 75], machining

systems [22, 70, 84], civil engineering systems [39, 64, 71], gearbox systems [11, 49, 83],

and product quality of manufacturing systems [91, 103, 110]. Particularly, vibration

monitoring is a very efficient way to capture the health condition of systems with

rotational or reciprocal components. Examples of application areas of vibration mon-

itoring include power transformers [17, 21, 54], engines [13, 104], electronic motors

[45, 79, 89, 111], steam turbines [15], wind turbines [25, 26], gearboxes [11, 49, 83],

Machining tools [59, 69, 88], and even structural systems [10, 38].

Traditionally, vibration monitoring literature has relied on two key assumptions:

(1) sensors can be located on, or very close to, the component that is being moni-

tored [41, 42, 53], and (2) the components of a system are different and thus generate

different defective frequencies that can easily be identified through spectral analysis

[42, 44, 45, 84]. These assumptions do not necessarily hold for many multi-component

engineering systems. In reality, a system may consist of multiple identical compo-

nents, and sensor placement can be constrained by the geometry and/or functionality.

In such systems, a sensor signal may consist of a mixture of multiple vibration signals

with the same defective frequencies. As a result, these signals cannot be separated

using conventional signal processing techniques. Furthermore, the focus of most of

the efforts has primarily been on fault detection and diagnosis. However, they do not

consider the potential degradation of a defect, nor do they consider degradation-based
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lifetime prediction.

2.3 Signal Separation Techniques

In Chapter 3, we focus on developing a prognostic framework that utilizes vibration

monitoring of multi-component systems to predict component-level degradation. Our

modeling approach involves a signal separation stage that is based on ICA, which is

one of a blind signal separation (BSS) techniques. ICA assumes that the signals mea-

sured by a sensor is a linear combination of statistically independent signals unique

to individual signal sources, which in our context are assumed to be the components

of the system. ICA separates the signals by maximizing their independence. Differ-

ent ICA algorithms include FastICA [58], AMUSE [102], SOBI [16] and JADE [24].

Other BSS algorithms include the blind deconvolution (BD), which models the re-

lationship between sensor signals and component signals as a convolution [99, 101].

ICA and other BSS techniques have also been widely used for diagnostics and fault

identification. For example, ICA has been applied on the detection of sensor drifts

[63], the identification of variation patterns in a multistage manufacturing process

[5], the investigation of the sources of noise in a diesel engine [72], and the detection

of gear faults [87]. In addition, BD has been applied in the diagnosis of vibration

systems [45, 113].

One of the major limitations of BSS techniques, including ICA and BD, is that

these methods do not retain any information pertaining to the absolute amplitude

of the signal [56]. That is, the relative relationship between the amplitudes of any

two successive signals is preserved, but the actual value is not as will be shown later.

As a result, ICA has not been widely used in prognostics or predictive degradation

modeling since almost all prognostic models require the exact signal amplitude in

order to predict lifetime and remaining lifetime. In Section 3.2.2, we will discuss how

to overcome this limitation by proposing an amplitude recovery procedure.
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2.4 Reliability and Prognostics of Multi-Component Sys-
tems

For multi-component systems, much research has focused on studying the relationship

between system and component reliability. For example, one closely related topic is

the k-out-of-n system, which means that a system within components is functional if

and only if at least k components operate properly. The reliability of the system highly

depends on the component reliability as well as the system structure. A detailed

survey of reliability studies of the k-out-of-n systems can be found in [28]. Initial

research efforts in this area focused on binary state systems, in which each component

is assumed to have only two states: functional or failed [55, 90]. Recent research efforts

have extended the assumption to be multiple states [50, 118].

In addition to the reliability studies, degradation modeling and prognostics of

multi-component systems has also attracted much attention recently. Related exam-

ples include [19], which discussed the degradation modeling of multiple components

when the degradation processes are inter-dependent. The authors in [47] focused

on separating component degradation signals from sensor data that consist of mixed

information from several identical components in a complex system. However, all

these related publications focus only on identifying or modeling the degradation of

the components.

2.5 Research Related to Tool Wear and Product Quality in
MMPs

Research in two important aspects of any manufacturing systems, tool wear and

product quality, have traditionally been treated separately. For example, there is a

plethora of literature that focuses on the condition monitoring of tool wear [33, 86, 96].

Some have dealt with machine vision-based methods [65, 66], wear and debris analysis

[95], and various types of sensor signals related to force measurements, vibration,
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acoustic, etc. Techniques such as artificial neural networks and regression analysis

proved to be widely popular in tool condition monitoring as noted in [95]. Other

methods include wavelet analysis of force signals, acoustic emissions, vibrations, and

spindle current with the goal of identifying tool wear, chipping, breakage, and chatter

[117].

On the other hand, statistical process control (SPC) methods have been widely

used to monitor product quality and capture the root causes of quality degradation,

tool wear, and other process variables. Traditional SPC approaches include control

charts [48, 78], regression adjustment [85, 93], and the cause-selection chart [92, 94].

SPC in MMPs is particularly complex because of the nature of the manufacturing

sequence and the number of process variables involved. However, state-space models

have proved to be effective in this area. The authors in [6, 61] proposed a state-space

model to study the effects of process errors including tool wear on product quality in

an automotive assembly process. The authors in [52] used a similar approach for a

cylinder head machining process. Additional work by [35, 51] was also geared towards

using state-space models to detect the potential sources of variation in product quality.

See [103] for a comprehensive review of SPC methods involving MMPs.

Very little research has investigated the interaction between tool wear and quality

degradation in MMPs. The most relevant studies can be found in [29, 31], where the

authors proposed a QR-chain model. The QR-chain model assumes that tool wear

linearly impacts quality degradation, and quality degradation affects the probability of

tool breakage. The QR-chain model does not consider the effect of quality degradation

on the instantaneous rate of tool wear, which is assumed to be constant at all time

in each stage. The scope of the QR-chain model is limited to the survival analysis of

the MMP.

15



2.6 Degradation Modeling and Control of MMPs

Discrete-time Markov chains (DTMC) [27, 98] and continuous-time Markov chains

(CTMC) [2, 32] have been used to model degradation in MMPs. A continuous-state

diffusion model was applied by [29] to model tooling degradation in MMPs. In con-

trast to much of the existing literature, our focus here is on controlling the degradation

rates of MMP workstations by dynamically adjusting the production rates without

violating demand requirements. Very few studies in the literature have addressed this

specific problem. A relevant work was given in [97, 98], where the authors modeled

workstation degradation using a DTMC and the transition probabilities from one

degradation state to another is governed by the type of products that are dispatched

to each individual workstation. Another relevant example is the work in [114], where

the authors considered a scenario that an operation can be transferred between work-

stations to adjust their usage and hence control their corresponding hazard rates.
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CHAPTER III

RESIDUAL LIFE PREDICTION OF

MULTI-COMPONENT SYSTEMS WITH IDENTICAL

COMPONENTS

In this chapter, we propose a simultaneous signal separation and prognostics frame-

work for multi-component systems with inseparable component signals from identical

components. In the signal separation stage, we apply an independent component

analysis (ICA) algorithm to isolate component signals from mixed sensor signals, and

propose an online amplitude recovery procedure to recover amplitude information

that is lost after applying ICA. In the prognostics stage, we incorporate an adaptive

prognostics method to model component degradation signals as continuous stochas-

tic processes so as to predict the residual lifetimes of individual components. In the

simulated case study, we investigate the performance of the signal separation stage

and that of the final residual-life prediction under different conditions.

The remainder of this chapter is organized as follows: Section 3.1 discusses the

model and defines the mixing relationship between components and sensor signals.

Section 3.2 describes the signal separation procedure and the challenges of applying

ICA. We also discuss an amplitude recovery procedure to approximately recover signal

amplitude. Section 3.3 reviews the adaptive prognostics model, and discusses how it

fits within our framework. Section 3.4 focuses on a numerical study that investigates

the effectiveness of signal separation and the accuracy of residual-life prediction.
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3.1 System Description and Modeling Approach

This chapter is based on the vibration monitoring of multi-component systems. Typ-

ically in vibration monitoring, defective frequencies are only generated as a result of

the initiation or existence of mechanical faults and defects. Similar to the assump-

tions made in [42], we assume that amplitude of a defective frequency is correlated

with the severity of the underlying degradation process. The term “degradation sig-

nal” is used to define the behavior of the amplitude of the defective frequency over a

component’s lifetime.

In this framework, we focus on the degradation phase that begins at the very

first onset of a defect and ends at the time of failure. We consider a system that,

among other constituent components, contains at least n ≥ 2 identical components

operating under the same conditions. An example is a wind turbine that has two

or more identical bearings rotating at the same speed or two or more pairs of gears

with the same mesh frequency. Consequently, a defect in any of these identical com-

ponents will generate the same defective frequency, which we denote as f ∗. This

implies that the signal measured by each sensor will consist of an inseparable mix-

ture of component-specific vibration signals. Thus, conventional methods used for

spectral analysis cannot be used to distinguish between the degradation levels of the

components in question. Furthermore, we assume that vibration is measured peri-

odically using m ≥ n sensors, typically accelerometers. We consider applications

where sensors cannot be placed in close proximity to the degrading components due

to physical and/or functional constraints. Instead, sensors can only be placed on an

external structure, for example, the outside of a gearbox. As a result, each sensor

captures only a proportion of the vibration signals generated by each component.

This proportion will depend on sensor location, material properties, damping, etc.

Our goal is to develop a prognostic methodology for modeling degradation and

predicting the remaining lifetimes of partially degraded components with an identical
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defective frequency. To achieve this, we develop a two-stage methodology that in-

volves a signal separation stage followed by degradation modeling and remaining life

prediction. In the first stage, ICA is used to separate sensor signals into individual

component-specific signals. The resulting component signals are then used to predict

the remaining lifetimes of their corresponding components using the degradation-

based prognostic modeling approach developed in [42].

3.1.1 Problem Formulation

We start by defining xi(tk) as the time domain vibration signal measured by sensor

i at some observation time tk (hereafter referred to as the “sensor vibration signal”),

for i = 1, 2, . . . ,m and k = 1, 2, . . . ,M , where tM represents the last observation time.

We assume that xi(tk) is a linear combination of the vibration signals generated by

each component j (hereafter referred to as the “component vibration signal”), which

we denote as sj(tk). Note that in this context, the linearity assumption is an approxi-

mation of the real mechanism by which sensors capture the vibration signals generated

by the components. In reality, this mechanism is relatively complex and indeed more

complicated than a simple linear model. However, there is a rich literature that has

utilized the linearity assumption for similar purposes, especially for systems that are

small in size and have a high rigidity. Examples include [49, 72, 87, 112, 114]. One

example was presented in [87] which considered vibration monitoring of gearboxes,

and argued that the linear assumption can hold if the accelerometers are mounted

on rigid gearboxes. In this chapter, we consider a similar setting, and we focus on

applications that involve vibration monitoring of mechanical systems with similar

properties, i.e., applications where the linearity assumption can be valid. Thus, a

sensor vibration signal xi(tk) can be expressed as follows:

xi(tk) = ai,1s1(tk) + ai,2s2(tk) + ...+ ai,nsn(tk) + ei(tk), for k = 1, 2, . . . ,M, (1)
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where 0 ≤ ai,j ≤ 1 (j = 1, . . . , n) is a real-valued element that represents the pro-

portion of the vibration generated by component j that is captured by sensor i. The

constraint on ai,j implies that each sensor can capture no more than 100% of the vi-

bration generated by an individual component. The term ei(tk) represents the sensor

noise, which is assumed to be Gaussian.

For a system with m sensors and n identical components, the relationship between

sensor vibration signals and component vibration signals can be expressed in matrix

form as follows:

x(tk) = As(tk) + e(tk), for k = 1, 2, . . . ,M, (2)

where x(tk) = [x1(tk);x2(tk); . . . ;xm(tk)], s(tk) = [s1(tk); s2(tk); . . . ; sn(tk)], and e(tk)

= [e1(tk); e2(tk) . . . ; em(tk)] represent the vectors of sensor vibration signals, compo-

nent vibration signals, and sensor noise, respectively. The matrix A = {ai,j}, (i =

1, . . . ,m, j = 1, . . . , n), defines the mixing process. The assumption that m ≥ n

guarantees that A is full column rank. This is necessary and sufficient for capturing

the vibration signals generated by all n identical components. Note that the special

case, m = n, can be used to describe the scenario where a dedicated sensor is used to

monitor each component.

3.1.2 Pre-processing Using DFT

Equation 2 shows the relationship of the time domain vibration signals. In order to

model the degradation of the n identical components considered in this setting, we

need to find their amplitudes of the defective frequency f ∗. The amplitude of the

defective frequency can be used as a proxy for the underlying physical degradation,

and can therefore be used to estimate the residual lifetime of the corresponding com-

ponent [42]. For this purpose, the DFT is used to extract the frequency content of

the time domain signals.

The DFT converts a signal into a set of complex sinusoids that are ordered by their
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frequencies. Thus, the DFT of component signal sj(tk) at defective frequency f ∗ can

be expressed in the complex form sf
∗

j,R(tk)+jsf
∗

j,I(tk), where sf
∗

j,R(tk) and sf
∗

j,I(tk) are the

real and imaginary parts of the DFT of sj(tk) at frequency f ∗, respectively. Similarly,

we denote the DFT of the vectors s(tk), x(tk), and e(tk) in Eq. 2 at f ∗ by complex

vectors sf
∗

R (tk)+jsf
∗

I (tk), xf
∗

R (tk)+jxf
∗

I (tk), and ef
∗

R (tk)+jef
∗

I (tk), respectively. Since

DFT is a linear transformation, the linear relationship in Eq. 2 remains valid. The

model for the transformed frequency domain signals is therefore given as:

[xf
∗

R (tk) + jxf
∗

I (tk)] = A[sf
∗

R (tk) + jsf
∗

I (tk)] + [ef
∗

R (tk) + jef
∗

I (tk)], (3)

for k = 1, 2, . . . ,M . The amplitude of component vibration signal sj(tk) at the defec-

tive frequency f ∗ is given by

√[
sf
∗

j,R(tk)
]2

+
[
sf
∗

j,I(tk)
]2

. We denote this amplitude as

sf
∗

j (tk). As mentioned earlier, this amplitude represents the severity of degradation

at time tk. Therefore, the sequence {sf
∗

j (t1), . . . , sf
∗

j (tM)} can be used to construct

the degradation signal unique to the component (“component degradation signal” for

short).

Since A is real-valued matrix, Eq. 3 can be separated into two partitions:

xf
∗

R (tk) = Asf
∗

R (tk) + ef
∗

R (tk) for k = 1, 2.... (4)

xf
∗

I (tk) = Asf
∗

I (tk) + ef
∗

I (tk) for k = 1, 2....

Both the real part xf
∗

R (tk) and the imaginary part xf
∗

I (tk) can be derived by applying

the DFT on the observed sensor vibration signal x(tk). Thus, we can estimate the

mixing matrix A using either the observations of real parts xf
∗

R (t1), . . . ,xf
∗

R (tM) or the

observations of imaginary parts xf
∗

I (t1), . . . ,xf
∗

I (tM). After the matrix A is estimated,

component vibration signals can be calculated using linear regression. In this work,

we focus only on using the real parts. We refer to xf
∗

R (tk), sf
∗

R (tk), and ef
∗

R (tk) as

the vectors of “real sensor signal”, “real component signal”, and “real sensor noise”,

respectively.
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Particularly, we assume that the phase angle of any component vibration signal,

given by arctan
sf
∗
j,R(tk)

sf
∗
j,I(tk)

, remains relatively constant for any point in time tk. The

reason is that the phase angle of a defective vibration signal is determined by the

location of the defect on the component as well as the steadiness of its rotating

speed. We assume that 1) once the defect occurs, the location of the defect on one

component cannot be altered by external environment such as the degradation of other

components; 2) the rotation speed of the system is controlled to be steady. Thus, our

assumption of constant phase angle holds. Consequently, sf
∗

j,R(tk) ∝ sf
∗

j,I(tk), and as

a result sf
∗

j,R(tk) ∝ sf
∗

j (tk) for any time tk. This represents that the real component

signal preserves the shape of its corresponding component degradation signal and can

be considered as an indicator of the severity of component degradation.

