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SUMMARY

Automatically recognizing classifier-based grammatical structures of American Sign

Language (ASL) is a challenging problem. Classifiers in ASL utilize surrogate hand shapes

for people or “classes” of objects and provide information about their location, movement

and appearance. In the past researchers have focused on recognition of finger spelling,

isolated signs, facial expressions and interrogative words like WH-questions (e.g. Who,

What, Where, and When). Challenging problems such as verification of ASL sentences and

classifier-based grammatical structures remain relatively underexplored in the field of ASL

recognition.

One application of recognition of classifiers is creating educational games to help young

deaf children acquire language skills. Previous work developed CopyCat, an educational

ASL game that requires children to engage in a progressively more difficult expressive signing

task as they advance through the game.

We have shown that by leveraging context we can use verification, in place of recogni-

tion, to boost machine performance for determining if the signed responses in an expressive

signing task, like in the CopyCat game, are correct or incorrect. We have demonstrated

that the quality of a machine verifier’s ability to identify the boundary of the signs can

be improved by using a two-pass technique that combines signed input in both forward

and reverse directions. Additionally, we have shown that we can reduce CopyCat’s depen-

dency on custom manufactured hardware by using an off-the-shelf Microsoft Kinect depth

camera to achieve similar verification performance. Finally, we show how we can extend

our ability to recognize sign language by leveraging depth maps to develop a method using

improved hand detection and hand shape classification to recognize selected classifier-based

grammatical structures of ASL.
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CHAPTER I

INTRODUCTION

American Sign Language (ASL) is the primary means of communication for deaf and hard

of hearing people in the United States [67]. ASL is a visual language with its own gram-

matical structure that uses hand, facial and body gestures to convey meaning. Computer

science research in ASL recognition began in the early 1990s. In the past, researchers have

applied a variety of computer vision and pattern recognition techniques [6, 13, 83, 84],

some aided with colored gloves [13], data gloves [30, 43], accelerometers [13] and motion

capture systems [95], to recognize ASL finger spellings [27, 53, 74], non-inflected isolated

signs [33] and in some cases ASL sentences [13]. The bulk of the research has focused on

recognition of finger spelling and isolated signs, but more recently there have been works

that have examined recognition of facial expressions [66, 58] and interrogative words like

WH-questions (e.g. who, what, where, and when) [59]. Two areas in ASL recognition that

are relatively underexplored are 1) verification of sign-based grammatical structures con-

sisting of basic signs strung together to form phrases or sentences and 2) classifier-based

grammatical structures, that convey information about the behavior of a noun object.

In this dissertation we have shown that by leveraging context we can use verification

in place of recognition to boost machine performance for judging the correctness of signed

responses in tasks when the required ASL sentence is known beforehand. The advent of

inexpensive depth cameras like the Microsoft Kinect has spurred renewed interest among

many researchers to employ such cameras for ASL recognition. Previously the high cost, low

reliability and difficult calibration issues with depth cameras have discouraged researchers

from using them for ASL recognition. We have conducted experiments to show that the

Microsoft Kinect can be viable as a hardware platform to collect data to perform ASL

recognition. We have shown how we can extend our ability to recognize sign language by

leveraging depth maps to develop a method using improved hand detection and handshape
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classification to recognize selected classifier-based grammatical structures of ASL.

1.1 ASL Classifiers

Classifiers in ASL utilize surrogate hand shapes for people or objects and provide informa-

tion about their location, movement and appearance. If any of these three parameters in

the physical construct changes, it conveys a completely new meaning about the person or

the object. In contrast, for isolated non-inflected signs a change of location, movement or

hand shape results in a new sign (e.g., a change of starting location with the same movement

and hand shape in the case of FATHER and MOTHER). The spatial constructions of ASL

classifiers take advantage of the fact that visual spatial information is one of the most reli-

able sensing modality in humans [38]. Studies have shown that deaf signers have enhanced

visual spatial processing capabilities in tasks such as mental rotation, visual attention and

face recognition [9, 25, 70, 92]. Deafness per se is not the cause for this enhanced capability,

exposure to a sign language is [71]. An example of classifier use is shown in Figure 1, which

shows still images accompanied by corresponding depth maps recorded using a Kinect cam-

era. It demonstrates the use of the TREE classifier and the VEHICLE classifier. It shows

three situations, the first being CAR DRIVES BEHIND TREE (Figure 1a), the second

being CAR CRASHES INTO TREE (Figure 1b) and the last one shows the CAR DRIVES

IN FRONT OF TREE (Figure 1c). The accompanying depth map provides us with enough

information to discern the semantic difference between the three situations. The same task

becomes extremely challenging if only the RGB image is taken into consideration.

1.2 Thesis Statement

Computer science research in ASL can be broadly classified into the following categories:

verification, recognition, translation, generation (synthesis) and natural language process-

ing (NLP). Based on current research we find that there are two distinct tracks researchers

follow. The first track has verification and recognition tied in with translation, and the

second track ties NLP with generation (or synthesis). ASL synthesis researchers have ex-

plored the idea of using computer avatars to depict signing that is generated based on a

paragraph of English text, including ASL classifier predicates [39, 40]. However, in ASL

2



(a) CAR DRIVES BEHIND TREE (b) CAR CRASHES INTO TREE

(c) CAR DRIVES IN FRONT OF TREE

Figure 1: ASL classifier example with accompanying depth map images recorded with a
Kinect camera.
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recognition/verification, classifiers are still relatively underexplored.

Thesis statement I hypothesize that we can extend our ability to recognize sign

language by leveraging depth maps to develop a method using improved hand detection

and handshape classification to recognize selected classifier-based grammatical structures

of American Sign Language.

Table 1 summarizes the research contributions of this work. The table provides concise

information about the research questions, the initial hypotheses to answer those questions,

the methods applied and finally the experimental analysis. The rest of the dissertation is

organized as follows. Chapter 2 is related work. In this chapter I introduce CopyCat, an

educational ASL game we developed [49] that was designed to help deaf children improve

their language abilities. CopyCat requires children to engage in a progressively more diffi-

cult expressive signing task, to describe a graphic as they advance through the game. In

Chapter 3 the difference between verification and recognition is explained. We show that by

leveraging context we can use verification, in place of recognition, to boost machine perfor-

mance for determining if the signed responses in the CopyCat game are correct or incorrect.

Chapter 4 describes a two-pass technique that combines signed input in both forward and

reverse directions to improve the quality of the machine verifier’s ability to identify the

boundary of the signs. In Chapter 5 we demonstrate how the verification method described

in Chapter 3 can be used for ASL sentence verification by replacing the existing CopyCat

sensing hardware with a single Kinect camera. Chapter 6 gives details about the method

for recognizing selected classifier-based grammatical structures of American Sign Language.

Details of recognition pipeline for ASL classifier recognition and the new hand detection

approach are also given in this chapter. Chapter 7 describes a method for hand detection

using domain driven random forest regression. Chapter 8 is the conclusion and future work.
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Table 1: Research contributions towards development of an American Sign Language verification infrastructure and a method to recognize

selected classifier-based grammatical structures of American Sign Language.

Contributions Research Questions Hypothesis Method Data Analysis Publications

Collection of a

unique dataset

of deaf children

signing ASL

sentences and

comparison be-

tween automated

ASL sentence

verification,

recognition and

human scoring.

1. How does auto-

mated ASL verifi-

cation compare to

recognition?

2. How does the auto-

mated ASL verifier

compare to a hu-

man scorer?

3. What signing vari-

ations are seen in

deaf children?

1. Human scorer

has consid-

erably better

performance.

2. Using strict

grammars

will boost

verification

rates.

Recognition re-

sults obtained

using part of

speech (POS)

grammars and

verification using

strict grammars.

Gwinett

dataset and

GSD dataset,

see Table 3 in

Chapter 2.

1. True positive,

false positive

rate trade off for

POS and strict

grammars.

2. Compare ground

truth with live

responses from

human scorer.

ICPR

2010 [113],

LREC 2010

[15], ICLS

2010 [101]

Continued on next page
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Table 1 : continued from previous page

Contributions Research Questions Hypothesis Method Data Analysis Publications

Improved sign

segmentation

using a two-pass

technique that

combines signed

input in for-

ward and reverse

directions.

1. Does the two-pass

technique improve

ASL sentence veri-

fication accuracy?

2. Does the two-pass

technique improve

sign segmentation?

Both the verifica-

tion accuracy and

sign segmentation

will improve.

1. Generate confi-

dence measures

in forward and

reverse pass.

2. Combine the

confidence

measures for

verification; se-

lect the best for

segmentation.

Gwinett

dataset and

GSD dataset,

see Table 3 in

Chapter 2.

1. Verification

results using

leave-one-signer-

out validation.

2. Using ground

truth compute

segmentation

error. Com-

pare standard

approach to

the two-pass

technique.

CVPRHB

2010 [114]

Continued on next page

6



Table 1 : continued from previous page

Contributions Research Questions Hypothesis Method Data Analysis Publications

Investigation of

Microsoft Kinect

to leverage depth

maps and skele-

ton tracking for

ASL sentence

verification.

1. How does Kinect

compare to the

CopyCat Sensor

Platform for ASL

sentence verifica-

tion?

2. How does the

verification perfor-

mance with Kinect

compare when the

signer is seated vs

standing?

1. Kinect will

perform better

than Copy-

Cat Sensor

Platform.

2. Skeleton track-

ing will be poor

when signer

is seated re-

sulting in poor

verification

performance.

Use the verifica-

tion framework

from the ICPR

2010 [113] pa-

per that uses

strict grammars

and likelihood

thresholding.

CC-Kinect

and CC-Adult

datasets, see

Table 3 in

Chapter 2.

Verification re-

sults using leave-

one-signer-out

validation.

ICMI 2011

[115]

Continued on next page
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Table 1 : continued from previous page

Contributions Research Questions Hypothesis Method Data Analysis Publications

Design and collec-

tion of a dataset

that contains ex-

amples of selected

ASL classifiers

signed by fluent

signers.

1. Do the signers

agree on the struc-

ture of the ASL

classifier sentences?

2. Are there varia-

tions in the signing

of classifier predi-

cates?

3. Are there any fixed

patterns in the vari-

ations (handedness

etc.)?

1. Variations can

be expected

due to signer’s

background

(fluent vs.

native signer).

2. Linguistically

acceptable

variations exist

that do not

change the

interpretation.

1. Collaborate

with sign lin-

guists and

fluent/native

signers to

design the

dataset and se-

lect interesting

classifier inter-

actions that

are challenging

to automati-

cally recognize

but are within

the bounds

of hardware

limitations.

2. Record sign-

ing using the

Kinect camera.

3. Store RGB

images, depth

maps and

output from

the skeleton

tracker.

Classifier-

Kinect

dataset, see

Table 3 in

Chapter 2.

Prepare the ASL

gloss for each sen-

tence in the dataset

and manually label

the dataset to iden-

tify segments based

on the gloss. Re-

port statistics on

signing variation.

Continued on next page
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Table 1 : continued from previous page

Contributions Research Questions Hypothesis Method Data Analysis Publications

A method for

recognition of

selected ASL

classifiers.

1. Can we identify the

ASL classifier?

2. How do we assign

nouns to classifiers?

3. Can we identify the

ASL classifier pred-

icate?

1. Identify land-

marks using

motion char-

acteristics of

the left and

right hand.

(Long pause

for classifier

1 and rapid

acceleration for

classifier 2).

2. Classifiers can

be identified

using hand

shape.

3. Assign nouns

and identify

the classifier

predicate using

an HMM-based

technique.

1. Find where

the classifiers

occur.

2. Based on

the found

landmarks,

segment the

ASL sentence

into 3 parts.

3. Recognize

handshapes

at the land-

mark points

to identify the

classifier.

4. Based on the

classifiers, rec-

ognize, using

HMMs, the

nouns and

the classifier

predicate in a

reduced search

space.

Classifier-

Kinect

dataset,

see Table

3 in Chap-

ter 2. The

hand loca-

tions reported

by the Mi-

crosoft Kinect

SDK Skeleton

Tracker are

used.

Recognition ac-

curacy of ASL

classifiers, detec-

tion of classifier

interactions, noun

assignment accu-

racy and overall

sentence recogni-

tion accuracy.

Continued on next page

9



Table 1 : continued from previous page

Contributions Research Questions Hypothesis Method Data Analysis Publications

A dataset of

manually labelled

hand locations

in 75000 video

frames of ASL

classifier signing

data.

1. How does the

Microsoft Kinect

Skeleton Tracker

compare to the

ground truth with

respect to hand

locations?

2. Under what cir-

cumstances does

the MS Kinect

Skeleton Tracker

fail more often?

The MS Kinect

Skeleton Tracker

will likely fail in

the following situ-

ations:

1. When the

hands come

close to other

parts of the

body.

2. When hands

come close to

or touch each

other.

3. When the arms

cross.

Develop a la-

belling tool to

label the hand

locations for the

left and right

hands.

Classifier-

Kinect

dataset, see

Table 3 in

Chapter 2.

Accuracy of the MS

Kinect Skeleton

Tracker within an

error margin of 5

cm compared to

the ground truth.

A heatmap to show

errors across differ-

ent locations in the

signing space.

Continued on next page
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Table 1 : continued from previous page

Contributions Research Questions Hypothesis Method Data Analysis Publications

A method for

hand location

prediction in

depth images of

ASL data.

1. Can we improve ac-

curacy of reported

hand locations

compared to the

Microsoft Kinect

SDK Skeleton

Tracker?

2. Does having better

hand location in-

formation improve

the recognition ac-

curacy?

1. Using a data

driven ap-

proach we can

train a regres-

sor to predict

the location of

the left and

right hand.

2. Better location

information

will result in

better HMMs,

which will

boost recogni-

tion.

1. Use random

forest regres-

sion to predict

the location of

the left and

right hand.

2. Conduct super-

vised training

using hand la-

belled location

information.

3. Generate fea-

tures using

depth data in

signing space.

4. Train a sep-

arate regressor

to predict the

x and y coor-

dinate of each

hand and use a

reverse lookup

to find the z co-

ordinate.

Classifier-

Kinect

dataset, see

Table 3 in

Chapter 2.

Ground truth

hand location

information is

obtained by

labelling the

location of the

left and right

hand manually

by hand in

every frame.

Accuracy of the

predicted hand

locations with

an allowed mar-

gin of error of

5 cm compared

to hand labelled

data. Leave-one-

out and k-fold

cross-validation.

Compare with Mi-

crosoft Kinect SDK

Skeleton Tracker.

Continued on next page
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Table 1 : continued from previous page

Contributions Research Questions Hypothesis Method Data Analysis Publications

A method for ro-

bust hand shape

recognition in

depth images of

ASL data.

1. How can we com-

bine color image

data with depth

data for robust

hand shape recog-

nition?

2. What kind of prob-

lems occur when

finding correspon-

dences between

color image pixels

and depth image

pixels?

1. Segmented

hand in the

color image

can be used

as a mask to

obtain corre-

sponding depth

information.

2. Depth data

may not align

properly over

the color image

data.

3. Depth data

may be missing

for some color

pixels that

belong to the

hand, resulting

in “holes”.

1. Use skin color

and connected

components to

segment the

hand.

2. Use local linear

extrapolation

to fill “holes.”

3. Generate fea-

tures based

on local depth

histograms of

hand pixels.

4. Use a database

lookup ap-

proach to

classify the

ASL classifier

handshapes.

Classifier-

Kinect

dataset, see

Table 3 in

Chapter 2.

Three sets of

hand location

information

are used for

testing. The

Kinect Skele-

ton Tracker

locations,

random forest

predictions

and ground

truth hand

locations. For

training only

the ground

truth locations

are used.

Accuracy of hand

shape recognition

with and with-

out extrapolation

for each of the

three sets of hand

locations. Leave-

one-out and k-fold

cross-validation.
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CHAPTER II

RELATED WORK

Hidden Markov models (HMMs) are popularly used for speech recognition [42, 90] as well

as for automatic sign language recognition (ASLR) [7, 13, 96] since they provide a powerful

architecture to build statistical models of temporally varying, limited and noisy data. Sign

language recognition is a growing research area in the field of gesture recognition. Research

on sign language recognition has been performed around the world using many sign lan-

guages, including American Sign Language [14, 99], Korean Sign Language [47], Taiwanese

Sign Language [52], Chinese Sign Language [29, 32], Japanese Sign Language [80], and Ger-

man Sign Language [8]. Previous sign language recognition systems have used various kinds

of sensors. Starner and Pentland [83] used a single camera compared to Vogler and Metaxas

[95] who used a motion capture system. Gao et al.’s Chinese Sign Language recognition

system [30] uses data gloves and position trackers whereas Hernandez et al. use hand crafted

sensor networks [37]. Brashear et al. [14] have shown in the past that combining sensor

data from cameras and accelerometers can result in significantly improved ASL recognition.

A variety of computer vision features are used in ASLR. Ong lists the following categories

in his survey paper [68]: two-dimensional segmentation, two-dimensional moment-based,

motion vectors, three-dimensional hand positions and three dimensional hand orientations.

In addition to these common features we would add: two-dimensional head tracking [26,

56, 113], three-dimensional head orientation [98] and motion templates [20, 107, 108].

2.1 Language modeling in ASL recognition

Researchers differ greatly in their approach to modeling basic units of signed languages.

The simultaneous nature of meaningful left hand, right hand, and head gesture in sign

languages poses a challenge to many of the sequential techniques used in speech recognition

[93]. Many researchers choose to use the sign as a base unit of modeling [13, 83], while

others attempt to use a structure similar to phonemes to create models [26, 80]. Vogler
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and Metaxus have proposed several techniques for handling simultaneous phonemes using

the Movement-Hold linguistics model and parallel HMMs [96, 97]. Bowden et al. use a

two-tiered approach that is designed to learn from small amounts of data and classifies the

tab-dez-sig features from Stokoe’s phonology [87] and passes the results to a Markov chain

[26]. Tab refers to “tabula” or sign location, dez means “designator” or handshape and

orientation, and sig means “signification” or motion and action.

2.2 ASL verification and sign spotting

Sign language verification remains relatively underexplored compared to recognition, par-

ticularly at the sentence level. The SignTutor system developed by Aran et al. [1] verifies

isolated signs in a two stage process. In the first stage a general HMM is used to perform

recognition and select one candidate class and a cluster of signs that were confused with

this class during a previous cross-validation process. In the second stage the earlier likeli-

hood is combined with the likelihood obtained from a more dedicated model to make the

final decision. There has also been some work performed on sign spotting [65, 105]. Yang,

Sclaroff, and Lee [105] have proposed a method to spot signs from a continuous stream of

data using a conditional random field (CRF) based threshold model. Their method first

detects and then recognizes signing patterns and is able to spot signs from continuous data

with 87.0% accuracy and to recognize isolated signs with 93.5% accuracy.

2.3 Speech utterance verification

Confidence measures have been used in speech recognition for nearly two decades [55, 91,

111]. Rose et al. [78] were the first to formulate the utterance verification problem as a

statistical hypothesis test and proposed the use of the likelihood ratio test. Sukkar and Lee

[90] expanded on this work and presented a framework for discriminative utterance verifi-

cation. Jiang [42] has provided an extensive survey of several works in speech recognition

that employ confidence measures.
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2.4 Hand tracking and detection

Methods used for locating and tracking hands can be categorized according to the capture

system. In the context of sign or gesture recognition, these can be sensor-based, appearance-

based or depth-based.

