
WEB-BASED FRONT-END DESIGN AND SCIENTIFIC

COMPUTING FOR MATERIAL STRESS SIMULATION

SOFTWARE

A Thesis

Presented to
The Academic Faculty

by

Tien-Ju LIN

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
Computer Science

Georgia Institute of Technology
December 2014

COPYRIGHT© 2014 BY TIEN-JU LIN

WEB-BASED FRONT-END DESIGN AND SCIENTIFIC

COMPUTING FOR MATERIAL STRESS SIMULATION

SOFTWARE

Approved by:

Dr. Cedric Pradalier, Advisor
Advisor and Committee Chair
School of Computer Science
Georgia Institute of Technology

Dr. Laurent Capolungo
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Ronald R. Hutchins
Office of Information Technology
Georgia Institute of Technology

Date Approved: December 3, 2014

iv

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to my advisor, Dr. Cedric Pradalier for

giving me this opportunity to grow as a researcher and for his valuable suggestions. The

completion of my thesis would not have been possible without his constant support and

unwavering guidance.

I would like to thank Dr. Laurent Capolungo for giving me a chance to collaborate with

his team and to develop an application with creative freedom.

I would like to thank Dr. Ronald R. Hutchins for reviewing my thesis and providing his

precious advices.

I would like to thank Dr. Stéphane Vialle for helping me enlarge my knowledge in the

field of High Performance Computing.

I would like to acknowledge the help of Nicolas Bertin, with whom I discussed the basics

of material science and the structure of material-stress simulation software.

Finally, I appreciate very much the support of Georgia Tech Lorraine and Supelec Metz

that provided me all research resources for my work.

 v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

CHAPTER 1 INTRODUCTION .. 1

CHAPTER 2 FRONT-END DESIGN ... 4

2.1 Architecture ... 5

2.1.1 Web based application ... 5

2.1.2 Applied Frameworks & Libraries .. 7

2.1.3 Database .. 9

2.1.4 DDD server & Apache Server ... 11

2.2 UI Design ... 12

2.2.1 Principle of design ... 12

2.2.2 DDD Portal – Graphic Interface .. 13

2.2.3 DDD Portal – Functions .. 17

2.3 Deployment ... 23

2.4 User Experience Evaluation .. 24

CHAPTER 3 SCIENTIFIC COMPUTING .. 28

3.1 Purpose .. 28

3.2 Introduction of DDD algorithm ... 29

3.2.1 Program Flow .. 29

3.2.2 Variables .. 30

3.2.3 Existing MPI framework ... 32

3.3 Performance Metrics ... 33

3.4 Experimental Setup ... 35

3.5 Problems in DDD algorithm .. 35

3.5.1 Analysis by Vampir ... 36

3.5.2 Analysis by manual measurement ... 40

 vi

3.6 Proposed Solutions .. 46

3.6.1 Dynamic Load Balancing .. 46

3.6.2 Tabularization for the mathematical functions .. 51

3.6.3 Algorithm tuning - regrouploop .. 57

3.6.4 Operating points .. 60

3.6.5 Efficient use of memory .. 63

CHAPTER 4 CONCLUSION .. 64

CHAPTER 5 FUTURE WORKS ... 65

APPENDIX A SOFTWARE EVALUATION QUESTIONNAIRE 66

REFERENCES .. 68

 vii

LIST OF TABLES

Table 1 The list of JS Plugins .. 8

Table 2 Variable type - dislocation node ... 30

Table 3 Variable type - dislocation segment ... 31

Table 4 Example of the load of dislocation segments. The dislocation segments are

distributed to different MPI processors in round-robin fashion 47

Table 5 Example of the load of dislocation nodes. The load is calculated indirectly by

adding up the number of neighbor segments of connections 48

 viii

LIST OF FIGURES

Figure 1 Workflow of executing the material-stress simulation ... 4

Figure 2 The architecture of DDD portal .. 7

Figure 3 The relationship between Document Object Model (DOM) and MVC structure

of Backbon.js [12] .. 8

Figure 4 Entity-Relationship diagram for table Configuration ... 10

Figure 5 Entity-Relationship diagram for table Material .. 10

Figure 6 Communication sequence diagram for extraction of data 11

Figure 7 Site map of DDD portal .. 13

Figure 8 The screenshot of homepage ... 14

Figure 9 Table of simulations in simulation page ... 14

Figure 10 Table of reports in simulation page ... 15

Figure 11 The wizard of configuration - Step 1 Volume & Layer Property 16

Figure 12 The wizard of configuration – Step 5 Simulation Options & Output 16

Figure 13 Report page with download links and charts .. 17

Figure 14 The popup for loading the data from existing simulations 18

Figure 15 Visualization of dislocations in 3D microstructure ... 19

Figure 16 Display the information for particular field .. 20

Figure 17 Material manager - modify/delete existing material ... 21

Figure 18 Material manager - create new material .. 21

Figure 19 Simulation control manager - modify/delete existing control 22

Figure 20 Crystal manager – add a new slip system or delete existing crystal 22

Figure 21 Run a simulation by assigning the number of processors 23

Figure 22 Virtual appliance solution for DDD portal package ... 24

Figure 23 User experience forms in interaction with user and product in the particular

context including social and cultural factors [16] ... 25

Figure 24 Time spans of user experience, the terms to describe the kind of user

experience related to the spans, and the internal process taking place in the

different time spans [18] ... 26

Figure 25 The elements of user interface [19] ... 26

 ix

Figure 26 The flow chart of DDD algorithm ... 29

Figure 27 Example of dislocation configuration and the associated data 32

Figure 28 The communication flow of parallel DDD program ... 33

Figure 29 Overview of the Score-P measurement system architecture and the tools

interface [21] ... 36

Figure 30 The interface of Vampir with a number of statistic charts. 37

Figure 31 Execution time per functions with 2 processes, 1 process per node 38

Figure 32 Execution time per function with 8 processes, 1 process per node 38

Figure 33 The function shortrangeinter is only executed by the master processor (~1000

dislocations) .. 39

Figure 34 Imbalance of the work distribution between processors (~1000 dislocations) . 40

Figure 35 2D schematic of the Box method. For the red dislocation, the elastic stress field

induced by green dislocation segments in the neighbor boxes will be accurately

computed. .. 41

Figure 36 The computational complexity of dislocation dynamics. Using 1000 boxes

(10x10x10) to partition the crystal volume and varying the total number of

dislocation segments from 5000 to 20000 leads to distinct number of

dislocation segments in one box. .. 41

Figure 37 The overall speedup of DDD algorithm (~20000 dislocations, 30 iterations) .. 42

Figure 38 DynamicSolver accounts for more than 90% of execution time for each step

(~20000 dislocations, 2 processes) ... 43

Figure 39 The speedup of function DynamicSolver (~2000 dislocations, 1000 iterations)

 ... 44

Figure 40 The speedup of function DynamicSolver (~20000 dislocations, 30 iterations) 44

Figure 41 Message volume in the initialization phase (~1000 dislocations) 45

Figure 42 Message passing during the iterative loops (~1000 dislocations) 46

Figure 43 The scheme of dynamic load balancing on dislocation nodes 49

Figure 44 The overall speedup with heap-sorting and static load balancing on dislocation

segments (~20000 dislocations, 30 iterations) .. 50

Figure 45 The overall speedup with heap-sorting and dynamic load balancing on

dislocation nodes (~20000 dislocations, 30 iterations) 50

 x

Figure 46 The functions log and atan consume the significant time for solving the

dislocation dynamics (Tree map from Kachegrind) ... 51

Figure 47 Tabularization for atan. Here the range is between -5 and 5 and the number of

intervals is 10. Each blue point is the representative of its interval, and the

precision is defined as the maximum possible difference between the exact

mathematical calculation and the approximation .. 52

Figure 48 Tabularization for log. Here the range is between 0.001 and 0.1 and the number

of intervals in 10. .. 53

Figure 49 The distribution of input values for atan .. 54

Figure 50 The distribution of input values for log .. 54

Figure 51 The relationship between the array size and the precision for atan. The range of

tabularization is between -100 and 100. .. 55

Figure 52 The relationship between the array size and the precision for log. The range of

tabularization is between 10 -7 and 0.1 .. 55

Figure 53 Precision test – Evolution of dislocations (Activation of a Frank Read source)

