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ABSTRACT

We propose an improved region based segmentation model with shape priors that uses labels of confidence/interest to
exclude the influence of certain regions in the image that may not provide useful information for segmentation. These
could be regions in the image which are expected to have weak, missing or corrupt edges or they could be regions in the
image which the user is not interested in segmenting, but are part of the object being segmented. In the training datasets,
along with the manual segmentations we also generate an auxiliary map indicating these regions of low confidence/interest.
Since, all the training images are acquired under similar conditions, we can train our algorithm to estimate these regions as
well. Based on this training we will generate a map which indicates the regions in the image that are likely to contain no
useful information for segmentation. We then use a parametric model to represent the segmenting curve as a combination
of shape priors obtained by representing the training data as a collection of signed distance functions. We evolve an
objective energy functional to evolve the global parameters that are used to represent the curve. We vary the influence
each pixel has on the evolution of these parameters based on the confidence/interest label. When we use these labels to
indicate the regions with low confidence; the regions containing accurate edges will have a dominant role in the evolution
of the curve and the segmentation in the low confidence regions will be approximated based on the training data. Since our
model evolves global parameters, it improves the segmentation even in the regions with accurate edges. This is because we
eliminate the influence of the low confidence regions which may mislead the final segmentation. Similarly when we use
the labels to indicate the regions which are not of importance, we will get a better segmentation of the object in the regions
we are interested in.

Keywords: Regions of Confidence labels, Regions of Interest labels, Shape priors, Active contours, image alignment,
shape alignment, cardiac MRI Segmentation, curve evolution, Principal Component Analysis, Eigenshapes.

1. INTRODUCTION

Shape priors are widely used for automatic segmentation, especially when we have some prior knowledge about the objects
in the given environment. Shape priors are also useful in cases where the images have inherent noise, low contrast, missing
or diffused edges. Substantial research has been conducted in using shape priors in image segmentation, for example, Chen
et al.1 used an average shape model to incorporate shape information in geometric active contour models and Levonton
et al.2 used shape priors to restrict the flow of the geodesic active contour. Region-based methods for segmentation using
an active contour by minimizing the Mumford-Shah 3 energy functional have also been proposed in various papers. 4–7 Tsai
et al.8 later developed a parametric model using pose and shape parameters for segmentation, where they describe the
segmentation curve as a linear combination of eigenvectors that are obtained from a Principal Component Analysis (PCA)
on the variations from the mean shape. All these methods give equal importance to the information provided by all the
contour pieces. But in reality certain portions of the contour which lie in the neighborhoods that contain missing or bad
edges will provide misleading information. Also in certain cases the user may not be interested in the segmentation of
certain parts of the object. Selectively using the information from the shape priors from the regions of interest will improve
the segmentation along these regions.
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In this paper we describe a method which incorporates the information about the reliability/significance of the segmen-
tation in various regions of the object. While generating the training dataset we also generate an auxiliary map of regions
of confidence or regions of interest. These maps can be in the form of levels of confidence or significance associated with
each region of the object. In this paper we use a binary label, where a region labeled with ‘1’ would indicate a neighbor-
hood in the image that is most likely to contain bad edges or a neighborhood that would contain boundaries which are not
of interest in the final segmentation. A similar labeling approach is presented by Cremers et al., 9 where dynamic labeling
is used to enforce known shapes to minimize the Mumford-Shah 3 energy functional. This technique can segment corrupt
objects present in the training dataset, but cannot segment unfamiliar objects.

Figure 1 shows an example of training images where the binary images in Figure 1(b,e) are the manual segmentations
and the maps in Figure 1 (c,f) show the regions of low confidence and regions which we are not interested in segmenting,
respectively. In the cardiac image we see that the neighborhood which contains fuzzy edges have been marked in Figure
1(c) and in the hand image (Figure 1 (f))we eliminate the influence of the segmentation of the thumb to get a better
segmentation of the other fingers. These binary images will form our training dataset. Since, this training data is derived
from various subjects, the first logical step would be to align these images. This is described in Section 2. In Section
3, we describe the model used for the segmenting curve using shape priors. Section 4 explains how we incorporate the
regions of confidence/interest labels into the existing model to improve segmentation. And finally in Section 5 we show
the application of this technique to two sets of images.

(a) (b) (c)

(d) (e) (f)

Figure 1. (a-c) Cardiac training images. (d-e) Hand images.