2.4.1 Sensor-based methods

Sensor-based systems, like data gloves, utilize different types of wearable sensors to capture

hand motion and position. Such systems can comprise of optical sensors, flexion sensors,

accelerometers, magnetic sensors, inertia measurement units or a combination of different

transducers [17, 37, 69].

Despite their high accuracy, sensor-based systems are usually expensive and require

regular calibration to guarantee optimum functionality. In addition, most of these systems

require sensors to be attached on the users arm or hand, which might restrict the user’s

movement and cause inconvenience.

2.4.2 Appearance-based methods

Appearance-based systems use RGB or color cameras to perform hand detection and track-

ing. Common methods for hand localization using appearance are skin color detection

[34, 41, 62, 85], colored glove detection [2, 12, 48] and template matching [10, 51].

Wang and Popović [100] used a glove that has ten full saturated colors distributed

randomly in 20 patches. Using a single RGB camera, hand position was defined after

filtering the image in the HSV domain by setting a high threshold on the saturation level.

The pattern of multiple colored markers helped to classify hand shapes by matching a low

resolution version of the captured image with samples of possible hand shapes.

Generally, appearance-based methods are affected by illumination, and their accuracy

can drop due to changes in lighting conditions. Hence, they may require regular calibration

to operate robustly [35, 64].
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2.4.3 Depth-based methods

Depth maps can be generated by a number of algorithms and varying special camera con-

figurations. Stereo camera rigs, RADAR, LIDAR, structured light techniques and sonar

have all been used to generate depth maps [82]. Time-of-flight cameras are popularly used

in computer vision and robotics to generate depth maps at a high frame rate [88]. Un-

til now commercially available depth camera systems were expensive and out of reach for

most researchers and developers in the fields of computer vision and gesture recognition.

The availability of inexpensive off-the-shelf depth cameras such as Microsoft Kinect, Intel

SENZ3D or ASUS Xtion have allowed researchers to extensively investigate and implement

techniques for hand tracking and localization using depth information. Suarez and Murphy,

in their survey about gesture recognition using depth images listed 13 methods developed

by researchers for hand localization [89].

Common methods used for hand detection in depth images are depth thresholding [31,

60, 63, 77], and region growing [19, 24]. Despite its simplicity, depth thresholding may

not be suitable for real world applications because it assumes that hand position is always

within a given proximity from the camera or a reference point. Region growing is able to

extract hand location assuming it is not in contact with other body parts or objects in the

scene. The latter case occurs often in ASL signs, which makes region growing an undesirable

hand locating technique for ASLR.

Several researchers have developed other techniques to perform hand tracking from

depth information. Stenger et al. [86], Frati et al. [31] and Park et al. [72] used Kalman

filters, which performs a recursive least squares estimate to define hand trajectory in sets

of subsequent frames. Mean shift and continuous adaptive mean shift algorithms have been

used by Yoo et al. [109], Yang et al. [104], Chen et al. [19], and Keskin et al. [45].

These algorithms approximate the hand velocity and direction using gradient descent in an

iterative fashion.

Shotton et al. [81] have implemented a real-time human pose recognizer. The recognizer

is able to provide an estimate for the location of each body appendage. The authors used

depth comparison features generated for each pixel in the image. These features were
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selected to train a random forest with 300,000 depth images. The recognizer generates

decisions for each pixel, defining if it belongs to a human body or not, and to which body

part it belongs to. Then it applies mean shift with a weighted Gaussian kernel on the

generated results to form a local mode-nding approach to estimate joint positions. This

method for human body pose estimation has been used by the Microsoft Kinect skeleton

tracker.

2.5 3D hand pose estimation using depth data

Before depth cameras like the Kinect became popular previous works on 3D hand pose

estimation have used model-based methods [22, 76, 86], nearest neighbor matching in a

database of poses [4, 5, 3, 100] and even multiple cameras to determine the hand pose [21].

Database matching and model-based methods continue to be popular with researchers

working on 3D hand pose estimation using depth cameras. Doliotis et al. employ a technique

whereby they match the segmented hand, obtained using depth data from the Kinect sensor,

against a database consisting of synthetically generated hand images to create a ranked

list of shape class, 3D pose orientation and full hand configuration parameters [23]. Xu

and Cheng propose a three-step pipeline that first finds the in-plane orientation and the

3D location of the hand followed by generation of candidate 3D poses from a dataset of

synthetic depth images of the hand and then finally perform an optimization to find the

best fit [103]. Keskin et al. use pixel-based random forest classification to assign each pixel

to a hand part in a 21-part hand model and use the classification results to estimate the

joint positions [44]. They report results of 99% accuracy on an ASL digits dataset.

Although the above mentioned works that use depth cameras for hand pose estimation

have reported promising results, a closer look at the test datasets reveals that data was

captured at close distances from the camera where the depth resolution is at the maximum.

The Microsoft Kinect’s depth estimation apparatus consists of an infra-red (IR) light pro-

jector and a standard CMOS camera to capture the image of the IR pattern. The distortion

of the IR pattern is used to calculate depth maps, which have a per-pixel depth resolution

of 2 mm within 1 m from the camera, 1 cm at 2 m distance and 2.5 cm at a 3 m distance
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[46]. In real-world ASLR applications the signer will have to stand further away, at least 5ft,

from the camera in order to capture the full signing space. At these distances (1.5m) the

depth resolution begins to degrade, and we will likely see noisier data making it challenging

to do accurate hand pose estimation.

2.6 CopyCat Project

Ninety-five percent of deaf children are born to hearing parents, many of whom do not know

American Sign Language [61]. Studies have shown that starting sign language learning at

an early age is critical to have a long-lasting advantages [57]. The CopyCat project was

initiated to improve ASL exposure for such children, which is often limited to school [36, 49].

The goal of the game was to improve the word span and short term memory skills of the deaf

children . The CopyCat project consists of a suite of educational adventure games for deaf

children that facilitate interaction with the computer using gesture recognition technology

and serve as a practice tool for children to improve their language skills [13, 113]. A core

component of the game is determining whether the required ASL sentence has been signed

correctly.

2.6.1 The CopyCat game

The software for the games is written using Flash and runs within a web browser. The

children are required to wear gloves of a different color (red and purple) on each hand.

One 3-axis accelerometer is attached to each glove (Figure 2b). The camera, computer

monitor, and the chair to seat the child are positioned as shown in Figure 2c. A screen

shot of the Flash game is shown in Figure 2a. The child has to express the scenario

presented in the graphic using ASL to control the character in the game. A tutorial video,

which demonstrates the correct ASL sentence, can be accessed using the help button if

the child has difficulty in understanding the scene. To start signing the child clicks the

Start/Stop button; he clicks the button again to stop signing. The Start and Stop signals

from the mouse clicks provide information for the temporal segmentation of the vision and

accelerometer data streams. Video frames are captured from a single IEEE1394 camera at

a resolution of 720x480 at 20 fps. The camera view captured by the IEEE1394 camera is
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(a)

(b) (c) (d)

Figure 2: CopyCat apparatus: (a) Flash game (b) gloves with accelerometers (c) kiosk (d)
camera view

19



Table 2: CopyCat game vocabulary

nouns
prepositions adjectives

subject object

alligator bed behind black
cat box in blue

snake chair on green
spider flowers under orange

wagon white
wall

shown in Figure 2d. Two wireless bluetooth 3-axis accelerometers, with a range of -2g to

+2g, stream data at 40 Hz.

Currently, CopyCat supports a 19 sign vocabulary (Table 2) with 60 different sentences.

Many of the more sophisticated ASL linguistic constructions, such as facial gestures, are

not included in game interactions in order to reduce the complexity of the game engine.

Three-sign, four-sign and five-sign sentences appear at different levels of difficulty in the

game. Each sentence follows the sequential sign-based grammar:

[adjective1] subject preposition [adjective2] object

Both adjectives are optional in a three-sign sentence whereas only the first adjective is

optional in a four-sign sentence. Both adjectives are required for the five-sign sentence.

The four-sign sentence corresponding to the graphic in Figure 2a is ALLIGATOR BEHIND

ORANGE WAGON.

2.6.2 Hardware Changes

From this point forward, for clarity, we will refer to the hardware setup that includes wrist

mounted wireless bluetooth accelerometers and a single Firewire camera as the CopyCat

Sensor Platform. Although, as we will show later, we have been able to extract good recog-

nition performance with this platform, it has disadvantages and presents some practical

challenges to the end user. Since there is more than one sensor involved, it increases the

number of failure points. Moreover, the computer vision algorithms used for eye track-

ing and hand tracking are impacted by environmental factors such as lighting conditions.
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The CopyCat Sensor Platform requires a kiosk-like setup that adds additional costs and

maintenance efforts. Accelerometer sampling errors can also occur that become further ex-

aggerated when the batteries have not been charged adequately. Circumstances may arise

when controlled lighting is required so that the tracking component performs accurately.

All of these factors make it necessary for a researcher to be present to run the CopyCat

system during deployment. One of the major drawbacks of the CopyCat Sensor Platform

is that it requires the signer to wear gloves with accelerometers strapped to the wrist to

enable the capture of gestural information, which impacts comfort level.

In the past, a stereo camera was considered for replacing the CopyCat Sensor Platform;

however, the high cost of commercially available stereo cameras was a significant deterrent

for adoption. Moreover, a stereo camera is again plagued by environmental factors like

lighting conditions. The Microsoft Kinect [116], which estimates depth by projecting an

infrared light pattern, is less affected by environmental factors, resulting in a very reliable

depth map output. More importantly, it provides a simple plug-n-play interface that even

individuals without a technical background will be able to operate with ease. The commer-

cial version of the Kinect costs a mere $250. All of the above factors combined make the

Kinect a promising alternative to the CopyCat Sensor Platform. We will refer to the new

hardware platform, which consists of a computer connected to the Kinect via a USB cable,

as the CopyCat Kinect Platform.

2.6.3 CopyCat Datasets

Over the past few years several data collection efforts have taken place to collect sign

language data using both the CopyCat Sensor Platform and the CopyCat Kinect Platform.

Data, in the form of ASL sentences, was collected from a wide range of signers that includes

deaf children, fluent adult signers and hearing adults with varying levels of signing skills.

Table 3 gives an overview of all the datasets that have been collected. The Gwinnett dataset

(collected at the Minor Elementary School, part of the Gwinnett County Public Schools),

GSD dataset (collected at the Georgia School for the Deaf), CC-Adult, CC-Kinect-seated

and CC-Kinect-standing datasets (collected at Georgia Tech) all contain ASL sentences
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from the CopyCat game. The Classifier-Kinect dataset contains signed examples of ASL

classifier use. For more details on the design and collection of this dataset please refer to

Chapter 6. Prior to these datasets there have been other datasets that were collected for

the CopyCat project during pilot deployments [13].

In the Gwinnett dataset the method of collection was Wizard of Oz. In other words,

since there was no recognition engine that was developed yet, the CopyCat game responses

were mimicked by a human. The human scorer, who is an ASL linguist, made the decision

whether or not the child was signing the required ASL sentence correctly. This input from

the human scorer was relayed back to the game to generate the appropriate response in the

user interface. The children, unaware of the human intervention, believed that the computer

was understanding their signing. The Wizard of Oz method facilitated the collection of a

large dataset that was utilized to build user-independent models of the signs in the CopyCat

game vocabulary. In the CC-Adult dataset, the Wizard of Oz method was again used.

However, the signers were all hearing adults with varying levels of signing skills ranging

from beginner to expert. For the GSD dataset, a fully-functional game engine was deployed

eliminating the need for a human scorer. The CC-Kinect-seated and CC-Kinect-standing

datasets were collected using the new CopyCat Kinect Platform. The sentences were the

same as the ones from the CopyCat game, but, instead of playing the CopyCat game, the

signers viewed a video of the sentence and repeated the signing back. The CC-Kinect-seated

had signers seated similar to the earlier datasets, while in CC-Kinect-standing the signers

were standing. The responses were recorded with the Kinect camera. For the Classifier-

Kinect dataset the signer looked at English text that appeared on the screen and then

translated the text to ASL making use of ASL classifiers in the sentence.

2.6.4 ASL sentence recognition with Gwinnett dataset

ASL sentence recognition for the CopyCat project was addressed in Brashear’s Ph.D. thesis

[11]. The main focus was the creation of an ontology that described the contents of the

Gwinnett dataset. The ontology was used to improve automatic sign language recognition

and to add customized language processing capabilities. Experiments were conducted using
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Table 3: CopyCat datasets collected for this dissertation

Dataset #Signers Ages Skill Method of
Collection

Total
sen-
tences

Gwinnett 18 6 - 11 deaf children with ba-
sic signing skills.

Wizard of Oz. 1830

GSD 11 6 - 11 deaf children with ba-
sic signing skills.

Live game re-
sponses.

1432

CC-Adult 8 22 - 58 Hearing adults with
beginner to expert
level signing.

Intentional cor-
rect responses
(Wizard of Oz).

820

CC-
Kinect-
seated

8 22 - 58 Hearing adults with
beginner to expert
level signing.

Sentence repeti-
tion.

555

CC-
Kinect-
standing

3 22 - 58 Hearing adults with
beginner to expert
level signing.

Sentence repeti-
tion.

155

Classifier-
Kinect

5 22 - 35 Fluent deaf signers
with expert level
signing.

English text to
sign translation.

492

1192 sentences from the Gwinnett dataset. User-independent models of the signs from

the game, the vocabulary from out-of-game communication from the children, and the

disfluencies discovered in the signing samples were created using hidden Markov models

(HMMs) for recognition of hand-based American Sign Language gestures. Using N-best

recognition, word accuracy of 87.10% and a sentence correctness of 48.53% was achieved.

Finally, a multiple hypothesis language parser classified samples from the game as correct or

incorrect. The combination of the N-best recognition and the classifier judged the sentence

correctness at a rate of 75.63%.
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CHAPTER III

VERIFICATION OF ASL SENTENCES

In this chapter, we will demonstrate that to boost the performance of the CopyCat game

engine we can use verification directly in place of recognition to determine if the signer

has signed the ASL sentence correctly. We explain the difference between verification and

recognition using an example from the CopyCat game language. Figure 3 shows a word

lattice for the game language. We can construct several sentences by stringing together signs

from the left to the right. If we make the adjectives optional there are a total of 3440 three-,

four- or five-sign sentences that can be constructed. However, the CopyCat game only uses

60 of those sentences, one of which is highlighted in Figure 3. If we employ recognition then

the search space is large, equal to 3440 sentences, but we could reduce the search space

by limiting it to the 60 sentences in the game. We can further limit the search space by

exploiting the game context. In each step of the game, the game engine has knowledge of

the current sentence that the signer has to sign. So, instead of searching through the entire

word lattice or matching against 60 game sentences, we can “verify” if the sentence signed

by the signer is the same as the one required at the current step. This process is somewhat

complicated as four or five sign phrases are accepted when only three signs are sufficient.

As long as the children signed a phrase consistent with the graphical world provided the

sentence is verified as correct. Formally, the process of verification proceeds as follows.

First, the null hypothesis is established, which is the game sentence that is being tested in

the current step. Second, the signing data is collected by a push-to-sign method whereby

the signer clicks on a button to begin signing and clicks the button again to stop signing.

Finally, the input is aligned with the hypothesis sentence, and a confidence measure is

applied to the individual signs to determine if a sign is rejected or retained. If all signs in

the input sentence are retained then the ASL sentence is verified.

The verification experiments in this chapter were conducted on the Gwinnett dataset.
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Adjectives Subjects Prepositions Adjectives Objects

black alligator behind black bed

blue cat in blue box

green snake on green chair

orange spider under orange flowers

white white wagon

wall

Figure 3: Word lattice for the CopyCat game language that follows a sequential sign-based
grammatical structure.

This dataset contains signing data obtained from 18 deaf children from the ages of 6 -

11 years. In this age group we are likely to observe variation in signing among children

based on hand dominance as well as linguistically accepted variations of signs. The younger

children usually have yet to establish their dominant hand and so mixed (both right and

left hand) signing is observed (see Figure 4). Based on the analysis of the Gwinnett dataset

the vocabulary size was expanded from 19 signs to 48 signs to include all variations (left

and right handed variants, one and two handed versions and other sign specific variations).

The variations slightly increase the scope of the verification task for the CopyCat game.

Now, verification involves matching the signed input against one path through the word

lattice while accounting for all the possible variations for the signs in that path alone.

3.1 Experimental Setup

The training data was collected using a Wizard of Oz version of the game in which an

external observer played the role of the ASL verifier. We chose 1204 sentence examples of

the Gwinnett dataset consisting of signed ASL sentences from 11 deaf children playing the

game during the deployment of CopyCat. This set included 894 correctly signed sentences

and 310 incorrectly signed sentences. All of the examples contain three-, four-, or five-sign

sentences.

Both vision and accelerometer features are combined to form feature vectors that are
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(a) GREEN

(b) CAT

Figure 4: Signing variations for the ASL signs GREEN and CAT observed in the Gwinnett
dataset.

Figure 5: Diagrammatic representation of features extracted using computer vision tech-
niques superimposed on the image of a signer.
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used to train left-to-right four-state HMMs with one skip state for each sign. HSV his-

tograms are used to track colored gloves on each hand. Blob features include change in

X and Y directions (dx and dy), blob size, length of major and minor axes, eccentricity,

orientation of the major axis, and change in the major axis orientation in the direction of

rotation [13].

In addition to blob features, hand shape features are computed by performing principal

component analysis (PCA) on concatenated histograms of the dominant hue (blue and red

for purple and red gloves respectively), obtained from a 4x4 grid of the extracted hand

region. Assuming a fixed position of the light source, which was the case during the game

deployment, this feature allows us to distinguish hand shapes based on shading information.

We use head tracking to compute pose features that include grid quantized (x,y) positions

of the hands relative to the head position; the angles a1, a2, a3 formed by the triangle

defined by the points O, R and L (4ORL); the normalized lengths l1, l2, l3 of the sides of

4ORL; and the angles θl and θr formed by OL and OR respectively in Figure 5. Finally,

we add acceleration values and the frequency power spectrum from each axis of the two

accelerometers to the feature vector. The summary of all the types of features is listed in

Table 4.

3.2 Verification

3.2.1 Human Performance

To collect data for training and testing, an ASL linguist played the role of a human scorer.

The children played the CopyCat game thinking that the computer was validating their

signing. Initially, scorer labels were used as ground truth, but upon manual inspection of

the signed ASL sentences it was found that the human scorer had made mistakes. The

scorer had a true positive rate of 98% and, surprisingly, had a high false positive rate of

31%, achieving an overall accuracy of 90%.

3.2.2 Machine Performance

Within the dataset, children exhibited several acceptable variations for each sign. In most

cases the variations depended on whether the child was right- or left-hand dominant as in
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Table 4: Computer vision and accelerometer features extracted from the signing data.

Type Description

Blob second moment shape descriptors
(length of major and minor axes,
eccentricity, orientation of major
axis)

Hand Shape shading based fatures obtained by
performing PCA on concatenated
histograms of V (from HSV) from
a 4x4 grid of the extracted hand
region.

