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Abstract— This paper addresses the problem of optimally
scheduling the mode sequence and mode duration for switched
dynamical systems under dwell time constraints that describe
how long a system has to stay in a mode before they can
switch to another mode. The schedule should minimize a given
cost functional defined on the state trajectory. The topology
of the optimization space for switched dynamical systems with
and without dwell time constraints is investigated and it is
shown that the notion of local optimality must be replaced
by stationarity with regards to a suitably chosen optimality
function when dwell time constraints are present. Hence, an
optimality function is proposed to characterize the solution
to the dwell time problem as points that satisfy optimality
condition defined in terms of optimality function. A conceptual
algorithm is presented to solve the mode scheduling problem
and its convergence to stationary points is proved. A numerical
example is given to highlight the algorithm.

I. INTRODUCTION

The problem of determining optimal switching law for
systems that switch between different modes has been exten-
sively investigated in recent years since such systems arise in
a number of application areas and results of theoretical and
computational significance have been derived; see e.g recent
survey [1] and references therein. The switching law, which
governs which mode is active at a given instant of time is
defined using control variables that describe the sequence of
modes and the duration of each mode and commonly referred
to as mode schedule when considered together [2], [3].

While in theory, we can switch infinitely many times
between different modes in a finite amount of time, most
physical systems have to spend some minimum time in
a mode before they can switch to another mode due to
mechanical reasons, power constraints, information delays,
stability considerations etc. This minimum time is known as
the dwell time of the mode, a term previously used in the
context of stability of switched linear systems [4], [5]. This
important and practical constraint has not received attention
in research on optimal control of switched systems.

In this paper, we consider the common optimal control
problem of minimizing a cost functional defined on the state
trajectory of nonlinear switched dynamical system under
dwell time constraints where the control input consists of
mode schedule only. The main contribution of this paper is
the investigation of the topology of the optimization space
under dwell time constraints and consequently, the need for
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replacing the notion of local optimality by stationarity with
regards to an optimality function. Secondly, an optimality
function is proposed to characterize the optimal solution.
Finally, a conceptual algorithm to solve the optimal mode
scheduling problem based on this optimality function is
presented and its convergence is proved.

Two fundamental problems investigated in the area of
switched optimal control are the timing optimization problem
and scheduling optimization problem. In first case, the mode
sequence is kept fixed and optimization is performed over
switching times between different modes while in the later
case, the sequence of modes as well as the switching times
between modes are the control variables. On the theoretical
side, a general framework for optimal control problem in
hybrid systems was formulated in [6]. Variations of the
maximum principle have been derived in [7], [8], [9], [10].

For the timing optimization problem, the control variable
is continuous which makes it amenable to nonlinear pro-
gramming techniques and consequently algorithms were first
developed to solve the timing optimization problem. In the
case of scheduling optimization problem, the control variable
has a continuous as well as discrete component which renders
the problem significantly complex. A number of computa-
tional strategies have been developed to solve the scheduling
problem. See [1] for a survey of these results as well as
results for timing optimization problem. These optimization
techniques do not impose any dwell time constraints.

While the gradient descent algorithms in [2], [3] and [11]
are shown to be convergent, the question is what do they
converge to, i.e. what is the local minima which leads to
the question of what is the topology of the optimization
space and whether these results can be extended to the case
when the optimization space is restricted due to dwell time
constraints. To answer this question, we explore in detail
the topologies generated by the metrics used in [11] and
[3] and investigate the impact of dwell time constraints on
the structure of optimization space. We show that in the
presence of dwell time constraints, the optimization space
lacks structure to define a local minima. Hence, we propose
to replace the notion of local optimality by stationarity and
define the optimal solution for the scheduling problem as
stationary points that satisfy optimality condition defined in
terms of optimality function.

