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Abstract

Phase-change Random Access Memory (PRAM) is an emerging memory technology for future computing systems. It is non-

volatile and has a faster read latency and potentially higher storage density than other memory alternatives. Recently, system

researchers have studied the trade-off of using PRAM to back up a DRAM cache as a last level memory or to implement it in a

hybrid memory architecture. The main roadblock preventing PRAM from commercially viable, however, is its much lower write

endurance. Several recent proposals attempted to address this issue by either reducing PRAM’s write frequency or using wear-

leveling techniques to evenly distribute PRAM writes. Although the lifetime of PRAM could be extended by these techniques under

normal operations of typical applications, most of them do not prevent a malicious code deliberately designed to wear it out.

Furthermore, all of these prior techniques failed to consider the circumstances when a compromised OS is present and its security

implication to the overall PRAM design. A compromised OS, (e.g., via simple buffer overflow) will allow adversaries to manipulate

all processes and exploit side channels easily, accelerating the wear-out of targeted PRAM blocks and rendering a dysfunctional

system.

In this paper, we argue that a PRAM design not only has to consider normal wear-out under conventional application behavior,
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most importantly, it must take the worst-case scenario into account with the presence of malicious exploits and a compromised

OS. Such design consideration will address both the durability and security issues of PRAM simultaneously. Toward this goal, in

this work, we propose a novel, low-cost hardware mechanism called Security Refresh. Similar to the concept of protecting charge

leak from DRAM, Security Refresh prevents information leak by constantly migrating its physical location (thus refresh) inside

PRAM, obfuscating the actual data placement from users and system software. It uses a dynamic randomized address mapping

scheme, which swaps data between random PRAM blocks using random keys generated by thermal noise upon each refresh due.

The hardware is extremely low-cost without using any table. We presented two implementation alternatives and showed their trade-

off and respective wear-out endurance. For a given configuration, we show that the optimal lifetime of a PRAM block (256B) is 8

years. In addition, we showed the performance impact of Security Refresh is mostly negligible.

1 Introduction

Phase-change Random Access Memory (PRAM) has emerged as one potential memory technology for improving the performance

of the overall system memory hierarchy. A PRAM cell is made of phase-change material based on chalcogenide alloy, which is

typically composed of Ge, Sb, and Te. The material has two distinct phases — a high electrical resistive amorphous phase and a

low resistive crystalline phase. The crystalline phase can be reached by heating the material above the crystallization temperature

while it can be switched into the amorphous phase by melting and quickly quenching it. A data bit can be stored in either states,

which are non-volatile. Compared to flash memory devices, PRAM can have much shorter latency and longer write endurance.

These advantages make it a perfect candidate as the alternative to flash memory devices. On the other hand, the density of current

PRAM is higher than that of DRAM. Moreover, if we can utilize its multi-bit feature per cell which provides two additional partial

crystalline states, the density can be even greater, up to two to four times higher than DRAM. Recently, researchers have studied

the trade-off of using PRAM as the main memory or even as the last level cache. Although its latency is currently several times

longer than DRAM latency, these studies showed that the benefits from its density can outweigh the degradation of access time by

employing a deeper memory hierarchy [14] or having a hybrid memory architecture with other memory technologies [13, 20].

The main roadblock preventing PRAM from commercially viable, however, is its much shorter write endurance than DRAM.

The current write endurance of a PRAM cell is around 108 although the number is projected to be increased to 1015 in 2022

according to the projection of ITRS [1]. Several recent studies attempted to address this issue by either reducing PRAM’s write

frequency or using wear-leveling techniques to evenly distribute PRAM writes. Although the lifetime of PRAM could be extended

by these techniques under normal operations of typical applications, we found that most of them fail to prevent an adversary from
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writing malicious codes deliberately designed to wear out and fail PRAM. For instance, the schemes to reducing write frequency,

such as data comparison write [21] and Flip-N-Write [3], contain predictable access patterns, thus an adversary can easily concoct

a way to exploit their properties and wear out PRAM. The prior wear-leveling schemes are also vulnerable due to the inherent

weaknesses caused by static randomization, coarse-grained shuffling, and regular shuffling pattern as we will show in the paper.

Furthermore, all the prior art did not consider the circumstances when the underlying OS can be compromised and its security

implication to PRAM design. A compromised OS, (e.g., via simple buffer overflow) will allow adversaries to manipulate all

processes and exploit side channels easily, which accelerates the wear-out of targeted PRAM blocks and render a dysfunctional

system. For example, a compromised OS can thrash or turn off all caches, disabling the shield from PRAM. Moreover, if the

compromised OS allows a malicious process to obtain and assembly useful information leaked from side channels (e.g., timing

attacks [6, 18] to deduce shuffling pattern in a wear-leveling scheme), the wear-leveling scheme will not stop adversaries from

tracking, pinpointing, and wearing out target PRAM blocks. Note that, attacking a system using side channels using time [6, 18],

power [7], electromagnetic emission [2], architectural vulnerability [16, 23], etc., have been successfully demonstrated in many

systems including the Xbox [4]. Designing PRAM without careful consideration for all these implications will lead to critical data

loss in PRAM, rendering incorrect computing or transaction results, eventually leading to dire financial consequences.

In this paper, we argue that PRAM designs not only have to consider wear-out under normal execution of typical applications,

most importantly, they must take the worst-case scenarios into account with the presence of malicious exploits and a compromised

OS. Such design consideration will address durability and security issues of a PRAM system simultaneously. After demonstrating

attack models that exploit the weakness of prior works and analyzing how long they can sustain such attacks, we will show

that dynamic runtime randomization with low-cost hardware implementation are required for ensuring security and preventing

construction of useful knowledge gleaned from side channels. To achieve this goal, in this work, we propose Security Refresh.

Similar to the concept of protecting charge leak from DRAM, Security Refresh, a low-cost hardware embedded inside PRAM,

prevents information leak by constantly migrating physical locations of PRAM data (thus refresh), obfuscating the actual data

placement from users and system software. The contributions of our paper are :

• We demonstrate that security is a separate yet more serious issue from simply extending durability in PRAM design.

