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SUMMARY

Gaits have become an integral part of the design method of robots heading to com-

plex terrains. But research into optimal ways to transition between different gaits is still

lacking, and is the primary motivation behind this research. An essential characteristic of

gaits is periodicity, and considering that a novel notion of graceful transition is proposed: a

graceful transition is one that has maximally persisting periodicity. This particular notion of

persistence in the characteristic behavior can be generalized. Therefore, a comprehensive

framework for the general problem of connecting any two trajectories of a dynamical sys-

tem, with an underlying characteristic behavior, over a finite time interval and in a manner

that the behavior persists maximally during the transition, is developed and presented. This

transition is called the Gluskabi Raccordation, and the characteristic behavior is defined

by a kernel representation. Along with establishing this framework, the kernel represen-

tations for some interesting characteristic behaviors are also identified. The problem of

finding the Gluskabi Raccordations is then solved for different combinations of character-

istic behaviors and dynamical systems, and compact widely applicable results are obtained.

Lastly, the problem of finding graceful gait transitions is treated within this newly estab-

lished broader framework, and these graceful gait transitions are obtained for the case of a

two-piece worm model.

ix



CHAPTER 1

INTRODUCTION

Animals have the exceptional ability to move efficiently in complex environments and so

it is only natural that the same behavior is desirable in robotics. It is for this reason that

biomimetic robots have gathered popularity over their wheeled counterparts [2]. However,

animal locomotion is a complex process involving the animal’s neural, sensory and mo-

tor systems, their muscle-body dynamics, and finally the environment [3]. Considering

the complex nature of the animal locomotion process, the replication of this entire system

and gracefulness of animal motion has not yet been achieved. But in part, the problem

of traversing complex terrains is approached by granting distinct patterns of locomotion

to the robot. Hence, the problem of transitioning gracefully between these patterns is of

significant interest in the grand scheme of mimicking animal locomotion. The problem

of designing gait transitions has received some attention in the research community, but

the focus has been on simplifying the control function of the transition. The motivating

factor behind this thesis is addressing the problem of transitions between different gaits

or locomotion patterns of a biomimetic robot such that the resulting transitions are grace-

ful. Towards that end, a novel approach for graceful gait transitions is proposed in this

dissertation.

Investigation into the gait transition problem led to the discovery that the problem is

actually part of a larger class of problems, specifically that of connecting any two trajec-

tories of a dynamical system, with an underlying common characteristic behavior, in finite

time and in such a way that the characteristic behavior persists maximally during the tran-

sition. This can be seen as connecting two different modes of operation of the system. The

trajectories being connected could, for instance, be stationary solutions or limit cycles of

the dynamical system, and the underlying characteristic behavior is that the time derivative

of the trajectories is zero for the former case and periodicity for the latter. The problem
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is related to the idea of quasistatic transitions in thermodynamics between two equilibrium

points. It is desirable there to remain stationary but a transition cannot occur if you remain

stationary so one settles for a quasistatic transition, which is accomplished by letting the

transition happen infinitely slowly. For the problem of gait transitions, the characteristic

behavior is periodicity and it is desirable that the transition be as periodic looking as possi-

ble. Prior research on this problem has been conducted by Yeung and Verriest [4, 5, 6, 7, 8],

and extensions to their work are carried out in this research. The term “Gluskabi raccor-

dation” was coined for these transitions in [4] and it will be adopted in this work as well.

Raccordation is a french term, meaning ‘to connect’, and has its roots in civil engineering

where two planes have to be connected by some smooth and easily constructed surface. An

example of that would be when a vertical canal wall is connected to a sloping river bank

by a piece of hyperbolic paraboloid. Gluskabi is a being from Native Indian mythology

who made himself from dust and has the ability to transform animals. It fits in this context

because one trajectory is being transformed to another.

The question of existence of a connection between the two trajectories of a dynamical

system relates to the controllability of the dynamical system in the context of behavioral

theory, a new paradigm in systems theory introduced by Willems [1]. If the system is con-

trollable then a transition exists but it may not be unique. The Gluskabi problem is that of

choosing the transition which maximally preserves the desired behavior, and this is equiv-

alent to choosing a cost function, penalizing any deviation from this behavior, and solving

a problem in optimal control. But the goals of this thesis go beyond that; specifically

we are interested in constructing a comprehensive framework for this problem, solidifying

our vague notions about these transitions, and further identifying the different interesting

behaviors and solving the transition problem for these interesting behaviors with various

classes of dynamical systems. In other words, what is desirable here is a complete theory

or a set of cases whereby one identifies a transition problem with one of these cases and

subsequently the solution can simply be looked up or obtained by solving some simple
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equations in a systematic manner.

A special focus of this thesis is on the interesting behavior of periodicity. Periodic

phenomena are highly prevalent in natural as well as artificial systems. For instance many

biological processes ranging from the beating of the heart to locomotion, occur with pe-

riodic patterns [9, 10]. Moreover, a single system may exhibit different types of periodic

behavior. This leads to the natural question of transitions between different periodic behav-

iors. Consider the example of animal locomotion. Most animals employ a variety of gaits

such as one for walking and a different one for running [11]. To switch from one gait to

another, one necessarily has to employ an aperiodic transition but animals do this naturally

in a graceful manner. It is our hypothesis that this translates to the transient motion remain-

ing as close as possible to a periodic behavior. The gait transition problem for biomimetic

robots has already been mentioned. Chemical reactors may also operate in periodic cycles

since it results in better yields. In chemical process control, it is desired to transfer from

one operating point (periodic cycle) to another smoothly so as to avoid drastic changes

[12]. It can be argued here that the transition has to be maximally persistent in periodicity.

These and many other examples justify the special attention paid to periodic behavior in

this research.

The Gluskabi problem can be related to a number of problems in other areas. For in-

stance, a problem in the dynamical systems’ literature, akin to the Gluskabi problem, is

the problem of finding heteroclinic orbits, i.e., paths in phase space that join two different

equilibrium points or two different periodic orbits. This problem has received widespread

attention in recent years in the mathematics community [13, 14] due to its application

in astrodynamics, such as finding low energy trajectories for moving a satellite from one

geosynchronous orbit to another or the problem of capturing near-Earth asteroids [15].

However, almost all of the prior work is dedicated to finding these connections for au-

tonomous and non-parametrized dynamical systems or systems without input, and no op-

timality criterion is considered. Contrastingly, the authors of [16] have obtained a Newton
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method to compute orbits of a specifically perturbed system that connect points near two

equilibria of the unperturbed system, and also under the assumption of constant control.

Moreover, a key difference from this research is that a heteroclinic orbit connects the two

limit sets asymptotically. Another related body of work is due to Sultan on the deployment

of tensigrity structures, where the structure changes from one equilibrium configuration to

another [17, 18, 19]. The author defines an equilibrium manifold containing both the equi-

librium configurations, and the chosen transition minimizes the deployment time and lies

within a predefined threshold of the equilibrium manifold at all times. A related problem

can also be found in the area of image processing. Image morphing is the process in which

one digital image is fluidly transformed into another, by applying transformations to the

images to retain geometric alignment between their features. A key sub-process in this is

warp generation, which computes mapping functions between the two images under the

constraints of feature correspondence and is similar to the Gluskabi problem considered in

this research. A number of image morphing schemes have been developed such as mesh

warping, field morphing, radial basis functions, energy minimization etc and have been

discussed in [20]. A related problem that occurs in manufacturing is of determining the

transformation needed to bend a flat sheet of metal into the required shape using minimal

energy, as outlined in [21]. In medical imaging, image matching is used for detection of ab-

normalities by comparing two images of the organ taken at different times. An approach to

this problem is finding the transformation that minimizes a distortion functional [22]. The

mathematical problem underlying all of the previous examples is outlined in [23], and is

that of finding a diffeomorphism between two Riemannian manifolds (M, gM) and (N, gN),

that minimizes a deformation energy functional,

Φ(h) =

∫
M
‖h∗gN − gM‖2ωM.

This can be thought of as a Gluskabi problem in higher dimensions.

The dual of the raccordation problem in estimation, as considered in [24], is also of in-

terest. Incidentally while exploring this problem, another interesting and unsolved problem
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came to light. This is the problem of estimation of the state of a discrete-time stochastic

multi-mode switched linear system, with a finite number of modes. The parameters in the

different modes or the system matrices are assumed to be known, but the mode switch-

ing is random. The objective here is to obtain a good causal estimate of the state process

from the past of the observed sequence and perhaps some prior information, such as the

mode switching probabilities. Although this problem can be formulated in the exact least

squares sense, with the conditional expectation as solution, finding this optimal solution is

prohibitively complex due to the Bayesian explosion as indicated in [25, 26, 27, 28, 29]

and more recently [30, 31]. Therefore, a simple suboptimal scheme for the estimation of

state sequences of multi-mode systems with random switching has been obtained, in this

research, by deriving the linear least squares filter for this problem [32, 33]. As a special

case, the filter for a linear system, with observations degraded by intermittent sensor failure

is also derived and its performance is analyzed. This model is an alternative to the packet

loss model, where the information regarding the presence or absence of a packet is part of

the observed data.

The organization of this thesis is as follows: First of all it is divided into two parts. The

first part deals with the Gluskabi raccordation problem and the second part with the esti-

mation problem. The first part begins with a review of the behavioral approach to system

theory by Willems in Chapter 2, followed by rigorous formulation of the Gluskabi problem

in Chapter 3. Some interesting behaviors are introduced and studied in Chapter 4. Next,

a two step approach is taken to the Gluskabi problem: at first the simplified problem of

finding transitions between functions, not necessarily trajectories of some dynamical sys-

tem, with a characteristic behavior is dealt with in Chapter 5, and this is named the “signal

raccordation problem”; the next step is when the same problem is solved for the trajecto-

ries of some dynamical system in Chapter 6, and this is called the “dynamical raccordation

problem”.
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CHAPTER 2

BEHAVIORAL APPROACH TO SYSTEM THEORY

This chapter reviews some of the relevant concepts from the behavioral approach to system

theory. These ideas will be used in the later chapters. An excellent and brief exposition

of the subject can be found in [1], while a detailed version for the continuous time case is

[34] and the discrete time case can be found in [35]. The behavioral approach provides a

language that respects the physics of the system. The basic idea of behavioral approach to

modeling is to consider a set that forms the totality of feasible events and then the mathe-

matical model of the phenomenon restricts the outcomes to a subset called the behavior.

In the study of dynamical systems this broad idea is solidified with the following defi-

nitions.

• The set of independent variables is called the time axis, T. For continuous time

systems, the time axis is taken to be T = R, and for discrete systems, T = Z.

• The set of dependent variables,W, in which outcomes of the signals being modeled

take their values is called the signal space. Typically,W = Rn, n ≥ 1.

• The universum is the collection of all maps from the time axis to the signal space,

denoted byWT. It defines the totality of feasible events.

• A dynamical system, Σ, is defined as a triple Σ = (T,W,B). The behavior, B, is a

suitable subset ofWT, for instance the piecewise smooth functions, compatible with

the laws governing Σ.

• The dynamical system Σ = (T,W,B) is said to be linear ifW is a vector space , and

the behavior B is a linear subspace of WT. Linearity means that if w1,w2 ∈ B then

αw1 + βw2 ∈ B for all scalars α, β.
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• The dynamical system, Σ, is said to be shift invariant if T is closed under addition

and w ∈ B implies that Sτw ∈ B for all τ ∈ T. The evaluation functional σt is defined

as σt(w) = w(t) a.e. (exception where w is not defined). The shift operator, Sτ, is

then defined by σt(Sτw) = σt+τw.

• The behavior restricted to a small open interval (−ε, ε) is defined by Bε = {w̃ :

(−ε, ε)→W | ∃w ∈ B such that σtw̃ = σtw for all − ε < t < ε}. The continuous time

system Σ is called locally specified if for all ε > 0,

(w ∈ B)⇔ (Sτw|(−ε,ε) ∈ Bε for all τ ∈ R).

In most applications, the behavior is usually described by a system of equations, which

in continuous time cases is typically a system of differential equations and in discrete time

case a system of difference equations. Let D = d
dt be the differentiation operator. Then, a

behavior described by a system of differential equations could have three representations:

• Kernel: B = {w : R→W | f (w,D w, · · · ,Dn w) = 0 for all t ∈ R}.

• Manifest-Latent Variables:

B = {w : R → W | ∃ l : R → L such that f (w,D w, · · · ,Dn w, l,D l, · · · ,Dn l) =

0 for all t ∈ R}.

• Image: B = {w : R→W |w = f (l, · · · ,Dn l) = 0 for any l : R→ L}.

In the following section, linear time-invariant systems and specifically some of their prop-

erties are discussed.

2.1 Linear Time Invariant (LTI) systems

LTI systems in continuous time are described by systems of constant coefficient differen-

tial equations. Thus, the smooth solutions of an LTI behavior can be defined in terms of

matrices R0,R1, · · · ,Rn ∈ R·×· as all w that are solution to

R0w + R1D w + · · · + RnD w = 0.
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This can be compactly written as,

R(D)w = 0,

where R(ξ) ∈ Rp×n[ξ] is a matrix of polynomials with real coefficients and D is the differ-

entiation operator, represents a system of p linear time invariant (LTI) ordinary differential

equations (ODE) in n scalar variables. A system described by behavioral differential equa-

tions is locally specified. In order to verify if a trajectory w belongs to the behavior, it

suffices to look at the trajectory in an infinitesimal neighborhood about each point.

2.1.1 Equivalence of two systems

There is a surjective map from the space of LTI systems to the space of polynomial ma-

trices. Two LTI systems given by polynomial matrices R1 and R2 are equivalent or are

the same behavior if the matrices are related by a left unimodular transformation U, i.e.

R1 = U R2. In general, R1 = X R2 ⇔ B2 ⊂ B1. A unimodular polynomial matrix is one

whose inverse is also a polynomial matrix or equivalently whose determinant is a unit of the

polynomial ring. Remember that in general the inverse of polynomial matrix is a rational

matrix.

2.1.2 Minimality

An LTI behavior can have multiple representations. A representation is minimal if it has

the least number of rows among all representations. Given a behavior B represented by a

polynomial matrix R, there exists a representation R̃ of B with full row rank, i.e.

R = U

R̃0
 ,

where U is a unimodular matrix. Consequently, a representation is minimal if and only if

it has full row rank.

The behavior defined by the full row rank, p, polynomial matrix R, i.e. R(D)w = 0,

admits an Input/Output representation P(D)y = Q(D)u such that det P , 0 and P−1Q is

9



a proper rational matrix, where P ∈ Rp×p[ξ], Q ∈ Rp×m[ξ], y = (w1, · · · ,wp), and u =

(wp+1, · · · ,wp+m).

2.1.3 Controllability

A behavior is called autonomous if for all w1,w2 ∈ B w1(t) = w2(t) for t ≤ 0 implies

w1(t) = w2(t) for almost all t. For an autonomous system, the future is entirely determined

by its past. Behaviors defined by square full row rank polynomial matrices are autonomous.

The notion of controllability is an important concept in the behavioral theory. Let B be

the behavior of a linear time invariant system. This system is called controllable if for any

two trajectories w1 and w2 in B, there exists a τ ≥ 0 and a trajectory w ∈ B such that

σt(w) =


σt(w1) t ≤ 0

σt(S−τw2) t ≥ τ
i.e., one can switch from one trajectory to the other, with perhaps a delay, τ. This is illus-

trated in Figure 1. Note that an autonomous system cannot get off a trajectory once it is on

Figure 1. State controllability shown in (a). Behavioral Controllability shown in (b) and (c). Source:
[1]

it. Hence, a non-trivial autonomous system is not controllable (The behavior B = {0} is

autonomous and controllable).
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The system defined by R(D) w = 0 is controllable if and only if the rank of the polyno-

mial matrix R(s) is the same for all s ∈ C. If the system is instead given by an Input/Output

representation P(D) y = Q(D) u, then the rank condition for controllability translates to

coprimeness of the polynomial matrices P and Q. Moreover, for the behavior of smooth

solutions to an LTI system, the τ in the definition of controllability is independent of the

two trajectories being connected and can be taken to be arbitrarily small.

An LTI system admits an image representation if and only if it is controllable. If a

state representation of an LTI system is given then the notions of state controllability and

behavioral controllability are equivalent, i.e. either one implies the other.

2.1.3.1 Decomposition Theorem

Theorem 2.1.1. The LTI behavior, B, defined by a full row rank polynomial matrix, R(ξ) ∈
Rg×q[ξ], as R(D) w = 0 can be decomposed into the direct sum of an autonomous behavior

and a controllable one, i.e.

B = Baut ⊕ Bcont.

PROOF. Given the matrix R, one can find unimodular matrices U and V that transform R

into the Smith form, i.e.

R̃(ξ) = U(ξ)R(ξ)V(ξ) =

[
D(ξ) 0

]
,

with det(D) , 0. The matrix R̃ defines a new behavior: B̃ = V−1(D)B. The trajectories

w̃ ∈ B can be partitioned according to R̃ into w̃1 and w̃2. If det(D) is constant thenBcont = B
and Baut = {0}. Otherwise, B̃ can be easily decomposed as follows:

B̃aut = {w̃ ∈ C∞(R,Rq) |D(D) w̃1 = 0, w̃2 = 0}

B̃cont = {w̃ ∈ C∞(R,Rq) | w̃1 = 0}

It is clear that B̃aut and B̃cont are autonomous and controllable respectively and that B̃ =
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B̃aut ⊕ B̃cont. The corresponding polynomial matrices describing these behaviors are:

R̃aut =

D(ξ) 0

0 I

 and R̃cont =

[
I 0

]
.

By transforming back, we obtain a decomposition of the behavior B:

Baut = V(D) B̃aut and Bcont = V(D) B̃cont,

Raut = R̃aut(ξ)V−1(ξ) and Rcont = R̃cont(ξ)V−1(ξ).

Since, the rank of a matrix is invariant under multiplication by a unimodular matrix, Raut

and Rcont are autonomous and controllable respectively. �

The decomposition of a behavior into an autonomous and a controllable part is not

unique. This is evident from the above procedure. If there exists a unimodular matrix W

such that, [
D(ξ) 0

]
W(ξ) =

[
D′(ξ) 0

]
then we will obtain a different decomposition, by employing the unimodular matrix VW

instead of V now. Such polynomial matrices W exist and are in fact of the form,

W =

 U1 0

× U2

 ,
where U1 and U2 are unimodular matrices. However, it can be shown that the controllable

part is unique. Once a decomposition of the behavior has been chosen, i.e. a polynomial

matrix V has been found, then the decomposition of every trajectory in the behavior into a

controllable and an autonomous part is unique.
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CHAPTER 3

THE GLUSKABI PROBLEM

In this chapter, the requisite nomenclature that has been developed for the raccordation

problem in [36], using the behavioral approach, is presented, culminating in a rigorous

formulation of the Gluskabi problem. To begin with, the key problem of this research,

namely the Gluskabi problem, can be stated as follows:

Given two trajectories w1 and w2 of the same behavior, the objective is to con-

struct a transition, w, over some finite time interval [a, b] such that w = w1 for

t ≤ a, w = w2 for t ≥ b, and the characteristic behavior persists maximally

during the transition.

After the Gluskabi nomenclature has been defined, this problem statement will be made

clearer and restated in terms of the new nomenclature.

3.1 The Gluskabi Framework

We begin by defining a behavior which restricts the universum to just the ones which are

interesting.

Definition 3.1.1. The Base Behavior (B0) is a subset of the universum, B0 ⊂WT, that de-

fines the set of all allowable functions of interest. For any particular problem, the functions

being connected lie in this set and the search for a connection1 between the two is also

conducted in this set, or in other words this is also the space of admissible controls.

For example, if we want to work with real smooth functions entirely thenB0 = C∞(R,Rn).

Or, if we are interested in the smooth trajectories of an LTI differential system then B0 =

{w ∈ C∞(R,Rn) s.t. R(D)w = 0}, where R(ξ) is a matrix of polynomials with real coeffi-

cients and D is the differentiation operator.

1This usage of the term connection is different from a connection defined in differential geometry.
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In the following discussion only real-valued functions are considered and so the signal

space is real. For the most part, the time axis is also real except on occasions it is the set of

integers. From this point onwardsW = Rn for some n ≥ 1.

It is also remarked here that changing the base behavior may possible change the so-

lution of the Gluskabi problem. This is evident from the example that a differential sys-

tem has different solutions depending on the solution space [34]. For instance, the ODE

D w2 = w2 + w1 has the usual smooth solution but it also has the weak solution,

(w1(t),w2(t)) =


(0, 0) t < 0

(1, et − 1) t ≥ 0
.

Even more, the solution may change by the choice of time axis [37]. For instance, the

system of differential equations

w1 − D w2 = 0, w2 = 0

has just the zero solution in either the space of smooth solutions or distributions over the

entire real line R; But if a solution is sought over the half-line [0,∞) then (w1,w2) = (bδ, 0)

with w2(0−) = b for any b ∈ R is also a solution. Hence, the base behavior is of special

importance and needs to be chosen wisely.

Definition 3.1.2. A Type (T ) is a strict subset of the base behavior (T ⊂ B0) such that all

of its elements share a property, described by an associated operator, Op : A → V, in the

following way:

T = {w ∈ A s.t. Op w = 0},

where A ⊂ B0 is the maximal linear space on which the operator is well defined, A ⊂
Domain(Op), andV is a linear space as well.

The Type behavior defines the set of trajectories possessing a desired quality, which

we want to connect. The set A is required to be a linear space because of the variational

problem to be defined later. This way, when a subset of A is chosen by restricting the
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domain of functions to a compact set, it is a normed space since it is clearly a vector space

also and it always admits the maximum norm (L∞) at the very least. The requirement of

a normed space gives sense to the idea of local extrema. This condition can be relaxed by

just requiring that the subset formed by restricting the domain be a normed space. The set

V on the other hand need not be a vector space. It is only required that it contain the zero

element and that it be a metric space so that a cost function can be defined as the distance

from zero. These conditions may need to be revised if non-real valued or generalized

functions are considered.

Definition 3.1.3. A Trait (Tθ) is a subtype of the type i.e., it is a subset of the type such that

it has its own characteristic behavior, given by some operator Opθ.

Tθ = {w ∈ T such that Opθw = 0}

For instance, a trait could be specified by some (or all) boundary conditions, or some

intermediate values and their derivatives.

Given the obvious similarities, we call this the Kernel representation of the type and trait

irrespective of whether the operator Op is linear or nonlinear. A type may admit represen-

tations other than the kernel representation, one such being the image representation. This

work only considers the kernel representation of types but for the sake of completeness, the

Image representation is also defined here.

Definition 3.1.4. The image representation is described by an associated mapping, Φ, from

a parameter space to the space of operators, yielding a family of operators. The type is

then the union of kernels of all the operators in the family. The parameter space is typically

some subset of Rn.

T = ∪θ∈Θ{w ∈ A s.t. Φ(θ) w = 0}

The type given by the image of a particular parameter is a trait.

Example 3.1.1 (Constants). Let B0 = C0(R,R). Then, the operator Op := D, the differen-

tiation operator, defines the type of constants in B0. The domain of the operator is typically
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a proper subset of the base behavior and in this case A = C1(R,R), i.e. the space of con-

tinuously differentiable functions. An example of a particular trait in this type could be the

constant c i.e., Tc = {w ∈ T s.t. w = c}.

Example 3.1.2 (Polynomials). Let B0 = C0(R,R). Then, the operator Op := D3 defines

the second order polynomials type in B0. The domain of the operator, Op, in this case is

A = C3(R,R), i.e. the space of thrice differentiable functions with continuous derivatives.

An example of a trait in this type is the subtype of first order polynomials or constants.

Another example of trait in this type is polynomials that vanish at t = 0.

Example 3.1.3 (Periodic signals with period τ). The operator Op := (I − Sτ) where I is

the identity operator and S is the shift operator, defines the periodic type in B0. A smooth

periodic function can be seen as a sum of harmonic signals of integer multiples of the base

frequency. Thus, the periodic type in B0 = Cω(R,R) may also be characterized by the

infinite product operator
[
D

∏∞
n=1

(
1 + 1

n2ω2 D2
)]

, which can also be written as sinh
(
π
ω

D
)

([38]), where ω = 2π/τ. This representation defines a number of traits in terms of the

number of finite product terms and these traits serve as various levels of approximation to

the periodic functions.

The above definitions form the basic nomenclature of our problem but we will need one

more definition to rigorously define a connection later on. Given any type we can extend it

to create a collection of related types in the following manner.

Definition 3.1.5. The Equation Error System (Tee) of a type T , defined by the kernel of

the operator Op, is a union of behaviors Te := {(w, e) ∈ A × {e} s.t. Op w = e}.

Tee := ∪e∈Op(A)Te = {(w, e) ∈ A ×V s.t. Op w = e} ,

whereV is the vector space where the image of Op lies i.e., Op(A) ⊂ V.

Notice that the original type T is the projection onto A of the behavior T0 in this

collection, where T0 = {(w, 0) ∈ A ×V s.t. Op w = 0}. It is also worth noticing that the

Equation Error System lies in an extended base behavior Σ = (T,W×E,B0), whereV ⊂ ET.
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Universum

Base Behavior B0

Type T

Trait

Figure 2. Relation of terms to the Universum

Example 3.1.4. Consider the type in C∞(R,R) defined by the operator Op := (D−λI), i.e.,

the type of multiples of the exponential eλt. Then the equation error system corresponding

to this type is the set of solutions w to the non-homogeneous ODE (Dw− λw = e), for some

forcing function e ∈ C∞(R,R).

Now equipped with this suitable terminology, the Gluskabi problem can be formulated.