While the optimality functions in [2], [3] and [11] use in-
sertion gradients derived in [12] using variational principles,
the presence of dwell time constraint makes such techniques
from calculus inapplicable since these methods insert modes
at a point. To address this issue, we propose an optimality



function defined in terms of the cost differential resulting
from mode insertion for duration equal to dwell time. In this
paper, we assume that each mode has the same minimum
dwell time.

Lastly, we present a conceptual algorithm to solve the
dwell time problem that uses a two step strategy similar
to the ones in [2] and [11]. At the lower level, we solve
the timing optimization problem with dwell time constraints
using gradient projection method. At the higher level, we do
a single mode insertion for duration of dwell time at the point
that gives the maximum decrease in the cost while ensuring
that the dwell time constraints after mode insertion are still
respected. The algorithm convergence is proved using the
property of sufficient descent.

The paper organization is as follows. In section 2, we
formulate the problem and define the optimization space.
We discuss the topology of optimization space and define
the optimality function in section 3. In section 4, we give
a conceptual algorithm to solve the dwell time problem and
prove its convergence. In section 5, a numerical example is
given to show results of the algorithm. Section 6 concludes
the paper.

II. PROBLEM FORMULATION

In this paper, we consider nonlinear switched dynamical
systems in which there is no external input. The dynamics of
such systems can be mathematically described by differential
equations of the form

ẋ(t) = fv(t)(x(t)), (1)

where Φ = {fq : q ∈ N} is a family of modal functions
from Rn to Rn parameterized by finite index set N =
{1, 2, . . . , Q} and v : [0, T ] → N is a left continuous
piecewise constant function of time called switching signal.

The switching signal v(t) corresponds to the mode sched-
ule ξ = (σ, τ) through a bijection as follows. Let τ =
(τ1, τ2, . . . , τn)′ be the vector corresponding to monotone
increasing transition times in v(t) in interval (0, T ). Let
σ = {σ(1), σ(2), . . . , σ(n+ 1)} denote the mode sequence,
where σ(i) = v(τi) is an element of N , so σ ∈ Nn+1. If
we define τ0 = 0 and τn+1 = T , then v(t) = σ(i) for all
t ∈ [τi−1, τi] and i = 1, 2, . . . , n + 1 and ξ = (σ, τ) is the
corresponding mode schedule. We define the length of mode
schedule ξ to be the same as the length of mode sequence
σ. For schedule of length n + 1, (1) can be written in the
form

ẋ(t) = fσ(i)(x(t)) ∀ t ∈ [τi−1, τi) (2)

and i = 1, . . . , n+1. While (1) is more compact, we will use
representation in (2) in this paper since it explicitly shows
the mode schedule.

Suppose the minimum dwell time for each mode is some
δ > 0 and we are optimizing over finite time horizon. Then
the maximum number of modes that can exist in the interval
[0, T ] is N =

⌊
T
δ

⌋
where b·c denotes the floor operator. A

mode schedule acts as a feasible control input for our system

if it satisfies the dwell time constraints

∆τi = τi − τi−1 ≥ δ, (3)

for all i = 1, . . . n + 1. The collection of all such feasible
mode schedules constitute the optimization space X . With
this in mind, we explicitly define our optimization space.

For any positive integer n, the mode sequence σ is an
element of Σn = Nn. Then the mode sequence space

Σ =

N⋃
n=1

Σn,

is collection of all such mode sequences. The mode sequence
space is a finite space.

Also for any positive integer n, the dwell time constraints
(3) define a polyhedron

Sn = {τ ∈ Rn|ajτ ≥ bj , j = 1, 2, ..., n}, (4)

where a1 = (1, 0, 0, ..., 0), b1 = δ, an = (0, ..., 0,−1), bn =
δ − T and for the rest aj = (0, .,−1, 1, ..0, 0), bj = δ with
the non zero entries of aj at the j and j + 1 positions. The
transition time space is

S =

N⋃
n=1

Sn.