 ... 56

Figure 54 Precision test – Stable force interaction (Dislocation dipole) 56

Figure 55 Example of groups in dislocation graph ... 58

Figure 56 Example of loops in dislocation graph .. 58

Figure 57 Decompose the group by duplicating the nodes with more than two

connections and decouple them from each other .. 59

Figure 58 The average execution time of new regrouploop and old regrouploop (~20000

dislocations, 10 iterations) .. 60

Figure 59 The overall speedup with different combinations of the number of processes

and the box size (~1000 dislocations) ... 61

Figure 60 The overall speedup with different combinations of the number of processes

and the box size (~5000 dislocations) ... 61

Figure 61 The overall speedup with different combinations of the number of processes

and the box size (~10000 dislocations) ... 62

Figure 62 The overall speedup with different combinations of the number of processes

and the box size (~20000 dislocations) ... 62

 xi

LIST OF SYMBOLS AND ABBREVIATIONS

DDD Discrete Dislocation Dynamics

CLI Command Line Interface

MPI Message Passing Interface

HTTP Hypertext Transfer Protocol

MVC Model-View-Controller

REST Representational State Transfer

DOM Document Object Model

API Application Programming Interface

JSON JavaScript Object Notation

DFS Depth First Search

BFS Breadth First Search

CGAL Computational Geometry Algorithms Library

 xii

SUMMARY

In this thesis, we will discuss the front-end design and the algorithm optimization

necessary in order to build successful material-stress simulation software that can satisfy

both research needs and educational needs. A precise simulation requires a large amount

of input data such as geometrical descriptions of the crystal structure, the external forces

and loads, and quantitative properties of the material. Although some powerful

applications already exist for research purposes, they are not widely used in education

due to complex structure and unintuitive operation. To cater to the generic user base, a

front-end application for material simulation software is introduced. With a graphic

interface, it provides a more efficient way to conduct the simulation and to educate

students who want to enlarge knowledge in relevant fields. We first discuss how we

explore the solution for the front-end application and how to develop it on top of the

material simulation software developed by mechanical engineering lab from Georgia

Tech Lorraine. The user interface design, the functionality and the whole user experience

are primary factors determining the product success or failure. This material simulation

software helps researchers resolve the motion and the interactions of a large ensemble of

dislocations for single or multi-layered 3D materials. However, the algorithm it utilizes is

not well optimized and parallelized, so its performance of speedup cannot scale when

using more CPUs in the cluster. This problem leads to the second topic on scientific

computing, so in this thesis we offer different approaches that attempt to improve the

parallelization and optimize the scalability. These will be presented in details along with

the comparison of test results.

1

CHAPTER 1

INTRODUCTION

 With the growing attention to material science over the past years, more and more

researchers have dedicated themselves to developing simulation software to study the

fundamental mechanism of plasticity. NumoDIS [2] has been jointly introduced by CEA

and CNRS, but it’s not accessible to the public due to its limited distribution. Another

popular software, ParaDIS[1,3], has been developed to enable massive dislocations

simulation on a supercluster with more than 1000 CPUs. Its highly parallel and complex

structure makes it difficult to extend. Moreover, these two software packages are

operated through Command-Line Interface (CLI), giving a novice user with limited

knowledge in mechanical engineering and of how the software generally works, a steep

learning curve in creating an input file and running the simulation.

 The downsides presented in these two software packages may not be significant

for the researchers in the laboratories because they are generally well trained and

equipped with professional hardware and software. However, for college students, the

complexities discussed definitely reduce the educational effectiveness due to the

inaccessibility and the finite computing resources available to run the software package

on. To resolve this difficulty, we propose a web-based application based on our own

material simulation software. With a simple graphical user interface, it can abstract the

command line operation and thereby help users generate input files intuitively in the

presence of various functions. The entire front-end development mainly involves data

management, UI Design and server setup. In the following sections, the details

concerning application development will be presented. The objective of this application is

to offer a platform-free tool providing an effective and efficient education for college

 2

students who study in related fields. By distributing it as free software so that everyone

can easily access, download, and learn it.

 Discrete Dislocation Dynamics (DDD) code developed by Intermat Lab is a

parallel software package written in Fortran 90 using Message Passing Interface (MPI)

[23] that aims at simulating the motion and interactions of a large ensemble of

dislocations for single or multi-layered 3D materials on which loading conditions are

applied [8,9]. A dislocation is a linear defect in a material. Due to its nature, it

corresponds to a discontinuity in the lattice structure and hence induces strain and stress

fields. When subject to stress, dislocations in a material can glide and interact with each

other. The origin of the stress acting on a dislocation comes from two contributions: 1)

internal stress generated by the dislocations present in the material and 2) external stress

coming from the applied loading conditions. Due to the non-linear behavior of the

dislocation motion and interaction processes, the simulation is performed through an

iterative process. At each time step, the motion of all the dislocations is computed and the

interactions are performed if applicable. Once the dislocation lines are updated, the

mechanical state associated to the newly computed dislocation configuration is evaluated

and the code can proceed to the next step. The software will perform as many steps as

required in order to complete the simulation run.

 Moreover, this program is designed to run a small or medium scale dislocation

simulation, so the user can conduct it either with a personal laptop or with a professional

cluster in the laboratory. Knowing that the computational complexity for dislocation

dynamics is Ο(n2) due to the forces interaction between dislocations, the computation

cost will become enormous if there are a number of dislocations in crystal structure. This

is often the case in real world. Thus, parallelizing the algorithm could use up to 100

processes, thereby reduce computation time significantly reduced when analyzing a more

complex scenario. However, the performance of speedup of the current DDD algorithm

 3

doesn’t scale well. The need to optimize the DDD algorithm along with the approaches of

scientific computing is the second focus of this work.

 Over past years, much research has been done in the fields of Algorithm

Engineering and High Performance Computing. For example, cache-oblivious algorithms

[4] are efficient at all levels of the memory hierarchy in theory, but so far these

algorithms are widely used in practice. In [5], a new highly scalable distributed memory

parallel algorithm is designed and implemented for resolving graph matching and vertex

coloring problems. Shared memory parallelization is also introduced in a data mining

algorithm [6] to improve the speed. Nowadays, some incredibly complex problems are

hard to solve even with large resources. In this case, instead of applying an exact

algorithm, a heurist approach [7] can still result in approximate solutions and have

acceptable run time. To sum up, some approaches can be general applied to all kinds of

problems, but others are only used in particular types of problems. In our case, we firstly

studied and analyzed the existing structure of a program, MPI communication and core

algorithms for the mechanical calculation. After identifying the possible causes of poor

performances, we attempted to apply different parallelization schemes with new data

structure, implement better algorithms to deal with graph problems and test other

heuristic approaches. For each modification, we measured the execution time and

compared the test results to previous outcome. This work gave us clear idea of how to

redesign the code as a parallel algorithm and how to construct the program in a more

structured way.

 This thesis aims at developing a user friendly portal which allows users (experts,

scholars, college students) to conduct material stress-strain simulations and analyze the

results in an efficient way. A second objective is to provide a variety of insights for the

optimization of DDD algorithm by means of scientific computing.

 4

CHAPTER 2

FRONT-END DESIGN

 Before entering the main discussion about the design and development, we need

to explain what kind the advantages the front-end application will bring and how it will

improve the user experiences because these features of the front-end will guide the

functional specification and the architecture. Using the traditional workflow of executing

the material-stress simulation as in Figure 1, the user edits a long input file composed of

around 100 quantitative fields without preliminary guidance. One careless error may

result in the crash of program, and the user must check those 100 lines again to carry out

the modification. Once the simulation is completed, the user needs to open the output

files in a particular folder, and then draw the charts and watch the animation with another

software package. The whole procedure is lengthy for researchers and not efficient for

learning process. Therefore, our team took these important points into the product design

and expected to achieve two major goals: 1) facilitate the generation of the input file and

2) provide an overview of the simulation results. As for the deployment, we would like to

distribute the laptop version to every college student who is interested in material science

and also install the hosted version in the cluster for special research projects.

Figure 1 Workflow of executing the material-stress simulation

 5

2.1 Architecture

2.1.1 Web based application

 As mentioned previously, we need two versions of the application that satisfy the

research needs and educational needs respectively: 1) a laptop version for personal use to

be installed locally 2) a hosted version for professional use to be deployed in the

dedicated cluster. There are a variety of solutions in the industry to use for building a

front-end application. They can be simply divided into two groups, desktop software and

web-based application. For desktop software, we can choose to have DDD binary

executable built-in but this would require that the package is configurable for different

operating systems. Even if the DDD software is excluded, the user is not able to run

complex simulations without extra communication capabilities to access the centralized

cluster that provides more computational resources for research projects. Moreover, our

team wants to develop the first efficient prototype of application with two versions, so we

chose a web-based solution because this method of application design can offer a range

of benefits [11] as follows:

• Accessible anywhere: Users access the application from any computer connected

to the Internet using a standard browser like IE or Firefox. No installation is

required in advance.

• Effective development: While the user interaction with the application needs to be

thoroughly tested on different web browsers, the application itself needs only be

developed for a single operating system. There is no need to develop and test the

application on all possible operating system versions and configurations.

• Easy customization: Web programming language such as HTML, Javascript and

CSS makes it easier to update the look of the application, or to provide

customized information to different user groups.

 6

• Security & Maintenance: Web-based applications are typically deployed on

dedicated servers. This is more effective than monitoring hundreds or even

thousands of client computers, as is the case with desktop applications.

