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SUMMARY

Nearly every aspect of modern life today, from businesses, transportation, and health-

care, depends on the power grid operating safely and reliably. While the recent push for a

“Smart Grid” has shown promise for increased efficiency, security has often been an after-

thought, leaving this critical infrastructure vulnerable to a variety of cyber attacks. For

instance, devices crucial to the safe operation of the power grid are left in remote substations

with their configuration interfaces completely open, providing a vector for outsiders as well

as insiders to launch an attack. This paper develops the framework for an overlay network

of gateway devices that provide authenticated access control and security monitoring for

these vulnerable interfaces. We develop a working prototype of such a device and simulate

the performance of deployment throughout a substation. Our results suggest that such a

system can be deployed with negligible impact on normal operations, while providing im-

portant security mechanisms. By doing so, we demonstrate that our proposal is a practical

and efficient solution for retro-fitting security onto crucial power system devices.
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CHAPTER I

INTRODUCTION

Due to a variety of pressures, ranging from environmental to economic, America’s power

grid is currently undergoing a transformation made possible by the continuing advances in

computing and communication technologies. This new “Smart Grid” makes use of ubiqui-

tous sensors and high-speed data networks to integrate renewable energy sources into the

power grid while increasing overall efficiency and reliability of operations. A core piece of

technology at the center of the power grid that enables all of this is supervisory control

and data acquisition (SCADA) systems that allow efficient and intelligent control over wide

areas [8]. Although the benefits of these two technologies are numerous, they bring with

them several alarming security concerns.

The traditional power grid is separated into power generation, transmission across long

distances, and distribution among end users. SCADA systems are deployed at various points

throughout this network with remote terminal units (RTUs) collecting power and voltage

measurements from, and issuing commands to intelligent electronic devices (IEDs). These

measurements are then used to estimate the current state of the grid, perform optimal

power flow calculations, and automatically send control signals to breakers and generators

to match power generation with current consumption [22].

As the grid has transformed, the use of SCADA systems has changed as well. SCADA

systems are relied upon to take even more fine-grained measurements and are being im-

plemented over long-distance IP networks. This change has made it easier for outside

attackers and insiders to compromise outdated and poorly protected equipment located in

remote substations, and arguably wreak more havoc on the power system than was possible

in the past.

One of the most well known examples of the kind of damage an insider attack can

cause a cyber-physical control system occurred in the year 2001. A disgruntled ex-employee
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who had installed the SCADA system for the Maroochy water services in Australia drove

around sending control signals to various pumps in the system. As a result, thousands of

gallons of sewage was spilled into the surrounding area causing significant environmental

and economic damages. Afterwards, forensic analysis concluded that proper use of access

control and cryptography could have helped prevent the attack [1].

In this thesis we develop a framework for a physical overlay network of critical interface

locks (CILs) to mitigate the threat of insider attacks against remote power substation de-

vices. These CILs provide access control to critical device interfaces, check the authenticity

and integrity of configuration files, and provide monitoring of any communication with the

critical device. The major contributions of this thesis are:

• A flexible, modular design for a physical interface lock (i.e., CIL) for power system

devices

• An overlay network architecture for interface locks that is efficient and scalable

• Evaluation of our proposal analyzing the effect of deploying such a system in a sub-

station environment

The rest of this thesis is organized as follows. In Chapter 2 we present related work in

the area of securing power system networks, Chapter 3 describes the exact threat model

addressed, and in Chapter 4 we present the architecture of our proposed overlay network

and describe the details of our CILs. In Chapter 5 we evaluate the performance of our

proposal, and finally discuss our conclusions and future work in Chapter 6.
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CHAPTER II

RELATED WORK

The power grid, and control system networks in general, have unique security challenges that

differentiate them from more traditional networks. Until recently, information security was

not a primary concern in this area and as a result poor security practices and misconceptions,

such as “security through obscurity” and misplaced confidence in air-gaps, were widespread.

To complicate these issues, due to the nature of these systems it is also often very difficult to

keep equipment patched and up-to-date in order to protect against software vulnerabilities.

Furthermore, as the Stuxnet attack [10] clearly illustrated, these weaknesses can be used

to cause physical damage and achieve military-like goals. The abundance of security issues

and their alarming consequences has led to a recent surge in research activity in this area.

In one of the first papers to really highlight the importance of the security of critical

systems such as these, Ten et al. proposed a framework in 2008 for assessing the vulnerability

of SCADA systems and suggested means of hardening them against various attacks [18].

