
HPerf: A Lightweight Profiler for Task Distribution on CPU+GPU Platforms

Joo Hwan Lee Nimit Nigania Hyesoon Kim
School of Computer Science

Georgia Institute of Technology
{joohwan.lee, nnigania3, hyesoon}@gatech.edu

Bevin Brett
Software and Services Group

Intel Corporation
bevin.brett@intel.com

Abstract—Heterogeneous computing has emerged as one of
the major computing platforms in many domains. Although
there have been several proposals to aid programming for
heterogeneous computing platforms, optimizing applications
on heterogeneous computing platforms is not an easy task.
Identifying which parallel regions (or tasks) should run on
GPUs or CPUs is one of the critical decisions to improve
performance.

In this paper, we propose a profiler, HPerf, to identify
an efficient task distribution on CPUs+GPUs system with
low profiling overhead. HPerf is a hierarchical profiler. First
it performs lightweight profiling and then if necessary, it
performs detailed profiling to measure caching and data
transfer cost. Compared to a brute-force approach, HPerf
reduces the profiling overhead significantly and compared to
a naive decision, HPerf improves the performance of OpenCL
applications up to 25%.

I. INTRODUCTION

These days, many computing systems from mobile plat-
forms to server systems have both CPUs and GPUs. In
the last few years, GPUs have evolved to execute not only
graphics applications but also general-purpose computing
workloads [1]. Even mobile platforms such as the one from
Qualcomm [2] utilize GPUs for general-purpose computa-
tion. Programming for heterogeneous computing that uses
both CPUs and GPUs is everywhere.

OpenCL aims to increase programmability and portability
on heterogeneous computing [3]. Lately, several other pro-
gramming environments such as OpenACC [4], Rigel [5],
and COMIC [6] have been proposed for the same purpose.
Nonetheless, programming on heterogeneous computing still
requires a significant amount of programmers’ efforts to
achieve the best performance. Identifying which task should
run on CPUs or GPUs is one of the critical decisions, which
is not trivial.

A common practice of task distribution on CPUs and
GPUs considers two factors: ”thread-level parallelism”
(TLP) and ”the amount of data transfer between CPUs and
GPUs” [7], [8], [9], [10]. However, these two factors might
not be sufficient. Also, identifying the amount of data to be
transferred between CPUs and GPUs might not be obvious.
Furthermore, caching behavior might also change depending
on task distribution (or offloading scenario).

Nonetheless, no previous work has considered all these
effects that change depending on offloading scenario. In
this paper, we propose a new profiler, HPerf, to consider
computing power differences, data transfer time cost and
caching effects together. The input to HPerf is parallelized
code running on CPUs and the outcome is a suggested of-
floading scenario to achieve the best estimated performance.

The rest of the paper is organized as follows. First,
we explain the limitation of previous approaches and then
summarize our contributions in Section II. We propose our
profiling algorithms in Section III and describe the imple-
mentation of the profiler in Section IV. Section V presents
our evaluation results and Related works are presented in
Section VI. Finally, Section VII concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Previous Approaches on Task Distribution on CPUs and
GPUs

A candidate application for heterogeneous platform with
CPUs and GPUs consists of two kinds of code regions;
”parallel region” and ”sequential region”. Parallel regions
are the code regions that can be parallelized, and sequential
regions are the ones that cannot be parallelized or have very
limited parallelism.

While where to execute the sequential region is straight-
forward (on CPUs), it is nontrivial where to execute the
parallel region. There are three types of previous static-time
task distribution decision mechanisms. 1

1) All-CPU-or-All-GPU
The simplest decision mechanism is to execute all
tasks either on CPUs or GPUs. Programmer can
measure total execution time by running all tasks on
CPUs or on GPUs and then compare both and choose
one. [11]

2) Measure-Separately
Instead of running all tasks on CPUs or GPUs, the
Measure-Separately approach measures execution time
and data transfer time for each task separately, one
at a time [12], [13], [14]. Although this approach

1 Run-time systems also have many different scheduling algorithms to
distribute tasks. Our work is task distribution at static-time to take advantage
of compilation time optimizations. Run-time scheduling algorithm can
improve performance further with the static-time optimized code.

sounds simple and reasonable, the execution time of
each task is affected by other task execution decisions
because of different data movement costs and different
caching behaviors. We explain this in more detail in
Section II-B.

3) Brute-Force
The Brute-Force approach is to profile all the possible
scenarios. Obviously, this method will find the best-
performing scenario, but this method is not scalable
with multiple tasks. Hence, we need an efficient pro-
filing algorithm that does not require all scenarios
to be profiled but still identifies the best performing
scenario.

Before we propose our new algorithms, we explain the
limitation of the Measure-Separately approach in more de-
tail.

B. Limitations of Measure-Separately

The Measure-Separately approach has three limitations.
First, this approach assumes that GPU code is available so
that the profiler can measure the execution time on GPUs.
Second, the data transfer cost for each parallel region is
assumed to be the same regardless of offloading decisions
(i.e., task distribution decision) for other parallel regions.
Third, the execution time for each parallel region is assumed
to remain the same regardless of offloading decisions.

1) Existence of GPU code: Obviously, GPU code is not
always available. Even though the same OpenCL code can
run on CPUs and GPUs, programmers generally need to
optimize the code for different architectures.

2) Data Transfer Cost: Figure 1 shows two different
offloading scenarios. Parallel regions A, B, C, and D are
sequentially executed. Arrows indicate possible data move-
ment between parallel regions. Data movement between
parallel regions can occur either through (1) a CPU-GPU
communication interface such as a PCI-E bus (solid line)
or (2) within the same computing platform (dotted line).
Depending on offloading decisions, data movement can be
done differently. In scenario (a), arrows ¶, ¸, º, », and ½
are CPU-GPU communications. But, in scenario (b), arrows
·, ¸, ¹, ¼, and ½ require data transfer between the CPU
and the GPU.

CPU GPU

Reg A

Reg B

Reg C

Reg D

CPU GPU

Reg A

Reg B

Reg C
Reg D

Scenario	(b)

Region	A

Scenario	(a)

Control	Flow	Graph Data	Movement

Region	B

Region	C

Region	D

Figure 1: Different offloading scenarios and data movement.

For example, the data movement from parallel region B to
parallel region C (º) requires a CPU-GPU communication
in scenario (a), but it becomes internal communication
in scenario (b). The Measure-Separately approach decides
whether to offload parallel region B without considering
this implication. Parallel region A could generate results that
parallel regions C and D use. Depending on whether or not
parallel region A is executed on a GPU, the data movement
method for ¹ and » can be a CPU-GPU communication
or just an internal communication. Considering all the com-
munication overhead with regard to other parallel regions is
not possible in the Measure-Separately approach.

3) Cache-to-Cache Influx: The data movement within the
same computing platform is often done through caches. We
call this data movement through the cache ”cache-to-cache
influx” in this paper.

When a parallel region is offloaded to a GPU, the perfor-
mance of other parallel regions is also changed. A parallel
region’s offloading decision will affect other parallel region’s
cache behaviors. The performance of parallel regions on
CPUs can be improved compared to the base scenario in
which all parallel regions are running on CPUs, if offloading
reduces the working set size of parallel regions on CPUs.
The performance can be degraded because data has to be
copied from a GPU. This data could have been inside the
CPU cache if the offloaded parallel region ran on CPUs.

Tables I and II show cache behavior changes for the two
scenarios in Figure 1. 2 The performance column shows
the performance of each scenario over the base scenario
where all parallel regions run on CPUs. The performance
can either be improved or degraded. Interesting scenarios
(shaded in the tables) are when the performance improves
because of reduced effective working set size on CPUs
by offloading some regions on GPUs. Please note that we
consider cache-to-cache influx only for CPU caches because
the performance on CPUs is heavily affected by caching
behavior but not on GPUs.

C. Contributions

As Section II-B shows, the performance of each task can
be affected by other task distribution decisions. Nonetheless,
no previous decision mechanism estimates these costs effi-
ciently. Even though Brute-Force approach can find the best
performing scenario, it has scalability problem with multiple
parallel regions. Measure-Separately can be used to solve
the scalability problem of Brute-Force, but it misses many
important aspects that Brute-Force can capture.

