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SUMMARY 

As the cost and complexity of deep space missions continue to climb, the 

interaction of spacecraft with highly dynamic atmospheric environments will increase in 

frequency. Large and unpredictable departures of atmospheric properties from anticipated 

values, most especially density departures, can cause significant complications for entry 

guidance processes. These departures, or atmospheric dispersions, indicate the level of 

uncertainty in the collective knowledge of a planetary atmosphere. The Martian 

environment and its atmosphere in particular have been the subject of study for many 

years and yet a high degree of uncertainty still remains in contemporary density models. 

This uncertainty varies between 20-40% at aerocapture periapsis altitudes depending on 

location, season, time of day, solar activity, suspended dust distribution, and other 

variables and assumptions. In the face of high uncertainty, mission designers and 

engineers are compelled to apply large trajectory and design safety margins which 

typically drive the system design towards less efficient solutions with smaller delivered 

payloads.  

Aerocapture is a method for inserting a spacecraft into an orbit about a planetary 

body with an atmosphere without the need for significant propulsive maneuvers. This can 

reduce the required propellant and propulsion hardware for a given mission which lowers 

mission costs and increases the available payload fraction. While the potential system 

level benefits of aerocapture are great, so too are the risks associated with this mission 

class in highly uncertain atmospheric environments such as Mars. Large magnitude 

density dispersions have a particularly acute effect on aerocapture trajectories due to the 
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interaction of the high required speeds and relatively low densities encountered at 

aerocapture altitudes. This allows the spacecraft to rapidly enter regions of significantly 

higher- or lower-than-predicted density which complicates the guidance and control 

problem. Unfortunately, many contemporary guidance algorithms rely on simple analytic 

or tabular atmosphere models for state prediction and correction. Some of these 

algorithms include an on-board density measurement capability to permit density model 

adaptation. This provides some measure of adaptability to the density prediction model 

but significant density prediction errors may still remain. The high level of uncertainty 

(i.e. error) associated with these elementary models impacts the guidance decision 

making process and ultimately increases the likelihood of one or more guidance failure 

modes. 

This work develops a new class of adaptive density estimator called a Plastic 

Ensemble Neural System (PENS). The aim of this estimator class is to reduce the impact 

of the atmospheric uncertainty on the aerocapture guidance process by generating high 

fidelity, adaptable density prediction models. PENS makes use of a powerful forecasting 

tool known as ensemble modeling wherein several density models spanning the 

anticipated range of day-of-flight conditions are stored aboard the vehicle. These on-

board models are derived from numerical weather simulations but are stored as neural 

networks in order to reduce data storage and processing requirements. The PENS 

algorithm constructs a linear combination of selected on-board neural networks to form 

the density prediction model. The weights applied to each of the neural models in the 

linear combination are the result of an associative learning process made possible by the 

introduction of a new construct known as an ensemble echo. By remembering accurate 
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solutions from earlier in the trajectory, the echo enables the prediction model to evolve 

with increasing atmospheric exposure by incorporating newly observed density 

information as it becomes available. In this manner, the ensemble echo seeks to identify 

and accentuate prediction models which balance good local and good long-range density 

prediction performance. This approach converts a computationally expensive numerical 

density forecasting problem into a much simpler problem which may be readily solved 

with limited on-board resources. By utilizing many atmosphere models but delaying 

judgment of model quality until in situ information is available, the PENS estimator 

produces density prediction models which limit the impact of atmospheric uncertainty on 

the guidance system. 

The PENS estimator is applied to a numerical guidance system and the 

performance of the composite system is investigated with over 144,000 guided trajectory 

simulations. The results demonstrate that the PENS algorithm achieves significant 

reductions in both the required post-aerocapture performance, and the aerocapture failure 

rates relative to historical density estimators. Average reductions of 33% in both ∆V and 

failure rates relative to contemporary methods are commonly observed with much greater 

reductions in both quantities also observed in many scenarios.     
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CHAPTER 1 

INTRODUCTION 

 

On January 4th, 2004, the Mars Exploration Rover (MER) Spirit successfully 

touched down in Gusev Crater 13.4 km from its intended landing site. Twenty one days 

later, its sister ship, Opportunity, followed by making a successful landing at Meridiani 

Planum nearly 15 km from its targeted landing location.
1
 These landings, while 

demonstrating a highly respectable degree of accuracy for unguided entries, were 

nevertheless many kilometers from their targeted impact point. Reconstruction of these 

entries has revealed density profiles lower than the best pre-entry predictions. This 

outcome is not unexpected given the high degree of dynamism in the Martian 

atmosphere. This dynamism can generate daily and even hourly changes in the 

atmospheric state which complicates efforts to predict the atmospheric density prior to 

arrival. Many entry vehicles, however, rely on knowledge of atmospheric properties, 

specifically atmospheric density, for trajectory prediction and control. Consequently, the 

uncertainty associated with many common atmospheric density estimators may allow 

guided entry systems to make improper decisions which increase the risk exposure of the 

vehicle in flight and may lead to one or more guidance failure modes. The ability to 

better predict density in highly dynamic atmospheric environments would enable more 

precise targeting of final states (such as landing sites or post-entry orbits) as well as a 

reduction in vehicle risk exposure.     

The high level of atmospheric uncertainty coupled with the frequency of robotic 

missions to Mars make it an ideal testing ground for candidate methods to improve the 

performance of atmospheric density estimators. The current approach for mitigating the 

risks posed by atmospheric uncertainty is the application of large system and trajectory 

margins. For example, in order to permit a landing mission to more accurately target a 
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desired landing site, additional maneuvering propellant mass may be added to the vehicle. 

This permits the vehicle to retroactively correct for atmospheric dispersions after they 

have already impacted the trajectory and thereby permits the entry system to counteract 

greater levels of atmospheric density uncertainty. This historical margining approach has 

proven to be effective for unguided entry applications to date.  However for both guided 

and unguided missions, if the extreme case atmospheric state predictions assumed to 

drive the system requirements are incorrect, the vehicle is still exposed to unanticipated 

risk despite the addition of these expensive design margins. If, however, knowledge of 

the atmospheric properties can be improved, guided entry systems would be able to not 

only achieve increased final state targeting accuracy but also successfully function with 

smaller system and trajectory uncertainty margins leading to more efficient vehicle 

designs.  

1.1 Study Goals & Scope 

 The goal of this research, therefore, becomes the creation of an improved 

atmospheric density estimator which reduces the impact of atmospheric uncertainty on 

guided entry trajectories. This is accomplished through the introduction of an adaptive 

density prediction algorithm developed using artificial intelligence and numerical 

weather forecasting techniques. Guidance decisions based on a highly uncertain 

atmosphere model may lead to incorrect guidance decisions which increase the risk of 

failure of the entry. To remediate this issue, the adaptive prediction algorithm modifies 

the density model used by the guidance system to better agree with in situ density 

measurements.  
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Figure 1.1: Fundamental Phases of Aerocapture Trajectories 

 

While atmospheric dispersions can have a profound effect on any type of entry 

mission, they have an especially significant and unique impact on aerocapture missions. 

Aerocapture is a technique used to insert a vehicle into an orbit about a planetary body 

with an atmosphere without the need for large propulsive maneuvers (Figure 1.1). The 

vehicle enters the atmosphere from a hyperbolic approach trajectory using atmospheric 

drag to reduce its velocity. The atmospheric exit state is targeted to produce a Keplerian 

coast to the desired target orbit where a small insertion maneuver is performed. Note that 

an alternative approach for aerocapture is to seek any stable orbit rather than a specific 

post-aerocapture state. Propulsive orbit correction may then be used to reach the desired 

target orbit if necessary. It may even be possible to carefully design mission architectures 

such that a specific target orbit is not required. These approaches are more robust to 

atmospheric density uncertainty but also may require larger post-aerocapture ∆V budgets 

to account for atmospheric uncertainty.  These alternative approaches are not examined 

herein in order to focus on improvement of the atmospheric guidance process.    

In general, the expected density variability in an atmosphere decreases with 

altitude (see Figures. 1.2-1.3). Thus for landing missions, the vehicle begins at high 

altitude in a region of high atmospheric uncertainty and descends into regions of 

continually decreasing uncertainty. From the perspective of density forecasting, this is 

not as stressful a testing scenario as an aerocapture mission which must descend from a 
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region of higher uncertainty (at entry interface) to a region of lower uncertainty (at 

periapsis). The vehicle must then make density predictions concerning the outbound leg 

in order to safely guide itself back upward through regions of higher uncertainty. While 

the Martian atmosphere is in a state of approximate hydrostatic equilibrium, density 

structures such as gravity waves, density tidal waves, and planetary-scale flow 

structures
2-4

 likely limit the utility of global analytic regression models. Because the 

outbound leg occurs in a completely different spatial region then the inbound leg, the use 

of inbound density trends to predict the outbound density profile will likely yield limited 

results. Throughout an aerocapture maneuver, density dispersions (i.e. density 

uncertainty) coupled with the high required speeds allow the vehicle to rapidly enter 

regions of density which are much higher or lower than predicted.  These density pockets, 

shears, or long-term biases place the spacecraft at risk of violating hard constraints or 

controllability limits. This can lead to irrecoverable conditions such as skip-out or 

complete vehicle destruction. Even if the guidance rapidly compensates for the 

dispersion, soft failures such as large final state errors can occur which may jeopardize 

mission goals.    

 

 

Figure 1.2: Density Variability in MarsGRAM 2005
5
 

Blue = total density (τdust = 0.3) / mean density (τdust = 0.45) 

Red = total density (τdust = 3.0) / mean density (τdust = 0.45) 

Solid Lines are ±3σ values 
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It should be noted that the impact of atmospheric density on the entry trajectory 

will diminish with altitude.  For aerocapture, the precise entry and exiting altitudes where 

the density no longer has a significant effect on the trajectory is largely a function of the 

desired target orbit. The target orbit dictates the entry and exiting flight path angles which 

largely determine the length of time the entry vehicle spends in the highly variable upper 

atmosphere. Rapid transits through this region, such as those produced by higher energy 

post-aerocapture target orbits, will tend to limit the effects of the density variability on 

the aerocapture trajectory.  Slower, shallower transits through the upper atmosphere, 

typically produced by lower energy target orbits, will be more susceptible to density 

variations at in the upper atmosphere (see sections 3.3.7 and 5.2).   

Therefore the nature of the target orbit greatly influences the maximum altitude at 

which the atmosphere no longer significantly affects the trajectory. However, in order to 

ensure that all interactions between the guidance system and the atmosphere are captured, 

all aerocapture trajectories examined herein are simulated from the entry interface 

altitude of 128 km through periapsis and back up to atmospheric exit at 128 km.  These 

conditions were selected based on the work of Masciarelli, et al
6 

because these conditions 

have a high likelihood of capturing the complete altitude region of interest for most 

aerocapture missions regardless of the target orbit.  

1.2 Effects of Density Dispersions on Contemporary Guidance Schemes 

Despite restricting the testing environment to aerocapture missions, it is 

instructive to examine a wider scope of literature for both aerocapture and landing in 

order to gain insight into the effects of density dispersions on entry guidance. Given the 

highly dynamic nature of the Martian atmosphere, it is reasonable to assume that the 

accuracy of atmospheric state predictions based on static models (analytic equations or 

tables) will always yield limited results. Unfortunately, unguided entries must rely on 

such static atmospheric state predictions. These predictions are typically derived through 
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probabilistic processes taking into account dispersions and multiple data sources such as 

wind field predictions from mesoscale models.
7-9

 The entry state vector is controlled 

during the approach phase such that the center of the landing dispersion ellipse coincides 

with the nominal landing site.  Because the onboard systems do not have any means of 

taking corrective action during the entry, this probabilistic process is effectively reduced 

to a static best estimate. If the predicted nominal atmosphere (i.e. the atmospheric state 

which occurs with the highest probability) is incorrect, the vehicle will be off-target.       

For guided entries, such as the Mars Science Laboratory (MSL), the ability of the 

vehicle to correct its state vector during the entry enables the use of dynamic atmosphere 

models which can adapt to day-of-entry conditions.  However, many proposed entry 

guidance algorithms for aerocapture
6,10-13

 and landing,
14-16

 including MSL,
17

 utilize 

simple atmosphere models (i.e. an exponential/isothermal density model) to form state 

predictions and derive control signals and guidance gains. Many of these studies 

conclude that large atmospheric dispersion and density anomalies are a significant 

contributor to final state error and drive guidance failure modes.   

For example, Fuhry notes that the efficacy of predictive guidance during the 

critical aerocapture exit phase is “greatly affected by the presence of unpredictable 

variations in atmospheric density.”
11

 This is caused by the dependency of the guidance on 

predictions of future vehicle control capability.  “…The presence of density shears, which 

greatly change this control capability, can cause large target misses and fuel penalties.”
11

 

In studying Apollo-derived Mars landing guidance, Carman et al. found that 

dispersions in atmospheric density from the assumed exponential model can result in 

saturation of the bank command channel which inhibits the ability of the guidance system 

to reduce position errors.
14

 Tigges and Ling developed a predictive equilibrium glide 

guidance scheme based on an exponential atmosphere assumption for a Mars sample 

return lander.
15

 They found that constant density biases (unanticipated density shifts over 

an extended time period) generated large final state errors for entry from a 1 Sol orbit and 
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suggest the use of a circular orbit to reduce the errors associated with atmosphere 

dispersions. Note that a Sol is one Martian day lasting approximately 24 hours and 39 

minutes. 

In studying the effects of large atmospheric dispersions on Martian aerocapture 

guidance, Ess
18

 notes that the use of exponential atmosphere models in the presence of 

density biases causes mispredictions in the desired drag deceleration profile. A finite time 

interval is required for the guidance to determine that significant error is accumulating 

and take action. This causes the corrective action of the guidance to lag behind the 

fluctuations in the mean density field. If the mean density shifts yet again while the 

guidance is still correcting for the first bias, the action of the guidance may be completely 

wrong for the environment the vehicle is currently experiencing.  For example, if the 

vehicle flies into a higher-than-predicted density region, the guidance will compensate by 

commanding an increase in altitude to reach a more desirable density region.  If the bias 

then reverses or disappears altogether, the vehicle is now at higher altitude than desired 

and therefore in a region of dangerously low density. Extremely low density degrades the 

control authority of lifting entries through attenuation of the lift vector magnitude. This 

situation can lead to a loss of control and possible hard failures such as skip out.     

A plausible scenario illustrating this example is an unanticipated transit through a 

developing dust storm which could cause a large increase in mean density as the vehicle 

enters the storm and a large drop in mean density upon exit. A chance encounter with a 

developing dust storm during entry may seem unlikely. However, Knocke et al. notes that 

the atmosphere models for both MER entries were altered during the final approach 

phase due to a dust storm which reached its peak in mid-December 2003
1
.  Therefore, of 

the seven successful landing missions at Mars, the entries of at least two were directly 

influenced by a dust storm.       

For aerocapture at Earth, Skalecki et al. examined the effects of both uniform 

density biases over the entire entry as well as density “potholes” (i.e. persistent density 
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biases with a finite length which end at some point during the entry).
19

 They concluded 

that uniform density biases presented little difficulty for their bank-modulated drag 

reference method.  However, they note that pothole variations presented significant 

difficulty and, like Ess
18

, acknowledge that density potholes create failure scenarios due 

to guidance lag.  It was also noted that performance was sensitive to the point where the 

density pothole was applied and the most critical point was generally near periapsis.  This 

matches intuition because peak deceleration should occur in the region of highest free 

stream density which occurs near periapsis.         

Cianciolo, et al. conducted a study to parametrically assess the impact of pothole 

density dispersions on the nominal MSL entry trajectory.
20

 The study notes that such 

pothole dispersions have been observed for shuttle orbiter entries at Earth where the 

density can shift by up to 60% over short durations.
21-23

 The nominal MSL trajectory 

quickly dives through the highly variable upper Martian atmosphere then levels off 

around 13 km and enters near-level flight for more than one minute. It was determined 

that if the density potholes are strategically positioned, in this case below 20 km, the 

altitude of parachute deploy could decrease by 3-4 km and range errors at parachute 

deploy could approach 14 km.    

From examination of the findings above, it seems reasonable to conclude that 

many entry guidance algorithms for both landing and aerocapture are vulnerable to at 

least one worst case density anomaly.  Most seem susceptible to long lived density biases 

which begin during the trajectory or density potholes which both begin and end during 

the trajectory. Guidance algorithms appear most vulnerable near the region of peak 

deceleration which is an intuitively reasonable conclusion. If strategically positioned and 

of sufficient magnitude, density anomalies can disrupt vehicle guidance for both landing 

and aerocapture and result in large final state errors or complete guidance failure. 
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1.3 Guidance Failure Modes & Remediation Methods 

While density anomalies are the root cause of the guidance disruption, the above 

literature also offers insight into how such worst case anomalies produce guidance 

failures. These effects include saturation of the controller
14

, lags in guidance response 

caused by rapid density changes
18,19

, and misprediction of remaining control 

authority
11,18

.  

Controller saturation occurs when the necessary command authority to execute a 

maneuver exceeds the available authority. Many Martian entry guidance schemes achieve 

control through modulation of the lift vector direction. Avoiding controller saturation, 

therefore, implies use of higher L/D to generate sufficient control authority in the 

presence of severe density dispersions. However, several studies
18,19,24

 examined the 

effects of varying L/D and conclude that higher L/D may also introduce significant 

control difficulties and does not immediately ensure a successful entry. In addition, 

higher L/D shapes typically produce mass penalties due to packaging inefficiencies. 

Controller saturation could also be prevented by adding degrees of freedom to the vehicle 

to improve the formulation of the controls problem that the guidance must solve. This 

could include the addition of a speedbrake or inflatable decelerator to provide control 

over the ballistic coefficient or the addition of a body flap to modulate trim angle of 

attack.  However, all of these solutions immediately generate a mass penalty. 

As discussed earlier, guidance lag is caused by rapid large magnitude dispersions 

which prevent the guidance from keeping pace with the changes in the atmospheric 

density. Guidance lag could be reduced by the design of rapidly responding controllers 

but controller stability must still be considered. Even if a fast, stable controller is 

available, the vehicle must be capable of responding to the rapid control signals.  

Therefore, high roll rates and angular accelerations are required which increase the 

actuator (maneuvering jets or aerodynamic surfaces) requirements and ultimately add 

mass to the system. 
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Misprediction of remaining control authority, particularly important for 

aerocapture as noted by Fuhry
11

, can be most directly addressed through more accurate 

prediction of the density field in front of the vehicle. Note that this is the only method 

which does not immediately lead to a mass penalty and even has the potential to reduce 

vehicle dry mass. An adaptive atmosphere prediction capability allows the vehicle to take 

proactive guidance action to counter upcoming atmospheric conditions.  Proactive 

guidance could potentially yield a reduction in required angular rates and accelerations 

because the vehicle has more time to plan and execute guidance decisions.  This would 

reduce the requirements on both the control system and control effectors thereby 

permitting smaller control surfaces or lower-thrust maneuvering jets. The additional 

planning time also provides a degree of protection against controller saturation. Proactive 

vehicle guidance would also allow a revision of the historical margining strategy which 

would reduce overdesign, enable the consideration of more landing sites, and increase the 

reliability of unproven techniques such as aerocapture. 

1.4 Antecedents 

Several methods for density prediction for entry vehicles have been previously 

developed. Perot and Rousseau developed a least squares fitting approach to tune a 

standard exponential atmosphere model using reconstructed density data taken in flight.
25

 

They use this model to approximate the density scale height during the critical exit phase 

of an aerocapture mission for two different guidance algorithms.  Despite producing 

significant increases in final state accuracy their periapsis altitudes still vary by several 

hundred kilometers.   

Cerimele and Gamble
10 

also use reconstructed density data to determine a 

corrective multiplier for an exponential density model.  This multiplier is taken to be the 

measured density divided by a reference density from the reference atmosphere used to 

derive the control equations. While their simulations and results assume Earth as the 
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central body and not Mars, they note that large final state errors can result from large 

magnitude atmospheric density dispersions. The same approach is also used by 

Masciarelli, et al.
6
  

Fuhry employs a similar corrective multiplier to the Cerimele-Gamble scheme but 

incorporates the parameter into a Kalman filter to predict its future state based on current 

information
11

.  Fuhry finds that large final state errors can occur in the presence of large 

magnitude dispersions (see Section 1.1). Another related approach is taken by 

Vijayaraghavan who foregoes the computation of a multiplier and estimates the 

parameters of an exponential model directly using a Kalman filter
12

. Dispersed 

trajectories are created by changing the reference density of the exponential model 

throughout the trajectory each time the guidance is called. It is determined that significant 

final state errors can occur in the presence of large magnitude dispersions.  

Note that all these schemes have the potential to enter a guidance failure mode 

due to atmospheric dispersions and all are reliant, in some degree, on an exponential 

atmosphere model. It seems reasonable, therefore, to deduce that improved performance 

in the Martian environment may be possible if simple analytic atmosphere 

approximations such as exponential models are replaced with higher fidelity models.  

It should also be stated that many guidance schemes
13-17,27-28 

for atmospheric entry 

avoid direct treatment of the atmosphere in the guidance method, opting instead to correct 

for density dispersions after they affect the trajectory. For example, the Space Shuttle 

reentry guidance scheme determines control actions based on deviations of the actual 

drag acceleration from a reference profile. The vehicle guidance relies on multiple 

degrees of freedom to absorb density dispersions (recall the discussion in Section 1.2.). 

Bank angle modulation is used to control the lift vector direction for long-period 

corrections and maneuvers. Short-term corrections for dispersions and other deviations 

from the desired reference trajectory are accomplished through modulation of the angle 

of attack which changes the drag coefficient.
26

 It should also be noted that Shuttle 
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guidance, while effective, relies on the relatively high terrestrial densities at lower 

altitudes coupled with its considerable L/D to ensure accurate final state targeting. In the 

Martian environment, the low atmospheric densities degrade control authority at slow 

speeds. This effect is exaggerated if the vehicle L/D is small as is typically the case for 

Martian entry vehicles. Lastly, it is desirable to avoid the addition of mass necessary to 

add guidance degrees of freedom such as angle of attack control. 

The Apollo reentry guidance scheme uses an exponential atmosphere assumption 

to derive the equations used by the guidance system.  The full Apollo reentry guidance 

routine requires an estimate of the atmospheric scale height as well as a reference density 

and a corresponding reference altitude
27,28

. During the final phase of the entry, deviations 

from the desired reference trajectory due to any perturbative effects including density 

dispersions are corrected by rolling the lift vector direction after the dispersion has 

already affected the trajectory. The MSL entry guidance algorithm, based on this final 

phase of the Apollo reentry guidance, makes no direct use of any atmospheric 

parameters.
14,17

 (n.b. The guidance gains, however, are derived using an exponential 

atmosphere assumption.) Instead, the guidance accounts for dispersions by examining the 

departures of the sensed lift and drag accelerations from the reference profile. This 

approach, while simple and effective for Apollo due to the nature of the Earth’s 

atmosphere, exposes MSL to risk throughout the entry. As is noted by Mendeck and 

Carman, “atmospheric density dispersion is a principal factor that degrades the guidance 

ability to converge to [the desired] drag versus velocity profile.” They conclude that drag 

error caused by density dispersions is the principle contributor to landing site miss 

distance.
17

   

From the above conclusions, it seems clear that inclusion of the atmosphere in a 

holistic systems approach is one possible approach to reduce mission risk. As noted 

earlier, this is particularly true for mission modes such as aerocapture which strongly 

depend on knowledge of the atmospheric density field.  
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1.5 Summary of Research Questions 

As discussed in Section 1.1, the primary research question under study may be 

stated as follows: Can an adaptive atmospheric prediction algorithm be created to 

improve density forecasting for aerocapture guidance processes? Such a density 

estimator, by generating more accurate density forecasts, would reduce the impact of 

atmospheric dispersions on aerocapture guidance processes. The answer to this system-

level problem requires knowledge and understanding of many cooperating disciplines 

such as vehicle guidance methods, atmospheric physics, numerical weather forecasting 

techniques, and machine learning. In order to properly approach the primary question, 

several supporting questions with narrower, more discipline-centric focuses must be 

addressed. These supporting questions decompose the primary question into smaller, 

more readily conquerable components. The supporting questions to be examined herein 

are:   

(1.)  How can atmospheric state uncertainty be reduced?  

(2.)  Can an ensemble neural system be utilized to form atmospheric density 

forecasts consistent with observed flight data? An ensemble neural system is a 

collection of computational models each trained to perform an identical task. 

It combines two powerful forecasting concepts; ensemble forecasting and 

artificial neural networks (NNs). Ensemble weather forecasting techniques 

utilize a series of weather prediction models. While each model has the same 

goal (e.g. predict density as a function of spatial position) the underlying 

assumptions, state equations, and data trends may differ between each of the 

models in the ensemble. By combining the outputs of these models using an 

averaging or other arbitration technique, ensemble forecasts have the potential 

to accurately predict the behavior of highly uncertain systems. A form of 

limited Monte Carlo analysis, ensemble forecasts are commonly used to 
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predict the trajectories of hurricanes or other highly dynamic weather systems. 

Artificial NNs are computational models based on human neurology which 

are capable of recognizing and learning from patterns embedded in complex, 

noisy datasets. The combination of these two tools creates a unique solution 

for the prediction of atmospheric density. For more information, see Sections 

2.4 & 2.5.  

(3.)  How can atmospheric prediction experience gained in flight be leveraged to 

improve future state predictions? 

(4.)  How can a proactive guidance scheme be developed which leverages 

information from the improved atmospheric forecasts? 

The answers to these questions will be sequentially explored in the sections and chapters 

to follow.  
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CHAPTER 2 

APPROACH & METHODOLOGY 

2.1 Overview of Approach & Primary Research Question 

  The main challenge of the present study becomes the identification of a holistic 

approach to reduce the impact of atmospheric dispersions throughout the aerocapture 

entry process. Current methods of atmospheric density prediction for guided entries 

typically use one static atmosphere model as discussed earlier. Most contemporary static 

models have some measure of adaptive freedom; many are updated throughout the entry 

with an acceleration-based estimate of atmospheric density at the vehicle’s current 

location. Therefore the term “static model” does not imply that the density estimator 

cannot adapt in flight. Rather, a static model implies that the underlying form of the 

model is fixed. For example, an exponential model can only capture vertical density 

trends and could never model horizontal density trends even if horizontal artifacts are 

directly observed during entry. Thus an exponential density model is always an 

exponential model regardless of the values of the input parameters or measured data used 

to adjust the model’s behavior. Therefore even if a density measurement capability is 

available which provides density estimates at the current vehicle location, a static model 

may not be able to fully utilize this information due to the inflexibility of the underlying 

model dynamics. This inflexibility is a significant limitation when modeling a highly 

variable environment such as Mars. Therefore a method is sought which can change its 

underlying model dynamics to agree with observed conditions. Such a scheme is possible 

if the use of multiple models is considered. Employing multiple models allows 

information from several data sources to be combined to achieve the desired uncertainty 

reduction analogous to some hurricane path prediction methods. The approach used 

herein is to create a series of basis models which can be stored on-board the vehicle 
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(Figure 2.1.a). An Inertial Measurement Unit (IMU) and an Air Data System (ADS) are 

then used to sample the atmosphere from entry interface up to the current spatial location 

of the vehicle (the red line in Figure 2.1.b). Note that for the notional example shown in 

the figures, several outlying stored models do not accurately describe the observed 

density trends. These models can be eliminated from the prediction basis (Figure 2.1.c) 

and the remaining models can be combined in some manner to match the observed 

density history. This combinatorial model may then be used for forward-looking density 

forecasting.   

  If the observed atmospheric dynamics change, the problem may be reexamined 

and the basis model pruning process repeated to match the new conditions. By forming 

combinations of the most promising models and eliminating ill-fitting models, the 

underlying model dynamics may be continually adapted to suit currently observed trends.  

 

 
                      (a)                                         (b)                                          (c) 

Figure 2.1: Notional Example: Accomplishing                                            

Atmospheric Uncertainty Reduction 
Vertical Density Profiles from Mars Climate Database at 0°N, 0°E 

 

  The problem now becomes finding a practical means of implementing the 

proposed scheme. Because the development of a series of accurate density models is 

central to the proposed approach, the identification of suitable Mars climate simulations 

from which to develop these models is critical. First, however, it is necessary to review 

several assumptions applied throughout this study.  
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2.2 Assumptions & Ground Rules 

This study makes use of several general assumptions which apply throughout the 

remainder of the work. The prime assumptions stem from the availability of estimated or 

reconstructed density data. The entry vehicle is assumed to contain an IMU which is 

capable of tracking accelerations and angular rates as well as an ADS capable of inferring 

free stream dynamic pressure. This information is used to estimate the free stream density 

at the current spatial location of the entry vehicle. For the simulations herein, free stream 

density is estimated by combining the IMU information with measurements from an 

ADS. Entry vehicle ADSs are common and have been developed for the Space Shuttle,
29

 

for MSL
30

 and for the X-15 research vehicle
31-33

. The approach used here is to compute 

free stream density ρ by combining dynamic pressure measurements (pdyn = ½ρV
2
) from 

the ADS with relative velocity measurements V from the INS. This approach makes no 

effort to determine or reduce the measurement uncertainty of either quantities because 

such procedures would require additional computational overhead. 

Note that a viable procedure for computing free stream density with an associated 

uncertainty estimate is proposed by Dutta and Braun.
34

 They also use two independent 

datasets from an IMU and ADS and produce estimates of atmospheric density which are 

independent of other uncertainty sources such as the vehicle aerodynamics. Their 

approach is notable because it allows separation of the various uncertainties and the 

production of more accurate free stream density estimates.
34,35

 It should be stated that the 

quantification and reduction of other uncertainty sources (such as aerodynamic 

uncertainty) involves concepts from separate fields of study and is considered beyond the 

scope of the present work. However, likely velocity and dynamic pressure measurement 

errors are simulated in this study. These simulations reveal that the density estimator 

developed herein produces marked performance improvements in the presence of density 

measurement uncertainty.      
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Another common approach for estimating free stream density replaces data from 

an ADS with an on-board library of estimated aerodynamic coefficients as a function of 

the vehicle state and orientation. The density is then directly computed using 

SCV

ma

d

drag

2

2
=∞ρ                                                       (2.1) 

where adrag is the measured drag acceleration, V is the relative velocity, Cd is the 

estimated drag coefficient, m is the vehicle mass, and S is the aerodynamic reference 

area. While this approach of using IMU data with an on-board aerodynamic database has 

been used extensively in real time for aerobraking operations
36-39

, it is not adopted here. 

The atmospheric density estimator developed in this work requires a measurement of the 

local free stream density in order to make downrange forecasts. While the source of this 

estimate is assumed to be an ADS for convenience, the density estimator developed 

herein is fully capable of utilizing other methods as well. The tools and techniques for 

utilizing an aerodynamics model and accelerometer data to measure local free stream 

density are already well developed. Therefore, in order to place prime focus on the 

development of a novel density estimator, a suitable ADS is assumed to be available 

aboard the entry vehicle.    

In addition to the above assumptions, the temporal variation of the atmosphere is 

assumed to be negligible over the several minutes of atmospheric flight. This permits the 

use of a single group of on-board density models rather than dynamically updating the 

models in flight or utilizing density models which are time dependent. Given the slow 

time scales over which atmospheric density typically changes, it seems reasonable to 

conclude that this assumption does not limit the applicability of the method.  

2.3 Modeling of Martian Meteorology 

In studying the accuracy of meteorological data necessary for successful 

aerocapture missions, Cerimele, Skalecki, and Gamble found that large density features 

(such as density pockets) which persist over several thousand vertical feet can generate 
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guidance failure modes.
19

 Smaller features were not as significant because the vehicle 

was not in the feature long enough for it to significantly affect the trajectory. In addition, 

Ess noted that “significant density shifts are usually low frequency disturbances and [are] 

possibly predictable.”
18

  

Given these observations, it seems reasonable to utilize readily available data 

from Global Circulation Models (GCMs) to create the library of on-board basis models. 

These on-board models are each a static snapshot of spatially resolved density fields 

predicted by a suitable Mars GCM for one particular time, location, and set of physical 

inputs. Due to their global domains, GCMs produce results with coarse resolution to limit 

computational run time. Because large density structures are of prime interest and 

because aerocapture vehicles remain at high speed throughout the entry this coarse 

resolution does not limit the utility of GCM-derived basis models.  