• We analyze the vulnerability of prior studies and provide their respective, practical attack models to wear out PRAM within a

reasonable amount of time.

• We propose a dynamic, low-cost wear-leveling scheme called Security Refresh to battle intentional, malicious wear-out and

present the implementation trade-off from the security and durability standpoint.
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Figure 1: The Addressing Scheme of the Baseline Architecture

• We analyze our schemes with both analytical models and simulations.

The rest of this paper is organized as follows. Section 2 discusses prior works and their vulnerabilities with our step-by-step

attack methods. Section 3 introduces our Security Refresh technique. Section 4 discusses the trade-off of different implementations.

Section 5 evaluates the wear-leveling and the performance impact of the two-level Security Refresh. Finally, Section 6 concludes.

2 Vulnerability of Prior Wear-out Management Schemes

Recently, several architectural techniques were proposed to prolong the limited write endurance of PRAM. They can be classified

into two groups: the methods to eliminating redundant writes [3, 8, 13, 21, 22] and the ones to evenly wearing out the entire

memory space [13, 14, 22]. In our analysis, we evaluate their vulnerabilities using a baseline architecture similar to the one used in

a recent study [14]. Basically, we assume that an off-chip DRAM is used as a last-level SRAM-like cache backed up with PRAM

used as the actual system main memory. The interface between the DRAM cache and PRAM is a DDR3-1600 like 64-bit bus. The

16GB PRAM consists of four ranks while each rank contains four banks with 32K rows in each bank. Its write endurance is 108.

The PRAM read and write latencies are 150ns and 450ns, respectively.

To clarify the terminology used in this paper, Figure 1 depicts the layers of address translation and mapping from virtual address

all the way down to the low level physical memory location. Note that a memory controller usually maps a given physical address

(PA) into a memory address (MA) that consists of a rank ID, a bank ID, a row address, and a column address for indexing the

main memory. In the following discussion, we also assume that a memory controller interleaves consecutive row addresses across

different banks, a common mechanism to enhance bank-level parallelism.

2.1 Vulnerability of Systems Without Protection

The simplest way to attack a durability-oblivious PRAM is to repeatedly write to a fixed location. To force cache misses for PRAM

accesses, it is obvious that one can deliberately cook up a program that continuously write to nine different addresses mapped to

the same set of the 8-way cache with s sets in our baseline. The first eight instructions inside a loop sequentially write to a[i],
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a[i+1*s], to a[i+7*s] filling up one cache set followed by the subsequent eight instructions write to a[i] to a[i+6*s]

and then to a[i+7*b*s], where b is a large value to guarantee a[i+7*s] and a[i+7*b*s] do not hit in the same memory

page (i.e., row buffer hit) but located in the same PRAM bank. After these two write sequences (16 writes) in the loop, we perform

a memory fence operation to ensure addresses will not collapse in an internal buffer but go to external memory directly. As such,

this simple code will generate conflict misses between a[i+7*s] and a[i+7*b*s] and create two row buffer misses all the

time to update two different PRAM locations.

In this attack model, it takes at least 2 × (lw + lr) seconds to write two separate cache lines into PRAM including the time

(lw) to bring two lines into the cache and the time (lr) to write two dirty lines back to PRAM. Given a modern PRAM cell can

endure no more than 108 writes, the lifetime of the baseline PRAM without any architectural durability enhancement will be

2 × (lw + lr) × 108, i.e., about two minutes (= 2 × (450ns+ 150ns) × 108).

2.2 Vulnerability of Prior Redundant Write Reduction Schemes

We now examine the prior redundant write reduction schemes. To eliminate redundant writes, Lee et al. [8] and Qureshi et al. [13]

proposed to maintain fine-grained dirty bits as a part of the cache line state to enable partial writes. These methods require additional

partial dirty bits across all cache hierarchy. On the other hand, Yang et al. [21] and Zhou et al. [22] proposed data comparison

and write schemes, which replace a write operation with a read-compare-write operation to eliminate silent stores [9] to PRAM.

Unfortunately, these methods still suffer from the same types of malicious wear-out attacks in Section 2.1 as an adversary can

always write complementary values to the same PRAM cells.

More recently, Cho and Lee [3] leveraged the bus-invert coding idea [17] and proposed to add a single bit per PRAM word to

indicate if a stored word is inverted or not. With this additional state bit, a PRAM chip can write data in an inverted form if the

inverted value reduces the number of bit-flips when storing new data. However, this method is still subject to malicious attacks. For

example, an attacker can use the same malicious program but repeatedly write to 0x00 and 0x01 in turn, which will never enables

the Flip-N-Write feature and eventually wearing out a bit in each byte. In summary, the lifetime of a target location in PRAM in

these systems will still be two minutes.

2.3 Vulnerability of Prior Wear-Leveling Schemes

Unlike the techniques described in Section 2.2, wear-leveling schemes extend the lifetime of PRAM by evenly distributing the

locally concentrated writes across the entire PRAM space. Transparent to the users, these techniques periodically change the
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mapping between the physical address and the physical PRAM location. Although such periodic mapping schemes can reduce the

system’s vulnerability to brute-force type of attacks, they are still vulnerable to deliberately-designed attacks, especially when the

OS is compromised, as we will discuss in the following sections.

2.3.1 Row Shifting and Segment Swapping

Zhou et al. [22] proposed an integrated wear-leveling mechanism with two techniques: a fine-grained wear-leveling called Row

Shifting and a coarse-grained one called Segment Swapping. Row Shifting rotates a physical PRAM row one byte at a time for a

given shift interval based on the number of writes to the row. On the other hand, the Segment Swapping scheme swaps the most

frequently written segment with one of the less frequently written segments by monitoring the number of writes to each segment.

A segment (1MB) contains several rows (32KB). Nevertheless, this wear-leveling has two main drawbacks: the overhead of a

hardware address mapping table and a sorting network required for picking a less frequently written segment, both preventing the

use of small segments. Thus, authors used a large 1MB segment [22].

