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SUMMARY

Markov chains are algorithms that can provide critical information from ex-

ponentially large sets efficiently through random sampling. These algorithms are

ubiquitous across numerous scientific and engineering disciplines, including statisti-

cal physics, biology and operations research. In this thesis we solve sampling problems

at the interface of theoretical computer science with applied computer science, dis-

crete mathematics, statistical physics, chemistry and economics. A common theme

throughout each of these problems is the use of bias.

The first problem we study is biased permutations which arise in the context of

self-organizing lists. Here we are interested in the mixing time of a Markov chainMnn

that performs nearest neighbor transpositions in the non-uniform setting. We are

given “positively biased” probabilities {pi,j ≥ 1/2} for all i < j and let pj,i = 1− pi,j.

In each step, the chain Mnn chooses two adjacent elements k, and ` and exchanges

their positions with probability p`,k. We define two general classes of bias and give the

first proofs that the chain is rapidly mixing for both. We also demonstrate that the

chain is not always rapidly mixing by constructing an example requiring exponential

time to converge to equilibrium.

Next we study rectangular dissections of an n× n lattice region into rectangles of

area n, where n = 2k for an even integer k. We consider a weighted version of a natural

edge flipping Markov chain where, given a parameter λ > 0, we would like to generate

each rectangular dissection (or dyadic tiling) σ with probability proportional to λ|σ|,

where |σ| is the total edge length. First we look at the restricted case of dyadic tilings,

where each rectangle is required to have the form R = [s2u, (s+1)2u]× [t2v, (t+1)2v],

where s, t, u and v are nonnegative integers. Here we show there is a phase transition:

xi



when λ < 1, the edge-flipping chain mixes in time O(n2 log n), and when λ > 1, the

mixing time is exp(Ω(n2)). The behavior for general rectangular dissections is more

subtle, and we show the chain requires exponential time when λ > 1 and when λ < 1.

The last two problems we study arise directly from applications in chemistry and

economics. Colloids are binary mixtures of molecules with one type of molecule

suspended in another. It is believed that at low density typical configurations will

be well-mixed throughout, while at high density they will separate into clusters. We

characterize the high and low density phases for a general family of discrete interfering

colloid models by showing that they exhibit a “clustering property” at high density

and not at low density. The clustering property states that there will be a region that

has very high area to perimeter ratio and very high density of one type of molecule.

A special case is mixtures of squares and diamonds on Z2 which correspond to the

Ising model at fixed magnetization.

Subsequently, we expanded techniques developed in the context of colloids to give

a new rigorous underpinning to the Schelling model, which was proposed in 1971 by

economist Thomas Schelling to understand the causes of racial segregation. Schelling

considered residents of two types, where everyone prefers that the majority of his or

her neighbors are of the same type. He showed through simulations that even mild

preferences of this type can lead to segregation if residents move whenever they are

not happy with their local environments. We generalize the Schelling model to include

a broad class of bias functions determining individuals happiness or desire to move.

We show that for any influence function in this class, the dynamics will be rapidly

mixing and cities will be integrated if the racial bias is sufficiently low. However when

the bias is sufficiently high, we show the dynamics take exponential time to mix and

a large cluster of one type will form.

xii



CHAPTER I

INTRODUCTION

Randomized algorithms have transformed the field of algorithms and become an es-

sential tool in the algorithmic toolbox. In many applications algorithms that use

randomness are simpler or faster than known deterministic algorithms for the same

problem and in some cases they offer the only efficient solution. Markov chains are a

type of randomized algorithm that have enabled a lot of progress by using sampling

to gain insight into exponentially large sets. In fact, Markov chains are ubiquitous

across numerous scientific and engineering disciplines, particularly statistical physics,

biology, operations research, and computer science.

Algorithms based on Markov chains perform a random walk on a set of configu-

rations. A chain is designed so that after enough steps of the random walk, it will

converge to a useful distribution over the whole set. For example, if a deck of cards is

shuffled long enough the cards will be in random order with each permutation roughly

equally likely. The number of steps of the random walk that are necessary to come

close to the desired distribution is referred to as the convergence time of the chain.

Markov chains that converge quickly provide good tools for sampling, approximate

counting and many other applications. Researchers have used Markov chains that

converge to a desired distribution in time logarithmic in the size of the set of config-

urations in order to approximately solve hard problems, most notably estimating the

permanent of a matrix [51] and estimating the volume of a convex body [31].

It is necessary to bound the convergence time of Markov chain algorithms to ensure

that we know what distribution we are sampling from. In the past couple of decades,

computer scientists have created numerous new techniques to bound the convergence
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time of Markov chains, including coupling and canonical paths and indirect methods

such as decomposition and comparison, among others [73]. Although great strides

have been made there remain large classes of Markov chains for which we are unable

to determine whether they converge in polynomial time or prove this even when we

believe they do.

In this thesis we solve various problems where the convergence rate of a natural

Markov chain had eluded analysis or problems that arise from applications where a

Markov chain was used in a surprising field and rigorous analysis techniques were

needed. A common theme throughout these problems is the use of bias. In each of

these problems we are interested in sampling from or studying a distribution where

certain configurations are more likely than others depending on the value of a bias

parameter or parameters. Bias arises in these problems in three main ways. The first

way is settings where the unbiased or uniform distribution is well understood, the

biased distribution arises naturally in some application and here the techniques that

work in the unbiased case break down. Secondly, biased distributions arise naturally

in many diverse application areas where understanding their behavior helps us to

answer open questions within the application area. In both of these settings our goal

is to develop new analytical tools to address the setting with bias and answer open

questions within the respective application areas. Thirdly, in some settings we are

really interested in understanding the unbiased setting but use the biased setting

to gain insight and develop tools with the goal of eventually applying them in the

unbiased setting.

Studying bias is not new and the effect of adding bias to a model is varied and

often quite interesting. Adding bias to a model can speed up local Markov chains.

For example in card shuffling adding a constant bias speeds up the convergence rate

of a local Markov chain which makes nearest-neighbor swaps from O(n3 log n) to

O(n2). As we shall see, allowing the bias to vary according to the specific cards being
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swapped can result in very different behavior and in the most general case is still

open. In contrast, for many models adding bias has the beautiful effect of causing a

phase transition. A phase transition occurs when a change to a parameter controlling

the microscopic interactions such as temperature causes a macroscopic change to

the system. For example, water starts to freeze when the temperature reaches 32◦

Fahrenheit. Often the phase transition in the stationary distribution is mirrored by a

phase transition in the convergence times of local Markov chains. Many of the models

we discuss in this thesis have this effect when bias is added.

The remainder of the introduction gives related background for understanding the

technical contributions of this thesis and their broader importance. In Section 1.1

we describe sampling algorithms and specifically Markov chains more formally and

give several relevant examples. In Section 1.2, we describe the phenomena of phase

transitions which may arise in biased settings and give examples in several classical

models. Finally, in Section 1.3, we discuss additional ways bias can become relevant

and briefly describe the four models which we study in the remainder of the thesis.

1.1 Sampling Algorithms

The Russian mathematician Andrey Markov began studying the stochastic processes

which would later be called Markov chains in 1906 [60]. Today Markov chains are

used to generate random samples, simulate dynamic processes, approximately count

and many other uses in countless different application areas including chemistry,

operations research, biology and social science. They are also studied by different

disciplines with very different motivations including computer science, mathematics

and statistical physics. For example, theoretical computer scientists use Markov

chains not only to obtain efficient sampling algorithms but also for applications such

as approximate counting. Typically computer scientists are interested in designing

and analyzing Markov chains whose convergence times are provably logarithmic in

3



the size of the set of configurations. We make progress on the problems in this thesis

partly by applying rigorous Markov chain analysis techniques from computer science,

probability and statistical physics to the study of problems that occur in more applied

domains. By looking at these problems from these different perspectives we have not

only made breakthroughs by solving open problems from more applied disciplines but

also developed new analytical techniques that can be applied in other settings.

1.1.1 Markov Chain Basics

Markov chains perform a random walk on a large set of configurations called the

state space. The random walk is memoryless so the probability of moving from one

configuration to another depends only on the current configuration and not on any

previous configurations. Formally, a Markov chain is a sequence of random variables

X0, X1, X2, . . . where the Xi’s satisfy the Markov property, meaning that the condi-

tional distribution of Xi given X0, . . . , Xi−1 depends only on Xi−1. The Xi’s take on

values from a finite set called the state space Ω. In this thesis we only consider ergodic

Markov chains (which we define formally in the next section) with a finite state space.

The transition matrix P = {pj,k} of a Markov chain specifies the probability with

which to move from one state in the state space to another. Specifically,

pj,k = Pr(Xi+1 = k|Xi = j).

The probabilities in the transition matrix P are chosen so that after a sufficient

number of steps the chain converges to the desired distribution (referred to as the

stationary distribution) over the state space.

The time a Markov chain takes to converge to its stationary distribution π, which

we have previously referred to as the convergence time, is measured in terms of the

distance between π and P t, the distribution at time t. More formally, the total

4



variation distance at time t, from the worst starting state X0, is

‖P t, π‖tv = max
x∈Ω

1

2

∑
y∈Ω

|P t(x, y)− π(y)|,

where P t(x, y) is the t-step transition probability and Ω is the state space. For all

ε > 0, the mixing time τ of M is defined as

τ(ε) = min{t : ‖P t, π‖tv ≤ ε}.

Let n be the size of each configuration in Ω. We say that a Markov chain is rapidly

mixing if the mixing time is bounded above by a polynomial in n and log(ε−1) and

slowly mixing if it is bounded from below by an exponential in n or more specifically

exp(Ω(n)). Next, we present several relevant examples of Markov chains.

1.1.2 Example 1: Card Shuffling Algorithms

An illustrative example is the classical problem of card shuffling. Card shuffling

algorithms are used around the world in situations where users are interested in gen-

erating a random ordering of a deck of cards in order to play some sort of card game,

or other settings where random permutations are required. Numerous card shuffling

algorithms have been studied extensively by mathematicians and computer scientists,

including the overhand shuffle, pile shuffle and, most famously, the riffle shuffle which

was analyzed rigorously by Bayer and Diaconis [5]. Consider the following simple

“nearest neighbor” Markov chain for card shuffling. Start with a deck of cards in

any order and pick two neighboring cards uniformly at random. With probability

1/2 flip the two cards and with probably 1/2 do nothing. Repeat this process, at

each step picking a pair of neighboring cards uniformly at random. Eventually the

deck will be shuffled. This simple card shuffling algorithm which we refer to as the

nearest-neighbor transposition chain is an example of a Markov chain. Here the mix-

ing time is the number of steps until the deck is approximately randomly shuffled. For

5



the nearest-neighbor transposition chain, Wilson [89] showed that the mixing time is

θ(n3 log n) where n is the number of cards in the deck.

Next, consider a biased version of card shuffling that favors putting cards in sorted

order. Starting with a deck of n cards labeled from 1 to n (a permutation of the

numbers from 1 to n), at each step instead of flipping adjacent cards with probability

1/2, put them in order with a probability p 6= 1/2 and out of order with probability

1 − p. This biased version of card shuffling was studied by Benjamini et al [6] and

shown to converge in time O(n2). Interesting, the chain converges faster in this biased

setting than the uniform setting.

This can be further generalized so that at each step the cards are put in order with

a probability that depends on the two specific cards. This setting arises naturally from

the Move-Ahead-One list update algorithm for self-organizing lists [34]. In the Move-

Ahead-One protocol, elements are chosen according to some underlying distribution

and they move up by one in a linked list after each request is served, if possible. Thus,

the most frequently requested elements will move toward the front of the list and will

require less access time. By studying the mixing time of the relevant Markov chain

we can learn about the effectiveness of the Move-Ahead-One protocol under different

bias constraints.

In this biased setting many of the standard techniques for analyzing mixing times

which work in the uniform case breakdown. Later in this thesis we define two classes of

bias that fit within this more general setting and give the first proofs that the nearest-

neighbor Markov chain is rapidly mixing for both classes. Additionally and possibly

more interestingly, we also demonstrate that the chain is not always rapidly mixing

by constructing an example requiring exponential time to converge to equilibrium.
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1.1.3 Example 2: Asymmetric Simple Exclusion Processes

The 1-dimensional “asymmetric simple exclusion process” (ASEP) was introduced in

1970 by Spitzer as a model for interacting particles on a lattice [79]. This model has

appeared in the study of a wide array of physical phenomena including the transport

of macromolecules through thin vessels, traffic flow and surface growth [39]. Start

with a 1-dimension lattice (a line) with n locations for particles to occupy and a

fixed number of particles. Each location can be occupied by at most one particle. At

each step a particle is selected uniformly at random. With probability p the particle

moves to the right (as long as this site isn’t occupied) and with probability q = 1− p

it moves to the left (as long as this site isn’t occupied). We can view an ASEP as a

staircase walk on the grid (see Figure 1), where an unoccupied site corresponds to a

step to the right and an occupied site corresponds to a step down. Here the equivalent

process adds or removes a box along the boundary with the appropriate probability

(adding with probability p and removing with probability q). If p = q then this chain

samples from the uniform distribution where all staircase walks are equally likely.

The biased setting when p 6= q shows up in the area of nanotechnology as a model

for DNA-based self assembly. Here the Markov chain simulates the assembly of a

substrate so understanding the mixing times gives information about the efficiency

of the construction. Interestingly, this setting can also be viewed as a special case of

biased card shuffling.

Benjamini et al [6] show that for the bias setting when p 6= q, the chain converges

in Θ(n2) time. Greenberg et. al. [43] match these results and generalize the result on

ASEPs to sampling biased surfaces in two and higher dimensions in optimal Θ(nd)

time. Again, as in the case of biased card shuffling, in the biased setting when p 6= q

many of the standard techniques for analyzing mixing times which work in the uniform

case breakdown. In the process of proving their result for sampling biased surfaces,

Greenberg et. al. develop a new version of the standard path coupling theorem
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Figure 1: A 1-dimensional asymmetric simple exclusion process (a) and the corre-
sponding staircase walk (b).

which allows exponential distances in order to compensate for the bias. This new

technique developed by looking at the chain on staircase walks in the biased setting

has subsequently been used for other applications including analyzing a Markov chain

for sampling biased dyadic tilings which we discuss in Chapter 4.

1.2 Phase Transitions

Sampling with Markov chains is a common tool used in statistical physics when exact

solutions are unavailable. Often sampling is used to observe the existence of a phase

transition and in many of these cases the Markov chain algorithms used to sample

themselves also undergo a phase transition. A phase transition occurs when a small

change to a parameter such as temperature causes a large-scale change to the system.

For example, when water is heated and reaches 100◦ C it begins to boil and the water

changes from a liquid to a gas. A phase transition in the stationary distribution

corresponding to some physical behavior like the change from a liquid to a gas is

often accompanied by a phase transition in the mixing time of local Markov chains.

Understanding how fast a simple local Markov chain converges under different settings

of a bias parameter can show when a phase transition occurs in the physical model

and conversely the physical model can indicate when local Markov chains are efficient.
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1.2.1 The Ising Model

A classic model used to study phase transitions is the Ising Model. This model was

named after Ernst Ising who began working on the model in the early 1920’s [47]. The

Ising model was originally introduced as a model of ferromagnetism. When a block

of metal such as iron is placed next to a magnet, the metal will become magnetized.

The iron’s ability to retain its magnetic field varies depending on the temperature and

above a critical temperature it undergoes a sudden change and is no longer able to

retain its magnetic field at all. The Ising model turns out to be very useful in sampling

settings as we will see. In Chapter 5 we will see how it is relevant to models of colloids

in chemistry and in Chapter 6 we will see its relevance to modeling segregation.

The Ising model in 2-dimensions is most commonly studied on a n× n square of

the lattice Z2. Each vertex is assigned one of two spins + or −. The weight of a

particular configuration σ ∈ {±1}n2
is

π(σ) = e−β|Ed(σ)|/Z,

where Ed(σ) is the set of edges whose endpoints have different spins in σ, β > 0 is the

inverse temperature and Z =
∑

σ∈Ω e
−β|Ed(σ)| is the normalizing constant. Glauber

dynamics is a Markov chain on Ising configurations that changes one spin at a time

using Metropolis probabilities (see Section 2.1) to force the chain to converge to π.

The Ising model on Z2 is known to undergo a phase transition, i.e., there exists a

value βc such that when β < βc, the Glauber dynamics for the Ising model mixes in

time polynomial in |V | (the number of vertices in the graph) and when β > βc, it

mixes in exponential time [61, 62]. Moreover, the phase transition in the mixing time

is accompanied by a corresponding transition in the stationary distribution of the

Markov chain; at low β (high temperature), an average sample from the steady state

is “evenly mixed” with regards to the proportions of spins. In contrast, at high β

(low temperature), an average sample has long-range order and is likely to have a
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large region of predominantly one spin type or cluster. In fact, the precise limiting

shape of the cluster known as the Wulff shape has been extensively studied using

sophisticated techniques (see e.g., [28] and the references therein).

1.2.2 The Hard-Core Model

Another classic model that is believed to exhibit a phase transition is the hard-core

lattice gas model. Given a graph G, an independent set is a subset S of the vertices

such that for any two vertices x, y ∈ S, there are no edges e = (x, y). In graph theory,

an independent set is also referred to as a stable set while in statistical physics it

is referred to as a hard-core configuration and the vertices in the independent set

correspond to the placement of particles of gas. The shape of the particles prevent

two particles from occupying neighboring vertices. The following natural Markov

chain is referred to as the Glauber dynamics for independent sets. Start from any

independent set; notice that the empty set is an independent set. At each step select

a vertex v in the graph uniformly at random. If none of v’s neighbors are in the

independent set then put v in the independent set with probability 1/2 and put v out

with probability 1/2. Here the state space is the set of all independent sets on the

graph G and two adjacent configurations differ by adding or removing a vertex from

the independent set.

In the statistical physics setting, we are given a bias parameter λ > 0 that rep-

resents the “fugacity” or “activity” of the gas. We are interested in sampling inde-

pendent sets I from the Gibbs distribution π(I) = λ|I|/Z, where |I| is the size of the

independent set and Z =
∑

I∈Ω λ
|I| is the normalizing constant. If λ > 1, then larger

more dense independent sets are more likely in the stationary distribution, while if

λ < 1, smaller independent sets are favored. This model arises in statistical physics

and is referred to as the hard-core lattice gas model (see e.g., [37, 76]).

For Z2, it is believed in the statistical physics community that there is a critical

10



point λc ≈ 3.79 where the model undergoes a phase transition [4], but it remains

open whether there even is a single critical point. When λ > λc it is believed the

model is in the non-uniqueness regime and there are multiple equilibrium states while

when λ < λc it is in the uniqueness regime and there is a single equilibrium state.

Informally, this is because for large values of λ, dense independent sets are favored

which correspond to configurations where vertices in the independent set lie primarily

on either the odd or the even sublattice. Local Markov chains that modify a small

number of vertices in each move, including Glauber dynamics, are known to be effi-

cient on Z2 at fugacity λ < 2.48 [85] and inefficient when λ > 5.3646 [13]. Since local

Markov chains only make small changes to move from a configuration primarily on

the even sublattice to one primarily on the odd sublattice the chain must go through

a configuration with roughly half the vertices on the even sublattice and half on the

odd. These configurations must have significantly smaller independent sets making

them exponentially unlikely and creating a bottleneck in the state space that results

in slow mixing.

1.3 Sampling with Bias

Sampling with bias is a theme connecting the problems in this thesis, focussing on

problems at the interface of theoretical computer science with discrete mathematics,

applied computer science, statistical physics, chemistry and economics. Our analysis

draws us to answer questions that arrive in the specific application domains and

develop new analytical techniques that can be applied in the unbiased regime or

other settings. A common element underlying all of the solutions is looking at these

problems from the perspective of multiple fields and by applying techniques from

discrete mathematics, theoretical computer science and statistical physics.
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1.3.1 Biased Permutations

The first problem we study in Chapter 3 is biased permutations, or biased card

shuffling. In particular, we study the mixing time of the following Markov chainMnn

on permutations of n integers that performs nearest neighbor transpositions in the

non-uniform setting, a problem arising in the context of self-organizing lists. We are

given “positively biased” probabilities {pi,j ≥ 1/2} for all i < j and let pj,i = 1− pi,j.

Given a permutation of n integers, in each step, the chainMnn chooses two adjacent

elements k, and ` and exchanges their positions with probability p`,k. Here we define

two general classes and give the first proofs that the chain is rapidly mixing for both.

In the first case we are given input probabilities r1, . . . rn−1 with 1/2 ≤ ri < 1 for all i

and we set pi,j = ri for all i < j. In the second we are given a binary tree with n leaves

labeled 1, . . . n and input probabilities 1/2 ≤ q1, . . . qn−1 < 1 associated with all of the

internal vertices, and we let pi,j = qi∧j for all i < j. Our bounds on the mixing time

of Mnn rely on bijections between permutations, inversion tables and asymmetric

simple exclusion processes (ASEPs) that allow us to express moves of the chain in the

context of these other combinatorial families. We also demonstrate that the chain

is not always rapidly mixing by constructing an example requiring exponential time

to converge to equilibrium. This proof relies on a reduction to biased lattice paths

in Z2. This is based on joint work with Bhakta, Streib and Randall which appears in

the 2013 ACM-SIAM Symposium on Discrete Algorithms [8].

1.3.2 Rectangular Dissections

The second problem in Chapter 4 has a geometric flavor and involves sampling rect-

angular dissections. Rectangular dissections, or subdivisions of a lattice region into

rectangles, arise in VLSI layout, mapping graphs and planning. In Chapter 4 we

study equitable dissections, where all rectangles have equal area, in particular the

case of partitioning an n × n square into n rectangles of area n, where n = 2k for
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some even integer k. We consider a biased version of this problem in which we are

given a parameter λ > 0, and would like to generate each rectangular dissection (or

dyadic tiling) σ with weight proportional to λ|σ|, where |σ| is the total edge length.

Varying λ allows us to favor dissections with many long thin or approximately square

rectangles. We consider a natural edge-flipping Markov chain and show that there is

a phase transition in the case of dyadic tilings, where each rectangle is required to

have the form R = [s2u, (s+1)2u]× [t2v, (t+1)2v], where s, t, u and v are nonnegative

integers. When λ < 1, the edge-flipping chain mixes in time O(n2 log n), but when

λ > 1, the mixing time is exp(Ω(n2)). Simulations suggest that the chain is fast when

λ = 1, but this case remains open. The behavior for general rectangular dissections

is more complicated, including establishing ergodicity of the chain. As in the dyadic

case, we show that the edge-flipping Markov chain requires exponential time when

λ > 1. Surprisingly, the chain also requires exponential time when λ < 1, which

we argue using different reasoning. Simulations suggest that the chain is fast at the

isolated point λ = 1. This work with Cannon and Randall appeared in the 2015

ACM-SIAM Symposium on Discrete Algorithms [20].

1.3.3 Clustering in Colloids

The third problem we study in Chapter 5 are colloids or binary mixtures of molecules

with one type of molecule suspended in another. Examples include milk and glue.

A property observed is that at low density typical configurations will be well-mixed

throughout, while at high density they will separate into clusters. Researchers have

modeled this with non overlapping shapes in two dimensions and have confirmed this

behavior experimentally. However, to even simulate these colloid models required

various heuristics, so we cannot conclude they are accurate. A notable exception is

a colloid model by Frenkel and Louis [36] who confirmed this behavior on a discrete

model. They do this rigorously by mapping non overlapping mixtures of squares and
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diamonds to an Ising model with fixed magnetization (meaning the number of positive

spins remains fixed), thus inheriting the phase transition from the Ising model [4].

We generalize this special model by defining a class of interfering binary mixtures.

This class includes well studied models like the Ising model on Z2 and independent

sets on Z2. Although models in this class do not reduce to the Ising model as does

the case studied by Frenkel and Louis, they share enough of the properties that we

can extend their results to this class. We define a “clustering property” and prove

these models exhibit clustering at high density and not at low density. Informally,

the clustering property states that there will be a region that has very high area,

very small perimeter, and high density of one type of molecule. Although our proofs

use standard techniques they are substantially more complicated because we need

to maintain the number of molecules of one type. This work is based on joint work

with Streib and Randall for a special case that appeared in the 2012 International

Workshop on Randomization and Computation [65], and which we further generalize

in this thesis.

1.3.4 Schelling’s Model of Segregation

The final model we study in Chapter 6 is the Schelling segregation model, which

attempts to explain how even small racial bias of individuals can cause segregation

in cities. Schelling considered residents of two types, where everyone prefers that

the majority of his or her neighbors are of the same type. He showed through sim-

ulations that even mild preferences of this type can lead to segregation if residents

move whenever they are not happy with their local environments. The concept of

micro-motives effecting macro-behavior is well-studied and far better understood in

the statistical physics community, where it is used to explain fundamental concepts

such as phase transitions. The Schelling model itself is reminiscent of many physical

models, most notably spin systems such as the Ising model. Although in the original
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Schelling model a person is either happy or unhappy while in the Ising analogue,

everyone is incrementally more unhappy as more people of the opposite color move

into their neighborhood and thus more likely to move. Indeed, the Ising model has

been proposed as an alternative to the Schelling model [75, 80, 81]. In open systems

at low temperature (high bias) the population will become predominantly one color

or the other, and in closed systems (arising as a fixed magnetization Ising model),

large clusters of one color (or spin) will form, indicating segregation [82, 90].

While extensions of the Ising model on Z2 have been examined extensively by

physicists and mathematicians, the resulting models are typically less-tractable and

give little insight into Schelling variants (such as neighborhoods of size larger than 4,

unoccupied houses, or bias functions that do not scale geometrically with the number

of differently colored neighbors). A lot is known about the Ising model on graphs

with more than nearest-neighbor interactions see, e.g., Chapters 2 and 9 of [69] and

general spin systems on Zd have been shown to have a phase transition whenever

there is a phase transition in the associated mean field model for certain classes of

interactions [12, 11, 22]. However, while these results apply only to certain classes of

interactions, they fail to give insight into more general utility functions which more

closely resemble the original Schelling model.

We generalize the Schelling model to include a broad class of bias functions deter-

mining individuals happiness or desire to move, called the General Influence Model.

We show that for any influence function in this class, the dynamics will be rapidly

mixing and cities will be integrated (i.e., there will not be clustering) if the racial

bias is sufficiently low. Next we show complementary results for two broad classes of

influence functions: Increasing Bias Functions (IBF), where an individual’s likelihood

of moving increases each time someone of the same color leaves (this does not include

Schelling’s threshold models), and Threshold Bias Functions (TBF) with the thresh-

old exceeding one half, closely representing the model Schelling originally proposed.
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For both the IBF and TBF classes, we show that when the bias is sufficiently high,

the dynamics take exponential time to mix and we will have segregation and a large

“ghetto” will form. This joint work with Bhakta and Randall appeared in the 2014

ACM-SIAM Symposium on Discrete Algorithms [7].

As we explore these examples further we will see how bias can capture features

inherent in the models, can be a tool for speeding up algorithms, can cause surprising

behavior such as phase transitions, and sometimes can give insight into the unbiased

cases. These examples reveal the depth and beauty of randomized algorithms for

sampling, but of course that is just our personal bias.

We begin in the next chapter by describing several Markov chain analysis tech-

niques we will use for our proofs. Then, in the remaining four chapters, we explore

each of the four examples above in more detail.
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CHAPTER II

MARKOV CHAIN ANALYSIS TECHNIQUES

The foundations of Markov chain analysis were developed in probability theory. It

was shown that the eigenvalue gap, or spectral gap, of the transition matrix provides a

good bound on the mixing time of a Markov chain. Thus, calculating the eigenvalues

of the transition matrix is sufficient to determine the mixing time of a Markov chain.

However, these techniques miss the idea of scaling and efficiency of analysis. The

state spaces and transition matrices of Markov chains studied in theoretical computer

science (and in this thesis) are typically exponentially large, so it is infeasible to

directly compute eigenvalues and other metrics known to control convergence times.

As a consequence, there has been a need to develop indirect methods to allow us to

obtain good bounds on the mixing time. We begin by giving some background on

Markov chains and then present some of the main tools we use to upper and lower

bound the time required by these Markov chain algorithms.

2.1 Markov Chain Basics

We begin by defining some useful properties for Markov chains. A Markov chain is

irreducible if for any two states σ, τ there exists an integer tσ,τ such that

Pr(Xtσ,τ = τ |X0 = σ) > 0.

Informally, this implies that from any state we can reach any other state. A Markov

chain is aperiodic if for every state σ there exists a t such that for all t′ ≥ t,

Pr(Xt′ = σ|X0 = σ) > 0.

Markov chains that are not aperiodic can easily be made aperiodic by adding a small

“self-loop” probability at each state. In other words, for each state σ ensure that
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pσ,σ > 0. A lazy chain has self-loop probabilities of 1/2 everywhere (pi,i = 1/2 for all

states i). A Markov chain is ergodic if it is both irreducible and aperiodic.

Lemma 2.1.1: Any finite, ergodic Markov chain converges to a unique stationary

distribution π. Specifically, for all i, j ∈ Ω, we have that

lim
t→∞
P t(i, j) = π(y).

Additionally, for an ergodic Markov chain with transition probabilities P , if some

assignment of probabilities π satisfies the detailed balance condition

π(σ)P(σ, τ) = π(τ)P(τ, σ)

for every σ, τ ∈ Ω and
∑

i∈Ω π(i) = 1, then π is the stationary distribution of the

Markov chain (see e.g., [55]). If a Markov chain M satisfies the detailed balance

condition for some distribution π then it is reversible.

Given a desired stationary distribution π, the Metropolis-Hastings algorithm [64]

provides a simple way to define the transition probabilities of a chain in order to

guarantee that it converges to the desired distribution π. Given a configuration σ ∈ Ω,

define a neighbor of σ to be any configuration τ ∈ Ω such that Pr(Xt+1 = τ |Xt =

σ) > 0. Given a state space Ω, let ∆ be the maximum number of neighbors of any

configuration in Ω.

The Metropolis-Hasting Algorithm

Starting at any configuration σ, repeat:

• Pick a neighbor τ of σ uniformly with probability 1
2∆
.

• Move to τ with probability min(1, π(τ)
π(σ)

).

• With the remaining probability, stay at σ.

Next we introduce some of the analysis tools we will use in the remainder of the

thesis to give upper and lower bounds on the mixing times of Markov chains.
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2.2 Coupling and Path Coupling

One of the most common computer science techniques for showing a Markov chain is

fast mixing is coupling. A coupling of a Markov chainM is a joint Markov process on

Ω×Ω such that the marginals each agree withM and, once the two coordinates coa-

lesce, they move in unison. More formally, coupling is a stochastic process (Xt, Yt)
∞
t=0

on Ω× Ω with the properties:

1. Each of the processes Xt and Yt, viewed in isolation, is a faithful copy of M.

Specifically, for all x, y ∈ Ω,

Pr[Xt+1 = y|Xt = x] = P(x, y) = Pr[Yt+1 = y|Yt = x].

2. If Xt = Yt, then Xt+1 = Yt+1.

The coupling theorem bounds the mixing time in terms of the expected time of

coalescence of any coupling. For initial states x, y let T x,y = min{t : Xt = Yt|X0 =

x, Y0 = y}, and define the coupling time to be T = maxx,y E[T x,y]. The following

well-known (see e.g. [1]) result relates the mixing time to the coupling time.

Theorem 2.2.1: τ(ε) ≤ dT e ln ε−1e.

Path coupling arguments, introduced by Bubley and Dyer [18], are a convenient

way of bounding the mixing time of a Markov chain by considering only a subset U

of the joint state space Ω× Ω of a coupling. By considering an appropriate metric φ

on Ω, proving that the two marginal chains, if in a joint configuration in subset U ,

get no farther away in expectation after one iteration is sufficient to show that M

is rapidly mixing. We will use the following path coupling theorem due to Dyer and

Greenhill [32].

Theorem 2.2.2 (Dyer and Greenhill): Let φ be an integer-valued metric on Ω×

Ω which takes values in {0, ..., B}. Let U be a subset of Ω × Ω such that for all
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(Xt, Yt) ∈ Ω× Ω there exists a path Xt = Z0, Z1, ..., Zr = Yt between Xt and Yt such

that (Zi, Zi+1) ∈ U for 0 ≤ i < r and
∑r−1

i=0 φ(Zi, Zi+1) = φ(Xt, Yt). Let M be a

Markov chain on state space Ω and let (Xt, Yt) be a coupling of M. Suppose there

exists a β ≤ 1 such that

E[φ(Xt+1, Yt+1)] ≤ βφ(Xt, Yt),

for all Xt, Yt ∈ U .

1. If β < 1, then the mixing time satisfies

τ(ε) ≤ ln(Bε−1)

1− β
.

2. If β = 1, (i.e., E[∆φ(Xt+1, Yt+1)] ≤ 0, for all Xt, Yt ∈ U), let α > 0 satisfy

Pr[φ(Xt+1, Yt+1) 6= φ(Xt, Yt)] ≥ α for all t such that Xt 6= Yt. Then the mixing

time of M satisfies

τ(ε) ≤ 2

⌈
eB2

α

⌉
dln ε−1e.

Greenberg et. al. [43] introduced a version of the path coupling theorem which

is particularly useful because the values taken by the metric φ can be exponential

in n, yet as long as the distance between two chains in a coupling decreases by some

constant multiplicative factor with each move of the joint Markov process, the Markov

chain is provably rapidly mixing.