Although this paper warned of the security threats faced by SCADA systems, it was not

until a Chinese student in 2009 published a paper describing how vulnerable the US power

grid was to cascading failure attacks, that this area of research finally started to get the

attention it deserved [21]. That same year an article was published in the popular IEEE

Security & Privacy magazine that gave a broad overview of the issues associated with the use

of smart meters in the power grid to provide fine-grained power measurements and remote

control of power consumption even at the electrical appliance level. The issues highlighted

here included falsifying meter readings for financial gain, invasions of consumer privacy, and

taking advantage of the remote control capabilities to conduct devastating terror attacks

[13]. Another article was published in the IEEE Security & Privacy magazine the next year

that covered the issues in more technical detail and explained the difficulties with applying

current security technologies to the domain of the Smart Grid. The article argued that
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practical security solutions to the Smart Grid must be built in, scalable, designed to work

on low-powered devices, and provide availability, integrity, confidentiality, and consumer

privacy [9].

The communications aspect of the Smart Grid and its importance to the proper oper-

ation of the power system has been a significant area of research itself. In a 2012 paper

by Sridhar et al. that discussed the security issues with cyber-physical systems, one of the

key points argued was that cyber-physical systems, such as the Smart Grid, need to apply

a defense-in-depth approach to security by focusing on how the control system relies on

the underlying communications infrastructure [17]. Due to their flexibility and low cost

implementation, the Smart Grid, and many other critical control systems, rely on wireless

sensor devices to provide important real-time measurements over a wide area. The security

strengths and weaknesses of the most commonly used protocols were analyzed in 2010, and

suggestions were made for improvements.

Now that the myriad of security issues associated with the Smart Grid has been brought

to light through several papers and studies, recent research has been focused on developing

techniques and tools to address them. Metke et al. proposed methods of improving the

security of the Smart Grid by building in security from the ground up and by implementing

a Smart Grid PKI, but with so many legacy devices in the field, it is not very practical

to deploy such a scheme any time soon [14]. With this in mind, most of the recent at-

tempts to address critical infrastructure security has been to develop intrusion detection

tools that could be deployed in current wide area control systems. In 2008, the Idaho Na-

tional Laboratory published a paper describing how traditional Intrusion Detection Systems

(IDS) fail to translate well to SCADA systems and proposed certain properties that a good

SCADA-specific IDS should have, including deep packet inspection of SCADA protocols,

having rules for which devices should communicate with each other, and having a basic

understanding of which commands make sense for a given state of the system [20].

In 2009, although it did not perform SCADA specific protocol inspection, an IDS was

developed using Artificial Neural Networks to learn what normal traffic looked like for an
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example control system and then was able to accurately detect various attacks on the sys-

tem [12]. Another paper proposed deploying IDS modules trained by Machine Learning

techniques at every layer of the Smart Grid to detect anomalous traffic [23]. Other pro-

posed ideas for SCADA specific IDS have focused on understanding the underlying physical

processes that the SCADA system is controlling. Cardenas et al. developed a model for a

typical SCADA controlled physical process and then proposed means of detecting intrusions

based on how anomalous behavior affected that model [6]. In similar works, proposals for

IDS systems have focused on preventing the SCADA system from entering a dangerous

state [5] [11]. Focusing on the Advanced Metering Infrastructure (AMI) component of the

Smart Grid, Berthier et al. explained the requirements for designing an effective AMI IDS

in a 2010 paper [3] and then proposed their own specification based IDS for AMI the next

year [2].

While all of these ideas show promise for detecting intrusions at the network level,

little work has been done to prevent attackers from accessing critical devices in the first

place. Even if basic authentication is implemented on these devices, there is no protection

against an insider threat or an attempted exploit on an unpatched device. A defense-in-

depth approach to Smart Grid security that uses intrusion detection at the network level all

the way down to the device level could significantly decrease chances of an attacker causing

any harm to the system. Since it is impractical for companies to deploy physical locks

on all critical device interfaces and keep track of physical keys, a scalable software based

solution could be preferable. Commercial software is available [7] to lock down USB ports

on a corporate network, but since most devices throughout the power grid are outdated and

difficult to upgrade, this does not present a feasible solution. A more practical approach

would be to deploy small, portable monitoring devices on all of the interfaces, such as the

Israeli company Yoggie’s Gatekeeper device [15]. However, the Gatekeeper was designed

only for Internet traffic. The solutions that come closest to solving all of these problems are

bump in the wire (BITW) devices, such as YASIR. In 2008, YASIR was proposed as a unique