Unfortunately, such a coarse-grained segment allows an adversary to fail a system easily. For example, if the OS has already

been compromised (e.g., via buffer overflow), an attacker can allocate all the first physical pages of each of the 1MB PRAM

segments to the malicious program. Once the malicious program can access these 16K pages, it can execute a loop that writes the

first byte of these pages one by one. Once the malicious program iterates this loop n times where n is the row shift interval, it

should write the second byte of these pages (instead of the first byte) to attack the same physical cells even after a row is shifted.

The attacker can continue such attack until PRAM cells fail. Note that an attacker can also wear out these 16K pages in parallel

using a distributed attack model with multiple threads on a multi-core processor [19]. This means that overall execution time of this

process will be eventually limited by the bank-level parallelism of PRAM, not by computation. Consequently, a group of PRAM

cells will fail after the following period:

2 × # of segments × (line-fill latency + write-back latency)

# of possible writes in parallel × PRAM write endurance

where 2 accounts for the worst-case latency due to potentially unsynchronized rotation between the malicious code and actual

hardware. For a system with 16 GB 16-bank PRAM, PRAM cells will fail within 2048 minutes.

2.3.2 Randomized Region Based Start-Gap

In contrast to a table-based translation scheme, Qureshi et al. proposed Randomized Region Based Start-Gap (randomized RBSG)

wear-leveling method by using an algebraic mapping between physical addresses and memory addresses [14]. As shown in Fig-
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ure 2(a) and (b), a physical address issued from the cache is translated into an intermediate address by an Address-Space Randomiza-

tion method based on Feistel Network or a Random Invertible Binary Matrix. It is noteworthy to point out that their randomization

function is only updated once when the system is booted.

Furthermore, the intermediate address space is partitioned into several segments called RBSG regions. There is an extra storage

line allocated for each RBSG region. In addition, there is a Gap pointer pointing to an empty line and a Start pointer pointing to

the line with the lowest physical address in the region. Within an RBSG region, RBSG region offset bits (Figure 2(b)) are further

translated using another algebraic function called Region Based Start-Gap (RBSG). Figure 3 illustrates an example of RBSG

translation. In this example, one RBSG region contains eight memory lines across multiple banks. When the number of writes

in this region exceeds a certain threshold, ψ, indicated by an overflowed write counter, the line (H) adjacent to the Gap pointer

in this region is shifted into the extra space while the Gap pointer will point to where the migrated line used to be (Figure 3(b)).

Once the write counter overflows again, the line (G) adjacent to the Gap pointer is shifted following the same direction to the

empty space. Afterward, the Gap points to the empty slot. (Figure 3(c)). Such migration continues for every ψ and finally reaches

the state in Figure 3(d) when all eight memory lines are rotated by one from the initial state (Figure 3(a)). The Start pointer is

updated to indicate the current PRAM location of the lowest physical address (A) in this RBSG region. This RBSG scheme enables

wear-leveling without having a large table.

However, we found that a deliberately-contrived malicious program can still fail such systems easily by exploiting side channels

given the OS is compromised. Such an attack is possible because (1) the randomly shuffled address mappings remain unchanged
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Figure 4: An Attack Model for RBSG

once booted, (2) the migration of their scheme performs linear shifting, which is deterministic. How a malicious process identifies

consecutive physical addresses in a region is shown below.

Step 1: Finding a set of physical addresses mapped to the same bank. To find these addresses, we first pick an arbitrary

physical address b0. For every memory line ax, we apply timing attacks [6] to see if b0 is in the same bank of an ax. The rationale

is simple— if the measured data access time to two back-to-back accesses a1 and b0 is longer than that to access a2 and b0, we

can conclude a1 and b0 are located within the same bank but at different rows indicated by a row miss (Figure 4(a)). Note that, a

compromised OS can schedule only the malicious process to perform such profiling. Using this attack, we find all the lines from

the same bank with b0 but at different rows. We call this set of memory lines T0.

Step 2: Finding a set of physical addresses mapped to the same row. To find these physical addresses, we first pick another

arbitrary physical address, b1(6= b0) from T0. Then, we apply the same timing attack in Step 1 by accessing one address ax from

T0 with b1 at a time. We iterate through all the addresses in T0 during this attack. For those (ax, b1) pairs responding faster (a3 and

b1 reside in the same row buffer in Figure 4(b)), they must be located in the same row. We call this set of physical addresses T1.

Step 3: Finding the location ordering of physical addresses on the same row in T1. We infer the physical layout by

exploiting the rotation pattern of RBSG. As explained previously, one rotation phase is completed every {(# of memory lines in an

RBSG region) + 1} × ψ. In the meantime, a memory line of each row of a PRAM bank has been moved to another bank. For

example, a memory line v0 in a row of Bank 0 has been moved to the same row of Bank 1 (Figure 4(c)). To find v0, we can use the

same timing attack loop. This time, the candidate line ax is selected from T1 to pair up with a b2 arbitrarily chosen from T0 ∩ T
c
1 .1

If the response time of an (ax, b2) pair is shorter, it implies ax, i.e., v0 in our example, has been migrated to another bank. We

apply the above attack for every rotation phase using the same b2 (Figure 4(d) shows the status after the second rotation phase). As

such, the next adjacent address (v1) to the previously migrated line (v0) can be identified in each phase. We perform this iteration

by n times, where n is the required iteration count to fail a PRAM line and will be varied for different machine configurations.

For example, n is 4 for the system configuration in our baseline architecture. We will detail how to calculate it at the end of this
1
T

c

1
is the formal notation of the complementary set of T1 used in set theory.
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section. For each iteration, the physical memory address of the T1 row moved to the next bank will be appended to an ordered list,

V (e.g., V = (v0, v1) in Figure 4(d).)

Step 4: Finding one physical address migrated to the same bank (in Step 3) but at a different row. The fourth step is to

find a memory line in T0 ∩ T
c
1 that was moved to the next bank due to rotation caused by Step 3 (e.g., r0 in Figure 4(e)). To find

this line, we use one element of V as a reference point and find a memory line that generates row buffer misses in the new bank.

