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SUMMARY

The real social network and associated communities are often hidden under

the declared friend or group lists in social networks. We usually observe the man-

ifestation of these hidden networks and communities in the form of recurrent and

time-stamped individuals’ activities in the social network. The inference of relation-

ship between users/nodes or groups of users/nodes could be further complicated when

activities are interval-censored, that is, when one only observed the number of ac-

tivities that occurred in certain time windows. The same phenomenon happens in

the online advertisement world where the advertisers often offer a set of advertise-

ment impressions and observe a set of conversions (i.e. product/service adoption).

In this case, the advertisers desire to know which advertisements best appeal to the

customers and most importantly, their rate of conversions.

Inspired by these challenges, we investigated inference algorithms that efficiently

recover user relationships in both cases: time-stamped data and interval-censored

data. In case of time-stamped data, we proposed a novel algorithm called NetCodec,

which relies on a Hawkes process that models the intertwine relationship between

group participation and between-user influence. Using Bayesian variational principle

and optimization techniques, NetCodec could infer both group participation and user

influence simultaneously with iteration complexity being O((N+I)G), where N is the

number of events, I is the number of users, and G is the number of groups. In case of

interval-censored data, we proposed a Monte-Carlo EM inference algorithm where we

iteratively impute the time-stamped events using a Poisson process that has intensity

function approximates the underlying intensity function. We show that that proposed

simulated approach delivers better inference performance than baseline methods.

xii



In the advertisement problem, we propose a Click-to-Conversion delay model that

uses Hawkes processes to model the advertisement impressions and thinned Poisson

processes to model the Click-to-Conversion mechanism. We then derive an efficient

Maximum Likelihood Estimator which utilizes the Minorization-Maximization frame-

work. We verify the model against real life online advertisement logs in comparison

with recent conversion rate estimation methods.

To facilitate reproducible research, we also developed an open-source software

package that focuses on various Hawkes processes proposed in the above mentioned

works and prior works. We provided efficient parallel (multi-core) implementations

of the inference algorithms using the Bayesian variational inference framework. To

further speed up these inference algorithms, we also explored distributed optimiza-

tion techniques for convex optimization under the distributed data situation. We

formulate this problem as a consensus-constrained optimization problem and solve

it with the alternating direction method for multipliers (ADMM). It turns out that

using bipartite graph as communication topology exhibits the fastest convergence.

xiii



CHAPTER I

INTRODUCTION

1.1 Point Processes

Modern theory of point processes originated from important strands of studies [18],

for example, survival analysis, theory of self-renewal processes; particle physics; com-

munication engineering. For example, survival analysis and the theory of self-renewal

processes are the studies of intervals between events. In modeling the time to failure

of a component, denoted by a random variable T , survival analysis’s primary interest

is the survival function

S(t) = P {T > t} , (1.1.1)

the probability that the component survives pass time t. Equivalent entities of the

survival functions are

F (t) = 1− S(t) (lifetime distribution function), (1.1.2)

f(t) =
d

dt
F (t) = − d

dt
S(t) (lifetime density function), (1.1.3)

λ(t) =
f(t)

S(t)
=

d

dt
[− lnS(t)] (hazard function). (1.1.4)

Different models in survival studies differ in the definitions of these functions. Choices

for the density function include the exponential, Weibull, gamma, and log-normal

functions. Among them, the exponential density function is the most popular choice.

Informally, a point process is a random collection of points in some space. These

points could be the specific time and/or locations of the events that one is studying.

In this thesis, we primarily concern with temporal point process where the points are

the positions on the real half-line R+. In this case, a point process is just a random
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countable subset of R+, i.e. a realization of the point process is an ordered set of

positive real numbers

0 < t1 < t2 < . . . < tn.

Let us start with the equivalent definitions of temporal point processes.

Definition 1.1.1 (Probability space definition). A temporal point process is a mea-

surable map

Π : Ω 7→ N

from the probability space (Ω,F ,P) to the set of finite counting measures N on R+.

In other words, the number of points in Π falling in any test set A ⊂ R+ is a

random positive integer. Because of the properties of open intervals, one could have

an equivalent defintion based on the count of points falling in the intervals [0, t).

Definition 1.1.2 (Counting process). A counting process is a stochastic process

{N(t)|t ≥ 0} such that

• N(t) ≥ 0, ∀t ∈ R+ (positive).

• N(t) ∈ Z+ (integer).

• s ≤ t⇒ N(s) ≤ N(t) (increasing).

This definition allows one to model the random number N(t) directly. As we

could see in later sections, in the case of Poisson point processes, N(t) follows Poisson

distribution. In the case of simple processes (i.e. with probability one, all points are

distinct), one could equivalently define the process using the conditional intensity

function

λ(t|Ht) = lim
∆t→0+

E[N(t+∆t)−N(t)|Ht]

∆t
, (1.1.5)

2



where Ht is the history of the point process just before time t. One could view the

intensity λ(t) as the rate that new event occurs in a infinitesimal interval just after

time t. There is a connection between Eq. (1.1.5) and the hazard function in Eq.

(1.1.4). As one could see, the hazard function is just the intensity of new event given

that the object has survived until time t (i.e. given history). Therefore, popular

choices for hazard function in survival analysis are also popular choices for intensity

function in temporal point process.

1.2 Applications

Applications of point processes are both theoretical and practical. Below, we list

some of the most well known practical applications of this theory:

• Expected number of events in a specific intervals: The most obvious application

of point processes is to compute the quantity

E [N(b)−N(a)] =

∫ b

a

λ(t)dt. (1.2.1)

The earliest example is Erlang’s pioneering work on the Poisson distribution of

number of calls [30]. Recent applications involves manipulating λ(t) such that

a desired expected number of events will occur in the future [32].

• Population size and population growth rate: In a community (e.g. a coun-

try or a city), the population is simultaneously dying and reproducing. From

these changes arise the differential and integral equations concerning popula-

tion growth. One could then related the survival function of each individual

with the population size of the community. This then leads to the problem of

manipulating key characteristics of the population so that the community could

achieve the desired population growth rate or population size.

• Life time distributions of system of elements: In a sophisticated system that

3



consists of many components, the success or failure of that system when per-

forming some task in a observing interval [0, T ] depends greatly on the structure

of that system; whether the components are connected series or in parallel or

some hybrid structure. From the point process viewpoint, one could model a

system of components as a set of related point processes where each process

represents the failure events of one component. One such process is the Hawkes

process that will be discussed in more details in subsequent sections. Applica-

tion of this viewpoint could be future failure prediction, optimized maintenance,

etc.

1.3 Inference problems

The most basic inference problem for temporal point processes is the estimation of the

intensity function λ(t). The difficulty of the estimation problem depends on various

theoretical and practical situations. Let us discuss a few situations that are related

to this thesis

• Deterministic or Random: The Poisson process has a deterministic intensity

function (i.e. λ(t) depends only on t), other processes may have random inten-

sity function (e.g. Cox processes, Hawkes processes).

• Memoryless or History dependent: The Poisson process also has the memoryless

property where the intensity λ(t) is independent of events before t. On the other

hand, the Hawkes processes has an history-dependent intensity function.

• Non-parametric or Parametric: The estimation could be non-parametric [22] or

via a parametric model of λ(t).

• Full data or Histogram data: In certain situations, one may have the full data

(i.e. the time of the occurred events) while on other situations, the data may

4



be interval-censored and only counts of events in each pre-defined intervals are

available.

• One dimensional or Multi-dimensional: The events could be the same type (1-

dimensional) or consist of different types of related events (multi-dimensional).

• Unmarked or Marked: Sometimes, the data are annotated with additional in-

formation of the events. For example, a comment consists of the comment

timestamps and the comment text.

1.4 Motivation

This thesis focuses on the inference problem of multi-dimensional point processes.

Multi-dimensional point processes recently have many new applications with respect

to the analysis of network generated activity. The crux of multi-dimensional point

processes is that they could model the interaction among different individual point

processes. For example, friends or foes activities often trigger a burst of subsequent

activities either to support or to counteract the starting activity. Therefore, it is

intuitive to estimate or infer the “closeness” of individuals in a network by observing

their activities pattern.

If, however, the network that generates the recorded events/activities forms certain

community or clustering pattern, then the task of parameter estimation would be

made more accurate if one could leverage this prior information about the network.

In fact, a general framework for these “low-rank” or “small hidden dimension” prior

information would be very useful. The advantage is two folds

• The prior information allows one to reduce the number of model parameters.

This is desired because given limited training data, the more the number of

parameters is, the less confidence the estimation becomes.
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• The models become more tailored to the problem at hand by conforming to the

prior knowledge of the network.

This is a great advantage compared to general approaches to enforce prior informa-

tion such as regularization techniques. On one hand, while regularization techniques

could generate sparse solutions, in the optimization phase, they still have to work

with a significant amount of model parameters. On the other hand, all regularization

terms are only surrogate functions of the desired quantities. For example, the ℓ1 norm

is a substitution for the number of non-zero elements, a combinatorial quantity. The

nuclear norm is a substitution for the rank of a matrix, which is also a combinato-

rial quantity. Therefore, minimizing these regularization terms does not necessarily

minimize the desired quantities. Therefore, in the author’s opinion, to create efficient

inference algorithm for network activities in the case of available prior knowledge, it

is better to incorporate the prior information into the models themselves.

In another interesting situation where only interval-censored data (i.e. histogram

data) are available, many algorithms for both parametric and non-parametric models

have been proposed for the Poisson processes [71]. However, the application of Poisson

processes is limited in the case of social networks where an event is often a consequence

of previous events (history dependent). The Hawkes processes is a useful models

that recently gains interest in network generated activity analysis. However, to the

author best knowledge, no parameter estimation algorithm for Hawkes processes has

been proposed in the case of interval-censored data. Therefore, it would be a useful

contribution to the research community to propose an algorithm that could work with

interval-censored data.

1.5 Thesis statement

This thesis claims that in the case that the activities generating network forms com-

munities or in the case that only interval censored activity data are available, there
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are efficient inference algorithms that estimate the intensity function via parametric

models.

Evaluation of these claims is accomplished by creating novel inference algorithms

that estimate the parameter of the Hawkes processes in the case that the network

forming communities and in the case that only interval censored data are available

(see Chapter 3 and Chapter 4). To further speed up these inference algorithms

in distributed data settings, we create a novel distributed optimization algorithm

that could leverage network communication for a concerted optimization effort (see

Chapter 5).

1.6 Thesis overview

In Chapter 2, I would like to review two interesting point processes, namely the Poisson

processes and the Hawkes processes. I will discuss their definitions, their properties

and the important problems of sampling and inference from these point processes.

In Chapter 3, I will discuss a novel Hawkes model that takes into account the

community structure of the network. The proposed model reduces the number of pa-

rameters significantly and explicitly models the low-rank assumption of the influence

pattern among individuals in a network. An efficient inference algorithm, NetCodec,

is proposed based on the mean-field variational inference framework. We tested Net-

Codec against the vanilla Hawkes inference algorithm using synthetic and real-life

datasets.

In Chapter 4, I will discuss the parameter estimation problem of the Hawkes

model in the case that only histogram data, or interval-censored data, are available.

The proposed inference algorithm works under Monte-Carlo EM framework and uses

carefully designed sampling algorithm in order to sample the hidden variables. Exper-

iments with synthetic and real-life network shows that the proposed algorithm using

interval-censored data is comparable to the inference algorithm using fully observed
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data.

In Chapter 5, I will discuss the usage of Hawkes process and thinned process to

model the Click-to-Conversion mechanism in online advertisement campaigns. We

propose that one could model the clicks as a Hawkes process and the conversions as a

thinned process of the click process. Using the Minorization-Maximization framework,

we derive an efficicient Maximum Likelihood Estimator for the proposed model. Ex-

periments with real life advertisement log shows that our model could predict future

conversion volume reasonably.

In chapter 6, I will discuss a distributed optimization algorithm that could fur-

ther speed up learning algorithms in distributed data settings. We formulate the

distributed learning problem as a concensus constrained optimization problem and

solve it using the general methodology of Alternating Direction Method of Multipliers

(ADMM). We then investigate the effects of the communication network topology on

the convergence rate of the optimization.

In chapter 7, I will briefly introduce our open-source software package that imple-

ments the proposed models and inference algorithms described in this dissertation.

We will show the design and the programming techniques that we used achieve effi-

cient implementations that perform and scale well both with data size and computing

power (i.e. parallelism).

In chapter 8, I will conclude the dissertation with some remarks on the current

work and possible future directions.
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CHAPTER II

TEMPORAL POINT PROCESSES

2.1 Poisson Processes
2.1.1 Poisson distribution

Definition 2.1.1. An non-negative integer random variable X has the Poisson dis-

tribution, P(µ) if

P {X = n} = πn(µ) =
µne−µ

n!
, n = 0, 1, 2, . . . (2.1.1)

The parameter µ > 0 is the mean of the distribution P(µ) and πn(µ) is the probability

mass function of P(µ).

From the equality

E(zX) = e−µ(1−z),∀z : |z| ≤ 1, (2.1.2)

one could differentiate and set z = 1 to get

E[X] = µ,

E[X(X − 1)] = µ2,

E[X(X − 1)(X − 2)] = µ3, . . .

and compute the important statistics of X such as

E[X] = µ (2.1.3)

V[X] = µ. (2.1.4)

The following countable additivity theorem shows the distribution of the sum of

independent Poisson random variables.
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Theorem 2.1.2 (Countable Additivity). Let Xj, j = 1, 2, . . . be independent random

variables, and assume that Xj has the distribution P(µj) for all j. If the series

σ =
∞∑
j=1

µj (2.1.5)

converges, then

S =
∞∑
j=1

Xj (2.1.6)

converges with probability 1, and S has distribution P(σ). If on the other hand (2.1.5)

diverges, then S diverges with probability 1.

Proof. See [50], chapter 1.

2.1.2 Probability spaces

The state space for a point process in a real line is the real line, R, itself. A Poisson

process on the real line, defined on a probability space (Ω,F ,P), is a function Π from

the set of “outcomes” Ω to the set R∞ of all countable subsets of R. That is, for every

possible outcome ω ∈ Ω, Π(ω) is a countable subset of R. To make the definition of

the probability space concrete, one needs the construction of the sets of events F and

the probability measure P : F → [0, 1].

Let us consider a test set A ⊆ R, and let us denote

N(A) = # {Π(ω) ∩ A} (2.1.7)

the number of points in Π(ω) that are also in A. Therefore, for each test set A, the

function N(A) is a non-negative integer random variable if the following condition

holds

{ω ∈ Ω : N(A) = n} ∈ F , ∀n = 0, 1, 2, . . . . (2.1.8)

For Poisson process on the real line, it is sufficient that the condition (2.1.8) holds

for all open intervals A = (a, b). This is true because
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• Any open set G on R is a union of disjoint open intervals Aj, therefore

N(G) =
∑
j

N(Aj)

is a random variable.

• Any closed set F on R is a limit of sequence of open sets Gi such that Gi+1 ⊂

Gi, i = 1, 2, . . ., and

N(F ) = lim
i→∞

N(Gi)

is also a random variable.

Therefore, for any Borel set A ⊂ R, one could define the random variable N(A) if

(2.1.8) holds for any open intervals on the real line. The construction of the “events”

set F is the same for all point processes. The difference among point processes is the

construction of the probability measure P.

Definition 2.1.3 (Probability space construction). The probability space (Ω,F ,P)

of a Poisson process on the real line satisfies the following conditions

• For all open intevals A ⊂ R, the event {ω ∈ Ω : N(A) = n} is an event in F ,

for all n = 0, 1, 2, . . ..

• For any disjoint measurable sets A1, A2, . . . , An ⊂ R, the random variables

N(A1), N(A2), . . . , N(An) are independent, and

• N(A) has Poisson distribution P(µ(A)), where µ(A) is called the mean measure

of A.

In the interesting case that µ(A) is the integral of another function

µ(A) =

∫
A

λ(t)dt, (2.1.9)

we call λ(t) the rate or intensity function of the Poisson process. This is because for

continuous λ(t) and small set A, the mean measure µ(A) ≈ λ(t)|A| is the expected

number of points in Π that fall into A (see Eq. (2.1.3)).
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2.1.3 Properties of Poisson processes

In this section, some important properties of Posson processes are listed. The proofs

of these properties could be found in [50].

Theorem 2.1.4 (Superposition). Let Π1,Π2, . . . be a countable collection of indepen-

dent Poisson processes on R and let Πn has mean measure µn, for all n. Then their

superposition

Π =
∞∪
n=1

Πn

is a Poisson process with mean measure

µ =
∞∑
n=1

µn. (2.1.10)

Theorem 2.1.5 (Restriction). Let Π be a Poisson process on R with mean measure

µ, and S ⊂ R be a measurable set. Then the random countable set

ΠS = Π ∩ S

is a Poisson process on R with mean measure

µS(A) = µ(A ∩ S),∀ measurable A. (2.1.11)

Theorem 2.1.6 (Mapping). Let Π be a Poisson process on R with mean measure µ,

and a function f : R→ R such that the measure

µ∗ = µ∗(A) = µ(f−1(A)) (2.1.12)

is non-atomic (where f−1 is the inverse mapping of f). Then f(Π) is a Poisson

process with mean measure µ∗.

Collorary 2.1.7. Let λ(t) be the intensity function of the Poisson process Π and

M(t) = µ([0, t)) =
∫ t

0
λ(τ)dτ . Then M(Π) is a Poisson process with constant unit

intensity.
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Proof. Let M(t) = x ∈ R, because M(t) is monotone, we have

µ∗([0, x)) = µ∗([0,M(t))) = µ([M−1(0),M−1(M(t)))) = µ([0, t)) = M(t) = x.

Therefore, the intensity of the process M(Π) is λ∗(x) = d
dx
µ∗([0, x)) = 1.

Theorem 2.1.8 (Existence). Let µ be a non-atomic measure on R which can be

expressed in the form

µ =
∞∑
n=1

µn, µn(R) <∞. (2.1.13)

Then there exists a Poisson process on R having µ as its mean measure.

Theorem 2.1.9 (Waiting time). Let the points in the point processes Π are sorted

ascendingly x1 < x2 < . . . < xi < . . . then Π is a Poisson process with constant

intensity function λ(t) = λ if and only if the waiting times di = xi+1− xi, i = 1, 2, . . .

are independently and identically distributed from the exponential distribution Exp(λ).

2.1.4 Sampling from Poisson process

In this section, we consider the problem of simulating a Poisson process on a closed

interval A = [0, T ] where T is the right limit of the observation window. By definition,

if Π is a Poisson process with mean measure µ then the number of points of Π that

fall into A, N(A), has Poisson distribution P(µ(A)). In case that there is an intensity

function λ(t), we have

P(N(A) = n) =

(∫
A
λ(t)dt

)n
n!

exp
{
−
∫
A

λ(t)dt

}
. (2.1.14)

Now, suppose that we know N(A) = n, let us consider the distribution of n points

{x1, x2, . . . , xn} = Π∩A. To that end, let A1, A2, . . . , Ak be an arbitrary partition of
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Algorithm 2.1 Simulating a Poisson process on A = [0, T ]

1: Draw n from Poisson distribution P
(∫

A
λ(t)dt

)
.

2: for i = 1, 2, . . . , n do
3: Draw xi independently and identically from the density

pX(t) =
λ(t)∫

A
λ(t)dt

4: end for

A, i.e. Ai ∩ Aj = ∅, i ̸= j and ∪k
i=1Ai = A. By definition of Poisson process, we have

P(N(Ai) = ni, i = 1, 2, . . . , k|N(A) = n) =
k∏

i=1

P(N(Ai) = ni) [P (N(A) = n)]−1

=
k∏

i=1

(∫
Ai

λ(t)dt
)ni

ni!
exp

{
−
∫
Ai

λ(t)dt

}
× n!(∫

A
λ(t)dt

)n exp
{∫

A

λ(t)dt

}

=
n!

n1!n2! . . . nk!

k∏
i=1

(∫
Ai

λ(t)dt∫
A
λ(t)dt

)ni

. (2.1.15)

Now let us consider n independent random points Y = (y1, y2, . . . , yn) in A that follow

the density function

pY (t) =
λ(t)∫

A
λ(t)dt

. (2.1.16)

It easily follows that the number of points in Y that fall into the sets Ai, i = 1, 2, . . . , k

has multinomial distribution given by Eq. (2.1.15). Thus, we have shown that, given

the number of points fall into A, the points Π∩A = {x1, x2, . . . , xn} are independent

random points follow the density function in Eq. (2.1.16). Eq. (2.1.14) and Eq.