3.2 Signal Separation Using ICA

As we discussed earlier, the first step of our methodology involves signal separation.

Specifically, we apply ICA on the real sensor signals in Eq. 4 to estimate the ma-

trix A. ICA focuses on separating statistically independent signals from these linear

mixtures without requiring specific knowledge of the mixing process. To guarantee

the unique decomposition of the signal mixtures into statistically independent sig-

nals, ICA assumes that at most one of the statistically independent signals follows a

Gaussian distribution and that the noise variables all follow Gaussian distributions.

For detailed explanation, the reader may refer to [57].

However, there are some key challenges associated with applying ICA to our prob-

lem setting. The first challenge is that ICA assumes that the linear mixture consists

of statistically independent signals unique to individual components. However, the

vector of real component signals sf
∗

R (tk) in Eq. 4 may not necessarily satisfy this

requirement. In fact, its elements will always exhibit some level of correlation. To see

this, consider the fact that the amplitude of a degradation signal tends to increase as
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the severity of physical degradation increases. In other words, the sequence of real

component signals [sf
∗

j,R(t1), . . . , sf
∗

j,R(tM)] of component j will exhibit an increasing

trend. If multiple (identical) components begin to degrade, it is clear that their cor-

responding degradation signals will possess a significant level of correlation due to a

common increasing trend.

To eliminate this correlation, we remove the common increasing trend by focusing

on modeling the increments of the signals instead of the actual signals themselves.

We let ∆sf
∗
(tk) = sf

∗

R (tk+1) − sf
∗

R (tk) represent the increments of the real compo-

nent signals at time tk (“component increments” for short), and define the sequence

[∆sf
∗
(t1), . . . ,∆sf

∗
(tM)] as i.i.d. samples of a random vector ∆Sf

∗
. Then, we assume

that all elements of ∆Sf
∗

are mutually independent. This assumption means that

the variations in the degradation signal among the individual components are inde-

pendent from one another. Similarly, we define ∆xf
∗
(tk) and ∆ef

∗
(tk) as the sensor

increments and error increments, respectively, with corresponding random vectors

∆Xf∗ , and ∆Ef∗ . The model in Eq. 4 can now be re-expressed in terms of random

vectors as follows:

∆Xf∗ = A∆Sf
∗

+ ∆Ef∗ (5)

The second challenge with applying ICA to our problem setting is that it does not

preserve amplitude information. To explain this, consider the following expansion of

Eq. 5:

∆Xf∗ = [a1, a2..., an][[∆Sf
∗

1 ; ∆Sf
∗

2 ; ...; ∆Sf
∗

n ] + ∆Ef∗

=
n∑
j=1

1

bj
aj[bj∆S

f∗

j ] + ∆Ef∗

where aj is the jth column of A, ∆Sf
∗

j is the jth component increment, and bj is an

arbitrary scalar. The linear combination as well as the assumption of independent

component increments hold for any value of bj. Therefore, ICA cannot be used to de-

termine the true amplitude of ∆Sf
∗

j or the true norm of the column aj (j = 1, 2, ...n).
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To address this challenge we develop an online amplitude recovery procedure for ap-

proximately recovering the amplitude content of the estimated degradation signals

(as will be shown later in Section 3.2.2).

3.2.1 The Implementation of ICA

ICA is applied to a historical training data set consisting of sensor increments with

the goal of estimating the mixing matrix A. To guarantee a unique solution, ICA

typically assumes unit-variance of the source signals, which in our modeling framework

are represented by the component increments ∆Sf
∗
. Consequently, we let ΣS denote

the covariance matrix of ∆Sf
∗
, and define ∆S̃f

∗
= Σ

− 1
2

S ∆Sf
∗
, where ∆S̃f

∗
represents

a random vector of signals increments with unit-variance and independent elements.

Using this representation, we can now express Eq. 5 as follows:

∆Xf∗ = AΣ
1
2
S∆S̃f

∗
+ ∆Ef∗ (6)

= Ã∆S̃f
∗

+ ∆Ef∗ ,

where Ã = AΣ
1
2
s .

Our objective now is to use ICA to estimate the matrix Ã. We begin by performing

an eigen-decomposition of the covariance matrix of ∆Xf∗ , which we denote by ΣX.

Since ∆S̃f
∗

has unit variance, then ΣX can be expressed as ΣX = ÃÃT + ΣE, where

ΣE represents the covariance matrix of ∆Ef∗ . If we assume that all elements in ∆Ef∗

are mutually independent and have equal variance σ2
E, then ΣX can be expressed

as ΣX = ÃÃT + σ2
EI. Consequently, the eigenvector matrix of ΣX, denoted as P, is

equal to that of ÃÃT , and the eigenvalues of ΣX, denoted as λi, i = 1, 2, ...,m, are the

eigenvalues of ÃÃT plus σ2
E. For notation convenience, we denote the diagonal matrix

that has λi, i = 1, 2, ...,m on the diagonal as ΛX and the diagonal matrix that has the

eigenvalues of ÃÃT on the diagonal as ΛA. Thus, ΛA = ΛX − σ2
EI. Consequently,

according to the definition of eigen-decomposition, ÃÃT = P[ΛX − σ2
EI]PT , which

implies that Ã = PΛA
− 1

2 Q, where Q is a unknown orthogonal matrix.
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The value of σ2
E is usually unknown and can be estimated from data. To do this,

we rely on the fact that Ã is an m-by-n matrix with full column rank, which means

that the first (m−n) smallest eigenvalues of ÃÃT are equal to zero. Thus, by ranking

the eigenvalues of ΣX, we have λ1 ≥ λ2 ≥ ... ≥ λn > σ2
E = λn+1 = λn+2 = ... = λm.

Therefore, σ2
E can be estimated by taking the average of λn+1, λn+2, ..., λm.

The next step involves optimization where the objective is to estimate the orthog-

onal matrix Q. For every feasible value of Q, there will be a corresponding estimated

component increments calculated based on Eq. 6. Since the true component incre-

ments are statistically independent, the optimal Q will correspond to the estimated

component increments that exhibit maximum independence. Usually independence

is measured using fourth-order statistics, such as the fourth-order cumulants [24] and

the Kurtosis [58]. In this work, we utilize an optimization algorithm based on the

theory of the fourth-order cumulants known as “JADE” (proposed in [24]).

For any random vector w, its fourth-order cumulants of the pth, qth, uth, and vth

elements is defined as

Cp,q,u,v(w) = E[wpwqwuwv]− E[wpwq]E[wuwv]

− E[wpwu]E[wqwv]− E[wpwv]E[wqwu]

According to the properties of fourth-order cumulants stated in [81], if w is a random

vector with statistically independent elements, all of its cross-cumulants (p, q, u, v 6=

p, p, p, p) are equal to 0. Thus, maximizing independence between estimated compo-

nent increments is equivalent to minimizing all cross-cumulants between the estimated

component increments. Using the JADE algorithm, Q is estimated by minimizing the

sum of squares of a subset of all cross-cumulants of estimated component increments.

We denote the estimated value of Q as Q̂. Subsequently, the estimator of Ã, denoted

as Â, can be estimated using PΛA
− 1

2 Q̂.

Due to the loss of amplitude after ICA stated earlier, the estimated matrix Â
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does not contain any amplitude information. Thus, if we want to estimate sf
∗

R (tk)

using Â based on Eq. 4, the least-square estimation result, denoted by s̃f
∗
(tk) =

[ÂT Â]−1ÂTxf
∗

R (tk) for , k = 1, 2, . . . ,M , will not preserve the amplitude information,

either. Instead, it will only preserve the shape of sf
∗

R (tk). As mentioned earlier, sf
∗

R (tk)

is an indicator of the component degradation, thus, s̃f
∗
(tk) preserves the shapes of

component degradation signals but does not reflect the actual degradation levels of

individual components. In other words, for any component j, the amplitude of s̃f
∗

j (tk)

is proportional to the amplitude of component degradation signal j with an unknown

ratio. Consequently, we refer to s̃f
∗
(tk) as the vector of “un-scaled” degradation sig-

nals. However, in the application of prognostics, estimating the actual amplitude of

a component degradation signal is crucial to predict its remaining useful lifetimes.

Consequently, in what follows, we propose a data-driven “amplitude recovery proce-

dure” capable of approximately recovering the amplitude information of component

degradation signals.

3.2.2 On-line Amplitude Recovery Procedure

The amplitude recovery procedure is used for online estimation of the true ampli-

tude level of component degradation signals in systems operating in the field. Our

procedure is developed on the premise that individual components in the system

experience what we define as a “2-phase” degradation pattern; i.e., a non-defective

phase of operation followed by a phase of gradual degradation until failure. Note that

this degradation pattern is typical in many mechanical applications. One example

was presented in [42], where the authors considered the degradation of bearings and

identified a similar “2-phase” pattern shown in Fig. 1. Recall that the amplitude

of the defective frequency f ∗ is typically close to zero as long as no defect exists.

Thus, during the non-defective phase of an individual component, the amplitude of
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its degradation signal computed at f ∗ is typically close to zero. Once a defect oc-

curs, it marks the beginning of the subsequent degradation phase, and is typically

accompanied by a sudden spike in amplitude. This spike is considered as the “initial

degradation level” of a component. Since we focus on the degradation of identical

components, we assume that the initial degradation levels of identical opponents are

equal to the same value, denoted as Z. The above “2-phase” phenomenon is the basis

on which we develop the on-line amplitude recovery procedure.
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Figure 1: Signal characteristics

To better understand how the on-line amplitude recovery works, first assume that

matrix Â has been evaluated by applying ICA to a historical database of training

signals with characteristics discussed earlier in the chapter. Now consider a system

consisting of at least 2 or more identical components, and assume that real-time

vibration signals are being measured by multiple sensors. Using Â, we can separate

the degradation signals of the identical components in real-time. Next, we assume

that at any time instance only one component transitions from the non-defective phase

into the degradation phase. Then, we let t(1),d denote the transition time of the first

degraded component, where subscript d corresponds the onset of the degradation

phase. From a practical standpoint, t(1),d can be identified by applying an online

change point detection algorithm such as CUSUM [14] to the component degradation
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signals. Therefore, before t(1),d, all components are in the non-defective phase, and

all sensors exhibit closed-to-zero amplitude at f ∗. At t(1),d, only one component

exhibit a spike at frequency f ∗, which causes all sensors to exhibit a spike at f ∗ at

this time epoch with various amplitudes. We denote the highest amplitude among all

sensors at epoch t(1),d as max(xf
∗
(t(1),d)). By the assumptions made in our framework,

max(xf
∗
(t(1),d)) will likely correspond to the sensor that is closest to the component

that first degrades, and thus, will be most sensitive to the initial degradation level Z.

Consequently, we use max(xf
∗
(t(1),d)) as an estimator of the initial degradation level

Z.

For every component j, we expect to capture its transition time, denoted as tj,d,

using an online change-point detection algorithm such as CUSUM [14]. At tj,d, the

corresponding amplitude of the unscaled degradation signal of component j is denoted

as s̃f
∗

j (tj,d). Recall that the true degradation signal of component j at tj,d should be

equal to Z, which can be estimated by max(xf
∗
(t(1),d)). Thus, the ratio of its true

degradation signal to its un-scaled degradation signal (i.e. the “re-scaling ratio”), Rj,

is defined as:

Rj =
max(xf

∗
(t(1),d))

s̃f
∗

j (tj,d)
for j = 1, 2, ..., n. (7)

Consequently, the true amplitude of the component’s degradation signal can be re-

covered according to

ŝf
∗

j (tk) = Rj × s̃f
∗

j (tk) (8)

where s̃f
∗

j (tk) is the amplitude of the unscaled component signal evaluated using ICA

at time tk and ŝf
∗

j (tk) is the corresponding “re-scaled” degradation signal.

Remark: max(xf
∗
(t(1),d)) is maximized when dedicated sensors are placed di-

rectly on the components being monitored. That is, the highest amplitude among all

sensors at the first on-set of a defect will be “almost equivalent” to that of the initial

degradation level. Under this condition, the amplitudes of component degradation
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signals will be completely recovered. However, since this work is focused on appli-

cations with physical and functional restrictions on sensor placement, the proposed

amplitude recovery procedure provides only an approximate method for recovering

the amplitude information.

Figure 2 summarizes the first stage of the proposed methodology described in

Sections 3.1 and 3.2. The first graph in Fig. 2 illustrates the time-domain periodic

waveform acquired by two sensors x1(tk) and x2(tk), as an example. Each waveform

is assumed to contain a specific defective frequency f ∗. The real-parts of the DFTs of

x1(tk) and x2(tk) are shown in the second graph, in which the values of the two sensors

at f ∗ are selected as xf
∗

1,R(tk) and xf
∗

2,R(tk). The third graph shows the two real sensor

signals constructed by successive sampling. The fourth graph illustrates the signal de-

trending by computing sensor increments ∆Xf∗

1 and ∆Xf∗

2 . Next, ICA is applied to

∆Xf∗

1 and ∆Xf∗

2 to estimate the mixing matrix Ã, which is then utilized to estimate

the un-scaled degradation signals, denoted as s̃f
∗

1 (tk) and s̃f
∗

2 (tk) k = 1, 2, . . . ,M ,

illustrated in the fifth graph. The sixth graph illustrates the amplitude recovery

procedure and plots the estimated amplitude of the component signals ŝf
∗

1 (tk) and

ŝf
∗

2 (tk), k = 1, 2, . . . ,M .

3.3 Degradation Modeling and Prognostics

The second stage of our prognostic framework incorporates an adaptive prognostics

model to characterize component degradation signals. This prognostics model is de-

veloped on the premise that the functional form of a component degradation signal

can be modeled as a continuous-time continuous-state stochastic process, which is

similar to the one presented in [42]. After the model is developed, the RLDs of indi-

vidual components can be updated in real-time using partially-observed component

degradation signals. The residual lifetime of each component is defined as the time re-

quired for the trajectory of the component degradation signal to reach a pre-specified
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Figure 2: The procedure of the first stage in our proposed framework
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failure threshold.

The prognostics model for a specific component j can be expressed as follows:

sf
∗

j (t) = η(t; Θj,Φ) + ε(t), (9)

where sf
∗

j (t) represents the degradation signal of component j, η(·) represents the

parametric functional forms used to model the path of the degradation signal (e.g.,

linear, exponential, polynomial), Φ is a vector of known coefficients that are assumed

to be the same for all identical components, ε(t) represents the signal noise and is

assumed to be a Brownian motion, and Θj is a vector of stochastic coefficients that

takes a unique value for each specific component j. In another words, the values

of the stochastic coefficients may differ for individual identical components, which

represents the ”unit-to-unit variability” that exists between identical components

due to manufacturing differences, material inhomogeneity, etc.. To capture the unit-

to-unit variability, we assume that the actual value of Θj is unknown for component j

but is expected to follow a known prior distribution, whose pdf is denoted by π(Θj).

Remark: The assumption of Brownian motion error has been widely used to char-

acterize the stochastic error in the literature of degradation modeling [36, 42, 106].

This assumption is only for the purpose of degradation modeling and not related to

the success of the signal separation stage, which relies on the assumption that all com-

ponent increments are statistically independent and non-Gaussian. This assumption

can still be satisfied if the noise term ε(t) follows another type of stochastic process.