We call this memory line r0.

Step 5: Attacking specific PRAM lines. The final step is to fail PRAM lines by repeatedly writing data based on the order of

the lines in the new bank. Note that RBSG rotates all lines by one position at a time for each rotation phase. If we keep writing

data to the first element (v0) of V within the same phase (Figure 4(f)), after one rotation phase, the second element of V (v1) will

be rotated to the PRAM line previously occupied by v0 (Figure 4(g)). Based on this writing patterns, a malicious code will be able

to track and wear out the target PRAM line. To avoid these writes hitting in the row buffer, we also need to load data from r0

alternately.

Now, the remaining question is how long the ordered list, V , should be, or the value of n in Step 3. To calculate this number,

we use values suggested by the original paper [14] and assume each RBSG region contains 219 lines (128MB, line size=256B) with

a PRAM write endurance of 108 times and a ψ threshold of 100 writes. Consequently, a rotation in one RBSG region is triggered

upon 100×( 128MB
256B

+1) = 52428900 writes. Stochastically, four consecutive physical memory line addresses (d 108

0.5×52428900e = 4)

will be sufficient to wear out PRAM.

To estimate how fast an adversary can succeed, we have developed analytical models but we will not elaborate them due to space

limit. In short, Step 1, Step 2, Step 32, and Step 4 take 80.5 seconds, 5.0 seconds, 125.8 seconds, and 5.0 seconds, respectively.

A compromised OS can schedule the malicious process for four minutes to identify one target ordered list. Once it is revealed, it

takes less than 30 minutes to wear out PRAM. Note that, during Step 5, the OS can continue to run other processes so long as the

entire victim RBSG region is dedicated to the malicious thread.

3 Security Refresh

As mentioned earlier, prior studies mainly focused on extending the lifetime of a PRAM-based system running conventional

applications but failed to protect the system against deliberately-crafted malicious attacks. A malicious application can exploit the

properties of a durability solution to destruct a PRAM portion easily. Although durability and security seem to be two separate
2When we calculate the attack time of Step 3 and Step 5, we also considered a write buffer and the delayed write policy [14].
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issues in PRAM design, they share a common goal and should be addressed at the same time. In this paper, we argue that a correct,

usable PRAM design should consider the worst-case wear-out under malicious attacks such as side channel exploits to make PRAM

commercially viable. In general, if PRAM can sustain malicious attacks, they should simultaneously address the durability issue.

To circumvent these intentional exploits, we must keep adversaries from inferring an actual physical PRAM location. Furthermore,

the address space must be shuffled dynamically over time to avoid useful information leaked through side-channels.

3.1 Security Refresh Controller

First, we define one more address space, the Refreshed or Remapped Memory Address (RMA), inside a PRAM chip to dissociate a

memory address (MA) (defined in Figure 1) from the actual data location. After receiving an access command from the memory

controller, each PRAM chip re-calculates its own internal bank, row, and column address. Similar to DRAM refresh preventing

charge leaking from a DRAM cell, in this work, we propose Security Refresh to prevent address information leaked from PRAM

accesses. Rather than refreshing based on time in DRAM cell, our Security Refresh scheme refreshes a PRAM region based on

usage, i.e., the number of writes. Our Security Refresh is controlled by Security Refresh Controller (SRC), which is embedded

inside the PRAM chip. The SRC not only remaps an MA into an RMA but also periodically changes the mapping between these

two address domains with extremely low-overhead hardware. The rationale and advantages of employing an SRC inside a PRAM

chip are:

• To obfuscate the address information regarding the actual physical data placement from applications, the (compromised) OS,

and the memory controller.

• To obfuscate potential side-channel leakage, if any.

• To prohibit any physical tampering, e.g., memory bus probing.

• To provide high efficiency without disturbing the off-chip bus during data shuffling and swapping.

• To enable a high-bandwidth data swapping mechanism without being constrained by limited, off-chip pin bandwidth.

3.2 Basics of Distributed Security Refresh

Since our proposed SRC will be implemented inside each PRAM chip that will likely be manufactured with a process optimized

for PRAM cell density, the hardware overhead for the SRC should be kept low to make it practical. Furthermore, as demonstrated

previously, information can leak through side channels. A sufficient amount of such information allows an adversary to assemble

useful knowledge and devise a side-channel attack for target PRAM locations. Simply hiding internal memory addresses alone
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will not address this issue properly. Thus, we need to constantly update the address mapping to obfuscate any relationship among

information leaked from side channels.

Before explaining our algorithm, we first introduce our nomenclature in Figure 5. As shown in Figure 5(a), a PRAM bank is

composed of several memory regions, each region contains many memory blocks (four in the figure). A memory block should

be no smaller than a cache line in order to keep address lookup simple. For every r writes (r = 2 in Figure 5(b)), the SRC will

“refresh” a memory block by potentially remapping it to a new PRAM location using a randomly generated key and our algorithm

to be described in Section 3.3.3 We call this number of writes, r, the security refresh rate analogous to DRAM’s refresh rate. The

refresh operations continue for all memory blocks in each region. A complete iteration of remapping every single memory block in

a region is called a security refresh round, similar to DRAM’s refresh time. To begin another security refresh round, a new random

key will be generated and used together with the key from its previous refresh round.

3.3 Security Refresh Algorithm

Now we use an example to walk through our algorithm followed by its formal definition and description. Figure 6 depicts an

example of one security refresh round. From Figure 6(a) to (e), we start from an initial state with eight successive security

refreshes for eight memory blocks in one PRAM region. In each subfigure, the left column shows MAs (memory addresses) of

these blocks with their data in capital letters while the right column shows the RMAs (refreshed memory addresses) and the actual
3We differentiate these two terms: refresh and remapping. A refresh will be evaluated upon the due of a security refresh rate, however, as we will show later, it

may or may not lead to an address remapping in PRAM space.
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data placement in PRAM. We explain each subfigure in the following.