(2.1.16) suggest that one could sample from a Poisson process on a observation time

frame [0, T ] using Algorithm 2.1.

2.1.5 Likelihood function

Full data. In order to make inference about the Poisson process, one often needs to

maximize the likelihood of the observed data [71]. For a Poisson process Π on the

real line and a test set A, a realization of Π is a pair ξ = (n,X) where n = N(A) is

14



the number of points in Π∩A, and X = {x1, x2, . . . , xn} is the realized points. From

the previous section, one could write the likelihood of the realized data as

p(ξ) = P(N(A) = n)p({x1, x2, . . . , xn} |N(A) = n)

=

(∫
A
λ(t)dt

)n
n!

exp
{
−
∫
A

λ(t)dt

}
n!

n∏
i=1

λ(xi)∫
A
λ(t)dt

= exp
{
−
∫
A

λ(t)dt

} n∏
i=1

λ(xi). (2.1.17)

In Eq. (2.1.17), we have used the fact that given the number of points n, the points

x1, x2, . . . , xn are independently and identically distributed with density λ(t)∫
A λ(t)dt

. The

factor n! arises from the fact that there are equally likely n! ordered sets corresponding

to the unordered set {x1, x2, . . . , xn}. In some cases, it is more convenient to work

with the log-likelihood

ln p(ξ) =
n∑

i=1

lnλ(xi)−
∫
A

λ(t)dt. (2.1.18)

Histogram data. Another interesting inference problem is the problem of esti-

mating λ(t) given the observed count n1, n2, . . . , nk of points falling into disjoint

sets A1, A2, . . . , Ak. To this end, one needs the likelihood function of these observed

counts. Because of the definition of Poisson processes, we have

P(N(Ai) = ni, i = 1, 2, . . . , k) =
k∏

i=1

P(N(Ai) = ni)

=
k∏

i=1

exp
{
−
∫
Ai

λ(t)dt

} (∫
Ai

λ(t)dt
)ni

ni!

= exp
{
−
∫
A

λ(t)dt

} k∏
i=1

(∫
Ai

λ(t)dt
)ni

ni!
, (2.1.19)

where A = ∪k
i=1Ai is the union the interested sets Ai’s. The log-likelihood of the

observed counts is

lnP(N(Ai) = ni, ∀i) = const +
k∑

i=1

ni ln
(∫

Ai

λ(t)dt

)
−
∫
A

λ(t)dt. (2.1.20)
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Poisson processes provides a useful framework for deterministic point processes where

the intensity function are fixed (i.e. depends only on t). In the next section, I will

discuss the Hawkes processes where the intensity function is random and dependent

on the history of events before time t.

2.2 Hawkes Processes
2.2.1 One-dimensional Hawkes processes

It maybe most intuitive to define Hawkes processes using the intensity function. We

first start with the definition of self-exciting processes.

Definition 2.2.1 (Self-exciting process). Let Ns = N((−∞, s)) be the number of

points that occur before point s ∈ R. The intensity function λ(t) of a self-exciting

process is defined as

λ(t) = λ0(t) +

∫ t

−∞
ν(t− s)dNs = λ0(t) +

∑
i:ti<t

ν(t− ti), (2.2.1)

where λ0(t) is the deterministic base intensity, ν : R+ 7→ R+ describes the influence

of past points ti < t on the current value of λ(t). In case one would like to point out

the influence of past points, one could write λ(t) = λ(t|Ht) where Ht is the history

of events before time t.

Hawkes [39] proposes the influence function be a weight sum of of exponential

function

ν(t) =
K∑
k=1

αke
−βktI(t > 0). (2.2.2)

In this work, we only consider the case where λ0(t) = λ0 is a constant function, and

K = 1.

Definition 2.2.2 (Hawkes processs). The Hawkes proces is a self exciting process

with intensity function λ(t)

λ(t) = λ0 + α
∑
i:ti<t

ωe−ω(t−ti), (2.2.3)
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where λ0 is the constant base intensity, α describes the influence of past points ti < t

on the current value of λ(t) and ω is the rate parameter of the influence function.

The scale ω normalizes the influence function such that
∫∞
0

ν(t) = 1.

Properties of Hawkes process could be found in many monographs. Below, we list

the most important results that are relevant to this thesis. The proofs of these results

could be found in [18].

Theorem 2.2.3 (Likelihood function). Given an observing time frame [0, T ), the

joint probability density of a realization ξ = (NT = n, t1 < t2 < . . . < tn < T ) is

p(ξ) =
n∏

i=1

λ(ti|Hti) exp
{
−
∫ T

0

λ(t|Ht)dt

}
, or (2.2.4)

ln p(ξ) =
n∑

i=1

lnλ(ti|Hti)−
∫ T

0

λ(t|Ht)dt (2.2.5)

For the intensity function in Eq. (2.2.3), one could write down the explicit form

of the likelihood function

ln p(ξ) =
n∑

i=1

ln

λ0 + α
∑

j:tj<ti

ωe−ω(ti−tj)

− λ0T − α
n∑

i=1

[1− e−ω(T−ti)]. (2.2.6)

The log-likelihood function (2.2.6) is the starting point of most maximum likelihood

estimators for λ0, α, and ω.

The following result is a generalization of Collorary 2.1.7.

Theorem 2.2.4 (Random time change). Let Π is a Hawkes process and Λ(t) =∫ t

0
λ(τ |Hτ )dτ . Then the process Λ(Π) is a Poisson process with constant unit intensity.

2.2.2 Sample verification

Theorem 2.2.4 is important in the sense that one could convert any Hawkes process

to the standared Poisson process with constant unit intensity, i.e. λ(t) = 1,∀t.

Therefore, once could find many useful properties of the interested point process by

converting it to standard Poisson process and study them. Another advantage of this
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result is that it provide a way to check the quality of any sampling method for Hawkes

processes. More detailed application of this theorem could be found in Chapter 4.

Because of this importance, in this section, we will list a proof of Theorem 2.2.4

[7]. Then we will show how to apply this theorem.

Proof. Recall that the original process is Π = (t1, t2, . . . , tn) ∈ [0, T ] and the mapped

process Λ = (Λ(t1),Λ(t2), . . . ,Λ(tn)) ∈ [0,Λ(T )]. Let τi = Λ(ti) − Λ(ti−1) be the

duration between consecutive mapped points and τT = Λ(T ) − Λ(tn). All we need

is to show the τ ’s random variables are independently and identically distributed by

exponential distribution with mean one, i.e. Exp(1).

The density of the mapped points is

p(τ1, τ2, . . . , τn ∩ τn+1 > τT ) = p(τ1, τ2, . . . , τn)× P {τn+1 > τT |τ1, τ2, . . . , τn}

The second term is

P {τn+1 > τT |τ1, τ2, . . . , τn} = P {tn+1 > T |t1, t2, . . . , tn}

= exp
{
−
∫ T

tn

λ(t|Htn)dt

}
= exp {−τT} .

For the first term, we have

p(τ1, τ2, . . . , τn) = |J |p(t1, t2, . . . , tn ∩N([0, tn]) = n)

where J is the Jacobian matrix of transformation between the variables τ ’s and t’s.

We have

p(t1, t2, . . . , tn ∩N([0, tn]) = n) =
n∏

i=1

λ(ti|Hti) exp
{
−
∫ tn

0

λ(t|Ht)dt

}
.

Now, let us consider the Jacobian J . As τi is the function of ti, ti−1, . . . , t1, J is a

lower triangular matrix. Therefore the determinant |J | is the product of the diagonal

elements. We have

Jii =
∂ti
∂τi

=

(
∂τi
∂ti

)−1

= λ(ti|Hti)
−1.
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Therefore, the density of the mapped points is

p(τ1, τ2, . . . , τn ∩ τn+1 > τT ) = exp
{
−
∫ tn

0

λ(t|Ht)dt

}
exp {−τT}

=
n∏

i=1

exp {−τi} × exp {−τT}

which completes the proof.

As mentioned, Theorem 2.2.4 allows one to verify the quality of any sampling

method. This is done by computing the mapped points Λ(ti)’s where ti’s are the

locations of the simulated sample. Then one could compute the duration τi =

Λ(ti) − Λ(ti−1) for i = 1, 2, . . . , n and compare the empirical quantiles of τi’s with

the theoretical quantiles of the exponential distribution with mean one. For visual-

ization purpose, one could use graphs such as the Q-Q plot to see the quality of the

sampling method. For example, Figure 2.1 shows the quality of a sampling method

for one-dimensional Hawkes process. More details on the applications of Theorem

2.2.4 are discussed in Chapter 4.

2.2.3 Multi-dimensional Hawkes processes

The previously mentioned point processes are one-dimensional point processes. Their

use is limited to one kind/type of events. In the cases where multiple kinds of events

are dependent on each other, one needs to leverage the concept of multi-dimensional

point processes. In this section, I will discuss a generalization of the one-dimensional

Hawkes processes to multiple dimensions.

Definition 2.2.5. The multi-dimensional Hawkes processes are the superposition of

U dependent point processes where U is the dimension of the processes. In particular,

the intensity function of the i-th dimension (i = 1, 2, . . . , U) process is given by

λi(t) = λi(t|Ht) = λi0 +
∑

n:tn<t

αiinκ(t− tn), (2.2.7)
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Figure 2.1: Quantile plot of a sample of the one-dimensional Hawkes processes.

where λi0 ≥ 0 is the deterministic constant base intensity for i-th dimension, αij ≥ 0

is the influence coefficient that events in j-th dimension have on future events in the

i-th dimension, tn is an event that occurs before time t, and in is the dimension of

that event. The influence function κ(t), also called the triggering kernel, is often

chosen to be the exponential density function, κ(t) = ωe−ωtI(t > 0).

If one collects all influence coefficients into a matrix F = [αij], one could see that

the structure of F represents the influence structure or influence pattern among events

in different dimensions.

The following result specifies the likelihood function of a realization of the multi-

dimensional Hawkes process.

Theorem 2.2.6 (Likelihood function). Given an observing time frame [0, T ), the

joint probability density of a realization ξ = (NT = nc, t1 < t2 < . . . < tnc < T ) of a
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U-dimensional Hawkes process is

p(ξ) =
nc∏
i=1

λin(tn|Htn)
U∏
i=1

exp
{
−
∫ T

0

λi(t|Ht)dt

}
, or (2.2.8)

ln p(ξ) =
n∑

i=1

lnλin(tn|Htn)−
U∑
i=1

∫ T

0

λi(t|Ht)dt (2.2.9)

The following beautiful random time change theorem is very useful in proving

other properties of the Hawkes processes. It provides a way to convert the Hawkes

processes to the well-known and well-studied homogeneous Poisson processes.

Theorem 2.2.7 (Random time change). Let Π is a U-dimensional Hawkes process

and Λi(t) =
∫ t

0
λi(τ |Hτ )dτ . Then the point processes Λi(Πi), i = 1, . . . , U are U

independent Poisson processes with constant unit intensity. Here Πi is the set of

points in Π that belong to the i-th dimension.

2.2.4 Parameter Estimation

In this section, we consider the problem of estimating the Hawkes processes parame-

ters: the base intensity λi0, i = 1, . . . , U , the influence coefficients αij, i, j = 1, . . . , U ,

and the triggering kernel rate ω from observed data. To make the problem more

practical, we consider the case where multiple realizations, called cascades, of the

Hawkes processes are observed. In particular, our observed data consist of

• C cascades, denoted by ξc, c = 1, . . . , C.

• The c-th cascade is the observation in the time frame [0, Tc)

ξc = (nc, (t
c
n, i

c
n), n = 1, . . . , nc) (2.2.10)

where tcn is the n-th event, icn is the dimension of that event, nc is the number

of events observed in the time frame [0, Tc).

Our goal is to estimate the parameters Θ = (λi0, αij, ω) using the observed cascades

{ξc} , c = 1, . . . , C. To that end, we employ the Maximum Likelihood Estimation
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(MLE) framework. In particular, we need to maximize

max
Θ
L(Θ) ≡

C∑
c=1

ln p(ξc), (2.2.11)

where ln p(ξc) is given by Eq. (2.2.9). To be more specific, let us first write down the

explicit form of L(Θ) by substituting the intensity in Eq. (2.2.7) to the log-likelihood

in Eq. (2.2.9)

L(Θ) =
C∑
c=1


nc∑
i=1

ln

λicn0 +
∑
tcℓ<tcn

αicni
c
ℓ
κ(tcn − tcℓ)

− U∑
i=1

∫ Tc

0

λi0 +
∑
tcn<t

αiicnκ(t− tcn)

 dt


=

C∑
c=1


nc∑
i=1

ln

λicn0 +
∑
tcℓ<tcn

αicni
c
ℓ
κ(tcn − tcℓ)

− Tc

U∑
i=1

λi0 −
U∑

u=1

nc∑
n=1

αiicnK(Tc − tcn)

 ,

(2.2.12)

where K(t) =
∫ t

0
κ(τ)dτ is the integral of the triggering kernel function.

In Eq. (2.2.12), the second and the third terms are linear functions with respect

to the parameters λi0, αij. The first term in is the logarithm of a linear function of

λi0, αij, therefore it is concave. In summary, the log-likelihood of the observed data

is concave with respect to λi0, αij. Therefore, if one fixes the triggering kernel rate

ω, the optimization problem (2.2.11) is a convex optimization. Therefore, one could

apply various well-known and well-studied convex optimization techniques such as

Gradient Descent or L-BFGS to solve for λi0, αij.

In this thesis, we use a different optimization framework, called the Minorization-

Maximization or MM. In this framework, we first derive a lower bound of the log-

likelihood L(Θ) and then maximize this lower bound. The advantages of MM frame-

work are

• It works well in both convex case (fixed ω) and non-convex case (variable ω).

• It easily generalizes to more complicated models (see later chapters).

• It allows closed-form, fast, and parallel updates of the parameters.
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Algorithm 2.2 Minorization-Maximization framework
1: Initialize Θ1.
2: for m = 1, 2, . . . , n do
3: Maximize Q(Θ|Θm) to get the next iterate

Θm+1 = arg max
Θ

Q(Θ|Θm)

4: end for

To be specific, let L(Θ) be the function that we need to maximize. Assuming that

we could find a surrogate function Q(Θ|Θm) such that

Q(Θ|Θm) ≤ L(Θ),∀Θ,

Q(Θm|Θm) = L(Θm).

Then the MM framework is summarized in Algorithm 2.2 where in each iteration one

maximizes Q(Θ|Θm) given the current guess Θm. Convergence properties of the MM

framework could be found in many monographs, for example [79]. One could easily

see the monotonic convergence of the framework provided the objective function is

bounded above.

Theorem 2.2.8 (Convergence of MM). Assuming that L(Θ) is bounded above, then

the sequence L(Θm),m = 1, 2, . . . found by Algorithm 2.2 is a monotonically increasing

convergent sequence.

Theorem 2.2.9 (Stationarity of MM). If additionally Q(Θ|Γ) is continuous in both

Θ and Γ then the sequence L(Θm),m = 1, 2, . . . converges to a stationary point of

L(Θ).

In the case of convex optimization (i.e. fixed ω), a stationary point is also the

global maximum of L(Θ). To continue with our optimization problem of the Hawkes

process log-likelihood function (2.2.12), let us derive a lower bound for L(Θ).
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Theorem 2.2.10 (Lower bound). The log-likelihood (2.2.12) is lower bounded by

C∑
c=1


nc∑
i=1

ηcnn ln
λicn0

ηcnn
+
∑
tcℓ<tcn

ηcℓn ln
αicni

c
ℓ
κ(tcn − tcℓ)

ηcℓn

− Tc

U∑
i=1

λi0 −
U∑
i=1

nc∑
n=1

αiicnK(Tc − tcn)


(2.2.13)

where the auxiliary variables satisfy ηcℓn ≥ 0, 1 ≤ ℓ ≤ n ≤ nc and
∑n

ℓ=1 η
c
ℓn = 1. The

equality holds when

ηcnn ∝ λicn0,

ηcℓn ∝ αicni
c
ℓ
κ(tcn − tcℓ),

(2.2.14)

where “∝” means “proportional to”. Note that, one needs to normalize these auxiliary

variables such that their sums is equal to 1.

Proof. By concavity of logarithm (or the log-sum inequality), one has

ln

λicn0 +
∑
tcℓ<tcn

αicni
c
ℓ
κ(tcn − tcℓ)

 = ln

ηcnn
λicn0

ηcnn
+
∑
tcℓ<tcn

ηcℓn ln
αicni

c
ℓ
κ(tcn − tcℓ)

ηcℓn


≤ ηcnn ln

λicn0

ηcnn
+
∑
tcℓ<tcn

ηcℓn ln
αicni

c
ℓ
κ(tcn − tcℓ)

ηcℓn
.

Equality holds if and only if

λicn0

ηcnn
=

αicni
c
ℓ
κ(tcn − tcℓ)

ηcℓn
,∀ℓ < n

which completes the proof.

Theorm 2.2.10 shows that one could apply the MM framework to maximize log-

likelihood L(Θ) in (2.2.12). To proceed, we need the following useful lemma.

Lemma 2.2.11. Given a, b > 0, the maximum of the function f(x) = a lnx − bx is

attained at

x∗ =
a

b
. (2.2.15)

Proof. As f(x) is concave, setting the derivative of f(x) to zero, we get (2.2.15).
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Using lemma 2.2.11, one could maximize the lower-bound (2.2.13) by alternating

between the model parameters {λi0, αij} and the auxiliary variables {ηcℓn}. Given a

set of auxiliary variables, applying lemma 2.2.11 on the lower bound (2.2.13), the

update formulas for {λi0, αij} are

λi0 ←
∑C

c=1

∑nc

n=1 η
c
nnI(icn = i)∑C

c=1 Tc

,

αij ←
∑C

c=1

∑
ℓ<n≤nc

ηcℓnI(icn = i, icℓ = j)∑C
c=1

∑nc

n=1K(Tc − tcn)I(icn = j)
,

(2.2.16)

where I(·) is the indicator function

I(p) =


1, p is true,

0, p is false.

Once the model parameters are updated with formulas (2.2.16), the lower-bound

(2.2.13) could be further tighten via updating the auxiliary variables with formulas

(2.2.14).

Now, let us consider the problem of estimating the triggering kernel rate ω in

the case that the triggering kernel function κ(t) = ωe−ωt, the exponential density

function. Its integral K(t) = 1 − e−ωt is approximately 1 when ω ≪ t. This is true

because the duration Tc−tcn is often very large as one often chooses a large observation

time frame Tc. As a result, with respect to optimizing ω, one could consider the last

term in the expression (2.2.13) a constant. Therefore, applying lemma 2.2.11, one

has

ω ←
∑C

c=1

∑
ℓ<n η

c
ℓn∑C

c=1

∑
ℓ<n(t

c
n − tcℓ)η

c
ℓn

. (2.2.17)

Algorithm 2.3 summarizes the estimation of Hawkes processes parameters under

the MM framework.
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Algorithm 2.3 Estimate Hawkes process parameters under MM framework
1: Initialize Θ1.
2: for m = 1, 2, . . . , n do
3: Compute auxiliary variables ηcℓn with (2.2.14)
4: Update Θm+1 with (2.2.16) and (2.2.17).
5: end for

2.2.5 Limitations

Algorithm 2.3 have many good properties, especially when one needs to implement

and deploy it in high performance computing environment. Let us list a few imple-

mentation issues for algorithm 2.3.

• Closed form, fast update: All update formulas (2.2.14), (2.2.16), and (2.2.17)

are in closed form using simple arithmetics.

• Parallel update: The computation of ηcℓn for different n’s are completely inde-

pendent of each other. As the number of events nc is often very large, this is a

great source of parallelism. Furthermore, the accumulation of the numerators

and denominators in Eqs. (2.2.16) and (2.2.17) could be done in parallel and

on the fly. That is, once ηcℓn is computed, one could accumulate it into the

mentioned numerators and denominators and discard it.

• Truncated update: As the triggering kernel κ(t) is a fast decaying function,

it is reasonable to only consider events that are close to each other. In our

implementation, we only compute ηcℓn for ℓ, n such that κ(tcn− tcn) > 10−16. This

reduction is very significant when the observation time frame Tc is large.