2D Image Motion dx and dy of the blob center
Pose (2D geometry) angle formed between the blob

center and the horizontal passing
through the midpoint between the
eyes

Acceleration x, y & z acceleration values and
frequency domain representation
of each axis.

the case of GREEN in Figure 4a, but in some cases additional variations occurred. One

example is a two-handed version of CAT shown in Figure 4b. Each ASL sentence in the

dataset was manually labeled by specifying the segmentation for the signs, and each variant

of the sign was given a unique class name. The size of the vocabulary grew from 19 signs

to 48 signs.

Hidden Markov models (HMMs) were trained for the 48 classes signs labeled using cor-

rectly signed sentences. In addition to the sign models, eight transition models representing

transitions between grammar elements of the game language were trained. We used the

Georgia Tech Gesture Recognition Toolkit (GT2K) [102] for training and testing. Cross

validation was performed by using a randomly chosen 90% of the data for training and the

remaining 10% for independent testing. The trained models were then evaluated on the

incorrectly signed data to determine the false positive rate. The process was repeated 50

times, and the results were averaged. Additionally, up to two Gaussian mixture compo-

nents were used for the training process. For verification a strict grammar is used, and a

common rejection threshold is applied on the normalized log likelihood score of each sign.
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Table 5: Average sentence verification accuracy on the Gwinnett dataset from 50 cross
validation trials using a 90-10 split.

Verification (%) Recognition (%)
TP FP Acc. TP FP Acc.

M=1 86.0 38.0 79.8 54.0 3.0 64.9

M=2 88.6 37.2 82.0 56.8 3.3 67.0
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Figure 6: The ROC curve for sentence verification on the Gwinnett dataset using up to two
gaussian mixture components in the HMMs.

If the likelihood score for each sign passed the thresold, then the sentence is verified as

correct, but if the likelihood score of even one sign falls below the threshold the sentence

is incorrect. The value of the threshold was varied in order to pick a suitable value for the

online verification system.

Table 5 shows cross validation results for sentence verification using 48 signs. M denotes

the number of Gaussian mixture components. In the table the value of the log likelihood

threshold (T) for verification is the median value (T=-456) of the range [-470, -442] that was

used in the experimentation. An initial experiment using the original 19 sign tokens yielded

a sentence verification accuracy of only 60%, highlighting the importance of identifying all

signing variations and treating them as separate tokens.

For reference we have included the results of recognition using a context-free grammar.
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We can clearly see that for verification there is a significant gain in the true positive (TP)

rate. Although false positive (FP) rates are high, verification has higher overall accuracy.

We can further boost our accuracy rates by using two mixture components, however sig-

nificant over-fitting was observed with three or more mixture components. Figure 6 shows

the ROC curve for verification obtained by varying the value of the log likelihood threshold

(T) from -470 to -442 in steps of 2. The highest overall accuracy of 82.8% (TP=93.6%) is

achieved at T=-470 with M=2. However the high false positive rate (48.4%) is not favorable

from the viewpoint of using the CopyCat game for educational purposes. We can tune the

values of T and M to find a better optimal point. By choosing an alternative value for T

(=-454) and with M=2 a significantly lower false positive rate of 35.3% can be achieved

while keeping the overall accuracy high at 81.7% (TP=87.7%), which is within 1% of the

highest overall accuracy (82.8%).

3.3 Live deployment of CopyCat

The CopyCat system was deployed at the Georgia School for the Deaf with the live version

of the sentence verifier, which achieved 82% sentence recognition accuracy on the Gwinnett

dataset (see Table 5). The protocol for the study was similar to the Wizard of Oz study

in [15]. A control group of children went through regular classroom activity whereas for

the experimental group, 45 minutes of classroom activity was substitued with CopyCat

game play. Tests were conducted before and after the two week period when the game

was installed in the classroom. For the receptive language test the children are shown a

video of signing and asked to manipulate figurines to show what they understood from

the video. In the expressive language test, the children are shown a video of an actor

manipulating figurines and the children are required to express the content in ASL. In the

sentence repetition test the children repeat signing that they watched on video. Results

show that on average the children who played the game almost doubled their test scores. In

comparison, a control group either showed minor improvement or showed no improvement

in the test scores. The results are shown in Figure 7.
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Figure 7: Pre and Post test scores showing educational effect of the CopyCat game in a
deployment using a live sentence verifier.

3.4 Summary

In this chapter we have introduced the task of ASL sentence verification. We have shown

that by expanding the vocabulary of the CopyCat game to include the signing variations

observed in the Gwinnett dataset, the ASL sentence verification accuracy can be improved

significantly. Experimental results comparing the automated ASL verifier to the ASL rec-

ognizer and a human scorer were published in the proceeding of the 20th International

Conference on Pattern Recognition (ICPR 2010) [113]. Details about the corpus of ASL

sentences from the CopyCat game signed by deaf children were presented at the 4th Work-

shop on the Representation and Processing of Sign Languages: Corpora and Sign Language

Technologies and appeared in the proceedings of the seventh international conference on

Language Resources and Evaluation (LREC 2010) [15].

Findings from a study conducted with deaf children playing the machine verifier version

of the CopyCat game show that 1) the current system can verify ASL sentences in real-time

but is not as accurate as a human scorer 2) the deaf children who played the CopyCat

game got statistically significant educational benefits compared to a control group. Details
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Figure 8: Signing disfluencies that were observed in the Gwinnett dataset: sneezing, scratch-
ing, thinking, and interjecting.

about the study and the educational effects of the CopyCat game were published in the

proceedings of the 9th International Conference of the Learning Sciences (ICLS 2010) [101].

Additionally, these results are validated in a deployment done at the Georgia School for the

Deaf, where the the live sentence verifier was used and the CopyCat game still provided

educational benefits to the children playing the game (Figure 7).

A drawback of the technique for sentence verification described in this chapter is that

the rejection threshold for the online verifier must be selected manually. Chapter 5 discusses

a method for automatically computing a unique threshold for each sign class. One issue

that has not been addressed in this chapter, but has been addressed in Brashear’s Ph.D.

thesis [11], is disfluencies in signing, examples of which are shown in Figure 8.
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CHAPTER IV

A TWO-PASS TECHNIQUE FOR IMPROVED VERIFICATION

PERFORMANCE

For the task of verification of ASL sentences, besides determining if the signed response is

correct or incorrect, it is important that we correctly segment the signs as well. Having

accurate boundary information is crucial from the future perspective of providing feedback

to signer about exact location of the errors that occur in signing. Precise sign segmentation

information will enable us to improve the current version of the CoyCat game by incorpo-

rating appropriate fine-grained feedback information, which will allow the signer to examine

the parts of the ASL sentence that were signed incorrectly in addition to the coarse-grained

response indicating whether the entire ASL sentence is signed correctly or not.

In this chapter we employ an approach to generate an additional confidence measure

that helps us make a more informed decision about 1) accepting or rejecting a sign and 2)

choosing between two alternative segmentations of the same sign. We introduce the notion

of using reversed signing (i.e., reversing the temporal order of the signed input) in addition

to the regular input. For the rest of the paper we will refer to the HMM training/testing

using the regular input (the standard approach) as the forward pass and the training/testing

process using the temporally reversed input as the reverse pass.

My initial motivation for employing the reverse pass was to use it solely as an alternative

to forward pass in order to avoid false starts made by deaf children playing the CopyCat

game. The Gwinett dataset contains many examples where children make false starts com-

mitting several mistakes at the beginning of the sentence but ultimately went on to sign the

correct sentence. For example, in response to the graphic in Figure 2a of Chapter 2, a child

might sign SNAKE BEHIND SPIDER ALLIGATOR BEHIND ORANGE WAGON. The

correct response would be ALLIGATOR BEHIND ORANGE WAGON without the initial

gibberish. The first three signs are incorrect, but these could be rejected easily if we use a
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WAGON ORANGE BEHIND ALLIGATOR
(a) Unmodified reverse grammar

            WAGON ORANGE BEHIND ALLIGATOR [<ANY>]
(b) Expanded reverse grammar to accommodate false starts

Figure 9: Strict sign-based reverse grammars for the graphic in Figure 2a. a) unmodified
b) expanded to accommodate false starts.

wild card in the restricted grammar of the reverse pass. Figure 9 shows the standard and

the expanded restricted grammars for the reverse pass. The expanded restricted grammar

contains the wild card [<ANY>], where “ANY” denotes any sign in the vocabulary includ-

ing a garbage model that models out-of-vocabulary gestures. The angle brackets denote

one or more repetitions and the square brackets denote optional items [110].

Besides the advantage gained by using reverse pass in handling false starts, we hy-

pothesize that we can improve verification performance by combining confidence measures

computed in the reverse and forward passes. We have experimented with two types of con-

fidence measures, namely the normalized likelihood score and the log likelihood ratio (LLR).

The LLR test is employed as a typical solution to speech utterance verification (UV) for-

mulated as a statistical hypothesis test [42, 78, 90]. If an utterance U has been recognized

as a word W, then the LLR is given as follows [42, 112]:

LLR =
p(U |H0)

p(U |H1)
(1)

where:

H0 (null hypothesis): U is truly a representation of W

H1 (alternative hypothesis): U is a representation of something other than W

The null hypothesis H0 is accepted if LLR > β, where β is the critical threshold.

Verification performance in the standard forward pass method is compared to the new

method that combines the confidence measures from the forward pass and the reverse pass.

To summarize the contributions:

1. We introduce the notion of using temporally reversed signing input to generate an

additional reverse pass confidence measure that, when combined with the forward

pass confidence measure, aids in making a more informed decision about (i) accepting
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or rejecting a sign and (ii) choosing between two segmentations of the same sign.

2. We will show that combining forward pass and reverse pass confidence measures can

in some cases lead to a gain in verification performance; more importantly we can

improve the accuracy of sign segmentation.

4.1 Verification

For a given test ASL sentence P, verification is performed independently on each sign s1,

s2, ... sn of the sentence. If all the signs have passed the verification criteria then we say

that P has been verified. We have used two methods to compute confidence measures to

define our verification criteria. First, we use the normalized likelihood score. We will refer

to this as CM1 and is defined as follows:

CM1 = log[L(Oi|si)]− (µi − γσi) (2)

where:

log[L(Oi|si)] is the normalized log-likelihood score of observation Oi given sign si

µi is the mean of log[L(Oi|si)] obtained from training

σi is the standard deviation of log[L(Oi|si)] obtained from training

γ is a parameter to scale σi

The first verification criteria is:

V (1) : CM1 > 0 (3)

Second, we use the log-likelihood ratio as another confidence measure; we will refer to this

as CM2. For CM2 the notation used in Equation 7 of Sukkar and Lee [90] is followed. If

we compare Equation 1 and 4 we can see that L(Oi|si) models p(U |H0) and the geometric

mean of the second term models p(U |H1). The geometric mean can viewed as a measure of

the likelihood of an antisign model of si [90].

CM2 = log[L(Oi|si)] − log

[
1

N − 1

N∑
n=1
n6=i

exp(α log[L(Oi|sn)])

]1/α

(4)

where:
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L(Oi|sn) is the likelihood score of observation Oi given sign sn

N is the size of the vocabulary

α is a constant

The second verification criteria is:

V (2) : CM2 > β (5)

where β is the threshold.

Next we define CM3 as the sum of the forward and reverse pass values of CM1. Simi-

larly, we define CM4 as the sum of the forward and reverse pass values of CM2.

We have

CM3 = CM1
f + CM1

r (6)

CM4 = CM2
f + CM2

r (7)

The third and fourth verification criteria are:

V (3) : CM3 > 0 (8)

V (4) : CM4 > 0 (9)

Figure 10 outlines the general procedure for applying the verification criteria V (3) and V (4).

The signs in the test sentence P are verified if the sum of the confidence measures in forward

pass and reverse pass is > 0 and a sign segmentation is selected based on the maximum of

the two.

4.2 Experiments

A subset of the Gwinett dataset that contained signing examples from deaf children who

were right-hand dominant was selected for the experimentation. It included 420 ASL sen-

tences from five different signers, eliminating variants of signs from left-hand dominant

signers and mixed signers from the vocabulary. However, three of the 19 signs in the vocab-

ulary still consistently showed linguistically acceptable variations. To accommodate these

variations the vocabulary was increased to 22 signs. The types of features extracted from

the input can be found in Section 3.1.
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(CMf , Sf )← {forward pass confidence measures
and segmentation for signs in P}

(CMr, Sr)← {reverse pass confidence measures
and segmentation for signs in P}

for all signs (s) do
CM s ← CM s

f + CM s
r

if CM s > 0 then
accept s
if CM s

f ≥ CM s
r then

choose Ssf as the segmentation for s
else
choose Ssr as the segmentation for s

end if
else
reject s

end if
end for

Figure 10: Procedure for applying the verification criteria V (3) or V (4) given in equations
8 and 9 respectively, and choosing segmentations for the signs in ASL sentence P.

4.2.1 Forward and reverse pass training and testing

We trained left-to-right four-state hidden Markov models (HMMs) with one skip transition

for each of the 22 signs. The skip occurs from state one to state three. The Georgia Tech

Gesture Toolkit (GT2K) [102] was used for training and testing. In addition to the regular

forward pass training process we trained sign models by reversing the input features. The

N th data frame becomes the 1st frame, the (N − 1)th the 2nd, and so on. The hand labeled

sign segmentation is then translated to correspond to the reversed features. The HMMs

are also changed accordingly, the skip transition now occuring from state two to four. The

intuition for using the reverse pass is as follows.

Model parameters for both the forward and reverse pass are estimated iteratively using

the Baum-Welch method [75]. Baum-Welch does not guarantee the same results given

different orders of input, and it is unlikely for it to generate the same values for reverse

versus forward input. The children’s sign is highly variable, and sometimes the end of a

sign has much less variance than the beginning, or vice versa. Thus, depending on whether

the models are trained on the forward or reverse data, alignment of the models’ states

can vary wildly. Thus, the models can be of better or worse quality depending on the
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variance observed in the beginning or end of the sign. A similar artifact might be observed

during Viterbi decoding. In theory, the forward algorithm should pick an optimal path

(assuming that the problem is first-order Markovian, which may not hold here). However,

in practice, pruning is needed due to memory and processor limits. If a sign has high

variance at the beginning, all paths through the Viterbi lattice could be of approximately

the same low probability. Thus, promising paths may be pruned inopportunely. However,

with reversed input, the “correct” paths should have significantly higher probability values

than the incorrect paths and therefore avoid pruning. Thus, the correct paths may be

better preserved in one direction of Viterbi decoding than in the other. We hypothesize

that this situation could directly impact the confidence measure for each sign in the forward

and reverse directions. We can take advantage of this fact and combine the measures in a

manner already described in Figure 10.

Signer-independent cross-validation was performed by training on data from four stu-

dents and testing on data from the fifth student. The focus is on sentence-level verification;

first, the test sentence P is aligned with the null hypothesis; then we check to see if each sign

in the sentence has passed the verification criteria outlined in Section 4.1. In the CopyCat

game the current graphic (see Figure 2a) directly determines the null hypothesis to be used.

During data collection the identifier for the game scene was stored along with the sentence

sample, which made it possible to obtain the null hypothesis for the test sentence during

offline testing.

Table 6 lists the the number of training and test sentences used in signer-independent

cross-validation for each student. The “x 2” indicates that a second simulated test set of

same size, but having incorrect signing, was used to determine the false alarm rate. To

simulate incorrect signing, sentences from the test student’s own signed sentence examples

that had one or more signs different from the sentence currently being verified were chosen.

The goal was to select as many sentences as possible that were different by only one sign

in order to maximize the difficulty of the false alarm testing. Table 7 lists two examples

of sentences for the sentence depicted in Figure 2a. The first example is straightforward,

with ALLIGATOR being replaced by SNAKE; however, in the second example GREEN
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Figure 11: Distribution of simulated sign errors for each student.

Table 6: Training and testing split for signer-independent cross-validation.

Student #Training #Testing

1 330 90 x 2
2 328 92 x 2
3 380 40 x 2
4 315 105 x 2
5 327 93 x 2

is not an error since the grammar used by CopyCat allows for an optional first adjective

for 4-sign sentences. In Figure 2a GREEN is, in fact, the color of the ALLIGATOR. For

the complete distribution of comparison sentences with differences chosen for each student,

see Figure 11. With the exception of student five, the majority of sentences had two sign

differences.

4.3 Results and Discussion

We obtained signer-independent cross-validation results by applying the four verification

criteria outlined in Section 4.1. For CM1 and CM3 the value of γ was varied between -5 to
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Table 7: Examples of one-sign-error sentences. Errors are shown in bold.

Example 1.
test sentence
error sentence

ALLIGATOR BEHIND ORANGE WAGON
SNAKE BEHIND ORANGE WAGON

Example 2.
test sentence
error sentence

ALLIGATOR BEHIND ORANGE WAGON
GREEN ALLIGATOR BEHIND ORANGE WAGON

Table 8: Head-to-Head wins comparing verification criteria, V (1) vs V (3) and V (2) vs V (4).

Student
V (1) vs V (3) V (2) vs V (4)

Accmax Winner Accmax Winner

1 76% V (3) 86% V (4)

2 65% V (1) 71% V (4)

3 86% V (3) 88% V (4)

4 82% tie 94% V (2)

5 69% V (3) 81% V (2)

15. For CM2 and CM4 we set the value of α to 0.5 and varied the value of β between -70

to 100. Figure 12 shows the ROC plots of False Alarms vs False Rejects for each student.

We see that V (2) and V (4) in general perform better than V (1) and V (3), with curves more

closely approaching zero. This result is not surprising given that, according to Neyman-

Pearson theory, if the exact densities L(U |H0) and L(U |H1) are known then the likelihood

ratio test (LRT) is the best available test that gives the lowest false alarm rate for a given

false rejection rate. In practice the probability density functions are not easily obtained,

but they can be approximated as in the case of Equation 4 [90]. Table 8 lists the winning

verification criteria in terms of the maximum achieved accuracy (Accmax) for each student.

V (3) scores three wins and ties once with V (1), whereas V (4) and V (2) seem equally matched,

taking three and two wins respectively. However, since the number of students is small we

will reserve judgement about V (4)’s performance until further analysis is conducted.

From this point forward, we will restrict our discussion to comparing V (2) and V (4), the

verification criteria that use the LLR as the confidence measure. Figure 13 shows accuracy

plots that provide a better perspective of how V (4) performs against V (2). The blue and
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Figure 12: ROC plots for signer-independent cross-validation.
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green shaded regions should allow the reader to make better connections between the three

plots. Looking at Figure 13b, if the false reject rate is to be maintained below 20%, we can

clearly see that there is a significant advantage by choosing V (4) over V (2). However, the

corresponding false alarm rates are above 20%. If one were to limit the false alarm rates

to below 20% (Figure 13a), the advantage is minor, and at the same time the false reject

rates get prohibitively higher. From the perspective of the CopyCat game we would like to

keep the false alarm rate as low as possible to avoid any negative impact on the student’s

language development. Keeping β at -20 as seen from Figure 13c gives an equal error rate of

20%, which is a good compromise between false alarms and false rejects. However, with β

≥ -20 there appears to be no significant advantage in terms of accuracy with respect to V (4)

over V (2). Strictly speaking with the likelihood ratio test we should not be considering β <

0, since in general the likelihood ratio will be ≥ 0 when the observation sequence matches

the null hypothesis and will be negative otherwise.