1. Figure 6(a) shows the initial state in which all eight RMAs were generated by XORing their corresponding MAs with a key

k0 where k0 = 4. For example, the memory address MA0 (000) XOR k0 (100) is mapped to RMA4 (100) in the physical

PRAM. Also note that, Figure 6(a) has reached the end of a security refresh round as all the MAs have been refreshed with

k0. Upon each security refresh, the candidate MA to be refreshed is pointed by a register called Current Refresh Pointer

(CRP) shown as a shaded box in the figure. The CRP is incremented after each security refresh.

2. Upon the next security refresh (Figure 6(b)), a new security refresh round will be initiated because CRP has reached the first

MA of a region. Consequently, a new key (k1 = 6) will be generated by a hardware random number generator in the SRC

for refreshing all MAs in the current round. At this point, MA0 is refreshed and remapped from RMA4 to RMA6. Since the

data (A) of MA0 is now moved to RMA6 where the data (C) of MA2 used to be. Hence, C should be evicted from RMA4

and stored somewhere else. Interestingly, due to the nature of XOR, MA2 will actually be mapped to RMA4 using the new

key (2⊕ k1 = 4), i.e., the RMA of MA0 from the previous round (0⊕ k0 = 4). This security refresh, essentially, swaps data

between MA0 and MA2 in their PRAM locations. We call this interesting property the pairwise remapping property, which

will be defined and proved formally later. Note that the SRC will be responsible for reading and writing two memory blocks

to physically swap the data between them.

3. Similarly, in the next security refresh (Figure 6(c)), data for MA1 and MA3 (a victim evicted by MA1) in PRAM are swapped

between RMA5 and RMA7.

4. In Figure 6(d), MA2 pointed by CRP is supposed to be remapped after its security refresh. However, it has been swapped

previously (Figure 6(b)) in the current security refresh round. Thus, we will not swap again but simply increment the CRP

pointer. To test whether an MA has already been swapped in the current round can easily be done by exploiting the pairwise

remapping property. All we need to do is to XOR the current candidate MA with the key used in the prior refresh round and

the key used in the current round. If the outcome is smaller than CRP, it indicates the memory block has been swapped in the

current round. For instance in Figure 6(d), we XOR MA2 with 4 (k0) and 6 (k1) giving a result of 0 (2 ⊕ 4 ⊕ 6 = 0). Since

it is smaller than CRP (=2), it indicates that MA2 has been swapped in the current refresh round. We will show the formal

proof later in this section.

5. The next five memory blocks are refreshed in the same manner. After the eighth security refresh in the current round, CRP

will wrap around and reach MA0 again, completing the current security refresh round. (Figure 6(e)). Upon the next refresh,
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Table 1: Notations Used in the Proof
kp A previous key generated in the previous security refresh round kc A current key generated in the current security refresh round

Am An MA to be refreshed in the current refresh

Arp An RMA to which Am was mapped with kp (i.e., Arp = Am ⊕ kp) Arc An RMA to which Am will be mapped with kc (i.e., Arc = Am ⊕ kc)

Bm An MA mapped to Arc with kp, thus to be evicted by Am

Brp An RMA to which Bm was mapped with kp (i.e., Brp = Bm ⊕ kp) Brc An RMA to which Bm will be mapped with kc (i.e., Brc = Bm ⊕ kc)

a new key, k2, will be generated and a new round starts using k1 and k2. k0 will no longer be needed. Note that, for each

refresh round, only the most recent two keys are needed.

Now, we formally explain the pairwise remapping property, which allows us to exchange a pair of memory blocks only with

two keys. For our address remapping, assume that we use a binary operation, ⊕, closed on a set S, which satisfies the following

properties for all x, y, and z,the elements of S, where S is a set of possible addresses in a PRAM region.

• Associative Property: (x⊕ y) ⊕ z = x⊕ (y ⊕ z).

• Commutative Property: x⊕ y = y ⊕ x.

• Self-Inverse Property: x⊕ x = e, where e is an identity element so that x⊕ e = x.

Basically, we find an RMA for a given MA by simply performing this binary operation between MA and a randomly generated

key (k) of the same length i.e., MA⊕ k = RMA. Here, we define several notations used in this proof as shown in Table 1.

According to associative and self-inverse properties, when Am newly occupies Arc
, Bm can be easily detected by performing

⊕ operation between Arc
and kp because Arc

⊕ kp = (Bm ⊕ kp) ⊕ kp = Bm. More interestingly, the new location (Brc
) that

Bm should be mapped to with kc is the old location (Arp
) that Am used to be mapped to with kp because Brc

= Bm ⊕ kc =

(Arc
⊕ kp)⊕ kc = ((Am ⊕ kc)⊕ kp)⊕ kc = Am ⊕ kp = Arp

. In short, we can simultaneously map a pair of MAs into their new

RMA locations by simply swapping the physical data of their old PRAM blocks. Consequently, the actual swapping operations

in a security refresh round will be done by one half of all security refresh operations. The simplest function that satisfies all three

properties is an eXclusive-OR although we have proved that any function satisfying the above three properties can be used as the

refresh/remapping function. For the rest of this paper, we use XOR.

3.4 Obtaining the Key for Address Translation

To correctly find the data location in PRAM, we need to translate the given MA to its current RMA using the right key. It seems

that the most straightforward way to find the right key is to add one bit in SRC for each MA to indicate whether it needs to be

translated using the key in previous refresh round or the current key. Even though 1-bit per block seems small, for a 1GB PRAM
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region with 16KB memory blocks, we will need 8KB (=216 bits) extra space. In fact, hardware overhead for maintaining translation

information of each block is the main reason why the prior table-based approach [22] cannot support fine-granularity segments.

Fortunately, in our scheme, the pairwise remapping property along with the use of the linearly increasing CRP value property

allow us to determine the right key without any extra table. In particular, when a memory controller wants to read from or write

to an MA Cm, we need to use the current key (kc) in the following two cases, otherwise, the key in previous refresh round (kp)

should be used.

• If Cm is less than the value of CRP, we should use the current key (kc) since Cm has already been refreshed in the current

security refresh round.