Hence, in this paper, we propose HPerf to estimate
cache behavior changes and data movement costs depending
on offloading scenarios. HPerf is a lightweight profiler to
help programmers by achieving two contradicting goals:

2 The table does not discuss cache misses due to conflict/capacity misses
by its own parallel region.

Table I: Region D’s cache behavior for Scenario (a).

Data from Baseline (ALL-CPU) Scenario (a) Performance
Region A (») Hit if B & C don’t evict data from A Miss Degrade

Miss if B & C evict data from A Miss Same
Region B (¼) Hit if C doesn’t evict data from B Hit Same

Miss if C evicts data from B Hit Improve
Region C (½) Hit Miss Degrade

Table II: Region D’s cache behavior for Scenario (b).

Data from Baseline (ALL-CPU) Scenario (b) Performance
Region A (») Hit if B & C don’t evict data from A Hit Same

Miss if B & C evict data from A Hit Improve
Region B (¼) Hit if C doesn’t evict data from B Miss Degrade

Miss if C evicts data from B Miss Same
Region C (½) Hit Miss Degrade

(1) finding a well-performing offloading scenario with (2)
reasonable profiling overhead.

III. PROFILING ALGORITHMS

In this section, we explain our basic profiling algorithms.
Detailed discussions of the mechanisms are explained in
later sections.

A. Overview of Profiling Stages

HPerf is a hirarchical profiler consisting of five profiling
stages as follows.
• Stage-1. Check to see if All-CPU or All-GPU is good

enough.
First, we do one-time profiling similar to the Measure-
Separately approach. This stage decides if further
profiling stages are required in an approximated
manner. We measure the execution time of each
parallel region on CPUs. Here, we ignore cache-
to-cache influx. The execution time on GPUs is
approximated using the heuristics in Section IV-B. We
estimate the maximum data transfer time of ALL-GPU
execution with the maximum data transfer overhead.
If GPU execution time is significantly lower than CPU
execution time even with data transfer cost then HPerf
chooses All-GPU at this stage and finishes profiling.

• Stage-2. Check to see if cache-to-cache influx is
important.
To determine whether the cache-to-cache influx can
significantly change the performance, HPerf measures
the cache performance assuming that every parallel
region starts from a cold state. If cache-hit ratio
with cold-start is high enough, the profiler bypasses
Stage-4.

• Stage-3. Estimate data transfer costs for all offloading
scenarios.

In this stage, HPerf estimates more precise data
transfer costs for all possible offloading scenarios
and therefore total execution time of them. HPerf
identifies which data need to be transferred between
CPUs and GPUs without requiring detailed simulation
or profiling. The detailed algorithm is presented in
Section III-B.

• Stage-4. Capture cache-to-cache influx effect.
To capture performance changes due to cache-to-cache
influx, HPerf measures execution time on CPUs
for selected offloading scenarios. The performance
change of each parallel region on CPU depending on
offloading scenarios are applied on estimated total
execution time of offloading scenarios from Stage-3.
We propose a new algorithm (Section III-C) to reduce
the number of offloading scenarios that need to be
profiled. The algorithm considers multiple workload
characteristics such as the memory footprint size for
each parallel region and the data sharing patterns
between parallel regions. HPerf identifies the important
offloading scenarios that require detailed profiling.

• Stage-5. Suggest the final decision.
Finally, HPerf selects the offloading scenario that is es-
timated to have the best performance. At this stage, data
transfer time and execution time on CPUs and GPUs
are updated based on the previous stages’ outcomes.

Now we highlight our proposed profiling algorithms:
DataProfiler and InfluxProfiler. To improve readability, the
implementation details are explained in later sections.

B. DataProfiler: Data Transfer Overhead Estimation

DataProfiler estimates the data transfer time overhead for
each offloading scenario by computing (1) the number of API
calls for data transfer between CPUs and GPUs and (2) the
amount of data for each transfer. In the ALL-CPU scenario

CPU‐GPU

C1.	Oα ←	Reg	ACPU	(I α)
D1.	Write (I β)	 :	CPU	→	GPU
C2.	Oβ ←	Reg	BGPU	(I β)
D2.	Read(Oβ)	 :	CPU	←	GPU

ALL‐CPU

C1.	Oα ←	Reg	ACPU	(I α)

C2.	Oβ ←	Reg	BCPU	(I β)

Figure 2: A code example comparing the ALL-CPU scenario
and a CPU-GPU scenario.

of Figure 2, data transfer is not needed, but in the CPU-GPU
scenario, the number of API calls for data transfer is two;
one for sending Iβ from a CPU to a GPU (D1) and one for
sending Oβ from a GPU to a CPU (D2). DataProfiler also
estimates the amount of data for each transfer, which is the
size of Iβ and Oβ in this example.

The key to accurately estimate the number of data trans-
fers and the amount of data transferred for each data transfer
is to identify the minimum data that must be transferred
between CPUs and GPUs. Only the data not currently
present in the computing platform needs to be transferred. In
order to know which data should be transferred, DataProfiler
constructs a state-machine to keep track of the location (on
the CPU or the GPU) and its dirty state (clean, dirty, or
invalid) for each memory object. DataProfiler computes the
state transitions of each memory object for all possible of-
floading scenarios. Data should be moved from one location
to another (CPUs or GPUs) only if the latest data is in the
other location. 3 The detailed mechanism to compute the
data transfer time is presented in Section IV-E.

C. InfluxProfiler: Cache-to-Cache Influx Profiling

To measure performance change due to cache-to-cache
influx, HPerf performs profiling for important offloading
scenarios. To reduce the number of scenarios to be profiled,
InfluxProfiler identifies potentially cache-to-cache influx ex-
isting scenarios considering following factors.

1) Shared data group between parallel regions
2) Memory footprint size for each parallel region
3) Memory-write within each parallel region
4) Data movement from sequential regions to parallel

regions
In this section, we only discuss how considering data

sharing between parallel regions and memory footprint size
can reduce the number of scenarios to be profiled. The
detailed mechanism is discussed in Section IV-F.

Terminology. In this paper, we use parallel regions
running on CPUs to indicate different offloading scenarios.
For example, {A,B} represents running parallel regions A
and then B on CPUs and running other parallel regions on

3The FSM of clean, dirty and invalid is the same as FSM in MSI cache
coherence protocol.

GPUs.

Data Sharing and Memory Footprint Size. InfluxProfiler
utilizes data sharing between parallel regions and the mem-
ory footprint size of each parallel region in order to reduce
the number of scenarios to be profiled. In Figure 3, there
are four parallel regions in an application, and all parallel
regions can be potentially offloaded. All four parallel regions
A, B, C, and D are sequentially executed.

Region	A Region	B Region	C Region	D

FootPrint(B)	>	$_Size

Data	sharing
Control	Flow	Graph

FootPrint(C)	>	$_Size

Figure 3: Considering data sharing between parallel regions
and memory footprint size.

Suppose we want to find the offloading scenario that
might increase the cache-hit ratio on parallel region D
running on CPUs. The Brute-Force approach will suggest
profiling the scenarios of executing parallel regions {A,D},
{B,D}, {C,D}, {A,B,D}, {A,C,D}, {B,C,D}, and
{A,B,C,D} on CPUs. However, if we know parallel region
D shares data only with parallel regions A and B, executing
parallel region C on CPUs will not increase cache hits on
parallel region D. Please note that the output of InfluxPro-
filer is the list of potentially cache-to-cache influx existing
scenarios. Hence, the scenario of executing parallel regions
{C,D} on CPUs need not be profiled.

After that, we check the memory footprint size of parallel
region B. If parallel region B’s memory footprint size is
greater than the cache size, any cache block that is inserted
before executing parallel region B will be evicted by parallel
region B. 4 This means {A,B,D} and {B,D} show the
same cache-to-cache influx on parallel region D. This holds
also true for {B,C,D} and {A,B,C,D}. The sets can be
reduced further if we consider the memory footprint size of
parallel region C. Hence, the final sets to profile will be only
executing parallel regions {A,D}, and {B,D} on CPUs.

