
FlowQoS: Per-Flow Quality of Service for
Broadband Access Networks

M. Said Seddiki∗†‡, Muhammad Shahbaz∗, Sean Donovan∗, Sarthak Grover∗,
Miseon Park∗, Nick Feamster∗, Ye-Qiong Song†

∗ Georgia Tech, † Loria, Lorraine University, ‡ Sup’Com, University of Carthage

Abstract

In broadband access networks, one application may compete
for the bandwidth of other applications, thus degrading over-
all performance. One solution to this problem is to allocate
bandwidth to competing flows based on the application type at
the gateway of the home network. Unfortunately, application-
based quality of service (QoS) on a home network gateway
faces significant constraints, as commodity home routers are
not typically powerful enough to perform application clas-
sification, and many home users are not savvy enough to
configure QoS parameters. This paper describes FlowQoS,
an SDN-based approach for application-based bandwidth al-
location where users can allocate upstream and downstream
bandwidths for different applications at a high level, off-
loading application identification to an SDN controller that
dynamically installs traffic shaping rules for application flows.
FlowQoS has two modules: a flow classifier and an SDN-
based rate limiter. We design a custom DNS-based classifier
to identify different applications that run over common web
ports; a second classifier performs lightweight packet in-
spection to classify non-HTTP traffic flows. We implement
FlowQoS on OpenWrt and demonstrate that it can improve
the performance of both adaptive video streaming and VoIP
in the presence of active competing traffic.

1 Introduction

Broadband Internet access is proliferating in settings where
upstream and downstream throughput may be limited, rang-
ing from home networks to small offices to developing coun-
tries. In these settings, the traffic of bandwidth-intensive
applications (e.g., video streaming) and interactive appli-
cations (e.g., VoIP, gaming) compete for relatively scarce
bandwidth resources. A common approach for dealing with
limited throughput is to configure the network routers to
prioritize some applications’ traffic flows over others, ef-
fectively enforcing Quality of Service (QoS). Many QoS
mechanisms have been proposed, standardized and imple-
mented [2, 11, 18, 20, 22, 25], but these mechanisms have
not seen deployment in broadband access networks, for sev-
eral reasons. First, many home routers have limited memory

and processing resources and may not be able to perform ap-
plication classification “on-the-fly” [3]; second, most of these
devices cannot be easily configured to perform QoS functions
because the mechanisms for doing so are complicated and
obtuse, not based on specific application, devices, or users.

One approach to deploying QoS in broadband access net-
works is to delegate the functions that perform QoS both
application identification and router-level configuration to
separate control logic, which permits a user to configure
QoS policies at higher levels of abstraction (e.g., per applica-
tion) and installs the results of the QoS configuration into the
home router in the form of flow-table entries. The emergence
of software-defined networking (SDN) and, specifically, the
OpenFlow specification [19] makes such a refactoring possi-
ble. Such control software could run directly on the router
itself as a separate program (in the case where the router is
powerful enough), or on a separate device, either inside the
home or even from a remote location.

We present FlowQoS, a system for performing per-flow
application-based QoS by delegating application identifi-
cation and QoS configuration to an SDN controller. In
FlowQoS, the user of the broadband access network simply
specifies the high-level applications that should have higher
priority (e.g., video streaming, VoIP), and the FlowQoS con-
troller performs the appropriate application identification and
QoS configuration for both upstream and downstream traffic
to implement the user’s preferences. FlowQoS identifies ap-
plication types for each flow in real time and installs rules in
the data plane that forward individual flows according to user-
specified priorities for those applications. To do so, FlowQoS
creates links in a virtual topology in the home router, con-
figures each of these links with a particular rate, and assigns
flows to these links on-the-fly, as flows are mapped to corre-
sponding applications (and priorities).

FlowQoS makes it easier for a typical user to configure pri-
orities and facilitates more sophisticated per-flow application-
based QoS, but doing so imposes its own set of challenges.
In particular, if traffic classification must occur at a remote
location (in cases where the processing power on the home
gateway is not sufficient to perform classification on-the-fly),
latency for performing traffic classification might be higher.
We design a fast, lightweight application classification algo-
rithm that is based on the DNS lookups that each application

1



issues. This classification algorithm performs early identi-
fication of the application type for each flow—often before
the first packet of the flow is even sent. Second, FlowQoS
performs “lazy” enforcement of QoS parameters, forwarding
the first packets of each flow uninhibited before ultimately
installing the appropriate QoS rules; this approach (which
has also been applied before in IP backbone networks [22])
lets application traffic realize lower latencies than they would
otherwise, at the expense of a lack of QoS for the first few
packets of each flow. Our evaluation shows that this tradeoff
still allows preferred flows to achieve good performance in
the face of competing traffic.