The dwell time constraints automatically ensure that the
transitions times τi are monotone increasing, i.e τj−1 < τj
for all j = 1, . . . , n+ 1.

For any positive integer n, let Xn = Σn × Sn−1. So
the mode schedule ξ ∈ Xn is the tuple ξ = (σ, τ). The
optimization space, which is the collection of all such mode
schedules is then

X =

N⋃
n=1

Xn. (5)

This optimization space is finite dimensional and is a subset
of the infinite dimensional optimization space that would
result if no dwell time constraints were considered.

Dwell Time Problem
Let L : Rn → R be a cost function defined on the state

trajectory x(t), and consider the cost functional J : X → R,
defined by

J(ξ) =

∫ T

0

L(x(t))dt. (6)

Let x0 ∈ Rn be the initial condition of the system (2). The
dwell time problem is to solve

min
ξ∈X

J(ξ), (7)

subject to the dynamical constraints (2) and initial condition
constraints . To ensure that a unique bounded solution exists
for the differential equation, we make the following mild
assumptions which are fairly standard in switched optimal
control problems [2], [13].
Assumptions:

(i) The modal functions f ∈ Φ and cost function L are
twice continuously differentiable.

(ii) There exists a constant C > 0 such that for every x ∈
Rn and every f ∈ Φ we have ||f(x)|| ≤ C(||x||+ 1).



III. TOPOLOGY, LOCAL MINIMA AND OPTIMALITY
FUNCTION

In this section, we begin with an explanation of the need
for defining the minima for the dwell time problem using
optimality functions and why defining local minima for such
problems is not useful. The definition of local minima for
the optimization space requires the concept of neighborhood
which in turn depends on the topology defined on the
space. While many topologies can be defined for the same
optimization space, the choice of topology should be such
that it resonates well with the underlying problem.

Definition 1: Given a topological space (X,T ), a subset
Nx of X is a neighborhood of a point x ∈ X if Nx contains
an open set U ⊂ T containing the point x.

To motivate what is to follow about the topology on
our spaces, we consider few scenarios concerning the open
neighborhoods and local minima. Suppose we want to find
local minima of a continuous function f : R → R. The
decision variable in this case is continuous in the sense
it takes values in R and we call a point x0 ∈ R as its
local minimum point if we can find an ε > 0 ball such
that f(x0) ≤ f(x) for all x in this ball. The ε ball defines
a neighborhood of point x0 in this case. Suppose now the
decision variable is discrete, for example, the set of integers
and let say f : Z → R. The ε ball definition of local minima
does not make sense in this case since for 0 < ε < 1 the
ball will contain only the point itself thereby making every
point as a local minima. A more reasonable way of declaring
a point n as a local minima would be if f(n) is less than
f(n− 1) and f(n+ 1). The points {n− 1, n+ 1} constitute
the neighborhood of point n.

In case of the transition time space, the cost functional J
is a continuous function of the decision variable τ ∈ Rn.
Hence the choice for topology is the usual topology of Rn

obtained by the cartesian product of open intervals in R.
However the mode sequence space is a discrete space and
one would think that a reasonable definition of local minima
for function defined on this space would be some natural
extension of the local minima defined above for a discrete
space. The problem is that while in the case of integers for
example, it was easy to see that the points n− 1 and n+ 1
are the neighbors of point n, we don’t have such an obvious
extension in the case of mode sequence space. To address
this problem, one would like to define a metric on the space
which can tell us which points are closer to a point than
others. The questions is does such a metric exists and is
it useful. We first look at this question without dwell time
constraints and then in the presence of dwell time constraints.

In [11], a metric is defined on the mode sequence space in
a form inspired by the notion of Hamming distance between
vectors and a metric on transition time space using `1 norm.
The norm on X is then defined as

d(ξx, ξy) = {σx 6= σy}~1 + ||τx − τy||1, (8)

and the algorithm convergence is proved using the property
of sequential continuity in metric spaces. The topology

generated by this metric is such that the ε neighborhood of a
point ξ0 will contain only points of transition time space and
no points from the mode sequence space. With dwell time
constraints imposed on the optimization space, the situation
remains the same.

