
Cloud-Based Optimization: A Quasi-Decentralized Approach to
Multi-Agent Coordination

M.T. Hale and M. Egerstedt†

Abstract— New architectures and algorithms are needed to
reflect the mixture of local and global information that is
available as multi-agent systems connect over the cloud. We
present a novel architecture for multi-agent coordination where
the cloud is assumed to be able to gather information from all
agents, perform centralized computations, and disseminate the
results in an intermittent manner. The cloud model accounts
for delays in communications both when sending data to and
receiving data from the agents. This architecture is used to solve
a multi-agent optimization problem in which each agent has a
local objective function unknown to the other agents and in
which the agents are collectively subject to global constraints.
Leveraging the cloud, a dual problem is formulated and solved
by finding a saddle point of the associated Lagrangian.

I. INTRODUCTION

Distributed optimization and algorithms have received
significant attention during the last decade, e.g., [1], [20],
[11], [8], [15], [22], [6], due to the emergence of a number
of application domains in which individual decision makers
have to collectively arrive at a decision in a distributed man-
ner. Examples of these applications include communication
networks [12], [5], sensor networks [13], [23], [2], multi-
robot systems [26], [21], and smart power grids [3].

Distributed algorithms are needed mainly because the
scale of large distributed systems is such that no central,
global decision maker can collect all relevant information,
perform all required computations, and then disseminate the
results back to individual nodes in the network in a timely
fashion. However, one can envision a scenario in which such
globally obtained information can be used in conjunction
with local computations performed across the network. This
could, for example, be the case when a cloud computer is
available to collect information, as was envisioned in [9].
The question then becomes that of designing the appropriate
architecture and algorithms that can leverage this mix of
prompt decentralized computations with delayed centralized
computations.

One approach to multi-agent optimization that will prove
useful towards achieving this hybrid architecture is based on
primal-dual methods to find saddle points of a problem’s
Lagrangian [19], [7]. In fact, the study of saddle point
dynamics in optimization can be traced back to earlier results
from Uzawa in [24], which will provide the starting point
for the work in this paper. The primary difference between
this paper and the established literature is the cloud-based

†The authors are with the School of Electrical and Computer Engineer-
ing, Georgia Institute of Technology, Atlanta, GA 30332, USA. Email:
{matthale, magnus}@gatech.edu. Research supported in part by
the NSF under Grant CNS-1239225.

architecture used to solve the problem; indeed the archi-
tecture is this paper’s main contribution. The architecture
we introduce uses a cloud computer in order to receive
information from each agent, perform global computations,
and transmit this information to other agents so that they
can update the information that they have stored locally and
use it in their own local computations. We will see that this
division of labor results in globally asymptotic convergence
to Lagrangian saddle points.

The goal of this paper is to serve as a first attempt at un-
derstanding how centralized, cloud-based information might
be injected in a delayed but useful manner into a network of
agents where such information would otherwise be absent. In
order to highlight how cloud-based, centralized information
might prove useful to such a system, we choose to con-
sider an extreme case where no inter-agent communication
occurs at all, in contrast to existing distributed multi-agent
optimization techniques, e.g., [14], [16], [17], [18]. Under
this architecture the cloud handles all communications, and
computations are divided between the cloud and the agents
in the network.

The rest of the paper is organized as follows. Section II
gives a detailed problem statement and describes the cloud
architecture, and then Section III provides the convergence
analysis for the given problem. Next, Section IV provides
numerical results to attest to the viability of this approach,
and finally Section V concludes the paper.