This paper presents several contributions. First, we present
details about the design of the different components, the im-
plementation, and the evaluation of FlowQoS, which allows
users to specify priorities for different application flows. Our
design ensures that both application identification and QoS
configuration can be offloaded to a remote third-party con-
troller without adversely affecting application performance.
Second, we introduce a new mechanism for performing
lightweight application classification based on DNS lookups;
this mechanism can perform early application classification
for flows and also works for encrypted traffic (e.g., HTTPS).
In previous work [30] we have presented the high level archi-
tecture of FlowQoS. This paper presents details description
and evaluation of our approach.

The rest of the paper proceeds as follows. Section 2
presents related work in QoS, as well as SDN-based solu-
tions for home and broadband access networks. Section 3
describes the design of FlowQoS, as well as its implementa-
tion using OpenWrt and Open vSwitch. Section 4 evaluates
FlowQoS for video streaming and VoIP applications in the
context of competing flows. Section 5 discusses future work
and open research avenues, and Section 6 concludes.

2 Related Work
Although there is significant previous work for QoS in IP
networks [2, 18, 22], traffic shapers [20, 25], and methods
for performing application identification to quickly classify
IP traffic flows into the appropriate traffic class [13, 29], we
focus in particular on making per-flow, application-based
QoS easy to deploy and configure in home networks, where
networking devices have less processing power than typical
networking devices and the users are not skilled network
operators. SDN’s flexibility has engendered a resurgence of
work on QoS, particularly as SDN test beds begin to provide
more support for QoS functions [31].

Kim et al. presented a solution most closely related to
FlowQoS, albeit with a different approach [15]. The approach
sets rate limiters at the edge switches and priority queues for
flow at each path hop and uses a QoS control framework for
automated fine-grained management of OpenFlow networks
with multiple switches. FlowQoS provides similar automated
traffic shaping but does so at a single gateway (e.g., in a home

network), while offloading application identification to the
controller. Ishimori et al. developed QoSFlow [12], a system
for providing QoS in OpenFlow networks. The traffic shaping
is similar to FlowQoS’s shaping mechanism, but the system
does not focus on providing usable QoS for broadband access
networks. The QoSFlow prototype is still under development,
and the system has not been evaluated. Ko et al. proposed a
two-tier flow-based QoS management framework [16] that
divides the flow table into three tables: one for the flow state,
the second for the forwarding rules, and the third for the
QoS rules where multiple micro-flows can share a single QoS
profile. This system requires multicore processors and was
not designed for home networks. Ferguson et al. developed
PANE, a system that allows a user to reserve guaranteed min-
imum bandwidth between two hosts [8]; PANE addresses on
a much broader set of network configuration problems (e.g.,
access control, path configuration) and does not focus specif-
ically on QoS in broadband access networks or application
identification. Williams et al. [36] developed an automated IP
traffic classification algorithm based on statistical flow prop-
erties and evaluated its performance on home gateways; this
approach limited the throughout of commodity home routers
to 28 Mbps. In contrast, FlowQoS faces no such limitations.
Risso et al. [28] developed an OpenFlow-based mechanism
for customizing data-plane processing in home routers, but
the architecture is focused on more general data-plane modi-
fications, not QoS.

Several other approaches explore QoS in home networks.
Yiakoumis et al. proposed letting users notify the ISP about
their bandwidth needs for a given application; in this case, pro-
visioning occurs in the ISP’s last mile, not in the home [37].
Georgopoulos et al. proposed an OpenFlow-assisted frame-
work that improves users’ quality of experience (QoE) in
home networks for multimedia flows, subject to fairness con-
straints [10]. The system allocates resources to each device
but does not perform per-application or per-flow QoS. Mortier
et al. developed Homework, a home networking platform that
provides per-flow measurement and management capabilities
for home networks [21]. Homework allows users to monitor
and control per-device and per-protocol usage, but it does not
provide QoS support or perform any application classifica-
tion.

Carbone et al. developed a port of Dummynet for Open-
Wrt [4]; the emulator allows configuration of various links for
traffic shaping, and could be used as FlowQoS’s data-plane
traffic shaper. The system does not perform automated appli-
cation identification or an interface for defining QoS based on
application, but FlowQoS’s mechanisms for establishing map-
pings between applications and traffic classes could be used
as an interface to Carbone’s lower-level Dummynet-based
mechanisms.



