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ADAPTIVE POSITION AND ATTITUDE TRACKING CONTROLLER
FOR SATELLITE PROXIMITY OPERATIONS USING DUAL

QUATERNIONS

Nuno Filipe∗ and Panagiotis Tsiotras†

In this paper, we propose a nonlinear adaptive position and attitude tracking controller for
satellite proximity operations. This controller requires no information about the mass and
inertia matrix of the satellite, and takes into account the gravitational force, the gravity-
gradient torque, the perturbing force due to Earth’s oblateness, and other constant – but
otherwise unknown – disturbance forces and torques. We give sufficient conditions on the
reference motion for mass and inertia matrix identification. The controller is shown to be
almost globally asymptotically stable and can handle large error angles and displacements.
Unit dual quaternions are used to simultaneously represent the absolute and relative attitude
and position of the satellites, resulting in a compact controller representation.

INTRODUCTION

Several organizations around the world are looking at satellite proximity operations as an enabling tech-
nology for space missions such as on-orbit satellite inspection, health monitoring, surveillance, servicing,
refueling, and optical interferometry.1, 3, 4 One of the biggest challenges introduced by this technology is the
need to accurately and simultaneously track time-varying relative position and attitude references in order to
avoid collisions between the satellites and achieve mission objectives.

The problem of deriving control laws for satellite proximity operations has a long history. Among the
several results in this area, here we mention the work in Ref. 4 where, using the vectrix formalism, nonlinear
control and adaptation laws were designed ensuring almost global asymptotic convergence of the position
and attitude errors, despite the presence of unknown mass and inertia parameters. However, the controller in
Ref. 4 is a 392nd-order dynamic compensator, which limits its applicability to satellites with limited on-board
computational resources. In Ref. 3, three different nonlinear position and attitude controllers for spacecraft
formation flying are presented. All controllers require full knowledge of the mass and inertia matrix of the
satellite. In Ref. ?, a relative position and attitude tracking controller that requires no linear and angular
velocity measurements and no mass and inertia matrix information is presented. However, as explained
in Ref. ?, if the reference trajectory is not sufficiently exciting, this controller cannot guarantee that the
relative position and attitude errors will converge to zero. In Ref. 1, an adaptive terminal sliding-mode pose
(i.e., position and attitude) tracking controller is proposed based on dual quaternions that does not require full
knowledge of the mass and inertia matrix of the spacecraft. This controller takes into account the gravitational
force, the gravity-gradient torque, constant – but otherwise unknown – disturbance forces and torques, but not
the perturbing force due to J2. Moreover, this controller requires a priori knowledge of upper bounds on the
mass, on the maximum eigenvalue of the inertia matrix, on the constant but otherwise unknown disturbance
forces and torques, on the desired relative linear and angular velocity between the spacecraft and its first
derivative, on the linear and angular velocity of the chaser spacecraft with respect to the inertial frame, and
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on the position of the chaser spacecraft with respect to the inertial frame. In addition, the convergence region
is not specified and no conditions for mass and inertia matrix identification are given.

Similarly to Ref. 1, in this paper we propose an adaptive pose-tracking controller based on dual quater-
nions.5 However, unlike Ref. 1, our controller does not require a priori knowledge of any upper bounds on
the system parameters or states, and takes into account the perturbing force due to J2, which is typically the
largest perturbing force on a satellite below GEO.6 In addition, our controller is proven to be almost globally
asymptotically stable and has only as many states as unknown parameters. Additional analysis allows us to
provide sufficient conditions for mass and inertia matrix identification. Although these conditions are not
needed for stability, they can be useful to design maneuvers to identify these parameters, if needed (e.g., after
a docking maneuver).

Dual quaternions provide a compact way to represent the attitude and position of a body. They are an
extension of classical quaternions. Dual quaternions are closely related to Chasles theorem, which states that
the general displacement of a rigid body can be represented by a rotation about an axis (called the screw
axis) and a translation along that axis, creating a screw-like motion.7, 8 A list of successful applications of
dual quaternions is given in Ref. 15. Compared to other mathematical representations, such as homogeneous
transformations, quaternion/vector pairs, and Lie algebraic methods, dual quaternions have been found to be
the most compact and efficient way to represent screw motion in robotic kinematic chains.7, 22, 21 Moreover, it
has also been shown that combined position and attitude control laws based on dual quaternions automatically
take into account the natural coupling between the rotational and translational motion.12, 13 Additionally, dual
quaternions allow combined position and attitude control laws to be written compactly as a single control law.
However, the property that makes dual quaternions most attractive is the fact that the combined translational
and rotational kinematic and dynamic equations of motion written in terms of dual quaternions have the
same form as the rotational-only kinematic and dynamic equations of motion written in terms of quaternions.
Hence, as has been recently shown,15, 16, 5 it is often relatively straightforward to extend an attitude controller
with some desirable properties into a combined position and attitude controller with equivalent desirable
properties, by almost simply substituting quaternions with dual quaternions in the attitude-only quaternion
control law.

This technique for developing combined position and attitude controllers from existing attitude controllers
has some advantages over techniques based on the special Euclidean group SE(3), where rotations are rep-
resented directly by rotation matrices.23, 24, 25 In the latter, asymptotically stability of the combined rotational
and translational motion is proven by either defining two different error functions for the position and atti-
tude error25 or, in two steps, by first proving the asymptotical stability of the rotational motion before the
asymptotical stability of the translational motion can be proven23 (note that the translational motion depends
on the rotational motion). In our approach, a single error function, the error dual quaternion (defined by
analogy to the classical rotation error quaternion), is used to represent the combined position and attitude
error. Moreover, the asymptotic stability of the combined rotational and translational motion is proven in one
step by using a Lyapunov function with the same form as the Lyapunov function used to prove the asymp-
totic stability of the rotational controller. On the other hand, whereas quaternions produce two closed-loop
equilibrium points (since quaternions cover SO(3) twice26) both representing the identity rotation matrix,
rotation matrices produce a minimum of four closed-loop equilibrium points,24, 23 only one of which is the
identity rotation matrix. On the negative side, dual quaternions inherit the so-called unwinding phenomenon
from classical quaternions.27 Solutions for this problem are known and suggested in this paper. Finally, note
that the tracking controllers proposed in Refs. 23 and 24 require the true mass and inertia matrix.

The paper is organized as follows. First, unit quaternions and unit dual quaternions are introduced. Then,
the relative kinematic and dynamic equations for satellite proximity operations written in terms of dual quater-
nions are derived. In the next section, the adaptive attitude and position tracking controller for satellite
proximity operations is deduced and proved to be almost globally asymptotically stable. Then, sufficient
conditions for mass and inertia matrix identification are given. Finally, the proposed controller is analyzed
and validated through a numerical example.
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MATHEMATICAL PRELIMINARIES

Most of the mathematical preliminaries in this section can be found in Refs. 15, 16, and 5. For the benefit
of the reader, we summarize here the main properties of quaternions and dual quaternions that are essential
for the developments later on in the paper.