II. PROBLEM STATEMENT AND ARCHITECTURE

We now explain the interplay between the cloud architec-
ture and the problem under consideration here. A detailed
explanation is given below, with a summary and example
following at the end of this section . Consider a collection
of N agents indexed by i ∈ A, A = {1, . . . , N}, where each
agent is associated with a scalar state xi ∈ R and where
there is no communication at all between the agents. Let the
task agent i is trying to solve be encoded in a strictly convex
objective function, fi(xi) ∈ C2. We assume that ∂fi

∂xi
∈ o(xi)

for all i ∈ A, i.e.,

lim
xi→0

xi
∂fi
∂xi

(xi)
=∞. (1)

This condition will be used later to determine the step-
size used by all agents and the cloud when performing
gradient descent-based optimization. The condition on the
order of ∂fi

∂xi
is not excessively restrictive since fi is a

design parameter selected by the user. In particular, the
assumption on the order of ∂fi

∂xi
is simply a constraint, like



strict convexity, imposed upon the choices that the user can
make for objective functions, and this restriction allows a
broad class of functions to be used for each fi, e.g., strictly
convex polynomials of degree greater than two.

The only goal of each agent is to minimize its own
objective function. Agent i is assumed to have immediate
access to its own state, which seemingly makes this problem
very simple. However, what prevents agent i from simply
computing dfi

dxi
and setting this equal to zero – a completely

decentralized operation as fi only depends on xi – is that
the agents need to coordinate their actions through a globally
defined constraint, that can, for example, represent finite
resources that must be shared across the team. But in this
paper we assume that agent i cannot measure the state of any
other agents directly and, as mentioned above, that there is
no communication between agents. Instead, this information
must be obtained in some other manner, which is where the
cloud enters into the picture.

The team-wide coordination is encoded through the global
constraint

g(x) =


g1(x)
g2(x)

...
gm(x)

 ≤ 0, (2)

where x = (x1, . . . , xN )T is a state vector containing all the
individual states. It is further assumed that each gj(x) ∈ C2

is convex and that each ∂gj
∂xi
∈ o(xi) if gj is a function of

xi, with o(xi) being used in the same sense as above for fi.
With gj , as above with fi, the assumption that ∂gj

∂xi
∈ o(xi) is

merely a limit placed upon what constraint functions a user
can select when designing a problem. As above, we note
that this is not a very harsh restriction as it merely guides
the design process of the user when selecting constraint
functions and it admits a broad collection of functions to be
used. This assumption on the order of ∂gj

∂xi
will also be used

in determining stepsizes. The cloud architecture discussed
here applies to any problem in which the user has selected
functions fi and gj that meet the above criteria and the
forthcoming analysis fully characterizes all such problem
formulations.

Let

F (x) =

N∑
i=1

fi(xi). (3)

Then F is strictly convex and the problem under considera-
tion becomes that of minimizing F subject to g. The Kuhn-
Tucker Theorem on concave programming (e.g., [25]) states
that the optimum of this constrained problem is a saddle
point of the Lagrangian L(x, µ) = F (x) + µT g(x), where
µj ≥ 0 for all j ∈ {1, . . . ,m}. We assume that the minimizer
of L with respect to x, denoted x̂, is a regular point of g so
that there is a unique saddle point, (x̂, µ̂), of L [4].

Using Uzawa’s algorithm [24], the problem of finding
(x̂, µ̂) can be solved from the initial point (x(0), µ(0)) using

the difference equations

x(k) = x(k − 1)− ρ∂L
∂x

(x(k − 1), µ(k − 1)) (4)

µ(k) = max

{
0, µ(k − 1) + ρ

∂L

∂µ
(x(k − 1))

}
(5)

where ρ > 0 is a constant, and where the maximum defining
µ is taken component-wise so that each component of µ is
projected onto the non-negative orthant of Rm, denoted by
Rm

+ . In the context of Uzawa’s algorithm, the ith element of
the state vector x is updated according to

xi(k) = xi(k − 1)− ρ ∂L
∂xi

(x(k − 1), µ(k − 1)). (6)

Under the envisioned cloud-based organization of the
agents and the lack of inter-agent communication, Uzawa’s
algorithm cannot be directly applied. To see this, observe that
if agent i is to compute its own state update in (6), a funda-
mental problem is encountered: computing ∂L

∂xi
will require

knowledge of states of (possibly all) other agents and agent
i cannot directly access these. Furthermore, determining µ at
each timestep using (5) will also require the full state vector
x, which no single agent has direct access to.