We denote the residual lifetime of component j as Tj. Before the component

starts to degrade, its residual lifetime is equivalent to its lifetime. The cdf of its

lifetime (i.e., the probability that Tj is less than some time t), which is equivalent to

the probability that the trajectory of the degradation signal reaches the pre-defined
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threshold (denoted by γ) before t, is given by the following expression:

Pr(Tj ≤ t) = Pr(sf
∗

j (t) ≥ γ) (10)

=

∫
Θj

Pr(sf
∗

j (t) ≥ γ | Θj)π(Θj)dΘj

As the real-time observations of its component degradation signal become avail-

able, the posterior distribution of Θj can be updated given the observations using a

Bayesian approach. For example, if a sequence of degradation signals sf
∗

j (t1),sf
∗

j (t2),

. . . , sf
∗

j (tk) is observed at the following times t1, t2, . . . , tk, then the posterior distri-

bution of Θj evaluated at observation time tk can be expressed as follows:

p(Θj|sf
∗

j (t1), sf
∗

j (t2), . . . , sf
∗

j (tk)) ∝ l(sf
∗

j (t1), sf
∗

j (t2), . . . , sf
∗

j (tk)|Θj)π(Θj), (11)

where p(Θj|sf
∗

j (t1), sf
∗

j (t2), . . . , sf
∗

j (tk)) is the posterior distribution of the stochas-

tic coefficients updated at the tk, l(s
f∗

j (t1), sf
∗

j (t2), . . . , sf
∗

j (tk)|Θj) is the likelihood

function, and π(Θj) is the prior distribution of Θj.

After the posterior distribution is evaluated, the cdf of the RLD of the component

satisfies a similar expression to Eq. 10 as follows:

Pr(Tj ≤ t|sf
∗

j (t1), . . . , sf
∗

j (tk)) (12)

= Pr(sf
∗

j (t+ tk) ≥ γ | sf
∗

j (t1), . . . , sf
∗

j (tk))

=

∫
Θj

Pr(sf
∗

j (t+ tk) ≥ γ | Θj)p(Θj|sf
∗

j (t1), . . . , sf
∗

j (tk))dΘj

the Bayes framework improves the prediction of RLD by reducing the uncertainty

corresponding to the posterior distribution of Θj.

Figure 3 provides an overall illustration of the RLD updating framework using

a real-time component degradation signal. When no observations are available at

time t0 (as shown in the first graph), the life distribution is computed based on the

prior information of the stochastic parameter Θj. When the component degradation

signal is observed up to t1 (as shown in the second graph), the posterior distribution
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of Θj is updated using the Bayesian approach. Using the degradation model with

the updated parameter, we can develop the posterior RLD for the partially degraded

component. Furthermore, when the component degradation signal is observed up to

t2 (as shown in the third graph), the posterior distribution of Θj is further updated,

which can be used to revise the posterior RLD for the component.

Component degradation 

signal observed up to t1

Component degradation 

signal observed up to t2

Figure 3: The RLD updating process for the component level adaptive prognostic
methodology

For demonstration purpose, we utilize the base case model presented in [42], which

considered an exponential functional form with a multiplicative Brownian motion er-

ror, to study the performance of our methodology. This base-case model is incorpo-

rated in our simulation study. According to this model, the degradation signal of the

jth (j = 1, 2, . . . , n) component is characterized by the following expression:

sf
∗

j (t) = Z exp(βjt+ ε(t)) (13)

where Z is the constant initial degradation level that we have discussed in Section

3.2.2, βj represents the degradation rate of component j, and ε(t) represents the

error fluctuations and is assumed to be a centered Brownian motion with variance

σ2t. In this base-case model, the stochastic parameter is βj, whose prior distribution

is assumed to be normal with mean µ1 and variance σ2
1. Note that µ1, σ2

1, and σ2 are
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assumed to take the same values for identical components.

Given that we have observed the following sequence of degradation signals sf
∗

j (t1),

sf
∗

j (t2), . . . , sf
∗

j (tk), the posterior distribution of βj follows a normal distribution with

mean µj,k and variance σ2
j,k, where

µj,k =
σ2

1 ln(sf
∗

j (tk)) + µ1σ
2

σ2
1tk + σ2

,

σ2
j,k =

σ2σ2
1

σ2
1tk + σ2

.

Consequently, the RLD of a component j evaluated at time tk is given as:

Pr(Tj ≤ t | sf
∗

j (t1), . . . , sf
∗

j (tk)) = Pr(ln(sf
∗

j (tk + t)) ≥ γ | sf
∗

j (t1), . . . , sf
∗

j (tk)) (14)

= Φ(
µ̃j(tk + t)−D
σ̃j(tk + t)

),

where Φ(·) is the cdf of a standard normal random variable, µ̃j(tk + t) = ln(sf
∗

j (tk)) +

µj,kt and σ̃2
j (tk + t) = σ2

j,kt
2 + σ2t. The median of the RLD is used as a prediction of

the residual lifetime.

3.4 A Numerical Example Using Simulated Degradation
Signals

In this section, we use simulated degradation signals to evaluate the performance of

our proposed methodology. First, we will describe the simulation set-up and the pro-

cedure. Then, we will conduct sensitivity analysis on variables that may affect the

performance of the signal separation stage, which include the level of noise in compo-

nent degradation signals (“degradation noise” for short) and the correlation between

component increments. Finally, we will investigate the sensitivity of the residual life

prediction to the correlation between component increments, the degradation noise,

and the re-scaling ratio discussed in Section 3.2.2.

3.4.1 Simulation Set-up and Procedure

In our numerical example, we consider a system with two identical components whose

degradation processes can be monitored using three vibration sensors. We design this
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specific set-up according to the assumption that the number of sensors, denoted as

m, is greater than or equal to the number of components, denoted as n, which is a

general assumption that guarantees full column rank of the mixing matrix A. Fig.

4 shows the hypothetical system used for our simulation study. The three sensors

are labeled as “Sensor 1”, “Sensor 2”, and “Sensor 3”, whereas the components are

labeled as “Component A”, and “Component B”. In reality, this system simulates

a gearbox with two identical bearings (A and B). Sensors 1, 2, and 3 represent 3

accelerometers mounted on the outside of the gearbox.

Sensor 1

Sensor 3

Sensor 2
Component 

A

Component 
B

Figure 4: Simulation set-up

We assume the vibration signals measured by each sensor is a linear combination

of the vibration resulting from potential defects on Component A and/or B. For

illustrative purposes, we define the mixing matrix A as [0.9, 0.6; 0.6, 0.8; 0.7, 0.7; ].

The specific value of each element of A, denoted by ai,j (for i = 1, 2, 3 and j = 1, 2),

represents the proportion of the vibration signal of component j captured by sensor

i, which depends on the relative distance between the sensor and the component.

Specifically, the value of each element is positively correlated with the inverse of the

corresponding distance, and it cannot exceed 1 unless the sensor is dedicated to the

component.

In what follows, we outline the steps used to simulate the signals in this numerical

study:

1. For each component j, we simulate the time corresponding to the change-point

of its degradation signal, tj,d, using the uniform distribution U [10, 50]. In other
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words, the period [0, tj,d] corresponds to the length of the non-defective phase

of component degradation signal j.

2. For each component j, j = 1, 2, we simulate the time-domain vibration signal

for each time tk, k = 1, . . . ,M , which we denote by sj(tk). t1 and tM represent

the time epochs when the system initially starts to operate and when the system

stops, respectively. tM is expected to be long enough to have two components

run to failure. Specifically, M = 300 in this study. For tk < tj,d, we let the

amplitude of sj(tk) at the defective frequency f ∗ be a small value close to zero.

In this study, the amplitude is randomly chosen from the following distribution

U [4×10−4, 6×10−4]. For tk ≥ tj,d, we let the amplitude of sj(tk) at the defective

frequency f ∗ increase randomly in tk according to the stochastic model expressed

in Eq. 13. The simulated component vibration signals for Components A and

B can be represented as s1(tk) and s2(tk).

3. We compute the corresponding sensor vibration signals, x1(tk), x2(tk), and

x3(tk) based on s1(tk) and s2(tk) using Eq. 2. We use the mixing matrix A

defined earlier in this section. Examples of component vibration signals s1(tk)

and s2(tk) and sensor vibration signals x1(tk), x2(tk), and x3(tk) are shown in

Fig. 5. As mentioned earlier in Section 3, component degradation signals are

obtained by taking the exact amplitude of the component vibration signals at

frequency f ∗. The two component degradation signals are detonated as sf
∗

1 (tk)

and sf
∗

2 (tk), for k = 1, . . . ,M .

4. The sensor vibration signals x1(tk), x2(tk), and x3(tk) are then used to compute

the estimated degradation signals ŝf
∗

1 (tk) and ŝf
∗

2 (tk). To do this, we follow

the procedure outlined in Fig. 2. The estimated degradation signals are used

to predict the RLD of each component using the base-case model discussed in

Section 5. The median of the RLD is utilized as a prediction of the residual
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lifetime of each component.

5. To be able to benchmark the performance of our model, we compare the resid-

ual life predictions computed using the estimated degradation signals ŝf
∗

1 (tk)

and ŝf
∗

2 (tk) with those computed using the true component degradation signals

sf
∗

1 (tk) and sf
∗

2 (tk). The residual life predictions of the true degradation sig-

nals are also computed using the base-case model discussed in Section 5. The

accuracy of the prediction is evaluated using the following equation:

error =
|Predicted Lifetime - Actual Lifetime|

Actual Lifetime
,

where the “Actual Lifetime” is the time point at which the component degrada-

tion signal crosses a pre-specified failure threshold, and the “Predicted Lifetime”

is equal to the observation level plus the predicted residual lifetime.

Multiplied with 
the mixing matrix 

A, plus random 
noise
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Figure 5: Sample time-domain component vibration signals (on the left) and the
corresponding sensor vibration signals (on the right)

Figure 6 presents an example of a pair of component degradation signals (rep-

resented by solid curves) and their corresponding estimated signals (represented by

dashed curves). The horizontal line drawn at 0.025 in Fig. 6 represents the failure

threshold. From Fig. 6, we observe that the shape of a component degradation sig-

nal can be estimated accurately, but the amplitude of the signal is not completely

recovered. This bias is mainly due to the amplitude recovery procedure.Particularly,
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Figure 6: An example of true degradation signals and the corresponding estimated
degradation signals

due to the bias/error induced by the amplitude recovery procedure, at the time epoch

when the true degradation signal crosses the failure threshold (i.e. the true failure

time), the estimated degradation signal has not yet crossed the failure threshold.

Consequently, the estimated signal takes a slightly longer time to reach the failure

threshold.

3.4.2 Sensitivity Analysis of the Signal Separation Stage

The performance of the signal separation stage relies on the effectiveness of ICA. One

of the necessary assumption for using ICA is the independence between the component

increments. In this section, we study the performance of ICA when this assumption

is not satisfied. This is accomplished by adjusting the correlation coefficient between

the Brownian motion errors of the two component degradation signals. In addition,

we also study the impact of the degradation noise on the effectiveness of the ICA

algorithm. The noise level is controlled by the variance of the Brownian motion error

in a component degradation signal.

The performance of the signal separation is evaluated by the difference between the

true and the estimated mixing matrices, in which the value of the true matrix has been

specified earlier in this section. Since the ICA algorithm can not preserve the norm
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of each column in the matrix (as discussed in Section 4), we focus on comparing the

normalized matrices to remove any unnecessary biases. We let AN and ÂN denote the

normalized matrices of the true A and the estimated matrix Â. Each column of the

normalized matrix is computed by normalizing the corresponding column of the orig-

inal matrix. The value of AN is AN = [0.6985, 0.4915; 0.4657, 0.6554; 0.5433, 0.5735].

We compare ÂN with AN using the Frobenius norm of δAN = ÂN −AN , which is

considered as a measurement of the estimation error of the mixing matrix.

Signal separation is performed at 10 levels of correlation, (correlation coefficient

equal to 0, 0.1, . . . , 0.9), and 10 levels of degradation noise ( the variance of the Brow-

nian motion error equal to 0.0005, 0.001, . . . , 0.005). Fig. 7 illustrates three sample

degradation signals corresponding to three levels of the Brownian motion variance:

0.0005, 0.0015, and 0.0025. It is clear that the degradation signal with a higher

Brownian motion variance is more noisy.

Figure 7: Sample signals corresponding to three variance levels

In total, there are 10× 10 = 100 testing scenarios. For each scenario, we conduct

200 rounds of simulations. The signals from each round is utilized to compute Â

as well as the corresponding ‖ δAN ‖F . Then, we choose the median of these 200

values for ‖ δAN ‖F ’s as a point estimator of the estimation error. Fig. 8 shows the

estimation errors for the 100 scenarios.

It is clear that the estimation error increases as the level of correlation increases.

This is expected since increasing the correlation results in greater deviations from

the assumption of independence. On the other hand, the level of Brownian motion
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Figure 8: The median of 200 Frobenius norms under 100 conditions

variance does not exhibit a significant impact on the estimation error. We believe

the reason for this is that the level of degradation noise mainly affects the amplitude

of the component increments. Since ICA does not preserve amplitude information,

changing the noise level has little effect on the performance of ICA.

3.4.3 Sensitivity Analysis of the Residual Life Prediction

In this section, we will investigate the effects of three variables on accuracy of the

residual life prediction. The first variable is the degradation noise. Although this vari-

able does not significantly affect the signal separation stage as we have investigated,

it may affect the stage of prognostics, since a higher noise in the degradation signals

may reduce the effectiveness of residual life prediction. The second variable is the

correlation between component increments. From Section 3.4.2, we have concluded

that this correlation affects signal separation. Thus, it will also affect the residual

life prediction. The third variable is the re-scaling ratio. How well we estimate the

re-scaling ratio has a direct impact on the efficiency of the amplitude recovery, and

thus will impact the residual life prediction.

40



3.4.3.1 The impact of degradation noise

In this study, we investigate the effect of degradation noise on residual life prediction.

Similar to Section 3.4.2, the noise level is controlled by tuning the variance parameter

of the Brownian motion. We investigate the effects of three levels of variance: 0.0025,

0.0015, 0.0005. Three sample degradation signals corresponding to the three variance

levels are already shown earlier in Fig. 7.

For each level of variance, 100 simulation runs are performed, out of which 20

are used as training signals to estimated the mixing matrix. The average of the 20

estimated matrices is utilized as the final estimator of the mixing matrix Â. The rest

80 runs are used for validation. For each round in the validation set, the estimation Â

is applied to compute the estimated degradation signals of both components in this

round. Next, we assume each estimated degradation signal is partially observable

up to several lifetime percentiles (evaluated post facto): 10%, 20% until 90% of

the component’s actual lifetime. For each component, given its partially-observed

degradation signal, we predict its residual lifetime and calculate the corresponding

prediction error. The prediction errors at different lifetime percentiles for the 80

rounds of simulation in the validation set are summarized in Fig. 9, where Parts

(a), (b), and (c) correspond to the three variance levels. The right column of Fig.

9 illustrates the prediction errors associated with the estimated degradation signals,

while the left column presents the prediction errors using the true degradation signals

as the benchmark.

We conduct a one-side t-test, a one-side F-test, and a one-side Wilcoxon rank sum

test to compare the mean, the variance, and the median of the prediction errors of

the estimated versus the true degradation signals. The null hypothesis for each of

the three tests is that the corresponding statistics (the mean, the variance, or the

median) of the prediction errors of true and estimated degradation signals are equal.

The alternative hypothesis is that the corresponding statistics of the prediction errors
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Figure 9: Comparing prediction errors from true and estimated component signals at
three variance levels
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of estimated degradation signals is higher than that of the prediction errors of true

degradation signals. The significance of a test is represented by the p-value.