• Stopping criteria: The current objective value of the log-likelihood (2.2.12)

could be computed very efficiently via dynamic programming with complexity

O
(
U
∑C

c=1 nc

)
. One possible stopping criteria is the relative change of L(Θm+1)
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with respect to L(Θm). We use the following stopping criteria∣∣∣∣L(Θm+1)− L(Θm)

L(Θm)

∣∣∣∣ < 10−4. (2.2.18)

We observe that the algorithm often stops within 40 iterations for the data sets

used in this thesis.

However, algorithm 2.3 and the Hawkes processes defined in Definition 2.2.5 have

certain intrinsic weaknesses and limitations.

• The number of parameters one needs to estimate is O(U2) where U is the number

of dimensions. As the data size (i.e. the number of events) is not infinite, this

lowers the confidence and increases the variance of the estimated parameters.

• For many problems, especially events from social networks, it is often true that

only a few pairs of dimensions have influence on each other. In other word,

the influence coefficient matrix F is often very sparse. While one could fix the

formulation (2.2.11) with additional ℓ1 regularization, in the optimization, one

still needs to work with O(U2) parameters.

• In another situation that the dimensions (e.g. users in social networks) form

communities, the influence coefficient matrix F would be low rank as users in

the same community often have similar affection/influence to users in another

community. Formulation (2.2.11) provides no easy way to cope with this situ-

ation.

• The log-likelihood (2.2.12) is defined on the full data ξc = (nc, t1, t2, . . . , tnc),

c = 1, 2, . . . , C. It is not clear how one could estimate the parameters when only

histogram data are available. The data in this situation is interval-censored.

That is, we do not know the specific time of event tcn. Instead, we only know

the number of events falling into pre-defined disjoint intervals in the observation

time frame [0, Tc).
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In the next chapters, I will discuss novel models and novel inference algorithms that

address these limitations.
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CHAPTER III

COMMUNITY INFERENCE

3.1 Introduction

The exponential growth of recorded social activities has inspired many interesting

research directions. From individual activities, a curious analyzer would like to infer

more about the social networks as a whole. For example, how contagious individuals’

activities are on each other? Are people forming coherent groups or communities

in their activities? What is a person’s role in his/her perceived community? Is it

possible to process the massively available data to answer these crucial questions?

These are naturally very interesting and important research questions. The answers

to these questions are already having significant impact in practice. For example,

in viral marketing, one would like to maximize influence of product advertisement

with the least cost. To that end, it is highly beneficial to correctly detect social

communities and pinpoint popular individuals whose popularity assures maximized

product adoption [32].

Both network infectivity inference and community detection from activities have

been addressed extensively. While they are usually studied separately [81, 49, 5],

event cascades and clusters are natural duals: clusters block the spread of influence,

i.e., whenever a cascade of events comes to a boundry, there is a cluster that can be

used to explain why [27]. On the other hand, if a cluster can justify a cascade comes

to a stop, then past chain of events can find out something about the clusters.

Based on this fact, we propose a modeling approach that takes into account both

network infectivity and community structure in modeling individual activities. Our

modeling approach leverages a key observation that these characteristics of a social
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network intertwine and knowing one would help better understanding and revealing

the other. As a result, it is possible to simultaneously infer network infectivity and

to detect community structure from individual activities. The proposed method also

benefits from having fewer model parameters than existing approaches in literature.

This is highly useful as one usually only has limited event data and having fewer

model parameters often implies less variance and less algorithmic complexity.

In particular, we propose NetCodec (NETwork COmmunity DEteCtion), a scal-

able variational inference algorithm for simultaneous network infectivity inference and

community detection from individual activities or events. The key idea of the algo-

rithm is to factorize network infectivity into community participation and individual

popularity and to leverage the mean field variation inference framework to estimate

the community participations. Our algorithm can estimate the network infectivity

and community structure of a network with I nodes, G groups with O(kNG + IG)

computations per iteration, where N is the number of recorded events in a certain

time frame, and k is the average number of relevant historical events (k ≪ N). We

validate NetCodec in various simulated and real-world situations.

3.1.1 Problem settings

We assume that there are I identities (e.g. individuals, users, sources) that could be

grouped into G groups and that their activities are contagious following some network

infectivity rate. The community structure and network infectivity are unknown to

us. Instead, we only know the time and the identity of events (e.g. posts, comments,

purchases, earthquakes) occurred in a time frame. The natural question is that “Could

we recover both community structure and network infectivity simultaneously from

their activities?”.

Specifically, let the time and identity of events form a set of C cascades

{(tcn, icn)n=1...Nc}c=1...C ,
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Table 3.1: Notations

I number of individuals/nodes
G number of groups
N number of events

λi(t) intensity at time t of user i
µi spontaneous rate of user i
βi the celebrity index of user i

Zi ∈ RG
+ group participation vector of user i

αij infectivity rate from user j to user i
κ(t) triggering kernel
K(t) the integral

∫ t

0
κ(τ)dτ

ag, bg Gamma distribution parameters
ℓ, n event indices, ℓ < n if both present

where t’s are the time of events and i’s are the identities. The observation time

frame for the c-th cascade is [0, Tc]. We would like to find a participation matrix

Z = [zig] ∈ RI×G
+ where zig represents how strong the i-th node associates to the

g-th group. We also want to find an infectivity matrix F = [αij] ∈ RI×I
+ where αij

represents how the j-th node influences the i-th node. In the following, the terms

“identity”, “user”, “node” have the same meaning.

In Section 3.2, we discuss our approach and the modelling technique in more

details. In Section 3.3 we derive NetCodec, a variational inference algorithm that

efficiently infers network infectivity and detects coherent communities. In Section

3.4, we report the experiment results where we apply the model on various simulated

and real world situations. In Section 3.5, we conclude the paper with some remarks

on the proposed method and future directions. Before proceeding, let us discuss the

related literature on the proposed problem.

3.1.2 Related Works.

Recently, there has been a growing interest in network inference from event data.

Authors in [38] were one of the first who tackle the problem of inferring network from

the event data. Given the times when nodes adopt pieces of information or become
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infected, they approximate the optimal network that best explains the observed in-

fection times. Perry et al. [68] introduced a model for treating directed interactions

as a multivariate Cox intensity model with covariates that depend on the history

of the process and learned the parameters using partial likelihood. Authors in [57]

proposed a probabilistic model that combines mutually- exciting point processes with

random graph models to infer latent networks. These models, while not being closely

related, try to answer how nodes in the network are generally connected or how they

influence each other. In contrast our model, directly involves community structure in

the modeling.

More closely, authors in [2] proposed a generative model, Community-Cascade

Network, based on mixture membership that can fit, at the same time, the social graph

and the observed set of cascades. This model, nicely elaborates on the community

detection and network inference, however, the nature of events data observed is too far

from real applications. They require the data has been observed along with the chain

of influence, i.e., which event causes this event. Furthermore, [56] aims at a similar

problem, however, as the previous work the definition of event is far from the real

data in hand. The event, contains some nodes participating in an event (eg. a party)

along with the edges (friendships) between them. In their promising work, Zhou et

al. [87], considered the community structure of the network in point process data

via adding a regularization term based on nuclear norm. The community structure

is only captured indirectly via regularization to enhance parameters estimation and

thus cannot find the underlying modules in the network.

After Hawkes [40] originally proposed this mutually-exciting process it has been

proved to be useful in various areas such as finance [29], seismology [66, 59], crime

[70], civilian deaths in conflicts [54], and recently causal militant conflict events [55].

For social and influence networks, there are also recent uses of variants of Hawkes

processes for analyzing Youtube movies [16], news websites [48, 87], and book sales
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[21].

3.2 Modeling Network Activities

In this section, we will discuss our approach to the problem set out in Section 6.1.

We will first discuss our modeling technique where one could leverage community

structure to help better revealing network infectivity. Then, we will described the

technical aspect of the proposed model such as the likelihood function and the maxi-

mum likelihood estimator. The readers could refer to Table 3.1 for the notations used

in this chapter.

3.2.1 The proposed model

We would like to model the activities in the network by the multi-dimensional Hawkes

processes. Recall from Eq. (2.2.7), we have

λi(t) = µi +
∑

tℓ<t
αiiℓκ(t− tℓ), (3.2.1)

where µi > 0 is the spontaneous intensity for the i-th dimension and iℓ is the di-

mension identity of the ℓ-th event. The nonnegative coefficient αij captures the

mutually-exciting property between the i-th and the j-th dimensions. It shows how

much influence the events in j-th dimension has on future events in i-th dimension.

Larger values of αij indicates that events in j-th dimension are more likely to trigger

an event in the i-th dimension in the future.

From the modeling perspective, we would like to incorporate as many key charac-

teristics of network infectivity as possible. Regarding within-community infectivity,

naturally, individuals affiliated with same communities would have more influence on

each other than individuals affiliated with different communities. This natural and

key observation inspires us to make an assumption that network infectivity among

users’ activities depends on how strongly each individual participates in his/her com-

munity activities. The network infectivity matrix is also asymmetric in that a node
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could have strong influence on another node but not vice versa. These popular nodes’

activities tend to trigger a wider wave of events.

Regarding cross-community infectivity, individuals in a community often share

some common understandings about individuals in other communities. For example,

people in a country X have some stereotype about people in country Y. Therefore,

a post by a person in country Y or about country Y will trigger certain common

responses from people in country X. This situation happens regularly in chat rooms,

blogs, and comment sections in the World Wide Web. The marginalization effect of

the latent group identity therefore implies a low-rank structure of network infectivity.

We also would like to incorporate this crucial observation in our modeling approach.

To proceed, let Zi = (zi1, . . . , ziG) > 0 be user i’s degree of participation to the G

groups. Furthermore, let βi > 0 represents how popular user i is on the network, a

celebrity index. We propose the following factorization of the infectivity of user j to

another user i’s activities

αij = βj⟨Zi,Zj⟩ = βj

∑G

g=1
zigzjg, i ̸= j.

As one could see, the more user i and user j participate in the same communities,

the stronger the infectivity is. Besides, the popularity of user j also boosts his/her

influence on user i’s activities. The decomposition also shows the asymmetry as well

as the low-rank implication of network infectivity. Note that, we only enforce the low-

rank structure on the off-diagonal elements of network infectivity. This is a crucial

difference in comparison to methods in matrix factorization literature.

Regarding the self-exciting property, we propose that one should not decompose

the self-exciting rate αii and that one should consider it as a model parameter to

infer from observed data. The reason is that self-exciting characteristic is an intrinsic

property of each individual that is unrelated to his/her relation with other individuals.

To keep the notation clear, we denote αi = αii, i = 1 . . . I.

To summarize, the previous reasoning leads to the following decomposition of the
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(a) Cross-group infectivity (b) Core group and peripheral nodes

Figure 3.1: Different network scenarios and the corresponding infectivity matrices.

intensity function

λi(t) = µi +

iℓ ̸=i∑
tℓ<t

G∑
g=1

βiℓzigziℓgκ(t− tℓ) + αi

iℓ=i∑
tℓ<t

κ(t− tℓ). (3.2.2)

Before we proceed, let us discuss some properties and advantages of this modeling

approach. First, the most obvious advantage is that the number of parameters to infer

from observed data is O(I × G) instead of O(I2) in the case of the original Hawkes

process. This reduction is very beneficial given the fact that one often does not have

infinite data. The reduction in number of parameters tends to make inference less

variant. Besides, fewer number of parameters implies less complexity per iteration

of the inference algorithm. Second, the decomposition of network infectivity αij still

has more space for extensions. For example, in social networks, one could defines

another decomposition that takes into account other activity’s feature such as the

post content and/or ratings. The interested reader could find some extensions to our

model in the supplemental material. Another interesting observation is that one could

factorize F into

F− diag(F) = ZZTdiag(β)− diag(ZZTdiag(β)).

This is a non-negative matrix factorization (NMF) of the off-diagonal elements of F

into the off-diagonal elements of ZZTdiag(β). Thus, one could view our modeling

approach as an implicit factorization of the infectivity matrix where the infectivity

matrix is unknown but we know the timestamps of users’ activities. One could easily

see that depending on the structure of the community participation Z, this point of
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view allows many interesting scenarios on network infectivity F. For example, cross-

group infectivity (Figure 3.1b); dominant rows/columns for a core group and that

peripheral individuals only connect via this core group (Figure 3.1c). Note that, in

these scenarios, network infectivity has a low-rank structure if we only consider the

off-diagonal elements. This factorization perspective opens more research directions

to investigate in the future.

The above reasoning inspires us to propose that one should conceptually views

network infectivity and community structure being two sides of the same problem. We

postulate that these characteristics intertwine and that knowing one characteristic of

the network should help better revealing the other. In the subsequent sections, we

will focus on the technical aspects of the proposed model. We will start with joint

likelihood definition.

3.2.2 Joint likelihood.

In this section, we will define the joint likelihood of the event data. First, we choose

a conjugate prior for the community participation matrix Z. As it turns out later,

we can choose a Gamma distribution, Gamma(a0g, b0g), as conjugate prior for each of

zig, i = 1 . . . I, g = 1 . . . G.

Let us assume that we observed set of C cascades {(tcn, icn)}, n = 1 . . . Nc, c =

1 . . . C, where t’s are the time of events and i’s are the identity of users. Given Z, the

likelihood of this set of cascades is [17]

L(t|Z) =
C∏
c=1

[
Nc∏
n=1

λc
icn
(tcn)× exp

(
−

I∑
i=1

∫ Tc

0

λc
i(t)dt

)]
,

where λc
i(t) is defined in Eq. (3.2.2) using history of events up to time t in the c-th

cascade. The joint likelihood, the basis of all derivations that follow, is1

L(Z, t) ∝ L(t|Z)×
∏I

i=1
P(Zi).

1It is possible to put prior distributions on µ,α,β and to work in full Bayesian fashion. However,
in this work, we only consider these parameters fixed for clarity.
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Figure 3.2: The simplified graphical model of the proposed Hawkes process: solid
circle indicates observed time-stamped data.

In Figure 3.2, we present the simplified graphical model corresponding to the pro-

posed Hawkes process. In later derivations of the proposed method, we will mainly

work with the log-likelihood (detailed expression in supplemental material). We will

first develop a method for inferring community participation Z from the observed

cascades, i.e. finding the posterior distribution P(Z|t).

3.3 Variational Inference

As the posterior distribution P(Z|t) does not have a nice factorized form, in order

to proceed, one could apply the mean field variational inference framework [77].

Specifically, we use an approximation distribution q to the posterior distribution on

Z such that Zi’s are independent,

q(Z) =
∏I

i=1
qi(Zi).

Remarkably, this is the only assumption that one needs on the approximation dis-

tribution q. The goal here is to find a distribution q as close as possible to the true

posterior distribution P(Z|t). To that end, one could utilize the following famous

decomposition of the likelihood of observed data

lnP(t) = Eq [L(Z, t)] + E [q] + KL (q∥P(Z|t)) ,

where E [q] is the entropy of q and KL (q∥p) = Eq [ln(q/p)] is the Kullback-Leibler di-

vergence between two distribution q and p. As one could see from this decomposition,
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the better Eq [L(Z, t)] + E [q] approximates the evidence of observed data, the closer

q is to P(Z|t).

3.3.1 Evidence lower bound.

In the followings, we will bound the the expectation of the joint log-likelihood Eq [L(Z, t)]

from below so that the inference of Z is tractable.

Theorem 3.3.1 (ELBO). The expectation of joint log-likelihood Eq [L(Z, t)] is lower-

bounded by ∑I

i=1

∑G

g=1
(a0g − 1)Eq [ln zig]− b0gEq [zig]

+
C∑
c=1

{
Nc∑
n=1

[
ηcn ln

µicn

ηcn
+ γc

n ln
(
αicn

∑icℓ=in
ℓ<n κ(tcn − tcℓ)

γc
n

)

+

icℓ ̸=icn∑
ℓ<n

G∑
g=1

ηgcℓn
{
Eq

[
ln(βicℓ

zicngzicℓgκ(t
c
n − tcℓ))

]
− ln ηgcℓn

}
− Tc

I∑
i=1

µi −
I∑

i=1

∑Nc

n=1
icn ̸=i

G∑
g=1

βicnEq

[
zigzicng

]
K(Tc − tcn)

−
∑I

i=1

∑Nc

n=1
icn=i

αiK(Tc − tcn)

}
,

in which for the n-th event in the c-th cascade, we have non-negative auxilliary

variables ηcn, η
gc
ℓn, γn such that ηcn +

∑icℓ ̸=in
ℓ<n

∑G
g=1 η

gc
ℓn + γc

c = 1.

The proof could be found in the Appendix. Next, we will optimize the distribution

q(Z) and other model parameters (i.e. µ,α,β). As we are going to see, the optimal

approximation to the posterior distribution turns out to have a nice factorization

form.

3.3.2 Inferring community participation.

Following the procedure in [77] for mean field variation inference, given the lower

bound in the previous section, the optimal distribution q⋆i (Zi) satisfies

ln q⋆i (Zi) = Eq−Zi
[L(Z, t)] + const,
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where the expectation is over all Zj, j ̸= i.

From the expression of ln q⋆i (Zi) (details in supplemental material), one could eas-

ily verify that the optimal distribution for Zi has a nice factorization into G Gamma

distributions. This is remarkable because we do not make any assumption on the

parametric form of the distributions qi(Zi)’s other than their independence. For each

zig, g = 1, . . . , G, one could update its Gamma distribution parameters as followings

aig = a0g +
∑C

c=1

∑Nc

n=1

∑
ℓ<n

ηgcℓnδ
ic
ℓn, (3.3.1)

big = b0g +
∑C

c=1

[∑Nc

n=1
icn ̸=i

βicnEq

[
zicng
]
K(Tc − tcn) (3.3.2)

+
∑

j ̸=i

∑Nc

n=1
icn=i

βiEq [zjg]K(Tc − tcn)

]
, (3.3.3)

where δicℓn =


1, icn = i, icℓ ̸= i or icn ̸= i, icℓ = i,

0, otherwise
.

The definition of δicℓn represents the influence of both past and future events on the

posterior distribution. The other terms involving K(·) come from the normalization

term (also known as the survival term in the field of survival analysis) of the likelihood.

3.3.3 Updating auxilliary variables.

After each update of q, one could further tighten the bound by the following update

formulas2

ηcn ∝ µicn , γc
n ∝ αicn

∑icℓ=icn

ℓ<n
κ(tcn − tcℓ), (3.3.4)

ηgcℓn ∝ βicℓ
κ(tcn − tcℓ)e

Eq[ln zicng]+Eq

[
ln zic

ℓ
g

]
. (3.3.5)

Note that, one needs to normalize these auxiliary variables so that their sum is equal

to 1. From Eq. (3.3.4), one could interpret these auxiliary variables as the responsibil-

ities of spontaneous rate µicn , the previous events from other users (i.e. the infectivity

2Given
∑

i xi = 1 and xi ≥ 0,∀i, the function
∑

i aixi −
∑

i xi lnxi attains maximum at x⋆i =
eai/

∑
j e

aj , ∀i.
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αicni
c
ℓ
), and the self-exciting rate αicn . In other words, these auxiliary variables are the

probabilities that the n-th event is triggered by these characteristics of the network.

3.3.4 Inferring individual parameters.

For each individual, we need to estimate the spontaneous rate, self-exciting rate, and

the celebrity index. As it turns out, these parameters also have the following nice

closed-form updates3

µi =

∑C
c=1

∑Nc
n=1
icn=i

ηcn∑C
c=1 Tc

, αi =

∑C
c=1

∑Nc
n=1
icn=i

γc
n∑C

c=1

∑Nc
n=1
icn=i

K(Tc − tcn)
, (3.3.6)

βi =

∑C
c=1

∑Nc
n=1
icn ̸=i

∑
ℓ<n
icℓ=i

∑G
g=1 η

gc
ℓn∑C

c=1

∑
j ̸=i

∑Nc
n=1
icn=i

∑G
g=1 Eq [zjgzig]K(Tc − tcn)

. (3.3.7)

Fortunately, one could compute the expectations in the updates (3.3.1), (3.3.4), and

(3.3.6) efficiently as z’s are Gamma random variables4. To summarize, Algorithm 3.1

outlines the steps of our proposed community detection algorithm, NetCodec. In the

output step, we output the mean of Gamma distributions Z = A∅B where ∅ is the

element-wise division operator.

