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SUMMARY 

 

The vitamin D metabolite 1,25-dihydroxyvitamin D3 [1α,25(OH)2D3] plays an important 

role in the regulation of musculoskeletal growth and differentiation. 1α,25(OH)2D3 mediates its 

effects on cells, including chondrocytes and osteoblasts, through the classical nuclear 

1α,25(OH)2D3 receptor. Additionally, recent evidence indicates that several cellular responses to 

1α,25(OH)2D3 are mediated via a rapid, calcium-dependent membrane-mediated pathway. These 

actions of 1α,25(OH)2D3 can be blocked by antibodies to protein-disulfide isomerase family A, 

member 3 (Pdia3), indicating that it is part of the receptor complex; however, the pathway which 

is activated by this receptor is not fully understood. The overall goal of this thesis was to 

examine the roles of phospholipase A2 activating protein and calcium calmodulin-dependent 

kinase II in 1α,25(OH)2D3 rapid membrane-mediated signaling. We further investigated the 

interaction between two pathways regulating growth plate cartilage and endochondral bone 

formation, 1α,25(OH)2D3 and Wnt5a, at the receptor complex level.  

In the first study, evidence is provided that phospholipase A2 (PLA2) activating protein 

(PLAA) is required for 1α,25(OH)2D3 rapid membrane-mediated signaling. PLAA, Pdia3, and 

caveolin-1 (Cav-1) were detected in plasma membranes and caveolae of growth zone 

chondrocytes (GC) and MC3T3-E1 cells. Pdia3-immunoprecipitated samples were positive for 

PLAA only after 1α,25(OH)2D3 treatment. Cav-1 was detected when immunoprecipitated with 

anti-Pdia3 and anti-PLAA in both vehicle and 1α,25(OH)2D3 treated cells. These observations 

were confirmed by immunohistochemistry. 1α,25(OH)2D3 failed to activate PLA2 and protein 

kinase C (PKC) or cause prostaglandin E2 (PGE2) release in PLAA-silenced cells. PLAA-

antibody successfully blocked the PLAA protein and consequently suppressed PKC activity in 



 xvii 

GC and MC3T3-E1 cells. Crosslinking studies confirmed the localization of PLAA on the 

extracellular face of the plasma membrane in untreated MC3T3-E1 cells. Taken together, our 

results suggest that PLAA is an important mediator of 1α,25(OH)2D3 rapid membrane mediated 

signaling. 1α,25(OH)2D3 likely causes conformational changes that bring Pdia3 into proximity 

with PLAA, and aiding in transducing the signal from caveolae to the plasma membrane. 

In the second study, the roles of CaM and CaMKII as mediators of 1α,25(OH)2D3-

stimulated PLAA-dependent activation of cPLA2 and PKCα, and downstream biological effects. 

The results indicated that 1α,25(OH)2D3 and PLAA-peptide increased CaMKII activity within 9 

minutes. Silencing Cav1, Pdia3 or Plaa in osteoblasts suppressed CaMKII this effect. Similarly, 

antibodies against PLAA or Pdia3 blocked 1α,25(OH)2D3-dependent CaMKII. Caveolae 

disruption abolished activation of CaMKII by 1α,25(OH)2D3 or PLAA. CaMKII-specific and 

CaM-specific inhibitors reduced cPLA2 and PKC activities, PGE2 release and osteoblast 

maturation markers in response to 1α,25(OH)2D3. Camk2a-silenced but not Camk2b-silenced 

osteoblasts showed comparable effects. Immunoprecipitation showed increased interaction of 

CaM and PLAA in response to 1α,25(OH)2D3. The results indicate that membrane actions of 

1α,25(OH)2D3 via Pdia3 triggered the interaction between PLAA and CaM, leading to 

dissociation of CaM from caveolae, activation of CaMKII, and downstream PLA2 activation, and 

suggest that CaMKII plays a major role in membrane-mediated actions of 1α,25(OH)2D3. 

Wnt5a and 1α,25(OH)2D3 are important regulators of endochondral bone formation. In 

osteoblasts and growth plate chondrocytes, 1α,25(OH)2D3 initiates rapid effects via its 

membrane-associated receptor protein disulfide isomerase A3 (Pdia3) in caveolae, activating 

phospholipase A2 (PLA2)-activating protein (PLAA), calcium/calmodulin-dependent protein 

kinase II (CaMKII), and PLA2, resulting in protein kinase C (PKC) activation. Wnt5a initiates its 



 xviii 

calcium-dependent effects via release of intracellular calcium, activating PKC and CaMKII. We 

investigated the requirement for components of the Pdia3 receptor complex in Wnt5a calcium-

dependent signaling. We determined that Wnt5a signals through a CaMKII/PLA2/PGE2/PKC 

cascade. Silencing or blocking Pdia3, PLAA, or vitamin D receptor (VDR), and inhibition of 

calmodulin (CaM), CaMKII, or PLA2 inhibited Wnt5a-induced PKC activity. Wnt5a activated 

PKC in Caveolin-1-silenced cells, but methyl-beta-cyclodextrin reduced its stimulatory effect. 

1α,25(OH)2D3 reduced Wnt5a-stimulated PKC. In contrast, Wnt5a had a biphasic effect on 

1α,25(OH)2D3-stimulated PKC activation; 50ng/ml Wnt5a caused a 2-fold increase in 

1α,25(OH)2D3-stimulated PKC but higher Wnt5a concentrations reduced 1α,25(OH)2D3-

stimulated PKC activation. Western blots showed that Wnt receptors receptor tyrosine kinase-

like orphan receptor 2 (ROR2), Frizzled2 (FZD2), and Frizzled5 (FZD5) localized to caveolae. 

Blocking ROR2, but not FZD2 or FZD5, abolished the stimulatory effects of 1α,25(OH)2D3 on 

PKC and CaMKII. 1α,25(OH)2D3 membrane receptor complex components (Pdia3, PLAA, 

Caveolin-1, CaM) interacted with Wnt5a receptors/co-receptors (ROR2, FZD2, FZD5) in 

immunoprecipitation studies, interactions that changed with either 1α,25(OH)2D3 or Wnt5a 

treatment. This study demonstrates that 1α,25(OH)2D3 and Wnt5a mediate their effects via 

similar receptor components and suggests that these pathways may interact. 



 

1 

CHAPTER 1 

SPECIFIC AIMS 

 

The vitamin D metabolite 1,25-dihydroxyvitamin D3 [1α,25(OH)2D3] plays an important 

role in controlling calcium homeostasis, regulating normal development of the cartilaginous 

growth plate and modulating bone formation (1-5). 1α,25(OH)2D3 regulates chondrocytes and 

osteoblasts via two different mechanisms: the classical pathway that is vitamin D receptor 

(VDR) mediated, and rapid membrane-initiated signaling (6-8). Growth zone chondrocytes 

isolated from the rat costochondral growth plate and MC3T3-E1 osteoblasts respond to 

1α,25(OH)2D3 with a rapid increase in protein kinase C alpha (PKCα) activity (9,10). Although 

various signaling proteins have been implicated in 1α,25(OH)2D3-mediated membrane signaling, 

some pivotal signaling molecules involved in this pathway have yet to be determined. We have 

previously shown that direct activation of phospholipase A2 mimics the effects of 1α,25(OH)2D3 

treatment on growth zone chondrocytes and MC3T3-E1 osteoblasts (10,11). Recent studies have 

also demonstrated that activation of calcium calmodulin-dependent kinase II is required for the 

actions of phospholipase A2. Based on these data, we hypothesize that phospholipase A2 

activating protein (PLAA) and calcium calmodulin-dependent kinase II (CaMKII) are required 

for 1α,25(OH)2D3 rapid membrane-mediated signaling. Previous works from our lab have shown 

that 1α,25(OH)2D3 and Wnt5a are important regulators of osteoblast maturation. They are also 

known to mediate their actions via calcium-dependent pathways. In this study, we will examine 

the requirement for protein disulfide isomerase 3 (Pdia3) receptor complex in Wnt5a pathway. 

We hypothesize that signaling components of 1α,25(OH)2D3 receptor complex are required for 

calcium-dependent actions of Wnt5a.  
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The overall objective of this project was to determine the roles of Pdia3/PLAA receptor 

complex and CaMKII in 1α,25(OH)2D3 and Wnt5a  membrane-mediated signaling pathways in 

chondrocytes and osteoblasts. The overall objective was addressed through the following specific 

aims. 

 

Specific Aim 1: Determine the role of phospholipase A2 activating protein in 1α,25(OH)2D3 

rapid membrane-mediated pathway.  

Caveolae and Cav-1 are required for rapid 1α,25(OH)2D3–dependent PKC signaling, and 

Pdia3 is co-localized with Cav-1 in plasma membranes and lipid rafts (12-14). However, it is not 

clear whether PLAA is present in caveolae and if it interacts with Cav-1 and Pdia3 receptor 

complex in the presence of 1α,25(OH)2D3. Previous studies demonstrated that 1α,25(OH)2D3 

treatment for 9 minutes increases PLA2 and PKC activities and PGE2 release in GC chondrocytes 

and MC3T3-E1 osteoblasts (9,15,16). Also, past studies using a 21 amino acid PLAA peptide as 

the activator of PLA2 have shown that this peptide mimics the effects of 1α,25(OH)2D3 on 

growth zone chondrocytes and MC3T3-E1 osteoblasts (10,11). Based on these data, if PLAA 

plays a critical role in 1α,25(OH)2D3 membrane-mediated signaling, then silencing PLAA should 

decrease the levels of activities of PLA2, PKC and release of PGE2 in response to 1α,25(OH)2D3. 

The hypothesis was that phospholipase A2 activating protein is required to mediate 

1α,25(OH)2D3 rapid membrane-mediated signaling. Subcellular localization of PLAA under 

different treatments was determined, the influence of 1α,25(OH)2D3 on interactions between 

PLAA, Pdia3, and Cav-1 was tested using immunoprecipitation and immunostaining, and the 

effect of PLAA knockdown on rapid actions of 1α,25(OH)2D3 was studied in MC3T3-E1 

osteoblasts.  
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Specific Aim 2: Determine the role of calcium calmodulin-dependent kinase II in 

1α,25(OH)2D3 rapid membrane-mediated pathway.  

Treatment of MC3T3-E1 cells with 1α,25(OH)2D3 activates CaMK, which subsequently 

results in phosphorylation of CREB (17). Recently, it has been reported that MC3T3-E1 

osteoblasts possess all CaMK isoforms. Specifically, it has been reported in vascular smooth 

muscle cells that transient silencing of CaMKII-α abolishes norepinephrine-induced increases in 

arachidonic acid (18). However, the role of CaMKII in 1α,25(OH)2D3–dependent membrane-

mediated signaling is unclear. It is important to elucidate the role of CaM KII in osteoblasts in 

response to 1α,25(OH)2D3. The hypothesis was that calcium calmodulin-dependent kinase II is 

required for 1α,25(OH)2D3-stimulated rapid activation of phospholipase A2. The activation of 

CaMKII under different treatments was quantified, the effect of 1α,25(OH)2D3 receptor complex 

knockdown was investigated, and the specific roles of two CaMKII  isoforms were evaluated in 

1α,25(OH)2D3 membrane-mediated signaling.  

 

Specific Aim 3: Determine the requirement for 1α,25(OH)2D3 receptor signaling 

components in Wnt5a calcium-dependent signaling.  

Wnt5a and 1α,25(OH)2D3 are important regulators of growth plate cartilage and 

endochondral bone formation. In vitro studies have demonstrated that Wnt5a promotes osteoblast 

maturation (19,20) and osteoblasts isolated from Wnt5a-/- mice exhibit down-regulation of 

osteoblastic differentiation markers compared to the wild type (21). Wnt5a calcium-dependent 

signaling involves activation of heterotrimeric G proteins, PLC, PKC, CaMKII, and the 

phosphatase calcineurin, (22-26) which are also used by the 1α,25(OH)2D3 rapid membrane-

mediated pathway. However, the requirement for 1α,25(OH)2D3 membrane-associated receptor 
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complex have not been elucidated in Wnt5a pathway. The hypothesis was that signaling 

components of 1α,25(OH)2D3 receptor complex are required for calcium-dependent actions of 

Wnt5a. The activation of PKC, CaMKII, PLA2 and PGE2 release with Wnt5a treatment was 

quantified in chondrocytes and osteoblasts, the effects of knockdown or inhibition of 

1α,25(OH)2D3 receptor signaling components on Wnt5a pathway was investigated, and the 

impacts of 1α,25(OH)2D3 and Wnt5a on interactions between receptor components was tested 

using immunoprecipitation. 

The outcomes of this study were expected to show that Pdia3/PLAA receptor complex 

and CaMKII are necessary for Wnt5a and 1α,25(OH)2D3 membrane-mediated pathways. The 

research was significant because it provided greater insight into mechanisms underlying 

1α,25(OH)2D3 and Wnt5a calcium-dependent signaling which holds great promise to identify 

mechanisms of diseases associated with aberrations in these signaling pathways and will promote 

the development of novel therapeutic targets. 
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CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW  

 

VITAMIN D METABOLISM 

Photochemical synthesis of vitamin D3 (choleciferol) occurs in the epidermis and dermis 

of humans when ultraviolet B radiation (UVB) of sunlight is absorbed by a precursor molecule, 

7-dehydrocholesterol (27). Vitamin D3 acquired from isomerization of 7-dehydrocholesterol or 

intestinal absorption of  dietary sources such as egg yolk, fish liver oil, sun-dried mushrooms or 

fortified food (28), binds to vitamin D binding protein (DBP) in the blood. Decreased sun 

exposure reduces vitamin D3 synthesis. In the liver, vitamin D3 is hydroxylated by 25-

hydroxylase (25-OHase; encoded by CYP27A1) to 25-hydroxyvitamin D3 [25(OH)D3] (29), 

which is then converted to 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] by 1α-hydroxylase (1α-

OHase; encoded by CYP27B1) in the kidney or other tissues expressing 1α-hydroxylase 

(15,28,30-33). Moreover, 24-hydroxylase (encoded by CYP24A1) activity in kidneys converts 

25(OH)D3 to 24R,25(OH)2D3 (34). The active secosteroid 1α,25(OH)2D3 (calcitriol) has different 

effects on diverse target tissues, and regulates cell proliferation, differentiation and apoptosis 

(35,36). The 1α,25(OH)2D3 biosynthesis process is highly regulated via mechanisms involving 

feedback regulation of its synthesis and catabolism by 24-hydroxylase. Furthermore, this process 

is one of the key endocrine systems controlling plasma concentration of calcium and phosphorus 

(37). The major role of 1α,25(OH)2D3 is to preserve calcium and phosphorus homeostasis in 

vertebrates (38). In bone, 1α,25(OH)2D3 regulates the formation of osteoid matrix and 

mineralization (39). Additionally, 1α,25(OH)2D3 has been reported to regulate immune system 

(40-43) and cardiovascular functions (44,45). Low levels of vitamin D3 cause rickets in children 
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and exacerbate osteoporosis and fractures in adults. In addition, Vitamin D3 plays an important 

role in reducing risk of heart disease, multiple sclerosis, and cancer (46-49). 

 

Figure 1.1: 1α,25(OH)2D3 Biosynthesis. The process of biosynthesis of 1α,25(OH)2D3 from its 

precursor, 7-dehydrocholesterol, is a multistep procedure involving the actions of ultraviolet 

irradiation, 25-hydroxylase and 1α-hydroxylase.  

 

THE ROLE OF VITAMIN D IN PHYSIOLOGY AND DISEASE 

Bone  

Vitamin D is an important regulator of intestinal absorption of calcium (50). When the 

body needs calcium, intestinal calcium absorption increases, which activates parathyroid 

hormone (PTH) secretion, which in turn stimulates 1α,25(OH)2D3 biosynthesis (51). The increase 
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in 1α,25(OH)2D3 levels triggers intestinal calcium absorption. However, if the body has been 

deprived of calcium, despite the activation of intestinal absorption of calcium, the described 

mechanism is unable to bring calcium in. In this scenario, highly elevated levels of PTH and 

1α,25(OH)2D3 mobilize calcium from bones, that, together with an increased renal reabsorption 

of calcium, raise plasma levels of calcium (37). Therefore, calcium homeostasis is maintained in 

the body at the expense of skeleton. If the latter mechanism persists due to insufficient calcium 

intake or aberrations in intestinal calcium absorption pathways, calcium homeostasis becomes 

dependent on skeletal calcium until its reduced mass alarms a serious structural problem. Such 

conditions result in fractures and osteoporosis.  

Furthermore, case studies of postmenopausal women have indicated that the absence of 

estrogen causes development of structural disorders similar to that of blood calcium absorption 

from the skeleton. This condition suppresses PTH release and subsequently reduces synthesis of 

vitamin D (37). Moreover, the reduction in 1α,25(OH)2D3 and PTH levels suppresses bone 

remodeling, a highly important process responsible for bone resorption and formation and is 

necessary to maintain healthy bone structures. Therefore, suppression of 1α,25(OH)2D3 

biosynthesis plays an important role in initiating onset of skeletal disorders in women following 

menopause. Daily supplementation of vitamin D to these patients have proven to increase 

calcium absorption, increase trabecular bone volume and reduce fracture rate (52). These 

findings indicate the role of 1α,25(OH)2D3 as a potential therapeutic candidate for 

postmenopausal osteoporosis. It is also important to note that vitamin D supplements co-

administered without calcium have not proven to prevent fractures (53).  

Vitamin D-mediated signaling regulates mechanisms involved in osteoblast biology, 

function and differentiation. Osteoblasts are known to respond to a selection of resorptive 
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signals, including 1α,25(OH)2D3 and parathyroid hormone (PTH), by secreting receptor activator 

of NF-κB ligand (RANKL) (54). RANKL is a member of tumor necrosis family (TNF) 

superfamily, and is an essential regulator of osteoclastogenesis (55,56). It mediates its effects via 

binding its receptor, RANK, stimulating a range of signaling pathways such as mitogen activated 

protein kinase (MAP), Src, phosphatidylinositol 3-kinase (PI3K)/AK and IKK/IKβ/ NF-κB. 

Downstream from activation of these pathways, important transcription factors including c-fos 

and NF-κB are activated, which in turn induce osteoclastic differentiation of hematopoietic 

progenitor cells (54). The promoter region of the RANKL gene contains a functional vitamin D 

responsive element (VDRE) through which its transcription is regulated by 1α,25(OH)2D3 (57-

59). Osteoprotegerin (OPG) is a member of tumor necrosis family (TNF) superfamily, and it 

serves as an inhibitor of osteoclastogenesis (60). This protein acts as a soluble decoy receptor for 

RANKL, which inhibits the interaction of RANKL with its RANK receptor. Osteoblasts secret 

OPG and 1α,25(OH)2D3 has been reported to regulate osteoprotegerin gene expression (60-62).  

Roles of 1α,25(OH)2D3 in differentiation and maturation of osteoblasts in tissue culture 

has been extensively studied over the past two decades. 1α,25(OH)2D3 regulates the expression 

of osteoblast phenotypic markers. 1α,25(OH)2D3 stimulates osteocalcin and osteopontin 

production and increases mineralized nodule formation in osteoblasts (63,64). Genetic 

approaches, in which the CYP27B1 gene was knocked out to investigate bone formation in mice 

lacking the ability to synthesize 1α,25(OH)2D3, have shown that knockout animals develop 

osteopenia, reduced bone size, hyperparathyroidism and hypocalcemia. Similar to results 

obtained from CYP27B1-/- animals, VDR-deficient (VDR-/-) and double knockout mice (VDR-/- x 

CYP27B1-/-) develop comparable phenotypes.  
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Cartilage 

Cartilage is a dense non-vascular tissue produced by chondrocytes. Cartilaginous tissue is 

composed of a specialized extracellular matrix, which is primarily type II collagen and 

proteoglycans. Proteoglycans of a mature tissue consist of a core protein and highly sulfated 

glycosaminoglycan side chains, which result in a hydration state that can resist compressive 

loads. Cartilaginous tissue is found in the ear, nose, trachea, xyphoid, fracture callus growth plate 

of long bones, mandibular condyle and costochondral joints.  

 Growth of endochondral bone encompasses a series of events including proliferation, 

changes in cell morphology and expression of markers specific for chondrocytes and osteoblasts. 

In the growth plate, resting zone chondrocytes form clusters of rounded and randomly arranged 

chondrocytes residing at the ends of long bones. Resting zone chondrocytes mature into rapidly 

dividing chondrocytes in the proliferative zone, organizing themselves in columns parallel to the 

long axis of bone (65). Failure of these cells to thrive results in termination of growth at the end 

of long bones. As chondrocytes mature, proliferative cells undergo cell cycle arrest and increase 

in size, forming the prehypertrophic and hypertrophic zones of the growth plate which referred to 

as growth zone chondrocytes (GC) (65). Subsequently, the cartilage matrix calcifies and gives 

rise to the zone of ossification (65). Regulation and maintenance of these events are important 

for proper formation and function of the growth plate.  
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Figure 1.2: The Growth Plate. The growth plate is divided into four zones: the resting (reserve) 

zone, the proliferating zone, the hypertrophic zone and the zone of provisional calcification. The 

resting zone is the germinal layer of the growth plate. In the proliferative zone, chondrocytes 

assume a flattened morphology and begin to divide and organize themselves into columns. The 

hypertrophic zone is the layer in which chondrocytes begin to terminally differentiate and 

become enlarged, leading to cell death. Zone of provisional calcification is the area where with 

the death of chondrocytes and increase in alkaline phosphatase activity, chondrocyte columns 

become calcified. Matrix calcification is required for subsequent invasion by blood vessels.  

 

Previous reports by our lab and other groups have found that a complex network of 

interacting signaling pathways induced by hormones and growth factors appear to regulate the 

behavior of growth plate chondrocytes and endochondral bone ossification (19,66-68). Among 

these factors, vitamin D metabolites have been shown to play an important role in the regulation 
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of growth plate chondrocytes. In the absence of 1α,25(OH)2D3 or in mammals that lack the 

ability to respond to this metabolite, the hypertrophic zone is enlarged and extracellular matrix of 

cartilage fails to calcify, which in turn results in a condition called rickets (69,70). The symptoms 

of this disorder include bone pain or tenderness, dental deformities, impaired growth, increased 

bone fractures and skeletal deformities (bowlegs and asymmetrical skull) (71). Crystallographic 

studies of rachitic bones indicate that their mineral crystals are less mature than those of non-

rachitic control bones (72). This condition can be treated by restoring systemic levels of 

1α,25(OH)2D3 by supplementing patients with vitamin D3 in co-administration with calcium. 

Mouse models that lack functional vitamin D receptor also exhibit rachitic growth plates (73,74). 

This condition can be treated by restoring serum calcium concentration. 

Several studies have found that 1α,25(OH)2D3 is an important regulator of chondrocyte 

hypertrophy (75-78). In the growth plate, 1α,25(OH)2D3 inhibits proliferation and induces 

terminal differentiation and apoptosis. It also activates matrix metalloproteinases (MMPs), such 

as stromelysin-1 (MMP-3) and 72-kD gelatinase (MMP-2) (79,80). Additionally, recent studies 

have found that the primary role of 24R,25(OH)2D3 is to maintain the pool of chondrocytes in the 

resting zone region of the growth plate by promoting cell survival (80-82). 24R,25(OH)2D3 

stimulates production of sulfated glycosaminoglycans and reduces MMP activities (80). 

 

MOLECULAR MECHANISM OF ACTIONS  

A. VDR-MEDIATED GENE EXPRESSION 

Once 1α,25(OH)2D3 is inside the target cell, it binds to vitamin D receptor (VDR). The 

association of 1α,25(OH)2D3 with VDR promotes its heterodimerization with retinoid X receptor 

(RXR). 1α,25(OH)2D3 binding enhances the association of VDR to vitamin D response elements 
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(VDRE) in the promoter region of target genes. VDREs consist of two direct hexameric repeats 

with a three-nucleotide spacer; referred to as direct repeat 3 (DR-3) elements. The binding 

affinity of VDR-DR-3 is weaker than that of VDR/RXR-DR-3. 1α,25(OH)2D3 binding with 

VDR promotes the high affinity binding of VDR/RXR to the DR-3 region of VDRE. VDR 

occupies the proximal (3’ half-site) and RXR occupies the distal (5’ half site) sites of DR-3 (83). 

Ultimately, this interaction assures target gene selectivity of the 1α,25(OH)2D3/VDR/RXR 

complex, and consequently influences the rate of RNA polymerase II-mediated transcription.  

B. RAPID ACTIONS OF 1α,25(OH)2D3 

Models for Studying Rapid Actions 

Over the past two decades, the rat costochondral chondrocyte culture system has been 

used in our lab to study the membrane-mediated actions of 1α,25(OH)2D3 and 24R,25(OH)2D3. 

This powerful model encompasses both resting zone chondrocytes and growth zone 

chondrocytes (upper hypertrophic and hypertrophic). Previously, our lab demonstrated that 

growth zone chondrocytes express both the classical vitamin D receptor (VDR) and the plasma 

membrane associated receptor, protein disulfide isomerase family A (Pdia3; aka 1,25-MARS, 

ERp60, ERp57 and Grp58) (15,84,85). The mouse MC3T3-E1 subclone 4 line, originally 

isolated from the fetal mouse calvaria, exhibits high levels of osteoblast differentiation after 

growth in media supplemented with ascorbic acid. This subclone expresses osteoblast markers 

such as osteocalcin and bone sialoprotein (86), as well as VDR and Pdia3 (10,87). This cell line 

is a powerful model for studying the effects of 1α,25(OH)2D3 membrane-mediated response on in 

vitro osteoblast differentiation.  