Theorem 2.2.3 (Greenberg, et. al.): Let φ : Ω × Ω → R+ ∪ {0} be a metric

that takes on finitely many values in {0} ∪ [1, B]. Let U be a subset of Ω × Ω such

that for all (Xt, Yt) ∈ Ω × Ω, there exists a path Xt = Z0, Z1, ..., Zr = Yt such that

(Zi, Zi+1) ∈ U for 0 ≤ i < r and
∑r−1

i=0 φ(Zi, Zi+1) = φ(Xt, Yt).

Let M be a lazy Markov chain on state space Ω and let (Xt, Yt) be a coupling of

M. Suppose there exists a β < 1 such that,

E[φ(Xt+1, Yt+1)] ≤ βφ(Xt, Yt),

for all Xt, Yt ∈ U .
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1. If β < 1, then the mixing time satisfies

τ(ε) ≤ ln(Bε−1)

1− β
.

2. If there exists κ, η ∈ (0, 1) such that Pr[|φ(Xt+1, Yt+1)−φ(Xt, Yt)| ≥ ηφ(Xt, Yt)] ≥

κ for all t provided that Xt 6= Yt, then the mixing time of M satisfies

τ(ε) ≤
⌈

e ln2(B)

ln2(1 + η)κ

⌉
dln ε−1e.

2.3 Comparison

The comparison method due to Diaconis and Saloff-Coste [25] can be used to infer the

mixing time of one chain given the mixing time of another, similar chain. If P ′ and P

are the transition matrices of two reversible Markov chains on the same state space Ω

with the same stationary distribution π, the comparison method [25, 71] allows us to

relate the mixing times of these two chains. We will assume that we know the mixing

time of P ′ and are trying to determine the mixing time of P . Let

E(P) = {(σ, β) : P(σ, β) > 0}

and

E(P ′) = {(σ, β) : P ′(σ, β) > 0}

denote the sets of edges of the two graphs, viewed as directed graphs. For each σ, β

with P ′(σ, β) > 0, define a path γσβ using a sequence of states σ = σ0, σ1, · · · , σk = β

with P(σi, σi+1) > 0, and let |γσβ| denote the length of the path. Let

Γ(υ, ω) = {(σ, β) ∈ E(P ′) : (υ, ω) ∈ γσβ}

be the set of paths that use the transition (υ, ω) of P . Finally, let π∗ = minρ∈Ω π(ρ)

and define

A = max
(υ,ω)∈E(P)

1

π(υ)P(υ, ω)

∑
Γ(υ,ω)

|γσβ|π(σ)P ′(σ, β).

We use the following formulation of the comparison method due to Randall and

Tetali [71].
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Theorem 2.3.1 (Randall and Tetali): Given two reversible and lazy Markov

chains each with stationary distribution π, transition matrices P and P ′ and mixing

times τ(ε) and τ ′(ε), respectively. Define A and π∗ as above, then for 0 < ε < 1, we

have

τ(ε) ≤ 4 log(1/(επ∗))

log(1/2ε)
Aτ ′(ε).

2.4 Conductance

For several of our results we show that a Markov chain is slow mixing by demon-

strating that the state space contains a bottleneck that requires exponential expected

time to cross. We use the bottleneck to bound the conductance of the Markov chain.

Formally, the conductance of an ergodic Markov chain M with distribution π and

transition matrix P , is

ΦM = min
S⊆Ω

π(S)≤1/2

∑
s1∈S,s2∈S̄

π(s1)P(s1, s2)/π(S).

We can then use the bound on conductance to bound the mixing time using the

following theorem that relates the conductance and mixing time (see, e.g., [49]).

Theorem 2.4.1: For any Markov chain M with conductance ΦM and mixing time

τ(ε), for all ε > 0 the mixing time of M on state space Ω satisfies

τ(ε) ≥
(

1

4ΦM
− 1

2

)
log

(
1

2ε

)
.
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CHAPTER III

SELF-ORGANIZING LISTS AND BIASED

PERMUTATIONS

We begin with work on biased card shuffling which was introduced in Section 1.1.2.

Specifically, in this chapter we study the mixing time of a Markov chain Mnn on

permutations that performs nearest neighbor transpositions in the non-uniform set-

ting, a problem arising in the context of self-organizing lists. We are given “positively

biased” probabilities {pi,j ≥ 1/2} for all i < j and let pj,i = 1− pi,j. In each step, the

chainMnn chooses two adjacent elements k and ` and exchanges their positions with

probability p`,k. Here we define two general classes and give the first proofs that the

chain is rapidly mixing for both. In the first case we are given constants r1, . . . rn−1

with 1/2 ≤ ri ≤ 1 for all i and we set pi,j = ri for all i < j. In the second we are

given a binary tree with n leaves labeled 1, . . . n and constants q1, . . . qn−1 associated

with all of the internal vertices, and we let pi,j = qi∧j for all i < j. Our bounds on the

mixing time of Mnn rely on bijections between permutations, inversion tables and

asymmetric simple exclusion processes (ASEPs) that allow us to express moves of the

chain in the context of these other combinatorial families. We also demonstrate that

the chain is not always rapidly mixing by constructing an example requiring expo-

nential time to converge to equilibrium. This proof relies on a reduction to biased

lattice paths in Z2.

3.1 Biased Permutations

Sampling from the permutation group Sn is one of the most fundamental problems

in probability theory. A natural Markov chain that has been studied extensively
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is a symmetric chain, Mnn, that iteratively makes nearest neighbor transpositions

on adjacent elements. We are given a set of input probabilities P = {pi,j} for all

1 ≤ i, j ≤ n with pi,j = 1 − pj,i. At each step, the Markov chain Mnn uniformly

chooses a pair of adjacent elements, i and j, and puts i ahead of j with probability

pi,j, and j ahead of i with probability pj,i = 1− pi,j.

The problem of biased permutations arises naturally from the Move-Ahead-One

(MA1) list update algorithm and was considered by Fill [34, 35]. In the MA1 protocol,

elements are chosen according to some underlying distribution and they move up by

one in a linked list after each request is serviced, if possible. Thus, the most frequently

requested elements will move toward the front of the list and will require less access

time. If we consider a pair of adjacent elements i and j, the probability of performing

a transposition that moves i ahead of j is proportional to i’s request frequency, and

similarly the probability of moving j ahead of i is proportional to j’s frequency, so

the transposition rates vary depending on i and j and we are always more likely to

put things in order (of their request frequencies) than out of order. Fill asked for

which P = {pi,j} the chain is rapidly mixing.

Despite the simplicity of the model, the mixing times of only a few special cases

are known. After a series of papers [26, 24], Wilson [89] showed that in the unbiased

case when pi,j = 1/2 for all i, j the mixing time is Θ(n3 log n), with upper and lower

bounds within a factor of two. Subsequently Benjamini et al. [6] considered a constant

bias version of this chain, where we are given a fixed parameter 0 ≤ p ≤ 1 such that

p 6= 1/2 and pi,j = p for all i < j and pi,j = 1 − p for i > j. They relate this biased

shuffling Markov chain to a chain on an asymmetric simple exclusion process (ASEP)

and showed that they both converge in Θ(n2) time. These bounds were matched by

Greenberg et al. [43] who also generalized the result on ASEPs to sampling biased

surfaces in two and higher dimensions in optimal Θ(nd) time. Note that when the bias

is a constant for all i < j there are other methods for sampling from the stationary
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distribution, but studying the Markov chain Mnn is of independent interest, partly

because of the connection to ASEPs and other combinatorial structures. Finally, we

also have polynomial bounds on the mixing time when each of the pi,j for i < j is

equal to 1/2 or 1; in this case we are sampling linear extensions of a partial order

over the set {1 . . . n}, and the chainMnn was shown by Bubley and Dyer [17] to mix

in O(n3 log n) time.

It is easy to see thatMnn is not always rapidly mixing. Consider, for example, n

elements 1 . . . n such that pi,j = 1 for all 1 ≤ i < j ≤ n− 1, pn,i = .9 for i ≤ n/2 and

pi,n = .9 for i > n/2. Then the first n−1 elements will stay in order once they become

ordered. All n places where the last element can be placed have nonzero stationary

probability, but the configurations that have this last element at the beginning or

end of the permutation will have exponentially larger stationary probability than the

configuration that has this last element near the middle of the permutation. This

defines an exponentially small cut in the state space and we can conclude that the

nearest neighbor transposition chain must be slowly mixing for this choice of P.

To avoid such situations, we restrict our attention to the positively biased setting

where for all i < j, we have 1/2 ≤ pi,j ≤ 1. Note that any transposition that

puts elements in the proper order has probability at least 1/2, so starting at any

permutation, we can always perform a series of transpositions to move to the ordered

permutation 1, 2, . . . , n without ever decreasing the stationary probability. It is also

worth noting that the classes for which the chain is known to mix rapidly are all

positively biased. Fill [34, 35] conjectured that when P is positively biased and

also satisfies a monotonicity condition where pi,j ≤ pi,j+1 and pi,j ≥ pi+1,j for all

1 ≤ i < j ≤ n, then the chain is always rapidly mixing. In fact, he conjectured that

the spectral gap is minimized when pi,j = 1/2 for all i, j, a problem he refers to as the

“gap problem.” Fill verified the conjecture for n = 4 and gave experimental evidence

for slightly larger n.
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In this chapter, we make progress on the question of determining for which values

of P the chain Mnn is rapidly mixing. First, we show that restricting P to be

positively biased is not sufficient to guarantee fast convergence to equilibrium. Our

example uses a reduction to ASEPs and biased lattice paths. The construction is

motivated by models in statistical physics that exhibit a phase transition arising

from a “disordered phase” of high entropy and low energy, an “ordered phase” of

high energy and low entropy, and a bad cut separating them that is both low energy

and entropy. We note that this example does not satisfy the monotonicity condition

of Fill, thus leaving his conjecture open, but does give insight into why bounding the

mixing rate of the chain in more general settings has proven quite challenging.

In addition, we identify two new classes of input probabilities P for which we can

prove that the chain is rapidly mixing. It is important to note that these classes are

not necessarily monotone. The first, which we refer to as “Choose Your Weapon,” we

are given a set of input parameters 1/2 ≤ r1, . . . , rn−1 < 1 representing each player’s

ability to win a duel with his or her weapon of choice. When a pair of neighboring

players are chosen to compete, the dominant player gets to choose the weapon, thus

determining his or her probability of winning the match. In other words, we set

pi,j = ri when i < j. We show that the nearest neighbor transposition chain Mnn is

rapidly mixing for any choice of {ri}. The second class, which we refer to as “League

Hierarchies,” is defined by a binary tree with n leaves labeled 1, . . . n. We are given

q1, . . . qn−1 with 1/2 ≤ qi < 1 for all i, each associated with a distinct internal node in

the tree. We then set pi,j = qi∧j for all i < j. We imagine that the two subtrees under

the root represent two different leagues, where each player from one league have a

fixed advantage over each player from the other. Moreover, each league is subdivided

into two sub-leagues, and each player from one has a fixed advantage over a player

from the other, and so on recursively. We prove that there is a Markov chain based

on transpositions (not necessarily nearest neighbors) that is always rapidly mixing for
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positively biased P defined as League Hierarchies. Moreover, if the {qi} additionally

satisfy “weak monotonicity” (i.e., pi,j ≤ pi,j+1 if j > i) then the nearest neighbor

chain Mnn is also rapidly mixing. Note that both the choose-your-weapon and the

tree-hierarchy classes are generalizations of the constant bias setting, which can be

seen by taking all parameters ri or qi to be constant.

Our proofs rely on various combinatorial representations of permutations, includ-

ing Inversion Tables and families of ASEPs. In each case there is a natural Markov

chain based on (non necessarily adjacent) transpositions for which we can more easily

bound the mixing time in the new context. We then interpret these new moves in

terms of the original permutations in order to derive bounds on the mixing rate of

the nearest neighbor transposition via comparison methods. These new chains that

allow additional, but not necessarily all, transpositions are also interesting in the con-

text of permutations and these related combinatorial families. Finally, we note that

the choose-your-weapon class is actually a special case of the league-hierarchy class,

but the proofs bounding the mixing rate of Mnn are simpler and yield faster mixing

times, so we present these proofs separately in Sections 3.4 and 3.5.

3.2 Formalizing the Markov Chains

We begin by formalizing the nearest neighbor and transposition Markov chains. Let

Ω = Sn be the set of all permutations σ = (σ(1), . . . , σ(n)) of n integers. We consider

Markov chains on Ω whose transitions transpose two elements of the permutation.

Recall we are given a set P, consisting of pi,j ∈ [0, 1] for each 1 ≤ i 6= j ≤ n, where

pj,i = 1 − pi,j. In this chapter we only consider sets P which are positively biased

and bounded away from 1. Specifically, for any i < j, 1/2 ≤ pi,j < 1. The Markov

chain Mnn will sample elements from Ω as follows.

The Nearest Neighbor Markov chain Mnn

Starting at any permutation σ0, repeat:
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• At time t, select index i ∈ [n− 1] uniformly at random (u.a.r).

– Exchange the elements σt(i) and σt(i+ 1) with probability

pσt(i+1),σt(i) to obtain σt+1.

– With probability pσt(i),σt(i+1) do nothing so that σt+1 = σt.

The chainMnn connects the state space, since every permutation σ can move to the

ordered permutation (1, 2, . . . , n) (and back) using the bubble sort algorithm. Since

Mnn is also aperiodic, this implies thatMnn is ergodic. It is easy to see that forMnn,

the distribution

π(σ) =

 ∏
i<j:σ(i)<σ(j)

pi,j
pj,i

Z−1,

where Z is the normalizing constant
∑

σ∈Ω

(∏
i<j:σ(i)<σ(j)

pi,j
pj,i

)
, satisfies detailed bal-

ance, and is thus the stationary distribution (see, e.g., [78]).

Next, we define the Markov chainMtr which can make any transposition at each

step, while maintaining the stationary distribution π. The transition probabilities of

Mtr can be quite complicated, since swapping two distant elements in the permutation

consists of many transitions of Mnn, each with different probabilities.

The All-Transposition Markov chain Mtr

Starting at any permutation σ0, repeat:

• At time t, select indices i, j ∈ [n− 1] u.a.r.

– Swap the elements σt(i), σt(j) with probability

pσt(j),σt(i)
∏

i<k<j

pσt(j,k)

pσt(i,k)
to obtain σt+1.

– Otherwise, do nothing so that σt+1 = σt.

The transition probabilities of Mtr are chosen so that the distribution π will

satisfy detailed balance, and therefore be the stationary distribution of Mtr. In the

28



following sections, we will introduce two other Markov chains whose transitions are

a subset of those of Mtr, but for which we can describe the transition probabilities

succinctly.

3.3 An Example that is Slowly Mixing

We begin by presenting an example that is positively biased yet takes exponential

time to mix. In particular, we show that there are positively biased P for which

the chains Mnn and even Mtr require exponential time to converge to equilibrium.

The key component used in the construction of these P values is an example of

slow mixing which was discovered by Pascoe and Randall [68] in the context of tile-

based self-assembly models and is of independent interest in this setting.1 We use a

mapping from biased permutations to multiple particle ASEP configurations with n

zeros and n ones. The resulting ASEPs are in bijection with staircase walks [43],

which are sequences of n ones and n zeros, that correspond to paths on the Cartesian

lattice from (0, n) to (n, 0), where each 1 represents a step to the right and each 0

represents a step down (see Figure 2b). In [43], Greenberg et al. examined the Markov

chain which attempts to swap a neighboring (0, 1) pair, which equivalently adds or

removes a unit square from the region below the walk, with probability depending on

the position of that unit square. Each unit square (x, y) is assigned a bias λx,y and

the probability of each staircase walk w is proportional to the product of the bias

assigned to each square below the walk. More formally, the stationary weight of a

walk w is π(w) = Z−1
∏

xy<w λx,y, where xy < w whenever the square at (x, y) lies

underneath the walk w and Z is the normalizing constant. For example, the walk w

1In [8] we give a simpler example also based on work by Pascoe and Randall in the context of
tile-based self-assembly models. However, this example requires pi,j = 1 for i < j ≤ n or n < i < j
(for permutations on 2n numbers), ensuring that once the elements 1, 2, . . . , n get in order, they stay
in order (and similarly for the elements n+1, n+2, . . . , 2n). The example presented here, although
more complex, allows all pi,j values to be bounded away from 1.
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in Figure 3(a) has weight

π(w) = Z−1λ1,5λ1,6λ2,6λ3,6λ1,7λ2,7λ3,7λ4,7λ1,8λ2,8λ3,8λ4,8

We show that there are settings of the {λx,y} which cause the chain to be slowly mixing

from any starting configuration (or walk). Consider the {λx,y} given in Figure 2a

where roughly all squares have bias 1/2 except those in the upper right corner which

have bias 1. The idea is that if you start at a configuration that never touches the

upper right corner (for example, the walk from (0, n) to (0, 0) to (n, 0)) you can expect

to stay within
√
n of the diagonal from (0, n) to (n, 0) and never discover the walks

with high weight that go through the upper right corner. More specifically, with

these bias values, we show that at stationarity the most likely configurations will be

concentrated near the diagonal from (0, n) to (n, 0) (the high entropy, low energy

states) or they will extend close to the point (n, n) (the high energy, low entropy

states) but it will be unlikely to move between these sets of states because there

is a bottleneck that has both low energy and low entropy. Finally, we give a map

from biased permutations to biased lattice paths to produce a positively biased set

of probabilities P for which Mnn also requires exponential time to mix.

Suppose, for ease of notation, that we are sampling permutations with 2n entries

(having an odd number of elements will not cause qualitatively different behavior).

We begin by setting pi,j = 1 when i < j ≤ n or n < i < j, ensuring that once the

elements 1, 2, . . . , n get in order, they stay in order (and similarly for the elements

n+1, n+2, . . . , 2n). Since the smallest (largest) n elements of the biased permutation

never change order once they get put in increasing order, permutations with these

elements out of order have zero stationary probability. Hence, we can represent the

smallest n numbers as ones and the largest n numbers as zeros, assuming that within

each class the elements are in increasing order. Thus, in this setting, we have a

bijection between staircase walks and permutations and it suffices to show a set of

{λx,y}, staircase walk bias values, for which the Markov chain on staircase walks is

30



slow. We do this first and then show how we can extend this to the more interesting

case where we set pi,j = 1 − β when i < j ≤ n or n < i < j, and we have a more

complex map between permutations and staircase walks.

3.3.1 Slow Mixing of Biased Staircase Walks

First we define a set of {λx,y}, staircase walk bias values, for which the Markov chain

on staircase walks is slow. Let M = 2n2/3, 0 < δ < 1
2

be a constant, ε = β = 1/n2.

We will define the {λx,y} as follows (see Figure 2a):

λx,y =


1− δ if x+ y > n+M ;

1
2

+ ε otherwise.

(3.3.1)

1
2

+ ε

1− δ

M n−M

Figure 2: An example of fluctuating bias with exponential mixing time and staircase
walks in S1, S2, and S3.

We identify sets W1,W2,W3 such that π(W2) is exponentially smaller than both

π(W1) and π(W3), but to get between W1 and W3, the Markov chain on staircase

walks must pass through W2, the cut. We prove that for the set {λx,y} defined above,

the Markov chain on staircase walks has a bad cut. Then we use the conductance

(see Section 2.4) to prove it is slowly mixing.

For a staircase walk w, define the height of wi as
∑

j≤iwj, and let max(w) be the

maximum height of wi over all 1 ≤ i ≤ 2n. Let W1 be the set of walks w such that

max(w) < n+M , W2 the set of walks such that max(w) = n+M , and W3 the set of

walks such that max(w) > n+M . That is, W1 is the set of walks that never reach the
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dark blue diagonal in Figure 2b, W2 is the set whose maximum peak is on the dark

blue line, and W3 is the set which crosses that line and contains squares in the light

blue triangle. Define γ = (1/2 + ε)/(1/2− ε), which is the ratio of two configurations

that differ by swapping a (0, 1) pair with probability 1
2

+ ε. First we notice that since

the maximal staircase walk is in W3,

π(W3) ≥ 1

Z
γn

2− (n−M)2

2 (δ−1 − 1)
(n−M)2

2 .

Also, π(W1) = 1
Z

∑
w∈W1

γA(w), where A(w) is the number of unit squares below w.

We have that

π(W1) =
1

Z

∑
w∈W1

γA(w)

≤ 1

Z

∑
w∈W1

γn
2− (n−M)2

2

≤ 1

Z

(
2n

n

)
γn

2− (n−M)2

2

≤ 1

Z
(2e)nγn

2− (n−M)2

2

≤ 1

Z
γn

2− (n−M)2

2 (δ−1 − 1)
(n−M)2

2

≤ π(W3)

for large enough n, since 1/δ > 2 is a constant. Hence π(W1) ≤ π(W3). We will show

that π(W2) is exponentially small in comparison to π(W1) (and hence also to π(W3)).

π(W2) =
1

Z

∑
σ∈W2

γA(w) ≤ γn
2|W2|
Z

.

We bound |W2| as follows. The unbiased Markov chain is equivalent to a simple

random walk w2n = X1 +X2 + · · ·+X2n = 0, where Xi ∈ {+1,−1} and where a +1

represents a step to the right and a −1 represents a step down. We call this random

walk tethered since it is required to end at 0 after 2n steps. Compare walk w2n with

32



the untethered simple random walk w′2n = X ′1 +X ′2 + . . .+X ′2n.

P

(
max

1≤t≤2n
wt ≥M

)
= P

(
max

1≤t≤2n
w′t ≥M | w′2n = 0

)
=
P (max1≤t≤2nw

′
t ≥M)

P (w′2n = 0)

=
22n(
2n
n

)P ( max
1≤t≤2n

w′t ≥M

)
≈
√
πn P

(
max

1≤t≤2n
w′t ≥M

)
.

Since the {X ′i} are independent, we can use Chernoff bounds to see that

P

(
max

1≤t≤2n
w′t ≥M

)
≤ 2nP (w′2n ≥M) ≤ 2ne

−M2

2n .

Together these show that

P

(
max

1≤t≤2n
wt ≥M

)
< e−n

1/3

,

by definition of M . Therefore we have

π(W2) ≤ 1

Z
γn

2|W2| ≤
γn

2

Z

(
2n

n

)
e−n

1/3

≤ 1

Z

(
2n

n

)
e−n

1/3+1(1− e−n1/3

)

≤ 1

Z
|W1|e−n

1/3+1

≤ e−n
1/3+1π(W1),

as desired. Thus, π(W2) is exponentially smaller than π(W1) for every value of δ and

the conductance satisfies

Φ ≤
∑
x∈W1

π(x)

π(W1)

∑
y∈W2

P (x, y)

≤
∑
x∈S1

π(x)

π(W1)
π(W2)

≤ e−n
1/3+1π(W1) ≤ e−n

1/3+1

2
.

Using Theorem 2.4.1, we can use the bound on conductance to bound the mixing

time.
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3.3.2 Extending Slow Mixing of Staircase Walks to Biased Permutations

Next, we extend the above proof to the more general case where we set pi,j = 1 − β

when i < j ≤ n or n < i < j, and we have a more complex map between permutations

and staircase walks. Again, let M = 2n2/3, 0 < δ < 1
2

be a constant, ε = β = 1/n2.

For i < j ≤ n or n < i < j, pi,j = 1 − β, ensuring that the elements 1, 2, . . . , n

are likely to be in order (and similarly for the elements n + 1, n + 2, . . . , 2n). The

remaining pi,j values are defined as follows:

pi,j =


1− β i < j ≤ n or n < i < j;

1− δ if i+ 2n− j + 1 ≥ n+M ;

1
2

+ ε otherwise.

(3.3.2)

We again identify sets S1, S2, S3 such that π(S2) is exponentially smaller than both

π(S1) and π(S3), but to get between S1 and S3,Mnn andMtr must pass through S2,

the cut. In order to do this, we will define a map from permutations to staircase

walks by representing the smallest n numbers as ones and the largest n numbers as

zeros. More precisely, given a permutation σ, let f(σ) be a sequence of ones and

zeros, where f(σ)i = 1 if i ≤ n and 0 otherwise. For example, the permutation

σ = (5, 1, 7, 8, 4, 3, 6, 2) maps to f(σ) = (0, 1, 0, 0, 1, 1, 0, 1). If the first n and last

n elements were always in order then, the probability that an adjacent 1 and a 0

swap in Mnn depends on how many ones and zeros occur before that point in the

permutation. Specifically, if element i is a 0 and element i + 1 is a 1 then we swap

them with probability 1
2

+ ε if the number of ones occurring before position x plus

the number of zeros occurring after i + 1 is less than n + M − 1. Otherwise, they

swap with probability 1− δ. Equivalently, the probability of adding a unit square at

position v = (x, y) is 1
2

+ ε if x + y ≤ n + M , and 1 − δ otherwise; see Figure 2b.

We will show that in this case, the Markov chain is slow. The idea is that in the
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stationary distribution, there is a good chance that the ones and zeros will be well-

mixed, since this is a high entropy situation. However, the identity permutation also

has high weight, and the parameters are chosen so that the entropy of the well-mixed

permutations balances with the energy of the maximum (identity) permutation, and

that to get between them is not very likely (low entropy and low energy). We prove

that for the set P defined above, Mnn and Mtr have a bad cut. Then we use the

conductance (see Section 2.4) to prove Mnn and Mtr are slowly mixing.

Given a staircase walk w, define σw to be the highest weight permutation σ such

that f(σ) = w. Notice that σw is the permutation where elements 1, 2, . . . , n and ele-

ments n+1, n+2, . . . , 2n are each in order (for example, σ10110010 = (1, 5, 2, 3, 6, 7, 4, 8)).

First, we will show how the combined weight of all permutations that map to w re-

lates to π(σw). We will assign bias to the squares as follows. Each square (i, j) is

given weight λi,j = pi,j/pj,i, where the squares are numbered as shown in Figure 3(a).

Thus the weight of σw satisfies

π(σw) =
(β−1 − 1)n

2−n∏
xy<w λx,y

Z
.

The factor (β−1 − 1)n
2−n comes from having the first and last n elements in order.

For any staircase walk w, define Π(w) =
∑

σ:f(σ)=w π(σ), the sum of the weights of

the permutations which map to w. We will show that with our choice of β, we have

π(w) within a factor of 2 of the weight of σw.

Lemma 3.3.1: Given the set of probabilities P defined in Equation 3.3.2, for all

staircase walks w, the weight Π(w) satisfies the following,

π(σw) < Π(w) < 2π(σw).

Proof: First, notice that since f(σw) = w and Π(w) =
∑

σ:f(σ)=w π(σ), we trivially

have that Π(w) > π(σw). Given any permutation σ, let h1(σ) be the number of

inversions between the first n numbers, specifically, pairs (i, j) : 1 ≤ i, j ≤ n, i <
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j, σi > σj. Similarly, let h2(σ) be the number of inversions in the second n numbers,

specifically, pairs (i, j) : n < i, j ≤ 2n, i < j, σi > σj. We will start by showing that

π(σ)

π(σw)
≤
(

δ−1 − 1

γ(β−1 − 1)

)h1(σ)+h2(σ)

. (3.3.3)

λ1,8 λ2,8 λ3,8 λ4,8

λ1,7 λ2,7 λ3,7 λ4,7

λ1,6 λ2,6 λ3,6 λ4,6

λ1,5 λ2,5 λ3,5 λ4,5

(a) Permutation 15236478

λ1,8 λ2,8 λ3,8 λ4,8

λ1,7 λ2,7 λ3,7 λ4,7

λ1,6 λ2,6 λ3,6 λ4,6

λ1,5 λ2,5 λ3,5 λ4,5

(b) Permutation 35416278

λ1,8 λ2,8 λ3,8 λ4,8

λ1,7 λ2,7 λ3,7 λ4,7

λ1,6 λ2,6 λ3,6 λ4,6

λ1,5 λ2,5 λ3,5 λ4,5

(c) Permutation 38415276

Figure 3: A graphical representation of the relative weights of three different permu-
tations.

Given a walk w, consider any permutation σ : f(σ) = w and let σ1 be the

sub-permutation corresponding to the first n integers. Similarly let σ2 be the sub-

permutation corresponding to the last n integers. We start by studying the effect

of inversions within σ1 on the weight of σ relative to the weight of σw. If σ1 and σ2

contain no inversions (i.e. h1(σ) = h2(σ) = 0) then π(σ) = π(σw). First, assume

h2(σ) = 0, the effect of inversions between the first n elements is to reorder the

columns of the walk. For example in Figure 3(b), σ1(1) = 3 so each inversion (1, i) is

replaced by a (3, i) inversion and λ1,i is replaced with λ3,i in the weight. This can be

visualized as moving the shaded squares (those included in the weight) from column

i to column σ(i) (see Figure 3(b)). If h1(σ) = k, h2(σ) = 0 the weight is now the

product of the bias of the shaded squares (after rearranging the columns as specified

due to σ1) times (β−1 − 1)n
2−n−k/Z. We want to determine if σ1 has a inversions

how much can this change the weight of the σ. Notice that if we shift a column by

i since the boundary between the region where pij is 1 − δ and where it is 1/2 + ε

is a diagonal (see Figure 2), we can increase the weight of the permutation by at
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most
(
δ−1−1
γ

)i
. Each column gets shifted by σ(i) − i. We are only interested in the

case where σ(i) − i > 0, otherwise, the weight decreases. Let I(i) be the number

of inversions associated with i, specifically j > i : σ(j) < σ(i). We will show that

σ(i) − i ≤ I(i). To see this consider any permutation σ. Consider the permutations

σ′ = σ(1)σ(2)σ(3) . . . σ(i − 1)r1, r2, r3, . . . where r1, ...rk are the remaining integers

not included in σ(1) . . . σ(i − 1). Assume σ(i) = rj then I(i) = j and since every

number less than σ(i) occurs before σ(i) in σ′, it follows that σi ≤ i + I(i) implying

that σ(i) − i ≤ I(i) as desired. If h2(σ) 6= 0, we can use the exact same argument

to bound the increase in weight due to inversion between the last n elements. These

inversions correspond to switching rows of the staircase walk instead of columns. For

example, see Figure 3(c). Similarly, each row i moves a distance of σ(i)− i so we can

bound these in the exact same way. Combining these gives us the following,

π(σ)

π(σw)
≤

(
β−1 − 1

)−(h1(σ)+h2(σ))
(
δ−1 − 1

γ

)∑
i:1≤i≤n,σ(i)>i σ(i)−i+

∑
i:n<i≤2n,σ(i)>i σ(i)−i

≤
(
β−1 − 1

)−(h1(σ)+h2(σ))
(
δ−1 − 1

γ

)∑n
i=0 I(i)+

∑2n
i=n+1 I(i)

≤
(
β−1 − 1

)−(h1(σ)+h2(σ))
(
δ−1 − 1

γ

)h1(σ)+h2(σ)

≤
(

δ−1 − 1

γ(β−1 − 1)

)h1(σ)+h2(σ)

.

Next, notice that there are most ni+j permutations σ : f(σ) = w, h1(σ) =

i, h2(σ) = j. This is because we can think of this as first choosing a permutation

of the first n elements with i inversions and then choosing a permutation of the next

n elements with j inversions. The number of permutations of n elements with i in-

versions is upper bounded by ni. This is straightforward to see in the context of

the bijection with inversion tables discussed in Section 3.4.1. Combining this with
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Equation 3.3.3 gives the following:

Π(w) =

(n2)∑
i=0

(n2)∑
j=0

∑
σ:f(σ)=w,h1(σ)=i,h2(σ)=j

π(σ)

≤
(n2)∑
i=0

(n2)∑
j=0

∑
σ:f(σ)=w,h1(σ)=i,h2(σ)=j

π(σw)

(
δ−1 − 1

γ(β−1 − 1)

)i+j
.

≤ π(σw)

(n2)∑
i=0

(n2)∑
j=0

ni+j
(

δ−1 − 1

γ(β−1 − 1)

)i+j
.

< 2π(σw)

We are now ready to prove the main theorem of the section.

Theorem 3.3.2: There exists a positively biased preference set P for which the

mixing time τ(ε) of the Markov chain Mnn with preference set P satisfies

τ(ε) = Ω
(
en

1/3

log(ε−1)
)
.

