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Two-Port Network Models for Compliant
Rhomboidal Strain Amplifiers

Joshua Schultz, Jun Ueda, Member, IEEE

Abstract—Piezoelectric stack actuators have the advantages of
zero backlash and no acoustic noise, but their stroke is too small
to actuate robotic links directly. Because the force available is
often more than is required, the stroke of the piezoelectric stack
can be amplified by a compliant mechanism at the expense of
force. It is not always clear what the geometry of this compliant
mechanism should be. Compliant mechanisms have parallels in
biology in that they describe two-way interactions between the
actuator and the environment. In this article, we employ the
concept of a two-port network model from circuit theory to
describe this two-way interaction, and present a method to obtain
each element of the two-port model as an analytical function of
physical geometric parameters for a wide class of geometries. This
method makes use of Castigliano’s theorem and Euler-Bernoulli
linearly elastic beam theory. To our knowledge, this is the first
two-port representation of a compliant mechanism that is based
on analytical expressions of geometric parameters. This analytical
model agrees well with finite element method calculations. We
also examine a representative case experimentally and achieve
accuracies better than 18%.

I. INTRODUCTION

Although humanoid robots possess a human-like morphol-
ogy, most do not possess human-like actuation. Traditional
actuators used in most humanoids lack the two-way compliant
interaction characteristic of biological motion systems, which
is necessary to ensure safety when robots and humans share
the same workspace. Biological muscle, rather than operating
by relative rotation of rigid members, operates by contracting
numerous flexible units in concert. This gives muscle several
advantages with regard to interaction with an uncertain en-
vironment. Muscles also posses damage tolerance and can
be synergistically activated to achieve desirable impedance
characteristics [1].

Lead Zirconate Titante (PZT) stack actuators, although inor-
ganic, are like biological muscle in that they exhibit a two-way
interaction with the load. Piezoelectric stacks by themselves
are of little use in robotics applications due to their minus-
cule displacement. To mitigate this, the piezoelectric stack
actuator imposes a force-displacement boundary condition at
a strategically chosen point (the input) on a linearly elastic
deformable body. The geometric properties of the deformable
body are such that the displacement at another particular point
(the output) is much larger than the displacement of the input.
The output point is connected to the load. Of course, some of
the electrical energy supplied to piezoelectric stack is stored
in the deformable body as strain energy, and in some sense
this can be viewed as a parasitic effect.
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Fig. 1. Multilayer nested rhomboid compliant actuator

A summary of various techniques for optimizing these
PZT plus compliant mechanism devices can be found in [2].
Design of a compliant mechanism has two distinct steps,
a topology synthesis, followed by a dimensional synthesis
[3]. One method is the “topological optimization” approach,
whereby the designer begins with a “ground structure” [4],
[5], usually a uniform truss with uniform members. The
algorithm modifies, and in some cases removes these members,
resulting in a topology. The thickness of various elements is
refined during the dimensional synthesis phase, which does
not change the path from active element to load. Grossard,
et al. [6] use a variation on this approach using a component
library of active and passive ground structures, called FlexIn.
Their optimization routine also includes dynamic performance
criteria. Although this “automatic” approach is appealing, it
is computationally intensive, and the process does not apply
engineering intuition in the intermediate stages of the process.

This research is concerned with a particular canonical
topology, the rhomboid. This geometry lends itself well to
large-displacement nested mechanisms, where the output of
one compliant mechanism is the input to the next, such as in
the mechanism shown in Fig. 1. This is necessary because
for large-displacement actuators, manufacturing and space
considerations do not allow the force-displacement tradeoff
to be completed in a single stage. The rhomboidal strain
amplification principle is illustrated in Fig. 2. If the major
diagonal of a rhombus undergoes a change in length, the
minor diagonal will undergo a much larger change in length,
hence, a “strain amplification.” The mechanism in Fig. 2 shows
rigid links connected by hinges. This idealized mechanism
is seldom used in practice. In general, rhomboids are small
devices, and must be manufactured in one piece, precluding
the use of actual hinges. Hinges pose assembly difficulties,
can introduce backlash, and are subject to lubrication and
contamination issues. So typically, mechanisms have “flexure



2

Fin
Fin

Fout
δin/2 δin/2

δout

θ

Fig. 2. rigid rhomboidal strain amplifier

hinges,” points where additional material is removed to create
a section with high localized compliance. The remainder of
the structure is usually considered to be rigid. Of course, the
hinges still possess some finite stiffness, so the displacement
will always be less than that of the idealized mechanism. Most
of the research on rhomboidal strain amplification methods
focus on the design of these hinges and how closely they
approximate ideal hinges [7]–[12].

In contrast with existing works, this research does not seek
to merely add a set of expressions for yet another compliant
mechanism geometry. It seeks rather to provide a critical
ingredient for the study of large displacement nested mech-
anisms, by providing a concise model of a single rhomboid’s
behavior within a nested hierarchy. It presents a method
to obtain simple input-output models of an entire class of
compliant mechanisms with numerous choices of geometric
parameterizations, not merely for flexure hinges. One impor-
tant distinction to note is that the works referred to here
are strictly for planar mechanisms, whereas the modularity
and generality of the units described here allow them to
be combined in 3 dimensional configurations. The method
is demonstrated for one particular parameterization. Results
are confirmed by numerical procedures and finite element
methods. The idealized mechanism naturally give rise to the
idea of “flexure hinges,” perhaps explaining the direction of
prior work, but there is no reason that compliance has to be
localized. The methods presented in this paper work equally
well for rhomboids with distributed compliance.

So-called “strain-amplified” piezoelectric stack actuators are
currently available from a small number of vendors, however,
even with an impressive displacement amplification factor of
10-20, [13], [14], the displacement is still on the order of μm,
still not large enough for most robotics applications. Ueda,
Secord, and Asada [15] amplify this displacement still further
by placing several amplified stacks in series and amplifying
the output of this series combination a second time, calling the
strain amplifier of the commercial part the “first layer,” and the
rhomboidal mechanism that amplifies the output of the series
combination the “second layer.” This multi-stage amplification
technique produces strains on the order of that of human
muscle, approximately 22%. Since this actuator has a strain
rate similar to that of human muscle, its displacement and
force will scale with volume similarly to human muscle. For
this reason, it is termed the cellular actuator, because many

of them can be connected in series and parallel combinations
to achieve desired actuation characteristics, as human muscle
cells are. Secord and Asada [16], [17] combine this mechanism
with mechanical stops so that the resulting actuator will have
a position-dependent stiffness as specific units in the chain are
activated.