Instead of profiling seven scenarios, we now have to
profile only two scenarios. We perform a similar task for
each parallel region and accumulate the scenarios for each
region to get the total number of unique scenarios to be
profiled. Formal definitions of the findings are as follows.

• Finding 1 (Data Sharing). When the parallel region of
interest is Rd, for any parallel region R that has no
data sharing with Rd, there exists no cache-to-cache
influx from region R to region Rd in any offloading

4We assume LRU cache replacement policy.

scenario.

• Finding 2 (Memory Footprint Size). When the parallel
region of interest is Rd, for any parallel region R whose
memory footprint size is greater than cache size, there
exists no cache-to-cache influx from the parallel region
Rp (preceding R and then Rd) to region Rd in any
offloading scenario.

IV. IMPLEMENTATION

Now, we describe our profiler, HPerf, which implements
profiling algorithms in the previous section.

A. Overview

Analyzer

CPU	Code	

CHiP GPUPredictor

BypassChecker

InfluxProfiler

CandidateGenerator Offloader
DataProfiler

Offloading	Scenario	Selection

Offloading	Decision	

Stage‐1,	2

Stage‐4Stage‐3

Stage‐5

Cache‐to‐Cache	Influx	is	important

All‐CPU	or	All‐GPU	is	
good	enough

All‐CPU	or	All‐GPU	is	
not	good	enough

:	Input

:	Output

Figure 4: The flow of the HPerf.

Figure 4 shows the flow of the profiler. First, Analyzer
measures execution time and captures the memory behavior
of the application. Then, BypassChecker checks whether
or not later profiling stages are required. This corresponds
to Stage-1 and Stage-2. DataProfiler (Stage-3) computes
the data transfer overhead and therefore total execution
time of all possible offloading scenarios. In Stage-3, we
ignore performance changes of parallel regions on CPUs
due to cache-to-cache influx. The performance change is
captured by InfluxProfiler (Stage-4) by profiling reasonable
number of offloading scenarios. Different execution time of
parallel regions on CPUs depending on offloading scenarios
are applied on estimated total execution time of offloading
scenarios from DataProfiler. Finally, the estimated optimal
offloading scenario is suggested at Stage-5.

B. Analyzer(Stage 1)

Analyzer collects application characteristics through pro-
filed execution. It is implemented as a runtime library
based on OpenCL to automate benchmark analysis. The

current implementation version targets OpenCL applications,
but the implementation can be easily extended to other
programming platforms such as x86 + CUDA, and the same
proposed algorithms should apply. 5 Analyzer in Stage 1
extracts following application characteristics.

1) The execution time of each parallel region on the CPU
2) The estimated performance of each parallel region on

the GPU
3) The data movement between sequential and parallel

regions in the application
4) The memory access pattern in each parallel region
5) Whether each parallel region’s memory access pat-

terns change on different iterations of loops

The extracted information is used in later profiling stages.
To extract these information, Analyzer gathers OpenCL API
call traces.

1) Tracing OpenCL APIs: Analyzer traces
data movement OpenCL API calls such as
clEnqueueWriteBuffer, clEnqueueReadBuffer
to extract the data movement between sequential and
parallel regions. The range ([start addr : end addr]) of
each OpenCL buffer involved by data movement APIs is
extracted by Analyzer tracking arguments passed to those
APIs.

Analyzer also calculates the memory footprint size for
each parallel region by capturing OpenCL buffer ob-
jects accessed by each parallel region. 6 Analyzer gath-
ers call traces of API calls for OpenCL buffer creation
(clCreateBuffer) to extract the number of memory
objects and size of each memory object. The list of OpenCL
buffer objects accessed by each parallel region is extracted
by gathering the trace of argument setting API function calls
(clSetKernelArg).

2) GPU Performance Prediction: GPUPredictor esti-
mates the computation time of the parallel region on GPUs
using the CPU version of code. Compared to previous
GPU analytical models [15], [16] requiring actual GPU
code, we use a simple approximation to get the first-order
approximation of GPU code performance. It should be noted
that even when the application is written in OpenCL, pro-
grammers generally need to optimize the code for different
architectures, which becomes the burden for programmers.
In this paper, we consider only the machines’ computing
power differences to estimate GPU code performance.

5Currently, Analyzer and Offloader are implemented as OpenCL API, but
those can be changed in different styles such as annotation-based approach.

6 HPerf considers GPU’s memory capacity and offloading scenarios that
requires more memory space than the capacity is eliminated from possible
offloading scenarios. In this paper, we assume all offloading scenarios do
not exceed GPUs total memory capacity for brevity.

Machine Scale =
Peak GPU FLOPS

Peak CPU FLOPS
(1)

Machine Scale SIMD =

{
Machine Scale
SIMD width

vectorized

Machine Scale otherwise

(2)

GPU time =
CPU time

Machine Scale SIMD
(3)

Equation (3) presents how HPerf predicts GPU computa-
tion time. We utilize peak performance differences between
CPUs and GPUs and take into account whether the CPU
code is vectorized, as shown in Equations (1), (2).

0	 	

20	 	

40	 	

60	 	

80	 	

100	 	

120	 	

140	 	

0	 	 5	 	 10	 	 15	 	 20	 	 25	 	

GP
U
	 P
er
fo
rm

an
ce
	 (G

FL
O
PS
)	

CPU	 Performance	 (GFLOPS)	

Machines'	 CompuBng	 Power	 Differences

Figure 5: Scatter plot of CPU performance vs. GPU perfor-
mance.

Figure 5 shows a scatter plot of CPU performance on
the X-axis and GPU performance on the Y-axis for the
same benchmark running on CPUs and GPUs. Benchmarks
include several OpenCL applications with different degrees
of parallelism and memory requirements. Although there are
some outliers, many benchmarks approximate the machines’
computing power differences.

An appliction can either be GPU-friendly or not. It can
be GPU-friendly if the memory latencies are hidden when
offloaded to the GPU. On the other hand, an application can
be CPU-friendly if the application has limited thread-level
parallelism or is limited by memory bandwidth on GPUs
while it benefits from high instruction-level parallelism on
the CPU. However, since the profiler only needs a first-order
approximated execution time, our approximation is effective,
as the figure shows. Future work will detect the outlier cases
and improve GPU performance prediction.

C. BypassChecker

BypassChecker classifies applications and decides
whether or not further profiling is required. In Stage 1,
BypassChecker compares the data transfer cost between the
CPU and the GPU and the benefit on computation time by

offloading. Analyzer provides the measured computation
time for each parallel region on a CPU and the list of
memory objects for each parallel region and their sizes.
The predicted computation time of each parallel region on
a GPU is also given as input.
CompTime CPU and CompTime GPU are the sum

of all parallel regions’ computation time on CPUs and
GPUs and TransferT ime GPU is the data transfer time
when running all parallel regions on GPUs. We compare the
following values.

1) CompTime CPU
2) CompTime GPU + TransferT ime GPU

If (2) is smaller than (1) by more than five times, HPerf
selects All-GPU execution as the offloading decision.7 If (2)
is larger than (1) by more than five times, then HPerf selects
All-CPU execution. When (1) and (2) do not belong to both
cases, HPerf utilizes DataProfiler.
TransferT ime GPU is a first-order data transfer over-

head estimation that is the maximum for all possible of-
floading scenarios. To calculate the maximum data transfer
overhead, we assume ”all memory objects (i.e. OpenCL
buffer objects) used in each parallel region are transferred
from a CPU to a GPU before executing the parallel region
and are transferred back from a GPU to a CPU after
executing the parallel region regardless of how each buffer is
accessed by each parallel region”. The number of API calls
for data transfer between CPUs and GPUs and the amount
of data for each transfer are maximal with this assumption.

D. Stage 2

In Stage 2, we check whether the cache-hit ratio for
CPU computation will significantly change depending on
offloading decision because of the change of cache-to-cache
influx. If we predict that caching behavior will not be
affected, InfluxProfiler profiling can be skipped. To get the
first-order approximation, Analyzer profiles the cache-hit
ratio of parallel regions when cache status is assumed to
cold-start for each parallel region.