Membrane-mediated Signaling by 1α,25(OH)2D3 
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Rat costochondral cartilage growth plate chondrocytes and MC3T3-E1 osteoblasts 

respond to 1α,25(OH)2D3 with a rapid increase in protein kinase C alpha (PKCα) activity (9,10). 

This rapid response is specific to the 1α,25(OH)2D3 stereoisomer; 1β,25(OH)2D3 fails to 

stimulate PKC-dependent signaling, indicating a receptor-mediated mechanism (88). In growth 

zone chondrocytes, 1α,25(OH)2D3 causes a rapid increase in phospholipase A2 (PLA2) and 

phosphatidylinositol-specific phospholipase C beta (PLCβ) (11,89). PLA2 action generates 

arachidonic acid (AA) and lysophospholipid (LPL) (89). AA can increase PKCα activity directly 

(90). Alternatively, AA may be metabolized further into PGE2 via constitutive cyclooxygenase-1 

(Cox-1), which acts via its EP1 receptor to increase cyclic AMP (91). Phosphatidylinositol-

specific PLCβ is activated via Gαq and lysophospholipid, generating diacylglycerol (DAG) and 

inositol 1,4,5-trisphosphate (IP3) (89,92). DAG binds PKCα and triggers its recruitment to the 

plasma membrane (93). IP3 activates the release of Calcium ions from the endoplasmic 

reticulum, required for PKCα activation. These actions of 1α,25(OH)2D3 can be blocked by 

antibodies to protein-disulfide isomerase family A, member 3 (Pdia3, also known as ERp60, 

ERp57, Grp58, and 1,25-MARRS), indicating that it is part of the receptor complex. 

 



 14 

 

Figure 1.3: Proposed mechanism of 1α,25(OH)2D3 stimulated rapid response in osteoblasts 

and chondrocytes. 1α,25(OH)2D3 binds its membrane associated receptor, Pdia3, in caveolae. 

This binding stimulates phospholipase C (PLC), resulting in diacyglycerol (DAG)-mediated 

activation of protein kinase C (PKC). Additionally, 1α,25(OH)2D3 activates phospholipase A2 

(PLA2), leading to release of arachidonic acid (AA) and prostaglandin E2 (PGE2) production. 

PGE2 binds its membrane-associated receptor, EP1, and positively regulates PKC activation. 

Together, these actions result in activation of mitogen activated protein kinase (MAPK) to 

induce differentiation and maturation of osteoblasts and chondrocytes.   

 

Phospholipase A2 

PLA2 designates a superfamily of diverse intracellular and secreted enzymes that catalyze 

the hydrolysis of sn-2 ester of glycerophospholipid, resulting in production of a free fatty acid 

and lysophospholipid. The products of their enzymatic activity have been implicated in a number 
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of physiological responses, including signal transduction processes, lipid metabolism, and host 

defense (94-96). PLA2 isoforms are divided into three classes based on their structure, 

subcellular localization, or function: 1- large, cytosolic PLA2 (cPLA2) 2- calcium-independent 

PLA2 (iPLA2) and 3- small, secreted PLA2 (sPLA2) (96). Proper regulation of PLA2 is crucial to 

control the levels of lipid metabolism. Multiple studies have demonstrated the pivotal role PLA2 

plays in calcium-dependent signaling pathways, including 1α,25(OH)2D3–dependent membrane-

mediated signaling (11,97-100) and estrogen-dependent rapid signaling (101). Stimulation of 

PLA2 activity using agents such as bee venom melittin and snake venom mastoparan mimics the 

effects of 1α,25(OH)2D3 on PKC in growth zone chondrocytes. Conversely, inhibition of PLA2 

activity using agents such as AACOCF3, OEPC, and quinacrine abolishes the stimulatory effect 

of 1α,25(OH)2D3 (10,89). Importantly, in growth plate chondrocytes, PLA2 activation is 

upstream of PLCβ, and AA is released within 15 seconds following treatment, suggesting that 

PLA2 is coupled to Pdia3.  

Phospholipase A2 Activating Protein  

Human phospholipase A2 activating protein (PLAA) has a region of 38% homology with 

melittin (102), and it also exhibits homology with the G-protein beta subunit, suggesting that it is 

membrane-associated (103). PLAA mRNA is expressed in growth plate chondrocytes in vivo and 

in chondrocytes isolated from the growth zone of rat costochondral growth plates in vitro (11). 

Previous studies using a 21 amino acid PLAA peptide as the activator of PLA2 have 

demonstrated that this peptide mimics the effects of 1α,25(OH)2D3 on growth zone chondrocytes 

and MC3T3-E1 osteoblasts (10,11). PLA2 inhibitors such as quinacrine and AACOCF3 blocked 

the effect of PLAA peptide on PLA2 and PKC, suggesting that the full-length protein acts 
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upstream of PLA2 (11). This supports the hypothesis that PLAA links the Pdia3 receptor 

complex with PLA2. 

Caveolae  

Caveolae (Latin for little caves; singular: caveola), a subset of lipid rafts, are 50-100 nm 

plasma membrane invaginations that are highly enriched with cholesterol and glycosphingolipids 

(104-106). Sphingolipids interact with each other through their polar head groups and cholesterol 

molecules are inserted between the associated sphingolipids (105,106). These regions of the 

plasma membrane are characterized by the presence of coat proteins called caveolins (Cav-1, 

Cav-2, and Cav-3; with molecular masses between 18-22 kD) and serve as signaling platforms 

(107-113). The lipid composition of caveolae provides a relative insolubility in cold non-ionic 

detergents, a biophysical property used to isolate these plasma membrane domains (114-117). 

However, detergent-based methods have been shown to alter the molecular composition of 

caveolae, thus a detergent-free method is used to isolate caveolae (118-120). Several steroid 

hormone receptors, including estrogen receptors α and β, androgen receptors, and vitamin D 

receptor (VDR) have been identified in caveolae (121-124). Cav-1 is expressed in most cell 

types, including growth zone chondrocytes, MC3T3-E1 osteoblasts, adipocytes, endothelial cells, 

fibroblasts, smooth muscle cells and epithelial cells (12,108,125-130). Cav-2 and Cav-3 have 

been reported to form caveolae invaginations; however, Cav-2 does not play an essential role in 

this process (131,132). We previously showed that intact caveolae and Cav-1 are required for 

rapid 1α,25(OH)2D3–dependent PKC signaling, and Pdia3 is co-localized with Cav-1 in plasma 

membranes and in lipid rafts (12-14). Mice lacking functional Cav-1 exhibit a longer 

costochondral growth plate, and the number of columns of chondrocytes in the hypertrophic zone 

is greater than that of wild type (12). Caveolae domains of the plasma membrane play an 
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important role in regulation of signaling pathways. Changes in caveolae function lead to severe 

conditions, including prion disease and cancer (133-135).  

Calcium/calmodulin-dependent Protein Kinase II 

Calmodulin (CaM) is a calcium binding protein that mediates many of the cellular effects 

of calcium. (136). CaM is expressed in all eukaryotes and it is found in various subcellular 

locations such as cytoplasm, plasma membrane and organelle membranes (136). Many of the 

downstream targets of CaM, such as calcium calmodulin kinase II (CaMKII), protein 

phosphatases, nitric oxide synthase and calcium pumps, are unable to bind to calcium 

themselves; therefore, CaM serves as a calcium sensor and signal transducer for these proteins. 

CaM activates CaMKII by displacement of its auto-inhibitory domains (136). CaMKII belongs 

to the family of serine/threonine kinases. It is activated in response to calcium signals, 

phosphorylating several downstream proteins (137). To date, over 30 isoforms of CaMKII have 

been identified. The molecular mass of these isoforms ranges from 52 to 83 KDa. These 

isoforms are the results of alternative messenger RNA splicing of four Camk2 genes, known as 

Camk2a, Camk2b, Camk2d, and Camk2g (138,139). It has also been reported that MC3T3-E1 

osteoblasts possess all CaMK types (CaMKI, CaMKII, and CaMKIV), and treating these cells 

with 1α,25(OH)2D3 activates CaMK. which subsequently results in phosphorylation of cAMP 

response element-binding protein (CREB) and eventually regulation of osteoprotegerin (OPG) 

expression (17). Parallel to these studies, another group has reported that CaMKII-α regulates the 

CREB/activating transcription factors (ATF) and ERK signaling pathways in osteoblasts (140). 

However, the role of CaMKII in 1α,25(OH)2D3–dependent membrane-mediated signaling in 

osteoblasts and chondrocytes is unclear. 
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WNT SIGNALING AND FUNCTION 

Wnts constitute a large family of cysteine-rich secreted glycoproteins that regulate a wide 

range of developmental and physiological processes (141). Currently, at least 19 members of the 

Wnt superfamily have been identified in humans and mice, with each member exhibiting a 

unique expression pattern and distinct function during development. Wnts regulate cellular 

functions, including proliferation, differentiation, survival, migration and polarity, by stimulating 

a group of signal transduction pathways (142-144). These signaling proteins act through three 

different pathways: the canonical Wnt/β-catenin pathway (145); the Wnt calcium-dependent 

pathway (26); and the planar cell polarity pathway involving jun N-terminal kinase (JNK) (146-

148). Several members of Wnt superfamily, Wnt5a, Wnt5b and Wnt-11, which activate the non-

canonical calcium-dependent pathway, are expressed by growth  plate chondrocytes (149).  

Wnt5a is one of the most extensively studied members of the Wnt superfamily. Genome 

sequence analysis has identified Wnt5a as an evolutionary conserved protein (150,151). Wnt5a 

palmitoylation is necessary for its binding to frizzled 5 (FZD5) receptor, while its glycosylation 

has been shown to be essential for its secretion (152). Wnt5a is expressed in growth zone 

chondrocytes (149) and plays an important role in chondrocyte transition between different zones 

of the growth plate. Animals lacking functional Wnt5a exhibit a significant delay in chondrocyte 

hypertrophy and skeletal ossification compared to the wild type (153), suggesting that Wnt5a 

plays a critical role in skeletal growth and development. 

Wnts mediate their effects via a wide range of receptors. Thus far, 10 frizzled receptors 

have been identified for Wnts. Frizzled proteins belong to the seven-pass transmembrane class of 

receptors carrying a cysteine-rich domain (CRD) in their extracellular region, which serves as 

their Wnt binding domain (154). In mammalian models, Wnt5a mediates its calcium-dependent 
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signaling via frizzled-2 (FZD2) and frizzled-5 (FZD5) (155,156). In addition to frizzled proteins, 

receptor tyrosine kinase-like orphan receptor 2 (ROR2) serves as a co-receptor to mediate the 

actions of Wnt5a. ROR2 is a single-pass transmembrane protein with a cysteine-rich domain in 

its extracellular region, which has been implicated in Wnt binding (157,158). ROR2 is expressed 

by chondrocytes of the growth plate, and ROR2-/- mice display a delayed hypertrophic region in 

their growth plate (159). Animals lacking functional ROR2 display skeletal abnormalities 

including shortened limbs and tails, facial deformities and dwarfism, suggesting that ROR2 plays 

a critical role in skeletal growth and development (159,160). 

Wnt5a has been shown to regulate the calcium signaling pathway (161-163). Wnt5a 

mutant zebrafish exhibit a reduction in frequencies of calcium fluxes, whereas overexpression of 

Wnt5a or FZD2 increases frequencies of calcium transients in the enveloping layers (164). 

Wnt5a induces a rapid activation of phospholipase C (PLC) and release of intracellular calcium. 

This increase in intracellular calcium concentration activates calcium sensitive enzymes such as 

PKC, CaMKII, and calcineurin, and subsequently leads to activation of NFAT transcription 

factor (22-26).  
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Figure1.4: Mechanism of Wnt5a calcium-dependent pathway. Wnt5a binds its membrane 

associated receptor, frizzled-2 (FZD2) or frizzled-5 (FZD5), and its co-recepotor, receptor 

tyrosine kinase-like orphan receptor 2 (ROR2). This binding stimulates phospholipase C (PLC), 

resulting in diacyglycerol (DAG)-mediated activation of protein kinase C (PKC). Additionally, 

Wnt5a activates calcium/calmodulin-dependent protein kinase II (CaMKII) leading to activation 

of mitogen activated protein kinase (MAPK). Wnt5a also induces an increase in calcineurin 

activity, which in turn activates transcription factors from the NFAT family. Together, these 

actions result in alterations of cellular functions.  
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CHAPTER 3 

PHOSPHOLIPASE A2 ACTIVATING PROTEIN IS REQUIRED FOR 

1α,25-DIHYDROXYVITAMIN D3 DEPENDENT RAPID ACTIVATION OF 

PROTEIN KINASE C VIA PDIA3 

 

INTRODUCTION 

1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] regulates chondrocytes and osteoblasts via 

two different mechanisms: the classical pathway that is vitamin D receptor (VDR) mediated, and 

rapid membrane initiated signaling (6-8). Growth zone chondrocytes isolated from the rat 

costochondral cartilage growth plate and MC3T3-E1 osteoblasts respond to 1α,25(OH)2D3 with a 

rapid increase in protein kinase C alpha (PKCα) activity (9,10). This rapid response is specific to 

the 1α,25(OH)2D3 stereoisomer; 1β,25(OH)2D3 fails to stimulate PKC-dependent signaling, 

indicating a receptor-mediated mechanism (88). In GC cells, 1α,25(OH)2D3 causes a rapid 

increase in phospholipase A2 (PLA2) and phosphatidylinositol-specific phospholipase C beta 

(PLCβ) (11,89). PLA2 action generates arachidonic acid (AA) and lysophospholipid (LPL) (89). 

AA can either increase PKCα activity directly (90), or it is processed further to PGE2, which acts 

via its EP1 receptor to increase cyclic AMP (91). Phosphatidylinositol-specific PLCβ is activated 

via Gαq and lysophospholipid, generating diacylglycerol (DAG) and inositol 1,4,5-trisphosphate 

(IP3) (89,92). DAG binds PKCα and triggers its recruitment to the plasma membrane (93). IP3 

activates the release of calcium ions from the endoplasmic reticulum, required for PKCα 

activation. These actions of 1α,25(OH)2D3 can be blocked by antibodies to protein-disulfide 

isomerase family A, member 3 (Pdia3, also known as ERp60, ERp57, Grp58, and 1,25-

MARRS), indicating that it is part of the receptor complex. 
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 Multiple studies have demonstrated the pivotal role PLA2 plays in 1α,25(OH)2D3–

dependent membrane-mediated signaling (11,97-100). Stimulation of PLA2 activity using agents 

such as bee venom melittin and snake venom mastoparan, mimics the effects of 1α,25(OH)2D3 

on PKC in growth zone chondrocytes. Conversely, inhibition of PLA2 activity using agents such 

as AACOCF3, OEPC and quinacrine, abolishes the stimulatory effect of 1α,25(OH)2D3 (10,89). 

Importantly, in growth plate chondrocytes, 1α,25(OH)2D3 treatment results in release of 

arachidonic acid within 15 seconds and PLA2 activation is upstream of PLCβ, that PLA2 is 

coupled to Pdia3.  

 Human phospholipase A2 activating protein (PLAA) is a likely candidate for mediating 

the signal from Pdia3 to PLA2. PLAA has three conserved domains including an N-terminal β-

propeller WD40 domain, a central PLAA family ubiquitin binding domain (PFU), and a C-

terminal PLAP, Ufd3p, and Lub1p domain (PUL). It has a region of 38% homology with melittin 

(102), and it also exhibits homology with the G-protein beta subunit WD40 domain, suggesting 

that it is membrane-associated (103). PLAA mRNA is expressed in growth plate chondrocytes in 

vivo and in chondrocytes isolated from the growth zone of rat costochondral growth plates in 

vitro (11). Previous studies using a 21 amino acid PLAA peptide as the activator of PLA2 have 

demonstrated that this peptide mimics the effects of 1α,25(OH)2D3 on growth zone chondrocytes 

and MC3T3-E1 osteoblasts (10,11). PLA2 inhibitors such as quinacrine and AACOCF3 blocked 

the effect of PLAA peptide on PLA2 and PKC, suggesting that the full-length protein acts 

upstream of PLA2 (11), supporting the hypothesis that PLAA links the Pdia3 receptor complex 

with PLA2. 

 We previously showed that disruption of caveolae structures using cholesterol chelating 

agents such as methyl-beta-cyclodextrin or whole-animal knockout of caveolin-1 (Cav-1) 
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abolished the rapid 1α,25(OH)2D3–dependent PKC signaling in chondrocytes, and that Pdia3 is 

co-localized with Cav-1 in plasma membranes and in lipid rafts (12-14). It has also been reported 

that Pdia3-silenced MC3T3-E1 osteoblasts rapidly activate PKC in response to PLAA peptide 

treatment suggesting that PLAA is downstream of Pdia3 (10). However, it is not clear whether 

PLAA is present in caveolae and if it interacts with Cav-1 and Pdia3. In this study, we first 

examined if PLAA is required to mediate 1α,25(OH)2D3 stimulated rapid membrane signaling in 

chondrocytes and osteoblasts. Second, we determined the subcellular localization of this protein. 

Third, we evaluated how PLAA interacts with the Pdia3 receptor complex in the presence of 

1α,25(OH)2D3. 

 

MATERIALS AND METHODS 

Reagents  

 PLA2 activating peptide (PLAA) was purchased from Enzo Life Sciences International, 

Inc. (Plymouth Meeting, PA). 1α,25(OH)2D3 was purchased from Biomol (Plymouth Meeting, 

PA). The anti-PLAA polyclonal antibody was designed and developed by Strategic Diagnostics 

Inc. (Newark, DE), using Genomic Antibody TechnologyTM. The selected 100 amino acid long 

region was 100% identical among three rat PLAA isoforms and 97% identical to mouse PLAA. 

Rabbit antiserum against the N-terminal peptide of Pdia3 was purchased from Alpha Diagnostic 

International (San Antonio, TX) (165). A polyclonal antibody to Cav-1 was purchased from 

Santa Cruz Biotechnology (sc-894, Santa Cruz, CA); pan cadherin polyclonal antibody was from 

Abcam (ab6529, San Francisco, CA); and a monoclonal antibody to glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) was from Millipore (MAB374, Billerica, MA, USA).  
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Establishment of silenced and overexpressing MC3T3-E1 cell lines 

1. PLAA 

 Wild type mouse MC3T3-E1 osteoblast-like cells (CRL-2593) were purchased from 

ATCC (Manassas, VA, USA). Stable knock down of Plaa was achieved using MISSION™ 

shRNA lentiviral transduction particles (SHVRS-NM_172695, Sigma Aldrich, St. Louis, MO). 

Five different sequences were generated against the Plaa mRNA and were incorporated into the 

lentivirus particles. MC3T3-E1 cells were plated at a density of 20,000 cells/cm2 in 24-well 

plates, and cultured in minimum essential medium alpha (α-MEM) supplemented with 10% fetal 

bovine serum (FBS), 1% penicillin/streptomycin (P/S) and 8µg/ml hexadimethrine bromide 

(500µl/well). In our system, lentiviral particles transfected MC3T3-E1 cells at a multiplicity of 

infection (MOI) of 7.5. The selection of successfully transfected cells was achieved by culturing 

cells containing the Plaa shRNA or empty vectors for 2 weeks in medium containing 2.0µg/ml 

of puromycin. The success of silencing Plaa was evaluated by measuring the expression of Plaa 

mRNA in comparison to wild type cells using real-time PCR and by Western blots using anti-

PLAA antibody.  

 To determine Plaa expression, confluent cultures of wild type and Plaa silenced MC3T3-

E1 cells were incubated with fresh media for 12 hours and RNA was harvested using the 

TRIzol® (Invitrogen, Carlsbad, CA) extraction method. RNA was quantified using a Nanodrop 

spectrophotometer (Thermo Fisher Scientific, Waltham, MA). 1μg of RNA was reverse 

transcribed to create the cDNA template using a High Capacity Reverse Transcription cDNA kit 

(Applied Biosystems, Carlsbad, CA). To quantify the expression of Plaa, real-time PCR was 

performed with Plaa-specific primers (F: 5’-AGA GAT GGT GAA GAA GCG-3’; R: 5’-

ACCTGGCTCATTCAGATGTTCC-3’) using the Step One Plus Real-time PCR System and 
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Power SYBR® Green PCR Master Mix (Applied Biosystems). Primers were designed using the 

beacon designer software and synthesized by Eurofins MWG Operon (Huntsville, AL). The 

stably transduced cell line with the highest silencing of Plaa (87% reduction) was chosen. 

 A stably silenced MC3T3-E1 cell line was established for Plaa (shPlaa), confirmed by 

Western blots of whole cell lysates (Fig. 3.1A). Of the five clones examined, RT-PCR indicated 

that mRNA for Plaa was significantly reduced in clone 906 compared with wild type cells (Fig. 

3.1B). Western blots of plasma membranes from wild type MC3T3-E1 cells showed strong 

bands for PLAA, but the intensity of these bands was largely decreased in clone 906 cells (Fig. 

3.1C). Similarly, wild type MC3T3-E1 cells exhibited intense immunofluorescence signal for 

PLAA, but this signal was reduced significantly in clone 906 cells (Fig. 3.1D). 

 

Figure 3.1: Silencing Plaa in MC3T3-E1 cells. (A) Western blot of whole cell lysates. Top: 

Blotting image for PLAA. Bottom: Blotting image for GAPDH (loading control). (B) Real-time 
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PCR. Plaa levels relative to Gapdh control. *p<0.05, versus WT. (C) Western blot of whole cell 

lysates of wild type MC3T3-E1 and plasma membranes of wild type and shPlaa MC3T3-E1 

cells. Top: Blotting image for PLAA in the plasma membrane of wild type MC3T3-E1 cells. 

Cadherin serves as a loading control. Bottom: Blotting image for PLAA in the plasma membrane 

of shPlaa MC3T3-E1 cells. Whole cell lysates of wild type MC3T3-E1 cells were loaded as a 

positive control for PLAA. Cadherin serves as the plasma membrane loading control. (D) 

Confocal microscopy of wild type and shPlaa MC3T3-E1 cells. blue: nucleus, green: PLAA. 

Cells were permeabilized before staining. 

 

2. Cav1 

 Stable knockdown of Cav1 (shCav-1) was achieved by transducing wild type MC3T3-E1 

cells with Cav1 shRNA lentiviral transduction particles (data not shown) (87). Greater than 90% 

silencing of Cav1 in clone 662 was confirmed using real-time PCR and by Western blots using 

anti-Cav-1 antibody. The method used to quantify Cav1 gene expression is as described for 

PLAA. Cav1-specific primers used in this part of the study (F: 5’- GAT TGA CTT TGA AGA 

TGT GAT TGC -3’; R: 5’- ACA GTG AAG GTG GTG AAG C -3’) were designed using the 

beacon designer software and synthesized by Eurofins MWG Operon.  

3. Pdia3 

 Pdia3 silenced (shPdia3) and over-expressing (ovxPdia3) MC3T3-E1 cell lines were 

generated previously (10). For these studies, we used the cell line with the highest silencing of 

Pdia3 (80% reduction). ovxPdia3 cells showed 100% over-expression of Pdia3 compared to the 

wild type.  

Cell culture  

 Wild type MC3T3-E1, shPlaa, and shCav-1 cells, as well as shPdia3 and ovxPdia3 cells 

were plated at 10,000 cells/cm3, and cultured in puromycin-free α-MEM containing 10% FBS 

and 1% P/S. To induce osteoblastic differentiation of MC3T3-E1 cells, the media were replaced 

with α-MEM supplemented with 10% FBS, 1% P/S and 1% ascorbic acid, 24 hours after plating 
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and then every 48 hours. After 10 days in culture, the cells were used for experiments described 

below.  

 Costochondral cartilage growth zone chondrocytes used in these experiments were 

isolated from 100-125-g male Sprague-Dawley rats (Harlan, Indianapolis, IN). The rats were at 

the end of their adolescent growth spurt; therefore, their long bones were growing at a reduced 

rate. The culture system used in this study was described previously in detail (11,166).  

Confluent cultures (approximately day 7) were used for the experiments described below. 

Plasma membranes and caveolae isolation 

 Plasma membranes and caveolae were isolated using a detergent-free method as 

described previously (121). Confluent, fourth passage growth zone chondrocytes and MC3T3-E1 

cells (cultured for 10 days post-plating) were treated with either 10-8 M 1α,25(OH)2D3 or vehicle 

(ethanol) for 9 minutes. The cells were harvested by scraping while in isolation buffer (0.25 M 

sucrose, 1 mM EDTA, 20 mM Tricine, pH 7.8) and were homogenized using a tissue grinder (20 

strokes; 10 strokes clockwise and 10 strokes counter-clockwise). Homogenates were centrifuged 

at 20,000 X g for 10 minutes. The pellet, including nucleus, mitochondria, and endoplasmic 

reticulum was discarded, and the supernatant was collected, and placed on top of isolation buffer 

containing 30% Percoll (GE Healthcare, Piscataway, NJ). The samples were centrifuged at 

84,000 X g for 30 minutes. Syringe needles (18G) were used to collect the plasma membrane 

fraction from the gradient column. The isolated fraction was layered over a 10-20% OptiPrep 

gradient (Sigma Aldrich), and the gradient was centrifuged at 52,000 X g for another 4 hours. 