This work presents an input-output understanding of each
rhomboidal compliant mechanism in the hierarchy based on
elementary mechanics of materials and two-port electrical
network theory. This particular formulation is constructed so
as to concisely but adequately describe interconnections of
these mechanisms to construct a large-displacement actuator.

II. TWO-PORT MODELS OF STRAIN AMPLIFYING

COMPLIANT MECHANISMS

According to Choma, [18], the two-port network is a simple
way to model an electrical network when the mathematical
models of the underlying components are either unknown, or
inordinately cumbersome. The two-port concept allows the de-
signer to analyze the network as a “black box” and focus on its
input-output behavior, ignoring the constitutive relationships
interior to the network. Input-output behavior can be described
by simple passive impedances plus voltage-controlled current
sources or current-controlled voltage sources interior to the
network. Interested readers can find additional details in Ap-
pendix A.

With the appropriate mechanical-electrical analogies, two-
port networks can also be used to model rigid body or flex-
tensional mechanical systems. This makes two-port networks
a simple but powerful analysis tool, one that is particularly
useful for describing the two-way interactions characteristic
of biologically inspired actuation. Abdalla [4] et al. model not
only the compliant mechanism as a two port network, but also
the piezoelectric stack actuator itself. The four quantities of
interest are the voltage applied to the stack, the charge stored
in the stack, the force applied by the stack, and the stack
displacement. Therefore, the electromechanical transduction
of the PZT ceramic also lends itself to a two-port network
description. For this reason, it is even more advantageous
to model the compliant mechanism as a two-port network,
for then the interconnection laws for two-port networks can
simply and elegantly describe an entire multi-stage compliant
device, and if the source impedance (electrical) and terminal
impedance (mechanical) are known, the entire response can be
predicted. If the immittance matrix is known for each com-
pliant strain amplifying mechanism in a hierarchical nested
configuration, the stiffness of the entire mechanism can be
easily predicted, and can be accurately approximated even if
only the outermost few layers are known [19]. Abdalla, et al.
show some key properties of the two-port model approach, but
do not explain how to determine the immittance matrix from
the geometry and material properties of the compliant mech-
anism constituting each layer, necessitating the contribution
described in this work.

The approach in [4] assumes that the designer begins the
design with knowledge of the load impedance. They show that
the compliant mechanism and the PZT stack can be designed



3

separately, in that order. They also derive an expression for
the efficiency and show that it varies inversely with the
geometric advantage (or displacement amplification factor) of
the mechanism,

a =
δout
δin

. (1)

They then begin with an assumed truss ground structure
and numerically follow a topological optimization approach.
The most efficient structure is the ground structure, which is
the most rigid. They therefore use a quadratic cost function
with weights on the geometric advantage and efficiency to
arrive at an optimal compliant mechanism for the assumed
load. While Abdalla’s work highlights the benefits of two-
port modeling for compliant mechanisms, it is not clear how
well the mechanism will work across varying loads typical
in robotics and how the model will vary with manufacturing
tolerances, because it does not draw the connection between
geometry and mechanism function in general.

Rhomboidal mechanisms are an intuitive topology and lend
themselves well to interconnections in series, parallel, and
nested configurations and can therefore be used to construct
muscle-like robotic actuators. Another good rationale for us-
ing rhomboidal mechanisms is that automatically generated
topology optimizations have converged to structures that are
rhomboidal in shape [20]. Trying to achieve a desired stroke
length with series combinations of piezoelectric stacks ampli-
fied a single time (such as the commercially available devices
discussed later in the paper) results in an overall actuator that
is too long relative to its stroke length.

III. NESTED AMPLIFICATION MECHANISMS

To design a nested actuator, we begin with commercially
available single-layer amplified PZT stacks, concatenate a
small number of these in series, and amplify their displacement
multiple times using compliant rhomboidal mechanisms. Each
layer of amplification can be expressed as a two-port network.
Ueda, Secord, and Asada [15] propose such a multi-layer strain
amplified mechanism, using the concept of a two-port net-
work. Rather than supplying connections to the mechanism’s
geometry, their immittance matrix parameters are related to the
stiffnesses in a lumped parameter Hill muscle model. Using
finite element methods, they develop a prototype two-layer
actuator optimized for maximum output displacement given
reasonable manufacturing constraints. However, this actuator
has very low force capability and the design procedure was
performed using ad hoc methods. It is not clear from this
work how force-displacement specifications can be satisfied
by a set of immittance parameters and how to determine the
geometrical characteristics of the various layers that meet these
performance specifications.

In essence, Ueda, Secord, and Asada [15] solve the “for-
ward” problem: given a geometry, determine its performance
characteristics. We would like to solve the “reverse” prob-
lem: given a set of performance specifications, determine the
geometry characteristics that will meet these specifications,
i.e., determine what compliant mechanisms allow a robot to

supply required forces within the desired range of poses when
a voltage is applied to a PZT stack. It is the reverse problem
that really benefits from an analytical model. The two-port
model of rhomboidal strain amplifying mechanisms presented
in this article is a key step towards making the reverse
problem easier to solve, because it encapsulates complicated
geometric relationships in 3 elements per layer that are key
to its input-output behavior. Optimization routines need to
solve the forward problem multiple times in order to find an
optimal point. To analyze complicated series-nested compliant
actuators with multiple stages of amplification using finite
element methods, great care needs to be taken with the mesh at
interfaces, thin sections, and changes in cross section to ensure
that the problem will be numerically solvable. Even if a search
direction can be computed using finite differences, to perform
a finite element simulation, a new CAD model needs to be
constructed at each iteration. In addition, the finite element
results give no insight on how to choose the trial geometry to
get closer to the goal. This makes solving the reverse problem
using finite element models extremely labor intensive. Our
approach allows the designer to find an analytical model for
a given choice of geometric parameterizations, and quickly
get a sense of how changing each parameter affects the
performance of the compliant strain amplifier and the nested
mechanism as a whole. The forward problem is then merely
a function evaluation, so common optimization routines can
be used, provided the parameterization and constraints result
in a convex problem. Search directions can be automatically
computed from the analytical model, and the only CAD model
that need be created is the one used for manufacture. Using
the two-port formalism, it is easy to see how manufacturing
tolerances will affect the performance of the entire device. The
two-port model also shows clearly how each layer in a nested
hierarchy contributes to the function as a whole.