Proof: As in the earlier example, ofr a staircase walk w, define the height of wi as∑
j≤iwj, and let max(w) be the maximum height of wi over all 1 ≤ i ≤ 2n. Again

let W1 be the set of walks w such that max(w) < n + M , W2 the set of walks such

that max(w) = n + M , and W3 the set of walks such that max(w) > n + M . Let

S1 be the set of permutations σ such that f(σ) ∈ W1, S2 the permutations such that

f(σ) ∈ W2 and S3 the permutations such that f(σ) ∈ W3. That is, W1 is the set

of walks that never reach the dark blue diagonal in Figure 2b, W2 is the set whose

maximum peak is on the dark blue line, and W3 is the set which crosses that line and

contains squares in the light blue triangle. Define γ = (1/2 + ε)/(1/2 − ε), which is

the ratio of two configurations that differ by swapping a (0, 1) pair with probability

1
2

+ ε. First we notice that since the maximum weight permutation (which maps to

the maximal tiling) is in S3,

π(S3) ≥ 1

Z
γn

2− (n−M)2

2 (δ−1 − 1)
(n−M)2

2 (β−1 − 1)n
2−n.
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Using Lemma 3.3.1, π(S1) ≤ 2
Z

∑
w∈W1

γA(w)(β−1−1)n
2−n, where A(w) is the number

of unit squares below w. We have that

π(S1) ≤ 2

Z

∑
w∈W1

γA(w)(β−1 − 1)n
2−n

≤ 2

Z

∑
w∈W1

γn
2− (n−M)2

2 (β−1 − 1)n
2−n

≤ 2

Z

(
2n

n

)
γn

2− (n−M)2

2 (β−1 − 1)n
2−n

≤ 1

Z
(2e)n+1γn

2− (n−M)2

2 (β−1 − 1)n
2−n

≤ 1

Z
γn

2− (n−M)2

2 (δ−1 − 1)
(n−M)2

2 (β−1 − 1)n
2−n

≤ π(S3)

for large enough n, since 1/δ > 2 is a constant. Hence π(S1) ≤ π(S3). We will show

that π(S2) is exponentially small in comparison to π(S1) (and hence also to π(S3)).

π(S2) ≤ 2

Z

∑
σ∈W2

γA(w)(β−1 − 1)n
2−n ≤ 2γn

2
(β−1 − 1)n

2−n|W2|
Z

.

We bound |W2| in exactly the same way as before. The unbiased Markov chain

is equivalent to a simple random walk w2n = X1 + X2 + · · · + X2n = 0, where Xi ∈

{+1,−1} and where a +1 represents a step to the right and a −1 represents a step

down. We call this random walk tethered since it is required to end at 0 after 2n steps.

Compare walk w2n with the untethered simple random walk w′2n = X ′1+X ′2+. . .+X ′2n.

P

(
max

1≤t≤2n
wt ≥M

)
= P

(
max

1≤t≤2n
w′t ≥M | w′2n = 0

)
=
P (max1≤t≤2nw

′
t ≥M)

P (w′2n = 0)

=
22n(
2n
n

)P ( max
1≤t≤2n

w′t ≥M

)
≈
√
πn P

(
max

1≤t≤2n
w′t ≥M

)
.

Since the {X ′i} are independent, we can use Chernoff bounds to see that

P

(
max

1≤t≤2n
w′t ≥M

)
≤ 2nP (w′2n ≥M) ≤ 2ne

−M2

2n .
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Together these show that

P

(
max

1≤t≤2n
Wt ≥M

)
< e−n

1/3

,

by definition of M . Therefore we have

π(S2) ≤ 2

Z
γn

2

(β−1 − 1)n
2−n|W2| ≤

2γn
2
(β−1 − 1)n

2−n

Z

(
2n

n

)
e−n

1/3

≤ (β−1 − 1)n
2−n

Z

(
2n

n

)
e−n

1/3+1(1− e−n1/3

)

≤ (β−1 − 1)n
2−n

Z
|S1|e−n

1/3+1

≤ e−n
1/3+1π(S1),

as desired. Thus, π(S2) is exponentially smaller than π(S1) for every value of δ and

the conductance satisfies

Φ ≤
∑
x∈S1

π(x)

π(S1)

∑
y∈S2

P (x, y)

≤
∑
x∈S1

π(x)

π(S1)
π(S2)

≤ e−n
1/3+1π(S1) ≤ e−n

1/3+1

2
.

Hence, by Theorem 2.4.1, τ(ε), the mixing time of Mnn satisfies

τ(ε) ≥ 1

2

(
en

1/3−1 − 1
)

log

(
1

2ε

)
.

Figure 4: A move that swaps an arbitrary (1, 0) pair.
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In fact, this proof can be extended to the more general Markov chain where we

can swap any 1 with any 0, as long as we maintain the correct stationary distribution.

This is easy to see, because any move that swaps a single 1 with a single 0 can only

change the maximum height by at most 2 (see Figure 4). If we expand S2 to include all

configurations with maximum height n+M or n+M + 1, π(S2) is still exponentially

smaller than π(S1) ≤ π(S3). Hence the Markov chain that swaps an arbitrary (1, 0)

pair still takes exponential time to converge.

Next, we show that there exists a value of δ for which π(S3) = π(S1), which will

imply that π(S2) is also exponentially smaller than π(S3), and hence the set S2 forms

a bad cut, regardless of which state the Markov chain begins in.

Lemma 3.3.3: There exist a constant δ, 1
65
< δ < 1

2
, such that for this choice of

δ, π(S3) = π(S1).

Proof: To find this value of δ, we will rely on the continuity of the function f(ξ) =

Zπ(S3) − Zπ(S1) with respect to ξ = (1 − δ)/δ. Let a(σ) be the number of non-

inversions in σ between i and j, i < j such that pij = 1/2 + ε (for any highest

weight configuration σw this corresponds to the number of tiles above the diagonal

M in w) and let b(σ) be the number of non-inversions in σ between i and j such that

pij = 1−δ (the number of tiles below the diagonal M). Notice that Zπ(S1) is constant

with respect to ξ and Zπ(S3) =
∑

σ∈S3
γb(σ)ξa(σ)(β−1 − 1)n

2−n−h1(σ)−h2(σ) is just a

polynomial in ξ. Therefore Zπ(S3) is continuous in ξ and hence f(ξ) is also continuous

with respect to ξ. Moreover, when ξ = γ, clearly Zπ(S3) < Zπ(S1), so f(γ) < 0.

We will show that f(4e2) > 0, and so by continuity we will conclude that there

exists a value of ξ satisfying γ < ξ < 4e2 for which f(ξ) = 0 and Zπ(S3) = Zπ(S1).

Clearly this implies that for this choice of ξ, π(S3) = π(S1), as desired. To obtain the

corresponding value of δ, we notice that δ = 1/(ξ + 1). In particular, δ is a constant

satisfying 1
65
< δ < 1

2
.

Thus it remains to show that f(4e2) > 0. First we notice that since the maximal
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tiling is in S3, π(S3) ≥ Z−1γn
2− (n−M)2

2 ξ
(n−M)2

2 (β−1 − 1)n
2−n. Also,

π(S1) = Z−1
∑
σ∈S1

γa(σ)(β−1−1)n
2−n−h1(σ)−h2(σ) < Z−1

(
2n

n

)
γn

2− (n−M)2

2 2(β−1−1)n
2−n.

Therefore

π(S1)/π(S3) <
2
(

2n
n

)
ξ

(n−M)2

2

≤ (2e)nξ−n/2 = 1

since ξ = 4e2. Hence f(4e2) = Zπ(S3)−Zπ(S1) > Zπ(S3)−Zπ(S3) = 0, as desired.

Remark: In the setting of biased staircase walks, if the bias on each unit square

(x, y) satisfies λx,y ≥ 2, Pascoe and Randall give polynomial bounds on the mixing

time of the Markov chain which adds or removes a unit square from under the walk

[68]. Using a similar reduction to the one used in the proof of Theorem 3.3.2, in the

biased permutations setting, these results can provide a class of positively biased P

for which there are O(n2) input parameters and Mnn is rapidly mixing.

3.4 Choose Your Weapon

Despite the slow mixing example outlined in the previous section, there are many

cases for which the chain will be rapidly mixing. We define two new classes for which

we can rigorously demonstrate this and we provide the proofs in the next two sections.

For the first class, imagine a community of n people, each with a unique combat-

ive talent. Each member has his or her weapon of choice, and a competition with

any other member of the community using this weapon affords that person a fixed

advantage. When two people are chosen to compete, they each prefer using their

own weapon of choice, so we resolve this by letting the person with the higher rank

(e.g., age, seniority, etc.) choose the weapon they both will use. At any point in time

our competitors are ordered and nearest neighbors are randomly selected to compete,

where upon the winner is moved in front of the loser in the ordering.

To formalize the “Choose Your Weapon” scenario, we are given

1/2 ≤ r1, r2, . . . , rn−1 < 1
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and the set P satisfies pi,j = ri, if i < j and pi,j = 1 − pj,i if j < i. The moves of

the nearest neighbor Markov chain Mnn formalize the competitions, and our goal is

to bound the mixing rate of this chain. Notice that this class includes the constant

bias case studied by Benjamini et al. as a special case, and indeed our analysis yields

an independent and simpler proof that the nearest neighbor Markov chain Mnn is

rapidly mixing in that context.

We shall show that the chainMnn is always rapidly mixing for probabilities P de-

fined in this way. Our proof relies on a bijection between permutations and Inversion

Tables [54, 83] that, for each element i, record how many elements j > i come before

i in the permutation. We consider a Markov chain Minv that simply increments or

decrements a single element of the inversion table in each step; using the bijection

with permutations this corresponds to transpositions of elements that are not nec-

essarily nearest neighbors to the Markov chain Mnn. Remarkably, this allows Minv

to decompose into a product of simple one-dimensional random walks and bounding

the convergence time is very straightforward. Finally, we use comparison techniques

[25, 71] to bound the mixing time of the nearest neighbor chain Mnn.

3.4.1 The Inversion Table Representation.

The Markov chainMinv acts on the inversion table for the permutation [54, 83], which

has an entry for each i ∈ [n] counting the number of inversions involving i; that is, the

number of values j > i where j comes before i in the permutation (see Figure 5). It is

easy to see that the ith element of the inversion table is an integer between 0 and n−i.

In fact, the function I is a bijection between the set of permutations and the set I of

all possible inversion tables (all sequences X = (x1, x2, . . . , xn) where 0 ≤ xi ≤ n− i

for all i ∈ [n]). To see this, we will construct a permutation from any inversion

table X ∈ I. Place the element 1 in the (x1 + 1)st position of the permutation. Next,

there are n − 1 slots remaining. Among these, place the element 2 in the (x2 + 1)st
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position remaining (ignoring the slot already filled by 1). Continuing, after placing

i− 1 elements into the permutation, there are n− i+ 1 slots remaining, and we place

the element i into the (xi+1)st position among the remaining slots. This proves that

I is a bijection from Sn to I.

Given this bijection, a natural algorithm for sampling permutations is the following

local Markov chain on inversion tables: select a position i ∈ [n] and attempt to either

add one or subtract one from xi, according to the appropriate probabilities. In terms

of permutations, this amounts to adding or removing an inversion involving i without

affecting the number of inversions involving any other integer, and is achieved by

swapping the element i with an element j > i such that every element in between is

smaller than both i and j. If i moves ahead of j, this move happens with probability

pi,j because for each k originally between i and j, pk,i = rk = pk,j (since k < i and

k < j), so the net effect of the move is neutral. The detailed balance condition

ensures that π is the correct stationary distribution. Formally, the Markov chain

Mnn is defined as follows.

The Inversion Markov chain Minv

Starting at any permutation σ0, repeat:

• With probability 1/2 let σt+1 = σt.

• Otherwise, select (i, b) ∈ [n]× {−1,+1} u.a.r.

– If b = +1 let j be the first element after i in σt such that

j > i (if such a j does not exist let σt+1 = σt). With

probability pj,i, obtain σt+1 from σt by swapping i and j.

– If b = −1 let j be the last element before i in σt such that

σ = 8 1 5 3 7 4 6 2
I(σ) = 1 7 2 3 1 2 1 0

Figure 5: The inversion table for a permutation.
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j > i (if such a j does not exist let σt+1 = σt). With

probability pi,j, obtain σt+1 from σt by swapping i and j.

This Markov chain contains the moves ofMnn (and therefore also connects the state

space). Although elements can jump across several elements, it is still fairly local

compared with the general transposition chain Mtr which has
(
n
2

)
choices at every

step, since Minv has at most 2n.

3.4.2 Fast Mixing of the Inversion Chain

The inversion Markov chain Minv can be viewed as a product of n independent

processes. The ith process is a one-dimensional random walk bounded between 0

and n− i that moves up by one with probability ri and down by one with probability

1 − ri; its mixing time is O(n2 log n), unless ri is bounded away from 1/2, in which

case its mixing time is O(n). We make moves in each chain with probability 1/n,

since we update one random walk at a time. The main tool we use for proving rapid

mixing of Minv is coupling which was introduced in Section 2.2.

For the general case where the ri’s are not bounded about from 1/2, we will first

bound the mixing time of each one-dimensional walk by using the following Lemma

due to Luby, Randall and Sinclair [59] to bound the coupling time.

Lemma 3.4.1: Let φ be an integer valued metric defined on Ω× Ω which takes

values in [0, B], and φ(x, y) = 0 iff x = y. Let M be a Markov chain on Ω and let

(Xt, Yt) be a coupling of M, with φt = φ(Xt, Yt). Suppose the coupling satisfies

E[∆φt|Xt, Yt] ≤ 0 and, whenever φt > 0, E[(∆φt)
2|Xt, Yt] ≥ V . Then the expected

coupling time from initial states x, y satisfies

ET x,y ≤ φ0(2B − φ0)

V
.

Next, we will use the following theorem, which relates the mixing time of a product

of independent Markov chains to the mixing time of each component to bound the
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mixing time of Minv. Similar results have been proved before in other settings (i.e.,

see [6, 9] and Corollary 12.12 of [55]). The proof can be found in [8].

Theorem 3.4.2: Suppose the Markov chain M is a product of N independent

Markov chains {Mi}, where M updates each Mi with probability pi. If τi(ε) is

the mixing time for Mi and τi(ε) ≥ 4 ln ε for each i, then

τ(ε) ≤ max
i=1,2,...,N

2

pi
τi

( ε

2N

)
.

Now we are ready to prove the following theorem, bounding the mixing time of

Minv.

Theorem 3.4.3: Given input probabilities 1/2 ≤ r1, r2, . . . , rn−1 < 1, let P =

{pi,j = rmin{i,j}}. The mixing time of Minv with preference set P satisfies τ(ε) =

O(n3 log(nε−1)).

Proof: To prove our theorem, we need to analyze the one-dimensional process

M(r, k), bounded between 0 and k, which chooses to move up with probability

r/2 ≥ 1/4, down with probability (1− r)/2 and does nothing with probability 1/2 at

each step, if possible. This simple random walk is well-studied; we include the proof

for completeness. We use Lemma 3.4.1. First, we define a natural distance metric

φ(Xt, Yt) = φt on pairs Xt, Yt of walks where φt is the distance between the two walks

at time t (i.e., if Xt = i and Yt = j then φt = |i− j|). We construct a coupling on the

two lazy walks where with probably r/2 the walk Xt moves up (Yt does nothing), with

probability (1− r)/2 the walk Xt moves down (Yt does nothing), similarly with prob-

ability r/2 the walk Yt moves up (Xt does nothing) and with probability (1−r)/2 the

walk Yt moves down (Xt does nothing). The directions for Yt and Xt are chosen in-

dependently. Once the walks collide, they make the exact same moves. Since the two

walks never move at the same time, they will never jump over each other. Without

loss of generality, assume that Xt is above Yt then there are at most two cases where
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the distance increases. Namely, if Xt moves up which happens with probability r/2 or

if Yt moves downs which happens with probability (1−r)/2. The distance is decreased

if Xt moves down or Yt moves up which happens with probabilities (1− r)/2 and r/2

respectively. Thus, E[∆φt|Xt, Yt] ≤ r/2 + (1− r)/2− r/2− (1− r)/2 = 0. Similarly,

whenever φt > 0, E[(∆φt)
2|Xt, Yt] ≥ 1(r/2) + 1((1− r)/2) + 1((1− r)/2) ≥ 1/2 = V .

Notice that 0 ≤ φ0 ≤ n = B. Applying Lemma 3.4.1 with these choices of B, V and

φ0 gives the following:

ET x,y ≤ φ0(2B − d0)

V
≤ n(2n− 0)

1/2
= 4n2.

To bound the mixing time using our bound on the coupling time we apply Theorem

2.2.1 as follows:

τ(ε) ≤ dT e ln ε−1e = d4n2e ln ε−1e.

Next we use Theorem 3.4.2 to bound the mixing time of Minv as follows:

τ(ε) ≤ 2

1/n
(d4n2e ln ε−1e) = O(n3 log(nε−1)).

When each ri is bounded away from 1/2 and 1, by using the path coupling theorem

we obtain a stronger result. We use Theorem 2.2.3 due to Greenberg, Pascoe and

Randall [43].

Theorem 3.4.4: Given input probabilities 1/2 ≤ r1, r2, . . . , rn−1 < 1 and a positive

constant c such that c+ 1/2 < ri < 1− c for 1 ≤ i ≤ n− 1, let P = {pi,j = rmin{i,j}}.

The mixing time of Minv with preference set P satisfies

τ(ε) = O(n2 ln(nε−1)).

Proof: Here we use path coupling. We use the natural coupling on inversion tables

where we choose the same element i for both X = Xt = (x1, . . . , xn) and Y = Yt =
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(y1, . . . yn) for each step t. A pair of inversion tables (X, Y ) is in U ⊂ I × I if Y can

be obtained from X by adding or subtracting 1 from a single xi. We define a distance

metric φ(X, Y ) on pairs X, Y of inversion tables as a sum over the distances between

the entries xi and yi. Let αi = 1/(2(1− ri)) and define

φ(X, Y ) =
n∑
i=1

max{xi,yi}−1∑
j=min{xi,yi}

αji .

Let (X, Y ) ∈ U and suppose Y is obtained from X by adding 1 to xi. Then as

before, any move ofMinv whose smaller index is not i succeeds or fails with the same

probability in X and Y . There are two moves that decrease the distance: adding 1

to xi, which happens with probability (1− ri)/(4n), or subtracting 1 from yi, which

happens with probability ri/(4n). Both of these moves decrease the distance by αxii .

On the other hand, Minv proposes adding 1 to yi with probability (1− ri)/(4n),

which increases the distance by αxi+1
i , and Minv proposes subtracting 1 from xi and

succeeds with probability ri/(4n), increasing the distance by αxi−1
i . Thus the expected

change in distance is

E[(φt+1 − φt)|Xt, Yt]

=
1

4n

(
−αxii + (1− ri)αxi+1

i + riα
xi−1
i

)
=
αxi−1
i

4n

(
−αi + (1− ri)α2

i + ri
)

=
αxi−1
i

4n

(
ri −

1

4(1− ri)

)
=
αxii
2n
· −(2ri − 1)2

4

=
−φt(2ri − 1)2

8n
,

since φt = αxii . Hence E[φt+1] ≤ φt(1 − (2ri − 1)2/(8n)). Moreover, the maximum

distance between any two inversion tables is

B =
n−1∑
i=1

1 + αi + · · ·+ αn−ii =
n−1∑
i=1

αni − 1

αi − 1
= O(nαnmax),
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where αmax = maxi{αi} = 1
2(1−rmax)

. Hence

ln(Bε−1) = O(n log(nε−1),

so by Theorem 2.2.2, we have

τ(ε) = O(n2 log(nε−1)).

Remark: The proofs of Theorem 3.4.3 and Theorem 3.4.4 also apply to the case

where the probability of swapping i and j depends on the object with lower rank

(i.e., we are given r2, . . . rn and we let pi,j = rj for all i < j). This case is related

to a variant of the MA1 list update algorithm, where if a record is requested, we try

to move the associated record x ahead of its immediate predecessor in the list, if it

exists. If it has higher rank than its predecessor, then it always succeeds, while if its

rank is lower we move it ahead with probability fx = rx/(1 + rx) ≤ 1.

3.4.3 Fast Mixing of the Nearest-Neighbor Chain

First, we show that the two Markov chainsMinv andMnn have the same stationary

distribution. Then we will use the comparison method, Theorem 2.3.1, to infer a

bound on the mixing time of Mnn from the bounds on the mixing time of Minv

shown in Theorem 3.4.3 and Theorem 3.4.4.

Theorem 3.4.5: Given input probabilities 1/2 ≤ r1, r2, . . . , rn−1 < 1 and a positive

constant c such that ri < 1− c for 1 ≤ i ≤ n− 1, let P = {pi,j = rmin{i,j}}.

1. If ∀1 ≤ i ≤ n− 1, c+ 1/2 < ri, the mixing time of Mnn with preference set P

satisfies

τ(ε) = O(n7 log(nε−1) log(ε−1)).

2. Otherwise, the mixing time of Mnn with preference set P satisfies

τ(ε) = O(n8 log(nε−1) log(ε−1)).
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Proof: In order to apply Theorem 2.3.1, we need to define, for any transition e =

(σ, β) of the Markov chain Minv, a sequence of transitions of Mnn. Let e be a

transition of Minv which performs a transposition on elements σ(i) and σ(j), where

i < j. Recall Minv can only swap σ(i) and σ(j) if all the elements between them

are smaller than both σ(i) and σ(j). To obtain a sufficient bound on the congestion

along each edge, we ensure that in each step of the path, we do not decrease the

weight of the configuration. This is easy to do; in the first stage, move σ(i) to

the right, one step at a time, until it swaps with σ(j). This removes an inversion

of the type (σ(i), σ(k)) for every i < k < j, so clearly we have not decreased the

weight of the configuration at any step. Next, move σ(j) to the left, one step at a

time, until it reaches position i. This completes the move e, and at each step, we

are adding back an inversion of the type (σ(j), σ(k)) for some i < k < j. Since

σ(k) = min{σ(j), σ(k)} = min{σ(i), σ(k)}, we have pσ(i),σ(k) = pσ(j),σ(k) for every

i < k < j, so in this stage we restore all the inversions destroyed in the first stage,

for a net change of pσ(i),σ(j). See Figure 6.

Given a transition (υ, ω) of Mnn we must upper bound the number of canonical

paths γσβ that use this edge, which we do by bounding the amount of information

needed in addition to (υ, ω) to determine σ and β uniquely. For moves in the first

stage, all we need to remember is σ(i), because we know σ(j) (it is the element moving

forward). We also need to remember where σ(j) came from. Given this information

along with υ and ω we can uniquely recover (σ, β). Thus there are at most n2 paths

which use any edge (υ, ω). Also, notice that the maximum length of any path is 2n.

5 2 3 7
2 5 3 7
2 3 5 7
2 3 7 5
2 7 3 5
7 2 3 5

Figure 6: The canonical path for transposing 5 and 7.
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Next we bound the quantity A which is needed to apply Theorem 2.3.1. Let

λ = maxi<j pi,j/pj,i. Recall that we have guaranteed that π(σ) ≤ max{π(υ), π(ω)}.

Assume first that π(σ) ≤ π(υ). Then

A = max
(υ,ω)∈E(P )

 1

π(υ)P (υ, ω)

∑
Γ(υ,ω)

|γσβ|π(σ)P ′(σ, β)


≤ max

(υ,ω)∈E(P )

∑
Γ(υ,ω)

2n
P ′(σ, β)

P (υ, ω)

≤ max
(υ,ω)∈E(P )

∑
Γ(υ,ω)

2n
1/(2n)

1
(1+λ)(n−1)

= O(n3).

If, on the other hand, π(σ) ≤ π(ω), then we use detailed balance to obtain:

A = max
(υ,ω)∈E(P )

 1

π(υ)P (υ, ω)

∑
Γ(υ,ω)

|γσβ|π(σ)P ′(σ, β)


= max

(υ,ω)∈E(P )

 1

π(ω)P (ω, υ)

∑
Γ(υ,ω)

|γσβ|π(σ)P ′(σ, β)


≤ max

(υ,ω)∈E(P )

∑
Γ(υ,ω)

2n
P ′(σ, β)

P (ω, υ)

≤ max
(υ,ω)∈E(P )

∑
Γ(υ,ω)

2n
1/(2n)

1
(1+λ)(n−1)

= O(n3).

In either case, we have A = O(n3). Then π∗ = minρ∈Ω π(ρ) ≥ (λ(n2)n!)−1 where λ is

defined as above, so log(1/(επ∗)) = O(n2 log ε−1), since λ is bounded from above by

a positive constant. Appealing to Theorem 2.3.1 and Theorem 3.4.4, if the ri’s are

bounded away from 1/2, we have that the mixing time of Mnn satisfies

τ(ε) = O(n7 log(nε−1) log(ε−1)).

Similarly, appealing to Theorem 2.3.1 and Theorem 3.4.3 we have that the mixing

time of Mnn satisfies

τ(ε) = O(n8 log(nε−1) log(ε−1)).
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Remark: If the input probabilities are not bounded away from 1 by a constant

but instead by some function of n, then using the same proof as Theorem 3.4.5

we can obtain a bound on the mixing time. Specifically, given input probabilities

1/2 ≤ r1, r2, . . . , rn−1 < 1 − 1/f(n) let P = {pi,j = rmin{i,j}}. Then the mixing time

of Mnn with preference set P satisfies

τ(ε) = O(n8f(n) log(nε−1) log(f(n)ε−1)).

If additionally, there exists a positive constant c such that ri > 1/2 + c for all 1 ≤

i ≤ n− 1, then the mixing time of Mnn with preference set P satisfies

τ(ε) = O(n7f(n) log(nf(n)ε−1) log(f(n)ε−1)).

Note that in this case it is necessary to also modify the proof of Theorem 3.4.4.

3.5 League Hierarchies

We now introduce a second general class of input probabilities P for which we show

Mnn is always rapidly mixing. Imagine a sporting franchise consisting of an A-league

with stronger players and a B-league with weaker players. We assume that any

player from the A-league has a fixed advantage over any player from the B-league,

representing his or her probability of winning in a matchup. Within each of these

leagues we have tier-1 and tier-2 players, where again a player from the stronger tier

has a fixed probability of winning a competition against a tier-2 player. Likewise for

the tiers in the other league, but of course the fixed advantage there can be different.

This partition of each tier into stronger and weaker players continues recursively. To

formalize the class of “League Hierarchies,” let T be a proper rooted binary tree with

n leaf nodes, labeled 1, . . . , n in sorted order. Each non-leaf node v of this tree is

labeled with a value 1
2
≤ qv < 1. For i, j ∈ [n], let i∧j be the lowest common ancestor

of the leaves labeled i and j. We say that P has league structure T if pi,j = qi∧j.

For example, Figure 7(a) shows a set P such that p1,4 = .8, p4,9 = .9, and p5,8 = .7.
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We define matches by pairing up adjacent players in the current ranking and then we

promote the winners, thus simulating Mnn.

.9

.8 .7

.6 4 .7 .6

1 .5 5 6 .5 9

2 3 7 8

(519386742)
RLRLRRRLL

(1342)
LLRL

(59867)
LRRLR

(132)
LRR 4 (56)

LR
(987)
RLL

1 (32)
RL 5 6 (87)

RL 9

2 3 7 8

Figure 7: A set P with tree structure and the corresponding tree-encoding of the
permutation 519386742.

To showMnn is rapidly mixing for any input probabilities in the League Hierarchy

class, we introduce a new combinatorial representation of each permutation that will

be useful for the proofs. This representation associates a bit string bv to each node v

of a binary tree with n leaves. Specifically, bv ∈ {L,R}`v where `v is the number of

leaves in tv, the subtree rooted at v, and for each element i of the sub-permutation

corresponding to the leaves of tv, bv(i) records whether i lies under the left or the

right branch of v (see Figure 7(b)). The set of these bit strings is in bijection with the

permutations. We consider a chain Mtree(T ) that allows transpositions when they

correspond to a nearest neighbor transposition in exactly one of the bit strings. Thus,

the mixing time ofMtree(T ) decomposes into a product of n−1 ASEP chains and we

can conclude that the chain Mtree(T ) is rapidly mixing using results in the constant

bias case [6, 43]. Again, we use comparison techniques to conclude that Mnn is also
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rapidly mixing when we have weak monotonicity, although we show thatMtree(T ) is

always rapidly mixing.

3.5.1 Fast Mixing of the Binary Tree Chain

We define the Markov chain Mtree(T ) over permutations, given set P with league

structure T .

The Markov chain Mtree(T )

Starting at any permutation σ0, repeat:

• Select distinct a, b ∈ [n] with a < b u.a.r.

• If every number between a and b in the permutation σt is not a

descendant in T of a ∧ b, obtain σt+1 from σt by placing a, b in

order with probability pa,b, and out of order with probability

1− pa,b, leaving all elements between them fixed.

• Otherwise, σt+1 = σt.

First, we show that this Markov chain samples from the same distribution as Mnn.

Lemma 3.5.1: The Markov chainMtree(T ) has the same stationary distribution

as Mnn.

Proof: Let π be the stationary distribution of Mnn, and let (σ1, σ2) be any tran-

sition in Mtree(T ) such that Ptree(σ1, σ2) > 0 where Ptree is the transition matrix

of Mtree(T ). It suffices to show that the detailed balance condition holds for this

transition with the stationary distribution π. Specifically we will show that

π(σ1)Ptree(σ1, σ2) = π(σ2)Ptree(σ2, σ1).

Recall that we may express π(σ) =
(∏

i<j:σ(i)<σ(j)
pi,j
pj,i

)
Z−1 where Z =

∑
σ∈Ω π(σ).

The transition (σ1, σ2) transposes some two elements a <σ1 b, where every element
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between a and b in σ1 (note that these are the same as the elements between a and

b in σ2) is not a descendant of a∧ b in T . Although swapping arbitrary non-adjacent

elements could potentially change the weight of the permutation dramatically, for any

element c that is not a descendant in T of a ∧ b the relationship between a and c is

the same as the relationship between b and c. Thus, the league structure ensure that

swapping a and b only changes the weight by a multiplicative factor of pa,b/pb,a. Let

X = {x1, . . . , xk} be the elements between a and b in σ1. Thus, the path from a or b

to xi in T must pass through a∧ b and go to another part of the tree. For every such

element xi, a ∧ xi = (a ∧ b) ∧ xi = b ∧ xi.

From the observation, we see from the league structure that pa,xi = pb,xi for every

xi between a and b. Also, we see that either both a < xi, b < xi or a > xi, b > xi,

since all numbers between a, b are necessarily descendants of a ∧ b. Define S = {x ∈

X : x < a, b} and B = {x ∈ X : x > a, b}.

Therefore,

π(σ1)

π(σ2)
=
pa,b
∏

x∈S(px,b/pb,x)
∏

x∈B(pa,x/px,a)

pb,a
∏

x∈S(px,a/pa,x)
∏

x∈B(pb,x/px,b)
=
pa,b
pb,a

.

This is exactly the ratio of the transition probabilities in Mtree(T )

π(σ1)

π(σ2)
=
pa,b
pb,a

=
Ptree(σ2, σ1)

Ptree(σ1, σ2)
,

thus the detailed balance condition is satisfied and Mtree(T ) also has stationary

distribution π.

The key to the proof that Mtree(T ) is rapidly mixing is again to decompose the

chain into n− 1 independent Markov chains, M1,M2, . . . ,Mn−1, one for each non-

leaf node of the tree T . We introduce an alternate representation of a permutation

as a set of binary strings arranged like the tree T . We use the characters L and R for

our binary representation instead of 0 and 1 for convenience. For each non-leaf node

v in the tree T , let L(v) be its left descendants, and R(v) be its right descendants.

We now do the following:
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• For each non-leaf node v do the following:

– List each descendant x of v in the order we encounter them in the permu-

tation σ. These are parenthesized in Figure 7(b).

– For each listed element x, write a L if x ∈ L(v) and a R if x ∈ R(v). This

is the final encoding in Figure 7(b).

We see that any σ will lead to an assignment of binary strings at each non-leaf node

v with L(v) L′s and R(v) R′s. This is a bijection between the set of permutations

and the set of assignments of binary strings to the tree T . Given any such assignment

of binary strings, we can recursively reconstruct the permutation σ as follows:

• For each leaf node i, let its string be the string “i”.

• For any node n with binary string b,

– Determine the strings of its two children. Call these sL, sR.

– Interleave the elements of sL with sL, choosing an element of sL for each

L in b, and an element of sR for each R.

With this bijection, we first analyzeMtree(T )’s behavior over tree representations

and later extend this analysis to permutations. The Markov chain Mtree(T ), when

proposing a swap of the elements a and b, will only attempt to swap them if a, b corre-

spond to some adjacent L and R in the string associated with a∧ b. Swapping a and

b does not affect any other string, so each non-leaf node v represents an independent

exclusion process with L(v) L′s and R(v) R′s. These exclusion processes have been

well-studied [17, 89, 6, 43]. We use the following bounds on the mixing times of the

symmetric and asymmetric simple exclusion processes.

Theorem 3.5.2: LetM be the exclusion process with parameter 1/2 ≤ p < 1 on a

binary string of length k.
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1. If p > 1/2 + c for some positive constant c, then τ(ε) = O(k2 log(ε−1)). [6]

2. Otherwise, τ(ε) = O(k3 log(k/ε)). [17]

The bounds in Theorem 3.5.2 refer to the exclusion process which selects a position at

random and swaps the two elements in that position with the appropriate probability.

Since each exclusion process Mi operates independently, the overall mixing time

will be roughly n times the mixing time of each piece, slowed down by the inverse

probability of selecting that process. Each Mi has a different size, and a different

mixing time relative to its size. To employ the bounds from Theorem 3.5.2, we will

use Theorem 3.4.2, which relates the mixing time of a product of independent Markov

chains to the mixing time of each component. Finally, we can prove thatMtree(T ) is

rapidly mixing.

Theorem 3.5.3: Given input probabilities 1/2 ≤ q1, q2, . . . , qn−1 < 1 let P = {pi,j =

qi∧j}.

1. If ∀1 ≤ i ≤ n− 1, c+ 1/2 < qi for some positive constant c, the mixing time of

Mtree(T ) with preference set P satisfies

τ(ε) = O(n3 log(nε−1)).