Cache-to-cache influx helps to reduce the number of cold
cache misses. The cache-hit ratio for any offloading scenario
must be better than the cache-hit ratio with cold-start. So,
if the cache still shows a high cache-hit ratio even when all
memory accesses have cold misses, the cache performance
will not be affected much by offloading decisions, and the
performance change on CPUs will be small. BypassChecker
decides not to execute InfluxProfiler if the cache-hit ratio
with cold-start is already high (75.0% as threshold).

1) Profiling Memory Access Pattern of Parallel Regions:
To extract the memory access pattern of each parallel region
during profiled execution, Analyzer employs a fast cache
profiler called CHiP [17] based on Pin [18]. Analyzer resets

7five is emprically modeled.

the cache in CHiP at the beginning of each parallel region
to collect the cache-hit ratio with cold-start.

CHiP also collects memory address signatures while it
collects cache hit information. The signature of memory
accesses generated by CHiP represents the memory access
pattern of each parallel region that is used by InfluxProfiler
to identify data sharing between parallel regions.

hashed addr = addr[25 : 10]⊕ addr[41 : 26] (4)
signature[hashed addr] = 1 (5)

Equations (4) and (5) are used to generate signatures
similar to the one in [19]. We omit the LSB 10 bits to
consider only the page address and omit the MSB 22 bits
since most applications do not use more than 40 bits in the
address space.

Analyzer differentiates the access type of memory refer-
ences of each parallel region. It differentiates read-only,
write-only, and read-write accesses for each buffer
object. Analyzer performs static analysis on parallel regions
to extract this information.

E. DataProfiler

DataProfiler computes the data transfer overhead for
different offloading scenarios by emulation. DataProfiler
utilizes extracted workload information from Analyzer. An-
alyzer provides call traces of OpenCL API calls so that
DataProfiler constructs a state-machine for each memory
object. The state-machine inspired from cache coherence
protocol is used to compute the minimum data that must
be transferred between CPU and GPU. System memory on
a CPU and device memory on a GPU are considered as
each one’s private cache. CPU’s system memory is also
considered as backing store in cache coherence protocol.

Call traces of OpenCL API calls are used as primitives for
state transition in the state-machine. DataProfiler converts
OpenCL API calls for (1) data movement between the
host and OpenCL compute devices and (2) kernel launch
on OpenCL compute devices as primitives. DataProfiler
uses the following primitives that change the state of each
memory object. By emulating the change of state for each
memory object in different offloading scenarios, DataProfiler
identifies the number of data of data transfers and amount
of each data transfer.
• W SEQ: Data movement from a sequential region
• R SEQ: Data movement to a sequential region
• (W/R/RW) CPU: Write-Only/Read-Only/Read-Write

access from a parallel region executed on CPUs
• (W/R/RW) GPU: Write-Only/Read-Only/Read-Write

access from a parallel region executed on GPUs

TransferT ime(sec) = α× TransferAmount(KB) + β
(6)

To convert the number of data transfers and amount
of each data transfer into time, we use a linear model.
Equation (6) represents the model we use to calculate the
data transfer time of a single data transfer. The data transfer
time of each data transfer is determined with following two
values.

1) The bandwidth of the data transfer and
2) The initialization cost of each transfer.
The coefficients of Equation (6) depend on hardware

configuration and are empirically determined. We run several
microbenchmarks that have different data transfer sizes to
get the coefficient variable values. So, the coefficient is α
= 3.0 × 10−7, β = 2.0 × 10−4 for a data transfer from a
CPU to a GPU and α = 6.0 × 10−7, β = 4.0 × 10−4 for a
data transfer from a GPU to a CPU in our evaluation.

F. InfluxProfiler

1) Data Sharing and Memory Footprint Size: InfluxPro-
filer uses data sharing between parallel regions and the
memory footprint size of each parallel region to reduce the
number of scenarios to be profiled. In order to know whether
different parallel regions share data, InfluxProfiler computes
signature differences similar to the Hamming distance as
in Equation (7). The signature of each parallel regions is
generated by Analyzer.

sig diff =
|(sigi ∪ sigj)− (sigi ∩ sigj)|

|(sigi ∪ sigj)|
(7)

When sig diff is 0, it means that parallel regions share
data, while sig diff being 1 means no sharing. If sig diff
is less than a threshold (0.5), InfluxProfiler concludes that
parallel regions i and j share data.

2) Data Movement from Sequential Region: Data move-
ment from sequential regions can also affect the CPU’s cache
behavior. For example, even when two consecutive parallel
regions access identical data, the sequential region between
these parallel regions can overwrite cached data from the
previous region using say clEnqueueWriteBuffer in
the case of OpenCL. Since the data is flushed from the cache,
there is no reuse in the later parallel region. InfluxProfiler
decides that there is no cache-to-cache influx for such
scenario and uses it to reduce the number of scenarios to
be profiled.

3) Memory-Write within Parallel Region: In many het-
erogeneous applications, a common pattern found is that a
memory object is shared between multiple parallel regions,
but the access types from different parallel regions are
different. One common usage is using a memory object as
an index array for other memory objects. The indexes are
calculated and written in one parallel region, but only read
by other parallel regions.

InfluxProfiler considers memory-write within each paral-
lel region to reduce the number of scenarios to be profiled.
In Figure 6, parallel regions A and C read Dα and are
executed on the CPU. Parallel region B reads Dγ and
writes Dα and is executed on the GPU. The footprint size
of parallel region B is larger than the CPU cache size. If
InfluxProfiler does not consider that memory object Dα is
written on parallel region B, it would suggest that offloading
parallel region B will increase the cache-hit ratio on parallel
region C. However, since Dα is modified on the GPU,
Dα from parallel region A cannot be used by region C.
InfluxProfiler identifies such scenarios and removes them
from the potential offloading scenarios.

CPU

GPU

Dβ <‐ Reg	A(D α)

D α <‐ Reg	B(D γ)

Dδ <‐ Reg	C(D α)

Figure 6: Considering memory-write within parallel regions.

4) Handling Loops: Until now, we have assumed that all
parallel regions are executed only once. However, in many
applications, parallel regions are executed multiple times
in a loop. A naive way of handling loops is to treat all
invocations of a parallel region as separate parallel regions.
However, this method is not practical since the number of
offloading scenarios is largely dependent on the number of
parallel regions.

InfluxProfiler utilizes the finding that the memory access
pattern of a parallel region does not change between different
loop iterations in general. Even though it is still possible for
an application to have less uniform loop structure, many
applications with large TLP that can benefit from offloading
share this characteristic of uniform behavior. The data access
pattern of the first execution of a parallel region remains the
same on other executions of the region, which is true for
most of our evaluated benchmarks. If non-uniform behavior
appears, we split a loop into multiple loops to assure uniform
behavior in a single loop. Figure 7 shows an example with
control divergence in a loop. The outcome of the branch on
parallel region A is different on different iterations. We split
this loop into two separate loops.

InfluxProfiler transforms the loop into a linear form in
order to apply the mechanism described in previous sections.
Figure 8 shows an example when parallel regions A, B,
and C are inside a loop and are executed N times. Left
side of Figure 8 shows the original CFG and right side of
Figure 8 shows the different transformed CFGs depending
on the parallel region of interest. CFG (a) in Figure 8
represents when we want to see whether the number of cache
misses can be reduced on parallel region A due to cache-
to-cache influx. The parallel region of interest is moved to
the successor of all other parallel regions in the loop. The
parallel region out of the loop is not considered.

Region	A

Region	B

Region	D

Region	I

N	Times

Region	C

First	N1	Times Later	N2	Times

Region	A

Region	B

Region	D

Region	I

N1	Times

Region	A’

Region	C

Region	D’

N2	Times

Transform

Original	CFG CFG	after	splitting

Figure 7: Loop splitting.

Region	A

Region	B

Region	C

Region	I

N	Times

Region	B

(a) (b) (c)	
Transformed	CFGOriginal	CFG

Region	C

Region	A

Region	C

Region	A

Region	B

Region	A

Region	B

Region	C

Figure 8: Different loop transformation for different parallel
regions of interest.