Algorithm 3.1 NetCodec

1. Input: Set of cascades {(tcn, icn)n=1...Nc}c=1...C .

2. Initialization: A,B ∈ RI×G
+ , µ,α,β ∈ RI

+.

3. While not converged

(a) For all user i

i. Update i-th row of A and B using (3.3.1).
ii. Update auxiliary variables using (3.3.4).

(b) Update µ,α, and β using (3.3.6).

4. Output: µ,α,β,Z = A∅B.

3We use the general result a
b
= arg max

x≥0
a lnx− bx, ∀a, b > 0.

4Specifically, if z ∼ Gamma(a, b), E[z] = a
b , E[ln z] = ψ(a) − ln b, where ψ(·) is the digamma

function.
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3.3.5 Implementation issues.

Stopping criteria. The convergence detection involves computing the evidence

lower bound, ELBO, to Eq [L(Z, t)] + E [q], where E [q] is the entropy of the current

approximation distribution q. In our implementation, we stop the iterations when

the relative change of ELBO is below a threshold (e.g. 10−4). In our experience, the

algorithm often stops after less than 40 iterations.

Number of data sweeps. From Algorithm 3.1, we could see that, for every update

of Zi (i.e. the update of the i-th row of A and B), one needs to update the auxiliary

variables. This results in one sweep over the data for every update of Zi. However,

to scale to large number of individuals and lengthy cascades, one could leverage a key

observation on the evidence lower bound. That is, the lower-bound is valid for any

set of auxiliary variables. Using careful book-keeping technique, one could reduce the

number of data sweeps to one in order to update all Gamma distributions of all users.

Number of relevant historical events. The computation of the auxiliary variables

and the accumulation of the denominators and numerators of model parameters (i.e.

µ,α,β) involves a nested loop over indices ℓ of events that happened before the n-th

event leading to undesirable O(N2) complexity. This results in the complexity of each

iteration being proportional to N2, where N is the number of events in a cascade.

Luckily, one could skip irrelevant historical events where the kernel value κ(tn− tℓ) is

small because the corresponding auxilliary variables would also be very small. This

greatly reduces the complexity of the computation to O(kNG + IG) per iteration

where k is the average number of relevant historical events.

Speed up with parallelization. The computation of auxiliary variables for each event

is completely independent of each other. The accumulation of Gamma distribution

parameters as well as individual parameters are also independent. These observations

are great sources for a parallelized implementation.
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Number of clusters. One drawback of this modeling technique is the predefined

number of clusters. It is possible to address this drawback by using complexity

measure such as AIC or BIC score.

3.4 Experiment results
3.4.1 Performance Evaluation.

We evaluate the performace of the proposed method using the following criteria

• Normalized Mutual Information (NMI): We compare the estimated clusterings

Ω with the ground truth clusterings Γ using the NMI score

NMI(Ω,Γ) =
∑

k

∑
j P(Ωk ∩ Γj) log P(Ωk∩Γj)

P(Ωk)P(Γj)

(E [Ω] + E [Γ])/2
,

where Ωk,Γj is the k-th and j-th clusters in Ω and Γ, respectively, and E [Ω],

E [Γ] are their entropies. The NMI score is a value between 0 and 1, with 1

representing perfect cluster matching. To assign users to clusters, we use the

maximum elements in each row of Z.

• Kendall Rank Correlation (RankCorr): We compare the estimated celebrity

index β with the ground truth using the following score

RankCorr(x,y) = Nconcordant −Ndiscordant

I ∗ (I − 1)/2
,

where Nconcordant is the number of pairs of indices (i, j) that xi > xj and yi > yj,

or xi < xj and yi < yj. The RankCorr score is a value between -1 and 1, with

1 representing perfect rank matching.

• Relative error (RelErr): We compare the infectivity matrices F using the aver-

age relative errror of their elements. Specifically, we have

RelErr(F1,F2) =
1

I2

∑I

i,j=1
|α2

ij − α1
ij|/|α1

ij|
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Figure 3.3: Cross-group infectivity scenario: comparison to ground truth (left) aver-
age RankCorr of columns of network infectivity matrix; (middle) average RelErr of
elements of the infectivity matrix; (right) predictive log-likelihood on test data.

• Predictive log-likelihood (PredLik): We also compute the log-likelihood of a

hold-out test data set in order to show the predictive power of the compared

models.

Note that, because of the factorization, at best, one could only recover Z and β up to

a constant factor. Therefore, the NMI and RankCorr scores are more suitable criteria

than the absolute error or squared error when comparing the participation matrices

and the vectors of celebrity indices.

3.4.2 Synthetic data.

We start with experiments with simulated data where we know the ground truth

network infectivity. We generate the ground truth parameters Z,µ,α,β randomly

to satisfy certain stability conditions5. The parameters form a network of 500 nodes.

We then generate event cascades with different time frame length settings and also

generate a hold-out set of the same size to use as test set. The time frame lengths are

(103, 5 × 103, 104, 5 × 104, 105, 5 × 105, 106). In total, there are about 3 × 105 events

when T = 106. We run each experiment 10 times and take the average of the scores

over all the 10 runs. We then verify the convergence of the proposed method by

varying the time frame of the simulations.

5The spectral norm of F is less than 1.
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Figure 3.4: Core group scenario.
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Figure 3.5: Clustering results on MemeTracker dataset.

We generate data according to two scenarios:

• The nodes form 10 clusters and there are some cross-group infectivity.

• There is a core group and the remaining nodes only connect via this core group.

In Figure 3.3 and 3.4, we report the performance of the proposed method in com-

parison with the Hawkes MLE solver (denote HAWKES in the figures) in [87] in the

two aforementioned scenarios. The figures show that both NetCodec and HAWKES

are able to increase their performance when the time frame length increases. How-

ever, in comparison to the ground truth, NetCodec outperforms HAWKES in all

performance measures given the same time frame length. This could be attributed to

the fact that NetCodec models the low rank assumption directly and as a result, it

needs to estimate fewer parameters, hence the better performance in both area. Es-

pecially in the case that there is a core group (Figure 3.4), there are a lot of near zero
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elements in the infectivity matrix making accurate recovery of these elements very

difficult. This explains the high RelErr that both algorithms encounters. However,

when there are enough data, NetCodec is able to recover the infectivity matrix much

better than HAWKES.

In Figure 3.3d, we show that NMI score of NetCodec and HAWKES with respect

to the ground truth clusterings. As HAWKES provides no clustering, its clusterings

are computed via a spectral clustering [65] of the infectivity matrix. One could see

that while both algorithms are able to recover the clusterings with enough data,

NetCodec outperforms HAWKES when data are insufficient.

3.4.3 Real-world event data.

MemeTracker. We extract events of the most active sites from the MemeTracker

dataset6. This dataset contains the times that articles are published in various web-

sites/blogs from August 2008 to April 2009. We select most active 500 sites with

about 8 million events from these sites.

We use the MemeTracker data provided links between articles to establish an

estimated ground truth of the clusters. To this end, we count the number of links

between all pairs of sites to build a similarity matrix. We then run a spectral clustering

algorithm [65] on this similarity matrix with different settings on the number of

clusters. While one could choose the number of clusters based on model scores (i.e.

data log-likelihood plus model complexity) such as Bayesian or Akaike information

criterion, here, for demonstration purpose, we set the number of clusters to be 10 and

20. We then run NetCodec and HAWKES on the timestamped data only (i.e. without

the link information) to find out if these algorithms could recover the estimated

ground truth clusterings. As mentioned in the experiments on synthetic datasets,

6http://www.memetracker.org/data.html
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the clusterings for HAWKES are computed via spectral clustering on the estimated

infectivity matrix.

In Figure 3.5b and Figure 3.5b we shows the NMI scores of these algorithms with

respect to the ground truth estimated from the similarity (count) matrix when the

number of clusters set to 10 and 20. One could see that in both settings NetCodec is

able to recover part of the clusterings while HAWKES fails on this dataset.

In Figure 3.5c, we visualize the clustering result (i.e. the participation matrix Z).

Detailed examination (Figure 3.2) of the clusters produced by NetCodec shows some

consistent clusters spanning common categories. Examples of clusters found by Net-

Codec and their respective popular websites having with high celebrity index are news

(reuters.com, npr.org), business (businessweek.com, forbes.com, cbsnews.com), and

technology (hardwarezone.com, digitalcamerareview.com). There are consistent clus-

ters with nationality identity such as Brazilian sites, Japanese sites, Italian sites. One

should note that the clusters are formed using purely timestamps of activities/events

happened on this sites. The results show that the activities on these sites allow us to

group them into meaningful clusters.

Earthquake. The next dataset that we investigate is the Earthquake dataset7.

We download 16000 earthquakes that have minimum magnitude 4 in the 12 months

from Oct. 2013 to Oct. 2014. The earthquake information contains location (i.e.

longtitude, lattitude) and timestamps in seconds (see Figure 3.6, red dots are big

cities, colored bigger dots are earthquake locations). In this experiments, we only use

the timestamps of the earthquakes (divided by 3600 to convert to hours) as input

to the inference algorithms to investigate if timestamped information results in a

coherent clustering. To establishes the identities of events (i.e. the i’s variables), we

draw a longtitude/lattitude grid on the global map and all earthquakes that occur in a

grid square (of size 2×2) will have same identity. In total we have 1021 identities and

7http://earthquake.usgs.gov/earthquakes/
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Table 3.2: Representative sites (high celebrity index) in 10 clusters.

Cluster 1 Cluster 2 Cluster 3 Cluster 4
seattle.craigslist.org ameblo.jp economia.uol.com.br latimes.com
sfbay.craigslist.org blog.livedoor.jp noticias.uol.com.br cnn.com

losangeles.craigslist.org rss.rssad.jp esporte.uol.com.br reuters.com
newyork.craigslist.org pheedo.jp
sandiego.craigslist.org
boston.craigslist.org

Cluster 5 Cluster 6 Cluster 7 Cluster 8
businessweek.com ar.answers.yahoo.com torrentportal.com cbsnews.com
news.google.com it.answers.yahoo.com torrentz.com telegraph.co.uk

financial.de fr.answers.yahoo.com torrentreactor.net
forbes.com de.answers.yahoo.com
Cluster 9 Cluster 10

google.com topix.net
chicagotribune.com indeed.com

thefacts.com indiatimes.com
boston.com

our goal is to classify these identities into clusters. We run NetCodec with exponential

kernel (λ = 0.04) and report the clustering result in Figure 3.6. The parameter λ was

chosen to be the average occurence rate of the identities.

One could see that there are geological regions where earthquakes form clusters.

This is remarkable as we use only timestamped information. The location information

are used only to form identies and then discarded. More detailed discussion could be

found in the Appendix.

Our model only works with timestamp information of the earthquakes. It is

possible to augment the proposed model to incorporate more information such as

magnitude, location. The possible directions that we want to explore in the near

future are

• Using a different triggering kernel function that take into account the additional

information, after all, the triggering kernel function could be considered as

similarity function between events.
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Figure 3.6: Clustering results on Earthquake dataset.

• Using a different factorization of the intensity function similar to what was

discussed in previous sections.

3.5 Conclusion

In this work, we propose that one could infer the network of social influence along with

its community structure from the observed recurrent events in the social networks.

To that end, we utilize the key observation that regular activities often raise influence

among users in the same group. The proposed model based on the Hawkes model is

designed to take into account this observation and other assumptions such as the low-

rank structure. The inference algorithm following the mean-field variational principle

nicely consists of closed form updates that could be sped up by various implementation

techniques including parallelism. The experiments on simulated dataset show that

the proposed model could estimate both network infectivity and and community

structure and produce better predictive model with less training samples than the

baseline methods. Experiments on real dataset show that the proposed method are

able to produce meaningful clusters using only activities from websites.

There are interesting paths to extend this study: First, we plan to investigate the

extensions that cover other features of an event, for example, document content and

ratings. The content and ratings effects on community structure could be expressed

in the factorization of the influence between events. Moreover, it is also interesting

to incorporate the memes/trends and community structure in one model.
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CHAPTER IV

INTERVAL-CENSORED INFERENCE

4.1 Introduction

Recently, multi-dimensional Hawkes processes have been shown to be an effective

method to model the self-exciting property — an existing event can trigger future

events — which exists in a lot of natural and social phenomena, such as disease

epidemics and information propagation in social networks. Hawkes processes are

quite different from the well-know Poisson processes whose memoryless property (i.e.

number of events after time t is independent of the number of events before time t)

restricts one from modeling the long range influence of individual events over time.

Existing algorithms to estimate the parameters of multi-dimensional Hawkes pro-

cesses rely on the exact time-stamps of the events (the times at which the individual

events occur). For several applications, this type of information is readily available;

for example, Twitter can use its logging system to record the exact time when a user

posts a tweet or when a user retweets a tweet from another user; it can also export

the information to a third party through a well-designed API. However, in other real

world applications, it is usually difficult or even impossible to obtain these exact

time-stamps due to limitations in resources, technology, or user privacy. Instead, it

is relatively easy to obtain interval-censored event data, i.e., the aggregated number

of events over time intervals, in a lot of applications. For example, for search engines,

it is usually difficult to know the exact time-stamps of newly created links. However,

by comparing the snapshots from two crawls of a web graph, it is easy to obtain

how many new links that a certain page has obtained during the corresponding time

period. Similarly, in disease epidemics research, it is often impossible to obtain the
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exact time of the infections, but the aggregated statistics during a certain time period

are easily available. In these cases, traditional maximum likelihood estimator (MLE)

for Hawkes process models is not applicable since the exact time stamps are not

available. This drawback largely limits the applications of multi-dimensional Hawkes

processes, which is a quite unsatisfactory situation considering the importance of

these applications.

Can we estimate the parameters in Hawkes processes based on interval censored

event data? Although MLE for Poisson processes with interval-censored data has

been derived for the likelihood [71, 31], these analysis frameworks are not applicable

to Hawkes process models. One challenge is that it is not easy to formulate the

likelihood function of interval-censored data for Hawkes process models. A second

challenge is that the memoryless property of Poisson processes, which is key to its

tractability, is not present in Hawkes process models.

To address these challenges, we propose a latent variable model where each cen-

sored event is associated with a hidden time-stamp. Furthermore, we propose a new

machine learning algorithms, based on Monte-Carlo EM, that expands the capability

of Hawkes process models to handle interval-censored event data. In the Monte-Carlo

EM, we sample the event time-stamps (hidden variables) based on current estimates

of the model parameters and observed event counts, and then use the sampled event

times to re-estimate the model parameters. One key technical challenge is how to

sample the event time-stamps given the event counts in an interval, since all event

time-stamps are inter-dependent. We propose a Gibbs sampling algorithm, which we

show that it produces much higher quality samples compared to four simple base-

lines sampling methods. This increased quality of the samples also leads to increased

quality of the estimated parameters.
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4.1.1 Related Works

The Hawkes process [39] is an important model for capturing the self and mutual

exciting properties of temporal event data. Hawkes processes have been used to model

association of temporal events in various fields, such as finance events [29], seismic

events [66, 59], social interactions [61, 87], crime modeling [70], civilian deaths in

conflicts [54], and recently causal militant conflict events [55].

Beside situations where exact time-stamp data are avaiable , interval-censored

situations where the exact time-stamps are not available are also abundant. For

example, disease/epidemiology studies often encounter situations where patients are

assessed only at pre-scheduled visits. Therefore, the exact time of infection is only

known to happen between the last visit and the following visit. Parameter estimation

using interval censored data for simpler point processes mainly focuses on the Poisson

processes [71] using the maximum likelihood estimator (MLE) [71] or local likelihood

[31]. Non-parametric approaches for non-homogeneous Poisson processes use the

pseudo MLE [72] or full MLE [76]. Consistency for the MLE has been established

in some special cases [76]. However, one disadvantage of the Poisson processes is the

memoryless property by which number of events after any time t is independent of the

number of events before time t. This restricts one to model influence of individuals

over time.

Multiple imputation (MI) [69] is a general framework to stochastically impute in-

complete or missing data from the current model in order to build a surrogate dataset

of observations. Tanner and Wong [73] explore the notion of MI for nonparametric

estimation of the hazard function using grouped and interval-censored data. While

there has been many studies on multivariate interval-censored data [13], [52], current

literature still lacks analysis of social interval-censored data where events of an indi-

vidual have influence on later events of him or herself and other individuals. Next,
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we will discuss the Hawkes process, its maximum likelihood estimator, the interval-

censored data estimation problem and the imputation approach for this problem.

4.2 Estimation from Interval-censored Data

Recall from Chapter 2, the intensity functions for an U -dimensional Hawkes processes

is

λ∗
u(t) = µu +

∑
i:ti<t

auui
g(t− ti), (4.2.1)

where µu ≥ 0 is the base intensity for the u-th Hawkes process and g(t) is the decaying

kernel. For m cascades where each cascade c = 1, 2, . . . ,m is a sequence of events

observed in the time interval [0, Tc] in the form {(tci , uc
i)}nc

i=1, the log-likelihood is

L(Θ) =
∑
c

 nc∑
i=1

log

µui
+
∑

j:tj<ti

auiuj
g(ti − tj)


−Tc

U∑
u=1

µu −
U∑

u=1

nc∑
j=1

auuj
G(Tc − tj)

]
. (4.2.2)

where G(Tc − tj) :=
∫ Tc

0
g(t− tj)dt.

When the exact timestamps are given, one could use the MLE algorithm described

in Chapter 2 to estimate the parameters. However, the MLE algorithm does not work

when the event are interval-censored. In the next section, we will discuss this interval-

censored estimation problem.

4.2.1 Problem statement

Let us partition the observation window [0, T ] into K non-overlapping interval [ai, bi), i =

1, 2, . . . , K. The counting process Nt is not continuously observed in [0, T ]. Instead,

only the panel count ciu (or the number of events in u-th dimension) in the interval

[ai, bi) is available. Let ci = (ciu)
n
u=1 be the count vector in the i-th interval and
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C = (c1, c2, . . . , cK). We need to find the parameters that maximizes the likelihood

of the interval-censored data.

Θic = arg max
Θ
Lic(Θ) , logP (C;Θ). (4.2.3)

Since the event time-stamp and dimension are not observed, we introduce latent

variables t and u to account for that. The maximization in Eq. (4.2.3) is harder to

optimize than the maximum likelihood of the complete data (i.e. with exact time-

stamps) in Eq. (??) because of the integral in P (C;Θ):

Lic(Θ) = log
∑

u

∫
t
P(t,u,C;Θ)dt,

where P(t,u,C;Θ) equals to the likelihood of the complete data (see Eq. (4.2.2))

whenever t,u satisfies the count C and equals to 0 otherwise.

4.2.2 Monte-Carlo EM

Considering t,u as hidden variables and C observed, and following the EM paradigm,

at iteration k, we have

• E-step: The posterior distribution

P(k) ≡ P(t,u|C;Θ(k)).

• M-step:

Θ(k+1) = arg max
Θ≥0

Q(Θ;Θ(k)) , EP(k) logP(t,u,C;Θ).

Even with closed form posterior distribution in the E-step, direct maximization in the

M-step is still intractable because of the integral in expectation. The Monte-Carlo

EM (MC-EM) algorithm [75, 53], a modification of the EM algorithm in which the

expectation in the M-step is computed numerically via sampling, could potentially

overcome this obstacle. Once the samples are available, the empirical M-step becomes

max
Θ≥0

QMC(Θ;Θ(k)) , 1

S

S∑
s=1

logP(ts,us,C;Θ), (4.2.4)
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Algorithm 4.1 Parameter estimation via imputation
Input: ai, bi, ciu, i = 1 . . . K, u = 1 . . . U
Initialize Θ(1) = (µ(1),A(1))
for k = 1, 2, . . . do

Impute t,u satisfying the counts C (Algs. 4.3, 4.2).
Re-estimate Θ(k+1) with MLE solver.

end for

where ts,us are samples following the posterior distribution P(t,u|C;Θ(k)), and S is

the number of samples. One could easily notice that the solver for the MLE problem

(??) could be re-used with minor changes in order to solve problem (4.2.4). The

advantage of using the MC-EM algorithm is that we could re-use high performance

solver tailored for the Hawkes MLE problem discussed in the previous section. We

summerise the MC-EM algorithm for interval-censored data in Algorithm 4.1. In the

following, we will discuss the sampling methods for the distribution in the E-step.