We will show with further analysis that indeed there are advantages to using V (4), less

in terms of accuracy but more in terms of how well the chosen boundaries match with the

hand labeled ground truth boundaries for the signs. Interestingly, on analyzing the true

positive cases we found that the sentences verified by V (4) and V (2) were not all the same.

At β = 0 Table 9 gives the exact numbers of “All” sentences verified, the “Common” ones,

and the sentences “Exclusively” chosen by V (4) and V (2). Overall there are 420 test cases

across the five students. V (4) accepts 278 sentences, and V (2) accepts 275 sentences. We see

that 259 of these are common to both, 16 are exclusively chosen by V (2), and 19 exclusively

by V (4). To measure the distance between the ground truth and the test case boundaries

we define a new cost function on the basis of the parameters shown in Figure 14.

d =
ds + de
l1 + l2

(10)

Remember that according to the decision rule in Figure 10 either the forward pass or reverse

pass boundaries may be chosen depending on which one of the confidence measures is the

higher positive value. This rule means that the boundaries for the signs in sentences chosen

by V (4) could be significantly different from those of V (2), even for those sentences that are
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Table 9: True positive cases for verification criteria V (2) and V (4).

V (2) V (4)

All |P V (2) | = 275 |P V (2) | = 278

Common |P V (2) ∩ P V (4) | = 259

Exclusive |P V (2)
- P V

(4) | = 16 |P V (4)
- P V

(2) | = 19

ALLIGATOR BEHIND BLUE WALL 

ALLIGATOR BEHIND BLUE WALL 

s2 e2 

s1 e1 

ds 

l1 

l2 de 

Ground truth 

Test case 

Figure 14: Parameters for computation of boundary distance.

common to both. Figure 15 shows the mean boundary error computed using Equation 10.

We can clearly see that in all three cases the sentences chosen by V (4) have sign boundaries

that have a better match with the ground truth. Particularly in the “Exclusive” case, the

boundary identification performance of V (4) is far superior than that of V (2).

4.4 Summary

In addition to having high sentence verification accuracy the efficacy of the sentence veri-

fier depends on the accuracy of the reported sign boundaries. Having accurate boundary

information is crucial from the future perspective of providing feedback to signer about

exact location of the errors that occur in signing. In this chapter, we introduced a two-

pass technique for ASL sentence verification that utilizes temporally reversed signing input

to identify sign boundaries that have a better match to the ground truth as compared to

the standard approach. Precise sign segmentation information will enable us to improve

the current version of the CoyCat game by incorporating appropriate fine-grained feedback

information, which will allow the signer to examine the parts of the ASL sentence that

were signed incorrectly in addition to the coarse-grained response indicating whether the

entire ASL sentence is signed correctly or not. Additionally, we have shown that if a low
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Figure 15: Comparison of mean boundary error, after alignment, between verification cri-
teria V (2) and V (4).

false rejection rate is desired the new method can provide better verification accuracy. In

the case of an educational game like CopyCat, this priority is of particular interest. The

results from this chapter were published in the proceedings of the 3rd IEEE Workshop on

Computer Vision and Pattern Recognition for Human Communicative Behavior Analysis

(CVPRHB 2010) [114].

45



CHAPTER V

ASL VERIFICATION WITH KINECT

The CopyCat Sensor Platform consists of two types of sensors, a camera for eye and hand

tracking and a pair of accelerometers that are strapped on the wrists over colored gloves.

Although the gloves and accelerometers enhance the performance of the system, there are

significant drawbacks to their use. They increase the complexity of the system making

it harder for the teachers to set up the system for the children to play the game in the

classroom. They require constant maintenance; the batteries need to charged frequently,

and the gloves need to be washed regularly. Additionally, the wearable sensors add a possible

point of failure.

In this chapter, I present experimental results that show that the Microsoft Kinect

sensor can yield performance comparable to the CopyCat Sensor Platform but may require

a change in user interaction. The Kinect is desirable in that it provides a more natural

interaction and is inexpensive and easy to maintain.

5.1 Data Collection

Data was collected using both the CopyCat Sensor Platform and the CopyCat Kinect Plat-

form in order to compare the performance of the two sensor platforms. The data contains

ASL sentences from the expressive signing tasks of the CopyCat game but was collected

from adult participants for preliminary testing. The three datasets used for comparison are:

• CC-Adult contains data collected from adult signers playing the CopyCat game

using colored gloves, wrist-mounted accelerometers and a camcorder.

• CC-Kinect-seated contains data that mimics the CopyCat game interactions using

the sentence repetition task (discussed in the next section) in a seated position. The

seated position matches the configuration used in previous CopyCat studies.
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• CC-Kinect-standing contains data that mimics the CopyCat game interactions

using the sentence repetition task (discussed in the next section) in a standing position.

The standing position differs from the original CopyCat task but is more compatible

with Kinect skeleton tracking algorithms, which were optimized for standing (and not

sitting).

5.1.1 Kinect Data Collection

We recruited seven participants, all of whom were hearing adults with varying levels of

ASL expertise, ranging from beginner to expert. All seven signers participated in data

collection for the seated data, and three signers participated in data collection for the

standing dataset. During each session, signers had 60 minutes to sign as many phrases

from a set of 60 sentences as was comfortably possible. One signer was unable to complete

a standing session due to an interruption, so that signer had fewer standing examples. A

total of error-free 555 phrase samples were collected in the seated pose and 155 error-free

phrase samples were collected in the standing pose.

5.1.1.1 Sentence Repetition Task

The sentence repetition task required participants to view videos of ASL sentences from the

CopyCat game and sign them back to the camera. A front end application was developed in

Java that allowed the signers to view the ASL videos and view real time information from

the Kinect camera consisting of the depth map image with skeleton tracking superimposed

and the two-dimensional RGB image. The Java interface is shown in Figure 16.

Once the participant viewed a video, he or she would click the “Start Signing” button

to begin signing and then the “Stop Signing” button to indicate the termination of the

ASL phrase. Since the purpose of this task was to collect data to examine the feasibility

of the Kinect camera as a sensor for doing sign language recognition, we encouraged the

participants to repeat signing the phrase until they signed it correctly and discarded the

phrases with signing errors. Each participant was asked to complete signing all the 60

phrases of the CopyCat game at least once if possible within the 60 minute session. All

signers in the seated dataset were able to sign the 60 phrases at least once with some signers
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Figure 16: User interface for the sentence repetition task. Video on the left shows a tutorial
for the phrase. The right side shows the raw video (bottom) and the video annotated with
the skeleton tracking (top). The bottom buttons allow the signer to navigate the system.

managing to sign the first few phrases for a second time. Two signers in the standing dataset

completed the entire set of 60 phrases exactly once while one signer did not complete all of

them due to an interruption. Figure 17a shows the physical setup where the participant is

seated facing the Kinect camera and watching the ASL videos on a laptop computer. The

signer controls the interface via a mouse placed on a table next to the chair.

5.1.1.2 Signer Pose: Seated vs. Standing (Kinect data).

The skeleton tracker suffered from performance issues when the signers were seated, losing

track of the participant’s body pose several times and accompanied by jitter in the limb

positions. Since we did not anticipate ahead of time that this problem would be a major

issue, statistics on the frame-level accuracy of the tracker were not gathered, especially

since obtaining ground truth data by labelling hand locations in each frame is a time-

intensive activity. In many cases the participants were allowed to ignore tracking errors

and move forward once the phrase was signed correctly. Two signs that caused most of the

failures were BED and ALLIGATOR, with BED being the most unfavorable of the two (see

Figure 18).

The experiment in the seated position represents the ideal case for a straightforward

48



(a)

(b)

Figure 17: Participant pose for data collection. (a) Seated (b) Standing.
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Figure 18: Tracking failure with BED and ALLIGATOR, respectively (Kinect data). Note
that the lines should correspond with the signer’s arm positions but do not.

comparison since it correctly mimics user interaction used in previous work for the CopyCat

project. The high occurrence of tracking failures in the seated condition prompted the

collection of a new dataset, for the sentence repetition task, with three signers in the

standing position. The standing position setup is shown in Figure 17b. The configuration

difference for the standing position is that the camera is angled to capture the body from the

knee up, and the mouse is placed on a platform that can be easily reached in the standing

position. It was hypothesized that the skeleton tracking library in the OpenNI framework

would yield better tracking performance in the standing position.

5.1.1.3 Data Pruning

The standing position suffered significantly less tracking errors compared to the seated

position. However, there is no confirmation that all the available skeleton tracking imple-

mentations for Kinect depth data suffer from the same problem. The dataset was pruned

to remove tracking failures, yielding 146 signed phrases (from 155 possible) in the standing

pose and 348 signed phrases in the seated pose (from 555 possible).

5.1.2 CopyCat Adult Data Collection using the CopyCat Sensor Platform

For the CC-Adult dataset we recruited eight participants, all of whom were hearing adults

with varying levels of ASL expertise, ranging from beginner to expert. Of the eight par-

ticipants recruited for this dataset, three also participated in the Kinect data collection.
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The dataset contains up to six sessions per participant, each session containing 20 of the

possible 60 CopyCat phrases with repetitions occurring between sessions. Participants sat

at the CopyCat kiosk (Figure 2c) and played the CopyCat game.

5.1.2.1 Data Pruning

First, we randomly selected two sessions per participant. Each session contains 20 samples,

thus giving 320 phrase samples in total. Of these, 43 samples contained errors in data

collection and were excluded. In order to choose samples compatible with the sentence

repetition task, only those samples that contained correct signing were selected. Five sam-

ples were excluded due to incorrect signing, and 26 samples were excluded because they

contained variations in the signing such as sign repetition or other disfluencies. One of the

signs excluded for language variation also contained machine errors. The resulting dataset

contained 247 usable sentence samples.

5.1.3 Data Collection Summary

Table 10 summarizes the number of error-free and variation-free phrase samples collected in

each dataset, the number of samples that remain after pruning out data that was unusable

due to data collection errors (machine errors) and the percentage of the unusable data. The

least amount of data collection errors were observed in the Kinect standing dataset.

Table 10: Error-free samples collected versus sensor failures for all data collected.

Dataset #Error-free
Samples

#Corruption-
free Samples

%Corrupt
Samples

CC-Kinect-seated 555 348 37.3%
CC-Kinect-standing 155 146 5.8%
CC-Adult 290 247 14.8%

5.2 Experimental Design

We follow a three-step process. The first step is feature extraction whereby salient informa-

tion that will enable us to perform automatic recognition is obtained. The second step is

to train hidden Markov models (HMMs) for each sign in the game vocabulary. In the final
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Table 11: Description of body pose features generated using OpenNI framework (Kinect
data).

Description # Features

Unit 3D vector from RS → RE 3
Unit 3D vector from RE → RH 3
Unit 3D vector from LS → LE 3
Unit 3D vector from LE → LH 3
Unit 3D vector from RH → LH 3
6 N −RS −RE 1
6 RS −RE −RH 1
6 N − LS − LE 1
6 LS − LE − LH 1
dist (RH → LH) 1

Total 20

step, the generalization performance of theses models is measured by testing on independent

data.

5.2.1 Features

The feature extraction process for the CopyCat Kinect Platform differs significantly from

that of the earlier CopyCat Sensor Platform. Refer to section 3.1 for details on feature

extraction with the CopyCat Sensor Platform. Feature extraction with the CopyCat Kinect

Platform is described below.

5.2.1.1 Body pose features

To extract body pose features, the skeletonization capability provided by the the OpenNI

framework was used. OpenNI stands for “Open Natural Interaction” and provides a set

of APIs that allows developers to write applications that utilize natural interaction. The

OpenNI framework interfaces with NITE middleware provided by PrimeSense, the company

that developed the Kinect hardware [73].

The skeleton tracker can be configured to return only the joints in the upper body. The

shoulder, elbow and hand positions for the right and the left side of the body are obtained.

The body pose feature is built using the joint angles of the shoulders and the elbows, the

unit vectors of the elbows with respect to the shoulder, the hands with respect to the elbows
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Figure 19: Visualization of upper body skeletal joints generated using OpenNI framework
(Kinect data).
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and finally the left hand with respect to the right hand. See Figure 19 and Table 11 for

details of the body pose feature. The body pose feature has 20 dimensions.

5.2.1.2 Hand shape features

Three-dimensional points in the neighborhood of each of the hand positions (RH and LH

in Figure 19) returned by the skeleton tracker are collected. The points corresponding

to each hand are clustered separately to obtain a mixture of six Gaussians (MoG). For

simplicity we use diagonal covariance matrices while learning the mixture using expectation

maximization (EM), resulting in a combined feature of 72 dimensions. The parameters of

the Gaussians serve as the initial features. We then perform principal component analysis

(PCA) on the entire dataset of MoG hand features to reduce the dimensionality of the hand

shape feature from 72 to 20.

5.2.2 Training and Testing

Once the features are collected, a left-to-right four-state hidden Markov model with one

skip transition is trained for each of the 19 signs in the vocabulary shown in Table 2.

Training and testing was done using the Georgia Tech Gesture Toolkit GT 2K [102]. To

evaluate the performance of the system, two types of tasks, recognition and verification

are performed. The difference between recognition and verification is explained in the

introduction of Chapter 3.

For both recognition and verification the generalization performance of trained models

is assessed using signer-independent cross validation. However, the procedure is different in

each case. For recognition, the approach is straightforward. We set aside one participant’s

data for testing and train on data from the remaining participants. In verification, since

a likelihood threshold is applied, we first need to determine the appropriate threshold to

use. The procedure to learn a threshold for each sign is outlined in Figure 20. It is a

two-level signer-independent procedure whereby the inner signer-independent step is used

to determine the log-likelihood threshold to be used for each sign, and the thresholds thus

computed are then used in the outer signer-independent step. The results from each signer-

independent run, the outer runs in the case of verification, are combined to obtain the
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for all participants (p) do
Vp ← set aside participant p′s data for validation
for all remaining participants (r) do

1. Vr ← set aside participant r′s data for validation
2. T rain on remaining N − 2 participants and test
on Vr

3. For each instance of a sign in Vr note the log
likelihood value obtained via V iterbi alignment

end for
For each sign calculate the mean(µ) and standard
deviation(σ) of the log − likelihood values collected
Set a log − likelihood threshold for each sign
(µ− κ ∗ σ,where κ > 0 is a parameter to scale
the standard deviation)
Train on remaining N − 1 participants and test on Vp
using the computed thresholds

end for

Figure 20: Procedure for computing log-likelihood thresholds to perform verification.

overall recognition and verification accuracy.

5.3 Results

We evaluate performance based on both sentence recognition and sentence verification ac-

curacies.

5.3.1 Baseline results from experiments on the Gwinnett dataset

Table 12: Experiments using Gaussian mixture models for the Gwinnett dataset show a
maximum sentence recognition accuracy of 67.0% and a maximum sentence verification rate
of 82.0% [114].

Verification (%) Recognition (%)
TP FP Acc. TP FP Acc.

M=1 86.0 38.0 79.8 54.0 3.0 64.9

M=2 88.6 37.2 82.0 56.8 3.3 67.0

A comparison of sentence recognition and verification rates for the Gwinnett dataset

resulted in a maximum sentence recognition accuracy of 67.0% and a maximum sentence

verification accuracy of 82.0% (see Table 12) [114]. Performance was measured using cross
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validation by setting aside 90% of the data for training and using the remaining 10% for

testing. For more details refer to section 3.2.2.

5.3.2 Kinect Data

Table 13 and Table 14 show the recognition and verification results of leave-one-out cross

validation in the seated and standing poses respectively. For the seated dataset the threshold

selection for verification was done using the procedure shown in Figure 20.

Table 13: Sentence recognition and verification results for the pruned CC-Kinect-seated
dataset (CopyCat Kinect Platform).

Recognition Verification

Subj Word Acc SENT Acc Word Acc SENT Acc

1 51.79 26.67 89.29 60.00
2 77.19 43.9 96.56 87.80
3 73.1 35.00 95.17 82.50
4 69.11 25.00 92.68 71.88
5 75.53 32.2 96.38 85.59
6 80 43.48 92.78 76.09
7 70 40 96.00 86.67

Overall 74.48 36.2 95.16 82.18

Table 14: Sentence recognition and verification results for the pruned CC-Kinect-standing
dataset (CopyCat Kinect Platform).

Recognition Verification

Subj Word Acc SENT Acc Word Acc SENT Acc

1 65.04 26.79 87.61 58.93
2 75 38.33 98.33 93.33
3 85.71 50 99.25 96.67

Overall 73.62 36.3 94.49 80.82

The value of κ, described in the procedure in Figure 20, was varied from 1 to 10. At

κ = 6 the increase in verification accuracy begins to flatten out. The results for κ = 6 are

shown in Table 13. See the discussion section for the average verifcation accuracies for all

values of κ. Since there were only three participants in the standing dataset, the threshold

selection procedure could not be applied. Instead a common threshold for all signs was
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chosen, which was obtained by averaging the threshold values from the seated dataset, with

κ = 6, across all signs (s) and all the participants (p) (see Equation 11).

1

|p| ∗ |s|
∑
p

∑
s

µ− κ ∗ σ (11)

Based on the overall recognition and verification accuracies, there appears to be no

significant difference in performance between seated and standing positions, which shows

that the recognition/verification framework is robust to the skeleton tracking jitter that

occurs in the seated position. When tracking errors are ignored the seated pose does slightly

better in terms of verification acheiving 82.18% accuracy compared to 80.82% in the case

of the standing pose.

5.3.3 CopyCat Adult Data

Table 15 shows the recognition and verification results of signer-independent cross-validation

on the CC-Adult dataset. The threshold selection to perform verification was done using

the procedure outlined in Figure 20, which is the same approach used for the CC-Kinect-

seated dataset. The value of κ was varied from 1 to 10 but only results for κ = 6, the point

at which the verification accuracy begins to flatten out, are shown in Table 15.

Table 15: Sentence recognition and verification results for the pruned CC-Adult dataset
(CopyCat Sensor Platform).

Recognition Verification

Subj Word Acc SENT Acc Word Acc SENT Acc

1 80.43 42.42 99.34 97.22
2 63.64 21.05 92.05 63.16
3 79.01 43.24 97.10 87.88
4 91.23 61.54 94.44 78.33
5 86.18 52.78 91.30 70.00
6 93.21 72.97 100.00 100.00
7 80.43 40.00 95.80 84.62
8 84.03 53.85 100.00 100.00

Overall 85.42 51.01 96.86 87.85
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5.3.4 Discussion

Table 16 provides a comparison between the three datasets based on the following fac-

tors: Recognition/Verification Accuracy, Robustness, Aesthetics and Comfort, and User

Interaction.

Table 16: Comparison between three configurations of the CopyCat game apparatus based
on ratings for Recognition/Verification Accuracy, Robustness, Aesthetics and Comfort, and
User Interaction (a rating of X means further investigation required).

CC-Adult CC-Kinect-seated CC-Kinect-standing

Recognition /
Verification good fair fair
Accuracy

Robustness fair X good

Aesthetics
& fair X X

Comfort

User Interaction good X X

5.3.4.1 Recognition/Verification accuracy

The experiments show that the existing CopyCat Sensor Platform performs significantly

better than the CopyCat Kinect Platform in terms of recognition rates and also yields higher

verification rates. Table 17 gives a summary of the overall recognition and verification rates

for the three datasets. The baseline results on the Gwinnett dataset are also included for

reference. However, for these experiments the datasets were pruned to include only those

samples with no data corruption. The numbers are likely to change, once erroneous data

samples are included.