Given a type T , the objective is to find a mapping that assigns to any two elements w1 and

w2 in the said type, a unique element, w, in the base behavior which connects w1 and w2 in

finite time, i.e., over the given interval [a, b], and in such a manner that the defining quality

of the type persists maximally. We will call this mapping the “Gluskabi map”. Using the

established idea that a type is given by the kernel of some operator Op, the Gluskabi map

and the notion of persistence of a trajectory are defined in the following manner.

Definition 3.1.6. Given a type T with the associated operator Op, an element w̄ ∈ A ⊂ B0

is said to be persistent with respect to the norm ‖.‖, defined on the space V restricted to

some interval I, if ‖Op w̄‖ = 0. This means that w̄ restricted to the interval I is contained

in the restricted type behavior, i.e. w̄|I ∈ T |I.

Definition 3.1.7. Given a type T with the associated operator Op, an element w̄ ∈ A ⊂ B0
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is said to be maximally persistent over an interval I ⊂ T with respect to the norm ‖.‖,
defined on the spaceV restricted to the interval I, if w̄ minimizes the norm of Op w in that

interval, i.e.,

w̄ = argmin
w∈A
‖Op w|I‖.

Definition 3.1.8. Given a type T with the associated operator Op and a compact interval

[a, b] ⊂ T, the Gluskabi map g : T × T → B0 with respect to the norm ‖.‖, is defined as

follows

g(w1,w2)(t) =


w1(t) t ≤ a

w̄(t) a < t < b

w2(t) t ≥ b

where w̄ ∈ A is such that g(w1,w2) is maximally persistent over the support of Op g(w1,w2)

with respect to the given norm, and w̄ agrees with w1 and w2 at the boundaries, i.e., at t = a

and t = b.

Base Behavior B0Type T

b

w1

w2

yg

Clearly, this requires thatV restricted to the support of Op g(w1,w2) be a normed space.

Since, we are dealing with real valued functions in the present publication, i.e. V ⊂ Rn, if

the space V is also a vector space then its restriction to the compact interval can be easily

made into a normed space. It definitely admits one norm, namely the maximum norm.

It is possible that the function g(w1,w2) may not be contained in the domain of the

operator Op. This is the reason that the base behavior is typically chosen to be a larger

set than the set A which contains the type behavior. However, the function g(w1,w2) is

piecewise contained inA and there exists a partition of Twith finitely many parts (intervals)

such that each part is contained inA restricted to the respective interval. Typically, the end
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points, a and b, of the given connection interval partition the time axis T, and the operator

Op then acts on the function g(w1,w2) in the following piecewise fashion, i.e.

Op g(w1,w2)(t) =


Op w1(t) t ≤ a

Op w̄(t) a < t ≤ b

Op w2(t) t > b

.

The support of Op g(w1,w2) only depends on the operator. If the operator is memory-

less (the type is locally specified) then the support is compact, since w1 and w2 are persistent

in the type, i.e. Op w1 = Op w2 = 0, and so Op g(w1,w2) = 0 for t < a and t > b. For

instance, if Op is some differential operator then the support is [a, b]. If Op is a finite

memory operator then the support is still compact, but now Op g(w1,w2) = 0 for t < a − εa

and t > b + εb. Since the interval is compact, the norm is well-defined. Furthermore, of

all the maximally persistent trajectories, w̄ is chosen by matching the boundary conditions,

formed by some attributes of w̄, to w1 and w2. Depending on the operator, the attributes

may include the value of the function at the boundary points as well as any number of its

derivatives.

The connection in the interval [a, b] will be called the “Gluskabi raccordation”. As

evident from the definition of the Gluskabi map, the element w corresponding to w1,w2 ∈ T
may not lie in the type T and is constructed piecewise from elements inA. A new behavior

can now be constructed by collecting all the elements w = g(w1,w2) corresponding to any

two elements w1 and w2 in the type T , i.e., this behavior is the image of the Gluskabi map.

This behavior will be called the “Gluskabi Extension” and can also be defined using the

extended types Tee in the following way.

Definition 3.1.9. Given a type T with the associated operator Op and a compact interval

[a, b] ⊂ T, the Gluskabi Extension (GT ) with respect to the norm ‖.‖, is defined as

GT := {w ∈ B0 s.t. ∃w1,w2 ∈ T with Π−w = Π−w1, Π+w = Π+w2, and ∃(u, e) ∈ Tee

s.t. Π[a,b]w = Π[a,b]u with ‖e‖ minimal
}
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where Π is the projection operator i.e. Π−w is the restriction of w to the interval (−∞, a],

Π+w is the restriction to the interval [b,∞), and Π[a,b]w is the restriction to the interval

[a, b].

Base B0

Type T

Gluskabi G

Universum

Figure 3. Relation of Gluskabi Extension to other behaviors

Notice that the type T is in the Gluskabi Extension GT . Since the space V restricted

to an interval generally admits multiple norms, the Gluskabi map and extension will in

general depend on the chosen norm and the raccordation interval. Thus, a suitable norm

in conjunction with the operator Op completely characterizes the desired persistence. For

instance, if Op is a differential operator of some order acting on functions then any Sobolev

norm of compatible degree can be used to get the required level of smoothness. Say the

time interval is [a, b] and the Op : Cr(R,R) → C s(R,R), then the Sobolev norm ‖.‖W on

e ∈ V = C s([a, b],R) is given by,

‖e‖W =

n∑
i=0

ρi‖Die‖L2 where ρi > 0, n ≤ s, and ‖x‖2L2 =

∫ b

a
x2(t)dt.
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CHAPTER 4

SOME INTERESTING TYPES

In this chapter, two interesting types are introduced in the context of the Gluskabi frame-

work. The goal here is to obtain a kernel representation for these types, i.e. obtain an

operator such that the kernel of that operator is the type in question. One of the types

studied here is the periodic type – one of the special focuses of this thesis. Two equivalent

representations are presented for the τ-periodic type. Finally, the general periodic type that

includes periodic signals of all periods, is discussed.

4.1 Linear Time Invariant Differential (LTID) Type

In this section, we focus our attention on an interesting type namely the linear time invariant

differential (LTID) behavior, Lk
n, of some order n , i.e., the set of all solutions to any system

of k constant coefficient homogeneous differential equations of nth order. The goal here

is to find a kernel representation for this type Lk
n, i.e., find the operator characterizing this

type in accordance with Definition-3.1.2. This type was first introduced in [24], where the

operator was derived for the scalar n-th order differential equation case i.e., when k = 1,

and the operator for the vector case was later derived in [36]. Using Willems’s approach,

this behavior is represented as,

Lk
n =

{
w ∈ Cn(R,Rk) | ∃R ∈ R[ξ]k×k for which R(D)w = 0

}
where D is the differentiation operator and R is a polynomial matrix

R(ξ) := R0ξ
n + R1ξ

n−1 + · · · + Rnξ.

The kernel representation will be derived for the scalar case first and it will be shown that

the operator derived forms both necessary and sufficient condition. This is followed by the

derivation of the kernel representation for the vector case.
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4.1.1 Scalar LTID Types (k = 1)

The idea is illustrated first with the help of the simplest type in this category and then

generalized. Consider the type comprised of solutions, w, to the first-order ODE, ẇ(t) −
a w(t) = 0, with the associated operator Op = D−aI. This is the type of all scalar multiples

of the exponential eat. The LTID type L1
1 is the type comprised of solutions to any first-

order ODE, i.e. the solutions to the previous differential equation for all values of a. This

section deals with the question of finding the kernel representation for such types. To obtain

the said representation, notice that if w ∈ L1
1, then

ẇ
w

= a for some a ∈ R. (1)

Differentiating the previous equation we get,

ẅw − ẇ2

w2 = 0. (2)

This results in the kernel of the nonlinear operator Op w = ẅw − ẇ2 =

∣∣∣∣∣∣∣∣∣
w ẇ

ẇ ẅ

∣∣∣∣∣∣∣∣∣, which is the

Wronskian of the functions w and ẇ, characterizing the type L1
1. This is generalized in the

following theorem.

Theorem 4.1.1. The LTID type,L1
n, is characterized by the kernel of a Wronskian operator,

W, specifically the operator associated with the type is defined as

Op w = W
(
w, ẇ, · · · ,w(n)

)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
w ẇ · · · w(n)

...
...

. . .
...

w(n) w(n+1) · · · w(2n)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

PROOF. Say it’s given that Op w = 0, i.e. the Wronskian is zero. It is known that if the

Wronskian of a finite family of analytic functions is zero, then the functions are linearly

dependent [39]. Therefore, assuming that w is analytic, if Op w = 0 then

r0w(n) + r1w(n−1) + · · · + rn−1ẇ + rnw = 0,
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for some real coefficents r0, r1, · · · , rn. This means that if Op w = 0 then w is an analytic

solution to an nth order constant coefficient homogeneous differential equation. It is also

known that any constant coefficient homogeneous differential equation of any order can be

converted into a first order differential equation in vector form, the smooth solution to which

is the matrix exponential times a constant vector. The matrix exponential is an analytic

function as shown in Appendix A.1 and so all smooth solutions are actually analytic. This

means that if Op w = 0 then w is a smooth solution to some nth order differential equation

and is subsequently contained in the LTID type L1
n.

In the other direction, if w ∈ L1
n, then there exist ri ∈ R for i ∈ {0, 1, · · · , n} such that

r0w(n) + r1w(n−1) + · · · + rn−1ẇ + rnw = 0. (3)

This implies that the functions {w, ẇ, · · · ,w(n)} are linearly dependent and hence their

Wronskian is zero, i.e. W
(
w, ẇ, · · · ,w(n)

)
= 0. �

AN ALTERNATE PROOF.

A different proof is presented here that follows the idea outlined earlier for the L1
1 case

and offers some insights into the problem. It was shown earler that if w ∈ L1
1, then

W (w, ẇ) = 0. Now let’s assume that this holds for the case n − 1, i.e. if w ∈ L1
n−1,

then W
(
w, ẇ, · · · ,w(n−1)

)
= 0, and proceed by induction. If w ∈ L1

n, then there exist ri ∈ R
for i ∈ {0, 1, · · · , n} such that (3) holds. Let’s assume that r0 , 0. Then (3) can be written

as,

w(n) + r1w(n−1) + · · · + rn−1ẇ + rnw = 0 (4)

w(n) +

[
rn · · · r1

]


w
...

w(n−1)

 = 0. (5)
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The idea is to separate the coefficients ri from w and its derivatives. This can be accom-

plished by differentiating (4), and then (5) is transformed into,

−
[
rn · · · r1

]


w ẇ · · · w(n−1)

...
...

. . .
...

w(n−1) w(n) · · · w(2n−2)

 =

[
w(n) · · · w(2n−1)

]
. (6)

Let’s call the square matrix in (6) by W and name the matrix on the right hand side as Z.

Assume that W is invertible, i.e. the determinant of W is not zero. Then,

−
[
rn · · · r1

]
= Z W−1. (7)

Differentiate (7) to obtain the representation for an arbitrary coefficient vector.

0 = Ż W−1 − Z W−1 Ẇ W−1 (8)

0 = Ż − Z W−1 Ẇ. (9)

It turns out that all entries on the right hand side of (9) are zero except one. This can be

seen by noticing that the first n − 1 columns of Ẇ are simply the last n − 1 columns of W,

i.e. these first columns of Ẇ are obtained by shifting W to the left. And so the first n − 1

columns of W−1 Ẇ are the last n − 1 columns of the identity matrix, i.e.

W−1 Ẇ =



0 0 · · · 0 ×
1 0 · · · 0 ×
0 1 · · · 0 ×
...
... · · · ...

...

0 0 · · · 1 ×


(10)
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And so the right hand side of (9) is

Ż − Z W−1 Ẇ =

[
w(n+1) · · · w(2n)

]
−

[
w(n) · · · w(2n−1)

]


0 0 · · · 0 ×
1 0 · · · 0 ×
0 1 · · · 0 ×
...

... · · · ...
...

0 0 · · · 1 ×


=

[
0 · · · 0 ×

]
.

Therefore, (9) simplifies to just the entry in the last column which is

w(2n) −
[
w(n) · · · w(2n−1)

]


w ẇ · · · w(n−1)

...
...

. . .
...

w(n−1) w(n) · · · w(2n−2)



−1 
w(n)

...

w(2n−1)

 = 0. (11)

If we enlarge the matrix W to a new matrix W ′ by adding a column and a row of higher

order derivatives then the expression in (11) is in fact the Schur complement of the bottom

right element W in W ′. Expressly, if w ∈ L1
n then Schur(W) = 0 in W ′, where

W ′ =



w ẇ · · · w(n−1) w(n)

...
...

. . .
...

w(n−1) w(n) · · · w(2n−2) w(2n−1)

w(n) w(n+1) · · · w(2n−1) w(2n)


In arriving at this result, two assumptions were made: r0 , 0 and det(W) , 0. If either of

these conditions were not true then the minimal order of the differential equation for which

w is a solution is less than n. If r0 = 0, then w satisfies r1w(n−1) + · · · + rn−1ẇ + rnw = 0

for some real coefficients r1, · · · , rn, and therefore w ∈ L1
n−1 and consequently det(W) = 0

and vice versa. Thus, if w ∈ L1
n then either Schur(W) = 0 in W ′ or det(W) = 0. These two

conditions are combined in the following manner: An LDU decomposition of the matrix

W ′ where the Schur complement of W appears as shown in Appendix A.2 can be obtained.

W ′ =

 I O

ZW−1 I


W O

O Schur(W)


 I W−1ZT

O I


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Using the previous expression, the determinant of W ′ is given by,

det(W ′) = det(W) det (Schur(W)) .

Therefore, If Schur(W) = 0 then det W ′ = 0. Now, if w ∈ L1
n−1 then as mentioned before

w satisfies r1w(n−1) + · · · + rn−1ẇ + rnw = 0 for some real coefficients r1, · · · , rn, and so

r1w(2n−1) + · · · + rnw(n) = 0 also. Consequently, det(W ′) = 0. This leads to the aforestated

condition that if w ∈ L1
n then the determinant of W ′ is zero, since either S chur(W) = 0 in

W ′ or det(W) = 0 and both of these lead to the fact that the determinant of W ′ is zero.

4.1.2 Vector LTID Types (k > 1)

In this section, the previous result is extended to the vector case, i.e. the goal here is

to derive a kernel representation for the general LTID type, Lk
n. It is assumed that the

system of differential equations is not underdetermined or overdetermined, particularly if

the function w is k-dimensional then the number of equations in the system is k. The

operator characterizing the type is a Schur complement as stated in the following theorem.

Theorem 4.1.2. The LTID type, Lk
n, is characterized by the kernel of a Schur complement,

specifically the operator associated with the type is defined as

Op w = Schur
(
Ŵ

)
in W,

where

W =



w · · · w(nk−1) w(nk)

...
...

...

w(n−1) · · · w(n−1+nk−1) w(n−1+nk)

wn · · · w(n−1+nk) w(n+nk)


(12)

and

Ŵ =


w · · · w(nk−1)

...
...

w(n−1) · · · w(n−1+nk−1)

 .

26



PROOF. If w ∈ Lk
n then there exist Ri ∈ Rk×k such that the following holds true:

R0w(n) + R1w(n−1) + · · · + Rnw = 0, (13)

where w =

[
w1 · · · wk

]T

. Assume that det(R0) , 0, then (13) can be multiplied on

the left by R−1
0 to obtain the following equation, and the solution set remains unchanged

because this multiplication is a left unimodular transformation [34].

w(n) + R1w(n−1) + · · · + Rnw = 0. (14)

If det(R0) = 0, then the system (13) contains atleast one equation of order (n− 1) and cases

of this type are excluded from Lk
n. Differentiating (14) a number of times yields,(

Dn + R1Dn−1 · · · + Rn

) [
w ẇ · · · w(nk)

]
= 0. (15)

[
Rn · · · I

]


w ẇ · · · w(nk)

...
...

. . .
...

w(n) w(n+1) · · · w(n+nk)

 = 0 (16)

The square matrix in (16) is named W, as indicated in the theorem statement, and is parti-

tioned in the manner shown in (12). Let’s name the upper left and the upper right block of

this partitioned matrix as Ŵ and W̃ respectively. i.e.,

Ŵ =


w · · · w(nk−1)

...
...

w(n−1) · · · w(n−1+nk−1)

 (17)

W̃ =


w(nk)

...

w(n−1+nk)

 . (18)

Assuming that det(Ŵ) , 0, an LDU decomposition of the matrix W is obtained using

the formula shown in Appendix A.2, and (16) is transformed to,

[
Rn · · · R1 I

]  I O[
w(n) · · · w(n−1+nk)

]
Ŵ−1 I


 Ŵ O

O Schur
(
Ŵ

)
 = 0. (19)
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⇒


[
Rn · · · I

]
Ŵ + R0

[
w(n) · · · w(n−1+nk)

]
= 0

Schur(Ŵ) = 0
(20)

The first equation in (20) is just a subset of the original set of equations (16), specifically

the ones formed by using the columns to the left of the partition in (12). Thus, if w ∈ Lk
n

then a necessary condition for w is that Schur(Ŵ) in W is zero, i.e.,[
w(n+nk)

]
−

[
w(n) · · · w(n−1+nk)

]
Ŵ−1W̃ = 0 (21)

where Ŵ and W̃ are as defined in (17) and (18). Notice that

det(ŴT ) = W
(
w1, · · · ,wk, ẇ1, · · · , ẇk,w

(n−1)
1 , · · · ,w(n−1)

k

)
,

and so if the det(Ŵ) = 0 then these functions are linearly dependent. Therefore, the condi-

tion that det(Ŵ) = 0 corresponds to the existence of atleast one (n − 1)th order differential

equation among the system of k differential equations (13). Cases of this type are excluded

from Lk
n.

On the other hand, if Schur(Ŵ) = 0 then

w(n+nk) −
[
w(n) · · · w(n−1+nk)

]
Ŵ−1


w(nk)

...

w(n−1+nk)

 = 0. (22)

The previous equation can be extended to a larger (k × nk) matrix equation, where (22)

occupies entries in the last column and the other entries are just zeroes.

[
w(n+1) · · · w(n+nk)

]
−

[
w(n) · · · w(n−1+nk)

]
Ŵ−1


ẇ · · · w(nk)

... · · · ...

w(n) · · · w(n−1+nk)

 = 0. (23)

Let Z =

[
w(n) · · · w(n−1+nk)

]
. Then (23) is

Ż − Z Ŵ−1 ˙̂W = 0

⇒ Ż Ŵ−1 − Z Ŵ−1 ˙̂W Ŵ−1 = 0

⇒ d
dt

(
Z Ŵ−1

)
= 0 (24)
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The previous equation (24) implies that Z Ŵ−1 is constant, i.e.

[
w(n) · · · w(n−1+nk)

]


w · · · w(nk−1)

...
...

w(n−1) · · · w(n−1+nk−1)



−1

= R =

[
Rn · · · R1

]
(25)

for some R ∈ Rk×nk. If R is partitioned as shown, then multiplying both sides by Ŵ on the

right and considering the first column,

w(n) = R1w(n−1) + · · · + Rn−1ẇ + Rnw.

Hence, if Schur(Ŵ) = 0 then w ∈ Lk
n. �

4.1.3 Constrained LTID Types

Within the Lk
n type, different traits can be defined by specifying more constraints on the

coefficients of the differential equations. There may be situations when one is interested in a

specific trait rather than the entire type. The traits can be defined by individually specifying

the constraint each coefficient must satisfy. Remember from the previous sections that the

coefficients can be expressed in terms of the function w and its derivatives as in (25). The

idea is depicted here by considering the specific trait of harmonics in the second order LTID

type L1
2.

The trait of harmonics is the behavior of all functions w such that it satisfies ẅ +ω2 w =

0, where ω ∈ R. Directly employing the idea of separating the coefficients,

ẅ
w

= −ω2. (26)

Differentiating (26) we get,
w w(3) − ẇ ẅ

w2 = 0. (27)

So, the trait of harmonics could be defined by (27), but then the solution set also includes

the exponentials. In order to completely characterize the trait of harmonics, an additional

constraint needs to be specified, namely the coefficient is positive or ẅ
w < 0. Therefore, the
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trait of harmonics is characterized by,
w w(3) − ẇ ẅ = 0

ẅ
w
< 0

. (28)

Alternatively, consider the LTID type L1
2, characterized by

ẅ = r1ẇ + r2w. (29)

The coefficients in (29) can now be expressed as,

[
r2 r1

]
=

[
ẅ w(3)

] w ẇ

ẇ ẅ


−1

=
1

w ẅ − ẇ2

[
ẅ2 − ẇ w(3) w w(3) − ẇ ẅ

]
. (30)

For the trait of harmonics, it is required that r1 be zero, r2 be a constant, and that r2 be

negative. These conditions correspond to,

w w(3) − ẇ ẅ = 0

d
dt

(
ẅ2 − ẇ w(3)

w ẅ − ẇ2

)
= 0

ẅ2 − ẇ w(3)

w ẅ − ẇ2 < 0

. (31)

Again remember from the previous section that derivatives of the coefficients are given by

the expression,

[
ṙ2 ṙ1

]
=

0 S chur


w ẇ

ẇ ẅ




w ẇ

ẇ ẅ


−1

=
1

w ẅ − ẇ2

[
−ẇ w

]
S chur


w ẇ

ẇ ẅ


 . (32)

Thus, the second condition in (31) can be eliminated because if r1 = 0 then ṙ1 = 0, which

from (32) implies that S chur(Ŵ) = 0 since w , 0 and consequently ṙ2 = 0. The third

condition in (31) can be simplified to the form in (28 by expressing the condition as,
d
dt

(
ẇ
ẅ

)
d
dt

(
ẇ
w

) w2

ẅ2 < 0.
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⇒
d
dt

(
ẇ
ẅ

)
d
dt

(
ẇ
w

) < 0

This implies that,
d
dt

(ẇ
ẅ

)
= −C

d
dt

(ẇ
w

)
,

for some positive C. And so,
ẇ
ẅ

= −C
(ẇ
w

)
+ D.

Since neither w nor ẇ is zero otherwise the third condition in (31) is violated, the expression

can be multiplied by w
ẇ to obtain

w
ẅ

= −C + D
(w
ẇ

)
.

The first condition in (31) states that ẅ
w is a constant and so D must be zero because if w

ẇ

is a constant then w is an element of a first order type. Thus, the third condtition in (31)

reduces to ẅ
w < 0.

4.2 The τ-Periodic Type

In this section, the periodic type is introduced in context of the Gluskabi framework. The

periodic types are defined by the kernel of operators involving the shift operator, S. For

instance the τ-periodic type, which is the behavior of periodic functions of period τ, is

defined by the kernel of the operator Op := (I − S−τ) where I is the identity operator and

S−τ f (t) = f (t−τ). The operator for the periodic type could also be defined using an advance

- Sτ f (t) = f (t + τ). Throughout this thesis, we will define the operator for the τ-periodic

type using the lag.

A periodic function whose Fourier series exists can also be seen as a sum of harmonic

signals of integer multiples of the base frequency. Inspired by this observation, the τ-

periodic type in the base behavior B0 = Cω(R,R) may also be characterized by the follow-

ing infinite product operator:
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Theorem 4.2.1. The τ-periodic type associated with the operator Op can also be charac-

terized by the infinite product operator π
ω

D
∏∞

n=1

(
1 + 1

n2ω2 D2
)
, which can also be written as

sinh
(
π
ω

D
)

[38], where ω = 2π/τ.

Before delving into the proof of this theorem, some results are presented about the

hyperbolic sine function. It is known that the function sinh(x) admits both an infinite

product expression and a Maclaurin series representation, i.e.

sinh x =

∞∑
n=0

x2n+1

(2n + 1)!
= x

∞∏
n=1

(
1 +

x2

n2π2

)
, (33)

for all x ∈ R. The infinite product in (33) can be expanded into an infinite polynomial,

where the coefficient of each of the powers of x is an infinite series, i.e.

x
∞∏

n=1

(
1 +

x2

n2π2

)
= x +

1
π2

(
1 +

1
22 +

1
32 + · · ·

)
x3 +

1
π4

[
1
22 +

1
32

(
1 +

1
22

)
+ · · ·

]
x5 + · · ·

(34)

Let’s name the coefficient of xi in (34) as a i−1
2

. Then each ak is a series, i.e. ak =
∑∞

j=0 ak j.

For instance,

a1 =
1
π2

∞∑
j=1

1
j2 .

By comparing the coefficients of the powers of x in the two series in (33), it is concluded

that each of the ak’s is a convergent series whose value is the coefficient of the x2k+1 term

in the Maclaurin series, i.e.

ak =
1

(2k + 1)!
.

To show the equivalence of two operators, a known result about power series is needed

and so will be presented here.

Lemma 4.2.2. Let
∑∞

n=0 an(x − c)n be a power series. Then there exists and R ∈ R such

that the power series is absolutely convergent for x satisfying 0 ≤ x < R.

PROOF. This result can be found in any analysis textbook but the proof will be reproduced

here for completeness. Suppose the power series converges for some x0 , 0 ∈ R. Then the
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terms of the series converge to zero and are bounded, i.e. there exists M > 0 such that

|an(x0 − c)n| ≤ M for n = 0, 1, 2, · · ·

If |x − c| < |x0 − c|, then

|an(x − c)n| = |an(x0 − c)n|
∣∣∣∣∣ x − c
x0 − c

∣∣∣∣∣n ≤ M
∣∣∣∣∣ x − c
x0 − c

∣∣∣∣∣n .
This means that absolute value of each term of the power series is bounded above by corre-

sponding term of the convergent geometric series. Thus, if the power series converges for

some x0 ∈ R then it converges absolutely for every x ∈ R with |x − c| < |x0 − c|. Finally, let

R = sup
{
|x − c| s.t.

∑
an(x − c)n converges

}
. �

PROOF. (Theorem 4.2.1) Let’s name the two expressions for the operator sinh
(
π
ω

D
)

as

Op1 =

∞∑
k=0

1
(2k + 1)!

