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SUMMARY

In this thesis, I study the computational advantages of the allocentric represen-

tation as compared to the egocentric representation for autonomous local navigation.

Whereas in the allocentric framework, all variables of interest are represented with

respect to a coordinate frame attached to an object in the scene, in the egocentric

one, they are always represented with respect to the robot frame at each time step.

In contrast with well-known results in the Simultaneous Localization and Mapping

literature, I show that the amounts of nonlinearity of these two representations, where

poses are elements of Lie-group manifolds, do not affect the accuracy of Gaussian-

based filtering methods for perception at both the feature level and the object level.

Furthermore, although these two representations are equivalent at the object level, the

allocentric filtering framework is better than the egocentric one at the feature level due

to its advantages in the marginalization process. Moreover, I show that the object-

centric perspective, inspired by the allocentric representation, enables novel linear-

time filtering algorithms, which significantly outperform state-of-the-art feature-based

filtering methods with a small trade-off in accuracy due to a low-rank approximation.

Finally, I show that the allocentric representation is also better than the egocentric

representation in Model Predictive Control for local trajectory planning and obstacle

avoidance tasks.
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Chapter I

INTRODUCTION

Robust and efficient autonomous navigation is the holy grail of robotics research.

The ability to navigate autonomously is essential for many types of robots, from

autonomous cars and household, telepresence machines to military robots for surveil-

lance and search-and-rescue missions. In the robotics industry, robust perception,

control, and planning systems are extremely important because of the need to deal

with inexpensive sensors and low-quality mechanical design used to reduce the pro-

duction cost. In military applications, high-speed autonomous navigation is in great

demand since it enhances offensive strategies and decreases the chance of being hit

by the enemy. Similarly, in search and rescue missions, high-speed navigation reduces

the time to discover victims thus decreasing their risk of injury. in chapter 1

Despite recent successes of many autonomous navigation systems [50, 26, 27],

autonomous navigation remains a main challenge in robotics because of difficulties

in perception, control and planning for obstacle avoidance. Current technologies

in autonomous navigation can only enable self-driving cars to operate reliably at a

low or moderate speed [27, 26]. The maximum speed of CMU’s Boss, the fastest

car in DARPA’s Urban Grand Challenge in 2007 was only 48 km/h [190]. Recent

advancements enable the Google’s self-driving car to operate safely at freeway speed1,

but this is still very far from the typical speed of racing cars at more than 200

mph. Recent research in high-speed car navigation has demonstrated substantial

improvements on low-level control problems [66, 173], but the perception, high-level

control and planning problems are still very challenging.

1See, for example, http://en.wikipedia.org/wiki/Google_car
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Among three layers of the commonly-used hybrid architecture for autonomous

navigation [2, 124, 27, 26], major bottlenecks are at the middle layer for local navi-

gation, of which improvements can speed up the overall performance of the system

substantially. Further optimization at the top-layer for global deliberative planning

is not urgent, since global planning algorithms such as RRT*, A*, etc. (Section 2.2)

can suitably operate at a low frequency and only require a static map of the en-

vironment that can be built easily due to many advances in modern map-building

methods [182, 94]. Similarly, many efficient algorithms exist for low-level control at

the bottom-layer for direct control execution [66, 173]. However, the middle layer for

local navigation exposes key challenges such as identifying and avoiding fast moving

obstacles in the environment within a limited time while making progress towards the

target set by the global planner. Perception and control algorithms at this layer are

not only challenging and computationally expensive, but they also need to perform

at a frequency high enough to keep up with rapid changes in the environment.

The fundamental bottlenecks of autonomous local navigation systems are:

1. The inefficiency of real-time perception systems: Although early autonomous

navigation systems pioneered by Dickmanns rely mainly on dynamic percep-

tion [50], the latest systems mainly rely on laser scanners and process huge 3D

point-cloud data at every frame to detect obstacles in the local area [27, 26].

Laser scanners can easily help to achieve robust perception, but these systems

are far from optimal compared to many bio-perception systems in nature, which

typically use only two eyes and process visual information very efficiently in a

selective manner. Furthermore, well-known perception methods suffer from

quadratic complexity in time and space with respect to the number of features

on the object [181, 180, 53, 5, 94]. Many approximation methods to reduce the

complexity exist [92, 149, 181, 58, 59, 193, 86, 31, 81], but they are still far from

achieving the real-time condition for local navigation.
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2. The difficulties of optimal control for obstacle avoidance: Although the tra-

jectory planning and control problem for obstacle avoidance has been studied

for a long time, it remains one of the biggest challenges in autonomous nav-

igation, due to its nonconvex nature. Current research in control for high-

speed car navigation typically avoids dealing with obstacles in the environ-

ment [66, 173]. Similarly, the latest achievements in online trajectory planning

and control for fast navigation on quadrotors were demonstrated in convex set-

tings rather than on desired obstacle avoidance scenarios [127]. Furthermore,

the optimal feedforward-feedback control scheme for path planning and trajec-

tory following, used extensively in navigation systems [50, 26, 27], is typically

implemented in an egocentric view. These methods represent predicted obsta-

cle states and planning future trajectories relative to the current robot frame,

whereas much evidence in experimental psychology and cognitive science (see

Section 2.1) suggests that it might be more beneficial to perceive and plan in

an allocentric frame attached to an external object.

Much research in perception and control for autonomous navigation focuses on finding

new methods to solve these bottlenecks, but the importance of parameterizations and

coordinate frame representations is often neglected. Indeed, a proper parameteriza-

tion to formulate a problem is extremely important since different parameterizations

pose different trade-offs in both accuracy and speed performance. As has often been

shown in the literature, a proper parameterization can lead to substantial algorithmic

improvements over naive representations [166, 42, 43, 44, 48, 90]. A proper param-

eterization can also turn a nonlinear problem into a linear one [119] or improve the

problem’s linearity substantially [38], leading to more stable and faster results. Proper

parameterizations can also lead to new methods, since they reveal new insights into

the nature of the problem [45, 49].
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The importance of choosing the right coordinate frame representation for the

perception problem was raised very early by Rodney Brooks [25], but only recently

has it gained proper attention in robotics research (Section 2.2). Perhaps, the lack

of research in coordinate frame representations in robotics is largely because the

optimal solution for a problem should be independent of the coordinate frame used to

represent it. Moreover, from a computational perspective, converting a solution from

one frame to another only takes linear time with respect to the number of variables.

Furthermore, most generic principles and algorithms for perception and control are

derived from a frame-independent perspective. Not until recently have the benefits of

the relative local frame representation been recognized [78, 46, 80, 146, 74, 165, 67,

166], leading to substantial improvements in very large scale simultaneous localization

and mapping problems.

In experimental psychology and cognitive science, however, coordinate frames,

such as egocentric and allocentric ones, are a central research topic, and results from

these fields might provide important cues to improve the performance of autonomous

navigation systems. A major research question that has been studied extensively

in these fields is whether humans and animals represent the world relative to an

egocentric frame attached to their own bodies or to an allocentric frame attached

to an external object [102]. Although it is commonly agreed that these frames co-exist

in parallel (Section 2.1), researchers are still debating on which frame plays a more

dominant role in various perception and navigation tasks [194, 79, 137, 192, 29]. To

the best of my knowledge, the computational reasons for the benefits of these frames

are largely unexplored.

This thesis is based on the main motivation that studying the computational

benefits of the allocentric and egocentric representations can help to improve the

performance of state-of-the-art methods for high-speed autonomous local navigation.

A simple example illustrating the two representations for autonomous navigation is

4



starting car position 

ending car position 

The allocentric 
frame attached to 
the object. 
The y-axis (in blue) 
is oriented along the 
viewing ray of the 
first observation 

(a) The allocentric view

starting  
object position 

ending  
object position 

The car’s egocentric 
frame 

(b) The egocentric view

Figure 1.0.1: A simple example explaining the allocentric and egocentric representa-
tions for local autonomous navigation with one object.

shown in Fig. 1.0.1. Fig. 1.0.1a shows the allocentric view of how the car moves in

the object frame, and Fig. 1.0.1b shows the corresponding egocentric view of how

the object appears in the car’s frame. Whereas in the allocentric view, the object is

considered fixed at the origin of the frame and the car is moving in that frame, in

the egocentric view, the car is considered fixed at the origin and the object is moving

in the car’s frame. If we understand the computational benefits and drawbacks of

these two representations, we can choose the appropriate frame to guarantee optimal

performance of the state-of-the-art perception and control methods. Insights from

the roles of these two coordinate frames might also lead to new strategies to solve

challenging problems in autonomous navigation and obstacle avoidance.

In this thesis, I will show the advantages of the allocentric representation over the

egocentric one in both perception at the feature level, and perception and control at

the object level for obstacle avoidance tasks. The main difference between feature-

level and object-level perception is in the parameters of their measurement functions

that correspond to the features and the objects respectively. Many common types

5



of sensors, such as cameras and bearing-range sensors, provide measurements for a

sparse set of features in the scene [47, 104]. These features are represented as 2D or

3D points, which are elements of the vector spaces R2 and R3 respectively. On the

other hand, some types of modern sensors, such as laser scanners and depth cameras,

produce point-cloud measurements, which need to be pre-processed to segment out

the objects and obtain the measurements on their poses [37, 185]. At this object level,

the object poses are elements of the Lie-group manifolds SE2 and SE3 for 2D and

3D cases respectively, which makes the analyses more complicated than the vector-

space features at the feature level. Furthermore, trajectory planning and control for

obstacle avoidance requires the knowledge of objects because sparse sets of features do

not provide enough information about object occupancy in the environment. Hence,

I consider it an object-level task.

Although at the feature level, all features in the scene play an equal role, the

allocentric representation inspires an object-centric strategy that treats features

on different objects as different groups and might significantly improve state-of-the-

art perception methods. While the egocentric representation focuses on the role of

the robot, the allocentric representation requires the notion of “object-ness”. Conse-

quently, whereas all features in the environment play the same role from the egocen-

tric point of view, they are different from the allocentric perspective. The allocentric

representation distinguishes features on one object from those on the other objects,

emphasizing the role of objects in perception and control tasks. The object-centric

approach is also a current main stream of research in perception that leverages the

benefits of object-level perception to abstract away the complexity of low-level feature

measurements [160].

The goal of this thesis is to answer the following research questions with the aims

to understand the benefits of the allocentric and egocentric representations to improve

the performance of autonomous local navigation:
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1. For perception at the feature level, is the allocentric representation com-

putationally better than the egocentric one?

2. Also at the feature level, can we leverage the object-centric strategy, which

is inspired by the allocentric representation, to improve the performance of

feature-based perception methods?

3. Is the allocentric representation computationally better than the egocentric one

for perception at the object level?

4. Is the allocentric representation computationally better than the egocentric one

in trajectory planning and control for local obstacle avoidance?

1.1 Thesis Statement

Although much work in robotics advocates the egocentric representation [32, 75, 18],

this thesis will argue for the advantages of the allocentric frame and the object-centric

strategy. The results of this thesis support the following thesis statement:

For perception at the feature level, (1) the allocentric representation is better than

the egocentric one in Gaussian filtering methods, and (2) the object-centric approach,

which is inspired by the allocentric representation, leads to a significantly fast and

low-error approximation scheme, while at the object level, although (3) the two repre-

sentations are computationally equivalent in perception, (4) the allocentric represen-

tation is significantly better than the egocentric one in Model Predictive Control for

local trajectory planning and obstacle avoidance tasks.
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1.2 Scope

Different types of coordinate frames can be easily confused with the allocentric and

egocentric ones, and the number of methods we can examine to understand the be-

haviors of these two representations is huge. Hence, it is important to clarify the

definitions of these two coordinate frames and narrow down the scope of the thesis

to commonly-used methods for high-speed local navigation.

1.2.1 Coordinate Frames

In this thesis, I study two types of coordinate frames, the allocentric and the egocen-

tric. The allocentric frame is defined as a coordinate frame attached to an object in

the environment, whereas the egocentric one is always attached to the robot pose

at each current time step. In the robotics literature, the allocentric and egocen-

tric frames are also commonly referred to as object-centric and robocentric frames

respectively [32, 84, 82].

Although these two frames are most useful in the context of local navigation, there

are other commonly-used frames that are neither allocentric nor egocentric and are

not considered in this thesis. For example, coordinate frames attached to robot poses

in the past are not considered egocentric. The inverse-depth parameterization [38], for

example, represents a point with respect to the robot frame that first observed it in

the past, thus is not considered as an egocentric representation. Another example is

the first robot pose, often chosen as a fixed global frame for map building in practice.

It is neither allocentric nor egocentric according to our definitions.

1.2.2 Methods

Among the large number of perception methods proposed for local navigation,Gaussian-

based filtering methods, e.g., the well-known Extended Kalman Filter (EKF)

and Extended Information Filter (EIF), are the most important, well-studied and

commonly-used methods in solving the Simultaneous Localization and Mapping (SLAM)
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and state estimation problems. Other approaches such as smoothing and non-Gaussian

Bayesian filtering methods [180] require more memory and computational resources,

and are not necessary for high-speed local navigation. For those reasons, I focus

on studying the effects of the allocentric and egocentric representations on Gaussian

filtering methods in the context of high-speed local navigation.

In trajectory planning and control, while the literature on obstacle avoidance

methods is vast [36, 112, 23], I focus onModel Predictive Control (MPC), because

it is practical and promising for high-speed local navigation. Unlike other well-known

reactive methods such as potential fields and velocity obstacle, MPC makes a tradeoff

between speed and optimality, and guarantees the satisfaction of dynamic constraints.

Stochastic optimal control is the most fundamental formulation of the problem, but

it is difficult to solve in real-time [177, 178]. Optimal control methods for obstacle

avoidance are challenging due to the non-convex nature of the problem. However,

recent advances in nonlinear programming methods for solving large-scale constrained

optimization problems have revived interest in using optimal control for trajectory

optimization and obstacle avoidance tasks [156, 161].

1.3 Contributions

This work has the following contributions:

• I show that the nonlinearity of measurement functions does not account

for the differences between the allocentric and egocentric representations in

Gaussian filters, but the marginalization process does. This is in contrast

with other work [32], that advocates for the use of the egocentric representation

because measurement models are often more linear in the egocentric frame than

in the allocentric one. Although the statement is true, this previous work does

not realize that the egocentric representation suffers from a nonlinear coordinate

frame transformation that is not required in the allocentric representation. This
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fact has been noticed in [82], which also shows that the allocentric representation

can be made better by choosing special linearization points. However, it was

still unclear which frame is better due to the tradeoff between the nonlinearity of

measurement functions and that of the frame transformation. By extending the

curvature measurement of nonlinearities to Lie groups, I establish the general

equivalence in nonlinearities of these two representations.

• Using the object-centric strategy, I design two approximate filtering methods

which have linear-time complexity with respect to the number of features for

high-speed local navigation. These algorithms significantly improve upon the

traditional Gaussian filtering methods, such as the EKF and the EIF, which

respectively exhibit quadratic and cubic time complexity with respect to the

number of features.

• I prove that the allocentric and egocentric representations are equivalent in

Gaussian estimation methods for perception at the object level. This is a sur-

prising result because it contradicts well-known results in the literature of

filtering-based SLAM. Previous work suggests that a Gaussian distribution in

one frame corresponds to a non-Gaussian “banana-shape” distribution in

the other, and while the former leads to exact estimates, the latter causes in-

consistency problems due to linearization errors [179, 93, 33, 180, 6].

• I show the differences between the allocentric and egocentric representations

in Model Predictive Control (MPC) for obstacle avoidance and point out

cases where the allocentric representation is much better than the egocentric

one. I also show that the allocentric representation enables heuristics which can

significantly speed up MPC towards being as fast as reactive methods, trading

off computational speed and optimality. This heuristics is possible in the allo-

centric frame, but it is not safe to be employed in the egocentric representation.
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Chapter II

LITERATURE REVIEW

2.1 Coordinate Frames in Cognitive Science, Experimental Psy-
chology and Neuroscience

It has been widely accepted that humans and animals represent their own body and

the locations of external objects in multiple hierarchical coordinate frames [158, 147,

14]. These frames are generally classified into egocentric, attached to the subject’s

body, and allocentric, attached to some external frames in the environment [102].

Whereas egocentric frames are always fixed with respect to the subject’s viewpoint,

allocentric frames are fixed in the environment and independent of the subject’s move-

ment. Consequently, the location of every object in an egocentric representation has

to be updated each time the agent moves, while in an allocentric representation, only

the agent’s position and direction itself need updating because the locations of static

objects can be remembered and fixed in the allocentric map.

Klatzky’s work [102] laid out the computational foundation for the discussions

between allocentric and egocentric representations. She discussed which parameters

could be considered as primitives, i.e. available directly from the representations,

and which must be derived from those primitives through geometric conversions. Al-

though these computations do not necessarily coincide with what happens in human

cognition, they reveal the computational complexity of the process to obtain other

desired values under each representation. Hence, they help to explain which coor-

dinate frames humans use for a certain task based on the measurable accuracy and

the amount of time humans need to complete that task. Klatzky also hypothesized

several mechanisms humans possibly use to compute the derived values.
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Although it is commonly agreed that both egocentric and allocentric representa-

tions exist in parallel in human and animal navigation [29], their roles are largely

different in different proposed navigation models for different animals. Some mod-

els put heavier emphasis on egocentric representations, while others advocate for the

dominant role of allocentric representations. For example, in home navigation us-

ing the path integration scheme, insects maintain the home direction as a vector in

their egocentric space, and continuously update this vector based on their motion,

estimated from all other internal and external cues [198, 40]. Allocentric naviga-

tion mechanisms based on visual landmarks do exist in ants; however, they do not

dominate over the egocentric home-vector mechanism [197, 39]. In mammals, on the

other hand, various different models for path-integration have been developed [57, 56].

While [70, 183] proposed path-integration models that keep track of the animal’s po-

sitions in an allocentric space, Bovet’s [13] and Fujita’s [65] models argue for an

egocentric home-vector representation.

From the 70’s until now, various discoveries in neuroscience on different navigation

cells in animals’ and human’s hippocampus have provided strong evidence of the

existence of an allocentric map representation in the brain. A typical example is

the discovery of O’Keefe and Nadel about place cells in rat’s hippocampus during

the 70’s [145], which is also one of the major breakthroughs in neuroscience. As

its name suggested, each place cell only fires at its maximum rate when the rat is

around a specific place associated with the cell. Although several researchers are still

questioning the role of place cells as an allocentric map representation, arguing, for

example, that they are more like a locational GPS-like sensor rather than a cognitive

map representation [153], the ability of place cells to encode the animal’s current

locations in space is indisputable. Whereas place cells encode the animal’s location,

head direction cells provide information about its absolute orientation aligned with

a preferred direction in the environment [175]. The combination of place cells and

12



head direction cells fully specifies the animal’s 2D pose in the current allocentric space.

Furthermore, other recently-found cells, such as border cells [28, 170, 116], firing when

the animal is at the border of the environment, and grid cells [69, 76, 68, 136], firing

at vertices of a triangular grid in space, have bolstered the belief for the existence of

an allocentric map in animals’ brains.

Regardless of strong evidence for allocentric representations from various discov-

eries in neuroscience, the debate between the allocentric and egocentric representa-

tions was stirred up again in the early 2000’s by an influential paper of Wang and

Spelke [194]. Through a carefully designed series of experiments, they showed that

humans actually rely on egocentric spatial updates for locomotion. In their exper-

iments, the subjects first learned the locations of several objects outside a circular

testing room, then stepped into the room and tried to recover the positions of those

objects, now invisible, in three conditions: without any change in their heading, with

a small rotation, and when they are totally disoriented by rotating several rounds

about themselves. The most important finding in these experiments is that in the

disorientation case, even after successfully reorienting with an additional light source

inside the room, turned off during the disorienting process, people still cannot recover

the objects’ locations as accurately as in the other two cases. Obviously, this disproved

the hypothesis that humans represent the spatial locations of external objects in an

allocentric frame, since if such a representation existed, the subjects should be able

to recover the map immediately after reorienting themselves with the light source. In

another very similar experiment, but this time the light is on during the disorienting

phase, the subjects can recover the objects’ locations easily. This further suggests

that humans rely on an egocentric map to determine the objects’ locations, which

is continuously updated using their motion information inferred from the external

visual cue. The role of allocentric frames, according to Wang and Spelke, is only for

representing the geometry of the environment surface for the reorientation task.
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Wang and Spelke’s results have motivated many allocentric-supporting researchers

to better understand the role of allocentric frames and the interactions between these

two representations [29]. For example, Holmes and Sholl [79] hypothesized that the

egocentric representation is only used when the allocentric map has not been fully

established, which is the situation in Wang and Spelke’s experiments, where the

environment is new to the subjects. Holmes and Sholl’s results from similar experi-

ments in an over-learned environment showed strong evidence for an allocentric map.

However, they surprisingly failed to replicate Wang and Spelke’s results for similar

experiments in novel environments. They attributed the failures to the categorical

biases resulting from the differences in learning and testing methods in Wang and

Spelke’s experiments. However, a series of experiments conducted by Mou et al. [137]

have challenged not only Wang and Spelke’s egocentric-dominant model, but also

Holmes and Sholl’s categorical bias explanation. They proposed a model that hu-

mans learn an allocentric map and update their position and orientation in that map,

but whenever that map has low fidelity, humans will base their judgements on the

egocentric view. According to this view, the use of an egocentric map in Wang and

Spelke’s experiments is due to the low fidelity of the allocentric map resulting from

the ambiguities of the testing environment. After disorientation, the egocentric map

is destroyed; hence, people have to rely on this low-fidelity allocentric map, leading

to high errors in their judgements. Surprisingly, Mou’s et al.’s ideas are highly in

accord with Waller and Hodgson’s results, published at the same time [192]. Waller

and Hodgson’s experiments first confirmed Holmes and Sholl’s observations that in

familiar environments, humans’ judgements of object locations are not affected by

disorientation. Their results further suggested that the high judgement errors after

disorientation in Wang and Spekle’s experiments are not the results of the use of

an egocentric map, but the switch from the precise egocentric view to a low-fidelity

allocentric representation. This switch is not necessarily caused by disorientation,
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but can also happen when the subject’s heading misaligns with her learning view for

more than 135◦. The same idea is also shared in Mou et al.’s paper.