5.3.4.2 Robustness

The CopyCat Sensor Platform involves more than one sensor resulting in more failure points.

Since conventional computer vision algorithms are used for eye tracking and hand tracking,

environmental factors such as lighting conditions can have a negative impact on the robust-

ness of tracking. Although the accelerometers are sampled at twice the video frame rate,

wireless transmission delays and buffer overflow problems in the accelerometer hardware
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Table 17: Summary of sentence recognition and verification results on the CopyCat Kinect
Platform datasets and the CopyCat Sensor Platform datasets.

Dataset Recognition Verification

Word SENT Word SENT
Acc Acc Acc Acc

CC-Kinect-Seated 74.48 36.2 95.16 82.18

CC-Kinect-Standing 73.62 36.3 94.49 80.82

CC-Adult 85.42 51.01 96.86 87.85

Gwinnett - 67.0 - 82.0

can cause loss of accelerometer data. When there is significant loss of accelerometer data,

the inability to match a video frame with an accelerometer frame results in a corrupt data

frame.

The Kinect estimates depth by projecting an infrared light pattern, making it almost

immune to environmental factors like lighting conditions, resulting in a very reliable depth

map output. However, the skeleton tracking facility provided by the OpenNI framework

is robust only in the standing pose and fails more than one third of the time when the

signer is seated (see Table 10). Once we factor in the tracking errors, considering them

as recognition and verification failures, the standing pose emerges as the more favorable

of the two configurations. A detailed comparison between the CopyCat Sensor Platform

(CC-Adult dataset) and the CopyCat Kinect Platform (CC-Kinect-seated dataset) is shown

in Figure 21. This graph highlights a significant drop in the overall verification accuracy

for the CC-Kinect-seated dataset due to the large amount of corrupt data.

Further investigation is clearly warranted regarding the standing vs seated problem, and

other frameworks for skeleton tracking with the Kinect need to be thoroughly explored in

order to determine if they may be able to overcome the tracking problem in the seated

position.

Table 18 lists the updated recognition and verification rates once we factor in the errors

that occur in data collection for all three datasets. The CopyCat Sensor Platform still

performs better at recognition, but given that in the CC-Kinect-standing dataset, fewer
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Figure 21: Comparison of verification accuracy between CopyCat Sensor Platform (CC-
Adult dataset) and the CopyCat Kinect Platform (CC-Kinect-seated dataset), with and
without data collection errors, for different values of the threshold.

data collection errors were observed, the effective verification accuracy for the CC-Kinect-

standing dataset is better than the CC-Adult dataset.

Table 18: Comparison of sentence recognition and verification results on the unpruned
CC-Kinect-seated, CC-Kinect-standing and CC-Adult datasets.

Recognition Verification

Word SENT Word SENT
Acc Acc Acc Acc

Kinect Seated 47.74 22.7 58.86 51.5

Kinect Standing 70.45 34.19 88.02 76.12

CopyCat Adult 73.72 43.44 83.59 74.82

5.3.4.3 Aesthetics & Comfort

The Kinect is a clean and neat, out-of-the-box solution for obtaining depth information.

With minimal hardware, it provides a clutter free environment for the CopyCat game. The

CopyCat Sensor Platform requires a kiosk-like setup. Additionally, accelerometer batteries

may need to be regularly recharged, and circumstances may arise when controlled lighting

is required. A researcher has to be present to run the CopyCat system during deployment,

whereas the Kinect provides a plug-n-play interface that even individuals without a technical

background will be able to operate with ease.

One of the major drawbacks of the CopyCat Sensor Platform is that it requires the

60



signer to wear gloves with accelerometers strapped to the wrist to enable the capture of

gestural information. Although previous studies have shown that children did not have

problems wearing the gloves, the comfort factor with Kinect and the facility to interact

naturally without aids may have a greater appeal to the children for whom the game is

designed.

5.3.4.4 User Interaction

The existing CopyCat setup, where the signer is seated in a chair and interacts with the game

using a mouse placed at a convenient location next to the chair (see Figure 2c), has been

deployed several times in schools with deaf children. This interaction model was designed

iteratively over several usability studies conducted in partnership with local deaf schools

with the involvement of deaf children and their teachers [49]. One of the concerns when

deciding upon the seated pose for the child was fatigue that may occur if the children have

to stand continuously for the 30-45 minutes required to finish one session of the CopyCat

game. Currently we have yet to ascertain the effect on user experience that the standing

position may have, and to what extent the fatigue factor might come into play. In the least

we can say that in the standing position the children will have more freedom of movement

and as fatigue sets in, the resulting restlessness will likely cause inconsistencies in the data

collected.

One critical aspect of the user interaction involves the teacher in the classroom who will

assemble the CopyCat game for the children to play. As compared to the CopyCat Sensor

Platform wherein the teacher has to extensively manage the hardware (e.g., charge the

batteries regularly and maintain the gloves in good, usable condition), the Kinect provides

a convenient out-of-the-box solution that frees the teachers from the hassles of the CopyCat

Sensor Platform. Moreover, the Kinect is easy and inexpensive to replace.

5.4 Summary

In this chapter, I presented the CopyCat Kinect Platform as a viable alternative to the

CopyCat Sensor Platform for the task of automatic ASL sentence verification in the Copy-

Cat game. This approach mitigates the need for signers to wear gloves and strap sensors on
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their wrists, which is the most significant drawback of the current CopyCat system. The

experimental results show that verification results with the Kinect are comparable to the

existing system. However, it was discovered that when the signers are seated, the skeleton

tracking system tends to make a significant amount of tracking errors, which could have

a negative impact on the overall user experience while playing the CopyCat game. One

alternative is to change the way signers interact with system, having them stand rather

than being seated. Experiments show that this results in fewer tracking errors and slightly

better verification accuracy if we compare results when the datasets were not pruned to

remove data collection errors. Changing the signer’s pose from a seated to standing po-

sition involves a shift in the interaction model for the game. The effects of this change

on user experience have not yet been explored. The results on verification performance

with the Kinect were published in the proceeding of the 13th International Conference on

MultiModal Interaction (ICMI 2011) [115].
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CHAPTER VI

ASL CLASSIFIER RECOGNITION

Classifiers are an important part of learning American Sign Language (ASL). They are

powerful tools that give enormous expressive power to signers allowing them to represent

complex concepts with much brevity. Classifiers in ASL utilize surrogate hand shapes for

people or “classes” of objects and provide information about their location, movement and

appearance [94]. The spatial constructions of ASL classifiers take advantage of the fact

that visual spatial information is one of the most reliable sensing modality in humans [38].

Studies have shown that deaf signers have enhanced visual spatial processing capabilities in

tasks such as mental rotation, visual attention and face recognition [9, 25, 70, 92]. Deafness

per se is not the cause for this enhanced capability, exposure to a sign language is [71].

Studies have also shown that deaf children who have not been exposed to ASL classifiers at

an early age have lower comprehension and diminished use of ASL classifiers at a later age

[54]. Continuing with our earlier motivation to provide ASL learning tools that enable ASL

exposure to deaf children of hearing parents at an early age, it becomes imperative that we

expand our research in ASL recogition to support the recognition of ASL classifiers.

In the field of ASL recognition, much attention has been given to recognition of linguis-

tic structures such as finger spellings, basic signs, facial expressions and interrogative words

like WH-questions (e.g. who, what, where, and when), while recognition of ASL sentences

and classifier-based grammatical structures is still comparatively underexplored. The com-

plex spatial constructions in ASL classifiers make recognition challenging with input from

a limited source of information such as a regular RGB camera. However, the addition of a

depth camera can potentially provide ample information that would be sufficient to success-

fully recognize classifier constructions in ASL sentences. I hypothesize that we can extend

our ability to recognize sign language by leveraging depth maps to develop a method using

improved hand detection and handshape classification to recognize selected classifier-based
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grammatical structures of American Sign Language.

To remind readers of the concept of ASL classifiers I will revisit an example from Chapter

1. This example demonstrates the use of the TREE classifier and the VEHICLE classifier.

It shows three situations, the first being CAR DRIVES BEHIND TREE (Figure 1a), the

second being CAR CRASHES INTO TREE (Figure 1b) and the last one shows the CAR

DRIVES IN FRONT OF TREE (Figure 1c). In the above example the location of the CAR

changes in the physical construct to convey three different meanings. The accompanying

depth map provides us with enough information and makes it easier to discern the semantic

difference between the three situations. The same task becomes extremely challenging if

only the RGB image is taken into consideration.

6.1 Classifier-Kinect dataset

Before undertaking the ASL classifier recognition task, a team of two ASL linguists, five

graduate students from the field of ASL linguistics who were also fluent signers and three

researchers in the field of ASL recognition met to design and collect a dataset containing

representative examples of ASL sentences that demonstrated the use of ASL classifiers.

6.1.1 Design

Discussions during the design phase took into consideration the following criteria:

1. The classifier sentences should be short in length yet demonstrate the expressive power

of ASL classifiers.

The team agreed upon a sentence structure that involved a mix of basic signs and

ASL classifiers including two predicates, a verb of location and a verb of movement.

The English and the ASL gloss sentence structure are given in Figure 22. “Glossing”

is a means by which we can transcribe ASL into English. The shared premise for

all sentences is about the depiction of interaction between two nouns, a direct-object

noun and a subject noun. Take for example the sentence CAR BUMPS-INTO BOY,

where CAR and BOY are the subject and the direct-object nouns respectively, and

BUMPS-INTO is the verb-of-movement predicate. The ASL gloss reveals that the
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English:       <subject>  <verb>  <direct-object>
ASL Gloss:  <direct-objectLH>  <classifierdoLH><verb of location>  <subjectRH>  <classifiersubjRH>-<verb of movement>

Figure 22: The typical sentence structure for the Classifier-Kinect dataset. (LH - left hand,
RH - right hand, do - direct object, subj - subject)

REST classifiersubj RESTBUMPS-INTO
(verb of movement)

BOY-LOCATED-HERE-Left
(classifierdo, verb of

 location)

BOY-Left
(direct object)

CAR-Right
(subject)

Figure 23: Gloss-based visual breakdown of the ASL classifier sentence CAR BUMPS-INTO
BOY. (do - direct object, subj - subject).

direct-object noun is signed first followed by the classifier for the direct-object and

verb of location to indicate the position of the object in space; then, the subject noun

is signed followed by the classifier for the subject and the verb of movement. Figure 23

shows the visual breakdown, matching the ASL gloss against frames from the video of

the ASL classifier sentence CAR BUMPS-INTO BOY. Besides being good candidates

for demonstration of the brevity of ASL classifiers, two-noun interactions not only

present a signing challenge to a novice ASL student having to switch from one hand

to another but also provide a challenging case for automatic recognition.

2. The classifier sentences should closely mimic real world use of ASL classifiers.

Although the team members with experience in ASL linguistics argued that the sen-

tence structure shown above doesn’t frequently occur as is in ASL dialogue, it was

deemed appropriate as a means to concisely incorporate context establishment with

the use of ASL classifiers. It was agreed upon that this sentence structure adds ped-

agogical value and allows students to practice the use of ASL classifiers. From the

standpoint of designing a future CopyCat-like ASL classifier game the team agreed
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that this sentence structure was useful.

3. The dataset sentences will demonstrate the use of the most common ASL classifiers.

Through physical demonstration the linguists and the students iterated over several

classifier examples in ASL, and chose five common classifiers that fit well into the

chosen sentence structure. Then, one or more nouns of the same class were chosen

and paired with each classifier. Table 19 lists the chosen classifiers, the respective

handshapes and the noun signs that belong in each class. Furthermore, five verb-of-

movement classifier predicates, listed in Table 20, were chosen to represent interactions

between the nouns. The nouns were permuted with each other, independent of class,

and then further permuted with classifier predicates to produce unique sentences to

add to the dataset. Although a total of 500 permutations are possible, we chose 92 of

those that the team thought had real world significance.

4. Nuances that produce subtle changes in meaning of the classifier predicate will be

omitted.

Lets consider the classifier predicate BUMPS-INTO from Table 20 with the VEHICLE

(CL-3) classifier from Table 19. The termination state of this predicate as intended

for the Classifier-Kinect dataset is shown in Figure 24a. A morphological change at

the termination state as shown in Figure 24b would add additional meaning to the

predicate, indicating that the vehicle was crushed after impact. Keeping in mind the

current limitations of the hardware, specifically the low resolution of the depth camera,

we thought it best to omit such subtle representation that would make recognition

even more challenging.

6.1.2 Data collection

The Classifier-Kinect dataset was designed and collected in spring of 2012. The five fluent

signing students of ASL linguistics participated in the data collection process by signing

each of the 92 sentences once. Figure 25 shows the data capture configuration. A Microsoft
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Table 19: Classifiers, classifier handshapes and nouns in the Classifier-Kinect dataset.
(images c© 2004, www.Lifeprint.com. Used by permission.)

Classifiers Handshape Nouns

Person (CL-1)

MAN
WOMAN
BOY
GIRL

Animal (CL-V-BENT)
LION
CAT
WOLF

Vehicle (CL-3) CAR

Extended Object (CL-4) FENCE

Firm or stable object (CL-5-
CLAW)

HOUSE

Table 20: Verb-of-movement classifier predicates in the Classifier-Kinect dataset.

Classifier Predicates

MEETS
BUMPS-INTO

WEAVES-AND-BUMPS-INTO
BUMP-INTO-EACH-OTHER

JUMPS
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(a) CL-3 (b) CL-3-bent

Figure 24: CL-3 and modified CL-3 convey different meanings. (a) BUMPS-INTO (b)
BUMPS-INTO-CRUSHED.

Kinect camera, connected via USB to a laptop computer, is aimed at the signer’s upper

body while the researcher controls the data capture software and guides the signer to sign

each of the classifier sentences in the dataset. To speed the process of data collection we

used four identical hardware setups.

Figure 25: Data capture configuration to collect signing examples of ASL classifier sentences.

A total of 488 classifier sentences were collected with 92 unique sentences signed once by

each one of the five participants. Twenty-eight of those sentences were repetitions to correct

signing errors that were spotted during data collection. Seventeen other sentences were
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pruned out of the dataset after the data collection. These either contained signing errors

overlooked at the time of data collection or other data collection errors. The final dataset

contains 443 ASL classifier sentences. Using the Microsoft Kinect SDK 1.0, the data capture

software was programmed to store 640x480 color images, 320x240 depth images captured

by the depth camera, and 320x240 depth images that had been transformed to directly

map over the color images, all at a frame rate of 30 fps. Additionally, the Microsoft Kinect

Skeleton Tracker (MKST) was activated, and all joint information, including the hand

locations was stored for each frame in 3D camera coordinates, 2D color image coordinates

and 2D depth image coordinates. From this point forward we will abbreviate Microsoft

Kinect Skeleton Tracker with the acronym MKST.

6.1.3 Data Labelling

Figure 26: Screenshot of the segment labelling tool for the Classifier-Kinect dataset. The
top-left and top-right panels allow for the selection of the start and the end frame of the
segment. The panel in the middle is a custom video player that allows for the segment to
be viewed from start frame to end frame at different speeds. The Snippets panel shows the
currently labelled segments. Shown above: selection of snippet BOY-RIGHT.

A data labelling tool was developed in Java in order to label the frame boundaries of

the various sentence segments for each sentence in the Classifier-Kinect dataset. Reliable
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label data is important for the training of hidden Markov models of noun signs and verb-of-

movement classifier predicates. The segments to be labelled are identified in the ASL gloss

in Figure 22. Additionally, the movement epenthesis, or the movement segment between

the last part of one sign and the first part of the next sign [94] was also labelled carefully.

The labelling task was very time consuming since each sentence has 10 segments, including

the movement epenthesis, that needed to be labelled. On the positive side, the labelling

tool was very helpful in producing reliable label data by providing a custom video player

option with speed control, allowing each segment to be viewed separately from start frame

to end frame. Additionally, warnings were generated when certain types of labelling errors

were made, such as in the case when two segments were labelled with overlapping frame

boundaries or when the same label was given to two different segments.

Figure 26 shows a screenshot of the the interface of the labelling tool. The top section

has three viewing panels. The panels on the left and right allow for the selection of the start

and the end frames of the segment, respectively. The panel in the middle is a custom video

player that allows for the segment to be viewed from start frame to end frame at different

speeds. The “Add Label” button pops up a form, shown in Figure 27, that provides options

to select a label for the segment. First the handedness is selected indicating whether it

was a left-hand or right-hand sign or a two-handed sign. Next, one label is selected from

one of the four categories: signs, classifiers, predicates or other (for movement epenthesis).

Once a segment has been labelled, it is added to the “Snippets” panel. Each snippet can

then be individually selected to become the current active segment displayed, which then

activates the “Update” option allowing for a segment to be renamed or frame boundaries

to be altered and saved. The snippet can be permanently deleted from the Snippets panel

by clicking the delete button on the top right corner of the snippet thumbnail. Once all

segments have been labelled, segment information can be written to disk by clicking the

“Save” button.
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Figure 27: Add label form to select an appropriate label for the segment. First select hand-
edness and then select one label from one of four categories: Signs, Classifiers, Predicates
or Other.

6.1.4 Findings

Although we did not impose any restrictions on the handedness of the signers, all five

signers were right-hand dominant. For most sentences in the dataset all signers agreed

upon the structure and followed the sequence as given in the ASL gloss in Figure 22 where

the sentence begins with the direct-object signed with the left hand followed by the subject

with the right hand and finally the classifier predicate. However, there were some exceptions

particularly for sentences constructed using the classifier predicate MEETS. Examples of

these sentences include those that have BOY, GIRL, MAN and WOMAN as the direct-

object and the subject noun such as BOY MEETS GIRL, MAN MEETS WOMAN and so

on with a total of 16 possible sentences. The five variations that were seen in the dataset

are shown in Figure 28. The first variant listed as ASL Gloss-I is the original structure

from Figure 22. The variations arise due to three variables namely the start sign (is the

direct-object or the subject signed first?), the hand used for the start sign (left hand or

71



ASL Gloss-I:   <direct-objectLH> <classifierdoLH><verb of location> <subjectRH> <classifiersubjRH>-<MEETS-v1>

ASL Gloss-II:  <direct-objectLH> <classifierdoLH><verb of location> <subjectRH> <classifiersubjRH>-<MEETS-v2>

ASL Gloss-III: <direct-objectRH> <classifierdoRH><verb of location> <subjectLH> <classifiersubjLH>-<MEETS-v2>

ASL Gloss-IV: <subjectRH> <classifiersubjRH><verb of location> <direct-objectLH> <classifierdoLH>-<MEETS-v2>

ASL Gloss-V:  <subjectLH> <classifiersubjLH><verb of location> <direct-objectRH> <classifierdoRH>-<MEETS-v2>

Figure 28: The five variant sentence structures found in the Classifier-Kinect dataset used
in conjunction with the MEETS classifier predicate. (LH - left hand, RH - right hand, do -
direct object, subj - subject, MEETS-v1 - originally intended MEETS classifier predicate,
MEETS-v2 - variant of the MEETS classifier predicate).

right hand?), which form of MEETS is signed (MEETS-v1 or MEETS-v2). The difference

between MEETS-v1 and MEETS-v2 is illustrated in Figure 29 and 30. In the first case the

subject moves towards the direct-object while the direct-object remains stationary. In the

second case the subject and the direct-object move towards each other.