Quaternions

A quaternion is defined as q = q1i + q2j + q3k + q4, where q1, q2, q3, q4 ∈ R and i, j, and k satisfy
i2 = j2 = k2 = −1, i = jk = −kj, j = ki = −ik, and k = ij = −ji.12 It can also be represented as
the ordered pair q = (q̄, q4), where q̄ = [q1 q2 q3]T ∈ R3 is the vector part of the quaternion and q4 ∈ R is
the scalar part of the quaternion. Vector quaternions and scalar quaternions are quaternions with zero scalar
part and vector part, respectively. The set of quaternions, vector quaternions, and scalar quaternions will be
denoted by H = {q : q = q1i + q2j + q3k + q4, q1, q2, q3, q4 ∈ R}, Hv = {q ∈ H : q4 = 0}, and
Hs = {q ∈ H : q1 = q2 = q3 = 0}, respectively.

The basic operations on quaternions are defined as follows:

Addition: a+ b = (ā+ b̄, a4 + b4),

Multiplication by a scalar: λa = (λā, λa4),

Multiplication: ab=(a4b̄+ b4ā+ ā× b̄, a4b4 − ā · b̄),
Conjugation: a∗ = (−ā, a4),

Dot product: a · b = 1
2 (a∗b+ b∗a) = 1

2 (ab∗ + ba∗) = (0̄, a4b4 + ā · b̄),
Cross product: a× b = 1

2 (ab− b∗a∗) = (b4ā+ a4b̄+ ā× b̄, 0),

Norm: ‖a‖2 = aa∗ = a∗a = a · a = (0̄, a2
4 + ā · ā),

Scalar part: sc
(
a
)

= (0̄, a4) ∈ Hs,
Vector part: vec

(
a
)

= (ā, 0) ∈ Hv,

where a, b ∈ H, λ ∈ R, and 0̄ = [0 0 0]T. Note that the quaternion multiplication is not commutative.

The sets H, Hv , and Hs are isomorphic as vector spaces to R4, R3, and R, respectively. Under these
isomorphisms, the square of the quaternion norm and the dot product on H correspond to the square of the
Euclidean norm and to the dot (inner) product on R4, respectively. Also, we will often identify, with a slight
abuse of notation, q4 with (0̄, q4), when this is clear from the context.

The multiplication of a matrix M ∈ R4×4 with a quaternion q ∈ H will be defined as M ∗ q = (M11q̄ +
M12q4,M21q̄ +M22q4) ∈ H, where

M =

[
M11 M12

M21 M22

]
,

M11 ∈ R3×3, M12 ∈ R3×1, M21 ∈ R1×3, and M22 ∈ R. This definition is analogous to the multiplication
of a 4-by-4 matrix with a 4-dimensional vector.

It can be shown that the following properties follow from the previous definitions:

a · (bc) = b · (ac∗) = c · (b∗a) ∈ Hs, a, b, c ∈ H,
‖ab‖ = ‖a‖‖b‖, a, b ∈ H,

(M ∗ a) · b = a · (M T ∗ b), a, b ∈ H, M ∈ R4×4,

a · (b× c) = b · (c× a) = c · (a× b), a, b, c ∈ Hv,
a× a = 0, a ∈ Hv,

a× b = −b× a, a, b ∈ Hv,
‖a∗‖ = ‖a‖, a ∈ H,

|a · b| ≤ ‖a‖‖b‖, a, b ∈ H.
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Finally, the L∞-norm of a function u : [0,∞) → H is defined as ‖u‖∞ = supt≥0 ‖u(t)‖. Moreover, the
quaternion u ∈ L∞, if and only if ‖u‖∞ <∞.

Attitude Representation with Unit Quaternions. The relative orientation of a body frame with respect to
the inertial frame can be represented by the unit quaternion qB/I =

(
sin(φ2 )n̄, cos(φ2 )

)
, where the body frame

is said to be rotated with respect to the inertial frame about the unit vector n̄ by an angle φ. Note that qB/I is a
unit quaternion because it belongs to the set Hu = {q ∈ H : q · q = 1}. The body coordinates of a vector, v̄B,
can be calculated from the inertial coordinates of that same vector, v̄I, and vice-versa, through vB = q∗B/Iv

IqB/I

and vI = qB/Iv
Bq∗B/I, where vB = (v̄B, 0) and vI = (v̄I, 0).

Quaternion Representation of the Rotational Kinematic Equations. The rotational kinematic equations
of the body frame and of a frame with some desired attitude, both with respect to the inertial frame and
represented by the unit quaternions qB/I and qD/I, respectively, are given by

q̇B/I=
1
2qB/Iω

B
B/I=

1
2ω

I
B/IqB/I and q̇D/I=

1
2qD/Iω

D
D/I=

1
2ω

I
D/IqD/I, (1)

where ωX
Y/Z = (ω̄X

Y/Z, 0), and ω̄X
Y/Z is the angular velocity of the Y-frame with respect to the Z-frame expressed

in the X-frame. The error quaternion
qB/D = q∗D/IqB/I (2)

is the unit quaternion that rotates the desired frame onto the body frame. By differentiating Eq. (3) and using
Eq. (2), the kinematic equations of the error quaternion turn out to be

q̇B/D = 1
2qB/Dω

B
B/D = 1

2ω
D
B/DqB/D, (3)

where ωB
B/D = ωB

B/I − ωB
D/I (and ωD

B/D = ωD
B/I − ωD

D/I).

Dual Quaternions

A dual quaternion is defined as q̂ = qr + εqd, where ε is the dual unit defined by ε2 = 0 and ε 6= 0. The
quaternions qr, qd ∈ H are called the real part and the dual part of the dual quaternion, respectively.

Dual vector quaternions and dual scalar quaternions are dual quaternions formed from vector quaternions
(i.e., qr, qd ∈ Hv) and scalar quaternions (i.e., qr, qd ∈ Hs), respectively. The set of dual quaternions, dual
scalar quaternions, dual vector quaternions, and dual scalar quaternions with zero dual part will be denoted
by Hd = {q̂ : q̂ = qr + εqd, qr, qd ∈ H}, Hsd = {q̂ : q̂ = qr + εqd, qr, qd ∈ Hs}, Hvd = {q̂ : q̂ =
qr + εqd, qr, qd ∈ Hv}, and Hrd = {q̂ : q̂ = qr + ε(0̄, 0), qr ∈ Hs}, respectively.

The basic operations on dual quaternions are defined as follows:13, 1

Addition: â+ b̂ = (ar + br) + ε(ad + bd),

Multiplication by a scalar: λâ = (λar) + ε(λad),

Multiplication: âb̂ = (arbr) + ε(arbd + adbr),

Conjugation: â∗ = a∗r + εa∗d,

Swap: âs = ad + εar,

Dot product: â · b̂= 1
2 (â∗b̂+ b̂∗â)= 1

2 (âb̂∗ + b̂â∗)=ar · br + ε(ad · br + ar · bd) ∈ Hsd,

Cross product: â× b̂ = 1
2 (âb̂− b̂∗â∗) = ar × br + ε(ad × br + ar × bd) ∈ Hvd,

Dual norm: ‖â‖2d = ââ∗ = â∗â = â · â = (ar · ar) + ε(2ar · ad) ∈ Hsd,
Scalar part: sc

(
â
)

= sc
(
ar
)

+ ε sc
(
ad
)
∈ Hsd,

Vector part: vec
(
â
)

= vec
(
ar
)

+ ε vec
(
ad
)
∈ Hvd,

where â, b̂ ∈ Hd and λ ∈ R. Note that the dual quaternion multiplication is not commutative.
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Since the dot product and dual norm of dual quaternions yield in general a dual number (and not a real
number), we define the dual quaternion norm28, 1 as ‖â‖2 = â◦ â, where ◦ denotes the dual quaternion circle
product given by â ◦ b̂ = ar · br + ad · bd, where â, b̂ ∈ Hd.