In his seminal work on the choice of coordinate frames in linguistics and its cor-

relation with other nonverbal tasks [117], Levinson found that “... the underlying

representation systems that drive all these capacities and modalities have adopted the

same frame of reference ...” and that “... the notion ’same frame of reference across

modalities’ is, after all, perfectly coherent ...”. For that reason, a main source of

motivations for this work originates from many indications of allocentric thinking in

verbal descriptions of our daily driving. For example, in road following, we try to

“keep ourselves centered in the middle of the lane” but not “keep the lane balanced

with respect to us”. The former is an example of allocentric thinking, whereas the

latter is egocentric. Similarly, in car following, it seems to be “easier” to think that

“we are too close to the car in front” (allocentric thinking), but not that “it is too close

to us” (egocentric thinking). Another example is when we try to overtake the car in

front, we try to “move to its left or right and faster than it” (allocentric thinking),

not to “make it to our right or left and slower than us” (egocentric thinking). These

examples are admittedly post hoc and further research is needed to verify them; how-

ever, together with Levinson’s theory about the coherence across modalities of the

choice of coordinate frames [117], they strengthen my beliefs on the dominant role of

allocentric frames in those situations.

2.2 Coordinate Frames in Perception and SLAM

Despite being a central research topic in cognitive science, neuroscience and exper-

imental psychology, the problem of choosing coordinate frames does not receive its

proper attention in robotics research. Early papers of Ballard [7, 8] discussed the main

benefits of allocentric frames in animate vision (active vision) where the agent can

actively control its gaze and fixation point. First, in the coordinate frame attached
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to the fixation point, it is easier to compute the scale depth (depth/fixation depth).

Second, since the subject can control its fixation point, the exact precise depth rep-

resentation for every point in space is not required, leading to significant reduction

in computation and representation costs. Moreover, the impractical detailed map for

spatial memory is also unnecessary, but only the allocentric geometric transformations

between different allocentric frames attached to each object need to be stored, allow-

ing the system to recover the scene structure incrementally. Unfortunately, I could

not find other follow-up work that further discusses the role of allocentric frames in

computational perception.

In the Simultaneous Localization and Mapping (SLAM) literature, although Rod-

ney Brooks envisioned the benefits of of relative local frames very early in his very

first SLAM paper in 1985 [25], the global frame is still the most widely used frame

in practice and in most papers about SLAM. It might be largely due to the sem-

inal work of Smith and Cheeseman [169, 168], who showed the equivalence of co-

ordinate frames in representing and propagating uncertainties. After that, many

key SLAM algorithms are frame-independent, and a global frame is normally as-

sumed [180, 53, 5, 133, 49, 94]. Nevertheless, interest in local coordinate frames has

been revived in recent work for large scale SLAM problems [78, 80, 67, 165, 166],

showing their advantages in accuracy and computational complexity.

On the other hand, in Structure From Motion, when discussing about gauge free-

dom in their seminal paper [186], Triggs et al. pointed out that although all gauges,

i.e. reference frames, are equivalent in principle, they have significantly different im-

pact on state updates and covariance matrices. Triggs et al. also suggest that in

object reconstruction one should use the object-centered gauge, a.k.a. the allocentric

frame, for small uncertainties on the reconstructed structure, whereas in navigation,

one should use the camera-cented gauge, a.k.a. the egocentric frame, for the precise

camera location.
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The benefits of the egocentric representation in improving the consistency of EKF

for some specific types of sensors have been recently studied. For range-bearing

sensors, experiments in [32] showed that the uncertainty of the state variables repre-

sented in the egocentric frame is bounded, whereas it is unbounded if an allocentric

representation is used. This result implies that the egocentric EKF is more consis-

tent than the allocentric one. Moreover, Huang et al. have analytically proved this

consistency of the egocentric EKF for range-bearing sensors in [82, 84, 83]. The au-

thors analyzed the ranks of the local observability matrices [34] of the egocentric and

allocentric EKFs, and compared those ranks with that of an ideal EKF, which lin-

earizes measurement functions at the true values of the state variables. Their analysis

showed that the egocentric EKF and the ideal EKF’s observability matrices have the

same rank two, whereas the allocentric EKF’s has the higher rank three. Intuitively,

it means that linearizing the measurement model in the allocentric representation at

the latest state estimates introduces spurious information into the problem and leads

to inconsistencies, while the linearized measurement model in the egocentric frame

does not suffer from this issue. For bearing-only sensors such as monocular camera,

inverse-depth parameterizations have been proved to be more linear than the tra-

ditional Euclidean XY Z representation [38, 134, 54], indicating that the egocentric

representation outperforms allocentric ones in reducing linearization errors.

However, although the egocentric representation has been proved to reduce the

amount of nonlinearity of the measurement functions for some specific types of sen-

sors, it is not necessarily to be better than the allocentric representation in reducing

the linearization errors and improving the filters’ consistency. This is because the ego-

centric representation requires an additional nonlinear frame transformation at every

step, which is also subject to linearization errors, whereas no frame transformation is

needed in allocentric representations. This inconsistency of the egocentric EKF due

to frame transformations has also been pointed out in [82] for range-bearing sensors.
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In fact, for range-bearing sensors, [82] showed that the allocentric EKF can be

made much more consistent than the egocentric one by carefully choosing the lin-

earization points. The authors suggested two methods to preserve the ideal rank-2

property of the allocentric EKF’s observability matrix. The first method, which

always linearizes the measurement model at the first detected estimates of the land-

marks, suffers from large linearization errors if these initial estimates of the landmarks

are far from their true states. However, it is proved to be much more consistent than

both standard egocentric and allocentric EKFs. The second method enforces the

observability constraint on the state estimates, leading to improvements in lineariza-

tion errors while guaranteeing the desired rank-2 property. Experiments in the paper

confirm the advantages in accuracy and consistency of the allocentric EKF over the

egocentric one for range-bearing sensors.

A general analysis of the EKF’s consistency for all types of sensor models in

the egocentric and allocentric frames is difficult and still missing in the literature.

It is unclear if the gain in linearity of measurement models in the egocentric rep-

resentation can compensate for linearization errors caused by the nonlinear frame

transformations. Furthermore, some special egocentric representations which reduce

the nonlinearity of measurement models significantly suffer from their own specific

problems. For example, even though the inverse-depth parameterizations are widely

used, they suffer from the problem of over parameterization and non-Gaussian pri-

ors [38]. For stereo camera, [150] suggests to use the inverse-depth parameterizations

only for far-away landmarks because the XY Z representation is linear enough for

nearby one and does not suffer from the over-parameterization problem. This paper,

however, uses the XY Z representation in the egocentric frame, which is subject to

linearization errors due to the nonlinear frame transformation.

In Chapter 3, I will prove that the amount of nonlinearity of the egocentric and

allocentric representations in filtering methods are in fact the same for all types of
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sensor models. My analysis generalizes the results of Huang et. al [82, 84, 83] for

general measurement functions. I also show that differences between the egocentric

and allocentric representations are not due to the nonlinearity of the measurement

functions and the frame transformation but due to a difference in their marginaliza-

tion processes. In this aspect, the allocentric representation is in fact better than the

egocentric one. For time complexity, I confirm Huang et al.’s results that egocen-

tric filtering methods are slower than their allocentric counterparts by an additional

quadratic time complexity with respect to the number of features due to the nonlinear

frame transformation at every step.

2.3 Coordinate Frames in Trajectory Planning and Obstacle
Avoidance

Many local navigation and obstacle avoidance methods invented during the 80’s and

90’s use the egocentric coordinate frame, local occupancy grid map representations,

or velocity spaces1. For example, the classic potential field approach and its vari-

ants [101, 19, 108, 60] are commonly implemented in egocentric fashion, whereas the

Vector Field Histogram method and its variants [20, 187, 188] base on local occupancy

grid maps to build polar histograms. Some other well-known approaches for dynamic

environments, such as Dynamic Window Approach [63], Velocity Obstacle [62], and

their variants [24, 163, 105] search for the best velocity directly in velocity spaces.

Also, many insect-inspired navigation approaches derive the egocentric steering vector

by balancing optical flow on two sides of the robot [201]. The egocentric representa-

tion is more favorable for these reactive planning strategies because they only need

the immediate state of the world at every time step, and this information is immedi-

ately available from many common sensors, such as IMUs, cameras, range and bearing

sensors, etc., where measurements are typically in the robot’s egocentric view.

1Short reviews of these methods could be found in [128, 109, 30].
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In the hybrid multilevel framework for autonomous navigation [2, 124, 27, 26], the

global and the egocentric frames are widely used. Many recent advanced navigation

systems, especially those developed for the DARPA Grand Challenge competitions

and DARPA’s LAGR research program [26, 27, 162], adopt this framework, which

typically includes (1) a high-level global planner, (2) a mid-level behavior module,

and (3) a local motion planner. The high-level global planner is in charge of planning

long-term routes to different required check-points basing on the global map, using the

classic A* search. Based on these routes and the current situation of the environment,

the behavior module then decides proper behavioral strategies and produces subgoals

for the local motion planner. The local motion planner is responsible for generating

possible local trajectories and choosing the best one to avoid obstacles while achieve

the subgoal in the shortest time. The corresponding control commands associated

with this best trajectory are then used to drive the vehicle.

Whereas the global frame is the obvious choice for the high-level global planner,

the egocentric frame is widely used at the other two levels. For example, CMU’s

Boss [189], the winner of DARPA Urban Grand Challenge in 2007, uses a constraint-

based approach to generate possible trajectories to different possible subgoals in the

egocentric frame. Stanford’s Junior [132], the second place winner, also generates

trajectories in the egocentric frame at every time step by simulating the vehicle dy-

namics with different steering parameters. Similarly, the third place winner, Odin [4],

uses A* to plan possible actions and trajectories basing on an egocentric local occu-

pancy map, propagated and updated from previous state conditions. Likewise, the

fourth place winner, MIT’s Talos [113], employs RRT [111] with closed-loop dynamics

to plan trajectories in the egocentric frame. For LAGR, Sermanet et al. [162] also

learn a maneuver bank of possible trajectories for each initial velocity in the egocen-

tric frame of the robot. In contrast with this work, I will show the benefits of the

allocentric frame in MPC for trajectory planning and obstacle avoidance .
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PART I

Feature Level

This part of the thesis shows the computational benefits of the allocentric represen-

tation over the egocentric one for perception at the feature level. Many common

types of sensors, such as cameras and bearing-range sensors, provide measurements

for a sparse set of features in the scene at each time step [103, 47]. These features

are represented as 2D or 3D points, which are elements of the vector spaces R2 and

R3 respectively. In Chapter 3, I will prove that the nonlinearity of the measure-

ment functions of these sensors do not affect the accuracy of the two representations,

but the allocentric framework is more accurate than the egocentric one due to its

marginalization process. The allocentric representation is also faster than the ego-

centric one by an amount of quadratic time-complexity with respect to the number

of features due to the required coordinate frame transformation in the egocentric

framework. Furthermore, I will show in Chapter 4 that the object-centric strategy,

inspired by the allocentric representation, enables a linear-time filtering algorithm

with respect to the number of features on the object. This algorithm outperforms

state-of-the-art filtering methods in speed while having low-error accuracy due to a

low-rank approximation.



Chapter III

FEATURE-BASED FILTERING METHODS

I will show in this chapter that the allocentric representation is better than the egocen-

tric one for feature-based Gaussian filtering methods, such as the Extended Kalman

Filter (EKF) and the Extended Information Filter (EIF).

The accuracy of these methods is determined by the nonlinearity of the func-

tions and the marginalization process. For computational efficiency, these methods

approximate the true probability distribution of the robot pose and landmark fea-

tures in the environment by a Gaussian density at each time step. This is done by

linearizing nonlinear measurement functions, which causes linearization errors. The

more nonlinear the functions are, the larger the linearization errors, and the worse

the Gaussian approximations. Moreover, to maintain a low memory footprint, these

methods marginalize out past poses, which are unnecessary for local navigation. It

is well known in the literature that the Gaussian approximation and marginalization

processes are the root of the filters’ inconsistency problem, because linearization er-

rors of eliminated past poses are permanently baked into the system and cannot be

improved further in the future [179, 93, 33, 180, 6].

Using the curvature measures of nonlinearity and expanding them for functions

on Lie-groups, I discover that the overall amount of nonlinearity of the allocentric

and egocentric representations are actually equivalent for all types of measurement

models. Although the egocentric framework benefits from more linear measurement

functions than those in the allocentric one, it suffers from the nonlinearity of a coor-

dinate frame transformation needed at every time step, which is not required in the
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allocentric representation. Much previous work exploiting the benefits of the egocen-

tric representation neglects this fact [32, 75, 18], until it is explicitly pointed out in

[82]. However, [82] only considers one type of measurement model for bearing-range

sensors, and does not realize the equivalence in nonlinearity of these two frames.

The allocentric representation is more accurate than the egocentric one due to its

better marginalization process. In the egocentric case, the coordinate frame transfor-

mation step is delayed as much as possible in the process to reduce linearization errors

due to suboptimal linearization points [32]. However, even with this technique, the

egocentric framework still suffers from larger inconsistency than the allocentric one,

because it cannot re-linearize the current pose, as the pose is fixed at the origin and is

not a variable in the framework. In contrast, the allocentric representation explicitly

represents the current robot pose as a variable, thus it can retain the current pose to

re-linearize in the next step. Because of that, the allocentric representation results in

more consistent estimates.

3.1 Problem Formulation

In order to analyze the differences of the allocentric and egocentric representations,

we first need to formulate the Gaussian filtering algorithms in these two frameworks

in details. In this section, I briefly describe the filtering process in the allocentric

and egocentric frames using factor graphs [49], which allow us to visualize the process

and identify the differences between the two frameworks more easily as compared

to other traditional interpretations using matrices, as are common in the literature.

Because the two allocentric and egocentric filters are not directly comparable as will

be discussed later, I will describe another filter, namely the “allocentric pure filter”,

which is comparable to both of them. I will show that the allocentric pure filter is

equivalent to the egocentric filter but worse than the original allocentric filter in the

marginalization process.
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3.1.1 Allocentric Filtering Framework

The allocentric filtering framework is similar to the standard filtering-based SLAM

formulation with a fixed global frame [180, 49], except that the global frame is now a

fixed allocentric frame O attached to an object in the scene. Specifically, letXO
t be the

robot pose at time t and LO =
{
LOj
}m
j=1

be all landmark features in the environment,

both represented in the allocentric frame O. Because we consider only one allocentric

frame, we can safely omit the frame superscript O to simplify the notation when it is

clear from the context.

At each time step t, Gaussian filtering algorithms maintain a Gaussian approx-

imation of the joint density p(Xt, L|Zt, Ut) of the current robot pose Xt and all

landmarks L, given all landmark measurements Zt = {zij}i=1..t,j=1..m and odometry

Ut = {ui}i=1..t. As is well-known in the literature, the joint density p(Xt, L|Zt, Ut) is

factorized as follows [180]:

p(Xt, L|Zt, Ut) =

ˆ
Xt−1

p(Xt−1, Xt, L|Zt, Ut)

∝
ˆ
Xt−1

p(Xt−1, L|Zt−1, U t−1)p(ut|Xt, Xt−1)
m∏
j=1

p(ztj|Xt, Lj)

(3.1.1)

where ztj is the new measurement of the landmark Lj at the current time t observed

from the current robot pose Xt, ut the latest odometry measurement between the

robot poses Xt−1 and Xt, and p(Xt−1, L|Zt−1, Ut−1) the joint density obtained in the

previous time step, using all past measurements up to time t− 1.

Factor graphs representing this filtering process are shown in Fig. 3.1.1. Essen-

tially, each factor graph represents a factorization of a joint probability density of

the variables of interest [49]. By definition, it is a bipartite graph with two types of

nodes: variable nodes, corresponding to variables of interest, e.g., robot poses and

landmarks, and factor nodes, corresponding to factors in the factorized density.
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Figure 3.1.1: The allocentric filtering framework.

The allocentric filtering process is as follows. Given the Gaussian approximation

of the joint density factor p(Xt−1, L|Zt−1, Ut−1) obtained in the previous time step

(Fig. 3.1.1a), the filters incorporate the new odometry factor p(ut|Xt, Xt−1) and

landmark measurement factors p(ztj|Xt, Lj) into the graph (Fig. 3.1.1b). This new

graph represents the factorization of the joint density p(Xt−1, Xt, L|Zt, Ut) under the

integral in Eq. (3.1.1). We solve this graph to obtain the best Gaussian approximation

of the joint density p(Xt−1, Xt, L|Zt, Ut), then marginalize out the previous pose Xt−1

to obtain the Gaussian approximation of the new density p(Xt, L|Zt, Ut) at the current

time t (Fig. 3.1.1c).

A key step in this filtering process is to compute the Gaussian approximation of the

joint density p(Xt−1, Xt, L|Zt, Ut) by solving the nonlinear factor graph in Fig. 3.1.1b.

Because robot poses are elements of Lie-group manifolds, in practice, the Gaussian

approximation of the joint density p(Xt−1, Xt, L|Zt, Ut) is defined by two components:

(1) a mean value {X̃t−1, X̃t, L̃} on the manifold, which is typically chosen to be

the maximum-a-posterior (MAP) solution of the factor graph, and (2) a zero-mean

GaussianN (xt−1, xt, l; 0,Σ) on the vector spaces isomorphic to the corresponding Lie-

algebras of the variables. I present a formal definition of Gaussian approximations

for probability densities on Lie groups in the Appendix A.2.
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This nonlinear factor graph in Fig. 3.1.1b can be solved using the standard Gauss-

Newton or Levenberg-Marquardt algorithms [49]. At each iteration, we linearize the

nonlinear factor graph around the current estimate into a linear factor graph, then

update the estimate using the solution obtained from solving the linear graph. The

whole process is repeated until it converges.

Let N (xt−1, l; 0,ΣA
t−1) be the zero-mean Gaussian in the Lie-algebra vector spaces

that approximates the density p(Xt−1, L|Zt−1, U t−1) obtained in the previous time

step. Under the standard Gaussian noise assumption for the measurements [49], the

MAP solution X̃t−1, X̃t, L̃ of the joint density p(Xt−1, Xt, L|Zt, Ut) can be found by

minimizing its negative log, which is the following nonlinear least-square problem:

X̃t−1, X̃t, L̃ = argmin
Xt−1,Xt,L

∥∥∥∥∥∥∥
 xt−1

l


∥∥∥∥∥∥∥

2

ΣA
t−1

+
∥∥ut − fAt (Xt, Xt−1)

∥∥2

Σu
+

m∑
j=1

‖ztj − htj(Xt, Lj)‖2
Σtj

(3.1.2)

where fAt (·, ·) and htj(·, ·) are the nonlinear odometry and landmark measurement

models respectively. Each factor of the nonlinear factor graph in Fig. 3.1.1b also

equivalently encodes the corresponding term in the sum of (3.1.2).

We solve the linear factor graph obtained from linearizing (3.1.2) by using a vari-

able elimination algorithm [49]. Since factors in (3.1.2) are nonlinear functions on

Lie-group manifolds, the linear factor graph is equivalent to a Gaussian density of

variables xt−1, xt, l on the vector spaces isomorphic to the corresponding Lie-algebras.

Eliminating a variable is equivalent to factorizing its local density into a condi-

tional density of the eliminated variable given the neighbors, and a new factor on

its neighbors. For example, eliminating xt−1 from the graph results in the conditional

p(xt−1|xt, l) and a new factor on xt and l: p(xt−1, xt, l) = p(xt−1|xt, l)p(xt, l). The

variable elimination process finishes with a final factor on the last remaining variable

and a Bayes Net of all conditional densities produced during the process. We then

compute the mean of other variables by back-substitution.
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When the optimization process converges, the Gaussian density encoded in the lin-

ear factor graph has zero mean, N (xt, l, xt−1; 0,Σ). Together with the MAP solution

{X̃t−1, X̃t, L̃}, it defines the best Gaussian approximation for p(Xt, L,Xt−1|Zt, Ut).

Finally, we obtain the zero-mean Gaussian N (xt, l; 0,Σt) on the Lie-algebra vector

spaces to approximate the final joint density p(Xt, L|Zt, Ut) around the MAP value

X̃t, L̃ by simply marginalizing out xt−1 from the final linear factor graph.

3.1.2 Egocentric Filtering Framework

In the egocentric framework, landmarks are represented with respect to the current

robot frame at each time step. We denote Ltj the coordinate of the jth landmark

in the robot frame at time t, and Lt = {Ltj}j=1..m the set of all landmarks. We also

denote Y t
t−1 the robot pose in the previous time step t− 1 represented in the current

egocentric coordinate frame at time t. Its inverse Y t
t−1 = (Y t−1

t )−1 is the current robot

pose represented in the previous egocentric frame at time t− 1.