IV. FINDING EXPRESSIONS FOR THE IMMITTANCE

PARAMETERS USING CASTIGLIANO’S THEOREM

Since we are planning to model a rhomboidal strain amplifi-
cation mechanism as two-port network, we are less concerned
with the internal stress and strain fields than the input-output
behavior of the mechanism. For this reason, it is natural to
use Castigliano’s theorem [21], since it provides an input-
output relationship between the loads on a structure and a
displacement at a given point.

Castigliano’s theorem has been used in several previous
works to determine the stiffness of flexure hinges [8], [12].
Lobontiu and Garcia [9] characterize an entire hinged mech-
anism in terms of three parameters, the input stiffness, the
output stiffness, and the displacement amplification and opti-
mize the filleted flexure hinges to achieve a balance between
amplification and stiffness, however, unlike a two-port model,
it does not describe the function of the mechanism across
varying loads and control inputs and was not formulated
with large-stroke robotic applications in mind. In an actual
compliant displacement amplification mechanism, the ampli-
fication factor will vary with loading conditions and along
the stroke necessitating a slightly more involved description.
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The bilateral two-port approach adds a level of abstraction that
makes the problem tractable with larger numbers of parameters
and is naturally suited to representing the two-way interactions
of nested multi-stage compliant mechanisms.

Our analysis begins along the lines of the “chain method”
described by Howell [22] for a simply connected body. Unlike
Howell, we are not interested in a numerical evaluation of
nodal displacements. Instead, we resolve the boundary condi-
tions for a multiply connected body analytically, resulting in an
analytical input-output model. In order to determine the two-
port model of a general rhomboidal compliant mechanism, we
make several simplifying, but justified, assumptions. First, we
assume that the mechanism is symmetric about the two axes
shown in Fig. 2. This allows us to derive the input-output
relationships by analyzing a quarter mechanism. Second, we
assume that forces are applied to a given layer only at the input
and the output. Third, we assume that the compliant mech-
anism is composed of finitely many thin straight segments
rigidly connected in series and fillet radii are small relative to
the segment length and have negligible effect.

The method to determine the expressions for the immit-
tances is summarized as follows: first, we resolve the static
indeterminacy in the doubly connected rhomboid, eliminating
the moment reaction in favor of the input and output forces.
The internal moment reaction is a hidden parameter and is
subsumed in the two-port formalism. This is possible because
of the symmetry of the compliant mechanism. Second, we
apply Castiglianos theorem in both the input and output
directions. Third, we collect terms so that these two relations
correspond to the two-port model relationships.

Consider a general single straight segment (i) rigidly con-
nected to the preceding segment (i−1). The free body diagram
is shown in Fig. 3. In this way, we can express the internal
forces in a given segment in terms of its geometric parameters
and the forces in the preceding segment. N i is the internal axial
load, Vi is the internal shear, Mi is the internal moment for
segment i. zi is the distance to a point on the segment, ranging
from 0 to zfi . α(z) is the angular deflection at zi. θi is the
orientation of the segment in the undeformed configuration.
Beginning with the reactions at a fixed flange (section 0), we
can propagate the internal forces and moment outward through
the quarter mechanism until we reach the point of application
of the input force.

Applying the equations of static equilibrium to section i
in matrix-vector form we can express the internal forces and
moment in segment i at a distance along the segment z i in
terms of those in the preceding segment as:

⎡
⎣ Ni

Vi

Mi

⎤
⎦ =i Pi−1

⎡
⎣ Ni−1

Vi−1

Mi−1

⎤
⎦ (2)

where

iPi−1 =

⎡
⎣ cos(θi − θi−1) − sin(θi − θi−1) 0

sin(θi − θi−1) cos(θi − θi−1) 0
zi sin(θi − θi−1) zi cos(θi − θi−1) 1

⎤
⎦ . (3)

θi-1

θi

zi
f

Vi

Vi-1

Ni-1

zi Mi

Mi-1

α(zi)Ni

Fig. 3. Free body diagram of a general flexible segment with no loads applied
to its interior.

To propagate this to the next segment, we evaluate (2) at
zi = zfi , which is a geometric parameter. The rhomboidal am-
plification layer is a doubly connected, statically indeterminate
structure. In order to solve a doubly connected structure, we
need additional compatibility conditions expressed in terms
of the displacement, which we develop here. A generalized
compliant mechanism that conforms to the assumptions above
is shown in Fig. 4. Nk,Mk, k = {P,Q,R} are the equivalent
moment and axial reactions from the removed section. The
circled numbers {1 · · ·N} denote the index of each segment.
Rx, Ry , and MR are the reactions at the fixed end condition.
To resolve the static indeterminacy, we proceed as follows:
imagine that we cut the structure in half along A–A, discarding
the right hand (light gray) half. A fixed end condition is
then applied at point R. Due to symmetry about A–A, each
half of the structure will carry half of the applied load Fout,
and deform by the same amount in the direction of F out.
Therefore, the right half will impose no shear reaction on
the left half. However, there will be a normal reaction force,
NP , imposed by the right half on the left half to insure that
point P remains on the center line. The right half will also
apply a moment reaction MP on the left half, ensuring that
the deflection angle of the final segment is continuous at P.
These two compatibility conditions allow us to determine these
unknown internal reactions.

Because the structure is also symmetric about B–B, the
upper and lower quarters will each carry 1/2 of the load F in,
and deform by the same amount. This allows us to express the
compatibility conditions at point Q, simplifying the results,
and discard the upper, dark gray quarter, replacing by its
internal reactions NQ and MQ. Because of symmetry about B–
B, the internal reaction NQ = Fout/2. Due to symmetry, the
compatibility condition on the deflection angle stipulates that
the tangent at Q must remain unchanged from its undeformed
configuration, or:

α(zfi ) = θN . (4)
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Fig. 4. Doubly symmetric actuator composed of straight segments

where α is the function for the deflection angle of segment
i. In [9], [21], expressions for redundant reactions are found
using Castigliano’s theorem, but in this case, since only one
integration is required, it is simpler to proceed by direct inte-
gration of the moment and then solve for MQ. Assuming each
segment is linearly elastic, has negligible shear deformation
and undergoes small deflections, we can apply [21]:

α(zi) =
dv

dzi
=

1

EIi

∫
Mi(zi) dzi, (5)

where E is the Young’s modulus of the material, and I i is
the moment of inertia of the segment. Integrating, augmenting
(2), and evaluating at zf

i , we can propagate the internal forces
and deflection angles of each segment forward according to:

⎡
⎢⎢⎣

Ni

Vi

Mi

αi(z
f
i )

⎤
⎥⎥⎦ =i P aug

i−1

⎡
⎢⎢⎣

Ni−1

Vi−1

Mi−1

αi(z
f
i−1)

⎤
⎥⎥⎦ (6)

where

iP aug
i−1 =

⎡
⎢⎢⎢⎣

cos(θi − θi−1) − sin(θi − θi−1) 0 0
sin(θi − θi−1) cos(θi − θi−1) 0 0

zfi sin(θi − θi−1) zfi cos(θi − θi−1) 1 0
zf 2
i

2EI sin(θi − θi−1)
zf 2
i

2EI cos(θi − θi−1)
zf
i

EI 1

⎤
⎥⎥⎥⎦ .

(7)
The compatibility conditions state that:

⎡
⎢⎢⎣

NN

VN

MN

αN (zfN )

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

NQ

VQ

MQ

0

⎤
⎥⎥⎦ . (8)

The first three equations are trivial, but the final equation
can be solved to find the expression for the unknown internal
moment MQ in terms of Fin and Fout. Once this expression
is determined, we can substitute it into the expression for MR

and propagate it outward using (2). We then proceed to find

the expressions for the input displacement (displacement at Q
along the direction of Fin), and the output displacement (dis-
placement at R along the direction of Fout) using Castigliano’s
theorem.

Because the integration limits in this application of Cas-
tigliano’s theorem are finite constants, and for a linearly elastic
structure, the strain energy/per unit length will be continuous,
we are permitted to bring the derivative inside the integral.
Castigliano’s theorem can then be expressed as:

δj =

N∑
i=1

∫ zf
i

0

(
Mi

EIi

∂Mi

∂Fj
+

2(ν + 1)Vi

EAi

∂Vi

∂Fj
+

Ni

EAi

∂Ni

∂Fj

)
dzi, (9)

where ν is the Poisson’s ratio of the material, and Ai is the
cross-sectional area of the segment. Since each of the internal
forces and moments is linear in the loads Fj , we can use
(2) to propagate the partial derivatives forward segment by
segment, with the internal forces and moment replaced by
their partial derivatives. Assuming each summand is calculated
iteratively, [Ni−1 Vi−1 Mi−1 ] and their partial derivatives will
not depend on zi, and they can be pulled out of the integral.
We can then express the output displacement as:

δj =

N∑
i=1

⎡
⎣ Ni−1

Vi−1

Mi−1

⎤
⎦
T

Qi

⎡
⎢⎣

∂Ni−1

∂Fj
∂Vi−1

∂Fj
∂Mi−1

∂Fj

⎤
⎥⎦, (10)

where Qi is as expressed as

Qi =

∫ zf
i

0

iPT
i−1

⎡
⎢⎣

1
EAi

0 0

0 2(ν+1)
EAi

0

0 0 1
EIi

⎤
⎥⎦ iPi−1 dzi. (11)

Performing the integration with respect to z i, and assuming
each segment has a rectangular cross section of width t i, we
obtain

Qi =
1

24EIi

⎡
⎣ q11 q12 q13

q21 q22 q23
q31 q32 q33

⎤
⎦

q11 = 2(zfi t
2
i cos

2(θi+1 − θi)

+ ((2ν + 1)zfi t
2
i + 4zf 3

i ) sin2(θi+1 − θi))

q12 = q21 = ((2ν + 1)zfi t
2
i + 4zf 3

i ) sin(2(θi+1 − θi))

q13 = q31 = 12zf 2
i sin(θi+1 − θi)

q22 = 2(zfi t
2
i sin

2(θi+1 − θi)

+ ((2ν + 1)zfi t
2
i + 4zf 3

i ) cos2(θi+1 − θi))

q23 = q32 = 12zf 2
i cos(θi+1 − θi)

q33 = 24zfi (12)

Before we can apply (10), we must perform a change of
variable: F = Fin/2. This is necessary because the quarter
actuator carries the 1/2 the input force, and taking the partial
derivative with respect to the full input force F in will yield
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an erroneous result. To find the input displacement δ in, we
apply (10) with Fj = F . We then multiply this quantity by
2, since each half of the actuator undergoes this displacement.
Applying (10) with Fj = NQ yields the displacement of point
Q. Because of symmetry about B–B, we can simply multiply
this by 2 to get the displacement of point P, or δout.

Because we have modeled each segment as a linearly elastic,
Euler-Bernoulli beam with point loads, one would anticipate
that the displacement expression will be linear in the loads
multiplied by a multivariate cubic polynomial in d, h, and
w. This is indeed the case. However, the application of the
symmetric compatibility conditions along section A–A and B–
B in Fig. 4 make the expression more complicated. We solved
(6) for the unknown moment reaction MQ, and this shows up
in the denominator of the expression. Because the denominator
of the displacement expression arises from the coefficient of
the MQ term in (6), the denominator will be first order in
d, h, and w. However, looking at the relative order of the
displacement expression (order of the numerator - order of the
denominator), it is 3, the same order as a simple beam. If the
structure is not rectangular, there are also trigonometric factors
as part of these expressions. For this reason, it is advisable to
keep the number of geometric parameters to a minimum, since
the complexity of the expression will scale with the number
of geometric parameters.

If we collect terms in the expressions for δin and δout with
respect to the loads Fin and Fout, the denominator DM will
be common, up to a multiplicative constant. Therefore, we can
write these equations as:

[
δin
δout

]
=

1

DM

[
C11 C12

C21 C22

] [
Fin

Fout

]
, (13)

where Cij are quartic factors of the geometric parameters. The
compliance matrix in this equation is precisely an immittance
matrix of a two-port network. (Choosing displacement to
be analogous to voltage makes it an admittance matrix). Its
inverse is precisely the stiffness (impedance) matrix introduced
in [15]. According to Maxwell’s reciprocity theorem [4], at
DC, the compliant mechanism will be a reciprocal two-port
network. Therefore, following the notation in [15] we can
write:

[
Fin

Fout

]
=

[
s1 s3
s3 s2

] [
δin
δout

]
, (14)

where s1 corresponds to the stiffness in the input direction
when the output is blocked, s2 corresponds to the stiffness
in the output direction when the previous amplification layer
is completely rigid, and s3 describes the cross-coupling from
input to output, e.g. how much force is generated at a fixed
output due to a given input displacement. s3 also has units of
stiffness. This matrix is positive definite; The combined effect
of the stiffnesses in the input and output load’s own direction
will always be greater than the cross-coupling effect, due to the
storage of strain energy in the compliance of the mechanism.