Plasma membrane sub-fractions were collected from the top to the bottom of the tube, which 

resulted in isolation of thirteen fractions. Caveolae were observed as an opaque band, which was 

collected in fraction 3.  
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 To verify that PLAA and Pdia3 were in caveolae, MC3T3-E1 osteoblasts were treated 

with 10mM methyl-beta-cyclodextrin (β-CD) for 1 hour in a serum-free medium to disrupt the 

caveolar structure, as described previously (12). Plasma membranes were isolated as above. 2.5. 

Western blots 

 Proteins were separated using polyacrylamide gel electrophoresis. Whole cell lysates, 

plasma membranes, and plasma membrane fractions (50μg protein) were loaded onto NuSep 4-

20% LongLife Gels (NuSep, Lawrenceville, GA), and at the end of the run, the proteins were 

transferred from gels to nitrocellulose membranes using an iBlot Dry Blotting System 

(Invitrogen). Next, the membrane was incubated with 1% bovine serum albumin (BSA) in 

phosphate buffered saline (PBS). Subsequently, the membranes were incubated with antibodies 

against PLAA, Pdia3, Cav-1, pan cadherin or GAPDH overnight. The membranes were 

incubated with goat anti-rabbit or goat anti-mouse horseradish peroxidase-conjugated secondary 

antibodies (Bio-Rad, Hercules, CA) in PBS containing 1% BSA after washing three times with 

PBS containing 0.05% Tween-20. The membranes were incubated with the secondary antibody 

only for one hour. Following three washes with PBS containing 0.05% Tween-20 (three times, 

ten minutes each), membranes were developed using either the SuperSignal West Pico 

Chemiluminescent System (Thermo Fisher Scientific) or the LumiSensorTM Plus 

Chemiluminescent HRP Substrate kit (GenScript, Piscataway, NJ, USA) and imaged with the 

VersaDoc imaging system (Bio-Rad).  

Regulation of PKC activity  

 To study the effect of Plaa silencing on 1α,25(OH)2D3-dependent PKC activation, wild 

type and shPlaa MC3T3-E1 cells were treated for 15 minutes with 10-10 to 10-8 M 1α,25(OH)2D3. 

After washing the cell layers with PBS, the cells were lysed in RIPA buffer (20 mM Tris-HCl, 
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150 mM NaCl, 5mM disodium EDTA, 1% Nonidet P-40). PKC activity was measured using a 

commercially available kit (Protein Kinase C Biotrak Enzyme Assay, RPN77, GE Healthcare). 

PKC data were normalized to total protein (Pierce BCA Protein Assay, Thermo Fisher 

Scientific).  

 To determine if PLAA is required for PKC activation, MC3T3-E1 cells were pretreated 

with the anti-PLAA antibody for 30 minutes, and next treated with 10-8 M 1α,25(OH)2D3 for 15 

minutes. The cell layers were collected for subsequent PKC assay. To investigate the effects of 

PLAA blocking on PKC activity in growth zone cartilage cells, the chondrocytes were pretreated 

with the anti-PLAA antibody for 30 minutes, and next treated with 10-8 M 1α,25(OH)2D3 for 9 

minutes. The cell layers were collected for subsequent PKC assay. 

Regulation of PGE2 release  

 To study the effect of Plaa silencing on 1α,25(OH)2D3 mediated PGE2 release, wild type 

and shPlaa MC3T3-E1 cells were treated for 15 minutes with 10-10 to 10-8 M 1α,25(OH)2D3. At 

the end of the incubation, the media were acidified and PGE2 was measured using a 

commercially available kit (Prostaglandin E2 [125I]-RIA kit, NEK020001K, Perkin Elmer, 

Waltham, MA). PGE2 data were normalized to total DNA (Quant-iTTM PicoGreen® dsDNA 

Assay kit, P11496, Invitrogen). 

Regulation of PLA2 activity  

 To determine if PLAA is required for 1α,25(OH)2D3 mediated PLA2 activation, wild type 

and shPlaa MC3T3-E1 cells were treated for 15 minutes with 10-10 to 10-8 M 1α,25(OH)2D3. 

After washing the cell layers with PBS, the cells were lysed and the lysates assayed for PLA2 

activity using a commercially available kit (cPLA2 Assay kit, 765021, Cayman Chemical, Ann 

Arbor, MI). 
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Immunofluorescence Microscopy 

 Growth zone chondrocytes and wild type MC3T3-E1 cells were plated at 10,000 

cells/cm2 on glass chamber slides and cultured for 24 hours in their appropriate medium. The 

next day, the cells were treated with either 10-8 M 1α,25(OH)2D3 or vehicle for 9 minutes and 90 

minutes. After washing the cell layers with PBS, they were fixed in 4% paraformaldehyde for 20 

minutes. The fixed cell layers were incubated with antibodies to PLAA, Pdia3 and caveolin-1 in 

1% BSA overnight. At the end of the incubation time, the cell layers were washed with PBS and 

incubated with goat anti-rabbit Alexa Fluor 594 or goat anti-mouse Alexa Fluor 488 (Invitrogen) 

in 1% BSA for one hour. At the end of the incubation period, cells were washed with PBS and 

then were incubated with Hoechst 33342 (Invitrogen) for 10 minutes. After washing cells with 

PBS, they were imaged using a Zeiss LSM 510 NLO with META MPE confocal microscope. 

Immunoprecipitation 

 MC3T3-E1 cells and GC chondrocytes were treated with either 10-8 M 1α,25(OH)2D3 or 

vehicle (ethanol) for 9 minutes and 90 minutes. The cell layers were washed with PBS and the 

cells were lysed and sonicated in RIPA buffer (20 mM Tris-HCl, 150 mM NaCl, 5mM disodium 

EDTA, 1% Nonidet P-40) containing 100mM NaF, protease inhibitor cocktail (Sigma Aldrich) 

and 1 mM phenylmethylsulfonyl fluoride (PMSF). In order to preclear the cell extracts, protein 

samples (1mg) were incubated with 5μg of rabbit IgG (1 hour, 4oC) and next incubated with 

protein A-agarose beads (EMD Chemicals, Gibbstown, NJ, USA) for 2 hours at 4oC. The beads 

were pelleted by centrifugation at 1,000 X g (1 minute, 4oC). Pre-cleared protein samples were 

mixed with either anti-PLAA or anti-Pdia3 antibodies and incubated at 4oC overnight with 

continuous agitation. Protein A-agarose beads were added to the mixture and the mixture was 

incubated at 4oC for two additional hours. The beads were pelleted and the pellets washed three 
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times with PBS. Precipitated proteins were eluted by boiling beads in Tris-glycine SDS sample 

loading buffer (Bio-Rad) containing 5.0% beta-mercaptoethanol for 5 minutes. The 

immunoprecipitated samples were subjected to Western blot (refer to section 2.5). In order to 

lower the background in the images, a ONE-HOUR IP-Western Kit (Genscript) was used.  

Chemical crosslinking of PLAA to plasma membrane surface proteins 

 MC3T3-E1 osteoblasts were treated with either 10-8 M 1α,25(OH)2D3 or vehicle (ethanol) 

for 9 minutes. The cell layers were washed with PBS, and the 11.4-Ao non-cleavable, membrane-

impermeable crosslinker bis(sulfosuccinimidyl) substrate (BS3) (Thermo Fisher Scientific) (167) 

was added to chemically crosslink exposed membrane proteins (10 mM BS3 in PBS, 20ml per 

T175 flask, 1 hour, 4oC). BS3 induces amine-to-amine covalent bonds between the neighboring 

proteins, and these bonds are not sensitive to chemical reduction; therefore, gel electrophoretic 

separation of proteins can be performed under reducing conditions, which was beneficial for the 

subsequent immunoblotting step. After 1 hour, the reaction was terminated by quenching the 

reaction with 100 mM glycine in PBS (10 minutes, 4oC). The cell layer was washed with PBS 

and the cells were lysed and sonicated in RIPA buffer containing 100mM NaF, protease inhibitor 

cocktail, and 1 mM PMSF. 

 To determine if the ability of 1α,25(OH)2D3 to stimulate PKC activity requires PLAA 

mobility, we cross-linked PLAA to its neighboring membrane surface proteins, and assessed 

1α,25(OH)2D3 membrane-mediated PKC activation. Wild type MC3T3-E1 cells were treated 

with 10mM BS3 for 30 minutes in serum-free medium, and next treated with 10-8 M 

1α,25(OH)2D3 for 15 minutes. The cell layers were collected for subsequent PKC assay. 
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Statistical analysis  

 For each experiment, each data point represents the means ± SEM for six individual 

cultures. Each experiment was repeated at least three times to ensure the validity of the data. The 

data presented are from a single representative experiment. Significance was determined by 

analysis of variance and post hoc testing performed using Bonferroni’s modification of Student’s 

t test for multiple comparisons. P ≤0.05 were considered significant.  

 

RESULTS 

Subcellular Localization of PLAA 

 Western blots of whole cell lysates demonstrated that MC3T3-E1 osteoblasts possess 

Pdia3, PLAA and Cav-1 (Fig. 3.2A,B,C). Western blots of the plasma membrane fractions of 

these cells indicated that Pdia3, PLAA, and Cav-1 were present in the plasma membranes with 

their greatest concentration in fraction 3, which represents caveolae microdomains (Fig. 3.2A, B, 

C). Based on the intensity of PLAA bands in Western blots of caveolae fractions isolated from 

MC3T3-E1 osteoblasts, 1α,25(OH)2D3 did not change the levels of PLAA protein in these 

plasma membrane microdomains (Fig. 3.2C). Pdia3 and Cav-1 were also present in whole cell 

lysates of GC chondrocytes (Fig. 3.2D, E ,F) and in plasma membranes with their highest 

abundance in caveolae (Fig. 3.2D). Similar to MC3T3-E1 cells, PLAA was present in other 

fraction 3 as well (Fig. 3.2E). Intensity analysis of PLAA bands indicated that 1α,25(OH)2D3 

treatment did not alter the levels of PLAA in caveolae of GC chondrocytes (Fig. 3.2F). 

 Treatment of MC3T3-E1 osteoblasts with β-CD altered the abundance of PLAA and 

Pdia3 in the plasma membrane. Comparison of the intensity of PLAA bands on the Western blot 

relative to cadherin bands as a loading control, showed that β-CD reduced the intensity of PLAA  
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Figure 3.2: Subcellular localization of PLAA in growth zone chondrocytes and MC3T3-E1 

osteoblasts. (A) Caveolae localization of Pdia3 in MC3T3-E1osteoblasts (B) Caveolae 

localization of PLAA in MC3T3-E1 osteoblasts. (C) The effect of 1α,25(OH)2D3 on caveolae 

localization of PLAA in MC3T3-E1 cells. (D) Caveolae localization of Pdia3 in GC cells. (E) 

Caveolae localization of PLAA in GC chondrocytes. (F) The effect of 1α,25(OH)2D3 on caveolae 
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localization of PLAA in GC cells. (G) Effect of β-CD on plasma membrane localization of 

PLAA and Pdia3 in MC3T3-E1 osteoblasts. MC3T3-E1 osteoblasts were treated with 10mM β-

CD for 1 hour in a serum-free medium. Plasma membranes were isolated and subjected to 

Western blot. (C: control group, T: 1α,25(OH)2D3 treated group) 

 

bands by 30% compared to cells with no β-CD treatment (Fig. 3.2G). Comparison of the 

intensity of Pdia3 bands on the Western blot relative to cadherin bands, showed nearly a 

40%reduction in the intensity of Pdia3 bands compared to cells with no β-CD treatment (Fig. 

3.2G).  

 

Effects of 1α,25(OH)2D3 and BS3 on Plasma Membrane Localization of PLAA  

 PLAA was exposed on the membrane surface. Western blots of whole cell lysates of 

MC3T3-E1 cells showed the presence of PLAA (Fig. 3.3A). However, when MC3T3-E1 cells 

were treated with BS3 to crosslink plasma membrane surface proteins, there was a decrease in the 

apparent 73 kDa PLAA band (Fig. 3.3B). Concomitant appearance of a higher molecular weight 

band was observed only in whole cell lysates of cells exposed to BS3. The higher molecular 

weight indicates that the PLAA protein formed complexes with other plasma membrane proteins 

facing the extracellular matrix. The positive control protein, cadherin, also exhibited a shift to a 

higher molecular weight region (Fig. 3.3B). Comparison of the intensity of PLAA bands on the 

Western blot relative to GAPDH bands, as a loading control, showed that BS3 reduced the 

intensity of PLAA bands by 50% compared to cells with no BS3 treatment and with cells treated 

for 9 minutes with 1α,25(OH)2D3 and BS3, respectively (Fig. 3.3C). Comparison of the intensity 

of cadherin bands on the Western blot relative to GAPDH bands, showed nearly a 50% reduction 

in the intensity of cadherin bands compared to cells with no BS3 treatment (Fig. 3.3D).  
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Figure 3.3: Effect of 1α,25(OH)2D3 on plasma membrane localization of PLAA and Pdia3. 

(A) MC3T3-E1 cells were treated with 1α,25(OH)2D3 for 9 minutes. Presence of PLAA, Pdia3 

and cadherin in the plasma membrane were examined by Western blot. (B) The effect of BS3 

pretreatment on PLAA crosslinking with plasma membrane surface proteins. MC3T3-E1 cells 

were treated with 1α,25(OH)2D3 for 9 minutes, and subsequently incubated with BS3 for 1 hour. 

The whole cell lysates were subjected to Western blot: PLAA (top), Cadherin (middle), or 

GAPDH (bottom). (C) Relative intensity analysis of PLAA bands relative to GAPDH. (D) 

Relative intensity analysis of cadherin bands relative to GAPDH. (E) Effect of BS3 on 

1α,25(OH)2D3 membrane-mediated PKC activation in MC3T3-E1 osteoblasts. MC3T3-E1 cells 

were pretreated with treated with BS3 for 1 hour, and next treated with 1α,25(OH)2D3 for 9 

minutes The cell layers were collected for PKC activity assay. *p<0.05, treatment versus control. 

(C: control group, T: 1α,25(OH)2D3 treated group) 

 

Treatment of MC3T3-E1 cells with BS3 altered the response of cells to 1α,25(OH)2D3. 

The rapid stimulatory effect of 1α,25(OH)2D3 on PKC was completely abrogated with BS3 

treatment (Fig. 3.3E). 

 

Effect of PLAA Blocking on 1α,25(OH)2D3 Membrane-mediated PKC Activation 

 Anti-PLAA antibody significantly reduced the 1α,25(OH)2D3-dependent increase in PKC 

activity in MC3T3-E1 osteoblasts (Fig. 3.4A), whereas, IgG had no effect. Similarly, a 

significant reduction was observed in PKC activity in response to 1α,25(OH)2D3 when GC 

chondrocytes were pretreated with anti-PLAA antibody (Fig. 3.4B). Conversely, IgG had no 

effect on stimulation of PKC activity by 1α,25(OH)2D3. 
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Figure 3.4: Effect of PLAA blocking on 1α,25(OH)2D3 membrane-mediated PKC activation 

in osteoblasts and chondrocytes. MC3T3-E1 osteoblasts (A) and growth zone chondrocytes (B) 

were pretreated with PLAA-antibody for 30 minutes, and next they were treated with 

1α,25(OH)2D3 for 15 minutes and 9 minutes, respectively. PKC activity was measured as 

described and normalized to total protein level. *p<0.05, treatment versus control; #p<0.05, 

PLAA Ab versus control; ^p<0.05, PLAA Ab versus IgG. Each figure is a representative 

experiment, repeated three times with similar results. 

 

 

Effect of Plaa Silencing on 1α,25(OH)2D3 Membrane-mediated Signaling 

 Unlike wild type MC3T3-E1 cells, shPlaa cells did not respond to 1α,25(OH)2D3 with an 

increase in PLA2 activity (Fig. 3.5A). Similarly, 1α,25(OH)2D3 had no effect on PGE2 release 

(Fig. 3.5B) and PKC activity (Fig. 3.5C) in shPlaa MC3T3-E1 cells. These effects were specific 

to PLAA since the MC3T3-E1 cells transfected with empty vectors responded to 1α,25(OH)2D3 

like the wild type cells (Fig. 3.5D). 
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Figure 3.5: Effect of 1α,25(OH)2D3 on PLA2 and PKC activities and PGE2 release in wild 

type and shPlaa MC3T3-E1 cells. (A) 1α,25(OH)2D3 effect on PLA2 activity of WT and shPlaa 

MC3T3-E1 cells. (B) The effect of 1α,25(OH)2D3 on PGE2 release of WT and shPlaa MC3T3-E1 

cells. (C) 1α,25(OH)2D3 effect on PKC of WT and shPlaa MC3T3-E1 cells. (D) 1α,25(OH)2D3 

effect on PKC of WT, empty vector and shPlaa MC3T3-E1 cells. *p<0.05, treatment versus 

control; $p<0.05, versus 10-10M 1α,25(OH)2D3; 
#p<0.05, versus 10-9M 1α,25(OH)2D3; 

^p<0.05, 

versus 10-8M shPlaa 1α,25(OH)2D3 treated group. Each figure is a representative experiment 

repeated three times with similar results. 

 

Effects of 1α,25(OH)2D3 on Interactions between PLAA and Pdia3 

 The stimulatory effect of PLAA on PLA2 in response to 1α,25(OH)2D3 is downstream of 

Pdia3. 1α,25(OH)2D3 did not stimulate PLA2 activity in MC3T3-E1 cells silenced for Pdia3 

(Fig.3.6A). In contrast, cells overexpressing Pdia3 showed increased PLA2 activity compared to 
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wild type MC3T3-E1 cells (Fig. 1.6A). As shown previously, 1α,25(OH)2D3 had no effect on 

PKC in shPdia3 cells, and enhanced PKC activity in ovxPdia3 cells (Fig. 3.6B).  

 

Figure 3.6: Effect of 1α,25(OH)2D3 on PLA2 activity and PKC activity in wild type and 

silenced Pdia3 (shPdia3) and over-expressed Pdia3 (ovxPdia3) MC3T3-E1 cells. (A) The 

effect of 1α,25(OH)2D3 on PLA2 activity of WT, shPdia3 and ovxPdia3 MC3T3-E1 cells 

MC3T3-E1 cells. (B) 1α,25(OH)2D3 effect on PKC activity of WT and shPdia3 and ovxPdia3 

MC3T3-E1 cells. *p<0.05, treatment versus control; #p<0.05, versus 10-8M 1α,25(OH)2D3 WT; 
%p<0.05, versus 10-8M 1α,25(OH)2D3 ovxPdia3. Each figure is a representative experiment, 

repeated two times with similar results. 

 

 Confocal microscopy of MC3T3-E1 cells stained with antibodies against PLAA and Cav-

1 indicated that the two proteins were co-localized (Fig. 3.7A). When cells were treated with 

1α,25(OH)2D3, PLAA and Cav-1 appeared to increase their interaction and immunoprecipitates 

of MC3T3-E1 cell lysates using anti-PLAA antibodies confirmed this (Fig. 3.7B).  Pdia3 was not 

present in anti-PLAA antibody immunoprecipitates of cells treated with vehicle, but it was 

present when the cells were treated with 1α,25(OH)2D3 for 9 minutes (Fig. 3.7B).  
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Figure 3.7: Western blot and confocal images of PLAA interaction studies. (A) Confocal 

image of the effect of 1α,25(OH)2D3 on PLAA-Cav-1 colocalization in MC3T3-E1. Green: Cav-

1; red: PLAA; yellow: merge. (B) The effect of 1α,25(OH)2D3 on PLAA’s interaction with Pdia3 

and Cav-1. PLAA was immunoprecipitated and subjected to Western blot. The membranes were 

incubated with the anti-Pdia3 and anti- Cav-1 antibodies. (C: control group, T: 1α,25(OH)2D3 

treated group) 

 

 Confocal microscopy indicated that Pdia3 and Cav-1 were present in the cells and were 

co-localized (Fig. 3.8A), but when antibodies to Pdia3 were used to precipitate whole cell 

lysates; Western blots showed that only Cav-1 and Pdia3 were present in the immunoprecipitates 

(Fig. 3.8B). However, PLAA was present in the immunoprecipitates of cells treated with 

1α,25(OH)2D3. In contrast, anti-Pdia3 immunoprecipitates of Cav-1 silenced MC3T3-E1 cells 

treated with 1α,25(OH)2D3 lacked PLAA (Fig. 3.8C).    
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Figure 3.8: Western blot and confocal images of Pdia3 interaction studies. (A) Confocal 

image of the effect of 1α,25(OH)2D3 on Pdia3-Cav-1 colocalization in MC3T3-E1 osteoblasts. 

Green: Cav-1; red: Pdia3; yellow: merge. (B) The effect of 1α,25(OH)2D3 on Pdia3’s interaction 

with PLAA and Cav-1. Pdia3 was immunoprecipitated and subjected to Western blot. The 

membranes were incubated with anti-PLAA and anti-Cav-1 antibodies. (C) The effect of 

1α,25(OH)2D3 on Pdia3’s interaction with PLAA in shCav-1 MC3T3-E1 cells.  Pdia3 was 

immunoprecipitated and subjected to Western blot. The membranes were incubated with anti-

PLAA antibody. (C: control group, T: 1,25D3 treated group) 

 

DISCUSSION 

 Previous studies have shown that a 21 amino acid PLAA peptide activates PLA2 in cells 

sensitive to 1α,25(OH)2D3 (11) as well as in other cells types (168), however little is known 

about the function of the full length protein in rapid signaling by steroid hormones, or its 

subcellular localization in osteoblasts and chondrocytes. This study demonstrated that PLAA is 
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required to mediate the rapid effects of 1α,25(OH)2D3 on osteoblasts and chondrocytes, 

including PLA2 activation, PGE2 release, and PKC activation.  

 The failure of 1α,25(OH)2D3 to stimulate rapid responses in shPlaa MC3T3-E1 cells 

supports the hypothesis that PLAA is a pivotal member of the 1α,25(OH)2D3 rapid signaling 

pathway. Immunoprecipitation studies demonstrated that PLAA only interacts with the 

1α,25(OH)2D3 membrane associated receptor, Pdia3, in the presence of the hormone. This 

suggests that PLAA serves as a mediator to transfer the signal from the ligand-receptor complex 

to PLA2. Whether PLAA directly binds to PLA2 and triggers its activation, or if it stimulates 

PLA2 activation through activation of other protein kinases is still not known and requires further 

investigation.  

 We previously demonstrated that disruption of caveolae structures using cholesterol 

chelating agents such as β-CD or whole-animal knockout of caveolin-1 (Cav-1) abolished the 

rapid 1α,25(OH)2D3–dependent PKC signaling in chondrocytes (12), In this study we found 

caveolae must be functionally intact for the localization of Pdia3 and PLAA in the plasma 

membrane to occur. β-CD, which alters the chemical structure of lipid rafts and caveolae by 

depleting cholesterol, reduces the abundance of Pdia3 and PLAA in plasma membranes. 

Moreover, anti-PLAA antibody blocking studies and BS3 crosslinking experiments confirmed 

the localization of PLAA on the extracellular face of the plasma membrane. These results are in 

agreement with studies looking at the localization of melittin in host cells (169). It is unclear why 

the BS3 crosslinker failed to crosslink PLAA with plasma membrane surface proteins in 

1α,25(OH)2D3 treated cells. One possibility is that 1α,25(OH)2D3 induced a caveolae-mediated 

endocytosis mechanism causing internalization of PLAA and its loss from the plasma membrane.  



 43 

 We previously demonstrated that anti-Pdia3 antibody blocking caused a significant 

reduction in 1α,25(OH)2D3-stimulated PKC activation (84). We proposed two explanations for 

such an effect. First, anti-Pdia3 antibody may block 1α,25(OH)2D3 docking to its receptor 

protein. Second, anti-Pdia3 antibody may prevent the interaction between Pdia3 and other 

signaling proteins. In this study, we propose that anti-PLAA antibody may also work by either 

blocking 1α,25(OH)2D3 docking to its receptor Pdia3 or by preventing the interaction between 

PLAA and Pdia3. 

 PLAA has homology with melittin (102), which is known to selectively interact with 

negatively charged lipids (170-172). Cholesterol is a major component of eukaryotic plasma 

membrane that is rich in lipid rafts and caveolae microdomains (173). Several studies in recent 

years have proposed that the rigid ring system in the structure of the cholesterol molecule could 

potentially form a stable complex with tryptophan in melittin, and consequently inhibit the lytic 

activity of this molecule (169,174). PLAA protein has multiple tryptophan residues in its 

structure suggesting that it may have the same mode of interaction as melittin with the plasma 

membrane. In agreement with studies done on melittin-cholesterol interactions, our results from 

plasma membrane fractionation studies showed that PLAA is localized in caveolae structures 

that are rich in cholesterol. PLAA peptide acts like melittin with respect to PKC activation, and 

the effects of both of these agents are additive with 1α,25(OH)2D3, suggesting that they mediate 

their effects via similar mechanisms (11). However, different mechanisms may also be involved.  