(
τ

2

)2k+1
D2k+1 =

τ

2
D +

1
3!

(
τ

2

)3
D3 +

1
5!

(
τ

2

)5
D5 + · · ·

Op2 =
τ

2
D
∞∏

k=1

[
I +

1
k2π2

(
τ

2

)2
D2

]
=
τ

2
D

[
1 +

1
π2

(
τ

2

)2
D2

] [
1 +

1
4π2

(
τ

2

)2
D2

]
· · ·

The equivalence between the two operators, Op1 and Op2 will be shown first, and then it

will be shown that Op1 also characterized the τ-periodic type. Two operators are said to

be equivalent if their domains are equal and the images are equal for every element in the

domain, i.e. σt Op1 f = σt Op2 f for every f ∈ Cω(R,R) and for every t ∈ R where σt is

the evaluation functional.

The first step is showing that the operator Op1 is well-defined in B0 = Cω(R,R), i.e.

Op1 f exists for all analytic functions f . It is further shown that Op1 is equivalent to the

shift operator 1
2

(
Sτ/2 − S−τ/2

)
. It is given that the Taylor series of the function f exists at all

points. So, the Taylor series of f about the point t and evaluated at the points
(
t + τ

2

)
and(

t − τ
2

)
are given by,

f
(
t +

τ

2

)
= 1 +

τ

2
σt ḟ +

1
2!

(
τ

2

)2
σt f (2) +

1
3!

(
τ

2

)3
σt f (3) + · · · (35)

f
(
t − τ

2

)
= 1 − τ

2
σt ḟ +

1
2!

(
τ

2

)2
σt f (2) − 1

3!

(
τ

2

)3
σt f (3) + · · · (36)
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By the above lemma, both of the series above are absolutely convergent. Consequently,

the negative of either of these series is also absolutely convergent and so is their sum.

Therefore,

1
2

f
(
t +

τ

2

)
− 1

2
f
(
t − τ

2

)
=

1
2

∞∑
k=0

1
k!

(
τ

2

)k
σt f (k) − 1

2

∞∑
k=0

1
k!

(
−τ

2

)k
σt f (k)

=

(
1
2
− 1

2

)
+

(
1
2

+
1
2

)
τ

2
ḟ +

(
1
2
− 1

2

)
1
2!

(
τ

2

)2
f (2)

+

(
1
2

+
1
2

)
1
3!

(
τ

2

)3
f (3) + · · ·

=
τ

2
ḟ +

1
3!

(
τ

2

)3
f (3) +

1
5!

(
τ

2

)5
f (5) + · · ·

= σt Op1 f .

Hence, σt Op1 f is also an absolutely convergent series for all t and

Op1 f =
1
2

(
e
τ
2 D − e−

τ
2 D

)
f =

1
2

(
S τ

2
− S− τ2

)
f .

The next step is showing that σt Op2 f is an absolutely convergent series for all t. The

partial sum S n of the corresponding absolute series of σt Op2 f is given by,

S n =

n∑
k=0

n−k+1∑
j=0

ak j

(
τ

2

)2k+1 ∣∣∣σt f (2k+1)
∣∣∣,

where ak j are the terms described above for the sinh series. Then,

S n ≤
n∑

k=0

1
(2k + 1)!

(
τ

2

)2k+1 ∣∣∣σt f (2k+1)
∣∣∣ .

This shows that the partial sums are actually bounded above by the partial sums of the

absolute series corresponding σt Op1 f , which is absolutely convergent and so the partial

sums are bounded above. Since the partial sums are nonnegative this implies that S n is a

convergent sequence and consequently σt Op2 f is absolutely convergent. Hence, the terms
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of the series σt Op2 f can be rearranged as follows and the equivalence can be shown.

σt Op2 f =

∞∑
k=0

∞∑
j=0

ak j

(
τ

2

)2k+1
σt f (2k+1)

=

∞∑
k=0

ak

(
τ

2

)2k+1
σt f (2k+1)

=

∞∑
k=0

1
(2k + 1)!

(
τ

2

)2k+1
σt f (2k+1)

= σt Op1 f

Finally, it is shown that the kernel of the two operators
(
S τ

2
− S− τ2

)
and (I − S−τ) are

equal. In fact, (
S τ

2
− S− τ2

)
f = 0

⇔ S − τ2
(
S τ

2
− S− τ2

)
f = 0

⇔ (I − S−τ) f = 0.

Thus, the periodic type with period τ in the base behavior of analytic functions can be

characterized by either the kernel of (I − S−τ) or sinh
(
π
ω

D
)
. �

4.3 The General Periodic Type

Finding a kernel representation for the general periodic type, i.e., type characterizing peri-

odic signals of any period, is a difficult problem. For a finite set of periods, {τ1, τ2, · · · , τn},
an operator Op characterizing signals of periods belonging to this set is,

Op w = [w(t) − w(t − τ1)] [w(t) − w(t − τ2)] · · · [w(t) − w(t − τn)] .

Extending this idea to signals of any period requires the concept of products over an un-

countable set. The idea of a product integral can be utilized here which can be thought of as

a continuous version of discrete product analogous of going to the Riemann integral from

the sum. So a possible operator could be,

Op w = lim
∆τ→0

∏
[w(t) − w(t − τ)]2∆τ = exp

(∫ ∞

0
ln [w(t) − w(t − τ)]2dτ

)
.
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For continuous functions, w(t) − w(t − τ) is a continuous function of τ for every t. For

a periodic function w this difference goes to zero at every integer multiple of the period,

and so the logarithm of this difference goes to −∞ at every integer multiple of the period.

Consequently, the integral is −∞ and Op w = 0. Thus, Op w = 0 is definitely a necessary

condition for w to be periodic. For unbounded functions, this operator is not well-defined.
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CHAPTER 5

SIGNAL RACCORDATION PROBLEM

The objective of this chapter is to present results about solution to the Gluskabi problem,

specifically the signal raccordation problem when the types are described by the kernel of

some operator. Using the established terminology from Section 3.1, the Gluskabi problem

is restated here: Given a type T , with the associated operator Op, and a finite time interval

[a, b] ⊂ T, solving the Gluskabi problem is to assign an element from the base behavior to

every pair of elements from the type such that the raccordation is maximally persistent in

the type. So, the objective is to find the Gluskabi extension or alternatively the Gluskabi

map. For the signal raccordation problem, the base behavior is some appropriately chosen

function space. For the rest of the chapter, it will be assumed that the raccordation is sought

over the interval [a, b] unless stated otherwise.

The Gluskabi problem is an optimal control problem and it is solved for the combination

of a number of types and base behaviors in this section. This chapter is organized as

follows: At first a new compact method is presented for finding the Gluskabi extension

for a broad collection of types. This collection includes stationary, periodic, and the newly

introduced LTID types. Next, the focus is shifted to the periodic type and the Gluskabi map

is determined for this specific type for two different choices of base behaviors.

As mentioned previously, this research is an extension of the previous body of work

by Yeung and Verriest. The focus of their work is on the motivation of the Gluskabi prob-

lem, and so each individual problem is dealt with separately as opposed to the generalized

approach in this research. Two ways are used to characterize the types – the kernel rep-

resentation, i.e. as the kernel of some operator just as done in this thesis, and the image

representation when the type is parametrized resulting in a one to one correspondence be-

tween the type and some Euclidean space, and then each trajectory is a point in the param-

eter space. Using the latter characterization, the raccordation is the inverse image of the
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geodesic between the two parameter points under the parametrizing function, with respect

to the Riemannian metric chosen to make the parameter space isometric to the type. The

kernel approach has been formalized and systematically developed in this thesis.

The Gluskabi problem for the periodic type was also treated in these prior works: [6]

and [7]. The image approach for the periodic type is to solve this problem using Fourier

series expansions. However, to use this method practically the Fourier series needs to be

truncated to a finite number of terms and so a compromise has to be made between accuracy

and computational complexity, when choosing the number of terms. The kernel approach

presented in these earlier works uses impulsive approximations to arrive at a result. In

what follows, the Gluskabi framework is employed to arrive at an alternative but simpler

solution for finding a raccordation between two periodic trajectories. The method proposed

in this research is simpler, does not require any approximations, and does not impose any

restrictions on the length of the raccordation interval, unlike the prior works where the

length of the interval had to be a multiple of the period and much greater than the period.

5.1 Gluskabi Extension for General Types

In this section, the Gluskabi extension is derived for a number of types that satisfy only two

assumptions. The two assumptions are stated as follows:

(S1) The range of the operator associated with the type or V, restricted to the support of

the Gluskabi map is an inner product space, with inner product 〈·, ·〉.

(S2) The operator associated with the type admits an adjoint.

These assumptions are not extremely restrictive and are satisfied by a number of interesting

operators such as the differential operators and shift operators. Further comments will be

made about the assumption (S2) in Section 5.1.1. For the rest of this thesis, it will be

assumed that the two assumptions, (S1) and (S2), always hold. The Gluskabi extension for

these types is found in the following theorem.
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Theorem 5.1.1. Given a type (T ,Op), the Gluskabi extension with respect to the norm

‖.‖Q, where Q is a self-adjoint operator, is given by

GT =
{
w ∈ B0 such that ∃w1,w2 ∈ T with Π− w = w1, Π+ w = w2, and Op∗wQOp w = 0

}
,

where the norm is computed as ‖.‖2Q = 〈Q(.), (.)〉, and Opw is the linearized form (Gâteaux

derivative) of the operator Op about w.

PROOF. This can be easily proved using variational calculus [40]. Given the type operator

Op : A → V and the norm ‖.‖2Q, which is defined on the support of the operator Op, the

cost functional to be minimized can be written as

J(w) = ‖Opw‖2Q = 〈QOp w,Op w〉. (37)

Now using the assumption that Op is Gâteaux differentiable, it is shown that the first vari-

ation of J exists and its expression in terms of Op is computed as follows:

∆J = J(w + th) − J(w) = 〈QOp(w + th),Op(w + th)〉

− 〈QOp w,Op w〉

It is given that Op(w + th) = Op w + Opw th + O
(
t2
)
, being the definition of Gâteaux

differentiability (See Appendix B.1). So,

∆J =
〈
QOp w,Opw th

〉
+

〈
QOpw th,Op w

〉
+

〈
QOpw th,Opw th

〉
+

〈
QOp w,O

(
t2
)〉

+
〈
Q O

(
t2
)
,Op w

〉
+

〈
QOpw th,O

(
t2
)〉

+
〈
QO

(
t2
)
,Opw th

〉
+

〈
O

(
t2
)
,O

(
t2
)〉
. (38)

Using the given assumptions that Q is self adjoint, Opw is linear, and the inner product is

symmetric, (38) can be written as

∆J = t
〈
QOp w,Opw th

〉
+ t2〈QOpw h,Opw h

〉
+ 2

〈
QOp w,O

(
t2
)〉

+ 2
〈
QOpw th,O

(
t2
)〉

+
〈
O

(
t2
)
,O

(
t2
)〉
. (39)
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Then, the first variation is given by

δJ(w; h) = lim
t→0

∆J
t

= 2
〈
QOp w,Opw h

〉
= 2

〈
Op∗wQOp w, h

〉
(40)

since each of the other terms in (39) goes to zero as t → 0, employing the lemma in

Appendix B.2. If w is the minimizer of the functional (37) then the first variation δJ(w; h)

is zero at w. Thus a necessary condition for all raccordations in the Gluskabi extension GT
is that

Op∗wQOp w = 0 ∀w ∈ GT . � (41)

If there exists an operator Op∗ such that

Op∗(w + δw) −Op∗ w = Op∗w δw ∀w ∈ A (42)

then the above condition for the Gluskabi Extension (41) can be written as the following

nested form.

Op∗(w + QOp w) = Op∗ w ∀w ∈ GT (43)

Furthermore, an example of the norms that can be employed is the Sobolev norm. The

operator Q corresponding to the kth order Sobolev norm can be found as follows:

‖w‖2W = 〈c0 w, c0 w〉 + 〈c1Dw, c1 Dw〉 + · · · + 〈ckDkw, ck Dkw〉

= 〈c2
0w,w〉 + 〈−c2

1D2w, c1 w〉 + · · · + 〈c2
k(−D2)kw, ck w〉

= 〈[c2
0 − c2

1D2 + · · · + c2
k(−D2)k]w,w〉

= 〈W
(
−D2

)
w,w〉 = 〈Q w,w〉,

where W is a polynomial with positive coefficients, W(ξ) = c2
0 + c2

1ξ + c2
2ξ

2 + · · · + c2
kξ

k,

and D is the differentiation operator. It is implicitly assumed here that the base behavior

is controllable, as defined in Chapter 2. Controllability is one of the sufficient conditions
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for the Gluskabi raccordation to exist for all possible pairs in the type. The controllability

condition can be relaxed and this will be explored further in the next chapter about dynam-

ical raccordations. The typical choices of base behaviors such as the piecewise continuous

functions or continuous functions are controllable behaviors. It is further remarked that the

Gluskabi raccordation typically lies in an even smaller subset of the domain of the operator,

A.

To round up this section, an interesting corollary to the previous theorem is now pre-

sented.

Corollary 5.1.2. Let Op : A → V be the linear operator associated with the type T and

its adjoint be Op∗ : V → A, i.e.

〈Op w, y〉 = 〈w,Op∗ y〉 for all w ∈ A and for all y ∈ V.

Then, the Gluskabi raccordation for any pair of elements in the type, T , if exists is also an

element of the same type T .

PROOF. It is claimed that the kernel of Op∗ is equal to the orthogonal complement of the

image of Op inV. For if y ∈ ker Op∗, then

0 = 〈w,Op∗ y〉 = 〈Op w, y〉 ∀w ∈ A,

or y ∈ (im Op)⊥. On the other hand, if y ∈ (im Op)⊥ then Op∗ y is orthogonal to every

element w ∈ A which means that Op∗ y = 0.

Now if w is in the Gluskabi extension then it satisfies

Op∗Op w = 0.

This implies that Op w is in the kernel of Op∗ or the orthogonal complement of the image

of Op. But Op w is also in the image of Op. This implies that

Op w ∈ (im Op) ∩ (im Op)⊥.

41



⇒ Op w = 0

Thus, w is in the kernel of Op or in other words w is in the type T . �

So for instance if the base behavior is a finite dimensional space and Op is a finite

operator then the Gluskabi raccordation if it exists at all lies in the type. This is not the

case for differential operators like the ones described earlier. And so, for the differential

operators the Gluskabi raccordation lies outside the type in general.

5.1.1 Adjoint of the operator Opw

The adjoint of a linear operator, Op, in an inner product space is defined as the operator

Op∗ that satisfies

〈Op w1,w2〉 = 〈w1,Op∗ w2〉.

Since the space is a general inner product space it is not necessary that a non-trivial adjoint

of the operator exists. Non-triviality means that the domain of the operator Op∗ does not

just contain the zero element, since the above equation is clearly satisfied if w2 = Op∗ w2 =

0. The domain of the adjoint is all elements w2 such that the equation above holds for all

w1. In the present case, it is required for Theorem 5.1.1 that the operator Opw restricted

to the domain H , i.e. the set of all elements in A such that the boundary conditions that

are to be satisfied by the Gluskabi raccordation are all zero, admits a non-trivial adjoint.

Additionally, it is required that QOp w be contained in the domain of the adjoint Op∗w

for all w ∈ A. Because the adjoint is only required for a restricted domain, the number

of operators that admit an adjoint increases, and we get non-trivial solutions unlike what

happens in Corollary 5.1.2.

For instance, say Op : A → V is a differential operator f (D) of highest order k and the

L2 inner product is considered. The boundary conditions in this case will be the value of

the function and (k − 1) derivatives at each of the boundary points, a and b. Consequently,

the space H is the space of all functions in A such that their value and the first (k − 1)

derivatives are zero at a and b. The linearized operator Opw in this case will be of the type
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∑k
i=0 QiDi, where Qi is a multiplication operator whose action is multiplication by some

function of w. Then, using integration by parts

〈w1,Opw h〉 =

∫ b

a
w1(t)

k∑
i=0

qi(w(t))h(i)(t) dt

=

∫ b

a
h(t)

k∑
i=0

(−1)i [w1(t)qi(w(t))
](i) dt

+

k∑
i=1

i∑
j=1

(−1)i−1 [
w1(t)qi(w(t))

]( j−1) h(i− j)(t)

∣∣∣∣∣∣∣
b

a

=

∫ b

a
h(t)

k∑
i=0

(−1)i [w1(t)qi(w(t))
](i) dt

= 〈
k∑

i=0

(−1)iDiQi w1, h〉

The boundary terms are zero because of the fact that h ∈ H and so h(i− j)(b) = h(i− j)(a) =

0, for 1 ≤ i, j ≤ k. Therefore, contrary to the usual scenario for differential operators, they

admit adjoints over here because of the restricted domain.

5.1.1.1 Adjoint of the scalar LTID Type Operator

This section is concluded with finding the adjoint of the operator for the scalar LTID type,

L1
n, introduced in Section 4.1.1. Remember that the operator for this type is Op w =

det(W), where

W(w) =


w ẇ · · · w(n)

...
...

. . .
...

w(n) w(n+1) · · · w(2n)

 .
The linearized version of this operator can be found as,

Opw h =
d
dt

Op(w + th)
∣∣∣∣∣
t=0

= |W | tr
(
W−1 dW(w + th)

dt

∣∣∣∣∣
t=0

)
= |W | tr

[
CT

w

|W |W(h)
]

= tr
[
CT

wW(h)
]
,
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where CT
w is the adjugate matrix of W, i.e. the transpose of the matrix of cofactors.

Now the adjoint of this operator, which is linear in h, is obtained by realizing that

this operator is of the same form,
∑k

i=0 QiDi, as discussed above. Thus, the adjoint of the

operator Opw restricted to the domainH is

Op∗w = tr




I −D · · · (−1)nDn

...
...

. . .
...

(−1)nDn (−1)n+1Dn+1 · · · (−1)2nD2n

 CT
w

 ,
where CT

w is now a multiplication operator, i.e. each element of CT
w is a multiplication

operator that acts by multiplying the argument by the corresponding element of CT
w.

5.1.2 Vector-valued Operator Op

The operator Op associated with the type can be vector-valued or matrix-valued and the

element w in the type can be vectors in general as well, i.e.

Op w =


Op11 w · · · Op1n w

...
...

Opm1 w · · · Opmn w

 ,
where Opi j are all scalar valued operators. It is clear that Theorem 5.1.1 can still be ap-

plied to this case if there exists a valid inner product on V, the operator Op is Gâteaux

differentiable, and then the subsequent linearized operator admits an adjoint.

It is evident from the definition of Gâteaux differentiability in Appendix B.1 that the

operator Op is Gâteaux differentiable if and only if all of its component scalar operators

are Gâteaux differentiable.

δOp(w; h) = lim
t→0

Op(w + th) −Op(w)
t

=


δOp11 (w; h) · · · δOp1n (w; h)

...
...

δOpm1 (w; h) · · · δOpmn (w; h)


44



So, as seen from the previous expression the variation is linear in the second argument if

and only if each of the variations δOpi j is linear in the second argument.

A possible inner product that can be employed for this vector case is presented here. It

is based on any scalar inner product, i.e. inner product for the case when Op w is scalar.

Say 〈·, ·〉s is such an inner product and Op w is (m × n) dimensional, then the inner product

for this multidimensional case is

〈x, y〉 =

m,n∑
i=1, j=1

〈xi j, yi j〉s.

It can be shown that all the axioms of an inner product are satisfied. Since we are dealing

with real spaces, the inner product is because the scalar one is. Similarly, it is linear:

〈αx + βz, y〉 =

m,n∑
i=1, j=1

〈αxi j + βzi j, yi j〉s =

m,n∑
i=1, j=1

α〈xi j, yi j〉s + β〈zi j, yi j〉s = α〈x, y〉 + β〈z, y〉.

Finally, it is positive definite because 〈xi j, xi j〉s ≥ 0 for all i and j. Also, if 〈x, x〉 = 0 then

xi j = 0 for all i and j since the inner product here is the sum of nonnegative numbers, and

consequently x = 0.

If each of the component operators’ Gâteaux derivative δOpi j admits an adjoint, then

the operator Op also admits an adjoint. This adjoint can be constructed in the following

manner:

〈x, δOp(w; h)〉 =

m,n∑
i=1, j=1

〈xi j, δOp(w; h)i j〉s

=

m,n∑
i=1, j=1

〈δOp∗i j(w; xi j), h〉s

=

〈 m,n∑
i=1, j=1

δOp∗i j(w; xi j), h
〉

s

.

Thus, if w is p-dimensional then the adjoint is p-dimensional vector valued operator and is

defined as

δOp∗(w; x) =

m,n∑
i=1, j=1

δOp∗i j(w; xi j).
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If Op w is vector valued, i.e. it’s column dimension n is one, then a Q weighted norm

can also be defined. In this case, the operator Q is a diagonal operator:

Q =



Q1

Q2

. . .

Qm


,

where the diagonal element Qi is the weighting operator for the ith component of Op w

respectively. It is clear that Q is self-adjoint since each of the components Qi is self-adjoint.

〈Q x, y〉 =

m∑
i=1

〈Qi xi, yi〉s

=

m∑
i=1

〈xi,Qi yi〉s

= 〈x,Q y〉

5.1.2.1 Adjoint of the Vector LTID Operator

In this section, the operator associated with the vector LTID type Lk
n, from Section 4.1.2,

is first linearized and then its adjoint is found. Remember that the operator for this type is

the Schur complement, i.e.

Op w = Schur(Ŵ) in W,

= w(n+nk) −WŴ−1W̃

where

W =



w · · · w(nk−1) w(nk)

...
...

...

w(n−1) · · · w(n−1+nk−1) w(n−1+nk)

w(n) · · · w(n−1+nk) w(n+nk)


, Ŵ(w) =


w · · · w(nk−1)

...
...

w(n−1) · · · w(n−1+nk−1)

 ,

W(w) =

[
w(n) · · · w(n−1+nk)

]
, and W̃(w) =


w(nk)

...

w(n−1+nk)

 .
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The linearized version of this operator can be found as,

Opw h =
d
dt

Op(w + th)
∣∣∣∣∣
t=0

= h(n+nk) −W(h)Ŵ−1(w)W̃(w) −W(w)Ŵ−1(w)W̃(h)

+ W(w)Ŵ−1(w)Ŵ(h)Ŵ−1(w)W̃(w).

The adjoint of this operator is computed by taking the adjoint of each of the terms. The

adjoint operator turns out to be,

Op∗w = (−1)n+nk Dn+nk −
[
(−1)n Dn · · · (−1)n−1+nk Dn−1+nk

]
Ŵ−1W̃ Ik

−
[
(−1)nk Dnk Ik · · · (−1)n+nk−1 Dn+nk−1 Ik

]
Ŵ−T W

T

+

[
Ik ⊗

(
I · · · (−D)nk−1

)
· · · Ik ⊗

(
( − D)n−1 · · · (−D)n+nk−2

)]
[(

W Ŵ−1
)T ⊗

(
Ŵ−1 W̃

)]
.

5.1.3 Examples

In this section, the results presented in the previous sections are illustrated with the help

of some examples. In all of these signal raccordation problems, Theorem 5.1.1 will be

applied.

Suppose we are interested in the raccordation between constants. This is a very simple

example but it illustrates all the relevant concepts exquisitely. The base behavior is chosen

to be the space of continuous functions, i.e. B0 = C0(R,R). The type T is that of constants

and the associated operator is Op := D : C1(R,R) → C0(R,R). Notice that the base

behavior is chosen to be larger than the domain of the type. The raccordation interval

is chosen to be [a, b] and the constants to be connected are 1 and 2. The support of the

Gluskabi map in this case is the same interval [a, b] and so an inner product is needed on the

space of continuous functions restricted to this interval. Let’s choose the L2 inner product.

The adjoint of the differentiation operator D is −D. Therefore, according to Theorem 5.1.1,

the raccordation w satisfies the equation D2 w = 0, and so is a ramp whose value is 1 at 0

and 2 at 1. This is shown in Figure 4. Notice that the connected function does not belong to
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Figure 4. Raccordation between the two constants 1 and 2.

the type. It is in fact not even differentiable; this is why the base behavior is usually chosen

to be a larger set. Furthermore, notice that the raccordation actually lies in a subset of the

domain of the type, i.e. the set of twice differentiable functions.

5.1.3.1 Scalar LTID Type

In the following example, the goal is to connect two exponentials. Let’s choose our base

behavior to be B0 = C0(R,R) and the type to be scalar first order LTID type L1
1 i.e. the set

of all exponentials ceλt for all values of c ∈ R and λ ∈ R. Looking back at Section 4.1, the

operator for this type is found to be Op w = ẅw − ẇ2. Then, the linearized form of this

operator Op is Opw = wD2 − 2ẇD + ẅI. Say the raccordations are sought over the interval

[0, 1] and the norm to be minimized is the usual L2 norm. Then according to Theorem 5.1.1,

the raccordation w over the interval [0, 1] must be the solution to the differential equation

Op∗wOp w = 0 or (
D2 w + 2D ẇ + ẅ

) (
ẅw − ẇ2

)
= 0

w(4)w2 + 4w(3)ẇw + 3ẅ2ẇ − 8ẅẇ2 = 0.

This gives a generalized solution and then the specific raccordation connecting say w1 and

w2 is obtained by using the boundary conditions i.e. w(i)(0) = w(i)
1 (0) and w(i)(1) = w(i)

2 (1)
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for i = 0 and i = 1. The raccordation for the case when w1 = 5e−2t and w2 = 0.1e4t is shown

in Figure 5.

5.1.3.2 Vector LTID Type

In the following example, two trajectories from the vector LTID type L2
1 are connected.