To account for the need of each agent for global infor-
mation in applying equation (6) and to compute µ using
aggregated global information, the cloud computer is used.
The cloud computer is taken to be capable of large batch
computations, is subject to communications delays when
sending and receiving information, and receives occasional
(though not necessarily periodic) wireless transmissions from
each agent containing each agent’s own state.

The cloud computer uses the agents’ states to compute
the next value of µ using Equation (5) and then transmits
the states it received and the newly computed µ vector to
each agent. Each agent then uses the information from the
cloud to update its own state in the vein of (6). While the
cloud is computing or handling transmissions, we assume
that each agent continues to update its own state in the
absence of updated information about µ or the other agents’
states. Since the cloud only occasionally receives and sends
information, the agents will necessarily receive (and use)
“old” information, in the sense that not all information agent
i uses to compute its state at time k will have been measured
or computed at time k − 1.

To formalize these ideas, say at some time k each agent
transmits its state to the cloud and denote the full vector
of states sent to the cloud at time k by xc(k), where the
superscript c denotes “cloud”. Some communication delay
is incurred and the states reach the cloud at some time
k + pk, pk ∈ N (recall that each agent continues to update
its own state based on the “old” information it has onboard
while these transmissions are taking time to reach the cloud;
note also that each agent will likewise continue to update
its own state while the cloud is performing computations
and transmitting data back to the agents). The delay pk is
associated with each timestep k at which the agents transmit



their states to the cloud and is not assumed to be constant
but instead changes with each transmission time k.

Within timestep k + pk, the cloud computes the next µ
value, µ(k + pk), which is a function of xc(k) and the
previously computed µ value (from some timestep before k).
At timestep k+pk +1 the cloud begins to transmit µ(k+pk)
to each agent and for notational convenience we denote by
µi the most recent µ vector sent from the cloud to agent i.

At timestep k + pk + 1 the cloud also begins to transmit
to agent i the vector yi ∈ RN−1 defined as

yi =



xc1(k)
...

xci−1(k)
xci+1(k)

...
xcN (k)


. (7)

This vector contains states stored by the cloud in the vector
xc and contains information originally from time k. The
subscripts in (7) denote that agent i does not receive its
own old state value from the cloud, which is logical since
agent i can sense its own most recent state. In yi, then, the
cloud sends to agent i the most recent state information it
has about each other agent. In this notation, agent j’s state
in yi is denoted yi

j . In the forthcoming analysis, yi always
refers to the most recent state information that agent i has
received from the cloud. It will not be written as an explicit
function of any time step. Similarly, we use the notation zi

to denote the most recent transmission to agent i containing
both yi and µi.

Under this model, the transmissions back to the agents
are received by the agents at time k + nk − 1 for some
nk ∈ N with nk > pk; as with pk, we associate a delay
nk with each timestep k at which the agents send their
states to the cloud and we let nk vary with each such k.
We assume that nk ≤ nmax for some nmax ∈ N. Note that
the condition nk > pk does not mean that the delay when
the cloud sends data to the agents is greater than the delay
when the agents send data to the cloud. Instead, the condition
nk > pk enforces that the transmission from the cloud back
to the agents occur after the transmission from the agents to
the cloud.

Then in timestep k+ nk, agent i computes a state update
using its most recent state and the “old” states of the
other agents it has received from the cloud. Also within
timestep k + nk each agent begins transmitting its state to
the cloud and the cycle of transmission and computation is
repeated. Throughout this process it is only assumed that
agent i has the information necessary to compute fi, g
and their derivatives with respect to its own state variable.
In particular, a given agent does not need to know any
other agent’s objective function. It is important to note that
communications cycles do not overlap and that the agents
do not send their states to the cloud at every timestep.

Due to the nature of the communications delays present
in the system, updating the value of µ in the cloud does not

occur at the same time that the agents receive information
from the cloud. This means that by the time the cloud is
computing an update for the µ vector, the states it is using
to do so are already “old;” this is reflected in the modified
µ update equation below.