While melittin mediates its effects via enhancing the interaction between the enzyme and its 

substrate, PLAA mediates its effects via enhancing the interaction between two proteins (175).  

The present study supports the hypothesis that Pdia3 and Cav-1 play pivotal roles in 

mediating rapid membrane associated 1α,25(OH)2D3-dependent signaling via PLA2 and PKC 
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(10,12). 1α,25(OH)2D3 failed to stimulate rapid responses in shPdia3 MC3T3-E1 cells; there 

were significantly higher levels of PLA2 and PKC activities in response to 1α,25(OH)2D3 in 

ovxPdia3 MC3T3-E1 cells compared to wild type cells; and Pdia3 associated with PLAA in the 

presence of 1α,25(OH)2D3. Moreover, in shCav-1 osteoblasts, Pdia3 failed to interact with 

PLAA in the presence of 1α,25(OH)2D3 supporting the hypothesis that Cav-1 serves as a 

scaffolding protein creating the environment required for the interaction between Pdia3 and 

PLAA to occur.  

 Taken together with previously published studies (91), the results suggest the following 

pathway (Fig. 3.9): 1α,25(OH)2D3 binds the Pdia3-Cav-1 membrane receptor complex in 

caveolae, triggering binding of PLAA to Pdia3. Next, PLA2 is activated resulting in production 

of arachidonic acid, which is further metabolized via Cox-1 to release PGE2. In GC cells, PGE2 

binds its EP1 receptor, a G-protein coupled receptor, activating PLC. Activated PLC hydrolyzes 

phosphatidylinositol 4,5-bisphosphate (PIP2) releasing inositol 1,4,5-triphosphate (IP3) and 

diacylglycerol (DAG), both of which function as second messengers. In this cascade, IP3 

activates IP3 receptors on the smooth endoplasmic reticulum, opening the calcium channels, and 

increasing the intracellular calcium. Increased intracellular calcium and DAG work together to 

activate protein kinase C, and subsequently lead to the activation of ERK1/2. Eventually, 

1α,25(OH)2D3 induces caveolae-mediated endocytosis of 1α,25(OH)2D3-receptor complex, 

causing internalization of PLAA and Pdia3 and their loss from the plasma membrane. 
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Figure 3.9: Proposed mechanism of 1α,25(OH)2D3 stimulated rapid response in osteoblasts 

and chondrocytes. 

 

CONCLUSION 

 In conclusion, we found a detailed mechanism of 1α,25(OH)2D3 dependent rapid 

activation of protein kinase C via PLAA in chondrocytes and osteoblasts. PLAA is required for 

mediating the Pdia3-mediated actions of 1α,25(OH)2D3 on growth zone chondrocytes and 

MC3T3-E1 osteoblasts. PLAA is localized with Pdia3 in caveolae domains of the plasma 

membrane, and they form protein complexes with Cav-1. PLAA interacts with Pdia3 only in the 

presence of 1α,25(OH)2D3, suggesting it serves as one of the mediators of membrane-mediated 

actions of 1α,25(OH)2D3. When MC3T3-E1 osteoblasts were treated with the BS3 crosslinker, 

appearance of a higher molecular band suggested that PLAA is a plasma membrane surface 
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protein. In agreement with crosslinking studies, anti-PLAA antibodies were able to block the 

effect of 1α,25(OH)2D3 on rapid activation of PKC. When PLAA was stably knocked down in 

MC3T3-E1 osteoblasts, 1α,25(OH)2D3 failed to rapidly activate PLA2 and PKC or cause PGE2 

release. Recently, it has been reported that 1α,25(OH)2D3 also mediates its effect through the 

activation of Src pathway in C2C12 skeletal muscle cells (176,177). Whether 1α,25(OH)2D3 

mediates its effects through activation of Src pathway in osteoblasts is still unknown and requires 

further investigation. 
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CHAPTER 4 

MEMBRANE ACTIONS OF 1α,25(OH)2D3 ARE MEDIATED BY 

CALCIUM/CALMODULIN-DEPENDENT PROTEIN KINASE II IN BONE 

AND CARTILAGE CELLS 

 

INTRODUCTION 

1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], one of the bioactive metabolites of vitamin 

D3, elicits its effects via two different mechanisms: the classical pathway that is vitamin D 

receptor (VDR) mediated, and rapid membrane signaling pathways (1-3). In growth zone 

chondrocytes (GC) from the costochondral cartilage and MC3T3-E1 osteoblasts, 1α,25(OH)2D3 

triggers a rapid increase in phospholipase A2 (PLA2) activity, releasing arachidonic acid (AA) 

within 15 seconds (4,5) and causing increased protein kinase C alpha (PKCα) activity within 3 

minutes (6). AA can either increase PKCα activity directly (7), or it is processed further to 

prostaglandin E2 (PGE2), which acts via its EP1 receptor to increase cyclic AMP and ultimately 

PKC (4). PLA2 generates lysophospholipid (LPL) in addition to AA (8). We have shown that 

LPL produced in response to 1α,25(OH)2D3-dependent activation of PLA2 together with Gαq 

activates phosphatidylinositol-specific phospholipase C beta (PLCβ), generating diacylglycerol 

(DAG) and inositol 1,4,5-trisphosphate (IP3) (8,9). DAG binds PKCα and triggers its 

recruitment to the plasma membrane (10). IP3 activates the release of Ca2+ ions from the 

endoplasmic reticulum, required for PKCα activation.  

This implicates PLA2 activation as a key component of the Pdia3-dependent signaling 

pathway. We previously reported that PLA2 activating protein (PLAA) is required to process the 

signal from the Pdia3 receptor complex to cytosolic PLA2 (cPLA2) (11). Anti-PLAA antibodies 
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as well as Plaa knockdown both bock 1α,25(OH)2D3-dependent stimulation of PLA2 (11). PLAA 

exists in plasma membrane caveolae of osteoblasts and chondrocytes where it interacts directly 

with Pdia3 and caveolin-1 (Cav-1) to initiate the rapid signaling via PLA2. 1α,25(OH)2D3 

treatment does not change the abundance of PLAA in caveolae (11), indicating that other 

mechanisms are involved in mediating the signal from caveolae to cPLA2 in the plasma 

membrane. However, the signaling molecules linking PLAA to cPLA2 remain to be identified. 

Previous studies have demonstrated that melittin, a bee venom PLA2 activator 

homologous to PLAA, binds to calmodulin (CaM) in the presence of Ca2+ (12), suggesting that 

CaM is a likely candidate for mediating the 1α,25(OH)2D3 signal from PLAA. The calmodulin 

inhibitor, W-7 blocks norepinephrine-induced prostacyclin synthesis in vascular smooth muscle 

cells, which is suggestive of CaM’s action upstream of cPLA2 (13). CaM is a highly conserved 

17 kDa soluble protein, which serves as a major Ca2+ sensor in eukaryotic cells (14). Upon Ca2+ 

binding, CaM binds its target proteins, including Ca2+/calmodulin-dependent protein kinase II 

(CaMKII; encoded by the Camk2 gene). Such protein interaction alters the function of target 

proteins, thereby transducing the Ca2+ signals. CaM has a diverse subcellular distribution profile 

including the cytoplasm (15), within organelles (16) and associated with the plasma membrane 

(17) or organelle membranes (18), indicative of differing functions.  

cPLA2 activity has also been reported to be regulated by CaMKII (19). As noted above 

for CaM, norepinephrine-induced cPLA2 activation and AA release are inhibited in vascular 

smooth muscle cells treated with the CaMKII inhibitor, KN-93 or with the Camk2 antisense 

oligonucleotide (19). This suggests that CaMKII may play a role in transducing the 

1α,25(OH)2D3 signal to cPLA2 as well. To date, over 30 various splice-variants of four Camk2 

isoforms, Camk2a, Camk2b, Camk2d and Camk2g have been identified. Activated CaMKII 
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modulates the activity of several transcription factors, including cAMP-responsive element-

binding protein (CREB) (20), which has been shown to be phosphorylated via a 1α,25(OH)2D3-

dependent mechanism (21). CREB is known to bind to two AP-1 sites and a cAMP responsive 

element-like site on the osteopontin promoter, participating in the induction of osteopontin gene 

expression (22). 1α,25(OH)2D3 stimulates alkaline phosphatase activity (4) and osteopontin 

production (23), markers of osteoblast maturation, via its membrane-mediated events. Whether 

CaMKII mediates the biological consequences of rapid responses to 1α,25(OH)2D3 is not known. 

In this study, we first examined 1α,25(OH)2D3 stimulated rapid activation of CaMKII in 

MC3T3-E1 osteoblasts and GC chondrocytes. Second, we investigated the roles of CaM and 

CaMKII in 1α,25(OH)2D3 rapid signaling and its consequent biological effects using MC3T3-E1 

cell model. Third, we evaluated the effects of 1α,25(OH)2D3 treatment on interactions between 

CaM and the Pdia3 receptor complex.  

  

MATERIALS AND METHODS 

Reagents  

 PLAA was purchased from Enzo Life Sciences International, Inc. (Plymouth Meeting, 

PA). 1α,25(OH)2D3 was purchased from Biomol (Plymouth Meeting, PA). The anti-PLAA 

polyclonal antibody was designed and developed by Strategic Diagnostics Inc. (Newark, DE), 

using Genomic Antibody TechnologyTM. The selected 100 amino acid long region was 100% 

identical among three rat PLAA isoforms and 97% identical to mouse PLAA. Rabbit antiserum 

against the N-terminal peptide of Pdia3 was purchased from Alpha Diagnostic International (San 

Antonio, TX) (165). A polyclonal antibody to Cav-1 was purchased from Santa Cruz 

Biotechnology (sc-894, Santa Cruz, CA); cPLA2 polyclonal antibody was from Cell Signaling 
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Technology (2832, Danvers, MA); pan CaMKII monoclonal antibody (4436) and  CaMKII-α 

polyclonal antibody (3357) were from Cell Signaling Technology (Danvers, MA); pan cadherin 

polyclonal antibody was from Abcam (ab6529, San Francisco, CA); and a monoclonal antibody 

to CaM was from Millipore (05-173, Billerica, MA); KN-93 and myristoylated calmodulin 

kinase IINtide were from EMD Biosciences (Billerica, MA). 

Cell Culture  

 Wild-type mouse MC3T3-E1 osteoblast-like cells (CRL-2593) were purchased from 

ATCC (Manassas, VA, USA). Silenced Pdia3 (shPdia3), silenced Plaa (shPlaa), silenced Cav1 

(shCav-1) and silenced Vdr (shVdr) MC3T3-E1 cells were generated and characterized in our lab 

previously (10,125,178). Stable knockdown of Camk2a was achieved using MISSION™ shRNA 

lentiviral transduction particles (SHVRS-NM_009792, Sigma Aldrich, St. Louis, MO). Five 

different sequences were generated against the Camk2a mRNA and were incorporated into the 

lentiviral particles. MC3T3-E1 cells were plated at a density of 20,000 cells/cm2 in 24-well 

plates, and cultured in minimum essential medium alpha (α-MEM) supplemented with 10% fetal 

bovine serum (FBS), 1% penicillin/streptomycin (P/S) and 8µg/ml hexadimethrine bromide 

(500µl/well). In our system, lentiviral particles transfected MC3T3-E1 cells at a multiplicity of 

infection (MOI) of 7.5. The selection of successfully transfected cells was achieved by culturing 

cells containing the Camk2a shRNA or empty vectors for 2 weeks in medium containing 

2.0µg/ml of puromycin. The success of silencing Camk2a was evaluated by measuring the 

expression of CaMKII-α protein in comparison to wild-type cells using Western blots and anti-

CaMKII-α antibody. A stably silenced MC3T3-E1 cell line was established for Camk2a 

(shCamk2a), confirmed by Western blots of whole cell lysates. Of the five clones examined, 

Western blots of whole cell lysates from wild-type MC3T3-E1 cells showed strong bands for 
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CaMKII-α, but the intensity of these bands was decreased by 84% compared to the wild-type in 

clone 71 cells (data not shown). Stable knockdown of Camk2b was achieved by transducing 

wild-type MC3T3-E1 cells with Camk2b shRNA lentiviral transduction particles (SHVRS-

NM_007595, Sigma Aldrich) as described above. Western blots of whole cell lysates of the five 

examined clones showed 89% reduction in intensity of CaMKII-β band in clone 475 using anti-

pan CaMKII antibody (data not shown). 

Wild-type MC3T3-E1, shPlaa, shCav-1, shPdia3, shVdr, shCamk2a and shCamk2b 

MC3T3-E1 cells were plated at 10,000 cells/cm2, and cultured in puromycin-free α-MEM 

containing 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin (P/S). To induce 

osteoblastic differentiation of MC3T3-E1 cells, the media were replaced with α-MEM 

supplemented with 10% FBS, 1% P/S and 1% ascorbic acid 24 hours after plating and then every 

48 hours. After 10 days in culture, shPlaa, shCav-1, shPdia3 and shVdr cells were used for 

experiments. Cultures of shCamK2a and shCamK2b were used at approximately day 4 after 

plating.   

 Costochondral cartilage growth zone chondrocytes (GC) used in these experiments were 

isolated from 100 to 125 g male Sprague-Dawley rats (Harlan, Indianapolis, IN). The rats were at 

the end of their adolescent growth spurt; therefore, their long bones were growing at a reduced 

rate. The culture system used in this study was described previously in detail (11,166). Confluent 

cultures (approximately day 7) were used for the experiments described below. 

Regulation of CaMKII Activity  

 To determine the time-point at which 1α,25(OH)2D3 activates CaMKII, GC and MC3T3-

E1 cells were treated for 3, 6, 9 and 15 minutes with 10-8 M 1α,25(OH)2D3 and cell layer lysates 

were assayed for CaMKII activity using a commercial kit (SignaTECT® Ca2+/Calmodulin-
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Dependent Protein Kinase Assay System, V8161, Promega). To determine if 1α,25(OH)2D3 

activates CaMKII in a dose-dependent manner, MC3T3-E1 cells were treated with 10-10 to 10-8 

M 1α,25(OH)2D3 for 15 minutes.  

KN-93 is a cell-permeable inhibitor of CaMKII that binds to the CaM binding site of the 

enzyme and prevents the association of CaM with CaMKII (179). Myristoylated calmodulin 

kinase IINtide (mer-CaMKIINtide) is a 28-residue cell-permeable CaMKII inhibitor peptide 

derived from CaMKIIN, an endogenous inhibitory protein of CaMKII, with high selectivity for 

inhibition of CaMKII and little effect on CaMKI, CaMKIV, CaMKK or PKC (180). The peptide 

sequence corresponds to inhibitory domain of CaMKII-α and CaMKII-β (180). To determine the 

effects of KN-93 or mer-CaMKIINtide on 1α,25(OH)2D3 dependent CaMKII activation in 

growth plate chondrocytes, confluent GC cells were pretreated with either KN-93 or mer-

CaMKIINtide at 1.25, 2.5 and 5 μM concentrations for 30 minutes. Next, cells were treated with 

10-8 M 1α,25(OH)2D3 for 15 minutes. Cell layer lysates were assayed for CaMKII activity. 

To determine whether 1α,25(OH)2D3 activates CaMKII via a Pdia3-dependent 

mechanism, MC3T3-E1 osteoblasts were pretreated with anti-Pdia3 antibody for 30 minutes, and 

next treated with 10-8 M 1α,25(OH)2D3 for 15 minutes. Cell layers were collected for subsequent 

CaMKII assay. To assess the roles of Pdia3 and VDR in activation of CaMKII by 1α,25(OH)2D3, 

wild-type, silenced-Pdia3 and silenced-Vdr MC3T3-E1 cells were treated with 10-8 M 

1α,25(OH)2D3 for 15 minutes. Cell layer lysates were collected were assayed for CaMKII 

activity. 

To determine the requirement for intact caveolae in the regulation of CaMKII by 

1α,25(OH)2D3 we used two approaches. Methyl-beta-cyclodextrin (β-CD) is a chemical that does 

not enter cells but can bind cholesterol and remove it from the plasma membranes leading to 
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disruption of lipid rafts and caveolae. To determine the effects of β-CD on CaMKII activation, 

MC3T3-E1 osteoblasts were treated with 10 mM β-CD for 30 minutes in serum-free medium, as 

described previously (12). At the end of the incubation, the cell layers were rinsed with serum 

free medium and then treated with 10-8 M 1α,25(OH)2D3 for 15 minutes. The cell layer lysates 

were collected for CaMKII assay. To determine the effects of Cav1 silencing on CaMKII 

activity, wild-type and silenced-Cav-1 MC3T3-E1 cells were treated with 10-8 M 1α,25(OH)2D3 

for 15 minutes prior to assay. 

In order to examine the relationship between PLAA and CaMKII, MC3T3-E1 cells were 

pretreated with anti-PLAA antibody for 30 minutes, and next treated with 10-8 M 1α,25(OH)2D3 

for 15 minutes. In addition, wild-type and silenced-Plaa MC3T3-E1 cells were treated with 10-8 

M 1α,25(OH)2D3 for 15 minutes prior to assay of CaMKII activity. The direct effect of PLAA on 

CaMKII was determined by treating MC3T3-E1 cells with 10-8 to 10-6 M PLAA peptide for 15 

minutes prior to assay of cell layer lysates. Whether caveolae are required for PLAA-mediated 

CaMKII activation, MC3T3-E1 osteoblasts were treated with 10 mM β-CD for 30 minutes in a 

serum-free medium as described above. After rinsing with serum free medium, cells were treated 

with 10-6 M PLAA peptide for 15 minutes, followed by CaMKII assay. 

GC chondrocytes were used to investigate the role of CaM in 1α,25(OH)2D3-dependent 

CaMKII activation. Confluent cultures were pretreated with the CaM inhibitor W-7 at 0.1, 1 and 

10 μM concentrations for 30 minutes. Next, cells were treated with 10-8 M 1α,25(OH)2D3 for 15 

minutes. Cell layer lysates were assayed for CaMKII activity. 

Regulation of PLA2 Activity  

 To determine if CaMKII is required for 1α,25(OH)2D3-dependent PLA2 activation, 

confluent GC chondrocytes were treated for 30 minutes with 1.25, 2.5 and 5 μM of either KN-93 
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or mer-CaMKIINtide, followed by 10-8 M 1α,25(OH)2D3 for 15 minutes. After washing the cell 

layers with PBS, the cell layers were lysed and assayed for PLA2 activity using a commercially 

available kit (cPLA2 Assay kit, 765021, Cayman Chemical, Ann Arbor, MI). PLA2 data were 

normalized to total protein (Pierce BCA Protein Assay, Thermo Fisher Scientific). 

Regulation of PGE2 Release  

 To determine if CaMKII is involved in 1α,25(OH)2D3-activated PGE2 release, confluent 

GC chondrocytes were treated for 30 minutes with 1.25, 2.5 and 5 μM of either KN-93 or mer-

CaMKIINtide, followed by 10-8 M 1α,25(OH)2D3 for 15 minutes. At the end of the incubation, 

the media were acidified and PGE2 was measured using a commercially available kit 

(Prostaglandin E2 [
125I]-RIA kit, NEK020001K, Perkin Elmer, Waltham, MA). PGE2 data were 

normalized to total DNA (Quant-iTTM PicoGreen® dsDNA Assay kit, P11496, Invitrogen).  

CaM was inhibited by treating GC chondrocytes with 0.6, 2.5 and 10 μM W-7 for 30 

minutes. Next, cells were treated with 10-8 M 1α,25(OH)2D3 for 15 minutes. At the end of the 

incubation, the media were acidified and PGE2 was measured. PGE2 data were normalized to 

total DNA. 

Regulation of PKC Activity  

 To determine whether CaMKII mediates the stimulatory effects of 1α,25(OH)2D3 on 

PKC, GC chondrocytes were treated for 30 minutes with 1.25, 2.5 and 5 μM of either KN-93 or 

mer-CaMKIINtide, followed by 10-8 M 1α,25(OH)2D3 for 15 minutes. Cell layers were washed 

with PBS and lysed in RIPA buffer (20 mM Tris-HCl, 150 mM NaCl, 5mM disodium EDTA, 

1% Nonidet P-40). PKC activity was measured using a commercially available kit (Protein 

Kinase C Biotrak Enzyme Assay, RPN77, GE Healthcare). PKC data were normalized to total 

protein (Pierce BCA Protein Assay, Thermo Fisher Scientific). 
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The special role of CaM was determined by treating the cells for 30 minutes with 0.6, 2.5 

and 10 μM W-7, followed by 10-8 M 1α,25(OH)2D3 for 15 minutes.  

Camk2a and Camk2b silencing was used to determine which CaMKII isoform was 

responsible for the rapid response to 1α,25(OH)2D3. Wild-type and Camk2a and Camk2b 

silenced MC3T3-E1 cells were treated for 15 minutes with 10-8 M 1α,25(OH)2D3. Cell layer 

lysates were assayed for PLA2, PKC and CaMKII activities as described above. PLA2, PKC and 

CaMKII were normalized to total protein. PGE2 data were normalized to total DNA. 

Regulation of Alkaline Phosphatase Activity 

Changes in alkaline phosphatase specific activity, an early marker of osteoblast 

maturation, were used as an outcome measure of the 1α,25(OH)2D3 rapid membrane-mediated 

signaling. The requirement for CaMKII in 1α,25(OH)2D3 rapid membrane-mediated alkaline 

phosphatase activation was assessed by pretreating wild-type MC3T3-E1 cells with 5 μM of 

mer-CaMKIINtide for 30 minutes, followed by 10-8 M 1α,25(OH)2D3 for 15 minutes. At the end 

of the treatment, the media were replaced by fresh media. 24 hours later, the cell layers were 

lysed by sonication in 0.05% Triton X-100 (Sigma Aldrich). Alkaline phosphatase specific 

activity was measured by determining p-nitrophenol (pNP) release from p-nitrophenylphosphate 

(pNPP) at pH 10.2 in lysates. Enzyme activity data were normalized to total protein content. 

The requirements for CaMKII-α and CaMKII-β were assessed by treating wild-type, 

shCamk2a and shCamk2b MC3T3-E1 cells with 10-8 M 1α,25(OH)2D3 for 15 minutes. At the 

end of the incubation, the media were replaced by fresh media. 24 hours later, the cell layers 

were lysed and assayed for alkaline phosphatase activity. The requirement for CaM in 

1α,25(OH)2D3 rapid membrane-mediated alkaline phosphatase activation was assessed by pre-

incubating wild-type MC3T3-E1 cells with 5μM of W-7 as described above.  
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Regulation of Osteopontin Production 

Alterations in osteopontin levels secreted into the media were used as an outcome 

measure of the 1α,25(OH)2D3 rapid membrane-mediated signaling. This was assessed by 

pretreating wild-type MC3T3-E1 cells with 5 μM of mer-CaMKIINtide for 30 minutes followed 

by 10-8 M 1α,25(OH)2D3 for 15 minutes. At the end of the treatment, the media were replaced by 

fresh media. 24 hours later osteopontin in the media was measured by ELISA using a 

commercial mouse osteopontin ELISA kit (R&D Systems, Minneapolis, MN). Osteopontin 

values were normalized to total DNA. The requirements for CaMKII-α and CaMKII-β and CaM 

was determined as above. 

Plasma Membranes and Caveolae Isolation 

 Plasma membranes and caveolae were isolated using a detergent-free method as 

described previously (121). MC3T3-E1 cells (cultured for 10 days post-plating) were treated 

with either 10-8 M 1α,25(OH)2D3 or vehicle (ethanol) for 15 minutes. The cells were harvested 

by scraping while in isolation buffer (0.25 M sucrose, 1 mM EDTA, 20 mM Tricine, pH 7.8) and 

were homogenized using a tissue grinder (20 strokes; 10 strokes clockwise and 10 strokes 

counter-clockwise). Homogenates were centrifuged at 20,000 X g for 10 minutes. The pellet, 

including nucleus, mitochondria, and endoplasmic reticulum was discarded and the supernatant 

was collected, and placed on top of isolation buffer containing 30% Percoll (GE Healthcare, 

Piscataway, NJ). The samples were centrifuged at 84,000 X g for 30 minutes. Syringe needles 

(5G) were used to collect the plasma membrane fraction from the gradient column. The isolated 

fraction was layered over a 10-20% OptiPrep gradient (Sigma Aldrich), and the gradient was 

centrifuged at 52,000 X g for another 4 hours. Plasma membrane sub-fractions were collected 
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from the top to the bottom of the tube, which resulted in isolation of thirteen fractions. Caveolae 

were observed as an opaque band, which was collected in fraction 3.  

Western Blots 

 Proteins were separated using polyacrylamide gel electrophoresis. Whole cell lysates, 

plasma membranes, and plasma membrane fractions (50μg protein) were loaded onto 4–20% 

Mini-PROTEAN® TGX™ precast polyacrylamide gels (Bio-Rad, Hercules, CA), and at the end 

of the run, the proteins were transferred from gels to nitrocellulose membranes using an iBlot 

Dry Blotting System (Invitrogen). Next, the membrane was incubated with 1% bovine serum 

albumin (BSA) in PBS. Subsequently, the membranes were incubated with antibodies against 

CaMKII, CaM, cPLA2, Cav-1, pan cadherin or GAPDH overnight. The membranes were 

incubated with goat anti-rabbit or goat anti-mouse horseradish peroxidase-conjugated secondary 

antibodies (Bio-Rad, Hercules, CA) in PBS containing 1% BSA after washing three times with 

PBS containing 0.05% Tween-20. The membranes were incubated with the secondary antibody 

only for one hour. Following three washes with PBS containing 0.05% Tween-20 (three times, 

ten minutes each), membranes were developed using the LumiSensorTM Plus Chemiluminescent 

HRP Substrate kit (GenScript, Piscataway, NJ) and imaged with the VersaDoc imaging system 

(Bio-Rad, Hercules, CA). 

