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CHAPTER 1

BACKGROUND AND MOTIVATION

The exponential growth of the electronics industry has been guided by continued

dimensional scaling of silicon–based CMOS technology for over four decades. Nu-

merous companies have pursued smaller and faster transistors for years because

miniaturization of transistors has enabled significant improvements in the transis-

tor performance and power; higher transistor density for improved functionality,

complexity and performance of microchips; and reduction in the cost for a sin-

gle transistor. At the center of these advancements has been Moore’s Law, which,

combined with Dennard’s guidelines for classical scaling introduced in 1974 [1],

has determined the industry target to double the number of transistors on a mi-

crochip approximately every 18–24 months.

In recent years, the semiconductor industry has needed many innovative ma-

terial and device–structure solutions to overcome significant threats to continued

dimensional scaling. During the last decade, limitations to scaling started with

the challenges in reducing the thickness of the gate dielectric material. This chal-

lenge stemmed from fundamental quantum laws that governed quantum mechan-

ical tunneling of electrons from the gate to the channel [2, 3]. Even though the

gate dielectric scaling stopped for a few technology generations in effort to keep

gate leakage current under control, transistor performance improvement was still

maintained thanks to the introduction of the revolutionary strained–silicon tech-

nology [4, 5]. The gate dielectric scaling problem was eventually resolved by re-

placing SiO2 with a high–κ dielectric material [6], which allowed increasing the

physical thickness of the gate oxide to reduce the probability of electron tunneling,

while providing a thinner electrical equivalent for better electrostatic control of the

channel, and improved transistor performance. Also, the polycrystalline silicon
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gate was replaced with a metal gate because the poly gate was not compatible with

the high–κ material [7]. Finally, the 22–nm technology generation announced the

revolutionary departure from planar CMOS by introducing fully–depleted tri–gate

transistors [8], which utilize the vertical dimension to extend the electrostatic con-

trol of the gate to three sides of a fin for improved performance at a smaller supply

voltage and reduced short channel effects.

Besides smaller and faster transistors, the semiconductor industry requires fast

and dense interconnects to manufacture high–performance microchips. Intercon-

nect performance; however, degrades with dimensional scaling [9]. Resistance

increases as the dimensions get smaller and the total capacitance increases due to

the high density of interconnects. Therefore, the number of metal layers has grad-

ually increased over the years [10], providing the possibility to route fine–pitch

interconnects for high density at some metal layers, and wider and thicker inter-

connects for improved delay at other metal layers. In the last decade, Aluminum

(Al) has been replaced by Copper (Cu) to improve the resistance–capacitance (RC)

delay of interconnects because Cu offers increased conductivity compared to Al

[11], and has a higher resistance to electromigration [10]. Furthermore, in effort

to reduce the capacitance associated with interconnects, which directly determines

both the interconnect RC delay and the interconnect dynamic power dissipation,

progressively lower–κ dielectric materials have been introduced in many gener-

ations of technology [10]. These new materials, new processes, and the increase

in the number of metal layers have enabled interconnect scaling for various tech-

nology generations. The 22–nm technology node comprises 9 Cu layers with an

ultra–low –κ dielectric material [8].

All of these innovative solutions in the last decade have come to reality as a

result of enormous investments in research and development. Even though uti-

lizing the vertical dimension in both the device and the chip levels is expected to
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govern the technological advancements in the near future, the semiconductor in-

dustry is expected to continue facing major challenges to continue scaling during

the next decade. One of these challenges is to extend the use of 193–nm immer-

sion lithography tools to ultra–scaled technology nodes through optimized multi-

ple–patterning and computational–lithography techniques, until extreme ultravi-

olet light (EUV) lithography, which makes use of light at a wavelength of 13 nm, is

ready. This dissertation focuses on another major challenge, namely interconnects,

which still constitute significant limitations to the performance of microchips de-

spite the aforementioned innovations.

The research pipeline of the semiconductor industry involves increasingly radi-

cal potential solutions to carry technology advancement through dimensional scal-

ing to beyond conventional CMOS. Many companies encourage and conduct re-

search on emerging device and interconnect technologies, such as carbon–based

devices [12, 13] and interconnects [14, 15], nano–electromechanical systems (NEMS)

[16], optical or photonic interconnects [17, 18], and even non–charge–based sys-

tems [19], to extend Moore’s Law to beyond–2020 technology generations. How-

ever, any device technology that offers advantages in performance, power dissi-

pation or ease in dimensional scaling will have to be complemented with an inter-

connect technology that offers similar trades. Therefore, all this research has to be

centered around interconnects, which have become a highly complex problem in

terms of performance and energy as well as reliability and cost.

The aim of this dissertation is to investigate the energy/performance limita-

tions of the existing Cu/low–κ interconnect technology for use in future ultra–scaled

integrated circuits down to 7–nm technology node, and to evaluate the opportu-

nities that arise for emerging novel interconnect technologies from the materials

and process perspectives. This research also aims to analyze the impact of various

emerging interconnect technologies on the performances of emerging post–CMOS
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devices, and to quantify the realistic circuit– and system–level benefits that these

devices can offer.

1.1 The Interconnect Problem
1.1.1 The Early Interconnect Problem is Back

The early electronic equipments comprised only a few dozen components, which

could be interconnected using hand–soldering techniques [20]. As the electronic

systems became more complex; however, this manufacturing procedure of man-

ually assembling circuits with discrete components quickly became costly, bulky,

and unreliable. The exponential increase of the number of interconnections with

the increasing number of circuit components was a major limiting factor for mak-

ing more complex electronic systems. As an attempt to simplify this manufactur-

ing process from the interconnect perspective, Danko and Abrahamson announced

the Auto–Sembly process in 1949 [21], which would later evolve into the standard

printed circuit board fabrication process. The worldwide pursuit of a method to

reduce the cost, improve the performance, and reduce the size and weight of elec-

tronic equipments gave its fruits in late 1950’s with the announcement of the inte-

grated circuit (IC) [20]. Texas Instrument’s Jack Kilby came up with a method to

integrate a transistor, a capacitor, and a resistor on the same semiconductor mate-

rial and connected them with soldered wires. Fairchild Semiconductor’s Robert

Noyce independently formed two transistors with three diffusion regions on a

common substrate, using one of the transistors as a pair of diodes; the junctions

as capacitors; metal leads over an oxide layer as resistors where required; and pla-

nar interconnections [20]. The substantial cost reduction in producing electronic

equipment enabled by the transition from interconnecting discrete transistors to

integrated circuits has led to tremendous research and development to achieve

integration on increasingly larger scales [22]. Based on the observation that the

number of components roughly doubled every year during the first seven years
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of integrated semiconductor technology, Gordon Moore stated in his famous 1965

paper [23] that the number of components on a lowest–cost semiconductor chip

grows exponentially in time. The economical growth of the semiconductor in-

dustry has been driven by his prediction that the semiconductor technology will

double its effectiveness every 18 months.

Since then, the number of transistors on microchips has increased continuously

with minimum feature size scaling as shown in Figure 1, resulting in the ability

to integrate more functionality and complexity in logic products. This advance-

ment has enabled the semiconductor industry to offer a wide range of logic prod-

ucts with different features and performances. However, as the number of transis-

tors on a chip increased, so did the number of interconnections that are required

to maintain communication between two points on a chip. Today, the semicon-

ductor industry faces a modified version of the aforementioned early interconnect

problem. To route the tremendous number of wires on a microchip in the same

footprint, extra metal layers have been implemented. Interconnecting billions of

transistors in integrated circuits has become a highly complex problem and a ma-

jor threat to improving the integrated circuit performance at each new technology

node.

1.1.2 Interconnect Latency Problem from the Resistance–Capacitance Perspec-
tive

As mentioned in Section 1.1.1, modern electronic chips have a multilevel intercon-

nection network comprising metals with different dimensions. Short interconnects

that carry signals between transistors that are relatively close to each other, within

a certain functional block, are routed at local interconnect levels with fine pitches

for high density. As interconnects get longer, they are made wider and thicker to

reduce the associated resistance per unit length; hence delay. Therefore, the multi-

level interconnection architecture is not only a requirement for routability, but also
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Figure 1: The number of transistors on a microchip increases and the minimum
feature size decreases at each technology node. Adapted from [10].

a partial solution to the interconnect latency problem [24].

The aggressive dimensional scaling of the local metal level (M1), which causes

the resistance to increase, and the increasing number of interconnects constitute an

ever increasing resistive and capacitive load to the system. As the intrinsic device

performance is improved with dimensional scaling, the impact of this load on the

circuit speed becomes more pronounced. Some projections of the ITRS update

in 2011 [25] are tabulated in Table 1 to illustrate the severity of the interconnect

latency problem. It is observed that there is a quick reduction in the interconnect

length at which the interconnect delay becomes equal to the intrinsic delay of an

NMOS transistor.

The intrinsic latency of an RC–limited interconnect is proportional to,

τ ∝ ρε
L2

HT
. (1)
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Table 1: Interconnect technology parameter projections related to the latency of
interconnects extracted from the 2011 update of ITRS [25]. Calculated metrics are
indicated with the * sign.

2015 2020 2025
M1 half pitch (nm) 21 12 7

Aspect Ratio 1.9 2 2.2
Cu resistivity (µΩ · cm) 6.61 9.74 15.02

Barrier/cladding thickness for Cu M1 wiring (nm) 1.9 1.1 0.6
*Resistance per unit length for M1 wires, r (Ω/µm) 101 434 1750

NMOS intrinsic delay, τ = CV/I (Multi–gate, MG) (ps) 0.32 0.19 0.12
Capacitance per unit length for M1 wires, c (pF/cm) 1.8–2 1.6–1.8 1.5–1.8

*Distributed RC delay of 1mm M1 wire, τint = 0.4rcL2 (ps) 7676 29512 115500
*Length at which τint = τ, (µm) 6.5 2.5 1

This expression shows that the interconnect delay can be reduced by: (1) reduc-

ing metal resistivity (ρ) using new materials, (2) scaling insulator permittivity (ε),

(3) reducing the interconnect length (L) using novel architectures, and (4) reverse

scaling metal height (H) and insulator thickness (T). A variety of solutions have

materialized in order to mitigate the global interconnect problem over the years.

Some of these include: switching to the Cu/low–κ interconnect technology to in-

troduce a lower ρε product, using many core architectures to reduce the maximum

global interconnect length, and reverse scaling. Switching to three–dimensional

integration offers the opportunity to reduce the length of the longest global in-

terconnect as well. Another approach to solving the global interconnect scaling

problem is changing the physical means of interconnection by introducing on chip

optical interconnects [26, 27, 28]. Even though some of these solutions have in turn

introduced other problems, such as router power dissipation in many–core archi-

tectures, it is undeniable that the nature of the global interconnect problem has

changed as a result of these advances.

Furthermore, there is a radical change in local level interconnect behavior at

sub–20 nm technology nodes. At such small dimensions, the resistivity of Cu in-

terconnects has increased significantly due to size effects, such as sidewall and
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grain boundary scatterings, and line edge roughness (LER) [29], which will be de-

scribed in more detail in this thesis. As the dimensions of within core interconnects

scale with technology and the L2/HT term in equation (1) is kept almost constant

with technology scaling, metal resistivity becomes the dominating factor in deter-

mining the interconnect intrinsic latency. This radical change in Cu interconnect

limitations for ultra–scaled future technology nodes motivates looking at alterna-

tive interconnect technologies that can replace Cu at the local metal levels, where

Cu wire dimensions are small. Carbon–based interconnects have long been con-

sidered as a promising alternative for future nanoscale interconnects due to their

long mean free path (MFP), high current carrying capability and high thermal con-

ductivity. Despite major technological progress in fabricating such interconnects

and the rising opportunities in terms of energy and performance as studied in this

dissertation, there are still many major challenges that must be overcome before

they can become commercially viable options.

1.1.3 Interconnect Dynamic Power Dissipation Problem

The system–level fruits of making faster, less power–hungry transistors and faster,

denser interconnects at each technology generation are illustrated in Figure 2. It

is shown that the system frequency has increased, and the single–thread perfor-

mances of microprocessors have improved with technology scaling for three decades.

What is not shown in this figure is that this improvement is not simply the result

of making faster transistors and increasing the clock frequency, but also the result

of micro–architectural advancements that were enabled by the rapid increase in

the transistor density with technology scaling. These advancements provided the

opportunity to design microprocessors that exploit instruction level parallelism in

pipelined architectures for increased throughput. Increasingly larger cores were

built with higher frequency and higher power using faster and smaller transis-

tors at each technology generation for years. However, the power consumption
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of chips eventually became a major limitation to building larger cores. Figure 2

demonstrates that the increase in clock frequency slowed to keep power dissipa-

tion of microchips under control. Today, to manage power dissipation challenges

and to continue increasing the performance of microprocessors, it has become nec-

essary to implement multi–core structures for parallel computation. Careful con-

sideration of power management will continue to be a major issue in the pursuit

of extending Moore’s Law to future multi– and many–core structures.

Figure 2: Microprocessor trend data: The changes in the transistor count, sin-
gle–thread performance, frequency, power, and number of cores are plotted for
the past 35 years. Adapted from [30].

A significant portion of the power dissipated in a microprocessor is due to the

dynamic power dissipated in interconnects. An interconnect power analysis study

performed on a microprocessor designed for power efficiency, consisting of 77 mil-

lion transistors, and fabricated in the 0.13 µm technology in 2004, revealed that

interconnects account for 50% of the total dynamic power dissipation [31]. Fur-

thermore, as the interconnect dimensions are scaled, and the interconnect density

is increased, the total capacitance associated with interconnects increases as well.
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Lower–κ dielectric materials can reduce this capacitance; hence, the interconnect

power. Table 2 compares interconnect and device dynamic power dissipations at

three different technology nodes to underline the significance of the interconnect

power dissipation problem.

Table 2: Interconnect technology parameter projections related to the dynamic
power dissipation associated with interconnects extracted from the 2011 update
of ITRS [25]. Calculated metrics are indicated with the * sign.

2015 2020 2025
M1 half pitch (nm) 21 12 7

Aspect Ratio 1.9 2 2.2
Capacitance per unit length for M1 wires, c (pF/cm) 1.8–2 1.6–1.8 1.5–1.8
NMOS dynamic power indicator per device width ,

E = CV2 ( f J/µm)
0.42 0.25 0.15

*M1 wire dynamic power indicator per length,
Eint = CintV2 ( f J/µm)

0.1216 0.079 0.057

*Length at which Eint = E for a minimum–width NMOS,
(in unit of minimum device width)

3.45 3.16 2.63

Comparisons between interconnect and transistor delay/energy that are shown

in Tables 1 and 2 are performed assuming multi–gate CMOS device and conven-

tional Cu/low–κ interconnect technology projections. Both device and intercon-

nect parameter projections are industry targets for continued Moore’s Law, which

may require many innovations to achieve. Therefore, emerging post–CMOS de-

vices that meet these parameter requirements will also suffer from the same limita-

tions imposed by the conventional Cu/low–κ interconnect. However, most of the

current emerging device research is focused on speeding up or reducing the power

consumption of a single device. A simple comparison of the intrinsic gate delay

or the dynamic power indicator between a novel device technology and Si–CMOS

will not reveal the complete picture of the promise that the new device holds. In-

terconnect aspects of novel devices have to be studied for a better understanding

of the benefits they may offer.
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1.2 Organization of the Thesis

The rest of this thesis is organized as follows. The limitations of the Cu/low–κ

interconnect technology for future FinFET technology nodes are studied in two

different methodologies in chapters 2 and 3. In chapter 2, compact models are

used to study the impacts of various interconnect technology parameters on sys-

tem performance and power dissipation based on stochastic wiring distributions

[32]. In chapter 3, multiple predictive cell libraries down to the 7–nm technol-

ogy node are constructed to enable early investigation of the electronic chip per-

formance using commercial electronic design automation (EDA) tools with real

chip information. Rising opportunities for carbon–based interconnects at future

technology nodes are studied in Chapter 4, where various single–walled carbon

nanotube (SWNT) interconnect architectures are benchmarked against the exist-

ing Cu/low–κ technology and major technology requirements for SWNT inter-

connects to outperform Cu are identified. Chapter 5 extends the study in Chapter

2 to another high–performance device technology, namely CNFETs, and evaluates

the realistic circuit– and system–level benefits of using CNFETs by optimally de-

signing multilevel interconnect networks for these devices. In Chapter 6, we pair

various device technologies, such as CNFETs, FinFETs, TFETs and sub–threshold

CMOS, with both conventional Cu/low–κ and emerging carbon–based intercon-

nects to compare the impact of different interconnect technology parameters on

device performance at the circuit–level. Finally, the main contributions of this the-

sis are summarized in Chapter 7 and potential future directions in research are

defined.
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CHAPTER 2

COPPER/LOW–κ INTERCONNECT TECHNOLOGY DESIGN
AND LIMITATIONS FOR FINFET CMOS

In this chapter, we investigate the performances of conventional Cu/low–κ mul-

tilevel interconnect networks (MINs) for FinFETs at the 20– , 16– , 14– , 10– , and

7–nm technology nodes corresponding to the even years between 2012 and 2020,

respectively. This study captures the impacts of interconnect variables such as size

effect parameters, barrier/liner bilayer thickness, and aspect ratio on the design

and performance of the MIN of a logic core. Our results indicate that the num-

ber of metal levels for a high–performance chip increases by as large as 34% due

to size effects and this value can go up to 76% considering issues in barrier/liner

thickness scaling at the 7–nm technology node. At this node, increasing the aspect

ratio of interconnects from 2 to 3 can improve wire delay and save 2 metal levels

at the cost of 35% more power dissipation. A ±20% wire width variation induces

wire delay variations of -20% and +44% at minimum–width wires. Designing the

MIN considering this variation increases the required wire area by 4% in the worst

case.

2.1 Introduction

As briefly described in Chapter 1, one of the major challenges that the semiconduc-

tor industry is expected to face in the pursuit of further miniaturization of the min-

imum feature size in the next decade is the degrading interconnect performance.

Interconnects limit the performance of integrated circuits (IC) because they add

extra delay to critical paths, dissipate dynamic power, and impose reliability con-

cerns due to electromigration and time–dependent dielectric breakdown (TDDB).

Furthermore, variations in the interconnect features during manufacturing give
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rise to variations in circuit performance. These limitations become increasingly re-

strictive with dimensional scaling. Electron scatterings at wire surfaces and grain

boundaries, and line edge roughness (LER) cause the effective resistivity of Cu to

increase rapidly, resulting in larger interconnect latency [33]; the total interconnect

capacitance increases due to high number and density of interconnects, causing in-

terconnect power dissipation to account for more than 50% of the dynamic power

of the chip [31]; ensuring metal and dielectric reliability becomes challenging due

to smaller dimensions and weaker mechanical properties of low–κ dielectric ma-

terials [34]; and interconnect process variations make it increasingly difficult to

predict circuit performance at the design stage [35].

Search of innovative material solutions to the degrading performance of inter-

connects in a microchip due to scaling has not been fruitful yet and the conven-

tional Cu/low–κ interconnect technology may be the only option for the future

ultra–scaled technology generations. Therefore, it is important to be able to pre-

dict the impacts of Cu/low–κ interconnect parameters on the overall performances

of future ICs.