At each time step t, given the density p(Lt−1|Zt−1, Ut−1) of landmarks obtained

in the previous frame, and the new odometry ut and landmark measurements ztj, we

would like to compute the new probability distribution p(Lt|Zt, Ut) of landmarks in

the current robot frame given all measurements up to the current time. The egocentric

filtering process can be summarized as follows:

p(Lt|Zt, Ut) =

ˆ
Y t−1
t ,Lt−1

p(Y t−1
t , Lt−1, Lt|Zt, Ut)

∝
ˆ
Y t−1
t ,Lt−1

[
p(Lt−1|Zt−1, Ut−1)p(ut|Y t−1

t )
m∏
j=1

p(ztj|Ltj)

×
m∏
j=1

δ
(
Ltj − (Y t−1

t )−1 � Lt−1
j

)]
(3.1.3)

where δ(·) is the Dirac delta distribution

δ(x) =


+∞ x = 0

0 x 6= 0
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Figure 3.1.2: The original egocentric filtering framework with frame transformation
constraints.

and � denotes the coordinate frame transformation operator � between a pose X in

SE2 (or SE3) and a point P in R2 (or R3), which can be defined using the usual

matrix representation of X =

 R T

0 1

, where R ∈ SO2 (or SO3) and T ∈ R2 (or

R3) as follows:

X � P = RP + T (3.1.4)

The function δ and the coordinate frame transformation � in (3.1.3) are needed to

establish the exact relationship between the coordinate of a landmark in the previous

egocentric frame Lt−1
j with its coordinate in the current egocentric frame Ltj via the

frame transformation Y t−1
t :

Ltj = (Y t−1
t )−1 � Lt−1

j , (3.1.5)

The factor graphs describing the egocentric filtering framework are shown in Fig.

3.1.2. Different from the allocentric case, the odometry and landmark measurements

in the egocentric framework are now unary factors on the unknown variables Y t−1
t
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and Ltj respectively, because the current robot pose is already known and fixed at

the origin of the egocentric coordinate frame. Furthermore, we introduce additional

constrained factors into the graph to represent the exact relationship between Lt−1
j ,

Ltj and Y
t−1
t in (3.1.5).

The factor graph in Fig. 3.1.2b encodes the following nonlinear least-squares

problem with nonlinear equality constraints:

L̃t−1, Ỹ t−1
t , L̃t = argmin

Lt−1,Y t−1
t ,Lt

∥∥∥∥ Lt−1

∥∥∥∥2

ΣE
t−1

+
∥∥ut − fEt (Y t−1

t )
∥∥2

Σu

+
m∑
j=1

∥∥ztj − gutj(Ltj)∥∥2

Σtj

subject to Ltj = (Y t−1
t )−1 � Lt−1

j , ∀j = 1..m (3.1.6)

where fEt (·) and gutj(·) are the odometry and the unary landmark measurement models

respectively.

The main motivation for using the egocentric representation is that the unary

egocentric measurement function gutj(Ltj) is often more linear than the allocentric one

htj(Xt, Lj) in (3.1.2). However, the egocentric formulation suffers from the nonlinear

frame transformation constraints which do not exist in the allocentric framework. In

general, solving nonlinear least-square problems with nonlinear constraints is more

difficult than problems without constraints. We cannot use unconstrained optimiza-

tion methods, e.g., Gauss-Newton and Levenberg-Marquardt anymore, but have to

adopt constrained optimization techniques, such as the Sequential Quadratic Pro-

gramming method [143].

To avoid solving the nonlinear constrained problem, techniques in egocentric fil-

tering methods usually transform all variables into the same coordinate frame to

eliminate the frame transformation constraints before solving the problem. A trivial

approach is to transform the previous density of landmarks p(Lt−1|Zt−1, Ut−1) into

the new robot frame at time t using a guessed value of Y t−1
t , e.g., the odometry
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Figure 3.1.3: Factor-graph interpretation of the delay-composition egocentric filtering
framework of Castellanos et al. in [32].

measurement. Then, the problem can be solved easily as all variables and measure-

ments are unified in the same current frame. However, this naïve approach suffers

from severe linearization errors because the transformation Y t−1
t between the previous

and current frames is unknown, and odometry measurements are very inaccurate in

practice [32].

To minimize errors induced by the coordinate frame transformation, state-of-the-

art egocentric algorithms [32] adopt a “delay-composition” strategy, which uses the

optimal value of Y t−1
t instead of its guessed to transform the density of landmarks

into the new frame. To obtain the optimal value of Y t−1
t , these methods end up

representing and solving the entire problem in the previous robot frame first, before

transforming the final density of landmarks to the current frame.

Fig. 3.1.3 explains the delay-composition process in factor graphs. We first elim-

inate each landmark Ltj from the nonlinear constrained factor graph in Fig. 3.1.2b

to obtain a new measurement factor between the landmark Lt−1
j and the robot pose

Y t−1
t , represented in the previous robot frame. The new graph is shown in Fig. 3.1.3b.
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We solve this new graph to obtain a Gaussian approximation of p(Y t−1
t , Lt−1|Zt, Ut)

(Fig. 3.1.3c, top), then transform this Gaussian over to the current frame to ob-

tain the final Gaussian approximation of p(Lt|Zt, Ut) (Fig. 3.1.3c, bottom). Let

N (yt−1
t , lt−1; 0,Σt−1) be the Gaussian on the Lie-algebra vector spaces approximat-

ing p(Y t−1
t , Lt−1|Zt, Ut) around its mean {Ỹ t−1

t , L̃t−1}. The mean L̃t of the final

Gaussian approximation is obtained by transforming the landmarks’ mean L̃t−1 over

to the new frame using (3.1.5) with the optimal value of the relative pose Ỹ t−1
t . The

zero-mean Gaussian N (lt; 0,ΣE
t ) approximating p(Lt|Zt, Ut) around L̃t is found by

inserting into the linear graph N (yt−1
t , lt−1; 0,Σt−1) the linearized constrained factor

of (3.1.5) at the optimal value and marginalizing out yt−1
t , lt−1.

A key step of this process is to compute the Gaussian approximation of the density

p(Y t−1
t , Lt−1|Zt, Ut) by solving the nonlinear factor graph in Fig. 3.1.3b, which also

represents the following nonlinear least-square problem:

Ỹ t−1
t , L̃t−1 = argmin

Y t−1
t ,Lt−1

∥∥∥∥ lt−1

∥∥∥∥2

ΣE
t−1

+
∥∥ut − fEt (Y t−1

t )
∥∥2

Σu

+
m∑
j=1

∥∥ztj − gtj(Y t−1
t , Lt−1

j )
∥∥2

Σtj
(3.1.7)

where lt−1 is the Lie-algebra vector corresponding to Lt−1 in the zero-mean Gaussian

N (lt−1; 0,ΣE
t−1) approximating the landmark density p(Lt−1|Zt−1, Ut−1) obtained in

the previous time step, fEt (·) is the odometry model, and gtj(·, ·) is the landmark

measurement model between the current pose Y t−1
t and the landmark Lt−1

j repre-

sented in the previous robot frame. The measurement model gtj(·, ·) is obtained from

eliminating Ltj from the nonlinear constrained factor graph in Fig. 3.1.2b.

3.1.3 Allocentric Pure Filtering Framework

The above allocentric and egocentric filtering frameworks are not directly compara-

ble, because their odometry measurement models have different input domains. The

allocentric odometry model is a binary function whereas the egocentric one is unary.
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Figure 3.1.4: The pure allocentric filtering framework which marginalizes out the
current pose before adding new measurements. This produces the exact same results
as the delay-composition egocentric method in Fig. 3.1.3.

To overcome this difficulty, I use another filter, namely the “Allocentric Pure

Filter”, which is comparable to both frameworks. The allocentric pure filter is similar

to the above allocentric one, except that it marginalizes out the current pose and only

maintains a distribution of landmarks at each step.

This allocentric pure filtering process is depicted in Fig. 3.1.4. Given the Gaus-

sian approximation of the landmark density p(L|Zt−1, Ut−1) obtained in the previous

time step (Fig. 3.1.4a), the filter incorporates new landmark measurement factors

p(ztj|Xt, Lj) and the new odometry factor p(ut|Xt, X̃t−1) into the graph (Fig. 3.1.4b),

where X̃t−1 is the linearization point of the previous pose, which has been marginal-

ized out in the previous time step. The new graph represents the factorization of the

joint density p(Xt, L|Zt, Ut). We solve this graph to obtain the best Gaussian approx-

imation of the joint density p(Xt, L|Zt, Ut), then marginalize out the current pose Xt

to obtain the Gaussian approximation of the new landmark density p(L|Zt, Ut) at the

current time t (Fig. 3.1.4c). The nonlinear least-squares problem to be solved is:

X̃t, L̃ = argmin
Xt,L

‖l‖2
ΣP

t−1
+
∥∥ut − fPt (Xt)

∥∥2

Σu
+

m∑
j=1

‖ztj − htj(Xt, Lj)‖2
Σtj

(3.1.8)

where fPt (Xt) = fAt (Xt, X̃t−1) and htj(·, ·) are the nonlinear odometry and landmark

measurement models respectively.
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Different from the original allocentric filter, the odometry measurement function

of this pure filter at time t is a unary function only on the current pose Xt, because

the previous pose Xt−1 has been marginalized out. Its mean value is fixed at X̃t−1

and cannot be updated anymore. Consequently, the odometry measurement model

at time t is the unary function fPt (Xt) and comparable with the egocentric odometry

model fEt (Y t−1
t ).

I will show in Section 3.2.1 that the egocentric filter and this allocentric pure

filter are equivalent in terms of accuracy. Then, in section 3.2.2, I will show that

this allocentric pure filter is less accurate than the original allocentric filter due to its

marginalization process. Hence, we finally conclude that the allocentric filter is more

accurate than the egocentric filter.

3.2 Accuracy Analysis

In this section, I will analyze the aforementioned allocentric and egocentric frame-

works. I will show that that the allocentric pure filter and the egocentric filter have

the same amount of nonlinearity, but the original allocentric filter produces more con-

sistent results than these two due to its advantages in the marginalization process.

3.2.1 Nonlinearity

The nonlinearity of measurement functions determines the accuracy of Gaussian-

based estimation methods. This is because these methods approximate the true

probability distribution of the variables with a Gaussian density for efficiency. The

Gaussian approximation is obtained by linearizing measurement functions around

the optimal MAP solution, resulting in linearization errors. Moreover, because past

poses are marginalized out in filtering methods, the linearization errors of these poses

are permanently “baked” into the system and lead to inconsistent estimates over

time [179, 93, 33, 180, 6]. I analyze the nonlinearity of measurement functions in this

section, and will later investigate the marginalization process.
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Although the nonlinearity of the original egocentric measurement functions gutj(L
t−1
j )

in (3.1.6) might be more linear than the allocentric ones, due to the nonlinear frame

transformation (3.1.5), the egocentric framework in (3.1.7) with the delay compo-

sition technique ends up having the same amount of nonlinearity as the allocentric

representation in (3.1.2). We note that the original egocentric framework and the

delay-composition one are equivalent.

To prove the equivalence in nonlinearity of the two nonlinear least square systems

of the allocentric pure filter and the egocentric filter in (3.1.8) and (3.1.7) respectively,

I will show that the odometry measurement functions fPt (Xt) and fEt (Y t−1
t ) have

the same amount of nonlinearity, and the two corresponding landmark measurement

functions htj(Xt, Lj) and gtj(Y t−1
t , Lt−1

j ) also have the same amount of nonlinearity.

The remaining Gaussian terms in (3.1.2) and (3.1.7) are linear and do not affect the

systems’ nonlinearity.

I will use the curvature measures of nonlinearity proposed by Bates and Watts

in [11] and [10] to quantify the amount of nonlinearity of these functions. Among

many measures of nonlinearity in the literature (see, for example, [118] and refer-

ence therein), the curvature measures of nonlinearity have been well studied and

widely used in both statistics, nonlinear estimation and target tracking communi-

ties [122, 121, 120, 142, 97]. These measures of nonlinearity are also grounded on

well-established concepts of curvatures in differential geometry.

Because the original curvature measures of nonlinearity were formulated only for

functions on vector spaces and rely on the functions’ Taylor expansion, we need to

extend these concepts to functions on Lie-group manifolds so that they can be applied

to our functions in (3.1.2) and (3.1.7). Essentially, let ϕX◦,x̂ be a curve on a manifold

G passing through a point X◦ ∈ G along a direction x̂ ∈ g in its algebra, the curvature

measures of a function h(X) on G quantify its nonlinearity by considering the ratio

between the second and first-order terms of its Taylor expansion along the curve.
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More specifically, the curve ϕX◦,x̂ is defined as a continuous mapping from t ∈ R onto

the manifold elements [152], which traces out the curve along the direction tx̂ while

t varies. As detailed in the Appendix (A.1), we can use the exponential map to map

the Lie-algebra element tx̂ ∈ g back into the manifold (A.1.9), hence, the curve can

be formally defined as follows:

ϕX◦,x̂ : R → G,

t 7→ ϕX◦,x̂(t) = X◦exp(tx̂). (3.2.1)

Intuitively, the smaller the second-order term is, compared to its first-order term in

the Taylor expansion of the function h(X), the more linear the function is.

In its general form, the Taylor expansion of the function h(X) on the manifold

G can be defined via its re-parameterization hX◦(x) on its Lie-algebra vector space

using the exponential map:

h(X◦exp(x̂)) , hX◦(x) = h(X◦) + Jhx+
1

2
xTHhx+O(‖x‖3). (3.2.2)

where Jh and Hh are now the Jacobian and Hessian of hX◦ respectively. See the

details in the Appendix (A.1), and also in [35] page 62, formula 11.16.

On a specific curve ϕX◦,x̂(t) at X◦ ∈ G along a direction x̂ ∈ g defined in (3.2.1),

the Taylor expansion can be written as:

h(X◦exp(tx̂)) , hX◦(tx) = h(X◦) + tJhx+
1

2
t2xTHhx+O(‖x‖3 t3). (3.2.3)

With this new definition of Taylor expansion, the two types of the curvature

measures of nonlinearity, the parameter-effects curvature and the normal curvature

defined in [11], can now be applied for functions on Lie-group manifolds. Intuitively,

when we move along the curve ϕX◦,x̂(t) on the manifold by varying t, the linear term

in (3.2.3) Jhx is the tangent vector of the image curve on the function’s surface. This
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tangent vector lies on the tangent plane of the function’s surface at h(X◦), which is

also the linear approximation of the function. On the other hand, the quadratic term

xTHhx explains how fast the tangent vector changes when t varies, as well as how much

the surface deviates from the tangent plane, i.e., its linear approximation. Bates and

Watts proposed to decompose the quadratic term xTHhx into two components, one

is its projection on the tangent plane and the other on the normal space orthogonal

to the tangent plane [11]. The component of xTHhx on the tangent plane measures

the part of the nonlinearity in the direction of x that depends on the particular

parameterization, thus its name parameter-effects curvature. On the other hand,

the component of xTHhx on the normal space is related to the normal curvature

of the curve, measuring the part of the nonlinearity that does not depend on any

parameterization [11].

3.2.1.1 Landmark measurement functions

The allocentric and egocentric landmark measurement functions, htj(Xt, Lj) and

gtj(Y
t−1
t , Lt−1

j ) in (3.1.8) and (3.1.7) respectively, are in fact the re-parameterization

of each other (see the Definition A.1 in the Appendix for the formal definition of

re-parameterization). This is because for any fixed value of the previous robot pose

in the object frame X̃t−1, we have the following invertible relationship between the

allocentric {Xt, Lj} and egocentric {Y t−1
t , Lt−1

j } variables, which defines the bijective

maps for the change of variables in the re-parameterization:

ΥX̃t−1
: SEk × Rk → SEk × Rk Xt

Lj

 7→

 Y t−1
t

Lt−1
j

 =

 (X̃t−1)−1Xt

(X̃t−1)−1 � Lj

 (3.2.4)

where k = 2 or 3 and SEk is either SE2 or SE3 depending on the dimension of the

environment considered in our system, i.e., 2D or 3D.

The question is whether the nonlinearity of the two functions is different under
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this change-of-variables map. In the allocentric measurement function htj(Xt, Lj),

the pose Xt is far from the origin and the landmark Lj is near zero, because the

coordinate frame is attached to the object. In contrast, the pose Y t−1
t of the egocentric

measurement function gtj(Y t−1
t , Lt−1

j ) is close to the origin whereas the landmark Lt−1
j

is far from it. Intuitively, these two measurement functions are in fact the same

function parameterized by a pose and a landmark, but computed at two different

pairs of pose-landmark values.

To study their differences in nonlinearity, we only need to analyze their parameter-

effects curvature, because it measures the parameterization-dependent part of the

nonlinearity. For a general function h(X) on a Lie-group manifold G, the parameter-

effects curvature measuring the parameter-dependent nonlinearity of h(X) at X◦ ∈ G

along a direction x̂ ∈ g in the algebra is defined as follows [11, 12, 121, 120, 142]:

KT
h,X◦(x) =

∥∥PhxTHhx
∥∥

‖Jhx‖2 . (3.2.5)

where xTHhx and Jhx are the second and first-order terms in the Taylor expansion

of h(X) along the curve as defined in (3.2.3), and Ph is the projection matrix onto

h’s tangent plane at X◦:

Ph = Jh(J
T
h Jh)

−1JTh

We will use the following theorem to prove that the parameter-effects curvatures

of the allocentric and egocentric landmark measurement functions are the same.

Theorem 3.1. Let h(X) and g(Y ) be functions on a d-dimensional Lie-group man-

ifold G, which are the re-parameterization of each other via the following change-of-

variables bijective map: φ : G → G, X 7→ Y = φ(X), and let hX◦(x) and gY◦(y) be the

corresponding Lie-algebra vector-space re-parameterizations of h(X) and g(Y ) at X◦

and Y◦ = φ(X◦) via the bijective maps log∨X◦(with its inverse êxpX◦) and log∨Y◦(with its

inverse êxpY◦) respectively, as defined in (A.1.8) and (A.1.9).

37



Then hX◦(x) and gY◦(y) are the re-parameterization of each other with a change-

of-variables map y = ϕ(x). Furthermore, if ϕ is linear, i.e., y = ϕ(x) = Mx with

some invertible matrix M , h(X) and g(Y ) have the same parameter-effects curvature.

Proof. See Appendix A.3.

The following diagram illustrates the relationships between the functions in the

above Theorem 3.1, together with the change-of-variables re-parameterization maps

between their parameters:

h(X) oo
Y=φ(X)

X=φ−1(Y )
// g(Y )
OO

y=log∨Y◦ (Y ) Y=êxpY◦ (y)

��
hX◦(x)
��

x=log∨X◦ (X)X=êxpX◦ (x)

OO

gY◦(y)//
y=ϕ(x)

x=ϕ−1(y)oo

Using this theorem, we will now show that the Lie-algebra vector-space re-parameterizations

of htj(Xt, Lj) and gtj(Y
t−1
t , Lt−1

j ) are related to each other via a linear change-of-

variables map. Let {xt, lj} be the variables in the vector-space re-parameterization

of htj(Xt, Lj) at {X̃t, L̃j}, and {yt−1
t , lt−1

j } be the variables in the vector-space re-

parameterization of gtj(Y t−1
t , Lt−1

j ) at the corresponding point {Ỹ t−1
t , L̃t−1

j } = ΥX̃t−1
(X̃t, L̃j),

where the map ΥX̃t−1
is defined in (3.2.4), we would like to show that {xt, lj} and

{yt−1
t , lt−1

j } are related to each other via a linear transformation.

The following diagram illustrates the change-of-variables maps between the re-

parameterizations:

Xt, Lj oo
ΥX̃t−1 //

OO

log exp

��

Y t−1
t , Lt−1

jOO

log exp
��

xt, lj oo linear
// yt−1
t , lt−1

j
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As defined in (A.1.10), the change-of-variables map between {xt, lj} and {Xt, Lj}

is:

Xt = X̃texp(x̂t)

Lj = L̃j + lj (3.2.6)

Similarly, the change-of-variables map between {yt−1
t , lt−1

j } and {Y t−1
t , Lt−1

j } is

Y t−1
t = Ỹ t−1

t exp(ŷt−1
t )

Lt−1
j = L̃t−1

j + lt−1
j (3.2.7)

Moreover, because gtj(Y t−1
t , Lt−1

j ) is the re-parameterization of htj(Xt, Lj) accord-

ing to the bijective map ΥX̃t−1
in (3.2.4), using ΥX̃t−1

to relate (3.2.6) and (3.2.7) we

have

Ỹ t−1
t exp(ŷt−1

t ) = (X̃t−1)−1X̃texp(x̂t), (3.2.8)

hence

yt−1
t = log∨

(
(Ỹ t−1

t )−1(X̃t−1)−1X̃texp(x̂t)
)

= log∨ (exp(x̂t)) (3.2.9)

= xt

On the other hand,

lt−1
j = Lt−1

j − L̃t−1
j

= (X̃t−1)−1 � Lj − (X̃t−1)−1 � L̃j

= R̃t−1Lj + T̃ t−1 − R̃t−1L̃j + T̃ t−1

= R̃t−1(Lj − L̃j)

= R̃t−1lj (3.2.10)
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where R̃t−1 and T̃ t−1 are the rotation and translation part of the pose (X̃t−1)−1 = R̃t−1 T̃ t−1

0 1

 and we have applied the frame transformation operator defined in

(3.1.4).

Eq. (3.2.9) shows that the relationship between xt and yt−1
t is linear. Similarly,

the relationship between lt and lt−1
j in Eq. (3.2.10) is also linear. Because these maps

are invertible, (3.2.9) and (3.2.10) define the linear change-of-variables maps between

{xt, lj} and {yt−1
t , lt−1

j }.