Along these lines, each agent can only sense its own state
and relies on the cloud for other agents’ states. Then each
agent always has current knowledge of its own state and “out-
dated” knowledge of the other agents’ states. Accordingly,
there is no reason to expect that two agents, i and j, will
agree on agent i’s current state. To model such differences,
equation (4) is modified to reflect that each agent stores and
manipulates a local copy of the problem. Each local copy
receives occasional updates from the cloud, and the problem
of agent i has a state vector, denoted xi(k) at time k, that
is assumed to be different from xj(k) when i 6= j.

Using the fact that agent i will update its own state even
when it does not receive an update from the cloud, equation
(4) is modified so that onboard agent i it is

xi(k)=

{
ȳi − ρ∇iL(ȳi,µi) zi received at time k−1 (8a)
xi(k−1)− ρ∇iL

(
xi(k−1), µi(k−1)

)
else, (8b)

where we define

∇iL(ȳi,µi) =



0
...

dfi
dxi

(xii(k − 1)) + (µi)T ∂g
∂xi

(ȳi)
...
0

 , (9)

and where ∇iL
(
xi(k − 1), µi(k − 1)

)
is defined similarly.

Here, ȳi is defined as a vector onboard agent i which
contains yi and the most recent state of agent i inserted in
the appropriate place. In essence, ȳi is the most up-to-date
information about all of the agents that agent i has access to.
Note that ∇iL is simply ∂L

∂x with all entries except the ith

set to 0. This is because agent i does not itself compute any
updates for the other agents’ states which it stores onboard,
but instead waits for the cloud to provide such updates.

Under the architecture of this problem, only the cloud
computes values of µ, and there is only a single update
equation needed for µ. Using the symbols pk and nk as above
(and remembering that they are not constant but instead vary
with each communication cycle), equation (5) is modified to
account for delays and takes the form

µ(k+pk)=max

{
0, µ(k+pk′−nk′) + ρ

∂L

∂µ
(xc(k))

}
(10)

where k′ is the most recent time at which the agents sent
their states to the cloud before k and k + pk′ − nk′ is the
last timestep in which µ was computed in the cloud.

We note that equation (10) is not indexed on a per-agent
basis since only the cloud computes values of µ. However,
we will use the notation µi(k) to denote the µ vector stored
on agent i at time k (which may be different from the µ
vector stored in the cloud at time k). It is important to note



that the argument of µi(k) is intended to reflect at what
time agent i has µi onboard and does not imply that µi

was computed at time k or that agent i computed it. In this
notation µi represents the µ vector most recently sent from
the cloud to agent i, while µi represents the µ vector stored
on agent i.

The timestep on the left-hand side is k + pk in (10)
to emphasize the fact that µ is not updated at the same
times as the vectors xi are. With this model (and associated
caveats) in mind, instead of considering the system defined
in equations (4) and (5), we consider N copies of the system
defined by (8) and (10). Returning to the notation that µi(k)
represents the vector µ as stored on agent i at time k, we
can write the full update equations onboard agent i as

xi(k)=

{
ȳi − ρ∇iL(ȳi,µi) zi received at time k−1 (11a)
xi(k−1)− ρ∇iL

(
xi(k−1), µi(k−1)

)
else, (11b)

µi(k) =

{
µi zi was received at time k − 1 (12a)
µi(k − 1) else. (12b)

To illustrate the communications cycle described above,
Table 1 contains a sample schedule for a single cycle with
pk = 2 and nk = 5. Each timestep is listed on the left and
the corresponding actions taken at that timestep are listed on
the right. Note that the same actions are taken at timesteps k
and k+5, though k+5 is explained in greater detail because
it has the context of preceding timesteps available to aid in
its explanation.