Immunoprecipitation 

 MC3T3-E1 osteoblasts were treated with either 10-8 M 1α,25(OH)2D3 or vehicle 

(ethanol) for 15 minutes. The cell layers were washed with PBS, lysed and sonicated in RIPA 

buffer containing 100mM NaF, protease inhibitor cocktail (Sigma Aldrich) and 1 mM 

phenylmethylsulfonyl fluoride (PMSF). In order to preclear the cell extracts, protein samples 

(1mg) were incubated with 5μg of rabbit IgG (1 hour, 4oC) and next incubated with protein A-
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agarose beads (EMD Chemicals, Gibbstown, NJ, USA) for 2 hours at 4oC. The beads were 

pelleted by centrifugation at 1,000 X g (1 minute, 4oC). To immunoprecipitate the Pdia3 protein 

complex, pre-cleared protein samples were mixed with anti-Pdia3 antibodies and incubated at 

4oC overnight with continuous agitation. Protein A-agarose beads were added to the mixture and 

the mixture was incubated at 4oC for two additional hours. The beads were pelleted and the 

pellets washed three times with PBS. Precipitated proteins were eluted by boiling beads in Tris-

glycine SDS sample loading buffer (Bio-Rad) containing 5.0% beta-mercaptoethanol for 5 

minutes. The immunoprecipitated samples were subjected to Western blot. In order to lower the 

background in the images, a ONE-HOUR IP-Western Kit (Genscript) was used.  

To immunoprecipitate PLAA and CaM protein complexes, the Dynabeads® Protein A 

immunoprecipitation kit (Invitrogen) was used. Anti-CaM and anti-PLAA antibodies were 

covalently coupled to the Dynabeads Protein A according to the manufacturer’s protocol. Pre-

cleared protein samples were mixed with either anti-PLAA or anti-CaM antibodies coated 

Dynabeads and incubated at 4oC overnight with continuous agitation. Dynabeads were recovered 

using a magnet and were washed three times with PBS containing 0.05% Tween-20. Precipitated 

proteins were eluted by resuspending the beads in Elution Buffer and boiling beads in Tris-

glycine SDS sample loading buffer (Bio-Rad) containing 5.0% (v/v) beta-mercaptoethanol for 5 

minutes. The immunoprecipitated samples were subjected to Western blot. A ONE-HOUR IP-

Western Kit (Genscript) was used to lower the background in the images. 

Statistical Analysis  

 For each experiment, each data point represents the mean ± standard error of the mean 

(SEM) for six individual cultures. Each experiment was repeated at least three times to ensure 

the validity of the data. Statistical analysis was performed using the GraphPad Prism software 
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(version 5, GraphPad Software, Inc., San Diego, CA). Statistical significance was assessed by 

analysis of variance and post hoc testing performed using Bonferroni’s modification of Student’s 

t-test for multiple comparisons. P-values <0.05 were considered significant.  

 

RESULTS  

Effect of 1α,25(OH)2D3  on CaMKII Activation in Growth Zone Chondrocytes and MC3T3-

E1 Osteoblasts  

Following an initial decrease in CaMKII activity, 1α,25(OH)2D3 caused a time and dose 

dependent increase in CaMKII activity in chondrocytes and osteoblasts. This effect was rapid, 

occurring by 6 minutes in GC cells (Fig. 4.1A) and within 9 minutes in MC3T3-E1 cells 

(Fig.4.1B). 1α,25(OH)2D3 caused a significant increase in CaMKII activity only at its highest 

experimental dose, 10-8 M, in GC cells (Fig. 4.1C) and MC3T3-E1 osteoblasts (Fig. 4.1D).  

Effect of CaMKII Inhibition On Rapid 1α,25(OH)2D3 Membrane-Mediated Signaling and 

the Downstream Biological Responses 

The 1α,25(OH)2D3-stimulated increase in CaMKII activity was blocked by the CaMKII 

inhibitor KN-93 in a dose dependent manner (Fig. 4.2A). The effect of KN-93 on 1α,25(OH)2D3-

dependent cPLA2 activity was also dose-dependent, at the highest concentration of inhibitor, 

activity was 50% that of the control cultures (Fig. 4.2B). Similarly, KN-93 blocked production of 

PGE2 in response to 1α,25(OH)2D3 (Fig. 4.2C) as well as the stimulatory effect of 1α,25(OH)2D3 

on PKC activity (Fig. 4.2D). Treatment of the cells with mer-CaMKIINtide had comparable 

effects to KN-93 on CaMKII (Fig. 4.2E), cPLA2 (Fig. 4.2F), PGE2 release (Fig. 4.2G) and PKC 

(Fig. 4.2H). Moreover, mer-CaMKIINtide significantly reduced the stimulatory effect of a 15 
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minute treatment with 1α,25(OH)2D3 on osteopontin production (Fig. 4.2I) and alkaline 

phosphatase activity (Fig. 4.2J) at 24 hours.  

 

Figure 4.1: Effect of 1α,25(OH)2D3  on CaMKII activation in growth zone chondrocytes and 

MC3T3-E1 osteoblasts. Growth zone chondrocytes (A) and MC3T3-E1 osteoblasts (B) were 

treated with 1α,25(OH)2D3 for 3, 6, 9, 15 and 30 minutes. CaMKII activity was measured as 

described and normalized to total protein level. Growth zone chondrocytes (C) were treated for 9 

minutes and MC3T3-E1 osteoblasts (D) were treated for 15 minutes with 10-10, 10-9 and 10-8 M 

1α,25(OH)2D3. CaMKII activity was measured as described and normalized to total protein level. 

Treatment over control ratios were calculated for each parameter. The dashed line represents the 

value for the control cultures, which was set to 1. *p<0.05, 1α,25(OH)2D3 treatment vs. control; 
#p<0.05, versus 3 minutes; ^p<0.05, versus 6 minutes; $p<0.05, versus 10-9 M 1α,25(OH)2D3. 

Each figure is a representative experiment repeated three times with similar results. 
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Figure 4.2: Effect of CaMKII inhibition on rapid 1α,25(OH)2D3 membrane-mediated 

activation of CaMKII, PLA2, PKC, and PGE2 release and downstream physiological 

effects. GC chondrocytes were treated with 0, 1.25, 2.5, and 5 µM of KN-93 for 30 minutes. 

CaMKII activity (A), PLA2 activity (B), PGE2 release (C) and PKC activity (D) were measured 

as described and normalized to total protein level. PGE2 values were normalized to total DNA. 
*p<0.05, treatment versus control; #p<0.05, versus 0 µM KN-93; $p<0.05, versus 1.25 µM KN-

93. GC chondrocytes were treated with 0, 1.25, 2.5, and 5 µM of mer-CaMKIINtide for 30 

minutes. CaMKII activity (E), PLA2 activity (F), PGE2 release (G) and PKC activity (H) were 

measured as described and normalized to total protein level. PGE2 values were normalized to 

total DNA. *p<0.05, treatment versus control; #p<0.05, versus 0 µM mer-CaMKIINtide; $p<0.05, 

versus 1.25 µM mer-CaMKIINtide. MC3T3-E1 osteoblasts were treated with 0 or 5 µM of mer-

CaMKIINtide for 30 minutes and next they were treated with 1α,25(OH)2D3 for 15 minutes. The 

media containing 1α,25(OH)2D3 were replaced with fresh media. 24 hours later, osteopontin 

production (I) and alkaline phosphatase activity (J) were measured as described and normalized 

to total DNA and total protein level, respectively. *p<0.05, treatment versus control; #p<0.05, 

versus 0 µM mer-CaMKIINtide. Treatment over control ratios were calculated for each 

parameter. The dashed line represents the value for the control cultures, which was set to 1. Each 

figure is a representative experiment repeated three times with similar results. 

 

 

Effects of Camk2a and Camk2b Silencing on Rapid Actions of 1α,25(OH)2D3 and the 

Downstream Biological Responses 

CaMKII-α is the isoform responsible for mediating the effects of 1α,25(OH)2D3. Unlike 

wild-type and shCamk2b MC3T3-E1 cells, shCamk2a osteoblasts did not respond to 

1α,25(OH)2D3 with an increase in PLA2 activity (Fig. 4.3A). Similarly, 1α,25(OH)2D3 had no 

effect on PGE2 release (Fig. 4.3B) and PKC activity (Fig. 4.3C) in shCamk2a MC3T3-E1 cells. 

These effects were specific to CaMKII-α, since the MC3T3-E1 cells transfected with empty 

vectors responded to 1α,25(OH)2D3 like the wild-type cells.  

Camk2a silencing significantly reduced the 1α,25(OH)2D3–stimulated increase in alkaline 

phosphatase activity but had no effect on osteopontin production. Treatment of wild-type and 

shCamk2b MC3T3-E1 cells with 1α,25(OH)2D3 for 15 minutes led to a significant increase in 

alkaline phosphatase activity at 24 hours, whereas shCamk2a osteoblasts failed to activate the 

enzyme (Fig. 4.D). Treatment of wild-type, shCamk2a and shCamk2b MC3T3-E1 cells with 
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1α,25(OH)2D3 for 15 minutes led to a significant increase in osteopontin production at 24 hours 

with shCamk2b osteoblasts showing significantly higher levels of osteopontin production 

compared to the wild-type cells (Fig. 4.3E). We validated the specificity of the knockdown by 

examining CaMKII activity in the silenced cells. 1α,25(OH)2D3 treatment of wild-type and 

shCamk2b MC3T3-E1 cells led to a significant increase in CaMKII activity while shCamk2a 

osteoblasts did not respond to 1α,25(OH)2D3 with an increase in CaMKII activity (Fig. 4.3F). 

 

Figure 4.3: Effect of 1α,25(OH)2D3 on PLA2, PKC, CaMKII and alkaline phosphatase 

activities and PGE2 and osteopontin production in wild type, shCamk2a and shCamk2b 

MC3T3-E1 cells. 1α,25(OH)2D3 effect on PLA2 activity (A), PGE2 release (B), PKC activity 

(C), alkaline phosphatase activity (D), osteopontin production (E) and CaMKII activity (F) of 

WT, shCamk2a and shCamk2b MC3T3-E1 cells. Treatment over control ratios were calculated 

for each parameter. The dashed line represents the value for the control cultures, which was set 

to 1. *p<0.05, treatment versus control; #p<0.05, versus shCamk2a; $p<0.05, versus Empty 

Vector. Each figure is a representative experiment repeated three times with similar results.   

 

Roles of Pdia3, Cav-1 and Caveolae in 1α,25(OH)2D3 Membrane-mediated Activation of 

CaMKII  in MC3T3-E1 Osteoblasts  



 64 

In MC3T3-E1 osteoblasts, 1α,25(OH)2D3 activation of CaMKII depends on upstream 

actions of Pdia3, Cav-1 and caveolae microdomains. Anti-Pdia3 antibody significantly reduced 

the 1α,25(OH)2D3-dependent increase in CaMKII activity in MC3T3-E1 osteoblasts (Fig. 4.4A), 

whereas IgG had no effect. Similarly, shPdia3 osteoblasts failed to rapidly respond to 

1α,25(OH)2D3 with an increase in CaMKII activity (Fig. 4.4B). In contrast to shPdia3 

osteoblasts, shVdr cells rapidly activated CaMKII in response to 1α,25(OH)2D3 within 15 

minutes (Fig. 4.4C). Unlike wild-type cells, shCav-1 osteoblasts failed to rapidly activate 

CaMKII in response to 1α,25(OH)2D3 (Fig. 4.4D). In addition, treatment of osteoblasts with β-

CD altered the response of cells to 1α,25(OH)2D3. Pretreatment with β-CD abrogated the 

1α,25(OH)2D3-dependent increase in CaMKII activity in MC3T3-E1 osteoblasts (Fig. 4.4E).  

Western blots of whole cell lysates demonstrated that MC3T3-E1 osteoblasts possess 

CaMKII-β, CaMKII-α and cPLA2, and 1α,25(OH)2D3 treatment alters the abundance of these 

proteins in the plasma membrane. Comparison of the intensity of CaMKII-β bands on the 

Western blot relative to cadherin loading bands, showed that 1α,25(OH)2D3 reduced the intensity 

of CaMKII-β bands by 29% compared to the control group (Fig. 4.4F). Comparison of the 

intensity of CaMKII-α bands on the Western blot relative to cadherin bands, showed nearly a 

19% reduction in the intensity of CaMKII-α bands compared to the control group (Fig. 4.4F). 

Similarly, comparison of the intensity of cPLA2 bands on the Western blot relative to cadherin 

bands, showed almost a 29% reduction in the intensity of cPLA2 bands compared to the control 

cells (Fig. 4.4F). Western blots of the plasma membrane fractions of MC3T3-E1 cells indicated 

that CaMKII-β and CaMKII-α were not present in fraction 3, which represents caveolae 

microdomains (Fig. 4.4G), and 1α,25(OH)2D3 did not stimulate their recruitment to caveolae 

(Fig. 4G).  
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Figure 4.4: Effects of Pdia3 blocking, Pdia3, Vdr and Cav1 silencing, and β-CD on 

1α,25(OH)2D3-dependent rapid activation of CaMKII in MC3T3-E1 cells. (A) MC3T3-E1 

osteoblasts were pretreated with Pdia3-antibody for 30 minutes, and next they were treated with 

1α,25(OH)2D3 for 15 minutes. CaMKII activity was measured and normalized to total protein 

level. *p<0.05, treatment versus control; #p<0.05, versus Pdia3 Ab. (B) 1α,25(OH)2D3 effect on 

CaMKII activity of WT and shPdia3 MC3T3-E1 cells. WT and shPdia3 osteoblasts were treated 

with 1α,25(OH)2D3 for 15 minutes. CaMKII activity was measured and normalized to total 

protein level. *p<0.05, treatment versus control; #p<0.05, versus shPdia3. (C) 1α,25(OH)2D3 

effect on CaMKII activity of WT and shVdr MC3T3-E1 cells. WT and shVdr osteoblasts were 

treated with 1α,25(OH)2D3 for 15 minutes. CaMKII activity was measured and normalized to 

total protein level *p<0.05, treatment versus control. (D) 1α,25(OH)2D3 effect on CaMKII 

activity of WT and shCav-1 MC3T3-E1 cells. WT and shCav-1 osteoblasts were treated with 

1α,25(OH)2D3 for 15 minutes. CaMKII activity was measured and normalized to total protein 

level. *p<0.05, treatment versus control; #p<0.05, versus shCav-1. (E) MC3T3-E1 osteoblasts 

were pretreated with β-CD for 30 minutes, and next they were treated with 1α,25(OH)2D3 for 15 
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minutes. CaMKII activity was measured and normalized to total protein level. *p<0.05, treatment 

versus control. Treatment over control ratios were calculated for each parameter. The dashed line 

represents the value for the control cultures, which was set to 1. Each figure is a representative 

experiment repeated three times with similar results. (F) Effect of 1α,25(OH)2D3 on plasma 

membrane localization of CaMKII-β, CaMKII-α, cPLA2. MC3T3-E1 cells were treated with 

1α,25(OH)2D3 for 15 minutes. Plasma membranes were isolated. Presence of CaMKII-β, 

CaMKII-α, cPLA2 and Cadherin (loading control) in the plasma membranes were examined by 

Western blot. Intensity analysis of CaMKII-β, CaMKII-α, cPLA2 bands relative to Cadherin 

were calculated and shown at the right corner of each figure. (G) Effect of 1α,25(OH)2D3 on 

caveolae localization of CaMKII-β, CaMKII-α. MC3T3-E1 cells were treated with 

1α,25(OH)2D3 for 15 minutes. Caveolae fractions were isolated as described. Presence of 

CaMKII-β, CaMKII-α, cPLA2 and Cav-1 (loading control) in the caveolae fractions were 

examined by Western blot. 

 

 

Role of PLAA in 1α,25(OH)2D3 Membrane-mediated Activation of CaMKII  in MC3T3-E1 

Osteoblasts  

In MC3T3-E1 osteoblasts, 1α,25(OH)2D3 activation of CaMKII depends on upstream 

actions of PLAA. Anti-PLAA antibody significantly reduced the 1α,25(OH)2D3-dependent 

increase in CaMKII activity in MC3T3-E1 osteoblasts (Fig. 5A), whereas IgG had no effect. 

Similarly, shPlaa osteoblasts did not respond to 1α,25(OH)2D3 with an increase in CaMKII 

activity (Fig. 5B). PLAA peptide caused a significant increase in CaMKII activity in osteoblasts 

(Fig. 5C) at 10-7 M and 10-6 M. Treatment of cells with β-CD altered the response of the cells to 

PLAA. Pretreatment with β-CD abrogated the PLAA-stimulated increase in CaMKII activity in 

MC3T3-E1 osteoblasts (Fig. 5D).  
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Figure 4.5: Role of PLAA on rapid activation of CaMKII in MC3T3-E1 osteoblasts. (A) 

MC3T3-E1 osteoblasts pretreated with PLAA-antibody for 30 minutes, and next they were 

treated with 1α,25(OH)2D3 for 15 minutes. CaMKII activity was measured and normalized to 

total protein level. *p<0.05, treatment versus control; #p<0.05, versus PLAA Ab. (B) 

1α,25(OH)2D3 effect on CaMKII activity of WT and shPlaa MC3T3-E1 cells. WT and shPlaa 

osteoblasts were treated with 1α,25(OH)2D3 for 15 minutes. CaMKII activity was measured and 

normalized to total protein level. *p<0.05, treatment versus control; #p<0.05, versus shPlaa. (C) 

MC3T3-E1 osteoblasts were treated with 10-8, 10-7, 10-6 M PLAA peptide for 15 minutes. 

CaMKII activity was measured and normalized to total protein level. *p<0.05, treatment versus 

control, #p<0.05, versus 10-8 M PLAA. (D) MC3T3-E1 osteoblasts were pretreated with β-CD 

for 30 minutes, and next they were treated with PLAA peptide for 15 minutes. CaMKII activity 

was measured and normalized to total protein level. *p<0.05, treatment versus control. Treatment 

over control ratios were calculated for each parameter. The dashed line represents the value for 

the control cultures, which was set to 1. Each figure is a representative experiment repeated three 

times with similar results.  
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Roles of Pdia3, Cav-1, Caveolae and PLAA in 1α,25(OH)2D3 Membrane-mediated 

Activation of CaMKII  in GC Chondrocytes   

In GC chondrocytes, 1α,25(OH)2D3 activation of CaMKII depends on upstream actions 

of Pdia3 and caveolae microdomains. Anti-Pdia3 antibody significantly reduced the 

1α,25(OH)2D3-dependent increase in CaMKII activity in GC chondrocytes (Fig. 4.6A), whereas, 

IgG had no effect. Pretreatment with β-CD abrogated the 1α,25(OH)2D3-dependent increase in 

CaMKII activity in GC chondrocytes (Fig. 4.6B).  

 

Figure 4.6: Effects of Pdia3 and PLAA blocking and β-CD on 1α,25(OH)2D3-mediated 

rapid activation of CaMKII. (A) GC chondrocytes were pretreated with Pdia3-antibody for 30 

minutes, and next they were treated with 1α,25(OH)2D3 for 9 minutes. CaMKII activity was 

measured as described and normalized to total protein level. *, p<0.05, treatment versus control; 

#, p<0.05, versus Pdia3 Ab. (B) GC cells were pretreated with β-CD for 30 minutes, and next 

they were treated with 1α,25(OH)2D3 for 9 minutes. CaMKII activity was normalized to total 

protein level. *, p<0.05, treatment versus control. (C) GC cells were pretreated with PLAA-

antibody for 30 minutes, and next they were treated with 1α,25(OH)2D3 for 9 minutes. CaMKII 

activity was measured as described and normalized to total protein level. *, p<0.05, treatment 

versus control; #, p<0.05, versus PLAA Ab (D) GC cells were treated with 10-8, 10-7, 10-6M 

PLAA peptide for 9 minutes. CaMKII activity was measured as described and normalized to 

total protein level. *, p<0.05, treatment versus control. (E) GC cells were pretreated with β-CD 
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for 30 minutes, and next they were treated with PLAA peptide for 9 minutes. CaMKII activity 

was measured as described and normalized to total protein level. *, p<0.05, treatment versus 

control. Treatment over control ratios were calculated for each parameter. The dashed line 

represents the value for the control cultures, which was set to 1. 

 

In GC chondrocytes, 1α,25(OH)2D3 activation of CaMKII depends on upstream actions 

of PLAA. Anti-PLAA antibody abolished the 1α,25(OH)2D3-dependent increase in CaMKII 

activity (Fig. 4.6C), whereas, IgG had no effect. PLAA peptide caused a significant increase in 

CaMKII activity (Fig. 4.6D) at 10-7 M and 10-6 M. Treatment of cells with β-CD altered the 

response of the cells to PLAA peptide. Pretreatment with β-CD abolished the PLAA-stimulated 

increase in CaMKII activity (Fig. 4.6E). 

Role of CaM in 1α,25(OH)2D3 Membrane-mediated Rapid Activation of CaMKII 

CaM mediated the raid activation of CaMKII in response to 1α,25(OH)2D3. The 

1α,25(OH)2D3–stimulated increase in CaMKII activity was significantly reduced by the CaM 

inhibitor W-7 in a dose-dependent manner (Fig. 4.7A). W-7 completely blocked 1α,25(OH)2D3-

dependent increase in PGE2 release (Fig. 4.7B) and PKC activity (Fig. 4.7C) compared to the 

control. 

The effects of 1α,25(OH)2D3 on osteopontin and alkaline phosphatase were mediated 

through a mechanism involving CaM. While treatment of wild-type MC3T3-E1 cells with 

1α,25(OH)2D3 for 15 minutes led to a significant increase in osteopontin production and alkaline 

phosphatase activity at 24 hours, W-7 pretreatment significantly reduced osteopontin production 

(Fig. 4.7D) and blocked alkaline phosphatase activation (Fig. 4.7E) in response to 1α,25(OH)2D3 

treatment.  

Western blots of the plasma membrane fractions of GC chondrocytes indicated that CaM 

was present in the plasma membranes with its greatest concentration in fraction 3, which 
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represents caveolae microdomains (Fig. 4.7F). Comparison of the intensity of CaM bands 

relative to Cav-1 loading control, showed that 1α,25(OH)2D3 treatment reduced the levels of 

CaM in caveolae (Fig. 4.7G). Comparison of the intensity of CaM bands relative to cadherin 

loading control, showed that 1α,25(OH)2D3 treatment reduced the levels of CaM in the plasma 

membrane of GC chondrocytes (Fig. 4.7H). Protein interaction studies indicated when cells were 

treated with 1α,25(OH)2D3, PLAA and CaM appeared to increase their interaction in 

immunoprecipitates of GC cell lysates using anti-PLAA antibodies (Fig. 4.7I). 

Western blots of the plasma membrane fractions of MC3T3-E1 cells indicated that CaM 

was present in the plasma membranes with its greatest concentration in fraction 3, which 

represents caveolae microdomains (Fig. 4.7J). Comparison of the intensity of CaM bands on the 

Western blot relative to Cav-1 loading control, showed that 1α,25(OH)2D3 treatment reduced the 

levels of CaM in caveolae of MC3T3-E1 osteoblasts by 40% (Fig. 4.7K). Comparison of the 

intensity of CaM bands relative to cadherin loading control, showed that 1α,25(OH)2D3 treatment 

reduced the levels of CaM in the plasma membrane of MC3T3-E1 osteoblasts by 34% (Fig. 

4.7L).  

Protein interaction studies indicated that when cells were treated with 1α,25(OH)2D3, 

PLAA and CaM appeared to increase their interaction in immunoprecipitates of MC3T3-E1 cell 

lysates using anti-PLAA antibodies (Fig. 4.7M). Pdia3 was not present in anti-CaM antibody 

immunoprecipitates of osteoblasts treated with either vehicle or 1α,25(OH)2D3 for 15 minutes 

(Fig. 4.7N). Likewise, Cav-1 was also not present in anti-CaM antibody immunoprecipitates of 

osteoblasts treated with either vehicle or 1α,25(OH)2D3 for 15 minutes (Fig. 4.7O).  
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Figure 4.7: Role of CaM on the rapid 1α,25(OH)2D3-mediated pathway and the downstream 

physiological effects. GC chondrocytes were pretreated with 0, 0.1, 1 and 10 µM W-7 for 30 

minutes, and next they were treated with 1α,25(OH)2D3 for 15 minutes. CaMKII activity (A), 

PGE2 release (B) and PKC activity (C) were measured as described. *p<0.05, treatment versus 

control; #p<0.05, versus 0 µM W-7; $p<0.05, versus 0.1 µM W-7. MC3T3-E1 osteoblasts were 

treated with 0 or 5 µM of W-7 for 30 minutes and next they were treated with 1α,25(OH)2D3 for 

15 minutes. The media containing 1α,25(OH)2D3 were replaced with fresh media. 24 hours later, 



 72 

osteopontin production (D) and alkaline phosphatase activity (E) were measured as described 

and normalized to total DNA and total protein level, respectively. *p<0.05, treatment versus 

control; #p<0.05, versus 0 µM W-7. Treatment over control ratios were calculated for each 

parameter. The dashed line represents the value for the control cultures, which was set to 1. Each 

figure is a representative experiment repeated three times with similar results. (F) Plasma 

membrane localization of CaM in GC chondrocytes. (G) The effect of 1α,25(OH)2D3 treatment 

on caveolae localization of CaM. GC cells were treated with 1α,25(OH)2D3 for 9 minutes. 