2. SHAPE ALIGNMENT

The various images present in the training dataset vary in shape, size and orientation. If we use PCA on this data the
variations in size and orientation will mask the shape variations, preventing the PCA from capturing them. Thus, to capture
only the shape variations by using shape priors, we first need to align the images in our training dataset with respect to size
and orientation. Consider the training set with n binary images {I1, I2, ..., In} with pose parameters {p1, p2, ...,pn}. For
2D images we define a pose parameter vector p such that p = [a, b, h, θ] with a, b, h and θ correspond to x-, y- translation,
scale and rotation, respectively. The transformed image of I , denoted by Ĩ , for a given pose parameter (p) is obtained using
a transformation matrix T (p). This transformation matrix T (p) also maps the co-ordinates (x, y) ε R

2 to (x̃, ỹ) ε R
2. The

transformation matrix is a product of three matrices: a transition matrix M(a, b), a scaling matrix H(h) and an in-plane
rotation matrix R(θ).

Ĩ = T (p)I.
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where,

⎡
⎣
x̃
ỹ
1

⎤
⎦= T(p)

⎡
⎣
x
y
1

⎤
⎦

And the transformation matrix, T (p) = MHR, where,

M =

⎡
⎣

1 0 a
0 1 b
0 0 1

⎤
⎦ , H =

⎡
⎣
h 0 0
0 h 0
0 0 1

⎤
⎦ , R(θ) =

⎡
⎣
cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

⎤
⎦ .

As suggested by Tsai et al.8 we can jointly align the n images by minimizing the following energy functional:

Ealign =
n∑

i=1

n∑
j=1,j �=i

{∫ ∫
Ω
(Ĩi − Ĩj)2dA∫ ∫

Ω
(Ĩi + Ĩj)2dA

}
, (1)

where Ω is the image domain and dA is unit area.

We illustrate the alignment process using five 2-D slices of the segmented epicardium from a training dataset generated
using 4-D cardiac scans. These slices were taken from cardiac scans of five different patients, hence the segmentations
vary in shape, size and orientation. In Figure 2 we show the cardiac images before and after alignment and in Figure 3 we
show the overlay of these images. Here the pose of Figure 2(a) was chosen to be fixed, i.e., p = [0, 0, 1, 0] and the pose
parameters for the other images were evolved jointly to align them to this image.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2. (a-e) Training images: Five 2-D images from cardiac training data. (f-j) Aligned images: 2-D images from cardiac training
data after alignment.
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(a) (b)

Figure 3. Comparison of the shape overlay (a) Before alignment. (b) After alignment.

3. SHAPE PRIORS

We will use the level set approach introduced by Osher and Sethian 10 to represent the shape of the image boundaries. We
will represent the shapes using signed distance functions {ψ1, ψ2, ...ψn}, where the image boundary is embedded as the
zero level set and negative distances are assigned to regions inside the boundary and positive distances to regions outside
the boundary. Taking the average of the n signed distance functions we get the mean level set for the training images,

ψ =
1
n

n∑
i=1

ψi.

We will extract the shape variabilities in each training image by subtracting the mean signed distance function ψ from
each signed distance function to form n mean offset functions { ψ̂1, ψ̂2, ...ψ̂n}.

ψ̂i = ψ − ψi.

We then form a shape variability matrix S = [Ψ̂1 Ψ̂2 ... Ψ̂n], where the samples of ψ̂i are stacked lexicographically
to form each column Ψ̂i.

As suggested in8, 11 we will take the eigenvalue decomposition of (1/n)S TS, which will give us the eigenshapes
(principal modes), Ψi’s. For {ψ̂1, ψ̂2, ...ψ̂n} forming the S matrix we will get a maximum of n different eigenshapes
{Ψ1,Ψ2, ...Ψn}. A new level set function can be expressed as a linear combination of these eigenshapes. For k ≤ n,

ψ̃(α) = ψ +
k∑

i=1

αiΨi. (2)

where {α1, α2, ..., αk} are the weights associated with the k eigenshapes. We will again use the zero level set of ψ̃ as
the representation of our shape. Thus, by varying α, we vary ψ̃ which indirectly changes the shape. The value of k must
be chosen large enough to capture the prominent shape variations in the training images. But if the value of k is too large,
the model will capture some intricate details that are specific to the images used for training. In all the examples described
in this paper we choose the value of k empirically.

The segmentation also needs to accommodate variations in the pose parameters along with the variations in shape.
Thus we will include the pose parameters in the representation of the level set function ψ̃ in (2).