4.3 Posterior distribution in E-step

Let a sample t = (t1, t2, . . . , tn) be a sample from Hawkes process and let us define a

mapping

Λu(t) =

∫ t

0

λ∗
u(s)ds.

Let ciu =
∑

1ti∈[ai,bi),ui=u,C = (c1, c2, . . . , cK), and dui =
∑

1Λ(ti)∈[Λ(ai),Λ(bi)),ui=u,D =

(d1,d2, . . . ,dK). By the time-change theorem [7, 18], Λu(t) = (Λu(ti))ui=u is a Pois-

son process with unit intensity. Because Λ(·) is a monotone, one-to-one mapping, we

have

P t(C) = P Λ(D = C)

=
K∏
i=1

U∏
u=1

exp
{
−Λu(t)

∣∣bi
ai

} (
Λu(t)

∣∣bi
ai

)ciu
ciu!

,

=
K∏
i=1

U∏
u=1

exp
{
−
∫ bi
ai
λ∗
u(t)dt

}(∫ bi
ai
λ∗
u(t)dt

)ciu
ciu!

,
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where Λu(t)
∣∣bi
ai

= Λu(bi)−Λu(ai) and
exp

{
−Λu(t)

∣∣∣biai }(Λu(t)
∣∣∣biai )ciu

ciu!
is the probability of ciu

events in the interval [Λu(ai),Λu(ai)) under unit intensity Poisson process.

The posterior distribution of a sequence of events given the panel count could be

computed via the Bayes formula by dividing P t(C) from the exponential of the log-

likelihood in Eq. (4.2.2). Noticing that the exponentials cancel out and the counts

are constant, we have

P (t, u|C) =
P (t, u,C)

P (C)

=
K∏
i=1

∏
tj∈[ai,bi)

λ∗
uj
(tj)∫ bi

ai

λ∗
uj
(t)dt

× const. (4.3.1)

4.4 Sampling methods for M-step
4.4.1 Gibbs sampling

The difficulty in sampling given the count of events lies in the fact that all λ∗
u(t)’s

depend on the history of events before time t and that the number of hidden random

variables (i.e. the events) is large. At first sight, one may consider sampling using

the Metropolis-Hastings (M-H) algorithm. However, with large number of events,

the MH algorithm needs to discard many samples (jumping) in order to get rid of

correlated samples. Furthermore, the jumping width is also a heuristic that often

requires manual tuning. Let us consider a more tractable version of M-H algorithm

which is the Gibbs sampling algorithm [10]. In our case, the Gibbs algorithm needs the

conditional probability of an event given other events, p(tj,u|t−j). This conditional

probability is not readily available. Instead, we could compute joint density p(t,u) =

const× p(tj,u|t−j) which is the likelihood of the timestamps (exponential of the log-

likelihood in Eq. (4.2.2)). The new timestamp t′j could be sampled using Metropolis-

Hastings algorithm in one dimension. Specifically, we sample t′j using a proposal

distribution Q(t′j|tj) around tj. This distribution should have support on [ai, bi], the
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Algorithm 4.2 Imputation with Gibbs sampling
Input: µ,A, ai, bi, ciu, i = 1 . . . K, u = 1 . . . U
Initialize: Generate t,u satisfying C with RAND.
for i = 1, 2, . . . , K do

for u = 1, 2, . . . , U do
for j = 1, 2, . . . , ciu do

Sample t′j from proposal distribution Q(t′j|tj)
Compute α = P (t′,u)

P (t,u)
if α ≥ 1 then

Accept t← t′.
else

With probability α, accept t← t′.
end if

end for
end for

end for

interval containing the timestamp tj. In the experiment, the proposal distribution

Q(t′j|tj) is chosen to be uniform on [ai, bi]. With Metropolis-Hastings sampling, we

accept the new timestamp based on the ratio α = p(t′)
p(t) . If α ≥ 1, we accept t′j,

otherwise we accept only with probability α. The detailed steps for Gibbs sampling

is provided in Algorithm 4.2. We also denote this sampling method GIBBS. The

most important property of Gibbs sampler is that the random sequence it generates

forms a Markov chain with stationary state being the joint distribution P (t,u|C). To

achieve a close approximate of the stationary distribution, one needs to ignore some

samples generated at the beginning (we skip 100 samples).

4.4.2 Approximate sampling

We next discuss a few simple heuristic sampling methods which will be used as base-

lines.

• Mid-point (MID): The first method one could think of is to impute all times-

tamps at the mid-point of their corresponding intervals. Although this method

is naive, it still has potential when the interval size is small, as smaller the

interval size is, the more exact the timestamps are regardless of the simulation
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method.

• Equal-spacing (EQUAL): The second simple sampling method we will use as

baseline is to sample all timestamps that are equally spaced in the corresponding

interval. Specifically, let there be ci =
∑

u ciu timestamps in interval [ai, bi].

The distance between timestamps will be di = (bi − ai)/ci. One could set the

timestamps at tj = ai + jdi − di/2 for j = 1, 2, . . . , ci. The identities uj of each

timestamps are set randomly so that there are ciu events in dimension u.

• Uniformly random (RAND): The third sampling method is inspired by an im-

portant result for Poisson processes [18]. It states that given the count, the

timestamps from a homogeneous Poisson process is uniformly distributed on

the interval. Although our process is not homogeneous Poisson, one could still

use it as a baseline. In this sampling method, one samples ci timestamps from

the uniform distribution U [ai, bi]. The identities of these events are also selected

randomly satisfying the count ciu for each dimension u.

• Intensity-based simulation (INTSIM): The fourth method is based on the in-

tensity function of the Hawkes process. The main difficulty in sampling is that

the intensity function is not known because it depends on the samples itself.

Equation (4.3.1) suggests a simple sampling method: At the beginning of each

interval, we form the density function λu∗(t)∫ bi
ai

λ∗
u(t)dt

, t ∈ [ai, bi] for each dimension u.

Then one could sample ciu timestamps from this density for events in dimension

u in this interval. We denote this method INTSIM (Algorithm 4.3).

4.4.3 Quality of sampling methods

Let us first discuss an intuitive result on the quality of the previously discussed

sampling methods. In order to verify how a sampling method works, one could

again leverage the time change theorem. It states that, using the time-mapping
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Algorithm 4.3 Intensity based imputation
Input: µ,A, ai, bi, ciu, i = 1 . . . K, u = 1 . . . U
for i = 1, 2, . . . , K do

for u = 1, 2, . . . , U do
Compute λu(t), t ∈ [ai, bi)
Sample ciu events of dimension u in [ai, bi) with probability density propor-
tional to λu(t).

end for
end for
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Figure 4.1: Quality of different simulation methods for 2D Hawkes process: QQ-
plot of samples from different simulation method (after a time-change mapping) in
comparison to the exponential distribution with mean parameter 1. Each row corre-
sponds to one dimension of the 2D Hawkes process. GIBBS sampling method matches
Exponential distribution up to the third quantile.

Λu(t) =
∫ t

0
λ∗
u(τ)dτ , the mapped timestamps Λu1(t1),Λu2(t2), . . . ,Λun(tn) of a

casacde {(ti, ui)}, i = 1, . . . , n is U independent homogeneous Poisson processes

with uniform intensity 1. This provides a neat way to verify the quality of

the sampling methods because the difference between two consecutive mapped

timestamps in the same dimension should follow Exponential distribution with

mean parameter 1. Figure 4.1 shows the qq-plot of samples from the previ-

ously discussed sampling methods with respect to the Exponential distribution.

One could see that the GIBBS matches Exponential distribution better at the

expense of more intensive computation. INTSIM and RAND provide good ap-

proximation while EQUAL and MID are worse. This shows that the Gibbs

sampler is a good candidate for using in the MC-EM framework. The reason
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Figure 4.2: Effect of interval size on the estimation quality.

for its better quality lies in the fact that it samples timestamps based on all

past and future timestamps while other methods use only the current interval

or past timestamps. In the next section, we will investigate empirically if this

intuitive result holds while using the sampling methods as sub-routines in the

MC-EM algorithm to estimate Hawkes processes parameters.

4.5 Experiments
4.5.1 Synthetic data

We first investigate the capability of our proposed methods in comparison with known

ground truth parameters using synthetic data.

Evaluation metric. We use the relative error to measure the performance of

the methods. RelErr is defined as the averaged relative error between the estimated

parameters and the true parameters,

euv =


|auv−a′uv

|auv | , auv ̸= 0

a′uv, auv = 0

,RelErr = 1

U2

U∑
u,v=1

euv.

To show the confidence of the reported measures, we repeat all following experi-

ments 10 times and compute the average. The standared deviation is shown as error

bars in the graphs.

Interval-censored data. We generate event data from a U -dimensional Hawkes

process with U = 10 with the true parameters µ and A with random nonzero elements
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following uniform distribution Uniform(0, 1/U). The nonzero elements of A are cho-

sen randomly. The influence matrix A is then scaled so than its spectral radius is 0.8

to ensure that the point process is well-defined, i.e., with finite intensity. Then, 100

cascades are sampled from the multi-dimensional Hawkes process specified by (µ,A)

with observation window T = 100. While we have tried other kernel functions with

similar results, in the following experiments, we focus on the exponential triggering

kernel g(t) = λe−λt and generate cascades with mean parameter λ = 1.

In this experiment, we investigate the capability of the simulation methods in

reconstructing the ground truth parameters from interval-censored data. To this end,

we censored the 100-cascade data described above with different interval size I =

1, 2, 5, 10, 20. We include in the comparison 5 simulation methods: GIBS, EQUAL,

RAND, INTSIM, and MID described in previous section.

Figure 4.2 plots the accuracy of the estimated µ and A from the methods we

proposed. All methods perform well when the interval size is small. This is expected

because when the interval size is small, especially when smaller than the mean pa-

rameter λ, all simulation methods, even the naive ones could guess the location of the

events on the time-line accurately. Except for GIBBS, all baseline methods perform

much worse when the interval size increases. When the interval size raises to 20, the

relative errors on A of EQUAL and MID are more than 0.8 meaning that they cannot

recover any ground truth parameter at all. RAND and INTSIM still could recover

part of the parameters. GIBBS shows outstanding performance as it is much less

sensitive to interval size than other simulation methods.

Partially censored data. In this experiment, we investigate the effects of the

proportion of censored interval on the quality of the estimation. Given p ≤ 100 and

number of intervals K, we randomly choose ⌊pK/100⌋ intervals to be censored from

the algorithm. Exact timestamps of events in the remaining intervals are known to

the algorithm. Figure 4.3 shows the effects of p on the estimation accuracy. It again
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Figure 4.3: Relative error with respect to the percentage of cencored intervals.

shows that MC-EM with GIBBS sampling method is less sensitive to the number

of censored intervals. The relative error of GIBBS increases much less than that of

the baseline methods when p increases. Another observation is that MC-EM with

GIBBS sampling provides close solution to the solution when all timestamps are

known exactly (i.e. MLE with uncensored data, or p = 0). This is desirable as it

shows one still can estimate Hawkes processes parameters with reasonable accuracy

using only the counts of events.

4.5.2 Karate club’s network

We evaluate the proposed methods on a real-world graph, the Karate club’s graph1

[83, 58]. This graph represents the social network of friendships among 34 members of

a karate club at a US university in the 1970s (Figure 4.4). We use the degree of each

node to generate a matrix A of influence between club members. We then generate

events following a Hawkes process (µ,A) in observation window T = 1000. The

events are interval-censored in equal-length intervals 0 : 20 : 1000. We then threshold

the estimated matrix A from the MC-EM algorithm to generate an estimated graph.

We compute the true positive (TP) and true negative (TN) measures

TP =
#correctly detected edges

#edges ,

TN =
#correctly detected non-edges

#non-edges .

1http://www-personal.umich.edu/ mejn/netdata/
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Figure 4.4: Karate club’s graph [83].
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Figure 4.5: ROC curves: True Positive (detected edge) vs. True Negative (detected
non-edge) on the Karate graph.

Figures 4.5 shows the ROC curves when varying the threshold. The MID sam-

pling method while being worse than other methods, performs reasonably well. The

GIBBS sampling method outperforms other approximate methods while the INTSIM

method is slightly better than RAND. This shows that the closer one samples from

the true posterior distribution P (t,u|C) the more accurate the parameter estimation

is. However, one should note that the best performance of GIBBS is achievable at

the expense of more intensive computation than the baseline methods.

We also carried out further experiments with real-world networks and data namely

the MemeTracker dataset2 and the American college football network3 [35]. The

interested reader could find more details in the supplement material.

2http://www.memetracker.org/
3http://networkdata.ics.uci.edu/data.php?id=5
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4.6 Conclusion

In this paper, we propose to infer the network influence from the interval censored

events of user activity in the social networks. The underlying event triggering mech-

anism is modeled by the self-exciting multi-dimensional Hawkes process which is able

to capture the temporal patterns of user behavior under influence of other users.

We propose an imputation approach in which events are sampled under the count

constraints and the maximum likelihood estimator is utilized to re-estimate the pa-

rameters. We then propose a Gibbs sampling method that could impute timestamps

given the count of events. The proposed method is compared to four baseline sampling

methods that not only have good intuitions but also reasonably good performance

on test data. The experiment results show that the proposed method is able to esti-

mate the influence among nodes when only counts of events in observed intervals are

available.

There are several interesting directions for future studies: First, we would like

to make the proposed Gibbs sampling method more efficient as it now has to cycle

through the timestamps without any parallelization. This is contrary to the MLE

solver for Hawkes process which could be sped up tremendously via parallel imple-

mentation. Second, we plan to investigate a variational inference approach in which

events could be sampled from a simpler distribution to compute a lower bound of the

likelihood of the data. Moreover, we can also investigate a problem of estimating the

parameters with left censored data (i.e. no information on the first events).

63



CHAPTER V

CLICK-TO-CONVERSION MODELING

5.1 Introduction

Today online advertisement campaigns are generating huge amount of data about

customers online shopping behavior. It is the desire of both publishers and and ad-

vertisers to leverage this new source of knowledge to evaluate the effectiveness of an

advertisement campaign, and also to improve their return. Traditionally, advertise-

ment market mostly based on long-term contract between advertisers (i.e. who need

to sell a product or service) and publishers (e.g., newspaper, search engine). Recently,

demand-side platforms (DSB) and real-time bidding exchanges (RTBs) gradually be-

come the dominant alternative due to increased liquidity for publishers, and increased

audience targeting capabilities for advertisers [11].

There are various pricing options that the publishers offer to the advertisers on the

advertisement markets. In this work we primarily works with the cost-per-conversion

(CPA) scheme. This pricing scheme allows the advertisers to pay only if the customer

takes a specific action on their website after clicking on the advertisement provided

by the publishers, i.e. a conversion. This is different from the cost-per-click (CPC)

scheme where the advertisers pay for every click. It is therefore critical for the adver-

tisement markets to have reliable estimate of the conversion rate (i.e. the expected

number of conversions per click) so that the advertisers could compute a good bid for

the advertisement.

The understanding and modeling of customers’ behavior is therefore crucial to
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judge the effectiveness of an advertisement campaign and to provide reliable predic-

tion on future conversion volume. In this work, we aim at modeling the product adop-

tion process from the customers’ first impression with the product (i.e. the customer

clicks on an advertisement) to the moment that they convert (i.e. buying/adopting

the product). We show that one could model the click-to-conversion mechanism as a

thinning process [17] and that there is an efficient inference algorithm to learn this

thinning process from given data.

The organization of this chapter is as followings. In the next section, we will in-

troduce our click-to-conversion model using Hawkes processes and thinned processes.

In Section 5.3, we proposed an efficient Maximum Likelihood Estimation algorithm.

In Section 5.4, we report the experiment on real life data that verify the proposed

models. In Section 5.5, we conclude the chapter with some remarks and future works.

5.1.1 Terminology

The following terminology are used throughout this chapter.

• Advertisement: A set of features consists of advertisement features (e.g. movie,

text) and customer features (e.g. age, gender).

• Impression/Click: the moment a customer looks at an advertisement and click

on it.

• Conversion: the moment a customer buy or adopt a product or service.

• Advertisement campaign: a set of impressions and conversions.

• Click-to-Conversion rate: The expected number of conversion per impression.

• Click-to-Conversion delay: The duration from a click to the related conversion.
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Figure 5.1: Click (blue) and conversion (green) counts per hour, conversion rate per
hour, and delay distribution of an advertisement campaign in the Criteo lab data.

5.2 Model

In the following, we demonstrate our proposed model using the Criteo labs data1. This

data consists of advertisement campaign logs by the Criteo lab in about two months.

The timestamps of clicks and related conversions (if any) along with the features

of the impressions are recorded. Figure 5.1 shows statistics of a campaign and the

click-to-conversion delay distribution of a campaign. Figure 5.2 shows examples of

ad campaigns in a selected period (21 days).

From Figure 5.1 and Figure 5.2, we have the following observations. Firstly, we see

that Click and Conversion behavior is periodic, there is a similar pattern everyday

1http://labs.criteo.com
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Figure 5.2: Examples of ad campaigns: Number of clicks and number of conversions
per hour in 21 days.
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(low volume at night, higher volume during the working hours). Secondly, each

campaign has a different click-to-conversion rate. There are two possible reasons for

this behaviour

1. The first reason is that the features of the ads change from campaign to cam-

paign (i.e. each campaign covers a different feature region in the feature space).

2. The second reason is that the click-to-conversion mapping (or function) changes

from campaign to campaign. For example, each campaign has a different weight

vector for the features.

Finally, one could see that the click-to-conversion delays mostly concentrate in the

first few hours. It is therefore could be approximated by an exponential distribution.

Before we proceed with the detail of our model, we need to introduce some nota-

tions that we will use throughout this chapter.

• An impression/click is a pair (tn, xn) where tn is the click time, xn is the features

of the impression (indexed by n).

• A click may lead to a conversion. In that case, the conversion time is denoted

by τ .

Our main assumption is that one does not know which click is related to a specific

conversion. Therefore, the data consists of a set of clicks {(tn, xn)} and a set of

conversions {τℓ}. This assumption is different from [11] where each conversion is

associated with a specific click. Our assumption results from the fact that a customer

may click on the advertisement many times before adopting the product.

We propose that one could consider the click timestamps and the conversion times-

tamps two different temporal point processes. As a click may result in a conversion

or not, the conversion process could be considered as a thinned process [17] of the

click process. The thinning mechanism is described in the followings.
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Inspired by previous works, we use two parametric models

• An impression (tn, xn) has click-to-conversion probability p(xn) that only de-

pends on the features xn. Most previous works used the logistic model

p(xn) =
1

1 + e−⟨wc,xn⟩
, (5.2.1)

where wc is a weight vector.

• If converted, the delay from click time tn to conversion time τ has distribution

κ(τ − tn, xn) that depends on the delay τ − tn and also the features xn. In [11],

the author suggests an exponential distribution with the rate parameter r(xn)

depending on the feature xn as followings

r(x) = e⟨wd,x⟩, κ(δ, x) = r(x)e−r(x)δ. (5.2.2)

To restrict the power of the proposed model and avoid over-fitting, one could use

regularization on wc and wd. In this work we use the ℓ2 regularization

Ω(wc, wd) =
γ

2
(∥wc∥2 + ∥wd∥2).

5.2.1 Click modeling

Inspired by the Hawkes processes modeling of financial transactions, we propose that

one could model the click events using Hawkes processes. Hawkes processes are point

processes that model the rate/intensity of new events using the occurrence of past

events. This model is based on the assumption that a click increases the chance of

future clicks in an advertisement campaign. Specifically, the let ξ(t) be the intensity

of click at time t (see Figures 5.3, 5.4, 5.5), we use the model

ξ(t) = ξ0 + β
∑
tn<t

g(t− tn). (5.2.3)

where g(t) = ωe−ωt is the triggering kernel function, ξ0 is the base intensity, and β is

the coefficient connecting past click events with future click events.
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5.2.2 Click-to-Conversion modeling

Similarly, let λ(τ |t) be the intensity of conversion at a time τ given the past click

events (not to be confused with click-to-conversion rate p(xn)). We propose that

λ(τ |t) = µ+ α
∑
tn<τ

p(xn)κ(τ − tn, xn), (5.2.4)

where µ is the base intensity of conversions and α is the coefficient connecting

past click events with future conversion events. This model shows that a click

(tn, xn) increases the rate of future conversions λ(τ |t) by an amount being equal

to αp(xn)κ(τ − tn, xn). This increase depends on the probability of conversion p(xn)

and the delay distribution κ(τ − tn, xn).