Caveolae fractions were isolated as described. Presence of CaM and Cav-1 (loading control) in 

the caveolae fractions were examined by Western blot. (H) The effect of 1α,25(OH)2D3 treatment 

on plasma membrane localization of CaM. GC cells were treated with 1α,25(OH)2D3 for 9 

minutes. Plasma membranes were isolated as described. Presence of CaM and Cadherin (loading 

control) in plasma membranes was examined by Western blot. (I) The effect of 1α,25(OH)2D3 on 

PLAA’s interaction with CaM in GC chondrocyes. PLAA was immunoprecipitated and 

subjected to Western blot. The membranes were incubated with the anti-CaM and anti-PLAA 

antibodies. (J) Subcellular localization of CaM in MC3T3-E1 cells. (K) The effect of 

1α,25(OH)2D3 treatment on caveolae localization of CaM. MC3T3-E1 cells were treated with 

1α,25(OH)2D3 for 15 minutes. Caveolae fractions were isolated as described. Presence of CaM 

and Cav-1 (loading control) in the caveolae fractions were examined by Western blot. Relative 

intensity analysis of CaM bands to Cav-1 were calculated and shown at the right corner of each 

figure. (L) The effect of 1α,25(OH)2D3 treatment on plasma membrane localization of CaM. 

MC3T3-E1 cells were treated with 1α,25(OH)2D3 for 15 minutes. Plasma membranes were 

isolated as described. Presence of CaM and Cadherin (loading control) in plasma membranes was 

examined by Western blot. Relative intensity analysis of CaM bands to Cadherin were calculated 

and shown at the right corner of each figure. (M) The effect of 1α,25(OH)2D3 on PLAA’s 

interaction with CaM in MC3T3-E1 osteoblasts. PLAA was immunoprecipitated and subjected 

to Western blot. The membranes were incubated with the anti-CaM and anti-PLAA antibodies. 

(N) The effect of 1α,25(OH)2D3 on Pdia3’s interaction with CaM in MC3T3-E1 osteoblasts. 

Pdia3 was immunoprecipitated and subjected to Western blot. The membranes were incubated 

with the anti-CaM and anti-Pdia3 antibodies. (O) The effect of 1α,25(OH)2D3 on CaM’s 

interaction with Cav-1 in MC3T3-E1 osteoblasts. CaM was immunoprecipitated and subjected to 

Western blot. The membranes were incubated with the anti-Cav-1 and anti-CaM antibodies. 

Each figure is a representative experiment repeated three times with similar results. 
 

 

 

DISCUSSION  

Little is known about the role of CaMKII in 1α,25(OH)2D3 membrane-mediated signaling 

and its role in the physiological consequences of 1α,25(OH)2D3 rapid actions. In the present 

study, we demonstrate that 1α,25(OH)2D3 stimulates CaMKII activity in MC3T3-E1 osteoblasts 

and GC chondrocytes, and that CaMKII is required for mediating the rapid effects of 

1α,25(OH)2D3 on these cells, including PLA2 activation, PGE2 release, and PKC activation, and 
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downstream biological responses such as alkaline phosphatase activity and osteopontin 

production. These findings confirm the pivotal role CaMKII plays in the 1α,25(OH)2D3 rapid 

signaling pathway. Our results are also supported by previous studies showing that estradiol and 

progesterone induce a rapid increase in CaMKII activity (181,182). 

The time course of 1α,25(OH)2D3-dependent rapid activation of CaMKII indicates a 

significant increase in the kinase activity within 6-9 minutes of treatment in GC cells and within 

9 to 15 minutes of treatment in MC3T3-E1 osteoblasts. This is later than the initial release of 

arachidonic acid (AA) observed within 15 seconds in our analysis of fatty acid turnover (183), 

which suggests that the first burst of AA may be due to anther mechanism. It is of interest that 

we also observed a significant reduction in CaMKII at 3 minutes of treatment in both GC and 

MC3T3-E1 cells. This can be attributable to a rapid decrease in available co-factors, particularly 

Ca2+ (184). Whether the effect observed at 3 minutes is the consequence of an earlier 

1α,25(OH)2D3-stimulated response that involves a rapid activation and inhibition of CaMKII, or 

is triggered by only a very rapid inhibition of CaMKII by 1α,25(OH)2D3, is still not known and 

requires further investigation.  

The time course of CaMKII activation observed in the present study is in concert with the 

increase in PLA2 and PKC in response to either 1α,25(OH)2D3 or PLAA. Moreover, the data 

strongly support a role for CamKII in the mechanism by which PLAA mediates its signal from 

Pdia3 to PLA2. CaMKII inhibitors, KN-93 and mer-CaMKIINtide, significantly reduce 

1α,25(OH)2D3-stimulated rapid responses in GC chondrocytes, supporting the hypothesis that 

CaMKII is a critical member of the 1α,25(OH)2D3 rapid pathway. Furthermore, silencing of 

Camk2a isoforms in MC3T3-E1 osteoblasts inhibits the 1α,25(OH)2D3 membrane-mediated 
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pathway, confirming the key role the α isoform of CaMKII plays in 1α,25(OH)2D3 rapid 

signaling.  

While our studies show that CaMKII can mediate the rapid effects of 1α,25(OH)2D3, they 

also demonstrate that CaMKII is important for downstream biological responses including 

alkaline phosphatase activity and osteopontin production. The CaMKII inhibitor, mer-

CaMKIINtide, blocks 1α,25(OH)2D3-stimulated increase in alkaline phosphatase activity in 

osteoblasts, suggesting that CaMKII activation is required for downstream activation of this 

enzyme. Also, mer-CaMKIINtide reduced the 1α,25(OH)2D3-dependent osteopontin production 

by 50%, suggesting that osteopontin production is regulated partially through actions of CaMKII. 

Previous studies have shown that MAPK activation was involved in Ang II–stimulated 

osteopontin expression in adventitial fibroblasts (185). Our results also confirmed a similar 

mechanism for controlling osteopontin production in which 1α,25(OH)2D3-stimulated CaMKII 

activation is upstream of MAPK, and CaMKII inhibition blocks 1α,25(OH)2D3-dependent PKC 

activation and partially inhibits downstream osteopontin production. Our lab previously reported 

that Pdia3 silencing did not completely block the 1α,25(OH)2D3-induced osteopontin gene 

expression (10). Our results also showed that CaMKII inhibition only partially blocked 

1α,25(OH)2D3-stimulated osteopontin production suggesting that cross-talk with other pathways 

may be involved in regulation of osteopontin protein production.  

Immunoprecipitation studies demonstrated that CaM only interacts with PLAA in the 

presence of 1α,25(OH)2D3. This suggests that CaM serves as a mediator to transfer the signal 

from the PLAA protein complex to CaMKII and causes downstream activation of PLA2. 

Whether CaMKII directly binds to PLA2 and triggers its activation or it stimulates PLA2 
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activation through activation of other protein kinases is still unknown and has yet to be 

elucidated. 

The present study supports the hypothesis that CaMKII and CaM play crucial roles in 

mediating rapid 1α,25(OH)2D3 membrane-associated signaling via PLA2 and PKC. 

1α,25(OH)2D3 failed to activate rapid responses in shCamk2a osteoblasts, inhibitors against CaM 

and CaMKII blocked 1α,25(OH)2D3 membrane-mediated signaling, and CaM associated with 

PLAA in the presence of 1α,25(OH)2D3. Moreover, in shPlaa, shPdia3 and shCav-1 osteoblasts, 

1α,25(OH)2D3  failed to activate CaMKII, supporting the hypothesis that the Pdia3 receptor 

complex proteins in caveolae are required for the rapid activation of CaMKII. Overall, the results 

of this study suggest that CaMKII and CaM could pose as potential therapeutic targets in 

conditions associated with aberrations in 1α,25(OH)2D3 membrane-mediated signaling. 

Taken together with previous published studies (10,92,125), the results suggest the 

following pathway (Fig. 4.8): 1α,25(OH)2D3 binds its membrane associated protein, Pdia3 in 

caveolae, triggering binding of PLAA to Pdia3. CaM binds to PLAA, leaves caveolae and 

activates CaMKII. Next, PLA2 is activated resulting in production of AA and lysophospholipid 

LPL (89). AA can either increase PKCα activity directly (90), or it is further metabolized via 

Cox-1 to PGE2, which acts via its EP1 receptor to contribute to PKC activation (91). 

Phosphatidylinositol-specific PLCβ is activated via Gαq and lysophospholipid, generating DAG 

and IP3 (89,92). DAG binds PKCα and triggers its recruitment to the plasma membrane (93). IP3 

activates the release of Ca2+ ions from the endoplasmic reticulum, required for PKCα activation, 

which subsequently leads to the activation of ERK1/2 (10). 
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Figure 4.8: Proposed mechanism of 1α,25(OH)2D3 stimulated rapid response in 

osteoblasts and chondrocytes. 

 

 

CONCLUSION 

In conclusion, we found a detailed mechanism of 1α,25(OH)2D3-stimulated rapid 

activation of PKC via CaM and CaMKII in chondrocytes and osteoblasts. CaM is required for 

mediating the Pdia3-dependent actions of 1α,25(OH)2D3 on GC chondrocytes and MC3T3-E1 

osteoblasts. CaM is localized with Pdia3 and PLAA in caveolae domains of the plasma 
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membrane, and it interacts with PLAA in the presence of 1α,25(OH)2D3 suggesting it serves as 

one of the mediators of the rapid pathway. When MC3T3-E1 osteoblasts and GC chondrocytes 

were treated with 1α,25(OH)2D3, CaMKII was rapidly activated. Inhibitors against CaM and 

CaMKII blocked 1α,25(OH)2D3-stimulated rapid activation of PLA2, PKC and PGE2 release. In 

agreement with inhibition studies, Camk2a silencing was able to block the effect of 

1α,25(OH)2D3 on rapid activation of PLA2, PKC and PGE2 release. 
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CHAPTER 5 

SIGNALING COMPONENTS OF THE 1α,25(OH)2D3-DEPENDENT Pdia3 

RECEPTOR COMPLEX ARE REQUIRED FOR Wnt5a CALCIUM-

DEPENDENT SIGNALING 

 

INTRODUCTION 

Endochondral ossification encompasses multiple events during which the embryonic 

cartilaginous template of long bones is gradually calcified and replaced by bone (65). Previous 

reports by our lab and other groups have suggested that a complex network of interacting 

signaling pathways induced by hormones and growth factors regulate growth plate chondrocytes 

and endochondral bone ossification (19,66-68). However, limited information is available on the 

molecular basis of these interactions.  

In the present study, we focus on inter-relation between two pathways involved in 

regulation of growth plate cartilage and osteoblast maturation: 1α,25-dihydroxyvitamin D3 

[1α,25(OH)2D3] membrane-mediated signaling and non-canonical Wnt calcium-dependent 

signaling. 1α,25(OH)2D3 induces its effects via two mechanisms: classical vitamin D receptor 

(VDR) signaling and the more recently described calcium-dependent membrane-mediated 

pathway (6-8). In the membrane-mediated pathway, 1α,25(OH)2D3 initiates its effects via its 

specific membrane-associated receptor protein disulfide isomerase family A, member 3 (Pdia3) 

(10) located in caveolae, which are 50-100 nm lipid rafts highly enriched with cholesterol and 

glycosphingolipids (186). Caveolae are characterized by caveolin coat proteins (Cav-1, Cav-2, 

Cav-3) that serve as signaling platforms for several steroid hormones (186). Upon binding to 

Pdia3, 1α,25(OH)2D3 induces interactions between Pdia3 and phospholipase-A2 (PLA2)-
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activating protein (PLAA) (125), stimulating increased calcium/calmodulin-dependent protein 

kinase II (CaMKII) activity in costochondral growth zone chondrocytes (GC) and MC3T3-E1 

osteoblasts (187). PLA2 is activated (92), producing lysophospholipid and releasing arachidonic 

acid (AA) (89) that is further processed into prostaglandin E2 (PGE2), which acts via its EP1 

receptor to increase cyclic AMP (91). Together with G

phosphatidylinositol-specific phospholipase C beta (PLCβ), generating diacylglycerol (DAG) 

and inositol 1,4,5-trisphosphate (IP3) (89,92). DAG binds PKCα, recruiting it to the plasma 

membrane (93). IP3 activates the release of calcium ions required for PKCα activation from the 

endoplasmic reticulum. 

1α,25(OH)2D3 stimulates differentiation of growth zone chondrocytes and osteoblasts, 

increasing alkaline phosphatase specific activity (91) and in the case of osteoblasts by increasing 

production of osteopontin (10). While the VDR mediates many of the effects of 1α,25(OH)2D3 

on these cells, Pdia3-dependent signaling has been shown to mediate the effects of the vitamin D 

metabolite on these two markers of osteoblast differentiation. Pdia3 gene knockout results in 

embryonic lethality (188,189) and as a result, a definitive demonstration of its role has not been 

possible. However, conditional knockout of Pdia3 in the intestinal epithelium results in severely 

blunted Ca2+ uptake in response to 1 2D3 (190), confirming its involvement in 

2D3 dependent actions. Moreover, Pdia3+/- mice exhibit a long bone phenotype (188), 

2D3 receptor in skeletal development. 

Wnts are signaling molecules that also regulate skeletal development and maintenance 

(191,192). In particular, Wnt5a is expressed in GC chondrocytes (149), which are isolated from 

the prehypertrophic and upper hypertrophic zones of the growth plate, and plays an important 

role in transition of chondrocytes between growth plate zones. Wnt5a is also expressed by 
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osteoblasts at the interface between calcified cartilage and metaphyseal bone and it has been 

shown to promote osteoblast maturation in vitro (19,20). Osteoblasts isolated from Wnt5a-/- mice 

exhibit down-regulation of osteoblastic differentiation markers including runt related 

transcription factor 2, osterix and alkaline phosphatase (21) compared to wild type cells, 

suggesting Wnt5a regulates bone formation. This is supported by histological analysis of long 

bones of Wnt5a-/- mice, which exhibit significantly delayed chondrocyte hypertrophy and skeletal 

ossification compared to wild type mice (153). Wnt5a induces its effects via several known 

receptors and co-receptors including Frizzled2 (FZD2), Frizzled5 (FZD5), and receptor tyrosine 

kinase-like orphan receptor 2 (ROR2), activating intracellular release of calcium, thereby 

activating PLC, PKC, CaMKII and calcineurin (24,193-196).  

Although 1α,25(OH)2D3 and Wnt5a both regulate osteoblast and chondrocyte maturation 

and signal via calcium-dependent mechanisms, little is known about the role of components of 

the 1α,25(OH)2D3 membrane-associated receptor complex in Wnt5a calcium-dependent 

signaling. The purpose of this study was to determine if the same receptor complex and pathway 

signaling proteins that are critical for the 1α,25(OH)2D3 membrane-mediated pathway via Pdia3 

are also important for Wnt5a calcium-dependent signaling. To address this question, we first 

verified Wnt5a-dependent activation of CaMKII, PLA2, PKC, and PGE2 release in MC3T3-E1 

osteoblasts and GC cells. Next, we determined the role of the 1α,25(OH)2D3 membrane receptor 

complex and its downstream signaling proteins in Wnt5a-stimulated PKC activation using the 

MC3T3-E1 cell model. Finally, we determined the interactions between the 1α,25(OH)2D3 

membrane-receptor complex and Wnt5a receptors with or without 1α,25(OH)2D3 or Wnt5a 

treatment in MC3T3-E1 osteoblasts. 
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MATERIALS AND METHODS 

Reagents  

 Recombinant human/mouse Wnt5a was purchased from R&D Systems (Minneapolis, 

MN). 1α,25(OH)2D3 and PLAA were purchased from Enzo Life Sciences (Plymouth Meeting, 

PA). The anti-PLAA polyclonal antibody was designed and developed by Strategic Diagnostics 

Inc. (Newark, DE) (125). Rabbit antiserum against the N-terminal peptide of Pdia3 was 

purchased from Alpha Diagnostic International (San Antonio, TX) (165). A polyclonal antibody 

to Cav-1 was purchased from Santa Cruz Biotechnology (Santa Cruz, CA). ROR2 polyclonal 

antibody was from Cell Signaling Technology (Danvers, MA). Frizzled2 polyclonal antibody 

and Frizzled5 polyclonal antibody were from Abcam (San Francisco, CA). Monoclonal antibody 

to CaM was from Millipore (Billerica, MA). Myristoylated calmodulin kinase IINtide (mer-

CaMKIINtide) peptide was from EMD Biosciences (Billerica, MA) and arachidonyl 

trifluoromethyl ketone (AACOCF3) was from Abcam. All other reagents were purchased from 

Sigma Aldrich (St. Louis, MO) unless specified. 

Cell Culture  

 Wild type (WT) mouse MC3T3-E1 subclone 4 osteoblast-like cells (CRL-2593) were 

purchased from ATCC (Manassas, VA, USA). Stably silenced MC3T3-E1 cell lines for Pdia3 

(shPdia3), PLAA (shPlaa), Cav-1 (shCav-1), VDR (shVdr), CaMKII-α (shCamk2a), and 

CaMKII-β (shCamk2b) were generated and characterized by our lab previously (10,125,178). 

Cells were plated at 10,000 cells/cm2 and cultured in Minimum Essential Medium Alpha (α-

MEM) (Life Technologies, Carlsbad, CA) containing 10% fetal bovine serum (FBS) (Hyclone, 

Waltham, MA) and 1% penicillin-streptomycin (P/S), (Life Technologies). Osteoblastic 

differentiation of MC3T3-E1 cells was induced by culture in α-MEM supplemented with 10% 
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FBS, 1% P/S and 50 µg/ml ascorbic acid 24 hours after plating, and then every 48 hours 

thereafter (86).  

 GC cells were isolated from costochondral cartilage of 100-125g male Sprague-Dawley 

rats (Harlan, Indianapolis, IN). Rats were at the end of their adolescent growth spurt; therefore, 

their long bones were growing at a reduced rate. The culture system used in this study was 

described previously in detail (11,166). Briefly, fourth passage cultures of GC chondrocytes 

were plated at 10,000 cells/cm2 and cultured in Dulbecco’s modified Eagle’s medium 

(Mediatech) containing 10% FBS, 1% P/S, and 50 µg/ml ascorbic acid.  

All cells were cultured at 37oC with 5% CO2 and 100% humidity. Confluent cultures 

were treated for experiments as described below. 

Time Course and Dose Response of PKC Activity to Wnt5a 

To assess the dose-dependent effects of Wnt5a on PKC, GC cells were treated for 9 

minutes and MC3T3-E1 cells were treated for 15 minutes with 50, 125 and 200 ng/ml Wnt5a 

(20,197), time points previously demonstrated to be optimal for activation of PKC by 

1α,25(OH)2D3 in these cell types (9,125). After treatment, cell layers were washed with 

phosphate buffered saline (PBS) and then were lysed in RIPA buffer (20 mM Tris-HCl, 150 mM 

NaCl, 5 mM disodium EDTA, 1% Nonidet P-40). PKC activity was measured in cell layer 

lysates using a commercially available kit following manufacturer’s instructions (GE Healthcare, 

Piscataway, NJ) and data were normalized to total protein (Pierce BCA Protein Assay, Thermo 

Fisher Scientific, Waltham, MA).  

Next, the time course of PKC activation by Wnt5a was examined. GC cells and MC3T3-

E1 cells were treated with 125 ng/ml (20,197) Wnt5a for 6, 9, 15, or 30 minutes. PKC activity 

was measured as described above.  
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Time Course of Wnt5a Effect on CaMKII Activity  

 GC and MC3T3-E1 cells were treated for 6, 9, 15, and 30 minutes with 125 ng/ml Wnt5a 

and cell layer lysates were assayed for CaMKII activity. CaMKII activity was measured using a 

commercially available assay following manufacturer’s instructions (SignaTECT® 

Calcium/Calmodulin-Dependent Protein Kinase Assay System, Promega, Madison, WI). 

CaMKII activity was normalized to total protein in the cell lysate. 

Time Course of Wnt5a Effect on PLA2 Activity  

 GC and MC3T3-E1 cells were treated for 6, 9, 15, or 30 minutes with 125 ng/ml Wnt5a. 

After washing the cell layers with PBS, the cell layers were lysed and assayed for PLA2 activity 

using a commercially available kit (cPLA2 Assay kit, 765021, Cayman Chemical, Ann Arbor, 

MI). PLA2 data were normalized to total protein. 

Time Course of Wnt5a Effect on PGE2 Release  

 GC and MC3T3-E1 cells were treated for 6, 9, 15, and 30 minutes with 125 ng/ml Wnt5a. 

At the end of incubation, conditioned media were acidified and PGE2 was measured using a 

commercially available kit (Prostaglandin E2 [
125I]-RIA kit, Perkin Elmer, Waltham, MA). PGE2 

levels were normalized to total DNA (Quant-iTTM PicoGreen® dsDNA Assay kit, Life 

Technologies). 

Role of Vitamin D Signaling Components on Wnt5a-induced PKC Activity  

Based on the results of time-course and dose-response studies, the treatment conditions 

resulting in the highest PKC activity (125 ng/ml Wnt5a for 9 minutes in GC cells and 125 ng/ml 

Wnt5a for 15 minutes in MC3T3-E1 osteoblasts) were selected for subsequent experiments 

unless specified in the text. 



 84 

To determine the effects of Pdia3, Vdr, and Cav-1 silencing on Wnt5a-induced PKC 

activity, wild type (WT), shPdia3, shVdr, and shCav-1 cells were treated with Wnt5a and PKC 

measured. These results were confirmed using Pdia3 and VDR blocking antibodies in GC 

chondrocytes and MC3T3-E1 osteoblasts. Cells were pretreated with either anti-Pdia3 or anti-

VDR antibodies for 30 minutes, and PKC activity measured after Wnt5a treatment. 

Methyl-beta-cyclodextrin (β-CD) disrupts lipids rafts and caveolae by binding cholesterol 

and removing it from the plasma membranes. To determine the effects of caveolae destruction on 

PKC activation, MC3T3-E1 cells were treated with 10 mM of β-CD for 30 minutes in serum-free 

media, as described previously (12). At the end of incubation, cell layers were rinsed with serum 

free media. Cells were then treated with Wnt5a and cell layer lysates were assayed for PKC 

activity. 

Role of Calmodulin on Wnt5a-induced PKC Activity 

MC3T3-E1 cells were pre-treated with 0.1, 1, or 10 μM of calmodulin inhibitor W-7 for 

30 minutes (198), then cells were treated with Wnt5a for 15 minutes and cell layer lysates were 

assayed for PKC activity. To investigate the effect of CaMKII inhibition on 1α,25(OH)2D3-

dependent PKC activation, MC3T3-E1 cells were treated for 30 minutes with 1.25, 2.5, and 5 

μM CaMKII peptide-inhibitor mer-CaMKIINtide (180) followed by Wnt5a. Cell layer lysates 

were assayed for PKC activity. To investigate the effects of Camk2a and Camk2b silencing on 

Wnt5a-stimulated PKC activation, confluent WT, shCamk2a, and shCamk2a MC3T3-E1 cells 

were treated withWnt5a. Cell layer lysates were assayed for PKC. 

Role of PLAA on Wnt5a-induced PKC Activity 

Cells were pretreated with anti-PLAA antibody (PLAA Ab) for 30 minutes followed by 

Wnt5a for 15 minutes. Cell layer lysates we assayed for PKC activity. To confirm these findings, 
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PKC activity was measured in WT and shPlaa MC3T3-E1 cells after Wnt5a treatment. To 

investigate the effects of PLA2 inhibition on PKC activity, MC3T3-E1 osteoblasts were 

pretreated with 0.1, 1, and 10 μM AACOCF3 for 30 minutes followed byWnt5a. PKC activity 

was measured in cell layer lysates. AACOCF3 has been shown in other studies to inhibit PLA2 in these 

cells (199). 

Effects of Wnt5a and 1α,25(OH)2D3 Co-treatment on Regulation of PKC Activity  

MC3T3-E1 cells were treated with 10-10, 10-9, or 10-8 M 1α,25(OH)2D3. Wnt5a was added 

to one-half of the cultures at the concentration of 125 ng/ml. At the end of 15 minute incubation, 

cell layer lysates were assayed for PKC. To assess the effects of Wnt5a in 1α,25(OH)2D3 

regulation of PKC activity, MC3T3-E1 cells were treated with 10-8 M 1α,25(OH)2D3 and 0, 50, 

87.5 or 125 ng/ml Wnt5a for 15 minutes. At the end of the incubation, the cell layer lysates were 

assayed for PKC. 