Consequently, according to Theorem 3.1, we conclude that the allocentric and ego-

centric landmark measurement functions, htj(Xt, Lj) and gtj(Y t−1
t , Lt−1

j ) respectively,

have the same amount of nonlinearity.

3.2.1.2 Odometry measurement functions

I will show that the odometry functions of the allocentric pure filter fPt (Xt) and

the egocentric filter fEt (Y t−1
t ) in (3.1.8) and (3.1.7) respectively, also have the same

amount of nonlinearity. Using the exact proving technique in the previous section,

we first find the relationship between the allocentric pose Xt and the egocentric pose

Y t−1
t . Their relationship is as follows:

Y t−1
t = (X̃t−1)−1Xt

The results in Eq. (3.2.8) and (3.2.9) show that the corresponding Lie-algebras

yt−1
t and xt of Y t−1

t and Xt respectively are related via a linear map. Hence, us-

ing Theorem 3.1, we conclude that fPt (Xt) and fEt (Y t−1
t ) have the same amount of

nonlinearity.

3.2.1.3 Summary

I have proved that the landmark measurement functions and the odometry measure-

ment functions of the allocentric pure filter and the egocentric filter in (3.1.8) and
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(3.1.7) respectively have the same amount of nonlinearity. Hence, we conclude that

these two allocentric pure filtering and egocentric filtering frameworks have the same

amount of nonlinearity. Next, I will show that the original allocentric filter is better

than the allocentric pure filter due to its advantage in the marginalization process.

3.2.2 Marginalization

Besides the nonlinearity of measurement functions, the marginalization process also

affects the accuracy of Gaussian-based filtering methods. This is because at each

time step, these methods marginalize out some variables at their currently optimal

values. These currently optimal values will change in the future when more infor-

mation arrives from new measurements. However, as these variables disappear from

the problem, their values cannot be updated, i.e., their linearization points are per-

manently fixed in the system. Consequently, for all future time steps, they are not

linearized at their optimal values, leading to larger linearization errors over time. This

causes the inconsistency problem of Gaussian filtering methods. In contrast, smooth-

ing methods [49] do not suffer from this problem as they maintain all variables in the

graph and re-linearize them at every time step.

The marginalization process of the original allocentric filtering framework is better

than that of the allocentric pure filtering one, because it maintains more variables at

each time step. In fact, the variables maintained in the allocentric filtering framework

in Fig. 3.1.1c are the landmarks and the current pose, while the allocentric pure

filter in Fig. 3.1.4c only keeps the distribution of the landmarks, and the current

robot pose was already marginalized out. Consequently, when solving for the MAP

solution in the next time step, the original allocentric framework allows the previous

pose to be re-linearized, whereas the allocentric pure filter does not. Because of

this advantage, the original allocentric framework produces more consistent solutions

than the allocentric pure filter over time. This is exactly the advantage of a fixed-lag
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smoother over a pure filter. The original allocentric framework can be considered

as a two-state fixed-lag smoother, whereas the allocentric pure filter is equivalent to

a pure filtering algorithm [125]. As is well-known in the literature, the more states

retained in the smoother, the more consistent its solution, because it allows more old

states to be re-linearized and updated [125, 51].

Because the allocentric pure filter and the egocentric filter are equivalent, the orig-

inal allocentric filter is better than the egocentric one. I conduct a small experiment

in simulation to verify this fact. I consider a 2D scenario in which there is one object

with m = 3 randomly generated features, and a robot moving toward the object

starting from a predefined position in the environment. At every time step, the robot

observes features on the object with its bearing and range sensor measurements of

which are corrupted by Gaussian noise. The odometry measurements between two

robot poses in two consecutive time step are also corrupted by Gaussian noise.

As can be seen in Fig. 3.2.1, the uncertainty ellipses of landmark marginal co-

variances estimated by the allocentric framework are larger than those estimated by

the egocentric one. This indicates that the egocentric results are more over-confident

than the allocentric solutions. This over-confidence gets worse over time, causing

inconsistency.

To better quantify the results, we compare the final Gaussian densities estimated

by the allocentric and egocentric filtering frameworks with the optimal Gaussian

density estimated by a smoothing method [49]. Since smoothing methods do not

marginalize out variables, their results do not suffer from inconsistency and are op-

timal. We can compare two Gaussian densities by computing the Kullback–Leibler

(KL) divergence between them. The smaller the KL-divergence, the more similar the

two densities. If the KL-divergence is zero, the two densities are exactly the same.

As shown in Fig. 3.2.2, the KL divergence between the allocentric density and the

optimal density is always smaller than that between the egocentric density and the
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Figure 3.2.1: The trajectory and landmark estimates of the allocentric and egocentric
filtering frameworks as compared to the results of the optimal smoother. For compar-
ison, the egocentric estimates of landmarks are transformed to the allocentric frame
using the allocentric estimate of the last pose.
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Figure 3.2.2: KL Divergence of the landmarks densities computed by the allocen-
tric and egocentric filtering frameworks as compared to the results of the optimal
smoother.

optimal one at every time step. Hence, it confirms our argument that the allocentric

representation produces more accurate results than the egocentric one.

Furthermore, because the nonlinearity of the allocentric pure filter and the egocen-

tric framework are the same, they should produce the same results. It is interesting to

also verify this fact by experiments. Our experiments show that the results obtained

by the delay-composition egocentric method and this modified allocentric pure filter

are exactly the same. Regardless of the number of time steps used in the experiments,

the maximum differences in their final landmark covariance matrices are always less

than 1e-14.

3.3 Time Complexity

The egocentric filtering methods are much slower than their allocentric counterparts

by an additional quadratic time complexity O(m2) with respect to the number of

features m. It is well-known that the EKF’s time complexity is quadratic O(m2)

and the EIF’s is cubic O(m3) [180, 181], because of the large clique of all landmarks,

resulting from marginalizing out the past poses, at every step. However, the egocentric

44



filtering framework is even slower than the allocentric one due to the crucial coordinate

frame transformation at every step. Because the covariance and information matrices

of the density of all landmarks has size O(m2), it takes O(m2) time to transform this

density to the new frame.

This fact has been shown in [82] for EKF. For EIF, the similar burden in com-

putational time of the egocentric representation can be seen from the factor graph

structures in Fig. 3.1.1, 3.1.2 and 3.1.3. First, the original egocentric EIF in Fig. 3.1.2

is more involved than the allocentric one with the coordinate frame transformation

encoded in hard constraints, which make it harder to solve than the unconstrained

allocentric EIF in general. On the other hand, after the constraints are eliminated

using the delay-composition technique in Fig. 3.1.3, the resulting egocentric factor

graph in Fig. 3.1.3b has similar structure to the allocentric graph in Fig. 3.1.1b.

Due to the large factors connecting all landmarks, solving each of these two graphs

both takes O(m3) time complexity. However, the egocentric EIF has to transform the

final landmark density in the previous frame over to the new one (Fig. 3.1.3c), which

makes it slower than the allocentric EIF by the additional O(m2) time complexity,

due to the size of the landmark clique’s information matrix.

3.4 Summary

I have shown in this chapter that the allocentric framework is better than the ego-

centric in feature-based Gaussian filtering methods both in terms of accuracy and

time complexity. For accuracy, in contrast with other work in the literature which

advocates for the benefits of the egocentric representation due to its advantage in

more linear measurement models for several specific types of sensors, I have proved

that the nonlinearity of the two frameworks are in fact the same for all kinds of

sensors, and the allocentric representation is even more accurate than the egocentric

one because of its advantage in marginalization process. This is essentially because
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even though its measurement models might be more linear than the allocentric one’s,

the egocentric framework suffers from a nonlinear coordinate frame transformation at

each step, which is not required in the allocentric representation. It is also because of

this required coordinate frame transformation that the egocentric framework is slower

than the allocentric one by an amount of quadratic time complexity with respect to

the number of features in the scene. Using similar techniques to analyze the curva-

ture measures of nonlinearity for measurement functions on Lie groups, Chapter 5

will prove the equivalence of these two frameworks for perception at the object level.
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Chapter IV

LINEAR-TIME TREE FILTERING ALGORITHMS

In this chapter, I will show that the object-centric point of view, inspired by the al-

locentric representation, can enable very fast and memory-efficient estimation meth-

ods, targeting obstacle avoidance applications on small robot platforms. We favor

filtering-based methods, which maintain small memory footprints by marginalizing

out old robot poses, over smoothing-based approaches [49, 94], because past poses

are unnecessary for the trajectory planner to compute an obstacle avoidance path.

One of the longest-lasting and most challenging bottlenecks of traditional filtering

techniques is that they produce densely correlated cliques of landmarks, correspond-

ing to dense fill-in of matrices, which lead to expensive time and space complexity [5].

These dense cliques of landmarks also correspond to the new large factor in Fig.

3.1.1b, resulting from marginalizing out past poses to maintain a low memory foot-

print. Because of these dense correlated cliques and large factors, the worst-case time

complexity of information filters is almost cubic O(m3) with respect to the number

of landmarks m, due to the needs to invert a dense information matrix [180]. Simi-

larly, the iSAM2 incremental smoothing method also takes cubic time in worst-case

scenarios [94]. On the other hand, the Extended Kalman Filter is quadratic O(m2)

in time due to matrix multiplication [180]. As a result, these methods are still un-

suitable for small robots with limited memory and processing capabilities, especially

in environments with many landmarks.

State-of-the-art research has attempted to eliminate this bottleneck, but not with-

out trade-offs in either inconsistent estimates or non-real-time operations unless a dif-

ferent parameterization scheme is used. For example, graph sparsification techniques
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try to sparsify the dense correlations as much as possible to keep the problem solvable

in constant time [92, 149, 181, 58, 59, 193]. However, many of these methods produce

inconsistent and over-confident estimates since they simply remove weak edges by ze-

roing out small entries in the information matrix [58]. Recent work employs different

optimization techniques to search for consistent sparse approximations of the problem

[86, 31, 81] or maintains the exact solution by solving for the approximation error

with iterative methods [48, 90, 91]. Unfortunately, these methods are not yet ready

for real-time applications. On the other hand, various re-parameterization schemes

have been proposed to reduce the complexity of the system [46, 146, 74, 165]. Es-

pecially, [166] achieves a constant time update even at loop closure on large graphs

using an incremental pose representation.

Our goal for high-speed navigation is to push the filtering estimation algorithms

up to their limits to achieve the fastest computation time. In order to do that, we need

to avoid dense cliques as much as possible and guarantee the cheapest computation

cost by sparsifying the graph into a tree structure and maintaining that tree structure

efficiently over time.

Towards this end, I discovered a tree structure that can be built and maintained

efficiently in linear time with respect to the number of features. The method, called

Tree Assumed Density Filtering in Section 4.2, uses techniques from Assumed Density

Filtering (ADF) [129, 131, 130] and tree-dependent component analysis [3] to “project”

the current density onto a tree rooted at the same variable at each step. This process

is efficient and can run in linear time with linear space complexity. However, because

the density presented by the tree structure is only an approximation of the density

encoded in the original graph, the method suffers from information loss and produces

over-confident estimates, as other edge-removal graph sparsification schemes.

To reduce the amount of information loss, I introduce a novel graph sparsification

technique which inserts new latent variables to de-correlate the dense correlation of
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landmarks in the graph into a tree structure, instead of just removing edges like

other graph sparsification methods. Intuitively, this is the inverse of the variable

elimination and marginalization process: while marginalizing out a variable results

in a dense correlation among other variables connected to it, re-introducing a new

variable can de-correlate them.

This new method, called Incremental Tree Filtering in Section 4.3, is inspired by

the object-centric point of view. It is based on the key observation that landmark

features on the same object are close to each other, hence they are highly correlated

and their estimates should stay on a low-dimensional space. In other words, the

statistics of landmarks on the same object should be approximately low-rank, since

they are measured from the same sensor in the same direction with the same noise

model in the same way. By introducing new latent “object” variables to capture

the common low-rank statistics of features on the same object, we can retain more

information in those “object” variables and reduce the information loss.

4.1 A General Tree Filtering Framework

The two methods introduced above inspire a general tree filtering framework, which

I will present first in this section before discussing them as special cases in Section

4.2 and 4.3.

We will base our discussion on the allocentric filtering framework, which is already

presented in Section 3.1.1. In this framework, whenever the previous pose Xt−1 is

marginalized out, a new factor p(Xt, L) that links all landmarks L = {L1, . . . , Lm}

and the current pose Xt together appears as the result of the variable elimination

process (Fig. 3.1.1c). This factor essentially corresponds to the large clique that

leads to O(m3) time complexity for naïve implementations of information filters [181]

and iSAM2 [94]. Much work avoids this large clique by various graph sparsification

techniques, but they are not yet ready for real-time applications.
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(a) t = 1

l1

x1 x2

. . . lm

(b) t = 2

Figure 4.1.1: The tree structure at t = 1, and the graph at t = 2 with odometry
(x1, x2) and new measurements from x2

Because the variable elimination and marginalization processes are employed on

linear graphs after the nonlinear graph is linearized or optimized, our tree filtering

algorithms also operate at the linear level, where variables are the Lie-algebra vectors

xt and l = {l1, . . . , lm} of the original Lie-group variables, i.e., Xt ∈ SE2 for 2D or

SE3 for 3D poses, and landmarks L, respectively.

Our general tree filtering scheme avoids large cliques of landmarks p(xt, l) at the

linear level and achieves linear-time estimation by always keeping a tree structure at

time t rooted at a new variable yt as shown in the Bayes net in Fig. 4.1.2a. The

Bayes net encodes the tree factorization of the following joint density:

q(yt, xt, l) = q(yt)q(xt|yt)
m∏
j=1

q(lj|yt)

The new variable yt and its related densities must be chosen such that the joint

density q(xt, l), after yt is marginalized out from q(yt, xt, l), matches the original joint

density p(xt, l) that we want to estimate:

q(xt, l) =

ˆ
yt

q(yt, xt, l) ≈ p(xt, l) (4.1.1)

It is fortunate that if we know how to find an efficient tree update scheme that

satisfies the condition (4.1.1) in one step, we can reuse this scheme in all subsequent

time steps. This is because we always start out with a tree structure at time t = 1

where y1 = x1 (Fig. 4.1.1a), and the problem of finding the tree structure at time
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(a) The tree at time t
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(b) New measurements at t+
1
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xt xt+1

. . .

yt
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(c) Marginalize out xt

l1

xt+1

. . .

yt+1

lm

(d) The new tree

Figure 4.1.2: Our general tree filtering scheme: (a) The tree at time t. (b) New
measurements at time t + 1 break the tree structure. (c) Marginalizing out xt is
efficient and does not produce the dense clique of landmarks. (d) The new tree we
want to find at time t+ 1.
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t = 2 with the first odometry and the second set of landmark measurements (Fig.

4.1.1b), is the same problem of finding the tree structure at time t + 1 after we

marginalize out xt at any future time step (Fig. 4.1.2c).

Our general tree filtering scheme is as follows (Fig. 4.1.2). Assuming we al-

ready have a tree structure at time t (Fig. 4.1.2a), the new odometry and landmark

measurements from xt+1 break this tree structure as shown in Fig. 4.1.2b. After

marginalizing out xt, we obtain the new graph in Fig. 4.1.2c, which has the same

structure with the graph at time t = 2 (Fig. 4.1.1b). We note that due to the tree

structure at time t, marginalizing out xt is efficient and does not result in a dense

clique of landmarks as is the case with other standard filtering methods. Our goal is

to find a new tree at time t + 1 as in Fig. 4.1.2d that approximates the density in

Fig. 4.1.2c.

The remaining problem is to find an efficient method to turn a graph in Fig. 4.1.2c

into a tree in Fig. 4.1.2d with a new variable yt+1 that approximately satisfies the

condition in Eq. (4.1.1) at time t+ 1. I present two methods to find such trees. The

first method, based on assumed density filtering, “projects” the new density onto the

same tree propagated from the previous step after the previous pose is marginalized

out. This method is simple and fast, but suffers from information loss and leads to

inconsistent estimates, similar to other edge removal graph sparsification techniques

[58]. The second method improves upon the first one by exploiting insights from the

object-centric perspective to find a new latent variable that preserves the common

low-rank information of landmarks on the same object and better satisfies (4.1.1) at

every step.

4.2 Tree Assumed Density Filtering

An immediate solution for a tree at time t+1 is to reuse the tree of the previous time

t. After marginalizing out the previous pose xt, we use an idea similar to Assumed
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marginals
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yt
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(b) The new tree

Figure 4.2.1: Tree Assumed Density Filtering scheme reusing the root of the previous
step: (a) Elimination process to compute the root and conditional marginals for the
new tree. Ellipses denote the three-variable cliques to compute the pairwise marginals
p(lj, yt) efficiently. (b) The new tree shown in bold, dash lines are edges from the
original graph (Fig. 4.1.2c).

Density Filtering (ADF) technique [131, 130] to approximately “project” the current

density onto the same tree structure T of the previous step, rooted at the same

variable yt+1 ≡ yt, as highlighted in Fig. 4.2.1b. In general, ADF and the related

Expectation Propagation technique find an approximate density q(x) of the original

distribution p(x). In our case, the approximate density q(x) is limited to be in the

family DT of densities encoded by the tree T .

The best tree approximation pT (x) ∈ DT of p(x) that minimizes the KL-divergence

KL(p||q) over all q ∈ DT has been derived in the context of tree-dependent component

analysis in [3]. The optimal tree approximation pT (x) of an arbitrary density p(x) is

factorized as follows:

q(x) = pT (x) =
∏
u,v∈E

p(xu, xv)

p(xu)p(xv)

∏
u∈V

p(xu)

= p(x0)
∏
u,v∈E

p(xv|xu)

where V and E are the set of vertices and edges of our tree, rooted at x0, and xv is

a child of xu in the tree.

Hence, the new root prior q(x0) is simply the marginal p(x0), and the new condi-

tionals q(xv|xu) are the “marginal” conditionals p(xv|xu) = p(xv, xu)/p(xu), which can
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be computed from the marginals p(xu) and the pairwise marginals p(xv, xu) easily.

In our case, we would like to approximate the density p(yt, xt+1, l) at time t + 1

in Fig. 4.2.1a with a tree Bayes net rooted at the same yt in Fig. 4.2.1b:

q(yt, xt+1, l) = q(yt)q(xt+1| yt)
∏
j

q(lj| yt)

≈ p(yt, xt+1, l)

Using the above result, we need to compute the marginal p(yt) = q(yt), and the condi-

tionals p(xt+1| yt) and p(lj| yt), which might be obtained from the pairwise marginals

p(xt+1, yt) and p(lj, yt).

With our special tree structure at time t, these marginals, conditionals and pair-

wise marginals can be computed efficiently. As shown in Fig. 4.2.1a, we first eliminate

all landmark variables lj before eliminating xt+1 to obtain a Bayes net

p(yt, xt+1, l) = p(yt)p(xt+1|yt)
∏
j

p(lj|yt, xt+1). (4.2.1)

As results of the elimination, the root marginal p(yt) and the conditional p(xt+1|yt)

is ready from the Bayes net. The other pairwise marginals p(lj, yt) can be ob-

tained by marginalizing out xt+1 from the three-variable clique of yt, xt+1, and lj

(red ellipses in Fig. 4.2.1a): p(lj, yt) =
´
¬{lj ,yt} p(yt)p(xt+1|yt)

∏
k p(lk|yt, xt+1) =

´
xt+1

p(yt)p(xt+1|yt)p(lj|yt, xt+1) . We then compute the conditionals p(lj|yt) from

p(lj, yt) and the marginal p(yt).

Although this tree assumed density filtering scheme is efficient to compute, it

incurs inevitable information loss. This is because it removes the conditional links

between xt+1 and ljs, which is, similar to other graph sparsification techniques, equiv-

alent to zeroing out the corresponding (xt+1, lj) entries in the information matrix.

However, we found approximation errors are small in our experiments. Furthermore,

the algorithm has O(m) time complexity, since it only loops over the landmarks to

compute the marginals.
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4.3 Incremental Tree Filtering

To derive a better tree approximation for the new density at time t + 1 satisfying

the condition (4.1.1), we rely on the fact that all landmarks are conditionally inde-

pendent given the full trajectory x1:t+1. In fact, in the full SLAM formulation in

[49], if instead of the poses we eliminate the landmark variables first, we obtain the

following factorization: p(x1:t+1, l) = p(x1:t, xt+1)
∏

j p(lj|x1:t+1), meaning that lj are

conditionally independent given the full trajectory x1:t+1. Hence, a trivial choice for

yt+1 that exactly satisfies (4.1.1) is x1:t+1. But, it is costly because its dimension is

too large.

An immediate solution is to find a low-rank approximation of the full trajectory,

as done in [171]. Unfortunately, this technique does not fit in the context of filtering-

based SLAM, because it requires knowledge of all the past poses. Furthermore, a low-

rank approximation of the trajectory is not our main interest, since the conditional

independence of the landmarks might not be guaranteed given this approximation.

Instead of finding a low-rank approximation of the full trajectory, we directly

find new low-dimensional representations of the trajectory that best preserve the

landmarks’ conditional densities at each step. Under an assumption that the condi-

tional means of nearby landmarks given the trajectory lie on a low-dimensional linear

subspace, we propose a fast low-rank approximation scheme to efficiently find the

constraints for the new low-dimensional variables to approximate that subspace. The

second method improves upon the first one by exploiting the object-centric obser-

vation to carefully choose a new root variable at each step in order to capture the

low-rank statistics of the problem. The experiments show that using latent object

variables can still achieve the linear worst-case time complexity, while significantly

reducing information loss with small trade-offs in accuracy due to low-rank approxi-

mation errors.