The operator Op for this type is the Schur operator (See Section 4.1.2). The raccordation

is then the solution of Op∗w Op w = 0 where the adjoint is obtained using the formula from

Section 5.1.2.1. Each trajectory vector w = (w1,w2) ∈ L2
1 is the solution of ẇ = A w,

for some A ∈ R2×2. The example illustrated in Figure 6 connects the trajectories for Al =−2 0

0 1

 to Ar =

 −4.67 1.76

−14.25 7.09

.

Figure 5. A raccordation (black line) connecting w1 = 5e−2t (red line) in the L1
1 type to w2 = 0.1e4t (blue

line) in the same type.

5.2 Periodic Type

The problem considered in this section is that of finding a maximally persistent raccordation

between two periodic trajectories wa and wb over a finite time interval [a, b]. This problem

can also be stated as finding a trajectory w(t) such that w = wa for t ≤ a and w = wb for

t ≥ b and the trajectory in the interval [a, b] is maximally persistent in the periodic type
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with respect to a specified norm. The results in this section were presented in [41].

The problem of finding raccordations for periodic trajectories is a specific case of the

much broader result stated in the previous section. This section is organized as follows:

The case of τ-periodic type is first considered. This case is further divided into two sub-

cases – when the interval is an integer multiple of the period τ and when it’s not. Then, the

case of a sub-type of τ-periodic type when the functions are continuous is considered with

the two sub-cases again. Finally, the case of general periodic type, i.e. the behavior that

includes functions of all periods, is considered.

5.2.1 τ-Periodic Type

In the context of the Gluskabi framework, the τ-periodic type, which is the behavior of

periodic functions of period τ, is defined by the kernel of the operator Op := (I − S−τ)

where I is the identity operator and S is the shift operator, as mentioned in Section 4.2. The

problem of finding the Gluskabi raccordation between two trajectories of the τ-periodic

type is split up into two cases. At first the raccordation for the τ-periodic type over an

interval that is an integer multiple of the period is found. This result is then generalized to

intervals of arbitrary length.

For deriving the Gluskabi raccordations, the following two additional assumptions have

Figure 6. Raccordation (red lines) forL2
1 type connecting trajectory of Al (blue lines) to Ar (black lines).
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been made in this section.

(S3) The base behavior is the space of piecewise continuous functions, i.e.,B0 = PC(R,R).

(S1a) The specific inner product assumed in (S1) is chosen to be the L2 inner product.

Consequently, the L2 norm will be minimized. Since the raccordation interval is [a, b], the

support of Op g(wa,wb) is the interval [a, b + τ], for some wa and wb in the τ-periodic type,

and so the minimization will be carried out over this interval. The Gluskabi map or the

extension can now be found by applying Theorem 5.1.1, but in order to gain some insight

into the problem, optimal control theory will be directly applied to the problem [42].

Theorem 5.2.1. Given two trajectories wa and wb from the τ-periodic type, the Gluskabi

raccordation, w, between the two is given by

w(t) = wa(t) +

(
1 +

⌊ t − a
τ

⌋) wb(t) − wa(t)
n + 1

,

where b·c is the floor operation and provided b = a + nτ for some n ∈ Z+.

PROOF. Let u = (I − S−τ)w, or

u(t) = w(t) − w(t − τ) (44)

for any w in the base behavior. Notice that if w is periodic then u = 0. Then, the Gluskabi

raccordation is the argument of the following optimization problem:

min
w(t)

J = min
w(t)

1
2

∫ b+τ

a
u2(t) dt. (45)

Now adjoining the definition of u with the Lagrange multiplier λ to the cost function (45)

gives:

J(u) =

∫ b+τ

a

u2(t)
2

+ λ(t) [w(t) − w(t − τ) − u(t)] dt.

Perturbing u by δu changes the cost function to

J(u + δu) =

∫ b+τ

a

1
2

[u(t) + δu(t)]2 + λ(t) [w(t) + δw(t)

−w(t − τ) − δw(t − τ) − u(t) − δu(t)] dt (46)
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and so

δJ = J(u + δu) − J(u)

≈
∫ b+τ

a
u(t)δu(t) + λ(t) [δw(t) − δw(t − τ) − δu(t)] dt

=

∫ b+τ

a
[u(t) − λ(t)]δu(t) dt +

∫ b+τ

a
λ(t)δw(t) dt −

∫ b+τ

a
λ(t)δw(t − τ) dt

=

∫ b+τ

a
[u(t) − λ(t)]δu(t) dt +

∫ b+τ

a
λ(t)δw(t) dt −

∫ b

a−τ
λ(t + τ)δw(t) dt. (47)

A necessary condition for a w to minimize (45) is that δJ be zero for any arbitrary δu.

The perturbation δw in (47) is zero in the intervals [b, b + τ] and [a − τ, a], since by the

definition of the Gluskabi map w = wb and w = wa in these respective intervals. So,

the integrals involving δw are zero in these intervals. The multiplier λ(t) is chosen in the

following way in the interval (a, b) to avoid computing δw in this interval:

λ(t) = λ(t + τ) ∀t ∈ (a, b). (48)

Then, the necessary condition for optimality is

λ(t) = u(t) ∀t ∈ [a, b + τ]. (49)

Notice that λ(t) is free in the interval [b, b + τ] and as a consequence of (48), choosing λ

in any τ length sub-interval in [a, b + τ] completely determines it for all time. The initial

definition (44) of u in the interval [a, b + τ] can be written as follows, using (49) and (48):

For any θ ∈ [a, a + τ] and i ∈ {0, 1, · · · , n},

w(θ + iτ) = u(θ + iτ) + w(θ + (i − 1)τ)

= u(θ + iτ) + u(θ + (i − 1)τ) + w(θ + (i − 2)τ)
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= (i + 1) u(θ) + w(θ − τ)

= (i + 1) u(θ) + wa(θ − τ). (50)

When i = n, we have that w(θ + nτ) = wb(θ + nτ) and so (50) becomes

wb(θ + nτ) = (n + 1) u(θ) + wa(θ − τ).

Since wa and wb are both periodic with period τ, the above equation yields the following

simplified expression for u(θ) in the interval [a, a + τ]:

u(θ) =
wb(θ) − wa(θ)

n + 1
. (51)

This consequently defines u(t) in the entire interval [a, b + τ] by (48) and (49). Thus, the

Gluskabi raccordation for this periodic type is obtained from (50) and is as follows:

w(t) = wa(t) +

(
1 +

⌊ t − a
τ

⌋)
u(t). �

Alternatively, if one wishes to apply Theorem 5.1.1 then the adjoint of the shift operator

S−τ is required. The inner product is the L2 inner product, i.e. 〈·, ·〉 : PC([a, b + τ],R) ×
PC([a, b + τ],R) → R. The restricted domain H for which the adjoint must hold is the

set of all functions h such that h(t) = 0 when t ∈ [b,∞) or (−∞, a]. The shift operator S −τ

acts on the functions inH by shifting h to the right and appending zero function in interval

[a, a + τ]. Then, the adjoint of S−τ is,

〈x,S−τh〉 =

∫ b+τ

a
x(t)S−τh(t) dt

=

∫ b+τ

a+τ

x(t)h(t − τ) dt

=

∫ b

a
x(t + τ)h(t) dt

=

∫ b+τ

a
x(t + τ)h(t) dt

= 〈Sτ x, h〉.
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Therefore, applying Theorem 5.1.1 the Gluskabi raccordation must satisfy,

Op∗Op w = (I − Sτ) (I − S−τ) w = 0

⇒ (2I − S−τ − Sτ) w = 0 in the interval (a, b)

which yields the same result as Theorem 5.2.1.

This result indicates that the Gluskabi raccordation basically takes the difference be-

tween the values of the two trajectories within an aligned period, and covers this difference

in n+1 periods. This result is generalized in the next theorem for the case where the raccor-

dation interval is of arbitrary length, i.e., its length is not restricted to be an integer multiple

of the period.

Theorem 5.2.2. Given two trajectories wa and wb from the τ-periodic type, the Gluskabi

raccordation, w, between the two is given by,

w(t) = wa(t) +

(
1 +

⌊ t − a
τ

⌋)
u(t)

where

u(t) =


1

n+2

[
wb(t) − wa(t)

]
a ≤ t′ ≤ (b − nτ)

1
n+1

[
wb(t) − wa(t)

]
(b − nτ) ≤ t′ ≤ (a + τ)

t′ = (t − a) mod τ

PROOF. The proof of this theorem is exactly along the lines of Theorem 5.2.1 since we

employ the same cost function and we obtain the same Euler-Lagrange equation and opti-

mality equation, i.e.,

λ(t) = λ(t + τ) ∀t ∈ (a, b) (52)

λ(t) = u(t) ∀t ∈ [a, b + τ]. (53)

Again, it holds that λ(t) is free in the interval [b, b + τ], and as a consequence of (52)

choosing λ in any τ length sub-interval in [a, b + τ] completely determines it for all time.
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The raccordation interval [a, b] can be split up into intervals of length τ with possibly one

remaining interval of length less than τ. Let n =
⌊

b−a
τ

⌋
. Then, b − a = nτ + (b − a − nτ).

From the definition of u we have that,

w(t) = u(t) + w(t − τ).

Or for any θ ∈ [a, a + τ] and i ∈ {0, 1, · · · , n},

w(θ + iτ) = u(θ + iτ) + w(θ + (i − 1)τ)

= (i + 1) u(θ) + wa(θ − τ) (54)

by making use of (52) and (53). There are two separate cases to be dealt with here. When

i = n and θ ∈ [b − nτ, a + τ], we have that w = wb, and so (54) becomes

wb(θ + nτ) = (n + 1)u(θ) + wa(θ − τ). (55)

On the other hand when i = n + 1 and θ ∈ [a, b − nτ], (52) still holds since the argument

(θ + iτ) is in the interval [b, b + τ] and so (54) becomes

wb(θ + (n + 1)τ) = (n + 2)u(θ) + wa(θ − τ). (56)

Using the fact that both wa and wb are periodic with period τ, the above equations (55) and

(56) yield the following simplified expression for u(θ) in the interval [a, a + τ]:

u(θ) =


1

n+2

[
wb(θ) − wa(θ)

]
a ≤ θ ≤ (b − nτ)

1
n+1

[
wb(θ) − wa(θ)

]
(b − nτ) < θ ≤ (a + τ)

. (57)

This consequently defines u(t) in the entire interval [a, b + τ] by (52) and (53). Thus the

Gluskabi raccordation over the interval [a, b] is obtained by substituting the above expres-

sion in (54) as follows:

w(t) = wa(t) +

(
1 +

⌊ t − a
τ

⌋)
u(t). �

Contrary to Theorem 5.2.1, the raccordation interval now is comprised of n whole pe-

riods and one partial period. This result indicates that every period in the raccordation
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interval is split up into two parts. The racordation in the first part is the previous period

plus (n + 2)th of the difference between the values of the two functions in the first part of

any period. And, in the second part it is the previous period plus (n + 1)th of the difference.

This will be elucidated in the coming example.

Before proceeding to the next result, some remarks will be made about the previous

two theorems. The same results are obtained for the Gluskabi raccordation if the alternate

definition is used for the periodic operator, employing an advance instead of a lag. This

indicates that the Gluskabi raccordation obtained is truly associated with the periodic type.

The two theorems can also be viewed in the Fourier domain. The Gluskabi raccordation

there is similar to the time domain and the difference between the Fourier coefficients is

equally covered in n + 1 or n + 2 steps.

The previous results are illustrated with the help of an example. The considered prob-

lem is that of finding raccordation between cos 2πt and the triangle wave with period one.

Notice that both these trajectories are from the periodic type with period one, and this type

can be characterized by the operator (I − S−τ), where τ = 1. The raccordation is sought

over the interval [0, 3.5] and so the length of the interval is not a multiple of the period. The

result from Theorem 5.2.2 is applied and the resultant raccordation is shown in Figure 7.

Notice the discontinuities at multiples of the period as well as at distance 3.5 mod 1 = 1
2

or at the midpoint within each period. The discontinuities at the multiples of the period is

due to the discrepancy in the values of the functions at the end points of a single period,

i.e., the cosine function at 0 is one but the triangle wave being considered is zero at 0. The

discontinuity at the middle point in every period can be attributed to the discrepancy in the

values of the two functions at that particular point in every period. Therefore considering

one aligned period, if the two continuous function are equal at the end points and at the

distance equal to the raccordation interval length modulo the period, then the raccordation

will be continuous.
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Figure 7. The function is cos 2πt for t ≤ 0 and a triangle wave for t ≥ 3.5. Raccordation is over the
interval [0, 3.5].

5.2.2 Continuous τ-Periodic Type

The chosen base behavior, B0, in the previous section was the space of piecewise contin-

uous functions. As the results indicate the Gluskabi raccordation is piecewise continuous

even if the trajectories being connected are continuous, just as in Figure 7. If the base

behavior is the space of continuous functions, then the optimization does not yield a solu-

tion since no continuous function satisfies the necessary conditions found in the previous

section, in general. The only case when a continuous minimum exists is when the signals

being connected match up at the boundary of the interval, i.e. w(a) = w(b), and match up

at the point (b − a − nτ) within the period. Expressly, the infimum of this optimization

problem lies on the boundary of the space of continuous functions, in general.

A way to impose continuity of the Gluskabi raccordation is to employ a different norm,

specifically by appending a cost on the derivative of the trajectory to the usual cost function,

i.e., instead of minimizing ‖Opw‖2 one can minimize ‖Opw‖2 = ‖Opw‖22 + ρ2‖D Opw‖22,

with ρ2 being the weighting factor. This corresponds to choosing the Q operator in Theorem

5.1.1 as Q =
(
I − ρ2D2

)
. In order to do this, the assumption (S3), from the previous section,

is modified to the following:
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(S3’) The base behavior B0 is the space of continuous functions that are piecewise differ-

entiable, or B0 = C0 ∩ PWC1.

The assumption (S1a) still holds. The Gluskabi raccordation is now found for the τ-periodic

type in this new base behavior in the following theorem.

Theorem 5.2.3. Given two trajectories wa and wb from the continuous τ-periodic type, the

Gluskabi raccordation, w, between the two, with respect to the norm ‖·‖2 = ‖·‖22+ρ2‖D(·)‖22,

is given by solving the following set of equations:

f0 = ρ (w1 + wa − 2w0)

fk = ρ (wk+1 + wk−1 − 2wk) 1 ≤ k ≤ n − 2

fn−1 = ρ (wb + wn−2 − 2wn−1) (58)

fi = c0 e
1
ρ (t+iτ) − d0 e−

1
ρ (t+iτ) 0 ≤ i ≤ n − 1

with the associated boundary conditions w(t) = wa(t) when t ∈ (−∞, a] and w(t) = wb(t)

when t ∈ [b,∞), and then w(t) = wk(t − a − kτ) with k =
⌊

t−a
τ

⌋
where b = a + nτ for some

n ∈ Z+.

PROOF. The Gluskabi raccordation in this case is the argument of the following optimiza-

tion problem:

min
w(t)

∫ b+τ

a
[w(t) − w(t − τ)]2 + ρ2[ẇ(t) − ẇ(t − τ)]2 dt.

To simplify the problem, let’s define a set of shifted functions wk(θ) = w(a + kτ + θ) for

k ∈ {0, · · · , n−1} and θ ∈ [0, τ]. Also, let uk = ẇk, wa(θ) = wa(a−τ+θ) and wb(θ) = wb(b+θ).

These shifted functions cover the entire interval [a − τ, b + τ], and the cost function J can

now be written as,

J =
1
2

∫ τ

0
[w0(θ) − wa(θ)]2 + ρ2 [u0(θ) − ua(θ)]2 +

n−1∑
k=1

[wk(θ) − wk−1(θ)]2

+ ρ2 [uk(θ) − uk−1(θ)]2 + [wb(θ) − wn−1(θ)]2 + ρ2 [ub(θ) − un−1(θ)]2 dθ, (59)
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and the boundary conditions take the form of w0(0) = wa(τ) and wn−1(τ) = wb(0). Since the

raccordation, w, has to be continuous, additional constraints are imposed on the boundaries

of the interior shifted functions, specifically wk(0) = wk−1(τ) for k ∈ {1, · · · , n − 1}. Now

adjoining the constraint equations uk − ẇk = 0 along with the Lagrange multipliers, λk, for

k ∈ {0, · · · , n − 1} to the cost function (59), and employing the usual techniques of optimal

control the following set of Euler-Lagrange equations are obtained:

λ̇0 = w1 + wa − 2w0

λ̇k = wk+1 + wk−1 − 2wk 1 ≤ k ≤ n − 2

λ̇n−1 = wb + wn−2 − 2wn−1. (60)

Boundary conditions on the Lagrange multipliers are also obtained stemming from the fact

that to preserve continuity, the perturbations at the end points of the shifted functions are the

same, i.e., δwk(0) = δwk−1(τ). These boundary conditions turn out to be λk(0) = λk−1(τ) for

k ∈ {1, · · · , n − 1}, which has similar form to the boundary conditions on shifted functions.

The set of optimality conditions is as follows:

λ0

ρ2 = u1 + ẇa − 2u0

λk

ρ2 = uk+1 + uk−1 − 2uk 1 ≤ k ≤ n − 2

λn−1

ρ2 = ẇb + un−2 − 2un−1. (61)

Differentiating (60) once and comparing it to (61) yields the following set of second order

differential equations for the Lagrange multipliers:

λ̈k − 1
ρ2λk = 0 0 ≤ k ≤ n − 1. (62)

The solutions λk are a linear combination of exponential modes e±t/ρ and can be written as,

λk = ck et/ρ + dk e−t/ρ (63)

for some constants, ck and dk. This results in 2n unknowns in the form of these constants

that can be solved for using the n−1 boundary conditions for Lagrange multipliers, the n−1
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boundary conditions for functions wk, and the two end point conditions w0(0) = wa(τ) and

wn−1(τ) = wb(0). From the conditions λk(0) = λk−1(τ) for k ∈ {1, · · · , n − 1}, the following

condition is obtained,

ck + dk = ck−1 eτ/ρ + dk−1 e−τ/ρ

⇒ ck = ck−1 eτ/ρ + dk−1 e−τ/ρ − dk. (64)

Additionally, the conditions xk(0) = xk−1(τ) for k ∈ {1, · · · , n − 1} on the shifted functions,

translate to boundary conditions on λ̇k in (60) i.e., λ̇k(0) = λ̇k−1(τ) for k ∈ {1, · · · , n − 1} or

that
1
ρ

(ck − dk) =
1
ρ

(
ck−1 eτ/ρ − dk−1 e−τ/ρ

)
.

Substituting (64) in this yields,

dk = dk−1 e−τ/ρ (65)

and then (64) becomes

ck = ck−1 eτ/ρ. (66)

Therefore, the expressions for all the Lagrange multipliers (63) can be written in terms of

just two constants c0 and d0 as follows:

λk = c0 e
1
ρ (t+kτ) + d0 e−

1
ρ (t+kτ). (67)

Substituting this in (60) gives us the set of equations (58) to be solved for finding the

Gluskabi raccordation.

Given that the functions wa and wb are continuous, one can conclude from the resul-

tant set of linear equations that the functions, wk, are continuous. Subsequently, the inte-

rior point constraints, wk(0) = wk−1(τ), and the boundary constraints, w0(0) = wa(a) and

wn−1(τ) = wb(b), guarantee that the raccordation, w, is continuous. �

Alternatively, if one wishes to apply Theorem 5.1.1 then the adjoint of the shift operator

is the same as before. Additionally, Q = (I−D2). The inner product is the L2 inner product
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but now on the new base behavior restricred to the interval [a, b +τ]. The restricted domain

H is the same. Therefore, applying Theorem 5.1.1 the Gluskabi raccordation must satisfy,

Op∗QOp w = (I − Sτ)
(
I − D2

)
(I − S−τ) w = 0

⇒ (2I − S−τ − Sτ)
(
D2 − I

)
w = 0 in the interval (a, b).

Applying the operator (D2− I) to (58) shows that (ẅ−w) is in the kernel of (2I − S−τ − Sτ),

and hence the two results agree with each other.

Theorem 5.2.4. Given two trajectories wa and wb from the continuous τ-periodic type, the

Gluskabi raccordation, w, between the two, with respect to the norm ‖·‖2 = ‖·‖22+ρ2‖D(·)‖22,

is given by solving the following set of equations:

f0 = ρ (w1 + wa − 2w0)

fk = ρ (wk+1 + wk−1 − 2wk) 1 ≤ k ≤ n − 2

fn−1 =


wn + wn−2 − 2wn−1 if θ ∈ [0, t′]

wb + wn−2 − 2wn−1 if θ ∈ [t′, τ]
(68)

fn = wb + wn−1 − 2wn θ ∈ [0, t′]

fi = c0 e
1
ρ (t+iτ) − d0 e−

1
ρ (t+iτ) 0 ≤ i ≤ n

with the associated boundary conditions w(t) = wa(t) when t ∈ (−∞, a] and w(t) = wb(t)

when t ∈ [b,∞), and then w(t) = wk(t − a − kτ) with k =
⌊

t−a
τ

⌋
, and t′ = (b − a − nτ) with

n =
⌊

b−a
τ

⌋
.

PROOF. The proof is along the same lines as Theorem 5.2.3. The same cost function is

employed. The raccordation interval [a, b] can be split up into intervals of length τ with

possibly one remaining interval of length less than τ. Let n =
⌊

b−a
τ

⌋
. Then, b − a = nτ + t′.

To simplify the problem, let’s define shifted functions again but now,

for k ∈ {0, · · · , n − 1} wk(θ) = w(a + kτ + θ) and θ ∈ [0, τ]

wn(θ) = w(a + nτ + θ) and θ ∈ [0, t′].
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The uk = ẇk are similarly defined, wa(θ) = wa(a−τ+θ) and wb(θ) = wb(b+t′+θ). Notice the

shift in the definition of wb. These shifted functions cover the entire interval [a − τ, b + τ],

and the cost function J can now be written as,

J =
1
2

∫ τ

0
[w0(θ) − wa(θ)]2 + ρ2 [u0(θ) − ua(θ)]2 dθ

+
1
2

∫ τ

0

n−1∑
k=1

[wk(θ) − wk−1(θ)]2 + ρ2 [uk(θ) − uk−1(θ)]2 dθ

+
1
2

∫ t′

0
[wn(θ) − wn−1(θ)]2 + ρ2 [un(θ) − un−1(θ)]2 dθ

+
1
2

∫ τ

t′
[wb(θ) − wn−1(θ)]2 + ρ2 [ub(θ) − un−1(θ)]2 dθ

+
1
2

∫ t′

0
[wb(θ) − wn(θ)]2 + ρ2 [ub(θ) − un(θ)]2 dθ, (69)

and the boundary conditions take the form of w0(0) = wa(τ) and wn(t′) = wb(t′). The

interior constraints originating from the continuity requirement have an addition, specifi-

cally wk(0) = wk−1(τ) for k ∈ {1, · · · , n} and wn−1(t′−) = wn−1(t′+). Adjoining constraints

and the subsequent optimal control machinery yields the following set of Euler-Lagrange

equations:

λ̇0 = w1 + wa − 2w0

λ̇k = wk+1 + wk−1 − 2wk 1 ≤ k ≤ n − 2

λ̇n−1 =


wn + wn−2 − 2wn−1 if θ ∈ [0, t′]

wb + wn−2 − 2wn−1 if θ ∈ [t′, τ]
(70)

λ̇n = wb + wn−1 − 2wn θ ∈ [0, t′]

The boundary conditions on the Lagrange multipliers turn out to be λk(0) = λk−1(τ) for

k ∈ {1, · · · , n} and λn−1(t′−) = λn−1(t′+). The set of optimality conditions is as follows:

λ0

ρ2 = u1 + ẇa − 2u0

λk

ρ2 = uk+1 + uk−1 − 2uk 1 ≤ k ≤ n − 2
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λn−1

ρ2 =


un + un−2 − 2un−1 if θ ∈ [0, t′]

ẇb + un−2 − 2un−1 if θ ∈ [t′, τ]
(71)

λn

ρ2 = ẇb + un−1 − 2un θ ∈ [0, t′]

The multipliers λk are:

λk = ck et/ρ + dk e−t/ρ 0 ≤ k ≤ n (72)

for some constants, ck and dk. This results in (2n + 4) unknowns in the form of these con-

stants that can be solved for using the n + 1 boundary conditions for Lagrange multipliers,

the n + 1 boundary conditions for functions wk, and the two end point conditions. From the

Lagrange multiplier conditions, the following condition is obtained,

ck + dk = ck−1 eτ/ρ + dk−1 e−τ/ρ

And so,

ck = ck−1 eτ/ρ + dk−1 e−τ/ρ − dk 1 ≤ k ≤ n − 1

c′n−1 et′/ρ = cn−1 et′/ρ + dn−1 e−t′/ρ − d′n−1 e−t′/ρ (73)

cn = c′n−1 eτ/ρ + d′n−1 e−τ/ρ − dn.