BITW solution that provided encryption and authentication to SCADA communication

over time-sensitive serial links [19]. While this solution goes a long way towards protecting
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legacy SCADA equipment, it does not clearly address the issue of open interfaces on SCADA

equipment or how it can protect against insiders who are occasionally allowed to perform on-

site maintenance. This thesis proposes to address these issues by developing the framework

for an overlay network of lock devices that provide authenticated access control to the

physical interfaces of critical power system devices and monitoring services for suspicious

activity.
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CHAPTER III

THREAT MODEL

The threat model that our proposed solution addresses is one of an insider attack. The

power system devices that this framework is designed to protect are assumed to be located

in remote substations where a determined adversary or insider can gain physical access with

little chance of detection. Furthermore, although some power system devices do have basic

password authentication, we assume that the attacker is an insider trusted with the pass-

word. Additionally, since it is common for these devices to have unpatched vulnerabilities,

default passwords, or a poor choice of password, it is quite feasible for an outside attacker

to bypass this basic authentication as well.

Once the adversary gains access to these devices, there are a variety of malicious actions

he could take. For one, he could perform reconnaissance for a future attack by grabbing

configuration files or data history logs to gain a better understanding of the power grid. He

could also reconfigure the device to report data differently or trip a breaker under different

conditions, potentially causing harm to the rest of the grid due to the unexpected behavior.

Finally, in the worst case an attacker could gain complete control of the device and inject

false data and commands into the network with disastrous results. We also assume that an

adversary is limited to the computing power found on a typical laptop.
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CHAPTER IV

OVERLAY FRAMEWORK

4.1 Network

A typical substation can have on the order of twenty-five IEDs with around four different

interfaces on each device. We assume our locks could be deployed on every interface and

need to be able to reliably and securely communicate with the control center. The control

center needs to be able to send maintenance records and software patches to the CILs and

the CILs need to be able to send alerts and logging information back. The CILs will also

need to transmit a periodic keep-alive beacon to the control center informing operators that

the CIL is still online. If an adversary detaches the CIL, the device will power down and the

beacon will cease. The control center will then know that the device has gone offline and

that someone should check on the device in person. To prevent against a beacon spoofing

attack, the CIL will include a signed time stamp in its beacon using a private key assigned

to it at configuration. When the control center receives the beacon, it will verify that it

is signed by the lock device and that the time stamp is recent. Additionally, deployment

of such an overlay network should have as little impact on the current infrastructure as

possible and be able to operate reliably in a noisy substation environment.

With all of these factors taken into consideration, it was decided that the CILs would be

deployed in a sensor network architecture using the ZigBee protocol, as illustrated in Figure

1. ZigBee is an entire protocol stack based on the IEEE 802.15.4 standard developed for

low data rate, long battery life wireless personal area networks (WPAN), and is commonly

used in building automation and sensor networks. The CILs would require very small data

transfers at intermittent times, which fits well with the design goals of ZigBee. The low

power aspect of ZigBee keeps the CILs to a small form factor and makes upkeep much eas-

ier. Another major advantage that ZigBee has over other wireless options is its reliability

and robustness. According to Bhatti et al. [4], the 802.15.4 protocol was found to perform
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Figure 1: Deployment in Power System.

relatively well under the type of impulsive noise generated in the substation environment

compared to the more common 802.11 standard. Finally, ZigBee supports encryption be-

tween links to ensure a secure connection with a gateway in the substation, which would

then communicate with the control center through a secure channel such as SSL/TLS.

4.2 Interface Lock

4.2.1 Modular Design

Devices found in the power system network today have several different physical interfaces

available to communicate data and configuration settings. These include USB, Serial, and

RJ-45 Ethernet interfaces as can be seen from the back of an IED in Figure 2.

To make the deployment of our solution practical, it was developed with a modular

design in mind that can provide the same security services to the device regardless of the
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Figure 2: Variety of interfaces found on the back of an IED.

Figure 3: Modular design of CIL device.

interface. For our prototype the USB interface was used, but a module could be developed

for any interface and inserted into the framework for our CIL device as illustrated in Figure 3.

When developing our overlay framework we assume that our CILs will be securely attached

to every open interface on a device and enclosed in a tamper-resistant case. We acknowledge

that these are no easy tasks to complete, but any attempt at retrofitting security onto legacy

equipment in remote locations will have the same issues. We also believe that the keep-

alive beacon feature of the CILs makes it much harder for adversaries to tamper with the

device undetected. The security functions that our CILs provide for the vulnerable power

system interfaces include authenticated access control with one time passwords (OTP), file

signature checks to ensure that configuration files came from the control center without
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Figure 4: Maintenance Record Structure.

being modified, and monitoring for suspicious activity.