Hence, our goal is to find a low-dimensional replacement yt+1 for the full trajectory
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Figure 4.3.1: Incremental Tree Filtering scheme. We find a new low-dimensional
variable yt+1 as a re-parameterization of {yt, xt+1} such that the conditional density
of landmarks given yt+1 in the new tree (b) best approximates the original conditional
density given {yt, xt+1} in (a).

x1:t+1 such that the landmark conditional densities are optimally approximated, i.e.

p(lj| yt+1) ≈ p(lj|x1:t+1), ∀j. In a filtering context, {yt, xt+1} plays the same role as

the full trajectory X1:t+1 in smoothing, in the sense that, at time t+ 1, all landmarks

are conditionally independent given these two variables (Fig. 4.2.1a): p(l, yt, xt+1) =

p(yt, xt+1)
∏

j p(lj|yt, xt+1).

Equivalently, in filtering, we would like to find a low-dimensional variable yt+1

as a re-parameterization of {yt, xt+1}, such that it can “replace” {yt, xt+1} in the

conditionals p(lj|yt, xt+1), and approximately generate the same conditional densities

on ljs as {yt, xt+1} do. Note that the trivial re-parameterization yt+1 = {yt, xt+1} will

not gain us any computational benefits, because the dimension of the new variables

will quickly increase, incorporating all information of the full trajectory into a high

dimensional vector yt+1 at each step.

Using the moment-matching and low-rank approximation techniques, detailed in

Section 4.3.1 and 4.3.2, we find the best low-dimensional re-parameterization yt+1 of

the original variables {yt, xt+1}, represented as a hard equality constraint among these

three variables. The constraint guarantees that the conditional densities p(lj| yt, xt+1)

are best approximated by p(lj|yt+1) for all j, and given yt+1, all ljs are approximately

independent of each other: p(l|yt, xt+1) =
∏

j p(lj|yt, xt+1) ≈ p(l|yt+1) =
∏

j p(lj|yt+1).
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To find the new tree, we first add a constrained factor representing the found con-

straint between yt+1 and {yt, xt+1} to the original graph (Fig. 4.3.1a), then apply the

tree assumed density filtering technique in Section 4.2 to project the original density

onto the new tree rooted at yt+1, as shown in Fig. 4.3.1b. This procedure guarantees

our original condition (4.1.1) to be satisfied at time t + 1, i.e. after marginalizing

out yt+1 from the new density q(l, yt, xt+1, yt+1) with the hard constraint included, we

obtain the same original density on {l, yt, xt+1} as before. This is because intuitively

a hard constraint can be seen as a delta distribution with zero information on the

constrained variables; hence, adding it to the graph will not add more information

nor change the density of the original variables. Furthermore, since yt+1 is specially

chosen to approximate {yt, xt+1} in the conditionals p(lj|yt, xt+1), the tree assumed

density filtering step will not incur much information loss, depending on how well

p(lj|yt+1) can approximate p(lj|yt, xt+1) in our low-rank approximation scheme. We

note that due to our previous tree structure at time t, the marginals and pairwise

marginals needed for our new tree can also be computed efficiently in O(m) time as

already discussed in Section 4.2.

4.3.1 Moment-Matching of Gaussian Conditionals

As discussed above, we would like to find a new variable yt+1 such that the conditional

p(lj|yt, xt+1) can be approximated by p(lj|yt). Since these are Gaussian densities, this

problem is a special case of a more general “Gaussian conditional matching” problem

as follows.

Gaussian Conditional Matching Problem: What are the condi-

tions on x and y such that the Gaussian conditional densities p(l|x) and

q(l|y) match with each other, i.e. p(l|x) = q(l|y)?
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We assume the Gaussian conditionals p and q have the following forms:

p(l|x) ∝ exp−1

2
‖Rl − Sx− d‖2 , and

q(l|y) ∝ exp−1

2
‖Pl − Ty − e‖2 ,

which satisfy the properties of Gaussian conditional distributions – their means are

linear functions on the conditioned variables, and their information matrices are in-

dependent of these variables [17, pg. 90-91]. For example, the mean of p(l|x) in this

form is (R−1Sx+R−1d), a linear function on x, and its information matrix, RTR, is

independent of x.

The necessary conditions for these two conditionals to match are R = P , Sx = Ty

and d = e. This is because for every pair of x and y generating the same conditional

densities on l, we must have ‖Rl − Sx− d‖2 = ‖Pl − Ty − e‖2 , ∀l, and the condi-

tions follow.

Since setting P = R and e = d is trivial, we will focus on the other condition

Sx = Ty. The condition Sx = Ty must be satisfied for all possible pairs of x and

y, such that the linear subspace generated by Ty must be the same as the linear

subspace generated by Sx. Intuitively, this means that the linear space of all possible

conditional means of the distribution q(l|y), generated by all realizations of y, must

be the same as that of the original distribution p(l|x).

4.3.2 Low-rank Approximation

Applying the conditional matching results to our problem with l← l, x← {yt, xt+1},

and y ← yt+1, we would like to find a new variable yt+1 such that the two conditionals

p(l|yt, xt+1) ∝ exp−1

2

∥∥∥∥∥∥∥Rl− S
 yt

xt+1

− d
∥∥∥∥∥∥∥

2

, and

q(l|yt+1) ∝ exp−1

2
‖Rl− Tyt+1 − d ‖2
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match with each other. Using the above result for matching Gaussian conditionals,

we need to choose T and y such that Ty can generate the same linear subspace as Sx.

The condition Sx = Ty gives us a hard equality constraint between x = {yt, xt+1}

and y = yt+1:

Tyt+1 − S1yt − S2xt+1 = 0. (4.3.1)

where S1 and S2 are columns of S corresponding to yt and xt+1 respectively. As

discussed above, the trivial choice y = x, i.e. yt+1 = {yt, xt+1} and T = S, increases

the size of the new variable yt+1 at each step and is computationally expensive. Hence,

we want yt+1 to be low-dimensional.

To maintain the low computational complexity, we enforce the dimensions of the

new variables to be the same at every step, i.e. r = dim(yt) = dim(yt+1). Let

h = dim(lj), k = dim(xt+1), the size of S is mh× (r+ k), and of T is mh× r, and we

assume that mh� r.

The condition for Sx and Ty to generate the same subspace can only hold if both

S and T have the same rank. As Sx and Ty are linear combinations of S’s and

T ’s columns respectively, the r columns of T must be independent vectors in the

r-dimensional subspace spanned by columns of S.

We can choose T by doing a low-rank approximation on S using SVD decompo-

sition: S = UDV T , and T can be chosen from the r columns of U corresponding to

the r largest singular values in D. This well-known technique guarantees the best

low-rank approximation for S. The SVD decomposition of S, with size mh× (r+ k),

can be done in O(mh(r + k)2) time [184, Lecture 31], and because h(r + k)2 is a

constant, it is linear in the number of features m.

We also experiment with a much faster approximation for T by simply choosing

r independent columns from S to be the columns of T . If S has exactly rank-r, these

r-independent columns will generate the whole subspace for Sx exactly, and Ty will

generate the same subspace as Sx does. Otherwise, Ty will generate an approximate
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subspace of Sx. Although this is not the best subspace approximation for Sx, we

found it is good enough in our experiments. A better subspace approximation might

be found by carefully ranking S’s columns according to their pairwise dot products

and choosing the columns that maximize them.

We finally select only r independent rows of T and S to form the constraint in

(4.3.1), instead of using all mh rows, which is expensive since it depends on the

number of landmarks. If S is not exactly rank-r, the full mh rows of the above

equality constraint cannot all be satisfied, leading to an overdetermined system. On

the other hand, if S is exactly rank-r, only the first r independent rows are enough

to constrain the whole system.

4.4 Experiments

4.4.1 Simulated datasets

We first study the performance of our two proposed algorithms, the simple Tree

Assumed Density Filtering (TADF) algorithm in Section 4.2 and the better low-

rank approximation Incremental Tree Filtering (ITF) algorithm in Section 4.3, on

simulated datasets reflecting the worst-case scenarios for SLAM in obstacle avoidance

context.

Our datasets simulate a robot moving in 2D and observing an object with many

features that it needs to avoid. A worst-case scenario in SLAM happens when the

robot observes all features of the object at every time step. In this case, the full

graph is densely connected, and no variable elimination order exists that can avoid

the O(m3) time complexity for information filters and iSAM2. We note that this

scenario is common in practice, for example, when a robot uses a laser-scanner to

obtain a large number of data point observations at every step, or when it observes a

textured object with many visual features by cameras.

We use a simple measurement model in our experiments, where we assume that the
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robot can observe the relative 2D position of the landmarks in its coordinate frame.

Many other measurement models, e.g., bearing-range sensors, or stereo cameras, can

be easily transformed into this form.

We first study the accuracy of our algorithms by comparing their results with

the best optimal solution obtained from solving the full graph at the last time step.

We experiment with two sets of measurements: an ideal noise-free set to study the

theoretical amount of information loss and a noisy set corrupted with additive Gaus-

sian noise. The noise-free measurement set satisfies our low-rank assumption exactly,

whereas the noisy set is approximately low-rank.

Fig. 4.4.1 shows the estimation results of the two methods, TADF and ITF,

compared with the optimal solutions in a simple case with three landmarks for both

types of noise-free and noisy datasets. As expected, TADF estimates are inconsistent

and overconfident with smaller marginal covariance ellipses over time. On the other

hand, ITF achieves the exact results in the noise-free dataset, and approximates very

well with the optimal solutions in the noisy one.

To better understand their performances, we compare the KL-divergence of the

approximate densities estimated by our methods with the optimal densities. Fig.

4.4.2 plots the KL-divergence results. ITF achieves the exact densities with zero

KL-divergence in the noise-free dataset, so we only report results in the noisy case.

Whereas TADF accumulates its approximation errors, ITF’s errors are very small and

do not increase over time.

To study the time complexity of TADF and ITF, we compare their speeds with

iSAM2 [94] using a series of datasets with 100 poses and increasing numbers of land-

mark features from 30 to 300. As clearly shown in Fig. 4.4.3, the processing time of

our methods is linear, whereas iSAM2’s processing time grows in a polynomial order

with respect to the number of landmarks. Especially, with 300 features every frame,

our methods are 10 time faster than iSAM2.
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Figure 4.4.1: Results of our tree filtering schemes compared with the optimal solution
for the noise-free (top) and noisy (bottom) datasets. Three landmarks are at the top,
while the robot is moving in a straight line.

Figure 4.4.2: Comparison of the KL-divergences of TADF (green) and ITF (blue)
with respect to the optimal densities over time.
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Figure 4.4.3: Timing comparison among iSAM2, TADF and ITF.

The memory requirements for our methods are much cheaper compared to iSAM2.

For the same dataset with 100 poses and 300 landmarks, our implementation requires

only around 13MB for ITF and 9MB for TADF, whereas iSAM2 needs almost 500MB.

We notice that this is a biased comparison, however, since iSAM2 retains the full graph

with all the past poses in the memory, whereas our filtering schemes marginalize them

out. Nevertheless, this reflects the fact that our methods are more ready than iSAM2

for small robots with limited memory capacity.

We also test our methods in more challenging scenarios. As shown in Fig. 4.4.4, we

replicate a real RC-car racing track (~30m×16m) in simulation, and consider three

types of 3D objects with different structures: planar panels, cylinder barrels and

transparent spheres, each of which has 100 randomly generated features. In the ex-

periments in Fig. 4.4.5, we consider only one object at a specific location, and assume

the car can measure the relative 3D position of each feature in its local coordinate

frame. We also conduct experiments for both noise-free and noisy measurements,

assuming zero mean Gaussian noise with 0.1m standard deviation in all x,y and z.

In the noise-free experiments, ITF has no information loss. Hence, we only report
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Figure 4.4.4: A simulated RC car (red) and different 3D objects

results for the noisy cases in Fig. 4.4.5. Each column of Fig. 4.4.5 shows the top

view of the test scenarios with the trajectory and the tested object, and plots the

KL-divergence results of TADF and ITF. As can be seen, ITF is has less information

loss than TADF in these cases.

4.4.2 Victoria Park dataset

We next study the performance of our methods on the well-known SLAM Victoria

Park dataset. This dataset does not reflect the scenarios we assume in this paper, i.e.

for short term obstacle avoidance applications instead of exact map building. How-

ever, the results of our filtering methods still approximate well with the full optimal

solution obtained from iSAM2 as shown in Fig. 4.4.6. Moreover, whereas we assume

a dense graph with many landmark observations on the same object at each time

step, Victoria Park dataset is very sparse with only a few landmark measurements,

one per object, at each time. This sparsity also breaks the low-rank assumption of

our ITF method that all landmarks should be observed from each robot pose in the

same way, because at each pose, only a few landmarks are observed. Consequently, a

good low-rank approximation of the trajectory to generate the space of the landmark

conditional means does not exist. In those cases, the results of ITF are similar to

TADF’s as shown in Fig. 4.4.6.
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Figure 4.4.5: KL-divergence results (left column) of TADF (green) and ITF (blue)
with a complicated trajectory and different object structures (right column).
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Figure 4.4.6: Results on Victoria Park dataset

4.5 Summary

I have presented two tree filtering methods which significantly improve upon the speed

of the traditional filtering schemes in worst-case scenarios. These methods achieve

linear-time complexity O(m) with respect to the number of landmarks m, whereas

traditional EKF and information filters take O(m2) and O(m3) time respectively, due

to the dense correlations of landmarks resulting from marginalizing out old robot

poses. Hence, our methods are suitable for small robots with limited memory and

processing power.

The key idea to avoid the problem of dense cliques in filtering-based SLAM is

to maintain an approximate tree structure of the full density at every time step by

finding new low-dimensional variables to de-correlate them and reduce information

loss. These new variables are inspired by the object-centric perspective that land-

marks on the same objects are observed in the same way and should possess some

low-rank properties. More specifically, I find new variables to capture the low-rank

information that best approximates the conditional densities of the landmarks given
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the robot trajectory. I use techniques from tree assumed density filtering and low-

rank approximation to keep the size of the new variables small and achieve linear-time

updates at every step.

These approximation schemes are different in nature than other graph sparsifica-

tion methods in the literature. While other methods result in inevitable information

loss due to the explicit removal of graph edges or the zeroing out of small entries in

the information matrices, our method loses information through the low-rank approx-

imation and the linear subspace assumption. Consequently, as shown in Section 4.4,

if the problem possesses the low-rank property, our method can provide a lossless so-

lution, while other graph sparsification methods cannot. On the other hand, it might

suffer from large approximation errors if the low-rank assumption is poorly satisfied.

We note that the linear-time algorithm in [139] also uses a low-rank approximation

for the Kalman gain matrix. However, it involves computing the eigenvectors using

the Power method, which might be inaccurate with a fixed number of iterations [184].

There are several important questions that need to be further addressed in future

work to gain more insights about these methods. First, our low-rank approximation

scheme is based on the assumption that the conditional means of landmarks given

the trajectory lie in a low-dimensional subspace. Although our experiments show

cases where this assumption is valid, further studies need to be done to understand

when this assumption can be applied. Obviously, it depends on the object structure

as well as the measurement models of the sensors. Another related question is how

good the approximation is when this low-rank assumption is violated and what the

optimal choice for the dimension of the new variables is to capture enough essential

information. This parameter is a trade-off between performance and accuracy.
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PART II

Object Level

In this part, I will show that the allocentric and egocentric representations are equiv-

alent in perception at the object level, but the allocentric one is more beneficial in

Model Predictive Control for local trajectory planning and obstacle avoidance tasks.

While sensors considered in the previous part provide point-based measurements for

features in the environment, some types of modern sensors, such as laser scanners and

depth cameras, produce point-cloud measurements, which need to be pre-processed to

segment out objects in the scene and obtain the measurements on their poses [37, 185].

Object-level perception is also a main stream of computer vision research [160, 154],

aiming to build more semantically meaningful maps with segmented objects instead

of sparse sets of features. For perception at this object level, where measurements

are object poses, which are elements of Lie-groups SE2 or SE3 for 2D and 3D cases

respectively, I prove the equivalence of the allocentric and egocentric representations

for Gaussian estimation methods in Chapter 5. On the other hand, the significant ad-

vantages of the allocentric representation over the egocentric one in Model Predictive

Control for trajectory planning and obstacle avoidance are shown in Chapter 6.



Chapter V

OBJECT-LEVEL PERCEPTION

In this section, I establish the computational equivalence of the allocentric and ego-

centric representations in standard Gaussian-based perception methods to estimate

the relative geometric relationships between the robot and multiple independently-

moving objects in a dynamic environment. This information is crucial for planning

and control tasks to compute strategies to avoid those obstacles.

The results are surprising because according to the SLAM literature the accuracy

of these two representations should be different as their pose variables are the inverse

of the other, and the inverse of a Gaussian-distributed pose has a non-Gaussian

“banana-shape”. Whereas Gaussian estimation methods result in exact estimates with

Gaussian-distributed poses, they only produce approximate solutions with “banana-

shape” densities, because these densities are nonlinear. As discussed thoroughly in

the literature [179, 93] and also in Chapter 3, this nonlinearity is a root cause of the

inconsistency problem in Gaussian filtering methods.

However, as I will show later, a “banana-shape” density on Lie-group manifolds

is not necessarily nonlinear and can in fact be generated from a Gaussian density.

Long et al. have realized this advantage of Lie-groups in representing poses in [119],

but my analysis provides a new finding that the linearity of Lie-group representations

is also preserved through the group’s inverse operator. This result is general for all

types of sensors and measurement functions.
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5.1 Single Object

In this section, I consider scenarios where there is only one object in the scene and

show that the allocentric and egocentric representations are computationally equiv-

alent in standard Gaussian-based estimation methods for perception at the object

level. At this level, we assume that the robot can observe the object pose at every

step, and we would like to estimate the relative geometric relationships between the

robot and the object at each time instant for obstacle avoidance purposes.

5.1.1 Problem Formulation

To establish the equivalence of the allocentric and egocentric representations for all

types of sensors and measurement functions, we first formulate a general version of

the perception problem in these two coordinate frames using a generic measurement

function to abstract away all measurement details. The variables of interests can be

represented in either allocentric or egocentric frames, denoted as X = {X0, . . . , Xn}

and Y = {Y0, . . . , Yn} respectively, where the allocentric state variables Xt are the

robot poses relative to the object represented in a coordinate frame attached to the

object, and the egocentric state variables Yt are the object’s poses represented in

the robot frame over time. We assume Xt and Yt are both elements of a Lie-group

manifold, i.e., either SE2 for 2D or SE3 for 3D perception. We also denote Z =

{z0, . . . , zn} the set of all measurements from the beginning, when the robot first

observes the object, to the current time n. This set of measurements contains all

information we know about the problem to estimate the optimal values of the variables

of interests, i.e., either X or Y .

In the allocentric case, I combine all measurement functions into a generic mea-

surement function h(X) on the robot poses inX, which are represented in a coordinate

frame attached to the object. As standard in SLAM, we are interested in the posterior
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distribution of the robot poses X given the measurements Z, which are factorized as

p(X|Z) ∝ p(X)p(Z|X) = p(X)
n∏
t=0

p(zt|X). (5.1.1)

The maximum-a-posteriori (MAP) solution is the instance of X that minimizes the

following negative log likelihood function, assuming Gaussian noise and a uniform

prior p(X):

argmax
X

p(X|Z) = argmin
X

− log p(X|Z)

= argmin
X

n∑
t=0

1

2
||zt − ht(X)||2Σi

= argmin
X

1

2

∥∥Λ1/2Z − h(X)
∥∥2

, (5.1.2)

where ht(X) is the measurement function predicting the measurement zt parameter-

ized by the corresponding allocentric variables in X, Λ = diag
[

Σ−1
0 . . . Σ−1

n

]
,

and we have stacked all measurement functions at each time step together to form a

unified measurement function h(X) of all allocentric variables that predicts all mea-

surements at once:

h(X) =

[
Σ
−1/2
0 h0(X) . . . Σ

−1/2
n hn(X)

]T
. (5.1.3)

Similarly, in the egocentric case, all measurement functions are combined into a

generic measurement function g(Y ) on the object poses in Y , which are represented in

the robot frame. In this representation, we are interested in the posterior distribution

p(Y |Z) of the object poses Y in the robot frame given the measurements Z:

p(Y |Z) ∝ p(Y )p(Z|Y ) = p(Y )
n∏
t=0

p(zt|Y ). (5.1.4)

The MAP estimate of Y is obtained from maximizing the posterior p(Y |Z), i.e.,
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minimizing its negative log function:

argmax
Y

p(Y |Z) = argmin
Y

− log p(Y |Z)

= argmin
Y

n∑
i=0

1

2
‖zt − gt(Y )‖2

Σi

= argmin
Y

1

2

∥∥Λ1/2Z − g(Y )
∥∥2

(5.1.5)

where gt(Y ) is the same measurement function predicting zt as ht(X) in the allocentric

case but parameterized by the corresponding egocentric variables Y , and

g(Y ) =

[
Σ
−1/2
0 g0(Y ) . . . Σ

−1/2
n gn(Y )

]T
(5.1.6)

is the unified measurement function parameterized by the egocentric variables Y that

predicts all measurements together.

5.1.2 Accuracy Analysis

I will prove the equivalence in accuracy of the allocentric and egocentric representa-

tions by showing that the two parameterizations h(X) and g(Y ) of the same mea-

surement function have the same amount of nonlinearity. These two functions are

the re-parameterization of each other (cf., Definition A.1), as they capture the same

full information about the problem, and are only parameterized by different sets of

variables X and Y . We note that the domains of X and Y are Lie-group manifolds

as they are product sets of Lie-group manifolds.