The sets Hd, Hvd, Hsd, and Hrd are isomorphic as vector spaces to R8, R6, R2, and R, respectively. Under
these isomorphisms, the square of the dual quaternion norm and the circle product on Hd correspond to the
square of the Euclidean norm and to the dot (inner) product on R8, respectively. Also, we will often identify,
with a slight abuse of notation, q4 with (0̄, q4) + ε(0̄, 0), when this is clear from the context.

The multiplication of a matrix M ∈ R8×8 with a dual quaternion q̂ ∈ Hd will be defined as M ? q̂ =
(M11 ∗ qr +M12 ∗ qd) + ε(M21 ∗ qr +M22 ∗ qd), where

M =

[
M11 M12

M21 M22

]
, M11,M12,M21,M22 ∈ R4×4.

This definition is analogous to the multiplication of a 8-by-8 matrix with a 8-dimensional vector.

It can be shown that the following properties16 follow from the previous definitions:

â◦(b̂ĉ) = b̂s◦(âsĉ∗) = ĉs◦(b̂∗âs) ∈ R, â, b̂, ĉ ∈ Hd, (4)

â◦(b̂×ĉ)=b̂s◦(ĉ×âs)=ĉs◦(âs×b̂), â, b̂, ĉ ∈ Hvd, (5)
â× â = 0, â ∈ Hvd, (6)

â× b̂ = −b̂× â, â, b̂ ∈ Hvd, (7)

âs ◦ b̂s = â ◦ b̂, â, b̂ ∈ Hd, (8)
‖âs‖ = ‖â‖, â ∈ Hd, (9)
‖â∗‖ = ‖â‖, â ∈ Hd, (10)

(M ? â) ◦ b̂ = â ◦ (M T ? b̂), â, b̂ ∈ Hd, M ∈ R8×8, (11)

|â ◦ b̂| ≤ ‖â‖‖b̂‖, â, b̂ ∈ Hd, (12)

‖âb̂‖ ≤
√

3/2 ‖â‖‖b̂‖, â, b̂ ∈ Hd. (13)

Finally, the L∞-norm of a function û : [0,∞)→ Hd is defined as ‖û‖∞ = supt≥0 ‖û(t)‖. Moreover, the
dual quaternion û ∈ L∞, if and only if ‖û‖∞ <∞.

Attitude and Position Representation with Unit Dual Quaternions. The position and orientation (i.e., pose)
of a body frame with respect to the inertial frame can be represented by a unit quaternion qB/I ∈ Hu and by a
translation vector r̄B/I ∈ R3. Alternatively, the pose of the body frame with respect to the inertial frame can
be represented more compactly by the unit dual quaternion7 q̂B/I = qB/I + ε 1

2r
I
B/IqB/I = qB/I + ε 1

2qB/Ir
B
B/I, where

rX
Y/Z = (r̄X

Y/Z, 0) and r̄X
Y/Z = [xX

Y/Z y
X
Y/Z z

X
Y/Z]

T
is the translation vector from the origin of the Z-frame to the origin

of the Y-frame expressed in the X-frame. Note that q̂B/I is a unit dual quaternion because it belongs to the set15

Hud = {q̂ ∈ Hd : q̂ · q̂ = q̂q̂∗ = q̂∗q̂ = ‖q̂‖d = 1}.

Lemma 1. The unit dual quaternion q̂Y/Z = qY/Z + ε 1
2qY/Zr

Y
Y/Z ∈ L∞, if and only if rY

Y/Z ∈ L∞.

Proof. If q̂Y/Z ∈ L∞, then qY/Zr
Y
Y/Z ∈ L∞. Note that the unit quaternion qY/Z ∈ L∞ by definition. Moreover,

since ‖qY/Zr
Y
Y/Z‖ = ‖rY

Y/Z‖, this also implies that rY
Y/Z ∈ L∞. On the other hand, it is trivial to see that if

qY/Z, r
Y
Y/Z ∈ L∞, then q̂Y/Z = qY/Z + ε 1

2qY/Zr
Y
Y/Z ∈ L∞ as well.

Dual Quaternion Representation of the Rotational and Translational Kinematic Equations. The rigid body
kinematic equations of the body frame and of a frame with some desired position and attitude, both with re-
spect to the inertial frame and represented by the unit dual quaternions q̂B/I and q̂D/I = qD/I + ε 1

2r
I
D/IqD/I =

qD/I + ε 1
2qD/Ir

D
D/I, respectively, are given by7

˙̂qB/I=
1
2 ω̂

I
B/Iq̂B/I=

1
2 q̂B/Iω̂

B
B/I and ˙̂qD/I=

1
2 ω̂

I
D/Iq̂D/I=

1
2 q̂D/Iω̂

D
D/I, (14)

5



where ω̂X
Y/Z is the dual velocity of the Y-frame with respect to the Z-frame expressed in the X-frame, so that

ω̂X
Y/Z = ωX

Y/Z + ε(vX
Y/Z + ωX

Y/Z × rX
X/Y), vX

Y/Z = (v̄X
Y/Z, 0), and v̄X

Y/Z is the linear velocity of the Y-frame with respect to
the Z-frame expressed in the X-frame.

By direct analogy to Eq. (3), the dual error quaternion1, 12 is defined as

q̂B/D , q̂∗D/Iq̂B/I = qB/D + ε 1
2qB/Dr

B
B/D, (15)

where rB
B/D = rB

B/I − rB
D/I. As illustrated in Figure 1, the dual error quaternion represents the rotation (qB/D) and

the translation (rB
B/D) necessary to align the desired frame with the body frame. It can be shown15 that q̂B/D is

also a unit dual quaternion. By differentiating Eq. (19) and using Eq. (18), the kinematic equations of the

D/I
r

I
I

I
J

I
K

B/I
rB

I

B
J

B
K

D
O

I
O

B
O

D
I

D
J

D
K

B/D B/I D/I
r r r 

Figure 1. Relation between frames.

dual error quaternion turn out to be1

˙̂qB/D = 1
2 q̂B/Dω̂

B
B/D = 1

2 ω̂
D
B/Dq̂B/D, (16)

where ω̂B
B/D = ω̂B

B/I − ω̂B
D/I is the dual relative velocity between the body frame and the desired frame expressed

in the body frame. Note that ω̂B
D/I = q̂∗B/Dω̂

D
D/Iq̂B/D and ω̂D

B/I = q̂B/Dω̂
B
B/Iq̂
∗
B/D. Note also that the kinematic equations

of the dual error quaternion, Eq. (20), and of the error quaternion, Eq. (4), have the same form.