The corresponding p-values are listed below in Tables 1, 2, and 3, with p-values

smaller than 0.05 highlighted in boldface. According to the tables, each hypothesis

test is conducted under various conditions including different variance levels of the

Brownian motion error and different levels of the lifetime percentile. The p-values

smaller than 0.05 indicate that we will reject the null hypothesis at 5% significant

level under the corresponding test conditions. In other words, under the corresponding

conditions, we can conclude that the corresponding statistics of the prediction errors

of estimated degradation signals is significantly higher than that of the prediction

errors of true degradation signals.

Table 1: The p-values of the t-test corresponding to the three variance groups

Percentile 10% 20% 30% 40% 50% 60% 70% 80% 90%

Var=0.0025 0.587 0.689 0.707 0.0405 0.213 0.222 0.219 0.023 2.26e−3

Var=0.0015 0.192 0.103 0.106 0.095 0.042 0.0041 0.006 0.0013 2.8e−5

Var=0.0005 0.045 0.013 0.0049 0.0030 0.0042 0.0028 5.8e−4 3.4e−5 1.1e−6

Table 2: The p-values of the f-test corresponding to the three variance groups

Percentile 10% 20% 30% 40% 50% 60% 70% 80% 90%

Var=0.0025 0.207 0.628 0.207 0.469 0.014 0.018 9e−4 1.9e−7 1.8e−12

Var=0.0015 0.0041 3e−4 1e−4 9e−4 2e−4 9e−4 8e−4 0.0010 1e−4

Var=0.0005 1e−4 2e−4 0.0024 0.0032 8e−4 2e−4 9e−4 4e−4 1.1e−6

Table 3: The p-values of the Wilcoxon rank sum test corresponding to the three
variance groups

Percentile 10% 20% 30% 40% 50% 60% 70% 80% 90%

Var=0.0025 0.604 0.538 0.551 0.092 0.423 0.377 0.895 0.089 2e−4

Var=0.0015 0.169 0.152 0.189 0.506 0.098 0.010 0.0036 5e−4 1e−4

Var=0.0005 0.547 0.270 0.216 0.0003 0.017 0.047 0.0026 3e−4 1.3e−5

From Fig. 9 and Tables 1, 2, and 3, we can summarize the following observations:

1. The prediction errors of both true and estimated degradation signals decrease
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as the variance of the Brownian motion decreases. This is expected because

reducing the noise level usually improves predictability.

2. For each type of hypothesis test, the number of lifetime percentiles associated

with p-values smaller than 0.05 increases as the noise level decreases. This

observation may be due to the fact that when using true component signals,

reducing the noise level directly results in significant improvements in prediction

accuracy. However, this is not necessarily the case for the estimated component

signals, as there is an additional error that is introduced by the signal separation

step. Reducing degradation noise does not improve the performance of signal

separation as discussed in Section 3.4.2.

3.4.3.2 The effect of correlation between component increments

As demonstrated in Section 3.4.2, the correlation between component signals signif-

icantly affects the signal separation step. Here, we evaluate the accuracy of residual

life prediction under different correlation levels. Similar to Section 3.4.2, we control

the correlation by adjusting the correlation coefficient between the Brownian motion

errors of the two component degradation signals. We test three levels of correlation

coefficient: 0, 0.5, and 1. Signals are simulated and prediction errors are evaluated

in a similar manner to what is presented in Section 3.4.3. The prediction errors are

shown in Fig. 10, in which the left and right columns correspond to the prediction

errors of true and estimated degradation signals, respectively. From Fig. 10, it is clear

that when the correlation coefficient is zero, there is no significant difference between

the prediction errors from estimated signals versus those evaluated using the true

signals. However, as the correlation coefficient is increased to 0.5 and 1, the accuracy

of the residual-life prediction decreases significantly. The reason is that increasing the

correlation coefficient will contaminate the accuracy of the signal separation, which

will eventually affect the accuracy of the residual life prediction.
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3.4.3.3 The effectiveness of the online amplitude recovery procedure

Here, we focus on the impact of the amplitude recovery procedure on the accuracy

of residual life prediction. An important factor that affect the performance of the

amplitude recovery procedure is the re-scaling ratio. In Section 3.2.2, we have dis-

cussed that the value of the re-scaling ratio depends on how well we estimate the

initial degradation level Z. In this section, we test the effect of 4 different es-

timates of Z on the accuracy of the residual life prediction. The first estimates

is equal to the true value of Z, which will recover 100% of the amplitude. To

choose the second value, we note that A = [0.9, 0.6; 0.6, 0.8; 0.7, 0.7; ], which indicates

that x1(tk) = 0.9s1(tk) + 0.6s2(tk) + e1(tk), x2(tk) = 0.6s1(tk) + 0.8s2(tk) + e2(tk),

x3(tk) = 0.7s1(tk) + 0.7s2(tk) + e3(tk), k = 1, 2, ... At time t(1),d, if component A de-

grades first, we will have max(xf
∗
(t(1),d)) ≈ 0.9Z. On the other hand, if component

B degrades first, we will have max(xf
∗
(t(1),d)) ≈ 0.8Z. In general, components A and

B will have an equal probability to degrade. Thus, on average, the estimate is equal

to 0.85Z. The third and fourth estimates of Z are chosen to be 0.55Z and 0.25Z,

which corresponds to even worse estimates the re-scaling ratio.

Signals are simulated and prediction errors are evaluated in a similar manner to

what is presented in Section 3.4.3. However, different from the previous simulation,

we will not follow the re-scaling procedure described in Section 3.2.2 to estimate

max(xf
∗
(t(1),d)). Instead, we will manually specify the value max(xf

∗
(t(1),d)) to be

equal to one of the 4 values (Z, 0.85Z, 0.55Z, and 0.25Z) and calculate the residual

life predictions for each component at different lifetime percentiles. Fig. 11 illus-

trates the prediction errors under the four estimates of the initial degradation level.

In this figure, the word “ratio” in the title of each graph represents the ratio of the

estimate to the true Z. It can be seen that the prediction errors when ratio=1 and

ratio=0.85 do not exhibit significant difference. This insignificance can be explained

by Fig. 6, in which the estimated degradation signals (dashed curves) are biased

45



from the corresponding true degradation signals (solid curves). Although this bias

is observable, the failure times of the estimated degradation signals are not signifi-

cantly different from those of true degradation signals. Thus, we will not expect a

significant difference between the lifetime prediction errors. However, the prediction

errors increases significantly as the ratio decreases to 0.55 and further to 0.25. This is

expected, since a significant decrease in the ratio will eventually results in unreliable

prediction. In reality, the ratio is related to the distance between a sensor and a

component. Therefore, we recommend that in order to improve the performance of

the residual-life prediction for each individual component, at least one sensor should

be located as close as possible to one of the components that are being monitored,

especially if they are identical or generate the same signal frequency.
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Figure 10: The accuracy of the residual-life prediction under three correlation levels
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Figure 11: The accuracy of the residual-life prediction under different estimates of
the initial degradation level

48



CHAPTER IV

RESIDUAL LIFE PREDICTION OF MULTISTAGE

MANUFACTURING PROCESSES WITH INTERACTION

BETWEEN TOOL WEAR AND PRODUCT QUALITY

DEGRADATION

In this chapter, we characterize the interactive relationship between tool wear and

product quality degradation in MMPs for the purpose of accurately predict the RLD

of MMPs. We propose an interaction model that utilizes a linear model to represent

the impact of tool wear on quality degradation and a stochastic differential equation

model to capture the impact of quality degradation on the instantaneous rate of tool

wear. We then propose a Bayesian framework that incorporates real-time quality

measurements to on-line update the RLD of MMPs. We also conduct numerical

studies to test the performance of our methodology and compare with an existing

methodology.

This chapter is organized as follows: Section 4.1 presents the stochastic methodol-

ogy used to model the interaction between tool wear and quality degradation. Section

4.2 discusses how to estimate the model parameters based on historical data, as well

as how to predict and update the RLD of the MMPs. Section 4.3, we present a

series of simulation-based numerical studies. The goal is to study the performance

of our methodology and evaluate its sensitivity with respect to model parameters.

Section 4.4 discusses the implementation of our proposed methodology in real-world

industries.
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4.1 Prognostics Model Considering Tool Wear and Quality
Degradation Interaction

In this section, we first propose two individual models for characterizing the effect

of tool wear on quality degradation and that of quality degradation on tool wear in

MMPs, respectively. We assume that the instantaneous rate of tool wear is linearly

dependent on quality degradation, which is modeled as a Brownian motion process

with a linear drift that is a function of the level of quality degradation. Subsequently,

the two models are synergized into a hybrid modeling framework to capture the inter-

action between tool wear and quality degradation. The hybrid modeling framework

is eventually used to predict the distribution of the remaining time before an MMP

produces a non-conforming product, i.e., the RLD of the MMP.

We consider an MMP with M stages, each of which is equipped with a sin-

gle tool, and N quality measurement points. We let Sm(t) represent the level of

tool wear at stage m at time t for m = 1, 2, . . . ,M . Also, let Yn(t) represent

the level of quality degradation (i.e., the deviation of the product quality measure-

ment from its nominal value) at measurement point n for n = 1, 2, . . . , N . Thus,

S(t) = (S1(t), S2(t), ..., SM(t))′ and Y(t) = (Y1(t), Y2(t), ..., YN(t))′ characterize tool

wear and quality degradation at M stages and N quality measurement points, re-

spectively. For example, in the sheet metal assembly process [61], Y(t) corresponds

to the deviation of measurement points in the body coordinates and S(t) corresponds

to the wear of locating pins. Another example is the stamping process [29], in which

Y(t) represents the size of the burr on the edge of the part, and S(t) represents the

tool wear of dies.

4.1.1 Modeling the Product Quality Degradation

We begin by formally characterizing the effect of tool wear on product quality degra-

dation. We assume that the main assignable cause of part quality degradation is tool
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wear. All other types of operational errors, such as fixture errors, location errors,

and other sources can be lumped and considered as ”process noise”. The effect of

tool wear and process noise on quality degradation is defined by the following linear

model:

Yn(t) = a′nS(t) + b′nZ(t), (15)

for n = 1, 2, . . . , N, where Z(t) = (Z1(t), Z2(t), ..., ZP (t))′ represents the process noise

in MMPs. an = (a1,n, a2,n, . . . ,aM,n)
′

and bn = (b1,n, b2,n, . . . ,bP,n)
′

are the coefficients

that characterize how S(t) and Z(t) impact Yn(t), respectively. Typically, the values

of an and bn as well as the functional forms of S(t) and Z(t) can be determined based

on specific applications, such as the auto-body assembly process [31]. We assume the

following specific forms of S(t) and Z(t):

1. Z(t) follows a P -dimensional Brownian motion process with zero mean and

covariance matrix ΣZt.

2. S(t) evolves according to a vector of continuous stochastic processes, the specific

form of which is presented in Section 4.1.2.

Hence, the matrix form of Eq. 15 can be rewritten as follows:

Y(t) = A′S(t) + B′Z(t), (16)

where A= (a1, a2, . . . ,aN) and B= (b1,b2, . . . ,bN).

The linear assumption presented in Eq. 15 and Eq. 16 has been systematically

justified and widely used in the literature to character the tool wear on product

quality in manufacturing processes [29, 31, 61, 109]. When the physical process

knowledge is available, the linear functional form can be used as a reasonably good

approximation to characterize the underlying process in many manufacturing systems.

Some examples include the sheet metal assembly process [61] and the cylinder head

machining process [52]. When the physical process knowledge is not available, the
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authors in [109] suggests using this linear model since this linear model represents

main effects, which usually have more significant impacts than higher order effects.

4.1.2 Modeling Tool Wear

Next, we develop a model that characterizes the effect of quality degradation on tool

wear. Specifically, tool wear at stage m is modeled by the following SDE:

dSm(t) = RI
m(t)dt+ dWm(t), (17)

for m = 1, 2, . . . ,M , where RI
m(t) represents the instantaneous rate of tool wear that is

governed by the level of quality degradation, and Wm(t) is a Brownian motion process

with the diffusion parameter σW,m and is used to capture the randomness of the tool

wear process. Thus, Wm(t) is a stochastic process with independent increments that

follow a normal distribution with zero mean and variance σ2
W,mt. Wm(t) is assumed

to be statistically independent from Z(t).

We focus on a base-case stochastic model where the instantaneous wear rate RI
m(t)

takes the linear form expressed below:

RI
m(t) = Rm + c′mY(t), (18)

for m = 1, 2, . . . ,M , where Rm represents the natural rate of tool wear at stage m,

and the second part captures the rate of tool wear affected by quality degradation

with cm = (c1,m, c2,m, . . . , cN,m)′ being an N -dimensional column vector of coefficients

describing how quality degradation, Y(t), impacts the instantaneous rate of tool wear.

The linear assumption presented in Eq. 18 is a special case of the phenomenon that

the tool wear at a subsequent stage is positively correlated to its “depth of cut”

[100], which is directly affected by the product quality from the preceding stages. For

example, in a two-stage drilling and tapping process, if the diameter of the hole drilled

in the first stage is smaller than its specification, the tapping tool will need to cut

more material to maintain the final product quality, which will accelerate its tool wear.

52



Without further information, a linear model, as a case in point, is a reasonable choice

to demonstrate our proposed methodology for characterizing the impact of quality

degradation on the instantaneous rate of tool wear, which has not been investigated

in the existing literature. Depending on the specific real-world applications, different

functional forms can be incorporated as the extensions of our proposed model.

Using the expression of the instantaneous rate of tool wear expressed in Eq. 18,

we can rewrite the SDE model expressed in Eq. 17 as:

dSm(t) = [Rm + c′mY(t)] dt+ dWm(t), (19)

for m = 1, 2, . . . , M . The matrix-vector form can be expressed as follows:

dS(t) = [R + C′Y(t)] dt+ dW(t), (20)

where dS(t)=(dS1(t), dS2(t), . . . , dSM(t))′, R=(R1, R2, . . . , RM)′, C=(c1, c2, . . . , cN),

and dW(t) = (dW1(t), dW2(t), . . . , dWM(t))′. W(t) represents an M -dimensional

Brownian motion process, whose covariance matrix is represented by ΣWt, where

ΣW = diag(σ2
W,1, σ

2
W,2, . . . , σ

2
W,M). Since every element of W(t) is assumed to be

statistically independent of Z(t), W(t) is also statistically independent of Z(t).

4.1.3 Interaction Between Tool Wear and Quality Degradation

Leveraging the two models expressed in Eq. 16 and Eq. 20, we develop a hybrid

model that captures the interaction between tool wear and quality degradation in

MMPs. By substituting Eq. 16 in Eq. 20, quality degradation can be expressed in

terms of tool wear as follows:

dY(t) = [A′R + A′C′Y(t)] dt+ A′dW(t) + B′dZ(t). (21)

Recall that W(t) and Z(t) represent two independent Brownian motion processes.

Thus, A′W(t)+B′Z(t) is an N -dimensional Brownian motion process that we denote

as W∗(t), which has covariance matrix Σ∗t with Σ∗ = A′ΣWA + B′ΣZB. For
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notational convenience, we let ∆=A′C′. Thus, Eq. 21 can be rewritten as follows:

dY(t) = [A′R + ∆Y(t)] dt+ dW∗(t). (22)

By choosing various forms of A and C, Eq. 22 can be used to describe different

MMP configurations. For example, if an MMP has a series configuration and quality

measurements are taken after each stage, quality degradation (tool wear) of a specific

stage will only be affected by tool wear (quality degradation) of the current and the

preceding stages. Consequently, A and C will be upper-triangular matrices. Similarly,

if an MMP has a parallel configuration, the interaction between tool wear and quality

degradation will be limited to what occurs within each stage. Thus, A and C will

each be a diagonal matrix.

4.2 Parameter Estimation and RLD Updating

We discuss in this section how to estimate the model parameters involved in the

interaction model, and how to estimate and update RLD of the MMP system using

the real-time quality measurements.

