

Final Report for Final Report for

“Fault Injector for Middleware “Fault Injector for Middleware
Applications” Applications”

DouglasDouglas M. Blough and David SchimmelM. Blough and David Schimmel

School of Electrical and Computer EngineeringSchool of Electrical and Computer Engineering
Georgia Institute of TechnologyGeorgia Institute of Technology

Sponsored by Raytheon CompanySponsored by Raytheon Company

Critical Systems
Laboratory

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/77094825?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A. Project Overview
The Fault Injector for Middleware Applications (FIMA) project began in August 2003 and
ran through August 2004. The primary goals of this project were to investigate techniques
for injecting a wide variety of faults in middleware applications, to evaluate performance
overheads associated with these techniques, and to develop a fault injection tool that
incorporates the most promising of these techniques. This report summarizes the project
accomplishments and details the final status of the project as of August 2004.

B. Project Accomplishments
B.1 Task Completion
The project tasks of the Statement of Work are included verbatim below. All tasks were
fully completed as originally specified without modification.
Task Group A
Task A1: Test Bench Development and FIMA Test. Develop distributed object versions of
standard vector and matrix libraries to run as applications in the testing process. This task
will follow the test methodology developed earlier in the project to run a validation test of the
FIMA, to be performed in the presence of the sponsor.

Task A2: Additional FIMA Code. This task will develop code for additional pieces of the
FIMA, including basic error detection mechanisms, automatic wrapper insertion tools,
external triggering interface, and GUI.
Task A3: FIMA Test Code Modifications. This task will perform any necessary
modifications to the FIMA code that are identified during the FIMA validation test. The final
FIMA code produced by this task is FIMA v1.0.

Task Group B
Task B1: Performance Evaluation of FIMA Version 1.0. Thorough evaluation of overhead of
FIMA mechanisms both with and without faults being injected on the standard vector and
matrix library codes. Demonstrate ability to maintain real-time performance with FIMA
present.
Task B2: Server-side Communication Fault Injection via Wrappers. Add wrappers to inject
communication faults in skeletons on the server. Automate wrapper insertion process.
Task B3: Java Support: Develop and test a Java version of FIMA, which works with the
FIMA GUI and includes fault specification interface, communication fault injection
capability, log file manager, fault triggering interface, and test application. Develop detailed
implementation plan for memory fault injection with Java.
Task B4: FIMA Productization. This task will supply any final updates to documentation
and code after the delivery and joint evaluation of FIMA v2.0. Task includes a performance
evaluation of FIMA v2.0. Final updates may include product performance improvements
deemed important and practical during product evaluation.
Additional Tasks
Project Management. Manage all administrative, financial, schedule and technical aspects of
tasks, and hold test reviews for each release of code. Deliver monthly

cost/schedule/progress/status reports. Participate in quarterly program meetings with the
sponsor.

Startup plan and review. Prepare a startup plan that addresses cost, schedule, technical,
quality, risk and customer expectations. Conduct a startup review with Raytheon within 45
days after receipt of contract award.
Product Definition. This task will include a monthly dialogue on proposed FIMA capabilities
and uses, to help clarify each during FIMA development. Develop and maintain a
requirements document that describes the capabilities to be implemented in FIMA. Share
draft and final copies of this document with Raytheon.
User and Porting Support. This task includes a weekly teleconference, regular telephone
support hours, and email support to port the FIMA to Raytheon's computing environment.
This task also includes the delivery of bug fixes Georgia Tech makes as Raytheon uses v1.0
and v2.0 during the period of performance.
FIMA Documentation. This task will supply documentation on the programming and use of
the FIMA. Documentation updates will be delivered with each release of FIMA code.
Share draft and final copies of these documents with Raytheon.

B.2 Fault Injection Techniques and their Overhead
Techniques for both communication fault and memory fault injection were developed. The
primary technique for communication fault injection was interception of middleware
communication calls. This technique was implemented for CORBA within all versions of
the FIMA tool described in Section B.3. The technique was found to work equally well with
both C++ and Java application programs, and was therefore incorporated in both the C++ and
Java versions of FIMA. Memory fault injection was done via a FIMA thread operating in the
same address space as the application. This technique was fully developed and evaluated for
C++ applications and is present in the C++ versions of FIMA. Memory fault injection in
Java applications was the subject of a planning task in this project. We determined that a
separate thread operating in the same address space as the application could be invoked using
the Java Native Interface (JNI) and then used for memory fault injection. However, since in
Java, the same address space is shared by the application and the Java Virtual Machine
(JVM) run-time environment, the fault injection experimenter has a somewhat lower degree
of control of memory fault injection for Java applications as compared to C++. To be
specific, in certain cases, it might not be possible to target fault injection only to the code and
data portions of the application without the possibility of affecting the JVM. The details of
what can and can not be done with Java memory fault injection are given in the PowerPoint
slides delivered to the sponsor as part of the FIMA project review in March 2004.
The various fault injection techniques were implemented and evaluated as part of the FIMA
project. Full results detailing the overheads of the various techniques are contained in the
March 2004 FIMA review slides. A summary of those results is as follows. FIMA
initialization overhead (incurred once at program start time) is approximately 63 msec plus
16 µsec per statically defined fault that must be read from the static fault queue at
initialization time. Run-time overhead is approximately 200 µsec for a fault injected into a
static partition (code or static data) and about 14 msec for a fault injected into a dynamic
partition (heap or stack). The additional overhead for injection into dynamic partitions