The use of higher resolution climate simulations such as regional mesoscale 

models (MMs) and large eddy simulations may be desirable in entry applications. 

However, Engelund et al. find that little validation data, such as density or temperature 

observations, is available for Mars MMs. The existing climate data sets are typically 

limited to a specific location, season, and time of day.
5
 Conversely, GCMs are able to 

make use of these limited data sets for verification and validation due to their global 

domains. Despite the application of GCM data herein, the proposed approach is fully 

generalizable and could eventually utilize MMs for the development of the basis models 

when more accurate measured data sets are available for validation. 

  At present, the uncertainty of Martian atmospheric density ranges between 25-

200% depending on altitude with an uncertainty of 20-40% near aerocapture periapsis 

altitudes.
5
 This uncertainty is largely due to the highly variable dynamics of the Martian 

atmosphere which is driven by several principle factors
3,40

, namely: 
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• Dramatic surface topography [the deepest point on Mars, Hellas Planitia is 7 km 

below the areoid (Mars equipotential datum) and the highest point on Mars, 

Mount Olympus, is 21 km above the areoid] 

• Variations in surface solar heating & temperature-altitude profiles 

• Bulk wind patterns, large flow structures, and interactions with topography 

The last two items are largely governed by the Martian radiative balance. The 

atmospheric radiative balance is an energy conservation statement which describes how 

incoming solar energy is reflected from, dissipated by, or distributed in the atmosphere. 

The radiative balance, in turn, is affected by the amount of incoming solar energy (i.e. the 

solar flux incident on the Martian thermosphere) and the amount of suspended dust in the 

atmosphere. Higher levels of incident solar flux lead to more active solar forcing which 

affects global prevailing winds and temperature profiles. Suspended dust, lifted into the 

atmosphere by winds, can alter the radiative balance by absorbing and reradiating more 

energy to the surrounding fluid at a given altitude. Dust can also act as a shield or 

sunshade and decrease the amount of solar energy reaching lower altitudes. These 

mechanisms ultimately alter the temperature-altitude profile. Temperature variations 

directly impact density trends through the atmospheric equation of state. Therefore, the 

basis models developed for entry applications must account for both the dust distribution 

and the solar flux incident on the thermosphere. Because daily and seasonal property 

variations can be quite significant on Mars, season and entry time-of-day must also be 

considered. These four parameters, namely dust, solar flux, time, and topography are the 

most basic inputs to any candidate atmosphere model. Note that local topography and 

time are automatically accounted for when developing region-specific basis models for 

the known entry time.  

 In order to develop the proposed density forecasting scheme, two Martian climate 

simulations are required. One is needed to create the on-board library of basis models and 

the other is required to serve as a surrogate for the Martian atmosphere which the air data 
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system samples during the entry. The data in Figure 1.3 is taken from the Mars Climate 

Database (MCD), “a database of meteorological fields derived from GCM numerical 

simulations…validated using available observational data.”
41

 The GCM simulation used 

in MCD is derived from first principles and avoids inferences of global behavior based on 

sparse datasets, a limitation of many other available Mars climate models
42

. The MCD 

also includes several climate scenarios corresponding to various dust and solar flux 

conditions designed to bracket the global conditions on Mars
43

. As discussed, these two 

variables are the primary influences which drive the bulk behavior of the Martian 

atmosphere and therefore capturing their effects in any potential model is critical. For 

these reasons, the MCD is used to create the on-board model library. MarsGRAM 2005 is 

another GCM-derived Martian climate model based on a single year model integration.
44

 

It contains a flexible stochastic perturbation routine allowing the user significant control 

over the entry density profile. This makes MarsGRAM a useful choice for the surrogate 

atmosphere which functions as the true Martian atmosphere during the entry simulation.  

2.4 Ensemble Weather Forecasting & Supporting Research Question 1 

Creation of a methodology for adaptive atmosphere prediction using a series of 

basis models may be approached by examining contemporary weather forecasting 

techniques. Ensemble weather modeling is a form of Monte Carlo analysis where several 

nearly identical numerical models are constructed and integrated forward in time with 

small differences in initial conditions or model assumptions. Early use of weather 

ensembles is attributable to Leith who used ensemble averages to produce a Monte Carlo 

approximation to a stochastic-dynamic forecast (i.e. the forecast of a dynamical system 

subject to noise).
45

 Commonly used to model tropical storm and hurricane systems on 

Earth
46,47

, ensemble techniques are useful for weather prediction in the presence of 

uncertain parameters such as physical assumptions or initial state estimates
46,48

. Ensemble 

methods often combine several of the forecasts using one or more averaging techniques 
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to increase forecast accuracy. For example, Seidman applied ensemble averaging to a 

three-layer general circulation model and showed that more accurate forecasts may be 

made over longer periods as compared to the use of a single forecast.
49

 In addition, 

several studies showed that predictions based on ensemble means typically produce better 

forecasts than individual deterministic forecasts at large spatial scales
50,51

 such as those 

utilized herein. Vukicevic, et al. examined the forecasting skill of numerical weather 

ensembles based on both simple ensemble means and performance-weighted ensemble 

means.
48

 They concluded that weighting ensemble members by a measure of performance 

reduces the mean absolute error of the ensemble-derived forecasts. This suggests that 

performance-weighted ensemble averages should be utilized to derive the density 

predictions.    

Ensemble techniques have also been successfully applied to the Martian 

environment by Rogberg et al. who found that prediction efficacy over many Sols 

utilizing a perturbed GCM ensemble depends strongly on accurate knowledge of the 

atmospheric radiative balance.
52

 This again highlights the necessity of capturing the 

driving influences which effect the Martian radiative balance such as the suspended dust 

distribution and the incident solar flux (see Section 2.1).  

In the present study, the density ensemble (i.e. the on-board basis) is created 

utilizing subsets of eight climate scenarios from the MCD: 

• Average (average solar flux & average dust) 

• Maximum (maximum solar flux & average dust) 

• Minimum (minimum solar flux & average dust) 

• Cold (clear/minimal dust & solar minimum thermosphere) 

• Warm (high dust but not a dust storm & solar maximum thermosphere) 

• Dust Storm, Minimum Solar Flux 

• Dust Storm, Average Solar Flux 

• Dust Storm, Maximum Solar Flux 
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The first three scenarios consist of an average dust distribution derived from data 

observations from Martian Year 24, a year thought to be average. The Cold and Warm 

scenarios are designed to bracket the possible global conditions on Mars outside a global 

dust storm.
43

 The last three scenarios are intended to model the range of behavior of the 

Martian atmosphere during a strong global dust storm at varying levels of incident solar 

flux. Taken together, these models provide a comprehensive prediction of the 

unperturbed atmospheric conditions on Mars. Various subsets of these eight climate 

models will be used to form experimental ensembles for testing purposes (see Section 

5.3). 

Figure 2.2 illustrates the differences between the various MCD atmosphere 

scenarios normalized against the average atmosphere.  The figure is constructed using 

vertical MCD density measurements over the center of the Hellas Basin (Hellas Planitia 

will figure prominently in the remainder of this work, see Section 2.5). Note that the 

mean density trends of the eight scenarios become more dissimilar between 40–100 km. 

Most aerocapture trajectories reach periapsis in the 30 – 50 km range and, after periapsis 

passage, must transit this highly variable region between periapsis and 100 km. During 

this outbound leg of the trajectory, the vehicle is now traveling at significantly slower 

velocities then at entry interface. Therefore, due to its reduced momentum, the vehicle is 

now more vulnerable to density uncertainty in the outbound leg. By better predicting the 

mean density trends during the outbound leg, a proactive guidance scheme is able to 

reduce the impact of the high density uncertainty in this region on the trajectory. 
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Figure 2.2: Ensemble Density Variations Relative to the Average Atmosphere  
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Note that each of the climate scenarios listed above accounts for two of the four 

basic inputs outlined earlier, namely dust and solar flux. Each of these scenarios in MCD 

provides atmospheric density as a function of latitude, longitude, and altitude over the 

globe for one Martian year. Specifying a specific region and time of entry limits the size 

of the data set to be modeled and also accounts for the remaining two basic atmosphere 

inputs. Even over constrained geographic and altitude regions, however, the amount of 

data available in the MCD is prohibitively large for direct on-board application. A storage 

method is required which permits a high level of data compression and allows natural 

interpolation between climate data points. 

Several types of suitable models were considered for this role. It is desirable to 

utilize a model which offers an appropriate balance of data compression, accuracy, and 

pattern preservation/recognition capabilities. Tabular models offer a simple and readily 

implemented means of data storage. However, tabular models offer no natural means of 

data compression. Accurate pattern preservation is possible only if density data is 

gathered from closely spaced locations throughout the entry corridor. Therefore, 

thousands of density data points would need to be stored in order to form multiple 

spatially-resolved ensemble members. As the number of stored data points increases, so 

too does the time required to query the database to locate and interpolate between the 

stored density information. 

Regression-based techniques such as response surfaces were also considered. 

These models can offer a high degree of data compression and are often represented by 

polynomials which may be rapidly computed. However, the assumed underlying equation 

is often a simple polynomial perhaps augmented with one or more transcendental 

functions. Early experimentation revealed that capturing the highly nonlinear patterns 

found in some regions of the atmosphere would likely require large numbers of 

overlapping models for each ensemble member. Therefore, linear regression techniques 

were not selected. More advanced regression techniques such as Gaussian process 
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regression (i.e. kriging) was also considered. Kriging models are often able to reproduce 

large datasets with high fidelity and offer accurate interpolation between data points. 

However, as Simpson et al note, prediction with a kriging model requires the inversion 

and multiplication of several matrices because a kriging model does not exist as a closed-

form polynomial equation
53

. This would lead to larger computational demands during 

atmospheric flight which may be avoided by considering other methods. 

Artificial NNs were eventually selected for use in the ensemble models because 

they are a “nearly universal approximator, and so are able to handle highly nonlinear or 

extremely large problems.”
54

 This makes NNs well suited to this application due to the 

size of and local nonlinearities present in the MCD datasets. Each NN training process 

results in a compact equation which closely mimics the training dataset, only with much 

fewer stored parameters. This high data compression ratio reduces density query time and 

on board storage requirements without significant loss of accuracy. Due to the continuous 

nature of the developed NN equation, interpolation between data points is automatically 

possible.   

A series of neural networks are developed to summarize each of the eight climate 

scenarios in the MCD in order to form the on-board basis models. When working in 

concert with one another, the NNs form an ensemble neural system. For additional 

background on NNs, see Appendix A. 

While NNs were chosen for the reasons highlighted above, it should be noted that 

the density estimation technique developed in the following sections can be readily 

generalized to use other modeling methods. NNs were chosen because they represent the 

best balance between data compression and modeling fidelity. However, future 

developments may present better alternatives which can be easily incorporated into the 

density estimator outlined below. 
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2.5 Ensemble Neural Systems 

A neural ensemble or ensemble neural system is a NN learning paradigm where a 

collection of NNs is trained to perform the same task.
52,55-57

 In this case, each NN is 

trained to represent one of the eight MCD climate scenarios and thus provides an 

atmospheric density estimate as a function of latitude, longitude, and altitude at the time 

of entry. The differences between the density estimates from the ensemble members 

correspond to the differences due to variations in the atmospheric physical assumptions 

(dust and solar flux). Commonly used to mimic an ensemble weather forecast, ensemble 

neural systems provide the same prediction quality but at a significantly reduced 

computational cost.
55,58-61

 This reduced computational overhead not only reduces the on-

board processing requirements of the entry vehicle but also permits faster computations 

which is critical for enabling time-sensitive decision making.  

In a neural ensemble, the outputs of the individual NNs are typically combined in 

some manner. This combination could be as simple as the numerical mean of the 

ensemble members or an adaptive computation based on observed conditions. Ensemble 

combination often results in more accurate predictions with an improved generalization 

capability.
56,62,63

 Therefore, combining the ensemble density estimates can lead to 

improved predictions not only in the vicinity of the entry vehicle, but also far ahead of 

the vehicle in entirely different regions of the atmosphere.  

 Figure 2.3 depicts the ensemble neural system architecture proposed here. It 

consists of the eight climate scenarios from the MCD connected by a top-level gating 

network. This network functions as a signal mixer and determines how to combine the 

signals from the individual NNs based on the information collected by the ADS. The 

ADS data consists of free stream density estimates along the flight path from entry 

interface up to the current position of the vehicle. The gating node must determine how to 

combine the ensemble signals to minimize the retroactive prediction error (i.e. the 
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prediction error from entry interface up to the current time). Algorithmic details 

concerning the function of the gating network are given in subsequent sections.  

 As discussed earlier, selection of the time and location of the entry is critical to 

both completely characterize the atmospheric state and to limit the amount of data to be 

modeled. In the present study, a notional aerocapture mission is used as the test bed for 

the proposed density forecasting method. This notional mission arrives at Mars on the 

second day of the eleventh Martian month which is near the end of the Martian dust 

storm season (see Table 2.1). Hellas Planitia (white box in Figure 2.4), the largest visible 

impact crater in the solar system, was chosen for the location of the test mission entry. 

Hellas Planitia is the deepest point on Mars, a fact which strongly contributes to the high 

levels of meteorological activity in the region. At least one global dust storm (one of the 

most extreme weather phenomena on Mars) was observed to nucleate from the basin in 

2001.
64

 In addition, topographically forced density perturbations such as gravity waves 

may propagate to high altitude.
7
 Such perturbations when superimposed on larger scale 

features such as planetary-scale waves and tides create a dynamic testing environment. 

As can be seen in Figure 2.3, more than one NN is associated with each climate 

scenario. This was necessary to maintain a high degree of fitting accuracy over the large 

spatial region selected for study. The nominal entry trajectory (black line in Figure 2.4) 

coincides with the 67.5° east longitude great circle which takes the vehicle over the 

middle of the basin. This notional polar orbit is a plausible aerocapture target as it offers 

global coverage for scientific or exploration/reconnaissance payloads. In order to allow 

sufficient maneuvering volume for future simulations employing an entry guidance 

algorithm (see Chapters 4 and 5), a large region was selected for modeling. This region 

extends from the South Pole to 45° north latitude and extends laterally for 11.3 degrees of 

longitude on either side of the nominal entry trajectory. The region is subdivided into 

four boxes (Figure 2.4) which overlap at their spatial boundaries in order to provide 

continuous coverage as the entry vehicle transits between boxes. One NN model is 
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created to approximate the predicted density field for each MCD climate scenario in each 

of the four boxes. Because there are eight climate scenarios and four boxes, a total of 

thirty two NN models are required to completely describe the density field in the target 

region.  

The four boxes correspond to two different divisions of latitude and altitude. The 

lower altitude boxes extend from 4 km above the areoid up to 104 km or roughly up to 

the base of the Martian thermosphere. The minimum altitude of 4 km was selected in 

order to ensure local terrain clearance for the low-altitude boxes. The high-altitude boxes 

extend from 104 km up to 152 km. This ceiling was selected based on the walk-in phase 

of the Mars Global Surveyor aerobraking operations which determined that the 

atmosphere was “barely measurable” at 149 km.
36

 To ensure that the majority of the 

sensible atmosphere is modeled, an additional 3 km margin was added to account for 

daily and seasonal scale height variability.  

The two divisions in latitude were selected for modeling convenience. The 

original intent was to model the density field from the North Pole to the South Pole. 

However, the mission arrives during southern summer/northern winter. Due to the 

planet’s axial tilt, the majority of the incoming solar energy is concentrated in the 

southern latitudes. This translates to large temperature gradients (and therefore large 

density gradients) between the equatorial regions and the northern polar region. These 

large gradients complicate modeling efforts because the atmospheric behavior in the 

northern polar region is markedly different from the atmospheric dynamics near the 

equator. In order to bypass this issue, the entire southern region is modeled (0° to 90° S 

latitude) but only half of the northern region is modeled (0° to 45° N latitude). This still 

provides ample overshoot and maneuvering volume for future guided simulations.      

  Thirty two single hidden layer perceptron NNs with logistic activation functions 

were created from the eight MCD climate scenarios. These NNs were trained using the 

JMP statistical software package with a third of the training data randomly withheld. This 
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withheld set was later used for cross-validation purposes to ensure a good NN model fit 

and prevent overtraining. See Appendix A for NN fitting statistics and equations. By 

partitioning the target spatial region into four smaller boxes, a high degree of fitting 

accuracy was maintained. All of the NNs have fitting error distributions which are 

approximately Gaussian and centered near zero. Of the 87,960 data points used for NN 

training, approximately 197 data points (or approximately 0.2% of the training data) 

exhibited an error greater than 10% when tested in the appropriate NN equation. These 

higher errors are typically confined near the edges of the four flight boxes. Note that the 

flight path of the baseline trajectory (see Section 2.7) has only minimal contact with the 

boundary regions of the four flight boxes. This offers additional justification for selecting 

a larger-than-necessary target region and for the divisions chosen for the four flight 

boxes. Modeling of a large target region moves the majority of the spatial boundaries far 

from the entry trajectory. Even guided simulations should not come near the edges of the 

target region provided that maneuvers resulting in extreme crossrange errors are 

prohibited. The nominal trajectory does come into contact with the internal boundaries of 

the four flight boxes but only for short downrange distances which limits the impact of 

the higher modeling errors. Also consider that the current uncertainty in the Martian 

atmosphere ranges between 25-200% depending on altitude.
5
 This suggests that despite 

the modeling error, a reduction in uncertainty is still possible. Lastly, recall that the 

combination of NNs in an ensemble typically increases prediction accuracy and 

generalization ability relative to the direct use of a single deterministic forecast. 

Therefore the uncertainty associated with the composite ensemble prediction is often 

further reduced below the individual uncertainties associated with each ensemble 

member.   
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Table 2.1. Baseline Test Mission Temporal Characteristics 

Earth (Mars) Year 2020 (35) 

Martian Month 11 

Day of Month 2 

Solar Longitude, Ls (deg) 307.3 

Sol Number 574 

UTC of Entry 12:00:00 

Julian Date 2459156 

N.B. Martian month 11 occurs at the end of the annual dust storm season. 

 

 

 

 
Figure 2.3: Ensemble Neural System Topology 

 

 

 
Figure 2.4: Martian Eastern Hemisphere with Entry Flight Box Overlay 

 

 



33 

 

2.6 Ensemble Linear Combination & Supporting Research Question 2 

With the neural ensemble completely described, the current issue of interest is to 

determine how to best utilize the ensemble to form atmospheric forecasts consistent with 

the measured flight data from the ADS. The problem posed here is strikingly similar to a 

data assimilation problem in numerical weather modeling. Data assimilation is a process 

of combining measured weather data with data from a numerical weather prediction 

model while maintaining internal consistency in the combined model.
52,65-67

 It is believed 

that the solution of a data assimilation problem using a Mars GCM and measured ADS 

data would generate a suitable prediction model. However, data assimilation techniques 

are computationally complex due to the need to iteratively correct and rerun numerical 

weather simulations. It is further hypothesized that the data assimilation problem may be 

readily solved if it is converted to a parameter estimation problem, as described later. 

This can be accomplished by constructing a linear combination of the ensemble members 

where the weights of the linear combination are adaptively tuned using a parameter 

estimation scheme. This allows the prediction model to be continually modified to better 

agree with the observed weather data from the ADS while obviating the need to rerun 

numerical weather models in the computationally constrained environment aboard the 

entry vehicle.   

 Parameter estimation problems, commonly used throughout engineering and the 

sciences, apply statistical and/or probabilistic measures to determine a quantity of 

interest.
68

 Parameter estimation schemes have been used to identify aerodynamic 

coefficients or stability derivatives from measured flight data in real time.
68

 They have 

also been used extensively by Johnson and Oh
69

 and by Chowdhary and Johnson
70,71

 to 

train a NN-based adaptive flight controller in real time using both background and online 

information.  
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Figure 2.5: Example Adaptive Linear Neuron (ADALINE) Gating                    

Network for Five Ensemble Member Inputs 

 

As discussed previously, a gating network resides at the top of the neural 

ensemble and functions as a signal mixer. It determines how to best combine the 

members of the ensemble in order to maximize the retroactive prediction accuracy (i.e. 

minimize the error of the composite ensemble prediction from entry interface up to the 

current time). Because it is desired to form a linear combination of ensemble members, 

this gating network consists of a single adaptive linear neuron (or ADALINE). The 

ADALINE concept,
72,73

 originally developed by Widrow and Hoff, accepts several input 

channels, weights each channel, and then determines the summation of the weighted 

inputs (Figure 2.5). Therefore, each ADALINE forms a linear combination of the inputs 

using some weighting strategy. The original work of Widrow typically involved the use 

of multiple ADALINE nodes in each network (a so called Multiple ADALINE or 

MADALINE network). In this application, however, if a parameter estimation scheme is 

available to adaptively compute the weights of the linear combination, only a single 

ADALINE is required for the gating network.     

The ADALINE forms a linear combination from the eight ensemble members of 

the form 

[ ][ ] [ ]bpred += ωρρ                                                                                  (2.2) 

...+++++= WWMMAAmmCC ωρωρωρωρωρ                                           

DMDMDADADmDm ωρωρωρ +++  
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where ρpred is the predicted density field, ρi is the density field associated with the i
th

 

ensemble member and ωi is the weight associated with the i
th

 ensemble member. Each 

density field in the equation is a function of altitude, latitude, and longitude within the 

limits of the target region discussed in Section 2.5. Though thirty two NN equations exist, 

only eight are active corresponding to whichever of the four flight boxes the vehicle is 

currently occupying. When the vehicle transits from one box to another, the NN 

equations for each of the ensemble density fields ρi change to reflect the eight newly 

active NNs. The weights ωi are adjusted independently by the parameter estimation 

scheme and are not affected by flight box transitions.  

Notice that the bias vector [b] in Figure 2.5 is currently not used in the present 

implementation and is set to the null vector. Biasing an ensemble member based on 

currently observed density data is problematic as the observed trends may change 

drastically over short time spans. This leads to an erratically shifting bias term which 

complicates the development of a consistent density prediction. The box in Figure 2.5 at 

the beginning of the output layer indicates that the output of the neuron (and therefore of 

the gating network) is a linear function of the input. In this case, the activation function is 

a 1:1 mapping such that the result of the linear combination becomes the output of the 

neuron. This is in contrast to many biologic and computational neurons which have 

nonlinear activation functions such as the logistic activation function employed in the 

thirty two NNs forming the ensemble members.   

2.7 Baseline Aerocapture Reference Trajectory & Guidance 

2.7.1 Entry Interface State 

A single reference trajectory was defined using the Program to Optimize 

Simulated Trajectories (POST2)
74

 for use in all early experimentation presented in 

Chapter 3. MarsGRAM 2005, the simulation chosen as the surrogate for the Martian 



36 

 

atmosphere sampled by the ADS, is called by the POST2 algorithm to supply 

atmospheric density estimates for a given position within the atmosphere. For all early 

experimentation in Chapter 3, a default atmospheric profile was utilized. This default 

profile is later replaced by a more appropriate MarsGRAM atmosphere with input values 

matched to the MCD inputs (see Section 3.3.2). However, this default MarsGRAM 

profile has little impact on testing because the nominal trajectory is only used with ideal 

density testing signals as will be explained in Section 3.3.1. 

 The entry interface conditions and vehicle characteristics are adapted from a study 

by Masciarelli, et al
6
 on an analytic aerocapture guidance algorithm for a Mars sample 

return orbiter. Entry interface occurs at 128 km at a relative velocity of 5.9 km/s. The 

entry flight path angle is utilized by the POST2 targeting algorithm to control the 

apoapsis to 1000 km and was determined to be -9.67° from the local horizontal. It should 

be noted that Masciarelli uses a 1400 km apoapsis while a 1000 km apoapsis is used here 

for initial testing. To reach a lower apoapsis, the vehicle must expend more energy in the 

atmosphere. This generally requires that the vehicle dwell in the atmosphere for longer 

time periods over longer downrange distances. This, in turn, increases the amount of data 

returned from a single trajectory which is useful for algorithm development and data 

collection. Later, in Chapter 4, the apoapsis will revert back to 1400 km to match the 

original orbit proposed by Masciarelli. The vehicle begins at 70° S, 67.5° E at entry 

interface and moves directly north towards the equator (see Figure 2.4).   

2.7.2 Reference Trajectory Atmospheric Guidance 

The vehicle flies a lifting entry with a fixed L/D of 0.247 and a ballistic 

coefficient of 147.7 kg/m
2
 corresponding to the values used by Masciarelli, et al. Because 

no longitudinal guidance is utilized in this phase of the study, the targeting algorithm 

selects a constant bank angle magnitude (in this case, 175.2° from the vertical or 4.8° 

from the nadir) which remains fixed throughout the entry. In subsequent chapters, 
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simulations employ longitudinal entry guidance where the lift vector is used to actively 

control the vehicle’s trajectory (see Chapters 4 and 5). Bank angle modulated guidance 

solutions control the lift vector direction by changing the bank angle of the vehicle in 

flight. Note that some aerocapture trajectories fly with the lift vector predominantly 

pointing downward (i.e. nadir or towards the planet). This is useful to balance forces 

acting on the vehicle in the vertical direction (Figure 2.6). From the vehicle reference 

frame, the centrifugal acceleration vector is quite large and the nadir pointing lift vector 

is used along with the gravity vector to balance the centrifugal acceleration and prevent 

premature exit from the atmosphere. Remaining in the atmosphere is critical because 

atmospheric drag reduces the vehicle’s velocity and allows it to attain a stable orbit. 

Bank-modulated guidance for longitudinal control selects the appropriate nadir lift 

component (labeled N in Figure 2.6) to control the vertical acceleration of the vehicle. 

This allows the vehicle to control its altitude and altitude rate to maintain some desired 

criteria such as equilibrium glide (i.e. all vertical forces sum to zero) or a desired drag 

acceleration profile. 

 Lateral guidance logic becomes necessary because the nominal lift vector, by 

design, is larger than necessary to counterbalance the centrifugal acceleration. This 

provides control margin to allow the vehicle to change its vertical acceleration and 

therefore its altitude and altitude rate. If the nominal lift vector were just sufficient to 

counterbalance the anticipated centrifugal acceleration, the vehicle would be forced to 

maintain full lift down (i.e. bank angle β ≡ 0°) and would be unable to control its altitude 

or altitude rate. The “oversized” lift vector requires a non-zero bank angle β in order to 

achieve the desired nadir lift component N (see right side of Figure 2.6). This nonzero 

bank angle also generates a cross-track component of the lift force T resulting in lateral 

movement.     
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Figure 2.6: Aerocapture Forces in the Vertical (Left) and Cross-Track (Right) 

Planes 
 

The lateral guidance logic prevents excessive crossrange position errors from 

developing due to this cross-track lift component by commanding bank angle reversals. 

These reversals typically maintain the same bank angle magnitude β but simply reverse 

the sign of the bank. This reverses the cross-track lift component direction while 

maintaining the same nadir lift component. Figure 2.7 is taken from the Cerimele-Gamble 

study
10

 and demonstrates how bank angle reversal logic can be used to target a desired 

exit inclination (which in the figure is 28.5°). The straight line segments represent the 

lateral position of the vehicle relative to the entry axis which is the dashed line in the 

figure. When the vehicle reaches some pre-computed inclination or crossrange error, the 

sign of the bank angle is reversed. This lateral corridor or deadband typically contracts 

towards the end of the trajectory to limit crossrange error at atmospheric exit.   

For the baseline trajectory, a simple lateral guidance scheme is utilized in order to 

approximate a fully guided trajectory. This is accomplished with a deadband bank angle 

reversal strategy based on the equation used in the Cerimele-Gamble aerocapture 

guidance.
10

 This equation includes several constants which can be adjusted to suit the 

particular mission or trajectory requirements. The deadband provides bounds on the 

allowable inclination of the vehicle based on current vehicle velocity;      
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where idb is the inclination defining the deadband boundary and V is the current relative 

velocity of the vehicle. The velocity shift Vshift controls the rate of contraction of the 

deadband corridor with higher values producing a tighter contraction and more accurate 

exit inclination targeting (likely at the expense of more required bank angle reversals). 

The scale velocity Vscale controls the scale of the deadband curves; higher values produce 

curves which are closer and closer to the target exit inclination. The reference inclination 

iref is the target exit inclination and itol is the inclination tolerance near the exit state. 

Because the vehicle flies through the entire trajectory with the lift vector oriented nearly 

in the vertical plane, the cross-track error accrues at a slow rate. Consequently, the 

baseline simulation only includes a single bank angle reversal and the accrued crossrange 

error is less than 200 km throughout the entire trajectory.     

 
Figure 2.7: Bank Angle Reversal Strategy Used for Lateral Guidance

10
 

(as viewed looking down on the vehicle from space) 

 

2.7.3 Atmospheric Exit State & Reference Trajectory Summary 

Atmospheric drag reduces the relative velocity of the vehicle to 3.66 km/s by the 

time the vehicle has climbed back to 128 km at 7.8° south latitude. The exiting flight path 

angle is 3.87° above the local horizontal in order to reach the desired apoapsis at 1000 

km. The peak sensed acceleration of 1.16 Earth G occurs just prior to periapsis passage at 
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46 km about 200 seconds after entry interface. As can be seen in Figure 2.8, the trajectory 

ends after roughly 14.5 minutes elapsed time from entry interface. 
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Figure 2.8: Baseline Aerocapture Reference Trajectory 
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CHAPTER 3 

IMPROVING ATMOSPHERIC STATE PREDICTION EFFICACY 

3.1 Testing Methodology 

Testing of the prediction skill of the neural ensemble described in Chapter 2 is 

approached in several stages described by the author in reference 75 and summarized 

here. The first stage, presented in Section 3.2, examines the parameter estimation 

problem and several schemes used to adaptively solve this problem. Because the goal of 

this section is the identification of promising parameter estimation schemes, thirty six 

simple vertical atmosphere profiles were used to rapidly evaluate the prediction efficacy 

of each scheme. This approach also permitted evaluation of the parameter estimation 

schemes with a significantly larger ensemble to ensure the scheme is generally 

applicable. Following development and testing, the selected parameter estimation scheme 

was integrated into the neural ensemble and tested using an ideal testing signal (Section 

3.3). This exposed several areas of improvement which are addressed with the application 

and testing of an ensemble echo, a new construct for ensemble weather prediction in 

computationally constrained environments (see Sections 3.3.2-6). The resulting construct 

is then tested in a more realistic testing environment using a MarsGRAM measured 

atmosphere signal in Section 3.3.7. 

3.2 Adaptive Ensemble Weight Tuning via Parameter Estimation 

The adopted linear ensemble combination (see Section 2.6) permits the adaptation 

of the prediction model to be accomplished with a parameter estimation scheme rather 

than a computationally complex data assimilation problem. Several parameter estimation 

strategies were examined to determine their suitability for application in aerocapture 
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guidance models. Several metrics are of importance for a viable parameter estimation 

scheme: 

• Algorithmic Simplicity: The on-board guidance computational process must be 

computed multiple times by one or more processors to ensure fault tolerance. 

Because space-hardened avionics typically have slower processing speeds than 

their ground-based counterparts, computationally complex methods can increase 

time between guidance updates and increase the probability of an algorithmic 

fault. Methods which limit the frequency of complex operations are sought. 

• Prediction Accuracy: Because the goal of the present study is to increase density 

prediction accuracy, the inclusion of this metric is clearly critical. The accuracy of 

the predictions must be sufficient to achieve an uncertainty reduction relative to 

the current knowledge state of the Martian atmosphere.   

• Prediction Robustness: The algorithms considered here should consistently 

produce accurate density forecasts. Algorithms which only occasionally produce 

high accuracy forecasts or algorithms which sporadically produce forecasts with 

exceedingly poor accuracy are ill-suited to this application.  

• Stability: The predicted density signal must clearly remain feasible throughout the 

entire prediction horizon, both near the vehicle and far ahead of the vehicle. 

Infeasible signals diverge to impossibly high or low densities for a given altitude. 

Oscillatory predicted density signals are not viewed as immediately problematic 

because real density features in the Martian atmosphere can be periodic in nature. 

Because this is the case, stability will be approached from a bounding argument. 

Algorithms are sought which produce bounded output signals given a bounded 

input signal (commonly referred to as Bounded Input, Bounded Output or BIBO 

stable).  

• Optimality: Algorithms which include some notion of optimizing the ensemble 

combination will be given preference. The optimization must, of course, conform 
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to the other stated criteria, especially the goal of achieving algorithmic simplicity.  