4.2.1 Estimating and Updating the Model Parameters

Our model is used to describe the interaction between tool wear and quality degra-

dation across a population of similar MMPs. The model consists of deterministic

parameters used to characterize features that are relatively constant/fixed across the

population of MMPs, and stochastic parameters that capture variability among indi-

vidual MMPs.

In our model, we assume that A, B, and ∆ are fixed parameters, since they are

typically dependent on the configuration of the MMP and can be determined using

the locations of tools and the layout of measurement points. Examples in which

such assumptions were used can be found in the 2-dimensional assembly process

studied in [61], the 3-dimensional auto-body assembly process investigated in [73],
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and the cylinder-head machining process analyzed in [52]. In all of these studies, the

randomness and variability resulting from A, B, and ∆ were considered insignificant.

Σ∗ is also assumed to be constant. Σ∗ is determined by ΣW and ΣZ, where ΣZ

is the variance of the process noise and ΣW is the variance of the Brownian motion

error of tool wear. Typically, ΣZ can be determined using the physical configuration

of the systems and is often assumed to be constant in most of the existing literature.

For example, in the auto-body assembly process investigated by [29], the authors

defined process noise as the random orientation of the contacting point between the

locating pin and the locating hole on a raw product. They proved that process noise

followed a known distribution that was derived through knowledge of the physical

system. Other examples include machining processes studied in [51, 116], where the

variance of the process noise was determined by engineering knowledge. With regards

to the other noise component, ΣW, it corresponds to noise in the tool wear process.

As will be discussed later, the natural rate of tool wear is assumed to be random. In

reality, the noise ΣW is usually an insignificant source of variation when compared to

the variation in the rate of tool wear [7, 72, 77]. Therefore, it is reasonable to assume

that Σ∗ is deterministic.

Different from the deterministic parameters discussed above, the natural rate of

tool wear is assumed to be stochastic and follow a prior distribution. In other words,

each time a specific tool is replaced, its natural rate of tool wear is assumed to be

a random draw from its prior distribution. Specifically, we assume that the vector

of natural rates of tool wear R follows a prior distribution, which we denote by

π(R). The functional form of π(·) can be obtained through subjective information

or estimated using historical data. For illustrative purposes, we assume that π(R) is

a multivariate normal distribution with mean vector µR and covariance matrix ΣR,

where µR = (µR,1, . . . , µR,M)′and ΣR = diag(σ2
R,1, . . . , σ2

R,M).
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Next, we use in-situ quality measurements of the MMP to update the prior dis-

tribution of R. To do this, assume that quality measurements are taken at discrete

observation epochs t0, t1, t2,. . . , tk, where t0 represents the epoch when the MMP

starts to operate and tk is the most recent observation epoch. Furthermore, we as-

sume that quality measurements are observed at a constant sampling interval, i.e.,

t1 − t0 = t2 − t1 = . . .= tk − tk−1 = δt. At t0, we assume that the initial quality

degradation of the MMP is 0, which indicates that no quality degradation occurs.

Let {y (t0) , . . . , y(tk)} represent the observed values of quality measurements, where

y (t0) = 0. The posterior distribution of R can be expressed as follows:

p(R|y(t0), . . . ,y(tk),A,B,∆,Σ∗) ∝ f(y(t0), . . . ,y(tk)|R,A,B,∆,Σ∗)π(R),

where f(y(t0), . . . ,y(tk)|R,A,B,∆,Σ∗)π(R) is the likelihood function of quality ob-

servations given parameters (R, A, B, ∆, Σ∗). According to our assumption, y(t0)

is a constant vector with value 0. Thus, we have:

p(R|y(t0), . . . ,y(tk),A,B,∆,Σ∗) ∝ f(y(t1), . . . ,y(tk)|R,A,B,∆,Σ∗)π(R), (23)

According to Eq. 22, y(ti), for i = 1, . . . , k, follows a Brownian motion with a

linear drift. Thus, using the Markovian property f(y(t1), . . . ,y(tk)|R,A,B,∆,Σ∗)

can be decomposed as follows:

f(y(t1), . . . ,y(tk)|R,A,B,∆,Σ∗) =
k∏
i=1

fi(y(ti)|y(ti−1),R,A,B,∆,Σ∗) (24)

where fi(y(ti)|y(ti−1),R,A,B,∆,Σ∗) represents the p.d.f. of y (ti) given y(ti−1), R,

A, B,∆,Σ∗. When ∆ is a full rank matrix, y(ti)| (y(ti−1),R,A,B,∆,Σ∗) follows

a multivariate normal distribution with mean vector µY(ti) and covariance matrix

ΣY(ti) [8]. The explicit formulation of µY(ti) is:

µY(ti) = eδt∆y(ti−1) + UR,

where U =
[
eδt∆ − I

]
∆−1A′. ΣY(ti) can be evaluated by solving an ordinary differ-

ential equation (ODE) system. In particular, ΣY(ti) = X(t)|t=δt , where X(t) is the
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solution of the following ODE system:

dX(t)

dt
= ∆X(t) + X(t)∆′ + Σ∗ (25)

X(0) = 0

Note that ΣY(ti) does not depend on ti, we have ΣY(t1) =. . . = ΣY(tk) = X(t)|t=δt .

Based on the aforementioned distribution of y(ti)| (y(ti−1),R,A,B,∆,Σ∗), we

show in Proposition 4.1 below, that the posterior distribution of R also follows a

multivariate normal distribution.

Proposition 4.1: Given real-time quality measurements {y (t0) , . . . , y(tk)} and

model parameters A,B,∆,Σ∗, the posterior distribution of R follows a multivariate

normal distribution with mean µR,k and covariance matrix ΣR,k, where

µR,k = ΣR,k

[
k∑
i=1

[
y(ti)− eδt∆y(ti−1)

]′
Σ−1

Y (ti)U + µ′RΣ−1
R

]′
,

ΣR,k = (kU′Σ−1
Y (t1)U + Σ−1

R )−1.

Proof of Proposition 4.1:

Proposition 4.1 updates the posterior distribution of R by synergistically leverag-

ing historical knowledge (its prior distribution) as well as current observations (real-

time quality measurements). This step can be done using the Bayesian theory in

Eq. 23. In the following proof, we will show that posterior distribution of R actually

follows a multivariate normal distribution. The detailed proof is as follows:

According to Eq. 24, f(y(t1), . . . ,y(tk)|R,A,B,∆,Σ∗) can be decomposed as

follows:

f(y(t1), . . . ,y(tk)|R,A,B,∆,Σ∗) =
k∏
i=1

fi(y(ti)|y(ti−1),R,A,B,∆,Σ∗),

where fi(y(ti)|y(ti−1),R,A,B,∆,Σ∗) represents the p.d.f. of a multivariate normal

distribution with mean µY(ti) = eδt∆y(ti−1) + UR and covariance matrix ΣY(ti),

which can be solved using the ODE system expressed in Eq. 25. Hence, according
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to Eq. 23, the expression of p(R|y(t0), . . . ,y(tk),A,B,∆,Σ∗) can be expanded as

follows:

p(R|y(t0), . . . ,y(tk),A,B,∆,Σ∗)

∝ exp

{
−1

2

[
k∑
i=1

(y(ti)− µY(ti−1))′Σ−1
Y (ti) (y(ti)− µY(ti−1))

]}

× exp

{
−1

2

[
(R− µR

′)Σ−1
R (R− µR

′)
]}

.

We substitute the expression of µY(ti) using eδt∆y(ti−1) + UR and ΣY(ti) using

ΣY(t1), for i = 1, 2, . . . , k. Thus, we have:

p(R|y(t0), . . . ,y(tk),A,B,∆,Σ∗)

∝ exp

{
−1

2
R′(kU′Σ−1

Y (t1)U + Σ−1
R )R

}
× exp

{
−

[
k∑
i=1

(
y(ti)− eδt∆y(ti−1)

)′
Σ−1

Y (ti)U + µ′RΣ−1
R

]
R

}

∝ exp

{
−1

2
(R− µR,k)

′Σ−1
R,k(R− µR,k)

}
,

where µR,k = ΣR,k{
∑k

i=1

[
y(ti)− eδt∆y(ti−1)

]′
Σ−1

Y (ti)U + µ′RΣ−1
R }′ and ΣR,k =

(kU′Σ−1
Y (t1)U + Σ−1

R )−1.

According to Proposition 4.1, the expression of p(R|y(t0), . . . ,y(tk),A,B,∆,Σ∗)

can be represented by the p.d.f. of a multivariate normal distribution with mean

vector µR,k and covariance matrix ΣR,k. Once we obtain the posterior distribution of

R, we utilize this updated distribution as well as the real-time quality measurements

y(t0), . . . ,y(tk) to further update the RLD of the MMP functioning in the field.

Details are provided in the following subsection.

4.2.2 Updating the RLD of the MMP

The residual life of an MMP functioning in the field is the first time when any quality

measurement exceeds a pre-defined failure threshold. Let Tk represent the residual

life of the MMP at time tk and `m represent the quality failure threshold at the mth
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stage. The distribution of Tk can be expressed as follows:

P (Tk ≤ t|y(t0), . . . ,y(tk)) = 1− P (Y(tk + t) ≤ `|y(t0), . . . ,y(tk)) , (26)

where ` = (`1, . . . , `M)′. Similar definition of system failure has been widely used in

the reliability literature, examples include [42, 76, 105, 107]. Based on Eq. 26, calcu-

lating the RLD is equivalent to estimating the distribution of Y(tk+t)| (y(t0), . . . ,y(tk)).

We have proved in Proposition 4.1 that the posterior distribution of R given

{y(t0), . . . ,y(tk)} follows a multivariate normal distribution with mean vector µR,k

and covariance matrix ΣR,k. In addition, we have proved in Section 4.2.1 that for

all i = 1, . . . , k, Y(ti)|(y(ti),R) follows a multivariate normal distribution with mean

vector µY(ti) and covariance matrix ΣY(ti) .

Similarly,Y(tk + t)| (y(t0), . . . ,y(tk),R) also follows a multivariate normal dis-

tribution with mean vector µY(t) = et∆y(tk) +
[
et∆ − I

]
∆−1A′R and covariance

matrix ΣY(t) = X(t)|t=t, where X(t) is the solution to the ODE system in Eq.

25. If we define Ut =
[
et∆ − I

]
∆−1A, according to [20], the distribution of Y(tk +

t)| (y(t0), . . . ,y(tk)), without conditioning on R, still follows a multivariate normal

distribution with mean vector et∆y(tk) + UtµR,k and covariance matrix ΣY(t) +

UtΣR,kU
′
t. Consequently, the RLD of the MMP can be calculated based on the dis-

tribution of Y(tk+t)| (y(t0), . . . ,y(tk)). Since Y(tk+t)| (y(t0), . . . ,y(tk)) is normally

distributed, the distribution of Tk ≤ t|y(t0), . . . ,y(tk) is skewed. Thus, we utilize the

median of Tk ≤ t|y(t0), . . . ,y(tk) as the residual life prediction.

4.3 Numerical Studies

We conduct a series of numerical studies to evaluate the performance of our proposed

methodology and utilize the QR-chain model by [29] as the benchmark to compare

the performance. To the best of our knowledge, the QR-chain model is the only

existing method that addresses a similar research area — modeling the interactive

relationship between tool wear and quality degradation in MMPs with the goal of
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reliability estimation. Our work is a generalization of the QR-chain model, since we

address the impact of quality degradation on the actual process of tool wear rather

than the impact on tool breakage, which is a fundamental shift from the previous

paradigm. Also, our model incorporates real-time quality measurements rather than

only historical data, and thus can be used to obtain real-time estimation of system

residual life instead of static off-line reliability estimate. Therefore, we use the QR-

chain model as a benchmark to investigate how much improvement can be obtained

in predicting the system lifetime by utilizing our methodology.

To implement the QR-chain model in a fair manner, we assume an identical linear

model for quality degradation Y(t) as our proposed quality model described in Eq.

16. Note that the QR-chain model only focuses on the impact of quality degradation

on the probability of tool breakage rather than the rate of tool wear. Thus, when the

impact of quality degradation on tool breakage is ignored, the model of tool wear in

the QR-chain model can be expressed as follows:

dS(t) = Rdt+ dW(t). (27)

where the tool wear rate is equal to R but not related to Y(t).

Comparing the equation above to our proposed tool-wear model in Eq. 20, we

note that the QR-chain model, when it does not consider failures due to tool breakage,

is a special case of our proposed model by letting the matrix C equal to 0.

In what follows, we first describe the simulation set-up and the procedure we use

to simulate the signals of tool wear and quality degradation. Next, we discuss the

method for estimating the model parameters and testing the linear assumption in

Eq. 19 and Eq. 20. Finally, we compare the performance of our methodology as

well as its sensitivity to different parameter values to the QR-chain model. Model

parameters studied in the sensitivity analysis include the amplitude of process noise,

the magnitude of the impact of quality degradation on tool wear, and the number of

stages.
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4.3.1 Simulation Framework and Signal Generation

Our simulation set-up is inspired by the single-stage sheet metal stamping process

presented in [30], the same authors as the QR-chain model, who used a similar quality

model to study quality-based maintenance. The stamping process (as shown in Fig.

12 [30]) has two dies, an outer die and an inner die, which are subject to tool wear

and thus will cause the dimensional deviation of formed products. The quantitative

impact of tool wear on quality degradation is estimated using a series of experiments

conducted by [62]. The detailed result with only first-order terms is as follows:

output part quality = 0.1136× tool wear of outer die (28)

+ 0.0219× tool wear of outer die + 0.019× incoming part quality + noise,

In addition, the authors in [30] characterized the tool wear of both outer and inner

dies using the same model in the QR-chain formulation shown in Eq. 27. They

obtained the tool wear parameters through real stamping processes.

Figure 12: Stamping process
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Table 4: Parameter values used for generating degradation signals

Source True Value Estimated Value

A [28]


0.1136 0.0216 4.1e−5

0.0219 4.16e−4 7.91e−6

0 0.1136 0.0216
0 0.0219 4.16e−4

0 0 0.1136
0 0 0.0219

 Pre-specified

B [28]


0.019 3.16e−4 6.859e−4

1 0.019 3.16e−4

0 1 0.019
0 0 1

 Pre-specified

C
Subjective
knowledge


4 20 0
4 12 0
0 4 20
0 4 12
0 0 4
0 0 4



′

×10−3


4.2 19.7 0
4.01 12 0.04
0.04 3.78 19.8

0 3.93 12.1
0 0 3.67
0 0 3.86



′

×10−3

h
Subjective
knowledge

1000 Pre-specified

ΣZ

[28] and
subjective
knowledge

diag(230, 1, 1, 1)× 10−4 Pre-specified

ΣW [28]
diag(7.14, 2, 7.14, 2, 7.14, 2)

×10−9h
diag(7.12, 1.99, 7.13, 2, 6.91,

1.95)× 10−6

µR [28]
diag(6.94, 4.14, 6.94, 4.14,

6.94, 4.14)× 10−6h
diag(7.15, 4.03, 6.95, 3.98,

7.04, 4.1)× 10−3

ΣR
Subjective
knowledge

diag(5.35, 1.9, 5.35, 1.9, 5.35,
1.9)× 10−6

diag(5.31, 1.76, 4.95, 1.87,
5.85, 1.74)× 10−6

`
Subjective
knowledge

(0.5, 0.5, 0.5)
′

Pre-specified

δt
Subjective
knowledge

1 Pre-specified
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In this section, we would like to formulate a numerical study framework that

resembles real-world applications related to the QR-chain model. In this way, we can

compare the performance of our proposed methodology with the QR-chain model on a

fair base. Hence, we focus on an MMP system with three consecutive stamping stages,

each of which satisfies the quantitative model in Eq. 28. We assume that product

quality is monitored after each stage. The process noises consist of the incoming

raw part error as well as the measurement noise at each stage. The corresponding

simulation set-up is illustrated in Fig. 13. We determine simulation parameters

according to Eq. 28 and tool wear parameters in [30]. Parameters that are not

provided in Eq. 28 or [30] are determined by subjective knowledge. All simulation

parameters are listed in Table 4. Note that the unit of tool-wear parameters in [30]

is “per operation”. Here we assume sampling is taken every 1000 operations and

compute parameter values accordingly.