2. Otherwise, the mixing time of Mtree(T ) with preference set P satisfies

τ(ε) = O(n4 log(nε−1)).

Proof: In order to apply Theorem 3.4.2 to the Markov chainMtree(T ), we note that

for a node whose associated bit string has length k, the probability of selecting a move

that corresponds to two neighboring bits in the string is k−1

(n2)
= k−1

2n(n−1)
. Combining

the first bound from Theorem 3.5.2 with Theorem 3.4.2 where N = n − 1 gives the

following result,

τ(ε) = O

(
n(n− 1)

k − 1
k3 log(2(n− 1)k/ε)

)
= O(n4 log(nε−1)).
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If all of the chains have probabilities that are bounded away from 1/2, then we can

use the second bound from Theorem 3.5.2 to obtain

τ(ε) = O

(
n(n− 1)

k − 1
k2 log(2(n− 1)/ε)

)
= O(n3 log(nε−1)).

3.5.2 Fast Mixing of the Nearest-Neighbor Chain

Next, we show thatMnn is rapidly mixing when P has league structure and is weakly

monotone:

Definition 3.5.1: The set P is weakly monotone if properties 1 and either 2 or 3

are satisfied.

1. pi,j ≥ 1/2 for all 1 ≤ i < j ≤ n, and

2. pi,j+1 ≥ pi,j for all 1 ≤ i < j ≤ n− 1 or

3. pi−1,j ≥ pi,j for all 2 ≤ i < j ≤ n.

We note that if P satisfies all three properties then it is monotone, as defined by Jim

Fill [35].

The comparison proof in this setting is similar to the comparison proof in Sec-

tion 2.3, except we allow elements between σ(i) and σ(j) that are larger or smaller

than both i and j. This poses a problem, because we may not be able to move σ(j)

towards σ(i) without greatly decreasing the weight. However, we can resolve this if

P is weakly monotone. Specifically, we are now ready to prove the following theorem.

Theorem 3.5.4: Given input probabilities 1/2 ≤ q1, q2, . . . , qn−1 < 1 and a positive

constant c such that ri < 1 − c for 1 ≤ i ≤ n − 1 and P = {pi,j = qi∧j} is weakly

monotone.

1. If ∀1 ≤ i ≤ n − 1, c + 1/2 < ri the mixing time of Mnn with preference set P

satisfies

τ(ε) = O(n7 log(nε−1) log(ε−1)).
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2. Otherwise, the mixing time of Mnn with preference set P satisfies

τ(ε) = O(n8 log(nε−1) log(ε−1)).

Proof: Throughout this proof we assume that P satisfies properties 1 and 2 of the

weakly monotone definition. If instead P satisfies property 3, then the proof is almost

identical. In order to apply Theorem 2.3.1 to relate the mixing time of Mnn to the

mixing time ofMtree(T ) we need to define for each transition ofMtree(T ) a canonical

path using transitions of Mnn. Let e = (σ, β) be a transition of Mtree(T ) which

performs a transposition on elements σ(i) and σ(j). If there are no elements between

σ(i) and σ(j) then e is already a transition of Mnn and we are done. Otherwise, σ

contains the string σ(i), σ(i+1), ...σ(j−1), σ(j) and y contains σ(j), σ(i+1), ...σ(j−

1), σ(i). From the definition ofMtree(T ) we know that for each σ(k), k ∈ [i+1, j−1],

either σ(k) > σ(i), σ(j) or σ(k) < σ(i), σ(j). Define S = {σ(k) : σk < σ(i), σ(j)}

and B = {σ(k) : σk > σ(i), σ(j)}. To obtain a good bound on the congestion along

each edge we must ensure that the weight of the configurations on the path are not

smaller than the weight of σ. Thus, we define three stages in our path from σ to β.

In the first, we shift the elements of S to the left, removing an inversion with each

element of B. In the second stage we move σ(i) next to σ(j) and in the third stage

we move σ(j) to σ(i)’s original location. Finally, we shift the elements of S to the

right to return them to their original locations. See Figure 8.

Stage 1: At a high-level in this stage we are shifting the elements in S to the left

Stage 1 5 8 9 2 10 3 4 1 7
Stage 2 5 2 8 9 3 10 4 1 7

2 8 9 3 10 4 1 5 7
Stage 3 2 8 9 3 10 4 1 7 5
Stage 4 7 2 8 9 3 10 4 1 5

7 8 9 2 10 3 4 1 5

Figure 8: The stages in the canonical path for transposing 5 and 7. Notice that the
elements in S are underlined.
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in order to remove an inversion with every element in B. First if σ(j − 1) ∈ B, shift

σ(j) to the left until an element from S is immediately to the left of σ(j). Next,

starting at the right-most element in S and moving left, for each σ(k) ∈ S such that

σ(k−1) ∈ B, move σ(k) to the left one swap at a time until σ(k) has an element from

S or σ(i) on its immediate left (see Figure 9). Notice that for each element σ(l) ∈ B

we have removed exactly one (σ(l), σ(k)) inversion where σ(k) ∈ S.

Stage 2: Next perform a series of nearest neighbor swaps to move σ(i) to the right

until it is in the position occupied by σ(j) at the end of Stage 1 (see Figure 9). While

we have created an (σ(k), σ(i)) inversion for each element σ(k) ∈ B (if originally

σ(j − 1) /∈ B then this stage will not create an inversion for every element in B) the

weight has not decreased from the original weight because in Stage 1 we removed an

(σ(k), σ(l)) inversion (or an (σ(k), σ(j)) inversion) and (σ(k), σ(l)) > (σ(k), σ(j)) and

(σ(k), σ(j)) = (σ(k), σ(i)) because the P are weakly monotone. For each σ(k) ∈ S

we also removed a (σ(k), σ(j)) inversion.

5 8 9 2 10 3 4 1 7
5 8 9 2 3 10 4 1 7
5 8 2 9 3 10 4 1 7
5 2 8 9 3 10 4 1 7

5 2 8 9 3 10 4 1 7
2 5 8 9 3 10 4 1 7
2 8 5 9 3 10 4 1 7

...
2 8 9 3 10 4 1 5 7
2 8 9 3 10 4 1 7 5

Figure 9: Stages 1 and 2 of the canonical path for transposing 5 and 7.

Stage 3: Perform a series of nearest neighbor swaps to move σ(j) to the left until it

is in the same position σ(i) was originally. While we created an (σ(k), σ(j)) inversion

for each σ(k) ∈ S, these inversions have the same weight as the (σ(i), σ(k)) inversion

we removed in Stage 2. In addition we have removed an (σ(l), σ(j)) inversion for each
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σ(l) ∈ B.

Stage 4: Finally we want to return the elements in S and B to their original position.

Starting with the left-most element in S that was moved in Stage 1, perform the

nearest neighbor swaps to the right necessary to return it to its original position.

Finally, if originally σ(j − 1) ∈ B, then move σ(i) to the original location of σ(j).

Note that if originally σ(j − 1) /∈ B, then σ(i) was placed in the original location of

σ(j) at the end of Stage 2. It is clear from the definition of the stages that the weight

of a configuration never decreases below the weight of min(π(σ), π(β)).

Given a transition (υ, ω) of Mnn we must upper bound the number of canonical

paths γσβ that use this edge. Thus, we analyze the amount of information needed in

addition to (z, w) to determine σ and β uniquely. First we record whether (σ, β) is

already a nearest neighbor transition or which stage we are in. Next for any of the 4

stages we record the original location of σ(i) and σ(j). Given this information, along

with υ and ω, we can uniquely recover (σ, β). Hence, there are at most 4n2 paths

through any edge (υ, ω). Also, note that the maximum length of any path is 4n.

Next we bound the quantity A which is needed to apply Theorem 2.3.1. Recall

that we have guaranteed that π(σ) ≤ max{π(υ), π(ω)}. Assume that π(σ) ≤ π(υ).

Let λ = maxi<j pi,j/pj,i. Then

A = max
(υ,ω)∈E(P )

 1

π(υ)P (υ, ω)

∑
Γ(υ,ω)

|γσβ|π(σ)P ′(σ, β)


≤ max

(υ,ω)∈E(P )

∑
Γ(υ,ω)

2n
P ′(σ, β)

P (υ, ω)

≤ max
(υ,ω)∈E(P )

∑
Γ(υ,ω)

2n
1/
(
n
2

)
1

(1+λ)(n−1)

= O(n2).

61



If, on the other hand, π(σ) ≤ π(ω), then we use detailed balance to obtain:

A = max
(υ,ω)∈E(P )

 1

π(υ)P (υ, ω)

∑
Γ(υ,ω)

|γσβ|π(σ)P ′(σ, β)


= max

(υ,ω)∈E(P )

 1

π(ω)P (ω, υ)

∑
Γ(υ,ω)

|γσβ|π(σ)P ′(σ, β)


≤ max

(υ,ω)∈E(P )

∑
Γ(υ,ω)

2n
P ′(σ, β)

P (ω, υ)

≤ max
(υ,ω)∈E(P )

∑
Γ(υ,ω)

2n
1/
(
n
2

)
1

(1+λ)(n−1)

= O(n2).

In either case, we have A = O(n2). Then π∗ = minρ∈Ω π(ρ) ≥ (λ(n2)n!)−1 where λ

is defined as above, so log(1/(επ∗)) = O(n2 log ε−1), as above.. Appealing to Theo-

rem 2.3.1 and the first bound from Theorem 3.5.3 if the qi’s are bounded away from

1/2, we have that the mixing time of Mnn satisfies

τ(ε) = O(n7 log(nε−1) log(ε1)).

Similarly, appealing to Theorem 2.3.1 and the second bound from Theorem 3.5.3 we

have that the mixing time of Mnn satisfies

τ(ε) = O(n8 log(nε−1) log(ε−1).

Remark: By repeating Stage 1 of the path a constant number of times, it is possible

to relax the weakly monotone condition slightly if we are satisfied with a polynomial

bound on the mixing time.

Remark: If the input probabilities are not bounded away from 1 by a constant

but instead by some function of n, then using the same proof as Theorem 3.5.4

we can obtain a bound on the mixing time. Specifically, given input probabilities

1/2 ≤ r1, r2, . . . , rn−1 < 1 − 1/f(n) let P = {pi,j = rmin{i,j}}. Then the mixing time

of Mnn with preference set P satisfies

τ(ε) = O(n8f(n) log(nε−1) log(f(n)ε−1)).
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If additionally, there exists a positive constant c such that ri > 1/2 + c for all 1 ≤

i ≤ n− 1, then the mixing time of Mnn with preference set P satisfies

τ(ε) = O(n7f(n) log(nε−1) log(f(n)ε−1)).
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CHAPTER IV

DYADIC TILINGS AND RECTANGULAR DISSECTIONS

In this chapter, we study rectangular dissections of an n×n lattice region into rectan-

gles of area n, where n = 2k for an even integer k. We consider a natural edge-flipping

Markov chain whose mixing time is open both for rectangular dissections and when

the state space is restricted to dyadic tilings, where each rectangle is required to have

the form R = [s2u, (s + 1)2u] × [t2v, (t + 1)2v], where s, t, u and v are nonnegative

integers.

We introduce a biased version of these Markov chains where, given a parameter

λ > 0, we would like to generate each rectangular dissection (or dyadic tiling) σ

with probability proportional to λ|σ|, where |σ| is the total edge length. We show

there is a phase transition in the dyadic setting: when λ < 1, the edge-flipping

chain mixes in time O(n2 log n), and when λ > 1, the mixing time is exp(Ω(n2)).

Simulations suggest that the chain converges quickly when λ = 1, but this case

remains open. The behavior for general rectangular dissections is more subtle, and

even establishing ergodicity of the chain requires a careful inductive argument. As

in the dyadic case, we show that the edge-flipping Markov chain for rectangular

dissections requires exponential time when λ > 1. Surprisingly, the chain also requires

exponential time when λ < 1, which we show using a different argument. Simulations

suggest that the chain converges quickly at the isolated point λ = 1.

4.1 Rectangular Dissections and Dyadic Tilings

Rectangular dissections arise in the study of VLSI layout [23], mapping graphs for

floor layouts [67, 87], and routings and placements [93] and have long been of interest

to combinatorialists [15, 84]. In each of these applications, a lattice region needs to be

64



partitioned into rectangles whose corners lie on lattice points such that the dissection

satisfies some appropriate additional constraints. For example, equitable rectangular

dissections require that all rectangles in the partition have the same area [45] (see

Figure 10). We are interested in understanding what random equitable rectangular

dissections look like as well as finding efficient methods for sampling these dissections.

There has also been interest in the special case of dyadic tilings, or equitable

rectangular dissections into dyadic rectangles. A dyadic rectangle is a set of the form

R = [s2u, (s+ 1)2u]× [t2v, (t+ 1)2v]

where s, t, u and v are nonnegative integers. A dyadic tiling of the 2k × 2k square

is a set of 2k dyadic rectangles, each of area 2k, whose union is the full square.

See Figure 10(b). Janson et al. [48] studied the asymptotics Ak, the number of

dyadic tilings of the 2k × 2k square where k ∈ Z+. They show that every dyadic

tiling must have a fault line, that is, a line bisecting the square in the vertical or

horizontal direction which avoids non-trivial intersection with all rectangles in the

tilings. This allows them to derive the recurrence Ak = 2A2
k−1 −A4

k−2 and show that

asymptotically Ak ∼ φ−1ω2k , where φ = (1 +
√

5)/2 = 1.6180.... is the golden ratio

and ω = 1.84454757 is a constant.

Although equitable partitions of lattice regions into rectangles or triangles have

been extensively studied, many fundamental questions remain open. A notable ex-

ception is dissections into rectangles with area 2, commonly known as domino tilings

or the dimer model from statistical physics. Researchers have discovered remark-

able properties of these tilings, including striking underlying combinatorial structures

[52], statistical properties of random tilings [53], and analysis showing various Markov

chains for generating them are efficient [33, 59, 70].

Triangular dissections have been explored extensively as well, both when the ver-

tices are in general position and when they are vertices of a planar lattice. On the
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Cartesian lattice Z2, the problem becomes finding equitable (or unimodular) triangu-

lations of a lattice region, where each triangle has area 1/2. See [57] for an extensive

history of work on triangulations.

Interestingly, in each of these cases, a certain “edge-flip” Markov chain has been

identified that connects the state space of allowable dissections. For example, for

domino tilings, the Markov chain iteratively removes a length 2 edge bordering two

dominoes and replaces it with a length 2 edge in the orthogonal direction, effectively

replacing two vertical dominoes with two horizontal ones, or vice versa. This chain

is known to be rapidly mixing [59, 71, 89]. In the case of dyadic tilings, there is

again a natural edge-flip chain that connects the set of possible configurations – if

there are two neighboring rectangles in the tiling that share an edge, we can remove

that edge and retile the larger composite rectangle with the edge that bisects it in the

orthogonal direction, provided the new tiling is still dyadic (see Figure 12(c),(d)). The

mixing rate of this edge-flip chain was left open in [48], although the authors argue

that a different, nonlocal, Markov chain containing additional moves does converge

quickly to equilibrium.

Another edge-flip chain also connects the state space of triangulations by replacing

an edge bordering two triangles with the edge connecting the other two vertices if the

quadrilateral formed by their union is convex. The edge-flip chain on triangulations of

general point sets has been the subject of much interest in the computational geometry

(a) (b)

Figure 10: (a) An equitable rectangular dissection and (b) a dyadic tiling of the
16× 16 square. Shaded rectangles are not dyadic.
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community (see, e.g., [88]). In the unweighted case the chain has only been analyzed

when the points are in convex position [63, 66], in which case the triangulations are

enumerated by the Catalan numbers.

Recently, Caputo et al. [21] introduced a weighted version of the lattice triangula-

tion dissection problem and discovered remarkable behavior. Each triangulation σ on

a finite region of Z2 is assigned a weight λ|σ|, where λ > 0 is some input parameter.

They conjecture there is a phase transition at λ = 1 and that when λ < 1 there are no

long-range correlations of the triangles and Markov chains based on local edge flips

converge in polynomial time, while when λ > 1 there will be large regions of aligned

long-thin triangles and local Markov chains will require exponential convergence time.

They verify this conjecture when λ > 1 and when λ < λ0 < 1 for some suitably small

constant λ0. Their conjecture is supported by the intuition that when λ is large,

triangulations with many long-thin triangles will be favored, and the geometry will

force these triangles to align in the same direction. In contrast, when λ < 1, triangles

with large aspect ratio will be preferred, the chain will be rapidly mixing, and there

will not be any long-range order.

4.1.1 Results.

In this chapter, we study a weighted version of the equitable rectangular dissection

problem and explore the mixing time of an appropriate edge-flip Markov chain. Let

n = 2k, for k an even integer, and let Λn be the n × n lattice region. We will be

considering rectangular dissections of Λn into rectangles of area n in the dyadic and

general cases. Let Ωn be the set of dyadic tilings of Λn and let Ω̂n be the set of

rectangular dissections of Λn into rectangles of area n that are not necessarily dyadic.

In the weighted setting, we are given an input parameter λ > 0 and the weight of

a dyadic tiling σ ∈ Ωn is π(σ) = λ|σ|/Z, where |σ| is the total length of edges in

σ and Z =
∑

σ∈Ωn
λ|σ| is the normalizing constant known as the partition function.
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Likewise, in the general dissection setting, for α ∈ Ω̂n, we define π̂(α) = λ|α|/Ẑ, where

|α| is the total length of α and Ẑ is again the normalizing constant.

Let Mn be the edge-flip Markov chain on Ωn that replaces an edge bordering

two rectangles with the perpendicular bisector of the combined area 2n rectangle,

provided the resulting tiling remains dyadic (details are given in Section 2.). It

is easy to generalize this chain to the weighted setting by modifying the transition

probabilities so that the chain converges to distribution π. Likewise, we can define the

natural generalization of the edge-flip chain M̂n on Ω̂n by connecting two dissections

if they differ by the the removal and addition of one edge.

The remainder of the chapter will be concerned with the mixing times ofMn and

M̂n as we vary the parameter λ. One might expect the same behavior for weighted

rectangular dissections as in the triangulation case, namely that when λ is small we

favor balanced rectangles and we might expect the chain to be rapidly mixing, while

for λ large we favor long thin rectangles, and we should expect they will mostly align

vertically or horizontally. This picture is actually much more complicated in the

general case, but precisely what we find in the dyadic setting. In addition, in the

dyadic case we have succeeded in closing the gap between the regimes for fast and

slow mixing, and prove that there is a phase transition at λ = 1. The analogous result

was only conjectured for triangulations in [21]. Specifically, we prove the following

two theorems that establish that the phase transition occurs at λ = 1 for dyadic

tilings.

Theorem 4.1.1: For any constant λ < 1, the edge-flip chain Mn on Ωn converges

in time O(n2 log n).

Theorem 4.1.2: For any constant λ > 1, the edge-flip chain Mn on Ωn requires

time exp(Ω(n2)).

Simulations suggest that the chain Mn is also fast when λ = 1. See the left column
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Dyadic
Tilings

General
Tilings

λ = 0.8 λ = 1 λ = 1.03

Figure 11: M64 and M̂64 after 1,000,000 simulated steps for various values of λ,
starting with all vertical rectangles of width 1 and height 64.

of Figure 11 for samples generated with various values of λ for M64.

In the general setting the picture is more surprising. When λ is large, we get the

expected results confirming that the Markov chain M̂n requires exponential time.

However, we show that the chain also requires exponential time to converge to equi-

librium when λ is small, as the following two theorems state.

Theorem 4.1.3: For any constant λ > 1, the edge-flip chain M̂n on Ω̂n requires

time exp(Ω(n2)).

Theorem 4.1.4: For any constant λ < 1, the edge-flip chain M̂n on Ω̂n requires

time exp(Ω(n log n)).

Even though together these results seem to suggest that the chain will always

be slow, the proofs in these two regimes (i.e., λ < 1 and λ > 1) show that the

reasons underlying the slow mixing results are quite different. When λ > 1 long thin

rectangles are favored, and it will take exponential time to move from a configuration

that is predominantly horizontal to one that is vertical. When λ < 1 “balanced”
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rectangles that are close to square are favored. This is enough to dramatically speed

up the mixing time in the dyadic case, but in the general setting it causes an obstacle

because long thin rectangles that are well separated by many squares (or near squares)

will take exponential time to disappear since their removal requires the creation of

more long-thin rectangles, and their creation is exponentially unlikely. Both slow

mixing proofs when λ > 1 show that there is a bad cut in an equitable partition of

the state space into two equal sized pieces, but the proof in the general setting when

λ < 1 relies critically on a careful choice of the starting configuration. It may indeed

be the case that the chain is fast if we start from the most favorable configuration

consisting entirely of squares. As before, the convergence time is unknown when

λ = 1, but based on simulations we conjecture that the chain M̂n converges quickly

to equilibrium at this isolated point (see the right column of Figure 11).

We note that these results for dyadic tilings are complementary to other phase

transitions discovered in the unweighted setting. Angel et al. [2] affirmatively an-

swered a question of Joel Spencer regarding the probability that there is a dyadic

tiling if each dyadic rectangle is present with probability p, independent of the oth-

ers. They show that there is a phase transition for some p < 1, at which point the

likelihood of there not being such a tiling becomes exponentially small.

4.1.2 Techniques.

Dyadic tilings have rich combinatorial properties that allow us to establish the pres-

ence of a phase transition in the convergence times. The proof of fast mixing of Mn

on dyadic tilings when λ < 1 is based on the method of exponential metrics for path

coupling. Similar techniques have been used by Greenberg et al. [43] for lattice paths

and Caputo et al. [21] for weighted triangulations, but both of these proofs rely on

analysis of lattice paths. Here our proof uses a more traditional analysis based on

path coupling by directly analyzing configurations of rectangles. It is worth noting
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that the analysis is self-contained and does not rely on computational tools to opti-

mize the weights used in the calculations. We show that Mn will be rapidly mixing

for all λ < 3−1/
√
n, which is sufficient to prove fast mixing for any λ < 1, when n is

sufficiently large.

To show slow mixing of the Markov chainsMn and M̂n in the dyadic and general

cases when λ > 1, we apply a standard Peierls argument. Here, a straightforward

analysis suffices to show that configurations without horizontal or vertical long thin

rectangles must have exponentially small weight, even after summing over all such

configurations. Since we must pass through these very unlikely configurations to move

from a mostly horizontal configuration to a mostly vertical one, we can conclude that

the mixing time is exponential using a basic flow argument.

The proof of slow mixing for general rectangular dissections when λ < 1 is consid-

erably more delicate. In this regime, rectangles that are close to square are preferred.

We show that it will take exponential time to move from a configuration that has two

well-separated long thin rectangles to one that does not have any long thin rectangles

by very carefully analyzing required features of these tilings. If the total width of the

region being filled with rectangles is n = 2k, and there are at least two rectangles with

width 1, then there must be many other thin rectangles in the rectangular dissection.

We define the cut set to consist of rectangular dissections that are forced to have

significantly more thin rectangles in order to show that there is a bad cut in the state

space.

4.2 Preliminaries

We start by formalizing the problems. In the remainder of this chapter, we will refer

to equitable rectangular dissections instead as tilings in analogy to the widely used

designation dyadic tilings to provide a uniformity of language.

Let n = 2k for some even integer k. An n-tiling is a tiling of the [0, n] × [0, n]
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lattice Λn by n axis-aligned rectangles, each of area n; see Figure 10. We assume all

rectangles are the Cartesian product of two closed intervals, R = [x1, x2] × [y1, y2],

and are of dimension 2a × 2b, where a, b ∈ {0, 1, 2, ..., k} and a + b = k. That k is

even implies n is a perfect square and there exists a “ground state” tiling consisting

entirely of
√
n ×
√
n squares; this is critical to the proof of Theorem 4.1.1. A tiling

is dyadic if all rectangles are of the form [s2u, (s + 1)2u] × [t2v, (t + 1)2v] for some

nonnegative integers s, t, u, v. We will use the following lemma.

Lemma 4.2.1: For any a ∈ {0, ..., n − 1} and b ∈ {1, ..., k − 2}, at most one of

[a, a + 2 · 2b] and [a + 2b, a + 3 · 2b] can be written in the form [s2u, (s + 1)2u] for

some nonnegative integers s and u.

Proof: Suppose [a, a+ 2 ·2b] = [s2u, (s+ 1)2u] and [a+ 2b, a+ 3 ·2b] = [t2v, (t+ 1)2v]

for some nonnegative integers s, t, u, v. Looking at the first equation, u = b + 1 and

a = s2u = s2b+1. From the second equation, v = b + 1 and a + 2b = t2v = t2b+1. It

then follows that

2b = (a+ 2b)− a = t2b+1 − s2b+1 = (t− s)2b+1.

This is impossible as t− s is integer.

4.2.1 Formalizing the Markov Chains

We study two related Markov chains Mn and M̂n whose state spaces Ωn and Ω̂n,

respectively, are all dyadic n-tilings and all n-tilings. Moves in these Markov chains

consist of edge flips, which we now define. By an edge, we mean a boundary between

two adjacent rectangles in a tiling. Two tilings σ1, σ2 differ by exactly one edge flip if

it is possible to remove an edge in σ1 that bisects a rectangle of area 2n and replace

it with the bisecting edge in the perpendicular orientation to form σ2. For example,

in Figure 12, tilings (a) and (b) differ by a single edge flip, as do tilings (c) and (d).

We say an edge e is flippable if it bisects a rectangle of area 2n.
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(a) (b) (d)(c)

Figure 12: Some tilings for n = 16. Tilings (a) and (b) differ by an edge flip. Dyadic
tilings (c) and (d) differ by an edge flip.

We consider biased Markov chains with a bias λ ∈ (0,∞), analogous to [21]. For

a tiling σ, let |σ| denote the sum of the lengths of all the edges in σ. First, we define

the Markov chain M̂n with bias λ. Note all logarithms are assumed to be base 2.

Starting at any tiling σ0, iterate:

• Choose, uniformly at random, (x, y, d, o, p) ∈{
1

2
,
3

2
,
5

2
, ...,

2n− 1

2

}
×
{

1

2
,
3

2
,
5

2
, ...,

2n− 1

2

}
×{t, l, b, r} × {0, 1} × (0, 1).

Let R be the rectangle in σt containing (x, y). If d = t, let e be the top

boundary of R; if d = l, b, or r, let e be the left, bottom, or right boundary

of R, respectively.

• If e is a flippable edge and log |e| ≡ o(mod 2), let σ′ be the tiling obtained by

flipping e to new edge e′. If p < λ|σ
′|−|σt| = λ|e

′|−|e|, then σt+1 = σ′.

• Else, σt+1 = σt.

The Markov chain Mn for dyadic tilings is defined in the same way, interpreting

“flippable” to mean flippable into another dyadic tiling; Figure 12 (c) and (d) shows

an edge flip between two dyadic tilings that are adjacent in Ωn.

We note that each rectangle R of any tiling σ is of area n and so contains exactly

n points in {1
2
, 3

2
, 5

2
, ..., 2n−1

2
}×{1

2
, 3

2
, 5

2
, ..., 2n−1

2
}. A given flippable edge e in σ is thus

selected by 2n different values of (x, y, d, o), specifically, the 2n points (x, y) in the two
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rectangles e separates, each with the appropriate value of d and o. Consequently, a

given flippable edge e is selected by (x, y, d, o) with probability 2n · 1
n2 · 1

4
· 1

2
= 1

4n
=: q.

This flip then occurs with probability min{1, λ|σ′|−|σ| = λ|e
′|−|e|}, according to the

random value of p. These transition probabilities favor long, thin rectangles when

λ > 1 and favor squares or rectangles close to square when λ < 1. At most one

of (x, y, d, 0, p) and (x, y, d, 1, p) results in an edge flip; (x, y, d) selects a potentially

flippable edge e in σt, and then an edge flip can only occur if the length of e satisfies

log |e| = o(mod 2). This implies both Mn and M̂n are lazy and thus aperiodic.

4.2.2 Proving Ergodicity

It remains to be shown that the moves described above connect state spaces Ωn and

Ω̂n. Connectivity for Ωn follows from work on dyadic tilings in [48], specifically from

their tree representation of a dyadic tiling. Dyadic constraints ensure rectangles exist

in pairs; an edge flip is always possible for every rectangle. In particular, all 1×n and

n× 1 rectangles are adjacent to at least one other rectangle of the same dimensions,

so can be eliminated with a single edge flip.

However, connectivity of Ω̂n is much less straightforward, and an interesting result

in its own right. Intuitively, issues arise because rectangles in a general n-tiling do

not exist in pairs and there may be many rectangles for which no edge flip is possible;

it is not even immediately evident that there is a single valid edge flip. Rectangles

of height n, or alternately, rectangles of height h where there are no rectangles of

larger height, may be well separated by complicated arrangements of tiles. It is not

clear how to introduce another rectangle of height h next to an existing rectangle of

height h so that both may be eliminated, a necessary step for obtaining a tiling with

no rectangles of height h or larger, for instance. A proof showing connectivity of Ω̂n,

can be found in [20].

From connectivity, it follows that M̂n and Mn are irreducible and thus ergodic,
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so they converge to unique stationary distributions π̂ and π, respectively. By detailed

balance, the distribution π̂ can be given by π̂(σ) = λ|σ|/Ẑ, where Ẑ is the normalizing

constant. Similarly, π(σ) = λ|σ|/Z, where Z is the normalizing constant.

4.3 Fast Mixing for Dyadic Tilings when λ < 1.

We prove Mn is rapidly mixing for all λ < 3−1/
√
n. This bound approaches 1 as n

grows, so for any λ < 1 there is sufficiently large n such that the Markov chain Mn

is rapidly mixing. To give some perspective, we note that for all n ≥ 4, we have fast

mixing for all λ < 0.577, a much better constant than obtained in [21]. Already for

n ≥ 1024 we have fast mixing for all λ < 0.966. We use a path coupling argument

and an exponential metric, as in [43], to prove Theorem 4.1.1.

We now seek to apply the exponential metric theorem of [43], described in full in

Section 2.2. Intuitively, we consider the subset U of the joint state space Ωn × Ωn

of tilings that differ by one edge flip. The main result we need to show is that for

any coupling whose joint state is two configurations in U , after one iteration of the

Markov chain, the expected distance between the two coupled chains decreases by a

constant factor of their original distance. It is crucial to define the appropriate notion

of “distance” between two tilings.

Suppose λ < 3−1/
√
n. Consider any dyadic tilings σ1 and σ2 that differ by one flip

between edge e and edge f , both bisecting a common area 2n rectangle S. Without

loss of generality, suppose that |e| ≥ |f |. We define the distance between σ1 and σ2

to be

φ(σ1, σ2) = φ(σ2, σ1) := λ|f |−|e| ≥ 1,

and similarly for all other adjacent tilings in Ωn. We note that the distance between

any two adjacent pairs is at least one. For any two tilings σ and σ′ that are not

adjacent in Ωn, the distance between them is the minimum over all paths in Ωn from

σ to σ′ of the sum of the distances between adjacent tilings along the path, also at
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Figure 13: Rectangle S of area 2n in marginal tilings At and Bt.

least one.

Formally, let (A,B) denote a coupling of Mn, where At and Bt are the states of

the two chains, respectively, after t iterations. Let φt = φt(At, Bt) be the distance

between the two chains in the coupling (A,B) after t iterations. Suppose, without

loss of generality, At and Bt differ by a single flip between edge e and edge f , where

|e| ≥ |f |, e is horizontal in At of length 2a, f is vertical in Bt of length 2b, and both

bisect a rectangle S of area 2n; see Figure 13.

We wish to bound e[φt+1 − φt] in terms of φt. Any potential moves (x, y, d, o, p)

that select an edge not in S or on the boundary of S have the same effect on both At

and Bt and thus, in these cases, φt+1 = φt, as At+1 and Bt+1 still differ by the same

single edge flip. We next note there is a rectangle in valid dyadic tiling At of dimension

2a× b, implying that 2ab = n = 2k. As a and b are powers of 2, a ≥ b by assumption,

and k is even, then a = 2ib where i is odd. We now consider two cases, a ≥ 8b and

a = 2b.

Case a ≥ 8b. We first examine the moves that decrease the distance between the

two coupled chains. There are exactly two edge flips decrease the distance between

the coupled chains, namely flipping e to f in At or flipping f to e in Bt. There are

2n values of (x, y, d, o) that select edge e in At. Precisely, these are each of the 2n

points (x, y) in S together with the appropriate direction from among t, b that selects

e and the appropriate parity o such that log |e| = o(mod 2). Invoking Lemma 4.2.1

and examining the parity o shows these same choices do not yield a flippable edge

in Bt; this is where the value of o plays a critical role, as no edges within or on the
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boundary of S in Bt = σ2 are of the same length as e. As each such selection occurs

with probability 1/(8n2), potential edge flip e is selected with probability q = 1/(4n).

In this case the condition for flipping edge e is p < λ2b−2a, which always occurs as

2b − 2a ≤ 0. After such a flip, At+1 = Bt while Bt+1 = Bt. Thus φt+1 = 0 and the

change in distance between the two chains is −φt = −λ2b−2a. The total contribution

to the expected change in φ(A,B) from this move is −q · λ2b−2a.