Today, to route all the interconnects on a chip and to ensure manufacturabil-

ity while meeting various performance constraints, a substantial amount of ef-

fort has to be devoted to both design and process optimizations. The aim of

this chapter is to perform a design–driven interconnect process optimization for

high–performance Cu/low–κ MINs for FinFETs by determining the interconnect

pitches of different metal levels, considering the impacts of interconnect resistivity

increases due to size effects, repeater insertion, and via blockage.

There can be two complementary approaches to attack this problem. The sys-

tem behavior can be simulated using compact mathematical models from the ma-

terial level all the way to the architectural level such that the impact of various
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technology parameters on the overall performance parameter that is being opti-

mized can be studied and multiple design options can be explored quickly to nar-

row down the design space for the designer. Alternatively, the real system can

be designed for multiple scenarios using the design flow for taping out an actual

chip to monitor the changes in the performance parameter and make decisions

depending on the outcome. The advantage of the former approach is that it can

save significant design time and allow for investigating a broader range of design

options in a limited amount of time whereas the advantage of the latter approach

lies in providing the real chip information, which increases its accuracy. In this

chapter, we concentrate our efforts on the former analysis methodology.

In the past, numerous system–level optimization tools have optimized various

aspects of the wiring hierarchy for better performance, low–power operation or

smaller chip size based on stochastic wiring distribution models [32]. Prior work

on the impact of interconnect resistivity increase due to size effects on an MIN

has shown that the increase in the number of metal levels and the impact on chip

performance are negligible if size effects are taken into account during the design

process [36]. This study, however, was based on the 2003 International Technology

Roadmap for Semiconductors (ITRS) projections, where chip clock frequencies as

high as 50 GHz were expected at the end of the roadmap. Clock frequencies turned

out to be significantly lower than 2003 ITRS projections due to the introduction of

many–core architectures to reduce power dissipation. Also, impact of LER on re-

sistivity was ignored in this study. Furthermore, this study was performed down

to the 18–nm technology node. With the sub–20–nm FinFET technologies in de-

velopment, it is necessary to investigate the issues with MINs down to the 7–nm

technology node.
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In addition, at ultra–scaled technology generations, errors due to process vari-

ations become more pronounced. Also, wire delay variation increases due to in-

creasing sensitivity of wire behavior on manufacturing variations. Systematic in-

tra–die variations in metal thickness, linewidth, and inter–layer dielectric (ILD)

thickness significantly affect the circuit performance and may lead to yield loss

if not accounted for. In this work, the overall impact of lithography–induced

variations in wire width and spacing on the MIN design are evaluated using a

worst–case corner analysis to ensure reliable operation.

This chapter is organized as follows. In Section 2.2, assumptions, models and

the methodology used to optimally design the MIN are described. In Section 2.3,

the MIN for the logic core of a commercial microprocessor is designed and the

results are compared with actual data. In Section 2.4, the impacts of various in-

terconnect parameters and wire width variation on the design and performance of

MINs are analyzed. Section 2.5 investigates the power dissipation in MINs and the

consequent impact on the total logic core power. In Section 2.6, we summarize the

important conclusions of this chapter.

2.2 Multilevel Interconnect Network Architecture Design Method-
ology

In this chapter, optimal MINs are designed using the interconnect density function,

i(l), described in [37] and considering only logic transistors to reduce complexity

[38]. This density function gives the number of interconnects with a certain length,

l, normalized to gate socket lengths as defined in [37]. The density function de-

pends on the size of the logic gates in the system, which are assumed to be 2–input

NAND gates and are sized based on a generic critical path delay equation [39] to

satisfy a given clock frequency. It is assumed that each 2–input NAND gate drives
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a typical fan–out, fout, of 3 through average length interconnects, which gives

τ = 0.7Ld
RNAND

n f in
fout

(
CNANDn f in + Cint

)
+0.7LdRintCNANDn f in + 0.4LdRintCint fout ≤ Tclock. (2)

Here, Ld is the logic depth assumed to be equal to 15 throughout this work, RNAND

and CNAND are the average drive resistance and input capacitance of a 2–input Fin-

FET NAND gate, respectively, and n f in is the number of fins of the FinFET devices.

Rint and Cint are the resistance and capacitance of average length interconnects, re-

spectively. The average wire length is calculated from the interconnect density

function as described in [37].

Starting with the short interconnects, which are routed in the metal levels with

the minimum interconnect pitch, the range of interconnect lengths that can be

routed in a certain metal level is calculated based on a supply–demand equation

given by,

ew,n A = χpn

√
A

Nsockets

∫ Ln

Ln−1

li(l)dl. (3)

The left hand side of this equation represents the available area for routing wires,

where ew,n is the net wiring efficiency of the nth metal level and A is the area of

the logic core. Nsockets is the number of sockets, which is calculated by dividing the

number of gates by the percentage of die area that is occupied by logic transistors

as defined in [40]. The right hand side represents the area required for routing

wires that have lengths between Ln−1 gate sockets and Ln gate sockets. Ln and pn

are the maximum length normalized to gate socket lengths and wire pitch of the

nth pair in nanometers, respectively.

The interconnect pitch of each metal level is determined assuming that the max-

imum RC time delays of minimum–pitch short interconnects in the lower levels

and custom–pitch longer interconnects in the upper levels are 25% and 90% of
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the clock period, respectively [40]. The RC time delay of interconnects without

repeaters is calculated by [37],

τrc = 4.4 ρ(AR,p)
AR·p2 cintL2 A

Nsockets
, (4)

where ρ, cint and AR are the resistivity, capacitance per unit length (p.u.l.) and

aspect ratio of the interconnect, respectively. In this work, repeaters are inserted to

minimize the energy–delay product (EDP) as described in [41]. The RC time delay

of a repeated interconnect can be calculated by,

τrc =

(
0.7
δ

+ 0.7γ +
0.4
γ

+ 0.7δ

) √
ρ(AR, p)cintR0C0

AR · (p/2)2 L

√
A

Nsockets

γ =
(
0.73 + 0.07 ln φgate

)2

δ =
(
0.88 + 0.07 ln φgate

)2

φgate =
Pdynamic

Pdynamic + Pleakage

(5)

R0, C0, Pdynamic and Pleakage are the resistance, capacitance, and dynamic and leak-

age power dissipations of the minimum size inverter, respectively. The net wiring

efficiency of a certain metal level is calculated considering via blockage due to re-

peaters inserted in the upper level interconnects and connections to signal wires in

the upper layers [42], and the power/ground via blockage [43].

ew,n = er
(
1− epgnd

)
(1− evia,n)

evia,n =

√
2
(

Nwires above,n + Nrep above,n
)
(pn + sλ)2

A
.

(6)

In this equation, er is the router efficiency typically assumed to be equal to 0.5,

epgnd is the fraction of area used by routing power and ground wires, and evia,n is

the via blockage factor associated with the nth level. Nwires above,n and Nrep above,n

are the number of wires and repeaters above the nth metal level, respectively. λ is

the design rule unit equal to half the minimum feature size and s is a via covering

factor equal to 3 [42].
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The MIN is initially designed without any repeater–inserted levels. Repeaters

are then inserted starting from the topmost level, which accommodates the longest

interconnect, and continued downwards for each metal level until the Si area avail-

able for repeater insertion is all used or repeater insertion no longer improves the

chip performance.

2.3 Design Methodology Validation

In this section, the MIN is designed for a commercial 22–nm technology quad–core

microprocessor that contains 1.4 billion transistors on a 160 mm2 die [44] to validate

and calibrate the models and methodology. The logic transistors are estimated to

occupy approximately 30% of the total die area from die photos [45]. The total

number of logic transistors on the die is estimated to be 15% of the total transistor

count considering that logic transistors tend to be larger than transistors in mem-

ory arrays [46] and occupy a smaller percentage of the chip area [38]. Modeling

the logic gates as two–input NAND gates, each logic core contains 13.125 million

gates in 11.2 mm2. The maximum clock frequency of the system is 3.9 GHz. The fin

pitch of FinFETs and the minimum interconnect pitch are taken as 60 nm and 80

nm, respectively [8]. Interconnect technology parameters such as the aspect ratio,

the barrier thickness, and inter–layer dielectric constant are taken from 2011 ITRS

projections for the year 2012 [25]. Interconnect size effect parameters, namely the

specularity parameter, psize, that determines the fraction of electrons that scatter

specularly at the wire surfaces, and the reflectivity parameter, Rsize, which deter-

mines the fraction of electrons that are scattered backwards at the grain boundaries

are assumed to be 0.2 and 0.3, respectively [47]. The interconnect size effect param-

eters will be described in more detail in the next section. Area of FinFET gates are

calculated based on the assumptions and design rules outlined in [48]. Rent’s pa-

rameters krent and prent are 4 and 0.667, respectively [32]. Table 3 shows the results
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compared with actual data for the number of metal levels and the pitch for each

metal level.

Table 3: Comparison of results from the MIN design methodology with actual
data.

Metal Level Simulation Results Actual Data
M1 80 nm 90 nm
M2 80 nm 90 nm
M3 100 nm 80 nm
M4 110 nm 112 nm
M5 150 nm 160 nm
M6 202 nm 240 nm
M7 254 nm 320 nm
M8 308 nm 360 nm
M9 598 nm 14 µm

Table 3 demonstrates that the MIN design methodology predicts the same num-

ber of metal levels as the actual data with close interconnect pitch values at each

metal level. The only significant difference is on M9 layer, which, in this study, is

designed based on signal, power and clock wiring considerations as described in

[37]. However, M9 layer is a special layer used for low–resistance power routing

to minimize voltage droops in the actual design [10].

The power dissipation of each core due to logic operations in this quad–core

processor is calculated to be 12.5 W with the methodology used in this analysis,

giving a total of 50 W. Even though data on the percentage breakdown of power

dissipation in this particular microprocessor is not available, it can be assumed

based on [49] that about 80% of the power dissipation in a single core is due to

logic operations and the remaining 20% for cache and I/O operations. Therefore,

the total power dissipated in cores is about 62.5 W. Assuming that about 75% of

the total chip power is dissipated in the cores [38], the total power dissipation of

the chip can be estimated as 83.3 W, which is close to the published data of 77 W.

Having shown that our methodology for the MIN design captures most of the
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issues with determining the number of metal levels and core power dissipation,

it is possible to analyze the impact of dimensional scaling on the design and per-

formance of MINs at ultra–scaled technology generations. In the next section, we

use this methodology to design the MINs of logic cores implemented in five tech-

nology nodes corresponding to the even years between 2012 and 2020 on the 2011

Edition of the ITRS [25].

2.4 Impact of Various Parameters on MIN Design and Performance
2.4.1 Impact of Size Effect Parameters

As mentioned, one of the major challenges of implementing Cu interconnects at

ultra–scaled future technology nodes is their increased resistivity due to surface

and grain boundary scatterings. To calculate resistivity of narrow Cu wires, math-

ematical models in [29] are used with appropriate size effect parameter values.

There are various size effect parameter values in literature that are derived from

experimental results as shown in Table 4 and the resistivity value highly depends

on these parameters. The last row in Table 4 is our optimistic base–line scenario

that considers a single–crystal Cu structure. In this scenario, it is assumed that the

resistivity increase can be overcome in part by using Cu wires with larger grain

sizes, which can be manufactured using a subtractive process [50], where, unlike

the current dual–damascene process, the grain size is not limited by the height

or the width of a trench. The goal is to effectively eliminate the impact of grain

boundary scatterings on the overall resistivity increase. The specularity parameter

for this scenario is chosen as 0.72 [51].

Figure 3 illustrates how Cu resistivity is affected by various values of specular-

ity and reflectivity parameters. It is plotted assuming minimum–width intercon-

nects at each technology node. These interconnects experience the largest increase

in resistivity in an MIN. However, they are short and the increase in their resis-

tance is not highly critical. Slightly wider wires routed in the intermediate levels,
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Table 4: Various published experimental Cu size effect parameters.
Specularity Parameter, psize Reflectivity Parameter, Rsize Reference

0 0.5 Shimada et al.[52]
0.4 0.5 Steinhoegl et al.[53]
0 0.43 Kitada et al. [54]
0 0.25 Plombon et al. [47]

0.2 0.3 Plombon et al. [47]
0.72 0.4 Steinhoegl et al. [51]
0.1 0.2 Chen et al. [55]
0.5 0.3 Besling et al. [56]
0.49 0.27 Steinhoegl et al. [51]
0.33 0.19 Steinhoegl et al. [51]
0.4 0.19 Steinhoegl et al. [51]
0.43 0.2 Guillaumond et al. [57]
0.25 0.13 Steinhoegl et al. [58]
0.3 0.08 Steinhoegl et al. [51]
0.72 0 Base–Line Scenario
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Figure 3: Minimum–size Cu wire resistivity normalized to the bulk Cu resistivity,
which is 1.8 µΩ · cm. Barrier thickness and aspect ratio are taken from 2011 ITRS
roadmap. Mean–free path of electrons in Cu is taken as 40 nm.
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which are longer, may have a larger impact on the performance of an MIN.

The designs in this section are based on the ITRS projections [25] on the tran-

sistor count, die area, clock frequency, and interconnect technology parameters as

mentioned in Section 2.3. Interconnect size effect parameters are selected from the

aforementioned various experimental results in the literature [47, 58, 54] to cover

a range of resistivity values. The number of cores on a chip is assumed to double

every other year. Predictive technology models for FinFET devices [59] based on

the industry standard BSIM–CMG model [60] are used to model the logic gates

and repeaters at each technology generation. Figure 4 shows the number of metal

levels and the percentage increase in the number of metal levels due to size effects

with respect to the base–scenario.

In all technology nodes, the smallest number of metal levels can be achieved if

single–crystal Cu interconnects with infinite grain sizes can be grown. Otherwise,

the number of metal levels will increase; and this increase will worsen with scal-

ing as shown in Figure 4. In 2020, assuming single crystal Cu, a typical change in

the specularity parameter, psize = 0.4 → 0, would induce only ∼ 1.5× increase in

the resistivity of minimum size wires, which have a width of 12 nm. Assuming

fully specular sidewall scatterings; however, the change Rsize = 0.1→ 0.7 induces

∼ 8× increase in resistivity. Improving the LER from 40% to 20% of the linewidth

reduces the resistivity by less than 15%. Hence, changes in grain boundary scatter-

ings have a greater impact in determining the Cu resistivity and consequently the

design and performance of MINs, over surface scatterings and LER. As a result,

in 2020, the number of metal levels may increase by as much as 33.8% requiring 3

extra metal levels to route all interconnects.

Table 5 shows the optimized wire pitch in nanometers and the range of routed

wire lengths normalized to gate socket lengths, which is 395 nm, for two sets of

size effect parameters in 2012. Figure 5 plots the delay distribution function for
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Figure 4: Number of metal levels is plotted versus the technology year considering
a range of size effect parameters. Mitigating size effects can reduce the number of
metal levels significantly.

these two designs. The ITRS projection for the delay of a minimum size device, τ0,

is used to divide interconnects into two groups based on their delay, τRC, as shown

in Figure 5. Groups I and II comprise interconnects with τRC smaller and larger

than τ0, respectively. Table 6 shows the average wire delays in these two groups

for both designs in 2012 and 2020.

It can be seen in Table 5 that interconnects routed at the first two metal levels

are short enough such that the increase in their resistance is not highly critical even

though they experience the largest increase in resistivity. Table 6 demonstrates

that average wire delay in Group I increases by 28% due to size effects, but this

delay is so small that the main limitation for routing these interconnects is the

minimum size dictated by the process technology. The designs for these two levels

change slightly, only due to the different via blockage caused by the upper level

interconnects and repeaters. For longer interconnects, resistivity increase due to
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size effects has to be compensated for by using wider and thicker interconnects, as

is the case for M3 in Table 5, because they may significantly lower the maximum

clock frequency of the system. Since the area available for routing interconnects is

limited, this increase in width means that a smaller number of interconnects can be

routed at a certain level. As a consequence, a fraction of interconnects that could

be routed in M3 assuming infinite grain sizes have to be routed in upper levels.

This trend increases the burden on the upper metal levels, eventually requiring

extra metal levels. Similar explanations apply to future technology nodes with

increasing severity.

It is shown in Table 6 that the change in average delay due to size effects in

Group II is only 1% when the MIN is optimally designed considering size effects.

The toy example in Table 6 emphasizes the significance of design optimization

with the proper size effect parameters by showing that the average delay in Group

II would have increased by 40% if the design for psize = 0.72, Rsize = 0 was used

for psize = 0, Rsize = 0.43 as well.

Table 5: Multilevel interconnect network design results in 2012.
Metal
Level

psize = 0.72, Rsize = 0 (Best) psize = 0, Rsize = 0.43(Worst)
Pitch (nm) Lmin − Lmax Pitch (nm) Lmin − Lmax

M1 80 1-49 80 1-49
M2 80 50-315 80 50-318
M3 88 316-945 102 319-831
M4 95 2681-7484 120 3244-7480
M5 143 946-1637 154 832-1405
M6 198 1638-2353 205 1405-2010
M7 255 2354-2680 257 2011-2641
M8 598 7485-16938 310 2642-3243
M9 598 7480-16938

It is now established that the change in the number of metal levels due to size ef-

fects is mainly due to the burden introduced by those wires that have small widths,
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Figure 5: Interconnect delay distribution calculated for the worst case of size ef-
fects (straight line) and single-crystal Cu assumption (dashed line) in 2012. Each
discontinuity corresponds to switching to a new metal level. For both cases, there
are as many individual lines as the number of metal levels.

Table 6: Average interconnect delays.
2012, τ0 = 0.57ps

Scenario All % Group I % Group II %
Best 1.41 ps - 19.82 f s - 27.08 ps -

Worst 1.81 ps 28% 25.57 f s 29% 27.41 ps 1%
Toy 2.5 ps 77% 25.57 f s 29% 37.93 ps 40%

2020, τ0 = 0.19ps
Best 1.01 ps - 8.36 f s - 12.87 ps -

Worst 1.63 ps 61% 12.75 f s 52% 14.71 ps 14%
Toy 2.5 ps 148% 12.75 f s 52% 22.89 ps 78%
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but are long enough such that their delay can put constraints on the overall sys-

tem frequency. Due to the disparity between the impacts of scaling on the delay

performance of interconnects and devices, the critical wire length, L0, where the

interconnect delay becomes as large as τ0, shortens with each technology node.

Combined with smaller wire widths, some of the interconnects which are longer

than L0 are thin enough to drastically suffer from size effects. Consequently, the

average wire delay of Group II increases by 14% as shown in Table 6 for 2020, even

when the MIN is optimized based on the proper size effect parameters and 3 extra

metal levels are added.