 The above advantages defeat the desktop solution because the web-based

application meets better the needs for users. Everyone can easily access and use it, and

the administrator can also upgrade the application quickly once the new version is

released.

 The diagram shown in Figure 2 represents the general architecture of the DDD

portal. For front-end development, there are many options such as

HTML5/CSS/Javascript, Ruby on Rails, Django, etc. Due to our familiarity, we chose

HTML5/CSS/Javascript to build the user interface adding some useful plugins and

frameworks. To manage the data transfer and carry out the communication between the

portal and the database or the file system, a light weight HTTP server (or DDD server) is

needed. Here we implemented it in Python with which we had more experience, but Java,

C#, node.JS or other programming languages are also available for the server setup. In

addition, an Apache server is in between the DDD server and the DDD portal. This is

because the first prototype of application also aims for a centralized version which an

authorized user can access to conduct complex simulations. Apache server only takes

responsibility for monitoring network security and relays the HTTP request and HTTP

response to the client. More details concerning each module will be presented in the

subsequent sections.

 7

Figure 2 The architecture of DDD portal

2.1.2 Applied Frameworks & Libraries

 To develop the DDD portal more efficiently, a variety of Javascript APIs

providing different basic functionalities is used in this project. On top of that, we

leveraged them to accomplish more advanced goals or tasks required for the user

interface.

 Backbone.js [12] gives a fundamental basis to the DDD portal due to its Model-

View-Controller (MVC) structure shown in Figure 3. It provides models with key-value

binding and custom events, collections with a rich Application Programming Interface

(API) of enumerable functions, views with declarative event handling, and connects it all

to the existing API over a Representational State Transfer (RESTful) interface. With its

structure, the template of each page can be quickly created and the contents can be easily

rendered after different user actions.

 8

Figure 3 The relationship between Document Object Model (DOM) and MVC
structure of Backbon.js [12]

 Knowing that the configurations of material simulations are the main information

to be displayed, two useful plugins, jQuery Steps and DataTable, are included to organize

the input fields and arrange the tabular data. The user interface is also expected to have

the data visualization, so jqplot [13] is used to build the charts and render 3D graphics.

Apart from those small plugins, a general front-end framework is required. Bootstrap

[14] provides plenty of interface components such as navigation, forms, buttons and even

design templates, which help develop a responsive web application and customize the

layout for each page. Table 1 shows the list of plugins used in the front-end development.

Table 1 The list of JS Plugins

JS Library Purpose Page

Backbone.js MVC structure All

JQuery Steps Wizard building Configuration

DataTable Tabular data arrangement Simulation

Three.js 3D Rendering Configuration

OrbitControl.js 3D Orbit control Configuration

jqplot.js Chart plot Report

Bootstrap Interface Components All

 9

2.1.3 Database

 Database management systems (DBMSs) can be divided into two categories,

desktop databases and server databases. Desktop databases reside on standard personal

computers mostly for single-user applications and server databases contain mechanisms

to ensure the reliability and consistency of data and are geared toward multi-user

applications. In order to build the first prototype of the DDD portal as fast as possible,

our team chose SQLite as the database due to its efficiency, independence and simplicity.

Moreover, SQLite also provides good portability, allowing data to be easily shared,

duplicated or even removed. Nevertheless, for future version of the DDD portal, a server

database such as MySQL or PostgreSQL may be better for scalability, concurrency and

centralization.

 Knowing that a long input file is composed of around 100 different fields, we

divided them into certain high-level groups and created the corresponding tables.

Although most of them share a one-to-one relation with the main table Configuration,

separating them still provides the convenience in managing data more efficiently.

Besides, matrices of different dimensions are frequently used in the input file, so we also

established the additional tables for data reuse. Below Figure 4 and Figure 5 are two

examples of entity-relation diagrams. A simulation (or experiment) has only one

configuration that connects to different groups of quantitative fields such as volume

information, numerical procedure, simulation control, etc. However, a simulation doesn’t

necessarily have one report unless its configuration is completed and is executed. The

second diagram illustrates the surrounding relation of table Material.

 10

Figure 4 Entity-Relationship diagram for table Configuration

Figure 5 Entity-Relationship diagram for table Material

 11

2.1.4 DDD server & Apache Server

 The role of the Apache server is to provide the authentication and access control.

For the hosted version of the DDD portal, it can protect the cluster from potential security

issues. A Python HTTP server, called here the DDD server, is implemented to tackle the

HTTP requests and responses, thus the communication is conducted in an indirect fashion

because the Apache server relays the data in the middle.

 Considering the example below in Figure 6 of extraction of data, users first press

the button “Load” and the client portal will immediately send an HTTP request with

name-value array. The Apache server relays the request as transformed data in XML

format and the DDD server replies correspondingly by connecting to the database and

packaging data in JSON format to the portal. The other functionalities are all realized in a

similar way with the same communication path.

Figure 6 Communication sequence diagram for extraction of data

 12

2.2 UI Design

2.2.1 Principle of design

 The importance of good user interface design can be the difference between

acceptance and rejection of a product in the market. If users feel it is not easy to learn nor

intuitive to use, otherwise an excellent product could fail. According to Larry

Constantine and Lucy Lockwood in their usage-centered design [15], the main principles

of design are:

• The structure principle: Design should organize the user interface purposefully, in

meaningful and useful ways based on clear, consistent models that are apparent

and recognizable to users, putting related things together and separating unrelated

things, differentiating dissimilar things and making similar things resemble one

another. The structure principle is concerned with overall user interface

architecture.

• The simplicity principle: The design should make simple, common tasks easy,

communicating clearly and simply in the user's own language, and providing

good shortcuts that are meaningfully related to longer procedures.

• The visibility principle: The design should make all needed options and materials

for a given task visible without distracting the user with extraneous or redundant

information. Good designs don't overwhelm users with alternatives or confuse

with unneeded information.

• The feedback principle: The design should keep users informed of actions or

interpretations, changes of state or condition, and errors or exceptions that are

relevant and of interest to the user through clear, concise, and unambiguous

language familiar to users.

• The tolerance principle: The design should be flexible and tolerant, reducing the

cost of mistakes and misuse by allowing undoing and redoing, while also

 13

preventing errors wherever possible by tolerating varied inputs and sequences and

by interpreting all reasonable actions.

• The reuse principle: The design should reuse internal and external components

and behaviors, maintaining consistency with purpose rather than merely arbitrary

consistency, thus reducing the need for users to rethink and remember.

2.2.2 DDD Portal – Graphic Interface

 Based on the above guidelines, the DDD portal is seeking simplicity, conciseness

and clearness. The site map in Figure 7 indicates that different pages (or templates) have

been created for the purposes of generating input files and visualizing the simulation

results. In this section, the layout of each page will be presented in detail with an

explanation why it is adopted particularly.

Figure 7 Site map of DDD portal

• Homepage: It is a page composed of one navigation bar and five primary buttons

in the middle. The user can set up his/her own account, or modify the default

existing materials and simulation controls. Clicking either navigation bar or

button can access the page simulation. A button for resetting the database is also

available if the user wants to remove the simulations created before.

 14

Figure 8 The screenshot of homepage

• Simulation page: The main components here are two tables of simulations and

reports, and the user can switch the view between them by clicking the tab. With

the plugin DataTable, the user can sort data by different columns and navigate

across different items with the provided pagination. For both of the tables, there

are different sets of buttons at the top of the page for the basic operations.

Figure 9 Table of simulations in simulation page

 15

Figure 10 Table of reports in simulation page

• Configuration page: The role of this page is to provide a form where the user

configures the simulation. The input fields on this form (or wizard) are divided

into several input areas such as Volume & Layer Property, Dislocation,

Simulation Control, etc. There are two types of buttons, general buttons and local

ones. The general buttons in orange are always available when navigating through

different steps, but the local ones in blue only show up in particular steps. They

support a variety of functionalities that will be covered in the section 2.3.3. One

configuration can possess as many layers as the user requires, so we use another

set of buttons (e.g. Layer 1) to toggle the content of each layer. In this way, the

view is more organized for the modification of field values in a particular layer.

 16

Figure 11 The wizard of configuration - Step 1 Volume & Layer Property

Figure 12 The wizard of configuration – Step 5 Simulation Options & Output

 17

Figure 13 Report page with download links and charts

• Reports page: A report is created and shows up only after the completion of

simulation. The download links and the charts regarding the simulation results are

the main information in this page. The dashboard gives the user a quick overview

about how the simulation went.

2.2.3 DDD Portal – Functions

 Behind the visual design, a variety of functions in the DDD portal have been

developed to support different user actions. They are all listed as follows in order to

explain when and how they will be used.

• Create/Delete a simulation: The user can create a new simulation through the

popup and delete the existing ones from the table.

• Save/Edit configuration: Once a new simulation is created, the user can edit the

configuration anytime by modifying input values on the form and saving them.