ψ̃(α, p) = ψ(p) +
k∑

i=1

αiΨi(p). (3)
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3.1 Chan-Vese model for segmentation

We will use the region-based curve evolution model described by Chan and Vese 4 for segmentation. As explained in8 we
will use region statistics to evolve the pose parameters (p) and weights of the eigenshapes (α) to vary the segmentation

curve. Since, our level set function ψ̃ is a signed distance functions, the segmentation curve
→
C can be represented as the

zero-level set of ψ̃,

→
C= {(x, y)εR2 : ψ̃(x, y) = 0}. (4)

The regions inside and outside the curve
→
C , denoted respectively by Ru and Rv are given by,

Ru = {(x, y)εR2 : ψ̃(x, y) < 0}.

Rv = {(x, y)εR2 : ψ̃(x, y) > 0}.

For any observed image data denoted by I , the means inside (μ) and outside (ν) the segmentation curve
→
C can be

defined as,

μ =

∫ ∫
Ω
IH(−ψ̃(α, p))dA∫ ∫

ΩH(−ψ̃(α, p))dA

ν =

∫ ∫
Ω
IH(ψ̃(α, p))dA∫ ∫

Ω
H(ψ̃(α, p))dA

where Ω is the image domain and dA is unit area. And the Heaviside functionH is given by,

H(ψ̃(α, p)) =
{

1, if ψ̃(α, p) ≥ 0
0, if ψ̃(α, p) < 0

Using the image statistics defined in this section we can define the Chan-Vese energy functional for segmenting I as,

Ecv =
∫

Ru

(I − μ)2dA+
∫

Rv

(I − ν)2dA (5)

The 2-D gradient, ∇Ecv can be denoted as,

∇Ecv = F.
→
N (6)

where F for the Chan-Vese model is given by, F =
{
I − μ+ν

2

}
(μ− ν)
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3.2 Parameter Optimization via Gradient Descent

We will use steepest descent on the Chan-Vese energy functional defined in (5) to evolve the pose parameters (p) and the
weights (α). We will need the gradient of Ecv with respect to each pose parameter, pj and shape parameter, αi. These
gradients can be written as,

∇αiEcv =
∫

C

(∇αiC.∇Ecv) ds =
∫

C

−
⎛
⎝ ∇αi ψ̃∥∥∥∇ψ̃

∥∥∥

⎞
⎠ .Fds, (7)

∇pjEcv =
∫

C

(∇pjC.∇Ecv

)
ds =

∫

C

−
⎛
⎝ ∇pj ψ̃∥∥∥∇ψ̃

∥∥∥

⎞
⎠ .Fds. (8)

where s is the arc-length parameter of the curve C. The update equations for the weights and the pose parameters are
given by,

αi
n+1 = αi

n −∇αiEcvdt, (9)

pj
n+1 = pj

n −∇pjEcvdt. (10)

where dt is the step-size and pj
n and αi

n are the values of each pose parameter and weight at the n th iteration. The
new shape and pose parameters are used to update ψ̃ and hence the location of the segmenting curve C after each iteration.
Based on the new location of the curve the image statistics μ and ν are recalculated. The derivation of the final forms of
(7) and (8) are explained in Appendix - A.

4. REGIONS OF CONFIDENCE/INTEREST

In this section we explain how we incorporate labels of confidence/interest in the model to improve segmentation. As
shown in Figure 1, each training image Ii will have a corresponding confidence/interest label imageR i. We will use signed
distance functions to represent these images as well. The boundary of the region labeled with low reliability/significance
will be our zero level set, the regions inside will be assigned negative values and the regions outside will be assigned
positive values. Thus we will form a new set of signed distance functions, {L 1, L2, ..., Ln}, where negative values indicate
regions with low reliability/significance. With these signed distance functions we will form a new shape variability matrix
S, which will include these labels,

S =
( [

Ψ̂1

L̂1

] [
Ψ̂2

L̂2

]
. . .

[
Ψ̂n

L̂n

] )
.

Here the samples of each signed distance function L i are stacked lexicographically to form the corresponding 1-D
array L̂i. Taking the eigenvalue decomposition of this S matrix will give us n eigenshapes {Ψ 1,Ψ2, ...Ψn} and their
corresponding eigenlabels {l1, l2, ..., ln}. These eigenlabels can be used to improve the final segmentation by influencing
the update on pose parameters (p) and the weights (α) and thus influencing the curve evolution. For this we will take a
linear combination of the eigenlabels to form a new level set function for the labels l, similar to the level set formed in (2).

l(α, p) = l(p) +
k∑

i=1

αili(p), (11)
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where k ≤ n and {α1, α2, ..., αk} are the weights associated with the k eigenlabels. The variable l is the mean of the
n signed distance functions which is defined as,

l =
1
n

n∑
i=1

Li.