V. MODEL VALIDATION BY FINITE ELEMENT METHODS

The procedure in the previous section results in an analytical
two-port model for a wide class of geometries. In order to

h

d
w

θ

t

b

δout

δin / 2

Fin

Fout

Fout

Fig. 5. Example parameters for model verification

implement this method, the designer must choose a reasonable
set of geometric parameters that will be varied. The immittance
matrix will be a function of these parameters. To demonstrate
how this procedure works, we choose an octagonal mechanism
(N = 3) of constant thickness (ti = t ∀ i), varied its
parameters and compared the analytical model’s predictions
to those produced using Finite Element Methods (FEM). The
associated geometric parameters and the expected deformed
shape with tensile input and output loads are shown in Fig.
5. Since the purpose of the FEM evaluation is merely to
quantify how well the linear model performs compared to
a numerical approach, w/2 = 1 m and b = 2 mm were
chosen as general characteristic dimensions. This “meterstick”
size gives an intuitive feel for how much deformation should
occur, providing a useful check. As long as the size permits the
device to be analyzed as a continuum, the mesh size will scale
with the geometry of a given part, and for any characteristic
dimension, the level of accuracy should be the same. In the
actual application, w will be set by the previous layer and b is
the thickness of the plate from which the compliant mechanism
is machined, so we do not have absolute design authority over
those parameters. The FEM evaluation varied d, θ, and t one
at a time with the sum h + 2d held equal to w. θ was held
at 45◦ when it was not being varied, d was held at 500 mm
when not being varied and t was held at 2 mm when not
being varied. Loads were chosen for each geometry such that
the mechanism would have a small, but visually discernible
displacement at true scale.

We solved for the expressions in (13) using Wolfram
Mathematica and evaluated them numerically for the various
choices of geometric parameters. The expressions for DM

and the various Cij can be found in Appendix B. We also
simulated half the compliant mechanism for each set of param-
eters using Dassault Systèmes’ SolidWorks Simulation finite
element modeling software. The results for various geometries
are shown in Tables I - VI. In the case of variation of the
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Parameter Value Units
d 2.4 mm
h 1 mm
θ 6 ◦
t 0.15 mm

Fig. 6. Mechanism characteristics used in experiment. Parameters are as in
Fig. 5

parameter t, the load was varied so as to keep the final
displacement in a reasonable range. The level of agreement
between the two methods is good, within 1% in most cases for
thin mechanisms. As the ratio between t and w approaches 0.1,
the accuracy begins to suffer, but for most useful compliant
mechanisms, the ratio will be below this value.

VI. EXPERIMENTAL RESULTS

In order to evaluate how well the expressions developed
in the previous sections match the behavior of a true mecha-
nism, we performed a series of experiments to measure the
immittance parameters s1, s2, and s3 for a representative
strain amplifying structure. The mechanism we used was the
outermost layer of an actuator for a biologically inspired
camera positioner with 3 nested layers of amplification [23].
The full three-layer actuator has a predicted stroke length
of 8.1 mm, with a resting length in the output direction of
20.6 mm. By way of comparison, 16 Cédrat APA50XS strain
amplified PZT stacks placed in series would have a stroke
length of 1.26 mm and a resting length in the output direction
of 76.3 mm. The three-layer actuator uses 16 of these in its
construction. The geometry of the compliant mechanism is
of the class described in section V; it is a constant thickness
mechanism whose geometry is parametrized by d, w, h, θ, and
t. A photograph of the mechanism and the numerical values of
its parameters are shown in Fig. 6. A rigid section was added
to the middle to increase the height, because the chosen value
of h does not allow enough space for the internal layers to be
placed within this mechanism. The mechanism was machined
from a 5mm thick plate of C655 High Silicon Bronze, which
has an elastic modulus of 105 GPa and a Poisson’s ratio of
0.346.

To identify s1, s2, and s3 experimentally, we conducted two
experiments. The first experiment (shown in Fig. 7) varied
the output displacement with the input fixed and measured
input and output force. The second experiment (shown in Fig.
8) varied the input displacement with the output free and
measured input force and output displacement. Displacement
(when it was the independent variable) was varied using a
pair of NAI Aperture micropositioning stages. Force was
measured using Futek LSB200 load cells and displacement
(when it was the dependent variable) was measured using
microepsilon OptoNCDT laser position sensors. s1, s2, and
s3 for this mechanism were determined from the combined
data from both experiments using an unweighted least squares
regression. Since the data was taken with either the input
or output in a fixed or free condition, owing to the nature
of the sensors, two experiments were necessary so that the
measurements matrix would be full column rank. For instance,
placing a load cell at the output would block the laser beam,

Fig. 7. First experiment (input fixed)

Fig. 8. Second experiment (output free)

so that output displacement and output force could not both
be measured in the same experiment. Testing in a fixed or
free condition gave us implicit knowledge that either a force
or displacement was zero.

The results of the experiments are shown in Table VII. The
analytical model predicts all parameters to within 18%.

VII. DISCUSSION

The purpose of this theoretical construction of the various
immittance parameters is not an end in itself. The goal of the
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TABLE I
MECHANISM DISPLACEMENTS, VARYING d , h, Fin = 0.002 N, Fout = 0 N

d [mm] δin δout
FEM Proposed Method % difference FEM Proposed Method % difference

2 1.481 1.488 0.47 -1.780 -1.787 0.39
5 1.486 1.487 0.06 -1.782 -1.788 0.34
10 1.479 1.485 0.41 -1.785 -1.791 0.34
50 1.469 1.473 0.27 -1.809 -1.816 0.39
200 1.404 1.409 0.35 -1.928 -1.816 6.16
500 1.225 1.230 0.41 -2.140 -2.127 0.61
900 0.932 0.937 0.54 -1.863 -1.870 0.37
990 0.847 0.852 0.59 -1.696 -1.700 0.23