The variations shown in Figure 28 stem from varying interpretations of the English

sentence that was presented to the signer as a prompt to sign. The English sentences that

were presented took the form A MEETS B. When the team chose MEETS as one of the

classifier predicates the intended meaning was for the direct-object noun to stay stationary

in space while the subject noun moves to where the direct-object is located (i.e. MEETS-

v1), for example in the case of BOY MEETS GIRL the girl is standing at a location and

does not move while the boy goes over to meet the girl. This sequence is shown in Figure

29. However, the most common interpretation by all signers was to bring the direct-object

and the subject towards each other (MEETS-v2) by moving both hands as show in the

sequence in Figure 30.

It appears that this alternate interpretation of MEETS does not impose the starting or-

der show in Figure 22 in which the sentence always begins with the direct-object noun signed

with the left hand. Signers chose to start either with the direct-object or the subject-noun

and switched hands as well, which suggests that there was no distinction between subject

and direct-object. Post discovery, in a discussion with the design team the signers revealed

that the English sentences presented to them before signing were not specific enough to
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Figure 29: MEETS-v1: The predicate MEETS as intended in the dataset design where
subject moves towards direct-object while direct-object remains stationary. Arrow indicates
direction of movement.

Figure 30: MEETS-v2: The alternate form of predicate MEETS where subject and direct
object move towards each other. Arrows indicates direction of movement.

elicit the response the team had desired. Moreover, with the alternate interpretation the

signers began the sentence with the sign/hand that felt more natural to them.

Table 21 shows the number of sentences, with the classifier predicate MEETS, per signer

for each of the five sentence structures shown in Figure 28. We find that Signer 1, 2 and 4

pick one variant and are consistent in their signing. Signer 5 is mostly consistent by using

the originally intended sentence structure from Figure 22 but changes the structure in one

case. Signer 3 is the most inconsistent using three different variations only two of which

match the original structure.

Besides the above-mentioned variations in the sentence structure for sentences with

classifier predicate MEETS, we find another interesting variation in the case of the classifier
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Table 21: Number of signed instances across signers for each variation in sentences that
have the classifier predicate MEETS.

Variants †
Signers

1 2 3 4 5

I 0 0 2 0 15
II 0 0 11 0 0
III 0 0 3 0 0
IV 16 ∗ 16 ∗ 0 0 1
V 0 0 0 16 ∗ 0

†see Figure 28 for each variant’s sentence structure.

∗ There are a total of 16 sentences in Classifier-Kinect dataset

that have the classifier predicate MEETS.

Figure 31: The classifier predicate JUMPS signed identically for both PERSON and ANI-
MAL subject nouns.

handshape used for the PERSON class that includes the signs BOY, GIRL, MAN and

WOMAN. Typically the CL-1 handshape is use to represent members of the PERSON class,

but with overwhelming agreement all signers used the CL-V-BENT handshape, typically

used for the ANIMAL class, to sign the classifier predicate JUMPS. In a discussion with the

signers it was determined that it is not mandatory to use the same classifier handshape for a

given class of objects all the time. The signer chooses the appropriate handshape depending

on the situation in order to convey the accurate meaning. In this case the act of jumping

is more meaningfully represented by the CL-V-BENT handshape to subtly indicate that

the person jumped, bent at the knees, much like an animal. Figure 31 shows the classifier

predicate JUMPS which is identically signed irrespective of whether the subject noun is a

PERSON or an ANIMAL.
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6.2 Methodology for recognition of ASL classifier sentences in the Classifier-
Kinect dataset

We illustrate the three high-level steps involved in the recognition of ASL classifier sentences

in the Classifier-Kinect dataset using the graphic shown in Figure 32. Each individual step

is described in detail below:

REST BOY-Left
(direct object)

classifiersubj REST

L1 L2

1 1

3

2 2

33

CAR-RIGHT
(subject)

BOY-LOCATED-HERE-Left
(classifierdo,verb of 

location)

BUMPS-INTO
(verb of movement)

Figure 32: Three steps in classifier sentence recognition: 1) segment sentence by identify-
ing landmarks L1 and L2, 2) handshape classification and 3) sign and verb-of-movement
classifier predicate recognition. (do - direct object, subj - subject).

1. Identify landmarks to segment the classifier sentence.

We first identify the two landmarks denoted as L1 and L2 in Figure 32. L1 is identified

by spotting a long pause with no movement for one of the hands. L1 is the point in the

time line when this long pause begins, i.e. the point when the verb of location is signed.

Then we look for a point that occurs after L1 in the time line that indicates a rapid

acceleration of the other hand towards the stationary hand, which is the start of the

verb of movement. The point at the beginning of the acceleration is L2. Determining

L1 and L2 segments the timeline into three parts: the first corresponding to the direct

object noun, the next to the subject noun and the last segment corresponding to the

verb-of-movement classifier predicate.
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2. Identify handshape at the landmark points.

We expect that at landmarks L1 and L2 the observed handshape will be one of the

five classifier handshapes. We classify the handshapes using a database matching

technique that uses features derived from the localized depth data around the hand

location. This technique is described in detail in Section 6.3.

3. Recognize nouns and the verb-of-movement classifier predicate using hidden Markov

models (HMMs)

We train hidden Markov models using location- and movement- based features to

recognize the subject and direct-object nouns and the verb-of-movement classifier

predicate. The classifier handshapes identified in Step 2 help us narrow down the

search for the noun sign in the case of PERSON (CL-1) and ANIMAL (CL-V-BENT)

classifiers. For VEHICLE (CL-3), FENCE (CL-4) and HOUSE (CL-5-CLAW) the

classifier handshape directly identifies the noun sign. In cases where there is uncer-

tainty in the handshape classification we can perform a full search to recognize the

noun signs. Details of sign and verb-of-movement classifier predicate recognition are

given in Section 6.4.

6.3 Handshape classification to identify classifier handshapes

Once the classifier sentence has been segmented and the landmarks identified, we classify

the handshapes seen at the two landmarks L1 and L2. Identifying the handshape can reduce

the search space to recognize the noun signs using HMMs. If the handshape is CL-1 we know

that the preceding direct object or subject noun is a PERSON either BOY, GIRL, MAN or

WOMAN. If the handshape is CL-V-BENT then the noun is either ANIMAL or PERSON in

cases where classifier predicate is JUMPS. In the Classifier-Kinect dataset CL-3, CL-4 and

CL-5-claw directly identify the noun as CAR, FENCE and HOUSE respectively. To perform

handshape classification we match each handshape against a database of handshapes and

pick the majority class of the top ten matches. The matching is performed using features

generated using depth information gathered within a radius of 10 cm from the hand location
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and eliminating pixels based on skin color.

6.3.1 Feature extraction

10 cm

a) Extract depth pixels from a radius of 10 cm
and eliminate unwanted pixels by matching
against skin color model.

w

h

b) Compute bounding box of the 
extracted handshape. Divide into 
four regions: top and bottom, left
 and right.

w/h 

c) Build feature vector by combining
width to height ratio with a 5-bin
histogram of  depth values in each
of the four regions.

T

B
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+

+

+

+
TOP BOTTOM

LEFT RIGHT

Figure 33: Feature extraction for handshape classification.

To generate features for handshape classification we employ both the color image as well

as the depth image that is registered with the color image. Beginning with the hand location

in the depth image, all depth image pixels within a three-dimensional radius of 10 cm are

collected. Those points whose corresponding color image pixel does not satisfy our skin color

model are filtered out. This process eliminates background pixels and pixels on the body of

the signer leaving only those that belong exclusively to the hand (see Figure 33a). We then

construct a 21-dimensional feature vector where the first dimension is the ratio of the width

to height of the bounding box of the hand pixels and remaining dimensions correspond to

four five-dimensional histograms of depth values of the hand in the top, bottom, left and

right regions respectively (see Figure 33b & c).

6.3.2 Experimental results

We use a database matching approach to classify the classifier handshapes. The database

contains a list of features that were computed for the hand shapes using the method de-

scribed in the previous section and the corresponding class labels. Cross-validation is done

in a user-adaptive manner since the number of signers in the dataset is low (N=5). We cre-

ate five separate reference databases for each signer whereby the reference database contains
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some examples from the test signer’s data, specifically those taken from the first occurrence

of a each classifier. Those examples that are added to the reference databases are left out

from the test set. User-adaptation is a reasonable approach to employ, even during live

recognition within an application or a game, when the training data has limited number of

signers. The signer can be asked to sign a few representative examples of ASL classifiers

including the handshapes, which are then subject to additional processing to recalibrate

the system so as to boost the performance in future cases for the same signer. The amount

of time spent in collecting and processing the new examples is a small price to pay in order

to achieve better performance. In contrast, a system that has been trained with a large

number of signers, thus capturing a wide variety of signing variations, may not require

user-adaptation.

To match features we use the L2 distance measure. Since we already know, from the

spotting of L1 and L2 landmarks (see Figure 32), if the query hand is the left or the

right hand, we only match left handshapes against a reference database of left handshapes

and right handshapes against a reference database of right handshapes thereby eliminat-

ing confusion between the set of right handshapes and the set of left handshapes during

classification.

In the first step, the features in the database are sorted in ascending order of distance

to the query handshape. Then, we select the top ten closest matches and examine their

corresponding labels. The most occurring label is selected as the final result. If there is a tie

then the classifier handshape is “undefined”, which means we can no longer use a reduced

search space for recognizing direct-object and subject nouns.

Table 22 gives the results for handshape classification accuracy for each classifier hand-

shape across all signers. FENCE and HOUSE only have left handed versions for the classifier

handshape (CL-4 and CL-5-CLAW) since they only occur as the direct-object in the dataset.

As per convention for right-hand dominant signers, while using classifiers the direct-object

is always placed in space using the left hand, vice versa for left-hand dominant signers.

Since all the five signers in our dataset were right-hand dominant we did not observe the

right hand versions of the classifiers CL-4 and CL-5-CLAW. HOUSE-Left has the highest
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Table 22: Percentage accuracy of handshape classification for each signer.

Signers

Classifier Handshape #1 #2 #3 #4 #5 Overall%

PERSON-Right CL-1-R 84 81 79 86 82 82%
PERSON-Left CL-1-R 86 84 82 88 84 85%
ANIMAL-Right CL-V-BENT-R 79 78 74 76 75 76%
ANIMAL-Left CL-V-BENT-L 77 79 76 81 80 79%
VEHICLE-Right CL-3-R 84 84 82 86 81 84%
VEHICLE-Left CL-3-L 79 76 69 64 74 72%
FENCE-Left CL-4-L 77 74 68 66 76 72%
HOUSE-Left CL-5-CLAW-L 87 86 86 90 84 87%

Table 23: Confusion matrix for classifier handshape classification. (The CL- prefix has been
omitted from column names due to lack of space).

Classifier 1-R 1-L V-BENT-R V-BENT-L 3-R 3-L 4-L 5-CLAW-L undefined

CL-1-R 82 0 12 0 4 0 0 0 2
CL-1-L 0 85 0 11 0 3 0 0 1
CL-V-BENT-R 15 0 76 0 5 0 0 0 4
CL-V-BENT-L 0 14 0 79 0 4 0 1 2
CL-3-R 6 0 7 0 84 0 0 0 3
CL-3-L 0 1 0 1 0 72 20 2 4
CL-4-L 0 2 0 3 0 19 72 1 3
CL-5-CLAW-L 0 2 0 4 0 5 0 87 2

overall accuracy whereas FENCE-Left and VEHICLE-Left have the least overall accuracy.

Table 23 gives the confusion matrix for the classifier handshapes. We include the label

“undefined” to indicate when there is a tie between two or more output labels for the top

spot. We notice right away that two hand shapes that had least accuracy, VEHICLE-

Left (CL-3-L) and FENCE-Left (CL-4-L), have the most confusion amongst each other.

Significant confusion also occurs in the case CL-1 and CL-V-BENT.

6.3.3 Findings

We find that for VEHICLE-Left (CL-3-L) and FENCE-Left (CL-4-L), the two handshapes

with least accuracy, confusion mainly arises when the signer holds the CL-3 handshape with

fingers pointing towards camera instead of the back of the hand facing the camera, which

happens when the noun CAR is used as a direct-object in examples such as BOY JUMPS

OVER CAR. In this case the depth resolution is insufficient to make the distinction between
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(a) (b)

Figure 34: Comparison of (a) FENCE and (b) CAR classifier handshapes when used as
direct-object (left hand).

(a) (b)

Figure 35: Comparison of depth images of (a) FENCE and (b) CAR classifier handshapes
when used as direct-object (left hand).

whether two or four fingers, excluding the thumb, are outstretched in the case of CL-3-L

and CL-4-L respectively. This case is highlighted in Figure 34.

If we closely examine Figure 35 we see that there are white patches around the hand that

do not seem to have valid depth data. These are in fact “holes” that occur when the Kinect

camera is unable to determine a depth value for that location. The problem occurs near

the boundary of an object when there is significant depth disparity between the object and

its background, which is generally the case with classifier handshapes. The origin of this

problem can be attributed to the method used by the Kinect camera to compute depth. The

Kinect uses an IR pattern to flood the scene as shown in Figure 36 and computes depth
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Figure 36: Kinect IR dot pattern used to estimate depth.

based on distortion of the scene pattern compared to a reference pattern. In boundary

conditions two neighboring dots in the pattern fall on objects that have significant depth

difference resulting in an unreliable depth value which is likely discarded resulting in a

“hole.” The problem is magnified for smaller objects at larger distances away from the

Kinect camera. The size of the hole starts to become comparable to the size of the object,

sometimes “swallowing” large parts of the object.

“Holes” in the depth data can pose a challenging problem for handshape classification,

especially since the signers stand about 5 ft away from the camera to capture the entire

signing space. Figure 35 show some examples where fingers and parts of the hand have been

swallowed by holes, which clearly is a significant source for errors in handshape classification.

In the next section we look at how to improve handshape classification by regenerating depth

data in the holes.

6.3.4 Handshape classification with regenerated depth images

As mentioned earlier handshape classification using depth image data suffers from the prob-

lem of “holes” in the data around the boundary of the hand. Given the small hand size this

can be a significant challenge for robust handshape classification. Since we have a pair of

color and depth images to work with, we can use the color information to extract a mask

to first determine the region of the hole that corresponds to the hand and then regrow that

region with new depth data.

The process of determining what part of the hole belongs to the hand is illustrated in

Figure 37. The process begins similar to Figure 33a except we do not discard the color

information for which there is no depth data. We begin with the location of the hand and

gather all color pixels within a three-dimensional radius of 10 cm. We then pick the largest
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(a) (b) (c) (d)

(e) (f) (g)

Figure 37: Process of regenerating depth values in “holes.” a) color mask of the hand
obtained by skin color segmentation b) depth pixels overlayed over color mask c) select
an invalid pixel to begin regeneration d) examine local neighboring pixels in four principle
directions e) perform linear regression to fit a line to neighboring pixels with valid data f)
extrapolate values and compute average g) final result after regeneration.

blob of color pixels using connected components. Next we gather all data from the depth

image corresponding to the color pixels including the invalid data in the “holes.” Figure

37b shows the result of this process. Now that we know that the white regions (with invalid

depth values) are actually part of the hand we can devise a process to regenerate the depth

values in those regions.

We use local linear extrapolation to gradually regrow the hand region starting from the

invalid pixels closest to pixels with valid depth data (Figure 37c). First, the neighboring

pixels, within 2.5 cm distance in the four principle directions are collected (Figure 37d). If

we are unable to find pixels in any particular direction that direction is discarded. Next

we fit a line to the data in each remaining direction using linear regression (Figure 37e)

and extrapolate a value for the new location. Finally, we average the values that were

extrapolated from each direction (Figure 37f). This process is repeated for each pixel with

an invalid depth value, gradually regenerating the depth values. The final result after

regeneration is shown in Figure 37g.
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Table 24: Percentage accuracy of handshape classification for each signer after regeneration
of depth data.

Signers

Classifier Handshape #1 #2 #3 #4 #5 Overall%

PERSON-Right CL-1-R 94 91 90 94 92 92%
PERSON-Left CL-1-R 96 93 92 96 91 94%
ANIMAL-Right CL-V-BENT-R 88 91 85 90 88 88%
ANIMAL-Left CL-V-BENT-L 89 90 88 92 89 90%
VEHICLE-Right CL-3-R 94 94 91 93 95 93%
VEHICLE-Left CL-3-L 87 85 82 80 89 85%
FENCE-Left CL-4-L 88 89 81 83 90 86%
HOUSE-Left CL-5-CLAW-L 95 92 92 96 93 94%

Table 25: Confusion matrix for classifier handshape classification after regeneration of depth
data. (The CL- prefix has been omitted from column names due to lack of space).

Classifier 1-R 1-L V-BENT-R V-BENT-L 3-R 3-L 4-L 5-CLAW-L undefined

CL-1-R 92 0 6 0 2 0 0 0 0
CL-1-L 0 94 0 5 0 1 0 0 0
CL-V-BENT-R 8 0 88 0 3 0 0 0 1
CL-V-BENT-L 0 6 0 90 0 3 0 1 0
CL-3-R 3 0 4 0 93 0 0 0 0
CL-3-L 0 1 0 1 0 85 11 2 1
CL-4-L 0 1 0 2 0 10 86 0 1
CL-5-CLAW-L 0 1 0 2 0 3 0 94 0

6.3.4.1 Experimental results

Table 24 and 25 show the handshape classification accuracy and the confusion matrix re-

spectively after performing handshape classification using the regenerated depth images.

The process for feature extraction and database matching remain the same. We clearly see

that the overall accuracy for all handshapes has improved compared to results in Table 22,

and the number of “undefined” labels has significantly dropped. Moreover, the large confu-

sion we saw earlier in Table 23 between VEHICEL-Left and FENCE-Left has significantly

reduced.
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CL-1 CL-3 CL-5 CL-L CL-S

Figure 38: Proposed set of classifier handshapes with reduced minimal-pair confu-
sion. ( c© 2004, www.Lifeprint.com. Used by permission.)

6.3.5 Discussion

Robust handshape classification is a critical step in our pipeline (see Figure 41) to recognize

ASL classifier sentences. It can facilitate reduction of the output search space for recogni-

tion of direct-object and subject nouns thereby providing a boost in sentence recognition

accuracy. However, we have limited depth map resolution at distances greater than 1m,

which are required to capture the entire signing space, due to shortcomings in hardware

technology. Moreover, the problem of “holes” in the depth data increases with distance

away from the Kinect depth camera, which meant that although the output space for the

classifer handshape was small (N=5) in the Classifier-Kinect dataset, by using our method

for handshape classification we still encountered cases where there was considerable confu-

sion among the minimal pairs like FENCE-LEFT and HOUSE-LEFT, PERSON-Right and

ANIMAL-Right, and PERSON-LEFT and ANIMAL-LEFT. This problem was mitigated

to some extent by employing a novel method to regenerate depth data in the “holes.” We do

not claim to have the best handshape classifier in the domain of ASLR, but it is safe to say

that these problems will continue to exist until hardware technology improves to support

high-resolution high-framerate depth cameras. Meanwhile, if our goal in building the ASL

classifier recognition system is to support educational tools we may be able to mitigate these

problems by better dataset design in which we reduce the occurrence of minimal pairs but

still include a rich array of handshapes. Figure 38 shows an alternate set of five handshapes

that we believe, based on our experience with the Microsoft Kinect depth camera, have

fewer minimal pairs and will result in reduced confusion while classifying the handshapes.
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6.4 Training hidden Markov models to recognize noun signs and verb-
of-movement classifier predicates

Figure 39: Three state left-to-right HMM.