Rate Shaper

OpenFlow Controller (Backend)

Rate 

Controller

Flow Classifier

Non-HTTP HTTP

Web Portal (Frontend)

Figure 1: FlowQoS architecture. Although this diagram shows
the control architecture sitting outside the home (which is how our
prototype is implemented), each router could run its own controller
(and front-end portal).

3 FlowQoS

In this section, we describe the design and implementation
of FlowQoS. We present an overview of the design and then
describe the system components in detail.

3.1 Overview

Figure 1 shows the high-level architecture of FlowQoS. Users
configure priorities for specific high-level applications from
the edge network (e.g., the home network) using a Web por-
tal. Users specify the percentage of bandwidth they want to
allocate to each application. We consider the configuration
a separate problem. The output from the portal is a configu-
ration file that the rate shaper uses to ultimately implement
the respective controls for shaping application traffic. The
two main components of the rate shaper are an SDN-based
rate controller and a flow classifier. The flow classifier has
two modules: one that can perform early application identifi-
cation of HTTP and HTTPS traffic using DNS information,
and a second that performs application identification for other
flows.

When the first packet of a flow arrives at the switch, a
copy of this packet is forwarded to the controller. The switch
continues to perform default forwarding of the traffic flows un-
til application identification has been performed, essentially
“lazily” implementing QoS only once application classifica-
tion is complete. The controller determines which classifier
should classify the application type for the flow. Each ap-
plication type is associated with a different queue, each of
which is shaped according to the traffic shaping policy for

that application class. Section 3.3 describes this mechanism
in more detail.

3.2 Flow Classifier

The flow classifier maintains a lookup table where the key
is a flow’s five-tuple (e.g., source IP address, destination IP
address, protocol, source port, and destination port). When a
sender initiates a new flow, the switch sends a copy of the first
packet of the flow to the controller. The flow classifier then
checks whether the flow’s tuple correspond to an entry in this
lookup table. The lookup then returns the type of application,
such as video, VoIP, P2P, gaming, or web.

FlowQoS uses two different modules to classify traffic.
FlowQoS classifies application traffic on ports 80 and 443
(i.e., HTTP and HTTPS, respectively) using the DNS classi-
fier, which performs more fine-grained classification; many
classifiers would otherwise classify many types of applica-
tion traffic on these ports simply as “web traffic”. We classify
most other traffic using libprotoident [1]. When a new
flow arrives at the switch, the five-tuple in the first packet
can identify the flow, which is sufficient for the DNS-based
classifier. Invoking libprotoident requires knowing an
additional four fields: the first four bytes sent, first four bytes
received, first payload size sent, and first payload size re-
ceived. The requirement for parsing these additional fields
might require the controller to see additional few packets
before processing the flow, but because QoS enforcement
is lazy (i.e., before a flow is classified, its are forwarded on
the default queue), the requirement to see additional pack-
ets is not prohibitive. We chose to use libprotoident
for application identification because it has higher accuracy
compared to other DPI-based solutions; previous work shows
that libprotoident was able to properly classify 94% of
1,262,022 flows captured over 66 days [5].

FlowQoS’s DNS-based classifier maintains a table that it
builds using the DNS responses that the switch forwards. The
table includes the A or CNAME record, the corresponding IP
address (in the case of an A record response), and the time-to-
live for the record. To classify flows based on this information,
the classifier checks the A or CNAME record against a list of
regular expressions, each of which corresponds to some appli-
cation. Because the sender initiates a DNS request before the
corresponding TCP connection, the classifier can associate a
flow with an application before the sender even sends the first
packet of the flow. In the case of HTTP or HTTPS flows, the
controller can proactively install a rule based on the source IP
of the sender and the destination IP and port where the sender
will initiate a connection. FlowQoS’s per-flow classifier can
also prioritize distinct flows within the same Web page. For
instance, most video streaming providers use well-known
content distribution networks (CDNs) that are distinct from
the site’s primary domain. In the case of Youtube, for exam-
ple playing a video loads HTML content, advertisements, and
the video stream itself, each from a different domain.



Home Router

Internet

Video

VoIP

Web

OVS OVS

Figure 2: The virtual switch topology that performs traffic shaping
inside the home router.