resulted from the need to dynamically check the memory limits of those partitions to ensure
that injection is done to a “live” area. In both cases (static and dynamic partitions), fault
injection does not block the main application, because injection is done within a separate
thread. Hence, the injection overhead primarily impacts the granularity of fault injection
time. In addition, if fault injection is done very frequently (not typically the case for most
experimental set-ups), there might be a small impact on CPU utilization.

B.3 Tool Development and Documentation
The studied fault injection techniques were implemented within several versions of the FIMA
tool, as part of the project. FIMA 1.4 and FIMA 2.0 were two versions of the tool designed
to support C++ applications. J-FIMA 1.0 was developed to provide basic communication
fault injection capability for Java applications. All versions of the tool used the architecture
developed in an earlier project funded by the sponsor and shown in Figures 1 and 2.

Figure 1 shows the process that is used to instrument an application under test with the FIMA
code. The original application must be modified in several ways prior to being used with
FIMA. Injection of communication faults is achieved through wrappers that are placed
around method invocations on remote objects. These wrappers are inserted in the stubs that
connect the local process to the ORB and to the remote object. Hence, part of the FIMA
instrumentation process modifies the stubs to insert the wrappers. Some modification to the
main application is necessary also. This involves adding a call to FIMA_Init() at the start of
the main procedure to create the FIMA thread, initialize the FIMA data structures, and do
various other start-up tasks.

Figure 1: Application Instrumentation Process for FIMA

Much of the FIMA code, e.g. the memory fault injection module, is contained in libraries that
must be compiled with the original application. This requires the application makefile to be
modified to include an option to compile in the libraries. FIMA makes use of Posix threads,
and if the application is not already using them, an option to compile in the Posix threads'
libraries must also be included in the makefile. Once the stubs, application, and makefile
have been modified, the test application can be compiled.

Figure 2 illustrates the run-time operation of FIMA. The fault injection and error handling
code contained in the FIMA libraries run as a separate thread. When this thread is started via
FIMA_init(), it reads a fault specification file to capture statically-specified fault information.
Faults can also be specified and triggered dynamically by the application itself through the
FIMA API.

Figure 2: FIMA Run-Time Operation

The application can also call the FIMA thread for various purposes using the API. For
example, the application might wish for a fault to be injected at a particular point in the
program execution and it can specify and trigger this with API calls. The application can
also call the FIMA thread to initiate error detection, e.g. by calling a time-out mechanism,
and to handle detected errors. After detecting an error itself or being called by the
application after it detects an error, the FIMA thread logs the error event and handles it in one
of several ways that can be specified by the user, e.g.:

• flush the experiment log to disk and gracefully terminate the program
• flush the experiment log to disk and return control to the application
• do not flush the log and return control to the application

In addition to implementing time-outs within the FIMA thread, FIMA also contains
exception handlers that prevent most of the common operating system and processor
exceptions from crashing the application. These events are logged and execution is
continued, if so desired.

One of the main components of the FIMA thread is the memory fault injector. This injector
has access to the entire virtual address space of the application and is responsible for
corrupting different portions of that space when specified. This code has the ability to
corrupt instructions, stack, static data, and dynamic data of the application, either at specified
or random addresses.
A list of features and code included with the different FIMA releases is as follows:

FIMA 1.4

• vector and matrix libraries for CORBA

• client-side communication fault injection
• memory fault injection

• event-triggered injection
• automatic wrapper insertion tool

• external fault triggering
• GUI

FIMA 2.0

• everything in FIMA 1.4, plus the following

• server-side communication fault injection
• fault-tolerant (triplicated) FFT application

J-FIMA 1.0

• communication fault injection

• event-triggered fault injection
• GUI

Documentation on how to install and build FIMA, and how to use FIMA’s API, GUI, and
static fault specification format are included with the FIMA releases that were delivered to
the sponsor.

C. Conclusion
The FIMA project successfully developed and evaluated a variety of fault injection
techniques for middleware applications. These techniques were incorporated into several
versions of FIMA tools and delivered to the sponsor.