Roles of ROR2, FZD2 and FZD5 on 1α,25(OH)2D3-induced PKC Activity 

MC3T3-E1 osteoblasts were pretreated with anti-Frizzled2 (FZD2 Ab), anti-Frizzled5 

(FZD5 Ab), or anti-ROR2 (ROR2 Ab) antibodies for 30 minutes, then were treated with 10-8 M 

1α,25(OH)2D3 for 15 minutes. PKC activity was measured in cell layer lysates. 

Role of ROR2 on 1α,25(OH)2D3-induced CaMKII Activity 

MC3T3-E1 osteoblasts, cells were pretreated with anti-ROR2 antibodies for 30 minutes, 

then were treated with 10-8 M 1α,25(OH)2D3 for 15 minutes. CaMKII activity was measured in 

cell layer lysates. 

Role of ROR2 on PLAA-induced CaMKII Activity 

MC3T3-E1 osteoblasts were pretreated with anti-ROR2 antibodies for 30 minutes, then 

were treated with 10-6 M PLAA peptide for 15 minutes. CaMKII activity was measured in cell 

layer lysates. 
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Caveolae Isolation 

 Pdia3 exists in plasma membrane caveolae of osteoblasts (10). To determine the plasma 

membrane localization of FZD2, FZD5 and ROR2, plasma membranes and caveolae were 

isolated using a detergent-free method as described previously (121). Briefly, confluent MC3T3-

E1 cultures were harvested by scraping while in isolation buffer (0.25 M sucrose, 1 mM EDTA, 

20 mM Tricine, pH 7.8) and were homogenized using a tissue grinder (20 strokes; 10 strokes 

clockwise and 10 strokes counter-clockwise). Homogenates were centrifuged at 20,000 g for 10 

minutes. The supernatant was collected and layered on top of isolation buffer containing 30% 

Percoll® (GE Healthcare, Piscataway, NJ). The pellet, including nucleus, mitochondria, and 

endoplasmic reticulum, was discarded. Samples were centrifuged at 84,000 g for 30 minutes. 

Syringe needles (18G) were used to collect the plasma membrane fraction from the gradient 

column. The isolated fraction was layered over a 10-20% OptiPrep gradient (Sigma Aldrich, St. 

Louis, MO), then centrifuged at 52,000 g for another 4 hours. Plasma membrane sub-fractions 

were collected from the tube, resulting in isolation of thirteen fractions. Caveolae were observed 

as an opaque band that was collected in fraction 3.     

Western Blots 

 Whole cell layer lysates and plasma membrane fractions (50μg protein) were loaded onto 

4–20% Mini-PROTEAN® TGX™ precast polyacrylamide gels (Bio-Rad, Hercules, CA). 

Proteins were transferred to low-fluorescence PVDF membranes (Bio-Rad) using a Trans-Blot® 

Turbo™ Transfer System (Bio-Rad). Membranes were incubated with blocking buffer (LI-COR, 

Lincoln, NE) for 1 hour. Subsequently, the membranes were incubated with antibodies against 

Cav-1, FZD2, FZD5, and ROR2 overnight. The next day, the membranes were incubated for one 

hour with IRDye 800CW conjugated goat anti-rabbit IgG secondary antibodies (LI-COR) in 
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blocking buffer containing 0.2% Tween-20, and 0.01% SDS. Following three washes with PBS 

containing 0.05% Tween-20 membranes were imaged using the LI-COR Odyssey® CLx 

Infrared Imaging System. 

Effects of 1α,25(OH)2D3 and Wnt5a on Receptor Complex Interactions  

 MC3T3-E1 osteoblasts were treated with 10-8 M 1α,25(OH)2D3 or its vehicle (ethanol), 

or 125 ng/ml Wnt5a or its vehicle (cell culture medium) for 15 minutes. At the end of treatment, 

cell layers were washed with PBS and lysed in RIPA buffer containing 100 mM sodium fluoride, 

protease inhibitor cocktail, and 1 mM phenylmethylsulfonyl fluoride. Protein samples (500 μg) 

were precleared by incubation in 5 μg of rabbit IgG conjugated to Dynabeads® Protein A (Life 

Technologies) at 4oC for 1 hour. The beads were separated from solution using a magnet. To 

immunoprecipitate Pdia3, PLAA, Cav-1 and CaM protein complexes, anti-Pdia3, anti-PLAA, 

anti-Cav-1, and anti-CaM antibodies were covalently coupled to the Dynabeads Protein A 

according to the manufacturer’s protocol. Pre-cleared protein samples were mixed with antibody 

coated Dynabeads and incubated at 4oC overnight with continuous agitation. Dynabeads were 

recovered using a magnet and were washed three times with 0.05% Tween-20 in PBS. 

Precipitated proteins were eluted in elution buffer, then diluted in Tris-glycine SDS sample 

loading buffer (Bio-Rad) and boiled for 5 minutes. Immunoprecipitated samples were examined 

by Western blot (ONE-HOUR Western™ Fluorescent Kit, Genscript, Piscataway, NJ). 

Statistical Analysis  

 For each experiment, data points represent the mean ± standard error of the mean (SEM) 

of six individual cultures, per variable. Each experiment was repeated at least three times to 

ensure validity of the data. Statistical significance was assessed by analysis of variance and post 

hoc testing performed using Bonferroni’s modification of Student’s t-test for multiple 
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comparisons (GraphPad Prism, GraphPad Software, Inc., San Diego, CA). P-values <0.05 were 

considered significant.  

 

RESULTS 

Rapid Effects of Wnt5a on PKC, CaMKII, PLA2 Activations, and PGE2 Release 

Wn5a regulated the activity of PKC in GC and MC3T3-E1 cells in a dose- and time-

dependent manner. Similarly, the effects of Wnt5a on CaMKII and PLA2 activities and PGE2 

release were time-dependent and rapid. Wnt5a protein increased PKC-specific activity in a dose-

dependent manner in GC cells with the highest stimulatory effects of the peptide observed at 125 

ng/ml concentration (Fig. 5.1A). Wnt5a activated PKC in a dose-dependent manner in MC3T3-

E1 cells, with the highest stimulatory effect observed at 125 ng/ml (Fig. 5.1B). Wnt5a activated 

PKC in GC cells within 9 minutes of treatment, and PKC remained significantly higher than 

control at 15 and 30 minutes after treatment (Fig. 5.1C). We further assessed whether Wnt5a acts 

on cells by a mechanism similar to that used by 1α,25(OH)2D3. Wnt5a increased CaMKII 

activity at 9 and 15 minutes after treatment in GC chondrocytes (Fig. 5.1D). Wnt5a increased 

PLA2 activity (Fig. 5.1E) and PGE2 release (Fig. 5.1F) in GC cells at both 9 minutes and 30 

minutes after treatment. Similarly, Wnt5a caused a rapid increase in PKC activity in MC3T3-E1 

cells at 9 minutes that remained elevated until 30 minutes, with a peak at 15 minutes (Fig. 5.1G). 

Wnt5a increased CaMKII activity at 6, 9, and 30 minutes in MC3T3-E1 osteoblasts (Fig. 5.1H). 

Similarly, the effect of Wnt5a on PLA2 activity (Fig. 5.1I) and PGE2 release (Fig. 5.1J) was 

time-dependent and significant increases were observed at 9 and 30 minutes after the treatment.  
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Figure 5.1: Effects of Wnt5a treatment on PKC, CaMKII, PLA2 activations, and PGE2 

release. Growth zone chondrocytes (GC) were treated for 9 minutes (A) and MC3T3-E1 

osteoblasts were treated for 15 minutes (B) with 0, 50, 125, and 200 ng/ml Wnt5a. PKC activity 

was measured as described and normalized to total protein level. .*p<0.05, versus 0 ng/ml 

Wnt5a; #p<0.05, versus 50 ng/ml Wnt5a; $p<0.05, versus 50 ng/ml Wnt5a. Growth zone 

chondrocytes (C-F) and MC3T3-E1 (G-J) were treated with 125 ng/ml Wnt5a for 6, 9, 15, and 

30 minutes. PKC (C,G), CaMKII (D,H) and PLA2 (E,I) activations were measured as described 

and normalized to total protein. PGE2 release (F,J) was measured and normalized to total DNA. 

Treatment over control ratios were calculated for each parameter. The dashed line represents the 

value for the control cultures, which was set to 1. *p<0.05, 1α,25(OH)2D3 treatment versus 

control; @p<0.05, versus 6 minutes; #p<0.05, versus 9 minutes; $p<0.05, versus 6 minutes. 

  

Roles of Pdia3, VDR, Cav-1, and Lipid Rafts in Wnt5a-mediated Rapid Activation of PKC 

Pdia3, VDR, and plasma membrane lipids rafts structures were involved in Wnt5a-

stimulated rapid activation of PKC in MC3T3-E1 osteoblasts, while Cav-1 was not required. 

Unlike WT cells, shPdia3 osteoblasts did not increase in PKC activity in response to Wnt5a (Fig. 

5.2A). Wnt5a stimulated PKC activity in shVdr cells was significantly lower than in WT cells 

(Fig. 5.2B). However, Wnt5a activated PKC in shCav-1 osteoblasts (Fig. 5.2C). Likewise, Pdia3 

antibody (Fig. 5.2D) and VDR antibody (Fig. 5.2E) significantly reduced the Wnt5a-induced 

increase in PKC activity in MC3T3-E1 cells. Although Wnt5a stimulated PKC activity in cells 

pretreated with lipid raft disruptor β-CD, the increase was significantly lower when compared to 

the β-CD untreated group (Fig. 5.2F).  
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Figure 5.2: Effects of Pdia3, VDR and Cav-1 silencing or blocking and β-CD on Wnt5a-

mediated activation of PKC in MC3T3-E1 cells. Wild type (WT), shPdia3 (A), shVdr (B) and 

shCav-1 (C) MC3T3-E1 cells were treated with Wnt5a for 15 minutes. PKC activity was 

measured as described and normalized to total protein level. *p<0.05, treatment versus control; 
#p<0.05, versus Wnt5a treated WT. MC3T3-E1 osteoblasts were pretreated with either anti-Pdia3 

(D) or anti-VDR (E) antibodies for 30 minutes, and next they were treated with Wnt5a for 15 

minutes. PKC activity was measured as described and normalized to total protein level. *p<0.05, 

treatment versus control; #p<0.05, versus Wnt5a treated control group; $p<0.05, versus Wnt5a 

treated IgG group. (F) MC3T3-E1 osteoblasts were pretreated with β-CD for 30 minutes, and 

next they were treated with Wnt5a for 15 minutes. PKC activity was measured as described and 

normalized to total protein level. Treatment over control ratios were calculated for each 

parameter. The dashed line represents the value for the control cultures, which was set to 

1.*p<0.05, treatment versus control. 

 

 

Roles of CaM, CaMKII-α, CaMKII-β, PLAA, and PLA2 in Wnt5a-mediated Rapid 

Activation of PKC 

In MC3T3-E1 cells, Wnt5a-mediated activation of PKC depends on upstream actions of 

CaM, CaMKII-α, PLAA, and PLA2. Calmodulin inhibitor W-7 blocked activation of PKC in 

response to Wnt5a at 1 and 10 μM, but not at 0.1 μM (Fig. 5.3A). mer-CaMKIINtide inhibited 
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the Wnt5a induced increase in PKC activity in a comparable manner to W-7. mer-CaMKIINtide 

significantly reduced stimulatory effects of Wnt5a on PKC activation at 1.25μM, and completely 

blocked the effect at 2.5 and 5 μM (Fig. 5.3B). Wnt5a significantly increased PKC activity in 

WT and shCamk2b MC3T3-E1 cells, but this effect was prevented in shCamk2a cells (Fig. 

5.3C). PLAA antibody significantly reduced the Wnt5a-induced increase in PKC activity in 

MC3T3-E1 cells, whereas IgG had no effect (Fig. 5.3D). Similarly, Wnt5a increased PKC 

activity in MC3T3-E1 cells, and effect was blocked in shPlaa cells (Fig. 5.3E). PLA2 inhibitor 

AACOCF3 significantly reduced stimulatory effects of Wnt5a on PKC activation at 0.1 μM, and 

completely blocked the effect at 1 and 10 μM (Fig. 5.3F). 

 

Figure 5.3: Effects of CaM, CaMKII, PLAA, and PLA2 inhibition, and Plaa, Camk2a, and 

Camk2b silencing on Wnt5a-mediated activation of PKC in MC3T3-E1 cells. (A) MC3T3-

E1 osteoblasts were pretreated with 0, 0.1, 1 and 10 µM W-7 for 30 minutes, and next they were 

treated with Wnt5a for 15 minutes. PKC activity was measured as described and normalized to 

total protein level. *p<0.05, treatment versus control; #p<0.05, versus 0 µM W-7 + Wnt5a; 
%p<0.05, versus 0.1 µM W-7 + Wnt5a. (B) MC3T3-E1 osteoblasts were pretreated with 0, 1.25, 
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2.5, and 5 µM mer-CaMKIINtide for 30 minutes, and next they were treated with Wnt5a for 15 

minutes. PKC activity was measured as described and normalized to total protein level. *p<0.05, 

treatment versus control; #p<0.05, versus 0 μM mer-CaMKIINtide + Wnt5a; $p<0.05, versus 0.1 

μM mer-CaMKIINtide + vehicle; %p<0.05, versus 1.25 μM mer-CaMKIINtide + Wnt5a. (C) 

Wild type (WT), shCamk2a, and shCamk2b MC3T3-E1 cells were treated with Wnt5a for 15 

minutes. PKC activity was measured as described and normalized to total protein level. *p<0.05, 

treatment versus control; #p<0.05, versus Wnt5a-treated WT; $p<0.05, versus Wnt5a treated 

shCamk2b; @p<0.05, versus vehicle treated WT; %p<0.05, versus vehicle treated shCamk2a. (D) 

MC3T3-E1 osteoblasts were pretreated with anti-PLAA antibody for 30 minutes, and next they 

were treated with Wnt5a for 15 minutes. PKC activity was measured as described and 

normalized to total protein level. *p<0.05, treatment versus control; #p<0.05, versus Wnt5a 

treated control group; $p<0.05, versus Wnt5a treated IgG group. (E) Wild type (WT) and shPlaa 

MC3T3-E1 cells were treated with Wnt5a for 15 minutes. PKC activity was measured as 

described and normalized to total protein level. *p<0.05, treatment versus control; #p<0.05, 

versus Wnt5a-treated WT cells. (F) MC3T3-E1 cells were pretreated with 0, 0.1, 1, and 10 µM 

AACOCF3 for 30 minutes, and next they were treated with Wnt5a for 15 minutes. PKC activity 

was measured as described and normalized to total protein level. *p<0.05, treatment versus 

control; #p<0.05, versus 0 µM AACOCF3 + Wnt5a; $p<0.05, 0 µM AACOCF3 + vehicle versus 

0.1 µM AACOCF3 + Wnt5a. 

 

Wnt5a and 1α,25(OH)2D3 Co-treatment Studies  

Given that both 1α,25(OH)2D3 and Wnt5a promote maturation of osteoblasts and use 

Pdia3 to induce their effects, we tested the effects of their co-treatment on the induction of their 

signaling pathways in MC3T3-E1 osteoblasts, specifically examining PKC activation. In 

MC3T3-E1 osteoblasts, 1α,25(OH)2D3 caused a dose-dependent increase in PKC activity in 

control cultures (Fig. 5.4A). When 10-10-10-8 M 1α,25(OH)2D3 and 125 ng/ml Wnt5a were added 

to MC3T3-E1 cell together, the increase in PKC activity was reduced in a 1α,25(OH)2D3 dose-

dependent manner, and returned to control levels at the highest concentration of 1α,25(OH)2D3 

tested. Furthermore, Wnt5a increased PKC activity in a dose-dependent manner (Fig. 5.4B). Co-

treatment with 50 ng/ml Wnt5a caused a 2-fold increase in 1α,25(OH)2D3 stimulated PKC 

activity compared to cultures treated with only 1α,25(OH)2D3. However, as the concentration of 

Wnt5a increased, 1α,25(OH)2D3-stimulated PKC activation was suppressed. 
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Figure 5.4: Effect of 1α,25(OH)2D3 in Wnt5a-dependent PKC activation and effect of 

Wnt5a in 1α,25(OH)2D3 regulation of PKC activity. (A) MC3T3-E1 cells were treated for 15 

minutes with 10-10, 10-9 and 10-8 M 1α,25(OH)2D3. Wnt5a was added to one-half of the cultures 

at the concentration of 125 ng/ml, at the time of the treatment. At the end of incubation, cell 

layers were collected for PKC assay. PKC values were normalized to total protein. *p<0.05, 

treatment versus control; #p<0.05, versus 0 M 1α,25(OH)2D3 + vehicle; $p<0.05, versus 0 M 

1α,25(OH)2D3 + Wnt5a; @p<0.05 versus 10-10 M 1α,25(OH)2D3 + Wnt5a. (B) MC3T3-E1 cells 

were treated with 10-8 M 1α,25(OH)2D3 in the presence and absence of 50, 87.5 and 125 ng/ml 

Wnt5a. At the end of the incubation, the cell layers were collected for PKC assay. PKC values 

were normalized to total protein. *p<0.05, treatment versus control; #p<0.05, versus 0 ng/ml 

Wnt5a + vehicle; $p<0.05, versus 1α,25(OH)2D3 + 0 ng/ml Wnt5a; @p<0.05 versus 

1α,25(OH)2D3 + 5 ng/ml Wnt5a. 

 

Roles of ROR2, FZD2, and FZD5 in 1α,25(OH)2D3–mediated PKC Activation and Their 

Subcellular Localization 

Given, the key roles ROR2, FZD2 and FZD5 play in Wnt5a signaling, we assessed their 

role on 1α,25(OH)2D3 stimulated rapid activation of PKC and CaMKII. ROR2, but not FZD2 

and FZD5 mediated the 1α,25(OH)2D3 stimulated rapid activation of PKC and CaMKII in 

MC3T3-E1 osteoblasts. Anti-ROR2 antibody abolished the 1α,25(OH)2D3-dependent increase in 

PKC activity in MC3T3-E1 cells (Fig. 5.5A), whereas, IgG had no effect. Conversely, blocking 

FZD2 and FZD5 receptors had no effect on activation of PKC in response to 1α,25(OH)2D3 

treatment. Similarly, anti-ROR2 antibody abolished the 1α,25(OH)2D3-dependent increase in 
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CaMKII activity in MC3T3-E1 cells (Fig. 5.5B). Furthermore, anti-ROR2 antibody had no effect 

on PLAA-induced CaMKII activation (Fig. 5.5C). Western blots of the plasma membrane 

fractions of MC3T3-E1 cells indicated that ROR2, FZD2, and FZD5 were present in the plasma 

membranes with their greatest concentration in fraction 3, which represents caveolae 

microdomains (Fig. 5.5D).  

 

Figure 5.5: Role of FZD2, FZD5 and ROR2 in 1α,25(OH)2D3 -dependent PKC activation 

and their plasma membrane localization. (A) MC3T3-E1 osteoblasts were pretreated with 

either anti-FZD2, anti-FZD5 or anti-ROR2 antibodies for 30 minutes, and next they were treated 

with 1α,25(OH)2D3 for 15 minutes. PKC activity was measured as described and normalized to 

total protein level. *p<0.05, treatment versus control; #p<0.05, versus vehicle treated Control 

group; $p<0.05, versus IgG + 1α,25(OH)2D3; 
%p<0.05 versus FZD2 Ab + 1α,25(OH)2D3; 

^p<0.05 versus ROR2 Ab + 1α,25(OH)2D3. (B) MC3T3-E1 osteoblasts were pretreated with anti-

ROR2 antibodies for 30 minutes, and next they were treated with 1α,25(OH)2D3 for 15 minutes. 

CaMKII activity was measured and normalized to total protein level. *p<0.05, treatment versus 

control. (C) MC3T3-E1 osteoblasts were pretreated with anti-ROR2 antibodies for 30 minutes, 

and next they were treated with PLAA peptide for 15 minutes. CaMKII activity was measured 

and normalized to total protein level. *p<0.05, treatment versus control. (D) Plasma membrane 

localization of FZD2, FZD5 and ROR2. Plasma membrane fractions were isolated as described. 

Presence of FZD2, FZD5, ROR2 and Cav-1 in fractions were examined by Western blot. Each 

figure is a representative experiment repeated three times with similar results. 
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Effects of 1α,25(OH)2D3 Treatment on 1α,25(OH)2D3 Receptor Complex and Wnt5a 

Receptors Interactions 

Immunoprecipitation studies confirmed the interaction between components of 

1α,25(OH)2D3 receptor complex and Wnt5a receptors. 1α,25(OH)2D3 treatment altered some of 

these interactions. Samples of MC3T3-E1 whole cell lysates immunoprecipitated using 

antibodies to Pdia3 (IP:Pdia3) were positive for FZD2, FZD5, and ROR2 (Fig. 5.6A). Treatment 

with 1α,25(OH)2D3 for 15 minutes had no effect on Pdia3:FRZ5 but increased Pdia3:FZD2 and 

Pdia3:ROR2. Western blots of whole cell lysates immunoprecipitated with antibodies to PLAA 

(IP:PLAA) demonstrated an increase in FZD2-associated PLAA after addition of 1α,25(OH)2D3 

(Fig. 5.6B). FZD5 and ROR2 interacted with PLAA, but 1α,25(OH)2D3 treatment had no effect 

on these interactions. Cav-1 (IP:Cav-1) interacted with FZD2, FZD5, and ROR2 (Fig. 5.6C). 

Treatment with 1α,25(OH)2D3 for 15 minutes had no effect on FZD2 and FZD5 but reduced 

ROR2. Immunoprecipitation of CaM (IP:CaM) demonstrated interaction with FZD5 with or 

without 1α,25(OH)2D3 treatment (Fig. 5.6D). FZD2 and ROR2 also interacted with CaM and 

1α,25(OH)2D3 treatment reduced their interactions with CaM. 
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Figure 5.6: Effect of 1α,25(OH)2D3 treatment on interactions between 1α,25(OH)2D3 

receptor complex and Wnt5a receptors. MC3T3-E1 cells were treated with 1α,25(OH)2D3 for 

15 minutes. Whole cell lysates were isolated as described. (A) Pdia3 was immunoprecipitated 

and subjected to Western blot. The membranes were incubated with Ab Pdia3, Ab FZD2, anti-

FZD5, and anti-ROR2 antibodies. (B) PLAA was immunoprecipitated and subjected to Western 

blot. The membranes were incubated with the anti-PLAA, anti-FZD2, anti-FZD5, and anti-

ROR2 antibodies. (C) Cav-1 was immunoprecipitated and subjected to Western blot. The 

membranes were incubated with the anti-Cav-1, anti-FZD2, anti-FZD5, and anti-ROR2 

antibodies. (D) CaM was immunoprecipitated and subjected to Western blot. The membranes 

were incubated with the anti-CaM, anti-FZD2, anti-FZD5, and anti-ROR2 antibodies. Each 

figure is a representative experiment repeated three times with similar results. 
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Effects of Wnt5a Treatment on Interactions between 1α,25(OH)2D3 Receptor Complex and 

Wnt5a Receptors 

Immunoprecipitates of MC3T3-E1 whole cell lysates using antibodies to Pdia3 (IP:Pdia3) 

were positive for FZD2 and FZD5 (Fig. 5.7A). Treatment with Wnt5a for 15 minutes had no 

effect on FZD2’s interaction with Pdia3 but increased FZD5. Western blots of whole cell lysates 

immunoprecipitated with antibodies to PLAA (IP:PLAA) demonstrated interaction with FZD2 

and FZD5 with and without 1α,25(OH)2D3 treatment (Fig. 5.7B). ROR2 also interacted with 

PLAA, and Wnt5a treatment reduced its interaction with PLAA. Immunoprecipitation of Cav-1 

(IP:Cav-1) demonstrated interactions with FZD2, FZD5 and ROR2 (Fig. 5.7C). While Wnt5a 

treatment reduced FRD2 and ROR2 interactions with Cav-1, it had no effect on FZD5 

interactions with Cav-1. Immunoprecipitation of CaM (IP:CaM) demonstrated interaction with 

FRZD5 with or without Wnt5a treatment (Fig. 5.7D). FZD2 and ROR2 also interacted with 

CaM. 1α,25(OH)2D3 treatment increased FZD2 and CaM interaction and decreased ROR2 and 

CaM interaction. 
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Figure 5.7: Effect of Wnt5a treatment on interactions between 1α,25(OH)2D3 receptor 

complex and Wnt5a receptors. MC3T3-E1 cells were treated with Wnt5a for 15 minutes. 