In summary, we model the click process with a Hawkes process and the conversion

process conditional on the click process is a Poisson process resulting from thinning

with probability p(x) and click-to-conversion delay distribution κ(δ, x). With this

modeling technique, we models the click-to-conversion process in aggregate terms

such as rate/intensity or volume of clicks/conversions in a certain time frame. This is

different from previous works where the click-to-conversion mechanism is modeled as

a (modified) classification problem. In the next section, we will discuss the Maximum

Likelihood Estimator (MLE) for this model.

5.3 Maximum Likelihood Estimator

Using the general formula (2.2.3), given a observation time frame [0, T ], the full log-

likelihood of the data {tn, xn}N1

n=1 , {τℓ}
N2

ℓ=1 (N1 clicks, N2 conversions) is

L(t, τ) = ln (P (t)× P (τ |t))

=

N1∑
n=1

ln ξ(tn)−
∫ T

0

ξ(t)dt+

N2∑
ℓ=1

lnλ(τℓ|t)−
∫ T

0

λ(τ |t)dτ, (5.3.1)

= Lclick + Lconversion.
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where

ξ(tn) = ξ0 + β
∑
tk<tn

g(tn − tk),

∫ T

0

ξ(t)dt = ξ0T + β

N1∑
n=1

G(T − tn), (5.3.2)

λ(τℓ) = µ+ α
∑
tn<τℓ

p(xn)κ(τℓ − tn, xn),

∫ T

0

λ(τ)dτ = µT + α

N1∑
n=1

p(xn)K(T − tn, xn), (5.3.3)

with K(δ, x) =
∫ δ

0
κ(t, x)dt and G(δ) =

∫ δ

0
g(t)dt.

5.3.1 Click MLE

Maximizing Lclick with respect to ξ0, β, ω is the standard Hawkes MLE. One could

use Algorithm 2.3 restricted to 1-dimensional Hawkes to estimate these parameters.

5.3.2 Conversion MLE

For maximizing Lconversion, we apply the Minorization-Maximization framework (see

Algorithm 2.2) where one derives a tight lower-bound of the objective function (i.e.

with possible equality) and maximizes this lower-bound. We use the following in-

equality

λ(τℓ) ≥ η0ℓ ln µ

η0ℓ
+
∑
tn<τℓ

ηnℓ ln αp(xn)κ(τℓ − tn, xn)

ηnℓ

where the positive weights ηnℓ ’s satisfy η0ℓ +
∑

tn<τℓ
ηnℓ = 1. The equality holds when

η0ℓ =
µ

µ+
∑

tn<τℓ
αp(xn)κ(τℓ − tn, xn)

,

ηnℓ =
αp(xn)κ(τℓ − tn, xn)

µ+
∑

tn′<τℓ
αp(xn′)κ(τℓ − tn′ , xn′)

.

(5.3.4)

The lower-bound above leads to the following updates for the conversion param-

eters
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• Update µ2

µ =

∑N2

ℓ=1 η
0
ℓ

T
. (5.3.5)

• Update α:

α =

∑N2

ℓ=1

∑
tn<τℓ

ηnℓ∑N1

n=1 p(xn)K(T − tn, xn)
. (5.3.6)

• Update p(x), using the logistic model p(x) =
1

1 + e−⟨wc,x⟩
, the optimization

problem is

min
wc

F , −
N2∑
ℓ=1

∑
tn<τℓ

ηnℓ ln p(xn) +

N1∑
n=1

p(xn)K(T − tn, xn) +
γ

2
∥wc∥2. (5.3.7)

From the gradients ∇wcp = p(1 − p)x and ∇wc ln p = (1 − p)x, we have the

gradient

∇wcF = −
N2∑
ℓ=1

∑
tn<τℓ

ηnℓ [1− p(xn)]xn +

N1∑
n=1

p(xn)[1− p(xn)]K(T − tn, xn)xn + γwc.

(5.3.8)

• Update κ(δ, x), using the exponential model

r(x) = e⟨wd,x⟩, κ(δ, x) = r(x)e−r(x)δ, K(δ, x) = 1− e−r(x)δ,

the optimization problem is

min
wd

G , −
N2∑
ℓ=1

∑
tn<τℓ

ηnℓ [ln r(xn)− r(xn)(τℓ − tn)]

+ α

N1∑
n=1

p(xn)
(
1− e−r(xn)(T−tn)

)
+

γ

2
∥wd∥2. (5.3.9)

From the gradients ∇wd
r = rx and ∇wd

ln r = x, we have the gradient

∇wd
G = −

N2∑
ℓ=1

∑
tn<τℓ

ηnℓ [1− r(xn)(τℓ − tn)]xn

+ α

N1∑
n=1

p(xn)e
−r(xn)(T−tn)r(xn)(T − tn)xn + γwd. (5.3.10)

2The optimization problem maxx≥0 a lnx− bx has maximum at x = a/b.
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Algorithm 5.1 Click-to-Conversion MLE
Require: {tn, xn}N1

n=1 , {τℓ}
N2

ℓ=1

Ensure: ξ0, β, ω maximize Lclick and µ, α, wc, wd maximize Lconversion.
Solve maxLclick with standard Hawkes MLE for ξ0, β, ω (Algorithm 2.3).
Initialize µ, α, wc, wd.
while change in Lconversion is more than tolerance do

Compute ηnℓ ’s with Eq. (5.3.4).
Compute µ, α with Eq. (5.3.5) and Eq. (5.3.6).
Optimize wc, wd using gradients from Eq. (5.3.8) and Eq. (5.3.10) (L-BFGS
algorithm).

end while

5.3.3 Efficient MLE algorithm

The disscussion above leads to a MLE algorithm which is summarized in Algorithm

5.1. The efficient implementation of Algorithm 5.1 requires book-keeping of the fol-

lowing quantities

A =

N2∑
ℓ=1

η0ℓ ,

B(n) =
∑

ℓ:τℓ>tn

ηnℓ ,

C(n) =
∑

ℓ:τℓ>tn

ηnℓ (τℓ − tn).

These quantities could be accumulated right after each ηnℓ is available. One does not

need to store ηnℓ after it has been accumulated into A,B(n), and C(n). This book-

keeping reduces memory requirement from quadratic O(N1×N2) to linear O(N1+N2).

All other quantities could be computed using A,B(n), and C(n) and the model
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parameters. The updates become

µ =
A

T
,

α =

∑N1

n=1B(n)∑N1

n=1 p(xn)K(T − tn, xn)
,

∇wcF = −
N1∑
n=1

B(n)[1− p(xn)]xn +

N1∑
n=1

p(xn)[1− p(xn)]K(T − tn, xn)xn + γwc,

∇wd
G = −

N1∑
n=1

[B(n)− r(xn)C(n)]xn + α

N1∑
n=1

p(xn)e
−r(xn)(T−tn)r(xn)(T − tn)xn + γwd.

Therefore one could carry out these computations efficiently in O(N1) time.

5.4 Experiments
5.4.1 Data preparation

We use the Criteo lab’s data in these experiments. The data consists of the times-

tamps (in seconds) of the clicks and the timestamps of the associated conversions

(if any). While the data associate every conversion with a click, we do not use this

information in our experiments. Instead, we consider the data as two separated sets,

namely, the set of clicks and the set of conversions.

Every click/impression is associated with a feature vector that has 8 numeric

features and 9 categorical features. Following suggestion in [12], we adopt the hashing

trick to take care of the categorical features and also the missing values. The number

of bins that we used is 222 ∼ 4 millions. That is, the feature vector xn used in our

algorithm has about 4 million dimensions.

In total the data consists of 15 million clicks of 13000 advertisement campaigns

over the period of about 2 months. In the following experiments, we only works with

campaigns that have overall conversion rate at least 0.1 percent and at least 1000

clicks.
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5.4.2 Predicting click and conversion volume

The first set of experiments focuses on how well the proposed model approximates

real life data. We test the model with campaigns with high conversion rate, medium

conversion rate, and low conversion rate. We first select the log data from a set of

consecutive days as the training set and run Algorithm 5.1. Then we compute the

expected counts of events in each hour of the training and testing period (a set of

days after the training period). The expected counts in an interval [0, T ) are given by

Eq. (5.3.2) and Eq. (5.3.3). To compute the count in an arbitrary interval [T1, T2),

one only needs to substract the corresponding integrals.

Figure 5.3 shows the promising modeling result of our proposed model. We com-

puted the true counts of clicks and conversions per hour from the data and compare

them with the expected counts that the model predicts in the next hour (i.e. the

look-ahead interval is 1 hour). In all three cases (i.e. different conversion rate), the

model approximates the true click and conversion counts very well.

We then increase the look-ahead interval to 24 hours (Figure 5.4) and 72 hours

(Figure 5.5) to see how well the model predicts future prediction volumes. As ex-

pected, the predicted click and conversion volume are less accurate but are still rea-

sonable. This could be explained by the exponential distribution of the delays. The

nature of exponential distribution requires that one needs more recent data for more

accurate prediction. For campaigns with medium conversion rate and low conversion

rate, one could see the prediction is very close to that with 1-hour look ahead.

5.4.3 Conversion prediction

In this set of experiments, we are concerned with the logistic model p(x) that models

the conversion probability of the click with feature vector x. As in the Criteo data

a click either has an associated conversion or not, we could compute the negative

log-likelihood of the model p(x) for a set of samples {(xn, yn)} where yn = 1 if xn is
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(a) Campaign with conversion rate is 0.28: 17 test days.
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(b) Another campaign with conversion rate is 0.08.
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(c) Another campaign with conversion rate is 0.03.

Figure 5.3: 1 hour look-ahead: Number of clicks and number of conversions per hour,
real counts and expected counts computed from the MLE models in training period
and testing period.
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(b) Another campaign with conversion rate is 0.08.
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(c) Another campaign with conversion rate is 0.03.

Figure 5.4: 1 day look-ahead: Number of clicks and number of conversions per hour,
real counts and expected counts computed from the MLE models in training period
and testing period.
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(c) Another campaign with conversion rate is 0.03.

Figure 5.5: 3 day look-ahead: Number of clicks and number of conversions per hour,
real counts and expected counts computed from the MLE models in training period
and testing period.
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converted and yn = 0, otherwise. The formula for the negative log-likelihood is

Lp = −
1

N1

N1∑
n=1

yn ln p(xn) + (1− yn) ln(1− p(xn)). (5.4.1)

The smaller Lp is, the better the conversion model p(x) predicts whether a click

results in a conversion. We follow the experiment settings in [11] where the test days

are days in the last week of the data and models are trained on the previous 3 weeks

of the test days. Eq. (5.4.1) is used to compute the negative log-likelihood (NLL) on

the test days. We denote the model in [11] by Criteo model.

Figure 5.6 reports the NLL of three campaigns. It could be seen that our proposed

model performs worse than the Criteo model in all cases. This is expected because of

the fact that our proposed model tries to approximate the counts instead of the labels

(i.e. conversion or no conversion) of the clicks. Meanwhile, the Criteo model utilizes

the association between the click and the conversion in order to find the weight wc

for the model p(x). Therefore, the Criteo model is expected to be more accurate in

term of prediction for each click.

This experiment shows a drawback in our approach that it only approximates that

aggregate volume (or equivalently, the rate) of conversions. This results from the

fact that we do not take into account the association between clicks and conversions

available in the Criteo lab data. The reader should note that without this association,

the Criteo model is not able to carry out any estimation. Our model is still able to

come up with a set of model pameters that approximates the observed conversion

rate without the association between clicks and conversions.

A possible fix to our model could be the semi-supervised approach where for a

subset of the conversions, one know the associated clicks to this subset. While for the

remaining conversions, one do not know the associated clicks. The resulting model

is then a hybrid model between our thinned process model and other previously

proposed classification model.
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(a) Campaign with conversion rate is 0.28: 17 test days.
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(b) Another campaign with conversion rate is 0.08.
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(c) Another campaign with conversion rate is 0.03.

Figure 5.6: Negative log-likelihood on test day: The models are trained on 21 days
and tested on the next day.
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5.5 Conclusion

In this chapter, we proposed a Click-to-Conversion model based on the thinned pro-

cesses framework. The click process is represented by a Hawkes process under the

assumption that customer often clicks many times on an advertisement. The conver-

sion process is represented by a thinned process of the click process with a logistic

model specifying the thinning probability and an exponential distribution for the

click-to-conversion delay. We then derive an efficient Maximum Likelihood Estima-

tion algorithm to estimate the model paramters.

The experiments show that the proposed model has good predicting capability

with respect to future click and conversion volume. In the near future, we would like

to enhance the model by considering the influence of previous conversions on future

conversions. Besides, we also would like to introduce into the model the association

between clicks and conversions so that it could have better prediction power on each

click.
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CHAPTER VI

DISTRIBUTED CONCENSUS OPTIMIZATION

6.1 Introduction

Data-distributed learning is an important problem that arises in many real-world ap-

plications. For example, in many large-scale machine learning systems, data samples

are distributed over hundreds or thousands of general purpose servers. Locally ac-

cessing data is typically faster than the remote access due to the latency of network

communication and limited bandwidth. The same problem can happen in wireless

sensor networks where the data is collected locally by each sensor node and the re-

source constraints preclude any learning algorithm that demands high volumes of

inter-sensor communications. In both these realistic scenarios, there is no pragmatic

or desirable way to move data to a central node or move large amount of data between

nodes. Despite long-standing efforts to federate data in various ways, in reality for

large-scale problems, data will always be distributed for various reasons.

We formulate the distributed learning problem as a consensus constrained opti-

mization problem and solve it using the general methodology of Alternating Direction

Method of Multipliers (ADMM) [34]. As surveyed in the monograph [6], ADMM is a

flexible algorithmic framework for solving constrained problems. Its unique charac-

teristic of “separability” can be utilized to explore various structures of the learning

problems. For our distributed consensus learning problem, the main structure of

concern is the underlying communication topology, which can be easily modeled as

equality constraints in ADMM. Topology is one of the most critical issues in imple-

menting consensus learning for two reasons: First, different topologies might lead

to different iteration complexities for the algorithms. Second, the distribution and
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number of edges in the communication graph will result in different communication

overloads. A practical system should always make a proper balance between these

factors.

One of the central themes in distributed learning is the question “What is the best

communication topology?” To reach a definitive answer to this question, one still

needs to overcome major hurdles because the convergence behavior of ADMM in this

context not only depends on the communication topology, but also on the penalty

parameter β used in the augmented Lagrangian. The main focus of this paper is to

characterize the interplay between these factors, and to this end we present a new

convergence analysis for ADMM with Lipschitz smooth and strongly convex functions

(Section 6.4). Based on the derived convergence rates, we design an adaptive scheme

to choose β (Section 6.5). In Section 6.6 we use several sets of numerical examples to

show: a) to what extent does β affect the convergence rates; b) given the “optimal” β,

which topology achieves faster convergence rates; c) the effectiveness of the proposed

adaptive β strategy; and d) a practical selection for β for simple ADMM cases.

6.1.1 Related Work

There are generally two classes of methods for the distributed learning in the lit-

erature. The first class includes the gradient-based primal methods: e.g. the dis-

tributed subgradient descent methods [64, 19] and the distributed dual averaging

methods [25, 1, 26]. The second class are primal-dual methods based on the aug-

mented Lagrangian method [88] or ADMM [6, 60, 63]. In gradient-based methods,

the (sub)gradients are transmitted and aggregated in the hope that all workers will

asymptotically obtain information from all data samples. While for the second class,

the consensus requirements are explicitly encoded as constraints, and all data sam-

ples are kept local. The starting point for our work is the D-ADMM algorithm [63]

which belongs to the second class. However in this paper we focus on the convergence
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Figure 6.1: Left: Two ways to formulate bipartite graphs. Right: Consensus con-
straints expressed in matrix form.

behavior of the algorithm and we want to investigate how it will be affected by the

various factors of our problem.

6.2 Problem Settings and Notations

We are interested in the following distributed consensus learning problem:

min f(x) ≡
N∑
i=1

fi(xi), s.t. x1 = x2 = . . . = xN , (6.2.1)

where xi ∈ RD and each worker i is associated with an individual function fi(xi)

and its corresponding subset of data. The N distributed workers are connected via a

graph G = {V , E}, where V = {v1, . . . , vN} is the set of N indexed vertices and E is

the set of edges of the network. Each vertex vi is associated with a local variable xi.

Information can be transferred between vi and vj in either direction as long as they

are connected by edge eij. Note that despite the connectivity via eij, vi and vj have

the freedom to choose whether they want to exchange information or not. In other

words, G only reflects the connectivity, but not communications.

We propose to solve problem (6.2.1) by ADMM in parallel. To take advantage of

ADMM’s capacities in dealing with separable functions, we have at least the following

two structural options, as illustrated in Fig.6.1 (Left), where we use a case with 24

workers as an example.

1. Centralized Learning. We use axillary global (central) variables z ≡ {zj}

such that every xi are connected to some zj. In this way we can reproduce
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equivalent connectivities represented by the original graph G. When |z| = 1,

this is called master-slave consensus optimization, where the global variable z

is hosted by the master, and all xi variables are updated by the slaves. When

|z| > 1, the paradigm is called general form consensus optimization [6].

2. Decentralized Learning. Global variables are not necessary in this paradigm,

hence there is no master node. The N local functions fi are simply divided into

groups, where communication only happens between different groups, but not

within each group. For simplicity, we divide them into 2 groups. Following the

work of [63] we design a bipartite graph for communication. The bipartite graph

provides a model that is general enough for many practical distributed learning

problems, and fast convergence is guarenteed. In comparison, only very few

results are applicable to a general decentralized communication topology, e.g.

those with sublinear rates [64, 25].

In this work we focus on the second paradigm since the centralized learning can

be regarded as a special case of the decentralized learning where the master nodes do

not have their own data samples.

Both the above two distributed learning paradigms can be conveniently formulated

as the following problem that can be solved by ADMM:

min
x∈X ,y∈Y

θ1(x) + θ2(y), s.t. Ax +By = b, (6.2.2)

where θ1 and θ2 are convex functions, X and Y are closed convex sets. In this paper,

instead of using the classic ADMM [6], we follow the scheme of generalized ADMM

(Alg.6.1) as discussed in [42]. The only difference is the additional term for the

proximity function 1
2
∥x − xk∥2G, where the G−norm is defined as ∥x∥G =

√
xTGx.

Variations of ADMM can be derived from different G, e.g. the linearized ADMM

[37, 84]. We use ∥ · ∥ to denote the l2 norm. The augmented Lagrangian in Alg.6.1

is defined as: Lβ(x,y, λ) ≡ θ1(x) + θ2(y) − ⟨λ, Ax +By− b⟩ + β
2
∥Ax + By − b∥2,
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Algorithm 6.1 Generalized ADMM (G ≽ 0)
[0.] Initialize y0 and λ0.
for k = 0, 1, 2, . . . do

[1.] xk+1 ← arg min
x∈X
Lβ(x,yk,λk) + 1

2∥x− xk∥2G.

[2.] yk+1 ← arg min
y∈Y
Lβ(xk+1,y,λk).

[3.] λk+1 ← λk − β
(
Axk+1 +Byk+1 − b

)
.

end for

where β is a pre-defined penalty parameter that is crucial in achieving faster rates of

convergence. We make the following assumptions for the rest of this paper.

Assumption 1. Functions θ1 and θ2 are L1 and L2 Lipschitz smooth, and are µ1 and

µ2 strongly convex.

6.3 Distributed Consensus Learning

As discussed in Section 6.2, we are interested in the decentralized learning paradigm

where the N workers constitute a bipartite graph B ≡ {VL,VR, C} with left part VL

and right part VR. The communication edge set C ⊆ E represents the communication

scheme: if there is an edge cpn, then worker vp and vn will exchange information in

each iteration of ADMM. Note that even if vp and vn is connected by the network

edge epn ∈ E , no communication will be carried out if they are not connected by cpn.