InfluxProfiler also includes the scenario of executing only
a single parallel region in a loop on the CPU as the
offloading scenario to be profiled. It is because cached data
by previous invocation of a parallel region can be reused in
later invocations of the same parallel region.

5) Compression: To reduce the number of offloading
scenarios, InfluxProfiler also merges different offloading
scenarios into a single offloading scenario. For example, if
scenarios to be profiled before compression are executing
parallel regions {C,D}, {A,C,D} on CPUs, they can be
reduced to {A,C,D} without any loss of accuracy. This is
because scenario {C,D} captures the cache-to-cache influx
from region C to D and scenario {A,C,D} captures the
cache-to-cache influx from region A to C and the one
from regions A and C to D. The cache-to-cache influx that
scenario {C,D} captures is included in scenario {A,C,D}.

6) Offloader: Offloader is the module that executes the
OpenCL code with different offloading scenarios. Potential
offloading scenarios with potentially reduced cache misses
on the CPU are passed to Offloader. Offloader offloads
different parallel regions on GPUs depending on offloading
scenarios and measures performance changes of parallel
regions on CPUs.

The main goal of Offloader is to preserve the cache
behaviors of CPUs on different offloading scenarios, The
performance of parallel regions offloaded on GPUs is not
measured, which removes the needs to have an optimized
GPU code. Only the functional outcomes of offloaded paral-
lel regions are used to continue computations on CPUs. The
target of offloading is not just limited to the GPU, which can

be other CPUs that do not alter the behavior of the CPU to
be measured.

Since current implementation of HPerf is based on
OpenCL, Offloader is built as an OpenCL delegator library
that invokes OpenCL libraries from vendors. It implicitly
initializes GPUs and manages data transfer between the
CPU and the GPU. Data transfer between the CPU and
GPU is minimized by only transferring missing data in the
computing platform that will execute the parallel region.

V. EXPERIMENTAL EVALUATION

A. Methodology

We evaluate HPerf’s benefit with the Parboil bench-
marks [20], [21]. 8 To evaluate the profiling overhead, we
also evaluate applications from NPB [22]. We use the NPB
benchmark only to evaluate InfluxProfiler. 9 Table III sum-
marizes the characteristics of the benchmarks. We measure
the wall-clock execution time on the system in Table IV.

Table III: Workload characteristics.

Benchmark Suite # of Regions Problem Size
mri-fhd Parboil [20] 2 default
mri-q(1) Parboil [20] 2 default
rpes Parboil [20] 2 default
histogram Parboil [21] 4 default
mri-q(2) Parboil [21] 2 default
sad Parboil [21] 3 default
BT NPB [22] 22 class A
FT NPB [22] 8 class S, W, A
SP NPB [22] 26 class W
IS NPB [22] 6 class W
CG NPB [22] 32 class W, A

Table IV: Experimental machine configuration.

CPU Intel(R) Core(TM) i5-3550 CPU
Cache L1D/L2/L3: 128K/1M/6M
FP peak performance 105.6 GFLOPS
Core frequency 3.30 GHz
DRAM 4GB
GPU NVidia Quadro 2000
FP peak performance 480 GFLOPS
Shader Clock frequency 1250 MHz
DRAM 1GB
O/S Ubuntu 12.04.1 LTS
Platform AMD OpenCL Platform for CPU

NVidia OpenCL Platform for GPU

8Single kernel benchmarks in Parboil are not included in this study.
9The OpenCL NPB benchmark has huge performance differences be-

tween CPUs and GPUs. The performance delta between CPUs and GPUs
is greater than 10x. Both Measure-Separately and HPerf decide ALL-GPUs
for this benchmark. So we only use the NPB benchmark to demonstrate the
scalability of InfluxProfiler algorithm since it has many number of regions
to effectively demonstrate the benefits of the InfluxProfiler algorithm.

B. Evaluation of BypassChecker (Stages-1, 2)

1) Stage-1: The outcome of Stage-1 is whether All-CPU
or All-GPU is good enough. It should be noted that the
decision is the approximated decision by BypassChecker.
BypassChecker categorizes applications into simple appli-
cations and complex ones and maps all parallel regions on
CPUs or GPUs for the simple ones. In our evaluation, the
categorization of BypassChecker is identical to that of the
oracle decision by actual measurement for the evaluated
benchmarks. Following is the outcome of Stage-1.
• Simple: mri-fhd, mri-q(1), rpes, mri-q(2), sad
• Complex: histogram

0.1

1

10

100

1000

mri‐fhd mri‐q(1) rpes mr‐q(2) sad histogram

Oracle BypassChecker

Threshold (5x)

Category‐1 Category‐2

Figure 9: Predicted speedup from BypassChecker and mea-
sured speedup of ALL-GPU execution over ALL-CPU exe-
cution.

Figure 9 compares predicted speedup from Bypass-
Checker and measured speedup of ALL-GPU execution over
ALL-CPU. ALL-GPU execution includes data transfer cost.
The horizontal dotted line represents the threshold (5 times)
of BypassChecker deciding whether a later profiling stage
is required. In general, BypassChecker’s estimation approx-
imates actual speedup to categorize applications correctly.
For simple applications, the benefit of offloading is very
high even with the data transfer cost, so HPerf can bypass
Stages 2-4 and offload all parallel regions on GPUs. As
for histogram, it can benefit from utilizing the detailed
mechanism of the later profiling stage.

1

100

10000

1000000

100000000

0.001

0.1

10

mri‐fhd mri‐q(1) rpes mr‐q(2) sad histogram

Tr
an
sf
er
	A
m
ou
nt
(K
B)

Tr
an
sf
er
	T
im
e(
se
co
nd
s)

Amount(Actual)
Amount(BypassChecker)
Time(Actual)
Time(BypassChecker)

Figure 10: Estimated data transfer time and data transfer
amount from BypassChecker and measured value.

To check that All-CPU or All-GPU is good enough,
BypassChecker estimates the maximal data transfer time.
We also evaluate how effective BypassChecker’s estimation
works. Figure 10 compares the estimated data transfer time
and the amount of data transfer from BypassChecker and

measured value. In general, BypassChecker’s estimation
approximates the measured value. It should be noted that
the estimated value from BypassChecker is greater than the
actual value since it assumes the maximum data transfer
overhead, as described in Section IV-C.

2) Stage-2: The outcome of Stage-2 is whether the
cache-to-cache influx changes cache behavior significantly.
Figure 11 compares the cache-hit ratio when the cache
status is assumed to cold-start (Cold-Start) or not (All-
CPU). The results of mri-fhd, mri-q(1), rpes, and mri-q(2)
are omitted since ALL-CPU execution is the only scenario
that InfluxProfiler decides to profile and the only offloading
scenario when the cache-to-cache influx helps to reduce
the number of cache misses. The horizontal dotted line
represents the threshold (75.0 %) of BypassChecker. Little
difference is found between Cold-Start and All-CPU since
the cache-hit ratio of Cold-Start is still high even though the
cache-hit ratio of Cold-Start is the worst among all possible
offloading scenarios.

0.0%
20.0%
40.0%
60.0%
80.0%
100.0%

Cold‐Start All‐CPU

Figure 11: Cache-hit ratio of Cold-Start and All-CPU exe-
cution.

C. DataProfiler Evaluation (Stage-3)

146.0
56.6 33.4

7.2 5.1

0.9

169.6
62.4

33.4

7.3 5.1

1.2

0.1

1.0

10.0

100.0

1000.0

mri‐fhd mri‐q(1) rpes mri‐q(2) sad histogram

ALL‐GPU DataProfiler

Figure 12: Speedup of DataProfiler based offloading deci-
sion and ALL-GPU execution over ALL-CPU execution.
DataProfiler based offloading decision is identical to oracle
offloading decision.

In order to demonstrate the benefit of DataProfiler, we
compare the offloading decision from DataProfiler and the
decision from Measure-Separately. For all evaluated appli-
cations, DataProfiler based offloading decision is identical to
oracle offloading decision, and Measure-Separately always
decides that ”offloading all computations to GPU is the
optimal offloading decision”.