To recognize the noun signs and classifier predicates we use hidden Markov models

(HMMs). To train the HMMs we use the frame labels that were marked using the labelling

tool (see Figure 26). For the purpose of recognition there is no difference in the process for

recognizing the noun signs versus the verb-of-movement classifier predicates, although the

features used for one-handed noun signs are different from the ones used for two-handed

noun signs and classifier predicates. To model the 15 nouns signs and classifiers a 3-state

left-to-right HMM is used (see Figure 39). Training and testing is done using the GT2K

and HTK (HMM tool kit) [102, 113].

6.4.1 Feature extraction

Features for HMM training are based on hand location and movement. The hand locations

are obtained using the Microsoft Kinect Skeleton Tracker (MKST). The hand locations are

first transformed into signer coordinate space by subtracting the signer origin from the hand

coordinates. The signer origin was marked in the first frame of the sentence and corresponds

to the midpoint between the eyes of the signer. The x, y and z coordinates of the hand

are then normalized based on the arm lengths of the signer. The process to compute the

divisors for normalization is illustrated in Figure 40.

We use two types of features for training the hidden Markov models. The list of features

is given in Table 26. For one-handed signs we use the normalized three-dimensional location

of the hand (Lx Ly Lz for left-hand signs and Rx Ry Rz for right-hand signs) along with the

first order derivatives in the X, Y and Z directions computed based on the current location

and the location in the previous frame (ΔLx ΔLy ΔLz and ΔRx ΔRy ΔRz). For two handed
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Figure 40: Process of normalizing three-dimensional hand coordinates using X-, Y- and
Z-extents computed based on arm lengths.

Table 26: Features for training hidden Markov models to recognize noun signs and verb-of-
movement classifier predicates.

Sign Type Features

Right-hand nouns Rx Ry Rz ΔRx ΔRy ΔRz

Left-hand nouns Lx Ly Lz ΔLx ΔLy ΔLz

Two-handed nouns Rx Ry Rz Lx-Rx Ly-Ry Lz-Rz

Verb-of-movement classifier predicates Rx Ry Rz Lx-Rx Ly-Ry Lz-Rz

signs and verb-of-movement classifier predicates the features include the three-dimensional

location of the right hand (Rx Ry Rz) and the location of the left hand relative to the right

hand (Lx-Rx Ly-Ry Lz-Rz).

6.5 Sentence recognition results on the Classifier-Kinect dataset

For sentence recognition we follow the high-level three-step process outlined in Figure 32.

The actual recognition pipeline that is executed is shown in Figure 41. The pipeline proceeds

as follows: First we spot the landmark L1 corresponding to the direct-object classifier. Once

this is done we can in parallel identify the handshape for the direct-object classifier and

spot the landmark L2 which occurs later in the timeline compared to landmark L1. At

this point since we have identified both landmarks and segmented the sentence we can take
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Figure 41: ASL classifier sentence recognition pipeline.

three actions in parallel; identifying the handshape for the subject noun classifier and HMM-

based recognition of the direct-object noun and the verb-of-movement classifier predicate.

The final step is the HMM-based recognition of the subject noun. At the two points

in the pipeline where handshape classification is performed if there is uncertainty in the

determination of the handshape, i.e. if the actual handshape is “undefined” because there

were two or more class labels contending for the top spot during the database matching,

we attempt to do full scale recognition on the sentence segment to determine which one of

the 10 noun signs it is most likely to be. The experiments for handshape classification have

been already been outlined in section 6.3.2 and were conducted using user-adaptive cross-

validation given that there were many variations in the handshapes across the five signers

making it harder to get good results using signer-independent cross-validation. However,

for recognizing noun signs and verb-of-movement classifier predicates we perform signer-

independent cross-validation since the features for recognition are based on hand location

and movement and are scale-invariant due to normalization based on the signer’s arm length.

Signer-independent cross-validation in this case is more suitable to determine the robustness
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Table 27: Sentence recognition accuracy. Experimental results on the Classifer-Kinect
dataset using two different techniques each for hand detection and handshape classification.

Signers

Hand detec-
tion

Handshape
classification

#1 #2 #3 #4 #5 Overall%

Ground truth Oracle 96.5 93.0 91.2 95.1 94.2 93.4%
Ground truth Section 6.3.4 90.9 87.2 84.8 90.1 87.5 88.1%
MKST Oracle 84.9 82.6 78.4 83.7 81.9 82.3%
MKST Section 6.3.4 80.3 77.5 70.9 77.4 76.2 76.4%

of the recognizer.

Table 27 shows the results of sentence recognition across all users obtained using the

recognition pipeline shown in Figure 41. We select either the ground truth data or the

MKST as the source for hand locations. For handshape classification we compare the

technique from Section 6.3.4, whereby a novel approach was used to regenerate depth data in

the holes, to an oracle handshape classifier that reports the correct answer 100% of the time.

We notice that when ground truth hand locations are used the handshape classification

errors cause the overall accuracy to drop by 5.3 percentage points compared to a drop of

5.9 percentage points when the MKST is used.

6.5.1 Discussion

Looking back at the sentence recognition pipeline we find that there are two factors that

influence the sentence recognition accuracy. First is the handshape classification of the

direct-object and the subject classifiers. Both the classification steps occur early on in the

pipeline; an error in handshape classification is multiplicative as it propagates through the

pipeline. We rely on the handshape classification to reduce the search space for performing

recognition of the direct-object and subject nouns. This reliance can be counterproductive

since an error in handshape classification always results in an error in the recognition steps;

the one exception being cases in which the handshape is “undefined” resulting in full-scale

recognition whereby there is still a possibility of correctly recognizing the noun signs. The

second factor that can influence sentence recognition accuracy is accuracy of hand tracking

or detection. For HMM-based recognition of the noun signs and the verb-of-movement
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classifier predicate the features are based on location and movement of the hands. Errors in

hand tracking or detection will negatively affect recognition accuracy. On closer examination

we find that there is a more complex interrelationship between the two factors we just

mentioned. Figure 42 illustrates this relationship. An arrow indicates impact on results.

We know that handshape classification directly affects the recognition accuracy of noun

signs. The influence of hand tracking or detection is both direct and indirect. For HMM-

based recognition of verb-of-movement classifier predicates better hand tracking will directly

result in better recognition accuracy. However, the influence of hand tracking on recognition

of noun signs is more complex. Better hand tracking can directly have a positive impact on

noun recognition but can also have an indirect influence whereby it first improves handshape

classification by providing a more reliable location of the hand. This better location enables

better extraction of the hand region, which positively impacts handshape classification.

Figure 42: Interrelationship between factors that impact sentence recognition accuracy. An
arrow indicates impact on results.

Of the two factors discussed here, in Section 6.3.4 we have already explored the idea

of improving handshape classification accuracy by addressing the problem of “holes” in

the depth data and performing handshape classification after regenerating missing depth

data. In the next chapter we will address the issue of improving the overall sentence

recognition accuracy by building a hand detector that performs better than the Microsoft

Kinect Skeleton Tracker (MKST).
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CHAPTER VII

IMPROVING CLASSIFIER SENTENCE RECOGNITION WITH

BETTER HAND DETECTION USING DOMAIN-DRIVEN RANDOM

FOREST REGRESSION

Robust hand tracking or detection is a crucial element in several real world applications

such as gaming, gesture control input, and automatic sign language recognition (ASLR). In

American Sign Language, signs are distinguished based on various parameters such as hand

movement, location, shape, orientation and non-manual signals such as facial expressions

[94]. In ASLR systems we find that hand location and movement is an important and

descriptive feature [85, 106]. Not only is hand location important, the accuracy of reported

locations directly impacts the determination of hand pose.

In the past there have been several approaches to hand tracking and detection, some

using data gloves and sensors while others use computer vision approaches which use camera

systems leveraging color information in a two dimensional space [12, 17, 37, 62, 69]. The

advent of commercially available inexpensive depth cameras has given rise to a greater

capability to utilize elements of body pose and provide rich information towards this end.

One of the best available solutions in body pose recognition is the Microsoft Kinect Skeleton

tracker (MKST) [81]. This tracker has been trained on generic datasets, with training data

of real world human poses as well as synthesized data for greater variation. This training

however, may not be robust enough for more specific problems, like ASLR.

The use of depth cameras in ASL applications has been widely demonstrated, such

as in cases of isolated sign recognition, sentence recognition and hand shape classification

[18, 77, 115]. However, our observations have shown that on real world continuous ASL

data the MKST fails in cases where the hands are close to the body, close to or touching

each other, or when the arms cross. The MKST, therefore, is not a robust or precise enough

tracker for the ASL domain.
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We present a detailed analysis of the errors of the MKST. We also propose a novel

method to predict 3D positions of the left and right hand in depth images of ASL signing

data, using domain-driven random forest regression. Our goal is not to create a perfect and

generic hand detection scheme, but to develop a more robust and precise hand detector to

benefit the work of ASLR research, specifically the recognition of ASL classifiers.

7.1 Ground truth data for hand locations

The ground truth data for the location of the hands was obtained by manually labelling

the location of the left and right hand in 74474 color images across all 488 sentences in

the Classifier-Kinect dataset. A labelling tool was developed that recorded the x and y

coordinates of a mouse click on the color image. Additionally, the corresponding depth

value at that location in the depth map was also recorded. As we have seen earlier in

Section 6.3.3 the depth maps from the Kinect camera are not as reliable as the color images

in providing a complete image without missing data, which can pose a problem during

labelling. If labelling is done solely using the color images, and we blindly reference into

the depth map to obtain the depth value, we may inadvertently mark the location of the

hand in the color image at a location where the depth value is invalid although there maybe

a close by point with a valid depth value that will serve equally well to indicate the x and

y coordinate of the hand. In order that we don’t introduce errors because of the above-

mentioned problem the depth map is superimposed over the color image as a transparent

layer making it easy to select points with valid depth values to mark the location of the

hand. This process is illustrated in Figure 43. Figure 43a shows that the initial choice to

mark the location of the left hand maps to an invalid depth value (Figure 43b). However,

with superimposition of the depth map we are able to mark a better location with a valid

depth value (Figure 43c). There were rare cases in the dataset in which the entire hand

was missing due to a “hole” in the depth data, in which case the closest point with a valid

depth value that lay on the extreme end of the arm was chosen.

Note that only the locations were recorded, and not the bounding box for the hand,

since the method we developed for hand detection does not depend on the appearance of
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(a) (b) (c)

Figure 43: Labelling ground truth hand locations in the Classifier-Kinect dataset - (a) initial
location of hand in color image (b) invalid depth value in the corresponding location in the
depth map (c) a better choice is found, with the superimposed depth map, close to the
initial selection but with a valid depth value.

the hand. We found that the most efficient way to label the hand locations was to focus

on one hand at a time. First, the right hand was labelled in all images followed by the left

hand, thus involving a total of 2*74474 mouse clicks, quite an arduous task indeed. Finally,

two rounds of visual inspection, at real time playback speed, were undertaken to correct any

errors that occurred during labelling. Once ground truth image coordinates were collected

they were mapped to camera coordinate space.

7.1.1 Skeleton Tracking Errors

Figure 44 shows a heat map visualization of the skeleton tracking errors for the Classifier-

Kinect dataset. Consider Figures 44a through 44c, which show the average tracking error at

different locations in the signing space. The magnitude of average error varies from 0.1 cm

(blue) to 14 cm or greater (red). Each figure represents a cross-section of the signing space

in depth. This concept is better illustrated in Figure 45, which shows the perspective view

of cross-sections. Figure 44a shows a cross-section of thickness 0.6 arm-lengths from fully

outstretched down to 40% of the length. Figure 44b shows a cross-section of thickness 0.2

arm-lengths that extends from 20% to 40% of the arm length in front of the body. Figure

44c encompasses everything behind the body and up to 20% of the arm length in front of

the body. The regions in white are free of data.
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(a) depth = (-1,-0.4) (b) depth = (-0.4,-0.2) (c) depth = (-0.2, 1)

(d) depth = (-1,-0.4) (e) depth = (-0.4,-0.2) (f) depth = (-0.2, 1)

Figure 44: Heat maps of the errors by MKST. (a)-(c) depict average error with blue being almost no error to red, an error of 14 cm or
greater. (d)-(f) depict likelihood of errors with blue being low chance of error to red being the locations of most frequent error.
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Figure 45: Perspective view of cross-sections in signing space showing hand tracking errors
of the Microsoft Kinect Skeleton Tracker. Cross-sections are shown separated for clarity.

Figures 44d through 44f show the likelihood of tracking error at different locations in the

signing space. Blue indicates low chance of error, whereas red indicates high change of error.

Figure 46 illustrates three fundamental types of tracking errors for the Microsoft Kienct

Skeleton Tracker (MKST) that we have encountered in the Classifier-Kinect dataset. It

shows the ground truth labels and the tracked points by MKST in green and red respectively.

The tracking errors typically occur in the following situations:

• Interaction between hands or crossed arms near or slightly away from the signer’s

body

• Interaction of signer’s hands with the body or the face

• Hands at rest, beside the signer’s body

The first instance represents errors that occur when the hands interact with each other

away from the body in the signing space. The Classifier-Kinect datset, and ASL in general,

has numerous such signs. An example from our dataset is in Figure 46a where the verb-

of-movement classifier predicate is JUMPS. In our dataset, the pool of signers all being
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(a) (b)

(c) (d)

(e) (f)

Figure 46: Examples of tracking errors by the Microsoft Kinect Skeleton Tracker in the
Classifier-Knect dataset.
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right-hand dominant, such verbs of movement terminate on the left hand side of the body,

where the direct-object noun is located. Figures 44a and 44d show the heatmaps of errors

in the region which is approximately occupied by such signs which have a close interaction

between the hands. It is evident that the MKST mis-tracks most often and by the most

amount in the areas where such interaction is taking place.

A closely related type of error is when the hands of the signer interact with each other

close to the body. This error is visualized in Figures 44b and 44e. Figure 46b shows one

example from the dataset wherein the classifier predicate is MEETS. Again, we can see that

the MKST fails at crucial times and the magnitude of failure is also high.

Other errors occur when the hands interact with the head or face of the signer. The

magnitude and frequency of such errors (top half of Figures 44c and 44f) are lower compared

to the other kinds but not negligible. Examples of these errors from our dataset are in Figure

46c (right hand), Figure 46d (left hand) and Figure 46e (right hand).

Finally, the bottom halves of Figures 44c and 44f show the last type of error. The

simplest way to explain this error is the “jittering” that occurs when the signer’s hands are

stationary and beside the body in the REST position, usually in the beginning or very end

of the sentence. In these cases the MKST is unable to estimate the location of the hand

since there is no separation of the arm from the body. In Figures 44c and 44f, the two blobs

to the lower right and lower left are the locations of the two hands. Figures 46d and 46f

show examples of such a situation for the right and left hand respectively.

The types of errors we encounter with the MKST can be a potential source of error

that reduces the sentence recognition accuracy of our method. The reduction in sentence

recognition accuracy is reflected in the sentence recognition results shown in Table 27, in the

previous chapter, when we compare row 1 (ground truth hand locations + oracle handshape

classifier with 100% accuracy) with row 3 (MKST + oracle handshape classifier with 100%

accuracy). Hence, we propose a new robust hand detector that avoids these errors and

potentially yields better sentence recognition accuracy with the same recognition method.
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7.2 Hand detection using domain driven random forest regression

We propose a novel method to predict the location of the right and left hand using domain-

driven random forest regression. First, we extract normalized features from the signing

space and divide the signing space, based on our domain knowledge of ASL, into regions of

varying density with respect to hand locations during signing. A random forest classifier

allows us to first index into these divisions wherein we use dedicated random forest regression

to make predictions for the hand locations.

7.2.1 Feature Extraction

The feature extraction process has three steps:

1. Convert depth image coordinates, a given x-coordinate, y-coordinate and its corre-

sponding depth value (iX, iY, D), to signer coordinate space.

The signer coordinate space refers to the real world space centered at the signer ori-

gin shown in Figure 47a. To convert image coordinates into signer coordinate space

we first convert the image triplet (iX, iY, D) to camera coordinates. Although this

information is available at runtime through Microsoft Kinect SDK API’s we did not

store this data since it would slow down the data capture frame rate. Instead, we

used known, correctly tracked hand points, from the skeleton tracking information,

to obtain corresponding camera coordinates (cX, cY, D) for the depth image coor-

dinates (iX, iY, D). Then, we estimated the transformation matrix to convert any

given image triplet (iX, iY, D) into the camera coordinate space. Finally, the camera

coordinates are translated with respect to the signer origin. Now, all locations are

expressed in terms of meters, in the X, Y and Z directions, from the signer origin.

The coordinates in signer space are further normalized to account for the variation

in arm lengths of the signers, using maximum possible arm extents in the X, Y and

Z directions. Figure 47b shows how the extents are calculated, which are used as

divisors for normalization. From now on for feature extraction and random forest

training we will use the normalized coordinates. Finally, we eliminate depth image
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points that do not correspond to the signer’s body by restricting the signing space

to between -1.0 and +1.0 times the X-extent in the X direction, +0.5 to -1.0 times

the Y-extent in the Y direction and -1.0 to + 0.5 times the Z-extent in the Z direction.

2. Quantize the signing space and compute depth averages.

The signing space is first divided into a 60x40 grid in the X-Y plane as shown in Figure

47a. Then we compute the average of the depth values (normalized Z-coordinates) of

all points that fall within each grid location.

3. Vectorize and eliminate zero-columns.

Once the average depth value in each grid location is obtained, the values are vec-

torized in a left-to-right manner, starting from the top-left grid location and going

down to the bottom-right grid location. This process yields a vector of length 2400

for each depth image. This initial feature vector is computed for all depth images in

the dataset. Then, we construct a Nx2400 matrix, where N is the number of depth

images in the dataset, and find columns of the matrix that contain a zero for all the

N feature vectors. For example, for the location (60,40) marked in Figure 47a, the

average depth value for all images in the dataset will be zero since it is likely that

no depth data is ever recorded in that location. These zero-columns are eliminated

from the feature vector as they do not give us any additional information that may

be useful for predicting the hand locations. After eliminating the zero-columns, the

feature vectors for our dataset were of length 1295, reduced from the original 2400.

7.3 Training

Our method to train a predictor to detect the hand locations uses random forest regression.

Random forests or randomized decision trees were first proposed by Leo Breiman [16].

The term “forests” is used to highlight that they are a combination of decision trees that
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Figure 48: Reverse lookup mechanism to obtain the z coordinate of the hand. The predicted
x and y location aid a local search to obtain the z coordinate by averaging values in the
depth map.

operate on randomly sub-sampled features. For classification each decision tree outputs

a class label and then the most occurring label is chosen as the final output, whereas for

regression the output of all the trees is averaged. Random forests are robust and popular

with the computer vision community due to their ability to handle highly noisy feature

spaces well [28, 50, 79].