Similarly, the probability (x, y, d, o) selects edge f in Bt is also q = 1/(4n), and

these values do not yield a flippable edge in At. Edge f flips only if p < λ2a−2b, which

occurs with probability λ2a−2b < 1. If this move occurs, then Bt+1 = At = At+1, and

the change in distance between A and B is again −λ2b−2a. The total contribution to

the expected change in φ(A,B) from this move is

−q · λ2a−2b · λ2b−2a = −q.

While the two potential moves above decrease the distance between the chains

according to metric φ, there are also moves that increase it. For At, the top and

bottom edges of S are not flippable by Lemma 4.2.1. At first glance there are four

other potential edge flips for At involving S, specifically flips of the top and bottom

halves of S’s left and right boundaries. However, again by Lemma 4.2.1, at most one

of the left boundary and the right boundary of S contains flippable edges. Without

loss of generality, assume it is the right boundary of S, and label the two potentially

flippable edges as g and h. Similarly, for Bt, at first glance there exist four other

potential edge flips involving S, specifically the left and right halves of S’s top and

bottom boundaries. By Lemma 4.2.1, we assume without loss of generality that

only portions of S’s bottom boundary are potentially flippable, and label the two

potentially flippable edges as i and j.

Such potential flips only occur if At and Bt are tiled in the neighborhood of S as

in Figure 14. We suppose this worse case neighborhood tiling exists. Edges g and h

are each selected by values (x, y, d, o) in At with probability q; both are then flipped

77



At:

Bt:

2a

2b

S
e

S f

g
h

g
h

i j

i j

Figure 14: An area 2n rectangle S bisected by horizontal edge e in At and vertical
edge f in Bt. Four “bad” edge flips g, h, i, j exist only if At and Bt are tiled in the
neighborhood of S as shown.

with probability λ4a−b. The tiling At+1 resulting from this flip is at distance λb−4a

from configuration At. The same selection (x, y, d, o) does not result in any flip in Bt,

so Bt+1 = Bt. The change in distance between A and B for these two moves is at

most λb−4a. In all, the contribution by these moves to the expected change in distance

between the coupled chains is at most

2 · qλ4a−b · λb−4a = 2q.

Similarly, edges i and j are selected to be flipped in Bt by values (x, y, d, o) with

probability q, and once selected, these edge flips occur if p < λ4b−a, a bound which

is at least 1 for a ≥ 8b. The tiling Bt+1 resulting from either flip is at distance at

most λ4b−a from configuration Bt. These same values mean that At+1 = At. Thus

the change in distance between A and B for these two moves is at most λ4b−a. In all,

the contribution by these moves to the expected change in distance between the two

chains in the coupling is at most 2 · q · λ4b−a.

In total, we have shown

e[φt+1 − φt] ≤ −q − qλ2b−2a + 2q + 2qλ4b−a

= −qλ2b−2a(λ2a−2b + 1− 2λ2a−2b − 2λ2b+a)

= −qφt(1− λ2a−2b − 2λ2b+a)

78



We first note that as a ≥ 8b, and in particular, as a ≥
√
n,

2a− 2b ≥ 2(a− 1

8
a) ≥ a ≥

√
n.

Additionally, 2b+ a ≥ a ≥
√
n. Thus,

λ2a−2b + 2λ2b+a ≤ λ
√
n + 2λ

√
n = 3λ

√
n

Provided λ < 3−1/
√
n, as we assumed at the start of this section, we have that

λ2a−2b + 2λ2b+a ≤ 3λ
√
n < 1

Then,

e[φt+1] ≤ (1− qc)φt,

where c is some positive constant, depending on how close λ is to the bound given

above. This satisfies the requirement to apply the exponential metric theorem for the

case a ≥ 8b.

Case a = 2b. The analysis of potential good moves and bad moves remains the same

as the first case above, though certain probabilities and distances change. Initially,

φ(At, Bt) = λ2b−2a = λ−2b, as in the previous case. We note that the contribution

to the expected change in distance from good moves flipping edges e and f is still

−q(1 +λ2b−2a) = −q(1 +λ−2b). The contributions to the expected change in distance

from flipping edges g and h is still 2q. We note now, however, that for the edges i and

j, once selected by (x, y, d, o), flips now occur with probability qλ4b−a = qλ2b rather

than probability q. Such a move results in a change in distance between the chains

in the coupling of λa−4b = λ−2b. The expected contribution to the change in distance

from these moves is now 2qλ2bλ−2b = 2q.
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In total, we see that in this case,

e[φt+1 − φt] ≤ −q(1 + λ−2b) + 4q

= −qλ−2b(λ2b + 1− 4λ2b)

= −qφt(1− 3λ−2b).

We note that in this case, 2ab = n so a = 2b =
√
n. Provided λ < 3−1/

√
n, it follows

that 3λ
√
n < 1, the required condition holds and we get the same bound on e[φt+1] as

in the previous case, though with a different constant c, also depending on λ.

Theorem 4.3.1: The mixing time of Markov chain Mn is O(n2 log n) for all λ <

3−1/
√
n.

Proof: We apply the exponential metric theorem from [43] (Theorem 2.2.3), using

the coupling (A,B) and metric φ defined above.

We first must find an exponential upper bound B on the values φ may take. If we

let σ∗ denote the ground state tiling, tiling the n × n square with n smaller squares

of dimension
√
n ×
√
n, careful consideration shows that the two dyadic tilings at

farthest distance φ from σ∗ are the tiling consisting of all n× 1 horizontal rectangles

σh and the tiling consisting of all 1 × n vertical rectangles σv. We note that one

path in Ωn from σh to σ∗ consists of (log n)/2 = k/2 stages, where in each stage n/2

edge flips are performed, reducing the length of each of the n rectangles by half; see

Figure 15.

The contribution to φ(σh, σ
∗) from each of these edge flips is at most λ−n, and there

are nk/4 such moves in this particular path in Ωn from σh to σ∗, giving φ(σh, σ
∗) ≤

(nk/4)λ−n. The same holds for σv. There is thus a path between any two tilings,

through the ground state σ∗, yielding the bound

φ(σ1, σ2) ≤ (nk/2)λ−n ≤ n log(n)λ−n.
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⇒ ⇒...⇒

σh σ∗

Figure 15: A sequence of edge flips from σh to σ∗.

Thus φ takes on values in the range

{0} ∪ [1, n log(n)λ−n].

We now apply Theorem 2.2.3 with metric φ as defined above. We note that φ

satisfies the path requirement with U being the set of all pairs of tilings that are

adjacent in Ωn, and that φ takes on values in {0} ∪ [1, B] for B = n log(n)λ−n.

Additionally Mn is lazy, as discussed in Section 2. For the coupling above, we have

demonstrated that e[φt+1] ≤ (1 − qc)φt whenever λ < 3−1/
√
n. Finally, by Theorem

2.2.3, we conclude that

τ(ε) ≤ ln(n log nλ−nε−1)

qc

≤ 4n2

c
ln(n log nλ−1ε−1) = O(n2 log(n/ε)).

When we assume ε = 1/4, as is standard practice, we see τ = τ(1/4) = O(n2 log(n)).

This implies for all λ < 1,Mn mixes in time O(n2 log n), as claimed in Theorem 4.1.1,

where the constant in the O(·) notation depends on λ.

4.4 Slow Mixing for General and Dyadic Tilings

In this section, we prove that for certain values of λ both chains can require expo-

nential time to converge. We begin by proving that in both the dyadic and general

settings, the Markov chainsMn and M̂n mix slowly when λ > 1. Next, we show that
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for general tilings, unlike in the dyadic case, when λ < 1, the Markov chain M̂n mixes

slowly. In each of these cases we prove that the Markov chain requires exponential

time by demonstrating that the state space contains a bottleneck that requires expo-

nential expected time to cross. We use the bottleneck to bound the conductance and

then the mixing time of the Markov chain as described in Section 2.4.

A change in terminology will be convenient for the remainder of this section

whereby we let |σ| be the sum of the perimeters of the rectangles in the dissec-

tion (or tiling) σ, rather than the total edge length. This will simplify the analy-

sis. Using detailed balance, we reformulate stationary distributions π and π̂ for Mn

and M̂n as follows. Let w(R) be the width of rectangle R and l(R) be the length

(height) of R. For convenience, we now let |σ| denote the total perimeter of σ, that

is, |σ| =
∑

R∈σ 2w(R) + 2l(R). We note this total perimeter divided by 2 differs

from the total edge length of σ by exactly 2n. By detailed balance, we rewrite

π(σ) = λ|σ|/2/Z =
(∏

R∈σ λ
w(R)+l(R)

)
/Z and π̂(σ/2) =

(∏
R∈σ λ

w(R)+l(R)
)
/Ẑ; here

Ẑ and Z are new normalizing constants, differing from those in Section 4.2.2 by a

multiplicative factor of λ2n.

First, we prove the following lemma bounding the number of n-tilings in the

general setting which we use in both slow mixing proofs.

Lemma 4.4.1: The number of general tilings of Λn satisfies |Ω̂n| ≤ (log n)n.

Proof: Consider any rectangle R in an n-tiling. By assumption R has dimensions

2w × 2h for integers w, h ∈ {0, 1, . . . , k = log n} and thus has log n possible heights.

Given the height of R, the width is uniquely determined since R has area n. To bound

the total number of tilings, there are log n choices for the height of the rectangle that

covers the lowest leftmost unit square of Λn. Next, consider the rectangle that covers

the lowest leftmost unit square not yet tiled. Given the height of all rectangles

ordered in this way the rectangle tiling is uniquely determined. There are n different

rectangles with log n possible heights therefore |Ω̂n| ≤ (log n)n.
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4.4.1 Slow Mixing when λ > 1

We start by showing that for both dyadic and general rectangle tilings when λ > 1,

the Markov chainsMn and M̂n both take exponential time to converge. Informally,

consider the tilings with at least one n × 1 rectangle and those with at least one

1× n rectangle. In order to go between these sets we must go through a tiling where

all rectangles have width and length at least 2 and thus perimeter at most n + 4.

We show these tilings are exponentially unlikely and thus our state space forms a

bottleneck.

Proof of Theorem 4.1.2 and Theorem 4.1.3. We note that the proofs are identical

for Mn and M̂n; here we show for M̂n. We first partition the state space into

two sets, B, the set of tilings with no rectangles of dimension 1 × n, and B, the

remainder. Notice that B contains the tiling σh where all rectangles are n× 1 and B

contains the tiling σv where all rectangles are 1×n. Both of these tilings have weight

π(σh) = π(σv) = Ẑ−1λn(1+n). Therefore,

π(B) ≥ π(σh) ≥ Ẑ−1λn(1+n),

π(B) ≥ π(σv) ≥ Ẑ−1λn(1+n).

Let Bc ⊂ B be the set of tilings containing no (1 × n) or (n × 1) rectangles. Every

rectangle in every tiling in Bc has perimeter at most n + 4 and thus has weight at

most Ẑ−1λn(n+4)/2. By Lemma 4.4.1, |Bc| ≤ |Ω̂n| ≤ (log n)n; we briefly note this is

true in the dyadic case as well although tighter bounds exist. Combining these, we

see

π(Bc) ≤ (log n)nẐ−1λn(n+4)/2,

which is exponentially smaller than the weight of B and B.

Using these bounds, we next bound the conductance of the Markov chain and then

the mixing time using Theorem 2.4.1. If π(B) ≤ 1/2, then combining the definition
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of conductance with the bounds on π(B) and π(Bc) yields

ΦM̂n
≤ 1

π(B)

∑
b1∈B,b2∈B

π(b1)P(b1, b2)

=
1

π(B)

∑
b1∈Bc,b2∈B

π(b1)P(b1, b2)

≤ 1

π(B)

∑
b1∈Bc

π(b1) =
π(Bc)

π(B)

≤ (log n)nZ−1λn(n+4)/2

Z−1λn(1+n)
=

(log n)n

λn2/2−n = λ−c1n
2

,

for constant c1 and n sufficiently large when λ is a constant greater than 1. Alter-

nately, if π(B) > 1/2 then π(B) ≤ 1/2 and so by detailed balance and the bounds on

π(B) and π(Bc),

ΦM̂n
≤ 1

π(B)

∑
b1∈B,b2∈B

π(b2)P(b2, b1)

=
1

π(B)

∑
b1∈B,b2∈B

π(b1)P(b1, b2)

=
1

π(B)

∑
b1∈Bc,b2∈B

π(b1)P(b1, b2) ≤ π(Bc)

π(B)

≤ (log n)nZ−1λn(n+4)/2

Z−1λn(1+n)
=

(log n)n

λn2/2−n = λ−c1n
2

,

for constant c1 defined above and n sufficiently large, whenever λ is a constant greater

than 1.

In both cases, ΦM̂n
≤ λ−c1n

2
. Applying Theorem 2.4.1 proves that for all ε > 0,

the mixing time of M̂n satisfies

τ(ε) ≥
(
λc1n

2

/4− 1

2

)
log

(
1

2ε

)
= Ω(λc1n

2

ln ε−1).

Letting ε = 1/4 we have that τ = Ω(λc1n
2
), as desired.

4.4.2 Slow Mixing for General Tilings when λ < 1

Next, we consider general tilings when λ < 1 and show that in this setting M̂n takes

exponential time to converge by again demonstrating a bottleneck in the state space.
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In this case however the bottleneck is much more complex. Define a bar to be a

rectangle of width 1 and length (height) n. The bottleneck in Ω̂n is based on the

separation of a tiling which measures the distance between the bars in the tiling.

More formally, define the distance between two bars to be the difference in their x-

coordinates plus one. For example, two adjacent bars are at distance 2 and two bars

separated by a rectangle of size 2× n/2 are at distance 4. Given an n-tiling, pair the

bars in order from left to right (there must be an even number of bars since n = 2k).

The separation of a tiling is the sum of the distances between each pair of bars. Let

S be the set of tilings with separation greater than or equal to n/2 + 2 and S be the

remaining tilings, namely those with separation less than n/2 + 2. We show all moves

from S to S involve a tiling with at least 4 bars and separation n/2 + 2, and the total

weight of this set of tilings is exponentially smaller than the weight of both S and S.

Proof of Theorem 4.1.4. We begin by proving a lower bound on π(S) and π(S̄). Let

gn be the “ground state” tiling consisting entirely of rectangles of size
√
n ×
√
n.

This tiling has perimeter |gn| = 4n
√
n. Since gn ∈ S because gn has no bars and

thus separation 0, this implies that π(S) > π(gn) = Ẑ−1λ2n
√
n. Next we will define a

special tiling sn ∈ S. Let sn have one bar on the far left side of Λn and one bar on the

far right side of Λn. Next to the leftmost bar there is a column with two rectangles of

width 2 followed by a column with four rectangles of width 4 and so forth until there

is a column with only rectangles of width 2k/2−1. The remainder of the tiling is filled

with rectangles of size
√
n ×
√
n. Note that the combined width of these columns is

2 +
∑k/2−1

i=1 2i =
√
n so the remainder of the tiling has width n−

√
n and can be tiled

with n −
√
n rectangles of size

√
n ×
√
n. Figure 16 shows s64. Configuration sn has

perimeter

|sn| = 4(1 + 2k) +

k/2−1∑
i=1

(2i2(2i + 2k−i)) + (n−
√
n)4
√
n

= 4n3/2 + n log n− (4/3)n+ (4/3).
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Figure 16: The tiling s64.

As sn ∈ S because it has separation n, this implies π(S) > π(sn) = Ẑ−1λ|sn|/2.

Let SC be the set of tilings in S from which it is possible to transition to S. We

will prove that every tiling in SC has at least four bars and separation exactly n/2+2.

We use the following lemma.

Lemma 4.4.2: One move of the chain M̂n changes the separation of a tiling by

0, +2 or -2.

Proof: The only moves of the Markov chain that change the separation are when

two bars are added or removed. Let’s consider adding two bars first. Let P be the

pairing of the bars in the configuration before the two bars are added. There are

two cases; either the two bars are added between two bars that were paired in P , or

between two pairs of bars. If they are added between two pairs, then they will be

paired up in the new pairing and add 2 to the separation. If they are added between

two bars bl and br paired in P with distance d, then the new bars will be paired with

bl and br. The sum of the distances will remain unchanged. Next, consider the case

where two bars are removed. Again, there are two cases. If the two bars are paired,

then the separation decreases by two however if the two bars are paired with two

other bars the distance remains unchanged.

Configuration gn has separation 0. Since all tilings are connected by the Markov

chain M̂n which by Lemma 4.4.2 changes the separation by an even number at each
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step, this implies that the separation of all tilings is even. Additionally, to go from S

to S we must go through a tiling with separation exactly n/2 + 2. Given a tiling with

two bars and separation n/2 + 2 there is no way to decrease the separation and thus

no way to transition to S. Thus, every tiling in SC has separation n/2+2 and at least

four bars. Next, we will upper bound the weight of each tiling σ in SC . To do this,

we lower bound the perimeter of any tiling of a lattice region of size (n/2 − 2) × n

and then show that every tiling in SC has two such regions.

Lemma 4.4.3: Any tiling σ′ of an (n/2 − 2) × n region has perimeter |σ′| ≥

2n3/2 + n log n− (16/3)n− (8/3).

Proof: We will assign each unit square in the lattice region a weight based on the

perimeter of the rectangle the square is contained in so that the combined weight of

all n squares within a rectangle is equal to the perimeter of the rectangle. Assume

the unit square at location (i, j) is contained in a rectangle of size 2a × 2k−a then

the weight wi,j = 2(2a + 2k−a)/2k. Since each rectangle has area 2k, the sum of all

weights
∑n/2−2

j=1

∑n
i=1wi,j = |σ′|. Consider the binary representation of the width

n/2− 2 of the region, 011 . . . 110. Since each rectangle has width 2a for some integer

a this implies that in each row, for each integer ` = 1 to k/2 − 1 there must be

either a rectangle of width 2` or multiple rectangles of width smaller than 2` whose

widths add up to 2`. If there is a single rectangle of width 2` then the 2` unit squares

in this row contained in this rectangle each have weight 2(2` + 2k−`)/2k. If there

is instead multiple smaller rectangles then they will have larger perimeter and thus

larger weight. Thus, the combined weight of these unit squares in each row is at least∑k/2−1
`=1 2`(2(2` + 2k−`)/2k) = log n − (4/3) − 8/(3n). Since the minimum perimeter

rectangle is the 2k/2× 2k/2 square, wi,j ≥ 4/2k/2. Thus the remaining 2k−1− 2k/2 unit

squares in each row have combined weight at least 4(2k−1 − 2k/2)/2k/2 = 2
√
n − 4.
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This implies that the total perimeter satisfies

|σ′| =
n∑
i=1

n/2−2∑
j=1

wi,j

≥
n∑
i=1

(
log n− (4/3)− 8/(3n) + 2

√
n− 4)

)
= 2n3/2 + n log n− (16/3)n− 8/3.

This is the desired result.

Consider any tiling σ with separation n/2 + 2 and at least four bars. Label the

bars b1, b2, . . . bB from left to right. Next, label the regions between the pairs of bars

p1, p2, . . . pB/2 and the gaps between the pairs g0, g1, g2, . . . gB/2, as shown in Figure 17.

Let w(pi), w(gi) denote the widths of the regions between the bars.

Now, since σ has separation n/2 + 2, this implies that
∑B/2

i=1 (w(pi) + 2) = n/2 + 2.

Reorder the tiling so it is ordered g0, . . . , gB/2, b1, b2, b3, . . . , bB−1, p1, p2, . . . , pB/2bB.

Notice that the region b4 ∪ . . . ∪ bB−1 ∪ p1 ∪ . . . ∪ pB/2 has width n/2− 2 as does the

region g0 ∪ g1 ∪ . . . ∪ gB/2. Thus we can apply Lemma 4.4.3 to show that the total

perimeter of tiling σ must be at least

|σ| ≥ 4(2 + 2k+1) + 2

(
2n3/2 + n log n− 16

3
n− 8

3

)
= 4n3/2 + 2n log n− (8/3)n+ 8/3.

Combining this bound with the bound on the number of tilings from Lemma 4.4.1

gives π(SC) ≤ Ẑ−1(log n)nλ2n3/2+n logn−(4/3)n+(4/3), which is exponentially smaller than

the above bound on π(S), as desired. Using these bounds we bound the conductance

of the Markov chain and then the mixing time using Theorem 2.4.1. If π(S) ≤ 1/2,

then combining the definition of conductance with the bounds on π(S) and π(SC)
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yields

ΦM̂n
≤ 1

π(S)

∑
s1∈S,s2∈S

π(s1)P(s1, s2)

=
1

π(S)

∑
s1∈SC ,s2∈S

π(s1)P(s1, s2)

≤ 1

π(S)

∑
s1∈SC

π(s1) =
π(SC)

π(S)

≤ (log n)nλ2n3/2+n logn−(4/3)n+(4/3)

λ2n3/2+(n logn)/2−(2/3)n+(2/3)

= (log n)nλ(n logn−(4/3)n+(4/3))/2

= 2n log lognλ(n logn−(4/3)n+(4/3))/2 = λc2n logn,

for constant c2 and n sufficiently large when λ < 1 is a constant.

If π(S) > 1/2, then π(S) ≤ 1/2, and by detailed balance and bounds on π(S), π(S)

and π(SC),

ΦM̂n
≤ 1

π(S)

∑
s1∈S,s2∈S

π(s1)P(s1, s2)

=
1

π(S)

∑
s1∈S,s2∈S

π(s2)P(s2, s1)

=
1

π(S)

∑
s1∈SC ,s2∈S

π(s1)P(s1, s2) ≤ π(SC)

π(S)

≤ (log n)nλ4n3/2+2n logn−2n

λ4n3/2+n logn−n
= λc2n logn,

for constant c2 defined above and n sufficiently large when λ < 1 is a constant. In

both cases,

ΦM̂n
≤ λc2n logn.

Applying Theorem 2.4.1 proves that the mixing time of M̂n satisfies

τ(ε) ≥
(
λ−c2n logn/4− 1

2

)
log

(
1

2ε

)
= Ω(λ−c2n logn ln ε−1).

Letting ε = 1/4, we have that τ = Ω(λ−c2n logn).
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g0 p1 g1 p2 g2

⇒
g0 g1 g2 p1 p2

Figure 17: An example labeling of the bars and regions surrounding bars.
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CHAPTER V

COLLOIDS AND INTERFERING BINARY MIXTURES

Colloids are binary mixtures of molecules with one type of molecule suspended in

another. It is believed that at low density typical configurations will be well-mixed

throughout, while at high density they will separate into clusters. In this chapter, we

characterize the high and low density phases for a general family of discrete interfering

binary mixtures by showing that they exhibit a “clustering property” at high density

and not at low density. The clustering property states that there will be a region that

has very high area, very small perimeter, and high density of one type of molecule. A

special case of interfering binary mixtures are mixtures of squares and diamonds on

Z2 that correspond to the Ising model at fixed magnetization which was introduced

in Section 1.2.1.

5.1 Clustering in Colloids

Colloids are mixtures of two types of molecules in suspension where all non-overlapping

arrangements are equally likely. When the density of each type of molecule is low,

the mixtures are homogeneous and consequently exhibit properties that make them

suitable for many industrial applications, including fogs, gels, foods, paints, and pho-

tographic emulsions (see, e.g., [10], [46]). In contrast, when the density is high,

the two types of molecules separate whereby one type appears to cluster together.

Although this behavior is similar to phase transitions that occur in other discrete

models, such as the Ising and Potts models, here the two types of molecules do not

possess any enthalpic forces causing like particles to attract or disparate particles to

repel. In contrast, the behavior of colloids is purely entropic — the only restriction

is a “hard-core” constraint requiring objects to remain in non-overlapping positions,
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and clustering occurs at high density because the overwhelming majority of configura-

tions in the stationary distribution are believed to exhibit such a separation. While

the experimental study of colloids is pervasive in surface chemistry, material science,

physics, and nanotechnology, there has been little rigorous work explaining their be-

havior. Even running simulations has been challenging because local algorithms will

be slow to converge at high density. Dress and Krauth [30] introduced an algorithm

to try to overcome this obstacle, but this too was shown to require time exponential

in the number of molecules in some cases [66]. Nonetheless, their algorithm seems to

be well-behaved in practice, and Buhot and Krauth [19] provided simulations show-

ing strong heuristic evidence of the presence of two distinct phases in colloid models

consisting of different sized squares.

Frenkel and Louis [36] studied an interesting discrete model of colloids whose

behavior can be related to the Ising model, a standard model of ferromagnetism.

Their model consists of mixtures of unit squares in a region of Z2 and diamonds of

area 1/2 that sit on lattice edges (see Figure 18). They show that this colloid model,

which we call Model 1, corresponds to an Ising model, where the density of squares

fixes the magnetization and the density of diamonds determines the temperature (see

Section 2.1). The Ising model at low temperature is known to exhibit clustering of

positive spins. In fact the precise limiting shape of the cluster known as the Wulff

shape has been extensively studied using sophisticated techniques (see, e.g. [28],

or the references therein). Model 1 then inherits the phase transition arising in the

Ising model which shows there will be clustering (of the squares) at high densities [62].

In this chapter we study clustering using elementary methods that apply to a large

class of natural colloid models. We characterize clustering directly in terms of the

parameters arising from the model to distinguish between the high and low phases

and understand the role the density of each type of molecule plays.
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Figure 18: Model 1, squares and diamonds on the n× n grid Ln

5.2 Interfering Binary Mixtures

We consider a class of interfering binary mixtures. Define Λf as a planar graph where

all faces are isomorphic to f . Let (ΛA,ΛB) be a pair of such graphs, and consider

the intersection of these graphs with some finite region L, where LA = ΛA ∩ L and

LB = ΛB∩L. While we do not require any symmetry or special alignment of the faces

in ΛA and ΛB, we do impose a few extra conditions (divisibility and bridgeability) on

ΛA to ensure that the model is reasonably well-behaved (see Section 5.4.1 for details);

most natural models satisfy these conditions. A binary mixture is a non-overlapping

packing of tiles on L, where A-tiles lie on the faces of LA and B-tiles lie on the faces

of LB. A binary mixture is interfering if there exist constants 0 < δ ≤ γ such that

for any face x in LB and any set S of faces in LA for which the outer perimeter of S

has a nontrivial intersection with x, δ and γ provide upper and lower bounds on the

ratio of the area of S ∩ x to the length of the perimeter of S contained within x; that

is,

0 < δ ≤ a(S ∩ x)

|κ(S) ∩ x|
≤ γ,

where κ(S) is the perimeter of S. For example, in Model 1, ΛA is the Cartesian

lattice Z2 and ΛB is the set of diamonds bisected by edges in Z2; then δ = γ = 1/4

(Figure 18). Notice that this definition forbids pairs (ΛA,ΛB) where an A-tile y and

a B-tile x can intersect in an edge, such as in Model 2 where A-tiles are unit squares

on Ln and B-tiles are squares of side length 1/2 on the half-integer lattice (see Figure

93



19(d)). This is because in this case we can choose S = {y}, and the area of S ∩ x is

0, even though the perimeter of y intersects x nontrivially, forcing δ = 0. See Figure

19(a-c) for additional examples of interfering binary mixtures. In Section 5.4, we

(a) (b) (c)

(d)

Figure 19: Subfigures (a-c) are interfering binary mixtures while (d) is not.

will give examples of other interfering binary mixtures, including independent sets,

that arise naturally in combinatorics and statistical physics and contrast these with

a non-interfering binary mixture that provably does not exhibit clustering.

It is often useful to switch from a model where the number of tiles of each type are

fixed to a so-called grand-canonical ensemble where these are allowed to vary. Here,

however, typical configurations would have a preponderance of only one type of tile

at most high densities and the balanced configurations we are interested in would be

exponentially unlikely. Instead, we fix the number of A-tiles and allow the B-tiles

to vary stochastically. Each configuration σ has weight proportional to λd(σ), where

d(σ) is the number of B-tiles in σ. The choice of λ controls the expected density of

B-tiles.

Our goal now is to understand when the A-tiles will exhibit clustering in terms of

the (expected) density of A-tiles and B-tiles. First we define a clustering property for

configurations of tiles. Informally we have clustering if there exists a dense region R
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in ΛA with Ω(n2) area and O(n) perimeter. Our main theorems demonstrate that at

high density interfering binary mixtures exhibit the clustering property while at low

densities they do not.

The key tools in our proofs are careful Peierls arguments, used in statistical physics

to study uniqueness of the Gibbs state and phase transitions (see, e.g., [27], [29]), and

in computer science to study slow mixing of Markov chains (see, e.g., [14], [40], [74]).

Peierls arguments allow contours to be added and removed by complementing the

interiors of those contours. The main challenge here is maintaining the number of A-

tiles, making the arguments considerably more difficult. We introduce the concept of

bridge systems, to handle multiple contours by connecting components and to make

it possible to efficiently encode the boundaries of all contours removed. The encoding

is necessary to account for the entropy/energy tradeoffs in these maps.

We give precise definitions of the clustering property and state the main theorems

in Section 5.3. In Sections 5.3.4 and 5.3.5 we prove the two main theorems in the

context of Model 1 and in Section 5.4 we extend our proofs to all interfering binary

mixtures.

5.3 Clustering in Model 1

Frenkel and Lewis introduced Model 1 which consists of non-overlapping mixtures

of unit squares in a region of Z2 and diamonds of area 1/2 that sit on lattice edges.

Model 1 is equivalent to the Ising model with fixed magnetization and thus inherits

the phase transition arising in the Ising model which has been extensively studied.

Although our results are weaker than what is already known for the Ising model we

begin by proving our results for Model 1 in order to introduce our techniques and

ideas in this simpler context. Later in Section 5.4, we extend these techniques to other

models of interfering binary mixtures which do not inherit the results from the Ising

model. We begin by formally introducing the model, rigorously defining clustering
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and stating our main theorems.

5.3.1 Formalizing the Model

Given constants λ > 1, and 0 < b < 1/2, where bn2 ∈ Z, define Ω = Ω(b, λ) as the set

of non-overlapping packings of L with bn2 A-tiles and any number of B-tiles (where

a tile can only be placed on a face of its type). We wish to study the distribution

π(ρ) = λd(ρ)/Z, where d(ρ) is the number of B-tiles in ρ and Z =
∑

ρ∈Ω λ
d(ρ) is

a normalizing constant. Our goal is to determine whether a configuration chosen

according to π is likely to have clusters of A-tiles.

As mentioned earlier, Model 1 is equivalent to the Ising model of ferromagnetism

with a fixed magnetization, which we will see presently. First, we will define the Ising

model on the n× n grid Ln. Let Ḡ = (V̄ , Ē) be the dual lattice region to Ln and let

ρ ∈ {+,−}V̄ be an assignment of spins to each of the vertices in V̄ (i.e., the faces in

V ). The weight of a configuration is π̄(ρ) = eβ|Ēd(ρ)|/Z̄, where Ēd(ρ) ⊆ Ē is the set

of edges in Ḡ whose endpoints have different spins in ρ, β is the inverse temperature

and Z̄ is a normalizing constant.

Returning to Model 1, let the A-structure Γ(ρ) of a configuration ρ in Ω be the

configuration σ obtained from ρ by removing all of its B-tiles (diamonds). The set Ω̂

of all such A-structures with bn2 A-tiles (squares) is called the projection of Model 1.

Let π̂ be the induced distribution on Ω̂; that is, for σ ∈ Ω̂, let π̂(σ) =
∑

ρ∈Γ−1(σ) π(ρ).

Then the function f : Ω̂ → {+,−}V̄ , which replaces each square by a positive spin

and each empty face by a negative spin, is a bijection which maps the projection of

Model 1 onto the Ising model. To see this, define the perimeter of σ (in Ω or Ω̂)

to be the edges that belong to exactly one A-tile in σ, and define κ(σ) as the length

of the perimeter of σ. Let e(σ) be the number of edges that are not incident to any

A-tile in σ. We find that

π̂(σ) =

e(σ)∑
k=0

λk

Z

(
e(σ)

k

)
=

1

Z
(1 + λ)e(σ) = (1 + λ)2n2−2bn2 µκ(σ)

Z
, (5.3.1)
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where µ = (1 + λ)−
1
2 . Thus, the total perimeter of the A-structure completely deter-

mines the probability that it will show up in Ω. Since the weight of a configuration

is determined exactly by the number of edges with opposite spins in Ln, this is the

Ising model with a fixed number of positive spins for some λ that is a function of β,

known as fixed magnetization.

While the perimeter of the A-structure does not exactly determine its probability

for the other models of interfering binary mixtures, we will see that they are closely

related, and we can still use arguments about the perimeter to bound the weight of

configurations. Thus it makes sense to define the clustering property in terms of the

perimeter to area ratio, which we do next.

5.3.2 The Clustering Property

The goal of this chapter is to show that when the density of B-tiles is high, interfering

binary mixtures cluster, while at low density they do not. First, we characterize

clustering in the context of Model 1. Intuitively, a configuration has the clustering

property if there is a large region densely filled with A-tiles. More precisely, we define

a region R = (RF , RE) where RF is a set of faces in Ln and RE is a set of edges

where RE is connected and any edge e which is adjacent to a face in RF and a face

in R̄F = Ln \ R satisfies e ∈ RE. The length of the perimeter κ(R) of a region R is

|RE|. Let c = min
{
b
2
, 1

100

}
.