4.2.2 Security Services

4.2.2.1 OTP Authentication

The primary function of our solution is to provide improved access control over the weak,

or non-existent, mechanisms in place in current substations. Maintenance on these critical

devices happens fairly infrequently and is usually planned far in advance to ensure that

consumers see no interruption in their power. We leverage this fact in the implementation

of our solution by requiring that maintenance windows for every device also be scheduled

in advance at the control center. Specifically, we propose that a “maintenance record” be

created that includes the start and stop times for the maintenance window, the hash of

a randomly generated OTP, and an estimate of the maximum data that a user is allowed

to read from the device. We also allow for additional information to be included in such

a record for extending the functionality to provide more fine-grained control of the user’s

connection, such as specifying exactly what files can be loaded. The structure of a typical

maintenance record is illustrated in Figure 4.

Authentication using randomly generated OTPs, instead of traditional long term pass-

words, was chosen for stronger security guarantees. Firstly, even if a traditional password

scheme was used with “strong” passwords, it would provide no real improvement over the

current situation in the case of insider threats. An insider entrusted with the long term

password for legitimate work could return later to also use the password for illegitimate
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activity. By using an OTP valid only during a specified time window, we can significantly

reduce the chances of an insider performing unauthorized actions without being detected.

Secondly, an OTP solution reduces the threat of compromised passwords. If an outside

attacker manages to steal an OTP, he has a limited window of attack before the password

expires. We propose that the OTP used be eight characters long as a compromise between

difficulty in brute-forcing and ease of use.

While we assume that the communication between each CIL and the control center

is protected through secure channels and that the CIL itself is relatively tamper proof,

we provide additional protection when transporting the OTP in the rare chance that the

adversary overhears the communication or is able to retrieve the stored OTP from the CIL.

Instead of communicating or storing the clear-text of the OTP, we transmit and store the

hash of the OTP. This way, if an attacker manages to overhear the hash, he must brute-force

search through all possible passwords to find which one generated that specific hash. Given

a long enough password and short enough time window, the time to find the correct OTP

becomes greater than the time that the OTP is valid, giving the adversary no opportunity

to use it. The specific hashing algorithm we propose to use in our framework is SHA2-224.

This hashing algorithm was chosen because it is currently believed to be secure and the

shorter hash length (224 bits) makes it easier to transport over the low data-rate ZigBee

links.

When maintenance must be performed on a device, a trusted individual at the control

center creates a record as described above and sends it to the corresponding CIL. The CIL

will then only allow a complete connection to be made if the user provides a password that

has the same SHA2-224 hash as the one in the record, and if the user does this during the

specified time window. Once a user passes this authentication mechanism, the CIL will

begin to act as a man-in-the-middle device, allowing communication between the user and

the power device, but monitoring everything that happens.
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4.2.2.2 File Signature Checking

We again leverage the fact that maintenance happens infrequently and must be scheduled in

advance at the control center in order to provide integrity checks for important configuration

files. To accomplish this, we assume that a trusted individual creates the configuration or

maintenance file (MTF) ahead of time at the control center and signs it with the control

center’s private key: Signkpriv(Hash(MTF )). Again, the hash function that was decided

on was SHA2-224 due to the current belief in the community that it is secure, and because

the smaller size makes it slightly easier to handle with the limited resources available on

the CIL. The public key cryptography algorithm that we propose to use is RSA with 2048

bit keys. As of now, there are no known efficient attacks against RSA and 2048 bit keys

are the recommended length for strong security.

As explained above, after a user passes the OTP authentication the CIL acts as a man-

in-the-middle device and is able to monitor the communication. When the CIL sees a

maintenance file being loaded onto a power system device, it will verify that the signature

matches with the control center’s public key: V erifykpub(Hash(MTF )) . If the signature

is verified, then the file passes through without any further action taken. However, we

considered two choices for what actions to take if the signature verification failed.

Alert and Drop: With this option, the CIL would send an alert back to the control

center and prevent the file from being loaded onto the device. This option provides better

security guarantees by ensuring that malicious configuration files do not get loaded onto

critical devices, but does so at the cost of availability. In the real world, it might not always

be practical to have the exact configuration file created beforehand at the control center

and small changes might have to be made at the remote substation. Therefore this option

might cause too many problems to allow for practical deployment.