For hand detection four separate predictors are trained, using identical feature vectors,

to predict the x and y locations of the right and the left hand. The z-coordinate is each

case is predicted using a reverse lookup mechanism whereby we use the x and y location

to perform a local search in the depth image and then obtain the z value by averaging

the depth values. The reverse lookup method is illustrated in Figure 48. Due to time

constraints we restricted the number of trees in the random forest to 240, which meant

that the average prediction from all the trees was not as accurate compared to if there

were thousands of trees. To mitigate this problem and still keep the time required for

training to be manageable we first divided the training data into subsets, based on our

domain knowledge of ASL, such that the range of the predicted variable for each subset

was considerably smaller compared to the full range. This process is illustrated in Figure

49 wherein the ground truth y coordinate of the left hand is plotted against the normalized

depth value of the point, in the depth map of the signer, closest to the camera. Similar

plots can be created for the ground truth x coordinates of the left hand and the ground
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truth x and y coordinates of the right hand.

Figure 49: Plot of ground truth y coordinates of the left hand against the normalized depth
value of the point in the depth map closest to the camera (lower X-axis values represent
points closer to the camera in the -1.0 direction).

We chose the X-axis variable for the plot in order to visualize the relationship between

the range of depth in the depth map (the closer a hand is to the camera the larger is the

range of the depth map) and the range of the predicted variable. We can see from the plot

that larger the depth range (as we get closer to -1.0 on the X-axis) the smaller is the range

of the Y-axis variable (in this case the y coordinate of the left hand).

For a moment we request the reader to glance away from Figure 49 and reflect back

on the MKST errors. We talked about errors happening away from the body, close to the

body when hands touch each other, near the face and jitter errors in the REST position.

Ignoring the errors, the first three regions at a high level represent locations in the signing

space where signing mostly occurs. Now looking back at Figure 49; the shaded regions 1,2,3

and 5 map directly to the four aforementioned regions. Region 4 captures the movement

epenthesis that occurs as the signer moves his hand away from the REST position as he/she
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gets ready to sign. These five divisions of the data stem directly from our domain knowledge

of ASL and knowledge of the method of data collection (sentences starting and ending in

the REST position). Notice that there is a high concentration of data points in front of

the body above the waist and below the chin, and in the REST position. By reducing the

range of the predicted variable in those regions and by virtue of having lots of data points

for training we reduce the magnitude of error and thus are able to improve predictions for

a large portion of the data.

The question arises as to how we can, at the time of predicting for a test data point,

index into the right subset of the data and chose the appropriate random forest to apply.

For region 1 it is straightforward; we apply a threshold on the depth range in the depth map

and if the range is large >70% of the arm-length then we apply random forest #1. Regions

2-4 fall on the other side of the threshold (<=70%) but there is no straightforward way to

index into the correct region. For that situation, we first train a random forest classifier

to index into regions 2-4, then apply the corresponding random forest #2 - #4 that has

been trained specially for the chosen region. By restricting the range of predictions of the

random forest we are shrinking the error introduced by averaging ill-spread predictions that

occur when a single random forest is applied to the full range of the data.

7.4 Experimental Results

We test our hand detection performance against that of the Microsoft Kinect Skeleton

Tracker (MKST). We employ user-adaptive cross-validation due to the sparsity of signers

in our dataset. Given that we only have five signers, running user-independent experiments

would not allow us to observe the true power of the approach as we would not have enough

variation of body types and signing styles represented in our dataset. For user-adaptive,

we add all ground truth data points for hand locations from the first example of each sign

or classifier predicate from the left-out fifth signer into the training set and then test on

the remaining instances of the fifth signer. This approach demonstrates the results in our

tracking performance with a small amount of training effort to adapt the system to a new

signer. As discussed earlier in Section 6.3.2 the user-adaptive approach is reasonable in cases
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where the training data has fewer signers; a small effort in recalibrating the application or

game for a new signer will significantly boost performance.

7.4.1 Comparing domain driven random forest regression (DDRFR) with Mi-
crosoft Kinect Skeleton Tracker (MKST).

Table 28: Comparison of hand detection %error - DDRFR vs MKST.

Signer

Method 1 2 3 4 5 Overall%

MKST 34.12 38.48 45.50 44.72 39.09 40.38%

DDRFR 23.64 34.2 61.8 36.1 26.9 36.53%

Table 28 shows the comparison of hand detection error with MKST and DDRFR. The

error results are based on predicted three-dimensional points lying outside a margin of error

of 5 cm. The justification for this margin is that 5 cm approximately represents half the

width of a hand, and we can expect that if a predicted point lies outside this 5 cm margin it

is likely to not contain depth information significantly relevant to the hand. Accurate hand

detection enables us to obtain reliable data to do handshape classification. We see that in

the user-adaptive case the DDRFR method produces fewer errors on average compared to

the MKST. In fact, we observe that most of those errors are due to one signer, Signer 3,

which is likely due to significant changes in the signing style of Signer 3 compared to other

signers. If we omit Signer 3 from our results, the average error drops to 30.2% which is

significantly better than the error rate of the MKST at 40.38%.

Table 29 shows the comparison of sentence recognition accuracy achieved by using the

DDRFR method for hand detection versus using the MKST. The sentence recognition

results are obtained by using the recognition pipeline shown in Figure 41. For a sentence

Table 29: Comparison of sentence recognition accuracy DDRFR vs MKST.

Signers

Hand detec-
tion

Handshape
classification

#1 #2 #3 #4 #5 Overall%

MKST Oracle 84.9 82.6 78.4 83.7 81.9 82.3%
DDRFR Oracle 90.8 89.1 74.2 84.9 88.1 85.4%
MKST Section 6.3.4 80.3 77.5 70.9 77.4 76.2 76.4%
DDRFR Section 6.3.4 85.4 85.2 67.3 80.1 81.4 79.9%
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to be recognized as correct, the result at every step of the pipeline should be correct;

if even one step produces the wrong result then the sentence is not recognized. We have

seen earlier in Table 27, by using an oracle handshape classifier, which always outputs 100%

accurate results, we can achieve sentence recognition accuracy of over 90% for all signers and

an average accuracy of 93.4% when we use ground truth hand locations. If the handshape

classifier described in Section 6.3.4 is used, 88.1% sentence recognition accuracy is achieved.

This result gives us an upper bound on the sentence recognition accuracy as if we had a 100%

accurate hand detector or tracker, all other methods for hand detection/tracking, in our case

MKST and DDRFR, will probably yield lower sentence recognition accuracies.. We have

discussed earlier in Section 6.5.1 the complex impact that a better hand detector can have

on the results obtained from the recognition pipeline. A better hand detector will directly

provide a positive impact on recognition of verb-of-movement classifier predicates. For noun

signs a better hand detector can both directly and indirectly (by improving handshape

classification) provide a positive impact on recognition. From Table 29 we clearly see that

having better hand detection in the case of DDRFR with user-adaptive hand detection yields

a better sentence recognition accuracy of 85.42% compared to 82.3% using the MKST when

an oracle handshape classifier is used. If we switch to the handshape classifier from Section

6.3.4 sentence recognition accuracies of 79.9% and 76.4% are obtained in the case of DDRFR

and MKST respectively.

7.4.1.1 Findings

Figure 50 shows the comparison between DDRFR and MKST, for the cases shown earlier

in Figure 46. The green, red and blue dots represent the ground truth, MKST and DDRFR

locations respectively. We see that in most cases DDRFR does better than the MKST. In

two cases we see the DDRFR predictor making errors. In Figure 50a we see that the MKST

has a better location for the right hand compared to the DDRFR predictor. In Figure 50e

both the left hand and right hand predictions are off by a small amount. Overall it appears

that DDRFR has errors of smaller magnitude compared to the MKST.

Table 30 shows the percentage occupancy of each signer in feature space. Recall that
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Figure 50: Comparison of hand locations reported by DDRFR to MKST. (ground truth
locations are in green, MKST locations in red and DDRFR hand detection is shown in
blue).
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Table 30: Occupancy ratio in feature space for each signer.

Signer Occupancy%

1 32.33%
2 33%
3 52.33
4 40.87%
5 42.95%

our features are constructed from a 60x40 grid in signer space (Figure 47a). We clearly see

that for Signer 3 the occcupancy ratio is significantly different than other signers. Also we

see that for every other signer there is one other signer who has a similar occupancy ratio

but we find none such case for Signer 3. This could explain the reason why the DDRFR

predictor does not do well for Signer 3, since there is not enough training data to make

accurate predictions.

7.5 Discussion

The domain driven random forest regression detected hands better than the Microsoft

Kinect Skeleton Tracker. However, there was one signer (Signer 3) for whom the method

did worse than the MKST. We believe that the poor result for Signer 3 is mainly due to lack

of training data that matches the Signer 3’s signing style, which has been shown in Table

30 to be significantly different from the others. Although we used user-adaptive training,

the predictions were inaccurate, highlighting that there was insufficient training data.

The motivation to do user-adaptive training is the ability to quickly collect a small

amount of sample data from an unknown signer and use that data to retrain the prediction

trees. The retrained trees will likely have better predictions than without user-adaptive

training. In real-world applications this small amount of time sacrificed to collect new

samples and retrain the system pays heavy dividends by improving robustness. However, it

appears, based on our experiments, that when the signer has a significantly different style

compared to other signers in the training data, a small amount of additional signing data to

perform user-adaptive training will not result in improved performance. The only solution

that remains is to train with larger number of signers accounting for several different body

types and signing styles. A larger pool of signers in the training data mitigates the need for
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user-adaptive training but requires more effort to label the data. It is our belief that the

DDRFR method for hand detection will consistently perform better than the MKST when

trained with a larger set of signers, with different body types and signing styles.

Looking ahead from the perspective of building an ASL-classifier based game with a fully

automatic recognition system, the results shown in Table 29 are promising. A switch to ver-

ification, as was done in the CopyCat game will provide the necessary boost in performance

making it possible for the game to be employed in educational settings. We are cautiously

encouraged from the fact that the DDRFR method for hand detection in combination with

the handshape classification method from Section 6.3.4 has close to 80% sentence recogni-

tion accuracy as compared to 67% sentence recognition in the case of the earlier CopyCat

system when tested on the Gwinnett dataset (see Table 5). However, one major differ-

ence is that signers in the Gwinnett dataset were children whereas in the Classifier-Kinect

dataset the signers are adults. Still, even though recognition accuracy may drop with newer

datasets with younger signers, due to higher signing variation and presence of disfluencies,

sentence verification in an educational ASL-classifier game as opposed to recognition will

improve the system’s overall accuracy. As we have seen in the past, a live deployment of

the CopyCat sentence verifier, that had 82% accuracy on the Gwinnett dataset (see Table

5) was sufficient to produce an educational effect with deaf children, on average almost

doubling their test scores after playing the game for two weeks (see Section 3.3).
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CHAPTER VIII

CONCLUSION AND FUTURE WORK

Educational sign language games can play an important role towards acquiring essential

language skills especially for deaf children born to hearing parents, who constitute 95%

of all deaf children born in the United States. Advancements in automatic sign language

recognition (ASLR) have made it possible to build computer systems that automatically

recognize finger spellings, isolated signs, facial expressions and interrogative words like WH-

questions (e.g. who, what, where, and when). However, there is much to do in ASLR and we

are far from developing an advanced sign language recognition system on par with current

voice recognition systems that can recognize spoken English of hundreds of thousands of

speakers. Some areas that are currently underexplored in ASLR are sentence verification and

recognition of classifier-based grammatical structures of American Sign Language (ASL).

In our previous work we developed CopyCat, an educational ASL game that requires

children to engage in a progressively more difficult expressive signing task as they advance

through the game. This game helps children improve their short term memory and increases

their “wordspan,” the ability to recall and repeat signs/words immediately after they have

seen a tutorial video of the ASL sentence. CopyCat was the first game of its kind in

providing deaf children the ability to practice their sign language skills in the absence of a

conversational partner. We have demonstrated in Chapter 3 that by leveraging context we

can use verification, in place of recognition, to boost machine performance for determining

if the signed responses in the expressive signing tasks of the CopyCat game, are correct or

incorrect. Although CopyCat included only English-like sentences it provided us a template

to design future games and build enhancements that would make it possible to recognize

other linguistic aspects of ASL.

A critical component of any educational ASL game that employs automatic recogni-

tion/verification is the ability to provide feedback to the signer about errors in signing. To

108



successfully provide feedback the automated system should have the ability to accurately

segment parts of the ASL sentence including the signs for future reference. In Chapter 4 we

have demonstrated that the quality of a machine verifier’s ability to identify the boundary

of the signs can be improved by using a two-pass technique that combines signed input in

both forward and reverse directions.

So far our focus had been on advancing ASLR research to support sentence recogni-

tion without paying attention to economics of scale, which is paramount for an educational

game like CopyCat to attain large scale adoption and fulfill the needs of our target pop-

ulation. We estimated that the custom hardware required for the CopyCat game, which

includes one desktop/laptop computer, a pair of colored gloves with attached accelerom-

eters, a IEEE1394 camera and a kiosk setup would cost close to $2000. The cost of the

hardware setup definitely presented a barrier for adoption. Advances in imaging technol-

ogy have resulted in the availability of inexpensive off-the-shelf depth cameras. The widely

available Microsoft Kinect Camera costs a mere $250 and has the flexibility of being able to

connect either to a desktop/laptop computer or to the Microsoft Xbox gaming system. In

Chapter 5 we have shown that we can reduce CopyCat’s dependency on custom manufac-

tured hardware by using an off-the-shelf Microsoft Kinect depth camera to achieve similar

verification performance compared to the earlier hardware.

As we mentioned earlier, recognition of classifier-based grammatical structures in ASL

is still relatively underexplored. The combination of RGB and depth information available

through the Microsoft Kinect camera is particularly suitable for recognizing the visual-

spatial constructions of ASL classifiers. In Chapter 6 we give details about an ASL classifier

dataset (Classifier-Kinect) we designed and collected in consultation with ASL linguists and

fluent signers. We have presented recognition results on this dataset by using a method

that combines hand tracking information provided by the Microsoft Kinect camera and

a technique for handshape classification. In Chapter 7 we show that the generic human

pose estimator provided the Microsoft Kinect is not suitable for hand tracking in ASL

datasets and propose a method to detect hand positions using domain-driven random forest

regression. We show that the new hand detector provides reliable hand detection, which
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results in better recognition accuracy.

In the future we hope to collect classifier-based ASL datasets, with larger sign vocabulary

and additional ASL classifiers, using young deaf signers as opposed to fluent adult signers in

the Classifier-Kinect dataset. One issue with the Classifier-Kinect dataset was the scarcity

of signers, which meant that variations in signing and different body types of the signers,

needed to train a robust hand tracker and for training better hidden Markov models to model

the noun signs and verb-of-movement classifier predicates, were not adequately captured.

For collection of future classifier-based ASL datasets we will recruit a significantly larger

number of young deaf singers, which will introduce variation in signing and body type.

From the point of view of the recognition pipeline, we will retrain the hand detector, train

a new hand shape classifier to handle additional classifier handshapes and build new hidden

Markov models to recognize signs and classifier predicates in the expanded vocabulary. Our

hope is to bundle the new recognizer in to a CopyCat-like ASL classifier game application

and release the game through channels, such as Microsoft Xbox Live, that facilitate content

delivery directly to people’s homes, as well as direct download for installation on personal

computers.
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[100] Wang, R. Y. and Popović, J., “Real-time hand-tracking with a color glove,” in
ACM Transactions on Graphics (TOG), vol. 28, p. 63, ACM, 2009.

[101] Weaver, K. A., Hamilton, H., Zafrulla, Z., Brashear, H., Starner, T.,
Presti, P., , and Bruckman, A., “Improving the language ability of Deaf sign-
ing children through an interactive American Sign Language-based video game,” in
Proceedings of 9th International Conference of the Learning Sciences, June 2010.

[102] Westeyn, T., Brashear, H., Atrash, A., and Starner, T., “Georgia Tech
Gesture Toolkit: Supporting experiments in gesture recognition,” in ICMI ’03, (New
York, NY, USA), pp. 85–92, ACM Press, 2003.

118



[103] Xu, C. and Cheng, L., “Efficient hand pose estimation from a single depth image,”
in IEEE International Conference on Computer Vision (ICCV), pp. 3456–3462, Dec
2013.

[104] Yang, C., Jang, Y., Beh, J., Han, D., and Ko, H., “Gesture recognition using
depth-based hand tracking for contactless controller application,” in IEEE Interna-
tional Conference on Consumer Electronics (ICCE), pp. 297–298, IEEE, 2012.

[105] Yang, H., Sclaroff, S., and Lee, S., “Sign language spotting with a threshold
model based on conditional random Fields,” PAMI, vol. 31, pp. 1264–1277, July
2009.

[106] Yang, M.-H. and Ahuja, N., “Recognizing hand gestures using motion trajectories,”
in Face Detection and Gesture Recognition for Human-Computer Interaction, pp. 53–
81, Springer, 2001.

[107] Yang, R., Sarkar, S., and Loeding, B., “Enhanced level building algorithm for
the movement epenthesis problem in sign language recognition,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8, 2007.

[108] Yang, R., Sarkar, S., and Loeding, B., “Handling movement epenthesis and
hand segmentation ambiguities in continuous sign language recognition using nested
dynamic programming,” The IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 32, pp. 462–477, March 2010.

[109] Yoo, B., Han, J.-J., Choi, C., Yi, K., Suh, S., Park, D., and Kim, C., “3D
user interface combining gaze and hand gestures for large-scale display,” in CHI 2010,
Extended Abstracts on Human Factors in Computing Systems, pp. 3709–3714, ACM,
2010.

[110] Young, S. J., Evermann, G., Gales, M. J. F., Hain, T., Kershaw, D., Moore,
G., Odell, J., Ollason, D., Povey, D., Valtchev, V., and Woodland, P. C.,
The HTK Book, version 3.4. Cambridge, UK: Cambridge University Engineering
Department, 2006.

[111] Young, S., “Detecting misrecognitions and out-of-vocabulary words,” IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing, vol. 3, pp. 21–24,
1994.

[112] Yu, D., Ju, Y. C., and Acero, A., “An effective and efficient utterance verification
technology using word n-gram filler models,” in Proceedings of Interspeech 2006—
ICSLP: 9th International Conference on Spoken Language Processing, Pittsburgh, PA,
USA, 2006.

[113] Zafrulla, Z., Brashear, H., Hamilton, H., and Starner, T., “A novel approach
to American Sign Language (ASL) phrase verification using reversed signing,” in
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW 2010), pp. 48–55.

[114] Zafrulla, Z., Brashear, H., Hamilton, H., and Starner, T., “Towards an
American Sign Langauge verifier for educational game for deaf children,” in Proceed-
ings of International Conference on Pattern Recognition, (ICPR 2010).

119



[115] Zafrulla, Z., Brashear, H., Starner, T., Hamilton, H., and Presti, P.,
“American Sign Language recognition with the kinect,” in Proceedings of the 13th
international conference on multimodal interfaces, (ICMI 2011), pp. 279–286.

[116] Zhang, Z., “Microsoft kinect sensor and its effect,” IEEE MultiMedia, vol. 19, pp. 4–
10, Apr. 2012.

120