As explained in Chapter 3, the nonlinearity of a function determines the accuracy

of Gaussian-based estimation methods. This is because these methods approximate

the true probability distribution of the variables of interests with a Gaussian den-

sity for efficiency, and the Gaussian approximation is obtained by approximating the

measurement function with a linear function by linearizing it around a chosen lin-

earization point. This linearization process produces approximation errors, which are

permanently “baked” into the system when variables are marginalized out, eventually
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leading to inconsistencies [179, 93, 33, 180, 6]. Consequently, the more nonlinear the

function is, the more different the true density is from a Gaussian, and the less the

accuracy.

Using a similar strategy in Chapter 3, I prove that h(X) and g(Y ) have the same

amount of nonlinearity by showing that their curvature measures of nonlinearity are

the same. Using Theorem 3.1, we need to prove that the Lie-algebra vector space

re-parameterizations of h(X) and g(Y ) are related to each other via a linear change-

of-variables map.

As discussed earlier, h(X) and g(Y ) are the re-parameterization of each other.

These two allocentric and egocentric parameterizations are related to each other via

the inverse map:

i : G → G

X 7→ Y = i(X) = X−1 (5.1.7)

where X−1 is defined from the inverse of their elements: X−1,{X−1
0 , . . . , X−1

n }.

Furthermore, the vector-space re-parameterizations hX◦(x) and gY◦(y) of h(X)

and g(Y ) around the linearization points X◦ and Y◦ = X−1
◦ respectively (A.1.10) are

induced by the following bijective maps, as defined in (A.1.8) and (A.1.9):

X 7→ x = log∨X◦(X)

X = X◦exp(x̂) ←[ x

Y 7→ y = log∨Y◦(Y )

Y = Y◦exp(ŷ) ←[ y (5.1.8)

Together with the inverse map in (5.1.7), the bijective maps between the Lie-

algebra vector spaces, x and y, can be defined as follows:

ϕ : RD → RD

x 7→ y = ϕ(x) , log∨Y◦(i(X◦exp(x̂))).
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This bijective map is in fact the change-of-variables map between hX◦(x) and

gY◦(y) as they are also the re-parameterization of the other as proved in Theo-

rem 3.1. The following diagram summarizes the relationships between these re-

parameterizations and their change-of-variables maps:

h(X) oo
Y=i(X)=X−1

X=i−1(Y )=Y −1
// g(Y )
OO

y=log∨Y◦ (Y ) Y=êxpY◦ (y)

��
hX◦(x)
��

x=log∨X◦ (X)X=êxpX◦ (x)

OO

gY◦(y)//
y=ϕ(x)

x=ϕ−1(y)oo

To show that the parameter-effects curvature measures of nonlinearity of h(X)

and g(Y ), defined in (A.3.1) and (A.3.2) respectively, are the same, we only need to

prove that ϕ is indeed a linear map. This can be seen as follows:

y = ϕ(x)

, log∨Y◦(i(X◦exp(x̂)))

= logV
(
Y −1
◦ [X◦exp(x̂)]−1)

= logV
(
Y −1
◦ exp(−x̂)X−1

◦
)

= logV
(
−X◦exp(x̂)X−1

◦
)

Hence,

exp(ŷ) = −X◦exp(x̂)X−1
◦

= exp(−AdX◦(x̂)) (5.1.9)

where AdX◦(·) is the Adjoint map of the allocentric Lie-group atX◦, defined as follows:

AdX◦x̂ ,
d

dt
(X◦exp(tx̂)X−1

◦ )|t=0 =
d

dt
exp(tX◦x̂X

−1
◦ )|t=0 = X◦x̂X

−1
◦

See more details about this Adjoint operator in [35], pg. 20, formula (10.35), and [87]

pg. 22, definition 2.12.
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Figure 5.1.1: A factor graph representing the object-level allocentric perception prob-
lem (5.1.1).

…	
  Y1 Y2 Yn

Figure 5.1.2: A factor graph representing the object-level egocentric perception prob-
lem (5.1.4).

This leads to

ŷ = −AdX◦(x̂)

Because the Adjoint map is a linear map, it has a matrix representation AdX◦ which

maps between the two vector spaces isomorphic to the Lie-algebras (see [35], pg. 29,

section 10.5.2, and section 10.6 for the Adjoint matrices of various specific Lie groups):

y = −AdX◦x. (5.1.10)

This shows that ϕ(x) = −AdX◦x, and that x and y are linearly related to each other.

Consequently, according to Theorem 3.1, we conclude that the allocentric and

egocentric measurement functions have the same degree of nonlinearity as measured

by the parameter-effects curvature measures of nonlinearity. Hence, when used with

Gaussian-based estimation methods, these two representations result in the same level

of accuracy.

5.1.3 Time Complexity Analysis

The equivalence of the egocentric and allocentric representations in time complex-

ity is trivial, because the factor graphs of the problem parameterized by these two

representations have exactly the same structure.

For example, assuming that in the allocentric case, the robot has an odometry

measurement and can observe its own poseXt with respect to the object frame at each
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Figure 5.1.3: Experiment with an object moving over time. The car poses are in red
and the object poses are in blue.

time step t, the factor graph representing the factorization of the allocentric problem

in (5.1.1) and (5.1.2) is shown in Fig. 5.1.1. Similarly, the factor graph representing

the same problem in the egocentric representation is shown in Fig. 5.1.2. The two

graphs have the same structure.

This example can be generalized for any other measurement functions. Because

ht(X) and gt(Y ) are the re-parameterization of each other via the inverse map (5.1.7),

their corresponding factors in the factor graphs connect to the same corresponding

set of allocentric and egocentric variables respectively. Consequently, the two graphs

always have the same structure, regardless of the types of the measurement functions.

5.1.4 Experiments

In this section, I will show experimental results to verify the equivalence in accuracy

of the object-level allocentric and egocentric perception frameworks. Fig. 5.1.3 shows

our testing scenario in the global frame with a car that moves and observes an object,
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Figure 5.1.4: Factor graphs for the object-level allocentric (left) and egocentric (right)
perception frameworks with a moving object.

which is also moving over time. Fig. 5.1.4 shows the factor graphs of the allocentric

and egocentric perception frameworks in this scenario with a moving object.

In this moving-object scenario, the allocentric and egocentric odometry measure-

ment function is more involved. This is because at each time step t, the odometry

measurement ut is the relative pose of the car with respect to a global fixed inertial

frame W , but our variables of interest are represented in a moving frame, i.e., the

moving object frame in the allocentric case, or the moving car frame in the egocentric

case. More specifically, let AB be the coordinate frame A represented in frame B,

the allocentric variable representing the car pose in the object frame at time t is XYt
t ,

and the egocentric one representing the object pose in the car frame at time t is Y Xt
t .

To formulate the odometry measurement function at time t, we need another

variable Y t−1
t representing the relative pose between the object frame in the previous

time step and the one in the current time step. The allocentric odometry measurement

function fA(X
Yt−1

t−1 , X
Yt
t , Y

t−1
t ) is a ternary factor and can be written as:

fA(X
Yt−1

t−1 , X
Yt
t , Y

t−1
t ) , X

Xt−1

t

= (X
Yt−1

t−1 )−1Y t−1
t XYt

t .

Similarly, the egocentric odometry measurement function fE(Y
Xt−1

t−1 , Y Xt
t , Y t−1

t ) is a

ternary factor as follows:

fE(Y
Xt−1

t−1 , Y Xt
t , Y t−1

t ) , X
Xt−1

t

= Y
Xt−1

t−1 Y t−1
t (Y Xt

t )−1.
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We also have some prior knowledge yt about the object motion at time t, e.g., to

constrain its smoothness. This induces a unary factor on Y t−1
t at each time step.

Furthermore, at every time step t, the car observes the object pose zt relative

to its egocentric frame. Hence, the allocentric and egocentric measurement models,

h(XYt
t ) and g(Y Xt

t ) respectively, are the following unary factors:

h(XYt
t ) = (XYt

t )−1,

g(Y Xt
t ) = Y Xt

t .

Fig. 5.1.5 shows the results of our experiments with the allocentric and egocentric

frameworks for the moving-object scenario in Fig. 5.1.3. The top figure plots the

car trajectory in the allocentric frame in red, and the bottom one shows the object

trajectory viewed from the car’s egocentric perspective in blue as if the car were

stationary. I also plot the marginal uncertainty ellipses of the car position in the

allocentric frame in red and of the object position in the egocentric frame in blue.

Our numerical results confirm that the final marginal Gaussian densities of the

last car pose XYn
n in the allocentric frame (the red ellipse) and of the object pose

Y Xn
n in the egocentric frame (the blue ellipse) are equivalent. To compare the two

Gaussians, we convert the final density of one frame into the corresponding density

in the other frame. First, the computed means X̃n and Ỹn of these two variables XYn
n

and Y Xn
n respectively are exactly the inverse of each other. Second, the marginal

covariance ΣYn of the egocentric variable Y Xn
n (the blue ellipse) is exactly the same

as the covariance Σ
′
Yn

obtained from converting the marginal covariance ΣXn of the

allocentric variable XYn
n (the red ellipse) to the egocentric frame. The conversion

is done using the following formula, because the variables of the two Gaussians are

related via the linear map in Eq. (5.1.10):

Σ
′

Yn = AdX̃n
ΣXnAd

T
X̃n

.
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Figure 5.1.5: Results of the object-level allocentric (top) and egocentric (bottom)
perception frameworks where the object is moving over time as in Fig. 5.1.3. Car
poses are in red and object poses are in blue.
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Figure 5.1.6: The inverse of a Gaussian-distributed 2D pose has a “banana shape”.
Red: samples of the original Gaussian-distributed pose. Blue: samples of its inverse.

5.1.5 Discussion

Our result about the equivalence in nonlinearity of any measurement function of

the allocentric and egocentric representations is counterintuitive at first, because the

inverse relationship between these two representations are usually considered as non-

linear. For example, as shown in Fig. 5.1.6 for the simplest case with one pose in 2D,

when the posterior density of the allocentric pose X ∈ SE2 is Gaussian, the density

of its inverse, i.e., the egocentric pose Y , will have a “banana-shape”. This “banana-

shape” density is often considered as nonlinear and identified as the cause of the incon-

sistency problem as thoroughly studied in the SLAM literature [179, 93, 33, 180, 6].

Latest research in [119] using Lie-group representation of poses shows that the banana-

shape distribution in the Cartesian coordinate might in fact be Gaussian in the ex-

ponential coordinate, i.e., the Lie-algebra vector representation. However, it does

not explain why these two distributions can be linearly related to each other via the

inverse map.

The key insight to understand this linear relationship is the difference between

the right and left compositions of the incremental poses exp(x̂) and exp(−x̂) with
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Figure 5.1.7: A “banana shape” can be generated by a Gaussian incremental poses via
the left composition. Left: Sampled positions of the Gaussian incremental pose exp(x̂)
are in green, and the allocentric pose X = X◦exp(x̂) via the right composition are
in red. Right: Sampled positions of the Gaussian inverse incremental pose exp(−x̂)
are in cyan, and the egocentric pose Y = exp(−x̂)X−1

◦ via the left composition are
in blue. The distribution of Y has a banana-shape although it is generated from a
Gaussian of the inverse incremental pose.

the linearization points X◦ and X−1
◦ . These are in fact related to the left and right

directional derivatives of functions on Lie groups, as defined in [35], pg. 56, section

11.1.1. The right composition to derive the allocentric variable X from its Lie-algebra

vector x is defined in (A.1.9), whereas the left composition to compute the egocentric

variable Y from x can be derived from (5.1.8) and (5.1.9) as follows:

Y = Y◦exp(ŷ)

= X−1
◦ (−X◦exp(x̂)X−1

◦ )

= exp(−x̂)X−1
◦ (5.1.11)

Gaussian distributions of the incremental poses exp(x̂) and exp(−x̂) in the Carte-

sian coordinate might lead to either Gaussian or banana-shape distributions of the

allocentric pose X and the egocentric pose Y on the manifold, depending on which

type of composition, left or right, is used. The intuition is illustrated in Fig. 5.1.7.
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More specifically, assuming that the incremental allocentric pose exp(x̂) is Gaussian-

distributed in the Cartesian coordinate (not in the exponential-map coordinate as

considered in [119]), the final pose X, generated by composing exp(x̂) on the right

of X◦ in (A.1.9), will be a Gaussian around X◦ on the manifold as shown in the

left figure of Fig 5.1.6. This is because the right composition “pushes” X a small

amount exp(x̂) away from X◦. In fact, denote the matrix representations of these

poses as X =

 RX tX

0 1

, X◦ =

 RX◦ tX◦

0 1

, and exp(x̂) =

 δRx δtx

0 1

, from
X = X◦exp(x̂) as in (A.1.9), we have RX = RX◦δRx, and tX = RX◦δtx + tX◦ . Con-

sequently, if δtx is Gaussian distributed, so is RX◦δtx, and tX is Gaussian distributed

around tX◦ , explaining the Gaussian shape.

On the other hand, although the incremental pose exp(−x̂) is Gaussian-distributed

as exp(x̂), the final pose Y , generated by composing exp(−x̂) on the left of X−1
◦

in (5.1.11), has a banana shape on the manifold as in the left figure of Fig 5.1.6.

Mathematically, denote Y◦ =

 RY◦ tY◦

0 1

, X−1
◦ =

 RX−1
◦

tX−1
◦

0 1

 and exp(−x̂) =

 δR−x δt−x

0 1

, from Y = exp(−x̂)X−1
◦ , we have tY = δR−xtX−1

◦
+ δt−x. Conse-

quently, even if δt−x is Gaussian distributed, the nonlinearity of δR−x causes tY ’s

distribution to have a banana shape.

Intuitively, when zero-mean Gaussian samples of exp(−x̂) are composed on the

left of Y◦ = X−1
◦ , the final samples Y move away from the identity element and do not

necessarily form a Gaussian shape. If the angle uncertainty of the incremental pose

exp(−x̂) in the Cartesian coordinate is large, the final samples after composition with

X−1
◦ are “pushed away” from the identity, i.e. the mean of exp(−x̂), by a constant

radius and centralized around the direction of the mean of the incremental pose’s

angle, thus having a banana shape. If the angle of exp(−x̂) is uniformly distributed,

the positions of the final samples will form a circle around the identity.
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As a result, although the two distributions in Fig. 5.1.6 appear to be different,

they can be generated by the same Gaussian distribution on the incremental poses

around the corresponding linearization points.

5.2 Multiple Objects

The equivalence of the egocentric and allocentric representations for environments

with a single moving object can be easily extended to environments with multiple

objects moving independently with each other. In the latter case, since there is

no correlation among objects, we can treat each of them separately and turn the

multiple-objects problem into multiple single-object problems. Consequently, the

argument about the equivalence of the egocentric and allocentric representations in

the single-object case carries over for the multiple objects case trivially.

5.3 Summary

In this chapter, I have proved that the two allocentric and egocentric representations

are equivalent for perception problems at the object level, assuming that the robot

can measure its pose in the object frame, or the object pose in its frame for the

egocentric case, at every time step. The equivalence is proved for Gaussian estimation

methods, where I showed that their accuracy and time complexity are the same in

both representations regardless of the specific types of measurement functions. The

result is proved for cases with one object in the scene. However, it can be generalized

easily to multiple-object cases, assuming that the objects are moving independently

with respect to each other.

This result is contradict with well-known work in the literature [179, 93, 33, 180, 6],

observing that the distribution of a Gaussian-distributed pose has the “banana shape”,

which causes the inconsistency problem for Extended Kalman Filter. However, using

Lie-group representations of poses, I showed that the “banana shape” is in fact linear
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in the Lie algebra vector spaces, hence the pose inverse operator preserves the mea-

surement functions’ nonlinearity. A related but weaker result is shown in [119], which

did not study the inverse operator. I have also presented an intuitive view for this

result as the difference between the left and right composition with the incremental

pose in the allocentric and egocentric cases, which are related to the left and right

derivatives of functions of Lie-group variables ([35], pg. 56).
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Chapter VI

MODEL PREDICTIVE CONTROL

In this chapter, I will show that the allocentric representation is more beneficial

than the egocentric one in Model Predictive Control (MPC) for local navigation and

obstacle avoidance tasks. MPC is widely-used for numerous problems in science and

engineering [157]. It is an approximation of the optimal control framework, which aims

to compute the best control strategy to minimize an expected cost function, using the

dynamics/kinematics model of the system to predict its future states. MPC reduces

the complexity of the full optimal control problem by optimizing only a discrete time

version of the problem up to a finite time-horizon in the future. The control solution

for the first time interval is then executed, and a new finite time-horizon optimal

control problem is formulated and solved in the next time step.

It is challenging to use MPC, or optimal control in general, for obstacle avoid-

ance. This is because the non-convex nature of obstacle path constraints makes the

globally optimal solution very difficult to find. Due to these non-convex constraints,

the optimization process often converges to a local minimum or even an infeasible so-

lution [41, 161, 148]. Consequently, in the traditional pipeline for obstacle avoidance,

including (1) high-level path planning, (2) trajectory generation and (3) trajectory

tracking [71], MPC is only applied in the trajectory generation phase to compute

a dynamically feasible trajectory to follow a path produced by the high-level plan-

ner [167, 110, 164]. Path-following is a convex problem, hence the optimal solution

can be found easily with standard convex optimization methods [22]. To deal with

obstacles at the high level, other global planning methods [112], notably sampling

based schemes such as RRT* [96], have to be used although they are not guaranteed
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to be optimal or, for some methods, dynamically feasible.

Despite the challenge, I choose to study MPC for local navigation and obstacle

avoidance at the trajectory planning level, because recent advances in optimization

methods [191, 72] have made it possible and revived interest in using optimal con-

trol for trajectory optimization tasks. Recent work using MPC for high-level path

planning to avoid obstacles typically employs a simpler kinematics model of the sys-

tem [61, 64, 41]. The detailed dynamic model is only used in the second MPC for

low-level trajectory following, resulting in a hierarchical MPC framework. Neverthe-

less, other recent work has successfully used full system dynamic models in trajectory

optimization, and demonstrated various successes in high degree-of-freedom dynami-

cal systems, such as robot arms (see, e.g., [156, 95, 161, 135] and references therein),

and challenging applications such as motion planning for medical needle steering in

complex 3D environments with curvature constraints [52].

The benefits of MPC compared with other methods for local navigation and ob-

stacle avoidance are another important reason. It provides a trade-off between op-

timality and computational complexity, while guaranteeing dynamic constraints and

obstacle-avoidance path constraints. On one end of the spectrum of local navigation

and obstacle avoidance methods is the stochastic optimal control approach, which

is the most fundamental formulation of this problem and guarantees optimality as

well as dynamic and path constraints. Unfortunately, it is still intractable to solve

in real time although recent stochastic algorithms, notably the Path Integral method

[177], have made significant progresses toward this direction. On the other end of

the spectrum are reactive methods, such as potential fields, velocity obstacles, etc.,

[128, 109, 30, 100]. They are very fast to compute, but do not take into account

dynamic constraints and future optimality. MPC is a feasible option in the middle of

these two extremes, which guarantees constraints satisfaction and a certain degree of

optimality while being solvable in real-time [195].
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Figure 6.1.1: Allocentric MPC. The optimal trajectory planned in the previous time
step is fixed and can be reused.

6.1 Allocentric vs Egocentric MPC: An Overview

When the last terminal state at the finite-time horizon reaches the target, the allocen-

tric MPC is better than the egocentric MPC. Intuitively, this is because the previous

optimal trajectory in the allocentric frame is closer to the optimal solution at the

current time than the previous egocentric trajectory is, compared with the optimal

egocentric solution. In the allocentric representation, the state spaces of all MPC

problems at every time step are represented in the same fixed allocentric coordinate

frame attached to the obstacle, and the target is also fixed in that frame. In contrast,

the state spaces of egocentric MPC problems at each time step are represented in dif-

ferent robot frames, and the egocentric positions of the obstacles and the target are

updated over time as the robot moves. Consequently, in the allocentric case, the op-

timal trajectory from the previous time step does not change after the robot executes

the first control. The measurement noise only affects the current estimate of the first

state, leaving the rest of the previous trajectory almost unchanged. However, in the

egocentric representation, the optimal trajectory in the previous time step has to be

transformed into the current robot frame in order to be reusable. Ideally, the object

and target positions in the previous frame would also be transformed into the new
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Figure 6.1.2: Egocentric MPC. The optimal trajectory planned in the previous time
step collides with the new obstacle position, and its terminal state does not coincide
with the new target position anymore.

frame. But, due to measurement noise, the new estimate of the object position might

collide with the transformed trajectory and the observed target might not coincide

with the transformed terminal state as it was in the previous time step. Fig. 6.1.1

and 6.1.2 illustrate the differences between the allocentric and the egocentric MPC

respectively.

More specifically, in this case, the allocentric representation is more beneficial

than the egocentric one when the warm-start procedure is used to speed up the

optimization process. Warm-start is a common practice in MPC optimization, which

uses the solution of the previous time step as an initial value in the current time step,

helping the optimization process to converge faster than naive approaches starting at

an arbitrary initial point [144, 195]. Warm-start techniques are especially efficient in

active set methods for solving nonlinear programming problems, since it avoids the

combinatorial problem of determining the active inequality constraints [144]. In the

allocentric representation, the initial warm-start trajectory is feasible and close to

the optimal solution, hence the optimization process may converge quickly. On the
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other hand, in the egocentric representation, new initial values have to be assigned

to infeasible states of the transformed trajectory, which is colliding with the obstacle,

and the terminal state is far from the target. Thus, the optimization process in

the egocentric representation may take more time to converge as compared with the

allocentric representation.