The distributed consensus learning can thus be formulated as an optimization

problem with |C| equality constraints {xp = yn : ∀cnp ∈ C}. Writing these constraints

in ADMM’s matrix form Ax + By = 0, we can see that A ∈ RD|C|×D|VL| is a matrix

of |C| block-rows, with each block row containing only one identity matrix I and 0

for others. Matrix B is defined similarly, with each block-row containing only one

−I. The positions of I and −I in each block-row of A and B indicates the consensus

between two specific workers. An example is illustrated in Fig.6.1 (Right). Since

there are |C| consensus constraints, we introduce |C| Lagrangian multipliers λpn for

each edge cpn. The ADMM based distributed consensus learning is given in Alg.6.2,
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where the augmented Lagrangians are

Lβ(xi,yk,λk) = fi(xi)−
Ni∑
n=1

⟨λk
in,xi⟩+

β

2

Ni∑
n=1

∥xi − yk
n∥2, and Lβ(xk+1,yi,λ

k) = fi(yi) +

Pi∑
p=1

⟨λk
pi,yi⟩+

β

2

Pi∑
p=1

∥xk+1
p − yi∥2.

(6.3.1)

Here Ni represents the number of right workers (in VR) connected to the left worker

i, and Pi represents the number of left workers (in VL) connected to the right worker

i.

In Alg.6.2, all xi are updated in parallel by the left workers, followed by the parallel

updates of yi by the right workers. In practice, all the updates of λ are computed in

parallel by the right workers, since they have access to the latest copies of yk+1 and

xk+1 in each iteration k, while the left workers only have xk+1 and the old copy of

yk.

Algorithm 6.2 Distributed Consensus Learning
[0.] Initialize y0 and λ0.
for k = 0, 1, 2, . . . do

[1.] ∀i (parallel) xk+1
i ← arg min

xi

Lβ(xi,yk,λk).

[2.] ∀i (parallel) yk+1
i ← arg min

yi

Lβ(xk+1,yi,λ
k).

[3.] ∀p, n (parallel) λk+1
pn ← λk

pn − β
(
xk+1
p − yk+1

n

)
.

end for

6.3.1 Three Dimensions of the Problem Space

Taking a closer look at Alg.6.2 we can find that there are actually three factors for

the implementation of this algorithm. Firstly, we can choose any communication

topology that is encoded in matrices A and B. Secondly, the penalty parameter β

can be any positive number. Thirdly, it is free to change the updating order for x

and y (the update of λ should also be modified accordingly). In order to investigate

the interactions among these factors, we use both theoretical analysis (Section 6.4,

6.5) and numerical examples (Section 6.6) to study the convergence of Alg.6.2.
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6.4 Iteration Complexities of ADMM

The theory of ADMM remains a hard open problem for decades. The global conver-

gence of ADMM was established in the literature [33, 36, 28]. The O(1/k) convergence

rate was established by [43, 42, 67] where the authors only assume that θ1 and θ2

are convex. When these functions are both Lipschitz smooth and strongly convex,

preliminary results on linear convergence are reported very recently. In [44], the au-

thors derived R-linear rates for the sum of primal and dual gaps for a setting that

is more general than (6.2.2). However, the constants in the bound are not directly

applicable to our setting. In [20], the authors present linear rates only for the case

when G = 0, and as a consequence no rate is given for x. In the following we present

explicit formulas of linear rates for all the primal variables x, y and dual variable λ.

The following key lemma states that ∥wk−w∗∥M is monotonically non-increasing,

and the reduction of wk−w∗ is faster than wk−wk+1. Variations of this lemma have

been presented several times in the literature under different settings and assumptions

[41, 6, 42, 20]. Our result is more general in the sense that this lemma is applicable

to convex feasible sets X and Y , not just Rx and Ry. The proof is fairly simple and

only relies on the optimality conditions.

Lemma 1. Under Assumption 1 we have

∥wk−w∗∥2M −∥wk+1−w∗∥2M ≥ ∥wk−wk+1∥2M +2µ1∥xk+1−x∗∥2+2µ2∥yk+1−y∗∥2,

(6.4.1)

where wk ≡ (xk,yk,λk)T , w∗ ≡ (x∗,y∗,λ∗)T is the optimal solution of (6.2.2), and

M ≡ Diag
(
G, βBTB, I

β

)
.

Remark 1. For the general convex cases, i.e. µ1 = µ2 = 0, the O(1/k) convergence

rate of ADMM can be easily derived from Lemma 1 [42].
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6.4.1 Linear Convergence Rates

For strongly convex (µ1, µ2 > 0) and Lipschitz smooth functions, linear convergence

rates can also be obtained from Lemma 1. Note that all the results in this section

rely on the assumption that X = Rx and Y = Ry. In the following results we use

Λmax(M) and Λmin(M) to denote the maximum and minimum eigenvalues of a matrix

M .

We are interested in the following two cases that will be presented separately:

G = 0 for the classic ADMM and G ≻ 0 for the generalized ADMM.

Theorem 1. When G = 0, X = Rx and Y = Ry, x, y and λ converge linearly:

∥wk+1 − w̃∗∥2P ≤
(

1

1 + τ

)k

∥w0 −w∗∥2M , (6.4.2)

where

P ≡
(
2µ1 +

µ2
1

2βΛmax(AAT )
, 2µ2 + βΛmin(B

TB),
1

β

)
I, w̃∗ ≡ (x∗,y∗,λk)T , and

τ ≡ 2µ2

L2
2

βc
+ βΛmax(BTB)

. (6.4.3)

Here c > 0 is the largest positive constant that satisfies

∥BT (λk+1 − λ∗)∥2 ≥ c∥λk+1 − λ∗∥2 ∀k. (6.4.4)

We observe that larger µ1 and µ2 leads to faster rates. The 1/β + β in the

denominator of τ (6.4.3) means that β must not be too large nor too small. This is

also observed empirically, and we have more discussions in Sec.6.5 and 6.6.

Theorem 2. When G ≻ 0, X = Rx and Y = Ry, x, y and λ converge linearly:

∥wk+1 −w∗∥2M ≤
(

1

1 + τG

)k

∥w0 −w∗∥2M ,where τG ≡ min
{

2µ1

Λmax(G)
, τ

}
, (6.4.5)

M is defined in Lemma 1 and τ is defined in (6.4.3).
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Comparing with Theorem 3.1 of [44], our rate has a clearer form that captures

more underlying characteristics of the problem. The constants in our bound is easily

computable, which are used in our proposed Alg.6.3. Comparing with Theorem 3.4

in [20] which provides linear rates for y and lambda only, our linear rate is for both

x, y and λ (as shown in the P -norm). Also the constant in our linear rate is much

tighter than [20], since the minimum eigenvalue of AAT as used in bound (3.14) of

[20] might be 0 due to the rank deficiency of A, leading to a meaningless bound.

6.5 Strategy for Choosing β Adaptively

Despite of many efforts towards finding a good penalty parameter β [41, 74, 9], it

still remains a serious issue in implementing any instance of ADMM. This parameter

controls the balance between the reductions of the dual residual sk+1 ≡ βATB(yk+1−

yk) and the primal residual rk+1 ≡ Axk+1 + Byk+1 − b as defined in [6]. A large β

enforces more the primal feasibility Axk − Byk = b, but results in a larger violation

in the dual feasibility. A small β tends to reduce the difference between yk+1 and

yk, leading to a faster satisfaction of the dual feasibility, at the expense of a larger

violation of the primal feasibility.

Moreover, a bad choice of β might lead to very slow convergence rates for both

the primal and dual feasibilities. A numerical example for consensus least squares

is shown in Fig.6.2, where the bipartite graph consists of only two workers and the

consensus constraint is simply x = y. Increasing β from the optimal value 0.47 to

3 not only results in a significantly higher dual residual than the primal residual,

but also slows down both residuals from 10−6 to 10−3 (primal) and 10−2 (dual), all

measured at iteration 20. Decreasing β to 0.1 makes the primal residual higher than

the dual residual, but both are around 10−4 at iteration 20, which are still much

higher than those using the optimal β.
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Since the optimal parameter β is essentially data-dependent, a natural idea is to

search it adaptively during the iterations of ADMM. However we still need to answer

two questions: 1. What is a good initial value β0 that we shall start with? 2. What

updating rule shall we adopt?

Towards the first question, we can use our conver-
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nificantly affect convergence

rates for both primal and dual

residuals.

gence results that are presented in Theorem 1 and 2.

For simplicity, we assume that in Theorem 2 (G ≻ 0),

we always choose a G such that 2µ1

Λmax(G)
> τ . Then

in both cases the linear convergence rate is upper

bounded by
(

1
1+τ

)k where τ ≡ 2µ2

L2
2

βc
+βΛmax(BTB)

. Here

c > 0 is the largest positive constant that satisfies

∥BT (λk+1 − λ∗)∥2 ≥ c∥λk+1 − λ∗∥2. Since a large τ

results in a faster rate, we can let L2
2

βc
= βΛmax(B

TB)

and take the “optimal” β∗ = L2

cΛmax(BTB)
. Although

BBT is positive semidefinite, yet B is not always of full row-rank. Hence in the worst

case BBT could be singular and c = Λmin(BBT ) can be as small as 0, resulting in a

β∗ = ∞. However, in practice a very large β is rarely a good choice, implying that

c = Λmin(BBT ) might be too pessimistic. It is very hard to estimate c, since we do

not know λ∗, nor the relation between B and λk+1−λ∗. Our proposed strategy is to

find an underestimated β by taking the most optimistic ĉ = Λmax(BBT ) > c and the

initial guess

β0 = L2/(Λmax(B
TB) ∗ Λmax(BBT )). (6.5.1)

We can see that this underestimated β0 is always smaller than β∗.

Towards the updating rule, we proposed a multiplicative method (Alg.6.3) that is

inspired by [41, 74]. In these two papers, the authors proposed to choose β adaptively

by βk+1 ← βk ∗m if qk = ∥Axk+1+Byk+1−b∥
∥ATB(yk+1−yk)∥ is larger than some threshold qth, where

m > 1 is a fixed and predefined constant. Typical choices might be qth = 10 and
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m = 2 [6]. In comparison, we propose to update βk by multiplying an adaptive

number
√

qk ≡
√

∥Axk+1+Byk+1−b∥
∥B(yk+1−yk)∥ . This simple method is motivated by the idea of

balancing the convergence rates of the primal residual rk+1 ≡ Axk+1+Byk+1−b and

the dual residual sk+1 ≡ βATB(yk+1 − yk). Intuitively, the more qk is deviated from

1, the further βk is from β∗, hence deserving a larger scaling. Concrete examples that

support this intuition are given in Sec. 6.6.

Algorithm 6.3 Adaptive β for ADMM
Initialize β0 = L2/(Λmax(B

TB) ∗ Λmax(BBT )).
for k = 0, 1, 2, . . . do
qk = ∥Axk+1+Byk+1−b∥

∥ATB(yk+1−yk)∥
if qk ≥ qth or qk ≤ 1

qth then
βk+1 ← βk ∗

√
qk

end if
end for

Additionally, for our distributed consensus learning (Alg.6.2), it is extremely easy

to obtain Λmax(B
TB) and Λmax(BBT ). They are simply the maximum degree of the

right nodes of the bipartite graph, as summarized in the following result.

Proposition 1. Let matrix B ∈ RD|C|×D|VR| be of |C| block-rows and |VR| block-

columns, with each row block having only one −I, and 0 for others (Figure 6.1

(Right)). Then Λmax(B
TB) = Λmax(BBT ) = max{Degree(v ∈ VR)}.

6.6 Numerical Results

In this section, several sets of numerical examples will be used to: a) empirically

demonstrate how ADMM’s three degrees of freedom affect our proposed consensus

learning algorithm; b) illustrate how well the proposed adaptive β updating strategy

works. In addition, we proposed a practical β that works quite well for simple ADMM

instances where A = I and B = −I.
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6.6.1 Experimental Settings

In all examples presented in this section, we generate a dataset for the following

distributed regression task: minx f(x) ≡
∑N

i=1(S
T
i xi− li)2, s.t. x1 = x2 = . . . = xN .

We assume that the total 48, 000 data samples are evenly distributed among N = 24

workers. Each worker i has 2, 000 samples of D = 50 dimensions. Components of the

data matrix Si of each worker are generated from the normal distribution N (0, 1).

The real regression coefficients x1 = x2 = . . . = xtrue ∈ RD have 10% zeros, and each

non-zero dimension is draw from the normal distribution N (0, 1). The dependent

variables (labels) are perturbed by Gaussian white noise N (0, 10−4).

For comparison purposes, we consider the following communication topologies:

• Complete bipartite. The 24 workers are divided into two groups: 12 are on the

left VL and 12 on the right VR. Each worker communicates with all the other

12 workers on the other partition.

• Master-salve. The 24 workers are divided into two groups of 1 and 23 workers

each. The master communicates with all the 23 slaves on the other partition.

It is (23, 1)- or (1, 23)-biregular.

• (3, 3)-Biregular. The bipartition is the same as the complete bipartite. Each

worker has the same degree 3.

• Bucky spanning tree. The 24 workers form a spanning tree, where is taken from

a buckyball

• Ring. A ring is also a (2, 2)-biregular graph.

• Ring+1edge. An additional edge of the longest chord is added to the ring,

making it not biregular.

• Chain. A chain is the spanning tree with the largest diameter.
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6.6.2 Varying β

We have already presented a very simple example in Section 6.5 showing that a bad

choice of β can significantly slow down the convergence of ADMM. Now we use the

complete bipartite communication topology to show that β is still a crucial parameter

for the distributed consensus learning with more than 2 workers. The primal residual

∥rk∥ and dual residual ∥sk∥ are plotted in Fig.6.3 as functions of both the number

of iterations and β. We have several observations. First, both residuals converge

linearly for any β values we tried from 10−2 ∼ 102, although some β converge faster

than the others. This is expected, since our linear convergence rates in Theorem 1

and 2 are simple functions of β, no matter how large or small it is. Second, for small

β, the primal residual ∥rk∥ is larger than the dual ∥sk∥, and for large β the reverse

holds. Third, the “optimal” β∗ = 0.4467 is neither too large nor too small. It is

the parameter that achieves the lowest values for both ∥rk∥ and ∥sk∥, and these two

lowest values are very close to each other. This observation provides some evidences

for the effectiveness of our proposed strategy of adaptive β (Alg.6.2).
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Figure 6.3: Primal and Dual residuals as functions of β and number of iterations.
Topology: complete bipartite graph.

6.6.3 Comparing Communication Topologies Using Optimal βs

As we discussed in Section 6.3.1, the three degrees of freedom of ADMM all contribute

to the convergence speed of the algorithm. Their interplay is so complex that it is
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not easy to draw a clear conclusion of which communication topology is the “best”.

Here we simplify this problem by fixing the other two degrees and only explore the

effects of communication topologies. For each topology, we seek the “optimal” β from

a set of 1, 000 candidates ranging from β0/10 to 100β0, where the formula for the

underestimated β0 is given in (6.5.1) and Proposition 1 can be used to calculate the

maximum eigenvalues.

The fastest possible primal and dual convergences for each topology are plotted

in Fig.6.4 (Left). Again we can observe that all residuals converge linearly, and the

values of ∥rk∥ and ∥sk∥ are very close at the same iteration given the optimal β of each

topology. It is also very clear that the complete bipartite and master-slave topologies

converge at almost the same rate, and they are both faster than the others. This is

an interesting observation, since the complete bipartite graph has 144 edges, which is

higher than the master-slave’s 23, however the master-slave have a higher bandwidth

requirement for the master node than the complete bipartite where the bandwidth

requirement is balanced for all workers. The (3, 3)-biregular graph is much faster

than the bucky spanning tree, although they have the same maximum degree 3 for

each bipartition. This might be due to the fact that the spanning tree taken from

the buckyball graph has a minimum degree 1 for some workers. The spanning tree is

even slower than the (2, 2)-biregular ring, implying that a biregular graph might be

preferred for the faster convergence rates of consensus learning. This preference can

be also observed from the comparison between the ring and the ring+one edge, where

more edges do not necessarily lead to faster rates. The chain topology is the slowest

one, which is expected, since it has the smallest number of edges and the smallest

minimum (1) and maximum (2) degrees.
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6.6.4 Adaptive β using Alg.6.3

The above observations verify that an effective implementation of our consensus learn-

ing (Alg.6.2) heavily relies on a good β. Hence in the follows we use the distributed

consensus learning task as a testbed for our proposed adaptive β strategy (Alg.6.3).

Note that this method is very general and can be used as a plug-in for other ADMM

instances. All the experimental settings are the same as Subsection 6.6.3, except that

we replace the fixed “optimal” β with the adaptive strategy. As a comparison, we im-

plemented He et al.’s adaptive β proposed in [41, 74] using the parameters suggested

in [6], and take the initial β0 = 1 for all topologies. We plot the convergence history

of the primal and dual residuals in Fig.6.4. Comparing Fig.6.4 (Mid) with Fig.6.4

(Left) one can observe that the proposed strategy for β works very well. The conver-

gence rates are very close to those with “optimal” βs. Residuals for the master-slave

topology are not monotonically decreasing, but the overall rates are still compara-

ble with the optimal case, if not any faster. He et al.’s method (Fig.6.4 (Right))

works reasonably well for some topologies, but is still much slower than our proposed

method, except for the master-slave. One reason might be that the uninformative

initial guess β0 = 1 is improper, and it should be both data- and topology-dependent

as we suggested in Alg.6.3.

Figure 6.4: Primal and dual residuals by the optimal βs (Left), proposed Alg.6.3
(Mid) and method of [41, 74, 6] (Right).
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6.6.5 Changing the Updating Order

The third degree of freedom for ADMM is the order with which x and y are updated.

Although we have no pointers coming directly from our theoretical results, empirically

it is the weakest factor comparing with the communication topology and the value of

β. We test it using the same settings as in Subsection 6.6.3. We observe that for all

topologies except the master-slave, after changing the updating order, the changes of

convergence rates are tiny, and the optimal β∗ are essentially the same as before. For

the master-slave topology, similar convergence rates can also be obtained, although

we have to reduce the optimal β∗ from 4.71 to 4.33.

6.6.6 Practical β for the Simple Case: x = y

In this last set of experiments, we present a practical β for the case where the con-

straint of ADMM is simply x = y, i.e. A = I, B = −I and b = 0. We found that

taking the fixed penalty parameter β =
√
µ1L2 works quite well in practice although

currently we do not have any theoretical evidence to support its effectiveness. To

satisfy the smoothness and strongly-convex assumptions, we use the ridge regression

minx
∑N

i=1(xT si − li)
2 + α

2
∥x∥2 as our objective function. Putting it in ADMM’s

canonical form (6.2.2) we have θ1(x) =
∑N

i=1(xT si− li)
2 and θ2(y) = α

2
∥y∥2. We test

this β using 2, 000 samples of dimension 50. In this simulated dataset, µ1 = 1, 436.5.

When α = L2 = 1,
√
µ1L2 = 37.90, and the optimal β∗ is 39.64. When α = L2 = 100,

√
µ1L2 = 379.02, and the optimal β∗ is 384.42.

6.7 Summary and Future Work

In this paper, we presented an ADMM-based consensus learning method for training

distributed data samples in parallel. We used bipartite communication topologies to

take advantage of ADMM’s capacities in dealing with separable functions. We identify

the three degrees of freedom in implementing this method: communication topology,
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penalty parameter β and the order for updating variables. In order to investigate

the joint effects of these factors, we provided an analysis of ADMM’s convergence

behavior. The analysis demonstrates that all the primal and dual variables enjoy

a linear rate of convergence. Due to the difficulty in obtaining a very sharp rate

from which the optimal β∗ can be derived, we proposed a strategy for choosing β

adaptively, with an underestimated initial guess β0 that is derived from our bound.

Numerical experiments show that β∗ is achieved at a point where the norms of primal

and dual residuals are close and decrease at the fastest rate. With β∗, the complete

bipartite and the master-slave graphs converge fastest, followed by bi-regular graphs.

The proposed strategy of adaptive β is very efficient.

There are several interesting directions that remain to be explored. A tighter and

more instructive bound is deserved. It is possible to extend our method to asyn-

chronous variants. It is also promising to investigate the possibilities with assump-

tions weaker than Assumption 1. A potential application is the distributed consensus

Lasso.
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CHAPTER VII

SOFTWARE PACKAGE

To facilitate reproducible research, we develop an open-source software package that

consists efficient implementation of the point process inference algorithms proposed

in this dissertation. We also include inference algorithms such as the vanilla Hawkes

processes reviewed in Chapter 2 or the Criteo model mentioned in Chapter 5 for

benchmarking purpose.