  

  Four different parameter estimation strategies were developed for evaluation. 

These schemes are either adopted directly from the contemporary literature or are 

developed by combining one or more simpler techniques in order to fulfill the five stated 

algorithmic goals. Before outlining the estimation schemes, it is necessary to define the 

error signal for the i
th

 ensemble member as  
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where ρADS is the free stream density estimated by the air data system and ρi is the density 

from the i
th

 ensemble member. Both are measured at the current location of the vehicle 

and both are functions of time as the vehicle proceeds through the atmosphere. The 

resulting error signal tracks how closely each ensemble member agrees with the observed 

density trend measured by the ADS. It is useful to develop an average error metric which 

is defined here as the root mean squared error (RMSE). The error signal is sampled at a 

fixed interval and stored in an error vector which tracks the error signal for each 

ensemble member over time. For the i
th

 error vector ][ ie , the corresponding RMSEi may 

be expressed as 
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where m is the total number of elements in the error vector or, equivalently, the number 

of time steps from entry interface up to the current time.  

  In order to evaluate their performance-weighted strategy for producing an 

ensemble mean, Vukicevic et al. utilized a simple vertical atmosphere as a test case.
48

 

Following this approach, each of the parameter estimation schemes are tested using thirty 

six vertical atmosphere profiles (i.e. density is a function of altitude only) derived from 

MCD data taken at one location on Mars. These thirty six profiles, temporarily used in 
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lieu of the neural ensemble developed in Section 2.5, correspond to the vertical density 

column over the point of intersection of the equator with the prime meridian (0° latitude, 

0° longitude). The density column is sampled once per Martian month over one full 

Martian year for three of the MCD climate scenarios, the Average Dust/Average Flux, 

Warm, and Cold scenarios. The twenty four vertical profiles from the Warm and Cold 

scenarios serve as a simplified on-board ensemble and the twelve remaining Average 

models each serve as a set of ADS measured data. To simulate the dynamics of an entry 

scenario, only the high-altitude region of these Average MCD profiles down to 86 km is 

used as measured data. Each of the parameter estimation schemes is used to construct 

twelve density predictions from 86 km to the surface corresponding to the twelve 

Average vertical profiles. These combinatorial predictions are weighted averages of the 

twenty four basis models formed using the method presented in Section 2.6. Utilizing this 

type of test for the parameter estimation schemes was intended to be stressful in two 

ways.  

  First, the twenty four member vertical ensemble, while larger than the eight 

member neural ensemble designed for integrated testing, is spread over the entire Martian 

year. Given the significant temporal variability of the Martian atmosphere, this requires 

each parameter estimation scheme to select the models whose combined density trends 

most closely agree with the measured data. Due to the high temporal variability and the 

large number of ensemble members, this forces the parameter estimation scheme to 

emphasize only a few models while de-emphasizing the others. This selectivity is 

necessary to achieve the algorithmic goals of prediction accuracy and robustness.  

  Second, only two basis scenarios, the Warm and Cold scenarios, are used which 

restricts the variability of the physical basis used for prediction. This requires accurate 

density prediction by combining models from only two sets of governing physical inputs 

(dust distribution and solar flux). This is beneficial because it allows testing of the 
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implicit assumption that linear combinations of Martian atmosphere models can produce 

valid prediction models using a limited physical basis.  

  In summary, the vertical ensemble used for testing was designed to have a high 

degree of temporal variability with only a limited set of physical inputs. This is in 

contrast to the more desirable neural ensemble which eliminates temporal variability 

(because the day and time of the entry will be known) and incorporates models based on 

a more varied set of physical inputs.      

3.2.1 Winner-Take-All Scheme 

  The first and simplest algorithm is a winner-take-all strategy taken directly from 

the work of Maqsood et al.
57

 This algorithm selects the single ensemble member whose 

average performance is closest to the measured density signal. This is accomplished by 

simply selecting the ensemble member with the smallest RMSE. The prediction results 

for the twelve Average MCD months, shown in Figure 3.1, are promising given the 

simplicity of the method.  

  The winner-take-all method is guaranteed to be BIBO stable as long as all the 

ensemble members are themselves stable (i.e. physically reasonable). Note that several of 

the predictions, notably months four and six, perform extremely well. In general, 

however, this performance is not consistent as can be seen by comparing months four and 

six to months with markedly poor performance such as months seven or ten. Despite its 

simplicity and occasional accuracy, the winner-take-all method does not exhibit good 

prediction robustness and does not consider the optimization of the ensemble 

combination because no combination exists.   
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Figure 3.1: Low-altitude Prediction Using the Winner-Take-All Approach 

3.2.2 Linear Least Squares Scheme 

  The second method is a direct implementation of the common linear least squares 

algorithm. This algorithm serves as the basis for many advanced estimation schemes such 

as linear sequential estimation, Gaussian least squares differential correction, and Kalman 

filters.
68

 Therefore, inclusion of this method is crucial in order to determine if any of 

these methods will be directly applicable to the parameter estimation problem as it is 

currently formulated. The linear least squares algorithm computes the weights of the 

prediction model by minimizing the errors between the prediction model and the 

measured data. This accomplishes one of the desired algorithmic goals by incorporating 

some form of optimality into the prediction scheme. The derivation of and the theoretical 

justification behind linear least squares is well known and an excellent introduction can 

be found in Crassidis and Junkins.
68

 The measured data is collected at regular time 

intervals and is stored in an observations vector y~ where 
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[ ]Tmyyyy ~~~~
21 L=                                             (3.3) 

and jy~ are the measured density points collected over time by the ADS at the measuring 

frequency. A density estimate from the twenty four vertical ensemble members is 

requested at the same altitude as each of the measured points (Note that for a spatially 

resolved ensemble, the current latitude and longitude must also be known to compute a 

density estimate from the ensemble members). These density estimates form the 

prediction basis and are placed in the basis matrix H;  
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where )( ji hρ  is the density member from the i
th

 ensemble member at the j
th

 altitude level 

(i = 1,2...n and j = 1,2…m). The estimated parameters x̂ of the ensemble linear 

combination are then directly determined with 

 ( ) yHHHx TT ~ˆ
1−

=                                                (3.5) 

which is used to construct the linear approximation model xHy ˆˆ = . This estimation 

scheme was applied to the vertical ensemble with unanticipated results (Figure 3.2). The 

prediction scheme was able to construct very accurate linear combinations but only in the 

regions of the atmosphere where measured data is available.  

 
Figure 3.2: Linear Least Squares Prediction Using Vertical Ensemble 
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  In the regions where no data is available and the prediction performance becomes 

important, the prediction accuracy degrades rapidly. As can be clearly seen, the results 

produced from this approach are also unstable and produce infeasible densities for many 

of the predicted months. This behavior is puzzling until more closely considering the 

nature of the ensemble. While each ensemble member is distinct, all of the members have 

very similar functional form to the other members. This interrelationship creates an 

approximate linear dependence among the ensemble members leading to numerical ill-

conditioning when computing the inverse of computations based on the H matrix. As 

Farrar and Glauber
76

 explain, as the correlation among the explanatory variables (the 

ensemble members in this case) grows, the matrix (H
T
H) approaches singularity and the 

elements of (H
T
H)

-1
 begin to explode. This phenomena, known as multicollinearity, 

effectively means that the similarity between the ensemble members complicates efforts 

to allocate the explained variance. A nearly singular (H
T
H) matrix indicates that the 

explained variance can be allocated in an almost arbitrary fashion among the explanatory 

variables. 

  Several computational methods exist for overcoming the limits imposed by 

multicollinearity. Techniques such as partial least squares
77

 or principal component 

regression
78

 first remove the collinearity among the explanatory variables by determining 

an appropriate matrix transformation. Then the classic linear least squares algorithm can 

be applied and the results interpreted in the original matrix space defined in the problem 

statement. Because these methods require a higher degree of computational complexity, 

the parameter estimation problem will be approached with simpler methods.       

3.2.3 Weighted Average Scheme 

An alternate technique was derived in an attempt to stabilize the parameter 

estimates x̂ and increase prediction accuracy. Note that BIBO stability can be intrinsically 

assured by forming a weighted average of the ensemble members. Because each 
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ensemble member does not, by definition, diverge to unreasonable density estimates for a 

given spatial location, the weighted average must also be stable and contained by the 

most extreme ensemble members. The most extreme ensemble members, both in the 

vertical ensemble and in the neural ensemble, are derived from the Warm, Cold, and Dust 

Storm MCD scenarios. Because these scenarios are designed to bracket the possible 

conditions on Mars
43

, weighted averages can still capture the possible variance in the 

atmospheric state within the limits of the simulation uncertainties. 

 To form a weighted average of the ensemble members, some weighting criteria 

must be determined. The approach taken herein was adapted from and is very similar to 

the Dynamically Averaging Networks concept developed by Maqsood et al
57

 for 

classifier NN ensembles. A classifier NN uses a series of input information to make some 

judgmental decision about the input data. Useful for image and pattern recognition, 

classifier NNs could be used, for example, to separate a series of points in two-

dimensional space into clusters.
79

 

Maqsood defines a “certainty” parameter which quantifies how confident a NN 

member is in its classification judgment for a particular input. The weight of each 

member of the ensemble then becomes proportionate to its certainty such that more 

certain NNs are given higher weights. The ensemble weights are then scaled to sum to 

unity and consequently form an ensemble weighted average. For the present problem of 

density estimation, however, the NNs corresponding to each member of the ensemble are 

not classifier networks. Thus, the certainty parameter for the i
th

 ensemble member can be 

replaced with its root mean square error (RMSE). Recall that the RMSE quantifies the 

average deviation of the i
th

 ensemble member from the observed density trend measured 

by the ADS. Therefore, ensemble members with smaller RMSEs are closer to the 

measured trend and should be more highly trusted. Mathematically, the un-scaled weight 

wi for each ensemble member is the inverse of the associated RMSEi or wi = 1/RMSEi. 

These un-scaled weights are then scaled such that the sum of the scaled weights is unity;  
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Despite its simplicity, this parameter estimation scheme has the potential to 

produce accurate prediction results. Figure 3.3 shows the prediction error-vs-altitude 

curves for the twelve predictions associated with the months of the Average climate 

scenario. The symmetric black lines denote the atmospheric state uncertainty of the 

vertical ensemble used for prediction. This uncertainty is computed by determining the 

percentage difference between the largest and smallest densities estimated by the vertical 

ensemble at each altitude level. Note that this uncertainty profile exhibits good agreement 

with the Martian atmospheric uncertainty given by Engelund et al. (25-200% depending 

on altitude)
5
 as the uncertainty at ground level is 25.26%. Determination of the 

atmospheric uncertainty using the ensemble is appropriate because the ensemble should 

represent the communal state of knowledge of the atmosphere at entry. This is why the 

vertical ensemble was developed using the Warm and Cold scenarios as they are 

designed to bracket the likely atmospheric variance outside of a global dust storm. 

Improvement to this knowledge state during the entry represents an uncertainty reduction 

over the best pre-entry atmospheric state estimates.  

 It is useful to compare the results in Figure 3.3 to the winner-take-all (WTA) 

results in Figure 3.1. Note that the WTA predictions tend to uniformly under predict the 

correct density trend at middle altitudes (40-86 km) with the notable exception of month 

10 which is a significant over prediction. This is in direct contrast to the RMSE weighted 

average results where the predictions both over- and under predict with equal frequency. 

However, note that several WTA predictions exhibit relatively high accuracy over wide 

altitude ranges despite the uniform under prediction tendency (for example, examine 

months 1-6, 8, & 9 at middle altitudes in Figure 3.1). Thus, the WTA scheme produces 

regions of higher accuracy at very low computational cost while the RMSE scheme 

produces more accurate predictions at low altitude and more balanced prediction errors at 



51 

 

middle altitudes. Because both the RMSE and WTA schemes have desirable properties, a 

method to combine the strengths of each is developed in the next section. 

 With respect to the five algorithmic goals stated earlier, the simplicity and 

stability goals have clearly been reached with the RMSE scheme. Robustness is 

respectable because no predictions are markedly worse than the others. Prediction 

accuracy, especially at high altitude, could certainly be improved as could the 

incorporation of some aspect of optimality. These are addressed with the addition of a 

basis pruning concept.  
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Figure 3.3: Low-altitude Prediction of Vertical  

Ensemble Using RMSE Weighted Average Scheme 
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Figure 3.4: Pruned RMSE Weighted Average Scheme 
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3.2.4  Weighted Average Scheme with Ensemble Pruning 

In studying the dynamics and general behavior of neural ensembles, Zhou et al
80

 

came to an interesting if somewhat counterintuitive conclusion. They found that 

predictions based on combining a subset of an ensemble rather than using all of the 

ensemble members often results in higher accuracy. This conclusion, shown to hold true 

in the present study, is likely due to the fact that inaccurate ensemble members assigned 

small weights may still generate large prediction errors. This suggests that one or more of 

the ensemble members should be pruned from the prediction basis during the ensemble 

combination process. Han and Shi
59

 used this pruning concept to produce a “trimmed 

average” of a neural ensemble describing the water level along the Atlantic coast of 

Canada. This trimmed average combined all of the coastal NNs in their ensemble using a 

simple average except the NNs producing the most extreme water level values. They 

concluded that the trimmed average ensemble consistently outperformed the un-trimmed 

ensemble combination.  

As mentioned earlier, combining the strengths of the WTA and the RMSE 

parameter estimation schemes would be quite useful. This goal may be approached by 

incorporating an ensemble pruning strategy such as that suggested by Zhou et al. 

However, an a priori trimming of the most extreme ensemble members is not useful in 

this case. Removal of extreme members seems most helpful when attempting to reduce 

the influence of anomalous empirical results on a forecast model. In this case, however, 

the conditions encountered during the entry may be similar to any member of the 

ensemble, including the extreme members. Therefore, ensemble pruning should proceed 

based on the proximity of the individual ensemble members to the measured density 

trend. This can be accomplished by ranking the members in order of decreasing RMSE 

and removing one member at a time from the prediction basis. After each member is 

removed, the average retroactive prediction performance (i.e. the average prediction error 
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from the current time back to entry interface) is computed for the currently active set of 

ensemble members. 

Performance is first examined for the case where all members are active, then the 

member with the largest RMSE is removed and retroactive performance is retested, and 

so on. If one or more ensemble members have equal RMSE values, then they are 

eliminated from the prediction basis simultaneously. Pruning continues until only one 

member remains in the prediction basis (see Figure 3.5). At this opposite extreme, the 

single remaining member has the smallest RMSE and therefore corresponds directly to 

the winner-take-all scheme evaluated above. After the WTA boundary is reached, the 

algorithm reviews the retroactive prediction results and selects the subset of members 

which produces the smallest average error. This approach enables optimization of the 

ensemble combination without resorting to the use of computationally expensive zero-

order or gradient-based optimization schemes. By selecting a subset of the ensemble as 

the prediction basis, this pruning concept produces accurate predictions over large 

altitude ranges like the WTA scheme but with more balanced prediction errors like the 

RMSE scheme. 

Mathematically, pruning is simple to accomplish and is performed by setting the 

current minimum un-scaled weight wi,min to zero. This minimum weight corresponds to 

the ensemble member with the largest RMSE among the remaining active members. For 

example suppose a notional ensemble exists where the minimum un-scaled weight is 

currently w2:  
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Upon scaling, the remaining weights will still sum to unity and still have magnitudes 

inversely proportional to their associated errors. 
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Because the atmospheric dynamics may continually change throughout the entry, pruning 

of an ensemble member is reversible. Pruned models may reenter the basis at a later time 

if the accuracy of the member improves relative to the observed density trend. This is 

possible because the entire pruning process is repeated each time the parameter 

estimation scheme is called. For complete algorithm implementation details, see Section 

3.3. 

Testing of this pruning method supports the conclusions of Zhou et al. and reveals 

an interesting general trend. The first models to be eliminated are the most erroneous 

ensemble members and prediction accuracy typically increases following their removal 

(Figure 3.5). The prediction error typically reaches a minimum with some intermediate 

number of members retained. As pruning continues, members which have some degree of 

explanatory power for the measured trend are expelled and this generates an increase in 

prediction error toward the WTA boundary. Therefore, an optimum typically emerges as 

pruning progresses.    

Empirical verification of this general trend is presented in Figure 3.6. Here, the 

maximum spread of the twelve prediction models is shown as a function of the number of 

pruned ensemble members. The maximum spread is defined as the difference between 

the largest and smallest prediction errors over the twelve models in the prediction regime 

(0-86 km). Note that as the number of pruned members increase from zero the spread 

decreases, indicating that the majority of the models are improving. If the majority of the 

models were not improving, then the spread would either increase or remain unchanged. 

The spread decreases until a minimum appears at eleven pruned members before rising 

again when useful members are unnecessarily pruned from several models. Thus, many 
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of the prediction models benefit from some type of pruning and an optimal pruning 

typically exists.  

Figure 3.4 displays the twelve prediction models at the “optimal” pruning of 

eleven members (i.e. optimal in the sense of minimizing the total spread). Observe that 

the un-pruned results presented in Figure 3.3 have a spread of 96% while the optimally 

pruned results in Figure 3.4 have a significantly reduced spread of 66.4%. This 

conclusion is also directly observable by comparing the un-pruned and optimally pruned 

maximum spreads in Figure 3.6. 

The local increase in maximum spread in Figure 3.6 as pruning proceeds from 

five to seven members is caused by the reweighting process. Members with intermediate 

accuracy are temporarily given higher weights when the poorest performers are 

eliminated. These intermediate accuracy members are eventually eliminated as pruning 

continues and the spread once again decreases.    

    
Figure 3.5: Typical Variation of Prediction Error  

in Ensemble Pruning Strategy 

 

 
Figure 3.6: Effect of Pruning on Prediction  

Model Maximum Spread 
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As demonstrated above, the RMSE parameter estimation scheme coupled with an 

ensemble pruning strategy produces robust prediction results with sufficient accuracy to 

reduce the atmospheric uncertainty, satisfying two of the five algorithmic goals. The 

algorithm produces a weighted average of an ensemble subset which by definition 

provides a BIBO-stable solution. The algorithm also provides a means of optimizing the 

prediction results via the ensemble pruning strategy which satisfies the optimality 

criterion of the algorithmic goals. Lastly, the proposed method maintains algorithmic 

simplicity by utilizing simple mathematical tools. Computationally expensive operations 

such as matrix inversions, numerical integration, or classical optimization routines are 

avoided in order to limit the necessary computational overhead. 

3.3 Integrated Concept Testing 

The flexibility provided by the pruning method enables the topology of the 

ensemble to continuously adapt to better match the current flight observations. This, in 

turn, allows the underlying dynamics of the density prediction algorithm to evolve in 

response to changes in observed conditions (recall from Section 2.1 that this was the 

primary research goal). This flexibility suggests that the proposed method is best 

described as a plastic ensemble neural system (PENS). In the preceding sections, the 

developmental testing of the parameter estimation scheme took place using the vertical 

ensemble with only one forward prediction at 86 km altitude. In an actual entry scenario, 

forward prediction should occur multiple times over the course of the entry in order to 

produce a continually improving estimate of the current atmospheric state. In the 

integrated testing phase, the parameter estimation scheme is married to the neural 

ensemble to simulate the real time application of the density prediction problem. Note 

that the dust storm models are not yet utilized in the neural ensemble because the test 

case atmospheres are bounded by the remaining five ensemble members. The 

performance of ensembles which include the dust storm models is evaluated later (see 
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Chapters 4 and 5). The integrated testing is approached in several stages of evolving 

complexity and fidelity: 

• Phase I Testing: In this first phase of integrated testing (Figure 3.7.a), a static 

trajectory is assumed and no guidance model is used. This essentially converts the 

PENS method into a fly-along payload which performs a series of forward-

looking atmospheric predictions at different points in the trajectory but without 

the ability to influence guidance decisions. No internal feedback within the PENS 

algorithm is allowed to simplify the dynamical behavior for open loop proof-of-

concept testing.   

• Phase II Testing: The second phase of integrated testing (Figure 3.7.b) uses the 

same static trajectory and also lacks a guidance model. However, in this phase, 

internal feedback is created in the PENS method through the introduction of an 

ensemble echo, a new construct for computationally constrained ensemble 

forecasting. The ensemble echo improves the density prediction performance by 

enabling associative learning from in-flight experience. The echo provides the 

PENS algorithm with an evolutionary memory which stabilizes the prediction 

performance without the addition of significant computational complexity.  

• Phase III Testing: The third testing phase (Figure 3.7.c) closes the guidance loop 

by examining the interaction of the echo-augmented PENS algorithm with a 

numerical predictor-corrector guidance method.  
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(a) Phase I Testing 

 

 
(b) Phase II Testing 

 

 
(c) Phase III Testing 

Figure 3.7: Progression of PENS Testing Phases 

3.3.1 Phase I Testing 

The first phase of testing was designed to establish the open-loop dynamics of the 

PENS method without feedback internal to PENS and in isolation from an active 

guidance system. The baseline aerocapture trajectory defined in Section 2.7 was utilized 

as the static trajectory for this analysis. The system block diagram for this phase is 

presented in Figure 3.8. The ensemble density vector [ρi] consists of five estimated 

densities, one for each of the five MCD climate scenarios (recall that the dust storm 

models are not yet utilized), computed by the neural ensemble developed in Section 2.5 at 

the current vehicle location. The percent difference between each of the elements of [ρi] 

and the estimated freestream density ρADS is computed using Equation 3.1. This results in 

an error vector which has one element for each ensemble member. As time progresses, a 

series of error vectors accumulates and are stored in an error matrix; each vector becomes 
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one row of the matrix and each column is the error history of one ensemble member. The 

resulting error matrix is used to compute the retroactive root mean square error for each 

of the ensemble members from entry interface up to the current time. The RMSE for each 

of the ensemble members is then passed to the parameter estimation scheme which 

computes the optimal ensemble weight vector [ω]. The weight vector is passed to the 

ADALINE gating network which constructs the ensemble linear combination 

representing the current predicted density field. 

 

 
Figure 3.8: Feedforward PENS Block Diagram used for Phase I Testing 

 

In order to characterize the prediction performance of the Phase I, feedforward-

only system, an ideal testing scenario was created. The position history of the trajectory 

was used to create a replacement for the default MarsGRAM density profile based on a 

simple linear combination of two of the ensemble members. Recall that the ensemble NN 

models provide density as a function of altitude, latitude, and longitude. A replacement 

density profile can be constructed by evaluating one or more NNs using the position 

history provided by the nominal trajectory. Note that a change in the density profile will 

alter the position history of the nominal trajectory. However, for the sake of testing 

consistency, the nominal trajectory was assumed to be fixed for the following tests. Early 

testing proved that if any one of the NN models were used to replace the reference 

trajectory density, the PENS method was consistently able to identify the correct NN 

model. The goal of testing a simple linear combination was to determine if the PENS 

method could identify an ideally correct linear combination if one actually existed. The 

position history was supplied to the Average and Minimum NN models which resulted in 
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two density profiles. These profiles were then averaged with equal weight such that the 

ideal solution is ωavg = 0.5 and ωmin = 0.5. The Average and Minimum NN models were 

selected because their density profiles are similar to one another for the nominal 

trajectory. This creates a challenging testing environment which seeks to determine if the 

PENS method has the requisite sensitivity to delineate the two correct models from 

among all the possible choices.  
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Figure 3.9: Ideal Case Ensemble Weight Vector History                  
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Figure 3.10: Forward-Looking Prediction Accuracy            

 
 

 Figure 3.9 presents the ensemble weight vector history for the ideal testing 

scenario. Note that the method correctly determines the ideal solution for a large region 
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of the trajectory between 109 and 647 seconds. Although difficult to identify from 

inspection of the figure, the method also correctly identifies the ideal solution for the 

initial 6 seconds and again between 62 and 68 seconds. As can be clearly seen, however, 

the PENS method loses sight of the ideal solution over several large intervals, mostly in 

higher altitude regions. This is due to the fact that the three core NN models with the 

average dust parameterization (the Average, Minimum, and Warm NNs) have very 

similar density trends (Figure 3.11) between roughly 60 to 120 km for this particular 

season, time of day, and location. The core models become more distinct near periapsis 

(Figure 3.12) at 46 km and also begin to diverge from one another in the thermosphere 

above 136 km. This similarity of the core models at middle altitudes explains why the 

density prediction error (Figure 3.10) remains small despite the fact that the ideal solution 

is not identified throughout the entire entry.  Figure 3.10 is a RMSE/Maximum error plot.  

This type of plot is used repeatedly throughout this chapter and therefore a detailed 

explanation of this plot type and the data it presents is available in Appendix B. 

0 200 400 600 800 1000
0

1

2

x 10
-4

Time from Entry Interface [sec]

D
e

n
s
ity

 [
k
g

/m
3
]

 

 

Avg

Low

High

Warm

Cold

Test Signal

   
Figure 3.11: Ensemble Density History Along Nominal Reference Trajectory 

 
 

In order to perform the most stringent test possible, the PENS testing algorithm 

constructs a series of density predictions from many points in the trajectory. In this 

manner, the testing algorithm proceeds to step through the trajectory at four second 
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increments, simulating the motion of the vehicle through the atmosphere. The ADS 

gathers density data from entry interface up to the current position of the spacecraft. At 

each time step, the PENS method is used to make a single density prediction spanning the 

remainder of the trajectory. The testing algorithm then compares each predicted density 

field with the true density (which is the ideal test signal in this case). The performance of 

each density prediction is individually reported and no time-averaging techniques are 

used.  
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Figure 3.12: Ensemble Density History Near Periapsis 

 

This approach is designed to estimate the performance of the PENS algorithm if it 

were only permitted to perform a single prediction throughout the entire trajectory. This 

approach not only provides a stringent testing scenario, it also permits many predictions 

to be easily presented and compared. Most importantly, it also enables understanding of 

the evolution of prediction accuracy as more measured density data from the ADS 

becomes available. For example, in Figure 3.10, it can be clearly seen that the availability 

of recent ADS information after 600 seconds does not positively impact prediction 

accuracy. (In fact, the ADS information is being used very inefficiently at this point, a 

shortcoming that will be addressed in the following sections.) The density error data 
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presented in Figure 3.10 represents the prediction error from over 400 separate density 

predictions made from locations throughout the reference trajectory. The solid line 

indicates the average prediction error at a given prediction time while the dashed line 

represents the maximum error. For example, if only a single PENS prediction is made at 

647 seconds, the average prediction error over the remainder of the trajectory is 0.34% 

while the maximum error is 0.62%. 

As mentioned, the PENS prediction loses sight of the ideal solution at several 

locations. Because the test signal is a linear combination of the Average and Minimum 

models, it remains confined between these two pure signals and never intersects them. 

When one of the other ensemble members (typically the Maximum model in the above 

test) intersects the test signal, the local error of the intersecting member becomes very 

small relative to the other ensemble members. This inhibits the growth rate of the average 

(RMSE) error of the intersecting member. If the intersecting member remains close to the 

test signal over a sufficiently long interval, the RMSEs of the pure members temporarily 

exceeds the intersecting member. This causes the intersecting member to become more 

highly weighted by the parameter estimation scheme. Note that the prediction errors still 

remain low because the intersecting member must be sufficiently close to the test signal 

over an extended period for this local aliasing to occur. Despite the low error magnitudes, 

this local aliasing may still cause difficulty if the PENS algorithm is used multiple times 

in a single trajectory. If an intersecting member is only locally similar to the test signal 

and is significantly different far in the future, local aliasing may cause the far-field 

predicted density trend to rapidly change as the parameter estimation scheme temporarily 

trusts the wrong model. Therefore, it is necessary to seek an augmentation to the current 

implementation which will combat local aliasing and increase prediction accuracy. 
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3.3.2 Phase II Testing & Supporting Research Question 3 

The goal of Phase II testing is to determine how atmospheric prediction 

experience gained in flight can be leveraged to improve future state predictions. The 

current PENS implementation has no means of remembering good solutions or learning 

from in-flight experience. However, because the Phase I PENS implementation was able 

to determine the ideal solution over an extended interval, it is conjectured that a feedback 

capability that remembers good solutions for future consideration will improve 

performance. Because more than one good solution may exist and because these solutions 

may occur at any time during the entry, conventional simple feedback may not be 

appropriate. Simple feedback only permits the current state vector to be retained and will 

not readily store a series of high quality solutions. In addition, simple feedback alone will 

not enable associative learning. Multiple high quality prediction solutions may exist but 

only one can be utilized by the vehicle guidance at any given moment. Therefore, 

associative learning is highly desired in this application as a method for determining 

which of the stored solutions should be trusted based on the observed density trends.   

Any augmentation to the Phase I PENS algorithm to permit solution retention and 

associative learning should process several desirable characteristics. Recall from Section 

2.6 that both Johnson and Oh
69

 and Chowdhary and Johnson
70,71

 have trained a NN-based 

adaptive flight controller in real time using both background and online information. 

Prior NN-based adaptive controllers only used instantaneous states to tune the adaptive 

gains which limited the adaptability of the controller. Their new approach utilized stored 

state information (background information) as well as the current state (online 

information) to simultaneously train a NN. They demonstrated that this approach results 

in faster adaptation to unknown model dynamics and enhances the long term learning 

ability of the controller. This algorithm was successfully flight tested on an unmanned 

aerial system, the Georgia Tech GTMAX rotorcraft which is based on the Yamaha 

RMAX helicopter.
81

 Due to the success of this approach, a similar method utilizing both 
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background and online data will be developed here to augment the adaptive training 

process for the ADALINE gating network. 

 Another desired characteristic is the ability to simulate Hebbian learning, a theory 

of learning and memory in human neurology. First proposed by Donald Hebb in 1949, it 

attempts to explain the physical mechanism underpinning associative learning.
82-85

 The 

basic theory states that persistent use of a given chain of neurons leads to an increase in 

the efficiency of that chain whereas non-use of a chain results in an active decrease in the 

synaptic efficiency. Because it has been postulated that memories are stored in chains of 

biological neurons, Hebbian theory offers an explanation as to why often-used memories 

are easy to recall whereas seldom used memories fade over time. In artificial neural 

models, Hebbian learning is characterized as a reinforcement learning method. According 

to Rojas,
79

 “each input produces a reinforcement of the network weights in such a way as 

to enhance the reproduction of the desired output.” This highlights a necessary key 

feature of the desired feedback structure required to facilitate Hebbian learning. Each set 

of density observations from the ADS should be used to determine which density 

prediction model (or set of models) has the highest performance. A Hebbian algorithm 

then reinforces the trust or weight associated with these more accurate density models 

while suppressing less accurate models. Rojas also states that linear associators (i.e. 

neurons such as the ADALINE which form a weighted average of their inputs) are 

predominantly used in building networks capable of associative learning. Therefore, the 

Phase I architecture is a well-suited foundation for the feedback approach proposed here.  

 The third and final desirable characteristic for the feedback augmentation 

concerns the performance of individual solutions. If the PENS method is repeatedly 

called throughout the entry, a series of solutions in the form of ensemble weight vectors 

will be developed over time. The pruned RMSE parameter estimation scheme developed 

in Section 3.2 produces weight vectors which attempt to minimize the average retroactive 

prediction error. Therefore, up to this point, performance has always been based on an 
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average quality metric. However, a solution vector that has both a small average error and 

a small instantaneous error at the current vehicle location is highly desired. Considering 

local performance is yet another method of discriminating among the possible solution 

vectors in order to identify the best option for accurate density prediction.  

Therefore, the desired feedback augmentation is one which:  

• Simulates Hebbian learning 

• Allows simultaneous training of a NN using both background and online data 

• Balances good average (long-term) performance with good local (short-term) 

performance  

All three of the stated goals may be accomplished through the introduction of an 

ensemble echo, a new construct for adaptive ensemble forecasting. The Phase II system 

(Figure 3.13) consists of the entire Phase I architecture (black lines) augmented with an 

adaptive feedback structure (blue dashed lines). The creation of an ensemble weighted 

average begins with the same steps as the original Phase I implementation. Note that each 

step described below is indicated on Figure 3.13 by a red number in parentheses which 

corresponds to the step number (e.g. step number 1 is marked with a red (1) in Figure 

3.13).  

1. Each element of the ensemble density vector is subtracted from the free stream 

density measured by the ADS. This creates an error vector whose length is 

equivalent to the number of ensemble members.   