Definition 5.3.1: A configuration σ ∈ Ω (or Γ(σ) ∈ Ω̂) has the clustering property

if it contains a region R which satisfies the following properties:

1. R contains at least (b− c)n2 A-tiles,

2. the perimeter of R is at most 8
√
b n, and

3. the density of A-tiles in at least 1− c in R and at most c in R̄.
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If a configuration has the clustering property, we show that it contains an n1/3×n1/3

window with high density and one with low density, demonstrating the heterogeneity

of the configuration. At the end of Section 5.3.4 we contrast this with Model 2,

related to bond percolation, which remains homogeneous at all densities.

5.3.3 Main Results

We show that at high density interfering binary mixtures have the clustering property

while at low densities they do not. Specifically, we prove the following theorems in

the context of Model 1 on the n × n region Ln with bn2 A-tiles and the density of

B-tiles determined by λ. In Section 5.4, we show they also hold for other interfering

binary mixtures.

Theorem 5.3.1: For 0 < b < 1/2, there exist constants λ∗ = λ∗(b) > 1, γ1 < 1 and

n1 = n1(b) such that for all n > n1, λ ≥ λ∗ a random sample from Ω will have the

clustering property with probability at least (1− γ1
n).

Theorem 5.3.2: For 0 < b < 1/2, there exist constants λ∗ = λ∗(b) > 0, γ2 < 1 and

n2 = n2(b) such that for all n > n2, λ ≤ λ∗ a random sample from Ω will not have

the clustering property with probability at least (1− γ2
n).

Furthermore, it follows from the proofs that at low density if a dense region R′ has

area Ω(n2) then it must have perimeter Ω(n2). Notice that in the case b > 1/2 we

can obtain comparable results by the symmetry of the A-tiles to the empty space.

Indeed, in this case if λ is sufficiently high we will see empty faces clustering within

a sea of A-tiles and for low density the empty faces will be well-distributed.

Note that since clustering is just a property of the A-tiles, it suffices to prove

Theorems 5.3.1 and 5.3.2 for weighted A-structures Ω̂, involving just the A-tiles.

From this point we focus on Ω̂, and we refer to A-tiles just as tiles.
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5.3.4 Clustering at High Density for Model 1

We concentrate first on interfering binary mixtures at high density to prove Theorem

5.3.1. Define Ψ ⊂ Ω̂ to be the set of configurations that have the clustering property;

then we show that π̂(Ω̂\Ψ) ≤ γn1 for some constant γ1 < 1. To achieve this, we apply

a Peierls argument, in which we define a map f : Ω̂ \ Ψ → Ω̂ and show that for all

τ ∈ Ω̂, ∑
σ∈f−1(τ)

π̂(σ) ≤ γn1 π̂(τ). (5.3.2)

Given a configuration σ ∈ Ω̂ \ Ψ, the map f removes a large set T of tiles in σ

and reassembles them in a single large component in f(σ). This decreases the total

perimeter of the configuration significantly, and therefore π̂(f(σ)) is exponentially

larger than π̂(σ). The challenge is to bound the number of configurations that map

to a given τ ∈ Ψ by carefully encoding the preimages of τ .

Some definitions will be helpful. We say two tiles are adjacent if their borders share

an edge. A component is a maximal connected set of tiles, and maximal connected

segments of the perimeter of σ are contours. The set T of tiles we remove will be a

union of components, which we identify using a system of “bridges” connecting these

components (Figure 20). The key is that the number of edges in the bridges is at most

a constant times the total perimeter of the components bridged. Then if E is the set

of all edges in bridges or along contours bridged, we can bound |f−1(τ)| by the number

of ways that those E edges could be distributed in σ. Finally, we show that there is

a sparse, roughly square region in the resulting configuration where we can add the

T tiles. We complement that region to obtain f(σ), which allows us to remember the

locations of any components that were not bridged (see Figure 20). Notice that the

resulting configuration has much higher weight (much smaller perimeter), as desired.

Building Bridges. Given a region R, let C(R) be the set of contours fully contained

within the interior of R and define the outer contours to be those in C(R) that are
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→

Figure 20: A configuration σ ∈ Ω̂ \Ψ and the image f(σ) of σ in Ψ

not contained in the interior of other contours in C(R). The interior of the outer

contours of components are called holes and the interior of the outer contours of

holes are called islands.

Consider first the case in which there are no components with holes. Suppose B is

a set of edges of Ln connecting some subset S of the contours to the boundary of Ln.

We call B a set of bridges and S a set of bridged contours. A face in Ln or a tile is

called unbridged if it is not bounded by a bridged contour. Then (B, S) is a c-bridge

system for σ ∈ Ω̂ if the number of unbridged tiles is at most c times the number of

unbridged faces, and |B| ≤ κ(S)(1 − c)/(2c). If σ has components with holes, then

first construct a c-bridge system (B, S) for σ′, obtained from σ by filling all the holes.

Next for each bridged contour X in σ, construct a c-bridge system for the region in σ

bounded by X (treating tiles as empty faces and empty faces as tiles). Recurse until

a c-bridge system for each bridged contour at every level of the recursion is obtained.

We call this a c-bridge system of σ.

Lemma 5.3.3: There exists a c-bridge system for any configuration σ ∈ Ω̂.

Proof: If any components of σ have holes, we may need to recurse as described

above. We may assume that we are given a region R in σ with no holes, since

otherwise we recurse as described above. Now we use induction on the number of
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contours in R. If there are no contours, then clearly (∅, ∅) is a c-bridge system for

R. Otherwise, define t(R) to be the set of tiles in R and x(R) to be the number

of empty faces in R. Let H be the set of horizontal lines through R. If, for every

H ∈ H, |t(R)∩H| < c|R∩H| then we are done, since then (∅, ∅) is a c−bridge system

for R. Otherwise there exists a horizontal line H such that |t(R) ∩ H| ≥ c|R ∩ H|.

Then let B be the set of bottom edges of every outer face in H ∩ R. See Figure 21,

where the dark black edges along the line H are the new bridges. Let S be the set of

contours connected in this step. We know that κ(S) ≥ 2|t(R) ∩H| ≥ 2c |R ∩H| ≥

2c/(1− c)|x(R) ∩H|, so |B| ≤ (1− c)/(2c)κ(S). We obtain R′ from R by removing

the faces bounded by a contour in S, as in Figure 21. Then by induction, there exists

a c−bridge system (B′, S ′) of R′. Then B̂ := B ∪ B′ is a set of bridges connecting

the contours in Ŝ = S ∪ S ′ to each other and to the boundary of R. Moreover,

|B̂| ≤ 1−c
2c

κ(Ŝ) and the number of unbridged tiles is at most c times the number of

unbridged faces. Hence (B̂, Ŝ) is a c-bridge system for R.

H →

Figure 21: Before and after one step of the construction of a c-bridge system for a
region R; the solid lighter grey area is exterior to R

Once we have a c-bridge system, we can apply a map in which we complement an

entire region of faces, making tiled faces empty and vice versa. This map significantly

reduces the perimeter, but can dramatically change the total number of tiles. Recall

we must maintain the total number of tiles, so we may need to supplement by adding

extra tiles from another region or we may have extra tiles, which we will put in our

“bank” for later. At the end of the process we will find a roughly square region that

we can again complement using the bank of extra tiles so that the total number of

tiles is restored to bn2 at minimal cost.
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Finding a Sparse Box. We now show that after removing all but cn2 tiles, there

exists a roughly square region of low density where we can place the tiles in our bank.

Lemma 5.3.4: For (b− c)n2 ≤ a < bn2, there exists a constant n3 = n3(b) such

that for all n ≥ n3, if ρ is a configuration with at most cn2 tiles then ρ contains a

region R′ such that complementing R′ requires a additional tiles and the change

in total perimeter is at most 5
√
a.

Proof: Given a region R, let d(R) denote the number of tiles needed to comple-

ment R; this is exactly the area of R minus twice the number of tiles in R. Let

l = d
√

8a/7e. First we show that there exists a square l × l region R such that

d(R) ≥ a. Assume that such a l × l region does not exist. Divide the grid into
⌊
n
l

⌋2

disjoint squares with side length l and consider any square. Let t be the number of

tiles in the square. The empty volume is at least l2 − t. By assumption each square

satisfies l2 − t < t+ a, and so t > l2−a
2

. In particular, 8a/7 ≤ l2 < a+ 2t ≤ a+ 2cn2,

so we know a < 14cn2. This implies that l ≤
√

8a/7 + 1 ≤ 1 + 4
√
cn. However, if T

is the total number of tiles,

cn2 ≥ T >
⌊n
l

⌋2 l2 − a
2
≥ n2

2

(
1− l

n

)2 (
1− a

l2

)
>
n2(1− 1

n
− 4
√
c)2

16
≥ cn2,

since c ≤ 1
65

and n ≥ n3, a contradiction. Therefore there exists an l × l square R

such that d(R) ≥ a. Remove faces from R one at a time, starting with the bottom

row of R and moving across, until we obtain a region R′ ⊆ R with d(R′) = a. This

can be done because removing one face at a time changes d by at most 1. This region

R′ is roughly square and has perimeter at most 4
√

8a/7 < 5
√
a.

The Proof of Theorem 5.3.1. Finally we can prove Theorem 5.3.1, showing that

for large λ a typical configuration will have the clustering property.

Proof of Theorem 5.3.1. Let σ ∈ Ω̂\Ψ. Construct a c-bridge system (B, S) for Ln as

described in Lemma 5.3.3. That is, (B, S) is a set of bridges in Ln connecting some
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Figure 22: A c-bridge system for σ ∈ Ω̂ \Ψ; the image f1(σ); and f(σ) = f2 ◦ f1(σ)

of the components, some of the holes within those components, some of the islands

within those holes, etc. For any bridged contour X, let r(X) be the region bounded

by X. If r(X) is a component with holes, then we remove all outer tiles of r(X) and

complement all unbridged holes in X, using a subset of the tiles removed to fill in

the holes. If r(X) is a hole with islands, then we leave all of the unbridged islands

alone. At this point, after complementing some number of regions, we have a bank

of extra tiles; let a be the number of tiles in the bank. Notice that by the definition

of a c-bridge system, the density of tiles remaining is at most c, so a ≥ (b− c)n2.

Let f1(σ) be obtained from σ by removing the bridged components and comple-

menting as described above. Let F1 be the image of f1 on Ω̂\Ψ; note that F1 6⊂ Ω̂ since

the configurations in F1 have too few tiles. Let κ be the total perimeter of all contours

bridged. Then for any ρ ∈ F1, we claim that the number of preimages of ρ whose

bridged contours have total perimeter κ is at most 5c3 for c3 = (1 + 1−c
2c

+ 1
8
√
a
)κ. Con-

sider the c-bridge system obtained above for Ln. Let V denote the leftmost vertical

edges of the region. Let S ′ = S ∪ V . We perform what is essentially a depth-first-

search traversal of the bridge system on S ′, starting at the top left corner of Ln. As

we traverse an edge we record what type of edge it was using. Then we ‘encode’ the

location of the bridges and contours using five bits that represent forward, left, right,

bridge east, or bridge west; note that all bridges are horizontal edges, so all edges
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in B fall into one of these 5 categories. Whenever we encounter a new bridge Bi,

we “process” that bridge by traversing it from the previous contour Ci to the next

contour Ci+1, then traversing the edges of Ci+1. If we encounter another bridge, we

process it before continuing. We finish processing Bi when we return to the intersec-

tion of Ci+1 with Bi. Finally, we jump back to the intersection of Bi with Ci and

continue traversing Ci. Given the encoded information, there is a unique way to dis-

tribute the contours. Hence for all perimeters κ ≥ 8
√
an the number of preimages of

ρ whose bridged contours have total perimeter κ is at most 5|B|+κ+n ≤ 5c3 . Therefore

|f−1
1 (ρ)| ≤

∑
κ≥8
√
an 5c3 .

Let ρ ∈ F1 with bn2 − a tiles. Lemma 5.3.4 shows how to find a region S ′ in

ρ to complement using the a tiles from the bank to obtain τ in such a way that

κ(τ) − κ(ρ) ≤ 5
√
a. Let f2(ρ) = τ and f = f2 ◦ f1. We can encode the boundary of

S ′ with n23κ(S′) ≤ n235
√
a information. Hence for any τ ∈ Ψ,

|f−1(τ)| ≤ n235
√
a max
ρ∈f−1

2 (τ)
|f−1

1 (ρ)|.

Let σ ∈ Ω̂\Ψ, and as above let κ be the total perimeter of components bridged in

σ (recall κ(σ) is the total perimeter of all contours in σ). If κ ≤ 8
√
a, then σ ∈ Ψ, a

contradiction. To see this, define the parity of a face to be 1 if it is contained within

an odd number of bridged contours and 0 otherwise, and let R be the set of faces with

parity 1. Then R has density at least 1− c, perimeter at most 8
√
a and a ≥ (b− c)n2

tiles. Moreover, R̄ has density at most c. Thus R is the region we require, and so

σ ∈ Ψ. This implies κ > 8
√
a. We have shown that κ(σ)−κ(f(σ)) > κ−5

√
a > κ/4.

Let τ ∈ Ω̂ and define f−1
κ (τ) to be the set of configurations with perimeter κ that

map to τ . Then |f−1
κ (τ)| ≤ n2

(
3

1
2
√

7 5
1+ 1−c

2c
+ 1

16
√
b

)κ
and so

π(τ)−1
∑

σ∈f−1(τ)

π(σ) ≤
∑

σ∈f−1(τ)

µκ(σ)−κ(f(σ)) ≤
2n2∑

κ=8
√
a

µκ/4|f−1
κ (τ)| ≤ γn1 ,

for some γ1 < 1, if µ ≤ µ∗ <
(

3
1

2
√

7 5
1+ 1−c

2c
+ 1

16
√
b

)−4

. Thus the theorem holds if
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λ ≥ λ∗ = µ∗−2 − 1.

Comparing Model 1 with Model 2. As a corollary to Theorem 5.3.1, we find

that for Model 1 if a configuration has the clustering property then there exists an

n1/3×n1/3 window with high density and one with low density. However, in contrast,

we will see that for Model 2, regardless of λ, the probability that any n1/3 × n1/3

box has high density d such that d > 1.5b or low density, d < 0.5b, is exponentially

small.

Corollary 5.3.5: For 0 < b ≤ 1/2 there exists a constant n4 = n4(b) such that for

all n > n4, if σ satisfies the clustering property then σ contains square n1/3 × n1/3

windows W1 and W2 such that the density of tiles in W1 is at least .99(1− c) and the

density of tiles in W2 is at most 2.1c.

Proof: Let σ ∈ Ψ and let R be the active region given by the clustering property.

Consider the set of n4/3 windows of side length n1/3 that tile Ln. Since R has a ≥

(b−c)n2 tiles and density at least 1−c, we know that at most an−2/3/(1−c) windows

are contained completely within R. Similarly, since R has perimeter at most 8
√
b n

we know that at most 8
√
b n windows intersect the boundary of R. This means that

there exists a constant n5 = n5(b) such that for n > n5, there exists a window with

density d satisfying,

d ≥ a

n2/3
((

a
1−c

)
n−2/3 + 8

√
b n
) ≥ 99

100
(1− c).

Next, consider the region R̄ = Ln−R. From the clustering property we know that R̄

has area at least n2−a/(1−c) and contains at most cn2 tiles. This implies that there

are at least n−2/3(n2 − a/(1 − c)) windows intersecting R̄. At most 8
√
b n of these

windows can intersect R and these contain at most 8
√
b n5/3 tiles from R. Combining

these observations implies that there exits a constant n6 = n6(b) such that for n > n5,
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there exists a window with density d satisfying,

d ≤ cn2 + 8
√
bn5/3

n2/3n−2/3
(
n2 − a

1−c

) ≤ 99

49
c.

Model 2: A-tiles are unit squares on Ln and B-tiles are squares of side length

1/2 on the half-integer lattice, (see Figure 24(c)). This model is qualitatively different

from the previous models since the placement of the A-tiles does not influence the

number of places in which we can put the B-tiles. In fact, this model is just bond

percolation on a rotated grid with a fixed number of edges, where we do not expect

clustering at any density. To see the bijection, label a unit square with a Northwest-

Southeast diagonal if it lies on an even face and label it with a Northeast-Southwest

diagonal otherwise, as in Figure 24(d). Notice that these lines form a subset of the

edges of a rotated grid. If we have bn2 A-tiles then each edge in the rotated grid is

present with probability b.

Figure 23: Model 2 and the connection with bond percolation

To illustrate the difference between the behavior of Model 2 and the interfering

binary mixtures, consider an n1/3×n1/3 window in each. In Model 2, the probability

that any n1/3×n1/3 box has density d such that d > 1.5b or d < 0.5b is less than γn3 for

some constant γ3 < 1. This is straightforward to show since each configuration of bn2

tiles in n2 locations has equal likelihood. Thus, the probability that a fixed window

has density d is exactly
(
n2/3

dn2/3

)(
n2−n2/3

bn2−dn2/3

)
/
(
n2

bn2

)
. Using standard approximations and

union bounds we can obtain the desired result. In contrast, by Corollary 5.3.5, a

configuration with the clustering property has a window with density d ≥ .99(1− c)
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and a window with density d ≤ 2.1c. Hence we see markedly different behavior

between interfering and non-interfering binary mixtures.

5.3.5 No Clustering at Low Density for Model 1

We now examine the low density case and prove, in the context of Model 1, Theorem

5.3.2, stating that at sufficiently low density, typical configurations will not have

the clustering property. For small enough λ, the A-tiles will be well-distributed

throughout Ln, in the sense that any large dense region must have perimeter on the

order of n2.

Proof of Theorem 5.3.2. Let t = 1−2c
1−c (b − c) and δ = (1−b+t

t
)t. Define Ψ′ ⊂ Ω̂ to be

the set of configurations with a region R that has at least (b − c)n2 tiles, perimeter

less than αn2 and density at least 1 − c, where α satisfies 0 < α < ln 3(ln(δ) −

b ln 2)/2. We will show π̂(Ψ′) is exponentially small. From the definition of clustering

(Definition 5.4.3), it is straightforward to see that Ψ, the set of configurations that

have the clustering property is contained in Ψ′. Thus, if π̂(Ψ′) is exponentially small

then clustering is exponentially unlikely to occur.

For each σ ∈ Ψ′, let R be the lexicographically first region which meets the

conditions given above. We will “flip” each face in R (tiles become empty faces and

vice versa) to obtain f(σ). Since R has density at least 1 − c and at least (b − c)n2

tiles, this means that there are at most c
1−c(b−c)n

2 empty faces in R. So by flipping R

we are left with a bank of aσ tiles such that aσ ≥ 1−2c
1−c (b− c)n2 = tn2. Next, we define

N(σ) to be the set of all configurations obtained from f(σ) by adding aσ tiles back

in any aσ empty locations; then |N(σ)| =
(
n2−(bn2−aσ)

aσ

)
. For each τ ∈ Ω̂, we need to

bound the number of configurations σ such that τ ∈ N(σ). For any configuration τ ,

there are at most 2bn
2

configurations β such that β = f(σ) and τ ∈ N(σ) for some

σ ∈ Ψ′. This is due to the fact that there are 2bn
2

ways to choose which bn2 tiles were

in their original location and which were removed by f. For each such configuration β
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we bound the number of regions R that could have been removed in order to recover

the original σ. There are at most bn2 ways to select an A-tile on the border of R and

3αn
2

possible perimeters for R, since R has perimeter less than αn2. Thus for any

configuration τ there are at most 2bn
2
(bn23αn

2
) ≤ (2bδ)n

2/2 configurations σ such that

τ ∈ N(σ).

Finally, we define a weighted bipartite graph G(Ψ′, Ω̂, E) with an edge of weight

π(σ) between σ ∈ Ψ′ and τ ∈ Ω̂ if τ ∈ N(σ). The total weight of edges is∑
σ∈Ψ′

π(σ)|N(σ)| ≥
∑
σ∈Ψ′

π(σ)

(
n2 − (bn2 − aσ)

aσ

)
≥ π(Ψ′)δn

2

.

However, the weight of the edges is at most
∑

τ∈Ω̂ π(τ)µ−4bn2
(2bδ)n

2/2. Let µ∗ =

(2b/δ)1/(8b) and λ∗ = (µ∗)−2 − 1. Thus for all µ < µ∗,

π(Ψ′) < µ−4bn2

(2bδ)n
2/2δ−n

2

< γn2 ,

for some γ2 < 1, completing the proof.

5.4 Generalizing from Model 1 to Interfering Binary Mix-
tures

One may expect behavior similar to Model 1 as long as our binary mixtures com-

bine tiles that “interfere” in that there has to be some space between them when

they are non-overlapping. Indeed this is the case for the class of “interfering binary

mixtures” which we define in order to make this intuition rigorous. We will now show

how to extend the analysis from Model 1 to prove that interfering binary mixtures

exhibit clustering at sufficiently high density, whereas at sufficiently low density the

A-tiles will be well-distributed. Conceptually all of the ideas presented in this section

were already introduced in the context of Model 1. However, the definitions are

quite technical because we must define the gain from a Peierls argument in terms

of perimeter, area and overlaps of tiles. In addition, we need to generalize the con-

cept of bridges that were critical to the previous arguments. We start by a series of
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definitions to capture these concepts, and then move on to the more technical proofs.

5.4.1 Defining Interfering Binary Mixtures

We begin by formally defining interfering binary mixtures. We require that ΛA and

ΛB be divisible and bridgeable to ensure that the model is reasonably well-behaved.

We begin by defining these restrictions. See Section 5.4.2 for examples of bridgeable

and divisible graphs. Let Λf be a planar graph whose faces are all isomorphic to f .

Definition 5.4.1: We say Λf is divisible with parameter ν ′ if for every integer n > 0,

there exists a subgraph Rn of Λf , which contains n2 faces, has outer perimeter ν ′n,

and for each integer 0 < k < n there exists a packing of bn
k
c2 non-overlapping copies

of Rk in Rn. We will refer to Rn as an n-box.

For example, Model 1 is divisible. To see this, consider a n× n subgraph of Z2 and

let this be the n-box, Rn. The subgraph Rn has area n2 and perimeter 4n. There

exists an n×n subgraph Rn for every integer n > 0. For each integer 0 < k < n there

exist bn
k
c2 non-overlapping k × k regions contained in a n× n region (i.e., a packing

of bn
k
c2 k-boxes). Thus, Model 1 is divisible with parameter ν ′ = 4. See Figure 28

and Figure 29 for other examples of boxes and packings.

Definition 5.4.2: Let Λf be a divisible planar graph with n-box Rn and H be the

set of horizontal lines which intersect at least one vertex of Rn. The graph Λf is

bridgeable with parameters h1, h2 if

• for every horizontal line H ∈ H, if H has length L (where L is the length

of H contained within Rn), then the maximum number of vertices or edges

intersecting H, discounting any edges which have at least one vertex intersecting

H, is at most h1L,

• and the number of horizontal lines |H| satisfies |H| ≤ h2n.
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Let ΛA be a bridgeable, divisible planar graph with all faces isomorphic to A and n-

box Rn. Let ΛB be a planar graph where all faces are isomorphic to B. We will restrict

our attention to the intersection of ΛA and ΛB with Rn; specifically, LA = ΛA ∩ Rn

and LB = ΛB ∩ Rn. A binary mixture is a (nonoverlapping) packing of the region

Rn with A-tiles (lying on faces of LA) and B-tiles (lying on faces of LB). For any

set S of tiles, define per(S) to be the set of edges adjacent to a tile in S and a tile

not in S and for any contour C, let |C| be the total length of the contour C. Define

a(S) to be the area of the tiles in S. A binary mixture is interfering if there exist

constants δ and γ such that for any face x in LB and any set S of faces in LA for

which |per(S) ∩ x| 6= 0,

0 < δ ≤ a(S ∩ x)

|per(S) ∩ x|
≤ γ. (5.4.1)

Given constants λ > 1, and 0 < b < 1/2, where bn2 ∈ Z, define Ω = Ω(b, λ) as the

set of non-overlapping packings of L with bn2 A-tiles and any number of B-tiles (where

a tile can only be placed on a face of its type). We wish to study the distribution

π(ρ) = λd(ρ)/Z, where d(ρ) is the number of B-tiles in ρ and Z =
∑

ρ∈Ω λ
d(ρ) is

a normalizing constant. Our goal is to determine whether a configuration chosen

according to π is likely to have clusters of A-tiles. Notice that these models can all be

seen as weighted independent sets on some graph (including the Ising model), namely,

the graph whose vertex set is the set of centers of all faces in LA and LB and where

two vertices are adjacent if their corresponding faces intersect nontrivially.

Next, we will define several parameters of interfering binary mixtures that will

be used in our proofs. These parameters will be vary depending on the specific

model. Define α to be the area of a A-tile and β to be the area of a B-tile. Let

ν be the perimeter of a A-tile. Let ∆ be the maximum degree of any vertex in LA

and νe be the length of the shortest edge in LA. Recall from the definition of a

binary mixture that each model also has parameters ν ′, h1, h2, δ and γ because it

is divisible, bridgeable and interfering. Table 1 shows the values of these parameters
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for the example interfering binary mixtures given in Section 5.4.2.

5.4.2 Example Interfering Binary Mixtures

First, we will see a few other examples of interfering binary mixtures, which help to

illuminate the changes necessary to generalize the proof of Theorem 5.3.1.

(a) Model 3 (b) Model 4

Figure 24: Example drawings of Model 3 and Model 4.

Model 3: A-tiles are unit squares on the grid, LA = Ln and B-tiles are unit

squares centered on the vertices of LA, see Figure 24(a). It is not hard to see that

this model corresponds exactly to an independent set model on the rotated grid

where vertices correspond to the centers of A-tiles and B-tiles, and the number of

even vertices (A-tiles) is fixed. The number of odd vertices (B-tiles) varies according

to λ. To see that Model 3 is divisible, consider a square of size n by n which contains

n2 faces of the grid. This has perimeter 4n and clearly meets the divisible conditions

with ν ′ = 4. For this model the set H is simply the set of horizontal grid lines. Since

there are exactly n + 1 of these, we can let h2 = 2 thus |H| = n + 1 ≤ 2n = h2n as

required. For each horizontal line H ∈ H, the number of vertices or edges intersecting

H, discounting any edges which have at least one vertex intersecting H, is exactly

the number of vertices intersecting H which is n + 1. Since each horizontal line H

has length n we let h1 = 2 and thus n + 1 ≤ 2n = h1(n) as required. To determine

appropriate values for δ and γ, consider any B-tile x and all choices of S (sets of

tiles) that affect x where |per(S) ∩ x| 6= 0. There are 4 cases as shown in Figure 25.

Note that each case displays a single face of LB. The dark blue regions corresponds
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to fragments of A-tiles that overlap the face, each of which is only 1/4 of the actual

A-tile which is contained in S. In order to determine δ and γ we need to calculate the

ratio r = a(S∩x)
|per(S)∩x| in each case, where |per(S)∩x| is the portion of the perimeter of S

that overlaps with x which is highlighted by the yellow line (in Figure 25) and a(S∩x)

is the area of the region in dark blue. Specifically, in the first case |per(S) ∩ x| = 1

and a(S ∩ x) = 3/4 so r = a(S∩x)
|per(S)∩x| = 3/4. By calculating the ratio r in each case we

determine that δ = 1/4, γ = 3/4 suffice and conclude that Model 3 is an interfering

binary mixture.

r = 3/4 r = 1/2 r = 1/4 r = 1/4

Figure 25: Computing δ and γ for Model 3.

Model 4: A-tiles are triangles with perimeter three on the triangular lattice LA and

B-tiles are lozenges bisected by edges of LA, (see Figure 24(b)). Model 4 maps

bijectively onto an Ising Model with fixed magnetization on LA. To see that Model

4 is divisible, consider a box of size n by n as shown in Figure 28(a) which contains n2

faces of the triangular lattice. This has perimeter 3n and these boxes can always be

packed tightly by flipping every other box vertically as shown in Figure 29(a). Thus

this definition of a n-box clearly meets the divisible conditions with ν ′ = 3. For this

model the set H is simply the set of horizontal grid lines. Since there are exactly

n+ 1 of these, we can let h2 = 2 thus |H| = n+ 1 ≤ 2n = h2n as required. For each

horizontal line H ∈ H, the number of vertices or edges intersecting H, discounting

any edges which have at least one vertex intersecting H is the number of vertices

intersecting H. If n is odd, then the number of vertices on a line is either dn/2d+1

or dn/2d and the lines have length dn/2e or bn/2c respectively. If n is even, then all

lines have n/2 + 1 vertices and length n/2. Thus if h1 = 2 suffices. To determine
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appropriate values for δ and γ, consider any B-tile x and all choices of S that affect x

where |per(S)∩x| 6= 0. There is only one case with r =
√

3/12 as shown in Figure 26.

Thus δ = γ =
√

3/12 suffice and we can conclude that Model 4 is an interfering

binary mixture.

r =
√

3/12

Figure 26: Computing δ and γ for Model 4.

(a) Model 5 (b) Model 6 (c) Model 7

Figure 27: Examples drawings of Model 5, Model 6 and Model 7.

(a) (b) (c)

Figure 28: n-boxes (n = 5) for (a) Model 4 (b) Model 5 (c) Model 7

Model 5: A-tiles are hexagons with perimeter 6 on the hexagonal lattice LA and

B-tiles are also hexagons on a smaller hexagonal lattice LB where each face of LA

contains one face of LB and bisects 6 others as shown in Figure 27(a). To see that

Model 5 is divisible, consider a box of size n by n as shown in Figure 28(b) with
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(a) (b) (c)

Figure 29: A packing of 5-boxes for (a) Model 4 (b) Model 5 (c) Model 7

perimeter 8n which contains n2 faces of the hexagonal lattice. This has perimeter 4n

and, similar to the triangular lattice, these boxes can be packed tightly by flipping

every other box vertically as shown in Figure 29(b). Thus this definition of a n-box

clearly meets the divisible conditions with ν ′ = 8. For this model the set H has size

2n+ 2, so we can set h2 = 3 and thus |H| = 2n+ 2 ≤ 3n = h2n as required. For each

horizontal line H ∈ H, the number of vertices or edges intersecting H, discounting

any edges which have at least one vertex intersecting H, is exactly the number of

vertices intersecting H which is at most n + 1. Since each horizontal line H has

length l greater than n, set h1 = 2 and thus n + 1 ≤ 2n = h1n ≤ h1(l) as required.

To determine appropriate values for δ and γ, there is one case with r = 3
√

3/16 as

shown in Figure 30. Thus, δ = γ = 3
√

3/16 suffice and we can conclude that Model

5 is an interfering binary mixture.

r = 3
√

3/16

Figure 30: Computing δ and γ for Model 5.

Model 6: A-tiles are unit squares on ΛA = Ln and B-tiles are unit squares on

ΛB, where ΛB is Ln shifted up vertically by 2/3 and horizontally by 1/2 as shown

in Figure 27(b). Since ΛA is the same as in Model 2 we have already shown that
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it is divisible with ν ′ = 4 and bridgeable with h1 = 2 and h2 = 2. To determine

appropriate values for δ and γ, we calculate the ratio r for all seven cases given in

Figure 31. Thus, we can let δ = 1/5, γ = 1 and conclude that Model 6 is an

interfering binary mixture.

r = 2/3 r = 1/4 r = 1/5 r = 2/7r = 1/3r = 4/7r = 1

Figure 31: Computing δ and γ for Model 6.

Model 7: A-tiles are modified triangles sitting on LA, a modified version of the

triangular lattice where on a subset of edges a semicircle with radius 1/8 is added or

removed as shown in Figure 27(c). B-tiles are lozenges bisected by the edges of the

triangular lattice. To see that Model 7 is divisible, consider a box of size n by n as

shown in Figure 28(c) which contains n2 faces of the modified triangular lattice. This

has perimeter (10+π)n
4

and these boxes can be packed tightly by flipping every other

box vertically as shown in Figure 29(c). Thus this definition of a n-box clearly meets

the divisible conditions with ν ′ = 10+π
4

. For this model the set H is simply the set of

horizontal grid lines. Since there are exactly n + 1 of these, we can let h2 = 2 thus

|H| = n+ 1 ≤ 2n = h2n as required. For each horizontal line H ∈ H, the number of

vertices or edges intersecting H, discounting any edges which have at least one vertex

intersecting H is the number of vertices intersecting H which is n + 1. Since each

horizontal line H intersects 2n faces of LA we let h1 = 1 and thus n+1 ≤ 2n = h1(2n)

as required. To determine appropriate values for δ and γ, there are 3 cases as shown

in Figure 32. Thus, δ = 32
√

3−3π
48(6+π)

and γ = 32
√

3+3π
48(6+π)

suffice and we can conclude that

Model 7 is an interfering binary mixture.
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r =
√

3
12

r = 32
√

3−3π
48(6+π)

r = 32
√

3+3π
48(6+π)

Figure 32: Computing δ and γ for Model 7.