If we use metric (8) and choose open balls of radius 2
to define neighborhoods so that it contains mode sequence
points, we still run into problems. To see the neighborhoods
generated using open balls of radius 2, consider the case
where N = {1, 2, 3} and N = 2 due to dwell time
constraints. Then the smallest non-trivial neighborhood of
mode sequence point (1, 2) include the sequence points (1, 3)
and (3, 2) both of which are distance 1 apart from the point
under consideration. The point (1, 2) will be then locally
optimal w.r.t. cost functional J if the cost associated with
this mode sequence is less than its two neighboring points
which constitute its neighborhood. The sequence point (3, 1)
is distance 2 apart from point (1, 2) in this metric.

While the definitions are consistent, this does not resonate
well with the problem we are trying to solve. To see this, even
for fixed switching times, the state trajectory x(t) resulting
from mode sequence (3, 1) might be closer to the optimal
state trajectory resulting from (1, 2) than the mode sequences
(1, 3) and (3, 2) in Lp norm which were in its neighborhood
and thus does not appeal to our intuitive understanding of the
local minima for the actual problem. This problem however
persists even if no dwell time constraints were considered.

In [3], the mode schedules are represented using switching
signals v(t) and the topology is induced on the optimization
space V using the L1 norm

d(vx, vy) = ||vx − vy||L1 . (9)

In the topology generated by this metric, the ε neighborhood
of a point ξ0 contains points of mode schedule space as
well as transition time space when considered in the cor-
responding mode schedule representation form. When two
switching signals are close to each other in the L1 norm,
the corresponding state and co-state trajectories are close to
each other in the L∞ norm. The cost function J is thus a
continuous function of v(t) and a useful definition of local
minima is obtained that resonates well with the problem.

The scenario changes however when dwell time con-
straints are imposed on the optimization space. The ε neigh-
borhoods generated by metric (9) under dwell time con-
straints do not contain mode sequence points but just transi-
tion time points when considered in the corresponding mode
schedule representation form. Here, the problem primarily
lies not in the metric used but in the inherent lack of structure
in the optimization space when dwell time constraints are
present. There exists no meaningful similarities between
different elements of the optimization space. In such cases
the feasible topology is the trivial topology in which all
points are neighbors to any point [14].

In summary, to use the topological definition of local
minima would mean to use trivial topology for the mode
sequence space and in which case we have to be globally
optimal with respect to the mode sequence space. This



requires that we solve the timing optimization problem for
every mode sequence which is not feasible. The local minima
in such a case results from being locally optimal with respect
to time only.

Thus to define the minima for our dwell time problem,
we resort to the use of optimality functions which are
semicontinuous functions of the form θ : X → R−. Points
in X that satisfy the optimality condition θX(x) = 0 are
referred to as stationary points and constitute the optimal
solutions for the dwell time problem. The magnitude of
optimality function |θX(·)| can be seen as a measure by
which point ξ ∈ X fails to satisfy the optimality condition.

The optimality functions used in [2], [3] and [11] rely
on insertion gradient which tests the sensitivity of cost due
to each mode over an arbitrarily small interval. Due to
the presence of dwell time constraints, such calculus based
gradient insertion at a point is not possible. We propose an
optimality function based on the cost differential resulting
from a feasible mode insertion for duration of dwell time δ.

Definition 2: A mode insertion is feasible if the resulting
mode sequence does not violate the dwell time constraints.