 18

The “global save” is for the whole configuration including all steps in the wizard,

and “local save” is only for a specific step.

• Load configuration: If the input values are similar to the ones of another

simulation created previously, the user can choose to load the whole configuration

or one specific step without entering the same information again. All the

previously created configurations are always available, so giving similar input

files which have only little differences will be much more efficient.

Figure 14 The popup for loading the data from existing simulations

• Import material/dislocation input files: The user who are already familiar with

input text files of DDD software can also import those existing files into DDD

portal to configure a simulations.

• Visualize 3D microstructure: The user can visualize the distribution of

dislocations inside 3D microstructure defined in configuration. And the

dislocations are represented in different colors based on their individual slip

system.

 19

• Generate random dislocation: The user can choose to generate a set of random

dislocations which meet the certain conditions defined in advance.

• Display informative definition of fields: When the user moves the cursor to a

particular input field, the information associated with such field will pop up.

Figure 15 Visualization of dislocations in 3D microstructure

 20

Figure 16 Display the information for particular field

• Crystal managers: This independent manager helps the user configure existing

standard crystals or create new ones. Once the new crystal is created, the user can

add a new slip system on top of it.

• Material mangers: The standard materials are provided in Material managers, so

the user can select one of them directly to configure the layer. In addition, the user

is able to modify them or create a new standard material when needed.

• Simulation Control managers: The standard simulation controls are provided in

Simulation Control managers, so the user can select one of them directly in the

configuration page (step 3). In addition, the user is able to modify them or create

new standard controls when needed.

• Run simulation: After configuring the input fields, the user can launch the

simulation directly from the DDD portal by selecting the number of processors to

use. If it is the laptop version, the reasonable number is between 2 and 8. If it is a

hosted version, the value can be up to 64 or even more.

• Download simulation results: Once the simulation is completed, the user can

access the report and download the simulation results including the text files and

animation files.

 21

Figure 17 Material manager - modify/delete existing material

Figure 18 Material manager - create new material

 22

Figure 19 Simulation control manager - modify/delete existing control

Figure 20 Crystal manager – add a new slip system or delete existing crystal

 23

Figure 21 Run a simulation by assigning the number of processors

2.3 Deployment

 The DDD portal is a package that comprises of a web application, database,

apache server, DDD server and simulation software. The deployment across diverse

platforms (or operating systems) is no easy task since the approaches of installation are

different. In the short-term, our approach uses a virtual appliance as a carrier where all

modules are pre-installed in the distribution as in Figure 22. From the user’s side, a

virtual machine such as virtual box is required. Once the appliance is powered on, the

server will be launched and start to listen for requests. Then the user can access the DDD

portal with a pre-assigned IP address.

 The virtual appliance solution is generally intended for personal use so that every

college student can install it and test different configurations with a small set of

dislocations. For the professional projects requiring the use of the cluster, another DDD

portal is deployed as a hosted solution, so only authorized users are able to access it and

run the simulation with the computational resources of the cluster.

 24

Figure 22 Virtual appliance solution for DDD portal package

2.4 User Experience Evaluation

 ISO 9241-210 defines user experience (UX) as "a person's perceptions and

responses that result from the use or anticipated use of a product, system or service".

Hence, the evaluation needs to consider all the users' emotions, beliefs, preferences,

physical and psychological responses that occur before, during and after using the

product. As in Figure 23, a user experience is also affected by external factors [16] such

as social factors, cultural factors and context of use. We produce an overall score or

degree of satisfaction for the product through certain quantitative methods.

 25

Figure 23 User experience forms in interaction with user and product in the particular

context including social and cultural factors [16]

 The QSA-GQM questionnaire is a technique based on the Goal-Question-Metric

paradigm, used in Software Engineering to assess software quality. The Repertory Grid

Technique (RGT) elicits and evaluates people's subjective experiences of interacting with

technology through the individual way they construe the meanings of those experiences

under investigations. The semi-structured experience interview is to make arrangements

for a meeting in which the interviewer asks questions, listens and records the answers. In

general, a diversity of evaluation methods exists in research and in industry, but the

specific purpose for each must be determined.

 To date, user experience studies have mostly focused on short-term assessment of

the initial adoption of new products. The UX curve method [17], a long-term evaluation,

has also been introduced because the relationship between products and users evolves

over a long period. According to [18], the actual experience of usage doesn’t cover all

relevant UX concerns. Instead, people can have indirect experiences before their first

encounter through expectations formed by existing experiences of related technology,

 26

presentation and demonstrations and extend these expectations similarly after usage.

Figure 24 explains this relationship.

Figure 24 Time spans of user experience, the terms to describe the kind of user
experience related to the spans, and the internal process taking place in the different time

spans [18]

Figure 25 The elements of user interface [19]

 Since our product is a web-based application, user experience can be studied in

five consecutive levels [19] which include visual design, information design, interaction

design, functional specifications, and site objectives as in Figure 25. As a concrete

objective, the focus is on how users feel about the look of interface and how the

presentation of information facilitates the understanding. More abstract topics include

how users interact with the functions of the application, whether the functionalities meet

 27

the original specification, and whether the objective of application is fulfilled according

to user needs identified through relevant research.

 The first version of the DDD portal has been developed and will be deployed for

academic use in the near future. A structured UX evaluation plays a significant role in the

improvement of functions and the evolution of the whole application, because it can help

the developer team discover what users like and dislike and what they expect from the

product. In the short-term, our team will collect the feedback and the remarks from

college students or researchers by adopting the questionnaire approach. Based on the

prior discussion, the questionnaire in Appendix A covers a range of subjects from

accessibility, usability, quality, and user expectation. The long-term goal is to keep track

of user responses to the new features of the application, and eventually to reflect the

potential future needs and evolve the product.

 28

CHAPTER 3

SCIENTIFIC COMPUTING

 Scientific computing (or computational science) is an interdisciplinary field in

which mathematical models and quantitative analysis techniques are applied to solve

real-world scientific problems. It often requires the availability of a massive number of

computers for performing large-scale experiments. Researchers use high-performance

computing solutions and installed facilities such as clusters and super computers to

analyze the complexity of problems and attempt to resolve them.

3.1 Purpose

 The DDD algorithm aims to solve the dislocation dynamics and provide the

material stress metrics for the study of plasticity. The main computation involves an

iterative process of forces interaction between dislocations within the crystal structure.

Although the current version of the algorithm is already parallelized, the resulting

speedup of the program doesn’t increase proportionally with the computational resources

and even stagnates when using too many processors. This limit makes the software

unable to tackle complex simulations in which there are a massive number of dislocations

configured.

 This problem leads us to the discussion on high performance computing. The poor

scalability may result from unstructured parallelization, communication between

processors, inefficient data structures, the algorithms used in mechanical computation,

etc. In the second part of this thesis, we analyze certain parts of the DDD algorithm that

take major portions of computation cost (or execution time), and identify the possible

causes for poor performance. A variety of solutions are proposed regarding the nature of

the problem and the best fit into the original structure of the program. Last but not least,

 29

some ideas worth trying but not yet tested will be presented as well for future extensions

of the product.

3.2 Introduction of DDD algorithm

3.2.1 Program Flow

Figure 26 The flow chart of DDD algorithm

 The major operations performed by DDD are shown in Figure 26. The program

starts with initializing the MPI environment and reading the input files, and then

distributes the data to all the assigned processors. The Box method [28] computes far-

field elastic stresses for each box that contains an ensemble of dislocations. The

interactive forces between dislocations are calculated during the dynamic process. As

 30

soon as the overall force applied on each dislocation node is calculated, its new position

will be determined correspondingly.

 Based on those new changes, the program computes plastic strain and updates

material stress-strain responses and dislocation densities. The next step is to perform

node dissociations, interactions between dislocations and the remeshing process if certain

mechanical conditions are met. To finalize the simulation, the program writes output files

and provides the desired information concerning the current simulation state.

3.2.2 Variables

 Dislocation node and dislocation segment are two major variable types used in the

program to represent the graph relation of dislocations. The dislocation node variable

stores information about the forces, the connections, the position, and the slip system.

And the dislocation segment variable shows the coordinate, and the number of neighbor

segments and two nodes of the segment. Table 2 and Table 3 present the detail of these

two variable types, and Figure 27 shows an example of dislocation configuration with the

associated data.