2. The error vectors are stored in an error matrix where each row represents an error 

vector from one particular time step and each column represents the error history 

of a single ensemble member.  

3. The pruned RMSE parameter estimation scheme is used to determine a scaled 

weight vector [ω] which is passed to the ADALINE gating network in order to 

form the ensemble linear combination. 

 



67 

 

Up to this point, the implementation described here is identical to the steps 

utilized in the Phase I architecture. In Figure 3.13, these steps are equivalent to 

proceeding along the forward cascade (i.e. the black, solid lines) from the density 

estimate ρADS to the production of an estimated density field ρpred.  

 

Figure 3.13: Phase II PENS Block Diagram: Implementation of the Ensemble Echo 

 

The feedback structure implemented in Phase II testing begins with the predicted density 

field; 

4. Once the predicted density field has been established, the measured density signal 

from the ADS is compared to the estimated density at the current vehicle location 

using the newly created ensemble linear combination. The result is a density error 

e at the current location of the vehicle which is computed in a manner analogous 

to Equation 3.1;  

%100






 −
=

ADS

ADSpred
e

ρ

ρρ
                                  (3.9) 

 

5. The value of the current density error e is used to determine if the current solution 

defined by the weight vector [ω] is of sufficient quality to warrant retention for 

future consideration. If the current error e is less than some minimum error value 

emin, then the weight vector [ω] is stored in a buffer along with its associated 

instantaneous error e. 
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6. The buffer itself consists of a user-defined number of saved solution vectors along 

with the associated instantaneous errors of each weight vector. The largest 

instantaneous error currently in the buffer (i.e. the worst stored solution) serves as 

the decision criteria emin for storing new solutions. If a candidate solution has an 

absolute instantaneous error |e| which is smaller than the largest absolute error in 

the buffer, then the candidate replaces this worst buffered solution. Thus, the 

worst buffered solution is always in jeopardy of being expelled from the buffer by 

a solution with a smaller instantaneous error. In this manner, the buffer is 

designed to continuously evolve during the entry by seeking to store solutions 

with ever improving local performance. Early testing revealed that larger buffers 

take significant time to fill to capacity, elongating the convergence period of the 

PENS model. Shorter buffers do not have the storage capacity to remember a 

large number of high-quality solutions and may be unable to retain important 

models. It was found that a buffer size of 30 solutions fills quickly while also 

providing sufficient memory capacity For example, if the ADS sampling 

frequency is 1 Hz, the buffer fills in quickly and begins to stabilize after roughly 

one minute. After this point, expulsion/retention of bad/good solutions in the 

buffer becomes less frequent and the PENS model converges to a quasi steady-

state. 

7. A weighted average of the buffer members is formed where the weights of each of 

the stored solutions are the inverse of the instantaneous stored errors; 

































++

















+

























=








=′ ∑

=

bn

b

nn

b

k

k

k

echo
eeebeb

ω

ω

ω

ω

ω

ω

ωω MLMM

1

2

1

2

1

1

11

1111
][

11
][     (3.10a) 

 

where b is the number of stored solution vectors and ek and [ωk] are the k
th

 

instantaneous error and the k
th

 stored solution vector respectively. Note that the 

number of buffered solutions b changes during the startup period when the buffer 
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is not yet filled to capacity. Once the buffer capacity (30 solutions for all results 

herein) is reached, b remains constant for the remainder of the trajectory. The 

resulting vector [ω’echo] is not a true weighted average because the (1/|ek|) 

‘weights’ applied in Equation 3.10a are not constrained to sum to unity. In order 

to form a true weighted average the vector elements must sum to unity which 

requires a rescaling of the vector:  
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The echo weighted average [ωecho] is structurally identical to the stored weight 

vectors [ωk]; all are unit vectors whose lengths n are equivalent to the number of 

ensemble members. Just as each stored solution vector [ωk] may be used to define an 

ensemble linear combination, so too may the echo weight vector [ωecho]. This linear 

combination defined by the echo weight vector is a predicted density field called the 

ensemble echo. While linearly dependent on the original ensemble, the echo is treated as 

if it were a new and independent ensemble member. Therefore, following the first 

iteration, the weight vector parameter estimation scheme operates on n+1 ensemble 

members rather than only n members as in the Phase I architecture.     

The formation of the ensemble echo completes the feedback loop. Note that 

because the ensemble echo is a linear combination of the original ensemble, it contains 

no new or additional information. It does, however, highlight the most important 

components of the original ensemble and functions as an evolutionary estimate of the 

current atmospheric state. As such, the echo should become more highly trusted (i.e. 

more highly weighted) the longer the vehicle is in the atmosphere. 

It should be noted that instantaneous errors which are exactly zero are not 

considered for entry into the buffer. This is because the inverse of one or more ek = 0 in 

Equation 3.10 leads to infinite weights on one or more of the buffered solutions. 
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Applying an infinite weight allows a single solution (or a small handful of solutions) to 

drive the behavior of the ensemble echo. While it is algorithmically possible to apply 

either an infinite or extremely large weighting to one or more of the buffered solutions, it 

is mathematically unjustifiable. Recall that the prediction model for density is a linear 

combination of the ensemble members (see Equation 2.2). Because there are n unknown 

ensemble weights ωi, a single density measurement provides an indeterminate system 

with n unknowns but only one equation;   

[ ] ee WWMMAAmmCCpredADS +++++=+= ωρωρωρωρωρρρ ][          (3.11) 

Therefore, there exists an infinite number of solutions which produce an identically zero 

instantaneous error, e ≡ 0. Many of these solutions are only locally valid because an 

instantaneous error of zero often signifies an intersection of the candidate model and the 

measured density signal. Because such solutions would dominate the behavior of the 

echo and may only provide locally valid predictions, zero error solutions are not 

permitted into the buffer. However, as will be shown, if an accurate zero error solution 

exists then there also exists a nearby neighboring solution that has the same predictive 

power but does not generate an algorithmic singularity. 

3.3.3  Hebbian Learning 

The ensemble echo accomplishes the three stated feedback goals. To satisfy the 

first goal, the algorithm simulates a basic Hebbian learning process through both 

reinforcement of good solutions and active suppression/depression of bad solutions.  

Synaptic reinforcement is accomplished by the interaction of the buffer, ensemble echo, 

and the parameter estimation scheme. Note that the synapses of interest here are the 

ensemble weights found at the junctions between the ensemble NNs and the ADALINE 

network. Good solution vectors are stored in the buffer and effectively re-presented to the 

parameter estimation scheme via the echo. If the ensemble echo is accurately describing 

the atmospheric dynamics, it is highly weighted by the parameter estimation scheme 
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which causes a reinforcement of the appropriate weights in the ADALINE gating 

network (see discussion in Section 3.3.4 for details).  

Synaptic suppression is accomplished by several mechanisms working in concert. 

Because all weight vectors are unit vectors, a reinforcement of some ensemble members 

immediately leads to the active suppression of the weights of the remaining members. In 

the limiting case, if one member were assigned unit weight, then the remaining members 

must necessarily all have zero weight. Also, recall that the worst buffered solution is 

continually in jeopardy. If a better solution is identified, this worst solution is removed 

from the buffer and the synaptic activity (i.e. the weights) associated with it are deleted. 

In addition, solutions which do not display promising local performance are not stored in 

the buffer and are effectively “forgotten.” Lastly, ensemble members which are 

completely inappropriate for the observed density trend are actively pruned from the 

prediction basis.  

 
Figure 3.14: Duality of Synaptic Suppression and Reinforcement Mechanisms 

 
 

Figure 3.14 illustrates the various mechanisms used to accomplish synaptic 

reinforcement and suppression. It is interesting to note that a duality exists in these 

reinforcement and suppression mechanisms. That is, the same mechanism accomplishes 
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both reinforcement and suppression such that the two functions may be viewed as 

opposite faces of the same coin. The first mechanism shown in the figure, ensemble 

pruning, removes one of the ensemble members from the prediction basis for a period of 

time. This completely suppresses the pruned member while permitting the remaining 

ensemble members to achieve higher (i.e. reinforced) weights reflective of their 

respective predictive abilities. Thus both reinforcement of useful members and 

suppression of members with high prediction error are accomplished by the same 

mechanism. 

The next three reinforcement/suppression mechanisms in Figure 3.14 describe the 

behavior of the solution buffer which is used to define the ensemble echo. By ejecting 

poor solutions from the buffer, the synaptic activity (i.e. weights) associated with that 

deleted solution are suppressed. This ejection permits a better solution to enter the buffer 

which reinforces the synapses (weights) associated with better performing models.   

By rejecting poor models (i.e. poor performing models are not considered as 

candidates for buffer storage), the weights associated with these poor solutions are 

suppressed by not preserving them for future consideration. Rejection of a candidate 

model by the buffer also preserves or reinforces the weights of the high-quality solutions 

currently stored in the buffer. 

The buffer will only store models whose local error performance exceeds the 

performance of the worst model currently in the buffer. This worst model is then replaced 

by the new incoming candidate model which by definition exhibits better performance. In 

this manner, the buffer is evolutionary and will only accept new models if there is 

quantitative evidence that this new solution will improve the performance of the 

ensemble echo. The evolutionary storage of ever better models reinforces the synaptic 

activity associated with the ensemble members which best describe the observed density 

trend. Reflexively, deleting the worst stored model suppresses the weights associated 
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with that model ensuring that PENS is continually able to reevaluate the conclusions it 

draws from the measured atmospheric observations.  

The last mechanism, weighted averaging, also leads to the simultaneous 

suppression of poor performing models and the reinforcement of accurate models. By 

enforcing that the summation of the model weights equal unity, the weighted averaging 

mechanism ensures that the final prediction models will be bounded inside the extreme 

limits of the ensemble. If new density observations reveal that a particular ensemble 

member is more accurately describing the local density trend, the parameter estimation 

scheme will begin increasing the weight associated with that model. In order to maintain 

the weighted average, the weight summation must remain unity. Therefore reinforcement 

of one synaptic path (i.e. increasing the weight applied to one ensemble member) 

immediately and reflexively leads to the suppression of other paths. Conversely, if the 

average error of one ensemble member continually increases as more observations are 

gathered, the parameter estimation scheme will suppress that member. This leads to an 

automatic reinforcement of the remaining models.   

In this manner the same mechanisms which accomplish synaptic suppression also 

cause synaptic reinforcement. The duality of these mechanisms is useful as they create a 

Hebbian learning architecture in an efficient and complimentary manner.  

3.3.4  ADALINE Network Training 

The second goal of the feedback loop was to utilize both stored state information 

(background data) and current state information (online data) to simultaneously train the 

ADALINE gating network. This process may be understood by considering the flow of 

information around the system loop depicted in Figure 3.13 starting at the solution buffer. 

The buffered solutions function as background data consisting of saved state information. 

This data is used to define the ensemble echo via the feedback loop of Figure 3.13 and 

Equation 3.10. The echo is in turn used to train the ADALINE network through the 
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parameter estimation scheme (in the forward cascade of Figure 3.13 which is represented 

by solid arrows). The final product of the parameter estimation scheme is the current 

system state, defined as the weight vector of the n ensemble members. If this weight/state 

vector is found to produce accurate density predictions, it is saved in the buffer and the 

next iteration begins. The manner in which the parameter estimation scheme produces the 

weight/state vector (i.e. trains the ADALINE network) is crucial as it must somehow 

combine the information contained in the echo with the information in the other n 

ensemble members. This combination process proceeds by redistributing the echo 

components among the original n ensemble members. Recall that the echo is defined as a 

linear combination of the original ensemble which is treated as an independent 

atmosphere model: 
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where n is the number of original ensemble members and ωecho,i are the elements of the 

echo weight vector [ωecho] computed in Equation 3.10. Because the echo is treated as an 

independent ensemble member, the Phase II prediction model now has n+1 ensemble 

members: 
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where ωe is the top-level weight applied to the echo model by the parameter estimation 

scheme. Note that because the echo is not actually linearly independent, it is possible to 

group like terms. Substituting Equation 3.12 into Equation 3.13 and grouping terms 

yields 
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In this manner, the redistributed echo weights function as a history-based 

correction for the current state estimate ωi. Thus the ADALINE network is trained using 

both online information (the current state ωi) and background information (the historical 
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correction ωeωecho,i). Note that because the weights of Equation 3.13 are elements of a 

unit vector and because Equation 3.14 is a direct re-statement of Equation 3.13, the 

summation of the n corrected weights (ωeωecho,i + ωi) is still unity. If the ensemble echo 

accurately estimates the current atmospheric state, then the parameter estimation scheme 

assigns a higher weight ωe to the echo. This, in turn, forces the vector of redistributed 

weights (ωeωecho,i + ωi) in Equation 3.14 to more closely resemble the echo weight vector 

[ωecho]. This reinforcement learning process enables the PENS method to apply 

experience gained in-flight to the current forecast model in a computationally economical 

way. The echo concept, however, still provides a significant amount of flexibility. The 

ensemble echo can be marginally weighted or even pruned if it suddenly fails to model 

the atmospheric dynamics at the current vehicle location.     

The redistribution of the weights explains the origin of the name ensemble echo. 

The redistribution process occurs between the parameter estimation scheme and the 

ADALINE network. The parameter estimation process takes place with n+1 ensemble 

members but only n synapses are required in the ADALINE network. Thus the echo 

represents a summary of past states which imitates an ensemble member. Like an echo, 

this imitation ensemble member disappears as state information progresses along the 

forward cascade of the system block diagram which is represented by the solid arrows in 

Figure 3.13.  

3.3.5  Multiple Prediction Horizons 

The final goal of the feedback structure is to create a capacity for balancing good 

long-term performance with good short-term performance. A high-quality candidate 

solution (i.e. a weight vector defining an ensemble linear combination) should produce 

small prediction errors both near the vehicle and far in the past near entry interface. 

Therefore, balancing of good local and average performance is important for producing 

high-quality solution candidates. This goal is automatically accomplished by the 
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dynamics of the ensemble echo. Note that the parameter estimation scheme produces 

solution candidates with good average performance based on the RMSE metric. The 

buffer which is used to define the echo examines the local performance of all of the 

solution candidates and only stores those with increasingly smaller local error. Thus, the 

solutions which define the echo have all been observed to perform well both locally and 

far from the vehicle. 

3.3.6  Phase II Ideal Testing Results 

With all three goals of the feedback structure accomplished, the prediction 

performance of the Phase II architecture was tested using the same ideal testing signal 

used for Phase I testing described in Section 3.3.1. Recall that this test signal was created 

from a simple linear combination of two of the ensemble members (ωAvg = 0.5 and ωMin = 

0.5). Also recall that during Phase I testing, the ideal test signal was correctly identified 

over several intervals, including the initial 6 seconds near entry interface. The ideal 

prediction performance of the Phase II system is presented in Figures. 3.15-18. As may 

be seen by inspection of Figure 3.15, the ensemble echo is trusted completely from the 

beginning of the trajectory. Because the parameter estimation scheme is able to correctly 

identify the ideal solution at the outset of the simulation, it is immediately stored in the 

buffer. After the first prediction iteration, the buffer consists of the first stored weight 

vector only which in this case is the ideal solution. Therefore, this single vector defines 

the ensemble echo for the second prediction iteration (see Figure 3.16). The parameter 

estimation scheme compares the echo to the measured density signal, determines that the 

echo is almost identical to the measured signal, and places full trust in the echo for the 

second iteration. At the end of this iteration, weight reinforcement occurs and the second 

stored buffer entry is almost identical to the first within the numerical precision of the 

computation scheme. Subsequent iterations are practically identical to the second 
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iteration. Because the ideal solution is identified so early, the density prediction error 

(Figure 3.17) is practically zero as expected.  
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Figure 3.15: Ideal Case Ensemble Weight Vector History 
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Figure 3.16: Ensemble Echo Weight Vector History 

 
 

As noted before, solutions with exactly zero instantaneous error e = 0, are not 

permitted into the buffer. Therefore the solutions identified by the Phase II architecture 

are not precisely equivalent to the true ideal solution of ωAvg = 0.5 and ωMin = 0.5. As 

may be seen in Figure 3.18, however, this architecture is able to identify nearby 

neighboring solutions which closely approximate the ideal solution. The behavior of the 

Phase II system represents a significant performance increase over the Phase I system and 
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suggests that a basic associative learning process based on in-flight experience is 

occurring.  
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Figure 3.17: Forward-Looking Prediction Accuracy 
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Figure 3.18: Detail View of Echo Weight Vector History 

 

3.3.7  Phase II Dissimilar Testing Results 

Up to this point, all prediction scenarios have utilized ideal test signals derived 

from the MCD atmosphere data, the same data source used to create the on-board neural 

ensemble. In order to test the Phase II architecture with a higher level of fidelity, a 

dissimilar atmosphere derived from a completely different Martian climate simulation is 

required. The intent is to create a MarsGRAM testing atmosphere with similar physical 

parameters as used in the MCD but utilizing a completely separate climate simulation 
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whose equations of motion followed an independent developmental history. Recall from 

Section 2.3 that four parameters, the suspended dust distribution, incident solar flux, 

time, and topography are the most basic inputs to any atmosphere model used herein. The 

topography over the entry corridor has already been accounted for in the neural ensemble 

modeling process. The default MarsGRAM atmosphere was modified to match the Julian 

entry date with the value used in the MCD simulations (see Table 2.1).  

The solar flux incident on the thermosphere is often approximated by the 10.7 cm 

wavelength full-disc solar emission as it is considered a general indicator of solar 

activity. Commonly abbreviated as F10.7 and expressed in units of 10
-22

 W m
-2 

hz
-1

, this 

flux value for the average solar activity models in the MCD is approximately 130.
86

 The 

F10.7 value in MarsGRAM was also set to 130 to match the MCD nominal value. 
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Figure 3.19: Aerocapture Reference Trajectory Using Dissimilar MarsGRAM 

Atmosphere 
 

Lastly, the dust distribution in MarsGRAM was set to a programmatic default 

value which mimics a seasonal variation in dust optical depth as observed by the Viking 
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missions.
44

 The dust properties are not exactly matched to the MCD in order to provide a 

stringent testing scenario. Because the Viking dust parameterization should reflect 

average or near-average conditions on Mars, the Phase II PENS system should be able to 

combine the members of the ensemble to mimic the Viking dust behavior. The baseline 

aerocapture simulation was rerun in POST2 in order to properly capture the impact of the 

newly defined MarsGRAM atmospheric model on the trajectory. The resulting trajectory 

(Figure 3.19) is very similar to the original baseline trajectory used for Phase I and early 

Phase II testing. The nominal MarsGRAM density profile used for the trajectory in 

Figure 3.19 is found in Figure 3.23 where it is compared to the ensemble members. The 

most notable changes are a slight increase in periapsis altitude from 46 km to 48 km and 

a small decrease in bank angle magnitude from 175.2° to 175° from the vertical.      

In order to evaluate the prediction efficacy of the PENS method several 

contemporary density estimation methods were also computed for comparison. These 

schemes have either been proposed in the open literature or are close derivatives of 

previously proposed schemes. These schemes are described below and are also described 

in Table 3.1 for convenience. The first scheme is an exponential atmosphere model taken 

from the work of Perot and Rousseau
25

 of the form  

)( ohhab

LS ee
−=ρ                                                  (3.15) 

where h is the current vehicle altitude, ho is an arbitrary reference height, and the 

parameters a and b are computed using a least squares fitting approach based on ADS 

measured data. The parameters a and b are computed in two ways; the first method 

utilizes all of the measured density data from entry interface up to the current location of 

the vehicle. The second approach only uses the most recent 30 density measurements to 

permit some form of adaptation to developing atmospheric conditions and to prevent 

early atmospheric measurements from biasing the density predictions.  

 The second group of density prediction schemes is based on the work of Cerimele 

and Gamble
10

 who defined an aerocapture guidance scheme commonly referred to as 
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HYPAS (or Hybrid Predictor-Corrector Aerocapture Scheme). HYPAS nominally uses a 

table look-up in order to estimate the density at the current location of the vehicle. In 

order to account for variations in density from the nominal atmosphere, HYPAS 

computes a table multiplier derived from density measurements. The model used by 

Cerimele and Gamble is implemented in three variations:   

1. Instead of selecting an arbitrary nominal atmosphere, the exponential model 

defined in Equation 3.15 is used in place of the nominal table look-up. The 

HYPAS-derived density model becomes 

LSEXPK Kρρ =−    where   LSADSK ρρ=                          (3.16) 

 

In order to maximize the predictive ability of the method, the value of the density 

multiplier K is recomputed for each density prediction.  

2. Like the exponential model of Equation 3.15, the HYPAS density model is also 

computed using only the most recent 30 density measurements. For this short 

HYPAS model, the multiplier K is computed using the short Least Squares model 

to maintain algorithmic symmetry. 

3. Lastly, an assumed table model is used where the predicted density is computed 

with:   

TableTableK Kρρ =−    where   TableADSK ρρ=                          (3.17) 

 

This final model most closely matches the original Cerimele-Gamble approach 

and utilizes the average ensemble member as the tabular model.   

 For all of the above models utilizing the multiplier K, the multiplier is recomputed 

at each density prediction to allow rapid adaptation to evolving density trends. Historical 

estimators have typically been implemented with a low-pass filter but given the rapid 

adaptability of the PENS estimator, the low-pass filter for all multipliers was not used in 

order to provide a balanced comparison.  
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Table 3.1: Summary of Density Estimators  
Short 

Name 
Full Name Model Form 

Measured 

Data 
References Comments 

PENS 

Plastic 

Ensemble 

Neural 

System  

echoePENS ρωρ = i

n

i

iρω∑
=

+
1

 

From entry 

interface to 

current 

location 

75 New 

KPENS 

State-

Corrected 

PENS  

PENSKPENS Kρρ =  

PENSADSK ρρ=  

From entry 

interface to 

current 

location 

75 New 

Exp 
Exponential 

Model  

)( ohhab

LS ee
−=ρ  

From entry 

interface to 

current 

location 

25 Contemporary 

Short 

Exp 

Short 

Exponential 

Model 

)( ohhab

LS ee
−=ρ  

Last 30 

density 

measurements 

only  

25 Contemporary 

KExp 

State-

Corrected 

Exponential 

Model  

LSEXPK Kρρ =−  

LSADSK ρρ=  

From entry 

interface to 

current 

location 

10,25 Contemporary 

Short 

KExp 

Short State-

Corrected 

Exponential 

Model  

LSEXPK Kρρ =−  

LSADSK ρρ=  

Last 30 

density 

measurements 

only  

10,25 Contemporary 

Table 

State-

Corrected 

Table 

Model  

TableTableK Kρρ =−  

TableADSK ρρ=  

Current 

Location 
10 Contemporary 

 

 The original PENS density prediction model described in Equation 3.14 has no 

density multiplier to allow adaptation of the model to the measured density at the current 

location of the vehicle. This model relies fully on the physics of the underlying ensemble 

members to produce accurate long-term density predictions. In highly dispersed 

atmospheres, however, significant perturbations may exist. The underlying density field 

may have significant and long-lived noise components superimposed upon it which may 

generate significant prediction error even if the underlying model is correctly 

characterized. In order to obviate this possibility, a derivative of the PENS method 

referred to as KPENS, will also be examined which utilizes a density multiplier: 

∑
=

+=
n

i

iiiechoeKPENS K
1

, )( ρωωωρ    where   PENSADSK ρρ=                    (3.18) 
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The density prediction performance of the Phase II PENS method using the 

dissimilar MarsGRAM atmosphere is presented in Figure 3.20. (A detailed explanation of 

this type of RMSE/Maximum error plot used throughout this chapter is available in 

Appendix B.) Like the analogous density error figures examined earlier (Figure 3.10 and 

Figure 3.17), the plot compactly summarizes the density prediction error statistics for 

over 400 individual prediction iterations. The contemporary density estimation methods 

just described are also included in the plot for comparison. The average density 

prediction error of the PENS method near periapsis (at 200 seconds) is approximately 

32% while the KPENS method produces an error of 32.5%. Therefore, if no further 

prediction updates are made from periapsis to atmospheric exit, the PENS (KPENS) 

expected error at any point would be no greater than 32% (32.5%) with a maximum 

prediction error of approximately 95% (95%). This is in contrast to the contemporary 

methods which all have larger average and maximum prediction errors at periapsis. In 

fact, the PENS method produces predictions with smaller prediction errors than all of the 

contemporary methods for the majority of the trajectory. Only two of the contemporary 

methods out-perform the PENS/KPENS methods far beyond periapsis near 600 seconds. 

Inspection of Figure 3.19 reveals that this occurs at an altitude of roughly 80 km and at a 

very low dynamic pressure, far smaller than the peak pressure near periapsis. Because the 

dynamic pressure is so small at this point, the vehicle no longer has sufficient control 

authority to make gross trajectory adjustments using aerodynamic forces alone. Accurate 

density predictions must be available to the guidance system at a significantly earlier 

point, preferably near or before periapsis, in order to be useful for accurate path planning.  

It should also be noted that both of the contemporary models which outperform 

the PENS method near 600 seconds use only the last 30 ADS density measurements. The 

analogous exponential ρK-EXP and Least Squares ρLS models (the black and green curves 

respectively in Figure 3.20.a) which utilize all of the ADS density measurements exhibit 
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markedly worse prediction performance. Observe in Figure 3.20.a that, initially, the short 

and long models coincide. The short models are initially set equal to the long models at 

(a)           

      (b)  

Figure 3.20: PENS Prediction Accuracy Using Dissimilar MarsGRAM Atmosphere 
          

 

start-up until 50 ADS density measurements have been gathered near 130 seconds. This 

is to prevent early high-altitude density measurements which typically have a higher 

degree of uncertainty (see Figures. 1.1-1.2) from biasing the prediction results. After 50 

measurements have accrued, the 30 most recent measurements are used for prediction 
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and the short models become independent of the long models. At this point the predictive 

accuracy of the short models markedly improves, a trend which persists for the remainder 

of the trajectory.       

The consistently superior performance of the short (30 data point) models relative 

to their long model counterparts suggests that the exponential approximation of the 

Martian atmosphere is only locally valid. This conclusion is significant because it implies 

that exponential models may not provide guidance systems with sufficiently accurate 

density predictions over great distances. If the vehicle guidance is not provided with 

enough notice concerning upcoming density trends, robust path prediction becomes quite 

challenging. It is this failure to provide accurate density approximations far ahead of the 

vehicle that leads to failure modes such as guidance lag, controller saturation, and 

misprediction of control authority highlighted earlier (see Section 1.3).    
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Figure 3.21: Full Model Ensemble Weight Vector Time History 

 

Another feature of note is the consistency of the PENS density prediction error 

over the majority of the trajectory. Despite considerable variations in both the full model 

weight history (Figure 3.21) and the ensemble echo weight history (Figure 3.22) during 

the convergence period, the PENS prediction error remains relatively consistent for the 

remainder of the trajectory. This demonstrates that the adaptive capability of the PENS 



86 

 

method is successfully able to alter the underlying density model dynamics to 

successfully predict the upcoming density trends. This is in direct contrast to the four 

contemporary models based on the omnipresent exponential atmosphere assumption 

whose underlying dynamics are static. Because the contemporary models are less able to 

adapt to the observed density trends, the variations in the predictive error signal becomes 

more pronounced. 
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Figure 3.22: Ensemble Echo Weight Vector Time History 
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Figure 3.23: Ensemble & MarsGRAM Histories  

Along Dissimilar Reference Trajectory 
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Figure 3.24: Ensemble & MarsGRAM Density  

Histories At High Altitude Near Atmospheric Exit 

 

 The predictive accuracy should continually improve as the PENS algorithm 

observes and learns from the atmospheric density trends. However, this appears not to be 

the case for the present simulation example using the dissimilar atmosphere model. Note 

that as time progresses in Figure 3.20, the average prediction error increases especially 

towards the end of the trajectory. This increase in average error is largely generated by 

the high altitude dissimilarity between the MarsGRAM and MCD density trends. Despite 

the fact that the MarsGRAM density model appears to be well within the bounds defined 

by the neural ensemble (see Figure 3.23), late in the trajectory near 760 seconds, the 

MarsGRAM density trend actually drifts outside the prediction basis (Figure 3.24). It is 

interesting to note, however, that the MarsGRAM thermosphere in this region near 760 

seconds (corresponding to altitudes roughly 100 km and above) is well described by an 

exponential atmosphere as is visible in Figure 3.20. This clearly differs from the MCD 

thermospheric predictions which utilize a different model parameterization which is 

poorly described by a simple exponential model.  

The difference between MarsGRAM and MCD makes perfect prediction 

impossible because the predicted density trend, as a weighted average of the ensemble, 
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must always be contained by the ensemble. This generates a non-reducible error at the 

end of the trajectory which appears in all of the PENS density predictions. However, 

because this error is small in magnitude and late in the trajectory, a net reduction in 

density prediction error is still possible. The presence of this non-reducible error explains 

why the average prediction error begins to increase towards the end of the trajectory 

while the maximum error remains relatively consistent. By the last prediction of the 

trajectory, the average and maximum error are one-and-the-same and the average and 

maximum error curves merge. Therefore, the increase in average prediction error is not 

due to a failure of the associative learning capability of the PENS algorithm but rather 

due to the differences in the atmosphere models used for testing.  

 Note the performance of the table model is respectable near periapsis (~200 sec), 

producing an average prediction error which is only 8.5% higher than the PENS/KPENS 

estimators. The table model becomes locally more accurate than the PENS estimator 

during the outbound leg of the trajectory between 338 and 564 seconds. However, 

inspection of Figure 3.20.b shows that the KPENS estimator is 2-4% more accurate in the 

same window. Note also the similarity in the prediction accuracy (the RMSE and the 

maximum) trends produced by the KPENS and table models. This similarity is 

completely due to the use of the multiplier K. In fact, both PENS models are identical 

save for the use of the multiplier in the KPENS version of the estimator. Therefore, the 

KPENS estimator would be identical to PENS if K = 1.0.  

The multiplier K permits the prediction models to closely track the density trend 

near the entry vehicle but the increase in near-term prediction accuracy is not without 

cost. Inspection of Figure 3.20.b reveals that both the Table model and KPENS estimator 

exhibit higher error when predicting from high altitude. Early in the entry near 50 

seconds, the average prediction error rises to approximately 75%, an increase of almost 

50% over nominal. Recall that any given point in the figure summarizes the density 

prediction error from that given point to atmospheric exit. Therefore, if no further density 
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predictions are made, the expected prediction error will remain near 75% for the 

remainder of the trajectory. Likewise, the prediction error rises again at high altitude near 

the end of the trajectory to over 100% average error at 675 seconds, an increase of more 

than 60% in only a few seconds. This increase in prediction error is due to the large 

spread in observed atmospheric densities. At high altitude, very low density values permit 

the production of large K values from small absolute density differences. At lower 

altitudes, the reverse is true wherein higher densities may produce smaller K values 

despite the fact that large absolute differences may exist. For example:  

At high altitude: 

2
10

)10(2
7

7

===
−

−

PENS

ADSK
ρ

ρ
 despite the fact that the absolute difference is only 10

-7
 kg/m

3
 

At low altitude: 

5.1
10

)10(5.1
5

5

===
−

−

PENS

ADSK
ρ

ρ
 despite the fact that the absolute difference is now much 

larger at 5(10
-5

) kg/m
3
, 50 times the high altitude density difference. 

However, this apparent limitation of the multiplier K may not, in fact, militate 

strongly against its use. Note that all the prediction models employing a multiplier 

approach zero error near atmospheric exit, a direct result of forcing the prediction model 

to closely follow the observed density trend. In addition, these prediction models must all 

be sequentially updated throughout the entry when implemented in an atmospheric 

guidance algorithm. This regular update process may completely counterbalance the 

long-term biasing effects of the multiplier. Given this possibility, as well as the 

prevalence of scalar multipliers in contemporary density prediction models, the KPENS 

model will be included in future experimentation.  

As noted in Chapter 1, the impact of atmospheric density on the entry trajectory 

will diminish with altitude and will, at some point, become negligible. The precise entry 

and exiting altitudes where the density no longer has a significant effect on an 
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aerocapture trajectory is largely a function of the desired target orbit
87

. The target orbit 

dictates the entry and exiting flight path angles which largely determine the length of 

time the entry vehicle spends in the highly variable upper atmosphere. Rapid transits 

through this region, such as those produced by higher energy post-aerocapture target 

orbits, will tend to limit the effects of the density variability on the aerocapture trajectory. 