Let U ⊂ [0, T ] be set of all points where the mode
insertion is feasible. At given iteration k, let σ0 be time
optimized mode sequence to which we want to insert a
new mode. Let Jk0 be the cost associated with this mode
sequence. Let J(t, fj) denote the cost associated with mode
sequence obtained by replacing the mode at time t ∈ U by
mode fj for δ seconds. Define

J∆(t, fj) = J(t, fj)− Jk0. (10)

We then define our optimality function as

θX = min {J∆(t, f) : f ∈ Φ, t ∈ U}. (11)

Now θX ≤ 0 since we can always insert the same mode.
The condition θX = 0 is then the necessary condition for
optimality which we refer to as the optimality condition. We
define the optimal solution for the dwell time problem as:

Definition 3: A point ξ0 = (σ0, τ0) ∈ X is optimal
solution for the dwell time problem (7) if τ0 is Karush Kuhn
Tucker (KKT) point for the timing optimization problem and
θX (ξ0) = 0.

IV. ALGORITHM

In this section we present a conceptual algorithm that
employs a basic two step strategy similar to the one used
in [2] and [11]. At the higher level, the mode sequence is
optimized by inserting a single mode for δ seconds and at the
lower level, for a fixed mode sequence, the switching times
between different modes are optimized subject to the dwell
time constraints. We begin with the switch time optimization
problem first.

A. Switch Time Optimization
For a fixed mode sequence σ0 of length n + 1, the cost

functional in (6) is only function of τ ∈ Sn and the switch
time optimization problem becomes

min
τ∈Sn

J(τ) (12)

subject to (2) and initial condition constraints. In [12], the
derivative of the cost with respect to switching times for this
problem without dwell time constraints is shown to be

dJ

dτi
= p(τi)

(
fσ0(i)(x(τi))− fσ0(i+1)(x(τi))

)
(13)

where x(t) is the solution of the system (2) and p(t) is
solution of the costate equation

ṗ(t) = −p(t)∂fσ0
(x(t))

∂x
− ∂L(x(t))

∂x
, p(T ) = 0. (14)

For sets that are convex and compact, we can find the
feasible descent direction by taking the projection of vector
found using steepest descent method onto the constraint
set, which in general requires solving a quadratic optimiza-
tion problem. When the constraint set has the structure of
polyhedron, the direction finding problem can be greatly
simplified using manifold suboptimization methods based on
[15] which are a type of gradient projection methods. In
this method, instead of projection onto the entire constraint
set, the gradient is projected on a linear manifold of active
constraints which makes computation of the projection quite
easy [16]. Since our constraint set Sn has the structure of
a polyhedron, we use manifold suboptimization method to
solve our timing optimization problem.

Let I(τk) = {j|ajτk = bj , j = 1, 2, .., r} denote the
index set corresponding to active constraints at feasible
point τk. We assume without loss of generality that vectors
{aj , j ∈ I(τk)} are linearly independent at every τk. The
feasible descent direction is obtained from the subspace
M(τk) = {h|ajhk = bj , j ∈ I(τk)}. The projection of
the gradient onto M(τk) can be obtained by solving the
following quadratic optimization problem.

min
hk∈M(τk)

∇J(τk)′hk +
1

2
h′khk.

The unique optimal solution of this problem can be easily
computed from Karush Kuhn Tucker (KKT) conditions to be

hk = −PM∇J(τk), (15)

where PM = I−L′

k(LkL
′

k)−1Lk is the projection matrix and
Lk is the matrix that has as rows the vectors aj , j ∈ I(τk).
The KKT multiplier µk for this problem is given by

µk = −(LkL
′

k)−1L
′

k∇J(τk). (16)

To ensure that the algorithm converges, the step size in the
descent direction hk is obtained by using Armijo step size
rule [17] over the set Λ = {λ > 0|a′j(τk + λhk) ≥ bj , j /∈
I(τk)}. From this we can compute the upper limit on λk as

λ = min
j /∈I(τk)

ajτk − bj
ajhk

, (17)

such that ajhk < 0, otherwise there is no upper limit due
to the jth inactive constraint on λ. In case there is no upper
limit on λ, we set λ = λ̄ for some fixed λ̄. So we have
λk = ckλ where ck ∈ (0, 1]. Let h′k = λhk be the scaled
descent direction then the next iteration can be written as

τk+1 = τk + ckh
′
k. (18)



Let α ∈ (0, 1], β ∈ (0, 1) and let m be the smallest positive
integer for which

J(τ + βmh′k)− J(τk) ≤ βmα 〈∇J(τk), h′k〉. (19)

Then ck = βm is our step size to be used for updating
τk+1 via (18). The switch time optimization algorithm can
be summarized as follows.