TABLE II
MECHANISM DISPLACEMENTS, VARYING θ, Fin = 0.002 N, Fout = 0 N

θ [◦] δin δout
FEM Proposed Method % difference FEM Proposed Method % difference

85 1.462 1.468 0.49 -1.830 -1.836 0.33
80 1.442 1.448 0.42 -1.880 -1.884 0.21
70 1.398 1.404 0.43 -1.966 -1.971 0.26
60 1.344 1.350 0.44 -2.043 -2.048 0.26
30 0.967 0.971 0.41 -2.011 -2.018 0.36

TABLE III
MECHANISM DISPLACEMENTS, VARYING t, Fin VARIABLE, Fout = 0 N

d [mm] Fin [N] δin δout
FEM Proposed Method % difference FEM Proposed Method % difference

2 0.02 1.481 1.488 0.47 -1.780 -1.787 0.39
5 0.2 7.814 7.874 0.76 -13.50 -13.61 0.81
6 4.515 4.557 0.93 -7.804 -7.88 0.97
10 1 4.372 4.922 1.53 -8.377 -8.51 1.59
25 12 3.641 3.782 3.89 -6.285 -6.535 3.98
50 60 2.196 2.370 7.90 -3.779 -4.087 8.15
100 1200 5.131 5.978 16.5 -8.740 10.24 17.2

TABLE IV
MECHANISM DISPLACEMENTS, VARYING d , h, Fin = 0 N, Fout = 0.002 N

d [mm] δin δout
FEM Proposed Method % difference FEM Proposed Method % difference

150 -9.43 -9.46 0.33 28.57 28.66 0.31
250 -9.84 -9.88 0.37 27.56 27.65 0.32
500 -10.57 -10.63 0.33 24.52 24.60 0.35
900 -9.31 -9.35 0.45 18.66 18.74 0.47
990 -8.40 -8.52 1.45 16.96 17.04 0.49

TABLE V
MECHANISM DISPLACEMENTS, VARYING θ, Fin = 0 N, Fout = 0.002 N

θ [◦] δin δout
FEM Proposed Method % difference FEM Proposed Method % difference

45 -10.57 -10.63 0.33 24.52 24.60 0.35
35 -10.47 -10.51 0.36 24.69 24.78 0.35
30 -10.05 -10.09 0.41 25.09 25.18 0.36

27.5 -9.56 -9.69 1.4 25.48 25.5 0.08

TABLE VI
MECHANISM DISPLACEMENTS, VARYING t, Fin = 0 N , Fout VARIABLE

d [mm] Fin [N] δin δout
FEM Proposed Method % difference FEM Proposed Method % difference

2 0.02 -10.57 -10.63 0.33 24.52 24.60 0.35

5 0.02 -0.6753 -0.6806 0.78 1.563 1.575 0.77
0.2 -6.725 -6.806 1.2 15.45 15.75 1.94

10 2 -8.376 -8.508 1.58 19.39 19.68 1.50
25 24 -6.285 -6.535 3.98 14.56 15.13 3.91
50 60 -3.780 -4.087 8.12 8.778 9.472 7.91
100 1200 -8.748 -10.24 17.06 20.53 23.86 16.2
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TABLE VII
MEASURED AND MODELED IMMITTANCES

Parameter Analytical Model Experiment
[N/m] [N/m]

s1 83400 80000
s2 561 660
s3 6560 5770

two-port model is to give a designer a simple model that can
be used to make an informed choice of geometry in the first
iteration of a design of the complete actuator, which consists of
several compliant layers. The formulation of this model makes
the traditional mechanics of materials assumptions of linearity
and small deformations. In fact, the errors on each of the
immittance parameters (which have units of stiffness) are on
the order of errors found in experimental evaluations of flexure
hinge stiffness [24]–[26]. Our evaluation is more complicated
because we are trying to determine a matrix of values that
correspond to coupled actions in orthogonal directions, not
simply a stiffness in a given direction. Since the mechanism we
evaluated was the outermost stage of a multistage amplification
mechanism for robot-scale displacement, rather than a single-
stage mechanism, as in previous works, the displacements are
larger. One of the strengths of our modeling approach is that
it allows for distributed compliance as well as localized com-
pliance. We took advantage of this in the mechanism shown
in Fig. 6. However, the drawback of distributed compliance is
that the deformation can vary more widely with manufacturing
tolerances. So it is understandable that our errors are slightly
larger.

In addition, the mechanism considered represents an ag-
gressive force-displacement tradeoff, and as a result, the
surrounding region of the design space is very sensitive to
parameter variations. This is illustrated in Fig. 9. When θ is
small, varying θ while fixing d can be problematic because
it can result in degenerate geometries, so to preserve valid
geometries, d = d′ tan θ/ tan θ′ was chosen for the surface
shown, where d′ and θ′ are the nominal values. Although
a small change in one of the geometric parameters may
affect blocked force and free displacement only slightly, the
immittances can vary widely.

Because the mechanism we tested was so fragile, some
permanent deformation occurred either through the manu-
facturing process or shipping and handling. We assumed
that the immittances would not be largely changed by this
deformation, but the residual stresses may have contributed
to some of the error. There was some compliance inherent in
the micropositioning stages and the load cells and this may
have introduced some error in measurement. There also may
have been some variation in the material constants from typical
tabulated values.

VIII. USING ANALYTICAL TWO-PORT MODELS TO STUDY

NESTED MECHANISMS

Although the full process of designing a multi-layer nested
actuator is beyond the scope of this paper, we present the
following discussion to show the usefulness of the the results
in the earlier sections of this paper. We know that nested
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(c)

Fig. 9. Variation in immittance parameters: (a) s1, (b) s2, (c) s3 with
geometry

(a) two dimensional mechanism (b) three dimensional mechanism

Fig. 10. Multi-layer nested geometry with reuse of a compliant mechanism

mechanisms can produce more aggressive force-displacement
tradeoffs than a single compliant mechanism, thus reaching
larger stroke lengths without drastically increasing the resting
length of the actuator. We also know that each time we
add a layer, some strain energy is stored in the compliant
mechanism, so unlike the idealized mechanism, we can not
say the the amplification effect is simply multiplicative. The
two-port network formalism allows us to analyze the effect of
adding successive layers of strain amplification, determine if
adding an additional layer is really a good idea, and estimate
the point of diminishing returns.