2.4.2 Impact of Barrier/Liner Thickness

So far, it is assumed that all interconnect parameters scale according to ITRS projec-

tions including the barrier/liner thickness. The aggressive scaling of barrier/liner

thickness projected by ITRS might be hard to achieve due to both manufacturing

and reliability challenges. Many researchers are working on potential solutions

that can reduce the barrier thickness, including using atomic layer deposition in-

stead of sputter deposition for better control and using self–forming barrier layers

[61], but the barrier/liner thickness may not be scaled down to ITRS projections

at future technology nodes and its impact on performance has to be studied. Fig-

ure 6 shows the impact of barrier/liner bilayer thickness scaling on the required

number of metal levels in the optimized MIN in 2020, assuming that the bilayer

thickness can be extended down to ∼ 3 − 4nm [61]. The percentage values on

each bar in Figure 6 represent the increase in number of metal levels taking the

ITRS projections as reference for each set of size effect parameters. If the bilayer

is 3.5 nm thick, the increase in the number of metal levels over the reference case

is ∼ 12-13%. Combined with the impact of size effect parameters, the number of

metal levels may increase by as much as 50%. For certain combinations of size

effect parameters and barrier/liner thicknesses, it is not possible to come up with
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a MIN design that meets the ITRS clock frequency projections. Therefore, research

on both mitigating size effects and scaling the barrier/liner thickness are of vital

importance for future technology generations.

Figure 6: Number of metal levels is plotted versus the total thickness of the bar-
rier/liner layer at the 7–nm technology node for various size effect parameters.
The thickness of the bilayer should be scalable to 3.5 nm.

2.4.3 Impact of Aspect Ratio

To compensate for the increasing interconnect RC delay trend, one approach is to

increase the aspect ratio to reduce the resistance p.u.l., as plotted in Figure 7(a) for

minimum–width wires in 2020. However, increasing the aspect ratio also increases

the capacitance p.u.l. as plotted in Figure 7(b). As a consequence, there can be an

optimal aspect ratio for a given interconnect length as shown in Figure 7(d). For

short signal interconnects that are only about 10–gate–pitch long, the aspect ratio

that offers the smallest delay is as low as 1.5, whereas for 150–gate–pitch long

interconnects, it is around 2.
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Impact of aspect ratio on delay is determined by the relative changes of p.u.l.

values of resistance and capacitance of the wire, and its length. It is assumed in Fig-

ure 7(d) that an optimally sized 2–input NAND gate drives 3 similar gates through

an interconnect with a certain length. For short lengths, the resistance of the driver

dominates the total wire resistance; and increasing capacitance p.u.l. as a result

of increasing the aspect ratio always hurts short wires in terms of delay. For suf-

ficiently long interconnects, for which the total wire resistance is larger than the

driver resistance, increasing the aspect ratio can help until the increase in capac-

itance p.u.l. becomes dominant over the gain in p.u.l. resistance. In Figure 7(d),

only minimum–width interconnects, which are routed in the first two metal levels,

are considered assuming pessimistic size effect parameters. In a MIN, wire widths

vary; hence, it is important to determine how a change in aspect ratio would im-

pact the optimal MIN design.
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Figure 7: (a) resistance p.u.l., r, (b) capacitance p.u.l., c, (c) intrinsic interconnect rc
delay p.u.l. squared, and (d) total delay assuming short (3 µm, ∼10 gate pitches,
solid line) and longer (45 µm, ∼150 gate pitches, dashed line) interconnects, re-
spectively, are plotted versus aspect ratio at the 7–nm technology node. Size effect
parameters are taken as psize = 0 and Rsize = 0.43.
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Designing the optimal MIN in 2020 assuming various aspect ratio values shows

that the number of metal levels can be reduced initially, but will increase beyond a

certain point. Comparing the designs for an aspect ratio of 2, which is the ITRS pro-

jection [25], and 3, assuming size effects parameters of psize = 0 and Rsize = 0.43,

reveals that 2 metal levels can be saved by increasing the aspect ratio as shown

in Table 7. This is because the increase in aspect ratio allows for slightly narrower

wires to be routed at each metal level. As a result, more interconnects can be routed

at a certain metal level, relieving the burden on the upper metal levels, and even-

tually requiring fewer number of levels. For instance, the maximum interconnect

length that can be routed in M2 increases from 433 to 457 gate socket lengths. Since

the number of short interconnects are very large, this increase in maximum routed

interconnect length saves significant amount of area. This reduction in number

of metal levels comes at the cost of 35% larger total logic core power dissipation

due to the increasing interconnect power dissipation, which is caused by the extra

interconnect capacitance. Therefore, an optimum design regarding the cost and

power dissipation of a MIN depends on the designer’s goals.

2.4.4 Impact of Wire Delay Variability

Variations in wire width and spacing affect resistance and capacitance associated

with interconnects. The resistance–capacitance product and its percentage varia-

tion with width are plotted for minimum–size wires at the 7–nm technology node

in Figure 8. Assuming a perfect Gaussian distribution for the width of the wire,

it is equally likely to get a wire that is 44% slower or 20% faster than the nominal

delay [35]. As the interconnect pitch is increased, variation in RC delay reduces.

This variation in wire delay is taken into account during the design of the MIN

by introducing a variation term in the equations that are described in Section 2.2.

This method assumes that the width of the longest wire that is routed in each

metal level is different from the nominal width by an amount determined by the
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Table 7: Multilevel interconnect network design results in 2020 showing intercon-
nect pitch and range of interconnect lengths routed at each metal level normalized
to gate socket lengths (99 nm).

Metal
Level

AR = 2 AR = 3
Pitch (nm) Lmin − Lmax Pitch (nm) Lmin − Lmax

M1 24 1-69 24 1-69
M2 25.3 70-433 24.2 70-457
M3 41 434-923 37.9 4239-11601
M4 42.3 4616-12047 39.4 458-987
M5 56.1 924-1466 54.2 988-1577
M6 70.7 1467-2040 68.5 1278-2204
M7 85.2 2041-2638 82.8 2205-2861
M8 99.6 2639-3259 97.1 2862-3546
M9 114.1 3260-3903 111.5 3547-4238
M10 128.8 3904-4573 590.3 11602-20694
M11 143.9 4574-4615
M12 756.8 12048-20694

Figure 8: rc delay p.u.l squared for various width values considering an inter-
connect pitch of 24 nm in 2020 and size effect parameters psize = 0, Rsize = 0.43.
The inset figure shows the percentage variation in rc delay versus the variation in
width as a percentage of the nominal width value for various interconnect pitches.
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variation parameter; and the pitch of each metal level is optimized accordingly.

Although each interconnect in a metal level may have a different variation param-

eter, by considering the worst case for the longest interconnect, reliable operation

is ensured for all the other wires. Table 8 shows two designs in 2020: Case I as-

sumes perfect controllability of wire dimensions and Case II assumes a maximum

of -20% variation in the intended metal width.

Table 8: Multilevel interconnect network design results in 2020 showing intercon-
nect pitch and range of interconnect lengths routed at each metal level normalized
to gate socket lengths (99 nm).

Metal
Level

Case I Case II
Pitch (nm) Lmin − Lmax Pitch (nm) Lmin − Lmax

M1 24 1-69 24 1-69
M2 25.3 70-433 26.7 70-398
M3 41 434-923 39.8 4411-11858
M4 42.3 4616-12047 42.3 399-838
M5 56.1 924-1466 57.2 839-1325
M6 70.7 1467-2040 71.7 1326-1839
M7 85.2 2041-2638 85.8 1840-2373
M8 99.6 2639-3259 99.7 2374-2924
M9 114.1 3260-3903 113.6 2925-3492
M10 128.8 3904-4573 127.5 3493-4078
M11 143.9 4574-4615 141.6 4079-4410
M12 756.8 12048-20694 680.3 11859-20694

Note that the optimal wire pitch in M2 is larger in Case II to account for the -20%

width variation. Increasing the pitch of M2 by 6% reduces both the wire–to–wire

capacitance and resistance of the wires, but results in routing a smaller number of

interconnects at this level compared to Case I. At higher metal levels, the variation

in wire width has a smaller impact in wire delay. For instance, in M10, the optimal

interconnect pitch is reduced by 1% even in the presence of -20% width variation

because the maximum length of the interconnect in this design is smaller than in

Case I. Overall, the wiring area requirement only increases by 4% due to width

variations. It is important to note here that the number and pitch of each metal
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level is a variable in this methodology. In an interconnect design where these pa-

rameters are constant or in an SoC design where there are many minimum size

metal levels, the impact of variations would be more severe as numerous wires

would require being routed at metal levels that are wider in pitch causing routabil-

ity problems [35].

2.5 Power Dissipation Analysis

The total power dissipation is calculated as a sum of the dynamic and leakage

power dissipated in logic gates and repeaters, and the dynamic power dissipated

in wires. For logic gates and repeaters, power dissipation is given by,

Pdynamic =
α

2
WgateCgateV2

dd fclock, (7)

Pleakage = WgateVdd Ileak, (8)

where α is the activity factor, Wgate is the size of the gate normalized to the mini-

mum size, Cgate is the input capacitance of the minimum size gate, Vdd is the supply

voltage, fclock is the clock frequency of the system, and Ileak is the average leakage

current for the minimum size gate. The dynamic power dissipated in interconnects

is given by the equation,

Pint =
α

2
cintLtotal

√
A

Nsockets
χV2

dd fclock, (9)

where cint is the interconnect capacitance p.u.l., Ltotal is the total length of all the

interconnects in the logic core in gate socket lengths, and χ is a correction factor as

described in [32] and given by 4/( f an–out + 3). The area of the logic core, A, and

the number of gate sockets, Nsockets, are used to calculate one gate socket length in

meters by
√

A/Nsockets. Pint is directly determined by the wire capacitance, which

can be reduced by introducing low–κ dielectric materials. ITRS target for the di-

electric constant reduces from 2.99 in 2012 to 2.23 in 2020.
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Using these power dissipation models, interconnect dynamic power dissipa-

tion and the total power dissipated in the logic cores are plotted in Figure 9 assum-

ing various size effect parameter values. Note that the interconnect power dissi-

pation is a significant component of the total power dissipation in the logic core.

Even though individual devices are targeted to become less power–hungry at each

technology generation, the overall impact of the increase in the total interconnect

power, number of logic gates and repeaters in the system is a rapid increase in the

total power dissipated in a logic core in the future technologies.
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Figure 9: Interconnect and total power dissipation in the logic cores calculated
from the optimal MIN design at various technology nodes considering a range of
size effect parameters.

The number of transistors on a chip double every three years according to the

ITRS projections, which results in the same transistor count on the chip in years

2016 and 2018. This explains the reductions in both the interconnect and total

power dissipation in 2018. The interconnect power dissipation is a function of

the capacitance p.u.l. and the aggregate interconnect length. The smaller core

area in 2018 results in shorter total interconnect length; hence, smaller interconnect
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power. Also, devices become less power–hungry at each technology generation,

reducing both the dynamic and leakage power dissipation of gates. The number

and size of repeaters in the system depend on size effect parameters. The total

power of repeaters, however, depends only on the total capacitance of the repeated

interconnects, which is determined by the aggregate length of repeater inserted

wires in the system. Even though this aggregate length does depend on size effect

parameters, the change in total length with size effects is observed to be small.

Therefore, the impact of size effects on power dissipation is small as shown in

Figure 9.

2.6 Conclusions

Optimizing the cost/area/performance of future interconnect systems is a compli-

cated problem. In this chapter, to investigate the impact of interconnect technology

parameters on the design and performances of future electronic chips, compact

models are used to optimize MINs for FinFET circuits, where the wiring informa-

tion of the system was obtained based on a stochastic wiring distribution model

for faster simulation time. The system constraints such as the clock frequency,

chip area and the maximum number of metal levels are adopted from ITRS and

are used to determine the actual number of metal levels required while meeting

system constraints.

The impact of Cu resistivity increase due to size effects on the individual wires

and the overall design of the MIN is analyzed in detail based on the results of our

optimal design methodology. It is shown that due to challenges in mitigating Cu

size effects and scaling the barrier/liner thickness, the number of required metal

levels may increase by 76% at the 7–nm technology node in 2020. Therefore, to

meet ITRS projections for system clock frequency, area and the number of metal

levels, finding scalable solutions to making thin barriers and mitigating size effects
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are critical tasks.

Increasing the aspect ratio of wires decreases wire resistance p.u.l., but the total

line delay also depends on the interconnect pitch, length, capacitance p.u.l., driver

resistance, and size effect parameters. Although a larger aspect ratio may be ben-

eficial in terms of the cost of the chip since our results indicate that there is an

optimal aspect ratio that can reduce the required number of metal levels to route

the system, this benefit comes at the expense of a larger line capacitance, which

translates into larger interconnect dynamic power dissipation. Interconnects ac-

count for 60-70% of the total logic core power dissipation in the future technology

nodes, which means that the total power dissipation of the chip can increase sig-

nificantly with larger aspect ratio values.

In the next chapter, we use an alternative methodology, namely, using a real

chip tape–out flow to evaluate the limitations of the Cu/low–κ interconnect tech-

nology for FinFETs in the future technology generations.
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CHAPTER 3

ANALYSIS OF THE IMPACT OF COPPER/LOW–κ
PERFORMANCE DEGRADATION ON CHIP PERFORMANCE

BASED ON FULL–CHIP LAYOUTS

In this chapter, we investigate the impact of highly–scaled Cu/low–κ intercon-

nects on the speed and power dissipation of multiple circuit blocks based on tim-

ing–closed, full–chip GDSII–level layouts with detailed routing. First, we build

multiple standard cell libraries for 45– , 22– , 11– and 7–nm technology nodes and

model their timing/power characteristics. Next, we pair these standard cell li-

braries with various interconnect files and build GDSII–level layouts for multiple

benchmark circuits to study the sensitivity of the circuit performance and power

dissipation to multiple interconnect technology parameters such as resistivity, bar-

rier/liner thickness, and via resistance. We investigate the implications of slowing

down interconnect dimensional scaling below 11–nm technology node.

3.1 Introduction

In Chapter 2 we focused on exploring various design options for the back–end–-

of–the–line (BEOL) architecture based on stochastic wiring distribution models

[32]. In this analysis, we treated all wires equally [36, 37] and used compact mod-

els for estimating device and interconnect performance at the system level. This

approach, while being extremely time–efficient, lacks the details from a real chip

such as the critical path and layout information. In reality, not all wires on a chip

are parts of critical paths and they are not all driven by the same type and size

of drivers. In this chapter, we perform our analysis based on actual netlists and

GDSII–level layouts with detailed routing instead of using stochastic models to

predict wiring distribution. This methodology is more comprehensive in that it
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follows the same design flow used for real chip tape–out and encompasses the di-

versity of interconnects in terms of length, functionality, and the type and size of

drivers and receivers. The disadvantage for this approach is that it is very time

consuming. To reduce simulation time, we concentrate our analysis on block–level

circuits instead of a whole processor as in Chapter 2. Since interconnect size ef-

fects are more pronounced for local/intermediate–level wires, this approach is

sufficient in determining the impact of interconnect parameters on the chip per-

formance at future technology nodes.

Section 3.2 describes our design and analysis flow. Section 3.3 explains the in-

terconnect and standard cell library preparation, introduces the interconnect sce-

narios that we are considering and tabulates the cell power and timing characteri-

zation results for these scenarios. In Section 3.4, we summarize our design results

for multiple circuits for various interconnect technology scenarios. Section 3.5 fo-

cuses on the impact of via resistance. Section 3.6 studies an alternative path to

BEOL scaling. Section 3.7 concludes this chapter.

3.2 Design and Analysis Flow

The design and analysis flow used in this chapter is illustrated in Fig. 10. The

predictive libraries that are described here are created based on the Nangate 45

nm open cell library [62]. First, physical parameters to define device and intercon-

nect layers for each technology node are determined based on the scaling trends

projected by the ITRS [25]. Using these definitions, a library exchange format file

(.lef), which has the layout information for the standard cells, and an interconnect

technology file (.ict), which has the interconnect structure information, are created.

These two files are used in generating a simple capacitance table file (.capTbl) to be

used in early stages of the design and a more elaborate technology file (.tch) to be
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Figure 10: The overall design and analysis flow in this work.

used for accurate parasitic extraction after detailed routing. Appropriate predic-

tive models for transistors and modified RC-extracted SPICE netlists for standard

cells at each technology node are used to perform library characterization and gen-

erate predictive timing/power libraries (.lib, .db), which will be described in more

detail later.

Using our predictive standard cell libraries, the RTL code of multiple circuit

blocks are synthesized in Synopsys Design Compiler [63]. The placement, routing

and optimizations are performed using Cadence Encounter [64].

3.3 Predictive Libraries
3.3.1 Interconnect Definitions

The interconnect structure and the layer dimensions are derived from the exist-

ing Nangate 45 nm library [62] assuming a scaling factor of roughly 0.7× at each

new technology node as tabulated in Table 9. In all of the designs in this chap-

ter, minimum number of metal levels required to route the design are used. Since

we concentrate on circuit blocks instead of a full microprocessor, a maximum of 6

metal levels are used in our designs.

Table 10 demonstrates the effective resistivity values at these small dimensions

calculated [29] considering the impact of size effects and the trench area lost to the
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Table 9: Interconnect width (W) and thickness (T) at each technology node. All
values are in nm.

45nm 22nm 11nm 7nm
W T W T W T W T

M1 70 130 35 65 17.4 32.5 10.8 20.2
M2:M3 70 140 35 70 17.4 35 10.8 21.8
M4:M6 140 280 70 140 35 70 21.8 43.6
M7:M8 400 800 200 400 100 200 62.2 124.5
M9:M10 800 2000 400 1000 200 500 124.4 311.2

barrier material normalized to the bulk Cu resistivity value (1.8µΩ · cm). Table 10

shows results for the same four cases of size effect scenarios as in Chapter 2. The

barrier/liner thickness values are taken from the ITRS projections. Considering

reliability issues at future technology generations, and challenges in scaling the

barrier/liner thickness to the ITRS projected values, we also assume thicknesses

of 3.5 nm, 3 nm and 2.5 nm at all metal levels of the 22-, 11- and 7-nm technology

generations, respectively. These numbers are not hard numbers, but are projected

to estimate the resistivity increase through a slower scaling path than the ITRS

projections provided that the Cu ratio for the local metal levels are larger than or

equal to 50%. The most pessimistic scenario of interconnect resistivity combines a

thick barrier thickness with severe size effects.

Note that comparing the most optimistic (CASE V) and most pessimistic (CASE

I) scenarios of size effects with ITRS projected barrier thickness, the effective Cu

resistivity can increase by∼ 2.95× and 2.39× for the local– and intermediate–level

wires at the 7–nm technology node. Considering the aforementioned alternative

scaling path for the thickness of the barrier/liner material can cause these values

to go up to 6.52× and 3.22×. It is therefore critical to quantify the sensitivity of

circuit behavior to this resistivity change at the material level.
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Table 10: Effective Cu resistivity values normalized to 1.8µΩ · cm. Interconnect
scenarios are listed in order of reducing severity.