Gradient Projection Algorithm
Given a fixed σ0 and τk, identify the set I(τk), choose λ̄,

set k = 0 and do the following.

1) Compute ∇J(τk) via (13) and hk using (15).
2) If hk = 0, compute µk using (16). If all entries of

µk are non-negative stop. If not, eliminate the active
constraint associated with the most negative µk and go
to step 1.

3) Compute λ using (17) and ck using Armijo Rule (19).
4) Update the τ using (18) and update the set of active

constraints I(τk). Set k = k + 1 and go to step 1.

B. Mode Sequence Optimization

In this part we explain how to modify the existing mode
sequence by inserting a new mode at each iteration of the
algorithm. Due to dwell time constraints, the insertion of new
mode is quite complex in comparison to mode insertion at a
point as in [12]. The new mode inserted must exist for at least
δ seconds. If we insert a mode at a single point and do switch
time optimization as in [12] by introducing two switching
times initially ε apart, they may not be apart by greater than
or equal to δ at the end of this optimization. However, still
introducing the new mode forcibly for δ seconds might result
in a lower cost than the original.

To work around this problem, we take the route of starting
feasible and staying feasible. By this, we mean that instead
of doing mode insertion at a single point and than doing time
optimization, we introduce a new mode for δ seconds so that
we start with the dwell time constraints satisfied and then the
switch time optimization ensures that we remain feasible.

There is one more issue that needs to be addressed to
start feasible. Since the mode inserted has to exist at least
for δ seconds, we cannot come very close to the existing
switching times, otherwise their dwell time constraint will be
violated. This problem is addressed by searching in the areas
at and between switching intervals shown bold in the Fig. 1,
assuming that the difference τk+1−τk ≥ 3δ. In this case, we
check for insertion at points Pk+1 = {τk, τk+1 − δ} and the
interval Ik+1 = [τk + δ, τk+1−2δ]. For the case where 2δ ≤
τk+1 − τk < 3δ, the only points to be checked for insertion
are Pk+1 = {τk, τk+1−δ}. If δ < τk+1−τk < 2δ, we do not
insert any mode. If τk+1 − τk = δ, then Pk+1 = {τk} is the
only feasible insertion point. For mode schedule ξ of length
n, the feasible insertion region is then U =

⋃n
k=1(Pk ∪ Ik).

The mode to be inserted and its location is given by argmin
of the optimality function θX defined in (11) and can be
determined as follows. For every k ∈ N compute

t∗k = arg min
t∈U

J∆(t, fj), (20)

Fig. 1. Scanning area for mode insertion. The interval I and the points
marked as circles form region of feasible mode insertion

where J∆(t, fj) is defined in (10). Then the insertion point
and the mode to be inserted at a given iteration are

(t∗, f∗) = arg min
k∈N

J∆(t∗k, fk), (21)

so long as J∆(t∗k, fk) < 0.
Solving (20) to find the optimal insertion point for every

mode is computationally expensive since it seeks minimum
over the entire set U ⊂ [0, T ]. As opposed to the optimal
insertion point in [12] which utilizes the one time computed
state and co-state trajectory, this requires solving the state
and co-state trajectory for each point to be checked for
insertion. However, as the number of modes in a sched-
ule increase, the region to be searched for mode insertion
decreases. Accordingly the computational complexity for
the mode insertion part of the algorithm decreases as the
algorithm converges towards the stationary point.