• if Cm ⊕ kp ⊕ kc is less than the value of CRP, we should use the current key, too This is not very intuitive, so we will describe

it with a formal method. What we want to detect in this condition is whether Cm was a victim that is evicted when another

MA, Dm, is remapped to the old RMA value of Cm, i.e., Cm ⊕ kp. As explained in Section 3.3, we can reconstruct Dm by

simply performing an XOR operation between the RMA value and the current key, which is (Cm ⊕ kp) ⊕ kc. If we compare

Dm against the value of CRP, we can detect whether Cm was a victim that is already remapped when Dm was remapped.

A hardware illustration of the actual MA-to-RMA address translation in PRAM is depicted in Figure 7(b).

3.5 Hardware Design for Security Refresh Controller

The main additional hardware for supporting Security Refresh is the Security Refresh Controller (SRC) (Figure 7(a)) per region.

Each SRC consists of four registers, a random key generator (RKG), address translation logic (ATL), remapping checker (RC),

and data swapping logic (DSL). The four registers required are: (1) KEY0 register to store a prior key (log2 n bit where n is the

number of memory blocks in a region), (2) KEY1 register to store a current key, (3) a global write counter (GWC) to count the total

number of writes to a region for triggering security refresh, and (4) the current refresh pointer (CRP) that points to the next MA to

be refreshed. A new key is generated by RKG in-between two security refresh rounds using thermal noise generated by undriven

resistors in the SRC [5]. These keys can never be accessed or leave outside the PRAM chip.

The ATL (Figure 7(b)) performs address translation. It essentially maps an MA from the memory controller to a corresponding

RMA. The detailed algorithm was explained and proved in Section 3.4. As explained earlier, the translation process needs to

understand whether a given MA has been remapped in the current round. This algorithm is implemented in the RC (Figure 7(c)),

which consists of only two bitwise XOR gates, two comparators, and one OR gate. Additionally, the RC is also responsible for

finding an address to be remapped. Upon every security refresh, the RC provides the same output to the DSL (Figure 7(d)) so that
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DSL can decide whether the MA should be remapped or not.

3.6 Memory Controller Design Issues

In a conventional DRAM-based system, a memory controller understands whether a given memory request will hit in a row buffer

or not. Consequently, it can schedule its commands so that the return data of those commands will not conflict in a memory bus.

However, in our proposed PRAM system that obfuscates internal address information, the memory controller cannot schedule the

external PRAM bus alone like a conventional DRAM memory controller. To utilize the bus more efficiently, we envision that future

PRAM chips should be actively involved in bus arbitration. For example, a PRAM chip can send a data ready signal to the memory

controller once the requested data are brought into a row buffer. Based on this ready signal, the memory controller can utilize the

bus more intelligently. However, detailed PRAM memory controller design issues are outside of the scope of this paper.

4 Implementation Trade-off of Security Refresh

So far, we have discussed how Security Refresh works and its advantage from the standpoint of malicious wear-out. However,

there are design trade-offs in the PRAM design. For example, if the total number of writes required to start a new security

refresh round is larger than the PRAM write endurance limit, an adversary could wear a PRAM block out before a new refresh

round is triggered (robustness). On the other hand, extra PRAM writes are induced due to swapping during refresh. Frequent

swaps may unnecessarily increase the total number of PRAM writes even for normal applications (write overhead), leading to

performance degradation (performance penalty). Thus, we must carefully consider the implementation style of refresh with

PRAM organization parameters to maximize its robustness while minimizing the write overheads and its performance penalty. To

quantify the trade-off, we developed analytical models to estimate robustness and write overhead. In our model, we made following

observations:
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1. A larger region will distribute localized writes across a larger space.

2. A large region requires a smaller refresh rate to increase the frequency of randomized mapping changes. Otherwise, if one

refresh round is too long, it may inadvertently leave a mapping unchanged for too long as well, making potential side channel

attacks possible.

3. A smaller refresh rate will, nonetheless, inflict high write overhead due to its more frequent swapping, which can lead to

higher performance penalty.

Given the first observation, we first evaluated a region size as large as a PRAM bank (Figure 8(a)). (The reason why we did

not evaluate multiple banks in a PRAM chip as a region is to allow a memory controller to exploit bank-level parallelism for better

scheduling.) As we will show later and also explained in our second and third observations, we found that the write overhead of a

bank-sized region is too high.

To take the advantage of a large region size, we proposed and evaluated a hierarchical, two-level Security Refresh scheme as

shown in Figure 8(b). In lieu of using a very small refresh rate that increases write overheads, we break up a region in several,

smaller sub-regions. Each sub-region contains its own SRC to perform address remapping within itself based on the inner-level

refresh rate. To distribute writes across the entire region, an outer-level SRC is used with a larger refresh rate. As such, memory

blocks will be refreshed and remapped inside each sub-region more frequently than the refresh and remap taken place between

blocks across different sub-regions.

In this two-level scheme, a refresh can be triggered at both levels. The outer-level SRC keeps track of all the number of writes

received and refresh memory blocks across the entire region. Such refresh will swap memory blocks across different sub-regions.

On the other hand, each inner-level sub-region SRC only tracks the writes within its own sub-region and triggers refresh operations

using its own refresh rate. A refresh triggered by an inner-level SRC will only swap memory blocks within its own sub-region.

During data lookup, the given MA will first be translated by the outer-level SRC into an intermediate RMA. This RMA will then

be forwarded to its corresponding inner-level sub-region SRC for another translation to find its actual location. We now detail the

analytical models of these two different schemes.