Scenario Metal Layer
Normalized Resistivity

45nm 22nm 11nm 7nm

CASE I
p = 0, R=0.43,
thick barrier

M1 - 5.1 12.98 29.47
M2:M3 - 5.05 12.8 28.97
M4:M6 - 2.67 4.73 7.75

CASE II
p = 0, R=0.43,
ITRS barrier

M1 2.81 4.49 7.75 13.29
M2:M3 2.79 4.44 7.67 13.13
M4:M6 1.84 2.53 3.85 5.75

CASE III
p = 0.2, R=0.3,

ITRS barrier

M1 2.3 3.44 5.63 9.36
M2:M3 2.29 3.41 5.56 9.24
M4:M6 1.62 2.09 2.98 4.26

CASE IV
p = 0.25, R=0.13, ITRS

barrier

M1 1.94 2.7 4.13 6.58
M2:M3 1.93 2.67 4.07 2.35
M4:M6 1.46 1.77 2.35 3.2

CASE V
Single-crystal Cu, ITRS

barrier

M1 1.68 2.14 3.01 4.52
M2:M3 1.67 2.12 2.96 4.44
M4:M6 1.35 1.54 1.89 2.41

3.3.2 Standard Cell Definitions

The predictive standard cell libraries that are used in this chapter are obtained by

scaling the 45–nm library data [62]. For instance, the library exchange format (.lef)

file for the original 45 nm library is modified using the dimensional scaling factors

to generate .lef files for the predictive technology libraries. Similarly, to character-

ize the timing/power of the cells, the RC–extracted SPICE file from the Nangate

45 nm library is modified by: (1) changing the transistor model to the appropri-

ate predictive models, and (2) modifying the cell internal parasitic resistance and

capacitance values with appropriate scaling factors considering that the shape of

the cells, hence the length and width of internal interconnects, is changed by the

dimensional scaling factor.

Predictive Technology Models (PTM) for multi–gate transistors developed by
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the Arizona State University [59] are used without modifying the nominal tran-

sistor parameters to characterize cells at each technology node. The cell inter-

nal capacitance values are scaled by the dimensional scaling factor assuming that

the p.u.l capacitances do not change much. For instance, the internal cell capaci-

tances in the 11–nm node become ∼ 0.25× the original values in the 45–nm node.

The cell internal resistance values are a function of the size effect parameters, the

cross–sectional dimensions and barrier/liner material thickness.

The modified RC–extracted SPICE netlists for minimum size INV, NAND2 and

DFF cells in the new libraries are characterized and the results are tabulated in

Tables 11 and 12. The results are compared against the results for the Nangate

45 nm library counterparts of the cells under consideration and scaling factors are

calculated for each parameter. The final timing/power libraries for all cells at each

technology node are determined by modifying the original 45 nm library Liberty

file (.lib) using an average scaling factor based on the results for the three afore-

mentioned cells.

Note that the cell delay highly depends on the interconnect scenario at sub11–nm

technology nodes. Considering a minimum size inverter and comparing the most

optimistic and the most pessimistic scenarios for the interconnect resistivity, the

cell delay increases by 18.1% and 44% at the 11– and 7–nm technology nodes, re-

spectively. This moderate change is only due to within cell interconnects, which

are short. The magnitude of this impact at the block level will be discussed in the

next section.

3.4 Simulation Results

Using the libraries that are described in the previous section, we run full–chip lay-

out experiments concentrating on three different categories of circuits. These three

different categories of circuits are represented by an encryption circuit (AES), a
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Table 11: Cell delays at various interconnect scenarios calculated at a medium
input slew/output load case. Input slew=18.75ps (14.06ps for DFF), output
load=0.64/0.88/1.76/3.2 f F at 45/22/11/7-nm technology nodes, respectively.

Scenario Cell
Delay(ps)

45nm 22nm 11nm 7nm

CASE I
p = 0, R=0.43,
thick barrier

INV - 20.29 12.54 13.04
NAND2 - 24.33 14.57 15.55

DFF - 48.37 23.4 24.34

CASE II
p = 0, R=0.43,
ITRS barrier

INV 43.55 20.28 11.62 11.6
NAND2 49.05 24.32 14.17 13.42

DFF 122.9 48.26 22.76 20.17

CASE III
p = 0.2, R=0.3,

ITRS barrier

INV 43.56 20.25 10.84 10.79
NAND2 49.05 24.32 13.74 12.71

DFF 122.82 48.08 22.62 19.66

CASE IV
p = 0.25, R=0.13, ITRS

barrier

INV 43.62 20.25 10.78 9.78
NAND2 49.17 24.3 13.6 12.39

DFF 122.76 47.94 22.24 18.94

CASE V
Single-crystal Cu, ITRS

barrier

INV 43.61 20.24 10.62 9.06
NAND2 49.17 24.29 13.53 11.49

DFF 122.77 47.55 21.83 18.04

Table 12: Cell characterization results for cell power, leakage, output slew and
capacitance at a medium input slew/output load case as described in the caption
of Table 11.

Cell
Characteristics

Technology Node
45nm 22nm 11nm 7nm

INV

cell power ( f J) 0.445 0.203 0.064 0.074
input cap. ( f F) 0.463 0.346 0.169 0.126

output slew (ps) 32.29 12.97 8.67 7.6
leakage (pW) 2843 4311 3055 2438

NAND2

cell power ( f J) 0.669 0.178 0.081 0.063
input cap. ( f F) 0.523 0.233 0.116 0.084

output slew (ps) 36.75 16.35 9.38 8.32
leakage (pW) 4962 6019 3698 2907

DFF

cell power ( f J) 3.413 1.859 0.652 0.435
input cap. ( f F) 0.877 0.299 0.145 0.106

output slew (ps) 35.37 11.17 4.32 3.55
leakage (pW) 42965 42477 28832 22850
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low–density parity check circuit (LDPC), and a Fast Fourier Transform (FFT) cir-

cuit. LDPC represents a wire–dominated group of circuits with a very high rout-

ing demand. FFT represents circuits with a highly regular layout. Most cells in the

FFT circuits that communicate with each other are clustered together and there is

a small number of connections between these smaller clusters. The third group of

circuits whose regularity lie somewhere between the former two groups are rep-

resented by the AES circuit, which is a random logic circuit with a fair amount

of routing demand. There are small clusters of cells within the AES circuit simi-

lar to FFT, but the communication between these smaller clusters are much higher

compared to FFT. The placement and routing results for these three circuits consid-

ering a pessimistic scenario of interconnects as described in the previous section is

illustrated in Figure 11.

For each design, we set the maximum target utilization to around 85%, but this

number is adjusted in case of severe wiring congestions by changing the initial

utilization during placement. For instance, due to the high wiring demand of the

LDPC circuit, the initial utilization is lowered to 25% to increase the total footprint

and have enough tracks to route the design. Similarly, the number of metal levels

for each design are determined based on the wiring demand of the circuit. The

minimum number of metal levels that ensures routability is used for each scenario.

The minimum number of metal levels required to route each design are 4, 5 and 6

for FFT, AES and LPDC circuits, respectively.

By focusing on these three different circuits, we come up with generic conclu-

sions regarding the impact of interconnect parameters on circuit power and per-

formance. Timing is closed in all of the designs in this study for analyzing and

comparing both the critical path delay and the power dissipation as described in

more detail later. The simulation results for the AES, LDPC and FFT circuits are

tabulated in Tables 13, 14 and 15, respectively.
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Figure 11: Placement and routing results for AES, LDPC and FFT considering a
pessimistic scenario for interconnect size effects.
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Table 13: Placement and routing results for all designs for the AES circuit at multiple technology generations and consider-
ing various size effect scenarios.

Circuit Tech
Node

Design
Scenario

Min.
Clock
Period

(ps)

Iso-performance Results
Target
Period
(ps)

Cell
Count

Buffer
Count

WL
(mm)

Utilization
(%)

WNS
(ps)

Total
Power
(mW)

Net
Switching

(mW)

Cell
Internal
(mW)

Cell
Leakage

(mW)

AES

45nm
CASE II 714 714 17559 5121 198.1 84.9 0 18.35 9.9 8.03 0.422
CASE V 710 714 16907 4818 200.7 81.53 0 18.05 9.802 7.849 0.403

22nm
CASE I 236 236 20050 6538 87.66 86.22 0 20.4 9.703 10.18 0.517
CASE II 226 236 19818 6379 86.81 86.21 +2 20.31 9.656 10.14 0.515
CASE V 216 236 19818 6354 84.19 85.78 +7 20.15 9.51 10.13 0.511

11nm

CASE I 164 164 17651 5725 40.95 85.93 +3 10.29 4.6 5.394 0.291
CASE II 134 164 17257 5547 40.85 85.25 +17 9.696 4.507 4.899 0.29
CASE III 126 164 17695 5518 44.03 86.11 +34 9.634 4.517 4.832 0.285
CASE IV 118 164 17381 5219 41.54 85.42 +36 9.49 4.473 4.737 0.28
CASE V 108 164 17411 5091 42.5 85.62 +41 9.396 4.46 4.671 0.265

7nm

CASE I 202 202 17647 5769 26.53 86.83 +1 6.094 2.114 3.763 0.217
CASE II 148 202 15908 4582 24.39 80.95 +29 5.362 1.875 3.334 0.153
CASE III 120 202 15604 4537 24.33 80 +24 5.161 1.866 3.145 0.15
CASE IV 110 202 14425 3855 26.72 77.22 +44 5.086 2.04 2.902 0.144
CASE V 102 202 12382 2665 24.33 74.06 +40 4.457 1.801 2.531 0.125
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Table 14: Placement and routing results for all designs for the LDPC circuit at multiple technology generations and consid-
ering various size effect scenarios.

Circuit Tech
Node

Design
Scenario

Min.
Clock
Period

(ps)

Iso-performance Results
Target
Period
(ps)

Cell
Count

Buffer
Count

WL
(mm)

Utilization
(%)

WNS
(ps)

Total
Power
(mW)

Net
Switching

(mW)

Cell
Internal
(mW)

Cell
Leakage

(mW)

LDPC

45nm
CASE II 1260 1260 78047 28442 3927 34.619 0 178 124.7 51 2.222
CASE IV 1100 1260 75051 26793 3825 33.341 0 167.5 117.7 47.82 2.044

22nm
CASE I 620 620 60495 22092 1636 29.214 0 88.136 57.65 28.85 1.636
CASE II 590 620 59844 18658 1642 29.034 0 86.097 57.25 27.25 1.597
CASE V 500 620 57129 16601 1603 28.147 +2 81.76 53.82 26.54 1.405

11nm
CASE I 570 570 45583 8711 796.4 27.68 0 30.28 19.81 9.67 0.798
CASE II 390 570 43333 6987 777.4 26.86 +1 28.05 18.59 8.782 0.677
CASE V 300 570 40975 5007 773.8 26.07 +1 26.48 17.68 8.227 0.576

7nm
CASE I 680 680 50735 13744 510.37 29.76 0 19.19 10.04 8.39 0.752
CASE II 470 680 45111 8699 519.7 27.89 0 16.96 9.79 6.597 0.567
CASE V 280 680 39106 5178 472.9 26.22 +2 14.45 7.91 6.1 0.438
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Table 15: Placement and routing results for all designs for the FFT circuit at multiple technology generations and considering
various size effect scenarios.

Circuit Tech
Node

Design
Scenario

Min.
Clock
Period

(ps)

Iso-performance Results
Target
Period
(ps)

Cell
Count

Buffer
Count

WL
(mm)

Utilization
(%)

WNS
(ps)

Total
Power
(mW)

Net
Switching

(mW)

Cell
Internal
(mW)

Cell
Leakage

(mW)

FFT

11nm
CASE I 480 480 231865 18754 1167.2 68.04 +2 154.847 61.98 88.14 4.727
CASE II 350 480 230716 17716 1145.1 67.89 +7 153.783 61.32 87.76 4.703
CASE V 280 480 230608 17502 1145.4 67.29 +21 150.999 59.53 86.8 4.669

7nm
CASE I 590 590 236174 22881 698.65 68.439 +2 102.3 33.02 65.41 3.871
CASE II 370 590 233350 20498 685.71 68.024 +10 100.19 32.01 64.33 3.849
CASE V 240 590 231457 18473 678.52 67.562 +16 98.42 31.5 63.09 3.609
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3.4.1 Impact of Size Effects on Critical Path Delay

To quantify the impact of the increase in wire resistivity at ultra–scaled dimensions

on circuit speed, we run multiple simulations for each design to find the maximum

clock frequency that each scenario of interconnect size effects can support. This is

reported as the minimum clock period, which is calculated by gradually reducing

the clock period until any further reduction results in a negative worst negative

slack (WNS) value. For all the designs that are reported in this study, the mini-

mum clock period value decreases if size effects can be mitigated from CASE I to

CASE V in Table 10. The impact of interconnect size effects on the circuit speed

increases as technology scales. At the 11–nm technology node and beyond, this

impact increases drastically. For the AES circuit, the difference in the circuit speed

comparing the most pessimistic and optimistic scenarios of size effects is as high

as 52% and 98% at the 11–and 7–nm technology nodes, respectively. These values

are 90% and 143% for the LDPC circuit, and 71% and 104% for the FFT circuit.

Therefore, irrespective of the circuit size and type, there is a drastic reduction in

circuit speed due to interconnect resistivity increase as dimensional scaling contin-

ues with each new technology node.

Another important conclusion from the critical path delay analysis is that the

improvement in the intrinsic device speed at each new technology node translates

into smaller and smaller returns in the circuit speed due to the effect of the wires. In

fact, in all of the circuits that are studied here, the circuit speed degrades beyond

the 11–nm technology node for severe size effect scenarios. Therefore, it is not

enough to improve the device intrinsic properties beyond the 11–nm technology

node to improve the circuit speed, and it is critical to mitigate size effects and find

solutions to manufacture thin barrier/liner regions. For instance, the speed of the

AES circuit will degrade by 10% from the 11–nm technology node to the 7–nm

technology node if the interconnect size effects are as severe as CASE II for both
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technology nodes. However, by mitigating size effects from CASE II to CASE IV

during the shift to the 7–nm technology node, this circuit speed can be improved

by 18% instead.

3.4.2 Impact of Size Effects on Power Dissipation

To quantify the impact of interconnect size effects on the power dissipation of our

benchmark circuits, we ran iso–performance simulations for each design at the

frequency that each circuit can support for all the experimental setups. This fre-

quency corresponds to the minimum clock period value that is estimated for the

simulations in CASE I during our analysis for the critical path delay. The power

dissipation values are calculated based on a switching activity of 0.2 for primary

inputs and 0.1 for sequential cell outputs. The three components of the total power

dissipation are (1) the net switching power, which is the power dissipated in charg-

ing the interconnect capacitance and cell pin input capacitances, (2) the cell internal

power, which is the power dissipated within each cell including the short circuit

power, and (3) the cell leakage power. The percentage contribution of each of these

components to the total power dissipation depend on the circuit. Also, unlike the

critical path delay analysis results, our power dissipation analysis results indicate

that the impact of interconnect size effects on total power dissipation highly de-

pends on the circuit. However, for all of our benchmark circuits, this impact in-

creases with technology scaling.

For the AES circuit, the total power dissipation monotonously increases as the

interconnect resistivity is progressively worsened from CASE V towards CASE I.

At each technology node, comparing the results for the most pessimistic and most

optimistic interconnect scenarios shows that the power increases significantly at

sub–11 nm technology nodes due to the degrading interconnect performance. The

percentage increase in total power is 9.51% and 36.73% at the 11– and 7–nm tech-

nology nodes, respectively. Most of the change in the power occurs in cell internal
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power, which is due to both the increase in the number of buffers in the system and

the upsizing of some of the gates on the critical paths to meet timing constraints.

In this comparison, the increase in the number of buffers is 12.45% and 116.5% at

the 11– and 7–nm technology nodes, respectively. It is important to note that for

CASE I, 1/3 of all the gates in the design are buffers. The net switching power,

which is due to both the cell input capacitances and the total interconnect capaci-

tance as defined before, is also affected by these changes through the insertion of

extra input pin capacitance, but the overall impact is not as pronounced as for the

cell internal power since the fraction due to the interconnect capacitance changes

only slightly. The extra buffers and larger gates directly affect the change in the

total cell leakage power as well, but the leakage power is a small component of the

total power in this analysis.

The LDPC circuit results are similar to the AES circuit results in terms of the

monotonous power dissipation increase with worsening interconnect performance.

However, the power dissipation breakdown for the LDPC circuit is very different.

The interconnect capacitance has a much more pronounced impact on the total

power dissipation of the LDPC circuit compared to the AES circuit. Since this is a

wire dominated circuit, the total interconnect capacitance is much larger compared

to the total input pin capacitance. Therefore, the largest component of power is the

net switching power, which is largely dominated by the interconnect power. As

a result, although the interconnect distribution is not a function of the intercon-

nect resistivity as strongly as the number of buffers or the gate sizes, any slight

change in this distribution between designs has a larger impact on the net switch-

ing power; hence the total power, compared to the AES circuit. In short, due to

the change in the weights of the impact of different parameters on the total power

dissipation of the circuit, it is not reasonable to expect a larger power dissipation

difference between interconnect scenarios for the LDPC circuit than the AES circuit
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simply based on the critical path delay results. In fact, our results show that the

percentage increase in total power when comparing CASE I and CASE V results

for the LDPC circuit is 14.35% and 32.8% at the 11- and 7–nm technology nodes,

respectively, which is not too different than the AES circuit results. This is true in

spite of the fact that the percentage increase in the number of buffers is 73.97% and

165.4% at the 11– and 7–nm technology nodes, respectively. The significant differ-

ence in the impact of interconnects on the percentage change for the critical path

delay for AES and LDPC circuits does not reflect to the power dissipation results

in the same way due to the difference in the circuit type.

The FFT circuit is a much larger circuit compared to the AES and LDPC cir-

cuits. Therefore, the simulation time for the FFT circuit is much longer. To save

simulation time, we have focused on the 11–nm technology node and beyond for

the FFT circuit because those are the nodes where the more interesting changes oc-

cur. Having seen a monotonous change for both the critical path delay and power

dissipation analyses in our previous benchmark circuits, we concentrate our efforts

on only three cases of interconnect scenarios knowing that the results for the other

cases will fall within the range of the results we get if we concentrate on the lower

and upper extreme cases. Our results indicate that the significant change in the

critical path delay is not at all translated to the results for the power dissipation in

the FFT circuit. Comparing the two extreme cases, the percentage increase in total

power is only 2.55% and 3.94% at the 11– and 7–nm technology nodes, respec-

tively. This result is directly related to the regularity of the layout and the size of

the FFT circuit. Since most of the cells that communicate with each other are placed

closely by the routing tool to minimize the total wire length, which is indicated by

the clear clusters of cells in Figure 11, and there are a small number of connections

between these clusters, the cells on the critical path are a very small portion of this

large circuit. Therefore, even at the 7–nm technology node, the percentage increase
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in the number of buffers is only 23.9%.

3.5 Impact of Via Resistance on Performance

So far, it has been established that the interconnect RC delay increase with dimen-

sional scaling causes the circuit performance to degrade in terms of both speed and

power dissipation. In this analysis, so far, we have focused on the line resistance

and have assumed optimistic values for the via resistances to isolate the impact

of the line resistance on the overall system performance/power. Recently, it was

shown [65] that via resistance has a significant impact on the circuit speed at the

7–nm technology node and needs to be considered in optimizing the BEOL archi-

tecture. This study is based on a circuit model considering an inverter driving

a similar inverter through a variable–length, horizontal interconnect at the third

metal level. In this section, we take into account the resistance increase of the via

structure due to both dimensional scaling and possible misalignment issues to the

underlying metal layer and investigate the impact of the via resistance on circuit

performance based on timing closed GDSII–level layouts.