Incorporating this new label function l in calculating the gradients of the energy functional E cv with respect to each
pose parameter pj and shape parameter αi we get,

∇αiEcv =
∫

C

l (∇αiC.∇Ecv) ds =
∫

C

− l

⎛
⎝ ∇αi ψ̃∥∥∥∇ψ̃

∥∥∥

⎞
⎠ .Fds, (12)

∇pjEcv =
∫

C

l
(∇pjCl∇Ecv

)
ds =

∫

C

− l

⎛
⎝ ∇pj ψ̃∥∥∥∇ψ̃

∥∥∥

⎞
⎠ .Fds. (13)

The amount of influence of each pixel on the evolution of the curve is now governed by the value of l. Since negative
values of l at a given pixel indicates low confidence or significance, we will not include these pixels in our calculation.
The values of each shape parameter αi and pose parameter pj are updated iteratively using the equations (9) and (10)
respectively. These updated weights are used to calculate the new level set function ψ̃ in (3) and the new label function l
in (11) after each iteration.

5. RESULTS

We apply the model described in the previous sections to two sets of images: 1) Cardiac MRI data and 2) Hand images.
We also compare the results generated in using the model with and without the aid of regions of confidence/interest labels.

5.1 Segmentation of Cardiac MRI data

We compare the segmentation of the myocardium on 2D cardiac slices using shape priors as explained in 8, 11 with our tech-
nique of using shape priors along with the regions of confidence labels. Fifteen slices from a 4-D interactive segmentation
of cardiac data from a single patient form our training dataset. Along with the manual segmentation on these slices we also
have corresponding images that mark the regions of low confidence. Figure 4 shows the raw data, manual segmentation
and regions of low confidence of one such slice from the training dataset.

(a) (b) (c) (d)

Figure 4. (a) Raw Image. (b) Manual segmentation with Regions of low confidence. (c) Regions of low confidence for epicardium. (d)
Regions of low confidence for endocardium.

Our target segmentation curve should form the boundary of the two ventricles and the epicardium. Representing this
curve using a single level set would make the model susceptible to harmful topological changes such as merging of the
inner and outer walls of the myocardium (especially in the regions where the myocardium is very thin). Thus, we represent
each ventricle and the epicardium as a separate curve with three different signed distance functions associated with each of
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them. Our training dataset thus consists of images that represent the two ventricles, epicardium and corresponding maps
indicating regions of low confidence. Figure 5 shows an overlay of the aligned training images. Here we use a single
combined pose parameter p to align the ventricles and the epicardium. This way we can prevent the curves from crossing
each other. The same pose parameters are also used to align the regions of low confidence.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Overlay of training images for epicardium, left ventricle, right ventricle and Region of low confidence (a-d) before alignment
(e-h) after alignment.

We derive eigenshapes for each region (left ventricle, right ventricle and epicardium) and their corresponding eigenla-
bels by performing a PCA as explained in Section 3. Since the regions were aligned using a single set of pose parameters,
we will also take a combined PCA of these regions. We chose a value of k=5 to generate these results.

(a) (b)

Figure 6. Images showing manual segmentation of cardiac 2-D slices which are differentiating into 4 regions: Left ventricle, Right
ventricle, Myocardium and Outside region.

Figure 6(a-b) shows the manual segmentation on a 2-D slice consisting of four regions marked as L, R, M and O which
represent the left ventricle, right ventricle, myocardium and region outside the epicardium respectively. The three curves
used for segmentation will divide the observed image data (I) into these four regions. Since the image is now divided into
multiple regions, we introduce a new coupled energy functional, E coupled.

Ecoupled =
∫

L

(I − uL)2dA+
∫

R

(I − uR)2dA =
∫

M

(I − uM )2dA+
∫

O

(I − uO)2dA.

We evolve the parameters p and α by minimizingEcoupled using image statistics based on these four regions. uL, uR, uM , uO

represent the means inside the regions L,R,M,O respectively and dA is the unit area.
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Figure 7 shows the segmentation results, and compares each result with the manual segmentation. The white contour
is the curve we obtained in our segmentation and the black contour indicates the ground truth (manual segmentation) for
that particular slice. We can see that using regions of confidence labels significantly improves the segmentation within the
highlighted sections. Since, this approach uses global parameters to evolve the curve, our approach shows improvement in
segmentation even in the regions containing strong edges.

(a) (b) (c)

Figure 7. (a) Initialization of segmentation using the zero level set of ψ. (b) Segmentation results using shape priors. (c) Segmentation
enhanced with use of Regions of confidence.