3.3 SDN-Based Rate Controller

Based on the flow classifier’s determination of the associa-
tions between flows and applications, FlowQoS’s SDN-based
rate controller assigns each flow to the appropriate rate. In
existing systems, assigning a priority to each traffic flow
according to user configuration is complicated by the limita-
tions of today’s home routers: Existing home routers do not
support per-flow rate control; existing mechanisms such as
tc still require configuring virtual interfaces or tagging via
iptables. Even the Open vSwitch (OVS) implementation
for OpenWrt, does not yet support the parts of the OpenFlow
1.3 specification for per-flow QoS.

To overcome these limitations, FlowQoS enables per-flow
QoS by instantiating a two-switch virtual topology on the
home router, as shown in Figure 2. Each virtual link between
the two switches corresponds to a different application group
(e.g., video, web, gaming). To implement rate limiting, each
link has a traffic shaper (implemented with Linux’s tc utility)
that corresponds to the user-specified rate. When a new flow
arrives at the switch, it is sent to the appropriate flow classifier.
Based on the results from classification, the controller installs
OpenFlow rules into the Open vSwitch components such
that the new flow is forwarded on the virtual links with the
appropriate shaping parameters. Open vSwitch’s QoS rate-
Limiting feature uses Linux tc capability for rate shaping.
1

To perform rate limiting once the classifier has identified
the application type for a flow, the switch refers to its existing
rules to determine which inter-switch connection corresponds
to that traffic class. Only flows that need to be rate-limited
will be categorized in a different manner. The rate controller
also handles installation of other rules, such as the rules asso-
ciated with DNS responses. A copy of the initial packets for
each new flow are forwarded to the controller while default
forwarding takes place; default forwarding continues until
application classification potentially overrides the default set-
tings. Once a rule that forwards the packets to the appropriate

1Configuring tc on virtual inter-switch links is conceptually similar to
what OF-config [23] might enable if Open vSwitch supported the flow-based
QoS functions outlined in OpenFlow 1.3. Our dual-switch topology is a
workaround for the limitations of the Open vSwitch implementation.

inter-switch link is created, the controller will not receive any
more frames from that particular flow.

FlowQoS can place flows belonging to different applica-
tions into queues and priorities that the user configures. In
the case of video traffic, FlowQoS places each flow in a dif-
ferent queue and shares the available bandwidth for video
among competing applications; in the case of competing
video streams, this strategy results in fewer bitrate oscilla-
tions and better overall fairness. To ensure that the access link
is fully utilized, FlowQoS monitors the links for active traffic
flows and reconfigures traffic shapers for the active queues to
ensure complete utilization of available capacity.
Our prototype provides static and dedicated bandwidth al-
location to every application. Due to the limitation of the
current implementation of OVS we were not able to perform
dynamic allocation based on one scheduler. We are currently
working on how we can offer full bandwidth utilization to the
active flows.

4 Evaluation
We now present the evaluation of FlowQoS. We describe the
experimental setup and results of FlowQoS in terms of both
application performance and CPU and memory requirements.

4.1 Experiment Setup
We used an OpenWrt-based router for our prototype imple-
mentation of FlowQoS. We integrated Open vSwitch (OVS)
with OpenWrt to enable the control of an OpenWrt switch
using OpenFlow. We used a Raspberry Pi [33] for the con-
troller hardware, and implemented the control application on
top of Pox [26], a popular open-source OpenFlow controller.
We have released the source code for FlowQoS [9].

Internet

Controller

(Raspberry Pi)

Host 1

Host 2

OpenWrt 

Router

VoIP

Server

Adaptive Video

Streaming Server

12 Mbps

6 Mbps

Figure 3: Experiment setup.

Figure 3 shows the experiment setup. We configured an
Internet connection to be 12 Mbps downstream and 6 Mbps
upstream. We allocated 7 Mbps for video, 3 Mbps for VoIP,
and 2 Mbps for web applications and other traffic. Before
application classification takes place, the switch forwards
traffic to according to the web application traffic, which is the
default traffic class.



0 100 200 300 400 500

Time (s)

0

2000

4000

6000

8000

10000
B

it
ra

te
 (

kb
/s

)

Without FlowQoS 

With FlowQoS

Figure 4: Comparison of video bitrate oscillations for adaptive
video streaming, with and without FlowQoS. FlowQoS allows the
video streaming player to more quickly converge to a higher bitrate.

During the experiments, host 1 is either watching a video
or making a VoIP call, depending on the experiment; host 2
generates background traffic by downloading a large file.
FlowQoS segregates the traffic flows accordingly, sending
the respective traffic flows along the corresponding paths
between the two OVS switches to enforce the appropriate
traffic control, using flow table rules to forward traffic through
the appropriate rate shapers.