Alert and Pass: Under this policy the CIL device would send an alert back to the

control center letting the operators know that a different configuration file was loaded than

the one that was signed. However, to accommodate for the real world scenario where small

changes might need to be made at the last minute, the CIL device will still allow the file

to be loaded. It was eventually decided that practicality outweighed the extra security
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Figure 5: Procedure for loading a maintenance file (MTF) onto an IED.

guarantees and so this latter option was chosen.

The overall procedure for loading a new configuration or maintenance file (MTF) onto

an IED is illustrated in Figure 5.

4.2.2.3 Traffic Monitoring and Alerts

Since our proposed CILs are able to monitor all of the communication between the user and

the power system device, they can be used as an intrusion detection system to look for signs

of malicious activity. As described above, one of the uses for this functionality is sending

alerts back to the control center if a configuration file signature does not match with the

control center’s public key. Another case in which the CIL device will send an alert to the

control center is if a user attempts to read more data from the IED than was allowed in the

maintenance record. Although our current prototype only checks the integrity of files and

measures how much data is being read from the IED, it can also be extended further to

perform even more complex intrusion detection functions. Examples of this could include

creating models of behavior for certain types of maintenance or devices and alerting if

observed behavior falls outside these models.

4.2.3 Implementation Details

The hardware used to build the prototype CIL device for this research was the Beagle-

Bone Black loaded with the Debian operating system. The small form-factor, low power
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Figure 6: Example capture of USB keyboard traffic.

requirements, and limited resources all made it suitable for the application of a distributed

network of CIL devices. Specifically, this board can be powered over USB, has a 1GHz

ARM processor with 512MB of RAM, and is extremely flexible. In addition to the custom

security mechanisms described in the previous section, we were able to load other popular

security software including Snort network IDS, Clam Antivirus, and Tripwire host IDS. An-

other advantage of the BeagleBone Black is that it has both a host and client USB interface

to enable the man-in-the-middle functionality necessary for implementing our CIL for USB

communications.

Given the USB interfaces on the BeagleBone Black, we decided to initially implement

our prototype only for USB communication. To study the way devices communicate over

USB, we first used a commercial USB protocol analyzer to monitor traffic between common

devices such as keyboards and mass storage devices. For example, Figure 6 illustrates the

USB traffic that occurs when a user types the word “hello” on a USB keyboard. One impor-

tant thing to note is the presence of keep-alive messages in the protocol, that significantly

complicate the task of designing a USB man-in-the-middle monitor that can provide all the

security services we propose for out CILs.

To perform the USB monitoring on our CIL device, we used the USBProxy Git Hub

project developed by Dominic Spill [16]. The USBProxy project is a framework designed

specifically for the BeagleBone Black to enable the board to act as a USB man-in-the-

middle. Although this project is still in its early stages of development, we modified the
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Figure 7: Current prototype being tested with USB flash drive and simulated control center.

basic logging filter provided by the project to also check for the OTP and digital signature

of configuration files.

To test our implementation we modeled a generic power system device by using a USB

storage device and writing an actual IED configuration file to it. Since these CILs would

be deployed in a sensor network architecture as described in Chapter 4.1, we also used

ZigBee USB dongles to model communication between our device and a control center.

The modified USBProxy code on the BeagleBone Black was able to operate on the targeted

USB storage device while still being able to communicate with our stand-in control center.

The setup for these experiments can be seen in Figure 7.
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CHAPTER V

EVALUATION

5.1 Scalability

Since our CILs would be used to protect every interface in a substation, it is necessary

that the sensor network architecture we use be able to scale and perform well in a typical

substation. As mentioned above, an average substation was estimated to have about twenty-

five IEDs with about four interfaces each, coming to a total of 100 devices. To measure

how well our system would scale, we performed simulations of different sized networks using

the MiXiM framework developed for the Omnet++ modeling software under the worst case

scenario where every CIL in the network tries to send an alert at the same time. We assume

that each alert if 512 bits, there is no other interference, and the devices are randomly placed

in a 30 meter by 30 meter area. For each network size, we ran a twenty second simulation

where each node generates a 512-bit packet every second and used the MiXiM framework

to estimate the packet loss. The graph in Figure 8 shows that using the estimate of 100

nodes in the substation network, less than two percent of the packets are expected to be

dropped, which was deemed an acceptable rate. The figure also illustrates that the network

could be scaled to bigger sizes as well, with a trade-off in performance.