Figure 12 compares the speedup of the offloading de-
cision from DataProfiler and ALL-GPU execution over

the ALL-CPU execution. For mri-fhd, mri-q(1), mri-q(2)
and histogram, DataProfiler makes a different offloading
decision from Measure-Separately and shows performance
improvement. For rpes and sad, the offloading decisions
from DataProfiler is ALL-GPU execution. For histogram, of-
floading all computation on GPUs is even worse than ALL-
CPU execution (0.88 times speedup). DataProfiler makes a
different offloading decision from ALL-GPU execution, and
achieves a 1.25 times speedup over ALL-CPU execution.

D. InfluxProfiler Evaluation (Stage-4)

1) Profiling Overhead Reduction: InfluxProfiler reduces
the number of offloading scenarios that need to be profiled
without missing the opportunities to identify potentially
cache-to-cache influx existing scenarios. Table V represents
how each component in InfluxProfiler reduces the number of
scenarios. Even though we only consider parallel regions in
the hot spot loop of the application, the maximum number
of offloading scenarios that can be profiled (the number
from Brute-Force) is still high. The number of offloading
scenarios that InfluxProfiler decides to profile is significantly
reduced from the maximum number of offloading scenarios,
especially for the benchmarks that have many parallel re-
gions (up to 96.4% for SP.W). An exception is IS.W, but
the maximum number of scenarios is quite small for this
workload, which makes the profiling overhead negligible.

On the evaluated benchmarks, consideration of the shared
data groups and footprint sizes (SHARE/SIZE) is the most
important factor to reduce offloading scenarios. Compression
(COMP) contributes on SP.W, CG.W, and CG.A. Consider-
ing data movement from sequential regions and memory-
write within parallel regions (SEQ/WRITE) helps for FT.S.

2) Verification of InfluxProfiler’s Outcome: As previously
described, InfluxProfiler identifies potential offloading sce-
narios that will improve the cache hit on CPUs. Figure 13
shows the reduction of cache misses of regions running on
CPUs with the identified scenario over the same regions with
the ALL-CPU scenario. Please recall that we are focusing
on the cache performance of parallel regions that are not
offloaded and executing on CPUs. Among all the evaluated
benchmarks, eight benchmarks show that offloading compu-
tation on GPUs can indeed reduce cache misses on CPUs.
For FT.W and FT.A, offloading parallel regions on GPUs
can reduce cache misses on CPUs to 21.2% and 19.9%
respectively.

E. Discussion

1) Applying to other programming languages: Even
though our evaluation utilize OpenCL code, it isn’t the
fundamental requirement of our work. HPerf’s mechanism
can be applied on programs written in different programming
languages such as OpenMP without major modification. The
only necessary modification is tracing OpenCL APIs from

Table V: How each component in InfluxProfiler affects the number of offloading scenarios.

Benchmark MAX SHARE/SIZE SHARE/SIZE & COMP SHARE/SIZE & COMP
& SEQ/WRITE
(Final Outcome)

mri-fhd 3 1 1 1
mri-q(1) 3 1 1 1
rpes 3 1 1 1
histogram 15 8 8 8
mri-q(2) 3 1 1 1
sad 7 3 3 3
BT.A 1023 43 43 43
FT.S 31 13 13 12
FT.W 31 10 10 10
FT.A 31 10 10 10
SP.W 16383 691 582 582
IS.W 7 7 7 7
CG.W 1023 374 200 200
CG.A 1023 374 200 200

48.9%

98.5% 99.9%

71.9%

21.2% 19.9%
0.3%

21.1%

0.5%

80.5%

0.0%

20.0%

40.0%

60.0%
80.0%

100.0% $_MISS(scenario)/$_MISS(ALL‐CPU)

Figure 13: The ratio of the cache misses of an offloading
decision from HPerf to the cache misses of ALL-CPU
execution.

Analyzer, which can be changed to different styles such as
annotation-based approach utilizing CHiP.

HPerf doesn’t assume already implemented code to per-
form data transfers between CPUs and GPUs for all parallel
regions either. The size and range of data movement between
sequential regions and parallel regions can be easily obtained
by programmers annotations, which is straightforward for
many applications.

2) Input Sensitivity: In this paper, we have not consid-
ered the input sensitivity issue. Profiler-based mechanisms
are not free from the input-sensitive problem. Compilers
or programmers can use HPerf to decide which parallel
regions should be offloaded for various input sizes. During
execution, the OpenCL runtime library or any other runtime
system can monitor input sizes and decide whether a parallel
region is worth offloading. HPerf can also provide hints to
help make these decisions. The detailed runtime mechanism
is beyond the scope of this paper.

3) Future Work: Two main interference between parallel
regions are ”cache-to-cache influx” and ”memory contention
between CPUs and GPUs”. For simplicity, HPerf assumes
discrete memory systems for CPUs and GPUs, so memory
contention does not exist on this platform. However, memory

contention can have performance impact on fused architec-
ture, so our future work will cover this.

Currently, the unit of task for offloading by HPerf is an
OpenCL kernel. For certain workloads, a finer granularity
of task than a kernel can enable a better task distribution
decision. HPerf also assumes that the regions that could
potentially be offloaded are known a priori. We will extend
HPerf regarding these challenges in future work.

HPerf can be extended to other parallel programming
paradigms and is not just limited to heterogeneous com-
puting applications with CPUs and GPUs. For example, the
programmer or the O/S can utilize HPerf for different thread
scheduling algorithms on multi-socket CPUs considering
data movement between sockets.

4) Cache-to-Cache Influx: Though the evaluated bench-
marks in this paper show already high cache-hit ratio even
with Cold-Start and therefore little performance change due
to cache-to-cache influx, we believe that, depending on
workloads, cache behavior can change the optimal offloading
decision, which previous works have ignored. Our evaluation
shows that InfluxProfiler makes it easy to identify offloading
scenarios that reduce the number of cache misses by limiting
the scenarios to be profiled, which is helpful for these work-
loads. The mechanism of InfluxProfiler is general so that it
can be applied on other parallel programming paradigms
without heavy modifications.

While CHiP is used as a module in Analyzer in HPerf,
programmer can also verify the change of cache misses by
integrating CHiP with Offloader. By creating a single cache
structures in CHiP for all parallel regions executed on CPU,
CHiP can mimic cache state between parallel regions on
different offloading scenarios.

VI. RELATED WORK

While many run-time systems proposed also have differ-
ent task distribution mechanisms, they have multiple limita-

tions such as focusing on single parallel region or relying
on programmers. Our work is static-time task distribution to
take advantage of compilation-time optimizations and run-
time scheduling can improve performance further with the
static-time optimization. In this section, we compare HPerf
to previous proposals.

A. Anaytical Modeling

Analytical modeling has been proposed as a way of help-
ing programmers to port their applications for heterogeneous
platforms. Hong and Kim [15] and Sim et al. [16] assert that
the key for understanding GPU performance is identifying
the Memory Warp Parallelism (MWP), and Computation
Warp Parallelism (CWP). Understanding cache behavior on
GPU is also important on their work, because it change
the CWP, MWP, therefore change the performance of GPU
kernel, since recent GPGPU architectures have a hardware-
managed cache.

B. GPGPU Profiling Tools

The importance of the trade-off between computation
and communication has been emphasized by several GPU
programming optimization guidelines [23]. Even though
multiple tools such as ATI Stream Profiler [24] and NVIDIA
Visual Profiler [25] are provided by vendors, these tools are
to help programmers to analyze performance bottlenecks for
already offloaded computations.

C. CPU-GPU Partitioning

Several frameworks on heterogeneous platforms are intro-
duced to utilize both CPUs and GPUs. Qilin [26] uses curve-
fitting to construct linear equations and dynamically maps
computations on CPUs and GPUs, taking the application, the
input size, and hardware resources into account. Similarly,
Grewe and O’Boyle [20] statically partition work based on
machine learning based performance prediction with an off-
line profiler. However, these works focused on dividing only
one single parallel region, while we study the interactions
between multiple parallel regions.