4.2 Results

We show how FlowQoS improves the performance of both
adaptive video streaming and VoIP in the face of competing
traffic. We also evaluate the CPU and memory requirements
of FlowQoS compared to conventional traffic shapers.

4.2.1 Improvements to application performance

Adaptive video streaming. We first evaluated FlowQoS’s
ability to apply per-flow application-based QoS to improve
the performance of adaptive video streaming, which relies on
TCP to determine the available bandwidth and video stream-
ing rate. We performed these experiments using the DASH
dataset [17], using the Big Buck Bunny benchmark video
with a four-second segment length at ten different bitrates
with Dash-JS player.

Figure 4 illustrates the performance in terms of bitrates
of the benchmark video. The results show that FlowQoS
allows the system to quickly converge to a higher bitrate than
it otherwise would without FlowQoS enabled. This prevents
bitrate oscillations and ensures the stability of the adaptive
video player in terms of requested bitrates and video quality.
Thus, FlowQoS improves the quality of the adaptive stream-
ing video by both reducing bitrate oscillation and achieving
a higher overall bitrate. Figure 5 shows the performance in
terms of video throughput for the DASH dataset; we com-
puted moving averages using a four-second window. Even

0 100 200 300 400 500

Time (s)

0

2000

4000

6000

8000

10000

T
h
ro

u
g
h
p
u
t 

(k
b
/s

)

Without FlowQoS

With FlowQoS

Figure 5: Performance of HTTP-based adaptive video streaming
with and without FlowQoS.

if the user downloads many files, as is the case with typical
browsing, using FlowQoS will improve the performance of
the adaptive video streaming, since the control application
will forward web traffic over a separate virtual link than the
virtual link dedicated to video traffic.

Figure 5 shows the evolution of instantaneous throughput
for an adaptive streaming video application with and without
FlowQoS. The results show that FlowQoS prevents the client
from switching to experiencing lower instantaneous through-
put values (and thus prevents the client from switching to
lower bitrate).
VoIP. We also evaluated FlowQoS in the context of VoIP
application traffic. VoIP is sensitive to delay and variation
in packet arrival times, so lower jitter is essential for good
performance. We monitor the packet delay and jitter of the
VoIP application using ping and iperf to monitor the
RTT and the packet arrival times throughout the experiment.
Figure 6 shows the round trip latency and jitter of the resulting
application traffic when host 2 generates background traffic
and host 1 makes a VoIP call over the Internet connection.

Figure 6 shows the delay and jitter of the VoIP application
in the face of competing cross traffic for 1,000 seconds. The
evaluation shows that FlowQoS can provide delay guaran-
tees and reduce jitter for these types of applications. We
show jitter separately because VoIP calls are quite sensitive
to high jitter, which is exhibited in the case without FlowQoS.
FlowQoS maintains the strict delay and jitter requirements
for VoIP when there is active competing background traffic.

4.2.2 Classification delays

We evaluated the average classification delays of both sce-
narios of deployment of FlowQoS. Figure 7 illustrates how
long it takes the FlowQoS classifier to identify traffic when
it is running on a local controller (Raspberry PI) and on a
distant controller (Server). The Raspberry Pi has a 700 MHz
ARM CPU and 512 MB of RAM. The server has a 2.4GHz
Intel Core 2 CPU and 8 GB of RAM. This delay is equal to



0 200 400 600 800 1000

Time (s)

0

50

100

150

200

250

300
RT

T 
(m

s)

(a) Round-trip latency without FlowQoS.

0 200 400 600 800 1000

Time (s)

0

50

100

150

200

250

300

RT
T 

(m
s)

(b) Round-trip latency with FlowQoS.

0 200 400 600 800 1000

Time (s)

0

2

4

6

8

10

12

14

16

Jit
te

r 
(m

s)

(c) Jitter without FlowQoS.

0 200 400 600 800 1000

Time (s)

0

2

4

6

8

10

12

14

16

Jit
te

r 
(m

s)

(d) Jitter with FlowQoS.

Figure 6: The performance of VoIP with and without FlowQoS.

Web Video P2P VoIP
0

50

100

150

200

250

300

350

400

m
ill

is
e
co

n
d

Raspberry Pi

Server

Figure 7: Comparison of classification delays.

the time to create an entry for an identified flow when the
controller deployed locally next to the home gateway. When
the controller is deployed by the ISP at the last mile hop, an
additional delay should be added that is equal to two times the
last-mile hop latency. The additional delay is varying from
about 20 ms to nearly 80 ms according to the measurements
conducted in previous work [32]. During our experiments,
only 2.34% of over 20,000 flows were unclassified (and thus
forwarded over the default virtual link).