We used Synopsys Raphael [66] to estimate the via resistance at the 7–nm tech-

nology node for both the ideal and misaligned via structures. The simulation

structure is illustrated in Figure 12. The barrier material resistivity is assumed

to be 500µΩ · cm [67]. The Cu resistivity is calculated according to interconnect

scenario CASE I as defined before. The horizontal run length, Lz, for the top, MU,

and bottom, ML, metal levels are assumed to be very small to avoid any impact

on the final estimated via resistance value. The misalignment length, Lmis, is cal-

culated as a percentage of the ideal via width and is varied from 0 to 50% of the

width value. The vertical length of the via, Lvia, is based on the layer definitions

as determined during library construction. The impact of misalignment on V1-V3

resistance values are tabulated in Table 16. Via dimensions and resistance values
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Figure 12: The simulated structures for well-aligned and misaligned via structures
at the 7–nm technology node.

for all via layers are tabulated in Table 17 for three different cases considering very

optimistic resistance values that we used to isolate line resistance changes so far, a

realistic scenario for well–aligned vias and a 50% misaligned via scenario.

To perform the experiment for quantifying the impact of via resistance on the

circuit performance/power at the 7–nm technology node, we focus on the design

results for the AES circuit from the previous section under interconnect scenario

CASE I. If the exact same netlist is used to recalculate the critical path delay of the

circuit, we observe a 18.57% increase between CASE A and CASE B results. As
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Table 16: V1-V3 resistance values at the 7–nm technology node
Misalignment (%) 0 10 20 30 40 50

Resistance ( Ω ) 311.4 313.9 333.21 360.6 397.9 456.2

Table 17: Via Dimensions and Resistance Values

Width
(nm)

Lvia
(nm)

Resistance (Ω)
Optimistic

CASE A
Ideal

CASE B
50% Misaligned

CASE C
V1-V3 10.8 18.7 24.08 311.4 456.2
V4-V6 21.8 45.1 14.25 30.46 67.18
V7-V8 62.2 127.6 0.68 2.97 4.1

V9 124.4 311.2 0.41 0.98 1.28

a result, the WNS for this design goes from +1 ps as shown in Table 16 to -35 ps.

This method of comparison is similar to the discussion in [65] as the design is not

reoptimized considering the new set of via resistance values and the critical path

is assumed to stay the same. For a fair comparison, however, the correct set of via

resistance values have to be taken into account during the design process, so the

timing–driven placement and routing can be performed more accurately for each

scenario. Design results for the AES circuit, which take into account the correct via

resistance values are tabulated in Table 18. The results for CASE C are a worst–case

corner analysis for via misalignment.

Note that the isolated impact of the via resistance on circuit speed in this sce-

nario is only 3.96% between CASE A and CASE B. Therefore, the timing–driven

placement and routing tools can compensate for the increasing via resistance if

the correct values are provided during the design process. For instance, as the

via resistance is increased from CASE A towards CASE C, the number of vias per

standard cell in the design reduces and the total wirelength increases. This means

that the placement and routing tools work to use a smaller number of vias even

though the number of standard cells in the design increases, mainly due to a larger

number of buffers, while running longer wires to connect them. Therefore, it can

54



be concluded that the trade–off between using shorter wires to connect two points

by changing the metal layer through a via and using a slightly longer wire for the

same connection avoiding a via connection shifts towards the latter option as via

resistance is increased. In short, the overall impact of via resistance comparing

CASE A and CASE C results for the AES circuit design is to reduce the maximum

circuit speed by 13.86% and to increase the total power dissipation by 13.69%.
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Table 18: Placement and routing results for the AES circuit under multiple via resistance scenarios.

Design
Scenario

Min.
Clock
Period

(ps)

Iso-performance Results
Target
Period

(ps)

Cell
Count

Via
Count

Buffer
Count

WL
(mm)

WNS
(ps)

Total
Power
(mW)

Net
Switching

(mW)

Cell
Internal
(mW)

Cell
Leakage

(mW)
CASE A 202 230 17457 124681 5744 24.39 +9 5.246 1.986 3.069 0.191
CASE B 210 230 17736 121695 5801 25.35 +1 5.805 2.002 3.607 0.196
CASE C 230 230 18011 121641 6177 26.73 0 5.964 2.009 3.744 0.211
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3.6 Alternative Path for BEOL Scaling

Based on the discussion so far, one idea can be to follow an alternative, slower path

for BEOL scaling beyond the 11–nm technology node. In this section, we investi-

gate the implications of using the 11–nm technology node BEOL design with the

7–nm technology node FEOL. In other words, we assume that during the shift from

the 11–nm technology node to the 7–nm technology node, the device dimensions

can be shrinked and the intrinsic device performance is improved, but to avoid

the significant performance degradation at both the cell and system level due to

interconnects, the BEOL dimensions are not scaled. To study this scenario, we fol-

low the same library construction flow described before and design the AES circuit

with this new experimental library. The within cell interconnects (M1) is the only

metal level that is scaled to the 7–nm technology dimensions in this analysis. This

study is performed for an optimistic interconnect resistivity scenario (CASE V).

The results indicate that the major problem with this approach is the routing

congestions due to the small dimensions of the cells that are being connected by

wide wires. Compared to the all–11–nm technology node, there is a 2.67× reduc-

tion in the footprint of the circuit with this approach, while the number of pins to

connect stays almost unchanged. The high pin density gives rise to the wiring con-

gestion and design rule violations as illustrated in Figure 13. To overcome the con-

gestion problem, multiple solutions can be tried. The design can be slowed down

to reduce optimization steps including the insertion of buffers, breaking down of

complex cells and upsizing of gates, all of which increase either the total pin den-

sity or the silicon area utilization. Furthermore, extra metal levels can be added or

total chip area can be increased to provide more supply for the increasing routing

demand. Increasing the chip area is not a preferred solution due to cost reasons.

Clearly, the question at hand is an optimization problem with many parameters

to consider while designing the BEOL architecture, which will directly impact the
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cost/area/performance of the chip. The implications of using an 11–nm BEOL ar-

chitecture with a 7–nm FEOL without changing the area of the chip or the number

of metal levels compared to the all–7–nm technology node are tabulated in Table

19.

Figure 13: Placement density for the AES circuit assuming 7nm FEOL + 11nm
BEOL structure and the routing congestions at M2.

Note that if the 11–nm BEOL technology is used with the 7–nm FEOL in the

AES design (row 2) without changing the area and the number of metal levels

compared to the all–7–nm technology (row 1), the speed of the circuit needs to be

reduced to ∼ 0.5× its value in the original all–7–nm technology design to avoid

routing congestions and design rule violations. This way, the number of buffers
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Table 19: Design results for the AES circuit using the 7–nm technology node FEOL
with 7–and 11–nm BEOL options with 5 metal levels.

BEOL
Technology

Min. Clock
Period (ps)

Buffer
Count

Total Power
(mW)

7nm 102 5527 13.41
11nm 200 1467 4.706
7nm 200 2665 4.457

in this design is much smaller, which reduces the pin density. Also, if the orig-

inal all–7–nm technology were to be operated at this smaller frequency (row 3),

it would have dissipated less power. Therefore, slowing down the BEOL scaling

to slow down resistivity increase associated with the wires degrades both circuit

performance and power dissipation due to congestion problems.

Another solution to overcoming congestion issues is to increase the routing

capacity by adding extra metal levels. Additional metal layers will add to the

cost of the chip, but may improve performance. In this study, we compare two

cases: (1) add an extra local metal level at the 7–nm technology node local metal

dimensions, (2) add an extra intermediate metal level at the 11–nm technology

node metal dimensions. As a result, the former scenario (CASE 1) has scaled M1-

M2 whereas M3-M5 are adopted from the 11–nm technology node BEOL structure

and the latter scenario (CASE 2) has scaled M1 whereas M2-M6 are adopted from

the 11–nm technology node BEOL structure. The results are tabulated in Table 20.

Table 20: Design results for the AES circuit using the 7–nm technology node FEOL
with 7–and 11–nm BEOL options with extra metal levels.

BEOL
Tech.

Tmin
(ps)

Cell
Count

Buffer
Count

Footprint
(µm2)

Utilization
(%)

Original 102 17851 5527 469.11 86.8
CASE 1 150 17490 5398 468.47 85.6
CASE 2 180 10135 1499 467.19 65.7

Using another scaled local metal level is clearly the better option as it can pro-

vide enough routing capacity to increase the silicon area utilization such that a
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large number of buffers can be inserted to increase circuit speed. However, the

minimum clock period is still ∼ 50% larger than the original all–7–nm technology

node results. Adding a new intermediate level does introduce some extra routing

capacity, but it is not effective enough as indicated by the lower utilization and

small buffer count, which result in a slow circuit speed. Therefore, slowing down

the BEOL architecture dimensional scaling to compensate for the significant resis-

tivity increase of the wires and the performance degradation that it brings is not

a trivial question. During the shift from the 11–nm technology node to the 7–nm

technology node, the wire pitches of the metal levels need to be carefully opti-

mized to maintain routability while trying to avoid performance degradation due

to interconnects.

3.7 Conclusions

In this chapter, we built multiple predictive cell libraries down to the 7–nm tech-

nology node to enable early investigation of the electronic chip performance using

commercial electronic design automation (EDA) tools. Using these libraries, we

quantified the impacts of inter– and intra–cell interconnect technology parameters

on the speed and power dissipation of multiple circuit blocks at future technology

nodes based on GDSII–level layouts of three circuits with different wire demand

and layout structures.

We showed that the line resistance increase can hinder the circuit performance

improvement during the shift from the 11–nm technology node to the 7–nm tech-

nology node. We also showed that via resistance becomes a significant contributor

to circuit delay at the 7–nm technology node, but the placement and routing tools

can in part compensate for its impact if the correct via values are taken into ac-

count during design. We investigate possible issues in slowing down the BEOL
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scaling below 11–nm technology node to alleviate the resistance increase. Our re-

sults indicate that simply slowing down the BEOL scaling to compensate for the

resistance increase associated with interconnects is not an effective solution as it

introduces congestion issues, which degrades for performance and power dissipa-

tion of circuits. A more effective solution would require optimizing not only the

interconnect structure, but the standard cell library as well.
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CHAPTER 4

OPPORTUNITIES FOR SWNT INTERCONNECTS AT THE END
OF THE ROADMAP

As the results presented in Chapter 3 illustrated, the performance degradation

with dimensional scaling of short local– and intermediate–level interconnects that

are used to route connections within circuit blocks has an increasing negative im-

pact on both the performance and dynamic power dissipation of ICs. In this chap-

ter, based on these results, it is shown that the historical trend of achieving smaller

interconnect latency for short local and intermediate level interconnects with tech-

nology scaling will not hold true for future technology nodes. Therefore, new op-

portunities that rise as a consequence of this radical change in the nature of the in-

terconnect problem are investigated. Contrary to the previous studies, which have

indicated that individual single–wall carbon nanotube (SWNT) interconnects are

too resistive for high–performance CMOS applications and must be used in bun-

dles, it is demonstrated that they can offer significant delay and energy–per–bit

improvements in high–performance circuits at the end of the roadmap. Perfor-

mances of various design scenarios that comprise one or a few parallel individual

SWNT interconnects are compared against the performance of the conventional

Cu/low–κ interconnect technology at future technology nodes using delay, en-

ergy–per–bit and EDP as metrics.

4.1 Introduction

Historically, the delay of short local and intermediate interconnects has been much

smaller compared to the delay of switches and has scaled with technology. The
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delay of short interconnects has been determined by the output resistance of tran-

sistors and interconnect capacitance. The length of long global interconnects, how-

ever, did not scale with technology scaling since they ran across the chip. The delay

of repeated global interconnects remained constant resulting in an increasing de-

lay trend compared to gate delays. Therefore, global interconnects were thought

to be the more serious interconnect problem [68, 9, 69]. As the results in Chapter

3 indicated and as shown in this chapter, this historical trend of constraining the

interconnect problem to the long interconnects at the global level will not be true

for future ultra scaled technologies.

Below 20 nm interconnect width, the delay of short local interconnects can no

longer be determined by just the output resistance of transistors and interconnect

capacitance because of the aforementioned dramatic increase in metal resistivity

that stems from size effects and process variations. For ultra–scaled technology

nodes, the minimum size interconnect resistance p.u.l becomes comparable to that

of individual metallic SWNTs. Therefore, new opportunities arise for using indi-

vidual SWNTs for interconnect applications in high–performance circuits at such

highly scaled technology nodes.

Carbon nanotubes (CNTs) have long been considered as a promising alterna-

tive material for future nanoscale interconnects due to their long mean free path

(MFP), high current carrying capability and high thermal conductivity. Previous

studies have shown that individual SWNTs are too resistive for interconnect ap-

plications in high performance chips [14, 70] and that they can potentially be used

only in ultra–low power circuits [71]. Therefore, in order to reduce the high re-

sistance associated with SWNTs, researchers have concentrated on manufacturing

bundles of SWNTs that conduct current in parallel [72, 73, 74, 75, 76, 77]. Taking

advantage of the fact that SWNT bundles tend to grow perpendicular to a surface

[78], researchers have manufactured both vertical and horizontal bundles of CNTs.
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As a result, there has been significant progress in on–chip integration of vertical

bundles of CNTs as vertical interconnects and using them as vias. Growing long,

dense bundles of horizontal metallic SWNTs and making reliable connections to

every tube in the bundle, however, has proven to be very challenging [79, 80, 81].

Many research groups have concentrated on solving this problem. Even though

the low catalytic activity of CNT synthesis is overcome in [79] and 84% catalyst

activity is reported, the SWNT bundles grown in this work are very sparse. Al-

though 87% metallic SWNT bundle is reported in [80], the density of the bundle

after separation is very low and it is not suitable for large–scale integration. Re-

cently, an electric–field induced alignment approach was taken to grow horizontal

bundles of multi– and few–walled CNTs for interconnect applications [81]. The

length of the CNTs in [81] is only 6 µm and it is reported that after a certain criti-

cal length, the electric–field distribution will not favor the growth of horizontally

aligned CNTs. In short, manufacturing horizontal bundles of SWNTs remains as a

challenging task.

On the other hand, there has been significant progress in wafer–level fabrica-

tion of perfectly aligned individual SWNTs with high densities on single crystal

wafers, such as quartz and sapphire, [82, 83, 84, 85, 86, 87], and in turning semi-

conducting tubes to metallic by Platinum nanocluster decoration [88]. Considering

these advances in manufacturing well–aligned metallic SWNT interconnects and

the aforementioned change in the behavior of local/intermediate level copper in-

terconnects, the RC delay of individual SWNT interconnects are compared with

that of the conventional Cu/low–κ interconnect technology.

In this chapter, we quantify the potential improvements that can be achieved

by using various single wall carbon nanotube (SWNT) interconnect designs con-

sidering the impact of broken tubes. In Section 4.2, main assumptions for Cu and
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SWNT interconnect are described. Intrinsic interconnect metrics, such as the re-

sistance, capacitance, delay and EDP of minimum–size Cu wires are compared

against various SWNT interconnect designs at the future technology nodes con-

sidering the effect of broken tubes. In Section 4.3, a complete circuit analysis is

presented and the impact of variation in kinetic inductance of CNTs on circuit per-

formance is evaluated. The requirements for various SWNT interconnect metrics

for outperforming copper interconnects are tabulated and compared against what

has been achieved so far. This chapter is concluded in Section 4.4.

4.2 Intrinsic Interconnect Metrics
4.2.1 Assumptions and Technology Parameters

In this chapter, the conventional Cu/low–κ interconnect technology configuration

shown in Figure 14(a) has been used as the reference structure in comparing the

relative performances of various SWNT interconnect designs. The ITRS update of

2010 [25] is used to estimate the values of interconnect minimum pitch, aspect ra-

tio, interlayer dielectric constant, and conformal barrier thickness. The resistance

p.u.l. of copper interconnects in this work is calculated [29] assuming a 40% LER

and choosing reflectivity (R) and specularity (p) parameters of 0.5 each [51]. The

capacitance p.u.l. of Cu interconnects are calculated using the electrostatic simula-

tor, RAPHAEL [66].

For SWNT interconnects, it is assumed that a bed of tubes is first laid on the

substrate and then the tubes in certain regions are etched away using lithography

techniques. As a consequence, there is maximum control over the pitch of SWNT

interconnects, but the tubes are randomly placed as illustrated in Figure 15.

The resistances p.u.l. of the metallic tubes are calculated using the models in

[14], [89]. In this section, it is assumed that the interconnect length is larger than

the mean free path of electrons such that the impact of quantum resistance in the

total resistance is minimum. Impact of quantum resistance is considered in the
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Figure 14: (a) Reference Cu interconnect configuration considered in this paper.
W, T, S and H stand for the interconnect width and interconnect thickness, spac-
ing between interconnects and the interlayer dielectric thickness, respectively, (b)
Few SWNTs interconnect configuration. P stands for the interconnect pitch and D
stands for the tube diameter. Tubes are assumed as randomly distributed in con-
secutive regions of half a pitch separated by forbidden regions of the same width.

Figure 15: Top view of the SWNT interconnect configuration. Tubes are randomly
placed. In this work, considering the advances in manufacturing long, dense and
well–aligned SWNTs, we assume that the lengths of the tubes are homogeneous,
but they may be broken at a random location along the length and the distance
between consecutive tubes may vary.
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next section. The mean free path of electrons in a metallic SWNT is assumed to be

linearly dependent on the diameter of the tube [90]. For interconnect applications,

where low–bias mean free path of electrons is of interest [89], it is assumed that a

metallic SWNT with a diameter of 2 nm will have a mean free path of 2 µm [91]. To

calculate the capacitance p.u.l. for various configurations of SWNT interconnects,

field–solvers RAPHAEL [66] and COMSOL [92] are used.

4.2.2 Resistance, Capacitance, RC delay and EDP Trends

To investigate rising opportunities for emerging interconnect technologies, the in-

trinsic properties such as the resistance and capacitance associated with the new

technology have to be evaluated. Compared to the resistance p.u.l. of SWNT in-

terconnects, which is almost constant with technology, Cu interconnect resistance

p.u.l. has a steep upwards trend as minimum dimensions are reduced as shown in

Figure 16. As a consequence, the huge gap between the resistance p.u.l. of Cu and

that of SWNT interconnects reduces quickly and vanishes at the 7.5 nm minimum

wire width. Utilizing a larger number of tubes that conduct current in parallel

means that this intersection will occur at an earlier node. For instance, if SWNT

interconnects with three tubes are considered, their resistance p.u.l. intersects that

of Cu interconnects at the 11–nm minimum wire width. Another important con-

clusion that can be derived from Figure 16 is that the diameter of the tubes has

to be equal to or larger than 2 nm as tubes with a diameter of 1 nm are still too

resistive for high performance applications. A maximum of three tubes in SWNT

interconnects is considered in Figure 16 simply because there is not enough room

to place more tubes at the end of the roadmap [25].