Suppose that someone has designed a rhomboidal com-
pliant mechanism to amplify the displacement a piezoelec-
tric stack that satisfies manufacturing constraints. This “two-
dimensional” mechanism is shown in Fig. 10a. However, let
us also suppose that this mechanism has a blocked force in
excess of the requirements and does not meet the stroke length
requirements. How much does the designer gain by reusing the
same compliant mechanism to amplify the displacement still
further, generating the “three dimensional” mechanism shown
in Fig. 10b?
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A. Analysis of 3D nested structure with two identical compli-
ant mechanisms

Let us suppose that the expressions for the immittance
matrix have been determined for the compliant mechanism
used in Fig 10a. The two-port force-displacement relationship
can then be expressed as in (14), where s1, s2, and s3 have
units of stiffness, and each are expressions of the geometric
parameterization and material properties.

In order to represent the cascaded connection of two strain
amplification mechanisms, we need to use a different immit-
tance matrix, the forward transmission matrix. This relation-
ship expresses a different input-output choice for the same
two-port model. Fortunately, the forward transmission matrix
can be calculated directly following the procedure in [18] and
is expressed as follows:

[ −δout
Fout

]
=

1

s3

[
s1 −1
−Δ s2

] [
δin
Fin

]
, (15)

where Δ represents the determinant of the stiffness matrix in
(14). δout is negated to represent the change of direction of
displacement with each added layer in the hierarchy. It is more
advantageous to tabulate and experimentally test the stiffness
matrix in (14) than the forward transfer matrix because the
stiffness matrix has consistent units among all the elements,
whereas the forward transfer matrix does not.

The forward transfer characteristic of the cascaded connec-
tion of two nested compliant mechanisms is simply the product
of the two forward transfer matrices. Denoting the stiffness
matrix elements for each layer with a leading superscript,
beginning with the innermost, we obtain the combined forward
transfer characteristic:

[
δout
Fout

]
=

1
1s23s3

∗
[

1s1
2s1 +

1 Δ −1s2 −2 s1
−2Δ 1s1 −1 Δ 2s2

2Δ+1 s2
2s2

] [
δin
Fin

]
, (16)

the negative sign having canceled out due to the direction
being reversed twice. If the two mechanisms are the same,
as in Fig 10b, the leading superscripts are unnecessary, and
(16) becomes

[
δout
Fout

]
=

1

s23

[
s21 +Δ −s1 − s2

−Δ(s1 + s2) Δ + s22

] [
δin
Fin

]
.

(17)

B. Displacement amplification figure of merit

One important metric for strain amplified piezoelectric
stacks is their free displacement, or the displacement of the
output when no load is applied. This is synonymous with the
maximum stroke length. One good dimensionless figure of
merit that will tell us whether we should add another instance
of a given mechanism to amplify the displacement still further
is the ratio of the free displacements of the three dimensional
mechanism in Fig. 10b to the two dimensional mechanism in
Fig 10a. From (14) and (17) it can be shown that

0

1s1

s2

0.5

1

0

FOM

Fig. 11. Bounding surface on figure of merit over s1,s2

FOM =
| δfree3D |
| δfree2D | =

s3
s1 + s2

(18)

If this figure of merit is greater than one, it is worth adding
another instance of the compliant mechanism to amplify the
displacement still further. However, since the stiffness matrix
must be positive definite, this figure is upper bounded by√

s1s2
s1+s2

. Therefore, the figure of merit must lie below the surface
shown in Fig. 11. Because we have the analytical expressions
for the two-port model of the mechanism, we can look at the
figure of merit as it varies with geometric parameters. As an
example, variation with thickness and angle are plotted in Fig.
12 over a wide range of values. The maximum value is around
0.5. This suggests that there is nothing to be gained by adding
another instance of a known compliant mechanism; the free
displacement is actually lower!

This is not to suggest a figure of merit greater than one
cannot be achieved when the two layers are allowed to vary
independently, in fact, previous work [15], [17], [27] indicates
that this is possible. In each of these cases, the geometry
of the outer layer is drastically different from the inner
layer. The process for optimizing multi-layer mechanisms is
quite involved and will not be discussed here. This involves
further results on nested mechanisms that are the subject
of a future work. The availability of analytical expressions
for the two-port immittance parameters allows us to quickly
evaluate nested topologies and determine whether there is a
good range of geometric parameters for a given performance
characteristic, something that is not easily done with purely
numerical models, such as finite element methods.

IX. CONCLUSION

Piezoelectric stack actuators have the potential to be of great
usefulness in robotics applications, but are limited by their low
strain rate. This can be mitigated by the use of compliant strain
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Fig. 12. Variation of figure of merit with angle and thickness

amplification mechanisms. This research presents a general-
ized Euler-Bernoulli formulation for the two-port model of any
doubly symmetric strain amplification mechanism composed
of a single loop of initially straight rectilinear segments. Unlike
previous works, which either present purely numerical two-
port models, or lists of long expressions, we provide analytical
two-port expressions. This higher level of abstraction is a pre-
requisite for studying interconnections of these units because
without it the expressions can become unwieldy, as well as
topologically troublesome. A motivating example is shown
for a particular class of mechanism described by 5 geometric
parameters. The model for this example has been verified by
finite element models. In addition, a particular mechanism of
this type has been evaluated experimentally and shows good
agreement, with an accuracy better than 18%. The analytical
model for the two-port network can be used to eliminate
guesswork as to how many layers of amplification should be
used in a nested compliant mechanism. In future work, we
will discuss further interesting properties that emerge in nested
compliant mechanisms and show how the models developed
in this article are used to choose geometries of each layer in
response to desired performance specifications.

APPENDIX A
TWO PORT NETWORK MODELS

Fig. 13 illustrates a two-port network with variable voltage
and current at each port. Of the four input-output quantities
of interest, V1, V2, I1, I2, any two, (e.g. both currents) can
be designated as inputs, making the other two quantities (e.g.
both voltages) outputs. The input-output relationship is then
described by a 2 × 2 immittance matrix. If the four elements
of the immittance matrix are known for a single choice of
inputs, the immittance matrices for all remaining input-output
relationships can be expressed as functions of the elements of
this first immittance matrix.

For example, if the currents, I1 and I2 are chosen as inputs,
then the voltages, V1 and V2, are outputs, then the immittance

V1 V2

+

-

+

-

I1 I2

Fig. 13. Two-port electrical network model

matrix elements are impedances, and the relationship is as
follows:

[
V1

V2

]
=

[
Z11 Z12

Z21 Z22

] [
I1
I2

]
(19)

If Z21 = Z12, then the network is termed a reciprocal two-
port network [18], [28]. If Z21 �= 0 and Z12 �= 0, the network
is termed a bilateral two-port, that is, changes in port 2 affect
port 1, and vice versa [28]. Various relationships for inter-
connections of two-port networks have derived, which can be
found in [18], greatly facilitating the analysis of complicated
interconnected networks. For this reason, two-port networks
have found great utility in the field of telemanipulation [28],
[29].