D. Cross-Platform Performance Prediction

Several techniques have been proposed for cross-platform
performance prediction. Lee and Brooks [27] use regression
modeling to estimate application performance on different
hardware configurations. GROPHECY [28] is an analyti-
cal model based GPU performance projection framework
utilizing a code skeleton for CPU code that is a high-
level code representation. GROPHECY explores different
optimizations on GPUs to achieve the best GPU execution
time. These works mainly focus on computation time on
different architectures.

E. Automatic Code Generation

In order to reduce the programmer’s burden of imple-
menting different versions of code on different architec-
tures, multiple automatic code generation frameworks have
been proposed. Ocelot [29] provides an automatic code
conversion tool between CPUs and GPUs. OpenACC [4]
encapsulates the explicit accelerator management includ-
ing data transfer and allows programmers to specify code
regions to be offloaded by compiler directives that are
automatically translated to GPU code. SnuCL [30] extends
OpenCL to clusters and utilizes the CPU for kernel execution
by serializing work-items. Although these automatic code
generation frameworks reduce the programmer’s burden of
writing multiple versions of code, these works still rely on
programmers for offloading decisions.

F. Data Movement Optimization

Several optimization techniques with trade-off analysis
between communication overhead and the benefit of compu-
tation for heterogeneous computing systems have been intro-
duced lately. Becchi et al. [7] study data layout optimization
techniques to reduce data transfer cost and also utilize a data-
aware scheduling algorithm to hide data transfer latency.
CGCM [9] consists of a runtime library and compiler trans-
formation for communication optimization between the CPU
and GPU. DymanD [10] replaces static alias analysis and
type inference of CGCM by runtime library. Even though
these works tried to minimize the data transfer overhead
with different optimizations, they do not answer the initial
question of which parallel regions to offload. Our techniques
can be applied on top of other techniques to minimize the
amount of data transfer.

G. Decision Mechanism

Several decision mechanisms for offloading decisions
have been proposed. uCLbench [11] is a microbenchmark
suite for hardware characterization. It reflects different char-
acteristics of the same workload on different architectures.
Depending on the workload, the decision of where to execute
the parallel region is changed. O’Boyle et al. [14] propose an
automatic code generation framework from OpenMP code
to OpenCL code and a prediction model to decide whether
to execute the code on GPUs or on CPUs. Their prediction
and offloading decisions are based on the static code features
of each parallel region without considering the interactions
between multiple parallel regions. Merge [12] is a map-
reduce application framework with dynamic scheduling re-
lying on users to provide the suitability of a kernel for
the device. Jiménez et al. [13] study the multi-application
scheduling policies on a heterogeneous architecture. They
run each application on all devices and use the measured
performance data to make a decision. This is the same as
the Brute-Force approach. Even though multiple applications
can benefit from these approaches, they have limitations

such as the assumption of the existence of GPU codes;
they also assume each individual region’s execution time
remains constant regardless of the offloading decisions of
other regions. To the best of our knowledge, our work is
the first work that studies interactions of data movement
and data reuse between multiple parallel regions in order to
decide which parallel regions to offload.

VII. CONCLUSIONS

Programming for heterogeneous platforms is not an easy
task. Even though programmers can reduce execution time
by offloading computation, understanding performance be-
havior and finding the optimal way to utilize different
computing resources have been challenging in many parallel
programs.

In this paper, we propose a profiler, HPerf, to identify
which parallel regions to offload from CPU applications
with low profiling overhead. The proposed profiler considers
interactions between multiple parallel regions, which were
previously not studied much. HPerf identifies data transfer
cost and cache behavior changes on CPUs depending on
offloading scenarios. With the InfluxProfiler, profiling over-
head is reduced significantly. DataProfiler identifies different
data transfer costs depending on offloading scenarios. We
demonstrate the benefits of HPerf with OpenCL applications.

REFERENCES

[1] I. Buck, “Gpu computing with nvidia cuda,” in ACM
SIGGRAPH 2007 Courses, ser. SIGGRAPH ’07. New
York, NY, USA: ACM, 2007. [Online]. Available: http:
//doi.acm.org/10.1145/1281500.1281647

[2] Qualcomm, “Adreno, qualcomm’s integrated graphics solu-
tion,” http://www.qualcomm.com/products services/chipsets/
multimedia/graphics.html, 2008.

[3] OpenCL, “The open standard for parallel programming of het-
erogeneous systems,” http://www.khronos.org/opencl, 2009.

[4] S. Wienke, P. Springer, C. Terboven, and D. an Mey,
“Openacc: First experiences with real-world applications,”
in Proceedings of the 18th International Conference on
Parallel Processing, ser. Euro-Par’12. Berlin, Heidelberg:
Springer-Verlag, 2012, pp. 859–870. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-32820-6 85

[5] J. H. Kelm, D. R. Johnson, M. R. Johnson, N. C. Crago,
W. Tuohy, A. Mahesri, S. S. Lumetta, M. I. Frank, and S. J.
Patel, “Rigel: An Architecture and Scalable Programming
interface for a 1000-core accelerator,” SIGARCH Comput.
Archit. News, vol. 37, no. 3, Jun. 2009.

[6] J. Lee, S. Seo, C. Kim, J. Kim, P. Chun, Z. Sura, J. Kim,
and S. Han, “Comic: A coherent shared memory interface
for cell be,” in Proceedings of the 17th International
Conference on Parallel Architectures and Compilation
Techniques, ser. PACT ’08. New York, NY, USA:
ACM, 2008, pp. 303–314. [Online]. Available: http:
//doi.acm.org/10.1145/1454115.1454157

[7] M. Becchi, S. Byna, S. Cadambi, and S. Chakradhar,
“Data-aware scheduling of legacy kernels on heterogeneous
platforms with distributed memory,” in Proceedings of the
Twenty-second Annual ACM Symposium on Parallelism in
Algorithms and Architectures, ser. SPAA ’10. New York,

NY, USA: ACM, 2010, pp. 82–91. [Online]. Available:
http://doi.acm.org/10.1145/1810479.1810498

[8] C. Gregg and K. Hazelwood, “Where is the data? why
you cannot debate cpu vs. gpu performance without
the answer,” in Proceedings of the IEEE International
Symposium on Performance Analysis of Systems and
Software, ser. ISPASS ’11. Washington, DC, USA: IEEE
Computer Society, 2011, pp. 134–144. [Online]. Available:
http://dx.doi.org/10.1109/ISPASS.2011.5762730

[9] T. B. Jablin, P. Prabhu, J. A. Jablin, N. P. Johnson, S. R.
Beard, and D. I. August, “Automatic cpu-gpu communication
management and optimization,” in Proceedings of the 32Nd
ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’11. New York,
NY, USA: ACM, 2011, pp. 142–151. [Online]. Available:
http://doi.acm.org/10.1145/1993498.1993516

[10] T. B. Jablin, J. A. Jablin, P. Prabhu, F. Liu, and D. I. August,
“Dynamically managed data for cpu-gpu architectures,” in
Proceedings of the Tenth International Symposium on Code
Generation and Optimization, ser. CGO ’12. New York,
NY, USA: ACM, 2012, pp. 165–174. [Online]. Available:
http://doi.acm.org/10.1145/2259016.2259038

[11] P. Thoman, K. Kofler, H. Studt, J. Thomson, and
T. Fahringer, “Automatic opencl device characterization:
Guiding optimized kernel design,” in Proceedings of the
17th International Conference on Parallel Processing -
Volume Part II, ser. Euro-Par’11. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 438–452. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2033408.2033459

[12] M. D. Linderman, J. D. Collins, H. Wang, and T. H.
Meng, “Merge: A programming model for heterogeneous
multi-core systems,” in Proceedings of the 13th International
Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS XIII.
New York, NY, USA: ACM, 2008, pp. 287–296. [Online].
Available: http://doi.acm.org/10.1145/1346281.1346318

[13] V. J. Jiménez, I. Gelado, M. Gil, G. Fursin, N. Navarro et al.,
“Predictive runtime code scheduling for heterogeneous archi-
tectures,” in HiPEAC 2009-High Performance and Embedded
Architectures and Compilers, 2009.