Table 1: Parameters for the Example Interfering Binary Mixtures

Parameters Models
1 3 4 5 6 7

α area of an A-tile 1 1
√

3
4

3
√

3
2

1
√

3
4

β area of an B-tile
1
2

1
√

3
6

3
√

3
8

1
√

3
6

∆ max degree of vertex in LA 4 4 6 3 4 6

γ upper bound, area to per. ratio
1
4

3
4

√
3

12
3
√

3
16

1 32
√

3+3π
48(6+π)

δ lower bound, area to per. ratio
1
4

1
4

√
3

12
3
√

3
16

1/5 32
√

3−3π
48(6+π)

ν perimeter of an A-tile 4 4 3 6 4 10+π
4

νe length of shortest edge in LA 1 1 1 1 1 1
ν ′ perimeter of a “n-box” 4 4 3 8 4 10+π

4

h1 upper bound, intersections along a line in LA 2 2 2 2 2 2
h2 number of horizontal lines in LA 2 2 2 3 2 2

5.4.3 Relating the Weight of a Configuration to the Perimeter

Recall that the A-structure Γ(ρ) of a configuration ρ in Ω is the configuration σ

obtained from ρ by removing all of its B-tiles. The set Ω̂ of all such A-structures

with bn2 A-tiles is called the projection of the model. Let π̂ be the induced distribution

on Ω̂; that is, for σ ∈ Ω̂, let π̂(σ) =
∑

ρ∈Γ−1(σ) π(ρ). For σ ∈ Ω̂, let O(σ) be the number

of open B-vertices in σ; that is, B-vertices which do not intersect any A-tiles in σ.

This is the number of places where a B-tile can go. We find that

π̂(σ) =

O(σ)∑
k=0

λk

Z

(
O(σ)

k

)
=

1

Z
(1 + λ)O(σ). (5.4.2)

Thus, O(σ) completely determines the probability that it will show up as an A-

structure of a configuration in Ω.

Our goal is to show that our process outlined in Section 5.3.4 for changing the

perimeter of a configuration does in fact change the number of open B-vertices as
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well (which in turn increases the weight of the configuration). This would allow us

to infer that all Interfering Binary Mixtures have the clustering property at high

density. Define a component of A-tiles as a maximal connected subset, where x and

y are adjacent if they share a vertex (and/or an edge). The number, O(σ), of open

vertices in σ is equal to the total number of vertices minus the number of blocked

vertices in σ. Thus for any configuration σ, we want to bound the size of B(σ), defined

as the set of B-faces blocked by A-tiles in σ, in terms of the length of the perimeter

of σ, κ(σ). Define h(σ) := a(B(σ)) − a(σ) to be the area of B-tiles hanging off

of X where a(σ) is total areas of the A-tiles in σ and a(B(σ)) is the total area of

the B-faces in B(σ). Then we obtain the number of blocked B-faces by noting that

|B(σ)| = a(B(σ))/β = a(σ)+h(σ)
β

.

For the Ising models, there is a direct correspondence between perimeter and the

number of open B-vertices. However, in general, the shape of a component determines

the exact relationship between its perimeter and the area of B-tiles hanging off of the

component. Still, for any interfering binary mixture, we can provide constant bounds

on their ratio using the bounds given in Equation 5.4.1. Recall that for any B-tile x,

if A(x) is the set of A-tiles intersecting x, then for any subset S ⊂ A(x) such that

|per(S) ∩ x| > 0,

0 < δ ≤ a(x ∩ S)

|per(S) ∩ x|
≤ γ.

Therefore, for any component X, we have 0 < δκ(X) ≤ h(X) ≤ γκ(X), and so

α|σ|+ δκ(σ)

β
≤ B(σ) ≤ α|σ|+ γκ(σ)

β
. (5.4.3)

5.4.4 Clustering at High Density for Interfering Binary Mixtures

We concentrate first on interfering binary mixtures at high density. The goal of this

section is to extend Theorem 5.3.1 for the general class of interfering binary mixtures.

Firstwe show how to prove the analogs of Lemmas 5.3.3 and 5.3.4 for all interfering

binary mixtures. These imply that a c-bridge system exists and there is an appropriate
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region to flip in order to place the remaining tiles in our bank. Finally we use these

lemmas to prove that clustering occurs at sufficiently high density for all interfering

binary mixtures.

Building Bridges. First we modify the process for building bridge systems to

work in the general setting of interfering binary mixtures. Since the edges of ΛA

can take many shapes and orientations, we will use straight horizontal lines as the

bridges rather than edges of ΛA. As before, we will identify a set B of horizontal

lines bridging a set S of contours. We will define a flip operation f1 which will again

remove a tiles and all contours in S, leaving a configuration with at most cn2 tiles.

Specifically, f1(σ, S) will do the following: for each face f in σ bounded by an odd

number of contours in S, it flips f (tiles become empty faces and empty faces become

tiles), whereas for each face bounded by an even number of contours in S it does

nothing. If B is a set of horizontal lines in H and S is a set of contours bridged by

B, then we say (B, S) is a c-bridge system if after applying f1 to S, there are at

most cn2 tiles and |B| ≤ κ(S)
2c

where |H| is the length of H and |B| =
∑

H∈B |H|

Lemma 5.4.1: There exists a c-bridge system for any configuration σ ∈ Ω̂.

Proof: We begin by introducing some terminology. For any horizontal line H, let

s(H) be the contours that intersect H and let t(H) be the combined length of the

segments of H that are either contained within or adjacent to a tile. In order to

prove the lemma we will first describe an algorithm for finding a c-bridge system for

σ which at each step maintains a bridge system (Bi, Si) with |Bi| ≤ κ(Si)
2c

(note that

this is not a c-bridge system since there may be more than cn2 tiles left after applying

f1). Initially we start with B0 = S0 = ∅. At each step i of the algorithm we construct

σi = f1(σ, Si−1). If there are at most cn2 tiles in σi then we are done. Otherwise, we

find a line H for which t(H) ≥ c|H| where |H| is the length of the line H, and let

Bi = Bi−1∪H and Si = Si−1∪ s(H). We know at least one such line must exist since
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the density of σi is strictly greater than c (we assumed there are more than cn2 tiles

in σi) and because all faces have the same size and shape. Since t(H) ≥ c|H| this

implies that κ(s(H)) ≥ 2t(H) ≥ 2c|H|. We will repeat this procedure until we reach

a step i for which σi has at most cn2 tiles left. Notice that at each step we remove

at least one contour and add no new contours. If we remove all contours then there

will be zero tiles left and we start with a finite number of contours so this algorithm

will terminate. At each step in the algorithm the bridge H that we add satisfies

κ(s(H)) ≥ 2t(H) ≥ 2c|H| where s(H) are the contours we add at the same step.

Since this is satisfied for each horizontal line and associated contours it is satisfied for

the entire set so at the end |B| ≤ κ(S)
2c

as desired and we have a c-bridge system.

Finding a Sparse Box. We now show that after removing all but cn2 tiles, there

exists a region with small perimeter and low density where we can place the tiles

in our bank. The region will be very similar to a k-box for some k as given by the

divisibility condition. For example for Model 5 the region will look like Figure 28(b).

Lemma 5.4.2: For (b− c)n2 ≤ a < bn2, there exists a constant n3 = n3(b) such

that for all n ≥ n3, if ρ is a configuration with at most cn2 tiles then ρ contains a

region R′ such that complementing R′ requires a additional tiles and the change

in total perimeter is at most 4ν ′
√
a.

Proof: Given a region R, let d(R) denote the number of tiles needed to comple-

ment R; this is exactly the number of faces in R minus twice the number of tiles in R.

Let l = d
√

8a/7e. First we show that there exists an l-box such that d(R) ≥ a. As-

sume that such a box does not exist. Divide the A-lattice into
⌊
n
l

⌋2
disjoint l2 boxes

as given by the divisibility condition, and consider any such box. Let t be the number

of tiles in the box. The number of empty faces is at least l2−t. By assumption each l-

box satisfies l2−t < t+a, and so t > l2−a
2

. In particular, 8a/7 ≤ l2 < a+2t ≤ a+2cn2,
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because t < cn2 since there are only cn2 tiles remaining, so we know a < 14cn2. This

implies that l ≤
√

8a/7 + 1 ≤ 1 + 4
√
cn. However, if T is the total number of tiles,

cn2 ≥ T >
⌊n
l

⌋2 l2 − a
2
≥ n2

2

(
1− l

n

)2 (
1− a

l2

)
>
n2
(
1− 1

n
− 4
√
c
)2

16
≥ cn2,

since c ≤ 1
65

and n ≥ n3, a contradiction. Therefore there exists an l-box Rl such that

d(Rl) ≥ a. From the divisibility condition we know that there exists a (l−1)-box Rl−1

contained in R which in turn contains a (l − 2)-box Rl−2 and so forth. This implies

that there exists an i for which d(Rl−i) ≥ a ≥ d(Rl−i−1) since d(R1) < a ≤ d(Rl).

Given this i, start from Rl−i and remove faces one at a time, only removing faces that

aren’t in d(Rl−i−1) and ensuring that the region remains connected until we obtain a

region R′ ⊆ Rl−i with d(R′) = a. This can be done because removing one face at a

time changes d by at most 1 and we know that d(Rl−i) ≥ a ≥ d(Rl−i−1). This region

has perimeter at most the perimeter of the Rl−i−1-box plus the perimeter from the

additional faces. Since there are at most (l − i)2 − (l − i − 1)2 ≤ 2(l − i) additional

tiles, this additional perimeter is at most ν2(l − i). Since ν ≤ ν ′ and i ≥ 0, the total

perimeter is at most ν ′(l − i− 1) + ν2(l − i) ≤ 3ν ′d
√

8a/7e < 4ν ′
√
a.

Proof of the Clustering Theorem. Recall that our definition of the clustering

property gives a precise bound on the maximum allowable perimeter for an active

region that a configuration with the clustering property can have. However, the

precise constant in that bound is not as essential as the fact that the perimeter is

of order a square root of the order of the area of the region R. To extend the proof

to general interfering binary mixtures, we must modify our definition of clustering

slightly to accommodate the bounds we are using to relate the change in open vertices

with the change in perimeter. Hence our definition of clustering becomes:

Definition 5.4.3: We say that a configuration σ ∈ Ω (or Γ(σ) ∈ Ω̂) has the clus-

tering property if it contains a region R which satisfies the following properties:
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1. R contains at least (b− c)n2 A-tiles,

2. the perimeter of R is at most x1n, where x1 = 8γν ′
√
b/δ, and

3. the density of A-tiles is at least 1− c in R and at most c in R̄.

Theorem 5.4.3: For any interfering binary mixture and for any 0 < b ≤ 1/2, there

exist constants λ∗ = λ∗(b) > 1, γ1 < 1 and n1 = n1(b) such that for all n > n1, λ ≥ λ∗

a random sample from Ω will have the clustering property with probability at least

(1− γ1
n).

Proof: The proof proceeds as in the proof of Theorem 5.3.1. Let σ ∈ Ω̂ \ Ψ.

Construct a c-bridge system (B, S) for LA as described in Lemma 5.4.1. Next, we

apply the flip operation f1, defined in the context of building bridges, which flips

each face bounded by an odd number of contours. At this point, after complementing

some number of regions, we have a bank of a extra tiles. Again, by the definition of

a c-bridge system, the density of tiles remaining is at most c, so a ≥ (b− c)n2.

Let F1 be the image of f1 on Ω̂ \ Ψ. Let k be the total perimeter of all contours

bridged. Then as before, for any ρ ∈ F1, the number of preimages of ρ whose bridged

contours have total perimeter k is at most 2h2n2|B|h1∆k/νe , since we can encode which

horizontal lines were used, which edges of each of those horizontal lines were added

as bridges, and the contours themselves (by choosing which of the edges adjacent to

a given vertex is next on the contour) using this much information. Since ∆ ≥ 2,

k > x1n and |B| ≤ k/(2c), we have

2h2n2|B|h1∆k/νe ≤ ∆
h2k
x1

+
kh1
2c

+ k
νe = ∆c3k,

where c3 = h2

x1
+ h1

2c
+ 1

νe
. Therefore |f−1

1 (ρ)| ≤
∑

k≥x1n
∆c3k.

Let ρ ∈ F1 with bn2 − a tiles. Lemma 5.4.2 shows how to find a region R′ in

ρ to complement using the a tiles from the bank to obtain τ in such a way that
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κ(τ)− κ(ρ) ≤ 4ν ′
√
a. Let f2(ρ) = τ and f = f2 ◦ f1. We can encode the boundary of

R′ with n2∆κ(R′)/νe ≤ n2∆4ν′
√
a/νe information. Hence for any τ ∈ Ψ,

|f−1(τ)| ≤ n2∆4ν′
√
a/νe max

ρ∈f−1
2 (τ)

|f−1
1 (ρ)|

≤ n2∆4ν′
√
a/νe

∑
k≥x1n

∆c3k

≤ n2∆
4ν′( kδ

8γν′ /νe
∑
k≥x1n

∆c3k

= n2∆
δ

2γνe

∑
k≥x1n

∆c3k

Where the second to last step comes from the fact that a < bn2 and k > x1n =

(8γν ′
√
b/δ)n. Let σ ∈ Ω̂\Ψ, and as above let k be the total perimeter of components

bridged in σ. Since σ /∈ Ψ, we have k > x1n. Now, by equation 5.4.3, the change in

the number of blocked vertices after applying the function f is at most(
αa

β
+
γκ(R′)

β

)
−
(
αa

β
+
δk

β

)
<
−δk
2β

,

since

δk/2 > δx1n/2 = 4γν ′
√
bn ≥ 4γν ′

√
a ≥ γκ(R′).

Therefore the change O(σ)−O(f(σ)) in the number of open vertices is at least k δ
2β

.

Let τ ∈ Ψ and define f−1
k (τ) to be the set of configurations with perimeter k that

map to τ . As shown previously, |f−1
k (τ)| ≤ n2∆

δ
2γνe ∆c3k = n2(∆

δ
2γνe

+c3)k = n2(∆c4)k,

where c4 = δ
2γνe

+ c3, and so

π(τ)−1
∑

σ∈f−1(τ)

π(σ) ≤
∑

σ∈f−1(τ)

µO(σ)−O(f(σ)) ≤
(ν′/2)n2∑
k=x1n

µκδ/(2β)|f−1
k (τ)| ≤ γn1 ,

for some γ1 < 1, if µ ≤ µ∗ < (∆c4)−2β/δ . Thus the theorem holds if λ ≥ λ∗ = µ∗−2−1.

5.4.5 No Clustering at Low Density for Interfering Binary Mixtures

We now examine the low density case and extend the proof of Theorem 5.3.2, stating

that typical configurations will not have the clustering property, to interfering binary

122



mixtures. For small enough λ, the A-tiles will be well-distributed throughout LA,

in the following sense. Any large dense region must have perimeter on the order

of n2. Although extending Theorem 5.3.2 to interfering binary mixtures is relatively

straightforward, we include the entire proof for completeness.

Theorem 5.4.4: For 0 < b < 1/2, there exist constants λ∗ = λ∗(b) > 0, γ2 < 1 and

n2 = n2(b) such that for all n > n2, λ ≤ λ∗ a random sample from Ω will not have

the clustering property with probability at least (1− γ2
n).

Proof: Define t = 1−2c
1−c (b − c) and δ = (1−b+t

t
)t. Let Ψ′ ⊂ Ω̂ be the set of configu-

rations with a region R that has at least (b− c)n2 tiles, perimeter less than αn2 and

density at least 1− c, where α satisfies 0 < α < ln ∆(ln(δ)− b ln 2)νe/2. We will show

π̂(Ψ′) is exponentially small. From the definition of clustering (Definition 5.4.3), it

is straightforward to see that Ψ, the set of configurations that have the clustering

property is contained in Ψ′. Thus, if π̂(Ψ′) is exponentially small then clustering is

exponentially unlikely to occur.

For each σ ∈ Ψ′, let R be the lexicographically first region which meets the

conditions given above. We will flip each face in R (tiles become empty faces and vice

versa) to obtain f(σ). Since R has density at least 1 − c and at least (b − c)n2 tiles

this means that there are at most c
1−c(b− c)n

2 empty faces in R. So by flipping R we

are left with a bank of aσ tiles such that aσ ≥ 1−2c
1−c (b − c)n2 = tn2. Next we define

N(σ) to be the set of all configurations obtained from f(σ) by adding aσ tiles back

in any aσ empty locations; then |N(σ)| =
(
n2−(bn2−aσ)

aσ

)
. For each τ ∈ Ω̂, we need to

bound the number of configurations σ such that τ ∈ N(σ). For any configuration τ

there are at most 2bn
2

configurations β such that β = f(σ) and τ ∈ N(σ) for some

σ ∈ Ψ′. This is due to the fact that there are 2bn
2

ways to choose which bn2 tiles were

in their original location and which were removed by f. For each such configuration β

we bound the number of regions R that could have been removed in order to recover

the original σ. There are at most bn2 ways to select an A-tile on the border of R and
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∆αn2/νe possible perimeters for R, since R has perimeter less than αn2. Thus for any

configuration τ there are at most 2bn
2
(bn2∆αn2/νe) ≤ (2bδ)n

2/2 configurations σ such

that τ ∈ N(σ).

Finally, we define a weighted bipartite graph G(Ψ′, Ω̂, E) with an edge of weight

π(σ) between σ ∈ Ψ′ and τ ∈ Ω̂ if τ ∈ N(σ). The total weight of edges is

∑
σ∈Ψ′

π(σ)|N(σ)| ≥
∑
σ∈Ψ′

π(σ)

(
n2 − (bn2 − aσ)

aσ

)
≥ π(Ψ′)δn

2

.

However, the weight of the edges is at most
∑

τ∈Ω̂ π(τ)µ−νbn
2
(2bδ)n

2/2. Let µ∗ =

(2b/δ)1/(2νb) and λ∗ = (µ∗)−2 − 1. Thus for all µ < µ∗,

π(Ψ′) < µ−νbn
2

(2bδ)n
2/2δ−n

2

< γn2 ,

for some γ2 < 1, completing the proof.
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CHAPTER VI

SEGREGATION MODELS ON Z2

In this chapter we use techniques developed in the context of colloids (Chapter 5) to

prove results about the Schelling segregation model. The Schelling segregation model

attempts to explain possible causes of racial segregation in cities. Schelling considered

residents of two types, where everyone prefers that the majority of his or her neighbors

are of the same type. He showed through simulations that even mild preferences of

this type can lead to segregation if residents move whenever they are not happy with

their local environments. In this chapter, we generalize the Schelling model to include

a broad class of bias functions determining individuals happiness or desire to move,

called the General Influence Model. We show that for any influence function in this

class, the dynamics will be rapidly mixing and cities will be integrated (i.e., there will

not be clustering) if the racial bias is sufficiently low. Next we show complementary

results for two broad classes of influence functions: Increasing Bias Functions (IBF),

where an individual’s likelihood of moving increases each time someone of the same

color leaves (this does not include Schelling’s threshold models), and Threshold Bias

Functions (TBF) with the threshold exceeding one half, reminiscent of the model

Schelling originally proposed. For both classes (IBF and TBF), we show that when

the bias is sufficiently high, the dynamics take exponential time to mix and we will

have segregation and a large “ghetto” will form.

6.1 The Schelling Segregation Model

The Schelling Segregation Model was introduced by Thomas Schelling in 1971 to

explain how global behavior can arise from small individual preferences [77]. In

Schelling’s original model, agents are one of two colors and move if there are too
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many neighbors of the opposite color within their immediate neighborhood. Simula-

tions show that configurations rapidly become segregated with like colored neighbors

clustered together. Schelling used this simple model to argue that “micro-motives”

can determine “macro-behavior,” thereby forming the basis for Agent-Based Compu-

tational Economics.

Despite extensive interest in the Schelling model and its many variants, almost

all research remains non-rigorous. Our goal here is to consider families of Schelling

models in an attempt to put them on firmer footing. There are many natural ex-

tensions worth considering: How large a neighborhood is relevant to one’s happiness,

and do all neighbors within this neighborhood influence us equally? Can residents

move away, or are they restricted to remain in the city? Are all houses occupied, or

are there empty houses (say, foreclosures) that might be even less desirable to have in

one’s proximity? Is one’s happiness determined solely by the color of the majority of

one’s neighbors, as Schelling originally proposed, or does one get increasingly happy

or unhappy as new people of one type or the other move into the neighborhood? Are

decisions to move somewhere based on each person’s relative happiness, or is one less

likely to move to a house where he is not wanted if doing so decreases the happiness

of his new neighbors?

Economists and social scientists use statistical and non-rigorous computational

tools to study the dynamics and limiting distributions, as well as for connecting the

model to real world populations [3, 41, 75, 86]. Even the concept of segregation or

clustering typically is not formally defined. An exception is the rigorous analysis

of the Schelling model in the one-dimensional setting [16, 38, 56, 91]. Additional

rigorous work has considered further variations designed to simplify the neighbors’

interactions for some specific, basic models [42, 56, 75, 92].
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6.1.1 Relation to Spin Systems.

The concept of micro-motives effecting macro-behavior is well-studied and far bet-

ter understood in the statistical physics community, where it is used to explain funda-

mental concepts such as phase transitions. The Schelling model itself is reminiscent

of many physical models, most notably spin systems such as the Ising model which

are used to understand ferro-magnetism. In the Ising model, vertices of a graph, say

a finite region G = (V,E) of Z2, are assigned + or - spins, and neighboring vertices

prefer to have the same spin. Although in the original Schelling model a person’s hap-

piness depends only on the color of the majority of his neighbors, in the Ising analogue

everyone is incrementally more likely to move as more people of the opposite color

move into their neighborhood.

Specifically, in the Ising model we are given a parameter λ that is a function of

temperature, and the stationary probability of a configuration σ ∈ {±1}V is

π(σ) = λ|{x,y: (x,y)∈E, σ(x)=σ(y)}|/Z,

where

Z =
∑

σ∈{±1}V
λ|{x,y: (x,y)∈E, σ(x)=σ(y)}|

is the normalizing constant known as the partition function. Glauber dynamics is a

Markov chain on Ising configurations that changes one spin at a time using Metropolis

probabilities to force the chain to converge to π. The Ising model on Z2 is known

to undergo a phase transition, i.e., there exists a value λc such that when λ < λc,

the Glauber dynamics for the Ising model mixes in time polynomial in |V | and when

λ > λc, it mixes in exponential time [50, 72, 58, 82]. Moreover, the phase transition

in the mixing time is accompanied by a corresponding transition in the stationary

distribution of the Markov chain; at low λ, an average sample from the steady state

is “evenly mixed” with regards to the proportions of spins, while at high lambda,

an average sample is clustered, and has large regions of predominantly one spin type.
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Indeed, the Ising model has been studied empirically as an alternative to the Schelling

model [75, 80, 81]. In open systems at low temperature (high bias) the population

will become predominantly one color or the other, and in closed systems (arising as

a fixed magnetization Ising model), large clusters of one color (or spin) will form,

indicating segregation [82, 90].

While extensions of the Ising model on Z2 have been examined extensively by

physicists and mathematicians, the resulting models are typically less-tractable and

give little insight into Schelling variants (such as neighborhoods of size larger than 4,

unoccupied houses, or bias functions that do not scale geometrically with the number

of differently colored neighbors). A lot is known about the Ising model on graphs

with more than nearest-neighbor interactions see, e.g., Chapters 2 and 9 of [69] and

general spin systems on Zd have been shown to have a phase transition whenever

there is a phase transition in the associated mean field model for certain classes of

interactions [12, 11, 22]. However, while these results apply only to certain classes of

interactions, they fail to give insight into more general utility functions which more

closely resemble the original Schelling model.

6.1.2 Generalized Segregation Models.

We consider a generalization of the Schelling model called the General Influence

Model (GIM) and give rigorous results demonstrating a dichotomy in mixing times

and clustering for two broad classes. The GIM considers open cities in a non-saturated

setting, with neighborhoods of any radius, and where moving is based on the product

of everyone’s happiness. Open cities allow residents to move away, while closed cities

require fixed racial demographics. Unsaturated cities allow houses to be unoccupied.

An individual’s happiness is a function depending only on the number of unoccupied,

red and blue houses within a certain radius. This function can be a threshold, as

suggested by Schelling, a geometric function, similar to the Ising model, or anything
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else. Moreover, these influence functions are controlled by parameters measuring the

strength of these biases, so for any influence function we can study the effects of large

or small racial bias.

First, we consider a natural extension of the Schelling dynamics where people

move according to the relative global happiness and we analyze the mixing time, or

the time to approach equilibrium. The relevance of bounding the mixing time to

understanding Schelling dynamics is indirect and will help us discern properties of

the stationary distribution. Second, we formalize a concept of clustering in order

to predict when typical configurations are likely to be segregated or integrated. We

show that for any influence function, the dynamics will be fast mixing and cities will

be integrated (i.e, there will not be clustering) if the racial bias is sufficiently low.

Next, we show complementary results for two broad classes of influence functions.

The first is for Increasing Bias Functions (IBF), where an individual’s likelihood of

moving increases each time someone of the other color moves close or someone of the

same color leaves (this does not include Schelling’s threshold model). The second

is for Threshold Bias Functions (TBF) when the threshold is more than one half,

reminiscent of the model Schelling originally proposed. Here a resident is happy

as long as the majority of his neighbors share his color, and is unhappy otherwise,

regardless of the actual percentage. For both classes (IBF and TBF) we show that

when the bias is sufficiently high, the dynamics take exponential time to mix and we

will have segregation. Note that because we are considering open cities, segregation

means the city will become predominantly one color, a large ghetto, and slow mixing

means that it will take exponentially long for the city to transition from a ghetto

of one color to one of the other color. It is important to note that this does not

imply that it will take long to see the emergence of ghettos or for the configuration to

“stabilize” as one large ghetto; it only means that it will take exponentially long to

transition from one essentially stable configuration to another. (We also have initial
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results showing that these results can be extended to closed cities where our definition

of clustering also holds for populations with any fixed racial demographics.)

In Section 6.2 we formalize the General Influence Model, which we subsequently

view as a Markov chain on the set of all housing assignments. We also formalize

definitions of mixing times and clustering that we will use to establish dichotomies

in the subsequent sections. In Section 6.3 we provide the proofs of fast mixing for all

influence functions at low bias and slow mixing for the IBF and TBF classes at high

bias. Finally, in Section 6.4 we give the corresponding proofs for integration at low

bias and segregation at high bias, which will build on the proof ideas established in

Section 6.3. Finally, we conclude with some open problems.

6.2 Preliminaries

We first formalize our generalization of the Schelling model, which we call the General

Influence Model (GIM), and present some background on the mixing time of Markov

chains and clustering.

6.2.1 The General Influence Model.

Let Ω be the set of all 3-colorings of the faces of the n x n grid Gn, where the colors

represent the types of occupants in a housing grid. We label the possible colors B,R

and U where B and R represent two types of residents, red and blue, U represents

an unoccupied house and we refer to each of these as B, R, or U -faces respectively

(see e.g., Figure 34). An occupied face refers to a B or R-face. We denote the color

of face x in configuration σ as σ(x). To simplify our notation, we let σx1=c1,x2=c2,...

denote the configuration σ with face xi colored ci, for each specified i.

We consider a natural Markov chain M on Ω whose transitions alter the color of

one face at a time. We select a face x ∈ Gn and a color c ∈ {B,R,U} uniformly at

random, then set face x to color c with probability that depends on the total change

in “happiness” of the configuration. The happiness of any occupied face is determined
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by the colors of faces within a radius of r, and the weight of a configuration is the

product of the happiness of each occupied face.

Formally, we are given a fixed radius r as a parameter of the model. Each resident

(or occupied face) is influenced equally by all N = 2r2 +2r neighbors which we define

as faces within taxicab distance r. We are also given a utility function u : {(s, d) :

s, d ∈ [0, N ], s+d ≤ N} → [0, 1], that relates the coloring of a resident’s neighborhood

to its happiness with an arbitrary bias (or utility) function. For an occupied face x, let

s(σ, x) be the number of neighbors of x that have the same color as x in σ and d(σ, x)

be the number of neighbors of x which have a different, but occupied color. (i.e. R-

for B-faces and vice versa) in σ. The happiness of an occupied face x is defined to be

u(s(σ, x), d(σ, x)). We also require that for all d ≥ 1, the utility function u satisfies

u(s + 1, d − 1) ≥ u(s, d) ≥ u(s, d − 1). In other words, one prefers a same colored

neighbor to an oppositely colored neighbor to an abandoned house. For our model,

we require that u(0, 0) = 0 and u(N, 0) = 1 for normalization purposes.

We will state our results in terms of bounds on the discrete partial derivatives of

the utility function u. In particular, let

u′α = min
a,b
{u(a+ 1, b)− u(a, b− 1)},

u′β = max
a,b
{u(a+ 1, b)− u(a, b− 1)},

u′κ = min
a,b
{u(a+ 1, b)− u(a, b)}, and

u′γ = max
a,b
{u(a+ 1, b)− u(a, b)}.

The Markov chainM performs moves using the Metropolis transition probabilities

with respect to the distribution π which we will define (see, e.g., Chapter 3 of [55]).

The weight π of a configuration σ is defined as

π(σ) =
∏

x:σ(x)6=U

λu(s(σ,x),d(σ,x))/Z,
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where Z =
∑

σ∈Ω

∏
x:σ(x)6=U λ

u(s(σ,x),d(σ,x)) is the normalizing constant. We are now

ready to formally define M.

The Markov chain M:1

Starting at any σ0, at step t iterate the following:

• Choose a face x of Gn, and a color c ∈ {B,R,U} uniformly at random.

• If σt(x) = U, with probability 1 let σt+1 = σt,x=c.

• If σt(x) = R and c = U, with probability π(σt,x=U)/π(σt,x=R) let σt+1 = σt,x=c.

• If σt(x) = B and c = U, with probability π(σt,x=U)/π(σt,x=B) let σt+1 = σt,x=c.

• With the remaining probability, let σt+1 = σt.

This Markov chain trivially connects the state space since we can always reach the

empty configuration from any starting configuration.

The General Influence Model (GIM) is a generalization of many well-studied mod-

els on the grid. For example, if we let r = 1 (each resident has N = 4 neighbors), and

u(s, d) = s/4, then (after a suitable change of variables), this model is equivalent to

the non-saturated Ising model on the grid [43]. Here, B-faces correspond to + spins

and R-faces correspond to − spins. The influence on a site is the number of match-

ing neighbors, and the fact that u(s, d) = s/4 means that this influence is linearly

proportional to the corresponding exponent of λ in the weight of the configuration.

If instead we let r = 1 and u(s, d) = U0(s − d), where U is a step function, then

this model corresponds to a reversible version of the original Schelling Model based

on thresholds [81, 75]. Here, a site is “happy” if it has at least as many neighbors of

1We present the results in the unsaturated setting where we allow empty houses. For the saturated
model the Markov chain allows houses to move between B and R in one move, indicating that a
new resident will move in as soon as one vacates a house. All of the proofs carry over in this case
and are in fact simpler.

132



the same color as the opposite color. If we let r = 1, and u(s, d) = UN/2(s), we have

another variant of the Schelling Model where a site is “happy” if at least half of its

neighbors are of the same color.

6.2.2 Clustering.

We give rigorous results demonstrating a dichotomy in mixing times and clustering

for two broad classes. Here we formally define clustering. In order to characterize

whether a configuration is segregated or integrated, we determine whether one group

of residents has “clustered.” We build on a concept of clustering developed in [66]

based on the presence of a large region with small perimeter that is densely filled

with either R- or B-faces. In Section 6.4, we will show that a random sample from

our model will be exponentially likely to be clustered when the bias is high, and

exponentially unlikely to be clustered when the bias is sufficiently low.

More precisely, we will define a cluster region C = (CF , CE) where CF is a set

of faces in the grid Gn and CE is a connected set of edges that contains every edge

which is adjacent to a face in CF and a face in CF = Gn\CF . The perimeter of a

region C is |CE|.

Definition 6.2.1: Given a configuration σ ∈ Ω, we say that the X-faces are c-

clustered if σ contains a cluster region C satisfying:

1. the perimeter of C (i.e. |CE|) is at most cn and

2. the density of X-faces in CF is at least c and in CF is at most 1− c.

This definition is useful to characterize clustering in open and closed cities, but

in open cities the region will be the entire grid and a random configuration will be

predominantly one color or the other.

133



R B B B B B B R

R B R R R U B U

R B R B R B B U

B B R R R B R R

B B R R R B B R

U U R B B B R R

R R R R U B R R

B B R B B B B R

(a)

R B B B B B B R

R B R R R U B U

R B R B R B B U

B B R R R B R R

B B R R R B B R

U U R B B B R R

R R R R U B R R

B B R B B B B R

(b)

R B U B R R B U

B B U U R R R R

B U R R R U B B

U R R B B B B R

B R R R R R R R

R R B B B U U B

B R U U B B R R

R R R B B R U B

(c)

Figure 33: (a) A configuration with a contour, (b) the corresponding fat contour,
and (c) an R-cross.

6.3 Bounding the Mixing Time

We begin by showing a dichotomy in the mixing time of M at high and low bias.

First, we show that for any IBF and TBF utility function with threshold exceeding

one half,M is slowly mixing when λ is sufficiently high. Then we show for all utility

functions u, M is rapidly mixing if λ is sufficiently low.

The proofs of fast mixing and integration at low bias use standard coupling and

information-theoretic arguments. The proofs of slow mixing and segregation at high

bias are subtle and significantly more challenging. In fact, it is not clear whether

the latter results extend to the whole class of GIMs, as our proofs only verify that

segregation occurs in the IBF and TBF settings.