Slower, shallower transits through the upper atmosphere, typically produced by lower 

energy target orbits, will be more susceptible to density variations in the upper 

atmosphere.   

It should be noted, however, that even during high altitude flight where the 

density has little or no impact on the trajectory, measurement of local free stream density 

during the early phases of entry can still provide a valuable learning opportunity for the 

PENS algorithm. Note in Figures 3.21 and 3.22 that, prior to 100 seconds (which 

corresponds to an altitude of about 60 km according to Figure 3.19), the ensemble 

weights change significantly. This indicates that PENS is learning from the trends 

observed at high altitude. This high altitude information is used to construct the early 

PENS density models which are then refined as the vehicle approaches periapsis. 

Because the control authority of the entry vehicle reaches its peak near periapsis, the 

availability of an accurate density model at periapsis significantly reduces the risk of an 

incorrect and irreversible guidance decision. Therefore, all aerocapture trajectories 

examined herein permit the PENS algorithm to observe the free stream density trends 

even at high altitude.  

3.4  Summary of Initial Concept Testing 

The PENS method has been shown to produce improved density forecasts with 

superior error performance over contemporary density prediction techniques. Existing 

density forecasting schemes for real time applications in vehicle guidance systems often 

rely on simple analytic or tabular atmosphere models.
6,10-17

 Such models may not 
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adequately characterize the current atmospheric state due to an inflexibility in the 

underlying density model dynamics. This inflexibility often generates significant forecast 

error with increasing distance from the entry vehicle. This observation is supported by the 

work above which demonstrates that simple density models are often only regionally 

valid in the Martian environment. These models may not provide the guidance method 

with sufficiently accurate forecasted density trends with enough lead time for safe path 

planning and prediction. If not remediated in some manner, the high degree of 

atmospheric uncertainty present in the on-board density models increases the uncertainty 

in the guidance decision making process. This then places a significant burden on the 

guidance system which must remediate vehicle state errors due to atmospheric 

dispersions via active course correction. Not only is this strategy operationally expensive 

but it also places the vehicle at risk of entering one or more of the discussed guidance 

failure modes. 
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CHAPTER 4 

APPLICATION TO AEROCAPTURE GUIDANCE 

This chapter is dedicated to addressing the fourth supporting research question 

which is the development of a proactive entry guidance scheme which is capable of 

implementing the PENS density estimator. First, a survey of available entry guidance 

schemes is conducted which reveals that a Numerical Predictor-Corrector (NPC) is the 

best suited platform for testing the impact of the PENS estimator on aerocapture 

guidance. In the first sub-section of this chapter, an NPC guidance scheme which 

implements the PENS estimator is introduced and the guidance sub-models are 

enumerated and described. The second sub-section of this chapter is devoted to 

discussing possible sources of error and the approaches used for mitigating or simulating 

these errors. In the third sub-section, the NPC guidance scheme is subjected to 

verification and validation testing. Verification testing will reveal that the behavior of the 

guidance-implemented PENS estimator matches the behavior of the original standalone 

algorithm used for PENS development in Chapter 3. Validation testing will reveal that 

the PENS-augmented guidance scheme is capable of producing trajectories which exhibit 

a high degree of agreement with results available in relevant Mars aerocapture literature. 

4.1  Bank Modulated Guidance Schemes 

As discussed in Section 2.7, the bank angle of the entry vehicle is used to 

modulate the lift vector in order to control the vehicle in the atmosphere. Many such bank 

modulated entry guidance schemes exist and the pertinent question becomes which type 

of banking guidance scheme is best suited to implement the PENS density estimator. In 

general, banking entry guidance schemes can be divided into two broad categories; 

reference path tracking schemes and predictive path planning schemes.
88
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Reference path tracking schemes such as those implemented aboard the Apollo 

Command Module
27,28

 and the Space Shuttle
26

 attempt to track a preplanned reference 

trajectory which is created using nominal conditions and nominal models. The role of the 

guidance system is to correct for any errors which result from the departure of the actual 

entry conditions or models from the ideal nominal. Pertinent to the work herein, if the 

atmospheric model used to generate the reference trajectory has significant errors (i.e. a 

high degree of uncertainty) then the guidance must attempt to mitigate the effect of those 

errors by correcting the trajectory in real time. 

Because there is no need to compute a complete trajectory on-board in real time, 

many (but certainly not all) reference path guidance systems require little numerical 

integration, iteration, or other arithmetically complex operations. This leads to a high 

degree of algorithmic simplicity which is often cited as the inherent advantage of this 

class of guidance scheme. This simplicity often does lead to a high degree of algorithmic 

robustness because computational redundancy and other fault tolerance measures are 

often computationally affordable. However, at Mars this algorithmic robustness does not 

translate to operational robustness (e.g. reliable performance in the face of large 

atmospheric dispersions).  

Reference path schemes often achieve algorithmic simplicity through the 

application of simplifying assumptions applied to the dynamic equations of motion and 

the guidance models, especially the atmosphere model. A common, convenient, and 

seemingly inexpensive assumption made by many Mars reference path schemes
10,12-

14,16,26
 is to utilize the common exponential atmosphere model. However, several 

studies
14,17,19,20

 of reference path methods at Mars report that significant guidance faults 

and failures occur due to atmospheric dispersions (i.e. differences between the modeled 

atmosphere and the true atmosphere).  

As discussed in Section 1.4, some reference path schemes, such as the modified 

Apollo guidance used on MSL
14,17

, forego the use of any atmospheric model. Instead, 
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these guidance systems track departures of the sensed lift and drag accelerations from a 

reference profile. The influence of the atmosphere, then, is indirectly treated by 

compensating for errors in the drag acceleration. While this approach seemingly bypasses 

the issue of atmospheric prediction altogether, it can quite easily lead to prevalent failure 

modes (see the failure modes discussion in Section 1.3). Pre-mission studies
17,20

 of the 

MSL guidance scheme have concluded that the drag error caused by density dispersions 

is the principle statistical contributor to landing site miss distance at the parachute 

deployment point. Stated another way, the differences between the nominal predicted 

atmosphere used to construct the reference trajectory and the true atmosphere are the 

primary cause of final state targeting error.    

Several reference path schemes, like Shuttle guidance
26

, include the ability to 

compute an approximated reference trajectory in real time. However, the equations of 

motion are often greatly simplified using a series of assumptions (typically involving the 

nature of the atmosphere). If any of these assumptions do not hold, then the produced 

reference trajectory may be quite difficult (or impossible) for the vehicle’s control system 

to follow. The vehicle is then forced to retroactively correct for dispersions after they 

have already impacted the trajectory. This, in turn, again forces the guidance towards 

prevalent failure modes.  

At Earth, reference path methods such as those used by the Space Shuttle and 

Apollo programs are justifiably applicable. In both cases, reference path methods were 

suitable since alternate means of remediating the cumulative effects of density 

uncertainty were utilized. For Apollo, the recovery architecture permitted the vehicle to 

land in a relatively wide area whereupon search and rescue personnel would locate the 

vehicle. At Mars, future exploration architectures may require precision landing or the 

use of precise target orbits. Therefore, accepting wide 3σ final state dispersions like 

Apollo may not be possible. For the Space Shuttle, its high L/D provided greater control 

authority to correct for the cumulative effects of atmospheric density uncertainty prior to 
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landing. The use of higher L/D has already been explored for Mars and other 

environments (see Section 1.3). It has been found that higher L/D may actually introduce 

significant control difficulties and does not immediately ensure a successful entry. In 

addition, higher L/D shapes typically produce mass penalties due to packaging 

inefficiencies.   

Thus, the strength of reference path methods is also the source of their collective 

weakness at Mars. Namely, the algorithmic simplicity achieved through the application 

of simplifying assumptions often leads to decreased accuracy and an increase in the 

demands on the guidance system. This generates increases in both failure rates and final 

state targeting errors in the highly dispersed Martian atmosphere. Thus, the effective 

compromise for most Mars reference path schemes is to trade accuracy and reliability for 

simplicity and speed.   

The other major class of entry guidance schemes, predictive path planning 

methods, calculates a new trajectory from the current state to the desired final state using 

onboard prediction techniques. The key difference between reference path methods and 

path prediction is that the former tracks a reference profile which may or may not be 

recomputed in real time. The latter iteratively recomputes the trajectory by changing the 

control variables until the estimated final state is equal to the desired final state. Thus 

path prediction methods directly produce a control signal such as a bank angle-vs-time 

history as opposed to reference path schemes which produce a reference trajectory as the 

primary output.       

Predictive guidance systems may be further divided into two mutually exclusive 

subdivisions; analytical and numerical prediction schemes. Common analytical path 

prediction methods
10,15,16,18

 often utilize closed-form (or nearly closed-form) equations 

requiring little or no numerical integration to produce the estimated trajectory. This is 

often accomplished by introducing simplifying assumptions into the equations of motion 

and guidance models. Again, the atmosphere model is a prime target for discrimination 
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and often is reduced to an exponential atmosphere approximation. To reduce 

computational overhead, the equations of motion are often simplified further using 

analytic integration and algebraic manipulation following introduction of the analytic 

atmosphere model. The atmosphere, then, becomes hard-coded into the guidance 

equations and becomes quite challenging to replace during the entry. This is the case for 

the successful and prevalent Cerimele-Gamble
10

 HYPAS aerocapture guidance scheme.   

While the application of simplifying assumptions reduces the computational 

overhead just as in reference path schemes, the limitations are generally the same. In the 

present study, the ability to update/replace the guidance atmosphere model during the 

entry is a necessity. Most reference path schemes and analytical path prediction methods, 

however, do not offer this opportunity. Numerical path prediction schemes, on the other 

hand, do not have this limitation. In fact, for this class of guidance system, replacement 

of the on-board atmosphere model during the entry is completely possible. This makes 

numerical path prediction schemes an attractive option for PENS implementation.   

Common numerical path prediction methods
11,88-92

 integrate the equations of 

motion in real time while typically refraining from significant simplifying assumptions. 

Because on-board numerical integration is employed, replacement of the atmosphere with 

an updated model is possible because the atmosphere is not hard-coded into the guidance 

system. Each time the guidance is called, the equations of motion are numerically 

integrated from the current state to the final state using a guessed control signal such as a 

bank-vs-time profile. If the predicted final state is not equivalent to the desired final state, 

the control signal is updated and the process is iterated until the final state is equal to the 

desired state.    

Because numerical guidance schemes require fewer assumptions, they have the 

potential to be highly accurate. Kluever
88

 compared the performance of an analytic 

reference path scheme (MSL guidance
14

) with a numerical path prediction scheme for 

Mars precision landing. He concluded that while “predictive guidance delivers more 
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accurate terminal conditions compared with the reference-path guidance, it relies heavily 

on accurate onboard models of the vehicle and Martian atmosphere.” This finding of 

Kluever suggests that a numerical path prediction scheme could produce more accurate 

final state targeting if improvements could be made in the accuracy of the on-board 

models such as the atmosphere. This notion further supports the use of a numerical 

prediction guidance scheme for PENS implementation. If the PENS algorithm does 

enhance the accuracy of the predicted density model as theorized, then the final state 

accuracy gains could become appreciable.  

Further evidence of possible accuracy gains come from Putnam et al.
93

 and 

Bairstow and Barton
94

 who have evaluated the performance of a numerical predictor-

corrector guidance system, PredGuid, for use on the Orion entry vehicle at Earth. 

PredGuid, while based on the Apollo entry guidance algorithm, has been augmented with 

a numerical predictor-corrector (NPC) to improve landing accuracy. The assumptions and 

heuristics used in the original Apollo entry guidance were found to produce inadequate 

landing accuracy for lunar-return entries. To improve the accuracy of this heritage 

reference path method, a NPC guidance scheme originally designed for aerocapture 

missions was used to replace portions of the original guidance. Both studies concluded 

that the addition of the NPC greatly improved the accuracy of the Orion entry guidance.  

The fact that both PredGuid studies were able to realize performance gains at 

Earth while Kluever did not realize gains using an NPC at Mars is not surprising. The 

performance of an NPC is strongly dependent on knowledge of the atmosphere as 

Kluever noted. As already stated, the terrestrial atmosphere is much better characterized 

by the meteorological community than that of Mars. Also, the perturbations which may 

be expected at Earth are better understood and less problematic due to the greater control 

authority afforded by terrestrial atmospheric densities. Ultimately, the uncertainty 

inherent in the table look-up model used by PredGuid at Earth is smaller than the 

uncertainty associated with current Martian atmosphere models. Due to the highly 
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variable nature of the Martian atmosphere, this uncertainty is likely to persist even when 

climatologists reach a better understanding of the Martian atmospheric dynamics.    

In summary, the use of an NPC guidance algorithm for atmospheric entry with an 

accurate on-board atmosphere model has been found to produce excellent final state 

targeting performance, exceeding that of classical reference path methods. Therefore, in 

addition to the ability to update the guidance atmosphere model, the possible 

performance gains suggested by the relevant literature further justifies the selection of a 

NPC scheme for PENS implementation.  

4.2  Numerical Predictor-Corrector Guidance 

The NPC guidance scheme selected for PENS implementation is similar to the 

PredGuid guidance scheme selected for use aboard the Orion entry vehicle. The NPC 

guidance scheme utilized herein was originally developed at the NASA Langley 

Research Center in support of the Aeroassist Flight Experiment
95

 program. This 

algorithm has been modified, updated, and reconfigured to support several studies
89,91,92

 

of aerocapture at Mars. This atmospheric guidance algorithm is implemented in a three 

degree-of-freedom (3-DOF) version of the Program to Optimize Simulated Trajectories 

(POST2)
96

. The simulation environment (see Figure 4.1) is composed of two primary 

loops, both residing in the POST2 simulation framework. A simulated flight software bus 

uses on-board timers to activate pertinent subsystems of the spacecraft such as the 

guidance system, sensors, and actuators at specified intervals. This flight software, 

originally developed for the Entry, Descent, and Landing Systems Analysis Program
87,97-

99
 (EDLSA), is adapted for use here.  

The outer brown loop in Figure 4.1 represents the real world Martian environment 

through which the entry vehicle must travel. The inner loop in blue represents the 

trajectory simulation environment on-board the entry vehicle which is used by the NPC 

guidance to predict the vehicle’s flight path. The 3-DOF equations of motion are 



99 

 

implemented in the inner loop by the guidance system using a set of guidance sub-models 

(e.g. atmosphere model, gravity model, etc. For complete sub-model details, see Section 

4.2.2). When called by the spacecraft bus, the inner loop conducts a series of on-board 

trajectory simulations from the vehicle’s current state to the atmospheric exit conditions. 

If the predicted final orbit is not equal to the desired final orbit (red X in Figure 4.1), the 

control variables are updated and another trajectory prediction is made until the predicted 

final state matches the desired final state (green check mark in Figure 4.1). The guidance 

then uses this converged trajectory to issue commands to the control system to steer the 

vehicle.  

 

Figure 4.1: PENS-Augmented Numerical Predictor-Corrector Guidance 

Simulation Environment 

 

The spacecraft bus operates at 10 Hz and, once per cycle, the bus commands the 

on-board sensor systems to collect and store information concerning the atmosphere and 

the current state of the vehicle. The vehicle sensor suite consists of two subsystems, the 

Air Data System (ADS) and the Inertial Navigation System (INS). The ADS estimates 
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atmospheric information based on pressure data, specifically the angle of attack α, the 

sideslip angle βss, and free stream dynamic pressure pdyn through the use of flush-mounted 

pressure ports in the vehicle’s external structure. The ADS may only collect atmospheric 

information from the vehicle’s current flight environment. Unlike remote sensing 

systems, the ADS cannot collect atmospheric data from regions of the atmosphere that 

the vehicle has not yet transited.  

The INS uses the on-board accelerometers and gyroscopes to calculate data 

products relating to the current dynamic state of the entry vehicle. The INS estimates and 

saves the vehicle sensed body acceleration vector, Abody, the inertial velocity vector, Viner, 

and the inertial position vector, Xiner. Like the ADS, the INS saves the history of these 

quantities from entry interface up to the current location of the vehicle. Both the ADS and 

the INS are simulated components whose accuracy and performance have been tuned to 

replicate the typical performance of similar systems in the literature (see Section 4.2.2 for 

more information). Individual components such as pressure transducers or accelerometers 

are not modeled for simulated subsystems.  

The only remaining simulated component, the controller/actuator model, also 

resides in the outer loop. This system receives the guidance commands which, in this 

case, are the desired bank angle magnitude and bank angle reversal time schedule. The 

controller/actuator module is simulated using a theoretical model called a pseudo-

controller. The pseudo-controller, used extensively in previous entry studies
97,99-102

 at 

Mars, simulates the vehicle attitude time response generated by the controller and 

actuator dynamics. In the absence of a pseudo-controller model, changes in the vehicle’s 

attitude would become instantaneous rather than occurring over some finite time interval. 

The time response signal generated by the pseudo-controller has been designed to 

replicate the response of 6-DOF simulations of typically configured Mars entry vehicles. 

Thus, use of the pseudo-controller permits a 3-DOF simulation to approximate a full 6-

DOF simulation by accounting for effects of the vehicle’s rotational dynamics on the 
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simulation timeline. This, in turn, reduces the computational overhead associated with 

each trajectory simulation and also avoids the necessity of specifying a detailed vehicle 

inertia tensor and actuator subsystem. Instead, only the maximum vehicle angular 

acceleration and maximum angular velocity (5 deg/s
2
 and 20 deg/s respectively, derived 

from the EDLSA
87,97-99

 project) need be specified.    

The remaining components of the simulation architecture (the NPC guidance 

system and PENS subsystem in blue in Figure 4.1) are fully modeled components whose 

behavior is of prime interest to the present study. At entry interface, the spacecraft bus 

places the guidance system in a standby mode and the vehicle bank is commanded to 

hold a nominal pre-entry bank magnitude which is 90° for the present study. This bank 

magnitude is in the middle of control margin between full lift up (at 0°) and full lift down 

at 180°, providing the maximum control authority to the vehicle at guidance initiation. 

Once the sensed acceleration reaches 0.05 Earth G indicating that the vehicle is now in 

the atmosphere, the guidance inner loop activates for the first time. The bus then calls the 

inner loop every 0.5 seconds (2 Hz) until the vehicle exits the atmosphere at 128 km. A 

detailed view of the computational process inside the inner loop may be found in Figure 

4.2. The subsystems associated with black arrows (the density estimator and green sensor 

block) are not part of the inner loop but their data products directly support the inner loop 

computations and are included for clarity. The inner loop receives estimated state vector 

information (altitude, position, velocity, etc) from the INS and utilizes this information to 

conduct the on-board trajectory prediction from the current location to atmospheric exit. 

Prior to conducting each on-board trajectory simulation, the guidance selects a constant 

bank angle magnitude which it then maintains throughout the simulation. Bank angle 

reversals are still performed to prevent large final orbit inclination errors, but the 

magnitude of the bank angle, β, remains constant. The inner loop utilizes the sensor and 

density estimator information to create/update the guidance sub-models such as the 

atmosphere, aerodynamics, etc. (see Section 4.2.2 for a full description of the sub-
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models). The results of the model evaluations are then used to perform the on-board 

trajectory propagation using the common 4
th

 order Runge-Kutta method for numerical 

integration. The guidance propagates the trajectory up to the atmospheric exit altitude at 

which point the orbital elements are computed and compared with the desired orbital 

state. If the predicted apoapsis is not within the convergence tolerance, then a new bank 

angle is selected and the process repeats. The inner-loop iterates by performing another 

trajectory simulation until the predicted apoapsis is equivalent to the desired orbital 

apoapsis.        

 

Figure 4.2: Detailed View of Inner Guidance Loop 

The updated value of the guessed bank angle is determined using a bisection 

interval search routine. This algorithm, as implemented in the guidance, is a two phase 

root-finding method. In this case, the root the algorithm attempts to locate is the 

difference between the desired and actual orbital apoapses. At the root of this function, 

the desired and actual apoapses are equivalent and the inner loop may successfully 

terminate. In the first phase, the algorithm ensures that the root is “bracketed.” As shown 
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in Figure 4.3, the algorithm requires that the objective function be continuous and that the 

initial two function evaluations have opposite sign. The intermediate value theorem
103

 

then ensures that at least one root of the function is contained (i.e. “bracketed”) between 

the two bounding evaluations.  

 

 

Figure 4.3: Inner Loop Bisection Algorithm  

 

In order to bracket the root, the algorithm steps through the possible bank angles 

in 5° increments starting at the initial guessed bank angle. In each of the 5° increments, 

the first phase evaluates both the upper and lower bank angles (see Figure 4.3) in order to 

determine if the current upper and lower limits bracket the root. If the upper and lower 

limits have opposite signs, then the root is bracketed and the second phase may begin. If 

they do not, then the algorithm moves on to the next 5° increment and tries again. 

Because the bank angle magnitude β must be contained between 0-180°, the upper and 

lower bounds could easily be set to 0° and 180° respectively and the first phase of the 

algorithm could be skipped altogether. However, this approach is not used for two 

reasons. First, the bisection algorithm can take many function evaluations to begin 

homing in on the root, and the first phase is designed to prevent excessive evaluations by 

first searching the region around the initial guessed bank magnitude. Second, this 
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approach explicitly checks to ensure that a root is actually contained on the bank interval 

[0°, 180°]. If a root is not contained in the interval, this indicates that no feasible solution 

exists and the guidance commands either full lift up or full lift down (whichever 

minimizes the apoapsis miss distance) in an attempt to rescue the vehicle and save the 

mission.  

Once the first phase is completed, the second phase begins in which the location 

of the bounded root is determined by finding the value of the function (by running an on-

board trajectory simulation) halfway between the upper and lower bounds. This new 

function evaluation will be used to reevaluate the location of the root. The half interval 

containing no root is discarded while the other half interval, now with tighter upper and 

lower bounds, is retained. This halving process repeats until the location of the root is 

determined to within a convergence tolerance which is 5 km for all simulations herein. 

This value of 5 km was chosen as it was found in preliminary testing to offer satisfactory 

orbit targeting performance while preventing excessive of roll reversals. 

As with the majority of bisection algorithms, this root finding approach is quite 

robust. It often identifies the feasible bank angle within 6-12 function evaluations, though 

occasionally more are required, particularly if the initial guess is very far from the root. 

The initial bank angle guess for the current inner loop call is determined by the 

converged value of the bank angle from the last inner loop call. As mentioned, the 

original bank guess at the first inner loop call just after entry interface is 90°. Between 

calls to the inner loop, the guidance commands the pseudo-controller to maintain the 

constant bank angle magnitude identified by the bisection algorithm and commands bank 

reversals on a timer using the reversal times saved from the converged trajectory 

prediction.   

These bank angle reversal times are determined by the on-board trajectory 

simulation via the lateral guidance logic. The original lateral guidance logic described in 

Section 2.7 is replaced here in favor of a more general approach which is less dependent 
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on arbitrary tuning and better suited to this NPC scheme. The inclination error is a 

function of orbital specific energy, ε determined by the functions in Figure 4.4. The 

guidance linearly interpolates inside these functions to determine the allowable 

inclination error at the current vehicle orbital energy. If the current inclination error is 

outside the maximum allowed error, then the guidance commands a bank angle reversal 

by flipping the sign on the bank magnitude β. Positive bank angles denote right-hand 

banks whereas negative bank angles indicate left-hand banks.   

 

 
Figure 4.4: NPC Maximum Allowed Inclination Error Limits for 

 Determining Bank Angle Reversals 
 

If the current inclination error does not violate the maximum limits defined in 

Figure 4.4 outright, then the guidance examines the rate of inclination change. If the rate 

of change of the inclination error is high, indicating that the current orbital plane is 

rapidly diverging from the desired orbital plane, then the guidance artificially increases 

the current inclination error ierr. This approach ensures accurate orbital plane targeting by 

preventing excessive overshoot of the inclination error past the bounds in Figure 4.4 

when the inclination rate of change is high. The rate of change of the inclination error 

dierr/dt is computed by determining the change in the inclination error, ierr over one 
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integration time step (one second in the on-board simulation). This rate is then added to 

the overall inclination error (i.e. ierr = ierr + dierr/dt·dt) such that high rates inflate the 

inclination error. However, to limit the number of bank reversals, the rate term dierr/dt is 

limited to a maximum value of 0.2 deg/s. This limit prevents premature bank reversals 

(which place unnecessary demands the actuator and control systems) while still ensuring 

accurate orbital plane targeting.    

4.2.1  PENS Implementation into NPC Guidance 

 The PENS density estimator receives position information collected by the INS; 

namely, the geocentric latitude, longitude, and geodetic altitude time histories from entry 

interface up to the current location of the vehicle. This position information is passed to 

the atmospheric neural networks (NNs) stored aboard the vehicle which are a compact 

representation of the ensemble models used for atmospheric forecasting (see Section 2.5). 

The NNs are used to construct the ensemble models along the vehicle’s flight path from 

entry interface up to the current location. PENS also receives dynamic pressure 

information from the ADS and uses this data to estimate the atmospheric density by 

factoring in the velocity of the vehicle. (Recall the discussion of the free stream density 

computation in Section 2.2) This permits an estimated atmospheric density history along 

the vehicle’s flight path to be constructed. At this point, the PENS algorithm has all the 

required information for a complete PENS iteration cycle to occur (for a complete list of 

PENS algorithmic steps, see Section 3.3.2). The PENS algorithm then constructs the 

density prediction equation (Equation 2.2) which defines the predicted density field ahead 

of the vehicle and passes the equation to the guidance system for use in the inner 

guidance loop. The PENS density model is updated at the guidance inner loop calling 

frequency such that the density model is always updated before the inner loop is 

activated. When the inner loop propagates the 3-DOF equations of motion, it utilizes the 

updated atmosphere model to produce the necessary density estimate required at each 
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integration step. As the accuracy of the density prediction model increases, so too does 

the accuracy of the predicted trajectory generated by the inner guidance loop.  

 All other historical density estimators interact with the guidance in a similar 

manner to the PENS estimator. The exponential atmosphere models are created using a 

least squares fitting process and require the altitude and estimated density histories but do 

not required latitude and longitude information. The table model, however, only requires 

the density estimate at the current vehicle location in order to generate the scalar table 

multiplier K. When these models are used in lieu of the PENS algorithm, they too are 

passed to the guidance inner loop and utilized in the same manner as described above.  

The PENS algorithm may have minimal impact in the required computational 

overhead of the guidance process. In comparing the computational requirements of Mars 

aerocapture guidance algorithms, Rousseau et al.
104

 used the number of lines of 

executable code as a proxy variable for guidance complexity and computational demand. 

To place the computational requirements of the PENS algorithm into perspective, the 

number of executable code lines in the NPC guidance algorithm is roughly a factor of 

five larger than the number of executable lines in PENS. It could be stated that any NPC 

algorithm is computationally demanding when compared to the reference path schemes 

prevalent in the Apollo and immediate post-Apollo eras. However, consider that an NPC 

guidance algorithm was recently selected for the Orion entry vehicle
93,94

 due to the 

accuracy improvements realized by its use. As the speed of space-hardened avionics 

continues to improve, the use of computationally involved algorithms will certainly 

become more commonplace as is evidenced by Orion.  

Even for robotic missions which typically have more limited computational 

resources, the PENS algorithm may still be considered computationally affordable. Many 

robotic navigation/guidance systems must numerically integrate six channels of 

acceleration information (three linear and three angular accelerations). These six channels 

must be numerically integrated twice to produce velocity and position information. In 
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total then, modern avionics must track and perform complex arithmetic operations, 

including numerical integration, on 18 channels of information (6 acceleration, 6 

velocity, and 6 position channels). The PENS algorithm, in contrast, requires no complex 

arithmetic operations such as numerical integration, numerical differentiation, or large 

matrix operations. In addition, the PENS algorithm must only track n+1 channels of 

information where n is the number of ensemble members and the additional channel 

represents the ensemble echo. Thus, the PENS algorithm, while certainly increasing in 

the computational overhead of the guidance system, should not apply an excessive strain 

on a modern avionics package. This must, of course, be balanced against the performance 

gains and risk reduction realizable through the application of the PENS algorithm which 

can be appreciable in many circumstances (see Chapter 5). 

Table 4.1: Sub-Models Employed in Inner & Outer Guidance Loops 

Sub-Model Real World Simulation On-Board Simulation 
Knowledge 

Transfer 
References 

Aerodynamics 
Constant L/D = 0.43 

CL = 0.74 & CD = 1.72         

Constant L/D ≈ 0.43  

CL ≈ 0.74 & CD ≈ 1.72         
none 

29,31,32, 

105-110 

Sensors 
    

INS* 9-Channel (Abody, Viner, Xiner), noiseless, constant bias via INS 110-112 

ADS 3-Channel (α, β, pdyn), noiseless, constant bias via ADS 
29,31,32,  

105-109 

Vehicle 
    

Mass 

(5736 kg) 

constant, consistent with 

ballistic coefficient 

constant, consistent with 

ballistic coefficient 

perfect 

knowledge  

Reference Area 

(8.65 m
2
) 

constant, consistent with 

ballistic coefficient 

constant, consistent with 

ballistic coefficient 

perfect 

knowledge  

Gravity Harmonic (J2-J6) Harmonic (J2) none 
 

Actuator/Controller pseudo-controller pseudo-controller N/A 97,99-102 

 

4.2.2  Guidance System Sub-Models & Sources of Error 

 As stated in previous sections, both the guidance inner and outer loops utilize a 

series of sub-models in order to compute the 3-DOF equations of motion. These sub-

models describe the characteristics and capabilities of the vehicle used for guided 

trajectory testing of the PENS algorithm. Table 4.1 presents a top-level summary of the 
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guidance sub-models used in both the outer loop (real world simulation environment) and 

the inner loop (on-board simulation environment).   

The nominal vehicle characteristics utilized for the original reference trajectory in 

Section 2.7 were based on a sample return mission described by Masciarelli et al
6
. 

However, the growing emphasis in the future of Mars exploration will likely involve 

progressively larger payloads greater than one metric ton
113

 to accommodate more 

extensive robotic and eventually human missions. Missions with larger robotic and 

human payloads often utilize an ellipsled
87,97-102

 due to the greater packaging efficiencies 

and satisfactory aerodynamic characteristics achievable with this configuration (Figure 

4.5).  

Therefore a rigid aeroshell in the form of an ellipsled will be adopted as the 

nominal vehicle configuration for all guided trajectory simulations. The relevant impact 

of the vehicle configuration in the present study is to alter the atmospheric trajectory 

which then changes the information data stream and learning process used by PENS. 

While the vehicle configuration remains constant throughout the study, the effects of 

gross changes to the atmospheric trajectory will be examined (see Section 4.3.3). The 

adopted vehicle configuration, based on the ellipsled used in the EDLSA study
87,97-99

, is 

considered a mid-L/D entry vehicle with an L/D of 0.43 and a ballistic coefficient of 385 

kg/m
2
.  

 

Figure 4.5: General Ellipsled Geometric Configuration
98 
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 The mass of the vehicle (5736 kg) and the reference diameter (3.3 m) were 

selected to maintain the stated ballistic coefficient. This vehicle configuration 

corresponds to either a large robotic mission or a small support element of a human Mars 

architecture. However, Lafleur and Cerimele
114

 observed that for a given set of initial 

conditions “an entry vehicle subject to a given bank-angle profile in a given planetary 

environment can, from a trajectory perspective, be completely described by [its] ballistic 

coefficient and lift-to-drag ratio. This description hinges on the assumption of a constant 

trim drag coefficient and [a] constant L/D, which is approximately true for hypersonic 

flight.” Therefore, although it was necessary to decompose the ballistic coefficient into 

mass and reference diameter variables for entry into the POST2 simulation, the trajectory 

results generalize to any vehicle with similar L/D and ballistic coefficient. In fact a 

similar design is studied in the EDLSA project for delivering high mass (40 metric ton) 

human architecture elements. 