DUAL QUATERNION REPRESENTATION OF THE RELATIVE DYNAMIC EQUATIONS FOR
SATELLITE PROXIMITY OPERATIONS

The dual quaternion representation of the rigid body dynamic equations assuming constant (or slowly
varying) mass and inertia matrix is given by1, 16

( ˙̂ωB
B/D)

s=(MB)−1?
(
f̂B−(ω̂B

B/D+ω̂
B
D/I)×

(
MB ? ((ω̂B

B/D)
s+(ω̂B

D/I)
s)
)
−MB?(q̂∗B/D

˙̂ωD
D/Iq̂B/D)

s−MB?(ω̂B
D/I×ω̂B

B/D)
s
)
, (17)

where f̂ B = f B + ετ B is the total external dual force applied to the body about its center of mass expressed in
body coordinates, f B = (f̄ B, 0), f̄ B is the total external force vector applied to the body, τ B = (τ̄ B, 0), and τ̄ B

is the total external moment vector applied to the body about its center of mass. Finally, M B ∈ R8×8 is the
dual inertia matrix15 defined as

M B=


mI3 03×1 03×3 03×1

01×3 1 01×3 0
03×3 03×1 ĪB 03×1

01×3 0 01×3 1

 , IB=

[
ĪB 03×1

01×3 1

]
, ĪB=

I11 I12 I13

I12 I22 I23

I13 I23 I33

 , (18)

ĪB ∈ R3×3 is the mass moment of inertia of the body about its center of mass written in the body frame, and
m is the mass of the body.
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Note the similarity between the dual quaternion representation of the combined rotational and translational
dynamic equations given by Eq. (21) and the quaternion representation of the rotational(-only) dynamic
equations given by1 ω̇B

B/D=(IB)−1 ∗ (τ B−(ωB
B/D+ωB

D/I)×
(
IB ∗ (ωB

B/D+ωB
D/I)
)
−IB ∗ (q∗B/Dω̇

D
D/IqB/D)−IB ∗ (ωB

D/I×ωB
B/D)).

For the case of a spacecraft in Earth orbit, we decompose the total external dual force acting on the body
as follows:

f̂ B = f̂ B
g + f̂ B

∇g + f̂ B
J2 + f̂ B

d + f̂ B
c , (19)

where f̂ B
g = mâB

g, â
B
g = aB

g + ε0, aB
g = (āB

g, 0), āB
g is the gravitational acceleration given by

āB
g = −µ r̄B

B/I

‖r̄B
B/I‖3

, (20)

µ = 398600.4418 km3/s2 is Earth’s gravitational parameter,6 f̂ B
∇g = 0 + ετ B

∇g , τ B
∇g = (τ̄ B

∇g, 0), τ̄ B
∇g is the

gravity-gradient torque given by1

τ̄ B
∇g = 3µ

r̄B
B/I × (ĪBr̄B

B/I)

‖r̄B
B/I‖5

, (21)

f̂ B
J2

= mâB
J2
, âB
J2

= aB
J2

+ ε0, aB
J2

= (āB
J2
, 0), āB

J2
is the perturbing acceleration due to J2

29 given by

āI
J2 = −3

2

µJ2R
2
e

‖r̄I
B/I‖4


(1− 5(

zI
B/I
‖r̄I

B/I‖
)2)

xI
B/I

‖r̄I
B/I‖

(1− 5(
zI

B/I
‖r̄I

B/I‖
)2)

yI
B/I

‖r̄I
B/I‖

(3− 5(
zI

B/I
‖r̄I

B/I‖
)2)

zI
B/I
‖r̄I

B/I‖

 , (22)

J2 = 0.0010826267, Re = 6378.137 km is Earth’s mean equatorial radius,6 f̂ B
d = f B

d + ετ B
d is the disturbance

dual force, and f̂ B
c = f B

c+ετ B
c is the control dual force. We do not explicitly take into account other disturbance

forces and torques due to, for example, atmospheric drag, solar radiation, and third-bodies. Instead, we
will assume that f̂ B

d is a constant (or slowly varying), but otherwise unknown, dual force that captures all
neglected (but small) external forces and torques. For the sake of simplicity and compactness, it is more
convenient to write f̂ B

g , f̂ B
∇g , and f̂ B

J2
in terms of the dual inertia matrix as follows: f̂ B

g = M B ? âB
g , f̂ B
∇g =

3µr̂B
B/I

‖r̂B
B/I‖5
× (M B ? (r̂B

B/I)
s), and f̂ B

J2
= M B ? âB

J2
, where r̂B

B/I = rB
B/I + ε0.

ADAPTIVE POSITION AND ATTITUDE TRACKING CONTROLLER

The main result of this paper is an adaptive pose-tracking controller for satellite proximity operations that
requires no information about the mass and inertia matrix of the satellite. In particular, it requires no bounds
on the mass and/or eigenvalues of the inertia matrix. The next theorem presents this controller and shows that
it is almost globally asymptotically stable.

Theorem 1. Consider the relative kinematic and dynamic equations given by Eq. (20) and Eq. (21). Let the
control dual force be defined by the feedback control law

f̂B
c=−M̂B ? âB

g−
3µr̂B

B/I

‖r̂B
B/I‖5

× (M̂B ? (r̂B
B/I)

s)−M̂B ? âB
J2
−̂̂fB

d−vec
(
q̂∗B/D(q̂

s
B/D − ε)

)
−Kd ? ŝ

s

+ω̂B
B/I×(M̂B?(ω̂B

B/I)
s)+M̂B?(q̂∗B/D

˙̂ωD
D/Iq̂B/D)

s+M̂B?(ω̂B
D/I×ω̂B

B/D)
s−M̂B ? (Kp?

d

dt
(q̂∗B/D(q̂

s
B/D − ε)))s, (23)

where
ŝ = ω̂B

B/D + (Kp ? (q̂∗B/D(q̂sB/D − ε)))s, (24)

Kp =

[
Kr 04×4

04×4 Kq

]
, Kd =

[
Kv 04×4

04×4 Kω

]
, (25)

Kr =

[
K̄r 03×1

01×3 0

]
,Kq =

[
K̄q 03×1

01×3 0

]
,Kv =

[
K̄v 03×1

01×3 0

]
,Kω =

[
K̄ω 03×1

01×3 0

]
, (26)

7



K̄r, K̄q, K̄v, K̄ω ∈ R3×3 are positive definite matrices, M̂ B is an estimate of the dual inertia matrix updated
according to

d

dt
v(M̂ B) = Ki

[
h(ŝs,−(q̂∗B/D

˙̂ωD
D/Iq̂B/D)s − (ω̂B

D/I × ω̂B
B/D)s + (Kp ? (q̂∗B/D(q̂sB/D − ε)))s + âB

g + âB
J)