4.1 Single-Level Security Refresh

To calculate how robust our system is, we estimate the number of security refresh rounds a system can sustain before one PRAM

cell reaches its write endurance limit. First of all, the total number of writes required to advance to a new refresh round is R
b
× r
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Figure 8: One-Level vs. Two-Level Security Refresh (Four Ranks, Four Banks per Rank)

where R is the size of a PRAM region, b is the size of a memory block, and r is the security refresh rate. So, in the worst-case

(which occurs when the victim line is swapped as the last pair during a refresh round), one physical cell can be written by R
b
× r

times in the first refresh round. In the next refresh round, the probability of mapping the victim MA to the same RMA as the first

security refresh round with a true random key is b
R

. In other words, the number of writes that can be mapped to the same PRAM

cell (as the first refresh round) over n refresh rounds is ( R
b
× r) × {1 + (n − 1) × b

R
} where n > 1. In addition to these demand

writes, a victim PRAM cell is also written to once during swapping for every refresh round. Thus, for n refresh rounds, the victim

PRAM cell can be written by (R
b
× r) × {1 + (n− 1) × b

R
} + n times. Here, we assume that the PRAM endurance limit, Wmax,

is reached after these n refresh rounds. After solving the equation we obtain an n value of Wmax+r−R
b
×r

r+1 . In other words, our

PRAM region can evenly wear out Wmax+r−R
b
×r

r+1 × (R
b
× r) writes across its PRAM cells before one bit is failed. We call this

number Attack Endurance. During this period, because we generate one more write for swapping upon r writes, the additional

write overhead will be 1
r+1 .

0.0e+00

5.0e+13

1.0e+14

1.5e+14

2.0e+14

2.5e+14

3.0e+14

 4096 1024 256 64 16 4 1

At
ta

ck
 E

nd
ur

an
ce

Security Refresh Rate

256B block
512B block
1KB block
2KB block
4KB block
8KB block

Figure 9: Single-Level Robustness

As shown from this analysis, the design trade-off of Security Refresh is a multi-

dimensional function ofR, b, and r. In this evaluation, we assume a 1GB logical bank

(or 512Mb PRAM array over 16 x4 chips4). Figure 9 shows that swapping a 256B

memory block every 4 writes is optimal in terms of robustness in this configuration,

which makes the PRAM memory endure up to 2.79 × 1014 writes. Conservatively

assuming that the latency of one write attack is just a sum of one PRAM write latency

(for write) and one PRAM read latency (for row buffer miss), this system can sustain

a single cell attack for 5.31 years. The 5.31 year is longer than the current average server’s replacement cycle of three to four

years [12, 11].

Next, we compared our results with a perfect wear-leveling scheme. In a perfect wear-leveling scheme, 1GB PRAM mem-
4Our remapping does not require communication among these chips because our memory block is larger than the bus width and is aligned with it.
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ory (222 memory blocks) can endure 222 × Wmax writes, therefore, our Security Refresh technique achieves 66.6% (= 2.79 ×

1014/(222 ×Wmax)) of the perfectly even distribution model. We analyzed this gap in detail with other models (not shown due

to space limit), and found that the 33.4% gap is contributed by the additional writes of the victim cell for swapping (16.6%) and

the non-instant (distributed) update (16.8%). Clearly, the overhead of remapping and non-instant update affected the robustness of

bank-level Security Refresh seriously. On the other hand, the total number of writes increased due to remapping is 20% due to our

low refresh rate (= 4 writes).

4.2 Two-Level Security Refresh

For the two-level Security Refresh scheme, we use a hierarchical approach to model the robustness. For the inner-level refresh, we

can just use the analytical model presented in the previous section. The difference is that malicious writes to attack a sub-region

will be evenly distributed by the outer-level Security Refresh. Therefore, the required number of writes to wear out a bit in a sub-

region will be Attack Endurance of the sub-region (AEi),
Wmax+ri−

Ri
bi

×ri

ri+1 × (Ri

bi
× ri). Similar to what we did for the single-level

Security Refresh, here we also estimate the number of outer refresh rounds a system can sustain before the number of writes to the

victim sub-region exceeds the Attack Endurance of the victim sub-region. Here, we assume that k outer-level refresh rounds are

needed to reach AEi.

In the outer Security Refresh, one outer refresh round requires Ro

Bo
× ro writes where Ro, Bo, and ro are the size of the outer-

level region (a bank), the size of outer-level memory block, and the outer security refresh rate, respectively. As we have calculated

previously, we can model the number of writes that can be mapped to the same sub-region over k outer refresh rounds to be

(Ro

Bo
× ro) × {1 + (k − 1) × Ri

Ro
} (k > 1). Additionally, k outer-level refresh rounds generate k × Ro

Bo
writes for swapping, which

can be mapped to the victim sub-region with the probability of Ri

Ro
. Because we assumed that AEi is reached after k outer-level

refresh rounds ( (Ro

Bo
× ro)×{1+ (k− 1)× Ri

Ro
}+k× Ro

Bo
× Ri

Ro
≤ AEi ), thus, k is {AEi+

Ri
Bo

×ro−
Ro
Bo

×ro}×Bo

Ri×(ro+1) . Because k refresh

rounds sustain Ro

Bo
× ro writes, entire bank can sustain k × Ro

Bo
× ro writes.
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Figure 10: Two-Level Robustness

This analysis is even more complicated as we have six input values. We

iteratively searched a configuration that can sustain the longest and found

that the robustness is more sensitive to three input values of the inner-level

Security Refresh than the same inputs of the outer-level. And we found that

the smaller a memory block is, the longer the system can sustain because

a smaller memory block allows us to distribute malicious wear-outs more
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evenly. Thus, here we only show the sensitivity of robustness with respect

to only two input values, the size of sub-region and the inner refresh rate.

Figure 10 shows the lifetime of a two-level Security Refresh scheme with 1GB bank, an outer-level refresh rate of 2048, and 256B

block for both levels). Here, x-axis plots different inner-level refresh rate, and different curves vary the sizes of a sub-region. As

shown in the figure, when we use two-level Security Refresh, the system can sustain against malicious wear-outs almost up to

8 years. Furthermore, an optimal refresh rate is a lot higher than that of a single-level Security Refresh, resulting in less write

overhead and less performance overhead. It says, by adopting a smaller region at the inner level, we can more frequently migrate a

memory block even with a higher refresh rate. Furthermore, an outer level Security Refresh often swaps memory blocks over a lot

larger space, which addresses the problem of smaller region size of the inner-level Security Refresh.