Furthermore, replacing Cu wires with SWNT interconnects with a single tube,

two tubes and three tubes can reduce the average capacitance p.u.l. by 3.44×,

2.23× and 2.17×, respectively, as plotted in Figure 17.

At very large dimensions, it is expected that the total capacitance for a three–tube
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Figure 16: Comparison of the resistance p.u.l. associated with Cu interconnects
and SWNT interconnects considering various number and diameter of tubes in a
single layer. The resistance p.u.l. for a SWNT bundle of 1 nm diameter tubes is also
shown as reference, where it is optimistically assumed that the density of metallic
tubes in the cross–section of the bundle is 1/3nm2 [89], higher than the Van der
Waals limit of only 1/4.5nm2.

Figure 17: Comparison of the capacitance p.u.l. associated with Cu interconnects
and SWNT interconnects considering various number and diameter of tubes in
a single layer. The capacitance p.u.l. for a SWNT bundle is the same as the Cu
interconnects [89].
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design will be 1.5× larger than a two–tube design. At small dimensions, however,

the degradation in capacitance p.u.l. is not linearly dependent on the number of

tubes in parallel due to significant electrical shielding between the tubes. This is

illustrated in Figure 17, where the capacitance p.u.l. of SWNT interconnects with

two and three tubes in parallel are quite similar. As more and more tubes are

placed in parallel, the capacitance p.u.l. will converge to the capacitance of a metal

plate with a thickness equal to the diameter of the tubes. The results illustrated

in Figure 17 are for the average capacitance of SWNT interconnects. In calculat-

ing these capacitances, it is assumed that the tubes in the design are placed as far

from each other as possible, thus minimizing the effects of electrical shielding and

maximizing the total capacitance.

It is demonstrated so far, that SWNT interconnects can offer similar or better re-

sistance p.u.l. and much better capacitance p.u.l. values compared to Cu intercon-

nects. Based on this discussion, a better comparison in terms of the performance

of an interconnect technology is the RC product p.u.l. squared. Figure 18 demon-

strates that the RC product of individual SWNT interconnects intersect with that of

Cu interconnects at around 11–nm minimum wire width and SWNTs offer better

RC products beyond this technology node. Similar to the discussion with resis-

tances, this intersection point can be pulled to earlier technology nodes if multiple

tubes are used in the design.

In addition to the RC delay improvements that SWNT interconnects can of-

fer over Cu interconnects, they can reduce the energy–per–bit in a system signif-

icantly as their intrinsic capacitances are very small. In Chapter 2, it was shown

that even though local interconnects in a MIN are short, they account for a signif-

icant fraction of the total interconnect power. Thus, this reduction in interconnect

capacitance can potentially translate into significant savings in total interconnect

power dissipation. Therefore, another important metric to consider is the EDP
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Figure 18: Comparison of the RC product p.u.l. squared associated with Cu in-
terconnects, bundles of SWNT interconnects and SWNT interconnects considering
various number and diameter of tubes in a single layer. The bundles are the same
size as Cu interconnects and the density of metallic tubes in the cross–section of
the bundle is assumed to be 1/3nm2 [89].

p.u.l. cubed of each of these designs. As Figure 19 illustrates, significant savings

can be achieved with SWNT based interconnects at the end of the roadmap in

terms of EDP as well. EDP for multiple–tube SWNT interconnect designs is only

slightly worse than that of individual tubes.

So far, all tubes in a SWNT interconnect design are assumed well connected

to both the driver and the receiver. However, any of these tubes may potentially

be broken along the length, which results in a worse RC delay than expected. In

Figure 20, the RC product of Cu interconnects is compared to the worst–case RC

product of SWNT interconnects with two and three tubes.

It is observed that the worst case for a design with two tubes occurs when

one of the tubes is broken close to the driver. Tubes that are broken at the driver

side significantly slow down the line since they are not connected to the source.

They introduce extra load to the system through the coupling capacitances. If a

tube is broken at the receiver end, however, the line is effectively charged by the
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Figure 19: Comparison of the EDP p.u.l. cubed associated with Cu intercon-
nects, bundles of SWNT interconnects and SWNT interconnects considering vari-
ous number and diameter of tubes in a single layer. The bundles are the same size
as Cu interconnects and the density of metallic tubes in the cross–section of the
bundle is assumed to be 1/3nm2 [89]. SWNT interconnects with 3 parallel tubes
can perform almost as good as SWNT bundles in terms of EDP.

Figure 20: Comparison of the RC product p.u.l. squared associated with Cu inter-
connects and SWNT interconnects considering various number of tubes in a single
layer and the effect of possibly broken tubes. Only the worst case is plotted when
the impact of broken tubes are considered.
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source and the loading effect is minimized. Similarly, the worst case for a design

with three tubes occurs when only one of the outer tubes is well connected to both

the driver and the receiver whereas the other two are broken at the driver side.

Comparing Figures 18 and 20 , it can be seen that broken tubes can significantly

degrade interconnect RC delay performance. EDP is also degraded due to broken

tubes as shown in Figure 21.

Figure 21: Comparison of the EDP p.u.l. cubed associated with Cu interconnects
and SWNT interconnects considering various number of tubes in a single layer
and the effect of possibly broken tubes. Only the worst case is plotted when the
impact of broken tubes are considered.

In terms of either metric, however, multiple SWNT interconnect designs can

outperform Cu interconnects at the end of the roadmap, even when the worst–case

scenario of broken tubes is considered. If all the tubes in a design are broken at

some point along their length, then the signal will not be carried from the driver

to the receiver and a failure in communication will occur.

4.3 Complete Circuit Analysis

To compare the potential performances of various SWNT interconnect designs,

we assume an inverter driving 3 similar inverters through an interconnect whose
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length is varied. Equivalent circuit models for SWNT interconnects including

quantum capacitance and kinetic inductance are utilized as presented in [14, 89].

The complete simulation circuit is illustrated in Figure 22 for a three-tube SWNT

interconnect design. ITRS projections for the half pitch of the first metal level at

the end of the roadmap, which is 7.5 nm in year 2024, is assumed for all com-

parisons.The interconnect parameters for SWNTs are tabulated in Table 21. For

Cu interconnects, resistance and capacitance p.u.l. values are calculated as 2.73

KΩ/µm and 118.02 aF/µm, respectively. ITRS projections for the ON resistance

and input capacitance are assumed in calculating driver parameters.

Figure 22: The schematic for the complete circuit simulated in HSPICE shown for
a three-tube SWNT interconnect design.

Most gates in a high–performance circuit are larger than the minimum size.

In this study, we compare interconnect performances considering 5× the mini-

mum–size gates. As a consequence, the resistance of SWNT interconnects become

the important parameter due to the large capacitive load at the receiver side. The
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Table 21: Driver and interconnect parameters for high–performance circuits at the
7.5–nm technology node.

Symbol Quantity Value

Rdriver(KΩ)
minimum–size driver

output resistance ∼ 19

Rc(KΩ/tube) contact resistance 1.5
Rq(KΩ/tube) quantum resistance 6.5

Rint(KΩ/µm)
interconnect resistance

p.u.l. 3.25

Cq(aF/µm) quantum capacitance 400
Lk(nH/µm) kinetic inductance 4

Cin(aF)
minimum–size driver input

capacitance ∼ 14

Cg,n(aF/µm) nth CNT to ground capacitance Design–dependent

Cc,mn(aF/µm)
coupling capacitance between

mth and nth CNTs
Design–dependent

Design–dependent Parameter Values
Symbol 1 tube 2 tube 3 tube

Cg,1 35.82 27.33 22.6
Cg,2 – 27.33 10.96
Cg,3 – – 22.6
Cc,12 – 18.26 47.4
Cc,13 – – 4.39
Cc,23 – – 47.4
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total interconnect resistance multiplied by the load capacitance is a larger com-

ponent of delay than the driver resistance multiplied by the interconnect capaci-

tance. Therefore, designs with smaller resistance p.u.l. offer better performance in

terms of circuit delay. This fact is illustrated in Figure 23, where it is shown that

a three–tube SWNT interconnect design offers about 5× better performance com-

pared to Cu interconnects. At short interconnect lengths, where transistor para-

sitics and contact resistance become important, improvements in speed and EDP

are smaller. In fact, at very short lengths, the performance of SWNT interconnects

are deteriorated due to the dominance of the contact resistance and transistor par-

asitics such that Cu interconnects may outperform SWNT interconnects.

Figure 23: Speedup offered by single or few SWNT interconnect designs with var-
ious number of tubes and bundles of SWNTs as a function of interconnect length
assuming that drivers and receivers are 5× the minimum size. Kinetic inductance
is assumed to be equal to its theoretical value, which is 8nH/µm per conduction
channel.

As Figure 24 demonstrates, even though the capacitance of three–tube SWNT

interconnects design is larger than that of fewer tubes, they still offer better EDP

gain than other designs considering 5× minimum size drivers and receivers. This
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superior performance in the EDP stems from their significantly smaller RC prod-

uct p.u.l. squared values made possible by significantly reduced interconnect re-

sistances due to parallel conduction.

Compared to SWNT bundles, single– or few–SWNT interconnect designs offer

smaller speedup. However, EDP gain offered by three–tube SWNT interconnect

design is similar to that of bundles. In fact, at shorter interconnect lengths, bundles

are outperformed by this design.

Figure 24: EDP offered by single or a few SWNT interconnect designs with vari-
ous number of tubes and bundles of SWNTs as a function of interconnect length
assuming that drivers and receivers are 5× the minimum size. Kinetic inductance
is assumed to be equal to its theoretical value, which is 8nH/µm per conduction
channel.

The plots in Figure 23 and Figure 24 are obtained assuming the theoretical ki-

netic inductance value of 8nH/µm per conduction channel [89]. There are two

channels that contribute to conduction in a metallic SWNT with a 2nm diameter.

Therefore, the kinetic inductance component is 4nH/µm. The experimental re-

sults for kinetic inductance reported in literature range from 4nH/µm to 60nH/µm
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[93, 94]. To quantify the impact of kinetic inductance on CMOS interconnects, sim-

ilar simulations are performed with various kinetic inductance values in this range

as illustrated in 25.

Figure 25: Speedup offered by single or few SWNT interconnect designs with var-
ious number of tubes and bundles of SWNTs as a function of interconnect length
assuming that drivers and receivers are 5× the minimum size. Kinetic inductance
per conduction channel is varied.

It can be seen in this plot that in the range of 4–20nH/µm kinetic inductance

values, the impact on the interconnect performance is quite small. For the extreme

value of 60nH/µm, however, the performance degradation of SWNT interconnect

designs cannot be neglected. For long interconnects, the resistance–capacitance

component of the delay, which increases quadratically with interconnect length

dominates the total unified delay expression [95]. The time of flight, which de-

pends on the line inductance increases linearly with the interconnect length and

its impact reduces for long interconnects. The impact of the kinetic inductance can
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be neglected for SWNT bundles since there are many tubes in parallel. The dif-

ference between assuming an extreme kinetic inductance value of 60nH/µm and

completely ignoring it is negligible for bundles as illustrated in Figure 25.

Impact of broken tubes on speedup and EDP gain for two– and three–tube

SWNT interconnects designs are illustrated in 26 and 27, respectively. Speedup

and EDP improvements are only slightly reduced if one of the tubes in a two–tube

design is broken close to the receiver. If the tube is broken close to the driver,

however, performance of interconnects is significantly degraded. The worst case

scenario for broken tubes occurs when all but one of the tubes are broken close to

the driver. Major improvements in EDP are achieved even in this worst–case sce-

nario for both two– and three–tube designs. In light of the results obtained from

the HSPICE simulations, the requirements needed to overcome Cu interconnect

performance using SWNT interconnects are determined and summarized in Table

22.

Figure 26: Speedup as calculated in Figure 23 with the impact of broken tubes for
two–tube and 3–tube designs in the worst possible case included.
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Figure 27: EDP gain as calculated in Figure 24 with the impact of broken tubes for
two–tube and 3–tube designs in the worst possible case included.

Table 22: Status update on key metrics.
Needed Demonstrated

Tube diameter (nm) > 2
2.5± 0.4 [96]
1, 2± 0.3 [97]

Tube density (SWNTs/µm) > 250
20− 40 [96]
10− 30 [97]

Conversion to metallic 100% 25% [88]
Contact + quantum resistance (KΩ) 10 10-30 [97]

Alignment ∼ 100% 99.5% [97]

79



4.4 Conclusions

It is shown that new opportunities arise for emerging interconnect technologies as

alternatives for the conventional Cu/low–κ technology at the local and intermedi-

ate levels, where wire dimensions are small at future technology nodes.

To avoid interconnects from becoming bottlenecks, the RC delay and EDP of

interconnects have to be reduced. Considering the advances in manufacturing

highly dense and horizontally aligned individual metallic tubes, this chapter has

concentrated on evaluating the potential performances of single– or few–SWNT

interconnect designs.

Contrary to previous studies on SWNT interconnect applications, which have

all concentrated on bundles of SWNTs for reduced resistance p.u.l., it is shown that

individual tubes can be used at extremely small dimensions. It is demonstrated

that individual SWNT interconnects can compete with or even outperform mini-

mum–size copper interconnects at the 11–nm minimum wire width and beyond,

while lowering the energy–per–bit by more than 3×. Using multiple parallel tubes

in the design can further improve RC delay of SWNT interconnects with only a

slight degradation in EDP. Potentially broken tubes can drastically reduce the im-

provement in both delay and EDP, but multiple tube designs with broken tubes

may still outperform copper interconnects even in the worst case.
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CHAPTER 5

SYSTEM–LEVEL DESIGN AND PERFORMANCE
BENCHMARKING FOR MULTILEVEL INTERCONNECT

NETWORKS FOR CNFETS

In this chapter, the first system–level study on the impact of carbon nanotube

field–effect transistors (CNFETs) on multilevel interconnect networks is presented.

It is demonstrated that the respective 4.3× and 8× improvements in intrinsic delay

and EDP of CNFETs at 16–nm technology node over Si–CMOS switches are quickly

overshadowed by the delay and EDP of interconnects. For repeater–inserted inter-

connects, delay and EDP improvements saturate at 2.08×. However, CNFETs offer

a major advantage in terms of the required number of metal levels because of the

availability of a larger number of repeaters compared to Si–CMOS switches.

5.1 Introduction

Carbon nanotube field–effect transistors, illustrated in Figure 28, are promising

candidates to replace CMOS and aid in the extension of Moore’s Law due to their

much better CV/I intrinsic gate delay [98, 99, 100, 101]. It is reported that CN-

FETs can offer 6× and 14× improvements over bulk n–type and p–type MOSFET

devices, respectively [98, 99] even when device non–idealities are considered. It

has been shown in [98, 99, 102] that this improvement is significantly degraded

by parasitic capacitances, such as the gate to source and drain extension fringe

capacitances, and interconnect capacitances at the device level, such as the capac-

itance between the gate and source/drain contacts. In a real circuit with intercon-

nects of very different length scales, the improvement offered by CNFETs would

be affected by interconnects even further. In addition, as described in chapters 2

through 4 and illustrated in Figure 29, RC delay of an average length interconnect

increases with technology scaling and quickly becomes comparable to the intrinsic
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CMOS device RC delay. Figure 30 illustrates the trend for EDP.

In light of these facts, it becomes necessary to consider the impact of intercon-

nects on the potential performances of all emerging devices, especially the ones

with intrinsic delays smaller than that of MOSFET since the impact of intercon-

nects will be more pronounced. On the other hand, as designed in Chapter 2,

a MIN comprises many metal levels with various interconnect dimensions that

accommodate interconnects of very different length scales. CNFET drivers and

repeaters offer different output resistance and input capacitances and the ramifi-

cations of replacing Si–CMOS switches with CNFETs have to be studied carefully.

Figure 28: 3–D view of a CNFET (left) and the top view of the gate of a CNFET
(right) regenerated from [99].

In this chapter, for the first time, a comprehensive study on the impact of inter-

connects on the potential performance of CNFET circuits and the impact of CN-

FETs on the design and performance of MINs is presented. First, the improvement

in speed, energy per binary switching operation, and EDP offered by CNFET cir-

cuits over CMOS circuits versus interconnect length is quantified at the 16–nm

technology node. To find the device resistance and capacitance values, HSPICE
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Figure 29: The RC delay of a 10–gate–pitch–long interconnect is plotted versus
the technology generation for various experimentally reported size effect param-
eters. For reference, the bulk Cu resistivity scenario and intrinsic delay of CMOS
switches based on ITRS projections are also plotted. For the 16–nm technology
node, intrinsic delays of CMOS and CNFET switches are shown based on ASU pre-
dictive models and Stanford University CNFET model, respectively [98, 99, 103].

Figure 30: The EDP comparison for the same items in Figure 29.
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simulations are performed using the CNFET SPICE model developed at Stanford

University [98, 99], and predictive models based on Berkeley short channel IGFET

Model (BSIM) 4 developed at the Arizona State University for planar MOSFETs.

For long lengths, interconnects with repeaters and various cross–sectional dimen-

sions are considered. Next, the MINs for both CNFET and CMOS circuits are de-

signed and compared in terms of the required number of metal levels and power

dissipation with the design methodology that was presented in Chapter 2. The im-

pact of using fast switches on repeater insertion and the consequent effect on via

blockage in an MIN are also investigated.

Section 5.2 elaborates on the models and technology parameters used in bench-

marking the potential performances of CNFET circuits against their CMOS coun-

terparts. Impact of interconnects on performance is quantified for both short in-

terconnects at the local level and long interconnects where repeaters are inserted.

Impact of CNFET circuits on repeater insertion is underlined. Section 5.3 com-

pares the optimal MIN design results for CNFETs and MOSFETs. The results are

summarized and concluding remarks are given in Section 5.4.

5.2 CNFET Circuit Performance
5.2.1 Technology Parameters

In this study, the inter–CNT pitch, illustrated in Figure 28 and defined by the

sub–lithographic self assembly process of CNT growth [86, 104, 82, 105], is var-

ied from 5 nm (200 CNTs/µm) to 20 nm (50 CNTs/µm). A 0.7 V supply volt-

age is assumed following the 2010 ITRS projections [25] for the 16–nm technology

node corresponding to the technology year 2018. The threshold voltage of CN-

FET devices are adjusted such that the ON current through a CNFET device with

a high–density of tubes is adjusted to ∼ 15µA/CNT while maintaining low OFF

currents by setting the required model parameters listed in [98, 99] accordingly.

Resistance and capacitance values of a minimum size CNFET inverter with 5 nm,
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10 nm and 20 nm inter–CNT pitch at 0.7 V supply voltage are calculated to be 9.493

KΩ/26 aF, 12.963 KΩ/20.5 aF and 24.138 KΩ/16 aF, respectively. For CMOS in-

verters, the resistance and capacitance values are 22.047 KΩ and 48.3 aF, respec-

tively. Assuming a smaller supply voltage of 0.52 V for a CNFET inverter with a

5 nm inter–CNT pitch, the output resistance can be brought to a similar value to

CMOS inverters, namely 23.333 KΩ, to save power.