APPENDIX B
ANALYTICAL EXPRESSIONS FOR AN OCTAGONAL

MECHANISM WITH A SINGLE THICKNESS

The various Cij derived by solving the force-displacement
relations using Castigliano’s theorem are as follows:

C11 = − csc2
(
θ

2

)
sec4

(
θ

2

)(
96d4 cos(θ) − 64d4 cos(2θ)

+ 32d4 cos(3θ)− 64d4 − 64d3h sin(θ)

− 64d3h sin(3θ)− 64d3w sin(θ) − 64d3w sin(3θ)

+ 64d2t2 cos(2θ)− 54.144d2t2 cos(3θ)

+ 11.072d2t2 cos(4θ) + 16d2 cos(θ)
(
3.384t2 + 3w2

)
− 75.072d2t2 − 48d2w2 cos(3θ)− 86dht2 sin(θ)

+ 11.072dht2 sin(2θ) + 34dht2 sin(3θ)− 5.536dht2 sin(4θ)

− 6dht2 sin(5θ) + 2dht2 sin(7θ)− 129.216dt2w sin(θ)

+ 11.072dt2w sin(2θ) + 43.072dt2w sin(3θ)

− 5.536dt2w sin(4θ)− 48dw3 sin(θ) + 16dw3 sin(3θ)

− 5h2t2 cos(θ) + 14h2t2 cos(2θ) + 5h2t2 cos(3θ)

− 4h2t2 cos(4θ)− h2t2 cos(5θ) + 2h2t2 cos(6θ)

+ h2t2 cos(7θ)− 12h2t2 − hw cos(θ)
(
18.536t2 + 8w2

)
+ 2hw cos(2θ)

(
20.536t2 + 8w2

)
+ 18.536ht2w cos(3θ)

− 4ht2w cos(4θ)− ht2w cos(5θ) + 2ht2w cos(6θ)

+ ht2w cos(7θ)− 39.072ht2w + 8hw3 cos(3θ)− 16hw3

− 2w2 cos(θ)
(
6.768t2 + w2

)
+ 4w2 cos(2θ)

(
6.768t2 + w2

)
+13.536t2w2 cos(3θ)− 27.072t2w2 + 2w4 cos(3θ)− 4w4

)
(20)
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C21 = C12 = 2
(
128d4 csc3(θ)− 128d4 csc(θ)

+ 384d4 cot2(θ) csc(θ) − 512d4 cot(θ) csc2(θ)

+ 384d3h cot2(θ) + 1152d3h csc2(θ)

− 512d3(2h− w) cot(θ) csc(θ)− 1152d3h− 12d2h2 cos2(θ)

− 24d2h2 cos(θ) + 9d2h2 cos(2θ)

+120d2h2 cot2(θ)+258d2h2 csc2(θ)+6d2h2 cos2(θ) cot2(θ)

− 24d2h2 cos(θ) cot2(θ) − 360d2h2 cot(θ) csc(θ)

− 249d2h2 − 541.44d2t2 sin(θ)− 866.304d2t2 cot(θ)

+ 324.864d2t2 cos(θ) cot(θ) + 64d2 csc(θ)
(
8.46t2 − 6w2

)
+ 64dht2 cos4(θ) − 128dht2 cos3(θ) + 128dht2 cos2(θ)

+ 32dht2 cos(2θ) + 56dht2 cos(4θ) + 384dht2 sin2(θ) cos(θ)

− 128dt2(4.384h+ 3.384w) cos(θ) − 24dht2 − 384dhw2

− 96h2w2 − 128ht2(h+ w) sin(θ) cos3(θ)

+128ht2(h+ w) sin3(θ) cos(θ)
)

(21)

C22 = 2
(
512d4 csc2(θ) − 2048d4 cot(θ) csc(θ)

− 3072d3h cot(θ) + 1024d3(h+ w) csc(θ)+

192d2h2 sin(θ) − 1440d2h2 cot(θ) + 576d2h2 csc(θ)

+ 192d2h2 cos(θ) cot(θ) + 1536d2hw − 386.304d2t2 cos(θ)

+ 256d2t2 cot2(θ) + 768d2t2 csc2(θ)

− 32d2t2 cos(θ) cot2(θ) − 992d2t2 cot(θ) csc(θ)

+ 98.304d2t2 + 85dh3 sin(θ) + dh3 sin(3θ)

− 2d cot(θ)
(
115h3 + 322.58ht2 + 256t2w

)
+ 4d csc(θ)

(
43h3 + 120.756ht2 + 112t2w

)
+ 16d cos(θ) cot(θ)

(
5h3 + 12.46ht2 + 4t2w

)
− dh

(
h2 + 1.692t2

)
cos4(θ) cot(θ)

+ 2dh
(
h2 − 126.308t2

)
sin(θ) cos3(θ)

+ 4dh
(
h2 + 1.692t2

)
cos3(θ) cot(θ)

− dh cos2(θ) cot(θ)
(
96dh+ 25

(
h2 + 1.692t2

))
+ dh

(
3h2 + 261.076t2

)
sin3(θ) cos(θ)

− dh sin(θ) cos(θ)
(
96dh+ 29h2 + 305.068t2

)
+ 768dh2w + 416.972dht2 sin(θ) + 33.692dht2 sin(3θ)

+ 384dht2 sin(θ) cos2(θ) + 241.152dt2w sin(θ)

+ 32h4 + 128h3w + 16h2t2 cos(2θ)− 28h2t2 cos(4θ)

+ 260.576h2t2 − 32ht2(h+ w) cos4(θ) + 16ht2w cos(2θ)

−28ht2w cos(4θ) + 388.576ht2w + 128t2w2
)

(22)

the denominator common to all terms is:

DM = 6144 E I (h+ w − 2d(cot θ − csc θ)) . (23)

To obtain the immittances in stiffness matrix form, we take:

s1 =
C11DM

C11C22 − C2
21

(24)

s2 =
C22DM

C11C22 − C2
21

(25)

s3 =
−C21DM

C11C22 − C2
21

(26)
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