5 Evaluation

5.1 Wear-leveling

In this section, we analyze the wear-out distribution of our Security Refresh under a pinpoint attack that writes to one single logical

non-cacheable address by toggling its data bits. As analyzed earlier, we show that it is impossible within a reasonable amount of

time for an adversary to track, target, and attack a specific PRAM line of a system using Security Refresh. Therefore, here we use

such a known, worst-case pinpoint attack to demonstrate and analyze the wear-out behavior. To count the number of writes for

each memory block, we use PIN [10], a dynamic instrumentation tool. In this simulation, we use the two-level Security Refresh

scheme described in Section 4.2. We assume the PRAM has four 1GB banks and each bank is divided into 32 subregions. We use

the same memory block size (256B) for both the bank level and the subregion level. The security refresh rate for the bank level

is 2048 writes. To study the sensitivity of inner-level refresh rates, we use 3 different inner-level refresh rates — 16, 32, and 64

writes.

Figure 11 shows the accumulated number of writes (including swap write overhead in our scheme) for two pinpoint attacks; one

writes to the same physical address (134518272) 108 times while the other writes 1011 times. As shown in Figure 11(a), without

any wear-leveling scheme, all 108 writes hit the same location, increasing the likelihood of its failure in the future. However, with

our two-level Security Refresh, these writes are dispersed across the entire memory space. The more linear trajectory of a stepping

curve in the figure, the more evenly distributed the writes are. Based on this, as shown in Figure 11(a), we found that a finer-grained

swap interval tends to lead to a more balanced wear-out distribution. This trend becomes more evenly distributed when the number
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Figure 11: Accumulated number of writes according to the frequency of the pinpoint attack

of writes is increased to 1011 as shown by Figure 11(b).
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Figure 12: Consumed Lifetime for Pinpoint Attacks

The figures also show how many writes are increased due

to the swap operations during refreshes. For example, in Fig-

ure 11(a) the difference between the final accumulated number

(on the right) and 108 tick on y-axis represents the extra writes

contributed by swap operations. The percentage increase of

writes for the three inner-level refresh rates are 6.4%, 3.3%

and 1.7%, respectively. It implies that a shorter security refresh

rate may incur more performance degradation. Their impact to

performance will be analyzed in Section 5.2.

Now we analyze the lifetime impact of pinpoint attacks. Figure 12 shows the wear-out percentage of a memory block for four

pinpoint attacks. It is obvious that a system without protection can be completely worn out by simply writing 108 times to the same

block. In contrast, the percentages drop down to 4.0%, 8.0%, and 13.0% using our two-level Security Refresh with refresh rates of

16, 32, and 64. More interestingly, with the number of pinpoint attacks increased exponentially, the wear-out percentage was only

increased marginally, showing the effectiveness of our Security Refresh scheme against pinpoint attacks.

5.2 Performance Impact

We evaluate the performance of our Security Refresh scheme using SESC[15] with 26 SPEC2006 benchmark programs. Similar

to [13, 14], our system employs an 8MB L3 DRAM cache for hiding PRAM’s long read latency. Also, we modeled a memory
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Figure 13: Relative IPC for the change of the bank level swap interval

controller exploiting bank-level parallelism and arbitrating requests to improve PRAM row buffer hits. We used a two-level Security

Refresh scheme with the same configuration in Section 5.1 to compare against a baseline without any wear-leveling technique.

As shown in Figure 13, the performance of most of the benchmark programs were almost unchanged with our Security Refresh

for the three inner-level refresh rates experimented. The geometric means of IPC variations are −1.4%, −0.4%, and +0.2%,

respectively. They follow the trend of our probabilistic estimates for the write increases due to swapping: 6.3%, 3.2%, and 1.6%.

Besides write overheads that degrades performance, we found that the row hit rates can be improved in some circumstances. In

fact, the address space randomization may improve temporal locality of memory blocks. It is because the technique distributes

memory blocks to different banks, increasing the likelihood of row buffer hits as each bank has its own row buffer. In our analysis,

we found the average increase of PRAM row hit rates is from 3.3% ∼ 3.5%.

For example, 410.bwaves receives the most benefit (2.1% ∼ 3.6%) from the improved row buffer hit rate (7.56% ∼ 7.62%).

462.libquantum is the only benchmark showing a decreased row hit rate (−1.1% ∼ −0.3%) but at the noise level. Overall, the

performance impact with our Security Refresh scheme is negligible.

6 Conclusion

In this paper, we argue that a robust PRAM design must take both security and durability issues into account simultaneously. More

importantly, it must be able to circumvent the scenarios of intentional, malicious attacks with the presence of a compromised OS

and potential information leak from side channels. By analyzing prior durability techniques at architectural level, we demonstrated

practical attacking models, including deliberately contrived methods exploiting side channels, can wear out PRAM blocks within

a tangible amount of time. For example, prior redundant write reduction techniques do not obfuscate addresses, making a victim

memory block easy to target. Some wear-leveling technique performs address randomization, however, the mapping was static at
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boot time, leaving open side channels for adversaries to glean and assemble useful information.

To address these shortcomings, we propose Security Refresh, a novel, low-cost hardware-based wear-leveling scheme that per-

forms dynamic randomization for placing PRAM data. Security Refresh relies on an embedded controller inside each PRAM to

prevent adversaries from tampering the bus interface or aggregating meaningful information via side channels. Furthermore, we

evaluated the implementation trade-off of Security Refresh and quantified the reliability for a two-level Security Refresh mecha-

nism. Given a 1GB PRAM bank with 32 sub-regions at the inner-level, its optimal lifetime (8 years) can be achieved with a 256B

memory block using 2048 and 32 writes for the outer- and inner-level refresh rates.

In addition, we also apply simple pinpoint attacks to understand the wear-out distribution using Security Refresh. We found

that as the number of pinpoint writes to the same memory address is increased, our technique will distribute the data placement

more evenly, improving the overall durability. Finally, we analyzed the performance impact of Security Refresh using SPEC2006

and found the average IPC variations are within 2%.
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