Similarly, the interior constraints on the shifted functions, translate to boundary conditions

on λ̇k in (70) i.e.,

ck − dk = ck−1 eτ/ρ − dk−1 e−τ/ρ 1 ≤ k ≤ n − 1

c′n−1 et′/ρ − d′n−1 e−t′/ρ = cn−1 et′/ρ − dn−1 e−t′/ρ (74)

cn − dn = c′n−1 eτ/ρ − d′n−1 e−τ/ρ

Substituting (73) in this yields,

dn−1 = d′n−1 and dk = dk−1 e−τ/ρ (75)

and then (73) becomes

cn−1 = c′n−1 and ck = ck−1 eτ/ρ. (76)
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Therefore, the expressions for all the Lagrange multipliers (72) are:

λk = c0 e
1
ρ (t+kτ) + d0 e−

1
ρ (t+kτ). (77)

Substituting this in (70) gives us the set of equations (68) to be solved for finding the

Gluskabi raccordation. �

These results for the continuous τ-periodic type are now illustrated with the help of the

same problem of finding raccordation between cos 2πt and the triangle wave. But now a

continuous raccordation is sought over the interval [0, 6]. The result from Theorem 5.2.3

will be used in this case and the resultant raccordation is depicted in Figure 8, where the

regularization factor ρ = 1. This regularization factor means that both the discrepancy in

the trajectory and the discrepancy in the derivative are equally weighted. Increasing the

value of ρ would weigh the derivative more and so smoothen the raccordation. Notice the

decrease in the magnitude of the raccordation followed by an increase, as the raccordation

progresses. This pinching effect can be attributed to the difference in phase of the two

trajectories being connected. It was also observed previously in the problem of connecting

harmonics in [8]. The effect is most pronounced when the two trajectories are 180 degrees

out of phase. Equivalently, there is no pinching at all when the two trajectories are phase

aligned. This is illustrated in Figure 9 and Figure 10. It was shown in [8] using the image

method that if the phase difference is greater than a certain threshold then pinching occurs

since the raccordation passes through zero in the parameter space. These Figures 9 and 10

also depict that the raccordation is also dependent on the locations within the period chosen

as the points of connection.
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1.0

w0 w1 w2 w3 w4 w5

Figure 8. The function is cos 2πt for t ≤ 0 and the triangle wave for t ≥ 6. Raccordation is over the
interval [0, 6].

2 4 6

-1.0

-0.5

0.5

1.0

Figure 9. The function is cos
(
2πt + π

2

)
for t ≤ 0 and the triangle wave for t ≥ 6. The two functions are

180◦ out of phase. Dashed lines show the functions being connected.
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2 4 6

-1.0

-0.5

0.5

1.0

Figure 10. The function is cos
(
2πt − π

2

)
for t ≤ 0 and the triangle wave for t ≥ 6. The two functions are

phase aligned. Dashed lines show the functions being connected.

5.2.2.1 More analysis of Theorem 5.2.3

Let yk = wk − wk−1. Then from (58),

w0 = wa + y0

w1 = w0 + y1 = w0 + y0 + f0 = wa + 2y0 + f0

w2 = w1 + y0 + f0 + f1 = wa + 3y0 + 2 f0 + f1 (78)

...
...

wk = wk−1 + y0 + f0 + · · · + fk−1 = wa + (k + 1)y0 + k f0 + (k − 1) f1 + · · · + fk−1

This yields an expression for y0 by realizing that wn = wb, specifically

y0 =
wb − wa − [

n f0 + (n − 1) f1 + · · · + fn−1
]

n + 1
. (79)

Let S =
[
n f0 + (n − 1) f1 + · · · + fn−1

]
. Again, slightly modified from (58)

fi =
1
ρ

c0 e
1
ρ (t+iτ) − 1

ρ
d0 e−

1
ρ (t+iτ)
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where t ∈ [0, τ]. And so, the sum S can be computed as,

S (t) =
1
ρ

c0 e
1
ρ t
[
n + (n − 1)e

1
ρ τ + (n − 2)e

1
ρ2τ + · · · + e

1
ρ (n−1)τ

]
−

1
ρ

d0 e−
1
ρ t
[
n + (n − 1)e−

1
ρ τ + (n − 2)e−

1
ρ2τ + · · · + e−

1
ρ (n−1)τ

]
=

1
ρ

c0 e
1
ρ t

n
(
1 − e

1
ρ τ
)

+ e
1
ρ τ

(
e

1
ρ nτ − 1

)
(
1 − e

1
ρ τ
)2 − 1

ρ
d0 e−

1
ρ t

n
(
1 − e−

1
ρ τ
)

+ e−
1
ρ τ

(
e−

1
ρnτ − 1

)
(
1 − e−

1
ρ τ
)2 (80)

=
1
ρ

c0 e
1
ρ t A − 1

ρ
d0 e−

1
ρ t B.

From (78), one notices that the difference terms can be expressed in terms of y0 as,

yk = y0 + f0 + f1 + · · · + fk−1

= y0 +
1
ρ

c0 e
1
ρ t

1 − e
1
ρ kτ

1 − e
1
ρ τ

 − 1
ρ

d0 e−
1
ρ t

1 − e−
1
ρ kτ

1 − e−
1
ρ τ

 . (81)

The values of the constant c0 and d0 can be found by utilizing the endpoint conditions

– wn−1(τ) = wb(0) and w0(0) = wa(0). From the former condition,

0 = wb(τ) − wn−1(τ) = yn(τ)

= y0(τ) +
1
ρ

c0 e
1
ρ τ

1 − e
1
ρnτ

1 − e
1
ρ τ

 − 1
ρ

d0 e−
1
ρ τ

1 − e−
1
ρnτ

1 − e−
1
ρ τ


=

wb(τ) − wa(τ) − S (τ)
n + 1

+
1
ρ

c0 e
1
ρ τ C − 1

ρ
d0 e−

1
ρ τ D

=
wb(τ) − wa(τ)

n + 1
+

1
ρ

c0 e
1
ρ τ

(
C − A

n + 1

)
− 1
ρ

d0 e−
1
ρ τ

(
D − B

n + 1

)
, (82)

and from the latter,

0 = w0(0) − wa(0) = y0(0)

=
wb(0) − wa(0) − S (0)

n + 1

=
wb(0) − wa(0)

n + 1
− 1
ρ

c0

( A
n + 1

)
+

1
ρ

d0

( B
n + 1

)
. (83)
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Multiply (83) by e
1
ρ τ

(
C − A

n+1

)
, and (82) by

(
A

n+1

)
and add to get,

0 =
1
ρ

d0

[
(n + 1)

(
BC e

1
ρ τ − AD e−

1
ρ τ
)
− AB

(
e

1
ρ τ − e−

1
ρ τ
)]

+
[
(n + 1)C e

1
ρ τ + A

(
1 − e

1
ρ τ
)]

[wb(0) − wa(0)]

⇒ d0 =
ρ [wb(0) − wa(0)]

[
(n + 1)C e

1
ρ τ + A

(
1 − e

1
ρ τ
)]

AB
(
e

1
ρ τ − e−

1
ρ τ
)
− (n + 1)

(
BC e

1
ρ τ − AD e−

1
ρ τ
) . (84)

And now substituting in (83),

c0 =
ρ [wb(0) − wa(0)]

[
(n + 1)D e−

1
ρ τ + B

(
1 − e−

1
ρ τ
)]

AB
(
e

1
ρ τ − e−

1
ρ τ
)
− (n + 1)

(
BC e

1
ρ τ − AD e−

1
ρ τ
) . (85)

As evident from the figures in the previous section the alignment or the phase difference

between the two periodic signals affects the Gluskabi cost considered and consequently the

raccordation. It is then reasonable to ask that given two signals of the periodic type and a

fixed raccordation interval, what is the optimum raccordation with respect to the starting

and ending points. As of now, this does not yield a general solution. The cost function

using the notation from this section is,

J =

∫ τ

0

n∑
k=0

[
y2

k(t) + ẏ2
k(t)

]
dt.

Let the phase shift for wa and wb be νa and νb respectively, i.e. the functions wa(θ + νa)

and wb(θ + νb) are expressed as functions of the parameters νa and νb, and the cost function

is to be minimized with respect to these parameters. Intuitively, there are two factors af-

fecting the cost – the correlation between a period of the two functions wa and wb, and the

difference between the end point values wa(0) − wb(0).

5.2.3 General Periodic Type

The problem of finding the connection between two periodic trajectories of different pe-

riods in general is more complicated. The complication arises from the fact that there

is no simple operator such that the kernel of this operator is the behavior of all periodic

trajectories of arbitrary period. An alternate approach has been devised for solving the rac-

cordation problem between trajectories of differing periods that yields interesting results.
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The approach involves stretching the signals so that they both belong to the type with the

same period, say the τ-periodic type for some τ. For example, if w is a signal of period

τ1, then choosing the time scaling factor to be τ1/τ will make the period τ. The stretch-

ing function is chosen in the spirit of the Gluskabi problem, specifically it is required that

the stretching function’s velocity or the time scaling factor be maximally persistent in the

constants type, so that during the raccordation interval the time scaling factor is as constant

like as possible.

Given two trajectories wa and wb from the τa-periodic type and the τb periodic type

respectively, the Gluskabi raccordation, w, between the two over the interval [a, b], with

respect to the norm ‖ · ‖2 = ‖ · ‖22 + ρ2‖D(·)‖22 and in B0 = C0 ∩ PWC1, is found in the

following manner.

Let η be the new stretched-time variable. Let’s choose an arbitrary common period τ.

Let f : η → t be the stretching function, going from the new time scale to the old time

scale. Let the raccordation interval in the new time scale be [c, d]. Then, the following

conditions are required of the stretching function f :

1. f (c) = a and f (d) = b.

2. The rate of change ḟ (η) is constant for η ≤ c and for η ≥ d. In fact, for the present

problem ḟ (η) = τa/τ for η ≤ c and ḟ (η) = τb/τ for η ≥ d.

3. The function f is monotonous.

This problem is formulated in the spirit of the Gluskabi problem by required the persis-

tence of the rate of change in the constants type, characterized by the operator Op = D.

So, employing Theorem (5.1.1) the rate of change in the raccordation interval is given by

Op∗Op ḟ = 0 or D2 ḟ = 0, with the aforementioned boundary conditions. Thus,

ḟ (η) = c1η + c2 η ∈ (c, d)
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for some c1, c2 ∈ R, that can be solved for using the boundary conditions.

ḟ (c) = c1 c + c2 = τa/τ

ḟ (d) = c1 d + c2 = τb/τ

Consequently, the following values for the constants are obtained.

c1 =
τb − τa

τ(d − c)

c2 =
dτa − cτb

τ(d − c)

Therefore,

ḟ (η) =
τb − τa

τ(d − c)
η +

dτa − cτb

τ(d − c)
.

Integrating the equation above we obtain,

f (η) =
τb − τa

2τ(d − c)
η2 +

dτa − cτb

τ(d − c)
η + C.

Condition 1 needs to be satisfied still but notice that we have an extra degree of freedom.

So, let’s just choose the starting point in the new time scale c = 0. Then,

f (c) = f (0) = a ⇒ C = a,

and

f (d) = b ⇒ d =
2(b − a)τ
τa + τb

.

Therefore, the stretching function is

f (η) =
τ2

b − τ2
a

4(b − a)τ2η
2 +

τa

τ
η + a for η ∈ (0, d).

Now, let’s look at the original periodic functions. Let w̄a(η) = wa
(
τa
τ
η
)

and w̄b(η) =

wb
(
τb
τ

(η − d)
)
. Then, w̄a and w̄b both belong to the τ-periodic type. The raccordation

is sought over the interval [0, d] for these two functions and can be found by applying

Theorem 5.2.3 or Theorem 5.2.4 from the previous section, with the operator Op = (I−S−τ)

and Q = (I − ρ2τD2). So, the cost function to be minimized is∫ d+τ

0

[
w̄(η) − w̄(η − τ)

]2
+ ρ2τ

[ ˙̄w(η) − ˙̄w(η − τ)
]2 dη
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The raccordation w̄ will be in the new time η and so can be transformed back into a raccor-

dation between the original periodic functions, wa and wb, of different periods by using the

inverse function of the stretching function f . The inverse g : t → η can be constructed as

follows, by completing the square:

τ2
b − τ2

a

4(b − a)τ2η
2 +

τa

τ
η + a = f (η) = t

η2 +
4(b − a)ττa

τ2
b − τ2

a
η +

4a(b − a)τ2

τ2
b − τ2

a
=

4(b − a)τ2t
τ2

b − τ2
a[

η +
2(b − a)ττa

τ2
b − τ2

a

]2

=
4(b − a)τ2t
τ2

b − τ2
a
− 4a(b − a)τ2

τ2
b − τ2

a
+

[
2(b − a)ττa

τ2
b − τ2

a

]2

⇒ η = −2(b − a)ττa

τ2
b − τ2

a
+

√
4(b − a)τ2t
τ2

b − τ2
a
− 4a(b − a)τ2

τ2
b − τ2

a
+

[
2(b − a)ττa

τ2
b − τ2

a

]2

The idea is illustrated with the help of the following example. The Gluskabi problem

is solved for the periodic functions sin 2πt and sin 4πt, with periods 1 and 1/2 respectively.

The raccordation is sought over the interval [0, 3]. Using the method discussed above, the

raccordation is shown in Figure 11.

Figure 11. The function is sin 2πt for t ≤ 0 and sin 4πt for t ≥ 3. Raccordation is over the interval [0, 3].

It can be shown that the raccordation in the t-space is independent of the choice of the

period τ in the η-space. Say w̄ is the solution to the raccordation problem in the η-space

when the chosen period is τ. Then w̄ minimizes the cost function:

J =

∫ d+τ

0

[
w̄(η) − w̄(η − τ)

]2
+ ρ2τ

[ ˙̄w(η) − ˙̄w(η − τ)
]2 dη.
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And the solution in the t-domain is w̄(g(t)). Now, say there is another period τ′ and the

raccordation corresponding to it is w′, the stretching function is f ′ and the interval length

is d′. Say M = τ′/τ. Then, looking at the equations above the stretching functions f and f ′

are related as follows:

f (η) = f ′(Mη) = f ′(η′).

Similarly, d′ = Md. It will be shown that two cost functions in η and η′ space are equivalent.

J =

∫ d+τ

0

[
w̄(η) − w̄(η − τ)

]2
+ ρ2τ

[ ˙̄w(η) − ˙̄w(η − τ)
]2 dη

=

∫ d+τ

0

[
w̄

(
η′

M

)
− w̄

(
η′

M
− Mτ

M

)]2

+ ρ2τ

[
˙̄w
(
η′

M

)
− ˙̄w

(
η′

M
− Mτ

M

)]2

dη

=

∫ d+τ

0

[
w′

(
η′

) − w′
(
η′τ′

)]2
+ ρ2τ

[
˙̄w
(
η′

) 1
M
− ˙̄w′

(
η′ − τ′) 1

M

]2

M2 dη

=

∫ d′+τ′

0

[
w′

(
η′

) − w′
(
η′τ′

)]2
+ ρ2τ

[
ẇ′

(
η′

) − ẇ′
(
η′ − τ′)]2 M2 dη

M

=

∫ d′+τ′

0

[
w′

(
η′

) − w′
(
η′τ′

)]2
+ ρ2τ′

[
ẇ′

(
η′

) − ẇ′
(
η′ − τ′)]2 dη

This shows that if w̄ minimizes the Gluskabi cost function in the η space then w′ minimizes

it’s respective cost function in the η′ space. Consequently, in the t space, the raccordation

is:

w(t) = w′(g′(t))

= w′(Mη)

= w̄(η)

= w̄(g(t))
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CHAPTER 6

DYNAMICAL RACCORDATION PROBLEM

This chapter is devoted to the study of the dynamical raccordation case, i.e. when the trajec-

tories in the base behavior are constrained by the dynamics of a system. Since one is never

allowed to step out of the base behavior, the dynamical system constraints can be called

“hard constraints”, where as the type constraints can then be called “soft constraints”. In

th following sections, the Gluskabi extension is derived for linear time invariant dynamical

systems, in both the continuous time and discrete time case. The relation of the controlla-

bility of the system to the existence of a raccordation is also investigated.

6.1 Continuous-Time LTI Systems

The first result here deals with continuous time LTI systems and types that are described

by polynomial differential operators, where as the next result deals with shift types. The

time axis is chosen to be the set of real numbers in this section. The base behavior is the set

of smooth trajectories of an LTI dynamical system, and so for this section the assumption

(S3) can be stated using Willems’s notation as,

(S3*) The base behavior is B0 = {w ∈ C∞(R,Rq) s.t. R(D) w = 0}, where R is a polynomial,

R ∈ Rg×q[ξ], and g < q.

Every LTI system has an equivalent minimal representation, R(D)w = 0, that can also be

expressed in the input/output form by partitioning w as:

P(D)y = N(D)u, (86)

where y and u are called the output and input respectively, P ∈ Rg×g[ξ], N ∈ Rg×(q−g)[ξ],

det P , 0, and P−1N is a proper matrix ([34]). It is this I/O representation that will be used

in the following theorems to define an LTI system.
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6.1.1 Polynomial Differential Types

A polynomial differential type, T , is one that is described by the kernel of an operator Op

that is a polynomial in the differentiation operator D. Since u and y are simply obtained by

some partition of w, w ∈ T implies that both u and y are of the same type. Hence we are

looking for connections of input/output pairs of the same type T .

The presentation of the main result is preceded by some necessary remarks. The defi-

nition of the LTI system above suggests that w is q-dimensional and so in general a vector

operator is needed to describe the type, T , such as in Section 5.1.2. However, an exten-

sion of scalar operator is used in this section. Given a scalar type (T ,Op) i.e., defined on

signal spaceW = R, it can be correspondingly defined for vector trajectories i.e.,W = Rq

by extending Op as Ope w =
(
Op w1, · · · ,Op wq

)T
for w = (w1, · · · ,wq)T ∈ WR. In the

following result Op will be understood to be Ope wherever appropriate. The inner prod-

uct is appropriately extended as well, and defined in the same manner as in Section 5.1.2.

The inner product is defined on the support of the operator Op acting on the Gluskabi map

and since Op is a differential operator, the support is the same as the raccordation inter-

val. The adjoint of operators is defined as in earlier sections. Furthermore, assumption

(S1a) about using the L2 inner product will be carried on in this section. Consequently, any

Sobolev norm of order k can be used by choosing Q = W(−D2), where W is a polynomial,

W(ξ) = c0 + c1ξ + c2ξ
2 + · · · + ckξ

k, for any k ∈ Z+ and ck ∈ R+. It can be easily shown that

this Q is self-adjoint. For the following result, the weighting operator Q is also extended

to a vector version, in a similar fashion to Section 5.1.2.

Theorem 6.1.1. Given a minimal and controllable linear time invariant dynamical system

(86) and a polynomial differential type (T ,Op), the trajectories in the Gluskabi extension
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with respect to the Sobolev norm ‖.‖Q, are given by the following equations:

(
U∗12 Opu∗Qu Opu U12 + U∗22 Opy∗Qy Opy U22

)
η = 0

−U12 η = u

U22 η = y

where U =

U11 U12

U21 U22

 ∈ Rq×q[ξ] is a unimodular matrix such that
[
N P

]
U =

[
I O

]
.

PROOF. The cost function to be minimized along with the adjoined constraints is given

in the inner product form:

J(u) =
1
2
〈QuOpu u,Opu u〉 + 1

2
〈QyOpy y,Opy y〉 + 〈λ, P(D)y − N(D)u〉 (87)

where Opu, Opy, Qu and Qy are the appropriately extended forms of the operators Op and

Q, depending on the dimensions of u and y, respectively. The first variation of the cost

function due to a perturbation in u can be computed as follows,

δJ(u; δu) =
1
2
〈QuOpu u,Opu δu〉 + 1

2
〈QuOpu δu,Opu u〉 + 1

2
〈QyOpy y,Opy δy〉

+
1
2
〈QyOpy δy,Opy y〉 + 〈λ, P(D) δy〉 − 〈λ,N(D) δu〉

= 〈QuOpu u,Opu δu〉 + 〈QyOpy y,Opy δy〉 + 〈λ, P(D) δy〉 − 〈λ,N(D) δu〉

= 〈Opu∗QuOpu u, δu〉 + 〈Opy∗QyOpy y, δy〉 + 〈P(D)∗ λ, δy〉 − 〈N(D)∗ λ, δu〉

+ boundary terms (88)

where we have used the fact that Qu and Qy are self adjoint, since Q = Q∗, in deriving

the last expression. All the adjoints exist because the boundary terms can be safely ignored

since the functions u and y over the interval [a, b] are to be matched to their respective given

trajectories at the boundaries. Thus, the variations δu and δy and the required number of

their derivatives are zero at the end points. This leads to the Euler-Lagrange equations,

Opy∗QyOpy y + P(D)∗ λ = 0. (89)
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The necessary condition for optimality is,

Opu∗QuOpu u − N(D)∗ λ = 0. (90)

To find the Gluskabi extension it is required to eliminate λ from the above two equations

and solve the resultant equations along with the dynamical system equation for u and y and

the given boundary conditions. In other words one needs to find the behavior given by the

representation, 
N∗ X O

P∗ O Z

O N P

 (D)


λ

−u

y

 = 0 (91)

where X, Z, N∗, and P∗ are polynomial matrices such that X(D) = Opu∗QuOpu, Z(D) =

Opy∗QyOpy, N∗(D) = N(D)∗, and P∗(D) = P(D)∗. The behavior in (91) will be unchanged

under any left unimodular transformation on the polynomial matrix ([34]). Since the system

is controllable, the rank of the matrix
[
P(s) −N(s)

]
is the same for all s ∈ C and because

of minimality, the matrix has full row rank for almost all s. This implies that this matrix

has full rank for all s and the polynomial matrices P and N are left coprime ([34] and [43]).

Thus, there always exists a unimodular matrix U such that[
N P

]
U =

[
I O

]
. (92)

It also holds that

U∗

N
∗

P∗

 =

 I

O

 (93)

where U∗(s) = U(−s)T . The matrix U∗ is also unimodular since det U = det UT , and

since the determinant is a polynomial in the entries of the matrix, which are themselves

polynomials for the matrix U and so the determinant is a polynomial in the indeterminate s

and is some constant since U is unimodular and so changing the indeterminate to −s doesn’t

change the determinant. If the matrix U is partitioned as

U11 U12

U21 U22

, then U∗ =

U
∗
11 U∗21

U∗12 U∗22

.
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A new unimodular matrix can now be constructed using U∗, specifically

U
∗ O

O I

, and

applying it as a left unimodular transformation to (91) yields

U
∗ O

O I



N∗ X O

P∗ O Z

O N P

 (D)


λ

−u

y

 =


I U∗11X U∗21Z

O U∗12X U∗22Z

O N P

 (D)


λ

−u

y

 = 0 (94)

The behavior corresponding to the equation above is equivalent to
I U∗11X U∗21Z

O U∗12X U∗22Z

O N P


 I O

O U


 I O

O U


−1

(D)


λ

−u

y

 = 0


I U∗11XU11 + U∗21ZU21 U∗11XU12 + U∗21ZU22

O U∗12XU11 + U∗22ZU21 U∗12XU12 + U∗22ZU22

O I O




λ

ν

η

=0 (95)

where the bold font corresponds to the differential operator of the respective polynomial

e.g. X = X(D) and so on,

 I O

O U


−1


λ

−u

y

 =


λ

ν

η

, ν is a g × 1 vector, and η is a (q − g) × 1

vector. The third row of (95) simplifies to ν = 0 and the second row simplifies to the

equation, (
U∗12XU12 + U∗22ZU22

)
η = 0

(
U∗12 Opu∗Qu Opu U12 + U∗22 Opy∗Qy Opy U22

)
η = 0 (96)

and the subsequent substitution yields

u = −U12 η (97)

y = U22 η (98)

�
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It is of course assumed that the set {(u, y) s.t. P(D)y = N(D)u and Op u = 0 and Op y =

0} is nonempty i.e., there exist input/output pairs of the dynamical system of the required

type T . Otherwise the question of finding the Gluskabi extension is moot. Also, the con-

trollability assumption (as defined in Chapter 2) is one sufficient condition for the solution

to exist. It guarantees that there exist trajectories of the dynamical system connecting the

left trajectory to the right one in some finite time. Furthermore, for smooth solutions to an

LTID system the time can be taken to be arbitrarily small ([34]) and so the length of the

interval [a, b] does not matter. This result can be further generalized to the case when only

the input or the output is of the type and needs to be connected, or to the case when the

persistence of output is more important then the input. Either of these cases can be viewed

as an extension of the previous result by changing the operator Q of the inner product. For

instance, the first case can be accomplished by choosing Qu = 0 or Qy = 0.

6.1.1.1 Examples

The previous result, Theorem 6.1.1, for finding the raccordation between two trajectories

of an LTI system is illustrated with the help of two examples.

Example-1.

We have a scalar first order LTI system given by the input-output differential equation

(D + 1)y = u. We are interested in transitioning from one constant steady state to another.

So our type is constants and Op = D. Notice that elements of this type satisfy the hard

constraint i.e., if y = c where c is some constant then u = c. The transfer function for

this system is H(s) = 1
s+1 and so at steady state yss = uss, by the final value theorem.

The chosen norm is again the L2 norm and the raccordation time interval is [0, 1]. The

numerator and denominator polynomials are N(s) = 1 and P(s) = s + 1 respectively. And

so U =

1 −(s + 1)

0 1

 is the unimodular matrix required by Theorem 6.1.1 and to find the

78



Gluskabi extension the following system of equations need to be solved.

[(D + 1)∗Op∗Op(D + 1) + Op∗Op] η = 0 (99)

(D + 1) η = u (100)

η = y (101)

The equation (99) is simplified to get

(
D4 − 2D2

)
η = 0 (102)

Solving these differential equations yields,

y(t) = Ae
√

2t + Be−
√

2t + C + Dt (103)

u(t) = (1 +
√

2)Ae
√

2t + (1 −
√

2)Be−
√

2t + C + D(1 + t) (104)

Again, the specific raccordation is obtained by using the boundary conditions i.e. u(0),

y(0), u(1), and y(1). The raccordation for the case when u = y = 0 for t ≤ 0 and u = y =

1 for t ≥ 1 is illustrated in Figure 12.

-1.0 -0.5 0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

u(t)

y(t)

Figure 12. The raccordation from constant 0 to the constant 1. The input is dashed line and output is
the solid one.

Example-2.