Stage 1 Stage 2 Stage 3

)(1 tS )(2 tS )(3 tS

)(2 tZ )(3 tZ

)(1 tY )(2 tY )(3 tY

)(1 tZ

Raw part 
error

)(4 tZ

Outer Die

Noise

Inner Die

)(4 tS

Outer Die Inner Die
)(5 tS

Outer Die Inner Die

NoiseNoise

)(6 tS

Figure 13: Simulation set-up

We simulate tool wear S(t) and quality degradation Y(t) according to the inter-

active model presented in Eq. 16 and Eq. 20 in Section 4.1. The details are described

as follows:

Step 1: Generate a realization of the nature rate of tool wear R according to

its prior distribution, i.e., the multivariate normal distribution with mean vector µR

and covariance matrix ΣR. The values of µR and ΣR are specified in Table 4.

Step 2: Set S (t0) = 0 and Y (t0) = 0;
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Step 3: At any epoch ti, for i ≥ 1, Simulate the values of S (ti) and Y(ti)

iteratively:

(3.a.) Given R and Y (ti−1), generate S (ti) according to Eq. 20;

(3.b.) Given S(ti), generate Y(ti) according to Eq. 16. Stop when Y(ti) exceeds

the failure threshold l.

4.3.2 Parameter Estimation and Goodness-of-Fit Testing

The parameters involved in our proposed methodology are determined in two ways:

(1) We assume that the values of A, B, and Σz are determined by the physical

configuration of the MMP, and thus can be obtained based on expert knowledge.

Similar examples of utilizing expert knowledge can be found in [31, 61, 73]. (2) On

the other hand, the prior mean and variance of the nature rate of tool wear µR and

ΣR, the error variance error ΣW, and the coefficient matrix C may not be obtained

via expert knowledge. Thus, we estimate these parameters using historical quality

degradation and tool wear measurements in a regression framework. The detailed

procedure is explained below:

According to the model in Eq. 19, given the monitored quality degradation and

tool wear measurements for stage m, the difference between two consecutive tool wear

levels Sm(ti−1) and Sm(ti) can be expressed as follows:

Sm(ti)− Sm(ti−1) =

∫ ti

ti−1

[Rm + c′mY(ω)] dω +Wm(δt),

for m = 1, 2, . . . ,M . The right-hand-side of the above expression involves the inte-

gration of stochastic process Y(ω), which is challenging to estimate directly. Instead,

we exploit an approximation, which assumes Y(ω) as constant during (ti−1, ti) if the

samping interval δt is small. That is, Y(ω) ≈ Y(ti−1), for ω ∈ (ti−1, ti). Hence,

Sm(ti)− Sm(ti−1) can be approximated as follows:

Sm(ti)− Sm(ti−1) ≈ [Rm + c′mY(ti−1)] δt +Wm(δt).
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By virtue of this discretization, Sm(ti)− Sm(ti−1) follows a normal distribution with

the mean [Rm + c′mY(ti−1)] δt and the variance σ2
w,mδt, where σ2

w,mδt is the variance of

the noise term Wm(δt). Consequently, parameters Rm, c′m, and σ2
w,m can be estimated

through regression.

Suppose the last observation epoch is tk. Let {s(t0), . . . , s(tk)} and {y(t0), . . . ,y(tk)}

represent the observed tool wear and quality degradation, respectively. Thus, the re-

gression based estimation results for each m = 1, 2, . . . ,M are as follows:
[
R̂m, ĉ

′
m

]
=

(X′X)−1X′δSm and σ̂2
w,m =

|[1−X(X′X)−1X′]δSm|2
k−m−1

, where δSm= (sm(t1) − sm(t0), . . . ,

sm(tk) − sm(tk−1)) and X = (1,y′(t0); 1,y′(t1); . . . ; 1,y′(tk)). The r2 value of each

regression represents how well the linear assumption in Eq. 19 holds in the data.

A high r2 value will indicate a sufficient linearity. If the linearity does not hold, a

higher-order model may be necessary.

Usually, multiple runs of MMP operations are required to have a sufficient number

of estimated values. Then, we can use multiple R̂m to estimate the prior mean and

variance of Rm, which are represented by µR,m and σ2
R,m. We can also take the average

of all ĉ′m and σ̂2
w,m to get a more reliability estimates.

In this numerical study, we generate a training data set that consists of simulated

tool wear S(t) and quality degradation Y(t) from 50 runs of simulation according to

the specifications listed in Table 4. The average r2 value from regression applied to

the training set when m = 1, 2, 3, 4, 5, 6 is equal to 0.98, 0.99, 0.91, 0.95, 0.42, 0.61,

respectively. The fifth and sixth r2 values that correspond to the outer and inner dies

on the 3rd stage are lower than those of dies on the other two stages. This is because

according to the simulation configuration, the slope of regression represented by c′m

is smaller when m = 5, 6 compared to when m = 1, 2, 3, 4, which reduces the sum-

of-square regression. From the overall r2 values we can see that the linear model in

Eq. 19 can sufficiently represent the simulated data. We list the estimated values of

Ĉ, Σ̂W, µ̂R and Σ̂R based on the training data set in Table 4. It is demonstrated in
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Table 4 that our estimated values are very close to their true values. These estimated

parameter values are subsequently used to predict the system residual life in the

following subsections.

4.3.3 Performance Comparison

4.3.3.1 When the impact of product quality on tool wear exists (i.e., C is equal
to the value in Table 4)

First we compare the performance of our methodology with the QR-chain model when

no real-time quality measurements are available. Under this condition, according to

the derivation in Section 4.2, our work will rely on historical information to derive

a lifetime distribution/reliability of the system. Similarly, the QR-chain model also

computes off-line system reliability. To investigate the accuracy of reliability estima-

tion using both methodologies, we simulate the actual system reliability by generating

1000 runs of simulation and record their actual lifetimes.

We present in Fig. 14 the estimated system reliability without incorporating real-

time quality measurements based on our proposed model, the QR-chain model, and

the actually simulated data. We observe that the reliability estimate based on our

model is very close to the simulated reliability. However, the reliability estimate based

on the QR-chain model demonstrates a bias caused by overestimate. We believe that

this bias is mainly caused by the fact that the QR-chain model does not account for

the effect of quality degradation on the instantaneous rate of tool wear, which tends

to accelerate quality degradation and the system failure.

Next, we compare the performance of our methodology with the QR-chain model

when real-time quality measurements are available. According to Section 4.2, our

methodology can incorporates real-time quality measurements to online update the

RLD of the system, which provides up-to-date information of the predicted lifetime.

Since the QR-chain model does not incorporate real-time monitoring information

to refine/update its model, the predicted lifetime is calculated solely based on the

66



0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sampling Interval

Re
lia

bi
lit

y
 

 
Simulated reliability
QR−chain model
Our methodology

Figure 14: System reliability when C is equal to the value in Table 4

following logic: At any observation epoch, if an MMP has not failed yet, we compute

the conditional lifetime distribution given the survival at current epoch using the

reliability curve presented in Fig. 14. Then, we choose the median of the conditional

lifetime distribution as the updated lifetime prediction.

The quantity of performance measurement is the lifetime prediction error defined

below in Eq. 29:

prediction error = |1− Current observation epoch + Predicted residual life

True lifetime
| (29)

Here, Current observation epoch + Predicted residual life is equal to the predicted

lifetime, and the true lifetime is obtained via the simulated signals.

Particularly, for each run of simulation, we predict the residual life of the MMP at

the 10th, 20th, ... , 90th lifetime percentiles. In other words, we estimate its residual

life when 10%, 20%, ..., 90% of the system lifetime is revealed. Then, we calculate

the prediction error according to Eq. 29.

We generate a testing data set that consists of simulated data from 50 runs of

simulation. The prediction errors of the testing data set using both our methodology

and the QR-chain model are presented in Fig. 15. We observe that the prediction

error from our methodology exhibits progressive reduction as we incorporate more
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real-time observations, while the prediction error from the QR-chain model remains

high at all lifetime percentiles. We believe that this is due to two reasons: First, the

QR-chain model does not account for the effect of quality degradation on tool wear,

which tends to accelerate quality degradation and the system failure, and thus leads

to a consistent bias in the prediction. Second, the estimated reliability according to

the QR-chain model is a static estimate based on the reliability data, whereas our

approach incorporates the real-time quality measurements that capture the latest

status of the system.
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Figure 15: Comparison of prediction error associated with our methodology and the
QR-chain model when C is equal to the value in Table 4

4.3.3.2 When the impact of product quality on tool wear does not exist (i.e.,
C=0)

In this subsection, we focus on the situation when the impact of product quality on

the rate of tool wear does not exist, which is the situation that the QR-chain model

is capable of modeling. Same as Section 4.3.3.1, the performance comparison consists

of two parts:

First, we compare the performance of our methodology with the QR-chain model

when no real-time quality measurements are available. Actual system reliability is

computed by generating 1000 runs of simulation and recording their lifetimes. Fig. 16

illustrates the estimated system reliability based on our methodology, the QR-chain
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model, and the simulated reliability. We observe that reliability estimates based on

the two methodologies are both very close to the simulated reliability. This is because

when the impact of product quality on the instantaneous rate of tool wear does not

exist and no real-time quality measurements are available, both methodologies utilize

the same model and the same historical data to capture system reliability.
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Figure 16: System reliability when C = 0

Second, we compare the performance of our methodology with the QR-chain model

when real-time quality measurements are available. Same as in Section 4.3.3.1, we

generate data from 50 runs of simulation and show the lifetime prediction errors from

both methodologies at the 10th, 20th, ... , 90th lifetime percentiles in Fig. 17. We

notice that the prediction error from the QR-chain model is significantly lower than

what presented in Fig. 15. This is mainly due to the fact that when the impact of

quality degradation on the instantaneous rate of tool wear (represented by C) does

not exist, the lifetime distribution estimated from the QR-chain model is not biased.

We also observe that the prediction error from our methodology exhibits similar

progressive reduction as shown in Fig. 15. On the contrary, prediction error from QR-

chain model remains at a high level at all lifetime percentiles. This difference is mainly

due to the fact that the prediction using the QR-chain model solely based on the
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survival of MMP, whereas our approach incorporates real-time quality measurements

that capture the latest degradation status of the system to reason about the future

degradation of the system.
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Figure 17: Comparison of prediction error associated with our methodology and the
QR-chain model when C = 0

4.3.4 Sensitivity Analysis

In this subsection, we investigate how the performance of our model changes at the

values of key model parameters change. Specifically, we conduct three numerical

experiments with the goal of studying how the accuracy of the lifetime prediction

changes under (1) different amplitudes of process noise, (2) different magnitudes of

impact from quality degradation on the instantaneous rate of tool wear and(3) differ-

ent numbers of stages. To facilitate the simulation process, we begin with a baseline

set-up with parameter values chosen according to Table 4. We then define two factors:

n1 and n2, where n1 is used to define different noise levels, and n2 is used to scale the

matrix C. The detailed procedure of the sensitivity analysis is summarized below:

1. Experiment I: evaluate the effect of the amplitude of process noise by mul-

tiplying the value of ΣZ in Table 4 with the scale parameter n1, where n1 =

0.1, 0.5, 1, 2, 5.
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2. Experiment II: evaluate the effect of the magnitude of impact from quality

degradation on the instantaneous rate of tool wear by multiplying the value of

C in Table 4 with n2, where n2 = 0, 0.5, 1, 2, 4.

3. Experiment III: evaluate the effect of the number of stages by choosing M =

3, 6, 9, 12, 15. The values of the other parameters related to this experiment

are listed in the Appendix.

For each of these three experiments, we generated 50 runs of simulation and

present the average prediction errors from both methodologies at the 30th, 60th, and

90th lifetime percentiles in Fig. 18, 19, and 20, respectively. We observe that:

1. The prediction error from both models increase with the amplitude of process

noise (scaled by n1). This is because a higher process noise will lower the

prediction accuracy.

2. As the magnitude of the impact from quality degradation on tool wear (scaled

by n2) increases, the prediction error from the QR-chain model increases while

the prediction error from our methodology decreases. This is because a higher

amplitude of matrix C accelerates the system failure, and thus the QR-chain

model yields a higher bias in predicting the lifetimes. On the other hand, C is

compounded in both the instantaneous rate of tool wear and the process noise.

Under current parameter setting, increasing the amplitude of C increases the

ratio of the instantaneous rate of tool wear vs. the process noise, which improves

the prediction accuracy of our methodology.

3. Prediction errors from both methodologies slightly decrease as the number of

stages increase. This is because as the number of stages increases, the impact

of tool wear and process noise from preceding stages on the quality degradation

of subsequent stages increases (reflected in matrices A and B), which tend to
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accelerate the system failure. This is equivalent to increasing the ratio of the

instantaneous rate of tool wear vs. the process noise. Thus, both methodologies

show improved accuracy.

4. The prediction error from our methodology improves as the lifetime percentile

increases. This is because our methodology leverages the real-time quality mea-

surements to on-line update the RLD of the systems.
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Figure 18: Average prediction errors at different scales of process noise
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Figure 19: Average prediction errors at different scales of matrix C

4.4 Details for Industrial Implementation

In this section, we describe the procedure of applying our methodology in real indus-

trial applications, which will serve as a guideline for practitioners.
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Figure 20: Average prediction errors at different number of stages

First, several model parameters in our methodology need to be determined using

the configuration of the MMPs: The constant model parameters A and B that rep-

resent the impact of tool wear and process noise on quality degradation should be

derived based on the configuration of the MMP, which includes the layout of the man-

ufacturing stages, the locations of quality measurement points, the characteristic of

process noise, etc. Take the auto-body assembly process presented [31] as an example.

Matrix A can be calculated using the geometrical relationship between the locating

pin (tool) and the quality measurement points on the raw parts. Matrix B can be

calculated considering the randomness of allocating raw parts onto the locating pin.

The variance of process noise ΣZ represents the significance of the noise, which may

include the sensitivity of the quality monitoring sensors, the precision of allocating

raw parts onto each stage, etc.

Second, model parameters regarding to tool wear, including µR, ΣR, ΣW, and

C need to be estimated from historical data. Requirements of historical data are

outlined below:

1. Several MMPs with an identical configuration need to be monitored from the

beginning of operation until failure.
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2. Both tool wear and product quality degradation in each MMP need to be ob-

served periodically, i.e., using on-line quality and tool wear monitoring tech-

niques.

3. Without loss of generality, the observation (sampling) interval can be set as a

constant. The value of the interval may vary in different applications.

With the historical data available, parameters can be estimated by following the

same linear regression procedure discussed in Section 4.3.2.

Finally, with the above model parameters estimated off line, we can incorporate

real-time quality measurements to on-line update the RLD of an MMP functioning in

the field. This requires real-time quality measurements only. No tool wear monitoring

is needed. The observation interval can be set to be equal to that of the historical data.

The procedure of updating the RLD has been discussed in Section 4.2. In summary,

with quality degradation being observed up to any epoch tk, we first update the

posterior distribution of the natural rate of tool wear R according to Proposition 4.1.