Timestep Actions
k Each agent takes 1 step in its own copy of the problem

to update (only) its own state. This is computed using
the cloud update that was just received. Then each agent
sends its own resulting state to the cloud.

k + 1 All agents take 1 step in their own copy of the problem
to update their own states using the information stored
onboard (originally from timestep k).

k + 2 The cloud receives the transmission from time k and
stores it in xc(k). It then computes the updated µ vector.
All agents take 1 step in their own copy of the problem
to update their own states using the information stored
onboard (originally from timestep k).

k + 3 The cloud now begins to send to each agent the new µ
and each other agent’s state originally from time k. For
agent i, these become µi and yi. All agents take 1 step
in their own copy of the problem to update their own
states using the information stored onboard (originally
from timestep k).

k + 4 All agents take 1 step in their own copy of the problem
to update their own states using the information stored
onboard (originally from timestep k). Then the agents
receive the latest cloud transmission.

k + 5 Agent i replaces its onboard µ vector with µi and
replaces all onboard states except its own with yi,
thereby forming ȳi. The agents each take 1 step in their
own onboard copy of the problem to update (only) their
own states, and then send their own resulting state to
the cloud.

Table 1: A sample schedule for one communications cycle used by the
agents and cloud to exchange information.

To show that the agents’ states converge to the (unique)
saddle point of L, we must show that the local problem stored

by each agent converges to the point (x̂, µ̂).

III. CONVERGENCE

The results in this section are presented without proof due
to space constraints. Full proofs of the results here can be
found in [10]. Before stating the main convergence result,
we provide the following lemma which establishes a positive
upper bound on the stepsizes that can be used.

Lemma 1: Let the constant ρmax be defined as

ρmax = min

{
(x− x̂) · ∇iL(x, µ)

‖∇iL(x, µ)‖2

∣∣∣∣ V (x, µ) ≤ K
}
(13)

= min

{
xi − x̂i
∂L
∂xi

(x, µ)

∣∣∣∣ V (x, µ) ≤ K

}
. (14)

Then ρmax > 0.
Proof: Please see [10]. �

Using Lemma 1, we now state the main result of the paper.
Theorem 1: Let every agent use a strictly convex objective

function fi : R→ R, fi ∈ C2 and let the global constraints,
g : RN → Rm, be convex with gj ∈ C2 for each j. Let
∂fi
∂xi
∈ o(xi) and let ∂gj

∂xi
∈ o(xi) whenever gj is a function

of xi. Then for any stepsize ρ such that 0 < ρ ≤ ρmax used
by all agents and the cloud, the saddle point ẑ is globally
asymptotically stable in all N copies of the system defined
in equations (11) and (12).
Proof: Please see [10]. �

IV. SIMULATION RESULTS

A numerical implementation of the above cloud architec-
ture was run for a particular choice of simulation example.
Then problem simulated was chosen to use N = 6 agents,
each associated with a scalar state as above. The objective
function of each agent was chosen to be fi(xi) = (xi− x̃i)4,
where

x̃ =


−3.0

6.0
−5.0

4.0
2.0
−6.0

 . (15)

Since each objective function is quartic, it satisfies all as-
sumptions required by the architecture of the problem. The
constraints in this problem were chosen to be

g(x) =

 x41 + x44 − 50

x42 + x65 − 100

x63 + x46 − 100

 ≤ 0. (16)

These will provide active inequality constraints, thus causing
the constrained optimum of each agent to differ from the
unconstrained optimum. The Lagrangian of this problem is

L(x, µ) =

6∑
i=1

fi(xi) + µT g(x) (17)

where µ ∈ R3
+.



0 500 1000 1500 2000 2500 3000
−3

−2

−1

0

1

2

3

4

 

 

x1x2x3x4x5x6

Fig. 1. The states onboard agent 1 over time. Note that each state
monotonically approaches its final value. Since this is a gradient-based
method, we see larger changes in earlier iterations, followed by smaller
steps taken at later iterations.

For this simulation each nk is a randomly-generated
integer between 5 and 15 for each transmission time k.
The stepsize used was ρ = 0.002. The gradient descent
algorithm described above was initialized with all agents and
the cloud having all states set to 0. All agents and the cloud
had all Kuhn-Tucker multipliers initialized to 10 because we
anticipate these constraints being active. The algorithm was
run until at some time k the condition∥∥∥∥∂L∂x (xc(k), µ(k + pk)

)∥∥∥∥+
∣∣µ(k + pk)T g(xc(k))