We end this section by looking at the cyber-physical problem of charging a capacitor. We
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consider the simplest series RC circuit shown in Figure 13. The objective here is to put

a charge Q on the capacitor in time interval [0,T ]. So the type to be considered for this

case is the “type of constants” and again the L2 norm is minimized. The dynamical system

equation associated with the circuit is q̇ + 1
RC q = 1

Ru, where q is the charge on the capacitor

and u is the source voltage as well as the input over here. The type constraint is only

imposed on the output i.e. q and so in terms of Theorem 6.1.1, Qu = 0. The resulting

trajectory of charge and the input voltage is illustrated in Figure 14. An interesting parallel

has been found that the resulting minimizing trajectory obtained from applying Theorem

6.1.1 is the same trajectory obtained when minimizing the heat generated in the resistor as

shown in [44]. This points to a possible correlation between our theory and minimization

of entropy for thermodynamic systems.

�

�����

C

Figure 13. Charging of a capacitor in an RC circuit

u(t)

q(t)

Q

Q
C

T
t

q, u

Figure 14. Charge and input voltage trajectories of the RC circuit
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6.1.2 Linear Shift Types with Commensurate Delays

In this section, the Gluskabi extension is found for types described by linear shift operators

with commensurate shifts. The extension is found for the trajectories of a continuous time

LTI system, and so the base behavior is the same set of smooth solutions to an LTI system,

(S3*). For these types, the same result as Theorem 6.1.1 holds and is presented here.

The support of the operator is now longer than the raccordation interval, in general. For

instance, if the raccordation interval is [a, b] then for the τ-periodic type, included in this

class, the support of the Gluskabi map is [a, b + τ]. The inner product is then obviously

defined on this longer interval which is the support of the Gluskabi map.

Theorem 6.1.2. Given a minimal and controllable linear time invariant dynamical system

(86) and a linear shift type (T ,Op), the trajectories in the Gluskabi extension are given by

the following equations:

(
U∗12 Opu∗Opu U12 + U∗22 Opy∗Opy U22

)
η = 0

−U12 η = u

U22 η = y

where U =

U11 U12

U21 U22

 ∈ Rq×q[ξ] is a unimodular matrix such that
[
N P

]
U =

[
I O

]
.

PROOF. Notice that the Gluskabi extension is given by exactly the same equations as

Theorem 6.1.1. The proof is along the same lines and so it will not be completely replicated

here. The same cost function is minimized in this case as well and so the same set of Euler-

Lagrange equations and optimal conditions are obtained, i.e.,
N∗ X O

P∗ O Z

O N P

 (D,S)


λ

−u

y

 = 0, (105)

where N, P, N∗, and P∗ are polynomial matrices in the indeterminate s, and X and Z are

polynomial matrices in the indeterminates z and z−1, so that a polynomial in s corresponds
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to a differential operator and a polynomial in z and z−1 to a polynomial in shift operators –

X(S) = Opu∗Opu, Z(S) = Opy∗Opy. Thus, (105) is a delay-differential system of equations.

Notice that the entries of the matrix in (105) belong to the ring R[s, z, z−1]. However,

it has been shown in [45, 46, 47] that if a certain extension, K , of this ring is considered

then the properties of delay-differential systems with commensurate delays can be studied

algebraically in the same manner as is done for system of ODEs. The extended ring is

specifically

K =

{
p
φ

s.t. p ∈ R[s, z, z−1], φ ∈ R[s] \ {0}, p∗

φ
∈ H(C)

}
,

where p∗ = p(s, e−s) and H(C) is the ring of entire functions on the whole complex plane.

With this ringH , it turns out that two delay-differential behaviors are again equivalent

if they are left unimodularly related. The determinant of the unimodular matrix is now a

unit of the ring H . The polynomial matrix U, in the indeterminate s, that transforms the

matrix
[
N P

]
to

[
I O

]
is still unimodular with respect to the new ring. Thus, the rest of

the arguments in the proof of Theorem 6.1.1 still hold and we arrive at the same result for

the Gluskabi extension. �

6.2 Discrete LTI Systems

The dynamical raccordation problem can be considered in discrete time as well. The uni-

versum in this case is (Rq)Z, i.e., the space of all infinite sequences that take values in Rq.

The analogue for LTI systems in the discrete time case are Autoregressive systems, i.e.,

systems expressed by a set of linear difference equations ([35] Theorem 3.1), and the tra-

jectories of such a system will form the base behavior in this section. The assumption (S3)

takes the following form:

(S3”) The base behavior is B0 = {w ∈ (Rq)Z s.t. R(σ,σ−1) w = 0}, where R ∈ Rg×q[z, z−1]

and σ is the left shift operator and σ−1 the right shift operator.

These systems are linear, time invariant, and complete. Just as in the continuous case, there

is a surjection from the space of polynomial matrices, with entries in the ring R[z, z−1], to
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the set of LTI complete discrete time systems, and this induces an equivalence relation on

the polynomial matrices. Every such system also admits a minimal representation, having

full row rank, and equivalent minimal representations are related by left unimodular trans-

formations ([35] Prop. 3.3). It is worth mentioning here that a unimodular matrix is one

whose determinant is a unit of the ring, which is the ring of polynomials in two indetermi-

nates z and z−1 here, so the determinant is αzk where α , 0 and k ∈ Z. This translates to

one more elementary operation than the continuous case and that is multiplication by zk. A

system is said to be controllable if it allows an AR-representation with R left prime ([35]

Theorem 5.2). In the following result, I/O dynamical systems will be considered given by

the AR-representation

P(σ,σ−1)y = Q(σ,σ−1)u, (106)

where P ∈ Rp×p[z, z−1], Q ∈ Rp×(q−p)[z, z−1], and det P , 0. The I/O system is controllable

if and only if P and Q are left coprime ([35]).

6.2.1 AR Types

An AR type is one that is described by the kernel of an operator Op that is a polynomial in

the difference operator. Furthermore, the Op has been defined for the scalar sequence case,

but it can be extended to the multidimensional case in a similar manner to the continuous

time. The inner product that will be used here is the canonical one over the finite interval

T, i.e.,

〈x, y〉T =
∑
i∈T

xi yi.

The maximal persistence of the raccordation is sought over the support of the Gluskabi

map, which will be typically longer than the raccordation interval since the operator Op

contains shifts. Say the raccordation interval is [a, b], then the support is T = [c, d] where

c = (a − max. power of σ in Op) and d = (b + max. power of σ−1 in Op). The adjoint

of the operator Op now must exist for a restricted set, specifically the set of functions

h : [c, d] → Rq such that hk = 0 for k ≤ a and for k ≥ b. Since, the scalar Op is a
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polynomial in σ, it suffices to just show the adjoint of the operator σk.

〈σkh, y〉T =

d∑
i=c

h[i + k] y[i]

=

d+k∑
i=c+k

h[i] y[i − k]

=

d∑
i=c

h[i] y[i − k]

= 〈h, σ−ky〉T

Notice that, |k| is less than or equal to the maximum power of σ and σ−1, and so by the

definition of c and d, (c + k) ≤ a and (d + k) ≥ b. Consequently, since h[i] = 0 for i outside

(a, b), the limits of the sum can be changed to [c, d] in the above derivation. Therefore,

Op = R(σ,σ−1) admits the adjoint – Op∗ = R(σ−1, σ). Now, the adjoint can be extended

to multidimensional case in the same manner as the continuous version.

Theorem 6.2.1. Given a minimal and controllable LTI discrete system (106) and an AR-

type (T ,Op), the trajectories in the Gluskabi extension are given by the following equa-

tions: (
U∗12 Op∗u Opu U12 + U∗22 Op∗y Opy U22

)
η = O

U12 η = u

−U22 η = y

where U =

U11 U12

U21 U22

 is a unimodular matrix such that
[
Q P

]
U =

[
I O

]
.

PROOF. The proof is exactly the same as the continuous time case since everything re-

quired for that proof still holds in this case. �

6.3 Controllability

For both the signal and dynamical raccordation problems, the controllability of the base

behavior guarantees that for any two elements of the type there exists at least one trajectory
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in the base behavior connecting them. So, controllability of the base behavior is a sufficient

condition for the non-emptiness of the search space of the Gluskabi optimization prob-

lem. In this section, the controllability condition will be relaxed, and instead a necessary

condition will be obtained for continuous time LTI systems.

A minimal LTI behavior can be decomposed into the direct sum of a controllable be-

havior, Bcont, and an autonomous behavior, Baut, (See Section 2.1.3.1). This decomposition

is not unique, but it can be shown that the controllable part, however, is unique. Using this

decomposition, the condition of controllability of the base behavior can be relaxed to the

following condition.

Theorem 6.3.1. Given a minimal LTI system (86), and a linear differential type (T ,Op),

a necessary and sufficient condition for the existence of at least one trajectory connecting

any pair of elements in the type over any given finite time interval is that the type behavior

be included in the controllable part of the base behavior, Bcont.

PROOF. Let’s first show that the aforementioned condition is necessary. Say there exists

at least one trajectory between any pair of elements in the type over any given finite interval.

Since, the type is linear it always contains the zero trajectory. So we have that for any given

trajectory in the type, there exists at least one trajectory, in the base behavior, connecting

it to the zero trajectory over the given finite time interval, and vice versa. But, the zero

trajectory is included also in the controllable part of the base behavior. This implies that

every trajectory in the type behavior can be connected over some finite interval to any

trajectory in the controllable part of the base behavior, and vice versa. Consequently, by

the definition of controllability, the trajectories in the type behavior are included in the

controllable part of the base behavior or T ⊂ Bcont. Thus, this condition is necessary.

On the other hand, if the type behavior is contained in the controllable part of the base

behavior then clearly there exists at least one trajectory connecting any pair of elements in

the type, over some finite time interval. The interval can be of arbitrary length because it is
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an LTI behavior. Thus, the aforementioned condition is also sufficient. �

Given the polynomial matrix R, describing the LTI base behavior, a corresponding poly-

nomial matrix Rcont can be found such that the controllable part of the base behavior is

described by Rcont(D) w = 0 (See Section 2.1.3.1). In terms of this matrix, the above condi-

tion that the type be contained in the controllable part of the base behavior translates to the

equivalence between the two behaviors, namely the type T and the intersection between

the controllable part and the type or Bcont ∩ T . Thus, the necessary and sufficient condi-

tion is that the polynomial matrices describing these two behaviors are left-unimodularly

related. In other words there exists a unimodular polynomial matrix U such that R

Op

 = U

Rcont

Op

 ,
where Op is the polynomial matrix corresponding to the operator Op.

If Op is a nonlinear differential operator then the situation is more interesting. In fact,

the linear operator is a special case of this general result.

Theorem 6.3.2. Given a minimal LTI system (86), and a differential type (T ,Op), a nec-

essary and sufficient condition for the existence of at least one trajectory connecting any

pair of elements in the type over any given finite time interval is that the autonomous part

of all the trajectories in the type, obtained by decomposing the base behavior, be the same

trajectory.

PROOF. The base behavior, B, can be decomposed into the direct sum of a controllable

part, Bcont, and an autonomous part, Baut (See Section 2.1.3.1), i.e.,

B = Baut ⊕ Bcont.

Using the decomposition of the base behavior, every trajectory, w, in the base behavior can

be decomposed into an autonomous part and a controllable part, i.e., w = wa + wc. Now,
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say there exists at least one trajectory, w, between any pair of elements, w1 and w2, in the

type over a given finite time interval, [a, b]. Let the decomposition of these trajectories be:

w1 = wa
1 + wc

1 w2 = wa
2 + wc

2 w = wa + wc.

Since, w(t) = w1(t) for t ≤ a, it implies that wa(t) = wa
1(t) for t < a. But then the two

trajectories, wa and wa
1, both in the autonomous behavior Baut agree with each other for

t < a, and so they agree for all time, i.e. wa = wa
1. Since w connects w1 and w2, and so

wa(t) = wa
2(t) for t > b, it yields that wa

1 = wa
2. Thus, a necessary condition for the existence

of at least one trajectory connecting any pair of elements in the type is that the autonomous

part of all the trajectories in the type be the same.

On the other hand, if the two trajectories, w1 and w2, in the type have the same au-

tonomous part, i.e. wa
1 = wa

2, then since wc
1, wc

2 ∈ Bcont there exists a trajectory wc ∈ Bcont

such that it connects wc
1 and wc

2 over the given interval. Then, w = wa
1 + wc connects the

trajectories w1 and w2. Thus, the condition of the autonomous part being the same is also a

sufficient condition.

To prove that this result is independent of the decomposition, it needs to be shown that

if the autonomous part of all the trajectories in the type is the same in one decomposition

then it is the same, albeit a different trajectory, in every other decomposition of the base

behavior. It was shown in Section 2.1.3.1 that if one decomposition is given by the kernels

of Rcont(D) and Raut(D), where

Rcont(ξ) =

[
I 0

]
V−1 and Raut(ξ) =

D(ξ) 0

0 I

 V−1, (107)

then another decomposition is given by the kernels of Rcont(D) and R̃aut(D), where

R̃aut(ξ) =

D
′(ξ) 0

0 I

 W−1V−1 and
[
D(ξ) 0

]
W =

[
D′(ξ) 0

]
. (108)

Let two trajectories of the same type, say w1 and w2, have the same autonomous part wa

using the decomposition (107), i.e.,

w1 = wa + wc
1 and w2 = wa + wc

2.
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If the matrices V and V−1 are partitioned with appropriate dimensions as follows:

V =

 V1 V2

V3 V4

 and V−1 =

 Vu

Vl

 ,
then the autonomous part can be computed as,

wa = V

I 0

0 0


 Vu

Vl

 (D) w1 = V

 Vu

0

 (D) w1 = V

 Vu

0

 (D) w2.

This means that for any w1 and w2 in the type, Vu(D)

0

 (w1 − w2) ∈ ker(V).

Since V is unimodular, the kernel of V is trivial, i.e. ker V = {0}. Therefore, if the au-

tonomous part of the two trajectories is the same then Vu(D) w1 = Vu(D) w2. Now using the

other decomposition (108), say the autonomous parts of w1 and w2 are wa
1 and wa

2 respec-

tively. Then,

wa
1 = VW

I 0

0 0


U
−1
1 0

× U−1
2


 Vu

Vl

 (D) w1

= VW

 U−1
1 Vu

0

 (D) w1 = VW

 U−1
1 Vu

0

 (D) w2

= wa
2,

where W =

U1 0

× U2

. This concludes the proof. �

Lastly, in this section, Theorem 6.1.1 is modified in the light of Theorem 6.3.1 to ac-

commodate the case of finding the Gluskabi extension when the system is not controllable.

Theorem 6.3.3. Given a minimal LTI system (86) and a polynomial-differential type (T ,Op),

the trajectories in the Gluskabi extension with respect to the Sobolev norm ‖.‖Q are given
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by the following equations:

(
V∗12 Opu∗Qu Opu V12 + V∗22 Opy∗Qy Opy V22

)
η = 0

V12 η = u

V22 η = y

where V =

V11 V12

V21 V22

 ∈ Rq×q[ξ] is a unimodular matrix such that the controllable part of

[
−N P

]
is described by the polynomial matrix Rcont =

[
I O

]
V−1.

PROOF. It is assumed that the assumption from Theorem 6.3.1 is satisfied, i.e. the type

behavior is contained in the controllable part of the base behavior. Then, the hard constraint

can be chosen to be the description for the controllable part, Rcont, instead of the description

for the entire LTI system. This is valid because of the fact that any trajectory connecting

any two trajectories in the type lies in the controllable part, since they all have the same

autonomous parts (See Theorem 6.3.2).

If the minimal LTI system is described by the polynomial matrix
[
−N P

]
then from

Section 2.1.3.1, its controllable part is described by the polynomial matrix Rcont =

[
I O

]
V−1,

where V is unimodular. Using Rcont =

[
N̂ P̂

]
as the system description, the proof is the

same as Theorem 6.1.1. The same cost function is minimized and it leads to the following

set of equations: 
N̂∗ X O

P̂∗ O Z

O N̂ P̂

 (D)


λ

u

y

 = 0,

where X, Z, N∗, and P∗ are polynomial matrices such that X(D) = Opu∗QuOpu, Z(D) =

Opy∗QyOpy, N̂∗(D) = N̂(D)∗, and P̂∗(D) = P̂(D)∗. Using the fact that
[
N̂ P̂

]
V =[

I 0
]

V−1V =

[
I 0

]
, and going along the same track as in the proof of Theorem 6.1.1,
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the equations above can be simplified to

(
V∗12 Opu∗Qu Opu V12 + V∗22 Opy∗Qy Opy V22

)
η = 0

V12 η = u

V22 η = y. �
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CHAPTER 7

GAIT TRANSITIONS

The groundwork laid down in the previous chapter culminates in a contribution to a problem

of interest in robotics: Finding a graceful transition between different gaits or locomotion

patterns of a biomimetic robot. Animals too have different gaits that they employ in varying

scenarios, and they gracefully switch from one gait to another. For instance, it has been

observed that a horse typically displays four different gaits: walk, trot, pace, and gallop

[48]. Insects on the other hand use wave, tetrapod, and tripod gaits [49]. As mentioned

earlier, in order to traverse complex terrains biomimetic robots in practice also require

distinct gaits. If the locomotion apparatus of the animal or robot is seen as a dynamical

system then a gait is described by the collection of periodic trajectories of some of the states

such as the positions and velocities, and is a periodic solution of the dynamical system.

Thus, a defining characteristic of a gait is that it is periodic, and a graceful transition in

the context of this dissertation is one that maximally preserves this periodicity during the

transition. This idea is demonstrated with the help of a two-piece worm, modeled simply

as two masses connected by an actuator and with asymmetric dry friction, and of systems

formed by interconnection of these two-piece worms in the following sections.

There is a huge body of existing work on the design of different gaits but no significant

attention has been paid to the problem of gait transitions. An increasingly popular approach

for generating control signals for locomotion gaits is to use central pattern generator (CPG)

models, but it has been pointed out in [50] that despite plethora of computational studies

into gait transitions in animals, few have been applied to robotics. Some instances of work

done in gait transitions for robots using this control approach are included here. In [51], the

authors have designed a salamander robot that switches from swimming to walking. They

employ a network of coupled oscillators to generate limb motions with just one input, the

drive signal. As the drive frequency is increased, the system switches from the swimming
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gait oscillators to walking gait oscillators, with a transition period where a weighted com-

bination of both is taken. A similar weighted combination approach was taken in [52]. In

this case, the authors designed the gaits by extracting kinetic motion primitives from the

joint trajectories’ data of an actual horse using principal component analysis (PCA), and

then the control signals for the limb controllers of a quadruped robot are assumed to be

linear combinations of these primitives. To transition from one gait to another, a homotopy

of the two gait control trajectories is used and the transition occurs in a fixed time about a

pivot point. Using this method, successful transitions were not observed for all gait pairs.

Another approach is to manually program each of the transitions, as was done in [53] for

a hexapod robot keeping just the static stability in mind. The authors extended this work

and designed an interesting scheme for automatically generating gait transition controls in

[54], again considering stability. Yet another approach to gaits in a hexapod robots is seen

in [55], where a switch from one gait to another is accomplished by simply changing the

phase difference between the control signals of the different limbs. However, no attention

has been paid as to how this change should occur. In conclusion, the aforementioned ex-

amples are indicative of how most of the existent research works concentrate on the design

of gaits, based solely on kinematics, and reveal a general lack of analysis into the best way

to switch from one gait to another.

7.1 Two-Piece Worm Model

A simplified one dimensional model of the worm and its rectilinear motion are considered

here. The model comprises of two blocks, M1 and M2, of the same mass m connected by

an actuator as shown in Figure 15. The actuator exerts a force, u, symmetrically on both

masses but in opposite directions. The direction of motion of the worm or the forward

direction is towards the right, as indicated in the figure. For the sake of simplicity it is as-

sumed that both masses are equal. The friction is asymmetric, i.e., the friction experienced

by a mass when moving forward is not the same as when moving backwards.
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M1M2

u(t)

x(t)

Figure 15. Two piece worm model

The behavior of this model has been extensively studied by many researchers, such

as [56], [57], and [58]. Additionally, gaits have been designed for this model as well

considering different optimality criteria, for instance in [59] and [60]. The dynamics of this

model are given by the following equations:

m ẍ1(t) = u(t) + f1(t)

m ẍ2(t) = −u(t) + f2(t), (109)

where f1 and f2 are the frictional forces experienced by the respective masses. The friction

model is as follows:

fi(t) =


− fF if ẋi(t) > 0

fB if ẋi(t) < 0

fO if ẋi(t) = 0

for i ∈ {0, 1}, (110)

where fF , fB > 0 are constant and are the forward and backward frictional forces respec-

tively. It is also assumed that fB > fF . This asymmetry in the frictional forces leads to the

forward propagation of the worm. The dynamical system is four dimensional, but for the

purposes of gait analysis we can exclude the trajectory of the center of mass. Therefore,

we consider a three dimensional system with the state vector y = {x1 − x2, ẋ1 − ẋ2, ẋ1 + ẋ2}.
So, the dynamical system is a switched system where each of the modes is affine, i.e.,

ẏ = Ay + Bu + C, (111)

where A =


0 1 0

0 0 0

0 0 0

, B =


0

2

0

, and C =


0

f1 − f2

f1 + f2

, and the value of the mass m has been

subsumed in u and f ’s.
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In terms of the Gluskabi framework, the base behavior is taken to be the space of

piecewise-continuous functions with the control being piecewise continuous and the states

are continuous. Furthermore, the type to be considered here is the τ-periodic type, de-

scribed by the operator Op = (I − S−τ). Gaits with period τ are obviously of this type.

Therefore, this problem of finding the Glsukabi raccordation between two gaits of period τ

for the two-piece worm, over the interval [a, b] was addressed in [61].

7.1.1 Switched Systems with Affine Modes and Periodic Type

The necessary conditions for a transition are derived first in general for the periodic type

and any switched system with affine modes, and a predefined switching sequence. The

specific case of worm dynamics is considered later.

Theorem 7.1.1. Given a switched system with affine modes, ẏ = Aiy + Biu + Ci, and a fixed

predefined switching sequence, with j switches, and switching conditions ψk(y(tk)) = 0,

the Gluskabi raccordation with respect to the τ-periodic type and the L2 norm, over the

interval [a, b], must satisfy the following equations:

For t ∈ (tk−1, tk) and k ∈ {1, · · · , j + 1},

2y(t) − y(t − τ) − y(t + τ) + AT
k λ + λ̇ = 0 (112)

2u(t) − u(t − τ) − u(t + τ) + BT
k λ = 0, (113)

where tk are the switching times, t0 = a and t j+1 = b. And, for k ∈ {1, · · · , j}, dyk =

(δy + ẏδtk)|tk , and gk = Aky + Bku + Ck, the following boundary conditions must hold,(
λT

∣∣∣
t+k
− λT

∣∣∣
t−k

+ νT
k
∂ψk

∂y

)
dyk = 0 (114)(

λT gk

∣∣∣
t−k
− λT gk+1

∣∣∣
t+k

)
δtk = 0. (115)

PROOF. The proof is based on variational calculus and is along the lines of the one out-

lined in [62] or [63]. The objective function to be minimized here is,

J(u) =
1
2

∫ b+τ

a
‖y(t) − y(t − τ)‖2 + ‖u(t) − u(t − τ)‖2 dt. (116)
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Notice that since the trajectories are τ-periodic for t < a and t > b + τ, the cost is zero in

these intervals. Now say the switching sequence has j switches at times {t1, t2, · · · , t j}, then

adjoining the system constraints and the switching condition constraints, the cost function

is

J =

j∑
k=0

1
2

∫ tk+1

tk
‖y(t) − y(t − τ)‖2 + ‖u(t) − u(t − τ)‖2 + 2λT [

Ak+1y + Bk+1u + Ck+1 − ẏ
]
dt

+
1
2

∫ b+τ

b
‖y(t) − y(t − τ)‖2 + ‖u(t) − u(t − τ)‖2 + 2λT [

At y + Bt u + Ct − ẏ
]
dt

+

j∑
k=1

νT
k ψk(y)

∣∣∣
tk
. (117)

Perturbing the control and switching times, the variation in the cost can be computed as

follows,

δJ =

j∑
k=0

∫ tk+1

tk

[
y(t) − y(t − τ)

]T [
δy(t) − δy(t − τ)

]
+ [u(t) − u(t − τ)]T [δu(t) − δu(t − τ)] dt

+

∫ b+τ

b

[
y(t) − y(t − τ)

]T [
δy(t) − δy(t − τ)

]
+ [u(t) − u(t − τ)]T [δu(t) − δu(t − τ)] dt

+

j∑
k=0

∫ tk+1

tk
λT

[
Ak+1δy + Bk+1δu − δ̇y

]
dt +

∫ b+τ

b
λT

[
At δy + Bt δu − δ̇y

]
dt

−
j∑

k=1

∫ tk+δtk

tk
λT [Ak+1(y + δy) + Bk+1(u + δu) + Ck+1 − ẏ − δ̇y] dt

+

j∑
k=1

∫ tk+δtk

tk
λT

[
Ak(y + δy) + Bk(u + δu) + Ck − ẏ − δ̇y

]
dt +

j∑
k=1

νT
k
∂ψk

∂y
[
δy + ẏδtk

]∣∣∣∣∣
tk

,

(118)

ignoring higher order terms. By change of variables,∫ ti+1

ti
y(t) δy(t − τ)dt =

∫ ti+1−τ

ti−τ
y(t + τ) δy(t)dt, (119)

∫ ti+1

ti
y(t − τ) δy(t − τ)dt =

∫ ti+1−τ

ti−τ
y(t) δy(t)dt. (120)

Also, let’s employ the following approximation:∫ tk+δtk

tk
g dt ≈ g(tk) δtk.
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Now using the above relations, integrating by parts the δ̇y terms, and ignoring the higher

order terms in δy and δt, we get,

δJ =

j∑
k=0

∫ tk+1

tk

[
2y(t) − y(t − τ) − y(t + τ) + AT

k+1λ + λ̇
]T
δy(t) dt+

∫ a

a−τ

[
y(t) − y(t + τ)

]T δy(t) dt

+

∫ b+τ

b

[
y(t) − y(t − τ) + AT

t λ + λ̇
]T
δy(t) dt+

j∑
k=0

∫ tk+1

tk

[
2u(t) − u(t − τ) − u(t + τ) + BT

k+1λ
]T
δu(t) dt

+

∫ a

a−τ
[u(t) − u(t + τ)]T δu(t) dt+

∫ b+τ

b

[
u(t) − u(t − τ) + BT

t λ
]T
δu(t) dt−

j∑
k=0

λTδy
∣∣∣tk+1

tk
−λTδy

∣∣∣b+τ

b

+

j∑
k=1

λT [
Aky + Bku + Ck − ẏ

]∣∣∣
t−k
δtk −

j∑
k=1

λT [
Ak+1y + Bk+1u + Ck+1 − ẏ

]∣∣∣
t+k
δtk

+

j∑
k=1

νT
k
∂ψk

∂y
[
δy + ẏδtk

]∣∣∣∣∣
tk

. (121)

Notice that δy(t) = 0 when t ∈ [a−τ, a] or t ∈ [b, b+τ], and so their corresponding integrals

in (121) are zero. Also, since the states are continuous, δy(t−k ) = δy(t+
k ). For the objective

function to be minimized, its first variation (121) should be zero at the optimal behavior.