4.2.3 CPU and memory requirements

To quantify the overhead of running a two-switch virtual
network over either a single Open vSwitch instance or a
simple traffic shaping script, we compared the average CPU
and memory of an unmodified OpenWrt and the dual OVS
topology connected by a single link. Every 30 seconds, the
user requests the video from another server with a different
IP address. We compare the results in the presence of one
user streaming YouTube videos. Table 1 illustrates that the
dual OVS topology adds only minimal CPU and memory
overhead compared to the baseline installation of OpenWrt.

CPU usage Memory usage

Baseline (unmodified OpenWrt) 11.34% 43.03MB (33.62%)
Dual OVS 16.78% 52.77MB (41.23%)

Table 1: CPU and memory consumption for an unmodified OpenWrt
and the dual OVS topology.

We run again the same scenario to compare FlowQoS and
a QoS traffic shaping script . The script performs per-flow
traffic shaping. It aims to control the rate at which packets are
sent; this script performs per-flow traffic shaping by creating a
dedicated token bucket filter for both incoming and outgoing
traffic flows. This queue smoothes bursts in traffic flows. We
rate-limit the download traffic of each flow to 7 Mbps for



download and 3 Mbps for upload and monitor the memory
and CPU usage and compute the average over ten minutes.

CPU usage Memory usage

Traffic shaping script 25.39% 62.98MB (49.21%)
FlowQoS 23.63% 57.19MB (44.68%)

Table 2: CPU and memory consumption for FlowQoS and a com-
parable traffic shaping script.

Table 2 shows that FlowQoS uses considerably less CPU
and memory than a traffic-shaping script that assigns new
flows to unique queuing disciplines when new traffic flows
arrive. Because FlowQoS sets up QoS queues once per traf-
fic class and assigns flows to queues based on application
identification, CPU usage is also lower than OpenWrt-based
scripts that assign each new flow to a new queuing discipline,
as setting up these queues per-flow can consume significant
CPU.

5 Discussion
One significant unresolved question in the design of
FlowQoS concerns whether the controller (and corresponding
application-identification mechanisms) should be co-located
with the router inside the home or “outsourced” to an offsite
location. We point out that FlowQoS can function with either
design, and the location of FlowQoS’s control mechanisms
depends on the computational power of the home gateway,
the user’s tolerance for higher latency for application classi-
fication, and who ultimately controls the quality of service
parameters. Our prototype implementation of FlowQoS cur-
rently resides on a device that is separate from the router,
but this need not be the case long-term, as the computational
power of home routers evolves. A recent study illustrated
that home gateway devices typically cannot perform detailed
traffic analysis at rates of more than 5 Mbps [27]. Some
home gateways may eventually be able to perform more so-
phisticated operations [34, 35], which may ultimately make
it possible to co-locate FlowQoS with the home gateway.

FlowQoS presents several possible avenues for future work.
First, FlowQoS could support more flow classification en-
gines, such as a classifier that handles non-TCP or UDP mes-
sages; or a series of parallel classifiers, with weights given to
each classifier depending on input depending on the accuracy
of each classifier.

Time-based rate limiting may be useful, as previous work
has identified the need to impose bandwidth restrictions in
home networks after certain hours [7]. Such a mechanism
could be used in the home to limit usage of, for instance,
social media after 9 p.m. As another example, time-based rate
limiting mechanisms could be used to rate-limit downloads
of bandwidth intensive operations such as operating system
updates or backups until off-peak hours. In the same vein,

FlowQoS could support different QoS rules for different users
or devices. This mechanism could be combined with time-
based rate limiting: for example, a parent may limit video
during the evening hours for their children and their devices,
while still allowing high-bandwidth streams to the television.

FlowQoS could provide per-device and per-application us-
age statistics to help users better track their usage for different
devices and applications. On a home Internet connection with
a monthly usage cap, a user may want to know how differ-
ent applications or devices are consuming data [6]. Adding
hard and soft usage caps for specific users or devices within
a home network, such as those that have been proposed in
previous work [6, 14] is another possible extension. Such a
mechanism would be similar to many mobile phone plans
where there is a certain quota of full-speed connectivity, after
which point an application or device’s data rate is throttled
for the remainder of the billing cycle.