Table 2 Variable type - dislocation node

PROPERTY TYPE DESCRIPTION
iID integer Node identifier
iLoopID integer Loop in which the node belongs
iGroupID integer Group in which the node belongs
iLayerID integer Layer in which the node lies

iType integer
Node type: iDPTypeFree: free moving node,
iDPTypeFixed: fix node (generally end node),
iDPTypeInter: interaction (junction) node

exited integer
Set to 1 if the node has exited the volume for no
PBCs simulation (finiteBox=1), 0 otherwise

tvPG type(vector) Global coordinates of the node (x,y,z)

tvTG type(vector)
Tangent direction at the node, used for spline
method (iSplineFe=1)

 31

tvPreV type(vector) Global node velocity

tvPreVT type(vector)
Global node tangential velocity (not used
anymore)

tvAcce type(vector)
Node acceleration, used for inertial computation
(not implemented)

force type(vector) Nodal force

dpMass double
Nodal mass, used for inertial computation (not
implemented)

iNumConn integer
Number of node connections. Upper limit set by
MAX_CONN.

iConnP MAX_CONN*integer IDs of connected node.
iConnBurgers MAX_CONN*integer IDs of the Burgers vector for each connection

iMiller integer
Reference plane of the node, corresponds to the
first plane of the iListMiller plane list.

iNumMiller integer Number of planes the node belongs to (max=3)
iListMiller 3*integer List of the planes the node belongs to.

lStat boolean
Node flag, used to check if node has been
already visited.

lMovingNode boolean
Used in dynamics to know if the node should be
moving.

Table 3 Variable type - dislocation segment

PROPERTY TYPE DESCRIPTION
iID integer Segment identifier
iLoopID integer Loop in which the segment belongs
iGroupID integer Group in which the segment belongs
iLayerID integer Layer in which the segment lies
iBox integer Box in which the segment lies
Node1 integer ID of the first node of the segment
Node2 integer ID of the second node of the segment

tvPG type(vector)
Global coordinates of the middle of the segment
(x,y,z)

iNumNei integer Number of segment neighbors
iNeiID *integer IDs of segment neighbors

lStat boolean
Segment flag, used to check if segment has been
already visited

 32

3.2.3 Existing MPI framework

 In this section, the existing communication flow of DDD is presented. The master

processor distributes global variables and boxes in the initialization process and then

executes the main body of the program where there are two main computation,

• DynamicsSolver: A parallel function composed of 4 main steps: 1) distribute the

dynamic dislocation segments 2) compute the nodal force 3) derive the overall

force through MPI_AllReduce 4) resolve the new position of dislocation nodes.

• Update_Output_Statistics: With parallelized sub-functions, it computes the

important mechanical metrics for the changes, and performs short-range

interaction calculations such as node dissociation and the remeshing process.

 The parallelization is already implemented in these two high-level functions

because they account for the major fraction of execution time at each iteration. Many

MPI communications are also contained in the program as shown in Figure 28 because of

the need for data transfer and work distribution. DDD is a master-slave program which

heavily relies on the master process to distribute tasks and update changes. In general, the

program uses MPI_Bcast, MPI_Reduce and MPI_AllReduce to broadcast and collect the

Figure 27 Example of dislocation configuration and the associated data

 33

data respectively. For point-to-point data transfer, MPI_Isend (non-blocking

communication) is also used with the advantage that the function call can return

immediately without waiting for an acknowledgement from the receiver. To ensure the

reception of data and the completion of calculation at each step, MPI_Barriers are

inserted in many places for the purpose of synchronization.

Figure 28 The communication flow of parallel DDD program

3.3 Performance Metrics

 Execution time, speedup are two metrics commonly used to measure the

performance of MPI programs [25]. These metrics are affected by several factors such as

the sequential part’s fraction of the program, the complexity of the problem, the number

of processors, and inter-processor communications. For the subsequent sections, we

generally use speedup as the main indicator to reveal the performance of the DDD

parallel program.

Execution time

 34

 Execution time is defined as the time elapsed from the start of the first processor

in the execution of the program to the completion of the last processor. The execution

time T is given by:

 𝑇 = 𝑇!"#$ + 𝑇!"## + 𝑇!"#$

where 𝑇!"#$ is the computation time, 𝑇!"## is the communication time consumed by

processors to send and/or receive messages, and 𝑇!"#$ is the time a process spends waiting

for the other processors.

Speed up

 Speedup is another indicator that takes processors count p, and problem size n,

into account. The total parallel execution time of a program is given by:

𝑇!"#"$$%$ = 𝜎 𝑛 +
𝜑(𝑛)
𝑝 + 𝜅(𝑛,𝑝)

where 𝜎 𝑛 is the execution time of the serial part of program, 𝜑(𝑛) is the execution time

of the parallel part of program, and 𝜅(𝑛,𝑝)is the communication time. Generally, speed

up is the ratio of the time taken to solve a problem on a single processor to the time

required to solve the same problem on a parallel computer with multiple processors. The

speedup metric for solving an n-size problem using p processors is expressed by:

𝜓 𝑛,𝑝 ≤
𝑇!"#$%&
𝑇!"#"$$%$

 Amdahl's Law [26] is used to predict the maximum achievable speedup for a

given program. The law assumes that a fraction f of a program's execution time was

infinitely parallelizable with no overhead, while the remaining fraction, 1-f, was totally

serial. According to this law, the speedup of n-size problem on p processors is governed

by:

𝜓 𝑛,𝑝 =
1

𝑓 + (1− 𝑓)/𝑝 , 0 ≤ 𝑓 ≤ 1

 35

 Amdahl's law considers problem size as a constant and hence the execution time

decreases as the number of processors increases. Gustafson’s law [27] gives another

formula for predicting maximum achievable speedup which is described by:

𝜓 𝑛,𝑝 = 𝑝 + (1− 𝑝)𝑠

where s is the fraction of total execution time spent in serial code. Both of these two laws

ignore the communication cost, so the maximum speedup will be overestimated.

3.4 Experimental Setup

 We ran the benchmarks of the DDD program on the research cluster Cameron of

SUPELEC, Metz Campus with 16 nodes (or machines) that are interconnected across a

10-Gbit/s Ethernet switch (an OmniSwitch Alcatel 6900-X20-F) with up to twenty

10Gbit/s ports. Each node has an Intel Xeon E5-1650 processor clocked at 3.2GHz

composed of 6 physical hyperthreaded CPU cores (12 logic cores), and equipped with 8

GBytes of global DDD3 RAM on a 1600MHz memory bus. This cluster utilizes the

Linux 64 bits, fedora core 16 operating system.

 There are several important terms which will be used in subsequent sections to

explain the performance of scalability. A node is a machine which can contain multiple

processors (or CPU cores). The total number of processes possible is the product of the

number of nodes and the number of processes available per node. For example, 16

processes may be created using two nodes with 8 processes per node, or 16 nodes with 1

process per node.

3.5 Problems in DDD algorithm

 In advance of changing the parallelization and refactoring the code, it is important

to identify existing problems in the DDD algorithm. These problems can provide the

hints as to improve and how to carry out the modifications. For this work, we used

Vampir [20], a popular profiling tools to analyze the MPI communications between

 36

processors with the aid of statistical charts such as function summary, message summary,

communication matrix, call tree, etc. A screenshot of Vampir interface is shown in Figure

30. Moreover, we manually measured the execution time and the volume of message

transfer to discover more possible causes and support the findings from Vampir.

3.5.1 Analysis by Vampir

 Vampir requires a working monitoring system with built-in support for the

performance data file format. We use Score-P [21] as the code instrumentation and run-

time measurement framework because it supports the generation of trace log files with

the Open Trace Format Version 2 (OTF2). Figure 39 illustrates the overview of Score-P

measurement system architecture.

Figure 29 Overview of the Score-P measurement system architecture and the tools
interface [21]

 37

Figure 30 The interface of Vampir with a number of statistic charts.

Even though the timeline of events, the message transfer between processors and the

execution time of subroutine can be easily traced with the aid of the visualization tools,

there are still some limitations in the trial version: 1) Inability to display all the events

once the number of iterations of the program exceeds a certain limit, 2) Inaccuracy in the

execution time of functions due to extra code instrumentation. Those constraints only

allow the parallel program to be executed with 2 to 16 processes. Moreover, the number

of iterations in the simulation is set to 2 in order to avoid an excess of event information

that Vampir cannot handle. In spite of all the inconveniences, it can still help us to

identify the following anomalies that may explain why the performance doesn’t scale up

well in the presence of distributed-memory parallelization.

Non-negligible MPI barriers

 In the DDD parallel program, MPI Barriers account for a non-negligible fraction

of the total execution time. From Figures 31 and 32, we noticed that with 2 processes, the

fraction is less than 25%. However, when the number of processes increases, it becomes

 38

a more and more important component of delay and even reaches more than 50% with 8

processes. This tendency seems reasonable because the execution time of a parallel part

of algorithm is reduced with more processes while the time consumed by MPI_Barrier is

roughly the same. The purpose of MPI_Barrier is to synchronize processes to prevent

some processors from running faster than the others, but this call are overused in our

program as the check points to ensure that every processor reach the same step of

calculation.