 Many of the inner-loop sub-models presented in Table 4.1 may have significant 

degrees of estimation error associated with them. In addition, other errors such as 

variations in the entry state or atmospheric density from expected conditions will also 

exist. In order to capture the impact of these unanticipated variations on the entry 

trajectory, all error sources identified from contemporary literature are included in the 

guided simulations as random variables. For example, the aerodynamic sub-model 

employs constant vehicle lift and drag coefficients (0.74 and 1.72 respectively) owing to 

the high-Mach hypersonic flight regime inherent in aerocapture trajectories. Due to pre-

mission modeling uncertainty, however, the on-board estimates of the vehicle 

aerodynamics may contain a significant degree of error. To simulate the effects of this 

uncertainty, the lift and drag coefficients in the inner loop aerodynamic model are treated 

as random variables. The differences in the aerodynamic models will cause the on-board 

trajectory prediction to differ from the actual vehicle flight path. Because aerodynamic 

modeling inaccuracy has the potential to generate significant final state error
113

, it is 
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treated as an error source and examined via simulation. The same approach, examination 

via direct simulation, is used for all similar error sources thought in contemporary 

literature to contribute to large errors in final state. Table 4.2 lists these error sources and 

the associated ranges and distribution shapes used to create the error dispersions. For all 

normal distributions, the limits stated in the table correspond to the effective ±3σ bounds. 

The normal distribution will, of course, exceed these bounds at large sample sizes. 

Therefore, the maximum and minimum observed dispersions are typically slightly more 

extreme than presented in the table. For example, in one guided trajectory Monte Carlo 

containing 36,000 cases (see Chapter 5), the observed extreme cases of the dispersed lift 

coefficient CL were 0.64 and 0.84 whereas the ±3σ bounds of ±10% actually lie at 0.67 

and 0.81. For uniform distributions, the stated limits represent the upper and lower 

distribution bounds.  

As discussed in Section 4.2, the ADS uses flush-mounted pressure transducers on 

the external structure of the vehicle to determine the angle of attack, α sideslip angle, β 

and the dynamic pressure, pdyn of the free stream. Systems such as these have been 

successfully employed on the North American X-15 high-altitude research vehicle
31,32,105

, 

the Space Shuttle
29,106-108

, and one is currently in flight to Mars aboard MSL
109

. The 

sensor sub-models (ADS and INS) are modeled as noiseless sensors with constant biases 

(see Table 4.1). This constant bias is applied on all channels of both the ADS and INS 

which cause persistent and non-reducible errors to accrue over the trajectory. While more 

detailed models exist with random noise and varying bias levels, the precise nature of the 

noise observed will depend on the type of sensor selected as well as the internal design of 

the sensor. In addition, many modern guidance systems often utilize multiple redundant 

sensors where the output of each sensor is fed to a common filter which produces 

smoothed estimates of the various sensed quantities. Therefore, a noiseless, constant bias 

sensor is utilized as a rudimentary proxy of a filtered guidance solution. These biases are 

randomly selected from the distributions in Table 4.2 in the Sensor Errors subsection. For 
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vector quantities, the bias is equally applied to all three channels under the assumption 

that all of the linear accelerometers are of the same manufacturing origin and suffer from 

similar error dynamics.  

The error sources listed in Table 4.2 also include likely environmental errors such 

as variations in the initial entry state of the vehicle owing to uncertainty in the 

interplanetary navigation process as well as variations in the atmospheric state. Variations 

in the atmosphere, due to the differences between pre-mission atmospheric models and 

the true Martian atmosphere, are especially important given the nature of the present 

study. Recall from Section 2.3 that the density of the Martian atmosphere is greatly 

affected by the amount of dust suspended in the atmosphere and the incoming solar flux 

incident on the thermosphere. The dust load in the atmosphere is commonly measured 

with the dust optical depth, τDust and the solar flux is measured using the 10.7 cm 

wavelength full disk solar emission (commonly abbreviated F10.7). Both of these 

parameters are dispersed to permit the mean atmospheric density trend provided by 

MarsGRAM to vary. Perturbations in density are then superimposed onto the smooth 

mean density trend with a newly developed perturbation generator (see Section 4.4). The 

perturbation magnitudes and the random number seed used to generate the perturbations 

are also dispersed.  

Note that the aerodynamic errors are not rigidly correlated to errors in the center 

of gravity for all trajectories herein. An offset in the center of gravity would generate 

specific lift and drag coefficient errors which would impact vehicle performance. 

However, this approach is not taken here since the exact correlation often depends on the 

detailed aerodynamics of the entry vehicle.  
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Table 4.2: Dispersed Variables for Guided Trajectory Simulations 

Variable Units Limits Nominal Distribution References 

Aerodynamic Errors 
     

Lift Coefficient, CL % ±10% 0 normal 87, 102,113 

Drag Coefficient, CD % ±10% 0 normal 87, 102,113 

Sensor Errors 
     

Body Accelerations Earth µG ±10 0 normal 38, 111 

Inertial Velocity m/s ±2 0 normal 38, 87, 102 

Inertial Position km ±2 0 normal 38, 87, 102 

Angle of Attack deg ±0.1 0 normal 
29,31,32,  

105-109 

Sideslip Angle deg ±0.1 0 normal 
29,31,32,  

105-109 

Dynamic Pressure % ±2 0 normal 
29,31,32,  

105-109 

Initial State Errors 
     

Velocity m/s ±20 0 normal 87, 102 

Flight Path Angle deg ±0.25  0 normal 87, 102 

Altitude km ±3 0 normal 87, 102,115 

Latitude deg ±0.08 0 normal 87, 102,115 

Longitude deg ±0.04 0 normal 87, 102,115 

Atmosphere 
     

Density Estimator N/A 1:8 2(KPENS) integer uniform N/A 

τDust N/A 0.1-3  0.45 uniform 44 

Perturbation Seed N/A 1:29999 none integer uniform 44 

Climate Set N/A 1:3 3 integer uniform N/A 

Pert. Magnitude % ±100% 0 uniform 44 

F10.7 
10

−22
       

W/(Hz-m
2
) 

70:200 130 uniform 86 

 

4.2.3  Effect of Atmospheric Winds on Density Measurements 

 The presence of significant sustained winds artificially increases or decreases the 

free stream dynamic pressure which the ADS measures in flight. Note that because the 

role of the ADS is to measure the free stream dynamic pressure pdyn, wind components 

perpendicular to the plane of motion do not affect pdyn and will not generate density 

measurement error. Also note that the angle of attack, α is unlikely to be significantly 

changed by Martian winds. An angle of attack change would occur if a significant 

vertical wind component exists and the vertical winds at altitude on Mars are typically 
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small. The vertical winds predicted by the MCD at the time, season, and spatial volume 

(described in Figure 2.4) of the test mission over Hellas Planitia have a maximum value 

of 3.3 m/s over all climate scenarios, including dust storm scenarios.  

 The free stream density is computed by combining information measured by both 

the ADS and the INS throughout the entry. The ADS measures the free stream dynamic 

pressure which may be expressed as  

( )2

2

1
FSdyn Vp ∞= ρ                                                   (4.1) 

 where ρ∞ denotes the free stream density (the quantity of ultimate interest) and VFS is the 

free stream velocity. Note that the free stream velocity VFS is the sum of both the wind 

velocity VW and the relative velocity of the vehicle V with respect to the surface of the 

planet (VFS=V+VW). In the nominal, no-wind case, VW = 0 and density estimation is 

straightforward:       
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 In the case of significant wind, however, the above relation does not hold true. 

The INS estimates the inertial velocity of the vehicle by numerically integrating the 

sensed acceleration over time
116

. This produces an estimate of the change in velocity 

from an inertial reference state such as the inertial velocity at entry interface. The 

presence of significant head or tail winds will influence the rate of entry vehicle 

deceleration and will alter the inertial velocity-vs-time profile relative to the no-wind 

case. However, because the INS is able to sense the additional acceleration caused by 

wind, it is still able to estimate a correct inertial velocity within the system accuracy 

limits. Thus, the presence of wind does not cause inertial velocity biases or measurement 

errors. The INS then converts the unbiased inertial velocity into surface relative velocity 

V by factoring in the constant rotation rate of the planet. The dynamic pressure measured 
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by the ADS, however, is biased by wind as shown in Equation 4.3 because the wind field 

alters the free stream velocity.       

( ) ( )22

2

1

2

1
WFSdyn VVVp +== ∞∞ ρρ                                    (4.3) 

Thus, in the case of significant wind, Equation 4.1 becomes:  
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The estimated density is not equivalent to the free stream density and the resulting error 

may be expressed as: 
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  (4.5) 

This relation has been used to explore the effect of the predicted wind field on density 

measurement errors. Figure 4.6 illustrates the impact of the meridional winds (i.e. the 

wind field component running parallel to lines of longitude) on the density measurement 

error. Due to the orientation of the entry trajectory which runs from the south toward the 

north along a line of constant longitude, the meridional winds are the head/tail wind 

component for this entry mission. As discussed, the remaining two wind field 

components, cross winds and vertical winds, do not impact the ADS free stream dynamic 

pressure measurements.    

 The Mars Climate Database (MCD) was used to examine the meridional wind 

components for all eight climate models (including high wind dust storm cases) over the 

entry corridor illustrated in Figure 2.4. In total, wind data was taken over 113,664 MCD 

grid points and summarized in the distribution on the right hand side of Figure 4.6. The 

99
th

 percentile case corresponds to winds of 100 m/s with a maximum observed wind 

speed of 185.6 m/s. 
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Figure 4.6: Effect of Sustained Winds on Density Measurement Error 

 

 

 Literature results are in general agreement with the MCD derived wind data. 

Moreno et al.
117

 used the Plateau de Bure Interferometer, a radio telescope in the French 

Alps, to directly measure wind speeds in the Martian middle atmosphere (40-80 km). By 

examining Doppler line shifting of carbon monoxide in the Martian atmosphere, they 

found maximum average wind velocities near 100 m/s in the equatorial region. A later, 

more comprehensive study by Moreno using the same techniques found that typical 

middle atmosphere wind velocities vary between 70-170 m/s and exhibit strong temporal 

and spatial variability
118

. These results are intriguing because they are direct 

measurements of the conditions in the Martian middle atmosphere, which is rare unto 

itself. The altitude range over which these measurements were taken, therefore, make 

them uniquely applicable to aerocapture studies. In addition, these results seem to align 

well with the data from the Mars Climate Database (MCD) just discussed. High altitude 

wind information is also available. Thermospheric winds recovered from Odyssey and 

MGS aerobraking data by Crowley and Tolson
119

 at altitudes of 100-160 km found 

evidence of sporadic winds in the 100-200 m/s range. The observed high speed wind 

patterns vary greatly in both time and space, with large changes in wind magnitude and 

direction (e.g. from +200 m/s to -200 m/s) observed in as little as 100 seconds.  
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 Taken together, the above data suggests that 200 m/s is a conservative upper 

bound for the wind velocity in the middle and upper atmosphere. It should also be 

observed that the MCD-predicted speed of sound on Mars is approximately 200 m/s. 

Therefore, wind speeds greatly in excess of 200 m/s are supersonic and are likely to occur 

with lower probability. Over the range of likely aerocapture velocities, Figure 4.6 reveals 

that at the density measurement errors range from 6% to 11% for sustained 200 m/s 

winds.  

 If the wind patterns on the day of entry are variable, as all of the observational 

data suggests, then the 6-11% errors in density measurement would occur sporadically 

and have little effect on density estimation. The PENS estimator functions as a linear 

adaptive filter, forming prediction models which are linear combinations of smooth (i.e. 

noiseless and unperturbed) atmospheric density models. Thus, the resulting density 

prediction models are noise free. The weights of each of the ensemble members in the 

linear combination would be affected only if the wind is sustained long enough to begin 

affecting the average error signals (i.e. the difference between each ensemble member 

and the measured density over time). Therefore, by design, rapid transient anomalies in 

either the true density or atmospheric winds will not cause significant PENS model 

changes.  

 For sustained winds, however, changes in the PENS density model will occur if 

the density bias is sufficiently large. Strong, long duration winds deceive the ADS (and 

PENS by extension) into believing that the atmospheric density is higher or lower than it 

actually is. However, adaptation to strong in-plane sustained winds is, in fact, beneficial 

to the aerocapture guidance. The goal of on-board density estimation is to provide the 

guidance with the ability to accurately predict the aerodynamic accelerations that the 

vehicle will encounter throughout the remainder of the trajectory. Consider the free body 

diagram given in Figure 4.7: 
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Figure 4.7: Effect of Wind Velocity in the Plane of Motion  

 

The gravitational and centrifugal forces are not directly influenced by the presence of 

significant winds. The lift and drag forces, however, are effected due to their dependence 

on the free stream dynamic pressure. The following argument focuses on the drag 

acceleration but an analogous argument may be made for the lift acceleration. The true 

drag acceleration in the direction of motion may be expressed as 

SCVVSCVma DWDFSdrag

22 )(
2

1

2

1
+== ∞∞ ρρ

                             (4.6) 

Because no wind estimates are available on-board, the guidance utilizes the surface 

relative velocity V in place of the free stream velocity VFS. This introduces an error into 

the estimated drag profile: 
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However, recall from Equation 4.4 that the estimated density is biased by the wind field:  
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                                               (4.8) 

When the above relation is substituted into Equation 4.7, the estimated drag becomes: 
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which is equivalent to the true drag acceleration in Equation 4.6. Thus, if PENS is able to 

adapt to the wind-biased measured density, the resulting density model will counteract 

the effect of the wind error on the predicted aerodynamic accelerations.  

 The density measurement error continually increases throughout the entry as the 

velocity of the vehicle decreases (see Figure 4.6). However, PENS is able to continually 

adapt and learn from the observed environment. The prediction models generated by 

PENS, therefore, account for the current level of density measurement error caused by 

winds. Adapting to the current level of error permits more accurate drag prediction and 

limits the impact of wind-induced errors as the vehicle velocity decreases.  

 For example, consider the effect of wind-induced density error for the nominal 

1400 km trajectory (discussed further in Section 4.3.3). The vehicle enters the 

atmosphere at 5.9 km/s and has slowed to just below 5 km/s at periapsis crossing. 

Inspection of Figure 4.6 reveals that the density measurement error due to 200 m/s 

sustained winds increased from 6.8% to 8% over this interval. If PENS can adapt to this 

8% bias, then the impact of future increases in density measurement error on the 

predicted drag acceleration will be minimized. For the example given here, if PENS 

adapts to the 8% error near periapsis where control authority is high, the increase in drag 

prediction error over the remainder of the trajectory is approximately 11%-8% = 3%. 

This level of error is small and well inside the noise level of the Martian atmosphere. 

Therefore, because accurate trajectory predictions are available near periapsis, the 

guidance can successfully guide the vehicle through the outbound leg.      
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Figure 4.8: Measured Density Signal Generated by a 200 m/s Sustained Wind  

  

 The above conclusion depends, however, on the ability of PENS to adapt to the 

current level of density measurement error. Consider again the example above where 

PENS must adapt to the density error caused by 200 m/s sustained winds while in the 

region near periapsis. The effect of the wind on the measured density signal is shown in 

Figure 4.8 for the nominal 1400 km trajectory discussed in Section 4.3.3. This data was 

obtained by computing the wind-biased dynamic pressure given by Equation 4.3 and then 

computing the estimated density using Equation 4.4. 

 The PENS algorithm is permitted to observe the atmosphere from entry interface 

up to periapsis at 181 seconds. PENS then constructs a density prediction model from 

periapsis to the end of the trajectory. The error between the predicted density and the 

measured density is given in the top plot of Figure 4.9. Note the high degree of similarity 

between the no wind case and the 200 m/s head and tail wind cases despite the large 

differences in the measured density signals in Figure 4.8. Also observe that significant 

variations exist between the PENS density models used to construct these predictions as 
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evidenced by the large changes in ensemble weights across these cases (see Figure 4.9, 

bottom plot).  
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Figure 4.9: Prediction Performance from Periapsis with Respect to Measured 

Density (Top) and Associated Ensemble Weights (Bottom) 

  

 Therefore, in the unlikely event of strong and sustained winds over the majority of 

the entry, PENS is able to adapt to the wind-biased density measurements as predicted. 

Thus, the impact of sustained winds on the predicted drag acceleration will be minimal as 

already discussed. In the more likely case of highly variable wind fields, PENS will 
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assume that the sporadic density measurement error is due to atmospheric noise and 

ignore it. For these reasons no further treatment of atmospheric winds will be examined 

herein. 

 Other adaptive density estimators, however, may be more sensitive to wind then 

PENS. For reference, it is useful to note that that alternate methods for measuring the free 

stream density near the vehicle exist. McKenzie
120

 describes a method for using an on-

board laser-based instrumentation system for measuring the free stream density outside 

the window of the middeck crew hatch on the Space Shuttle. A pulsed ultraviolet laser is 

emitted normal to the longitudinal axis of the Shuttle. Light scattered backward by the 

ambient atmosphere is collected by an optical system attached to the inside of the hatch 

window and the collection optics are skillfully arranged such that only light scattered 

from the laser beam beyond the shock layer is detected. The intensity of the scattered 

light is time integrated and the resulting signal is “linearly proportional to the 

atmospheric density…and has no significant dependence on any other properties of the 

atmosphere or on the flight conditions.” Such a technology may be useful on future Mars 

entry vehicles using similar ultraviolet Rayleigh scattering techniques or more modern 

techniques based on lidar. Note that this approach, like an ADS and unlike on-board lidar 

systems examined in Chapter 5, is designed for short ranges and only measures 

atmospheric density close to the vehicle.  

 Thus, the signals from multiple measurement systems could be combined to 

produce highly accurate free stream density estimates if they are required. However, 

literature concerning modern and historical ADSs indicates that high density estimation 

accuracies are possible. In fact, the Space Shuttle Columbia was equipped with the 

Shuttle Entry Air Data System (SEADS) which demonstrated 3σ measurement errors for 

pdyn in the 2% range
29,106-108

. A similar system with even higher predicted accuracy (3σ 

pdyn error of 0.45%) is currently aboard MSL bound for Mars
109

. As will be shown, 
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however, the SEADS flight-demonstrated level of accuracy is more than sufficient to 

guarantee significant aerocapture performance gains.   

4.3  Verification & Validation of PENS-Augmented Guidance 

 The goal of this section is to demonstrate that the performance of the PENS-

augmented NPC guidance matches both expectation and similar results from relevant 

aerocapture literature. The first phase of demonstration testing involves verifying that the 

PENS algorithm, originally developed in MATLAB, behaves as expected once translated 

into FORTRAN and integrated into the NPC guidance scheme. In the second phase of the 

demonstration, guided trajectories are generated and compared to similar simulations 

conducted in the literature. Following verification & validation, the nominal trajectories 

required for the guided trajectory Monte Carlo simulations in Chapter 5 are introduced 

and discussed.     

4.3.1  PENS-Augmented Guidance Verification 

As mentioned, the original PENS algorithm has been designed, developed, and 

tested in MATLAB (see Chapter 3). The POST2 simulation framework, including the 

NPC guidance system, however, is written in multiple languages including C, C++, 

FORTRAN, and Perl. From among the possible choices, the PENS algorithm is 

converted into FORTRAN for two reasons. First, because the majority of the NPC 

guidance and the original POST2 trajectory code are written in FORTRAN, integration of 

the converted PENS algorithm into the guidance becomes more streamlined. Second, 

FORTRAN shares many similarities with MATLAB scripting code which reduces the 

required conversion and implementation time.  

The successful implementation of the PENS algorithm into the NPC guidance and 

the POST2 framework required a myriad of modifications and changes within the 

original source code. To ensure the original functionality of POST2 is unaltered, a 
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trajectory simulation is conducted wherein both the guidance and PENS are present but 

inactive. This is to ensure that the PENS integration measures have not interfered with 

the basic trajectory engine (i.e. the equations of motion, sub-models, and the Runge-Kutta 

integration scheme) which comprises the outer loop of the guided simulation. Because 

the guidance must be inactive for this test, the trajectory used for verification purposes is 

a modified version of the reference trajectory given in Section 2.7. The original lateral 

logic is removed and replaced with a constant bank angle manually tuned to produce the 

desired target apoapsis. In addition, as mentioned in Section 2.7, the target apoapsis 

altitude is now returned to 1400 km to match the orbit used by Masciarelli et al.
6 

The 

modified reference trajectory is then simulated using both an unaltered version of POST2 

and then again using the POST2 code containing the NPC guidance and PENS. Because 

the standard unaltered POST2 contains no guidance system, deactivation of the guidance 

is necessary to accomplish this comparison.  

Figure 4.10 displays the results of this first verification test which examines the 

functionality of the basic POST2 trajectory engine. As stated, the modified reference 

trajectory is computed twice; first using the original POST2 source code and then using 

the new POST2 source code containing the PENS algorithm. Both plots in the figure 

display an overlay of the altitude-relative velocity trend for the modified reference 

trajectory. The red curve is created using the unaltered version of POST2 and the blue 

trajectory is computed using the PENS-augmented POST2 code. Note that the differences 

between the trajectories are indiscernible on large scales (Figure 4.10.a). Figure 4.10.b on 

the right depicts an enlargement of the region near periapsis (denoted by a black asterisk 

in the opposing left-hand plot). As may be seen by inspection, the differences in the two 

trajectories are due to limitations in numerical precision, and are, for all practical 

purposes, identical.  
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                                  (a.)                                                                (b.) 

Figure 4.10: Verification of POST2 Outer Loop Functionality for  

(a.) the Complete Trajectory and (b.) Near Periapsis 

 

A similar basic functionality test was conducted for the inner simulation loop to 

ensure that no PENS integration measures have adversely affected the on-board inner-

loop trajectory engine. The NPC guidance was temporarily activated and the on-board 

sub-models were set to exactly match the outer-loop (i.e. “real world”) sub-models. The 

results of this test revealed that both loops yield identical results to within numerical 

precision when their inputs are equalized. These first two tests indicate that the PENS 

implementation has not corrupted the basic functionality of the POST2 outer loop or the 

NPC guidance inner loop.  

With the guidance inner and outer loops performing as expected, the PENS 

algorithm is now activated and tested. The NPC guidance is again deactivated to allow 

the performance of the PENS algorithm to be verified in isolation without being 

confounded with any guidance errors or anomalies. Recall from Chapter 2 that the PENS 

algorithm relies on an ensemble of models stored aboard the entry vehicle in condensed 

form as neural networks (NNs). The NNs in the original MATLAB algorithm were 

extensively verified and tested throughout development to ensure that the densities 
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replicated by the NNs were reasonable and consistent with their original MCD climate 

models (see Section 2.5 and Appendix A). 

In the FORTRAN-based PENS algorithm, the NN equations and computation 

routines were extensively modified relative to the original MATLAB versions. If these 

NNs are incorrectly computed, then no degree of accuracy or consistency can be expected 

from the FORTRAN-based PENS algorithm. In order to insure that the NN densities are 

correctly computed, the PENS algorithm and NN subroutines from both the FORTRAN 

and MATLAB versions are applied to the same trajectory. Figure 4.11 depicts the 

percentage difference between the MATLAB and FORTRAN ensemble densities over 

the length of the trajectory. Inspection of the figure reveals that the percentage 

differences in the computed ensemble densities are very small and within the numerical 

precision of the algorithms and the computational hardware.  
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Figure 4.11: Comparison of NN Density Computations Between the  

FORTRAN-based and MATLAB-based PENS algorithms  

 

Following computation of the ensemble densities, the PENS algorithm utilizes the 

differences between the measured atmospheric density and the on-board ensemble 

members to determine ensemble weights. Therefore, the next layer of PENS verification 

requires a comparison of the ensemble weights computed by both MATLAB and 
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FORTRAN. A comparison of the MATLAB-FORTRAN weight differences from the 

PENS estimator is presented in Figure 4.12 while the differences in the parameters of the 

historical estimators is given in Figure 4.13. The sharp spikes in the percent difference 

curves such as near 200 seconds in Figure 4.12 and near 550 seconds in Figure 4.13 are 

generated when the parameters in question approach zero. A small number close to zero 

appears in the denominator, generating the data spike in the percentage difference trend. 

The square-wave changes in Figure 4.12 are generated by changes in the ensemble 

weights. 
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Figure 4.12: Comparison of MATLAB & FORTAN PENS Estimator Parameters 

 

As an ensemble member becomes more trusted, its weight becomes a larger 

number and so too does the numerical imprecision associated with that larger weight. 

Notice, however, that all the percent difference curves in both plots remain quite small in 

magnitude. The maximum absolute error for all of the PENS parameters is 9x10
-10 

% and 

8.4x10
-8

 % for the historical estimator parameters. This suggests that the data from both 

sources agrees to within numerical precision. Thus, the FORTRAN and MATLAB PENS 

algorithms are, for all practical purposes, arriving at the same parameter estimates. 
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Figure 4.13: Comparison of MATLAB & FORTAN  

Historical Estimator Parameters 
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Figure 4.14: Comparison of MATLAB & FORTAN Computed Densities 

 

The last layer of PENS algorithm verification corresponds to the last major 

algorithmic phase of the PENS iteration cycle. Following computation of the estimator 

parameters, the algorithm assembles the parameters into density predictions which are 

then used by the inner loop of the guidance for path prediction and planning. The density 

predictions generated by the original MATLAB-based PENS algorithm were verified 
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both manually and by comparing the predicted density trends to the true density (e.g. 

Figure 3.20). In order to ensure that the new FORTRAN density computation process is 

correct and accurate, the predicted densities were compared to the analogous MATLAB-

computed densities at the current location of the vehicle. Figure 4.14 illustrates the 

density comparison between the MATLAB-based and FORTRAN-based PENS 

algorithm. Note that the percent density differences remain very small over the entire 

trajectory indicating that both algorithms produce the same results to within numerical 

precision.   

4.3.2  PENS-Augmented Guidance Validation 

 With the POST2 version of the PENS algorithm verified to be functioning as 

expected, validation of the NPC guidance system is now examined. The goal of this 

phase of testing is to prove that the performance of the NPC guidance scheme matches 

similar systems developed in the relevant literature on Mars aerocapture. Because, 

however, the PENS algorithm is designed to alter trajectory performance, the PENS 

algorithm is active, but the model parameters are never used by the inner guidance loop. 

This permits the full integrated system to be used for testing without defeating the 

purpose of validation. This approach also proves that the PENS operations do not 

adversely impact guidance in any indirect way (no interference between subroutines, data 

storage, etc). The only permissible channel for the PENS algorithm to impact the 

guidance is through transfer of the density model to the inner loop. Because this transfer 

does not take place for the validation tests, then the PENS-augmented guidance should 

behave in a manner which closely matches similar systems in the literature. 

 The validation demonstration attempts to replicate a Mars aerocapture trajectory 

computed by Powell and Braun
92

 using a similar NPC guidance system and earlier 

versions of both POST and MarsGRAM. The initial conditions, desired target orbit, 

vehicle characteristics, and atmosphere models for both the inner and outer loops are 
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matched to the Powell/Braun baseline. Because their atmosphere model is given in 

graphical form, minor differences between the trajectories exist owing to difficulties in 

interpreting the precise values of their nominal atmosphere model. However, despite this 

limitation, significant similarities between the trajectories produced by both systems are 

readily visible. More importantly, a high degree of similarity exists in the bank angle 

commands produced by both systems. This indicates that, while the atmosphere models 

may contain small differences, both systems produce similar commands in similar 

circumstances. Powell and Braun utilize three different atmosphere models (low, 

nominal, and high densities) and a lengthy attempt was made to match what was thought 

to represent the nominal atmosphere model in green in high-hand plot of Figure 4.15. The 

high and low density trends are created by Powell and Braun by finding the most extreme 

densities which bound all of the other density models produced by their older version of 

MarsGRAM. Attempts to utilize the low and high density models (blue and red curves in 

Figure 4.15 respectively) which are much simpler to reconstruct proved difficult. The 

extreme densities combined with the steep entry flight path angle to produce a sensitive 

system with very limited controllability margins in POST2.  

   
Figure 4.15: Atmosphere Models from Powell and Braun

92
(right) and 

Reconstructed Validation Atmospheres (left) 

It should be noted that their atmosphere is only a function of altitude, a common 

practice for the time. Utilizing a best-guess reconstruction of their nominal atmosphere, 

the altitude-vs-time histories (Figure 4.16) show excellent initial agreement. However, at 



131 

 

200 seconds just prior to periapsis, the differences in the atmosphere models begin to 

have cumulative effect and small differences between both trajectories develop. Note that 

shortly after periapsis, the NPC solution again approaches the Powell-Braun solution 

suggesting that low-altitude density differences are generating the disparity between the 

trajectories. A similar trend is discernable in the energy-vs-time histories from both 

guidance systems (Figure 4.17). A high degree of initial agreement gives way to larger 

differences at low altitudes. However, both guidance systems arrive at nearly identical 

exiting orbital energies indicating that the desired final state is reached by both systems. 

In fact, both guidance schemes reach the intended apoapsis altitude of 33,786 km during 

their respective atmospheric entries with extremely small residual errors (less than one 

kilometer each).   
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Figure 4.16: Comparison of NPC & Powell-Braun Altitude-vs-Time Histories 

 

The last and most significant point of validation is the comparison of the bank 

angle command histories from both systems in Figure 4.18. It is important to mention that 

the Powell-Braun bank angle convention is reversed with respect to the normal 

convention used herein (their convention uses 0° bank as full lift down). While the results 
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in Figure 4.18 are reported in this convention to match the results from Powell and 

Braun, this is the only location in this work where this convention is used. All other bank 

angles use the convention of 180° as full lift down and 0° as full lift up.  
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Figure 4.17: Comparison of NPC & Powell-Braun Energy-vs-Time Histories 
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Figure 4.18: Comparison of NPC & Powell-Braun Bank Angle Histories 
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  The commanded bank angle history is revealing because the goal of validation is 

to determine if both guidance systems make similar decisions in similar circumstances. 

Note that unlike the variables previously discussed, the Powell-Braun bank commands 

resulting from flight through the high and low density atmospheres are not available. 

Despite the differences in the atmosphere models, both systems make very similar 

guidance decisions. In fact, the nominal bank angle at entry interface for the NPC is -90°. 

Just prior to 200 seconds, the NPC guidance changes its bank to -106°, which exactly 

matches the bank commanded by the Powell-Braun guidance. Both systems execute very 

similar bank reversals near 270 seconds which occur only 7 seconds apart. Following the 

bank reversal, both systems hold similar constant bank angles as they exit the 

atmosphere. Thus, the NPC guidance is able to replicate the trajectory produced by a 

separate but similar guidance scheme for Mars aerocapture. 

4.3.3  Nominal Guided Trajectories 

With the PENS-augmented NPC guidance validated, the nominal guided 

trajectories are now produced and discussed. The EDLSA project, in examining the 

differences between low- and high-altitude orbits, found that low-altitude orbits generally 

require higher post-aerocapture ∆V but at a significantly reduced risk of aerocapture 

failure
87

. Conversely, it was also found that a high-altitude 1 Sol orbit requires, on 

average smaller post-aerocapture ∆V but the risk of failure, however, was notably 

elevated. (Recall that one Sol, or Martian day, is approximately 24 hours, 39 minutes.)  

These results match intuition because aerocapture trajectories targeting high-

altitude orbits must remove relatively small yet very precise quantities of energy from the 

orbit of the entry vehicle. In order to reach a 1 Sol apoapsis (which translates to roughly 

34,000 km), the velocity of the vehicle must remain high throughout the aerocapture 

entry. Any errors in the atmospheric density estimation can then easily result in a 

hyperbolic final state and aerocapture failure. The ability of the vehicle to successfully 
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meet the exacting final state requirements depends on the atmospheric perturbations and 

the manner in which the guidance compensates for these perturbations. However, because 

the orbital energy remains high, small changes in ∆V create large changes in orbital 

energy, making high-altitude orbits affordable. For aerocapture entries targeting low-

altitude orbits, the reverse trends are true. The aerocapture maneuver significantly 

reduces the orbital velocity of the vehicle which makes the risk of failure much less 

dependent on knowledge of the atmosphere. However, because the orbital velocities are 

lower, larger ∆V is required to create a given change in orbital energy.  

The PENS algorithm has the potential to positively affect each type of orbit. For 

high-altitude target orbits, more precise atmospheric knowledge and a high degree of 

adaptability in the density estimator may significantly reduce the associated failure risk. 

This would then make high-altitude target orbits both affordable and less risky. For low-

altitude target orbits, improved estimator accuracy and adaptability may permit more 

precise final state targeting which may lower the cost (i.e. ∆V) of these relatively safe yet 

expensive orbits.      

Both types of orbits are also architecturally useful. High altitude, 1 Sol orbits 

offer a degree of predictability because the period is equivalent to the Martian day. This 

orbit then not only simplifies timeline planning and phasing but also requires a relatively 

small ∆V to escape Mars orbit. Low-altitude orbits, on the other hand, are required for 

certain architectural elements such as landing vehicles or orbital scientific payloads. Such 

orbits can be tuned to provide good ground coverage for communication, observation, 

mission support or a myriad of other reasons.  