As technologies continue to mature, systems like FlowQoS
will likely become easier to deploy. For example, Open-
Flow 1.3 supports per-flow QoS, which makes the dual OVS
topology unnecessary: instead of implementing rate limiters
with tc on virtual links between two Open vSwitch switches,
the controller could instead simply install a flow-table entry
with the appropriate QoS parameters. Furthermore, various
ISP consortia are exploring the possibility of installing routers
in homes that are better provisioned [24]; enhancements to
the capabilities of the home router may make it possible to
shift some functions from the controller to the router itself (or
even run the controller directly on the router), thus improving
performance.

6 Conclusion

FlowQoS enables QoS in broadband access networks by off-
loading expensive traffic classification algorithms to an SDN
controller, which installs the appropriate flow table entries
in the home gateway. Offloading QoS function facilitates
per-flow, application-based QoS on commodity home routers
and simplifies QoS configuration for ordinary home users.
We have implemented a prototype of FlowQoS on OpenWrt
and are currently extending the system to support additional
features and applications.

References
[1] S. Alcock and R. Nelson. Libprotoident: Traffic classification

using lightweight packet inspection (technical report). Univer-
sity of Waikato, 2012.

[2] C. Aurrecoechea, A. T. Campbell, and L. Hauw. A survey of
qos architectures. Multimedia systems, 6(3):138–151, 1998.

[3] J. But, G. Armitage, and L. Stewart. Outsourcing automated
qos control of home routers for a better online game experience.
Communications Magazine, IEEE, 46(12):64–70, December
2008.



[4] M. Carbone and L. Rizzo. Dummynet revisited. SIGCOMM
Comput. Commun. Rev., 40(2):12–20, Apr. 2010.

[5] V. Carela-Espaol, T. Bujlow, and P. Barlet-Ros. Is our ground-
truth for traffic classification reliable? In M. Faloutsos and
A. Kuzmanovic, editors, Passive and Active Measurement,
volume 8362 of Lecture Notes in Computer Science, pages
98–108. Springer International Publishing, 2014.

[6] M. Chetty, R. Banks, A. Brush, J. Donner, and R. Grinter.
You’re capped: understanding the effects of bandwidth caps on
broadband use in the home. In Proceedings of the 2012 ACM
annual conference on Human Factors in Computing Systems,
pages 3021–3030. ACM, 2012.

[7] M. Chetty, R. Banks, R. Harper, T. Regan, A. Sellen, C. Gkant-
sidis, T. Karagiannis, and P. Key. Who’s hogging the band-
width: the consequences of revealing the invisible in the home.
In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 659–668. ACM, 2010.

[8] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krish-
namurthi. Participatory networking: An API for application
control of SDNs. In ACM SIGCOMM, pages 327–338. ACM,
2013.

[9] FlowQoS. http://flowqos.noise.gatech.edu/.
[10] P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, and

N. Race. Towards network-wide QoE fairness using openflow-
assisted adaptive video streaming. In Proceedings of the 2013
ACM SIGCOMM workshop on Future human-centric multime-
dia networking, FhMN ’13, 2013.

[11] J. Gozdecki, A. Jajszczyk, and R. Stankiewicz. Quality of ser-
vice terminology in ip networks. Communications Magazine,
IEEE, 41(3):153–159, 2003.

[12] A. Ishimori, F. Faria, I. Carvalho, E. Cerqueira, and A. Abelem.
Automatic QoS Management on OpenFlow Software-Defined
Networks. June 2012.

[13] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. Blinc:
multilevel traffic classification in the dark. In ACM SIGCOMM
Computer Communication Review, volume 35, pages 229–240.
ACM, 2005.

[14] H. Kim, S. Sundaresan, M. Chetty, N. Feamster, and W. K.
Edwards. Communicating with caps: Managing usage caps in
home networks. In ACM SIGCOMM Computer Communica-
tion Review, volume 41, pages 470–471. ACM, 2011.

[15] W. Kim, P. Sharma, J. Lee, S. Banerjee, J. Tourrilhes, S.-J.
Lee, and P. Yalagandula. Automated and scalable qos control
for network convergence. In Proceedings of the 2010 internet
network management conference on Research on enterprise
networking, 2010.

[16] N.-S. Ko, H. Heo, J.-D. Park, and P. Hong-Shik. OpenQFlow:
Scalable OpenFlow with Flow-Based QoS. IEICE Transac-
tions, 96-B(2), 2013.

[17] S. Lederer, C. Müller, and C. Timmerer. Dynamic adaptive
streaming over http dataset. In Proceedings of the 3rd Multi-
media Systems Conference, MMSys ’12, pages 89–94. ACM,
2012.