5.2 Segmentation of hand images

In this example we take hand images, with varying positions of the fingers. Our training dataset for this example consists
of 5 images. Once we align the training images, the palms of all the images in our training datasets will be aligned. Thus
the PCA will be able to capture the variation in the shape, size and position of the fingers. The initial overlay of these hand
images are shown in Figure 8(a) and Figure 8(b) shows an overlay of the aligned hand images. We also generate two sets
of regions of interest here, one masking the thumb and the other masking the last three fingers in each hand. Because the
thumb finger shows a large variation in position, masking the thumb out while segmenting the other fingers will improve
the overall segmentation of the other fingers. And in the second set, we mask out the last three fingers to segment the thumb.
If we mask all the four fingers, there is a possibilty that the final segmentation rotates the entire palm to fit the thumb. To
avoid this we leave the index finger out of the mask to give the segmentation some information about the location of the
palm. Figure 8(c,d) show the mean images of the regions of interest masking the thumb region and the last three fingers.

(a) (b) (c) (d)

Figure 8. (a) Overlay of hand images before alignment. (b) Overlay of aligned hand images. (c) Aligned regions of interest label masking
the thumb. (d) Aligned regions of interest label masking the last three fingers.

We use shape priors to segment the hand image as explained in Section 3. The initializing curve obtained from the zero
level set of ψ of the training data is shown in Figure 9(a). The result generated by shape priors as explained in 8 is shown in
Figure 9(b). Figure 9(c,d) show the results generated by using the two sets of region of interest masks generated. We chose
a value of k=3, in all these examples. We see that in Figure 9(b) the curve tries to capture the variations in thumb as well as
the fingers, and fails to segment them very well. But by masking the thumb we get a very good segmentation of the other
fingers, although the thumb segmentation is worse than in the previous case(Figure 9(c)). In Figure 9(d), by masking the
last three fingers we get a good segmentation of the thumb, but in the process we deteriorate the quality of segmentation

SPIE-IS&T/ Vol. 7533  753302-9

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/26/2015 Terms of Use: http://spiedl.org/terms



along the other fingers. Thus by using these separate masks we can selectively improve segmentation in certain regions of
the image.

(a) (b)

(c) (d)

Figure 9. (a) Initialization of segmentation using the zero level set of ψ. (b) Segmentation results using shape priors. (c) Segmentation
of the fingers with the regions of interest masking the thumb. (d) Segmentation of the thumb with the regions of interest masking the last
three fingers.

6. CONCLUSION AND FUTURE WORK

In this paper we have presented a novel technique that uses labels of confidence/interest to enhance the existing region
based shape prior segmentation model. We have described how we can selectively exclude the influence of certain neigh-
borhoods in segmenting the curve and thus improve the quality of segmentation. We show how this technique can improve
segmentation in medical images, not only along the regions with fuzzy edges but also in the regions with prominent edges.
We also show how we can get higher quality segmentation in certain parts of the image by ignoring regions in the image
which we are not interested in. The results presented in the paper show how we can use this model to separately improve
segmentation in various portions within a single image using fewer training images. We are currently working on ways to
combine these separate regions with high quality segmentations to obtain a single segmenting curve on the entire object.
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APPENDIX A.

In this section we explain how we can simplify the equations (7) and (8) to express the gradients ∇ αiEcv and ∇pjEcv

in terms of the level set function and image statistics. The segmentation curve is embedded as the zero-level set of the
function ψ̃. Since, ψ̃ is a function of the curve C, weights α and pose parameters p; the curve C (zero level set) will also
be a function of α and p along with the arc-lenght parameter s. Hence the zero level set can be represented as,
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ψ̃(C(α, p, s),α, p) = 0.

Taking derivative of with respect to αi we get,

∇αi ψ̃ +
∥∥∥∇ψ̃

∥∥∥ . →
N .∇αiC = 0

We thus have,

∇αiC.
→
N= −∇αi ψ̃∥∥∥∇ψ̃

∥∥∥
(14)

Now the gradient of the energy functionalEcv with respect to αi is defined in (7) as,

∇αiEcv =
∫

C

(
∇αiC.F.

→
N

)
ds (15)

Substituting, the value of ∇αiC.
→
N from (14) we have,

∇αiEcv =
∫

C

−
⎛
⎝ ∇αiψ̃∥∥∥∇ψ̃

∥∥∥

⎞
⎠ .Fds. (16)

Similarly, for the gradient of Ecv with respect to pj will be,

∇pjEcv =
∫

C

−
⎛
⎝ ∇pj ψ̃∥∥∥∇ψ̃

∥∥∥

⎞
⎠ .Fds. (17)

Thus in calculating the update for each parameter in equations (9) and (10) we only need the gradients of the signed
distance function with respect to that parameter and the value of F along the line integral of C. The image statistics μ and
ν need to be calculated only once after each iteration. This makes the model simple to implement and computationally
efficient.
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