5.2.2 Impact of Unrepeated Interconnects

Under these assumptions, a CNFET inverter with a 5 nm inter–CNT pitch offers

speedup and EDP improvement values of 4.3× and 8×, respectively ignoring the

impact of interconnects. As Figures 31 and 32 show; however, these intrinsic im-

provements quickly degrade even at short interconnect lengths. At a 10 gate pitch

interconnect length and assuming a fan–out of 3, the improvements have already

fallen down to 3× and 4.4×, respectively. CNFET circuits with 5 nm inter–CNT

pitch operated at 0.52 V offer only about a 2× improvement in speed, which is

due to the smaller device capacitance while offering the same output resistance

as Si–CMOS. However, this offers significant savings in energy–per–bit by taking

advantage of the quadratic dependence of energy dissipation on the supply volt-

age. As a consequence, they offer even better EDP gain than high performance

CNFET circuits operated at 0.7 V. At long interconnect lengths, the quadratic de-

pendence of delay on interconnect length will be converted to a linear dependence

by inserting repeaters as explained in the next subsection.

5.2.3 Impact of Unrepeated Interconnects

The plots obtained in this section are the results of rigorous HSPICE simulations.

In order to explain the behavior shown in these plots, compact models for repeater

insertion [106] are used. Simulations have shown that the output capacitance of

a CMOS inverter is comparable to its input capacitance. The optimal number of
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Figure 31: Speedup offered by CNFET circuits over CMOS circuits at various in-
terconnect lengths.

Figure 32: EDP gain offered by CNFET circuits over CMOS circuits at various in-
terconnect lengths.
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repeaters is given by,

k =

√
0.4RintCint

1.4R0C0
, (10)

where R0 and C0 are the output resistance and input capacitance of a minimum

size inverter and Rint and Cint are the total interconnect resistance and capacitance,

respectively. However, often a sub–optimal number of repeaters is used with a

minor delay penalty. The delay of a repeated interconnect with a sub–optimal

factor of ζ is given as,

τ =

(
1.4 + 0.75ζ +

0.75
ζ

) √
R0C0RintCint. (11)

The expression for the energy–per–bit for this interconnect is

E =

(√
0.4
1.4

ζ + 0.5

)
CintV2

dd, (12)

where the first term represents the power dissipation associated with repeaters

and the second term represents the power dissipation associated with interconnect

segments. Note that the energy–per–bit expression does not depend on device

parasitic capacitance parameters.

The expression for the optimal number of repeaters shows that the number of

repeaters required will be higher for CNFETs, which have much smaller R0C0 de-

lay products compared to CMOS gates. This result is illustrated in Figure 33. The

higher number of repeaters may cause problems in a MIN design where a higher

number of vias will be required and extra via blockage will reduce the net effective

area that can be used for routing wires. As a consequence, this extra via block-

age may cause a larger number of metal levels to be required for routing all the

wires. On the other hand, using the same number of repeaters for CNFET circuits

as CMOS circuits may keep via blockage the same, but it will reduce the speedup

advantage offered by CNFETs. Second, it is seen through the delay expression in
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equation 11 that for a repeater inserted line, the speedup advantage of any emerg-

ing device technology will reduce by the square root. This fact is demonstrated in

Figure 34, where only 2.08× improvement in both delay and EDP gain is observed

as opposed to the aforementioned respective intrinsic improvement of 4.3× and

8×.

Figure 33: Optimal number of repeaters required for CMOS circuits and CNFET
circuits under various conditions.

The discussion so far elaborates on how interconnects may become bottlenecks

for any fast switch and limit their speedup and EDP gain in a system. However,

to avoid interconnects from becoming bottlenecks, it may be possible to come up

with a device which offers the same amount of ON current as a CMOS switch at

a smaller supply voltage to take advantage of the quadratic dependence of en-

ergy–per–bit on the supply voltage. As illustrated in Figure 34, it is possible to

operate a high performance CNFET at 0.52 V to keep the output resistance of an

inverter the same as a CMOS inverter, but to increase the EDP gain significantly.

This lower supply voltage would lower energy dissipation in both devices and

88



wires quadratically. Figure 34 also illustrates that even though a larger number of

repeaters are required for CNFET circuits, this does not cause extra power dissi-

pation since the power dissipated in repeaters, which is calculated by equation 12,

only depends on the total capacitance of the interconnect.

Figure 34: Speedup and EDP gain of an interconnect repeated with CNFET re-
peaters over CMOS repeaters.

5.3 MIN Design Results for CNFETs

The MINs in this chapter are designed using the methodology that was described

in Chapter 2. This is the first time that the design and performance of MINs are

investigated for CNFET circuits. To compare the MINs for CNFETs and MOSFETs,

the number of cores on the chip and the frequency of operation are varied and

the number of metal levels required, the total interconnect power dissipation, and

the total chip power dissipation, including interconnects and dynamic and leakage

power of logic gates and repeaters, are quantified.

ITRS projections are assumed for the die size and the total number of logic

transistors. The area models given in [39] are used for CMOS gates and a simple

area model is used for CNFETs, where the width is assumed to be the gate width

plus the gate overhead, which is a layout specification and is usually 1.5× the

minimum feature size, and the length is assumed to be the sum of gate, contact

and source/drain extension lengths. In this work, NAND2 gates are considered.
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They typically occupy smaller area when made out of CNFETs as reported in [107],

where the area occupied by a minimum size CNFET and a CMOS NAND2 gates

are compared. As the gates are made larger, the gap between the areas of CNFET

and CMOS NAND2 gates is reduced with the models considered in this work.

The number of metal levels for various core sizes is plotted in Figure 35, where

it can be seen that the smallest number of metal levels is required by CNFETs with

5 nm inter–CNT pitch. The reason for this is that small sizes of CNFET NAND2

gates with such a high density of tubes can satisfy the frequency constraint and

more active area can be reserved for repeater insertion.

Figure 35: Number of required metal levels for various core sizes assuming differ-
ent technologies.

Even though a large number of repeaters are inserted in the MIN design for 5

nm inter–CNT pitch CNFETs and the number of vias are increased, the wires have

smaller dimensions resulting in vias with smaller diameters. As a consequence,

via blockage does not cause a significant problem in the MIN design of CNFETs.

Figure 35 also shows that the minimum number of cores is limited by the number
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of metal levels. MINs for CNFETs with 5 nm inter–CNT pitch operated at a smaller

supply voltage also require smaller number of metal levels than MOSFETs. As

shown in Figures 36 and 37 , due to the quadratic dependence of power dissipation

in both interconnects and devices on supply voltage, the best performance can be

achieved by using CNFET devices with a high density of tubes operating at a lower

supply voltage. Note that the total power dissipation of MOSFET chip is much

higher than a CNFET chip even though the interconnect aggregate capacitance

of interconnects is the same for both chips. This is due to the fact that CMOS

gates have larger capacitances compared to CNFET gates. They also have to be

made larger in size to satisfy the clock frequency requirement resulting in higher

dynamic and leakage power dissipations.

Figure 36: Total interconnect power dissipation of the MIN for various core sizes
assuming different technologies.

Figure 38 shows how the required number of metal levels depends on the fre-

quency of operation assuming 32 cores. Due to their high current driving capa-

bility and small size, CNFET circuits with 5 nm inter–CNT pitch can offer a small
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Figure 37: Total power dissipation of the MIN including dynamic and leakage
power of logic gates and repeaters.

number of metal levels over a very large frequency range. As the tube density

is reduced, the frequency at which the required number of metal levels is below

15 reduces. The steps in this plot correspond to the points where the logic gates

have to be upsized in order to meet the given clock frequency constraint. As the

frequency is increased, logic gates occupy more and more of the available silicon

area leaving smaller areas for repeaters. As a consequence, a smaller number of

repeaters can be inserted and the number of metal levels required to route all in-

terconnects increases significantly. In other words, the number of metal levels puts

an additional limit on the maximum frequency of operation.

A larger frequency of operation translates into a larger power dissipation at the

same technology node. The interconnect power dissipation and the total power

dissipation of CNFET MINs are much smaller than that of CMOS if high–density

devices are operated at low supply voltages. Figures 38, 39 and 40 illustrate that

it is possible to operate at a frequency of 12 GHz with such devices and still keep
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Figure 38: Number of required metal levels for various clock frequencies assuming
different technologies.

the number of metal levels below 15 while dissipating as much power as a CMOS

chip dissipates at about 6 GHz.

At the ITRS projection of 10.652 GHz, a high–performance CNFET chip op-

erated at a 0.52 V supply voltage requires less than 15 metal levels, dissipates

about 1.5× less interconnect power and dissipate about 2.3× less total power than

a Si–CMOS chip.

5.4 Conclusions

Due to interconnect size effects, the RC delay of even average length intercon-

nects in a MIN become comparable to the intrinsic RC delay of Si–CMOS switches

with technology scaling. Therefore, any switch that is faster than Si–CMOS will be

slowed down by interconnects even more severely. The degradation in the intrinsic

improvements in delay and EDP offered by CNFETs over MOSFETs is quantified

by taking interconnect bottleneck into account. For long, repeater–inserted lines,
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Figure 39: Total interconnect power dissipation of the MIN at various clock fre-
quencies assuming different technologies.

Figure 40: Total power dissipation including dynamic and leakage power of logic
gates and repeaters at various clock frequencies.
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improvement in delay and EDP saturate at the square root of the gain in the RC

delay. MINs are designed for CNFETs and their performance is evaluated in terms

of the number of metal levels and power dissipation. CNFETs with high density

of tubes offer the smallest number of metal levels, which is mainly because of the

larger area that is available for repeater insertion. The higher number of repeaters

does not cause extra via blockage even though the number of vias increases signif-

icantly. This is because interconnect dimensions at various metal levels are smaller

compared to the CMOS interconnect levels and via blockage is directly propor-

tional to wiring pitch of lower metal levels.
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CHAPTER 6

CIRCUIT PERFORMANCES OF VARIOUS LOGIC DEVICES
WITH CONVENTIONAL AND EMERGING INTERCONNECT

TECHNOLOGIES

The trade–offs between the technology parameters of various interconnect tech-

nologies are investigated on the basis of their impacts on the circuit performances

of emerging post–CMOS devices. In this chapter, FinFETs, sub–threshold CMOS

circuits, nanowire–based gate–all–around (GAA) tunneling field–effect transistors

(TFETs) and CNFETs are studied. Each of these devices are paired with the conven-

tional Cu/low–κ interconnect, single–wall carbon nanotube (SWNT) interconnect

manufactured in horizontal bundles or in a single layer, and multi–layer graphene

nanoribbon (GNR) interconnect. The relative performances of all these intercon-

nect technologies with each type of device are evaluated. The interconnect technol-

ogy option that gives the best performance in terms of circuit delay, energy–per–bit

and EDP is reported for each of the device technologies.

6.1 Introduction

Even though there are many strong candidates for the major device technology

in the post–CMOS era, each of these candidates will continue to suffer from the

limitations caused by interconnects. As the resistance and capacitance values of

different device technologies vary significantly, the constraints that they put on

interconnects are quite different as well. To obtain the best circuit performance,

it is crucial to investigate the interactions of interconnects with all these emerging

devices. In previous chapters the interactions of FinFETs and CNFETs with the

conventional Cu/low–κ technology have been studied.

Tunneling FETs (TFETs) show promise in overcoming the power wall facing

thermionic FETs by allowing for significant reduction in the supply voltage. A
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wide range of device architectures and materials has been studied in the realization

of TFETs in the previous years including single gate (SG), double gate (DG) and

GAA structures [108]. Previous studies have shown that band–to–band–tunneling

(BTBT) FETs can potentially offer intrinsic gate delays that are comparable with

thermionic FETs at lower supply voltages [108, 109]. In this chapter, the ON/OFF

current and input capacitance of InAs nanowire–based GAA tunnel FETs are mod-

eled and their interaction with interconnects is studied based on these device mod-

els.

This chapter is divided into five sections. In Section 6.2, assumptions about the

interconnect technologies that are considered in this study are explained and the

interconnect configurations are illustrated. In Section 6.3, some of the assumptions

that are made for simulating the mentioned devices and TFET model details are

described. Section 6.4 compares the performances of carbon–based interconnect

technologies against Cu/low–κ technology for each device type and tabulates the

impact of interconnect resistance and capacitance on the circuit performance of the

devices that are investigated here. Section 6.5 underlines the key results and con-

cludes the paper. Results confirm that device resistance and capacitance determine

the most appropriate interconnect technology for each device type.

6.2 Interconnect Technology Parameters

The reference structure that is used to compare the relative performances of emerg-

ing carbon–based interconnect technologies is the conventional Cu/low–κ inter-

connect technology configuration shown in Figure 41. The configurations assumed

for these emerging technologies are also illustrated in Figure 41.

For both Cu and carbon–based interconnects, the resistance and capacitance

values are calculated as described in Section 4.2.1. In a densely packed SWNT

bundle, the distance between the nanotubes is assumed to be 0.34 nm [110] due to
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Figure 41: Interconnect configurations for conventional Cu/low–κ technology (top
left) assuming W = S = P/2 and H = T = AR ·W, where P, W, S, T, H and
AR stand for the wire pitch, wire width, wire spacing, wire thickness, inter–layer
dielectric height, and aspect ratio of the wire, respectively, multi–layer GNR inter-
connect with top contacts (top right), SWNT bundle (bottom left), and mono–layer
of well–aligned high density SWNTs (bottom right).

Van der Waals forces. This corresponds to a density of tubes in the cross–section of

the bundle of 1/1.5nm2. Since, statistically, only 1/3 of SWNTs are metallic [111] ,

the density of metallic tubes in the cross–section of a densely packed SWNT bundle

is 1/4.5nm2. We consider a value of 1/3nm2 for the density of metallic tubes in the

cross–section of the bundle, which requires that ∼45% of the tubes in the bundle

should be metallic. For multi–layer GNR interconnects, top contacts are consid-

ered, so the contacts couple only to the topmost layer. Appropriate models that

consider the effective amount of contribution that each graphene layer provides

for current conduction are used [112]. Based on these models, optimum number of

layers that minimizes delay and EDP is calculated. A constant 1µm electron MFP

is assumed for GNRs [113].
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6.3 Device Technology Parameters

The device architectures that are considered in this chapter are illustrated in Figure

42.

Figure 42: Device architectures for FinFET (top left), nanowire–based GAA TFET
(top right), and MOSFET–like CNFET (bottom).

FinFET devices and CNFETs with 5 nm inter–CNT pitch are modeled as de-

scribed in Chapters 2 and 5, respectively. For sub–threshold circuits, complete

circuit simulations are performed in HSPICE based on predictive SPICE models

[103].

For TFETs, InAs nanowires are considered due to their direct bandgap that

eliminates the necessity for phonon assistance in tunneling. InAs is a promising

material for realizing TFETs thanks to their small bandgap and light hole and elec-

tron effective masses [114], which both increase the ON current of the TFET de-

vice. Both p–type and n–type TFETs are realized by assuming n–i–p and p–i–n

structures as shown in Figure 43, respectively.

Applying proper bias voltages between the device terminals can modify the

band diagram shown in Figure 43. Tunneling occurs between the n/p doped
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Figure 43: Schematic of an InAs nanowire–based GAA p–type TFET and the cor-
responding band diagram in the OFF/ON states (left), same information for an
n–type TFET (right).

source and the intrinsic channel by introducing a tunnel window (∆Φ in Figure

43) using a negative/positive voltage at the gate in a p–type/n–type TFET. The

threshold voltage of the device is defined as the amount of voltage that has to

be applied at the gate such that the valence/conduction band in the channel is

at the same energy level as the conduction/valence band edge in the source re-

gion in a p–type/n–type TFET. In the OFF state, the change in the potential in

the channel has a one to one dependence on the applied gate voltage. Apply-

ing a gate voltage that is larger in magnitude than this threshold voltage intro-

duces a non–zero energy window where tunneling occurs. From this point on, the

impact of the charges inside the channel have to be taken into account in calcu-

lating how the position of the valence/conduction band in the channel changes

with the applied gate voltage. The drain current flowing through the device due

to the tunneling of carriers at the source–channel junction is modeled using the
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Wentzel–Kramers–Brillouin (WKB) approximation for calculating tunneling prob-

ability [115]. Various TFET modeling publications take the approach to perform

atomistic simulations or CAD based simulations for calculating the ON current of

TFETs [108, 114]. However, for the purpose of performing circuit–level simula-

tions quickly and with reasonable accuracy, we have used an analytical expression

derived by using Landauers formula [109] given by,

ION = 2q
h TWKBkBT · ln


(

1+exp
(
(Ec,s−EFS)

kBT

))(
1+exp

(
(Ev,ch−EFD)

kBT

))
(

1+exp
(
(Ec,s−EFD)

kBT

))(
1+exp

(
(Ev,ch−EFS)

kBT

))
 . (13)

In this equation, q is the electron charge, h is Plancks constant, TWKB is the

tunneling probability, kB is Boltzmann constant and T is the temperature. Ec,s,

Ev,ch, EFS and EFD represent the conduction band edge at the source, valence band

edge at the channel, Fermi level at the source and Fermi level at the drain, respec-

tively. This expression can be used for calculating the ON current through a p–type

TFET. However, current through an n–type device can be calculated with a similar

approach.

Using the relation in equation 13, current through a p–type device is plotted

versus the gate voltage in Figure 44, where various nanowire diameter and carrier

effective masses are assumed with a constant oxide thickness of 1 nm. The drain

current through the device increases with reduced nanowire diameter and carrier

effective mass. In this study, it is assumed that the only impact of scaling down the

nanowire diameter on the device characteristics is allowing for a better gate control

over the channel, which improves the drain current. The diameter dependences of

bandgap and effective carrier mass are ignored for simplicity. However, below 6

nm, these diameter dependencies cause significant reduction in current and cannot

be ignored [114]. At this diameter, the results match well with atomistic full–band

simulations, which calculate drain currents of ∼ 130µA/µm normalized to the

diameter of the nanowire [114].
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Figure 44: ID–VGS curve of a p–type TFET for various nanowire diameters and
carrier effective masses. Higher currents are achieved at smaller nanowire dimen-
sions due to enhanced gate control. Smaller effective masses increase the tunneling
probability; hence offer larger current values.

Figure 45: Leakage mechanisms considered in this work shown on a p–type TFET.
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Scaling the gate oxide also enhances the gate control and increases the tun-

neling probability, which in turn increases the current through the device. In this

study, we assumed that the channel length is significantly larger than the screening

length to suppress short channel effects and avoid junction overlap.

Two leakage mechanisms are considered in this work; namely, the trap as-

sisted tunneling in the source–channel junction [116] and the conduction in the

drain–channel junction at high Vds values as illustrated in Figure 45.

To obtain low OFF currents through TFET devices, the current conduction must

be primarily through the source–channel junction and not the channel–drain junc-

tion. To suppress tunneling current through the channel–drain barrier, the source

side is assumed to be highly degenerate such that the Fermi–level (EFS) lies ∼

4kBT above/below the conduction/valence band and the drain side Fermi level

(EFD) is assumed to lie on the valence/conduction band edge for a p/n–type TFET.