Because PENS may have a unique impact on both orbits and because both may 

have a high degree of architectural usefulness, both target orbits will be studied in the 

guided simulations. One nominal trajectory is created for each target orbit (Figure 4.19) 

and the orbit parameters and initial conditions for each are given in Table 4.3. Four of the 

six orbital parameters (apoapsis altitude, periapsis altitude, longitude of the ascending 
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node, and inclination) are controlled during the entry and targeted by post-aerocapture 

propulsive correction maneuvers. The remaining two orbital parameters, argument of 

periapsis and true anomaly are not targeted. The true anomaly describing the location of 

the vehicle in the target orbit largely depends on arrival time at entry interface which may 

be changed by altering the interplanetary transfer. The argument of periapsis describes 

the angular location of the periapsis vector in the orbital plane. Because the periapsis 

location is largely determined by the pre-planned entry interface location, this element is 

also not directly targeted. For more information about the post-aerocapture propulsive 

maneuvers used to reach the target orbit, see the introduction to Chapter 5.   

0 200 400 600 800
0

2000

4000

6000

8000

10000

12000

Time from Entry Interface [sec]

D
y
n

a
m

ic
 P

re
s
s
u
re

 [
N

/m
2
]

 

 

250 x 1400km

250km x 1Sol

0 200 400 600 800
-15

-10

-5

0

5

10

Time from Entry Interface [sec]

F
lig

h
t 

P
a

th
 A

n
g

le
 [

d
e

g
]

 

 

250 x 1400km

250km x 1Sol

0 200 400 600 800
3000

4000

5000

6000

7000

8000

Time from Entry Interface [sec]

R
e

la
ti
v
e
 V

e
lo

c
it
y 

[m
/s

]

 

 

250 x 1400km

250km x 1Sol

0 200 400 600 800
20

40

60

80

100

120

140

Time from Entry Interface [sec]

A
lt
it
u
d

e
 A

b
o

ve
 A

re
o

id
 [

k
m

]

 

 

250 x 1400km

250km x 1Sol

0 200 400 600 800
-200

-100

0

100

200

Time from Entry Interface [sec]

B
a

n
k 

A
n

g
le

 [
d
e

g
]

 

 

250 x 1400km

250km x 1Sol

0 1000 2000 3000 4000
20

40

60

80

100

120

140

Downrange from Entry Interface [km]

A
lt
it
u
d

e
 A

b
o

ve
 A

re
o

id
 [

k
m

]

 

 

250 x 1400km

250km x 1Sol

 
Figure 4.19: Nominal Guided Aerocapture Trajectories 
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The nominal trajectory resulting in a low-altitude orbit is similar to the original 

reference trajectory presented in Section 2.7. The major changes to this nominal 

trajectory relative to the original are due to the differences in the vehicle and the lateral 

bank reversal corridor. Recall that the vehicle was changed from a small capsule-shaped 

sample return vehicle to a larger ellipsled design useful for large robotic and human 

missions to enhance the applicability and extensibility of the study. In addition the bank 

reversal corridor was refined in order to better function with the NPC guidance. These 

changes resulted in altering the entry flight path angle from -9.67° to -10.27° below the 

local horizon. This permits the vehicle to attain the desired apoapsis with the longitudinal 

guidance deactivated.  

Table 4.3: Target Orbital Conditions & Initial State for Nominal Entries 

Target Orbital Conditions 

Low Orbit High Orbit 

Apoapsis [km] 1400 33793 

Periapsis [km] 250 250 

Longitude of the Ascending Node [deg] 67.5 67.5 

Inclination [deg] 90 90 

Argument of Periapsis [deg] N/A N/A 

True Anomaly [deg] varies varies 

Entry Interface State 

Low Orbit High Orbit 

Initial Altitude [km] 128 128 

Inertial Entry Velocity [km/s] 5.9 7.36 

Inertial Entry Flight Path Angle [deg] -10.27 -11.33 

Nominal Bank Magnitude [deg] 90 90 

Initial Geocentric Latitude [deg] 70.0 S 70.0 S 

Initial Longitude [deg] 67.5 E 67.5 E 

Inspection of Figure 4.19 reveals an important difference between both 

trajectories, namely the longevity of the trajectories in the atmosphere. The trajectory 

targeting the high-altitude orbit enters the atmosphere over a kilometer per second faster 

than the trajectory producing the low-altitude orbit. The faster entry requires a steeper 

entry angle which penetrates to a lower altitude and then rapidly exits the atmosphere 
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once capture is assured. This steep entry is required to prevent the vehicle from quickly 

transiting through the atmosphere before sufficient drag losses accrue (i.e. skip-out). 

Once at low altitude deceleration occurs more rapidly for a vehicle at higher speeds 

because drag losses are generally proportional to the square of velocity. The vehicle must 

then rapidly exit the atmosphere before the high densities at low altitude remove too 

much energy and prevent achievement of the target orbit. The trajectory associated with 

the low-altitude orbit, however, is traveling at much slower speeds and is therefore 

required to linger at lower altitudes for a much longer time (nearly twice as long) and 

over a much longer downrange distance.  

The differences in the distances and durations of these entries may become 

significant because it may impact the amount of learning that the PENS algorithm can 

accomplish in the entry. Shorter atmospheric exposure times and distances may translate 

to a lower level of associative learning because PENS is given less information from 

which general trends can be extracted. However, note that the trajectory resulting in the 

high-altitude target orbit has a larger exiting flight path angle. This permits the vehicle to 

transit the highly variable upper atmosphere quickly which will reduce the impact of the 

larger density perturbations typically found at high Martian altitudes. Thus, even though 

the high-altitude trajectory provides the PENS algorithm with less atmospheric exposure, 

the fast ascent may compensate for the decrease in available knowledge. 

Both nominal trajectories are devoid of any atmospheric perturbations or variable 

dispersions such as those presented in Table 4.2 and both are produced using the KPENS 

density estimator in the inner guidance loop. The PENS/KPENS estimator parameters are 

presented in Figure 4.20 and illustrate that learning limitations due to limited atmospheric 

exposure may exist. Note that the trajectory resulting in the high-altitude target orbit 

(bottom row in the figure) follows very similar ensemble weight trends as the low-

altitude trajectory, particularly in the first 100 seconds. However, after this time, 

differences in the ensemble weights begin to develop.    
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Note how the ensemble echo in the high-altitude trajectory maintains higher 

weight on the Warm ensemble member relative to the low-altitude trajectory (i.e. in 

Figure 4.20, compare the light blue curves in the right-hand plots of both the top row and 

bottom rows). The same is true of several other ensemble members, especially after 100 

seconds. Because all associative learning is due to the ensemble echo, these differences in 

the echo weights between both trajectories indicate that different associate learning 

processes are occurring. This, in turn, supports the notion that a faster trajectory may 

reduce the total amount of knowledge available to the PENS algorithm for learning. 

However, by 100 seconds, both trajectories are traveling in markedly different spatial 

regions of the atmosphere. Therefore, both vehicles are encountering different density 

trends which could also easily account for the changes observed in the associative 

learning processes. Further work will be presented in Chapter 5 when more data is 

available for statistical analyses.  

Overall, both nominal guided trajectories attain adequate terminal performance. 

The low-altitude trajectory achieves an apoapsis error of 199 km over the target of 1400 

km requiring a total ∆V of 72.4 m/s to correct to the desired target orbit (for complete 

description of post-aerocapture maneuvers, see the introduction to Chapter 5). The high-

altitude trajectory achieves a much larger error of 7008 km above the target of 33,793 km 

but requires only 46.7 m/s to correct the orbit.    

4.4  Atmospheric Dispersions & Perturbation Scheme 

To increase the level of difficulty of the density prediction problem, perturbations 

are applied to the underlying density models provided by the MarsGRAM atmospheric 

simulation. MarsGRAM is prepackaged with its own set of density perturbations but, as 

will be shown, these do not always exhibit strong agreement with aerobraking 

observations. The proposed scheme combines several classes of perturbations which have 

been drawn from the relevant literature concerning the Martian atmosphere. This scheme 
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produces perturbed density trends which exhibit good formal agreement with density 

signals observed during aerobraking missions. In order to more fully agree with both 

observational data and theoretical predictions, these perturbations are then scaled to 

permit the perturbation magnitudes to grow exponentially with altitude.    

4.4.1  Perturbation Magnitudes & Amplification with Altitude 

Before describing the nature of the perturbations in detail, it is necessary to 

consider appropriate perturbation magnitudes. This question is critical because 

unjustifiably small perturbations will not stress the guidance system and will unfairly 

represent the variability of the true Martian atmosphere. Unjustifiably large perturbations 

will generate unrealistically pessimistic failure rates and lead to vehicle over-design. 

Fortunately, useful conclusions may be derived from density observations which have 

been recorded during aerobraking missions. Aerobraking missions consist of a series of 

high-altitude entries which gradually change the vehicle’s orbit over time. Aerobraking 

periapsis altitudes are, therefore, generally much higher than aerocapture periapsis 

altitudes occurring near 90-100 km rather than 40-50 km for aerocapture. Despite this 

fact, aerocapture missions must transit higher altitude regions on the inbound and 

outbound legs of the trajectory. Therefore, knowledge of the density perturbation 

magnitudes in this region is quite useful. Three aerobraking missions have been 

successfully executed at Mars to date: Mars Global Surveyor (MGS) in 1997, Mars 

Odyssey in 2001, and Mars Reconnaissance Orbiter (MRO) in 2006
38

. Tolson et al. have 

examined every aerobraking orbit from all three missions and have extracted information 

concerning the nature and strength of the density perturbations
38

. Over a given orbit, the 

perturbed density signal is compared with a filtered/smoothed version of itself. The 39-

second running mean is used to determine an average density to which the original noisy 

signal is compared (Figure 4.21, top of figure). The difference between the two signals 
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(bottom of Figure 4.21) permits a standard deviation of the density perturbations to be 

obtained which in this case is 0.12 or 12%.   

 

Figure 4.21: Extracting Perturbation Magnitude 

Information From Odyssey Periapsis 199
38

 

 

Repeating this procedure over all available orbits produces a series of standard 

deviations which offers valuable insight into the density perturbation magnitudes which 

occur in high-altitude Martian orbits. Figure 4.22 displays these standard deviations as a 

function of periapsis latitude.  

The strongest perturbations are seen early in the Odyssey and MGS aerobraking 

missions, labeled O1 and G1 respectively in the figure. Note that both of these points are 

near 60° North latitude which is over the winter mid-latitude jet, a high speed current 

analogous to the terrestrial jet stream. Fritts et al. have attributed the increase in 

variability in this region to the mid-latitude jet, theorizing that the jet permits small scale 

fluctuations to propagate to high altitude
2,13

. In order to develop realistic yet stressful 

atmospheric variations, the worst case density perturbations will be used. The worst case 

observed density perturbations occur during the Odyssey mission near 70° North latitude 
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and produce a standard deviation σ = 0.17 or 17%. Assuming that the density 

perturbations are normally distributed about the mean density, conventional design 

practice suggests that the 6σ perturbation magnitude, or approximately 100%, should be 

used for design. While stressful, this perturbation level is well within the variability 

captured by the neural ensemble, indicating that the PENS algorithm should be capable of 

functioning in this highly perturbed environment.  

 

 

Figure 4.22: Standard Deviations of Observed Density Perturbations  

Over All Available Aerobraking Missions
38 

 

Utilizing the “6σ” worst case may seem overly conservative in some design 

contexts. However, this level of perturbations is likely to not represent the true 6σ 

perturbations in the Martian atmosphere. It should be noted that this observed worst case 

perturbation magnitude is derived from the spatially and temporally limited aerobraking 

data set. Given the highly variable nature of the Martian atmosphere, stronger 

perturbation magnitudes may very well exist, dependent upon the time, season, and 

location of the entry. Utilizing the known worst case provides stressful realism without 

exceeding justifiable perturbation limits.   

In addition, it should be noted that the ±100% perturbation magnitudes derived 

from aerobraking standard deviations are based on the deviation of the 1-second density 
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trend from the mean density signal computed with a 39-second running average. As 

Figure 4.23 demonstrates, the 39-second mean atmosphere (bold dashed line) may also 

exhibit significant variations from theoretical models. The mean density trends in 

MarsGRAM, however, are generally symmetric about periapsis and do not exhibit such 

extreme variations. Because the proposed perturbation scheme is based on mean 

MarsGRAM models, utilizing large perturbation magnitudes will permit the generation of 

non-symmetric density signals with a high degree of formal similarity to observed 

aerobraking density trends.  

 

Figure 4.23: Odyssey Density Estimates at 1-Second Intervals (Thin Line) 

Compared with the 39-Second Running Mean (Bold Dashed Line)
121

 

 

Tolson et al. state that small-scale density variations, such as those observed 

during a typical aerobraking entry, have generally been attributed to gravity wave activity 

propagating up to high altitudes. Tolson et al. conclude that “Almost every AB 

[Aerobraking] pass confirms those suggestions.” An atmospheric gravity wave occurs 
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when a fluid parcel is forced out of stratified equilibrium by some perturbing force such 

as wind forcing an air mass over terrain features (typically referred to as orographic lift). 

The fluid parcel then moves vertically back toward its natural equilibrium altitude. 

However, due to its vertical momentum the fluid parcel overshoots the equilibrium 

location and then proceeds to oscillate towards equilibrium in similar fashion to a 

classical spring-mass-damper system. Attributing small-scale density perturbations to 

gravity waves is important as it impacts how the magnitude of the perturbations should 

vary with altitude. As Creasy et al. note, gravity waves grow exponentially with height; 

this permits small-amplitude disturbances near the surface to have profound effects at 

altitude.
122

 In examining aerobraking data, they suggest that gravity wave sources other 

than terrain forcing (e.g. near-surface thermal contrasts, wind shear, convection, etc.) 

play a significant role. Similarly, recent versions of the MarsGRAM density perturbation 

scheme are also based on terrain-independent gravity wave models
123

. Prior versions of 

MarsGRAM utilized terrain-influenced gravity wave models but Justus and James
123

 

concluded that these models produced perturbation magnitudes which appear to change 

too rapidly in response to changes in local topography and temperature gradients. They 

now favor a simplified approach for varying the magnitude of the density perturbations 

with altitude; the standard deviation σD of the perturbation magnitudes may be expressed 

as 

]40/)100exp[()25(01.0 −+= zzsDσ                                    (4.10) 

where zS is the local topographic surface height and z is the altitude. Note that while this 

model is simpler than most terrain-influenced gravity wave models, it is still dependent 

on local terrain height. An even simpler approach which is fully independent of terrain 

relief is adopted here. The variation of the exponential term of Equation 4.10 with 

altitude is depicted as the blue line in Figure 4.24. Note that the magnitude of this term at 

100 km, a typical aerobraking periapsis altitude, is unity. Because the proposed density 

perturbation scheme is based on aerobraking observations, the exponential term of 
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Equation 4.10 may be used to scale the density perturbation magnitudes with altitude 

while maintaining agreement with aerobraking observations. Thus, the growth of the 

perturbation magnitudes with altitude is consistent with the growth rate utilized in 

MarsGRAM while remaining independent of terrain relief as suggested by the relevant 

literature.  

 

Figure 4.24: Growth of Density Perturbation Magnitudes with Altitude 

Note that in raw form this equation would rescale the density perturbations near 

50 km (a typical aerocapture periapsis altitude) to roughly one quarter of their value at 

100 km. In the absence of significant density observations in the middle regions of the 

Martian atmosphere, reducing the perturbation magnitudes to small fractions of their 

observed values seems unjustified. Atmospheric phenomena other than gravity waves 

such as migrating and non-migrating tides, baroclinic instabilities, and atmospheric jets 

may play larger roles in the generation of density perturbations at these intermediate 

altitudes. For this reason, the perturbation magnitude multiplier will be limited to the 

interval [1,2] (i.e. the red line in Figure 4.24). This perturbation scheme is advantageous 

as it captures the exponential growth of the density perturbations with altitude but does 

not permit unjustifiably large or small perturbations to be created. Because the 

perturbations are based on a percentage deviation from the mean atmosphere, this scheme 
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also prevents the perturbations from becoming unjustifiably small as the mean density 

exponentially decays with altitude. 

4.4.2  Perturbation Classes 

In addition to perturbation magnitude, it is also necessary to prescribe the various 

classes of Martian density perturbations. Contemporary literature sources point to three 

major types of atmospheric density perturbations, namely; potholes
18-23

, shears/biases
11,18

, 

and random noise
2,36-39,44

. Recall from Section 1.2 that potholes are large magnitude 

density perturbations which have a finite length/duration (i.e. they have a definite 

beginning and end). The density inside the pothole is typically much higher or lower than 

the outside density and the boundaries of the pothole are typically sharp. Figure 4.25.a 

demonstrates an ideal simulated pothole while Figure 4.25.b-c demonstrates observed 

pothole phenomena (centered at 20 seconds and -10 seconds respectively) observed 

during Odyssey aerobraking operations.
38

 By inspection, it is clear that the simulated 

ideal pothole is very different from the observed phenomena. Shortly, all three 

perturbation types will be combined in the same density signal and the result will be 

filtered to produce composite signals with high qualitative agreement to observations. 

However, first, the three perturbation types are introduced in isolation for demonstration 

purposes.  

The second perturbation type, density shears, are similar to potholes in that they 

typically produce well-defined and large density changes. Often in the literature, shears 

are highly random phenomena which may occur multiple times with varying 

magnitudes
11,18

. However, because purely random perturbations are handled separately, 

shears will be defined here as single one-sided positive or negative changes in density. A 

simulated ideal density shear is plotted in Figure 4.26.a while a strong positive density 

shear observed during Odyssey aerobraking is visible in Figure 4.26.b near -15 seconds
38

. 
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A second strong positive density shear observed during MGS aerobraking is visible in 

Figure 4.26.c near zero seconds (i.e. at periapsis)
36

.    
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(a.)                                                      (b.) 

 
(c.) 

Figure 4.25: Examples of Pothole Density Perturbations: 

(a.) Simulated Negative Pothole, (b.) Odyssey Periapsis 280
38

,  

(c.) Odyssey Periapsis 199
38 

 

The final type of density perturbations utilized herein is classic random noise. 

This noise signal is generated using a random number generator (i.e. uniformly 

distributed white noise) and is applied at every point in the density model. Figure 4.27.a 

is an example of high-magnitude pure random noise which will eventually become a 

perturbation component in the final density models. High magnitude noise such as this, 

taken in isolation, is physically unjustifiable based on observations in the Martian 

atmosphere (see Figure 4.27.b). However, when time-averaged filtering is applied, 

significant noise attenuation occurs. 



148 

 

 

0 200 400 600 800 1000
0

1

2

3

4
x 10

-4

Time After Entry Interface [sec]

D
e

n
s
ity

 [
k
g
/m

3
]

 
(a.)                                                    (b.) 

 
(c.) 

Figure 4.26: Examples of Shear Density Perturbations: 

(a.) Simulated Positive Shear, (b.) Odyssey Periapsis 155
38

, (c.) MGS Periapsis 41
36
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(a.)                                                    (b.) 

Figure 4.27: Examples of Random Density Perturbations 

(a.) Simulated High-Magnitude Noise, (b.) Odyssey Periapsis 76
39

  

 

Note that the mean density trend produced by MarsGRAM is a spatially resolved 

density field. In order to avoid the computational penalty required to generate a spatially 

resolved perturbation field, a perturbation vector of length 10,000 is created with each 
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entry initially set to unity. This vector will be used to store density perturbation 

multipliers. The perturbed density along the vehicle’s trajectory is produced by 

multiplying the mean density at the vehicle’s current location (from MarsGRAM) with a 

corresponding entry in the perturbation vector. At entry interface, the first element of the 

perturbation vector is used. Once the vehicle is three kilometers downrange of the entry 

point, the vector index is incremented by one and the second element of the perturbation 

vector is now used. This pattern repeats such that each element of the perturbation vector 

is utilized for three kilometers of downrange flight. Because the perturbation vector has 

10,000 elements, it remains valid for roughly 30,000 km of downrange travel. This 

exceeds the circumference of the planet, ensuring that valid density perturbations will 

persist over the entire endo-atmospheric trajectory.  

This approach ensures that the perturbations are fixed with respect to the Martian 

surface which is appropriate over the short duration of an average aerocapture entry. The 

foregoing method also assumes that the perturbations are only a function of the 

downrange distance from the entry point. This assumption is not limiting, however, 

because the typical cross-ranges traversed in the aerocapture trajectories herein are much 

less than the total downrange distances traveled (on the order of 150-200 km as opposed 

to 5000 km or more respectively).    

 To create the perturbation vector, each of the three perturbation classes is 

sequentially applied to the vector starting with the pothole component. Random pothole 

starting and ending locations from 1 to 10,000 are selected and a random perturbation 

magnitude on the interval [-100%, 100%] is chosen. For example, suppose the random 

starting and ending locations are 3000 and 4000 respectively and that a magnitude of -

60% is chosen. In this case, the pothole will persist for 1000 entries in the perturbation 

vector and each element from index 3000 to 4000 in the vector is multiplied by 0.4 

(because a 60% reduction in density is the same as multiplying the mean density by 0.4).  
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The shear and random noise components are added in a similar manner to the 

pothole component and the resulting density perturbation vector is filtered using the 39-

point running average described above. As discussed, applying a running average filter is 

a common technique in aerobraking literature used to improve the signal/noise ratio of 

the density trend (see Figure 4.23, Figure 4.25.c, and Figure 4.27.b). It has been found 

that applying such a filter to the density model produces better qualitative agreement with 

observed aerobraking density trends.   
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                      (a.)                                           (b.)                                          (c.) 

 
                        (d.)                                           (e.)                                          (f.) 

Figure 4.28: Composite Aerocapture Density Perturbations (a-c)          

Compared with Aerobraking Observations (d-f) 

 

The results of noise component superposition and filtering on a smooth density 

signal may be seen in Figure 4.28 where several perturbed density models are compared 

with aerobraking observations. Note that the aerocapture trajectories are not symmetric 

about periapsis (which occurs at 200 seconds) like an aerobraking trajectory due to the 

significantly higher velocity changes which occur over an aerocapture. Comparing Figure 

4.28.a with Figure 4.28.d reveals that both density signals contain large shears associated 

with lower levels of background noise. In Figure 4.28.b, large magnitude density potholes 
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develop in the high density region near periapsis. Comparing this to the observed density 

trend in Figure 4.28.e reveals that such perturbations are indeed possible in the Martian 

atmosphere. Finally, comparing Figure 4.28.c with Figure 4.28.f demonstrates that this 

perturbation technique is also capable of producing noisy density signals with smaller 

intermixed shears and potholes just as in the true Martian mesosphere. Note that the 

perturbation wavelengths in the simulated signals are somewhat smaller on average than 

the associated aerobraking wavelengths. This is appropriate because aerocapture entries 

occur at higher speeds than aerobraking entries which compresses the perturbations when 

viewed on a time-relative plot. 

In summary, the density signals used for estimator testing are generated by 

superimposing three perturbation classes on the mean density field produced by 

MarsGRAM. The three types of perturbations, taken from the literature, are applied over 

the underlying trend and are filtered to produce qualitative consistency with aerobraking 

observations. This permits stressful testing scenarios to be developed while ensuring that 

the real-world atmosphere simulated by MarsGRAM is fully independent of the on-board 

ensemble developed using the Mars Climate Database. 

4.4.3  Comparison to MarsGRAM Perturbations 

 Various versions of MarsGRAM have been utilized in many Mars aerobraking 

studies
6,87,89,91,92,97-99

 to examine aerocapture vehicles and system requirements. As 

Cianciolo
98

 et al. notes, MarsGRAM has become “a standard accepted throughout the 

field” and is therefore widely trusted. The well-deserved reputation of MarsGRAM led 

directly to its use as the “real-world” simulated atmosphere herein. However, as 

discussed in Section 4.4.1, the perturbation simulator in MarsGRAM has itself undergone 

significant revisions in recent releases as the communal understanding of the Martian 

atmosphere evolves. In order to highlight the qualitative changes produced by the 

perturbation scheme developed in Section 4.4.1-2, it is useful to compare the new 
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perturbations with those generated by MarsGRAM. Figure 4.29 depicts the differences 

between the standard and literature-derived perturbation schemes. The upper left plot 

displays the smooth, unperturbed density trend along the entry corridor for a randomly 

selected NPC-guided trajectory. As discussed in Section 4.2.2, the mean MarsGRAM 

density field is perturbed by varying two of the major atmospheric drivers; the amount of 

dust suspended in the atmosphere and the solar flux incident on the thermosphere. The 

standard MarsGRAM perturbation model when applied to this mean atmosphere 

produces the green density signal in the lower left of the figure. The new literature-

derived perturbation model is applied to the same mean trend to produce the red density 

signal in the upper right of the figure.   
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Figure 4.29: Comparison of Literature-Derived Density Perturbations to 

MarsGRAM Density Perturbations 
 

The lower right plot in the figure offers a composite view which overlays all of the 

density signals in the critical periapsis region. Note that the choice of the density model 

does impact the trajectory as is evidenced by slight differences in the simulation ending 
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times. Also note the differences in both form and magnitude between both perturbation 

schemes. It may be clearly seen by inspection that the MarsGRAM signal has a relatively 

high degree of white noise content. Purely random, high frequency density perturbations 

in which the positive and negative noise components are in balance (i.e. white noise) 

offers little difficulty for many entry guidance algorithms. This is due to the fact that the 

differential momentum change imparted by the perturbations remains small in magnitude. 

Consider the difference between an entry vehicle encountering a short-duration 

perturbation (say a 2 second pulse of +50% magnitude) and a much longer perturbation 

(say a 2 minute pulse of the same magnitude). The change in momentum from the first 

short pulse will be significantly less than the second. Now consider an entire train of 

white noise density pulses all of short duration and small magnitude. The positive and 

negative momentum differences begin to have a self-cancellation effect and the entry 

vehicle is largely unaffected. The situation is not unlike a terrestrial wheeled vehicle 

running over small imperfections in a roadway surface at high speed. Each imperfection 

in the road has negligible effect and the result is a relatively smooth ride. Just as in the 

wheeled vehicle analogy, this situation changes, as the magnitudes and durations of the 

perturbations become larger. For guided aerocapture entries, the guidance system must 

continually correct for the momentum errors generated by these perturbations which may 

stress the guidance into one of the failure modes discussed in Section 1.3 in extreme 

cases. Even if a failure mode is not entered, these perturbations eventually impact the 

final apoapsis altitude due to the momentum error imparted over the trajectory. For 

example, the trajectory using the standard MarsGRAM perturbations achieved an 

apoapsis altitude which is only 19.7 km different from the smooth/unperturbed trajectory 

while the trajectory using the literature-derived perturbations is 88.9 km from the 

unperturbed apoapsis. Given that the literature-derived scheme is in agreement with 

observed density perturbations, the standard perturbation scheme used in MarsGRAM 

may be optimistically small. If this is the case, then these perturbations may not replicate 
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stressful test cases which are most useful for mission/vehicle design and guidance testing. 

As just demonstrated, the standard perturbations may lead to optimistic designs which are 

not equipped to survive severe fluctuations present in the Martian atmosphere. This new 

perturbation scheme, therefore, is designed to offer stressfully realistic density signals in 

order to evaluate the ability of the PENS algorithm to reduce atmospheric uncertainty and 

improve aerocapture performance.   
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CHAPTER 5 

GUIDED TRAJECTORY SIMULATIONS 

 The performance of the PENS-augmented NPC guidance developed and validated 

in the previous chapter is now examined in detail. Trajectory Monte Carlo simulations 

which comprise Phase III of the PENS analysis cycle (recall the discussion on the PENS 

analysis phases in Section 3.3) were conducted on the 200 node i4 Linux cluster located 

at the NASA Langley Research Center. Over 144,000 aerocapture trajectories have been 

simulated under a variety of experimental conditions. This large sample size provides a 

sufficient degree of statistical evidence in order to derive estimated failure rates for all of 

the density estimators under study, both novel and contemporary.  

 

Figure 5.1: Post-Aerocapture In-Space Propulsive Maneuvers to Achieve Target Orbit  

Following each atmospheric entry, all the successful cases execute a series of in-

space propulsive maneuvers (Figure 5.1) designed to remove any remaining residual 

errors between the post-aerocapture orbit and the target orbit. These maneuvers may or 
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may not be autonomous depending on the exact nature of the mission requirements. The 

three maneuvers proposed herein may also be decomposed into smaller maneuvers after 

Earth contact has been made and detailed orbit determination conducted. Note, however, 

that the three proposed maneuvers taken together provide an estimate of the total ∆V 

necessary to reach a desired target orbit from an immediate post-aerocapture orbit.  

The standard POST2 orbital ∆V computation routine is used to create a three-burn 

correction strategy which begins as the vehicle reaches apoapsis following atmospheric 

exit. Upon reaching apoapsis, POST2 executes a Periapsis Raise Maneuver (PRM) in the 

direction of motion (counter clockwise in Figure 5.1) which elevates the periapsis point 

to 250 km, well above the sensible atmosphere. The vehicle then executes a coast phase 

to this new periapsis altitude and performs the Apoapsis Lower/Raise Maneuver (ALRM) 

to correct the achieved apoapsis to the desired target apoapsis. This maneuver may either 

be in the direction of motion if the achieved apoapsis is smaller than the target or 

opposite the direction of motion if the achieved apoapsis is larger. At this point, the only 

remaining errors correspond to a misalignment of the current orbital plane with the target 

orbit. Another coast phase follows until the vehicle reaches the nearest node crossing at 

the point where the current and target orbits intersect. At the node, the final burn called 

the Plane Change Maneuver (PCM) occurs to place the vehicle into the proper orbit. This 

approach permits four of the six orbital elements to be successfully targeted as discussed 

in Section 4.3.3. 

POST2 uses analytical two-body orbital mechanics to compute the required ∆V 

for each maneuver. The ∆V for each of the three maneuvers is then summed to determine 

the required post-aerocapture ∆Vtotal;  

∆Vtotal = ∆VPRM + ∆VALRM + ∆VPCM                                                      (5.1) 

 In addition to the computation of the total ∆V, all of the cases are screened to flag 

any failures that may have occurred. These cases are then used to define the aerocapture 

failure rate λ;  
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λ = (# of failed cases)/(# total cases)                                  (5.2) 

The aerocapture failures defined here are divided into two general categories; hard and 

soft failures. Hard failures are those from which the entry vehicle cannot reasonably 

recover even with the expenditure of very large ∆V. The hard failures for which the 

trajectory cases are screened include three specific failure types;  

1.) Crashes: The vehicle impacts the surface of the planet while completing the entry. 

2.) Impending Crashes (rare): The vehicle never re-achieves the entry interface 

altitude of 128 km. Without the ability to exit the atmosphere, a crash will occur 

within a very short period without the expenditure of inordinately large ∆V which 

an aerocapture vehicle is unlikely to carry. 

3.) Skip-Out: The vehicle is unable to remain in the atmosphere for sufficient time to 

reduce its velocity below escape speed.     

Unlike hard failures, soft failures occur when larger yet reasonable expenditures of ∆V 

are required to achieve the target orbit. All soft failures achieve a stable post-aerocapture 

orbit but the achieved orbit is markedly different from the target orbit.    

5.1  Impact of Aerobraking-Derived Density Perturbations 

The first series of trajectory simulations are dedicated to examining the impact of 

the newly proposed density perturbation scheme on aerocapture guidance and 

performance. Recall that the goal of these new perturbations was to utilize literature-

derived perturbation components (potholes, shears, and biases) to create perturbed 

atmospheres which qualitatively agree with Mars aerobraking density observations. The 

relevant literature suggests that strong pothole and shear perturbations may cause 

significant guidance faults and failures to occur (see Sections 1.2-3). Therefore, it is 

expected that these perturbations will cause an increase in the average ∆Vtotal required for 

orbit correction and an increase in the number of failure cases. It is further theorized that 

the PENS algorithm, using a more accurate and more flexible underlying density 
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prediction model, will be able to better compensate for these perturbations than 

traditional methods. Figure 5.2 displays the performance of the HYPAS guidance 

system
10

 which employs an analytical predictor-corrector scheme for final state targeting. 

The data presented in this figure was drawn from a study
99

 of aerocapture performance 

for inflatable decelerators with low ballistic coefficients and low L/D.  