Based on the posterior distribution, the RLD of the MMP is updated according to

Eq. 26. Finally, we utilize the median of the RLD as the residual life prediction.
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CHAPTER V

CONTROLLING THE RESIDUAL LIFE DISTRIBUTION

OF PARALLEL MULTI-COMPONENT SYSTEMS

THROUGH WORKLOAD ADJUSTMENT

Complex systems often consist of multiple components that are required to work

together in parallel to satisfy a specific engineering objective. As an example, in

manufacturing processes, several identical machines may need to operate together

in parallel to fabricate the same products simultaneously in order to meet the high

production demand. This parallel configuration is usually designed with some level

of redundancy to compensate for unexpected events. In this way, when only a small

portion of components fails to operate due to either unexpected machine downtime or

scheduled maintenance, the remaining components can still achieve the engineering

objective by increasing their workloads up to the designed capacities. However, the

workload of a component apparently impacts the components degradation rate as well

as its failure time. Specifically, this paper considers the case that a higher workload

assignment accelerates the components degradation and vice versa. Based on this

assumption, we develop a methodology to actively control the degradation as well as

the predicted failure time of each component by dynamically adjusting its workloads.

Our goal is to prevent the overlap of component failures within a certain time period

through taking advantage of the natural redundancy of the parallel structure, which

may potentially lead to a better utilization of maintenance resources as well as a

consistently ensured production throughput. A numerical study is used to evaluate

the performance of the proposed methodology under different scenarios.

This chapter is organized as follows. Section 5.1 describes the problem formulation

75



and introduces the component degradation model. Next, Section 5.2 derives the

RLD of components, based on which Section 5.3 develops our proposed workload

adjustment strategy. Validation studies using a simulated case study are given in

Section 5.4.

5.1 Component Degradation Modeling

5.1.1 Problem Formulation

We consider a parallel multi-component system that consists of M components op-

erating in parallel to perform the same type of operations. We define the largest

amount of operations each component is capable to perform in a unit time as the

capacity of the component, which is denoted as Um for component m. The actual

amount of operations that each component performs in a unit time is defined as the

workload, which is denoted as um(t) for component m at time t. By default, we have

0 ≤ um(t) ≤ Um, for m = 1, 2, . . . ,M . If component m fails at time t, then um(t) = 0.

We further denote by TH(t) the throughput of the system at time t, which is defined

as the summation of workloads from all components, i.e., TH(t) =
∑M

m=1 um(t). Let

M̃(t) be the number of components that are functional/operational at time t. Thus,

the capacity (i.e., the maximum throughput) of the system at time t is equal to∑M̃(t)
m=1 Um. Note that TH(t) = min[

∑M̃(t)
m=1 Um, D], in which D represents the produc-

tion demand, or the targeted throughput. In other words, when the capacity offered

by the remaining functional components is smaller than the demand, it indicates a

loss of productivity in the system. Therefore, it is important to separate the overlap

of component failures to ensure a consistently satisfactory throughput. To highlight

our main idea, here we assume that the demand is constant and components only

perform one type of operation. It is worth of mentioning that the unit of workload,

throughput, demand, and capacity may be either discrete or continuous, depending

on the application areas. For example, in discrete manufacturing processes, the unit
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can be the number of parts fabricated per hour, while in a continuous system (e.g.,

the power grid), the unit can be megawatt (MW).

Fig. 21 illustrates the structure of the parallel multi-component system investi-

gated in this chapter.
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Figure 21: The structure of parallel multi-component systems

5.1.2 Degradation Modeling Framework

As we know, degradation is a natural and inevitable process due to performing op-

erations. A component is considered to be failed when the degradation level of the

component exceeds a pre-defined failure threshold. The failure threshold is often de-

termined either by industrial standards [42] or based on the data-driven approach

[74] (e.g., using the last observations before failure in all historically failed data to

estimate the failure threshold). Once a component becomes failed, it has to be re-

paired/replaced to restore to the original healthy status before it can restart to operate

properly.

Here, we would like clarify that the only type of component failure we consider in

this chapter is the failure due to degradation, which is the only failure mode considered

in most existing research in the degradation modeling area [18, 37, 42, 74, 76, 106, 115].

We admit that various other failure modes exist in reality, such as the catastrophic

failure. However, we decide to leave the research about various failure modes into

future work. In addition, it is common that the degradation of a component could
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potentially affect the quality of the performed operations. Yet, this chapter does not

consider component failure due to unsatisfactory quality of the performed operations

but only due to its own degradation. In fact, modeling the relationship between

component degradation and the quality of operations requires extensive study on

system configurations and mathematically modeling [29] and will be investigated in

future work.

We define Sm(t) to be the amplitude of the degradation signal of component m

at time t. We start by introducing a generic degradation model, in which Sm(t) is

modeled as a stochastic differential equation:

dSm (t) = rm(t)dt+ dWm(t), (30)

Here rm(t) is the instantaneous degradation rate, and Wm(t) is a Brownian motion

with variance σ2
m(t), in which σm is defined as the diffusion parameter.

In the proposed work, we explicitly model the relationship between the instan-

taneous degradation rate rm(t) and the workload um(t) for component m at time t.

To model such relationship is indeed a challenging task, as it is highly dependent

on the specific application and working condition. Research efforts have been made

attempting to characterize this relationship between working condition and degra-

dation rate through historical data as well as reasonable mathematical assumptions

[36]. The novelty of our work is to study the workload adjustment strategy for bet-

ter controlling the degradation process of components by leveraging this relationship

function.

Here, to highlight our main idea, we focus on a special case that the instantaneous

degradation rate rm(t) is proportional to the workload um(t):

rm (t) = βmum (t) , (31)

where βm is defined as the degradation coefficient of component m in this chapter.

This linear assumption is consistent with our intuition as a component degrades faster
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when it has higher workload assigned. Substitute Eq. 31 into Eq. 30, the degradation

model in Eq. 30 can then be rewritten as:

dSm (t) = βmum (t) dt+ dWm (t) . (32)

In what follows, we provide a metal cutting example to illustrate the linearity

assumption in Eq. 31. In this example, the component refers to the cutting tool that

removes material from the work piece. The workload corresponds to the production

rate, i.e., the number of parts being machined in a unit time. In a standard metal

cutting process, there are typically two key parameters that determine the tool life:

cutting speed V and cutting length L. The actual cutting time for machining one

part is expressed as L/V . If we denote Tl as the tool life, then the total number of

machined parts during the lifetime of a tool can be calculated as TlV/L. The total

production time is given by Tp=
TlV
u×L (recall u is the production rate). It is clear that

Tp is inversely proportional to the degradation rate r. Assuming that the cutting

length L remains constant, we have the following:

r ∝ u

TlV
. (33)

From [100], we also know that the tool life can be expressed as:

Tl ∝ V −
1
α , (34)

where α depends on operational variables.

Furthermore, [68] modeled the relationship between cutting speed V and produc-

tion rate u as:

Const

u
= Td +

Const

V
,

where Td is the idle time between two consecutive operations.

Building upon the model proposed by [68], we consider a scenario in which ad-

justing the production rate is achieved by adjusting the idle time Td. Consequently,
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by combining Eq. 33 and 34, we can see that: r ∝ u. In future work, we will extend

this linear model into a more general case when dealing with different applications

and conditions.

Recall that βm represents the “degradation coefficient” of component m. In this

chapter, we assume the exact value of βm is unknown and random. This assumption of

unit-to-unit variability has been widely adopted in the literature [18, 37, 42, 74, 115]

to capture the variation in the degradation processes due to material inhomogeneity

and other manufacturing related uncertainty. Specifically, we model βm as a random

variable whose prior distribution is a normal distribution: βm∼N (κm, τ
2
m), where

κm and τ 2
m denote the mean and the variance, respectively. Here, the probability of

βm ≤ 0 is often very small and thus is ignored in the chapter. In the next section, this

prior distribution of βm will be updated by using real-time measurements collected

from condition monitoring via a Bayesian approach.

5.1.3 Degradation Model Updating

As mentioned earlier, the degradation model in Eq. 32 is updated by using in-situ

monitoring data. The goal is to incorporate the most recent degradation status of the

components to improve decision making regarding workload adjustments. Without

loss of generality, we assume that condition monitoring and workload adjustment are

performed at discrete observation epochs t0, t1, . . . , tk, where tk is the most recent

observation epoch, and the sampling intervals are constant, i.e., t1 − t0 = t2 − t1 =

. . . tk− tk−1 = δt. Furthermore, let Sm(tk) be the amplitude of the degradation signal

of component m at observation time tk and um(tk−1) be the corresponding workload

assigned to that component during the interval (tk−1, tk). Using Eq. 32, we can see

that δSm (tk) = Sm (tk)− Sm (tk−1) satisfies the following:

δSm (tk) = βmum (tk−1) δt+Wm(tk)−Wm(tk−1).
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Based on the property of Brownian motion, we haveWm(tk)−Wm(tk−1) ∼ N (0, σ2
mδt).

Thus, given the corresponding workload assignment um(tk−1) and degradation coef-

ficient βm, the conditional distribution of δSm (tk) still follows a normal distribution:

δSm (tk) |um(tk−1), βm ∼ N (βmum (tk−1) δt, σ2
mδt). By the property of independent

increments of the Brownian motion, it is clear that δSm (t1) , . . . , δSm (tk) are sta-

tistically independent. Therefore, the probability density function of the signal incre-

ments can be expressed as follows:

p (δSm (tk) |um(tk−1), βm) =
k∏
i=1

p (δSm (ti) |um (ti−1) , βm),

where δSm (tk) = [δSm (t1) , . . . , δSm (tk)]
′ and um (tk−1) = [um (t0) , . . . , um (tk−1)]′.

Using Bayes theorem, the posterior distribution of βm given δSm (tk) and um (tk−1)

can be computed by using Proposition 5.1.

Proposition 5.1. βm|δSm (tk) ,um (tk−1) follows a normal distribution with mean

κm (tk) and variance τ 2
m (tk) satisfying:

κm (tk) =
τ 2
m

∑k
i=1 δSm (ti)um (ti−1) + κmσ

2
m

τ 2
m

∑k
i=1 [um (ti−1)]2δt+ σ2

m

,

τ 2
m (tk) =

σ2
mτ

2
m

τ 2
m

∑k
i=1 [um (ti−1)]2δt+ σ2

m

.

The detailed proof is in the appendix.

5.2 Residual Life Distribution

The residual life of a component is defined as the first time that its degradation

level reaches a pre-defined failure threshold. Here, we denote the failure threshold of

component m as Hm. Let Tm be the residual life of component m. The RLD given

the degradation coefficient βm follows an inverse Gaussian (IG) distribution [18]:

P (Tm ≤ t|Sm (tk) , um (tk) , βm) ∼ IG (t;µm(tk), λm(tk)) , (35)

where IG(t; · , ·) represents the cumulative distribution function of an IG dis-

tribution, µm (tk) = Hm−Sm(tk)
βmum(tk)

is the mean parameter of the IG distribution, and
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λm (tk) = [Hm−Sm(tk)]2

σ2
m

is the shape parameter of the IG distribution. Here, recall that

Hm is the failure threshold and um(tk) is the most recent setting of the production

rate.

Although the conditional RLD follows Eq. 35, there is no explicit expression of

the unconditional RLD, which can be estimated using simulation-based techniques

[18]. Since these techniques are computationally expensive, we propose to focus on

the conditional RLD and utilize κm (tk), (i.e. the posterior mean of βm) as the point

estimator of βm. As a result, the mean parameter of the IG distribution, µm (tk) in

Eq. 35, is approximated by µm (tk) = Hm−Sm(tk)
κm(tk)um(tk)

.

In this work, µm (tk) is used as an estimate of the predicted residual life. This

approach was also used by [37] and was shown to provide a conservative lower bound

of the mean of the unconditional RLD. For notational convenience, we define qm (tk) =

Hm−Sm(tk)
κm(tk)

and thus, we have:

µm (tk) =
qm (tk)

um (tk)
. (36)

From Eq. 36, we see that given the workload assignment um (tk), a smaller value

of qm (tk) indicates a shorter residual life and thus a worse health status. At the

extreme case, qm (tk) = 0 implies that a failure has occurred. In addition, given a

non-zeroqm (tk), the predicted residual life is proportional to the reciprocal of the

actual workload.

Based on the above results, we discuss a strategy to dynamically control the

residual life by adjusting the production rates in the following section.

5.3 Dynamic Workload Adjustment

The goal of dynamically adjusting the workload is to control the residual life/failure

time of each component to achieve some type of optimality. Particularly, when a

component fails, it will require a certain period of time (hereafter defined as the

repair time) for repair and maintenance. In this work, the repair time for component
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m is considered to be constant, an integer multiple of the sampling interval, i.e., Pmδt,

where Pm is an integer value.

As we mentioned before, although the parallel configuration provides a certain

level of robustness for production, such system will fail to meet the objective when

the number of components under repair at the same time exceeds a certain limit.

As a result, our key idea here is to prevent the overlap of component failures. To

achieve this goal, we propose a strategy that assigns higher workloads to components

with worse health status. The underlying premise of this strategy is that a higher

workload accelerates the degradation process and thus potentially separates the failure

time of this component from the others. To do this, at decision epoch tk, we rank

the individual components according to their health status, which is indicated by

qm(tk). Recall that qm(tk) = 0 indicates that the corresponding component has failed.

Next, we select components with non-zero qm(tk)(i.e., functional components) and

rank them in the ascending order, such that q(1)(tk) ≤ q(2)(tk) ≤ · · · ≤ q(M̃(tk))(tk),

where M̃(tk) is referred to the number of functional components at time tk. In

this way, we assign higher workloads to components with worse health status, i.e.,

u(M̃(tk))(tk) ≤ · · · ≤ u(1)(tk).

This proposed strategy is motivated by the fact that degradation is an inevitable

course for components as long as they are in operation. In practice, it is quite com-

mon that the repair of a component may take a long time and the system may have

only limited maintenance resources to restore failed components at any time. In other

words, some failed components have to wait for the release of maintenance resources

before finishing the current repair job. Even assuming there are unlimited mainte-

nance resources that could be used for immediate repair once the component failure

occurs, the remaining functional components may still not be able to satisfy the pro-

duction requirement due to the limited capacity of each component for perfuming

83



operations. As a result, simultaneous component failures will deteriorate the robust-

ness of the system provided by the parallel configuration and thus may potentially

lead to loss of production. Consequently, we propose to actively control the failure

time of components so as to prevent the overlap of component failures, instead of

simply waiting for spontaneous component failure as most of the existing literature

assumes. In this way, we better take the advantage of the natural redundancy in

a system, which may potentially lead to a better utilization of the maintenance re-

sources as well as a consistently ensured production throughput. In what follows, we

will specifically show how we can numerically determine the workloads for individual

components at each decision epoch.

Given the posterior means of βm for the operating components, κ(1) (tk), . . . ,

κ(M̃(tk)) (tk), and the respective degradation levels S(1) (tk) , . . . , S(M̃(tk)) (tk), we pro-

pose to minimize the average degradation level of all components at the next decision

epoch via adjusting the workloads u(1)(tk), . . . , u(M̃(tk)(tk) assigned to components:

min
1

M̃(tk)

M̃(tk)∑
m=1

[
κm (tk)u(m) (tk) δt+ S(m) (tk)

]
. (37)

Subject to the following constraints:

M̃(tk)∑
m=1

u(m)(tk) = min(

M̃(tk)∑
m=1

U(m), D), (38)

u(M̃(tk)) (tk) ≤ · · · ≤ u(1) (tk) , (39)

0 ≤ um(tk) ≤ Um, for m = 1, . . . ,M (40)

q(m)(tk)

u(m)(tk)
+ P(m)δt ≤

q(m+1)(tk)

u(m+1)(tk)
, for m = 1, . . . , M̃(tk)− 1. (41)

The objective function in Eq. 37 is to ensure on average all components fail in a

slowest pace, and its objective value somehow provides a new insight on the systems

reliability in real time. Constraint Eq. 38 ensures that when the systems capacity

is greater than the demand, the throughput is equal to the demand. Conversely,
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when the systems capacity is less than the demand, the throughput is set at the

systems capacity. Constraint Eq. 39 means that we assign higher production rates

to components with more severe degradation status. Constraint Eq. 41 prevents

the overlap of component failures; that is, the predicted residual lives of any two

components that will fail consecutively should have a difference greater than the

repair time P(m)δt.