The overview of our software package is given in Figure 7.1. At current stage, the

software package consists of the following components

• Data: Data input/output capabilities for classification data, point process data,

advertisement data.

• Optimization: template for optimization methods such as Line Search, Gradient

Descent, and L-BFGS.

• Point Process: various Hawkes processes implementations

• Conversion: the click-to-conversion models.

Further details for each module are shown in Figures 7.2, 7.3, 7.4, 7.5.

7.1 Efficient implementation

The key advantages of our software package are performace and scaling. The soft-

ware allows users to get insights into timestamped events much faster than naive

implementation. To that end, we employ C++ as the programming langaguage due to

its efficiency and multi-thread programming with the Thread Building Block (TBB)
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Figure 7.1: Software package design.
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library (Intel) for scalable parallel implementation. The Intel TBB library is used

extensively in all model implementations to speed up with parallelism.

With huge amount of data available, for statistical models to be useful, both

training (i.e. parameter estimation) and testing (i.e. on unseen data) needs to be
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Figure 7.2: Data module.

Figure 7.3: Optimization module.

fast. Our implementations not only optimize the training and testing phase but also

employ special data I/O techniques such as memory-mapped files, compressed files to

speed up the data preparation phase of the propose algorithms. We also convert the

text-based dataset into binary-based dataset for much more efficient input/output.

Besides, the users also like to be able to alter the models once new data are

available. Using our software package, the user could save models to file, load them

from file and continue training with new data at any time.
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Figure 7.4: Point process module.

Figure 7.5: Conversion module.

7.2 Detailed code documentation

To facilitate code usage and modification, we provide extensive documentation in

the code base. We utilize Doxygen code-documentation tool and provide formatted

comments on all classes, functions, and parameters that are used in the code. Doxygen

is then run to generate formatted code documentation website shown in the figures.

The website not only consists of detailed documentation but also class diagrams of

the code base.
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The document website for our software could be found at “http://viral.ngocngach.net”.

More details about the software package could be found here along with the associated

publications of the proposed algorithms in this dissertation.
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CHAPTER VIII

CONCLUSION

In this thesis, we investigate the inference problems of different temporal point pro-

cesses, namely the Hawkes processes and thinned processes. We show that, in the

case that the activities generating network forms communities or in the case that

only interval censored activity data are available, there are efficient inference algo-

rithms that estimate the intensity function via parametric models. We also show

that by modeling the Click-to-Conversion mechanism using thinned processes, one

could efficiently predict the future conversion volume and that one could estimate

the conversion rate of an advertisement campaign.

In Chapter 3, we propose that one could infer the network of social influence

along with its community structure from the observed recurrent events in the social

networks. To that end, we utilize the key observation that regular activities often

raise influence among users in the same group. The proposed model based on the

Hawkes model is designed to take into account this observation and other assump-

tions such as the low-rank structure. The inference algorithm following the mean-field

variational principle nicely consists of closed form updates that could be sped up by

various implementation techniques including parallelism. The experiments on simu-

lated dataset show that the proposed model could estimate both network infectivity

and and community structure and produce better predictive model with less train-

ing samples than the baseline methods. Experiments on real dataset show that the

proposed method are able to produce meaningful clusters using only activities from

websites. There are interesting paths to extend this study: First, we plan to inves-

tigate the extensions that cover other features of an event, for example, document
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content and ratings. The content and ratings effects on community structure could

be expressed in the factorization of the influence between events. Moreover, it is also

interesting to incorporate the memes/trends and community structure in one model.

In Chapter 4, we propose to infer the network influence from the interval cen-

sored events of user activity in the social networks. The underlying event triggering

mechanism is modeled by the self-exciting multi-dimensional Hawkes process which

is able to capture the temporal patterns of user behavior under influence of other

users. We propose an imputation approach in which events are sampled under the

count constraints and the maximum likelihood estimator is utilized to re-estimate

the parameters. We then propose a Gibbs sampling method that could impute times-

tamps given the count of events. The proposed method is compared to four baseline

sampling methods that not only have good intuitions but also reasonably good per-

formance on test data. The experiment results show that the proposed method is able

to estimate the influence among nodes when only counts of events in observed inter-

vals are available. There are several interesting directions for future studies: First,

we would like to make the proposed Gibbs sampling method more efficient as it now

has to cycle through the timestamps without any parallelization. This is contrary to

the MLE solver for Hawkes process which could be sped up tremendously via paral-

lel implementation. Second, we plan to investigate a variational inference approach

in which events could be sampled from a simpler distribution to compute a lower

bound of the likelihood of the data. Moreover, we can also investigate a problem of

estimating the parameters with left censored data (i.e. no information on the first

events).

In chapter 5, we proposed a Click-to-Conversion model based on the thinned pro-

cesses framework. The click process is represented by a Hawkes process under the

assumption that customer often clicks many times on an advertisement. The conver-

sion process is represented by a thinned process of the click process with a logistic
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model specifying the thinning probability and an exponential distribution for the

click-to-conversion delay. We then derive an efficient Maximum Likelihood Estima-

tion algorithm to estimate the model paramters. The experiments show that the

proposed model has good predicting capability with respect to future click and con-

version volume. In the near future, we would like to enhance the model by considering

the influence of previous conversions on future conversions. Besides, we also would

like to introduce into the model the association between clicks and conversions so

that it could have better prediction power on each click.

In chapter 6, we presented an ADMM-based consensus learning method for train-

ing distributed data samples in parallel. We used bipartite communication topologies

to take advantage of ADMM’s capacities in dealing with separable functions. We

identify the three degrees of freedom in implementing this method: communication

topology, penalty parameter and the order for updating variables. In order to investi-

gate the joint effects of these factors, we provided an analysis of ADMM’s convergence

behavior. The analysis demonstrates that all the primal and dual variables enjoy a

linear rate of convergence. Due to the difficulty in obtaining a very sharp rate from

which the optimal penalty parameter can be derived, we proposed a strategy for

choosing it adaptively, with an underestimated initial guess that is derived from our

bound. Numerical experiments show that the optimal penalty parameter is achieved

at a point where the norms of primal and dual residuals are close and decrease at

the fastest rate. With this choice, the complete bipartite and the master-slave graphs

converge fastest, followed by bi-regular graphs. The proposed strategy of adaptive

penalty is very efficient. There are several interesting directions that remain to be

explored. A tighter and more instructive bound is deserved. It is possible to extend

our method to asynchronous variants. It is also promising to investigate the possi-

bilities with assumptions weaker than currently proposed. A potential application is

the distributed consensus Lasso.
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APPENDIX A

NETCODEC PROOFS

A.1 Expression of L(Z, t)

L(Z, t) =const +
I∑

i=1

G∑
g=1

(a0g − 1) ln zig − b0gzig

+
C∑
c=1

Nc∑
n=1

ln

µicn +
∑
ℓ<n
icℓ ̸=in

αicni
c
ℓ
κ(tcn − tcℓ) + αicn

∑
ℓ<n
icℓ=in

κ(tcn − tcℓ)


−

C∑
c=1

I∑
i=1

∫ Tc

0

µi +
∑
tn<t
icn ̸=i

αiicnκ(t− tcn) + αi

∑
tn<t
icn=i

κ(t− tcn)

 dt,

(A.1.1)

where αij =
∑G

g=1 βjzigzjg, i ̸= j, is the infectivity rate from user j to user i.

A.2 Proof of Theorem 3.3.1

From Eq. (A.1.1), for the first term (i.e. prior term), we have

Eq

[
I∑

i=1

lnP(Zi)

]
=

I∑
i=1

G∑
g=1

(a0g − 1)Eq [ln zig]− b0gEq [zig] .

For the second term (i.e. occurred events), let Ac
n be the expression inside the

logarithms

Ac
n = µicn +

∑
ℓ<n
icℓ ̸=in

G∑
g=1

βicℓ
zicngzicℓgκ(t

c
n − tcℓ) + αicn

∑
ℓ<n
icℓ=in

κ(tcn − tcℓ).

For any positive values ηcn, η
gc
ℓn, γ

c
n such that ηcn +

∑
ℓ<n
icℓ ̸=in

∑G
g=1 η

gc
ℓn + γc

c = 1, one could

lower-bound Eq [lnAc
n] with

ηcn ln
µicn

ηcn
+
∑
ℓ<n
icℓ ̸=in

G∑
g=1

ηgcℓnEq

[
ln(βicℓ

zicngzicℓgκ(t
c
n − tcℓ))

]
−ηgcℓn ln ηgcℓn+γc

n ln

αicn

∑
ℓ<n
icℓ=in

κ(tcn − tcℓ)

γc
n


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where we apply Jensen’s inequality, the concavity of natural logarithm and the addi-

tivity of expectation.

For the last term (i.e. normalization term), we have

Eq

[
C∑
c=1

I∑
i=1

∫ Tc

0

λc
i(t)dt

]
=

C∑
c=1

I∑
i=1

µiTc

+
C∑
c=1

I∑
i=1

 Nc∑
n=1
icn ̸=i

G∑
g=1

βicnEq

[
zigzicng

]
K(Tc − tcn) +

Nc∑
n=1
icn=i

αiK(Tc − tcn)

 .

Adding the terms derived above, the theorem is proved.

A.3 Derivation of optimal distribution q⋆i (Zi)

The optimal distribution q⋆i (Zi) satisfies

ln q⋆i (Zi) = Eq−Zi
[L(Z, t)] + const,

where the expectation is over all Zj, j ̸= i. Replacing L(Z, t) with the lower-bound

in Theorem 3.3.1, collecting all relevant terms to Zi, and absorbing everything else

in the constant, one could find that ln q⋆i (Zi) has the following form

ln q⋆i (Zi) = const +
G∑

g=1

(a0g − 1) ln zig − b0gzig

+
C∑
c=1

 Nc∑
n=1

∑
ℓ<n

G∑
g=1

ηgcℓnδ
ic
ℓn ln zig −

Nc∑
n=1
icn ̸=i

G∑
g=1

zigβicnEq

[
zicng
]
K(Tc − tcn)

−
∑
j ̸=i

Nc∑
n=1
icn=i

G∑
g=1

zigβiEq [zjg]K(Tc − tcn)

 , (A.3.1)

This expression shows that zig, g = 1, . . . , G are independent Gamma random vari-

ables and zig ∼ Gamma(aig, big) where aig, big are defined in Eq. (3.3.1).

A.4 Earthquake experiments

To supplement the experiment on Earthquake dataset, we draw the intensity function

for the clusters of earthquakes around certain region on the global map (Figure A.1).
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(a) Earthquake map
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(b) Intensity function for the cluster on the Parcific region to the
west of South America.
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(c) Intensity function for the cluster around Japan.

Figure A.1: Earthquake experiments.

We choose two regions to demonstrate the working of our proposed algorithm. The

first region is the Parcific ocean region close to the West of South America (Figure

A.1b). One could see that the intensity function for this cluster form regions of spike

indicating that events form clusters. On the other hand, the intensity function for

the region around Japan (Figure A.1c) shows no clear cluster. It therefore leads to

clustering result that does not match the geological clusterings. This shows that while

time information could provide valuable information, in practice, one may want to

incorporate as much information as possible to have better understanding of the data

at hand. One possible direction is to use a triggering kernel κ(dt, dx) where dt is the
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difference in time and dx is the difference in location.
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APPENDIX B

STOCHADMM PROOFS

B.1 Auxillary Lemma

We first give a lemma presented in [67]. It will be used to prove our linear convergence

rate.

Lemma 2. Let l(x) : X → R be a convex differentiable function with gradient g. Let

scalar s ≥ 0. For any vector u and v, denote their Bregman divergence as D(u,v).

If ∀u ∈ X , x∗ ≡ arg minx∈X l(x) + sD(x,u), then with Θ ≡ ⟨g(x∗),x∗ − x⟩, we have

Θ ≤ s [D(x,u)−D(x∗,u)−D(x,x∗)] . (B.1.1)

Proof. Invoking the optimality condition we have

⟨g(x∗) + s∇D(x∗,u),x− x∗⟩ ≥ 0, ∀x ∈ X ,

which is equivalent to

⟨g(x∗),x∗ − x⟩ ≤ s ⟨∇D(x∗,u),x− x∗⟩

= s ⟨∇ω(x∗)−∇ω(u),x− x∗⟩

= s [D(x,u)−D(x,x∗)−D(x∗,u)] .

B.2 Proof for Lemma 1

Proof. By the strong convexity of θ1 and θ2 we have ∀x ∈ X and ∀y ∈ Y :

θ1(xk+1)− θ1(x) ≤
⟨
θ′1(xk+1),xk+1 − x

⟩
− µ1

2
∥xk+1 − x∥2. (B.2.1)

θ2(yk+1)− θ2(y) ≤
⟨
θ′2(yk+1),yk+1 − y

⟩
− µ2

2
∥yk+1 − y∥2. (B.2.2)
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Invoking the optimality condition of Line 2 of Alg. 6.1 we have ∀y ∈ Y :

⟨θ′2(yk+1) +BT
[
β(Axk+1 +Byk+1 − b)− λk

]
,yk+1 − y⟩ ≤ 0. (B.2.3)

Using Lemma 2 by taking the Bregman divergence D(·, ·) as ∥∥2G (G ≽ 0) we have

∀x ∈ X :

θ1(xk+1)− θ1(x) +
⟨
xk+1 − x,−ATλk+1

⟩
(B.2.1)

≤
⟨
θ′1(xk+1)− ATλk+1,xk+1 − x

⟩
− µ1

2
∥xk+1 − x∥2

=
⟨
θ′1(xk+1) + AT

[
β(Axk+1 +Byk − b)− λk

]
,xk+1 − x

⟩
− µ1

2
∥xk+1 − x∥2 +

⟨
βATB(yk+1 − yk),xk+1 − x

⟩
(B.1.1)

≤ 1

2

(
∥x− xk∥2G − ∥x− xk+1∥2G

)
− 1

2
∥xk − xk+1∥2G

− µ1

2
∥xk+1 − x∥2 +

⟨
βATB(yk+1 − yk),xk+1 − x

⟩

(B.2.4)

The last term can be further bounded as⟨
βATB(yk+1 − yk),xk+1 − x

⟩
=

β

2

(
∥Ax +Byk − b∥2 − ∥Ax +Byk+1 − b∥2

)
+

β

2

(
∥Axk+1 +Byk+1 − b∥2 − ∥Axk+1 +Byk − b∥2

)
=

β

2

(
∥Ax +Byk − b∥2 − ∥Ax +Byk+1 − b∥2

)
− β

2
∥yk − yk+1∥2BTB − (yk − yk+1)TBT (λk − λk+1)

≤ β

2

(
∥Ax +Byk − b∥2 − ∥Ax +Byk+1 − b∥2

)
− β

2
∥yk − yk+1∥2BTB,

(B.2.5)

where in the last step we used Lemma 3.1 of [42]. Combining (B.2.2) and (B.2.3) we

have

θ2(yk+1)− θ2(y) +
⟨
yk+1 − y,−BTλk+1

⟩
≤ −µ2

2
∥yk+1 − y∥2. (B.2.6)
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We also have the following equality from the updating rule of λ in Line 3:

⟨
λk+1 − λ, Axk+1 +Byk+1 − b

⟩
=

1

β

⟨
λk+1 − λ,λk − λk+1

⟩
=

1

2β

(
∥λ− λk∥2 − ∥λ− λk+1∥2

)
− 1

2β
∥λk+1 − λk∥2.

(B.2.7)

Summing (B.2.4), (B.2.5), (B.2.6) and (B.2.7), taking x = x∗,y = y∗,λ = λ∗ and

using the fact that Ax∗ +By∗ − b = 0 we get

1

2

(
∥xk − x∗∥2G − ∥xk+1 − x∗∥2G

)
+

β

2

(
∥yk − y∗∥2BTB − ∥yk+1 − y∗∥2BTB

)
+

1

2β

(
∥λk − λ∗∥2 − ∥λk+1 − λ∗∥2

)
≥ µ1

2
∥xk+1 − x∗∥2 + µ2

2
∥yk+1 − y∗∥2

+
1

2
∥xk − xk+1∥2G +

β

2
∥yk − yk+1∥2BTB +

1

2β
∥λk+1 − λk∥2

+
[
θ1(xk+1)− θ1(x∗) + θ2(yk+1)− θ2(y∗)

]
+ (xk+1 − x∗)T (−ATλk+1) + (yk+1 − y∗)T (−BTλk+1)

+ (λk+1 − λ∗)T (Axk+1 +Byk+1 − b)

≥ µ1∥xk+1 − x∗∥2 + µ2∥yk+1 − y∗∥2 + 1

2
∥wk −wk+1∥2M ,

(B.2.8)

where the last inequality is due to the strong convexity of θ1 and θ2.

B.3 Proof for Theorem 1

Proof. Invoking the KKT optimality conditions for (6.2.2),

θ′1(x∗)− ATλ∗ = 0, θ′2(y∗)−BTλ∗ = 0. (B.3.1)

Invoking the optimality conditions for Line 1 and 2 of Alg.6.1,

θ′1(xk+1)− ATλk + βAT (Axk+1 +Byk − b) = 0 (B.3.2)
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and

θ′2(yk+1)−BTλk + βBT (Axk+1 +Byk+1 − b) = 0. (B.3.3)

By the Lipshitz smoothness of θ2 and (B.3.1,B.3.3) we have

∥θ′2(yk+1)− θ′2(y∗)∥ = ∥BT (λk+1 − λ∗)∥ ≤ L2∥yk+1 − y∗∥, (B.3.4)

hence by the definition of c (6.4.4) we have:

∥λk+1 − λ∗∥2 ≤ L2
2

c
∥yk+1 − y∗∥2. (B.3.5)

By (B.3.1) and (B.3.2) we have

∥θ′1(xk+1)− θ′1(x∗)∥ = ∥AT (λk+1 − λ∗) + βATB(yk+1 − yk))∥ (B.3.6)

Combing (B.3.6) and the fact of strong-convexity

∥θ′1(xk+1)− θ′1(x∗)∥ ≥ µ1∥xk+1 − x∗∥

we have

∥xk+1 − x∗∥2 ≤ 1

µ2
1

∥AT (λk+1 − λ∗) + βATB(yk+1 − yk))∥2

=
1

µ2
1

∥(λk+1 − λ∗) + βB(yk+1 − yk)∥2AAT

≤ 2Λmax(AA
T )

µ2
1

[
∥λk+1 − λ∗∥2 + β2∥yk+1 − yk∥2BTB

]
(B.3.7)

Invoking Lemma 1 with G = 0 we have
µ2
1

2βΛmax(AAT )
∥xk+1 − x∗∥2 ≤ 1

β
∥λk+1 − λ∗∥2 + β∥yk+1 − yk∥2BTB

(6.4.1)

≤ β∥yk − y∗∥2BTB +
1

β
∥λk − λ∗∥2

− β∥yk+1 − y∗∥2BTB − 2µ2∥yk+1 − y∗∥2

− 1

β
∥λk+1 − λk∥2 − 2µ1∥xk+1 − x∗∥2

(B.3.8)

Rearranging the items of the above inequality we have

µ1

(
2 +

µ1

2βΛmax(AAT )

)
∥xk+1 − x∗∥2 + β∥yk+1 − y∗∥2BTB + 2µ2∥yk+1 − y∗∥2 + 1

β
∥λk+1 − λk∥2

≤ β∥yk − y∗∥2BTB +
1

β
∥λk − λ∗∥2 = ∥wk −w∗∥2M .

(B.3.9)
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Next we bound the right hand side of the above inequality. Denote τ > 0 such that

τ∥wk−w∗∥2M
(B.3.5)

≤ τ

[
L2

2

βc
+ βΛmax(B

TB)

]
∥yk+1−y∗∥2 = 2µ2∥yk+1−y∗∥2, (B.3.10)

and the formula of τ (6.4.3) follows. Combing Lemma 1 and (B.3.10) we have

∥wk −w∗∥2M − ∥wk+1 −w∗∥2M ≥ τ∥wk+1 −w∗∥2M , (B.3.11)

and together with (B.3.9) the linear rate follows.

B.4 Proof for Theorem 2

Proof. This result simply follows Lemma 1 and (B.3.10).
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