− h((ŝ× ω̂B
B/I)

s, (ω̂B
B/I)

s) + h((ŝ× µr̂B
B/I

‖r̂B
B/I‖

)s, (r̂B
B/I)

s)
]
, (27)

Ki ∈ R7×7 is a positive definite matrix, v(M B) = [I11 I12 I13 I22 I23 I33 m]T is a vectorized version of the
dual inertia matrix M B, the function h : Hvd × Hvd → R7 is defined as â ◦ (MB ? b̂) = h(â, b̂)Tv(MB) =

v(MB)Th(â, b̂) or, equivalently, h(â, b̂) = [a5b5 a6b5+a5b6 a7b5+a5b7 a6b6 a7b6+a6b7 a7b7 a1b1+a2b2

+a3b3]T, ̂̂f B
d is an estimate of the dual disturbance force updated according to

d

dt
̂̂
f B
d = Kj ? ŝ

s, (28)

Kj =

[
Kf 04×4

04×4 Kτ

]
, Kf =

[
K̄f 03×1

01×3 1

]
, Kτ =

[
K̄τ 03×1

01×3 1

]
, (29)

and K̄f , K̄τ ∈ R3×3 are positive definite matrices. Assume that ω̂D
D/I,

˙̂ωD
D/I ∈ L∞ and r̂B

B/I 6= 0. Then, for all
initial conditions, limt→∞ q̂B/D = ±1 (i.e., limt→∞ qB/D = ±1 and limt→∞ rB

B/D = 0), limt→∞ ω̂B
B/D = 0 (i.e.,

limt→∞ ωB
B/D = 0 and limt→∞ vB

B/D = 0), and v(M̂ B),
̂̂
f B
d ∈ L∞.

Proof. First, define the dual inertia matrix and dual disturbance force estimation errors as

∆M B = M̂ B −M B and ∆f̂ B
d =

̂̂
f B
d − f̂

B
d. (30)

Note that q̂B/D = ±1, ω̂B
B/D = 0, v(∆M B) = 0, and ∆f̂ B

d = 0 are the equilibrium conditions of the closed-loop
system formed by Eqs. (21), (24), (20), (35), and (39). Consider now the following candidate Lyapunov func-
tion for the equilibrium point q̂B/D = +1, ω̂B

B/D = 0, v(∆M B) = 0, and ∆f̂ B
d = 0: V (q̂B/D, ŝ, v(∆M B), ∆f̂ B

d) =

(q̂B/D − 1) ◦ (q̂B/D − 1) + 1
2 ŝ

s ◦ (M B ? ŝs) + 1
2v(∆M B)TK−1

i v(∆M B) + 1
2∆f̂

B
d ◦ (K−1

j ? ∆f̂ B
d). Note that

V is a valid candidate Lyapunov function since V (q̂B/D = 1, ŝ = 0, v(∆M B) = 0, ∆f̂ B
d = 0) = 0 and

V (q̂B/D, ŝ, v(∆M B), ∆f̂ B
d) > 0 for all (q̂B/D, ŝ, v(∆M B), ∆f̂ B

d) ∈ Hud × Hvd × R7 × Hvd\{1, 0, 0, 0}. The
time derivative of V is equal to V̇ = 2(q̂B/D − 1) ◦ ˙̂qB/D + ŝs ◦ (M B ? ˙̂ss) + v(∆M B)TK−1

i
d
dtv(∆M B) +

∆f̂ B
d ◦ (K−1

j ? d
dt∆f̂

B
d). Then, since from Eq. (20), ω̂B

B/D = 2q̂∗B/D
˙̂qB/D, Eq. (32) can be rewritten as ˙̂qB/D =

1
2 q̂B/Dŝ − 1

2 q̂B/D(Kp ? (q̂∗B/D(q̂sB/D − ε)))s, which can then by plugged into V̇ , together with the time derivative
of Eq. (32), to yield V̇=(q̂B/D − 1) ◦ (q̂B/Dŝ − qB/D(Kp ? (q̂∗B/D(q̂sB/D − ε)))s) + ŝs ◦ (M B ? ( ˙̂ωB

B/D)s)+ŝs ◦ (M B ?

(Kp ?
d(q̂∗B/D(q̂sB/D−ε))

dt )s) + v(∆M B)TK−1
i

d
dtv(∆M B) +∆f̂ B

d ◦ (K−1
j ? d

dt∆f̂
B
d). Applying Eq. (7) and insert-

ing Eq. (21) yields V̇=ŝs ◦ (q̂∗B/D(q̂sB/D − ε))− (Kp ? (q̂∗B/D(q̂sB/D − ε))) ◦ (q̂∗B/D(q̂sB/D − ε))+ŝs ◦ (f̂ B−ω̂B
B/I×
(
M B ?

(ω̂B
B/I)

s
)
−M B?(q̂∗B/D

˙̂ωD
D/Iq̂B/D)s−M B?(ω̂B

D/I×ω̂B
B/D)s)+ŝs◦(M B?(Kp?

d(q̂∗B/D(q̂sB/D−ε))
dt )s)+v(∆M B)TK−1

i
d
dtv(∆M B)

+∆f̂ B
d ◦ (K−1

j ? d
dt∆f̂

B
d). By introducing the feedback control law, Eq. (31), and using Eq. (8), V̇ becomes

V̇= − (q̂∗B/D(q̂sB/D − ε)) ◦ (Kp ? (q̂∗B/D(q̂sB/D − ε))) + ŝs ◦ (ω̂B
B/I × (∆M B ? (ω̂B

B/I)
s) + ∆M B ? (q̂∗B/D

˙̂ωD
D/Iq̂B/D)s +

∆M B ? (ω̂B
D/I × ω̂B

B/D)s − ∆M B ? (Kp ?
d(q̂∗B/D(q̂sB/D−ε))

dt )s − ∆M B ? âB
g −

3µr̂B
B/I

‖r̂B
B/I‖5
× (∆M B ? (r̂B

B/I)
s) − ∆M B ?

âB
J2
− ∆f̂ B

d) − ŝs ◦ (Kd ? ŝ
s) + v(∆M B)TK−1

i
d
dtv(∆M B) + ∆f̂ B

d ◦ (K−1
j ? d

dt∆f̂
B
d) = −(q̂∗B/D(q̂sB/D − ε)) ◦

(Kp ? (q̂∗B/D(q̂sB/D− ε)))+(ŝ× ω̂B
B/I)

s ◦ (∆M B ? (ω̂B
B/I)

s)+ŝs ◦ (∆M B?(q̂∗B/D
˙̂ωD

D/Iq̂B/D)s +∆M B?(ω̂B
D/I×ω̂B

B/D)s−∆M B ?