The tunneling probability through the channel–drain junction of the device that

depends on the applied bias between the drain and source also puts a limit on the

maximum supply voltage value. Supply voltage values above the critical Vds as

illustrated in Figure 43 give rise to significant OFF state current to run through the

device. The current through the channel–drain junction can also be reduced by

other methods such as increasing the bandgap of the material, which introduces

a drive current penalty, using broken–gap heterojunction materials, and having a

drain underlap [117].

To ensure that the potential inside the channel changes with respect to the gate

voltage only, we assume that the gate oxide thickness (dox) is very small and the

oxide capacitance is much larger than the drain capacitance [108]. In 1–D devices

operating in the quantum capacitance limit (QCL), the oxide capacitance is much

larger than the quantum capacitance (Cq) as well, which provides very small gate
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capacitances since Cg = Cox × Cq/(Cox + Cq) ∼ Cq [108, 118]. The quantum capac-

itance can be calculated by

Cq = q ∂Qch
∂Ev,ch

= q2 ∂
∂Ev,ch

∫ Ev,ch
Ec,s

TWKBDOS(E) ( fs(E)− fD(E)) dE. (14)

However, the total gate capacitance is not as small because of the fringing fields

from the gate to the source and drain [108, 119], which have been taken into ac-

count in this work.

The supply voltage values for FinFETs, high–performance CNFETs and TFETs

at the 16–nm technology node are taken as 0.85 V, 0.7 V and 0.18 V, respectively.

6.4 Circuit Analysis Results

The delay and EDP performances of the device–interconnect pairs in this section

are calculated using a driver connected to a receiver through an interconnect of

varied length assuming a fan–out of 3 as described before. In order to perform a

fair comparison, we assume a CNFET inverter that is 5× the minimum size as the

driver. The number of fins in a FinFET and the number of nanowires in a TFET are

calculated such that the total width of the devices is the same as the CNFET. The

fin pitch and nanowire pitch is assumed to be equal and as given in [59] for each

technology node.

Assuming that only Cu/low–κ interconnects are used, the delay and EDP per-

formances of CNFET and TFET circuits are compared against FinFET circuits in

Figure 46 at the 16–nm technology node. It is seen that at very small interconnect

lengths, CNFET devices can outperform FinFET devices by ∼ 2× in terms of the

intrinsic gate delay metric, CV/I, and ∼ 3× in terms of EDP. On the other hand,

TFET devices are significantly more resistive; hence they are ∼ 10× slower than

FinFET devices, but they offer significant advantages in energy. TFET circuits offer

∼ 22× gain in energy due to the significant supply voltage reduction.
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Figure 46: Relative performances of FinFET, CNFET and TFET circuits in terms of
circuit delay, τ (left), and EDP (right) using Cu/low–κ interconnects at the 16–nm
technology node.

In FinFET circuits, both the resistance p.u.l and capacitance p.u.l of intercon-

nects have a significant impact on the circuit delay. Therefore, to outperform

Cu/low–κ interconnects in FinFET circuits, either the resistance p.u.l or the ca-

pacitance p.u.l associated with interconnects has to be reduced significantly while

avoiding a significant change in the other parameter. Individual SWNT intercon-

nects with 2 nm diameter have much smaller capacitance p.u.l compared to Cu

interconnects, but they are too resistive to be used in high–performance circuits at

the 16–nm technology node. On the other hand, bundles of SWNT interconnects

have significantly lower resistance p.u.l values compared to Cu interconnects at

similar capacitance p.u.l values. Therefore, as illustrated in Figure 47, the best

interconnect option for a FinFET circuit in terms of circuit delay is SWNTs man-

ufactured in horizontal bundles. Multi–layer GNR interconnects may outperform

Cu interconnects if the edges are perfectly smooth, with a probability of electrons
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backscattering at the edges equal to 0. Even a moderate 20% edge–scattering prob-

ability, which is the best reported value [120], significantly degrades GNR perfor-

mance as illustrated in Figure 47.

Figure 47: Relative performances of various interconnect technologies in FinFET
circuits in terms of circuit delay, τ, (left) and EDP (right) at the 16–nm technology
node.

Even though it is not possible to outperform Cu interconnects in terms of circuit

delay with a mono–layer of SWNT interconnects at the 16–nm technology node

due to their high resistance p.u.l, it is possible to benefit from their smaller capac-

itance p.u.l compared to Cu interconnects, which translates into a lower power

dissipation. As Figure 47 demonstrates, a mono–layer of SWNTs as dense as 250

SWNTs/µmcan offer∼ 2× better EDP performance than Cu at∼ 100 gate pitches.

Due to the reasons underlined in Chapter 4, more opportunities arise for using

these carbon–based interconnect technologies at highly scaled technology nodes.

This fact is illustrated in Figure 48, where it can be seen that SWNTs can offer much

larger gains in both circuit delay and EDP at the 7–nm technology node. For this

to be possible, however, the density of SWNTs has to increase significantly since

the minimum interconnect dimensions where tubes have to be placed are much

106



Figure 48: Relative performances of various interconnect technologies in FinFET
circuits in terms of circuit delay, τ, (left) and EDP (right) at the 7–nm technology
node.

smaller at future technology nodes. Assuming perfectly reliable connections, a

density of at least 125 SWNTs/µm is required to have a connection between the

driver and the receiver at the 7–nm technology node.

The conclusions that can be drawn from simulations using CNFETs are very

similar to FinFET circuits. Interconnect resistance and capacitance are equally ef-

fective in determining the circuit delay and bundles of SWNTs can offer the best de-

lay performance due to their smaller interconnect resistance p.u.l compared to Cu.

CNFET devices offer the smallest output resistance among the device types that

are considered in this work. As a consequence, CNFETs are effected more severely

from the changes in interconnect resistance p.u.l. The fact that the speedup offered

by SWNT bundles over Cu is slightly larger than that in FinFET circuits proves this

point. The simulation results obtained for CNFET circuits are plotted in Figure 49.

TFETs have very different requirements for interconnects than FinFETs and CN-

FETs. Due to the lower ON current offered by TFETs, the output resistance of TFET
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Figure 49: Relative performances of various interconnect technologies in CNFET
circuits in terms of circuit delay, τ, (left) and EDP (right) at the 16–nm technology
node.

devices is much larger than both of these device technologies. As a result, TFETs

can tolerate larger interconnect resistance p.u.l. In other words, interconnect resis-

tance is not as crucial in TFET circuits as it is in FinFET and CNFET circuits. Reduc-

ing interconnect capacitance p.u.l is more beneficial in reducing the circuit delay in

TFET circuits than reducing the interconnect resistance p.u.l. Clearly, reduced in-

terconnect capacitance means lower interconnect power dissipation as well. How-

ever, this does not mean that the resistance p.u.l of the interconnect has a negligible

impact on the TFET circuit performance. Figures 50 and 51 demonstrate that the

best circuit delay can be obtained by using a low–density mono–layer of SWNTs

because they offer the smallest interconnect capacitance p.u.l. However, the diam-

eter of the tubes in the mono–layer has a non–negligible impact on the speedup

as shown in Figures 50 and 51 due to the different resistance p.u.l values. If tubes

with a diameter of 2 nm are used, the resistance p.u.l can be reduced compared

to 1 nm diameter tubes and a better speedup can be achieved. Thus, interconnect

resistance p.u.l still has an impact on circuit performance even though it is not as

pronounced as it is in the case of CNFET or FinFET circuits. In short, moderately
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resistive low–capacitance interconnect technology options must be considered for

obtaining the best performance in delay in TFET circuits.

Figure 50: Relative performances of various interconnect technologies in TFET cir-
cuits in terms of circuit delay, τ, (left) and EDP (right) at the 16–nm technology
node.

In sub–threshold CMOS circuits, the interconnect resistance p.u.l is completely

dominated by the large driver resistance and has very little impact on circuit per-

formance except at very long interconnect lengths as plotted in Figure 52. There-

fore, the important interconnect technology parameter is the p.u.l. capacitance.

Low–capacitance carbon–based interconnects all provide better circuit delay than

when Cu interconnect is used in sub–threshold circuits. Even with GNR intercon-

nects with an electron backscattering probability of 0.2 at the edges, it is possible to

achieve better circuit delay than with Cu/low–κ interconnect. At long interconnect

lengths, however, the delay components associated with the resistance of the in-

terconnect are comparable to the components associated with the driver resistance

and speedup values shown in Figure 52 drop.

For sub-threshold circuits, only SWNTs with 1 nm diameter are considered

since wire resistance does not have a significant impact on circuit performance.
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Figure 51: Relative performances of various interconnect technologies in TFET cir-
cuits in terms of circuit delay, τ, (left) and EDP (right) at the 7–nm technology
node.

Figure 52: Relative performances of various interconnect technologies in CMOS
circuits operated in the sub–threshold regime in terms of circuit delay, τ, (left) and
EDP (right) at the 16–nm technology node.
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Note that as the density of tubes in a mono-layer are increased, the associated ca-

pacitance p.u.l increases and the maximum speedup is lowered.

Table 23 summarizes all the results that are explained in this section and quan-

tifies how much interconnect resistance and capacitance p.u.l impact circuit per-

formance for various device types at short and long interconnect lengths. Also, the

first three best interconnect options that maximize EDP performance at short and

long interconnect lengths for each device are tabulated.
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Table 23: Comparison table summarizing the simulation results.
Device
Type

Device
Resistance

Device
Capacitance

Interconnect
Resistance Impact

Interconnect
Capacitance Impact

Best Interconnect Option
(targeting EDP)

Short Long Short Long Short Short

FinFET Reference Reference X XXX XXX XXX Bundle
Bundle
GNR*

SWNT*

CNFET Low Low XX XXX XXX XXX Bundle
Bundle
GNR*

SWNT*

TFET High Low XX XXXX XXX
SWNT
GNR

SWNT
SWNT*

GNR

Sub–Vth Very High Reference XX XXXX XXXX

SWNT SWNT
SWNT* SWNT*
GNR* GNR*
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6.5 Conclusions

Interconnect requirements of various candidates for the main device technologies

in the post–CMOS era are investigated. The driver resistance and receiver capac-

itance are estimated using predictive SPICE models and running HSPICE simula-

tions for CNFET, FinFET and sub–threshold CMOS circuits. Recently developed

analytical models for InAs–based GAA TFET circuits are used to estimate driver

output resistance and receiver input capacitance in TFET circuits. The types of in-

terconnects that best suit each of these devices in terms of the circuit delay and

EDP are reported.

It is shown that different interconnect technologies can outperform the con-

ventional Cu/low–κ interconnect depending on the type of switches used because

the output resistance and input capacitance of these switches can vary quite sig-

nificantly. Carbon–based interconnects can find use in various device technology

options and their use becomes even more beneficial as the technology scaling con-

tinues. It is shown for FinFET circuits that SWNT interconnect benefits increase as

the technology scales down to 7–nm technology node due to the significant perfor-

mance degradation of Cu/low–κ interconnect due to size effects.
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CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

Interconnects are an ever growing challenge to continue improving the perfor-

mances of electronic chips. Both local and global interconnects introduce limita-

tions in both latency and power dissipation not only because of the ever increas-

ing resistive and capacitive load they impose on the system, but also the nega-

tive impacts the solutions of these problems have on the system such as repeater

power dissipation, repeater area, routing congestion and via blockage. Improv-

ing the transistor delay and energy dissipation with every technology genera-

tion will escalate the interconnect problem in future technology generations. Fur-

thermore, interconnects impose reliability concerns due to electromigration and

time–dependent dielectric breakdown (TDDB) due to larger electric fields.

7.1 Conclusions and Contributions

In this dissertation, first, we designed and benchmarked the conventional Cu/low–κ

interconnect technology for future technology nodes. We showed that, contrary to

previous publications, the Cu resistivity increase due to miniaturization can cause

a significant increase in the required number of metal levels, and we investigated

the reasons for this change. We also demonstrated the impacts of various intercon-

nect process parameters, for instance, the interconnect barrier/liner bilayer thick-

ness, and aspect ratio, on the design of a multilevel interconnect network for Fin-

FET devices.

Furthermore, we created a framework to perform an interconnect sensitivity

analysis for future FinFET CMOS technology nodes based on actual netlists and

timing closed GDSII–level layouts with detailed routing. Multiple standard cell
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and interconnect libraries are created to compare the performances of various de-

sign options. We showed that the impact of interconnect performance degrada-

tion on the circuit speed and power dissipation highly depends on the circuit. By

considering three circuits of different sizes and layout structures, we categorized

different types of circuits to make generic conclusions on this sensitivity.

Contrary to previous publications, which have indicated that individual sin-

gle–wall carbon nanotube (SWNT) interconnects are too resistive for high perfor-

mance CMOS applications and that they must be used in bundles, we demon-

strated that they can offer significant delay and energy–per–bit improvements in

future high–performance circuits. We compared the performances of various de-

signs comprising one or a few parallel SWNTs against the performance of the

conventional Cu/low–κ interconnect considering the impact of potentially broken

tubes. Considering that manufacturing horizontal bundles of dense CNT inter-

connects have turned out to be challenging, and that there have been promising

advances in making horizontal arrays of dense SWNTs, we showed that the lat-

ter scenario can potentially become an earlier solution to the interconnect problem

from the materials perspective.

We presented the first system–level study on the impact of CNFETs on the

multilevel interconnect networks. We determined the requirements imposed on

supply voltage value and carbon nanotube density for better performance, based

on system–level parameters such as the number of metal levels, the maximum

clock frequency and the number of logic cores. We showed that any device that

is faster than Si–CMOS will be slowed down by interconnects more severely and

will need rigorous optimizations for best performance. We also investigated the

trade–offs between the technology parameters of various interconnect technolo-

gies on the basis of their impacts on the performances of FinFET, CNFET, TFET

and sub–threshold circuits.
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7.2 Future Work

From the circuit design and reliability point of view, the interconnect metrics stud-

ied in this dissertation are not equally important for all wires. For instance, at

the local metal levels, the requirements for power/ground wires are very different

compared to signal interconnects. The important parameters to optimize are the

IR Drop and simultaneous switching noise (SSN) for power/ground interconnects

whereas delay, energy–per–bit and crosstalk are the important parameters for sig-

nal wires. For power/ground interconnects, targeting low resistance is more im-

portant than in short signal interconnects as the resistances of the majority of the

short interconnects are dominated by the driver resistance in CMOS chips. For

short signal interconnects, targeting a small capacitance is important to reduce

both the latency and the power dissipation as the aggregate capacitance accounts

for a significant portion of the dynamic power dissipation in electronic chips. Sim-

ilarly, electromigration is more pronounced for power/ground interconnects since

large DC currents run through them. Signal interconnects are less vulnerable to

electromigration because they conduct bidirectional AC currents. Therefore, there

are many different parameters that need to be co–optimized together and the tra-

ditional approach to target smaller resistance and capacitance values while maxi-

mizing resistance to electromigration and TDDB can be improved to include these

effects.

Based on this discussion, the work in Chapter 2 can be continued such that

a variety of design options can be explored based on stochastic wiring distribu-

tions to account for the specialization for both devices and interconnects in future

technology nodes. Hybrid interconnect structures that can address the different

requirements for different connections can be studied with this approach. For in-

stance, based on the results on this dissertation, a hybrid multilevel interconnect

network structure with GNR interconnects at the local signal levels can be studied,
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which may reduce the total interconnect capacitance at these levels while keeping

a comparable performance. Similarly, since via resistance becomes a significant

contributor to circuit delay at future technology nodes, the implications of using

new via structures that use vertical CNT bundles at future technology nodes can be

explored. Furthermore, since different device options have different requirements

in terms of the aforementioned interconnect metrics, this study can be extended to

include various device options. For instance, those parts on the chip which may

not need high speed but require low–power operation can be implemented using

TFETs. The ultimate goal in this study can be to create a generic system–level simu-

lator, which can take into account the properties of various device and interconnect

options to optimally pair them in terms of user–defined parameters such as speed

or power dissipation.

The sensitivity analysis framework that is outlined in Chapter 3 can be ex-

tended to multiple device technologies including III-V devices, tunneling FETs and

nanowire FETs to investigate the interconnect requirements for these new device

technologies based on actual netlists and GDSII–level layouts.

Patterning problems become more pronounced as multiple–lithography tech-

niques become a common method to extend the use of 193–nm lithography tools

until EUV lithography is ready. The ramifications of the inherent variation prob-

lem with these technologies and the required regularity in layout due to manufac-

turing limitations can be studied using the framework that is outlined in Chapter

3. To speed the analysis involving variations, the results based on actual netlists

and GDSII–level layouts for conventional or emerging devices can be used to cali-

brate the design methodology based on stochastic wiring distributions. This way,

a faster simulation environment can be used to explore more design options accu-

rately.
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So far, potential research topics in the conventional charge–based technolo-

gies are investigated. The semiconductor industry also encourages researching

non–charge–based systems to extend Moore’s Law to beyond–2020 technology

generations. Any device technology that offers advantages in performance, power

dissipation or ease in dimensional scaling will have to be complemented with an

interconnect technology that offers similar trades and all this research has to be

interconnect–centric. On the other hand, interconnect requirements, noise mech-

anisms, impact of parasitics on performance can be drastically different for these

new technologies.

One of the promising candidates for a new state variable is the electron spin.

Spin–based devices communicate through the orientation of the electron rotation.

Recently, the all–spin–logic technology is being investigated actively. In this tech-

nology, information is transmitted between nanomagnets through a combination

of spin diffusion and spin transfer torque. Performance of this system has a greater

dependence on the length of the interconnect than the charge–based system. There-

fore, correct estimation of the interconnect distribution based on layout becomes

critical for accurate performance estimation. It would be very interesting to ana-

lyze this issue on the physical layout level.

Furthermore, placement of the cells in this magnetic circuit may put major con-

straints on circuit performance due to circuit parasitics. Similar to the crosstalk

problem in charge–based systems, the stray fields generated by the magnets may

impact the energy profiles of the neighboring magnets, which may potentially

cause the neighboring magnets to become unstable during switching. Depend-

ing on the magnitude of this impact, logic errors may cause the circuit to fail to

implement the intended function. Placing the magnets far from each other may

alleviate this problem depending on the strength of the fields, but will cause the
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wirelength to increase, which contradicts with the requirement to reduce inter-

connect length. Studying the tradeoffs between these contradicting requirements

can be a very interesting research topic. This research can have multiple stages

involving (1) creating device and interconnect models for spin–based systems, (2)

constructing appropriate standard cell and interconnect libraries for early inves-

tigation of performance using commercial placement and routing tools, and (3)

creating scripts and patches to attach to these commercial tools, which can take

into account correct physical performance models associated with the spin–based

system.

One very interesting study would be to investigate the variation mechanisms

that may play a role in these emerging systems. During the initial stages of this

work, impacts of dimensional variation, variation due to thermal noise and varia-

tions in the external field can be analyzed based on physics–based models, which

can then be taken into account in the later stages of physical design and layout

analysis.
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