Figure 31 Execution time per functions with 2 processes, 1 process per node
(~1000 dislocations)

Figure 32 Execution time per function with 8 processes, 1 process per node
(~1000 dislocations)

 39

Non-parallel functions:

The master timeline in Figure 33 indicates that the function shortrangeinter is not

yet parallelized, so the master processor is the only worker that carries out the

computation. There may be more non-parallelized parts in the program which will hinder

the performance of speedup by introducing extra MPI Barrier calls in our program.

Figure 33 The function shortrangeinter is only executed by the master processor
(~1000 dislocations)

Bad Load Balancing:

 The function dynamicMain is a core parallel part of the DDD algorithm that

consumes the largest fraction of execution time. Its speedup does scale up but is not as

good as theory would predict. We noticed that the computational load for the dislocation

dynamics may not be evenly distributed, so some processors complete their work earlier

than the others and then begin to idle. Figure 34 below is an example that contains

approximately 1000 dislocations. The master processor has more computation to do, so

the other processors wait for significant time to begin the next step.

!

	

 40

Figure 34 Imbalance of the work distribution between processors (~1000 dislocations)

3.5.2 Analysis by manual measurement

 Along with the analysis from the profiling software, we also conducted manual

measurement of execution time and message volume. The results provided further

information regarding the computational complexity of dislocation dynamics, the overall

speedup of the DDD algorithm and message volume transferred among processors.

Computational complexity

 The computational complexity of dislocation dynamics is O(n2) because every

force induced by each pair of segments needs to be calculated. In the DDD algorithm, the

box method is applied to focus on short-range interaction and thereby divide the crystal

volume into a certain number of boxes. Every segment belongs to a particular box and

only the segments contained in 26 neighbor boxes will be considered as neighbor

segments for the ones in central box. In this way, using more boxes to partition the crystal

volume will result in less dislocation segments in each box, so the computation can be

significantly reduced. Figure 35 shows the 2D schematic of the Box method [28]. The

 41

central red box is surrounded by the neighbor boxes marked in green. For the red

dislocation, the elastic stress field induced by green dislocation segments in the neighbor

boxes will be accurately computed.

Figure 35 2D schematic of the Box method. For the red dislocation, the elastic stress field
induced by green dislocation segments in the neighbor boxes will be accurately

computed.

Figure 36 The computational complexity of dislocation dynamics. Using 1000 boxes
(10x10x10) to partition the crystal volume and varying the total number of dislocation
segments from 5000 to 20000 leads to distinct number of dislocation segments in one

box.

 42

 Based on the box method, the computational complexity still remains the same,

however the problem size n becomes the average amount of dislocation segments in one

box instead of total amount of dislocation segments in crystal. The curve in Figure 36

hints at the quadratic relationship O(n2) between the execution time and the problem size.

Overall speedup

 In order to measure overall speedup, we inserted timers at the beginning of

initialization and in the last iteration of simulations to measure the total execution time.

The performance with different number of processes is depicted in Figure 37. We

conducted the measurement using 2 to 8 processes. With this configuration set, the

speedup closely follows the theoretical line, whereas it starts to deviate when using more

than 16 processes. This trend suggests that a previously unknown serial part of algorithm

exists or that the increasing cost of MPI communication negatively impacts the

scalability.

Figure 37 The overall speedup of DDD algorithm (~20000 dislocations, 30 iterations)

 43

Parallel computation – Dynamic solver

 Since the parallel function DynamicSolver accounts for the major part of

simulation time, the overall speedup will be significantly impacted by its performance.

Figure 38 shows that in the case of 20000 dislocations, the time spent in DynamicSolver

is more than 90% when using 2 processes. We made use of two configurations, 2000

dislocations and 20000 dislocations, to verify its scalability. Figures 39 and 40 are the

results of the measurement. For 2000 dislocations, the performance is close to theoretical

predictions when using fewer processes. However, in the case of 20000 dislocations, the

speedup doesn’t increase proportionally at all with the number of processors. The

possible reason for the performance with 20000 dislocations being worse than the one

with 2000 dislocations is that the serial code for distributing dynamic segments consumes

more of the total execution time and it limits the maximum achievable speedup.

Figure 38 DynamicSolver accounts for more than 90% of execution time for each step

(~20000 dislocations, 2 processes)

 44

Figure 39 The speedup of function DynamicSolver (~2000 dislocations, 1000 iterations)

Figure 40 The speedup of function DynamicSolver (~20000 dislocations, 30 iterations)

 45

Message Volume

 MPI processes constantly exchange messages (or data) over program execution.

As message exchange can comprise a large part of communication delay, so we also

tracked the message volume in different important steps in order to verify if bottlenecks

exist over the network in the cluster. We identify several important points associated with

message passing in the program as indicated by Figures 41 and 42:

• The message volume in the initialization phase is less significant compared to the

message passing that takes place during the iterative loops.

• At each iteration, the MPI Broadcast accounts for the largest fraction of message

transfer because it sends the complete dataset of dislocation nodes.

• If more dislocations are added in the simulation scenario and the total message

volume will certainly increase. However, the maximum capacity of a typical

switch is at least 100Mbit/s (our cluster is 10Gbit/s), so the message volume

should not be the cause of poor scalability.

Figure 41 Message volume in the initialization phase (~1000 dislocations)

 46

Figure 42 Message passing during the iterative loops (~1000 dislocations)

3.6 Proposed Solutions

 The findings in previous section provide significant information of where

refactoring of the algorithm will be possible. Considering the nature of these types of

problems and the best fit into the structure of existing program, we have tried a variety of

solutions and compared the performances after each modification. Some of the indicated

solutions make sense for performance improvement and the algorithm structure, but some

are not suitable because they increase the execution time or need to trade massive

memory for the speed of numerical calculation. The details of these solutions will be

explained along with the statistical charts showing results of each.

3.6.1 Dynamic Load Balancing

 The first challenge in creating MPI programs is to determine how to divide the

main problem into several smaller problems. The goal to data partition is to divide the

data into pieces of roughly the same size and distributed these smaller data sets to

 47

different MPI processors. Each of these MPI processors only operates on the assigned

data. Also, because the data required for the problem solution may be dynamic during

different iterations of the algorithm, tracking these changes dynamically and rebalancing

them efficiently is very challenging. For the existing strategy in the DDD program, we

consider the load as the computation of short-range interactive forces induced by the

neighbor segments, so we count the total number of them for each dislocation segment

based on the definition in the Box method. After sorting them in descending order by

means of an insertion-sort algorithm, the dislocation segments are assigned to different

MPI processors in round-robin fashion. Each processor only computes the interactive

force for a portion of dislocation segments.

Table 4 Example of the load of dislocation segments. The dislocation segments are
distributed to different MPI processors in round-robin fashion

 This approach has two drawbacks. First the insertion-sort algorithm is not

efficient enough due to its complexity of O(n2). The sorting is the serial part of

DynamicSolver, so it will affect the best achievable speedup when the number of

dislocations is massive. Therefore, we replaced it with a heap-sort algorithm which has a

better complexity of O(nlogn). Next the round-robin model cannot reach the best

construction. The first processor always takes the largest data set and the last one takes

the smallest data set during the cycle of distribution, so the disparity between these two

Segment ID No. of neighbor segments Load Processor ID
408 1000 1000 1
407 1000 1000 2
99 1000 1000 3
100 1000 1000 4
101 980 980 1
102 980 980 2
33 770 770 3
34 770 770 4

 48

processors is most likely very large. In order to achieve an even distribution, we created

an array called processor load to track the amount of data already assigned to a particular

processor. The processor that has the least load will take the next data set in the cycle of

distribution, so the possible difference of load between processors will be minimized.

 Furthermore, the original scheme of load balancing in the DDD program is static.

It means that the load for each dislocation segment needs to be re-estimated and re-

assigned at each iteration by repeating the steps, counting the number of neighbor

segments, sorting them, assigning them, etc. To avoid redundant calculations, we have

attempted to apply a dynamic balancing scheme for which the partition of load is based

on dislocation nodes instead of dislocation segments due to the constraint of existing data

structure of the DDD program. However, the definition of load remains unchanged, so

the number of neighbor segments is calculated indirectly. Each dislocation node may

have one or more connections (or segments) and we add up the number of neighbor

segments for connections to derive the load. Table 5 is an example of this idea. Inspired

by the strategy and the concept in [29], we built the scheme as shown in Figure 43:

Table 5 Example of the load of dislocation nodes. The load is calculated indirectly by
adding up the number of neighbor segments of connections

Node ID
ID

Connection ID No. of neighbor segments Load Processor ID

1
407 1000

2000 1
408 1000

2
99 1000

2000 2
100 1000

10 33 770 770 3
11 34 770 770 4
12 123 130 130 3
97 125 130 130 4

 49

Figure 43 The scheme of dynamic load balancing on dislocation nodes

 At the beginning of each iteration, we decide if there is a need to re-estimate the

load. If yes, the calculation of neighbor segments for all the dislocation nodes will be

carried out. Then these nodes will be assigned to different MPI processors for the next

step. If not, we only take into consideration the new dislocation nodes created in the prior

iteration, derive the load for them, and make the additional assignments. With this

scheme, we can dynamically track the new incoming load and rebalance it. However, the

difference in the loads between dislocation nodes can be immense because of the way we

calculate it. Suppose that there are two dislocation nodes, one has many connections and

each connection has many neighbor segments, but another only has one connection and

this connection has few neighbor segments. In this case, an uneven distribution of the

load to the processors will likely occur. As a result, more time is consumed in

DynamicSolver and therefore the scalability is worse (as previously noted) when using

more processes. In Figure 44, the speedup with the heap-sorting algorithm is significantly

 50

improved as opposed to Figure 37 because the time spent in serial code is reduced.