Since all decision variables are non-negative, Eq. 41 can be rewritten as:

P(m)δtu(m)(tk)u(m+1)(tk) ≤ q(m+1)(tk)u(n) (tk)− q(m) (tk)u(m+1) (tk) (42)

for m = 1, . . . , M̃ (tk) − 1. This results in
(
M̃ (tk)− 1

)
number of non-convex

quadratic constraints. Theoretical studies have shown that this is an NP-hard prob-

lem, thus finding feasible solutions can be challenging [67]. The existing literature in

quadratically constrained optimization problems often focuses on searching for a con-

vex space that covers the original non-convex space then solving the convex problem

[1, 4, 9]. The drawback of this approach is that the optimal solution to the convex

problem may not be feasible to the original problem (since the solution space of the

convex problem is larger).

In this work, finding a feasible solution is necessary to prevent the overlap of com-

ponent failures. In other words, using the existing methodology to solve our quadrat-

ically constrained optimization problem may provide miss-leading results, since even

the optimization problem can be solved, the overlap between component failures may

still not be prevented, which is the major objective of this work. Therefore, unlike the

existing literature, we focus on a convex subspace of the original non-convex space.

In this way, we can guarantee that as long as the optimization problem has a solution,

the solution is capable of preventing the overlap of component failures. To do this, we

utilize the Arithmetic Mean-Geometric Mean (AM-GM) inequality, which states that

u(m)(tk)u(m+1)(tk) is no greater than 1
4

[
u(m) (tk) + u(m+1) (tk)

]2
. Thus, inequalities in
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Eq. (42) can be modified to the following convex form:

P(m)δt

4

[
u(m) (tk) + u(m+1) (tk)

]2 ≤ q(m+1) (tk) u(m) (tk)− q(m) (tk) u(m+1) (tk) (43)

for m = 1, . . . , M̃ (tk)− 1.

In some circumstances (e.g., when the overlap among component failures cannot

be avoided), the original constraints in Eq. 42 may not lead to any solution. In such

case, the modified constraints in Eq. 43 will also be infeasible. When this occurs, we

relax the group of constraints in Eq. 43 by removing the inequality regarding to the

component with the least degradation severity:

P(M̃(tk)−1)δt

4

[
u(M̃(tk)−1)(tk) + u(M̃(tk))(tk)

]2

≤ q(M̃(tk)) (tk)u(M̃(tk)−1) (tk)− q(M̃(tk)−1) (tk)u(M̃(tk)) (tk) .

In other words, if the solution to the original optimization problem is infeasible, we

will allow the overlap of predicted failures between the two components with the

least degradation severity (i.e., the two healthiest components). If this relaxation

still yields infeasibility, we will continue to remove subsequent inequalities until a

feasible solution is obtained.

We define the workload adjustment of a multi-component system at epoch tk as

controllable if the optimization problem is feasible when at least one constraint in Eq.

42 remains. If, however, we are forced to remove all M̃(tk)− 1 constraints in Eq. 43

to achieve feasibility, then the problem is referred to as uncontrollable. Whether the

problem is controllable or not depends on the instantaneous degradation status of the

components, which are time-varying due to the dynamic characteristics of degradation

processes and their interactions with adjustable workloads. Thus, the level of control

of the system may vary at different epochs depending on the degradation status of

each component. Since we evaluate the level of control at individual epochs separately,

when a component is uncontrollable at a decision epoch, we will derive the solutions
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by removing all M̃(tk) − 1 constraints in Eq. 43 for decision making and then re-

evaluate the level of control at the next decision epoch. The flow chart in Fig. 22

summarizes the detailed procedure of the proposed methodology.
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Figure 22: The detailed flow chart of the proposed dynamic control methodology

5.4 Numerical Case Study

5.4.1 Study Set-up and Parameter Settings

In this section, we investigate the performance of our proposed methodology through

a numerical case study. We consider a hypothetical stamping system with 5 identical

stamping machines working in parallel to fabricate parts. This example is inspired

by the single-stage stamping process investigated in [30], which provided both the

system description and the degradation-related parameters obtained through real

experiments. In this study, parameters utilized to generate degradation signals are

obtained through [30]:
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1. The unit of workload is the number of parts fabricated in a unit time.

2. The prior mean of degradation coefficient of each machine, i.e., κ1,,κ5, is equal

to 5.97× 10−8 inch per part.

3. The diffusion parameter of the Brownian motion error of each machine, i.e,

σ1,,σ5, is 2.03 × 10−5 inch per unit time. In addition, we assume that the

failure threshold of each machine is 0.004 inch to reflect the real manufacturing

settings.

4. The maximum workload for each machine is set to be 1500 parts per day and

the demand is set to be 6000 parts per day. The decision epoch (unit time) in

this study is one day. Once the machine is failed, it will immediately go through

the repair process, which is assumed to takes a constant amount of time with

at least one decision epoch. Additional repair time may be required in terms

of multiple of a day. Under this configuration, if no more than one machine

fails simultaneously, the demand can still be satisfied by the remaining four

machines. However, if more than one machine fails, the demand can no longer

be satisfied.

5. The length of the simulation period is set to be 300 days.

5.4.2 Simulation Procedure and Evaluation Results

We compared the performance of our proposed dynamic workload adjustment method-

ology with two benchmark strategies. The first benchmark assumes that workloads

are equally assigned to all functional components (hereafter referred to as Benchmark

1). The second benchmark assigns production rates randomly (hereafter referred to

as Benchmark 2). To be specific, at each epoch, Benchmark 2 identifies all possible

solutions of workload assignments and randomly draws one solution from the entire
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solution sets. We use two key performance indices (KPIs) for performance compari-

son: 1) the percentage of time that more than one machine is failed and under repair

and 2) The percentage loss of production. Recall that given the study set-up, when

there is more than one machine is under repair, the demand can no longer be satisfied,

and thus may result in the loss of production.

We evaluated the effects of two factors:

1. The first was the repair time. We evaluated the performance when the repair

time is equal to 1, 3, and 5 days.

2. The second factor was the coefficient of variation (CV) of the prior distribu-

tion of the degradation coefficient. The CV is defined as the ratio of standard

deviation to the mean. In other words, for each component m, its CV of βm

is equal to τm/κm . Thus, CV captures the variation of the degradation coef-

ficients among components. Note that as the CV decreases, the unit-to-unit

variability also decreases. Recall that all machines in this study have the same

κm = 5.97× 10−8 inch per part. Consequently a smaller CV indicates that the

actual β of different machines are more similar to each other, and thus they tend

to fail at the same time if they are assigned with similar workloads. Testing

was performed under four different levels of CVs: 1/3, 1/6, 1/9, and 1/12.

For each of the 3×4 = 12 conditions, we ran 30 experiments. The boxplots of the

two KPIs in all 12 conditions are shown in Fig. 23 and Fig. 24, respectively. In each

figure, the x-axis of all subplots has label I for Benchmark 1, label II for Benchmark

2 and label III for the proposed methodology.

From the results shown in Fig. 23 and Fig. 24, we can make the following

conclusions:

1. For a small repair time (1 day in this example), both KPIs were insignificant for

all three strategies. This phenomenon is a likely outcome since the probability
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Figure 23: The percentage of time when more than one machine is under repair
X-axis: I - Benchmark 1; II - Benchmark 2; III - Proposed methodology.

of having machines failed at the same time is small when the repair time is

short. A longer repair time increases the likelihood of failure overlaps, thus

resulting in an apparent increase in both KPIs (in all three policies).

2. The performance of Benchmark 1 was the worst among three strategies. One

possibility is that the Benchmark 1 results in very close failure times among

individual machines and thus significant amount of overlap among machine

failures. The performance of Benchmark 2 was slightly better than Benchmark 1

but was still significantly worse than our proposed methodology. This is because

although Benchmark 2 reduces the possibility of having multiple machines that

fail closely due to the random distributed workload, it still does not actively

control the degradation process of each machine from the overall system point

of view.
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Figure 24: The percentage loss of production
X-axis: I - Benchmark 1; II - Benchmark 2; III - Proposed methodology.

3. Our proposed methodology appeared to be relatively robust to unit-to-unit

variability, while the performance of the other two benchmarks decreased sig-

nificantly as the unit-to-unit variability decreased. This is because when the

unit-to-unit variability is small and machines are assigned with equal or random

workloads (i.e., without dynamic workload adjustment), they tend to exhibit

similar degradation processes and thus several machines are more likely to fail

at the same time.
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CHAPTER VI

CONCLUSION

6.1 Summary of Original Contributions

In summary, this thesis investigates three major research topics in the area of prognos-

tics of multi-component systems. In Chapter 3, we consider the case when component

degradation is crucial but their degradation signals cannot be obtained directly from

condition monitoring data. The applicable situation is the vibration monitoring of

engineering systems. In Chapter 4, we consider the case when system-level degra-

dation is crucial but the degradation between individual components are interactive.

The applicable situation is in the MMPs. In Chapter 5, we consider the case when

the degradation process of individual components can be controlled to achieve cer-

tain system-level objective. The applicable situation lies in parallel multi-component

systems. The original contributions are summarized below.

The original contribution of Chapter 3 is to propose a methodology to separate

the degradation signals of identical components that generate an identical frequency

from mixed sensor information when the mixing process is unknown. This chapter

addresses the research problem that vibration sensors installed on a multi-component

system may only capture an unknown mixture of component vibration signals and

component vibration signals may share an identical frequency. This problem is very

challenging, since 1) the mixing process is unknown and needs to be solely estimated

from sensor vibration signals, 2) traditional spectrum analysis is only capable of iden-

tifying vibration signals that have distinct frequencies. To solve this problem, in this

chapter, we propose a simultaneous signal separation and prognostics framework,

which applies ICA on pre-processed sensor signals to identify component degradation
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signals in order to predict the RLDs of individual components. This methodology

has great potential impacts in the diagnostics and prognostics of many engineering

systems, where the condition monitoring and defect detection of an individual com-

ponent is crucial but challenging to achieve due to the limitation of sensor installation

and similar defective frequencies from identical components.

The original contribution of Chapter 4 is to propose an innovative model that

captures the relationship between the process of tool wear and the production quality

in MMPs for the purpose of accurately predicting the system-level RLD. This chap-

ter addresses the research problem about predicting the system-level failure due to

non-conforming products when the tool wear in one stage affects the product qual-

ity at current stage, which, on the other hand, may affect the rate of tool wear at

subsequent stages. This problem is challenging because of the interactive relation-

ship between tool wear and product quality as well as the stochastic characteristics

of tool wear. Existing literature is only limited to modeling the impact of product

quality on the tooling catastrophic failure and computing offline lifetime distribution.

In this chapter, we utilize a high-dimensional stochastic differential equation model

to capture the interaction relationship between the process of tool wear and prod-

uct quality. We then leverage real-time quality measurements to on-line predict the

residual life of the MMP as a system. This methodology has great potential impacts

in the maintenance scheduling and inventory planning of MMPs, since it provides

accurate real-time residual life prediction.

The major contribution of Chapter 5 is to open a new research direction that

focuses on dynamically adjusting the workloads assigned to individual components to

actively control their degradation processes and failure times to ensure satisfactory

system performance. This chapter addresses the research problem that the overlap

of component failures in a parallel system needs to be avoided to reduce the loss

of production. This research problem has not been explicitly studied before. The
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existing literature in prognostics assumes that the degradation process is self-evolving,

and thus only focuses on modeling the degradation process and predicting the residual

life, rather than actively controlling the failure time. This chapter assumes that

the degradation rate of a component is directly related to the workload assigned

to that component and then dynamically adjusts the workloads at every decision

epoch to prevent the overlap of component failures. This methodology has great

potential impacts in various engineering systems where the failure times of individual

components need to be separated for better utilization of maintenance resources and

more consistent productivity.

6.2 Future Work

Potential future extension of the work in Chapter 3 is to change the model of the

mixing process from a simple linear model to a convolutive model. In fact, the

convolutive model that captures time delay in the transmission of vibration from

components to sensors may have better modeling accuracy than the simple linear

model when analyzing vibration signals, as discussed in [45, 45]. The major limitation

of using the convolutive model is the model complexity. Besides changing the model

assumption, the proposed prognostics framework needs to be validated using real-

world vibration data in the future, besides using simulated study. This may bring

new research challenges since real data may have more uncertainty to be addressed.

Potential extension of the work in Chapter 4 is to consider more complex models

such as non-linear models to capture the sophisticated relationship between tool wear

and product quality degradation. The major limitation of using non-linear model

is that higher-order SDE is very complicated to get an explicit solution. Therefore,

numerical solutions may need to be investigated. Furthermore, future work may also

incorporate catastrophic failure into the model.
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Future work of Chapter 5 may include several important topics: (1) In this chap-

ter, we focus on a special case that the instantaneous degradation rate is proportional

to the production rate. Such relationship assumption may not be true in different

processes. Additional efforts are needed to study the performance of the workload

adjustment strategy when the instantaneous degradation rate and the workload ex-

hibit different relationship functions. (2) In addition, future work will focus on the

extension of our methodology to the serial-parallel multistage manufacturing pro-

cesses to prevent the overlap of machine failures and maintain system throughput.

(3) Moreover, further studies can be done to develop different strategies of workload

adjustment to account for various requirements in reality. For example, in this work,

we assume that the repair time of individual components remains constant. However,

in practice, the maintenance resource is limited. Thus, some of the failed components

may not be repaired in time, which may complicate the problem.
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APPENDIX A

SUPPLEMENTARY MATERIALS OF CHAPTER 4

A.1 Choosing the parameter values for different numbers
of stages M

1. The elements of matrices A, B, are determined according to Eq. 28.

2. The elements of matrix C are determined as follows:

ci,j



0.004, if j = 2i− 1 or 2i

0.02, if j = 2i− 3

0.012, if j = 2i− 2

0, Otherwise

3. At every stage, the prior mean of the natural rate of tool wear and the variance

of the Brownian motion noise in the tool wear model are equal to the values

provided by [30] multiply with 1000 (operations per sampling interval).

4. The prior variance of the natural rate of tool wear is determined as follows:

ΣR = diag
(
σ2

R,1, . . . , σ
2
R,M

)
, where σR,i = µR,i/3.

5. The failure threshold for each stage m= 1, . . . , M is equal to 0.5.
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APPENDIX B

SUPPLEMENTARY MATERIALS OF CHAPTER 5

B.1 Proof of Proposition 5.1

p (βm|δSm(tk),um(tk−1)) ∝ p (δSm(tk)|um(tk−1), βm) p (βm)

∝
k∏
i=1

p (δSm(tk)|um(tk−1), βm) p (βm)

∝ exp

{
−

k∑
i=1

[δSm (ti) βmum (ti−1) δt]2

2σ2
mδt

− [βm − κm]2

2τ 2
m

}

∝ exp

{
−1

2

[∑k
i=1 [um (ti−1)]2δt

σ2
m

+
1

τ 2
m

]
β2
m,n

}

× exp

{[∑k
i=1 δSm,n (ti)um (ti−1)

σ2
m

+
κm
τ 2
mβm

]
βm

}

∝ exp

−
[
Sm − τ2m

∑k
i=1 δSm(ti)um(ti−1)+κmσ2

m

τ2m
∑k
i=1 [um(ti−1)]2δt+σ2

m

]2

2σ2
mτ

2
m

τ2m
∑k
i=1 [um(ti−1)]2δt+σ2

m


∝ N

(
κm (tk) , τ

2
m (tk)

)
,

where κm (tk) =
τ2m

∑k
i=1 δSm(ti)um(ti−1)+κmσ2

m

τ2m
∑k
i=1 [um(ti−1)]2δt+σ2

m
and τ 2

m (tk) = σ2
mt

2
m

τ2m
∑k
i=1 [um(ti−1)]2δt+σ2

m
.
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