5.2 Performance

Another important measurement when evaluating the effectiveness of our solution was the

added latency and computation time that our man-in-the-middle device introduces to the

normal interaction between a user and an IED. It is necessary that we keep this low enough

that the user is still able to perform everything he would normally do without any noticeable

changes. To do this we performed the signature validation of an actual configuration file

one hundred times on the BeagleBone Black to get an estimate of the time it takes. We

then used the Linux disk utility to benchmark the read and write speeds for the USB drive

that was connected through our CIL device in the middle. The total time to write a file,
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Figure 8: Scalability of Network Architecture.

Table 1: Performance of USB man-in-the-middle device.

Measurements Performance

Size of config file 6.4 KB

Time for signature validation 17 ms

Read speed for USB drive 1.2 MB/s

Write speed for USB drive 1.0 MB/s

Combined read/write time 12 ms

Total 29 ms

check its signature, and read a typical file back was then estimated to take a total of 29

ms. While the signature validation may add too much latency for time-critical operations,

29 ms is completely unnoticeable to the typical user performing standard maintenance on

the device. The results of these tests are summarized in Table 1.

Although we did not implement and test the framework for Ethernet or RS-232, we

can make fairly accurate estimates as to how they would perform based on their standard

speeds and the fact that the signature validation time will remain the same. Assuming the

slowest Ethernet speed of 10 Mbps (1.25 MB/s) we can expect Ethernet to perform roughly

the same as USB and even better if the faster standards of 100 Mbps or 1Gbps are used.

RS-232 supports a wide range of baud rates, but assuming the most common speed of
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9600 bps, we can estimate that the read and write speeds will be about 1000 times slower

than USB. Since buffering the file on the CIL introduces an extra write or read time in the

process, we can expect that the total time would roughly double. In our example writing

a 6.4 KB file would normally take 0.68 seconds over a 9600 bps link, but would instead

take (0.683s * 2 + 17ms) 1.383 seconds going through the CIL. While this may be slightly

noticeable to a user, it would not significantly hinder his ability to perform the required

maintenance task.

5.3 Security

Finally, we performed some basic estimates of the strength that the OTP time window

authentication scheme provides for critical power system devices. We assume that mainte-

nance windows will be scheduled for a range of a few hours, or in the worst case the range

of a whole day. This means that we assume that a randomly generated OTP will be valid

for an entire day at the most, so an adversary has roughly 24 hours to guess the password.

Assuming a threat model where an adversary was able to overhear the SHA224 hash of the

OTP and has the computing power of a standard laptop, we estimated how long it would

take to crack. Assuming that the OTPs are alphanumeric passwords generated with strong

randomness, the adversary would have to brute force guess every possibility to find the

correct password. For each guess he would have to take the SHA224 hash of the password

and compare it with the one he overheard. After performing 1000 sample of hashing and

comparing the hash on a 2.2 GHz quad core 8GB RAM laptop, it was estimated that each

guess would take about 4 microseconds. With an OTP of eight characters, this means that

it would take more than 7 years for an adversary to guess it, which is well beyond any rea-

sonable maintenance window. Considering a stronger threat model where an adversary is

able to efficiently offload and parallelize this calculation onto a botnet or cloud of 1000 such

laptops, it would still take weeks to crack, which is longer than any reasonable maintenance

window.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

Many devices critical to the safe operation of the power grid are left virtually unprotected

in remote substations with their configuration interfaces completely exposed. These open

interfaces provide adversaries with an alarming attack vector which they can use to cause

damage to the grid or steal sensitive information. To address this problem, a framework

for a physical overlay network of modular critical interface lock devices was developed that

provides access control, integrity checking, and security monitoring. When used properly,

the access control and integrity check schemes were shown to provide strong security for

the vulnerable interfaces while adding a negligible amount of latency in the communication.

Additionally, a network of such devices was simulated and estimated to scale well beyond

the required size with no significant decrease in performance. Our results show that the

proposed framework is a practical solution for providing important security mechanisms to

critical power system devices.

For future work, the monitoring and intrusion detection features of our CIL network

can be extended in a variety of ways. For example, it may be desirable to implement some

intelligent combination of the “Alert and Drop” and the “Alert and Pass” policies depending

on the type of device being configured or the type of file being loaded. The complexity of

the intrusion detection algorithms could also be extended by developing models of behavior

for different types of maintenance procedures or by developing algorithms to understand

the syntax of configuration files and try to determine if a file is “safe” or not before loading

it.
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