(Kp ?
d(q̂∗B/D(q̂sB/D−ε))

dt )s−∆M B ? âB
g−∆M B ? âB

J2
−∆f̂ B

d)−(ŝ× 3µr̂B
B/I

‖r̂B
B/I‖5

)s ◦ (∆M B ? (r̂B
B/I)

s)−ŝs ◦ (Kd ? ŝ
s) +

v(∆M B)TK−1
i

d
dtv(∆M B) + ∆f̂ B

d ◦ (K−1
j ? d

dt∆f̂
B
d). Therefore, if d

dtv(∆M B) is defined as in Eq. (35) and
d
dt∆f̂

B
d is defined as in Eq. (39), it follows that V̇=−(q̂∗B/D(q̂sB/D−ε))◦(Kp?(q̂∗B/D(q̂sB/D−ε)))−ŝs◦(Kd?ŝ

s) ≤ 0,
for all (q̂B/D, ŝ, v(∆M B), ∆f̂ B

d) ∈ Hud × Hvd × R7 × Hvd\{1, 0, 0, 0}. Hence, q̂B/D, ŝ, v(∆M B), and ∆f̂ B
d
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are uniformly bounded, i.e., q̂B/D, ŝ, v(∆M B), ∆f̂ B
d ∈ L∞. Moreover, from Eqs. (32) and (??), this also

means that ω̂B
B/D, v(M̂ B),

̂̂
f B
d ∈ L∞. Since V ≥ 0 and V̇ ≤ 0, limt→∞ V (t) exists and is finite. Hence,

limt→∞
∫ t

0
V̇ (τ) dτ = limt→∞ V (t) − V (0) also exists and is finite. Since q̂B/D, ŝ, v(∆M B), ∆f̂ B

d, ω̂
B
B/D,

v(M̂ B),
̂̂
f B
d,

˙̂ωD
D/I, ω̂

B
D/I ∈ L∞ and r̂B

B/I 6= 0, then from Eqs. (20), (31), and (21) and from Lemma 1, ˙̂qB/D, f̂
B, ˙̂ωB

B/D,
˙̂s ∈ L∞. Hence, by Barbalat’s lemma, vec

(
q̂∗B/D(q̂sB/D − ε)

)
→ 0 and ŝ→ 0 as t→∞. In Ref. 15, it is shown

that vec
(
q̂∗B/D(q̂sB/D − ε)

)
→ 0 is equivalent to q̂B/D → ±1. Finally, calculating the limit as t→∞ of both sides

of Eq. (32) yields ω̂B
B/D → 0.

Remark 1. Theorem 1 states that q̂B/D converges to either +1 or −1. Note that q̂B/D = +1 and q̂B/D = −1
represent the same physical relative position and attitude between frames, so either equilibrium is acceptable.
However, this can lead to the so-called unwinding phenomenon where a large rotation (greater than 180
degrees) is performed, despite the fact that a smaller rotation to the equilibrium (less than 180 degrees) exits.
This problem of quaternions is well documented and possible solutions exist in literature.13, 27, 30, 1

Remark 2. It can be easily shown that if the control law given by Eq. (31) is replaced by its nonadaptive
model-dependent version, where the estimates of the dual inertia matrix and of the dual disturbance force are
replaced by its true values in Theorem 1, i.e.,

f̂B
c=−MB ? âB

g−
3µr̂B

B/I

‖r̂B
B/I‖5

× (MB ? (r̂B
B/I)

s)−MB ? âB
J2
−f̂B

d−vec
(
q̂∗B/D(q̂

s
B/D − ε)

)
−Kd ? ŝ

s

+ω̂B
B/I×(MB?(ω̂B

B/I)
s)+MB?(q̂∗B/D

˙̂ωD
D/Iq̂B/D)

s+MB?(ω̂B
D/I×ω̂B

B/D)
s−MB?(Kp?

d

dt
(q̂∗B/D(q̂

s
B/D−ε)))s, (31)

then it is still true that, for all initial conditions, limt→∞ q̂B/D = ±1 and limt→∞ ω̂B
B/D = 0.

SUFFICIENT CONDITIONS FOR MASS AND INERTIA MATRIX IDENTIFICATION

In this section, we give sufficient conditions on the reference motion that guarantee that the estimate of
the dual inertia matrix will converge to the true dual inertia matrix. Note however that the result presented in
Theorem 1 does not depend on the convergence of this estimate. In other words, the controller proposed in
Theorem 1 guarantees almost global asymptotical stability of the closed-loop system even without estimate
convergence. Nevertheless, identification of the mass and inertia matrix of the chaser satellite might be
important for fuel consumption estimation, calculation of re-entry trajectories and terminal velocities, state
estimation, fault-detecting-and-isolation systems, and docking/undocking scenarios.

Proposition 1. Let the dual disturbance force be exactly known or estimated so that ̂̂f B
d can be replaced by

f̂ B
d in Eq. (31). Moreover, assume that ω̂D

D/I,
˙̂ωD

D/I,
¨̂ωD

D/I ∈ L∞, r̂B
B/I 6= 0, and q̂D/I is periodic. Furthermore, let

W : [0,∞)→ R8×7 be defined as

W(t)v(∆M B) = ω̂D
D/I(t)× (∆M B ? (ω̂D

D/I(t))
s) +∆M B ? ( ˙̂ωD

D/I(t))
s

−∆M B ? âD
g −

3µr̂D
D/I

‖r̂D
D/I‖5

× (∆M B ? (r̂D
D/I)

s)−∆M B ? âD
J2 (32)

or, equivalently, W(t) = Wrb(t) + Wg(t) + W∇g(t) + WJ2(t), where

Wrb(t) =



0 0 0 0 0 0 u̇+ qw − rv
0 0 0 0 0 0 v̇ − pw + ru
0 0 0 0 0 0 ẇ + pv − qu
0 0 0 0 0 0 0
ṗ q̇ − pr ṙ + pq −qr q2 − r2 qr 0
pr ṗ+ qr −p2 + r2 q̇ ṙ − pq −pr 0
−pq p2 − q2 ṗ− qr pq q̇ + pr ṙ 0

0 0 0 0 0 0 0


, (33)
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Wg(t) =



0 0 0 0 0 0 µx
‖r̄D

D/I‖3

0 0 0 0 0 0 µy
‖r̄D

D/I‖3

0 0 0 0 0 0 µz
‖r̄D

D/I‖3

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, WJ2(t) =



0 0 0 0 0 0 a1

0 0 0 0 0 0 a2

0 0 0 0 0 0 a3

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, (34)

W∇g(t) =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 3µxz
‖r̄D

D/I‖5
− 3µxy
‖r̄D

D/I‖5
3µyz
‖r̄D

D/I‖5
− 3µ(y2−z2)

‖r̄D
D/I‖5

− 3µyz
‖r̄D

D/I‖5
0

− 3µxz
‖r̄D

D/I‖5
− 3µyz
‖r̄D

D/I‖5
− 3µ(z2−x2)

‖r̄D
D/I‖5

0 3µxy
‖r̄D

D/I‖5
3µxz
‖r̄D

D/I‖5
0

3µxy
‖r̄D

D/I‖5
− 3µ(x2−y2)

‖r̄D
D/I‖5

3µyz
‖r̄D

D/I‖5
− 3µxy
‖r̄D

D/I‖5
− 3µxz
‖r̄D

D/I‖5
0 0

0 0 0 0 0 0 0


, (35)

where v̄D
D/I = [u v w]T, ω̄D

D/I = [p q r]T, r̄D
D/I = [x y z]T, and āD

J2
= [a1 a2 a3]T. Let also 0 ≤ t1 ≤ t2 ≤ ... ≤ tn

be such that

rank

W(t1)
...