Dwell Time Algorithm
Given A mode sequence σ having n modes and vector τ

satisfying the dwell time constraints and time optimized, do
the following

1) Compute the optimality function θX as defined in (11).
2) If θX = 0 then stop. Otherwise insert mode f∗ in the

interval [t∗, t∗ + δ], by appending two new switching
instants to vector τ at times t∗ and t∗+ δ. We get new
mode sequence σ and switching time vector τ .

3) For new σ, solve for optimal τ using gradient pro-
jection algorithm of subsection (A) and go to step 1.

C. Convergence

To prove the convergence of our algorithm, we follow the
approach used in [18] that relies on the property of sufficient
descent. Let {ξj} be the sequence of points computed by
the algorithm, then the property of sufficient descent for an
algorithm is defined as follows.

Definition 4: An algorithm a : X → X has the property
of sufficient descent with respect to an optimality function
θ if for every δ′ > 0, there exists η > 0 such that when
θ(ξj) < −δ′ then J(ξj+1)− J(ξj) < −η.

Since J(ξ) ≥ 0 for all ξ ∈ X , the algorithm having the
property of sufficient descent converges i.e for every infinite
sequence {ξj} computed by algorithm, limj→∞ θ(ξj) = 0.
Otherwise limj→∞ J(ξj) = −∞ which contradicts the fact
that J is bounded from below. The convergence is obvious
if {ξj} is a finite sequence.

Lemma 1: The dwell time algorithm has the property of
sufficient descent.

Proof: Consider our optimality function (11). Since
θX (ξj) = J(ξj+1) − J(ξj) and θX (ξj) < −δ′ with δ′ > 0



at all non-stationary points, we have J(ξj+1)− J(ξj) < −η
with η = δ′. Hence proved.

Again, since our optimization space is finite dimensional,
we do not run into problems associated with infinite dimen-
sional parameter spaces [2] to prove the sufficient descent
property of our algorithm. We now state the main theorem
about algorithm’s convergence.

Theorem 1: The dwell time algorithm converges to sta-
tionary points of the optimality function θX .

Proof: The proof follows immediately from the prop-
erty of sufficient descent proved for our algorithm and
the discussion following the definition of sufficient descent
regarding algorithm convergence.

V. EXAMPLE

We consider the linear system in [12] than can switch
between two modes described by the matrices

A1 =

(
-1 0
1 2

)
, A2 =

(
1 1
1 -2

)
.

We define a quadratic cost functional on the state trajectory.

J =
1

2

∫ T

0

||x(t)||2dt.

The switched system is initialized to x0 = (1, 0)′ and
optimized over time interval [0, 2]. The Armijo parameters
are set to α = 0.5 and β = 0.5. The time step for simulation
was set to dt = 1e−3 s. For intervals in the set U ⊂ [0, T ] for
feasible mode insertion, the time step used was ds = 1e−3 s.
The mode sequence is initialized to σ0 = {f1} for which the
cost is J = 40.75. The algorithm is terminated when |θX (·)|
falls below ε = 0.1e−3. The simulation is performed for
dwell time constraint of 0.01s for both modes and results are
shown in Fig. 2. To emphasize the variation of cost with each
iteration, the initial cost J = 40.75 which is relatively large
is not shown for the cost trajectory and the graph starts with
iteration 1. It takes about 8 iterations before the optimality
conditions are met and the final cost is J = 2.39.

VI. CONCLUSION

In this paper, we investigated the structure of our optimiza-
tion space and made a case for defining the optimal solution
as stationary points of optimality function. Subsequently we
defined an optimality function and presented a conceptual
algorithm. The algorithm convergence was proved and a
numerical example was provided to highlight the algorithm.

The dwell time constraint makes the mode insertion a
complex task and as a result this step is computationally
expensive. A future work in this direction would be to come
up with strategies to reduce the computational complexity
associated with mode insertion.
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