The experimental results in Section 6.3 verify the computational benefits of the

allocentric representation over the egocentric one. Using the warm-start procedure

and the state-of-the-art active set method, SNOPT [72], I found that when the final

state is at the target, the allocentric representation requires less number of iterations

to converge than the egocentric one. However, I did not find a conclusive evidence

for the advantage of the allocentric representation when the terminal state is still

far from the target, although the egocentric one sometimes takes significantly more

number of iterations to converge.

Nevertheless, when the terminal state has not reached the target, the allocentric

representation is still much more beneficial than the egocentric one, because we can

exploit the feasibility of the previous trajectory in the allocentric frame to speed up

the process significantly. In cases of limited resources, the allocentric trajectory can

be temporarily reused as a safe path to follow without the need to compute the new

optimal trajectory. Moreover, to improve the optimality, a better solution can also

be found by optimizing an end segment of the trajectory together with the new state,

instead of re-optimizing the full trajectory every time. This heuristics to exploit the

feasibility of the previously planned trajectory is only valid in the allocentric frame

and should not be employed in the egocentric representation. This is because the

previously planned egocentric path might collide with the obstacle in the current

frame, and following an infeasible path is unsafe and could lead to a catastrophe in

the future.

The results in Section 6.4 verify the benefits of our heuristics to reuse the trajectory
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from previous step as a suboptimal solution in the allocentric representation. It is

trivial to see that re-planning only a part of the trajectory reduces the amount of

computation significantly. In the extreme case, optimizing only the new state is

very fast and comparable to reactive methods. It is better than reactive methods,

however, since the dynamic constraints are guaranteed to be satisfied. Furthermore,

because the optimization is often stuck at a local minimum if the time-horizon is not

long enough, I derived a terminal cost function to help new terminal states move

away from the obstacle. This novel obstacle cost function is inspired by research

in stability of MPC using Control Lyapunov Function [89, 88, 126, 157]. Different

from potential fields and navigation functions, which only assign a specific direction

away from the obstacle, this obstacle cost function assigns a cost for every possible

state, quantifying the future possibility to collide with the object if the robot is at

that state, and can be used directly in an MPC framework. Although the solution

produced by the heuristics is suboptimal, it is safe to be executed as it is guaranteed

not to collide with the object.

6.2 Problem Formulation

In this section, I first describe in details the two allocentric and egocentric MPC

frameworks for local trajectory planning and obstacle avoidance, which we will use

to analyze the benefits of the allocentric representation over the egocentric one in the

subsequent sections.

Consider a standard 2D scenario with one static circular object. Our goal is to

enable a 2D car-like dynamical system to avoid the object and get to a target as

fast as possible. The control inputs of the car are the forward acceleration and the

angular velocity: u(t) = [a(t) ω(t)]T , which are bounded at any time t: amin

ωmin

 ≤ u(t) ≤

 amax

ωmax

 . (6.2.1)
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6.2.1 Allocentric MPC

In the allocentric representation, the state of the car is represented in the coor-

dinate frame attached to the center of the object O = [0 0]T . The state vector

contains the car’s 2D position, rotation and its forward body velocity: X(t) =[
x(t) y(t) θ(t) vbx(t)

]T . In MPC, we use a deterministic dynamic model, de-

tailed in the following differential equations:

Ẋ(t) ,



ẋ(t)

ẏ(t)

θ̇(t)

v̇bx(t)


=



vbx(t) cos θ(t)

vbx(t) sin θ(t)

ω(t)

a(t)


, f(X(t), u(t)) (6.2.2)

At each MPC time step tk, given the state observation X̄k in the object’s allocentric

frame, we would like to find the control ũk(t) to drive the car as close as possible to

the target. We do that by minimizing the square distance between the terminal state

at the finite time-horizon tk + T and the target G = [xG yG]T :

min
u(t)

d2(X(tk + T ), G)

where d(X(t), P ) is the distance function between a state X(t) and a 2D point P =

[xP yP ]T :

d(X(t), P ) =
√

(x(t)− xP )2 + (y(t)− yP )2.

This minimization problem is subject to the following constraints: (1) the bound-

ing constraints of the control inputs in (6.2.1), (2) the dynamic constraints in (6.2.2),

(3) the first state constraint X(tk) = X̄k, and (4) the following path constraints to

avoid the obstacle at the origin:

d(X(t), O) ≥ R,

where R is the radius of the obstacle.

91



We use the standard direct local collocation methods in optimal control [15, 16,

155] to transcribe the above continuous time optimization problem into a nonlinear

programming (NLP) problem. We first divide the time interval [tk, tk + T ] into K

subintervals [ti, ti+1], i = k, k + 1, . . . , k + K − 1, where ti+1 = ti + h, and h = T/K

is the time duration of each subinterval. Using the trapezoidal integration scheme to

discretize the problem, we have the following NLP problem:

min
uk,...,uk+K−1

d2(Xk+K , G)

subject to the following constraints for all i = {k, k + 1, . . . , k +K − 1}: amin

ωmin

 ≤ ui ≤

 amax

ωmax


Xi+1 −Xi =

h

2
(f(Xi, ui) + f(Xi+1, ui))

Xk = X̄k

d(Xi+1, O) ≥ R

The above NLP problem can be solved by using two state-of-the-art methods:

the active set method implemented in SNOPT [72], and the primal-dual interior

point method implemented in IPOPT [191]. After that, we execute the first optimal

control ũk, obtain the new observation X̄k+1, and repeat the process of formulating

and solving the new MPC problem in the next time step tk+1.

6.2.2 Egocentric MPC

In the egocentric representation, the MPC problem at each time step tk is represented

in the car’s egocentric frame at time tk. Following the usual practice for trajectory

planning in many other navigation systems [189, 132, 4, 113], we “freeze” the car’s

frame at that time instance tk and choose it as a fixed inertial reference frame to

represent the problem and compute the path. The egocentric state vector includes

the car’s 2D position, rotation and its forward body velocity, which are all represented
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with respect to this fixed reference frame, Y k(t) =
[
xk(t) yk(t) θk(t) vbx(t)

]T .
Because this egocentric reference frame is fixed, the dynamic model of the car is

similar to the allocentric dynamic model but in a different inertial frame:

Ẏ k(t) ,



ẋk(t)

ẏk(t)

θ̇k(t)

v̇bx(t)


=



vbx(t) cos θk(t)

vbx(t) sin θk(t)

ω(t)

a(t)


, fk(Y

k(t), u(t)) (6.2.3)

The egocentric observation at time tk is the car’s body velocity v̄bxk, the object

position Ok = [xkO y
k
O]T , and the target position Gk = [xkG y

k
G]T in the car’s egocentric

frame. As in the allocentric case, we would like to find the control ũ(t) to minimize

the square distance between the terminal state Y k(tk + T ) and the target Gk:

min
u(t)

d2(Y k(tk + T ), Gk)

subject to (1) the control bounding constraints in (6.2.1), (2) the dynamic constraints

in (6.2.3), (3) the first state constraint Y k(tk),
[

0 0 0 v̄bxk
]T , and (4) the path

constraints to avoid the obstacle:

d(Y k(t), Ok) ≥ R.

Dividing the time interval [tk, tk + T ] into K subintervals [ti, ti+1], i = {k, k +

1, . . . , k+K−1}, denoting Y k(ti),Y k
i , and using the standard direct local collocation

methods with trapezoidal integration scheme, we transcribe the above continuous time

problem into the following NLP problem:

min
uk,...,uk+K−1

d2(Y k
k+K , G

k)
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subject to the following constraints for all i = {k, k + 1, . . . , k +K − 1} amin

ωmin

 ≤ ui ≤

 amax

ωmax


Y k
i+1 − Y k

i =
h

2
(f(Y k

i , ui) + f(Y k
i+1, ui))

Y k
k =

[
0 0 0 v̄bxk

]T
d(Y k

i+1, O
k) ≥ R

After solving the problem and execute the first control ũk, the NLP problem for

the egocentric MPC at the next time step tk+1 involves a different set of variables,

now relative to the car’s frame at time tk+1:

min
uk+1,...,uk+K

d2(Y k+1
k+1+K , G

k+1)

subject to the following constraints for all i = {k + 1, k + 2, . . . , k +K} amin

ωmin

 ≤ ui ≤

 amax

ωmax


Y k+1
i+1 − Y k+1

i =
h

2
(fk+1(Y k+1

i , ui) + fk+1(Y k+1
i+1 , ui))

Y k+1
k+1 =

[
0 0 0 v̄bx(k+1)

]T
d(Y k+1

i+1 , O
k+1) ≥ R

The corresponding states in the two sets of state variables {Y k
i }i=k..(k+K) and

{Y k+1
i }i=(k+1)..(k+1+K) at time tk and tk+1 respectively, are related via a coordinate

frame transformation:

Y k+1
i = (Y k

k+1)−1 � Y k
i ,

where Y k
k+1 is the state in the previous car frame at time tk after the first control ũk

is executed.
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6.3 Performance Analysis: The Benefits of Warm-Start

6.3.1 Warm-Start Procedure

Following the warm-start procedure described in [195], we use the optimal solution

at time tk as an initial value for the optimization process at the next time step tk+1.

For allocentric MPC, denote the optimal solution at time tk as

{X̃k, X̃k+1, . . . , X̃k+K , ũk, ũk+1, . . . , ũk+K−1},

we use the following values to initialize the optimization process at time step tk+1:

Ak+1
init = {X̄k+1, X̃k+2 . . . , X̃k+K , X̄k+K+1, ũk+1, ũk+2, . . . , ũk+K−1, ūk+K},

where X̄k+1 is the new state observation, and ūk+K and X̄k+K+1 are the nominal

control and state at the terminal of the new MPC problem. In our experiments, we

simply choose ūk+K =
[

0 0
]T , and X̄k+K+1 is the result of integrating the dynamic

model using the explicit forward Euler method from X̃k+K with zero control inputs.

For egocentric MPC, denote the optimal solution at time tk as

{Ỹ k
k , Ỹ

k
k+1, . . . , Ỹ

k
k+K , ũk, ũk+1, . . . , ũk+K−1},

we use the following values to initialize the optimization process at time step tk+1:

Ek+1
init = {Ȳ k+1

k+1 , Ỹ
k+1
k+2 . . . , Ỹ

k+1
k+K , Ȳ

k+1
k+K+1, ũk+1, ũk+2, . . . , ũk+K−1, ūk+K},

where Ȳ k+1
k+1 =

[
0 0 0 v̄bx(k+1)

]T is the new state observation, Ỹ k+1
i is the value of

the previous corresponding optimal state transformed into the new car frame Ỹ k+1
i =

(Y k
k+1)−1�Ỹ k

i , and ūk+K and Ȳ k+1
k+K+1 are the nominal control and state at the terminal

of the new MPC problem. In our experiments, we simply choose ūk+K =
[

0 0
]T ,

and Ȳ k+1
k+K+1 is the result of integrating the dynamic model using the explicit forward

Euler method from Ỹ k+1
k+K with zero control inputs.
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6.3.2 Experiments

In these experiments, I use the state-of-the-art active set optimization method im-

plemented in SNOPT [72, 73] to study the benefits of warm-start for MPC in the

allocentric and egocentric representations. Although SNOPT has a special option

for warm-start, I found that the built-in warm-start procedure in SNOPT is actually

harmful for MPC. In a nutshell, the built-in warm-start procedure is designed only

for using the solutions and states obtained in a previous iteration to initialize the next

iteration of the same problem, whereas in MPC, we have two different problems in

two subsequent MPC time steps. More specifically, the built-in warm-start procedure

requires as inputs the states of the variables, which are either nonbasic, superbasic

or basic, typically determined from the previous iteration. Nonbasic variables are

those that are temporarily “frozen” at their boundaries, i.e., either upper or lower

bounds, and belong to the current active set, superbasic variables are independent

variables that will be updated in the current iteration, and basic variables depend on

the others so that the constraints are satisfied (see [73] pg. 8 and 18 for more details).

In our case, the states of variables in the previous MPC time step can be obtained

for warm-start in the current time step, but the state of the new variables to extend

the MPC horizon are unknown. Guessing them only confuses SNOPT and results

in more number of iterations than simply asking SNOPT to compute them with its

cold-start procedure. Consequently, I only use the initial values described in Section

6.3.1 with the cold-start option of SNOPT to “warm-start” the optimization at the

current MPC time step.

For a fair comparison between the two representations, I use the same control

inputs and simulate the same noisy object measurements, so that the MPC problems

in the two representations have the equivalent initial condition at every time step.

Furthermore, to avoid possible numerical issues when computing the next ground

truth state given the current one and the control input to simulate the observation
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Figure 6.3.1: Allocentric MPC with a short time-horizon. The terminal state of the
first time step is far from the target.

measurement at each step, I manually integrate the dynamic equations in (6.2.2) and

use the close-form formulas of the resulting functions to compute the states exactly.

For cases where the terminal state at each time step is still far from the target,

the experimental results do not show conclusive evidence for the advantages of one

representation over the other. In our first experiment shown in Fig. 6.3.1 and 6.3.2,

we run both allocentric and egocentric MPC frameworks with K = 25-step horizon,

and h = 0.01-second time interval, in a scenario such that the car cannot reach the

target immediately with its control limits. As shown in Fig. 6.3.3, the egocentric

MPC takes significantly more number of iterations to converge than the allocentric

one in several time steps, but in some steps the allocentric MPC needs more iterations,

and in some other steps the two are more or less equivalent. Only in the last few

steps, the egocentric MPC consistently needs more iterations than the allocentric one.

This behavior starts when the terminal state reaches the target point.

In the second experiment, I adjust the parameters, e.g., the initial position of

the car, the radius of the obstacle and the target position, such that the terminal
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Figure 6.3.2: Several frames of the egocentric MPC with a short time-horizon. The
terminal state of the first time step is far from the target.

Figure 6.3.3: Allocentric MPC vs Egocentric MPC when the terminal state of the
first step is not at the target. No conclusive evidence for their advantages except at
the last few steps when the terminal reaches the target point.
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Figure 6.3.4: Allocentric MPC. The terminal state of the first time step can reach
the target.

Figure 6.3.5: Egocentric MPC. The terminal state of the first time step can reach the
target.
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Figure 6.3.6: Allocentric MPC vs Egocentric MPC when the terminal state is at the
target in each step. The allocentric MPC typically takes less number of iterations to
converge than the egocentric one.

states can always reach the target. Several time steps of the allocentric MPC and the

egocentric MPC are shown in Fig. 6.3.4 and 6.3.5 respectively. When this condition

is satisfied, the advantage of the allocentric MPC over the egocentric MPC is clear, as

shown in Fig. 6.3.6. The allocentric MPC typically requires less number of iterations

to converge as compared with the egocentric MPC.

6.4 Exploiting the Feasibility of Allocentric Trajectories

The feasibility of the previous optimal trajectory in the allocentric frame allows us

to employ two suboptimal heuristic strategies to speed up the process significantly.

Because in the egocentric representation, the previous optimal trajectory might collide

with the obstacle after being transformed to the current robot frame, these heuristic

strategies cannot be employed in the egocentric setting.
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6.4.1 Temporary Trajectory Following

First, since the previous trajectory is feasible, it is safe to follow without recomputing

the new trajectory. Given the previous optimal solution at time tk:

{X̃k, X̃k+1, X̃k+2, . . . , X̃k+K , ũk, ũk+1, . . . , ũk+K−1}

and the new state observation X̄k+1 after executing the first computed control ũk,

instead of solving a new non-convex MPC problem at time tk+1, we can safely compute

a control to follow the next waypoint X̃k+2:

min
uk+1

∥∥∥Xk+2 − X̃k+2

∥∥∥2

s.t.

 amin

ωmin

 ≤ uk+1 ≤

 amax

ωmax


Xk+2 − X̄k+1 = h

2
(f(X̄k+1, uk+1) + f(Xk+2, uk+1))

This problem is convex, hence can be solved very easily. If the time-horizon is

long enough, e.g. the terminal state can reach to the goal, this heuristics converges

to the traditional path-planning then trajectory-following approach. However, if the

time-horizon is short, we should fall back to the normal MPC problem after several

steps. Moreover, if the optimal value of the objective cost function is larger than a

threshold, indicating no suitable control exists to get to X̃k+2 because the observed

first state X̄k+1 is too far from the expected state X̃k+1 on the trajectory due to

measurement noise, we should also fall back to the normal MPC mode.

6.4.2 Suboptimal MPC

The second heuristics to exploit the feasibility of the previous optimal trajectory is

complementary to the first one when the time-horizon is too short and the final state

has not reached the target. In this case, we wish to extend the horizon in the next

time step tk+1.
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Instead of solving the full MPC problem starting at Xk+1, we can start at some

middle point Xk+l and solve a smaller MPC problem for the latter part of the tra-

jectory from {Xk+l, . . . , Xk+K+1}, assuming that the first part from {X̃k+1, . . . , X̃k+l}

can be followed by the previous trajectory-following heuristics. This strategy is sub-

optimal, but it helps to reduce the amount of computation significantly because of

the small number of variables and constraints to solve.

For example, in the extreme case where l = K, we only need to solve for the

control and the new terminal state:

min
uk+K

d2(Xk+K+1, G)

subject to:  amin

ωmin

 ≤ uk+K ≤

 amax

ωmax


Xk+K+1 − X̃k+K =

h

2
(f(X̃k+K , uk+K) + f(Xk+K+1, uk+K))

d(Xk+K+1, O) ≥ R

The heuristics in this extreme case is similar to a reactive method because only one

state is computed at each step. However, unlike other reactive methods such as

potential fields, the dynamic constraint is satisfied.

6.4.3 Obstacle Avoidance Cost Functions

The optimization process might get stuck at local minima when the terminal state is

very close to the obstacle’s boundary. Essentially, this is because our NLP optimiza-

tion methods are based on local line search along the gradient direction. If the amount

of non-convexity of the problem is too large, especially near the obstacle’s boundary,

these methods cannot lead the guessed solution to pass around the obstacle.

Inspired by research in stability of MPC, I design a cost function to improve the

successful rate of short time-horizon MPC for obstacle avoidance. The problem of
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Figure 6.4.1: Obstacle avoidance terminal cost function V (P, θ).

short time-horizon MPC is that the terminal state is too far from the obstacle and

the target, hence it does not have enough information to decide where it should be

to complete the task in the future. That is why MPC is suboptimal compared with

the ideal infinite time-horizon optimal control. Research in MPC showed that by

employing a Control Lyapunov Function (CLF) that is an incremental upper bound

on the infinite horizon optimal cost-to-go as a terminal cost, the stability of MPC

can be guaranteed [89, 88, 126, 157]. Inspired by these results, I design a terminal

cost function that predicts the amount of efforts to avoid future collision with the

obstacle, as if it were the cost-to-go of an infinite-horizon controller to avoid the

obstacle starting from the terminal state.

Given a finite time-horizon trajectory, the future direction can be predicted from

the position P and direction θ of the terminal state in the allocentric frame. We

denote ~v the direction vector from P with angle θ. As shown in Fig. 6.4.1, if ~v goes

directly through the obstacle’s center and P is close to the obstacle, the future effort

to avoid the obstacle is high, hence the cost should be high. On the other hand, if ~v

points away from the obstacle, or P is still very far, the cost should be low. Basing
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Figure 6.4.2: The heuristic allocentric MPC scheme with two-state optimization and
the obstacle avoidance cost function.

on this idea, I use the following parametric obstacle cost function:

V (P, θ) =
1

D
exp(α(θ − θ0)2),

where D is the distance between P and the boundary of the obstacle, θ0 is the angle

of vector
−→
PO, i.e., the direction that incurs the highest cost, and α is a parameter

that we can tune by specifying the maximum cost we want at the tangent boundary

directions when ~v starts not to collide with the obstacle.

6.4.4 Experiments

Fig. 6.4.2 shows the results of several time steps in an experiment with the heuristic

suboptimal allocentric MPC scheme and the obstacle avoidance cost function. In

the first time step, the full MPC problem with 20-step horizon and 0.01-second time

interval is optimized. In each subsequent step, the first control is executed, and the

new suboptimal MPC problem is formed with only two states, the terminal state in

the previous time step as the new initial state with a hard constraint, and the new

terminal state with the target cost and the obstacle avoidance cost functions. I use

the state-of-the-art primal-dual interior point method IPOPT [191] to optimize the

problems in these experiments.
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Figure 6.4.3: The heuristic allocentric MPC with two-state optimization and no obsta-
cle avoidance cost function. The system gets stuck at a local minima on the obstacle
boundary and cannot advance further to the target.
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Figure 6.4.4: The full allocentric MPC scheme, optimized with IPOPT

Fig. 6.4.3 shows the same suboptimal allocentric MPC scheme with the two-state

optimization problem but without the obstacle avoidance cost function. Unlike the

successful run with the obstacle avoidance terminal cost, the system gets stuck at a

local minima.

Fig. 6.4.4 shows several time steps of the original allocentric MPC framework in

Section 6.2.1, which solve the full MPC problem with 20-step horizon at every time

step. The system reaches the target and avoid the obstacle successfully. However, it is

much slower than the heuristic allocentric MPC scheme with the obstacle avoidance
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Figure 6.4.5: Time comparison between the full and the heuristic allocentric MPC
scheme.

terminal cost. Fig. 6.4.5 shows the CPU time in seconds that IPOPT spent to

optimize the problems at each MPC time step. On average, the full allocentric MPC

scheme is 20 times slower than the heuristic scheme.