W(tn)

 = 7. (36)

Then, under the control law given by Eq. (31), limt→∞ M̂ B = M B.

Proof. We start by showing that limt→∞ ˙̂ωB
B/D = 0. (Note that limt→∞ ω̂B

B/D = 0 does not imply that
limt→∞ ˙̂ωB

B/D = 0.) First, note that limt→∞
∫ t

0
˙̂ωB

B/D(τ) dτ = limt→∞ ω̂B
B/D(t) − ω̂B

B/D(0) = −ω̂B
B/D(0) exits

and is finite. Furthermore, since ω̂D
D/I,

˙̂ωD
D/I, ¨̂ω

D
D/I, ˙̂qB/D, ¨̂qB/D, ˙̂ωB

B/D, dv(M̂B)
dt ,

df̂B
d

dt ∈ L∞ and r̂B
B/I 6= 0, we have that

¨̂ωB
B/D ∈ L∞ by differentiating Eq. (21). Hence, by Barbalat’s lemma, limt→∞ ˙̂ωB

B/D = 0. Now, we calculate
the limit as t→∞ of both sides of Eq. (21) to get

0 = lim
t→∞

(ω̂D
D/I(t)× (∆M B ? (ω̂D

D/I(t))
s) +∆M B ? ( ˙̂ωD

D/I(t))
s

−∆M B ? âD
g −

3µr̂D
D/I

‖r̂D
D/I‖5

× (∆M B ? (r̂D
D/I)

s)−∆M B ? âD
J2 −∆f̂

B
d) (37)

Note that under the conditions of Proposition 1, ∆f̂ B
d = 0. Moreover, if q̂D/I is periodic with period T , so

is W(t). Finally, noting that limt→∞
d
dtv(M̂ B) = 0 from Eq. (35) and Theorem 1, under the conditions of

Proposition 1, Eq. (53) implies that limt→∞ v(∆M B) = 0 or, equivalently, limt→∞ M̂ B = M B.

Remark 3. In practice, the true disturbance dual force f̂ B
d is never known. Moreover, we cannot guarantee

that the estimate of the disturbance dual force will converge to its true value. Hence, in practice, the estimate
of the mass and inertia matrix of the spacecraft will only be as good as the estimate of the disturbance dual
force.

Remark 4. An alternative, and more general, sufficient condition than Eq. (52) for dual inertia matrix
identification, which does not require q̂D/I to be periodic, is that the 7 × 7 matrix

∫ t+T2

t
W

T
(t)W(t) dt, is

positive definite for all t ≥ T1 for some T1 ≥ 0 and T2 > 0.?, ?
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SIMULATION RESULTS

In this section, we demonstrate how our controller can be used in a conceivable satellite proximity op-
erations scenario. We assume that the target spacecraft is in a highly eccentric Molniya orbit with orbital
elements given in Table 1 and nadir pointing. Inspired by linear results for circular target orbits,31 we would
like our chaser satellite to perform a full elliptical revolution around the target satellite while always pointing
to it. We would like this elliptical motion to take a full orbital period, to always be in a plane perpendicular to
the angular velocity of the target satellite, and to describe a 2-by-1 ellipse. This elliptical motion is illustrated
in Figure ?? through a series of snapshots.

Figure 2. Snapshots of the elliptical motion.

For this problem, we define four reference frames: the inertial frame, the target frame, the desired frame,
and the body frame. The inertial frame is the Earth-Centered-Inertial (ECI) frame. The body frame is some
frame fixed to the chaser satellite and centered at its center of mass. The target frame and the desired frame
are defined in Table 2, where

ω̄T/I =
r̄T/I × v̄T/I

‖r̄T/I‖2
(38)

is calculated from the angular momentum of the target spacecraft with respect to the inertial frame given
by h̄T/I = m‖r̄T/I‖2ω̄T/I = r̄T/I × mv̄T/I. The target satellite is assumed to be fixed to the target frame. The
objective of the control law is to superimpose the body frame to the desired frame. The relationship between
the different frames is illustrated in Figure 2.

Table 1. Orbital elements of target satellite.

Perigee altitude 813.2 km
Eccentricity 0.7
Inclination 63.4 deg
Argument of perigee 270 deg
RAAN 329.6 deg
True anomaly 180 deg
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Table 2. Target and desired frames.

Target frame Desired frame
ĪT = r̄T/I

‖r̄T/I‖ ĪD = r̄D/T
‖r̄D/T‖

J̄T = K̄T × ĪT J̄D = K̄D × ĪD

K̄T = ω̄T/I
‖ω̄T/I‖ K̄D = ω̄D/T

‖ω̄D/T‖

I
I

I
J

I
KT/I

r

B
I

B
J

B
K

D
O

I
O

B
O

D D/T
I r

D D D
J K I 

D D/T
K 

B/D
r

T
O

T T/I
I r

T T T
J K I 

T T/I
K 

D/T
r

Figure 3. Reference frames.

The linear velocity of the target satellite with respect to the inertial frame is calculated by numerically
integrating the gravitational acceleration and also the perturbing acceleration due to J2 acting on the target
satellite. On the other hand, the angular acceleration of the target satellite with respect to the inertial frame is
calculated analytically through

αI
T/I = ω̇I

T/I =
(rI

T/I × aI
T/I)‖rI

T/I‖2 − (rI
T/I × vI

T/I)2(rI
T/I · vI

T/I)

‖rI
T/I‖4

. (39)

Equation (55) is the analytical time derivative of Eq. (54). Note that the J2 perturbation changes the direction
of the target’s angular velocity with respect to the inertial frame. However, this change is relatively small in
our scenario due to the critical inclination of the Molniya orbit. The rotational and translational kinematic
equations of the target frame with respect to the inertial frame are written in terms of dual quaternions as in
Eq. (18).

In this scenario, the angular and linear velocity of the desired frame with respect to the target frame are
defined as ω̄T

D/T = [0, 0, n]T rad/s and v̄T
D/T = [−aen sin(nt), ben cos(nt), 0]T m/s, where ae = 10 m and

be = 20 m are the semi-minor and the semi-major axes of the 2-by-1 ellipse around the target satellite,
n =

√
µ
a3 is the mean motion of the target satellite (assuming no J2 perturbation), and a is the semi-major

axis of the target satellite (assuming no J2 perturbation). The initial position of the desired frame with respect
to the target frame is set as r̄T

D/T = [ae, 0, 0]T m. The rotational and translational kinematic equations of the
desired frame with respect to the target frame are written in terms of dual quaternions as in Eq. (20).
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The control law given by Eq. (31) is a function of ω̂D
D/I and ˙̂ωD

D/I. We calculate these variables in terms of
dual quaternions as follows:

ω̂D
D/I = ω̂D

T/I + ω̂D
D/T = q̂∗D/Iω̂

I
T/Iq̂D/I + q̂∗D/Tω̂

T
D/Tq̂D/T, (40)

˙̂ωD
D/I = q̂∗D/Iα̂

I
T/Iq̂D/I − ω̂D

D/I × ω̂D
T/I + q̂∗D/Tα̂

T
D/Tq̂D/T, (41)

where α̂T
D/T = ˙̂ωT

D/T = αT
D/T +ε(aT

D/T−αT
D/T×rT

D/T−ωT
D/T×vT

D/T) and α̂I
T/I = ˙̂ωI

T/I = αI
T/I +ε(a

I
T/I−αI

T/I×rI
T/I−ωI

T/I×vI
T/I).