Thus, the necessary conditions are,

2y(t) − y(t − τ) − y(t + τ) + AT
1λ + λ̇ = 0 , t ∈ (a, t1)

2u(t) − u(t − τ) − u(t + τ) + BT
1λ = 0

For t ∈ (tk−1, tk) and k ∈ {2, · · · , j},

2y(t) − y(t − τ) − y(t + τ) + AT
k λ + λ̇ = 0

2u(t) − u(t − τ) − u(t + τ) + BT
k λ = 0

2y(t) − y(t − τ) − y(t + τ) + AT
j+1λ + λ̇ = 0 , t ∈ (t j, b)

2u(t) − u(t − τ) − u(t + τ) + BT
j+1λ = 0(

λT
∣∣∣
t+k
− λT

∣∣∣
t−k

+ νT
k
∂ψk

∂y

)
dyk = 0

where dyk = (δy + ẏδtk)|tk(
λT gk

∣∣∣
t−k
− λT gk+1

∣∣∣
t+k

)
δtk = 0

where Aky + Bku + Ck = gk. � (122)
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The equations (122) become a bit simpler when the dynamics of worm are considered,

and this will be explored in the next section.

7.1.2 Graceful Transitions for Two-piece Worm

The worm model is a hybrid system with three possible affine modes, that only differ in the

additive vector, C, which is dependent on the direction of the velocities of the two masses at

that time instant. The mode where both masses have negative velocities is not considered,

under the assumption that the velocity of the center of mass is always positive, i.e., the

worm is always moving forward. The switch to the next mode happens when one of the

mass’s velocity hits zero. A gait is any periodic trajectory in the base behavior. There exists

a natural switching sequence that repeats during every gait’s execution. A table outlining

this natural sequence, specifically the mode the system switches to dependent on the current

mode and the sign of control, is provided in [60] and will be employed here. So, given a

gait and a starting point for the period, a switching sequence for every period of the gait

is completely determined. It is assumed that the switching sequences of the starting and

ending gaits are perfectly aligned. Consequently, it is assumed that the transition follows

the same switching sequence within each period of the transition interval. Clearly, the

problem of finding gait transitions for this worm model fits the hypothesis of the result

derived in the previous section.

Differentiating (112), and substituting the dynamics (111), we obtain

λ̈ + AT λ̇ + A
[
2y(t) − y(t − τ) − y(t + τ)

]
+ B [2u(t) − u(t − τ) − u(t + τ)]

+ [2Ct −Ct− −Ct+] = 0. (123)

Substituting (112) and (113) in (123) yields a differential equation entirely in λ:

λ̈ +
(
AT − A

)
λ̇ −

(
AAT + BBT

)
λ + Dt = 0 where Dt = [2Ct −Ct− −Ct+] . (124)

Equation (124) for λ holds in each interval before a switch happens. The constant Dt

depends on the time t and the duration for which each mode is in effect, in relation to the
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mode in effect τ units forward and backward in time. This yields a number of possible

cases and the equation needs to be solved for all these cases. Furthermore, the two possible

switching conditions are ẋ1 = 0 and ẋ2 = 0, which translate to ψk = y2(tk) + y3(tk) and

ψk = y2(tk) − y3(tk) respectively in our chosen state variables. The jump in the costate, λ, at

the switching instant tk is dependent on the switching condition at that instant and can be

determined using (114) as follows:

λ|t+k − λ|t−k =


[
0 −νk −νk

]T

if ψk = y2 + y3[
0 −νk νk

]T

if ψk = y2 − y3

(125)

Assuming that the costate λ has been computed, the control u can be computed by (113)

using the same ideas as in Section 5.2.1. Let b − a = nτ + b̄ and uk(t) = u(a + kτ + t) for

t ∈ [0, τ]. Similarly, λk(t) = λ(a+kτ+ t) for t ∈ [0, τ]. Also let ui(t) and u f (t) be the controls

corresponding to the initial and final gaits to be connected, i.e., u(t) = ui(t) for t < a and

u(t) = u f (t) for t ≥ b. Then (113) can be written as,

2uk − uk−1 − uk+1 + BTλk = 0 ∀k ∈ {0, · · · , n + 1}.

Let h(t) = u0 − ui. Then,

u0 = ui + h

u1 = u0 + h + BTλ0 = ui + 2h + BTλ0

uk = ui + (k + 1)h + kBTλ0 + (k − 1)BTλ1 + · · · + BTλk−1 (126)

The function h can be determined by realizing that,

u f =


un+1 if t ∈ [0, b̄]

un if t ∈ [b̄, τ]
.

h =


u f−ui−(n+1)BTλ0−nBTλ1···−BTλn

n+2 if t ∈
[
0, b̄

]
u f−ui−nBTλ0−(n−1)BTλ1···−BTλn−1

n+1 if t ∈
[
b̄, τ

] (127)
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The states y can be similarly derived. Finally, (115) translates to the following expression

and relates the jump νk to the switching time tk.

λT (t−k )Bu(t−k ) − λT (t+
k )Bu(t+

k ) + λT (t−k )Ck − λT (t+
k )Ck+1 = 0 (128)

Solving the equations (124), (125), (126), (127), and (128) yields the expression for the

control and state trajectory during the transition in terms of nine constants which can be

solved for using (112), y(a) and y(b).

The graceful transition for the worm is illustrated in the following example. The values

of the frictional forces are fF = 0.1 and fB = 1. Say the worm is moving with a particular

gait ‘A’, with state trajectories and control depicted in Figures 16a,16b,16c, and 16d. The

goal here is to transition gracefully to gait ‘B’, with corresponding state trajectories and

control depicted in Figures 17a,17b,17c, and 17d. The optimal transition between them

is depicted in Figures 18a,18b,18c, and 18d, over [0, 10]. If the modes are named as:

a : ẋ1 > 0, ẋ2 > 0; v : ẋ1 > 0, ẋ2 < 0; c : ẋ1 < 0, ẋ2 > 0, then the switching sequence within

each period is (c, a, b, a, c). As illustrated in the figures, the optimal graceful transition

strives to preserve the periodic behavior and shape of the gaits being connected.
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(a) Velocity ẋ1 of mass M1 in gait A (b) Velocity ẋ2 of mass M2 in gait A

(c) Position difference x1 − x2 between masses (d) Actuator force u for gait A

Figure 16. Velocities, Inter-mass distance, and Actuator force for Gait A

(a) Velocity ẋ1 of mass M1 in gait B (b) Velocity ẋ2 of mass M2 in gait B

(c) Position difference x1 − x2 between masses (d) Actuator force u for gait B

Figure 17. Velocities, Inter-mass distance, and Actuator force for Gait B
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(a) Transition of velocity ẋ1 (b) Transition of velocity ẋ2

(c) Transition of position difference x1 − x2 (d) Actuator force u for transition

Figure 18. Velocities, Inter-mass distance, and Actuator force during transition from Gait A to Gait B
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7.2 Interconnection of Two-piece Worms

In this section, an interesting model is considered that is obtained by connecting two of

the two-piece worm models from Figure 15 in parallel. This new model is illustrated in

Figure 19.

x

y
M 2

M 1

P

M 4

M 3

Q

O
θ

d3

d1

u3(t)

u1(t)

L

(x, y)

Figure 19. Parallel Worm Model

7.2.1 The Model
7.2.1.1 Geometry of the Parallel Worm

The model consists of four blocks M1 through M4 with masses m1 through m4 in the config-

uration shown in Figure 19. The blocks M1 and M2 form one two-piece worm, considered

in the previous section, and the blocks M3 and M4 form the other one. The centers of

masses, P and Q, of each of these two-piece worms are connected by a link of length
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2L. The joints at P and Q are rigid, which means that the angles formed by each of the

two-piece worms with the connecting link, PQ, stay the same, i.e., right angles in this case.

7.2.1.2 Actuation

The actuator force u1 acts symmetrically on the two blocks M1 and M2 and along the line

connecting the two blocks, i.e., equal force u1 is experienced by both M1 and M2 along the

connecting line but in opposite directions. This is similar to the two-piece worm case from

the previous section. The force u3 acts similarly but on blocks M3 and M4.

7.2.1.3 Friction Model

Unlike the previous section, the worm here traverses on the plane and so a two-dimensional

friction model is required. The magnitude friction experienced by each of the blocks, Mi,

is minimum if that block is moving in the direction of the orientation of the body and

maximum if it is moving in the opposite direction of the orientation. The direction of

the frictional force is always in the opposite direction of the direction of motion. The

magnitude of the frictional force experienced by the block Mi is fi. Let the angle between

the direction of motion of block Mi and the orientation vector of the worm body be ψ, as

depicted in Figure 20. Then, the magnitude of the Coulomb frictional force is:

ṙi
|ṙi |

ψ

θ

Figure 20. Friction Model for Block Mi

fi = n0 − n1 cosψi,

where n0 > n1 > 0. The constants n0 and n1 are related to the forward and backward

frictions, fF and fB respectively, experienced in the direction along the orientation of the
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body and opposed to the orientation as,

fB = n0 + n1 fF = n0 − n1.

7.2.2 Equations of Motion

The system can be described by the four pairs of coordinates (xi, yi) in the inertial reference

frame, each reflecting the position of one of the blocks at a particular time instant. But

the geometry of the worm described in the previous section induces the following three

constraints:

1. l12 ‖ l34, where l12 is the line passing through (x1, y1) and (x2, y2).

2. PQ ⊥ l12.

3. PQ = 2L.

These constraints reduce the number of independent coordinates to five, and consequently

a choice of generalized coordinates is described here. It is assumed that the masses of all

the blocks are the same, say m.

The center point, O, of the link, PQ, has coordinates (x, y) in the inertial reference

frame. The orientation of the worm is described by the angle θ that either of the connect-

ing line between two masses makes with the horizontal axis as shown in Figure 19. The

distance between the point P and either of the masses M1 or M2 at time t is given by d1(t).

Similarly, the distance between the point Q and either of the masses M3 or M4 at time t

is given by d3(t). Thus, the chosen generalized coordinates are x, y, θ, d1, and d3. The

positions of each of the blocks in the inertial reference frame in terms of the generalized

coordinates are:

(x1, y1) = (x − L sin θ + d1 cos θ, y + L cos θ + d1 sin θ)

(x2, y2) = (x − L sin θ − d1 cos θ, y + L cos θ − d1 sin θ) (129)

(x3, y3) = (x + L sin θ + d3 cos θ, y − L cos θ + d3 sin θ)

(x3, y3) = (x + L sin θ − d3 cos θ, y − L cos θ − d3 sin θ) .
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The equations of motion can be derived using the Lagrangian formulation [64]. The

Lagrangian, L, in the present case is the sum of kinetic energies of each of the blocks, i.e.,

L =
1
2

m
4∑

i=1

(
ẋ2

i + ẏ2
i

)
. (130)

Then the equations of motion are:

d
dt

(
∂L
∂q̇ j

)
− ∂L
∂q j

= Q j, (131)

where q j is a generalized coordinate and Q j is the corresponding component of the gener-

alized force obtained using the formula,

Q j =

4∑
i=1

Fi · ∂ri

∂q j
, (132)

where ri is the position vector of the block Mi, Fi is the sum of all external forces acting on

the block Mi, and each term is a dot product.

The magnitude of the actuator force acting on block Mi is u1 or u3 and it acts at an angle

θ or −(π + θ) from the horizontal axis. Using (132) then, the component of the generalized

force due to the actuator forces is given by,

Qu
j = u1 cos θ

(
∂x1

∂q j
− ∂x2

∂q j

)
+u1 sin θ

(
∂y1

∂q j
− ∂y2

∂q j

)
+u3 cos θ

(
∂x3

∂q j
− ∂x4

∂q j

)
+u3 sin θ

(
∂y3

∂q j
− ∂y4

∂q j

)
.

(133)

The magnitude of the frictional force acting on block Mi is fi and it acts in the direction

opposite to the direction of motion of the block, i.e., along the direction of the vector −ṙi.

Employing (132) again, the component of the generalized force due to the frictional forces

is given by,

Q f
j =

4∑
i=1

− fi√
ẋ2

i + ẏ2
i

(
ẋi
∂xi

∂q j
+ ẏi

∂yi

∂q j

)
, (134)

where fi = n0 − n1 cosψi and the angle ψi is obtained as,

ψi = arctan (ẋi, ẏi) − θ.

Without loss of generality the mass m can be taken to be one. The Lagrange equations

(131) are then explicitly stated as follows.
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7.2.2.1 Lagrange equations for unitary masses

When the masses are all equal, the point O corresponds to the center of mass of the body.

The equations of motion are as follows where the time dependence is not explicitly stated

to avoid clutter.

4ẍ = − f1
ẋ1√

ẋ2
1 + ẏ2

1

− f2
ẋ2√

ẋ2
2 + ẏ2

2

− f3
ẋ3√

ẋ2
3 + ẏ2

3

− f4
ẋ4√

ẋ2
4 + ẏ2

4

(135)

4ÿ = − f1
ẏ1√

ẋ2
1 + ẏ2

1

− f2
ẏ2√

ẋ2
2 + ẏ2

2

− f3
ẏ3√

ẋ2
3 + ẏ2

3

− f4
ẏ4√

ẋ2
4 + ẏ2

4

(136)

2d̈1 = 2d1θ̇
2 + 2u1 − f1

ẋ1 cos θ + ẏ1 sin θ√
ẋ2

1 + ẏ2
1

+ f2
ẋ2 cos θ + ẏ2 sin θ√

ẋ2
2 + ẏ2

2

(137)

2d̈3 = 2d3θ̇
2 + 2u3 − f3

ẋ3 cos θ + ẏ3 sin θ√
ẋ2

3 + ẏ2
3

+ f4
ẋ4 cos θ + ẏ4 sin θ√

ẋ2
4 + ẏ2

4

(138)

(4L2 + 2d2
1 + 2d2

3) θ̈ = −4(d1ḋ1 + d3ḋ3) θ̇ + f1
ẋ1 (L cos θ + d1 sin θ) + ẏ1 (L sin θ − d1 cos θ)√

ẋ2
1 + ẏ2

1

+ f2
ẋ2 (L cos θ − d1 sin θ) + ẏ2 (L sin θ + d1 cos θ)√

ẋ2
2 + ẏ2

2

− f3
ẋ3 (L cos θ − d3 sin θ) + ẏ3 (L sin θ + d3 cos θ)√

ẋ2
3 + ẏ2

3

− f4
ẋ4 (L cos θ + d3 sin θ) + ẏ4 (L sin θ − d3 cos θ)√

ẋ2
4 + ẏ2

4

(139)

The velocities ẋi and ẏi can be expressed in terms of the generalized coordinates using

(129):

ẋ1 = ẋ − Lθ̇ cos θ + ḋ1 cos θ − d1θ̇ sin θ (140)

ẏ1 = ẏ − Lθ̇ sin θ + ḋ1 sin θ + d1θ̇ cos θ (141)

ẋ2 = ẋ − Lθ̇ cos θ − ḋ1 cos θ + d1θ̇ sin θ (142)

ẏ2 = ẏ − Lθ̇ sin θ − ḋ1 sin θ − d1θ̇ cos θ (143)

ẋ3 = ẋ + Lθ̇ cos θ + ḋ3 cos θ − d3θ̇ sin θ (144)

ẏ3 = ẏ + Lθ̇ sin θ + ḋ3 sin θ + d3θ̇ cos θ (145)
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ẋ4 = ẋ + Lθ̇ cos θ − ḋ3 cos θ + d3θ̇ sin θ (146)

ẏ4 = ẏ + Lθ̇ sin θ − ḋ3 sin θ − d3θ̇ cos θ. (147)

As seen from the (135) and (136), the translation of center of mass is solely due to the

asymmetric nature of friction experienced. The acceleration in the horizontal direction is

proportional to the horizontal components of frictional forces and in the vertical direction

to the vertical components of frictional forces. The factors contributing to the acceleration

of the inter-masses distance, d1 and d3, are the actuation forces, the component of the

frictional forces along the θ direction or the orientation, and the radial component of angular

acceleration, as evident from (137) and (138). Finally, (139) basically corresponds to the

conservation of angular momentum, i.e.

dL
dt

=
d(Iω)

dt
= N,

where N are the external torques, I is the moment of inertial, and ω = θ̇ is the angular

velocity. In (139), the bracketed term on the left is the moment of inertia and combined

with the first term on the right form the time derivative of the angular momentum. The

other terms are torques due to the frictional forces, with the component along the body

orientation using the central link as moment arm and the other component using the inter-

masses link as the moment arm.

7.2.3 Some Interesting Gaits

Gaits are characterized by periodicity in the shape space. In that context, a trajectory of this

interconnected worm will be called a gait if the inter-mass distances, d1 and d3, and their

derivatives are periodic. Some classes of interesting gaits that we have found are presented

in this section. Since the motion is in two dimensions now, rotation can be considered. If

no rotation is desired then the effective displacements of two-piee worms on each side need

to be matched.
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7.2.3.1 Symmetric-Control Gaits

The symmetric gaits are obtained when exactly the same control is applied to both sides,

i.e. u1 = u3. These gaits can be simply viewed as two instances of the two-piece worms.

During these gaits, the body translates on the plane in the direction of the initial orientation.

The orientation remains the same and no rotation is observed during the entire duration of

motion in this gait. This is illustrated by the graphs of the state variables in Figures 21a,

22a, and 23a.

7.2.3.2 Asymmetric-Control Gaits

These gaits are obtained when there is a phase difference between the controls of the two

sides, u1 and u3. The characteristics of these gaits is that they translate the worm body in

the direction of the initial orientation of the worm and there is no effective rotation during

the motion. However, localized rotations or wobbling is observed. One particular gait in

this class is depicted in Figures 21b, 22b, and 23b.

7.2.3.3 Rotation Gaits

Rotation gaits can be obtained by mismatched controls. These gaits include both translation

and rotation. A particular instance of this kind of gait is illustrated in Figures 24, 25a, and

25b.
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(a) Symmetric gait. (b) Asymmetric gait.

Figure 21. Path on the plane in symmetric and asymmetric gaits.

(a) Symmetric gait (Overlapped). (b) Asymmetric gait (d1: Top and d3: Bottom).

Figure 22. Inter-mass distances d1 and d3 in symmetric and asymmetric gaits.
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(a) Symmetric gait. (b) Asymmetric gait.

Figure 23. Orientation θ in symmetric and asymmetric gaits.

Figure 24. Path on the plane in a rotation gait. Red dashed line indicates initial orientation.
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(a) Inter-mass distances (d3: Top and d1: Bottom). (b) Orientation.

Figure 25. Inter-mass distances, d1 and d3, and Orientation θ for rotation gait.

7.2.4 Gait Transitions

Similar to the two-piece worm model from Section 7.1, this interconnected system also has

multiple modes depending now on the x-direction and the y-direction of velocities of each

of the masses. There are four possible combinations for the directions of the velocity pair,

(ẋi, ẏi), of each of the masses. Consequently, the entire system has 256 possible modes. We

can again ignore some of the modes because this interconnected worm is always moving

forward relative to its orientation direction. Even so, the problem of finding gait transitions

in this case is much more combinatorially complex compared to the two-piece worm model.

The dynamical system is again a hybrid system with autonomous transitions, and the

necessary conditions for optimality can be obtained by applying a Hybrid Minimum prin-

ciple such as the one derived in [65]. Based on the necessary conditions, there exist algo-

rithms to compute the optimal control, including one found by the same authors as above

in [66]. However, all of these algorithms are still computationally intensive. An additional

level of complexity arises from the fact that the Hamiltonian system is described by delay-

differential equations, arising due to the shift appearing in the cost function. At the present

time, work on obtaining these gait transitions for this interconnected model is still under

progress, and so these results will be presented in a later publication.
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CHAPTER 8

FUTURE WORK

In the last chapter of this part, future extensions to the material presented in the previous

chapters are proposed. The LTID type, Lk
n, was introduced in Chapter 4 but it excluded the

cases when one or some of the equations were of order less than n. It would be interesting

to find a more general characterization that incorporate these cases as well, which would

lead to a characterization of differential-algebraic systems too. The constrained LTID type

was also introduced in the same chapter. It was shown that the constraints can be simplified

for the case of harmonics. This begs the question as to whether this simplification can be

carried out in general for the constrained LTID type. Finally, the characterization for the

general periodic type needs further analysis.

The signal raccordation problem was solved for types that admit adjoint in Chapter 5,

with special attention to the periodic type. A method of stretching the time was used to

solve the raccordation problem for the general periodic type. Further study of this method

needs to be carried out to discern if it can be used to solver the raccordation problem

for other types as well. Throughout, the kernel representation has been used to solve the

raccordation problem. It was shown in earlier research that the solutions from the kernel

approach and the image approach do not agree in general. Thus, the question of finding

the right parametrization for the image approach such that the resulting raccordation agrees

with the kernel method is open.

The dynamical raccordation problem was solved in Chapter 6 for LTI systems and poly-

nomial differential types and linear shift types. The raccordation problem can be considered

for nonlinear types. Simplified results should be obtained for the raccordation problem for

other kinds of systems such as bilinear, delay, and hybrid.

The problem of gait transitions in robotics - the motivation behind this thesis, was ap-

proached in Chapter 7. The work in this chapter can be extended in a number of ways. In the
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problem of gait transitions for the two-piece worm, the optimality of solution with respect

to the switching sequence needs to be investigated. The interconnected worm model has

not been completely analyzed. Do there exist other type of gaits than the ones mentioned in

the chapter? What are the requirements on control and initial conditions for various gaits?

The answer to the latter question will possibly also answer the question of what other gaits

are in the vicinity of the gait currently being executed. This is an important question for

online planning of gait transitions. Moreover, the transitions from rest position to various

gaits in the context of our framework is another interesting topic to be considered.
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PART-II
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CHAPTER 9

SUBOPTIMAL MULTI-MODE STATE ESTIMATION

Multi-mode systems with random switching appear in many areas such as networked con-

trol systems, where the jumping characterizes packet loss or delay [67] and in sensor net-

works, with distributed sensing [68, 69, 70]. Hence communication, and with it commu-

nication constraints become an integral part of the estimation problem. Estimation in a

network with packet losses is a problem of this scenario: Either normal operating condi-

tions for packet delivery prevail, or there is a failure in packet transmission. This problem

has been widely studied by researchers and was also a focus in this research. In [70], a

Markovian model was assumed for switching between these two modes. Their emphasis is

however not on the optimal filtering but rather an analysis of the stability. Sufficient condi-

tions are given in terms of the failure and recovery rates (for a first order system, the con-

dition also turns out to be necessary). Sinopoli et al. [2004] consider and analyze the case

of intermittent observations and derive a threshold value for the arrival rate, below which

divergence occurs. While Sinopoli et al. [69, 71, 72] assume complete knowledge of the

presence or absence of the signal in the observations, we emphasize that this information

is a hidden variable in our model and this sets our work apart from the theory of Sinopoli

et al. Other problems of this scenario are voice activity detection schemes [73], navigation

and tracking [74], vehicle tracking with vision [75], and modeling cortical activity with

a view towards improved prosthetics [76]. Typical estimation schemes employed in these

cases involve Kalman filter banks such as the Interacting Multiple Models (IMM) algo-

rithm. While the problem at hand could be considered as an adaptive filtering problem, the

structure (typically slow adaption) may not be suitable for fast intermittency or switching

in the model set. In addition, adaptive filtering typically deals with non discretely varying

system parameters.
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9.1 The General Multi-Mode Filter
9.1.1 System Model

Consider a finite set of linear time invariant discrete time systems. Let the set be indexed

by i. Then each of these systems has dynamics described by:

x(i)
k+1 = F(i)x(i)

k + G(i)w(i)
k (148)

y(i)
k = H(i)

k x(i)
k + v(i)

k . (149)

Let the noise sequences {w(i)
k } and {v(i)

k }, in this model, be stationary white noises with

zero mean and covariance matrices Q(i) ≥ 0 and R(i) > 0 respectively and with cross

covariance matrix C(i). The system and noise parameters for the i-th system will be de-

noted by Si. Without loss of generality, we may assume that the dimensions are equal,

i.e. F(i),G(i),Q(i) ∈ Rn×n,H(i) ∈ Rn×p, and R(i) ∈ Rp×p. (A theory of multi-mode multi-

dimensional systems (M3D) is expounded in [77, 62]). The case considered in this thesis

and in [78] is one where the mode switching process is purely random, independent of the

state sequence {xk}, but can have time varying occupation probabilities. Our compound

systems constitute thus a specific class of stochastic hybrid or switched systems. A com-

plete description of the state at time step k of the compound system involves thus not only

the state vector which is usually denoted by xk, but also the mode θk which is active at time

k.