The strategy used to show slow mixing of Markov chains and clustering effects is

a Peierls argument, which originated in physics in order to study Gibbs measures on

the infinite lattice. The argument works by showing certain types of configurations

are exponentially unlikely by using combinatorial maps and information theory. In

the context of Markov chains, Peierls arguments can be used to show that cut sets

in the state space are exponentially unlikely, and this is sufficient to show that the

Markov chain will require exponential time to converge to equilibrium. Similarly, in

the context of clustering, we can use a similar argument to show that configurations
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that are integrated, or lack large clustered components, also have exponentially small

probability at equilibrium.

The proofs of slow mixing build on some techniques established previously, but

these pieces had to be put together in novel ways. We use a strategy introduced in [74]

to partition the state space according to topological features, namely monochromatic

crosses (similarly colored neighboring houses that connect all four sides of the housing

region) and fault lines, or long paths separating houses of different colors. Configu-

rations with fault lines form the cut in the state space, and our objective is then to

show that they have exponentially small probability. For the Ising model on Z2, for

instance, completing the argument is simple because we can reverse the spins (or flip

the colors) of all houses on one side of the fault to move to a new configuration with

exponentially larger stationary probability. The introduction of unoccupied houses

complicates this approach, but we use a technique used in [44] by characterizing the

cut as configurations with “fat faults.” The greater challenge occurs when the radius

of influence is larger than 1 and residents are equally influenced by neighbors up to r

houses away, for r > 1. In this case faults or fat faults are not sufficient and reversing

the colors on one side of a fault can actually decrease the probability of a configura-

tion. To address this we introduce the notion of bridges and build a complex of fat

faults connecting components that are within distance r.

The arguments are fine tuned to the specific classes, IBF, where everyone gets

increasingly happy as more people of their color move into their neighborhood, and

TBF, where residents are unhappy unless some threshold over 50% is reached. Either

of these conditions give us the leverage to push through the Peierls argument and

show that the cutset has exponentially small probability. The significance of 50% is

that if we change the color of a resident who is currently happy then he necessarily

becomes unhappy, and this only happens in a threshold model when the threshold is

beyond one half.
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Figure 34: (a) A configuration σ with a fault line, (b) the 1-extended fault, and (c)
φ(σ).

6.3.1 Slow mixing at High λ.

We begin by extending the concept of fat faults introduced in [44] to fat faults that

are essentially large boundaries that can “jump” up to a distance of r. By showing

that these types of faults are unlikely for sufficiently large values of λ, we show thatM

mixes exponentially slowly when the utility function is in the IBF or TBF class. We

begin by describing the general technique and then give the detailed proofs for the

IBF and TBF classes. We make use of the well known relationship between the

conductance and the mixing time of a Markov chain to show that three sets ΩB,ΩR

and ΩF , which we will define shortly, partition the state space with ΩF being a cutset

with exponentially small weight. This lets us show that the conductance of the chain

is small, and we can conclude the chain mixes exponentially slowly. (See [49, 78] for

details.)

In order to define the three sets that form our cut we start with some terminology.

We call a pair of faces within taxicab distance r to be an influence, and refer to this as

a bad influence if the two faces are colored differently or are both U -faces. Influences

at distance 1, adjacent faces, we call edges since they correspond to edges of the n×n

grid. We define a contour to be a connected set of bad edges and a fat contour (see

[44] and Figure 33) to be a maximally connected set of bad edges.
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A fat contour, or set of fat contours, partitions the faces of the grid into regions

whose border along any single fat contour is monochromatic. With respect to a

single contour, we call these R-regions, B-regions, etc. to denote the color along

their border. Note that the entire regions are not necessarily monochromatic, as a

B-bordered region may fully enclose a set of R faces that do not border the contour.

Also note that U -regions are single squares, since all 4 sides of a U -face are bad edges.

For example, see Figure 33b where the fat contour partitions the configuration into a

B-region, a R-region and 4 U -regions. Given two fat contours c1 and c2, c1 is within

distance r of c2 if there exists a face adjacent to c1 that is within taxicab distance r of

a face adjacent to c2, and these faces are in different regions, where the regions are the

unique regions defined by c1 and c2. We can think of all the disjoint fat contours of a

configuration to be connected to each other in an auxiliary graph if they are within

distance r of each other. We then define an r-extended contour to be the union of all

fat contours in a maximally connected component of this auxiliary graph.

We say that a configuration has a monochromatic cross if it has a connected

monochromatic connected set of B-faces or R-faces that touches all four sides of the

grid (see Figure 33c). We will refer to a monochromatic cross as a B-cross or a R-cross

depending on the color of the faces. A fat contour that spans from the top to bottom

or left to right of the grid is a fault line. We use the fact that every configuration

falls into one of three disjoint classes: ΩB (those with a B-cross), ΩR (those with a

R-cross), and ΩF (those with a fault line). It is known that ΩB, ΩR, and ΩF partition

the state space Ω, and moves of the Markov chain M cannot directly move from ΩB

to ΩR or vice-versa, and thus must move through ΩF [44].

Our goal is to show that ΩF is an exponentially small cut in our state space by

exhibiting a mapping φr : ΩF → Ω such that for any σ ∈ ΩF , the image φr(σ) “fixes”

a fault line by reversing the colors in some of the monochromatic regions that border

the r-extended contour containing the fault line. This causes many more same-color
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interactions, yielding a gain π(φr(σ))/π(σ) that is exponentially large in n. This gain

is exponentially larger than the total weight of all potential pre-images ∈ ΩF of any

state ∈ Ω, from which we can conclude that π(ΩF ) is exponentially small.

We construct φr(σ) for σ ∈ ΩF as described below (see Figure 34).

• Take the lexicographically first fault line in σ.

• Find the r-extended contour (and associated regions) which contains this fault

line.

• Finally, for the regions defined by the r-extended contour, map all U -regions to

R-faces and within any B-region change all R-faces to B-faces and all B-faces

to R-faces.

We note that all faces within distance r of the fat fault line in σ will map to

R-faces in φr(σ). This map causes all elements within distance r of the fault line to

be mapped to R-faces. We also note that no bad influences are created by the map

φr between previously good influences - this can only happen to faces P and Q if they

are within r of each other, and also in different fault regions. However, if they are in

different fault regions, some fault edge must pass through any shortest path between

P and Q, and the r-extended contour would necessarily pick up the borders of the

monochromatic regions containing P and Q. Thus, the mapping φr would cause both

P and Q to map to R-faces.

We now bound the number of pre-images of a configuration β such that φr repairs

a r-extended contour of length m (i.e. σ : φr(σ) = β). Starting on one of 4n points

on the border, a r-extended contour can be expressed by a depth first search of m

edges, using at most 2m steps, and each step travels in up to 2r2 + 2r directions.

Each monochromatic region is surrounded by at least four edges, and each edge is on

the boundary of two regions. Thus, there are at most m/2 distinct regions bordering

this contour, each of which can be colored one of 3 ways. Therefore, there are at most

4n3m/2(2r2 + 2r)m pre-images σ such that φr(σ) fixes this contour.
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6.3.1.1 Increasing Bias Functions.

We first present result for utility functions u with bounded u′α.

Theorem 6.3.1: For the Markov chainM, with radius r and utility function u with

u′α > 0, there exists a constant λ1 = λ1(r, u′α) such thatM mixes exponentially slowly

when λ > λ1.

Proof: We partition ΩF into sets ΩF,m where σ ∈ ΩF,m if m is the number of bad

edges fixed by φr. We observe that for two adjacent faces I and J with a bad edge,

every face that influences both I and J will share a bad influence with at least one

of them. Thus each of these 2r2 − 2 faces, excluding I, J , gains at least one new

neighbor of the same type, which causes an increase of happiness of at least u′α. Any

one influence between any P and Q is counted at most 8 times in this way, once for

each potential bad edge bordering P or Q. Also, the happiness of both P and Q

improve from is. Thus, we see a gain of at least u′α((2r2−2)/4+1) per face bordering

the fault line. Let σ ∈ ΩF,m, then by applying φr we fix a r-extended contour with

m edges and the gain in weight satisfies

π(φr(σ))

π(σ)
≥ (λ)u

′
α
m
4

(2r2−1) ≥ (λ)u
′
α
mr2

4 .

Next, let

λ > λ1 = (9(4r2 + 4r)4)(r2u′α)−1

.

Then we have:

π(ΩF ) =
2n2∑
m=n

∑
x∈ΩF,m

π(φr(x))
π(x)

π(φr(x))

≤
2n2∑
m=n

∑
x∈ΩF,m

π(φr(x))(λu
′
α)−mr

2/4
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≤
2n2∑
m=n

2n(2r2 + 2r)m · 3m/2(λ−u
′
αmr

2/4)

≤
2n2∑
m=n

2n2−n/4 ≤ 4n32−n/4.

Next, we will combine this bound on π(ΩF ) with the detailed balance condition which

states that for an ergodic reversible Markov chain on Ω with transition matrix P and

stationary distribution π, (see e.g. [78])

∀i, j ∈ Ω Pij π(i) = Pji π(j).

Thus, we have that

ΦM =
∑

s1∈ΩR,s2∈Ω̄R

π(s1)P (s1, s2)/π(ΩR)

≤
∑

s1∈ΩR,s2∈Ω̄F

π(s2)P (s2, s1)/π(ΩR)

≤ π(ΩF )/π(ΩR).

By symmetry, we know that

π(ΩR) = π(ΩB) = (1− π(ΩF ))/2.

Thus, the conductance of M is at most

ΦM ≤ π(ΩF )/π(ΩR)

= 2π(ΩF )/(1− π(ΩF ))

≤ 2π(ΩF )

≤ 8n32−n/4.

By Theorem 2.4.1, it follows that τ(ε), the mixing time of M, satisfies

τ(ε) ≥ (n−32n/4−4 − 1) ln ε−1.
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6.3.1.2 Threshold Bias Functions.

We now consider the threshold variant where a face needs θ matching neighbors

to be happy, so u(s, d) = Uθ(s), where U is a step function with threshold θ. Here

u′α = 0 so we cannot apply the bounds in the previous subsection. However, a key

observation allows us to apply our technique to a certain class of threshold utility

functions.

Theorem 6.3.2: For the Markov Chain M, with radius r, neighborhood size N =

2r2 + 2r, threshold θ > 1
2

+ 1
2r+2

N and utility function u(s, o) = Uθ(s), there exists a

constant λ2 = λ2(r) such that M mixes exponentially slow when λ > λ2.

Proof: We again partition ΩF into sets ΩF,m where σ ∈ ΩF,m if m is the number

of bad edges fixed by φr. Again, every two adjacent faces I and J with a bad edge

shares a neighborhood of 2r2 − 2 faces, excluding I and J . Thus if

θ > r2 + 2r = (2r2 + 2r)

(
1

2
+

1

2r + 2

)
,

both I and J cannot be happy. Thus the mapping φr will cause at least one of I and

J to become happy (from unhappy), leading to a gain of 1 per edge of the fault line.

This gain is counted at most 4 times, once for each edge bordering the fixed face.

Thus, we see a a gain of at least m/4 by fixing a contour of size m, or an amortized

gain of at least 1/4 per such face. Again, we let

λ > λ2 = (9(4r2 + 4r)4).

Then we have:

π(ΩF ) ≤
2n2∑
m=n

∑
x∈ΩF,m

π(φr(x))(λu
′
α)−m/4

≤
2n2∑
m=n

2n(2r2 + 2r)m · 3m/2(λ−m/4)

≤ 4n32−n/4.
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By the same argument as in the case of Increasing Bias Function, it follows that τ(ε),

the mixing time of M, satisfies

τ(ε) ≥ (n−32n/4−4 − 1) ln ε−1.

6.3.2 Rapid mixing at Low λ.

In contrast, we show that when λ is sufficiently low, we can guarantee that the

chain mixes in polynomial time for all utility functions. Our bound on λ depends on

the discrete partial derivative

u′γ = max
a,b
{u(a+ 1, b)− u(a, b)}.

The proof relies on the now standard path coupling technique (see, e.g., [17]). We

present the results in the unsaturated setting where we allow empty houses. For the

saturated model the Markov chain allows houses to move between B and R in one

move, indicating that a new resident will move in as soon as one vacates a house. All

of the proofs carry over in this case and are in fact simpler. We prove the following.

Theorem 6.3.3: For the Markov Chain M, with radius r and utility function u,

there exists a constant λ3 = λ3(r, u′γ) such that M is fast mixing when 1 ≤ λ < λ3.

Proof: We use a path coupling argument with the natural coupling. Notice that a

move of M consists of selecting a face f and a color c. The coupling uses the same

face and color for both configurations. The distance metric we use is the minimal

number of steps of M required to change one configuration into another. At any

face, it takes at most two steps to change the color at that face to any possible color.

Thus, the maximum distance between any two configurations is 2n2.

In order to apply the path coupling theorem, we consider pairs of configurations at

distance 1, without loss of generality let them be (σ = σg=U , σg=R). For notational pur-

poses, for a given face y, it will be helpful to use the shorthand uy = u(s(σ, y), d(σ, y))

142



to describe the total utility on face y. Since we are interested in the changes to

this utility as a function of changing faces near y, we will also use the shorthand

uy(a, b) = u(s(σ, y) + a, d(σ, y) + b) to mean the utility on face y if a additional same

colored tiles and b additional opposite colored tiles are in the neighborhood of y. As

the probability of a move depends on the set of neighbors near a tile, it will also be

helpful to let R(y) denote an indicator for the event that site y is colored R in σ,

B(y) an indicator for the event that y is colored B in σ, C(y) an indicator for the

event that d(y, g) <= r, and F (y) an indicator for the event d(y, g) > r. Roughly

speaking, C and F indicate if y is “close” or “far” from g.

Let f be the face selected by M. The distance can increase or decrease if f = g;

here we consider three cases.

• If f = g and c = R, then we accept both moves with probability 1, decreasing

the distance by 1.

• If f = g and c = B, then configuration σg=U will accept the transition with

probability 1, while the move is disallowed for σg=R; thus increasing the distance

by 1.

• If f = g and c = U , then the distance decreases by 1 with the probability

that σg=R transitions to σ,
π(σg=U )

π(σg=R)
. Every occupied face in the neighborhood

around g will lose one occupied neighbor, and every R-face will also lose one

same colored neighbor. Thus:

π(σg=U)

π(σg=R)
=

1

λug

∏
y:σ(y)6=U,
d(g,y)≤r

λuy

λuy(A(y),1)

≥ 1

λug
1

λu
′
γs(g)+u

′
βd(g)
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We now consider other cases where the distance between configurations can in-

crease, namely whenever f 6= g. We again consider three cases:

• If f = U , both transitions are accepted with probability 1 and the distance does

not change.

• If f = R, the probability that we increase the distance by 1 is the difference

in the chance that σg=U becomes U at f but σg=R does not. This is exactly

| σf=0,g=0

σf=R,g=0
− σf=0,g=R

σf=R,g=R
|. In the first term, every face within r of f is losing an

occupied neighbor, and ever R face is losing a same-colored neighbor. The

second term is more complicated. Every face within r of f is still losing an

occupied neighbor, but g influences not only f , but also those neighbors that

are within r of both g and f . Also, these neighbors are affected differently if

the face is an A or B face. In this case,

| σf=0,g=0

σf=R,g=0

− σf=0,g=R

σf=R,g=R

|

=

∣∣∣∣ 1

λuf

∏
y:σ(y)6=U
d(y,f)≤r

λuy(−R(y),−B(y))

λuy
−

1

λuf (1,1)

∏
y:σ(y)6=U
d(y,f)≤r

λuy(−R(y)F (y),−R(y)F (y))

λuy(R(y)C(y),B(y)C(y))

∣∣∣∣
≤ 1

λuf

 ∏
y:σ(y)6=U

d(y,f)≤r,d(y,g)>r

λuy(−R(y),−B(y))

λuy


·
∣∣∣∣ 1

λu′κs(g)λu′αd(g)
− 1

λu
′
γs(g)λu

′
βd(g)

∣∣∣∣
≤
∣∣∣∣ 1

λu′κs(g)λu′αd(g)
− 1

λu
′
γ

1

λu
′
γs(g)λu

′
βd(g)

∣∣∣∣
≤ 1− 1

λu
′
γ+(u′γ−u′κ)s(g)λ(u′β−u′α)d(g)

• Similarly, if f = B, this is bounded by

≤ 1− 1

λu
′
β

1

λ(u′β−u′α)s(g)λ(u′γ−u′κ)d(g)
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Let η = max(u′γ −u′κ, u′β −u′α). (Note that for the Ising model, η = 0.) The expected

change in distance is then

E [∆(σg=U , σg=R)]

≤ 1

3n2

(
−1

λug
1

λu
′
γs(g)+u

′
βd(g)

+ s(g)(1− 1

λu
′
γ

1

λ(u′γ−u′κ)s(g)λ(u′β−u′α)d(g)
)

+ d(g)(1− 1

λu
′
β

1

λ(u′β−u′α)s(g)λ(u′γ−u′κ)d(g)
)

)
≤ 1

3n2

(
−1

λ2u′γs(g)+2u′βd(g)

+ N(1− 1

λu
′
γs(g)+u

′
βd(g)

1

ληN(u′γs(g)+u
′
βd(g))

)1/N

)
≤ −1

3n2

(
1

λ2u′γs(g)+2u′βd(g)

− (log(ληN(2u′γs(g)+2u′βd(g)

)

where the second to last step uses the inequality of arithmetic and geometric means,

and the final step uses the fact that

lim
n→∞

n(1− x1/n)→ − log x

from below. Recall that η ≤ u′γ ≤ u′β. Thus we see our expected change is negative

whenever the value v = ληN(u′γ+u′β) satisfies 1/v > log v. This occurs if

1 ≤ λ ≤ (1.8)η/(2r
2−1) = 1 +O(1/r2)

Setting λ = (1.5)η/(2r
2−1), the expected change in distance is at most −.2612/3n2 per

step. At last applying the path coupling theorem [17] gives the bound on the mixing

time,

τ(ε) ≤ 3n2 log(2n2ε−1)

.2612
= O(n2 log(nε−1)).
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6.4 Segregation or Integration at Stationarity

We now return to the original motivation behind the Schelling model, namely deter-

mining how racial biases can influence segregation in a community. To address this

question, we need to formalize how biases contribute to the limiting distributions for

the Schelling processes. We consider the Markov chains arising from the Generalized

Influence Model and we characterize properties of the stationary distributions. Using

insights from Section 3 on mixing times we establish a similar dichotomy indicating

integration and segregation at low and high values of λ, respectively. When λ is large,

ghettos will form, and configurations will be predominantly one color. However, when

λ is small, there will be no clustering of one type and cities will remain integrated.

Our proofs build on combinatorial insights developed in Section 6.3.1 and in [66]

to establish clustering (i.e., segregation) for the IBF and TBF models when the bias

is high. We characterize clustering by the existence of a region R that has large

(quadratic) area, small (linear) perimeter, and whose interior is dense with one of the

two colors. A similar notion of clustering was used in [66], but the proofs required

the introduction of r-bridges and fat contours to handle unoccupied houses and large

radii of influence.

6.4.1 Segregation at High λ for the IBF and TBF Classes.

First, we use the combinatorial techniques developed in Section 6.3.1 to argue that

at high λ, configurations will be segregated. In open cities we expect a single ghetto

of predominantly R- or B-faces. Specifically, we prove that at high values of λ, a

typical configuration will have no large contours and will have high density of either

R- or B-faces. We combine techniques used to show clustering [66] with the slow

mixing techniques used in Section 6.3.1. Let ρR be the density of R-faces and ρB be

the density of B-faces. We prove the following theorem showing ghettos will form.

Theorem 6.4.1: Assume a valid utility function u with radius r such that u′α > 0
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or u is a threshold utility function with θ > (1
2

+ 1
2r+2

)N, where N = 2r2 +2r. Given a

constant density d1 > 1/2, there exist constants γ1 = γ1(d1) < 1 and λ1 = λ1(u′α, r, d1)

such that for all λ ≥ λ1 a random sample from Ω will have no contours with more

than d1n edges and either the density ρR > d1 or ρB > d1 with probability at least

(1− γn1 ).

Proof: Using an extension of the techniques from 6.3.1 we show that it is exponen-

tially unlikely for a configuration to have any contour with size greater than d1n and

that it is exponentially unlikely for ρR, ρB < d1. The union bound lets us combine

these two results.

Let Ωd1 be the set of configuration in Ω which contain a contour longer than

d1n edges. To show that such configurations are unlikely, we construct a map φd1 :

Ωd1 → Ω from configurations with contours of size greater than d1n to configurations

which have at least one less contour of size greater than d1n. As in Section 6.3.1, φd1

takes the lexicographically first contour of size greater than d1n, finds the r-extended

contour which contains this contour, changes all U -faces bordering the r-extended

contour to R-faces and flips all B-bordered regions adjacent to the contour. Unlike

Section 6.3.1 where the contour is a fault line and thus adjacent to the border, our

contour is not necessarily anchored to the border.

Next, we bound the number of pre-images of a configuration under φd1 , using

a combinatorial argument similar to Section 6.3.1. In Section 6.3.1 the number of

configurations with an r-extended contour with m edges which intersect the border

is at most 4n3m/2(2r2 + 2r)m. However, with our new function φd1 , the contour might

not be connected to the border so the number of configurations with an r-extended

contour with m edges is now 2n23m/2(2r2 +2r)m, since the number of possible starting

points is increased from 4n to 2n2 (the number of edges in the grid). Additionally,

we only guarantee that the r-extended contour has at least d1n edges instead of n

edges. Let ΩF,m be defined as in Section 6.3.1 where a configuration σ ∈ ΩF,m if m
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is the number of bad edges fixed by φd1 . The remainder of the proof is the same as

in Theorem 6.3.1. If our utility function u satisfies u′α > 0, then we have a gain of at

least λu
′
αr

2/4 per edge of the r-extended contour. Assume

λ ≥ λ1 = (3(2r2 + 2r))4/u′αr
2

,

and let γ1 = 3−3d11/4. We then find

π(Ωd1) ≤
2n2∑

m=d1n

π(ΩF,m)

≤
∑
m

∑
x∈ΩF,m

π(φd1(x))λ−mu
′
αr

2/4

≤
∑
m

2n23d1n/2(2r2 + 2r)d1n(λ)−d1nu′αr
2/4

≤ 4n43−d1n/2 ≤ γn1 .

Otherwise, if u is a threshold utility function with

θ >

(
1

2
+

1

2r + 12

)
N,

then we have a gain of at least λ1/4 per edge of the r-extended contour. Assume

λ ≥ λ1 = (3(2r2 + 2r))4,

and let γ1 = 3−3d11/4. Then, we have that

π(Ωd1) ≤
2n2∑

m=d1n

π(ΩF,m)

≤
∑
m

∑
x∈ΩF,m

π(φd1(x))λ−m/4

≤
∑
m

2n23d1n/2(2r2 + 2r)d1n(λ)−d1n/4

≤ 4n43−d1n/2 ≤ γn1 .

148



To show that it is exponentially unlikely for ρR, ρB < d1 we construct a map φS

which locates a sufficiently large set of r-extended contours and removes them. Given

a set S of r-extended contours, the size of the set which we denote as |S| is the sum

of the sizes of the distinct r-extended contours contained in S. We show there exists

a row P in the grid and a set S of r-extended contours with |S| ≥ (1−d1

2
)n such that

each r-extended contour in S contains at least one vertical edge along P .

Next, we bound the number of pre-images of a configuration under φS, using an

argument similar to Section 6.3.1. There are n possible rows P and for each choice of

P there are 2n different sets of starting points for our depth first search. Given the

set of starting points, a depth first search of m edges takes at most 2m steps and each

move travels in up to 2r2 + 2r directions. Thus there are now n2n3m/2(2r2 + 2r)m

configurations with a row P and set S with |S| = m and each r-extended contour

in S intersecting P. Unlike Section 6.3.1, we only guarantee that we are “fixing” at

least 1−d1

2
n bad edges instead of n edges since |S| ≥ (1−d1

2
)n. If our utility function

u satisfies u′α > 0, then we have a gain of at least λu
′
αr

2/4 per bad edge. In this case,

assume

λ ≥ λ2 = (22/(1−d1)3(2r2 + 2r))4/u′αr
2

,

and let γ1 = 3−3(1−d1)/8. Let ΩF,m be defined as in Section 6.3.1. Combining these

results we find,

π(ΩS) ≤
2n2∑

m=
(1−d1)n

2

∑
x∈ΩF,m

π(φS(x))λ−mu
′
αr

2/4

≤
∑
m

n2n3
1−d1

4
n(2r2 + 2r)

1−d1
2

nλ
−(1−d1)

2

nu′αr
2

4

≤ γn1 .

Otherwise, if u is a threshold utility function with

θ > (
1

2
+

1

2r + 2
)N,
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then we have a gain of at least λ1/4 per bad edge. In this case, assume

λ ≥ λ2 = (22/(1−d1)3(2r2 + 2r))4,

and let γ1 = 3−3(1−d1)/8.

π(ΩS) ≤
2n2∑

m=
(1−d1)n

2

∑
x∈ΩF,m

π(φS(x))λ−m/4

≤
∑
m

n2n3
1−d1

4
n(2r2 + 2r)

1−d1
2

nλ
−(1−d1)

2
n
4

≤ γn1 .

It remains to show that there exists a row P and a set S of r-extended contours

with |S| ≥ (1−d1

2
)n such that each r-extended contour in S contains at least one

vertical edge along P . First consider the case where the density of B- and R-faces

along any row P is low specifically, ρR + ρB <
1+d1

2
. This implies that along this row

there are at least (1 − 1+d1

2
)n = (1−d1

2
)n U -faces this implies that the maximum set

S of r-extended contours which intersect P satisfies |S| ≥ (1−d1

2
)n (for each U -faces

either the edge above or the edge below must be included in S). Next, we can assume

the density of B- and R-faces along each row is at least 1+d1

2
. Let γR be the number

of R-faces along the left and right boundaries of the grid and similarly let γB be

the number of B-faces. Since γR + γB ≤ 2n, either γR < n or γB < n. We assume

γR < n. Next, assume there is a row P with at least (1−d1

2
)n R-faces. Consider the

maximum set S of r-extended contours which intersect P . This set S divides the

grid into regions. Now for each R-face t along P , this face is contained within some

region which implies that there is an edge of S in the same column as t or the region

containing t spans the entire column. If there are no such regions that span entire

columns then the size of S is at least as large as the number of R-faces along P

implying, |S| ≥ (1−d1

2
)n as desired. Otherwise we have a region with boundary ψ

that is bordered by R-faces and spans an entire column. Since ψ spans an entire
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column, each row of the grid contains 2 edges of ψ. Since there are at most n R-faces

along the boundary, there are at most n boundary edges contained in ψ implying ψ

contains at least n non-boundary edges which implies |S| ≥ n ≥ (1−d1

2
)n, as desired.

Finally, if there is no row P with at least (1−d1

2
)n R-faces then, since every row has

at least (1+d1

2
)n B- and R-faces, there must be at least d1n

2B-faces implying ρB ≥ d1,

a contradiction.

6.4.2 Integration at Low λ.

Finally, we provide complementary results showing that at low λ an average sample

from the steady state is integrated; there will not be a high density of R or B-faces

so we are not likely to have clustering. We prove the following theorem which shows

that at low bias, ghettos are unlikely to form.

Theorem 6.4.2: Given a valid utility function u with radius r and constant c2 >

10/11, there exist constants γ2 = γ2(c2) < 1 and λ2 = λ2(u′β, r, c2) such that for

λ ≤ λ2 a random sample from Ω will be c2-clustered or the density ρR or ρB > c2

with probability at most γn2 .

Proof: First we show that a configuration is exponentially unlikely to be c2-clustered.

We use a similar technique to show that ρR, ρB < c2. It is straightforward to combine

the two results using a union bound.

Let ΩC ⊂ Ω be the set of configurations that are c2-clustered. We will show

that under the conditions stated in the theorem, π(ΩC) is exponentially small. To

show ΩC is exponentially small, we construct a map φC : ΩC → Ω, which maps a

configuration σ ∈ ΩC to the set of all configurations which correspond to removing

a c2-cluster region C and then selecting (1 − c2)n2 B-faces or U -faces and changing

them to R-faces. Given σ ∈ ΩC whose R-faces are c2-clustered, define N(σ) to be

the set of all configurations obtained from σ by removing a c2-cluster region C and

changing exactly (1− c2)n2 B-faces or U -faces to R-faces. If instead the B-faces in σ
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are c2-clustered the proof is essentially the same and so we omit it. To remove C, we

change (or flip) all R-faces to B-faces within C. Once we flip the R-faces and B-faces

in C there are at most (1− c2)n2 R-faces remaining so |N(σ)| ≥
(

c2n2

(1−c2)n2

)
. For each

configuration τ ∈ Ω we bound the number of configurations σ such that τ ∈ N(σ).

If there exists σ such that τ ∈ N(σ), then the number of R-faces in τ is at most

2(1 − c2)n2. Since C is a c2-cluster region with perimeter at most c2n, there are at

most 2n23c2n32(1−c2)n2
possible pre-images of any configuration τ . The factor of 2 is

because the configuration could have been R or B-clustered.

Next, given configurations σ, τ such that τ ∈ N(σ) we derive an upper bound on

the ratio π(σ)/π(τ). Recall the map φC first removes a c2-cluster region C by flipping

the R- and B-faces within C. This procedure only changes the “happiness” of faces

within distance r of the border. Since there are at most (2r2 + 2r + 1)c2n of these,

removing C decreases the weight by at most a factor of λc2n(2r2+2r+1). Changing the

color of a single face can decrease the weight of a configuration by at most a factor

of λ2u′β(2r2+2r). Thus, changing (1− c2)n2 B-faces or U -faces to R-faces decreases the

weight by at most a factor of λ2u′β(1−c2)n2(2r2+2r). Combining these shows that

π(σ)/π(τ) ≤ λ∆,

where

∆ = c2n(2r2 + 2r + 1) + 2u′β(1− c2)n2(2r2 + 2r).

We define a weighted bipartite graph G(ΩD,Ω, E) with an edge weight π(σ) be-

tween σ ∈ ΩD and τ ∈ Ω if τ ∈ N(σ). The total weight of edges W is

W =
∑
σ∈ΩD

π(σ)|N(σ)|

≥
∑
σ∈ΩD

π(σ)

(
c2n

2

(1− c2)n2

)

≥ π(ΩD)

(
c2

(1− c2)

)(1−c2)n2

.
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Also, the weight of edges is at most

W =
∑
τ∈Ω

π(τ)2n23c2n32(1−c2)n2

λ∆

≤ 2n23c2n32(1−c2)n2

λ2(1−µ)∆.

Combining these equations, assuming

λ ≤ λ2 =

(
c2

10(1− c2)

)(4u′β(r2+r))−1

,

and letting γ2 = (10/11)1−c2 gives

π(ΩD) ≤ 2n23c2n32(1−c2)n2

λ2(1−µ)∆

(
1− c2

c2

)(1−c2)n2

≤ γn2 .

Next, we show that at low λ we will have ρR, ρB < d2. Let ΩD be the set of

configuration in Ω for which ρR ≥ d2 or ρB ≥ d2. We will show that under the

conditions stated in the theorem, π(ΩD) is exponentially small. Throughout this proof

we will assume that ρR ≥ d2. To show this we will construct a map φD : ΩD → Ω,

which maps a configuration σ to the set of all configurations which correspond to

selecting (1−d2)n2 R-faces and changing them to B-faces. Define N(σ) to be the set

of all configurations obtained from σ by changing exactly (1 − d2)n2 R-faces to B-

faces. Since there are least d2n
2 R-faces, |N(σ)| ≥

(
d2n2

(1−d2)n2

)
. For each configuration

τ ∈ Ω we need to bound the number of configuration σ such that τ ∈ N(σ). If there

exists a σ such that τ ∈ N(σ) then this implies that the number of B-faces in σ is

at most 2(1− d2)n2 and since our map only changes R-faces to B-faces, there are at

most 22(1−d2)n2+1 possible pre-images for σ. The additional factor of 2 is due to the

fact that originally either ρR ≥ d2 or ρB ≥ d2. We define a weighted bipartite graph

G(ΩD,Ω, E) with an edge weight π(σ) between σ ∈ ΩD and τ ∈ Ω if τ ∈ N(σ). The
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total weight W of edges is

W =
∑
σ∈ΩD

π(σ)|N(σ)|

≥
∑
σ∈ΩD

π(σ)

(
d2n

2

(1− d2)n2

)

≥ π(ΩD)

(
d2

1− d2

)(1−d2)n2

.

However the weight of the edges is at most

W =
∑
τ∈Ω

π(τ)2(2(1−d2)n2+1)

(λ2(1−µ)(2r2−1))(1−d2)n2

≤ 2(2(1−d2)n2+1)(λ2(1−µ)(2r2−1))(1−d2)n2

.

Combining these equations, assuming

λ1−µ ≤ λ2 =

(
d2

5(1− d2)

)1/(4r2−2)

,

and letting γ2 = (5/6)1−d2 and d′2 = (1− d2)/d2 gives the following result

π(ΩD) ≤
(
d
′(1−d2)n2

2 2(2(1−d2)n2+1)
)

(
λ2(1−µ)(2r2−1)

)(1−d2)n2

≤ γn2 .
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