Meanwhile, Figure 45 indicates that the performance remains roughly the same because

the extra execution time is introduced by the uneven distribution of the load whereas the

scheme of dynamic load balancing can save time for assignment.

Figure 44 The overall speedup with heap-sorting and static load balancing on dislocation
segments (~20000 dislocations, 30 iterations)

Figure 45 The overall speedup with heap-sorting and dynamic load balancing on
dislocation nodes (~20000 dislocations, 30 iterations)

 51

 To sum up, utilizing dynamic load balancing is generally better than static load

balancing because it prevents the repetitive re-estimation of the load and then the

necessary re-assignment of this load to different processors. However, a new and more

organized data structure for dislocation segments is needed to allow us to dynamically

track the change of load based on dislocation segments.

3.6.2 Tabularization for the mathematical functions

 Knowing that there are a massive number of numerical computations in the

function DynamicSolver, we also used another profiling tool, Valgrind, to identify which

parts of the calculation in this program consume the most computation time. The tree

map from Kachegrind in Figure 46 reveals that the mathematical functions log and atan

are called approximately 7 million and 3 million times, respectively, in the case of 1000

dislocations and 20 iterations. Those amounts of calls represent respectively 10% and 4%

of the total computation time in calculating the interactive force.

Figure 46 The functions log and atan consume the significant time for solving the
dislocation dynamics (Tree map from Kachegrind)

 52

 Because of this significant time of computation, we generated a model based

tabularization. This model attempts to create the arrays beforehand to store the output

values given the possible inputs for the function log and atan. Since the domain of input

is continuous without boundaries, we only target a certain range and evenly partition it

into several intervals. Each interval is represented by the value in its center, and we pre-

compute the output values based on those representatives. Tabularization provides the

convenience of direct memory access so that the output value can be determined simply

by which interval the input value falls in. In this way, we expect that the total time spent

in solving the dislocation dynamics could be significantly reduced. Figures 47 and 48

illustrate how we define the representative and the precision for the tabularization.

Figure 47 Tabularization for atan. Here the range is between -5 and 5 and the number of
intervals is 10. Each blue point is the representative of its interval, and the precision is

defined as the maximum possible difference between the exact mathematical calculation
and the approximation

 53

Figure 48 Tabularization for log. Here the range is between 0.001 and 0.1 and the number
of intervals in 10.

 The tabularization can only be implemented for a certain range of values, so it is

first necessary to analyze the distribution of possible input values for these two

mathematical functions during the program. With the aid of the histograms in Figures 49

and 50, we noticed that the possible inputs for atan are centered between -100 and 100

and the ones for log are less than 0.1. Although the tabularization has the performance in

direct memory access, it also introduces a precision problem that may affect the whole

simulation. In the general sense, the larger size the array has, the more precision that can

be achieved for a fixed range of inputs.

 54

Figure 49 The distribution of input values for atan

Figure 50 The distribution of input values for log

 55

Figure 51 The relationship between the array size and the precision for atan. The range of
tabularization is between -100 and 100.

Figure 52 The relationship between the array size and the precision for log. The range of
tabularization is between 10 -7 and 0.1

 Figures 51 and 52 reveal the relationship between the array size and the precision.

To verify if the precision of tabularization provides a significant impact on the material-

stress simulation, we used two specific configurations requiring very high precision to

compute the dynamic interaction among the dislocations. The results showed us that the

 56

function DynamicSolver requires a precision of 10-7 for the function atan and 10-4 for the

function log. A bad approximation could lead to wrong timing of the evolution of

dislocations or unstable force interactions. Figures 53 and Figure 54 are the screenshots

of animations of these two different test simulations.

Figure 53 Precision test – Evolution of dislocations (Activation of a Frank Read source)

Figure 54 Precision test – Stable force interaction (Dislocation dipole)

 In order to achieve such high precision, we can either reduce the range of inputs

or increase the array size in order to have more possible inputs. For the former solution,

the improvement on speed is limited because inputs outside the range still need to be

calculated through mathematical functions. And for the latter one, a very large memory

space, more than 1GB, must be consumed in order for the improvement to realized, so it

is not practical for most of machines. Apart from the tabularization, the article [30] offers

 57

a means for fast and convenient calculation of the logarithmic function to essentially four

significant digits. In this way, no extra memory is demanded during any phase of pre-

computation, but the precision is still not sufficient for the numerical computation in

dislocation dynamics.

3.6.3 Algorithm tuning - regrouploop

 The function regrouploop is used for the segmentation of dislocations during the

process of remeshing and node dissociation. This function finds the total number of

groups and loops of dislocations and assigns the corresponding loop ID and group ID to

each dislocation node. Figures 55 and 56 show the examples of groups and loops. Since

the relationship among dislocation segments and dislocation nodes is a graph, it makes

more sense to resolve this problem by applying particular graph algorithms.

 A group of dislocations is considered as an independent connected component in

which any two nodes are connected to each other by a path and which is connected to no

additional nodes in the graph. A graph that is itself connected has exactly one connected

component consisting of the whole graph. To find groups, we can either use depth first

search (DFS) or breath first search (BFS). Here, we implemented DFS because it can be

reused to tackle the problem of finding loops with its searching priority. A search that

begins at some particular node v will find the entire group containing v before returning.

By looping through all the nodes and marking the ones that have been visited to avoid re-

traversal, we can identify all groups in the dislocation graph.

 58

Figure 55 Example of groups in dislocation graph

Figure 56 Example of loops in dislocation graph

 The solution for finding loops is not as straightforward as the one for finding

groups. A loop can be seen as a branch in the graph in which any node has two

connections except the end nodes that may have only one connection or more than two.

So there are more possible cases like the examples in the previous figure. Basically, the

shape of the loop is either a path or a circuit. In order to find all of them, we initially

 59

decompose each group into several sub-groups by duplicating the nodes with more than

two connections and decoupling them from each other. This method of decomposition is

shown in Figure 57. With the new graph composed of several sub-connected components,

we can do the same traversal to find the total number of loops. Furthermore, DFS also

brings one additional convenience, namely the prevention of wrongly counting the

circuits since it always visits the child nodes before the neighbor nodes.

Figure 57 Decompose the group by duplicating the nodes with more than two
connections and decouple them from each other

 To sum up, the two main objectives of the function regrouploop can be

accomplished by DFS. Its complexity is O(|V|+|E|), where |V| is the number of nodes and

|E| is the number of edges, so the cost of computation is linear which is much better than

the old algorithm. Figure 58 shows the execution time of new regrouploop and old one.

Due to the fact that the old algorithm is designed informally, we cannot compare them

directly in terms of complexity.

 60

Figure 58 The average execution time of new regrouploop and old regrouploop (~20000
dislocations, 10 iterations)

3.6.4 Operating points

 In this section, we focus on the relation between the overall speedup and the

problem size of dislocation dynamics. In the Box method, two important parameters, the

total number of dislocation segments and the box size, determine the problem size n (the

number of dislocation segments in one box). For instance, with around 1000 dislocations

in crystal volume, a box size of 3 is the special case where all the dislocation segments

except the ones in central box are considered as neighbor segments. If the box size is 4,

we can derive n roughly as 16 (~1000/43). And if the box size is 5, n is 8. Nevertheless, if

the box is 6, n is less than 5, leading to over-approximation. In general, the box size is

always greater or equal to 3 and less than the number that results in the problem size less

than 5.

 As Gustafson’s law says, with the increasing problem size and the roughly fixed

fraction of execution time for serial code such as data partition and I/O operations, the

best achievable speedup will increase as well. In our case, we still need to consider the

MPI communication cost, but the performance will not change drastically based on these

cost since the bandwidth of network in the cluster is sufficient. Knowing that most of the

 61

material-stress simulations for research projects are lengthy and time-consuming, it is

better to know the suitable operating points where we can launch the simulation with the

proper number of processors according to different problem size. Figure 59 is an example

of 10000 dislocations for which we varied the number of processes and the box size to

obtain the best achievable speedups respectively. The contour chart gives a clear view of

different levels of speedup marked in corresponding colors. Other than the configuration

of 1000 dislocations, there are three more practical ones (5000, 10000, and 20000

dislocations) and their contour charts are shown in Figures 60, 61 and 62.