[18] D. McDysan. QoS and traffic management in IP and ATM
networks. McGraw-Hill, Inc., 1999.

[19] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. Openflow:
enabling innovation in campus networks. volume 38, pages

69–74. ACM, 2008.
[20] Meraki Traffic Shaper. http://goo.gl/IL24ek.
[21] R. Mortier, B. Bedwell, K. Glover, T. Lodge, T. Rodden,

C. Rotsos, A. W. Moore, A. Koliousis, and J. Sventek. Support-
ing novel home network management interfaces with Open-
Flow and NOX. In ACM SIGCOMM, 2011.

[22] P. Newman, W. Edwards, R. Hinden, E. Hoffman, F. C. Liaw,
T. Lyon, and G. Minshall. Ipsilon flow management protocol
specification for IPv4 version 1.0. 1996.

[23] OF-CONFIG 1.2: OpenFlow Management and Configuration
Protocol. http://goo.gl/1JnFWN, 2014.

[24] Open Home Gateway Forum. http://www.ohgf.org/.
[25] PacketShaper. http://www.bluecoat.com/

products/packetshaper.
[26] POX. http://www.noxrepo.org/pox/

about-pox/.
[27] A. Reggani, F. Schneider, and R. Teixeira. Tracking application

network performance in home gateways. In Wireless Commu-
nications and Mobile Computing Conference (IWCMC), 2013
9th International, pages 1150–1155, July 2013.

[28] F. Risso and I. Cerrato. Customizing data-plane processing
in edge routers. In 2012 European Workshop on Software
Defined Networking (EWSDN), pages 114–120, Oct 2012.

[29] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield. Class-
of-service mapping for QoS: a statistical signature-based ap-
proach to IP traffic classification. In Proceedings of the 4th
ACM SIGCOMM conference on Internet measurement, pages
135–148. ACM, 2004.

[30] M. S. Seddiki, M. Shahbaz, S. Donovan, S. Grover, M. Park,
N. Feamster, and Y.-Q. Song. Flowqos: Qos for the rest of
us. In Proceedings of the Third ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking, HotSDN ’14,
2014.

[31] B. Sonkoly, A. Gulyas, F. Nemeth, J. Czentye, K. Kurucz,
B. Novak, and G. Vaszkun. On QoS Support to Ofelia and
OpenFlow. In 2012 European Workshop on Software Defined
Networking (EWSDN), 2012.

[32] S. Sundaresan, W. de Donato, N. Feamster, R. Teixeira,
S. Crawford, and A. Pescapè. Broadband internet performance:
A view from the gateway. In Proceedings of the ACM SIG-
COMM 2011 Conference, SIGCOMM ’11, pages 134–145,
New York, NY, USA, 2011. ACM.

[33] E. Upton and G. Halfacree. Raspberry Pi User Guide. John
Wiley & Sons, 2012.

[34] V. Valancius, N. Laoutaris, L. Massoulié, C. Diot, and P. Ro-
driguez. Greening the internet with nano data centers. In
Proceedings of the 5th International Conference on Emerg-
ing Networking Experiments and Technologies, CoNEXT ’09,
pages 37–48, New York, NY, USA, 2009. ACM.

[35] J. Whiteaker, F. Schneider, R. Teixeira, C. Diot, A. Soule,
F. Picconi, and M. May. Expanding home services with ad-
vanced gateways. volume 42, pages 37–43, Sept. 2012.

[36] N. Williams and S. Zander. Real time traffic classification and
prioritisation on a home router using diffuse, 2011.

[37] Y. Yiakoumis, S. Katti, T.-Y. Huang, N. McKeown, K.-K. Yap,
and R. Johari. Putting home users in charge of their network.
In Proceedings of the 2012 ACM Conference on Ubiquitous
Computing, pages 1114–1119, 2012.

http://flowqos.noise.gatech.edu/
http://goo.gl/IL24ek
http://goo.gl/1JnFWN
http://www.ohgf.org/
http://www.bluecoat.com/products/packetshaper
http://www.bluecoat.com/products/packetshaper
http://www.noxrepo.org/pox/about-pox/
http://www.noxrepo.org/pox/about-pox/

	Introduction
	Related Work
	FlowQoS
	Overview
	Flow Classifier
	SDN-Based Rate Controller

	Evaluation
	Experiment Setup
	Results
	Improvements to application performance
	Classification delays
	CPU and memory requirements


	Discussion
	Conclusion