Eq. (57) is calculated by differentiating Eq. (56) and using the dual quaternion counterpart of the classical
transport theorem.16 Note that instead of calculating ω̂D

D/I and ˙̂ωD
D/I in terms of dual quaternions, one could

calculate instead ωD
D/I, ω̇

D
D/I, v

D
D/I, and v̇D

D/I using the traditional equations for a point moving with respect to a
rotating rigid body. However, this would require the calculation of four parameters instead of just two and
significant more work to calculate vD

D/I and v̇D
D/I, whose expressions are coupled with the rotational motion.

Thus, Eqs. (56) and (57) are another good example of the benefits in terms of compactness and simplicity of
using dual quaternions.
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Figure 4. Desired linear and angular velocity expressed in the desired frame.

The inertia matrix and mass of the chaser satellite are assumed to be1

ĪB =

22 0.2 0.5
0.2 20 0.4
0.5 0.4 23

 Kg.m2

and m = 100 kg, respectively. The constant disturbance force and torque acting on the chaser satel-
lite are set to f̄ B

d = [0.005, 0.005, 0.005]T N and τ̄ B
d = [0.005, 0.005, 0.005]T N.m, respectively. The
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origin of the body frame (coincident with the center of mass of the chaser satellite) is positioned rela-
tively to the origin of the desired frame at r̄B

B/D=[10, 10, 10]T m. The initial error quaternion, relative lin-
ear velocity, and relative angular velocity of the body frame with respect to the desired frame are set to
qB/D = [qB/D1 qB/D2 qB/D3 qB/D4]T = [0.4618, 0.1917, 0.7999, 0.3320]T, v̄B

B/D = [uB
B/D v

B
B/D w

B
B/D]T = [0.1, 0.1, 0.1]T

m/s, and ω̄B
B/D = [pB

B/D q
B
B/D r

B
B/D]T = [0.1, 0.1, 0.1]T rad/s, respectively.

The initial estimates for the mass, inertia matrix, and disturbance dual force are set to zero, whereas the con-
trol gains are chosen to be K̄r = 0.1I3, K̄q = 0.5I3, K̄v = 8I3, K̄w = 8I3,Ki = diag([100, 100, 100, 100,
100, 100, 1]), K̄f = 0.8I3, and K̄τ = 0.8I3.

The linear and angular velocity of the desired frame with respect to the inertial frame expressed in the
desired frame, which form the reference for the controller, are illustrated in Figure 3.

The relative position and attitude of the body frame with respect to the desired frame using the controller
given by Eq. (31) (adaptive) and the controller given by Eq. (46) (nonadaptive) are compared in Figure 4.
In both cases, qB/D → 1 and r̄B

B/D → 0 as t → ∞, as expected. Figure 5 shows the relative linear and angular
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Figure 5. Relative attitude and position.

velocity of the body frame with respect to the desired frame for the same two cases studied in Figure 4. As
predicted, ω̄B

B/D → 0 and v̄B
B/D → 0 as t→∞. Figure 6 shows that the adaptive controller is unable to identify

the true mass and inertia matrix of the chaser satellite for this reference motion (which does not even cover
a full orbital period). Nevertheless, the adaptive controller is still able to track the reference motion. As a
matter of fact, the similarities between the responses obtained with the adaptive controller (which has zero
information about the true mass, inertia matrix, and disturbance dual force) and the nonadaptive controller
(which knowns the true mass, inertia matrix, and disturbance dual force) are quite remarkable. Note that the
minimum singular value of the matrix in Eq. (52) for t1 = 0, t2 = 1, ..., t300 = 300 s is 1.2e−9. Figure 7
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Figure 6. Relative linear and angular velocity expressed in the body frame.

shows that for this reference motion, even though the adaptive controller is unable to exactly identify the true
disturbance dual force, it converges to values of the same order of magnitude. Note that Theorem 1 only
guarantees that these estimates will be uniformly bounded. For completeness, Figure 8 shows the control
force, f̄ B

c=[f B
c1 f

B
c2 f

B
c3]T, and the control torque, τ̄ B

c=[τ B
c1 τ

B
c2 τ

B
c3]T, produced by the adaptive and nonadaptive

controllers during the initial transient response. These relatively high values of control force and torque are
required to eliminate the initial relative position, attitude, linear and angular velocity errors that we arbitrarily
set between the body frame and the desired frame. More interestingly, Figure 9 shows the control force and
torque required to perform a full ellipse around the target satellite in a orbital period. The relatively low
values of required control force are in line with those produced by the most common electric engines used
in spacecraft, namely, ion drives and Hall thrusters,32 which can produce up to 250 and 600 mN of thrust,
respectively. Note that the control torques, on the other hand, can be implemented by electrical reaction
wheels and/or control moment gyros without the use of on-board fuel.

Finally, to demonstrate that the adaptive control law can estimate the mass and inertia matrix of the chaser
satellite given appropriate reference signals, we redefine the dual velocity of the desired frame with respect to
the target frame as ω̄T

D/T = v̄T
D/T = [0.1, 0.2, 0.3]T cos([3000n, 2000n, 1000n]Tt+ π

180 [0, 20, 40]T) rad/s and
m/s, respectively, and true anomaly of the target satellite as 0 deg. For this reference motion, the minimum
singular value of the matrix in Eq. (52) for t1 = 0, t2 = 1, ..., t600 = 600 s is 8.6e−1. The mass and inertia
matrix identification is shown in Figure 10. The control forces required to follow such rather unrealistic
reference motion are too high for practical applications. However, note that the mass and inertia matrix
identification shown in Figure 10 occurs even for a non-zero and unknown disturbance dual force.
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Î 1
1
(k
g.
m

2
)

0 100 200 300
-10

-5

0

5

10

Time (s)
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Figure 7. Mass and inertia matrix estimation for low-exciting reference motion.

CONCLUSION

An adaptive position and attitude tracking controller for satellite proximity operations is presented in this
paper. The controller requires no information about the mass and inertia matrix of the chaser satellite and
takes into account the gravitational force, the perturbing force due to J2, and the gravity-gradient torque. This
controller is shown to be almost globally asymptotically stable, even in the presence of constant unknown
disturbance forces and torques. Sufficient conditions for mass and inertia matrix identification are given. The
numerical simulations of the controller indicate that it could be implemented using electric propulsion. Future
work includes combining the proposed controller with the velocity-free pose-tracking controller described in
Ref. 16, in order to create a model-independent velocity-free pose-tracking controller.
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Figure 11. Mass and inertia matrix identification for high-exciting reference motion.
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