Figure 59 The overall speedup with different combinations of the number of processes
and the box size (~1000 dislocations)

Figure 60 The overall speedup with different combinations of the number of processes

and the box size (~5000 dislocations)

 62

Figure 61 The overall speedup with different combinations of the number of processes
and the box size (~10000 dislocations)

Figure 62 The overall speedup with different combinations of the number of processes
and the box size (~20000 dislocations)

 63

3.6.5 Efficient use of memory

 From the experimental results, we see that some of the serial code consume more

time when using more processes per node. For those functions, the memory allocation

and deallocation occur very frequently, so these operations can be very expensive under

the structure of MPI which does the parallelization in distributed memory fashion. When

the separate processors in the same node attempt to demand memory space, it takes a

fixed amount of time for the node to carry out the arrangement. Therefore, with more

than one process per node, the extra time for the organization of memory space is

required.

 64

CHAPTER 4

CONCLUSION

 In this thesis, we made the following contributions to 1) the development of front-

end application for material-stress simulation software and 2) the optimization of the

parallel DDD algorithm. Compared to the command line interface based software such as

ParaDIS and NumoDIS, the DDD portal with a graphic interface provides more intuitive

and efficient operations. A person who is either an expert or a novice user in relevant

fields can easily generate the long input file for the material-stress simulation and analyze

the simulation results with the aid of a rich set of functions available in the software. As

for the deployment, we distribute two versions of application. The laptop version is

intended for any user who has the interest in material science and the hosted version

which is intended to be installed in a computer cluster with limited access for the

professional use. Apart from the front-end development, the optimization of the DDD

algorithm must also deal with the complicated simulation scenarios with appropriate

performance characteristics. The analysis performed using both manual measurement and

profiling identified the potential root causes of poor performance and scalability. Based

on these important findings, we proposed various solutions such as dynamic load

balancing, tabularization and algorithm tuning. The best achievable speedup was found to

depend on the problem size, so we ran a number of simulations for different

configurations to derive the proper operating points. These valuable insights can help us

understand how to improve the parallel DDD algorithm.

 65

CHAPTER 5

FUTURE WORKS

 The DDD portal is the first prototype of a simulation tool using a front-end

application, so room for the improvement still exits regarding the architecture, the choice

of programming languages, the functions and the deployment. For instance, the

visualization of simulation results might in the future be implemented in a real-time

fashion, allowing the user to see the instant change in the curves reflecting the important

indicators for the plasticity. Also, using an appliance to package a front-end application is

only intended as a temporary solution, so future work would customize the package for

different unique operating systems. An innovative application can be only created

through having a good understanding of the needs of the user and strong in-depth

knowledge about the new technologies of front-end development. For future work of

optimizing the DDD algorithm, a focus can be placed on the data structures and the

computation of dislocation dynamics since these two elements determine how the

parallelization scheme is constructed and thereby impacts the performance and speedup.

More organized data structures will help enforce the dynamic load balancing on

dislocation segments to avoid the repetitive re-estimation of load and re-assignment of

work to different processors. Because the problem of dislocation dynamics involves a

great quantity of geometric computation, we can make use of some existing libraries such

as CGAL (Computational Geometry Algorithms Library) to deal with this computation.

Although CGAL is a C++ library, we can combine it with Fortran code and integrate

these together into a single executable that knows how to interface the function calls. In

addition, a hybrid solution of OpenMP [24] and MPI should also be investigated because

it includes the benefits of distributed memory system in a high level and shared-memory

system in each local machine.

 66

APPENDIX A

SOFTWARE EVALUATION QUESTIONNAIRE

DDD portal Evaluation Form

Name: Department:

Trainer: Class Name:

Role: professor researcher student

Accessibility 5 4 3 2 1

Easy to access the documentation

Easy to download the software

Easy to install the software

Usability: 5 4 3 2 1

Navigation

Does the site provide the clear indication of
current location

Are all major parts of the site accessible from
homepage

Is the site simple without unnecessary levels

Function

Are all necessary functions available and
clearly labeled

Do all functions perform their intended tasks

Quality: 5 4 3 2 1

How user-friendly is our software's interface

 67

How easily do you find particular information
in our documentation

How successful is our software in performing
its intended task

How often do you find our software freeze or
crash

How helpful is the support service of our team

Expectation:

How can we improve the software?

What other functions (capabilities) we should
add?

What other sections or information we should
add in our documentation?

5: Excellent, Extremely often 3: Good, Moderately often 1: Poor, Moderately often

 68

REFERENCES

 [1] “ParaDIS” http://paradis.stanford.edu/

 [2] “NumoDIS” http://www.numodis.fr/

 [3] V. Bulatov and W. Cai, “Computer simulations of dislocations”, Oxford University
Press, chapter 10, 2006

 [4] M. Frigo, C.E. Leiserson, H. Prokop, and S. Ramachandran, “Cache-oblivious
algorithms”, In Proc. 40th Ann. Symp. Foundations of Computer Science (FOCS-
99), IEEE Press, pp 285–297, New York, NY, 1999

 [5] Umit V. Catalyurek, F. Dobrian, A. Gebremedhin, M. Halappanavar and A. Pothen,
“Distributed-memory parallel algorithms for matching and coloring”

 [6] Ruoming Jin, Ge Yang, and Gagan Agrawa , “Shared memory parallelization of data
mining algorithms: techniques, programming interface, and performance”, IEEE
Transactions on knowledge and data engineering, vol. 16, no. 10, October 2004

 [7] Natallia Kokash, “An introduction to heuristic algorithms”

 [8] L.P. Kubin, G. Canova, M. Condat, B. Devincre, V. Pontikis and Y. Brechet,
“Dislocation microstructures and plastic flow: a 3D simulation”, Solid State
Phenomena, vol. 23&24, pp 455–72, 1992

 [9] A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T. Pierce and
V. Bulatov, “Enabling strain hardening simulations with dislocation dynamics”,
Modelling Simul. Mater. Sci. Eng. 15, pp 553-595, 2007

[10] N. Bertin, C.N. Tomé, I.J. Beyerlein, M.R. Barnett, and L. Capolungo, “On the
strength of dislocation interactions and their effect on latent hardening in pure
Magnesium”, International Journal of Plasticity 62, pp 72-92, 2014

[11] “Magic Web Solution” http://www.magicwebsolutions.co.uk

 69

[12] “Backbone.js” http://backbonejs.org/

[13] “jqplot” http://www.jqplot.com/

[14] “Bootstrap” http://getbootstrap.com/

[15] Larry L. Constantine and Lucy A.D. Lockwood, “Software for use: a practical guide
to the essential models and methods of usage-centered design”, 1999

[16] V. Balasubramoniam and N. Tungatkar, “Study of user experience (UX) and UX
evaluation methods”, International Journal of Advanced Research in Computer
Engineering & Technology (IJARCET), vol 2, issue 3, March 2013

[17] V. Roto, E. Law, A. Vermeeren and J. Hoonhout, “User Experience white paper”,
2011

[18] S. Kujala, V. Roto, K. Väänänen-Vainio-Mattila, E. Karapanos and A. Sinnelä, “UX
Curve: A method for evaluating long-term user experience”, Interacting with
Computers, 2011

[19] Jesse James Garrett, “The elements of user experience: user-centered design for the
web”, 2002

[20] “Vampir” https://www.vampir.eu/

[21] “Score-P” http://www.vi-hps.org/projects/score-p/

[22] David A. Bader, Bernard M.E. Moret, and Peter Sanders, “Algorithm engineering
for parallel computation”

[23] Message Passing Interface Forum, “MPI: A Message-Passing Interface Standard”,
University of Tennessee, Knoxville, TN, Version 3.0, 2012

[24] OpenMP Architecture Review Board, “OpenMP Application Program Interface”,
Version 4.0, July 2013

 70

[25] Alaa Ismail El-Nashar, “To parallelize or not to parallelize, speed up issue”,
International Journal of Distributed and Parallel Systems (IJDPS), Vol.2, No.2,
March 2011

[26] Mark D. Hill and Michael R. Marty, “Amdahl’s Law in the Multicore Era”

[27] J. Gustafson, “Reevaluating Amdahl's Law”, Communications of the ACM, vol 31,
no. 5, pp 532-533, 1988

[28] M. Verdier, M. Fivel, I. Groma, “Mesoscopic scale simulation of dislocation
dynamics in FCC metals: principles and applications”, Model. Simul. Mater. Sci.
Eng., 6 (1998), pp. 755–770

[29] Marc H. Willebeek-LeMair and Anthony P. Reeves, “Strategies for dynamic Load
balancing on highly parallel computers”, IEEE transactions and parallel and
distributed system, vol. 4, no. 9, September 1993

[30] Ron Doerfler, “Fast approximation of the tangent, hyperbolic tangent, exponential
and logarithmic Functions”, June 2007