∣∣ ≤ ε
(18)

was satisfied in the cloud. Here we set ε = 0.3.
The points x̂ and µ̂ were computed ahead of time to be

x̂ =


−1.9596

3.1533
−1.7758

2.4367
0.9937
−2.8739

 (19)

and

µ̂ =

 0.2397
1.2749
0.7357

 . (20)

Here, the cloud algorithm took 1, 479 iterations to run and
resulted in a final xc(k) of

xc =


−1.8594

3.1549
−1.7744

2.4809
0.9881
−2.8798

 (21)

and a final µc(k) of

µc =

 0.2266
1.2718
0.7334

 . (22)

The final value of V in the cloud was V (xc, µc) = 0.0126.
Based on the definition of V , this means that the square
of the Euclidean distance from (xc(1, 479), µc(1, 479)) to

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6

7

8

9

10

 

 

µ1
µ2
µ3

Fig. 2. The Kuhn-Tucker multipliers onboard agent 1 over time. As with
the states, each Kuhn-Tucker multiplier monotonically approaches its final
value, with larger steps generally coming earlier in the time-evolution of
the problem because they are computed using a gradient-based method.

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

Fig. 3. The value of V (x1(k), µ1(k)) over time. As expected from
the Lyapunov analysis in Section III, the Lyapunov function is generally
decreasing with potential periods of constancy seen when a particular delay
is long. These periods of constancy terminate when a cloud update is
received and V continues to decrease until reaching its final value.

(x̂, µ̂) is just 0.0126, indicating very close convergence of
this algorithm to the unique saddle point.

Though approximately 1, 500 iterations is perhaps more
than a centralized algorithm would require, a longer con-
vergence time such as this one is expected given the struc-
ture of the problem. Specifically, there are non-negligible
communications delays present in this system and delayed
communications certainly cause a longer time until conver-
gence. Moreover, when an agent does receive information,
it necessarily receives old information about the rest of the
system. Then, since each agent receives old information and
receives it late, the convergence of this problem will take
more time than an algorithm that does not have delays of
any kind.

To further illustrate the convergence of this problem the
histories of the states, Kuhn-Tucker multipliers, and value
of V over time onboard agent 1 are shown in Figures 1,
2, and 3, respectively. In each plot, the sequences of states,
Kuhn-Tucker multipliers, and V 1(k) values are all monotone
as they approach their final values. This is expected given
the globally asymptotically stable nature of the saddle point.
In addition, larger decreases in the distance to the saddle
point are seen in earlier iterations, a common characteristic
of gradient descent algorithms.



V. CONCLUSION

We presented a cloud architecture for coordinating a
team of mobile agents in a distributed optimization task.
Each agent has direct knowledge only of its own local
objective function and its own influence upon the global
constraint functions but receives occasional updates from
the cloud computer containing old values of each other
agent’s state and updated Kuhn-Tucker multipliers. Global
asymptotic convergence of this system was proven using a
radially unbounded Lyapunov function that was shown to
be non-increasing along trajectories. Simulation results were
provided to attest to the viability of this approach.

REFERENCES

[1] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed
Computation: Numerical Methods. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1989.

[2] L. Carlone, V. Srivastava, F. Bullo, and G. C. Calafiore. Distributed
random convex programming via constraints consensus. 52(1):629–
662, 2014.

[3] S. Caron and G. Kesidis. Incentive-based energy consumption schedul-
ing algorithms for the smart grid. In Smart Grid Communications
(SmartGridComm), 2010 First IEEE International Conference on,
pages 391–396, Oct 2010.

[4] Benoit Chachuat. Nonlinear and dynamic optimization: From theory
to practice. Technical report, Automatic Control Laboratory, EPFL,
Switzerland, 2007.

[5] Mung Chiang, S.H. Low, A.R. Calderbank, and J.C. Doyle. Layering
as optimization decomposition: A mathematical theory of network
architectures. Proceedings of the IEEE, 95(1):255–312, Jan 2007.

[6] Greg Droge and Magnus Egerstedt. Proportional integral distributed
optimization for dynamic network topologies. In IEEE American
Control Conference (ACC), 2014, June 2014.