Let πk = [π1
k , π

2
k , · · · , πq

k] be the probability vector for these different modes, with πi

being the probability that mode i is ‘active’. The system can be described alternatively by

a single n-th order system but with time varying parameters, whose values are determined

by the ‘modal’ process {θk}:

xk+1 = F(θk)xk + G(θk)wk (150)

yk = H(θk)xk + vk. (151)

Also, we have now Q(θk) and R(θk). Without loss of generality we state Q(i) = I, since its

variation can always be modeled in the G(i) matrices. In this model the modal state θk is
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a purely random sequence taking integer values. The probability that θk = i is πi
k and if

θk = i, then the system parameters are F(i) = F(i) and so on. It is also important to note

that at each time, only one output vector is available corresponding to the mode at that time

(yk = y(θk)).

9.1.2 The Filter Equations

We shall be interested in linear least squares filters and so the estimates we shall obtain are

not the optimal least squares estimates, which are conditional expectations, given the data.

However, the computational advantages for the suboptimal linear least squares solutions are

great (as well known for the classical Kalman filter for linear stochastic system with non-

Gaussian initial conditions). Of the two typical approaches to filtering - the innovations

approach and the change of measure method, we will use the innovations approach. The

problem of finding the linear least squares filter has also been solved by Costa et al. [30]

for the general Markov switching case, but the innovations approach is used here that is

different from theirs, and as a result an error has been discovered in their derivation. The

approach requires the Hilbert space framework for the stochastic processes involved, and

the linear least squares estimate given the data is known to be a linear projection onto the

subspace spanned by the data. For this reason, let us first classify the linear information

structures.

Let (Ω,B, P) be the probability space on which all random variables involved in the

state space model are defined: i.e., in particular x0 ∈ B, and for all k, θk ∈ B, wk ∈ B
and vk ∈ B. The following linear spaces play an important role in the linear estimation

problem:

L0
k = span{x0; θ0, · · · , θk; w0, · · · ,wk; v0, · · · , vk} (152)

Lk = span{θ0, · · · , θk; w0, · · · ,wk; v0, · · · , vk} (153)

Hk = span{y0, · · · , yk}, (154)

The last space is generated by the observations. Define the innovations, εk = yk − PHk−1yk.
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Here, PH denotes the orthogonal projection onto the closed subspaceH . Orthogonality is

a well defined concept once an inner product is defined in the spaces: u ⊥ v ⇔ 〈u, v〉 =

0 (See [33]). We note that the innovations correspond to the sequential Gram-Schmidt

othogonalization of {y0, y1, y2, . . .} (in that order). Introduce also

Ek = span{ε0, ε1, . . . , εk}. (155)

The spaces Hk and Ek are identical, since an invertible transformation between the obser-

vation sequence and the innovation sequence up to time k exists. Thus,

Hk = Ek ⊆ L0
k , Lk ⊆ L0

k .

Note also the inclusions, for all k,

Hk ⊆ Hk+1

Ek ⊆ Ek+1

Lk ⊆ Lk+1

L0
k ⊆ L0

k+1,

expressing that we have growing information structures, constituting linear filtrations.

Recall first two important facts about projection operators in a Hilbert space.

1. Smoothing formula: If A ⊆ B are arbitrary subspaces of a Hilbert space H, then for

any vector x ∈ H:

PAx = PAPBx. (156)

2. Pythagorean theorem: If A ⊥ B are arbitrary orthogonal subspaces of a Hilbert

space H, then for any vector x ∈ H:

PA∨Bx = PAx + PBx. (157)

Consequently, we also have

‖PA∨Bx‖2 = ‖PAx‖2 + ‖PBx‖2. (158)
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For simplicity of notation, we introduce the notation

ẑ|k = PHkz.

and note that this is also the projection on the space spanned by the innovations. With

this notation, we now proceed with the derivation of the optimal linear filter. See [32] for

details.

i) Innovations: The innovations are defined by

εk = yk − ŷk|k−1, (159)

where ŷk|k−1 is the projection of the measurement yk onto the subspace Hk−1. Its computa-

tion is simplified by the smoothing formula (156)

PHk−1yk = PHk−1PL0
k−1 [H(θk)xk + vk]

= PHk−1
[∑

πiH(i)xk

]
(160)

If χi(θ) is the indicator function for mode i, then

PL0
k−1 H(θk) = PL0

k−1

∑
χi(θk)H(i) =

∑
πiH(i) (161)

Thus the innovations are given by

εk = yk −
∑

πiH(i) x̂k|k−1 (162)

= H(θk) x̃k|k−1+vk+
[
H(θk)−

∑
πiH(i)

]
x̂k|k−1

where x̃k|k−1 = xk − x̂k|k−1.

ii) Innovations Covariance: The innovations covariance is obtained by ‘squaring up’ and

using (158)

Rε
k = E εkε

′
k (163)

= HPk|k−1H
′
+

∑
πiH(i)Πk

[
H(i)−H

]′
+ R
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where E is the expectation operator and we defined the state covariance Πk = E xkx′k and

Pk|k−1 = E x̃k|k−1 x̃′k|k−1 and used the simplified notation for the averaged system parameters

H =
∑

πiH(i) (164)

R =
∑

πiR(i). (165)

We also used Πk = Σk|k−1 + Pk|k−1, with Σk|k−1 being the filtered state covariance.

iii) Filtered Estimates from Predicted Estimates: Incorporating the last innovations

gives, using (157)

PHk xk = PEk xk = PEk−1 xk + Pspan{εk}xk (166)

which yields,

x̂k|k = x̂k|k−1 + E (xkε
′
k)R

−ε
k (yk − Hx̂k|k−1) (167)

The Kalman Gain is

E xkε
′
k = Pk|k−1H

′
(168)

So,

x̂k|k = x̂k|k−1 + Pk|k−1H
′
R−εk (yk − Hx̂k|k−1) (169)

iv) Predicted Estimate from the Signal Model:

The time update is obtained from the projection

PHk xk+1 = PHk [F(θk)xk + G(θk)wk]

Consider first,

PHk F(θ)xk = PEk−1 F(θ)xk + Pspan{εk}F(θ)xk

=
(∑

πiF(i)
)

x̂k|k−1 + E
[
F(θk)xkε

′
k
]
R−εk

(
yk − Hx̂k|k−1

)
= Fx̂k|k−1 +

[∑
πiF(i)Pk|k−1H(i)′ +

∑
πiF(i)Σk|k−1(H(i)′ − H

′
)
]

R−εk

(
yk − Hx̂k|k−1

)
= Fx̂k|k−1 +

[
FPk|k−1H

′ − FΠkH
′
+

∑
πiF(i)ΠkH(i)′

]
R−εk εk (170)
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where we also defined

F =
∑

πiF(i), (171)

as the average dynamics. Consider next,

PHkG(θ)wk = Pspan{εk}G(θ)wk

=
[∑

πiG(i)C(i)
]

R−εk εk (172)

where C(i) = E w(i)
k v(i)′

k . This all results in

x̂k+1|k = Fx̂k|k−1 +
[
FPk|k−1H

′ − FΠkH
′
+

∑
πi

(
F(i)ΠkH(i)′ + G(i)C(i)

)]
R−εk εk

v) Error Covariance Matrix: Finally, we obtain a recursion for the error covariance. The

state covariance satisfies:

Πk+1 = E [F(θk)xk + G(θk)uk] [F(θk)xk + G(θk)uk]′

=
∑

πiF(i)ΠkF(i)′ +
∑

πiG(i)′G(i)′

=
∑

πi

[
F(i)ΠkF(i)′ + G(i)G(i)′

]
(173)

Here we have used that Q(i) = I. Replacing Πk+1 by
∑
πiΠ

(i)
k+1 allows a decomposition of

this equation to the set

Π
(i)
k+1 = F(i)ΠkF(i)′ + G(i)G(i)′ (174)

Πk =
∑

πiΠ
(i)
k (175)

Likewise the covariance of the estimate follows by ‘squaring up’ the predictor equation

(173). We find that Σk+1|k equals

Σk+1|k = FΣk|k−1F
′
+[∑

πiF(i)ΠkH(i)′−FΣk|k−1H
′
+

∑
πiG(i)C(i)

]
Rε

k

[∑
πiF(i)ΠkH(i)′−FΣk|k−1H

′
+

∑
πiG(i)C(i)

]′
.
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The decomposed equations give

Σk|k−1 =
∑

πiΣ
(i)
k|k−1. (176)

where

Σ
(i)
k+1|k = FΣ

(i)
k|k−1F

′
+[

F(i)ΠkH(i)′ − FΣ
(i)
k|k−1H

′
+ G(i)C(i)

]
Rε

k

[∑
π j

(
F( j)ΠkH( j)′ + G( j)C( j)

)
−FΣk|k−1H

′]′
Subtracting both equations yields the recursion for the error covariance:

P(i)
k+1|k = Π

(i)
k+1|k − Σ

(i)
k+1|k. (177)

and, defining Pk+1|k =
∑
πiP

(i)
k+1|k,

Pk+1|k = Πk+1|k − Σk+1|k. (178)

Unfortunately, no decoupled recursions (in the form of Riccati equations) exists for the

P(i)
k+1|k.

We summarize:

Theorem 9.1.1. The linear least squares filter for a multi-mode system (MMF) with purely

random mode switching for the system given by (150) and (151) is given by (recall: Q = I)

x̂k+1|k = Fx̂k|k−1 + Kk

(
yk − Hx̂k|k−1

)
Kk =

(
FPk|k−1H

′
+ GC + FΠkH′ − FΠkH

′)R−εk

Πk+1 = FΠkF′ + GG′

Pk+1|k = FPk|k−1F
′
+ GG′ − KkRεkK′k + FΠkF′ − FΠkF

′

Rεk = HPk|k−1H
′
+ R + HΠkH′ − HΠkH

′

The filtered estimates x̂k|k follows from

x̂k|k = x̂k|k−1 + Pk|k−1H
′R−εk

(
yk − Hx̂k|k−1

)
.

The ‘overline’ indicates expectation with respect to θ, i.e., X =
∑

i πiX(i).

It should be emphasized that this multi mode filter is not the Kalman filter for the

averaged system.
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9.1.3 Computational Complexity

In this section, we will discuss the computational complexity of the multi-mode filter

(MMF) when compared with algorithms using filter banks such as the IMM algorithm,

typically employed to estimate the state of a multi-mode system. We compared the num-

ber of scalar multiplication and addition operations required by full implementations of the

MMF with a Kalman filter bank. We found out that the number of operations required by

MMF is dominated by n3, whereas the number of operations required by a filter bank is

dominated by q(n2 + p3). Here n is the dimension of the state space, p is dimension of

the output space and q is the number of modes in the system. The MMF is found to be

computationally simpler for large number of modes or large number of outputs. It is also

worth noting that if the steady state covariance of the system is used in the MMF equations

to find an approximate filter, the MMF is always computationally simpler than a filter bank.

A possible scheme that can be employed is to begin with a filter bank algorithm such as the

IMM and then switch to the MMF after convergence to steady state. The MMF can also

be used adaptively in the case of fixed but unknown occupation probabilities. A detection

scheme can be created based on the residuals and the probabilities can be estimated based

on the mode detected.

9.2 Intermittent Signal Observations with Noise

This is a special case of the general problem treated above, and relevant in the sensor failure

problem. Consider the system,

xk+1 = Fxk + Gwk (179)

yk = θkHxk + vk. (180)

The {θk} is a scalar Bernoulli process, with value space {0, 1}. Let π1(k) = Pr{θk = 1}.
Making this process nonstationary allows for a model incorporating faulty behavior of the

sensor as function of time. In this case there are two modes for the system. In mode 1, the

parameters are S1 = {F,G,H,Q = I,R > 0}, whereas the mode 0, the sensor failure mode,
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is characterized by S0 = {F,G, 0,Q = I,R}. The probabilistic description of the modes is

given by π(k) = [π1(k), π0(k)] = [λk, 1 − λk]. Additionally, the two noise sequences w(i)
k and

v(i)
k are uncorrelated for all time i.e., C(i) = 0.

It follows from Theorem 9.1.1, with the averaged parameters F = F,H = λkH,GG
′

=

GG′,R = R, that the MMF is (with Pr{sensor f ailure} = 1 − λk)

x̂k+1|k = Fx̂k|k−1 + Kk
(
yk − λkHx̂k|k−1

)
(181)

Kk = λkFPk|k−1H′R−εk

Πk+1 = FΠkF′ + GG′

Pk+1|k = FPk|k−1F′ + GG′ − KkRεkK′k

Rεk = λ2
kHPk|k−1H′ + R + λk(1 − λk)HΠkH′

9.2.1 Stability

The following two theorems characterize the stability/instability of this filter for the case

of a stationary Bernoulli process.

Theorem 9.2.1. The multi-mode filter (181) for the intermittent signal observations in the

noise case is stable if the system (179-180) is asymptotically stable. The error covariance

matrix Pk+1|k, given by the following recursion

Pk+1 = FPkF′ + GG′ − λ2FPkH′
[
λ2HPkH′ + R + λ(1 − λ)HΠkH′

]−1
HPkF′ (182)

converges to a steady state P which satisfies an algebraic Riccati equation,

P = FPF′ + GG′ − FPH′
[
HPH′ + Req

]−1
HPF′

where,

Req =
R + λ(1 − λ)HΠH′

λ2

and Π satisfies an algebraic Lyapunov equation,

Π = FΠF′ + GG′.
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Theorem 9.2.2. The multi-mode filter (181) for the intermittent signal observations in

noise case is unstable if the system (179-180) is unstable, i.e., the error covariance ma-

trix does not converge to a steady state.

PROOF. The Riccati recursion for the prediction error covariance matrix is given below

where the notation Pk has been used instead of Pk|k−1 to save space.

Pk+1 = FPkF′ + GG′ − λ2FPkH′
[
λ2HPkH′ + R + λ(1 − λ)HΠkH′

]−1
HPkF′

= GG′ + F
{
Pk − PkλH′

[
λHPkH′λ + R + λ(1 − λ)HΠkH′

]−1 λHPk

}
F′

= F
{
P−1

k + λH′
[
R + λ(1 − λ)HΠkH′

]−1 Hλ
}−1

F′ + GG′

where the last form is obtained by using Woodbury’s lemma on the expression enclosed

in the curly brackets. Since (F,H) is observable and F is unstable, the term HΠkH′ is

unbounded. This results in the term [R + λ(1 − λ)HΠkH′]−1 approaching 0 as k approaches

infinity. Thus, in the long run the Riccati equation behaves as the Lyapunov equation and

Pk is unbounded for the unstable system. �

9.2.2 Bounds on P

An upper bound and a lower bound for the error covariance matrix Pk+1|k, hereafter denoted

by Pk+1, can be easily found using Riccati equation comparison theorems due to Wimmer

and Pavon ([79]).

Theorem 9.2.3. The error covariance matrix Pk, given in (182), is bounded below for all

time by the following Riccati recursion,

Lk+1 = FLkF′ + GG′ − FLkH′
(
HLkH′ + R

)−1 HLkF′

provided L0 ≤ P0.
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PROOF. It follows directly from Wimmer and Pavon’s comparison theorem if the follow-

ing required condition is satisfied for all time, GG′ F

F′ −H′R̃−1
k H

 ≥
 GG′ F

F′ −H′R−1H


where R̃k = λ−2

k [R + λk(1 − λk)HΠkH′]. Since the matrices R and R̃k are symmetric, this

condition is equivalent to R̃k ≥ R. Given that λk ≤ 1 and Πk ≥ 0 for all k, the inequality

R̃k ≥ R is true for all time and thus the bound holds. �

Theorem 9.2.4. The error covariance matrix Pk, given in (182), is bounded above for all

time by the following Riccati recursion,

Uk+1 = FUkF′ + GG′ − FUkH′
(
HULkH′ + Req

)−1
HUkF′

where Req = λ−2
k [R + λk(1 − λk)HΠH′] and Π = FΠF′ + GG′ and provided U0 ≥ P0.

PROOF. Again this follows directly from Wimmer and Pavon’s comparison theorem if the

following required condition is satisfied for all time, GG′ F

F′ −H′R−1
eq H

 ≥
 GG′ F

F′ −H′R̃−1
k H


where R̃k = λ−2

k [R + λk(1 − λk)HΠkH′]. Since the matrices Req and R̃k are symmetric, the

above condition is equivalent to Req ≥ R̃k. And this inequality is true for all k, since Πk ≤ Π

for all k. Therefore, the upper bound holds. �

9.2.3 Numerical Example

The performance of the MMF, for the intermittent signal in observations case with station-

ary Bernoulli process, is compared numerically to the IMM algorithm, the averaged filter,

the approximate MMF and the exact knowledge case. The averaged filter is a Kalman filter

for the averaged case, specifically H = λH. The exact knowledge case has perfect knowl-

edge of the mode of operation at all times and employs the respective Kalman filter. The
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approximate MMF uses the system’s steady state covariance (Π) to make the computations

simpler. The performance metric used is the ratio of the euclidean norm of the error be-

tween the actual state and the estimated one to the norm of the error for the exact knowledge

case. For each experiment, 1000 statistical trials are performed and the figures depict the

computed ratios using statistical mean of the norm. Figure 26 compares the performance

of the different filters for the system with the parameters Q = 1, R = 25, Sensor failure

probability = 0.3 and

F =


0.3 0 0

0 0.7 0.7

0 −0.7 0.7

 , G =


5

5

5

 , H = [1, 0, 0] .

The error is highest for the averaged filter followed by the MMF and then the IMM al-

gorithm. It is also worth noting that the difference in the error norms is small and the

approximate MMF, which is computationally simpler, performs as well as the full MMF.
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Figure 26. Performance comparison between different filters for a typical stable case

Figure 27 illustrates the behavior of the filters when the system is close to instability

i.e. one of the eigen values of the system is moved to 0.99 while keeping all the other

parameters the same as the previous case. The trend observed in the previous case continues
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but now the difference in the scale of the norm between the MMF and averaged filter is

much larger. The difference between the results of MMF and the IMM algorithm is slightly

higher as well.
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Figure 27. Performance comparison between different filters close to instability
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CHAPTER 10

FUTURE WORK

The problem of state estimation for a multimode system with purely random switching was

solved in Chapter 9. The work can be extended by now considering a Markov process. The

stability of the resultant filter has not been analyzed in general. Therefore, the Riccati like

equation obtained for the error covariance matrix needs to be analyzed. In the special case

of intermittent signals in noise, it was shown that the filter is only stable if the underlying

system is. This leads to the question as to how the filter could be made stable by perhaps

considering nonlinear variants. The problem of mode identification is also an interesting

one.

The dual of the intermittent estimation problem is that of intermittent control. This

problem has received widespread attention in recent years due to the wide applications and

occurrence of networked systems. In designing estimators and controllers for networked

system, three possible communication network related events need to be considered: packet

losses, packet delays, and quantization effects. These three problems have been considered

separately and in combination of varying degrees by various researchers in a number of

publications with varying success. Thus, there are still open problems in the area and room

for improvement in the schemes already proposed.
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APPENDIX A

SOME RESULTS ABOUT MATRICES

A.1 The Matrix Exponential

The matrix exponential of a square matrix A is defined as,

eA =

∞∑
k=0

1
k!

Ak = I + A +
1
2

A2 + · · ·

This infinite sum is well-defined and converges for all matrices A, i.e. the series obtained

for each of the entries of eA converges. This is a special case of Theorem 5.6.15 in [80], but

a simple proof is presented here.

The (i, j)th entry of the matrix eA is given by the series
∑∞

k=0
1
k!

(
Ak

)
i j

, where
(
Ak

)
i j

is the

i jth entry of the matrix Ak. It is now shown that this sum is finite as follows.

∞∑
k=0

1
k!

(
Ak

)
i j
≤

∞∑
k=0

1
k!

∥∥∥Ak
∥∥∥

F
≤

∞∑
k=0

1
k!
‖A‖kF = e‖A‖F ,

where ‖·‖F is the Frobenius norm of the matrix. Since, each of the entries is given by a

convergent series, the matrix series is convergent, and the matrix exponential is defined

for all matrices. Furthermore, this shows that eAt is an analytic function, since At is also a

matrix and so the series converges. This means that each of the entries of eAt is an analytic

function.
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A.2 Schur Complement

An LDU decomposition of a partitioned matrix M =

A B

C D

 is derived here, where one of

diagonal entries is the Schur complement of the block A.

MU =

A B

C D


 I −A−1B

O I

 =

A O

C D −CA−1B


LMU =

 I O

−CA−1 I


A O

C D −CA−1B

 =

A O

O D −CA−1B


⇒ M =

 I O

CA−1 I


A O

O D −CA−1B


 I A−1B

O I


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APPENDIX B

SOME RESULTS FROM FUNCTIONAL ANALYSIS

B.1 Gâteaux Derivative

In this section, some ideas related to differentiability of functionals will be reviewed. The

content of this section has been gathered up in most part from [81], [82] and [83].

Definition B.1.1. Consider a function F : X → Y, where X and Y are topological vector

spaces. Let U ⊂ X be an open set. Then, F is said to have the Gâteaux differential or the

Gâteaux variation δF(u; h) at u ∈ U in the direction h ∈ X if the following limit exists for

all h ∈ X.

δF(u; h) = lim
t→0

F(u + th) − F(u)
t

=
d
dt

F(u + th)
∣∣∣∣∣
t=0

If the limit exists for each h ∈ X then the function F is said to be Gâteaux differentiable.

This variation as we know it today was studied by Gâteaux in the early twentieth cen-

tury. But the concept of variation for certain special functionals has its roots in the work of

Lagrange who introduced it in the context of calculus of variations.

Since, the limit of a function is unique if it exists, the Gâteaux variation is unique. The

ideal of Gâteaux variation generalizes the concept of directional derivative from multivari-

able calculus to infinite dimensions. It is clear from the definition that if F has Gâteaux

variation at u, then δF(u; 0) = 0. Moreover, the variation is homogeneous in the second

argument, i.e.

δF(u; ch) = cδF(u; h)

for any c ∈ R since

δF(u; ch) =
d
dt

F(u + cth)
∣∣∣∣∣
t=0

= c
d

dσ
F(u + σh)

∣∣∣∣∣
t=0

= cδF(u; h).

The Gâteaux variation does not necessarily have to satisfy the additivity property and

so it is not necessarily linear in the second argument. If the variation is linear in the second
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argument then it is called the Gâteaux derivative and we get the following identity:

F(u + th) = F(u) + δF(u; th) + ε(th),

where ε(th)/t → 0 as t → 0.

B.2 Convergence of inner products over an uncountable index set

Lemma B.2.1. Let 〈·, ·〉 : E × E → R be an inner product, where E is a vector space. Let

{ ft} and {gt} be two convergent sequences of functions with limt→a ft = f and limt→a gt = g,

where t is a real variable. Then,

lim
t→a
〈 ft, gt〉 =

〈
lim
t→a

ft, lim
t→a

gt

〉
.

PROOF. Given any ε > 0, let

η1 =


ε/3 if ‖g‖ = 0

min
(
ε
3 ,

ε
3‖g‖

)
otherwise

and η2 =


ε/3 if ‖ f ‖ = 0

min
(
ε
3 ,

ε
3‖ f ‖

)
otherwise

.

Since the series are convergent, there exist δ1 > 0 and δ2 > 0 such that ‖ ft − f ‖ < η1 for all

|t − a| < δ1 and ‖gt − g‖ < η2 for all |t − a| < δ2. Then,

|〈 ft, gt〉 − 〈 f , g〉| = |〈 ft − f , g〉 − 〈 ft, gt − g〉|

= |〈 ft − f , g〉 + 〈 ft − f , gt − g〉 + 〈 f , gt − g〉|

≤ |〈 ft − f , g〉| + |〈 ft − f , gt − g〉| + |〈 f , gt − g〉|

≤ ‖ ft − f ‖ ‖g‖ + ‖ ft − f ‖ ‖gt − g‖ + ‖ f ‖ ‖gt − g‖.

Choose δ = min (δ1, δ2). Then for |t − a| < δ we have,

|〈 ft, gt〉 − 〈 f , g〉| < ε

3
+
ε

3
+
ε

3
= ε.
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[45] H. Glüsing-Lüerssen, “A behavioral approach to delay-differential systems,” SIAM
Journal on Control and Optimization, vol. 35, no. 2, pp. 480–499, 1997.

[46] H. Gluesing-Luerssen, P. Vettori, and S. Zampieri, “The algebraic structure of delay-
differential systems: a behavioral perspective,” Kybernetika, vol. 37, no. 4, pp. 397–
426, 2001.

[47] H. Gluesing-Luerssen, Linear delay-differential systems with commensurate delays:
an algebraic approach, vol. 1770. Springer, 2002.

[48] M. Hildebrand, “Symmetrical gaits of horses,” Science, vol. 150, no. 3697, pp. 701–
708, 1965.

[49] D. M. Wilson, “Insect walking,” Annual review of entomology, vol. 11, no. 1, pp. 103–
122, 1966.

[50] A. J. Ijspeert, “Central pattern generators for locomotion control in animals and
robots: a review,” Neural Networks, vol. 21, no. 4, pp. 642–653, 2008.

[51] A. J. Ijspeert, A. Crespi, D. Ryczko, and J.-M. Cabelguen, “From swimming to
walking with a salamander robot driven by a spinal cord model,” Science, vol. 315,
no. 5817, pp. 1416–1420, 2007.
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