Whole cell lysates were isolated as described. (A) Pdia3 was immunoprecipitated and subjected 

to Western blot. The membranes were incubated with the anti-Pdia3, anti-FZD2 and anti-FZD5 

antibodies. (B) PLAA was immunoprecipitated and subjected to Western blot. The membranes 

were incubated with the anti-PLAA, anti-FZD2, anti-FZD5 and anti-ROR2 antibodies. (C) Cav-1 

was immunoprecipitated and subjected to Western blot. The membranes were incubated with the 

anti-Cav-1, anti-FZD2, anti-FZD5 and anti-ROR2 antibodies. (D) CaM was immunoprecipitated 

and subjected to Western blot. The membranes were incubated with the anti-CaM, anti-FZD2, 

anti-FZD5 and anti-ROR2 antibodies. Each figure is a representative experiment repeated three 

times with similar results. 
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DISCUSSION 

This study demonstrates that signaling proteins critical for the 1α,25(OH)2D3 membrane-

mediated pathway are also crucial for Wnt5a calcium-dependent signaling. Events at the 

signaling level indicated that Wnt5a calcium-dependent signaling works through a mechanism 

involving the CaMKII/PLA2/PGE2/PKC pathway. Moreover, silencing or blocking of Pdia3, 

PLAA and VDR and inhibition of CaM, CaMKII and PLA2 affected the activity of PKC in 

response to Wnt5a treatment. In contrast, PKC activity was unaffected in Cav-1 silenced cells, 

but the stimulatory effect of Wnt5a was decreased in cells treated with β-CD. Furthermore, 

Western blots of plasma membrane fractions indicated that ROR2, FZD2, and FZD5 are 

localized in caveolae fraction. Blocking of ROR2 abolished the stimulatory effects of 

1α,25(OH)2D3 on PKC and CaMKII activations. This study also provides mechanistic 

information by showing that the 1α,25(OH)2D3 receptor complex and its downstream mediators 

form complexes with Wnt5a receptors, and these complexes respond to both 1α,25(OH)2D3 and 

Wnt5a treatment by altering some of their protein-protein interactions.  

Similar to 1α,25(OH)2D3 signaling, Wnt5a time course studies indicate a rapid increase in 

CaMKII, PLA2 and PKC activities and PGE2 release in GC chondrocytes and MC3T3-E1 

osteoblasts. While the profiles of time points at which Wnt5a activated PLA2 and triggered PGE2 

release were similar between GC and MC3T3-E1 cells, differences were observed in PKC and 

CaMKII activities. One reason that may contribute to such a difference is that while GC cells are 

primary cartilage cells isolated from rat costochondral cartilage growth zone, MC3T3-E1 

osteoblasts are a cell line derived from mouse calvaria. The second potential reason for such an 

observation is that growth zone chondrocytes used in these experiments were isolated from 100-
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125 g male Sprague-Dawley rats, and these rats were at the end of their adolescent growth spurt 

while the mouse osteoblastic MC3T3-E1 cell line was derived from a newborn mouse.  

Previously, we reported that Pdia3, PLAA, VDR, Cav-1 and caveolae are critical for 

1α,25(OH)2D3 membrane-mediated signaling (10,12,87,125). Similar to 1α,25(OH)2D3 

membrane-mediated signaling, our results indicated that Pdia3, PLAA, and VDR are critical for 

Wnt5a calcium-dependent pathway. However, to our surprise, silenced Cav-1 osteoblasts 

activated PKC in response to Wnt5a treatment, suggesting that Cav-1 is not necessary for the 

Wnt5a calcium-dependent pathway. To further investigate the role of lipid rafts in Wnt5a 

calcium-dependent pathway, we subjected the cells to β-CD. PKC activity increased in cells 

pretreated with β-CD but the increase was significantly lower than the β-CD-untreated group. 

Collectively, these studies indicate that Wnt5a induces its effects partially via lipid rafts and 

caveolae are not required to mediate Wnt5a effects. Previously, FZD5 and FZD2 proteins have 

been reported to be found in clathrin coated pits, suggesting Wnt5a regulates its pathway via this 

group of lipid rafts (200). 

Our inhibitor study indicates that CaM, CaMKII, and PLA2 are critical for Wnt5a 

stimulated PKC activation. We previously reported that CaM plays a critical role in 

1α,25(OH)2D3 membrane-mediated pathway and its inhibition blocks 1α,25(OH)2D3 stimulated 

rapid activation of PKC (187). In the present study, we found that CaM inhibition by W-7 

abolished Wnt5a stimulated activation of PKC in a dose-dependent manner. Our hypothesis that 

CaM is required for Wnt5a stimulated activation of PKC is also supported by the observation 

that CaM inhibition suppresses PKC translocation in response to phorbol 12-myristate 13-acetate 

(PMA) treatment in the rat aorta (201). In our previous work, we reported that CaMKII, isoform 

α, is necessary for 1α,25(OH)2D3 membrane stimulated activation of PLA2, PKC and PGE2 
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release (187). Using mer-CaMKIINtide to inhibit the effect of CaMKII, we tested the role of 

CaMKII in Wnt5a induced PKC activation. In the current study, we found that CaMKII 

inhibition abolished Wnt5a stimulated activation of PKC in a dose-dependent manner. Our 

hypothesis that CaMKII is required for Wnt5a induced activation of PKC is also supported by 

the observation that CaMKII regulates PLA2 activity (18). PLA2 is known to act upstream of 

PKC in several signaling pathways, including 1α,25(OH)2D3 and dihydrotestosterone (92,202), 

hence CaMKII influences PKC activity in a PLA2-dependent mechanism. Additionally, in 

agreement with previous findings (92,202), we found that PLA2 inhibition abolished Wnt5a 

induced activation of PKC in a dose-dependent manner. 

MC3T3-E1 osteoblasts respond to 125 ng/ml Wnt5a with a rapid increase in PKC 

activity. Here we report that co-treatment with 10-10-10-8 M 1α,25(OH)2D3 abrogates the increase 

in PKC activation seen with exogenous 125 ng/ml Wnt5a treatment alone, in a dose dependent 

manner. Co-treatment of osteoblasts with 125 ng/ml Wnt5a and 10-8 M 1α,25(OH)2D3, returned 

PKC activity to the control level. Previously, we reported that MC3T3-E1osteoblasts respond to 

10-8 M 1α,25(OH)2D3 with a rapid increase in PKC activity (10). However, co-treatment with 50-

125ng/ml Wnt5a leads to a strong increase in PKC activity. Surprisingly, we observed that co-

treatment with Wnt5a induces enhanced effects on 1α,25(OH)2D3 stimulated PKC activation at 

low dose of Wnt5a and repressive effects at high dose of Wnt5a. These results may suggest that 

Wnt5a and 1α,25(OH)2D3 pathways compete at their receptor complex or downstream pathway 

mediators levels.  

Previously, we reported that 1α,25(OH)2D3 membrane associated receptor, Pdia3, is 

present in plasma membrane compartments called caveolae (203). We also showed that PLAA 

and CaM are present in caveolae, where their interaction with Pdia3 receptor complex is critical 



 103 

for transducing the 1α,25(OH)2D3 signal (125,187). In the present study, our plasma membrane 

fractionation experiment indicates that ROR2, FZD2, and FZD5 are localized in fraction 3. 

Furthermore, our receptor antibody blocking experiments shows that blocking ROR2 abolishes 

1α,25(OH)2D3 stimulated PKC activation while blocking FZD2 and FZD5 receptors has no effect 

on activation of PKC in response to 1α,25(OH)2D3 treatment. These results indicate that Wnt5a 

co-receptor, ROR2, is part of 1α,25(OH)2D3 membrane-associate receptor complex in caveolae. 

In agreement with our findings, another group has detected ROR2 in Cav-1-α positive 

cholesterol-rich, detergent-resistant microdomains (DRMs) of the plasma membrane in (204). 

Furthermore, they showed that ROR2 forms a complex with bone morphogenetic protein 

receptor type 1B (BMPR1B) in a ligand-independent manner and it inhibited the growth and 

differentiation factor 5 (GDF5)/BMPR1B induced Smad 1/5 signaling pathway in ATDC5 cells 

(205). Collectively, these findings suggest that ROR2 participates in multiple signaling pathways 

including Wnt5a, BMP and 1α,25(OH)2D3. 

Wnt5a induces its non-canonical signaling via several receptors. ROR2 is a 

transmembrane receptor, previously identified to mediate Wnt5a actions (206). Wnt5a increases 

ROR2 expression, and knockdown of WNT5A dramatically decreases expression of ROR2 (195). 

ROR2 has regions of cysteine-rich domain that serve as its Wnt binding domain (157,158). 

Several conditions, including brachydactyly type B and autosomal recessive Robinow syndrome, 

which display severe skeletal dysplasia, are due to mutations in the ROR2 gene (207,208). 

Additionally, ROR2 is critically required for Wnt5a-induced migration of osteoblasts (209). 

Wnt5a can also act via the Frizzled family of receptors. In human cells, FZD2 and FZD5 are 

known to act as Wnt5a receptors and activate its non-canonical signaling cascades (155,156). 

Our immunoprecipitation study indicates that Pdia3 forms complexes with ROR2, FZD2, and 
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FZD5. While Wnt5a treatment increases the interactions between Pdia3-FZD5, the interactions 

between Pdia3-FZD2 remains unchanged. 1α,25(OH)2D3 reduces the interactions between Pdia3-

FZD2 whereas the interaction between Pdia3-FZD5 and Pdia3:ROR2 are not altered. Our PLAA 

immunoprecipitation shows that PLAA forms a complex with ROR2, FZD2, and FZD5. Our 

studies indicate that 1α,25(OH)2D3 and Wnt5a trigger an increase in interaction between PLAA-

FZD2 and a reduction in interaction between PLAA-FZD5. WhileWnt5a treatment decreases the 

interaction between PLAA-ROR2, 1α,25(OH)2D3 treatment does not change the interaction 

between PLAA-ROR2. To our surprise, Cav-1 immunoprecipitation studies indicate that Cav-1 

forms a complex with ROR2, FZD2, and FZD5. Cav-1 immunoprecipitation studies show no 

change in Cav-1-FZD2 and Cav-1-FZD-5, while a reduction is observed between Cav-1-ROR2. 

Furthermore, we show that Wnt5a does not alter the interactions between Cav-1-FZD5 while, but 

it stimulates a reduction between Cav-1-FZD2 and Cav-1-ROR2. While Cav-1 silencing does not 

alter the response of osteoblasts to Wnt5a, our immunoprecipitation studies suggest Wnt5a 

treatment changes the interactions between Cav-1 and its receptors. Others have reported that 

while most of the FZD5 co-localizes with clathrin, a small amount of FZD5 has been observed to 

co-localize with Cav-1 in HeLaS3 cells (200).  

Our CaM immunoprecipitation studies suggest that CaM forms a complex with ROR2, 

FZD2, and FZD5. Wnt5a treatment does not alter the interactions between CaM-FZD2 and 

CaM-FZD5, while it reduces the interaction between CaM-ROR2. 1α,25(OH)2D3 treatment 

decreases the interactions between CaM-FZD2 and CaM-ROR2; however, it does not alter the 

interactions between CaM-FZD5. These results indicates that CaM serves as a mediator in both 

1α,25(OH)2D3 and Wnt5a pathways; suggesting its potential role to mediate the cross-talk 

between these two pathways.  
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The results of this study suggest that Wnt5a and 1α,25(OH)2D3 mediate their effects via a 

network of interacting mediators rather than through a secluded linear pathway. In co-treatment 

studies, we speculate that 1α,25(OH)2D3 receptor competes with Wnt5a receptors for binding of 

PLAA, CaM and Cav-1, thus inhibiting downstream PKC signaling. Previously, similar 

1α,25(OH)2D3-induced mechanisms in which one hormone can modulate the activity of a 

second, by competing for a shared mediator site, have been identified. Work from the Ross lab 

has shown that retinoid X receptor (RXR)-vitamin D receptor (VDR) and retinoid acid receptor 

(RAR)-RXR heterodimers compete for a novel steroid hormone response element containing 

elements responding to retinoid acid and 1α,25(OH)2D3 in the promoter region of the avian β3 

integrin gene (210). Co-treatment with retinoid acid and 1α,25(OH)2D3 resulted in a response 

equal to that of retinoid acid alone (210). Furthermore, their results indicated RAR-RXR had a 

greater affinity for the shared promoter region than RXR-VDR, hence co-addition of retinoid 

acid and 1α,25(OH)2D3 resulted in preferred binding of RAR-RXR to the promoter and inhibition 

of 1α,25(OH)2D3 induced transcription (210). Similar to this finding, our results also indicated 

that Wnt5a and 1α,25(OH)2D3 compete for similar signaling mediators and co-treatment 

antagonizes the immunological effects of 1α,25(OH)2D3. 1α,25(OH)2D3 is known to stimulate 

alkaline phosphatase activity (91) and osteopontin production (10), markers of osteoblast 

maturation, via its membrane-mediated events. Wnt5a has also been shown to promote 

osteoblasts differentiation and maturation. Wnt5a treatment increases osteocalcin and 

osteoprotegerin levels and alkaline phosphatase specific activity (20), while its knockout down 

regulates osteoblastic differentiation markers including runt related transcription factor 2, osterix 

and alkaline phosphatase (21). Future studies should focus on the in vivo consequences of the 

regulation of growth plate chondrocytes growth and differentiation by Wnt5a and 1α,25(OH)2D3.   



 106 

CONCLUSION 

In conclusion, this study investigated the requirement for components of 1α,25(OH)2D3 

membrane-associated receptor complex in Wnt5a calcium-dependent signaling. We found that 

Wnt5a stimulates its calcium-dependent actions via Pdia3 receptor complex. In time course 

studies, GC chondrocytes and MC3T3-E1 osteoblasts treated with Wnt5a exhibited a time-

dependent increase in activation of CaMKII, PLA2, PKC, and PGE2 release. Silencing Pdia3, 

PLAA, VDR, and inhibition of CaM, CaMKII, and PLA2 suppressed the activation of PKC in 

response to Wnt5a treatment. Silencing Cav-1 had no effect on Wnt5a-mediated PKC activation, 

which reveals one of the differences between the mediators of 1α,25(OH)2D3 and Wnt5a 

calcium-dependent pathways. Our results also showed that ROR2, one of the receptors of Wnt5a, 

plays an important role in 1α,25(OH)2D3 membrane mediated signaling. Blocking ROR2 

abolished 1α,25(OH)2D3 induced PKC and CaMKII activations. Moreover, immunoprecipitation 

studies showed that 1α,25(OH)2D3 membrane receptor complex (Pdia3, PLAA, Cav-1 and CaM) 

interacts with Wnt5a receptors (ROR2, FZD2 and FZD5). While most of their protein-protein 

interactions were independent of either 1α,25(OH)2D3 or Wnt5a treatment, a few of the 

interactions changed with ligands treatments. In co-treatment study, addition of 1α,25(OH)2D3 

induced repressive effects on Wnt5a mediated PKC activation in a dose-dependent manner. We 

found that co-treatment with 1α,25(OH)2D3 repressed Wnt5a-mediated PKC activation in a dose-

dependent manner, and was most inhibited at 10-8 M. Furthermore, co-treatment with 50 ng/ml 

Wnt5a caused a 2-fold increase in 1α,25(OH)2D3 stimulated PKC activity compared to cultures 

treated with only 1α,25(OH)2D3. However, as the concentration of Wnt5a increased, it induced 

repressive effects on 1α,25(OH)2D3-mediated PKC activation. The results of this study suggest 

that signaling components of Pdia3 receptor complex are required for mediating the calcium-
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dependent actions of Wnt5a and 1α,25(OH)2D3 may modulate the response of Wnt5a by 

competing for similar signaling mediators. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

Considering the complexity of signal transduction pathways, occasional errors in cell 

signaling may result in pathological or disease states. 1α,25(OH)2D3 and its receptors play key 

roles in the regulation of growth plate chondrocytes and bone mineralization. Successful 

development of therapeutic agents that mimic the effects of 1α,25(OH)2D3 requires a 

comprehensive understanding of the signaling mechanisms involved in the actions of this 

secosteroid hormone. The objective of this thesis was to examine the roles of PLAA protein and 

CaMKII in 1α,25(OH)2D3 rapid membrane-mediated signaling, and to determine the receptor 

complex interactions between the 1α,25(OH)2D3 and Wnt5a receptor complex. The results of our 

study confirm that PLAA and CaMKII are crucial for mediating the rapid actions of 

1α,25(OH)2D3, and 1α,25(OH)2D3 and Wnt5a calcium-dependent pathways are mediated by 

similar signaling components, which suggest the two pathways may interact. 

PLAA is produced in many 1α,25(OH)2D3-responsive cells including growth zone 

chondrocytes and osteoblasts. PLAA peptide treatment mimicked the effects of 1α,25(OH)2D3 on 

growth zone chondrocytes and MC3T3-E1 osteoblasts, and was found to be necessary for 

1α,25(OH)2D3 rapid membrane-mediated signaling. This protein was detected in plasma 

membranes and caveolae, and crosslinking studies confirmed the localization of PLAA on the 

extracellular face of the membrane. 1α,25(OH)2D3 increased the interaction between Pdia3 and 

PLAA, and it failed to activate PLA2 and PKC or cause PGE2 release when PLAA was knocked 

down. The results of this study suggest that PLAA is the likely candidate aiding in transducing 

the 1α,25(OH)2D3 signal from the Pdia3 receptor complex. Moreover, the strong link between 
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PLAA and 1α,25(OH)2D3 rapid signaling may have implications on normal skeletal 

development, which requires further investigation. Our results suggest that PLAA is exposed to 

the extracellular membrane region, which makes it an attractive candidate as a potential 

therapeutic target for conditions that are resistant to conventional vitamin D therapy. Small-

molecule drugs can be designed to activate PLAA at the extracellular face of the plasma 

membrane, thereby reducing the cytotoxicity caused by entrance of these molecules inside of the 

cells. Developing a novel small-molecule drug that stimulates rapid actions of 1α,25(OH)2D3 via 

activation of PLAA may take decades before it is clinically available to patients. Alternatively, 

delivering the full-length PLAA protein or its peptide, which contains a region of homology with 

melittin, via molecular targeted nanocarriers, may lead to the next big clinical breakthrough for 

treating disorders that are resistant to vitamin D therapy.   

 In the growth plate, CaMKII is an important regulator of chondrocyte hypertrophy, and 

chemical inhibition of CaMKII disrupts the growth plate architecture. The data demonstrated that 

1α,25(OH)2D3 and PLAA peptide rapidly increased CaMKII activity, and knockdown of 

members of 1α,25(OH)2D3 receptor complex inhibited 1α,25(OH)2D3-induced CaMKII 

activation. 1α,25(OH)2D3 increased the interaction between CaM and PLAA. Knockdown of 

CaMKII-α and inhibition of CaM reduced cPLA2 and PKC activities, PGE2 release and 

osteoblast maturation markers in response to 1α,25(OH)2D3. Collectively, these findings suggest 

1α,25(OH)2D3 mediates its signal from PLAA to PLA2 via a mechanism involving CaM and 

CaMKII. Aberrations in 1α,25(OH)2D3 membrane-mediated signaling due to the loss of activated 

CaMKII may have adverse effects on skeletal development, which remains to be elucidated in 

future studies. It is possible that in clinical cases where complications arise with inactivation of 

CaMKII isoform(s), including Alzheimer’s disease, the response to 1α,25(OH)2D3 and other 
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activators of the calcium-dependent pathway is less robust than the response in individuals 

carrying functional CaMKII. This deregulation of calcium-dependent pathways may possibly 

affect bone and cartilage.  

Wnt5a and 1α,25(OH)2D3 play critical roles in promoting osteoblast maturation. This 

study demonstrated that signaling proteins critical for 1α,25(OH)2D3 membrane mediated 

pathway are also important for Wnt5a calcium-dependent signaling, and suggests a novel 

mechanism by which Pdia3 receptor complex modulates the calcium-dependent actions of 

Wnt5a. The results of this study indicated that Wnt5a signal is transduced via a mechanism 

involving the rapid activation of CaMKII/PLA2/PGE2/PKC pathway in growth zone 

chondrocytes and MC3T3-E1 osteoblasts. Pdia3, PLAA, CaM, CaMKII and PLA2 were essential 

for mediating rapid actions of Wnt5a. Moreover, Wnt5a receptors were found to be localized in 

caveolae, where they interacted with the 1α,25(OH)2D3 receptor complex. Co-treatment with 

1α,25(OH)2D3 repressed Wnt5a-mediated PKC activation in a dose-dependent manner, and was 

most inhibited at 10-8 M. Furthermore, co-treatment with 50 ng/ml Wnt5a caused a 2-fold 

increase in 1α,25(OH)2D3 stimulated PKC activity compared to cultures treated with only 

1α,25(OH)2D3. However, as the concentration of Wnt5a increased, it induced repressive effects 

on 1α,25(OH)2D3-mediated PKC activation. These results demonstrate that 1α,25(OH)2D3 and 

Wnt5a calcium-dependent pathways are mediated by similar signaling components, which 

suggest the two pathways may interact. Aberrations in 1α,25(OH)2D3 membrane-mediated 

signaling may affect those signaling orchestrated by Wnt5a and their regulation of skeletal 

development, which remains to be elucidated in future studies. It is possible that in disorders 

arising due to inactivation of 1α,25(OH)2D3 membrane-mediated signaling, the response to Wn5a 

is reduced, leading to deregulation of skeletal development. In vivo animal studies examining the 
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role of interactions between the two pathways in growth plate development are needed to 

confirm this hypothesis. Biochemically, the endochondral fracture healing process is similar to 

that of growth plate calcification. It is probable that the interaction between 1α,25(OH)2D3 and 

Wnt5a calcium-dependent pathways may regulate bone fracture healing. 

Caveolae are plasma membrane domains enriched in cholesterol and sphingolipids. These 

special types of lipid rafts are involved in signal transduction processes, and trafficking and 

sorting of proteins (211,212). 1α,25(OH)2D3 stimulates the rapid Pdia3-mediated signaling via 

caveolae microdomains of the plasma membrane. The Pdia3 receptor complex is localized in 

caveolae and the disruption of these membranes using methyl-beta-cyclodextrin (β-CD) 

abolishes 1α,25(OH)2D3-dependent PKC and CaMKII activation.  

β-CD is well known to bind and sequester cholesterol in its hydrophobic core (213,214). 

In addition to cholesterol binding, several other studies reported that cyclodextrins can form 

complexes with sphingolipid monomers (215,216).  “Stringent” treatment conditions, 10mM β-

CD for 30 minutes, significantly reduce phosphotidylcholine (PC), cholesterol and sphingolipid 

content of low-density detergent–insoluble membrane fractions, which include caveolae (217). 

Recent studies have also indicated a role for sphingolipid signaling in rapid actions induced by 

1α,25(OH)2D3 (218,219). 1α,25(OH)2D3 activates sphingomyelinase, leading to hydrolysis of 

sphingomyelin and ceramide production at 15 minutes after treatment in ROS17/2.8 

osteosarcoma cells. Ceramide is known to directly bind to the calcium/lipid-binding domain 

(CaLB) of cPLA2, stimulating its translocation to the plasma membrane and subsequent 

activation (220). Moreover, ceramide-1-phosphate has also been shown to bind to the C2 domain 

of group IV cPLA2 stimulating its activation (221). Thus, another possible mechanism by which 

β-CD abolishes 1α,25(OH)2D3-dependent PKC and CaMKII activation can be explained via 



 112 

depletion of sphingolipids from caveolae, which indicates a need for further investigation. 

Additionally, although our data are not sufficient to establish 1α,25(OH)2D3-activated ceramide-

mediated PLA2 activation in osteoblasts and chondrocytes, it is highly probable that sphingolipid 

signaling may contribute to activation of PLA2 in response to 1α,25(OH)2D3 treatment. Effects of 

ceramide on 1α,25(OH)2D3-dependent activation of PLA2 should be considered in future studies.  

Furthermore, recent studies investigating the cholesterol-independent effects of β-CD on 

membrane protein mobility have suggested a role for cyclodextrins (222). These studies indicate 

that both β-CD and α-cyclodextrin (which does not extract cholesterol) reduce mobility of 

membrane proteins independent of their cholesterol binding properties. It is quite possible that β-

CD treatment reduces mobility of Pdia3 receptor complex; hence, reducing its ability to mediate 

the 1α,25(OH)2D3 signal, although our data are not sufficient to confirm this mechanism. Future 

studies are required to explicitly test for the effect of β-CD on 1α,25(OH)2D3-activated Pdia3 

receptor complex proteins mobility. 

Previously, we reported that Pdia3, PLAA, VDR, Cav-1 and caveolae are critical for 

1α,25(OH)2D3 membrane-mediated signaling (10,12,87,125). Similar to 1α,25(OH)2D3 

membrane-mediated signaling, our results indicated that Pdia3, PLAA, and VDR are critical for 

Wnt5a calcium-dependent pathway. However, to our surprise, silenced Cav-1 osteoblasts 

activated PKC in response to Wnt5a treatment, suggesting that Cav-1 is not necessary for the 

Wnt5a calcium-dependent pathway. To further investigate the role of lipid rafts in the Wnt5a 

calcium-dependent pathway, we subjected the cells to β-CD. PKC activity increased in cells 

pretreated with β-CD but the increase was significantly lower than the β-CD-untreated group. 

Collectively, these studies suggest that caveolae are not required to mediate Wnt5a effects, 

however the cholesterol-depleting agent significantly reduced Wnt5a-dependent PKC activity 
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indicating that the lipid domains of the plasma membrane are important to mediate the Wnt5a 

signal. Additionally, recent studies have demonstrated that after 30 minutes treatment with 10 

mM β-CD, the amount of cholesterol lost by cells was higher than the amount of sphingolipids 

lost in the same treatment (217). It is quite possible that Wnt5a induces its effects via a 

predominantly sphingolipid signaling-dependent pathway. β-CD treatment reduces the 

abundance of sphingolipids in lipid rafts, but since its reduction is not as great as cholesterol 

depletion, Wnt5a is still able to activate its pathway. Role of sphingolipid signaling in Wnt5a 

pathway should be considered in future studies.  
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