[7] Diego Feijer and Fernando Paganini. Stability of primal-dual gradient
dynamics and applications to network optimization. Automatica,
46(12):1974–1981, December 2010.

[8] B. Gharesifard and J. Cortes. Distributed continuous-time convex
optimization on weight-balanced digraphs. Automatic Control, IEEE
Transactions on, 59(3):781–786, March 2014.

[9] Ken Goldberg and Ben Kehoe. Cloud robotics and automation: A
survey of related work. Technical Report UCB/EECS-2013-5, EECS
Department, University of California, Berkeley, Jan 2013.

[10] M.T. Hale and M. Egerstedt. Cloud-based optimization: A quasi-
decentralized approach to multi-agent coordination. Technical
Memorandum, Georgia Institute of Technology, 2014. Available at
http://arxiv.org/abs/1404.0098.

[11] Bruce Hendrickson and Tamara G. Kolda. Graph partitioning models
for parallel computing. Parallel Comput., 26(12):1519–1534, Novem-
ber 2000.

[12] F. Kelly, A. Maulloo, and D. Tan. Rate control in communication
networks: shadow prices, proportional fairness and stability. In Journal
of the Operational Research Society, volume 49, 1998.

[13] M. Khan, G. Pandurangan, and V.S.A. Kumar. Distributed algorithms
for constructing approximate minimum spanning trees in wireless
sensor networks. Parallel and Distributed Systems, IEEE Transactions
on, 20(1):124–139, Jan 2009.

[14] A. Nedic and A. Ozdaglar. Distributed subgradient methods for
multi-agent optimization. Automatic Control, IEEE Transactions on,
54(1):48–61, Jan 2009.

[15] Angelia Nedic and Alex Olshevsky. Distributed optimization over
time-varying directed graphs. In Decision and Control (CDC), 2013
IEEE 52nd Annual Conference on, pages 6855–6860, Dec 2013.

[16] Angelia Nedic and Asuman Ozdaglar. On the rate of convergence
of distributed subgradient methods for multi-agent optimization. In
Proceedings of IEEE CDC, pages 4711–4716, 2007.

[17] Angelia Nedić and Asuman Ozdaglar. Convergence rate for consensus
with delays. Journal of Global Optimization, 47(3):437–456, 2010.

[18] Angelia Nedic, Asuman Ozdaglar, and Pablo A Parrilo. Constrained
consensus and optimization in multi-agent networks. Automatic
Control, IEEE Transactions on, 55(4):922–938, 2010.

[19] Sikandar Samar, Stephen Boyd, and Dimitry Gorinevsky. Distributed
estimation via dual decomposition. In Proc. European Control
Conference, pages 1511–1519, 2007.

[20] H.D. Simon. Partitioning of unstructured problems for parallel
processing. Computing Systems in Engineering, 2(23):135 – 148,
1991. Parallel Methods on Large-scale Structural Analysis and Physics
Applications.

[21] Daniel E Soltero, Mac Schwager, and Daniela Rus. Decentralized path
planning for coverage tasks using gradient descent adaptive control.
The International Journal of Robotics Research, 2013.

[22] Andre Teixeira, Euhanna Ghadimi, Iman Shames, Henrik Sandberg,
and Mikael Johansson. Optimal scaling of the admm algorithm for
distributed quadratic programming. In Decision and Control (CDC),
2013 IEEE 52nd Annual Conference on, pages 6868–6873, Dec 2013.

[23] Niki Trigoni and Bhaskar Krishnamachari. Sensor network algorithms
and applications Introduction. Philosophical Transactions of the
Royal Scoeity A - Mathematical, Physical, and Engineering Sciences,
370(1958, SI):5–10, JAN 13 2012.

[24] H. Uzawa. Iterative methods in concave programming. Studies in
Linear and Non-Linear Programming, 1958.

[25] H. Uzawa. The kuhn-tucker theorem in concave programming. Studies
in Linear and Non-Linear Programming, 1958.

[26] Minyi Zhong and C.G. Cassandras. Asynchronous distributed opti-
mization with event-driven communication. Automatic Control, IEEE
Transactions on, 55(12):2735–2750, Dec 2010.