[14] M. F. P. O’Boyle, Z. Wang, and D. Grewe, “Portable
mapping of data parallel programs to opencl for
heterogeneous systems,” in Proceedings of the 2013
IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), ser. CGO ’13. Washington, DC,
USA: IEEE Computer Society, 2013, pp. 1–10. [Online].
Available: http://dx.doi.org/10.1109/CGO.2013.6494993

[15] S. Hong and H. Kim, “An analytical model for a gpu
architecture with memory-level and thread-level parallelism
awareness,” in Proceedings of the 36th Annual International
Symposium on Computer Architecture, ser. ISCA ’09. New
York, NY, USA: ACM, 2009, pp. 152–163. [Online].
Available: http://doi.acm.org/10.1145/1555754.1555775

[16] J. Sim, A. Dasgupta, H. Kim, and R. Vuduc, “A
performance analysis framework for identifying potential
benefits in gpgpu applications,” in Proceedings of the 17th
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, ser. PPoPP ’12. New York,
NY, USA: ACM, 2012, pp. 11–22. [Online]. Available:
http://doi.acm.org/10.1145/2145816.2145819

[17] B. Brett, P. Kumar, M. Kim, and H. Kim, “Chip: A profiler
to measure the effect of cache contention on scalability,” in
Parallel and Distributed Processing Symposium Workshops &
PhD Forum (IPDPSW), 2013 IEEE 27th International. IEEE,

http://doi.acm.org/10.1145/1281500.1281647
http://doi.acm.org/10.1145/1281500.1281647
http://www.qualcomm.com/products_services/chipsets/multimedia/graphics.html
http://www.qualcomm.com/products_services/chipsets/multimedia/graphics.html
http://www.khronos.org/opencl
http://dx.doi.org/10.1007/978-3-642-32820-6_85
http://doi.acm.org/10.1145/1454115.1454157
http://doi.acm.org/10.1145/1454115.1454157
http://doi.acm.org/10.1145/1810479.1810498
http://dx.doi.org/10.1109/ISPASS.2011.5762730
http://doi.acm.org/10.1145/1993498.1993516
http://doi.acm.org/10.1145/2259016.2259038
http://dl.acm.org/citation.cfm?id=2033408.2033459
http://doi.acm.org/10.1145/1346281.1346318
http://dx.doi.org/10.1109/CGO.2013.6494993
http://doi.acm.org/10.1145/1555754.1555775
http://doi.acm.org/10.1145/2145816.2145819

2013, pp. 1565–1574.
[18] Pin, A Binary Instrumentation Tool, http://www.pintool.org.
[19] A. S. Dhodapkar and J. E. Smith, “Managing multi-

configuration hardware via dynamic working set analysis,”
in Proceedings of the 29th Annual International Symposium
on Computer Architecture, ser. ISCA ’02. Washington, DC,
USA: IEEE Computer Society, 2002, pp. 233–244. [Online].
Available: http://dl.acm.org/citation.cfm?id=545215.545241

[20] D. Grewe and M. F. P. O’Boyle, “A static task
partitioning approach for heterogeneous systems using
opencl,” in Proceedings of the 20th International
Conference on Compiler Construction: Part of the
Joint European Conferences on Theory and Practice
of Software, ser. CC’11/ETAPS’11. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 286–305. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1987237.1987259

[21] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W.
Chang, N. Anssari, G. D. Liu, and W.-m. W. Hwu, “Parboil:
A Revised Benchmark Suite for Scientific and Commer-
cial Throughput Computing,” Center for Reliable and High-
Performance Computing, 2012.

[22] S. Seo, G. Jo, and J. Lee, “Performance characterization
of the nas parallel benchmarks in opencl,” in Proceedings
of the 2011 IEEE International Symposium on Workload
Characterization, ser. IISWC ’11. Washington, DC, USA:
IEEE Computer Society, 2011, pp. 137–148. [Online].
Available: http://dx.doi.org/10.1109/IISWC.2011.6114174

[23] C. Cuda, “Programming guide,” NVIDIA Corporation (July
2012), 2012.

[24] B. Purnomo, N. Rubin, and M. Houston, “Ati stream profiler:
A tool to optimize an opencl kernel on ati radeon gpus,”
in ACM SIGGRAPH 2010 Posters, ser. SIGGRAPH ’10.
New York, NY, USA: ACM, 2010, pp. 54:1–54:1. [Online].
Available: http://doi.acm.org/10.1145/1836845.1836904

[25] NVIDIA Corporation, “NVIDIA Visual Profiler,”
http://developer.nvidia.com/content/nvidia-visual-profiler,
2011.

[26] C.-K. Luk, S. Hong, and H. Kim, “Qilin: Exploiting
parallelism on heterogeneous multiprocessors with adaptive
mapping,” in Proceedings of the 42Nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO
42. New York, NY, USA: ACM, 2009, pp. 45–55. [Online].
Available: http://doi.acm.org/10.1145/1669112.1669121

[27] B. C. Lee and D. M. Brooks, “Accurate and efficient
regression modeling for microarchitectural performance and
power prediction,” in Proceedings of the 12th International
Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS XII. New
York, NY, USA: ACM, 2006, pp. 185–194. [Online].
Available: http://doi.acm.org/10.1145/1168857.1168881

[28] J. Meng, V. A. Morozov, K. Kumaran, V. Vishwanath, and
T. D. Uram, “Grophecy: Gpu performance projection from
cpu code skeletons,” in Proceedings of 2011 International
Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’11. New York, NY,
USA: ACM, 2011, pp. 14:1–14:11. [Online]. Available:
http://doi.acm.org/10.1145/2063384.2063402

[29] G. Diamos, “The Design and Implementation Ocelot’s Dy-
namic Binary Translator from PTX to Multi-Core x86,”
Georgia Institute of Technology, Tech. Rep. GIT-CERCS-09-
18, 2009.

[30] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee,
“Snucl: An opencl framework for heterogeneous cpu/gpu
clusters,” in Proceedings of the 26th ACM International

Conference on Supercomputing, ser. ICS ’12. New York,
NY, USA: ACM, 2012, pp. 341–352. [Online]. Available:
http://doi.acm.org/10.1145/2304576.2304623

http://dl.acm.org/citation.cfm?id=545215.545241
http://dl.acm.org/citation.cfm?id=1987237.1987259
http://dx.doi.org/10.1109/IISWC.2011.6114174
http://doi.acm.org/10.1145/1836845.1836904
http://doi.acm.org/10.1145/1669112.1669121
http://doi.acm.org/10.1145/1168857.1168881
http://doi.acm.org/10.1145/2063384.2063402
http://doi.acm.org/10.1145/2304576.2304623

	Introduction
	Background and Motivation
	Previous Approaches on Task Distribution on CPUs and GPUs
	Limitations of Measure-Separately
	Existence of GPU code
	Data Transfer Cost
	Cache-to-Cache Influx

	Contributions

	Profiling Algorithms
	Overview of Profiling Stages
	DataProfiler: Data Transfer Overhead Estimation
	InfluxProfiler: Cache-to-Cache Influx Profiling

	Implementation
	Overview
	Analyzer(Stage 1)
	Tracing OpenCL APIs
	GPU Performance Prediction

	BypassChecker
	Stage 2
	Profiling Memory Access Pattern of Parallel Regions

	DataProfiler
	InfluxProfiler
	Data Sharing and Memory Footprint Size
	Data Movement from Sequential Region
	Memory-Write within Parallel Region
	Handling Loops
	Compression
	Offloader

	Experimental Evaluation
	Methodology
	Evaluation of BypassChecker (Stages-1, 2)
	Stage-1
	Stage-2

	DataProfiler Evaluation (Stage-3)
	InfluxProfiler Evaluation (Stage-4)
	Profiling Overhead Reduction
	Verification of InfluxProfiler's Outcome

	Discussion
	Applying to other programming languages
	Input Sensitivity
	Future Work
	Cache-to-Cache Influx

	Related work
	Anaytical Modeling
	GPGPU Profiling Tools
	CPU-GPU Partitioning
	Cross-Platform Performance Prediction
	Automatic Code Generation
	Data Movement Optimization
	Decision Mechanism

	Conclusions
	References