The sub-optimality of the heuristic scheme can be seen by comparing the results

of the MPC time step t = 60 (i.e., the blue trajectories) in Fig. 6.4.2 and Fig.

6.4.4. In the heuristic scheme, because the full trajectory was not re-optimized from

the beginning, the robot could not stop properly at the target. This is because the

middle states and controls were not updated and their values were the most aggressive

values to reach the target as soon as possible, as computed in the previous time steps.

As a result, the robot overshot the target, because it could not brake and reduce its

speed at the right time. On the other hand, the trajectory in Fig. 6.4.4 were fully re-

optimized, hence it is more optimal and the speeds of the middle states were reduced

to stop at the target properly.
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6.5 Summary

In this chapter, I have shown evidence highlighting the benefits of the allocentric repre-

sentation over the egocentric one in MPC for local navigation and obstacle avoidance.

In cases where the terminal states are at the target, the allocentric MPC takes less

number of iterations to converge than the egocentric one, if the previous trajectory

is used to warm-start the optimization at the current time step. On the other hand,

if the terminal states are still far from the target, the allocentric representation is

still better than the egocentric one. This is because the previous trajectory in the

allocentric frame is feasible and can be safely reused in the current time step in cases

of limited computational resources, whereas the previous egocentric trajectory might

collide with the object after transformed to the current frame and is not safe to follow.

If new states are needed to maintain the time horizon, the feasibility of the previous

trajectory also enables heuristics to optimize a latter part of the trajectory, instead of

the full trajectory, leading to a significant reduction in the numbers of variables and

constraints, and the final computational cost. To assist the heuristics and improve

the successful rate of short time-horizon MPC, I also designed a novel obstacle cost

function at the terminal state, inspired by research in MPC stability.
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Chapter VII

CONCLUSIONS

In this thesis, I have presented computational evidence to support the advantages of

the allocentric representation over the egocentric representation in autonomous local

navigation. Although these two coordinate frames have been studied extensively on

humans and animals in experimental psychology and cognitive science, they are often

neglected in robotics research. However, a close look of these two representations has

revealed several surprising facts, which seem to contradict classic results in the litera-

ture. Furthermore, by using the object-centric perspective, inspired by the allocentric

representation, I was able to push the performance of the state-of-the-art perception

and control techniques up to their new limits.

7.1 Review

In this section, I will summarize the claims in the thesis statement and the evidence

to support those claims, which were discussed in detail in the previous chapters. I

will also highlight my main findings and contributions to the field, which have not

been realized before in the literature. The claims and evidence are as follows:

1. For perception at the feature level, the allocentric representation is

better than the egocentric one in Gaussian filtering methods . This

claim is proved in Chapter 3. I showed that the allocentric Gaussian filtering

framework is better than the egocentric one in both accuracy and time complex-

ity. In terms of accuracy, using Lie-group representations of poses, I proved that

the nonlinearities of the two frameworks are the same, but the allocentric frame-

work produces more accurate results due to its advantage in the marginalization
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process. My result about the equivalence in nonlinearity of the two frameworks

is novel and general for all types of sensors and measurement models. This is in

contrast with other work [32] which advocates for the egocentric representation

because of its more linear measurement models, but neglects the nonlinearity

of the required coordinate frame transformation. Compared with other related

work [82, 84], this result also gives a general conclusion for all types of sensors

and measurement models. Furthermore, my finding about the advantage of the

allocentric marginalization process over the egocentric one, which is equivalent

to the benefit of the two-state fixed-lag smoother over the pure filter, agrees

with the experimental results and has not been discovered in the literature.

2. For perception at the feature level, the allocentrically-inspired object-

centric approach leads to a significantly fast and low-error approxi-

mation scheme . This claim is proved in Chapter 4. Using techniques from

assumed density filtering and tree-dependent component analysis, I derived a

linear-time filtering algorithm with respect to the number of features. This is

the theoretically fastest scheme one can achieve, compared with the cubic or

quadratic worst-case time-complexity of traditional filtering methods. I also

showed that the object-centric view, inspired by the allocentric representation,

enables a low-rank approximation scheme that can reduce the approximation

error significantly. Besides these results, I also contributed a novel technique,

graph sparsification by variable insertion. Since essential information can be

retained in new latent variables, this technique overcomes the inevitable in-

formation loss of the state-of-the-art graph sparsification techniques by edge

removal since essential information can be retained in new latent variables.

3. For perception at the object level, the two representations are compu-

tationally equivalent. This claim is proved in Chapter 5. I showed that for
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perception at the object level, the allocentric and egocentric representation are

equivalent in both accuracy and time complexity. Using Lie-group representa-

tions of poses as in Chapter 3, I proved that the nonlinearities of measurement

functions in the two frameworks are the same. This new finding is surprising

as it seems to conflict with well-known results in the SLAM literature. Essen-

tially, the allocentric and egocentric poses are the inverse of each other, and if

one has a Gaussian distribution, then the distribution of the other will have a

“banana-shape”. Early work in filtering-based SLAM [179, 93] concluded that

the banana shape is nonlinear and leads to inconsistency problem. But, as I

showed in 5, the banana shape can be generated by a Gaussian distribution

on the Lie algebra, hence it can be linear. My finding not only agrees with

the state-of-the-art result in [119], but also discovers the fact that the inverse

operator preserves the nonlinearity of measurement functions.

4. The allocentric representation is significantly better than the egocen-

tric one in Model Predictive Control for local trajectory planning and

obstacle avoidance tasks. In Chapter 6, I showed evidence for the benefits

of the allocentric representation over the egocentric one in MPC for local navi-

gation. I showed that when the terminal state is near the target, the allocentric

MPC requires fewer iterations to converge than the egocentric MPC. On the

other hand, when the terminal state is still far from the target, I showed that the

allocentric MPC is more beneficial than the egocentric one because its previous

trajectory is feasible and can be exploited whereas the previous egocentric tra-

jectory might collide with the object in the current robot frame and is unsafe to

be reused. In this context, I showed several heuristic strategies to speed up the

allocentric MPC significantly, and I also contributed a terminal cost function

for obstacle avoidance to improve the success rate for the optimization process.
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7.2 Future Work

This research is only the first step in a larger research agenda to study and exploit the

benefits of allocentric representations for autonomous navigation. Several important

and practical scenarios have not been explored in this thesis and will be left for future

work. For example, the advantages of the allocentric representation in highly dynamic

scenes where multiple objects are constantly entering and leaving the robot’s view

have not been considered. Two strategies can be employed in these scenarios: either

(1) using multiple allocentric frames, one for each object, to keep track of the pairwise

relationships between the car and the objects, or (2) using a single allocentric frame

together with a method to choose and switch to another allocentric frame when the

current object is not in view. While the former is parallelizable, the latter might

be more economical as it only focuses on important objects and allows the relative

relationships between objects to be recovered easily in the chosen allocentric frame.

Although in this work I have found substantial evidence for the benefits of the al-

locentric representation in the context of local navigation, I believe that the potential

of research in coordinate frame representations is huge and still largely unexplored. In

perception, the current trend of cloud-based robotics perception [99, 98] and the vast

amount of sensor data available due to advances in sensing technologies have made a

critical need to organize the database of world information. As the complexity of the

world is huge with lots of details and information, coordinate frames and latent object

variables are extremely useful tools to abstract away the low-level complexity when

we build a complete multiple-hierarchies representation of the world. Sub-mapping

techniques have been researched for a long time, however, most of them are still

limited to a small number levels of hierarchies [106, 114, 199, 174, 115, 21, 55, 85].

Recent work attempts to realize multi-level hierarchical maps [140, 141, 172], but its

results are still limited because of the lack of a proper framework to deal with the

nonlinear coordinate frame transformation constraints.
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Moreover, although the latent variables in Chapter 4 help to capture some essential

low-rank information of features on the same object, how they convey the notion

of “object-ness” and their relationship with the object’s coordinate frame are still

unknown. For some special objects, the latent variables can be understood as the

parameters that fully capture the object’s geometric properties, e.g., a point and

a normal vector to represent a planar object. However, the intuitive meaning of

the latent variable for arbitrary objects is still missing. More research is needed

to understand their roles or to come up with better and more meaningful object

variables.

Finally, Chapter 6 has only scratched the surface of the benefits of the allocentric

frame in control and trajectory planning for local navigation and obstacle avoidance.

A promising approach to deal with the non-convexity of the problem is to rely on

prior knowledge encoded as cost functions. The obstacle cost function manually

designed in Chapter 6 is promising for this purpose but is still far from perfect. A

proper function should be learned offline or from experiences using the amount of

steering and braking to quantify the efforts to avoid the obstacle. Lastly, the roles

of the allocentric representation to avoid multiple objects have not been explored.

This representation might lead to novel strategies for multi-object avoidance that can

significantly improve the performance of local navigation systems.
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Appendix A

FUNCTIONS AND PROBABILITY DENSITIES ON LIE

GROUPS

A.1 Vector-space Re-parameterization, Linearization and Tay-
lor Expansion

This thesis makes heavy use of Lie-group representations for robot poses to study

the differences between the allocentric and egocentric perception frameworks. Lie-

group manifolds have become a standard tool to represent rotations, poses and

other transformations in robotics applications, because they provide a mathemat-

ically complete and numerically stable way to treat these geometric objects. Op-

timization techniques on Lie-group manifolds have also become popular in prac-

tice [1, 94, 176, 151, 35, 196, 159]. There are many texts discuss about Lie groups

and their applications in robotics, for example [138, 35, 87, 9, 77].

I present here a simple treatment of functions on Lie-group manifolds to study

the nonlinearity of measurement functions on robot poses, which are elements of SE2

or SE3 Lie groups for 2D or 3D cases respectively. The well-known linearization

technique using Taylor expansion defined on vector spaces is not directly applicable

for Lie groups. This is essentially because the normal plus operator between two

vectors is not generally defined between two Lie-group elements. More specifically,

the traditional method to linearize a function h(X) on a vector space around a point

X◦ is to use the first-order Taylor expansion of h:

h(X◦ + x) = h(X◦) + Jhx+O(‖x‖2), (A.1.1)

≈ h(X◦) + Jhx (A.1.2)
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where x is a small vector near zero and Jh is the Jacobian of h(X) atX◦. However, this

Taylor expansion cannot be directly applied to a function h(X) on a d-dimensional

Lie-group manifold G, because the plus operator in X◦ + x is not a group operator

as it is undefined or not closed on the group. In matrix Lie-groups, for example, the

sum of two rotation matrices in SO2 or SO3 is not a rotation matrix, and similarly

the sum of two pose matrices in SE2 or SE3 is not a pose matrix. Consequently,

using standard optimization methods for functions on Lie groups is difficult, because

the typical addition update step produces new estimates that are no longer on the

manifold. Other techniques exist to deal with this issue, e.g., projecting new esti-

mates back to the manifold after each step, or solving a constrained optimization

problem; however, they are expensive and numerically unstable [151, 107]. Modern

optimization techniques on manifolds produce new estimates that always stay on the

manifold by leveraging bijective mappings between the local neighborhood around

the current estimate on the manifold and the tangent space at that point [1]. For

our matrix Lie groups, we exploit the maps between the group and its Lie algebra,

which is the special tangent space at the group’s identity element and is isomorphic

to a vector space.

The Taylor expansion for functions on Lie groups can be made simple via their

vector space re-parameterization. This allows us to indirectly apply those concepts

and techniques on vector spaces to Lie group manifolds. A re-parameterization of a

function is defined formally as follows [200, 152].

Definition A.1. A re-parameterization of a function f1 : U1 → V is defined as

another function f2 : U2 → V via a bijective map φ : U1 → U2 describing the change

of variables u1 ∈ U1 7→ u2 ∈ U2 such that f2(φ(u1)) = f1(u1) and f2(u2) = f1(φ−1(u2))

for all u1 ∈ U1 and u2 ∈ U2.

Hence, to define a vector-space re-parameterization of a function h(X) on a d-

dimensional manifold G, we need a bijective map between G and Rd.
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Such a bijective map exists within a local neighborhood RX◦ ⊂ G around a point

X◦ ∈ G, which, for example, can be the “mean” of the approximate Gaussian or the

linearization point of an objective function. It is well-known in the literature that the

tangent space at the identity element of the d-dimensional Lie-group G is isomorphic

to a vector space Rd. This special tangent space is called the Lie-algebra g of G, and

the isomorphism between g and Rd is identified by the bijective “vee” map

∨ : g → Rd

x̂ 7→ x (A.1.3)

and its inverse “hat” operator map

̂: Rd → g

x 7→ x̂. (A.1.4)

Furthermore, within a local neighborhood RI ⊂ G of the identity element I, there

exist special bijective maps between RI and the Lie-algebra g [35, 87], namely the

exponential map

exp : g → RI

x̂ 7→ δX, (A.1.5)

and its inverse log map

log : RI → g

δX 7→ x̂. (A.1.6)

We note that these maps are bijective only within a local region RI sufficiently close

to the identity element. Note also that the “difference” between X ∈ RX◦ and X◦,

i.e., δX = X−1
◦ X, is also a Lie-group element that is close to the identity I: δX ∈ RI .

Hence, to have a bijective map from X ∈ RX◦ around X◦ to a vector x ∈ Rd, we
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can “move” the neighborhood RX◦ of X◦ back to the neighborhood RI of the identity

element by “transporting” X ∈ RX◦ to δX ∈ RI using the following transport map:

τX◦ : RX◦ → RI

X 7→ δX = X−1
◦ X (A.1.7)

We finally define a bijective map log∨X◦ between the local neighborhood RX◦ of

X◦ and the vector space Rd by chaining these mappings together: RX◦

τX◦−→ RI
log−→

g
∨−→ Rd. This bijective map can be formally defined as follows:

log∨X◦ : G → Rd

X 7→ x = ∨ ◦ log ◦ τX◦(X) =
(
log(X−1

◦ X)
)∨ (A.1.8)

Similarly, the inverse map can be defined as

êxpX◦ : Rd → G

x 7→ X = X◦exp(x̂). (A.1.9)

Using these maps, the function h(X) on the manifold G can be re-parameterized

locally around a point X◦ ∈ G as a function hX◦(x) on a vector space as follows:

h(X) = hX◦(log
∨
X◦(X))

and hX◦(x) = h(X◦exp(x̂)) (A.1.10)

Consequently, within a local region around the linearization point X◦, we can

define the linearization of the function h(X) on the Lie group G can be defined via

the linearization of its re-parameterization hX◦(x) on the vector space Rd at zero:

h(X◦exp(x̂)) , hX◦(x) = hX◦(0) + Jhx+O(‖x‖2)

≈ h(X◦) + Jhx (A.1.11)

where Jh is now the Jacobian of hX◦(x) at x = 0, and we use (A.1.9) to obtain

hX◦(0) = h(X◦exp(0̂)) = h(X◦).
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In a similar manner, we can also define the Taylor expansion of h via hX◦ , for

example, up to the second-order term:

h(X◦exp(x̂)) , hX◦(x) = hX◦(0) + Jhx+
1

2
xTHhx+O(‖x‖3) (A.1.12)

where Hh is now Hessian of hX◦(x) at x = 0.

An important note is that, if h(X) is a multivalued function, the Hessians Hh is

a tensor of rank 3 with size m × d × d where m is the dimension of h, and d is the

dimension of X. In the above Taylor expansion formula, the notation xTHhx is the

shorthand for the vector of the quadratic term:

xTHhx ,



xT (Hh)1x

xT (Hh)2x

...

xT (Hh)mx


(A.1.13)

where

xT (Hh)kx =
n∑
i=1

n∑
j=1

(Hf )kijxixj, (A.1.14)

which is simply the quadratic term of the kth component of the function h, and (Hh)k

denotes its corresponding d× d Hessian matrix.

A.2 Gaussian Approximations of Probability Density Func-
tions on Lie groups

Gaussian filtering methods, such as EKF and EIF, maintain a Gaussian approxima-

tion of the full density of variables at each time step. Since robot poses are elements

of a Lie-group manifold, e.g., SE2 or SE3, and Gaussian distributions are only de-

fined on vector spaces, we need a formal definition for Gaussian approximations of

densities on Lie-groups.

A Gaussian distribution on a d-dimensional Lie-group manifold G can be defined

via its mean and covariance on the group. As derived in [196, 119], the mean X◦ of
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a probability density function p(X) on G can be defined as
ˆ
G
log∨X◦(X)p(X)dX = 0,

and its covariance Σ about the mean X◦ is defined as

Σ =

ˆ
G
log∨X◦(X)[log∨X◦(X)]Tp(X)dX

In practice, the mean of the Gaussian approximation of p(X) is normally chosen to

be the mode of p(X) obtained from solving for the MAP solution in (3.1.2) or (3.1.7)

for example. Furthermore, let x , log∨X◦(X), which intuitively determines how “far”

X is from the mean X◦, the covariance can be encoded in a zero-mean Gaussian

N (x; 0,Σ).

In short, a Gaussian approximation of a density p(X) on a d-dimensional Lie-

group G can be defined by two components: (1) its mean X◦ ∈ G, and (2) a zero-mean

Gaussian N (x; 0,Σ), which encodes the covariance.

A.3 Proof of Theorem 3.1

Let h(X) and g(Y ) be functions on a d-dimensional Lie-group manifold G, which are

the re-parameterizations of each other via the following change-of-variables bijective

map: φ : G → G, X 7→ Y = φ(X), and let hX◦(x) and gY◦(y) be the corresponding

Lie-algebra vector-space re-parameterizations of h(X) and g(Y ) atX◦ and Y◦ = φ(X◦)

via the bijective maps log∨X◦(with its inverse êxpX◦) and log∨Y◦(with its inverse êxpY◦)

respectively, as defined in (A.1.8) and (A.1.9).

We would like to prove that hX◦(x) and gY◦(y) are the re-parameterization of

each other, and that if the change-of-variables map between x and y in this re-

parameterization is linear, i.e., y = ϕ(x) = Mx with some invertible matrix M , h(X)

and g(Y ) have the same parameter-effects curvature.

Proof. From Definition A.1 of re-parameterization, to show that hX◦(x) and gY◦(y) are

the re-parameterization of each other, we need to find a bijective map ϕ : Rd → Rd
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between x and y = ϕ(x). The bijective map is realized by chaining together the

change-of-variables maps:

ϕ : Rd
êxpX◦−−−−→ G φ−−−−→ G

log∨Y◦−−−→ Rd

x 7−→ X 7−→ Y 7−→ y = ϕ(x) = log∨Y◦
(
φ
[
êxpX◦(x)

])
and their inverse maps:

Rd
log∨X◦←−−− G φ−1

←−−−−− G
êxpY◦←−−−− Rd

x ←− [ X ←− [ Y ←− [ y
.

Next, assume y = Mx where M is an invertible matrix, I will show that the

parameter-effects curvatures of h(X) and g(Y ) are the equal.

The parameter-effects curvature of h(X) is defined as (cf. 3.2.5):

KT
h,X◦(x) =

∥∥PhxTHhx
∥∥

‖Jhx‖2 . (A.3.1)

where xTHhx and Jhx are the second and first-order terms in the Taylor expansion

of h(X) along the curve as defined in (A.1.12), and Ph is the projection matrix onto

h’s tangent plane at X◦:

Ph = Jh(J
T
h Jh)

−1JTh .

Similarly, the parameter-effects curvature of g(Y ) is defined as (cf. 3.2.5):

KT
g,Y◦(y) =

∥∥PgyTHgy
∥∥

‖Jgy‖2 . (A.3.2)

First, we show that the denominators of (A.3.1) and (A.3.2) are equal. In fact, since

y = ϕ(x) = Mx, it follows via the chain rule that

∂h

∂x
=
∂g

∂y

∂ϕ

∂x

Hence,

Jh = JgM .

Consequently,

Jhx = JgMx = Jgy. (A.3.3)
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Next, we can show in the same manner that the projection parts of the numerators

of (A.3.1) and (A.3.2) are also equal:

Ph = Pg. (A.3.4)

Finally, we show that the remaining Hessian parts of the numerators in (A.3.1) and

(A.3.2) are also equal, i.e., xTHhx = yTHgy, where y = ϕ(x) = Mx. The chain rule

for second-order derivatives is not trivial and involves the use of tensor products [123]

because h(X) and g(Y ) can be multivalued functions. We note again that Hh and

Hg are tensors of rank 3, and xTHhx is defined in (A.1.13).

We provide an elementary proof for xTHhx = yTHgy by considering each pair of

component functions of the multivalued functions h and g separately (cf. equa-

tions (A.1.13) and (A.1.14)), and showing that for the kth function components:

xT (Hh)kx = yT (Hg)ky, ∀k = 1, . . . ,m.

By definition, the Hessian matrix (Hh)k is the derivative of the gradient of the func-

tion hk, i.e. (Hh)k = ∂∇hk/∂x, where the gradient ∇hk of hk is the transpose of hk’s

Jacobian: ∇hk = (Jh)
T
k . Similarly, we have (Hg)k = ∂∇gk/∂y, where ∇gk = (Jg)

T
k .

Furthermore, since (Jh)k = (Jg)kM , we have

(Hh)k =
∂[(Jg)kM ]T

∂x

=
∂[(Jg)kM ]T

∂y

∂y

∂x

= MT (Hg)kM .

It follows that

xT (Hh)kx = xTMT (Hg)kMx

= yT (Hg)ky.

Consequently,

xTHhx = yTHgy. (A.3.5)
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Finally, from (A.3.3),(A.3.4) and (A.3.5), we conclude that the two parameter-effects

curvature in (A.3.1) and (A.3.2) are the same, i.e., KT
h,X◦

(x) = KT
g,Y◦(ϕ(x)),KT

g,Y◦(y),

where y,ϕ(x) = Mx.
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