 
Figure 5.2: HYPAS Aerobraking Performance Using  

Standard MarsGRAM Perturbations
99

 

 

In order to evaluate the impact of the literature-derived perturbation scheme, an 

analogous simulation was performed using the NPC guidance scheme developed herein. 

First, a control experiment was conducted. The results of this simulation (Figure 5.3) 

were obtained using the standard MarsGRAM perturbation model in order to evaluate the 

differences between the HYPAS and NPC guidance results. Note that the orbit dispersion 

plots on the left-hand sides of Figures 5.2 and 5.3 depict the immediate post-aerocapture 

orbit state, not the orbit state once the corrective ∆V is applied. 

The ρK-EXP density model described by Equation 3.16 is used in the NPC guidance 

inner loop rather that the PENS estimator. Because HYPAS uses the same ρK-EXP density 

estimator, this approach permits the NPC scheme to approximate the performance of 

HYPAS. In addition to the guidance atmosphere model, both simulations utilize the same 

target orbit (250 km x 1Sol), a similar corrective ∆V strategy, and nearly identical 

atmospheric dispersions. The HYPAS results in Figure 5.2 contain data for two different 
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entry flight path angle dispersion ranges; ±0.25° and ±0.35°. Because the entry flight path 

angle dispersions used for NPC simulations (from Table 4.2) are ±0.25°, the data 

presented in red in Figure 5.2 are most analogous to the data in Figure 5.3. The primary 

differences in the two data sets stem from differences in the vehicle characteristics and 

the number of dispersed variables. Due to its low L/D, the vehicle used in the HYPAS 

study has less control authority and is therefore more affected by variable dispersions. 

However, the HYPAS study employed only five dispersed variables as opposed to the 

nineteen variables dispersed herein.  
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Figure 5.3: Analogous NPC Aerobraking Performance Using 

Standard MarsGRAM Perturbations 

Despite the differences in the vehicle characteristics and number of dispersed 

variables, some similarity may be seen in an analogous Monte Carlo data conducted 

using the NPC guidance scheme. Both simulations have similar mean ∆Vs and both 

achieve the desired target apoapsis of 33793 km with relatively small errors. The NPC 

guidance scheme produces very well contained post-aerocapture orbits due to the 

accuracy of the numerical inner loop. This observation matches the expectation from the 

literature (recall Sections 4.1-4.2 and the discussion of the PredGuid NPC guidance used 

to enhance the landing accuracy of Orion). The HYPAS guidance, using approximated 

equations of motion and a lower L/D vehicle, produces larger apoapsis and periapsis 
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dispersions which directly translate into more ∆V outliers. However, despite these 

differences, the HYPAS and NPC mean ∆Vs and orbit characteristics are relatively 

similar using the standard MarsGRAM perturbations. The same NPC simulation is 

repeated, only now the literature-derived density perturbations are utilized (Figure 5.4) 

instead of the MarsGRAM perturbation model. The maximum observed ∆V increases 

dramatically up to 1163 m/s. While this increase is quite large, it should be noted that 

only 7% of these new cases have a ∆V greater than the maximum ∆V associated with the 

original HYPAS data which use the standard MarsGRAM perturbations. Recall that the 

literature-derived perturbation model exhibits a high degree of qualitative similarity to in 

situ density measurements taken during Mars aerobraking missions (see Section 4.5). The 

perturbation magnitudes utilized in this simulation, while large, correspond to the 

observed 6σ density perturbations. Given the prevalence of extreme density variations 

directly observed in the Martian atmosphere, use of severe yet realistic perturbations as 

design cases should be given serious consideration. Because PENS was designed to 

prevent guidance failure under highly perturbed conditions, the algorithm should be 

tested in harsh environments. The goal of the literature-derived perturbation scheme 

introduced here is to produce such an environment until additional measured data on the 

Martian middle atmosphere is available. 

The results discussed above still utilize the ρK-EXP density model, a common 

conventional density estimator. The same simulation is once again repeated and now the 

ρK-EXP model in the inner loop is replaced with the PENS estimator. As may be seen in 

Figure 5.5, the PENS estimator produces noticeable improvements in the performance of 

the NPC guidance scheme. The PENS algorithm generates a 69% decrease in the 

maximum ∆V to 359 m/s, the maximum apoapsis error decreases by 63%, and the range 

of periapsis altitudes also decreases by 18%. Thus, the associative learning process and 

improved underlying atmospheric physics have their intended effect of reducing large 

final state errors. Furthermore, the hard failure rate for the NPC guidance using the ρK-EXP 
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model was 5.5% but the PENS-augmented NPC guidance produced a lower hard failure 

rate of 3.8% for the above simulation. Therefore, in addition to improving terminal 

performance, the PENS algorithm also reduces the frequency of prevalent guidance 

failure modes leading to irrecoverable trajectory states.    
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Figure 5.4: NPC Aerobraking Performance Using 

Literature-Derived Perturbations 
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 Now that the basic premise of the PENS algorithm seems to show promise, it is 

useful to find a method for compactly presenting the information given in the foregoing 

discussion. Aerocapture is a useful systems-level tool because it can reduce the ∆V 

required to insert a vehicle into an orbit about a planetary body with an atmosphere. This, 

in turn, often has beneficial effects on other elements in a mission architecture. For 

example, a reduction in the ∆V required aboard a Mars-bound vehicle may permit the use 

of a smaller and more affordable Earth launch vehicle. Because the benefits of 

aerocapture are often realized at the systems level, it is important to examine the impact 

of aerocapture enhancement technologies from a system level perspective. How, then, 

can the system level benefits of an aerocapture enhancement technique be measured in 

general, independent of the assumptions or requirements of a specific mission 

architecture? This question may be approached by examining the basic functional 

requirement of aerocapture. That is, any given aerocapture trajectory must safely deliver 

its payload to the intended target orbit. The functional decomposition of this requirement 

then follows naturally. The successful aerocapture trajectory must: 

1.) Be Safe: The likelihood of hard and soft failures must be minimized such that the 

vehicle will successfully complete the entry and exit the atmosphere. 

2.) Reach the Intended Target Orbit: The on-board ∆V budget must be sufficient to 

place the vehicle in the precise target orbit otherwise vehicle/crew safety and 

mission objectives may be compromised. 

These sub-functions may then be readily translated into measurable metrics. The first 

sub-function, safety, is most readily measured by the probability of failure of the 

aerocapture (i.e. the total failure rate, λ). The second sub-function is best measured by 

comparing the required ∆V to the available ∆V aboard the vehicle (i.e. the ∆V budget). 

Effective aerocapture enhancing technologies are those which reduce the required ∆V 

budget without significantly raising the failure rate. That is, the systems-level cost of 

aerocapture (the required ∆V budget) is reduced at an equivalent or smaller level of risk 
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(the failure rate, λ). This notion of comparing cost and risk for aerocapture is appropriate 

because aerocapture reduces the operational cost (i.e. ∆V) of orbit insertion by relying on 

a randomly varying planetary atmosphere which increases operational risk.  

Note that other aerocapture cost sources exist (e.g. the mass of the thermal 

protection needed for entry, etc) and so too do other risk sources (e.g. payload damage 

due to thermal soak-back, etc). The nature of these other risk and cost sources, however, 

is often architecture specific. In addition, if the ∆V budget and failure rate, λ are not kept 

reasonably small, then the use of aerocapture in a given architecture is contraindicated 

making the other cost and risk sources moot. Thus, the failure rate λ and the ∆V budget 

are two primal variables for examining aerocapture cost and risk. We therefore seek a 

means to map the cost, or ∆V, of an aerocapture to its associated level of risk, or failure 

rate λ.   

 
Figure 5.6: Construction of the ∆V-λ Diagram to Map Aerocapture Cost to Risk 

 

Figure 5.6 provides a means for accomplishing this mapping. The left side of the 

figure displays a box plot of the PENS-augmented ∆V distribution (i.e. the same data 
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presented in the ∆V distribution in Figure 5.5). Note that hard failures do not appear on 

the box plot because no reasonable amount of ∆V can save the hard failure cases.   

Intuitively, as the post-aerocapture ∆V budget becomes very large, the vehicle 

will be able to correct for larger and larger atmospheric guidance errors and the soft 

failure rate will approach zero. Conversely, as the ∆V becomes very small, more and 

more atmospheric guidance errors will become uncorrectable and the soft failure rate will 

increase. To formalize this, let the horizontal blue bars in the figure represent a variable 

∆V budget. At the bar marked with a one, the ∆V budget is very large and only one case 

cannot be corrected to the desired target orbit because the required ∆V is larger than the 

∆V budget. Therefore, the failure rate is low but the ∆V budget is large. On the right-

hand side of Figure 5.6, the point design defined by the first ∆V budget bar is plotted on a 

set of axes mapping the ∆V budget to the failure rate λ. As the ∆V budget is 

progressively lowered (i.e. the blue bars marked with 2, 3, etc) the corresponding points 

on the right-hand plot trace out a tradeoff between the ∆V budget and the failure rate. By 

the time the budget reaches point 5, the majority of the cases cannot be corrected and the 

failure rate diverges asymptotically near the horizontal axis of the ∆V-λ diagram. In the 

reverse situation where the ∆V budget is increased to very large values, the ∆V-λ curve 

asymptotically approaches the hard failure rate line (red dashed line in Figure 5.6). The 

horizontal difference between this asymptote and the ∆V-λ curve represents the soft 

failure rate at the current ∆V budget.               

The ∆V-λ diagram is a compact and intuitive way of visually presenting the 

critical information concerning aerocapture cost and risk. The diagram also provides 

readily visible context for judging the utility of various density estimators relative to one 

another. This plot is presented here as it will be heavily used in the following sections to 

present further results.  
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5.2  Effect of the Target Orbit 

The remaining sections of this chapter, save for the discussion of lidar in Section 

5.5, will be dedicated to exploring the impact of the PENS algorithm on both the design 

and operation of aerocapture systems. The results presented in the previous section 

utilized only a small number of trajectory simulations (approximately 1200) for proof-of-

concept testing. The simulations presented in this section, however, are larger with 6000 

simulations per density estimator in order to attain sufficiently large sample sizes to 

compile adequate failure rate data. In this section, the effect of the target orbit on the 

performance of the PENS-augmented NPC guidance scheme is explored.      

The efficacy of a density estimator is measured by the proximity of its ∆V-λ 

curve to the origin. Density estimators which provide low failure rates at smaller ∆V 

budgets clearly deliver superior performance because they reduce both cost and risk. 

Operation closer to the origin is beneficial on two levels. First, in real time application, 

the estimator in question directly leads to increases in operational safety during the entry. 

Second, the density estimator also permits reductions in either the ∆V budget, the level of 

risk, or both. This increases the system level utility of aerocapture by generating 

architectural benefits such as mass reductions making aerocapture-based architectures 

more attractive. 

Recall that eight MCD climate models have been summarized as neural networks 

(NNs) (see Section 2.4). These are now separated into three different climate ensembles 

in order to evaluate the impact of storing various amounts of information aboard. As 

previously discussed, these NNs are highly compact equations summarizing thousands of 

data points with a series of coefficients. The data compression ratio attained for these 

NNs is roughly 70:1 meaning that 70 atmospheric data points from MCD are replaceable 

by one NN coefficient. Despite the efficiency of this method, additional NNs translate to 

larger on-board storage and computational requirements. The number of PENS 

operations is proportional to n+1 where n is the number of ensemble members and the 
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additional one represents the ensemble echo. Therefore, it is useful to determine the 

efficacy of the PENS algorithm using smaller ensembles. The three climate ensembles 

are examined for study:  

1.) PENS-8: Consists of eight members corresponding to the eight climate models 

from the MCD. This ensemble extensively describes the possible conditions in 

the entry corridor at the time of entry for varying levels of dust and solar flux. 

By including the three dust storm models, this is the only “complete” 

ensemble because all climate scenarios, even extreme weather phenomena, are 

considered. 

2.) PENS-5: Consists of all the ensemble members with the exception of the dust 

storm models. PENS-5 could best be described as a “nearly complete” 

ensemble because it extensively models the entry corridor without including 

less likely extreme weather scenarios. 

3.) PENS-3: Consists of only three of the PENS-5 models corresponding to the 

average density and the two extreme density models outside of a global dust 

storm. PENS-3 is best described as a “bare minimum” ensemble because (a.) 

no extreme weather phenomena are considered and (b.) the smallest number 

of models which describe the possible conditions are utilized. 

The results from each of the above ensembles are reported separately in the data 

discussed in this section. However, effects of these various ensembles on guidance 

performance are examined in greater detail in the next section.  

Figure 5.7 depicts the first full Monte Carlo analysis performed using all eleven 

density estimators of interest (defined in Table 3.1) for the 1 Sol orbit. The total number 

of trajectory cases completed for each estimator is approximately 6000. The precise 

number varies by a handful of cases on either side of 6000 because the estimator for a 

given trajectory is randomly selected by the Monte Carlo simulation.  
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Figure 5.7: ∆V-λ Diagram for 1 Sol Orbit  

 

Each of these cases are subjected to the literature-derived perturbations of Section 

4.5 as well as all of the dispersions listed in Table 4.2. As can be immediately seen, both 

of the short exponential models (labeled shExp and shKExp in the figure legend) as well 

as the least squares exponential model (labeled Exp) exhibit large hard failure rates under 

highly perturbed atmospheric conditions. Examining the critical region near the origin in 

more detail (Figure 5.8), the cost and risk reduction realizable with the PENS algorithm 

relative to other historical density estimators becomes clear.  
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Figure 5.8: ∆V-λ Diagram Near the Origin for 1 Sol Orbit  
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Selecting design points near the knee of the ∆V-λ curve is advisable because this 

is the location where the ∆V budget and the failure rate λ are both minimized. Recall that 

the failure rates used on the diagram correspond to a highly perturbed, 6σ Martian 

atmosphere and are therefore, desirably conservative. If a 6σ failure rate of 8% is 

considered programmatically acceptable for design, the best historical estimators are the 

ρTABLE model and the ρK-EXP model (labeled Table and KExp respectively in the figures) 

which require a ∆V budget of over 225 m/s. At an equivalent level of risk, all three PENS 

estimators require a ∆V of roughly 150 m/s.   

Similarly, if a design ∆V budget of 150 m/s is selected, then the best historical 

models produce a failure rate of roughly 12% whereas the PENS failure rate is only 8%, 

again a 4% reduction in the total failure rate. Therefore, the PENS algorithm achieves 

reductions in the required ∆V at a constant failure rate λ or achieves reductions in the 

failure rate λ at constant ∆V. If operating in the knee of the curve as suggested, then the 

PENS estimators produce a point design with λ = 8.5% and ∆V = 145 m/s. The knee of 

the ρTABLE and ρK-EXP models both occur near λ = 10.5% and ∆V = 175 m/s. Therefore, 

when designing in the critical knee region of the ∆V-λ diagram (for the 1 Sol orbit), the 

PENS algorithm generates reductions in either the failure rate or the required ∆V.  

If designing at very low failure rates to ensure a successful aerocapture even 

under highly perturbed atmospheric conditions, the PENS algorithm is very beneficial. 

The lower hard failure rates achieved by PENS shifts their associated ∆V-λ curves 

horizontally to the left relative to the historical estimators. This, in turn, makes low risk 

designs more achievable with reasonable ∆V budgets. For example, to achieve a failure 

rate λ = 4.5%, the ρTABLE estimator requires a ∆V budget of 960 m/s. The PENS-5 

estimator, however, can achieve the same level of risk with a ∆V budget of only 400 m/s, 

a 58% reduction in required ∆V. Note that, in this case, the ρK-EXP model has a hard 

failure limit of 5.2% and is therefore unable to meet the 4.5% failure rate criterion at all.      
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Figure 5.9: ∆V-λ Diagram for 1400 km Orbit 
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Figure 5.10: ∆V-λ Diagram for 1400 km Orbit Near the Origin 

 

   Similar general conclusions may be drawn when examining the ∆V-λ diagram 

for the 250x1400 km target orbit (Figure 5.9). Again the short models and the pure 

exponential models (labeled shExp, shKExp, and Exp respectively) are not competitive 

with the other methods. Figure 5.10 presents the same 1400 km dataset in the critical 

knee region near the origin. From inspection of both figures, it may be clearly seen that 

the ∆V-λ behavior of PENS is distinctly different from the 1 Sol orbit. The primary effect 
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of PENS for the 1400 km orbit is to shift the ∆V-λ curve horizontally to the left relative 

to the historical estimators. For the 1 Sol orbit, however, the PENS ∆V-λ curves exhibit 

both vertical and horizontal shifts towards the origin. This disparity is due to the nature of 

the entry trajectories required to generate the two different orbits as all other variables 

between both simulations are identical.       

The 1400 km orbit is significantly slower than the 1 Sol trajectory which requires 

the vehicle to spend more time in the atmosphere over a longer downrange distance to 

achieve the necessary drag losses. In addition, due to its lower apoapsis altitude, the 1400 

km trajectory exits the atmosphere at a more shallow flight path angle (see Figure 4.16). 

These trajectory differences require the 1400 km trajectory to dwell in the highly variable 

upper atmosphere for a longer timeframe and over longer distances. Recall that the 

magnitudes of the density perturbations grow exponentially with altitude (see discussion 

in Section 4.4.1). Because the 1400 km trajectory travels over a longer path length in the 

highly variable upper atmosphere, the density perturbations have a greater impact on the 

final state and therefore the improvement offered by the PENS algorithm appears to be 

reduced relative to the 1 Sol orbit. This is because the random variability in the upper 

atmosphere cannot be predicted by the ensembles and therefore by PENS. During the 

slower, longer ascent of the 1400 km trajectory, the vehicle encounters more density 

perturbations which generate more cumulative apoapsis errors relative to the 1 Sol orbit. 

The net effect is to slightly erode the ∆V advantage generated by the PENS algorithm 

preventing significant vertical shifts in the ∆V-λ curves. The 1 Sol orbit, due to its steep 

exiting flight path angle, ascends through this region quickly such that its path length in 

the upper atmosphere is significantly smaller. Therefore, the variability of the upper 

atmosphere has a much smaller impact on the 1 Sol orbit. 

The above discussion explains the disparity in the performance of the PENS 

estimators between the 1400 km and 1 Sol orbits. What remains to be explored is the 

nature of the performance differences between PENS and the conventional estimators 
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within the 1400 km orbit. Because the density models generated by the PENS algorithm 

have a much greater degree of physical fidelity and flexibility than conventional 

estimators, the long-range predictions are generally more accurate. This increase in 

general density prediction accuracy relative to other estimators reduces the likelihood of 

hard failures which shifts the PENS ∆V-λ curves to the left. Conventional density 

estimators do not enjoy this advantage and, in generating less accurate predictions, permit 

more guidance faults and therefore larger hard failure rates. This is directly observable in 

Figure 5.10 by comparing the location of the vertical asymptotes of the PENS estimators 

relative to the conventional/historical counterparts. 

The increase in general prediction accuracy achieved by PENS over long ranges is 

demonstrated in Figure 5.11 for trajectory #11 from the 1400 km dataset. This trajectory 

utilized the eight member ensemble and therefore only the PENS-8 and KPENS-8 results 

are available. In the figure, the density prediction errors from the most competitive 

density estimators are shown for the final two minutes of atmospheric flight. This 

window was selected because it demonstrates the performance of the estimators over an 

extended period in the highly variable upper atmosphere (from roughly 90 km up to 128 

km in altitude). The ρK-EXP model, based on a simple exponential model, lacks the high 

fidelity physics to generate accurate predictions over extended ranges. The ρTABLE and 

ρKPENS perform similarly because both are based on MCD climate models corrected with 

a multiplier K.     

The table model is based on the average dust/average solar flux MCD model and 

KPENS is based on the same eight member ensemble as PENS. As discussed in Section 

3.3.7, the purpose of the multiplier K is to correct the instantaneous state, that is, to force 

the prediction model to match the ADS-measured density at the current vehicle location. 

The multiplier, therefore, biases the entire prediction model such that greater emphasis is 

placed on close-in, short-range prediction accuracy. Note that the prediction errors of all 

the K-based estimators (ρTABLE, ρKPENS, and ρK-EXP) in Figure 5.11 have zero error at the 
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current vehicle location at 600 seconds. This short-range emphasis, however, is at the 

expense of long-range accuracy. Note that the K multipliers are updated at the guidance 

inner loop calling frequency of 2 Hz each time the density estimators are recomputed.    
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Figure 5.11: Error from a Single Density Prediction in  

Trajectory #11 for Final Two Minutes of Flight 

 

The table model has only a single degree of freedom (the table multiplier K) and 

therefore some long-range inaccuracies are expected. For the KPENS model, however, 

the presence of the multiplier restricts the adaptive flexibility of the algorithm. Recall that 

the KPENS prediction model may be expressed as:  
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             (5.3) 

where ρi represents the eight ensemble models described by the NNs, ωi are the model 

weights determined by the PENS algorithm, and n is the number of ensemble members. 

The PENS weights are determined by accounting for both long-range and short-range 

prediction accuracy (see Section 3.3.5 on multiple prediction horizons). Including K 

biases the prediction model to favor only short-range accuracy and the model is less able 

to effectively account for long-range performance. Due to the overriding effect of the 
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multiplier K, the biased weights Kωi applied to the ensemble members ρi now no longer 

have unit sum. This permits the prediction model to generate density predictions which 

may be physically infeasible over long ranges. In this way the KPENS approach is very 

similar in concept to the table model (as may be seen in Figure 5.11) because both apply 

a corrective multiplier K to a high-fidelity density model based on MCD data. 

Because the 1400 km orbit requires longer range density predictions due to the 

shape of the atmospheric trajectory, the larger hard failure rates of the K-based methods 

are all very similar to one another (see Figure 5.10). This effect is not nearly as 

pronounced for the 1 Sol orbit which does not require very long range density 

predictions. Because the locally-biased 1 Sol density predictions are not propagated over 

long ranges, the density predictions errors do not grow as large. Compare, for example, 

the density prediction errors of PENS and KPENS at 650 seconds in Figure 5.11 as 

opposed to 700 seconds.  

Because very long range predictions are not required for the 1 Sol orbit, the 

prediction errors for the K-based estimators do not typically grow to catastrophic levels. 

This produces low failure rates which are closer to the PENS failure rates. The 1 Sol hard 

failure rates for the competitive K-based methods are near λ≈5-6% (found by visually 

determining the vertical asymptote of the K-based methods in Figure 5.8). The 1 Sol hard 

failure rates of the PENS estimators are relatively similar (λ≈5%). In contrast, the 1400 

km orbit K-based methods have hard failure rates near λ≈7% whereas the PENS hard 

failure rates are near λ≈4% (see Figure 5.10). 

While, the 1 Sol orbit does not require very long-range predictions, the short-

range biasing caused by the multiplier K still generates appreciable errors at the end of 

the predicted trajectory. These density errors, because they are appreciable yet not 

catastrophic, cause more apoapsis errors which require greater ∆V to correct. This greater 

required ∆V vertically shifts the 1 Sol ∆V-λ curves for KPENS up and away from the 

analogous PENS curves, particularly in the critical knee region illustrated in Figure 5.8.  
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Because the PENS estimators have the best general performance characteristics, it 

is useful to compare their impact on both orbits. In contemporary literature, a cost/risk 

trade in aerocapture orbit selection has been recently discussed. Larger orbits like the 1 

Sol orbit require less post-aerocapture ∆V but are inherently more risky. In comparing 1 

Sol and 500 km target orbits, Cianciolo et al.
87

 observe that “…it is evident a large ∆V 

savings is achieved by changing to a target orbit with a higher apoapsis altitude but the 

propellant savings is at the cost of increased risk of skip-out…” If using the most 

competitive historical density estimators, the conclusions of Cianciolo et al. hold true and 

the higher orbit is generally more affordable than the lower orbit (see Figure 5.12). The 

only exception lies in a narrow region between 7.5%< λ <11% wherein the 1400 km orbit 

becomes marginally more affordable.  
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Figure 5.12: Comparison of the 1 Sol (solid) and 1400 km (dashed)  

∆V-λ Trends Using Historical Density Estimators 

 

 Using the PENS algorithm, however, further information may be obtained on this 

cost/risk trade inherent in aerocapture orbit selection. Figure 5.13 depicts the ∆V-λ 

curves from all of the PENS estimators for both the 1 Sol orbit (solid lines) and the 1400 

km orbit (dashed lines). 
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Figure 5.13: Comparison of the PENS 1 Sol (solid) and  

1400 km (dashed) ∆V-λ Trends  

 

It is clear from inspection of the figure that the ∆V-λ curves intersect in the region 

near λ = 7%. It is also immediately evident that, in general, the ∆V associated with the 1 

Sol orbit is smaller compared to the 1400 km orbit. This corresponds well to expectations 

from the literature. For PENS-augmented guidance, however, the 1400 km orbit actually 

becomes more affordable between failure rates λ < 7% but prior to the vertical asymptote 

near 4%. Because the ∆V-λ trends are diverging toward the vertical at this point, the ∆V 

savings associated with the 1400 km orbit at low failure rates may be quite appreciable. 

For example, in the 1400 km orbit the PENS-8 estimator requires approximately 250 m/s 

∆V at a failure rate λ = 5%. At the same level of risk, the 1-Sol orbit ∆V requirement for 

PENS-8 is 40% greater at 350 m/s. In contrast to the PENS results, the best historical 

estimators only reach this level of risk with a ∆V budget in excess of 530 m/s. Therefore, 

the lower 1400 km orbit actually becomes significantly more affordable than the 1 Sol 

orbit at low failure rates for the PENS estimator. This is quite notable because the PENS 

estimator, in producing solutions with the best cost and risk, precludes the cost/risk 

tradeoff for aerocapture orbit selection cited in the literature. If the PENS estimators are 

used, the low-altitude orbit becomes the most affordable and least risky option for design 

failure rates λ < 7% but prior to the hard failure rate asymptote near λ = 4%.  
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Because all failure rates given herein correspond to the observed 6σ density 

perturbations in the Martian atmosphere, it may be reasonable to select higher failure 

rates depending on the programmatic risk posture. If a failure rate beyond the 7% 

boundary is selected, the 1 Sol orbit becomes more affordable as expected.  

Therefore, for 4% < λ < 7% , the 1400 km orbit has been shown to be more 

affordable than the 1 Sol orbit when employing the PENS estimator in the guidance 

scheme. This is in contrast to the historical estimator results and the results from 

contemporary literature which suggest that the more risky 1 Sol orbit is more affordable. 

However, even if a 1 Sol orbit is of interest for architectural reasons, then the PENS 

algorithm can still offer significant risk and cost reduction options.  

5.3  Effect of Ensemble Size & Scope 

As may be seen from the figures presented in the last section, the size of the 

ensemble appears to have relatively little impact on the performance of the PENS 

estimator. As will be shown, however, the size of the ensemble does have a quantifiable 

effect on PENS estimator performance. This effect may be discerned by re-computing the 

∆V-λ diagrams several times using subsets of the available data. Recall that 

approximately 6000 trajectory cases are available for each density estimator in a given 

orbit. In the previous section, all 6000 cases were used to compute the ∆V-λ trends. Now, 

one sixth of the data (approximately 1000 cases) are used to create six ∆V-λ curves for 

each density estimator. An example result of these computations is shown for the 1400 

km orbit PENS-3 estimator in Figure 5.14. While the figure contains six distinct ∆V-λ 

curves, it may be seen that they all are similar in form to one another.  

The change in the location of these ∆V-λ trends is due only to the random 

atmospheric and entry state perturbations described in Table 4.2 and Section 4.4. 

Therefore the magnitude of these ∆V-λ variations provides an indicator of the remaining 

uncertainty which the guidance and density estimators are unable to attenuate. This 
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remaining uncertainty, by directly impacting final state of the trajectory, also impacts the 

location of the ∆V-λ curve.  

The approach just described (i.e. subsets of 1000 cases each) was selected over 

alternate approaches (i.e. subsets of 2000 cases or 500 cases each, etc.) because it offers a 

good compromise between statistical confidence and conservative uncertainty estimation. 

As more and more cases are used in a given subset, the effects of the random 

perturbations (which generate the differences in the ∆V-λ curves) begin to average out 

and the ∆V-λ curves become more similar. 
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Figure 5.14: Variation in the ∆V-λ Diagram for the PENS-3 Estimator: 

Total Variation (Top Plot) and Variation near the Origin (Bottom Plot) 
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As fewer and fewer cases are used in each data subset, the resulting ∆V-λ curves become 

ill-defined and jagged as gaps and holes develop in the subset ∆V distributions used to 

generate the ∆V-λ curves. Extracting conclusive information useful for design with 

defensible statistical confidence is no longer possible. At this point, the effect of 

individual outliers begins to drive the behavior of the curves and the subsets suffer from 

data starvation. Therefore, at 1000 cases each, the subsets have statistically useful ∆V 

distributions and also produce markedly different ∆V-λ trends.    

 The extreme bounds of the six ∆V-λ curves created for each estimator are 

determined (see Figure 5.15). These extreme bounds define a variation window which is 

an approximation of the remaining uncertainty due to atmospheric perturbations and 

random initial state variations. Composite ∆V-λ diagrams are now created using these 

variation windows as uncertainty approximations (Figure 5.16).    
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Figure 5.15: ∆V-λ Variation Window for the PENS-3 Estimator 
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Figure 5.16: Composite ∆V-λ Diagram for 1400 km PENS Estimators Including 

Both Average Performance (Solid Lines) and Uncertainty Window (X Markers) 

 

 With the inclusion of the variation window in the composite ∆V-λ diagram, the 

effect of ensemble size becomes clear. As may be seen by inspection, the uncertainty of 

the eight member and five member PENS estimators (PENS-8 and PENS-5) is less on 

average than the uncertainty of the three member ensemble (PENS-3). The higher level of 

uncertainty associated with PENS-3 is unsurprising given the limited amount of 

atmospheric information stored aboard the vehicle. PENS-3 has only three models to 

compare against the ADS measured density trend.  

Note that PENS-3 has better average performance in many regions of the design 

space and that its lower uncertainty bound has superior performance throughout most of 

the design space. This can only be explained by the presence of fewer on-board models 

because this is the only difference between the various PENS estimators. With fewer on-

board models, the parameter estimation problem is somewhat simpler because each of the 

three models are markedly different from one another. These large differences simplify 

both the model pruning and the associative learning processes by making it far less likely 
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that an incorrect model will be trusted. With larger ensembles, however, the reverse is 

true.  

Larger ensembles require more atmospheric exposure but, once enough learning 

has occurred, they are equipped to produce more accurate predictions. More accurate 

predictions lead to more successful apoapsis targeting and greater consistency of results 

(i.e. lower uncertainty). However, depending on the atmospheric perturbations, an 

estimator with a large ensemble may permit the guidance to trust an inappropriate 

ensemble member at a critical moment while the estimator is still learning. The 

possibility of trusting incorrect ensemble members leads to slightly higher failure rates 

for larger, more complex ensembles like PENS-8 (e.g. compare PENS-8 and PENS-3 

hard failure rates in Figure 5.16).  
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Figure 5.17: Ensemble Complexity vs. Accuracy Tradeoff for a 1400 km Trajectory 

 

This tradeoff between ensemble complexity and long-term accuracy is illustrated 

in Figure 5.17. The maximum density prediction error is displayed as a dashed line while 

the average prediction error is solid. The larger eight member ensemble must be exposed 

to the atmosphere over a broad altitude range, nearly up to periapsis before it can begin to 
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make distinctions among the various ensemble members. Note, however, that the 

prediction accuracy of the eight member ensemble eventually becomes more accurate 

after significant atmospheric exposure has occurred.  

Therefore, the simulation statistics indicate that larger ensembles inhibit 

uncertainty growth while smaller ensembles have the potential to achieve higher 

performance but at a greater level of uncertainty. The PENS-5 estimator would seem to 

offer an ideal compromise by using an intermediate number of members. However, the 

members of PENS-5 are more closely spaced and include no dust storm models. Note 

that because there are upper and lower limits on feasible atmospheric densities, larger 

ensembles will have more closely spaced members. It is highly likely, then, that larger 

ensembles will require more atmospheric exposure in order to successfully learn the 

differences among the various ensemble members. Future work should therefore examine 

smaller ensembles with distinct, widely spaced members that include all possible weather 

conditions, even dust storms. Such an ensemble may inhibit uncertainty growth while still 

requiring smaller periods of atmospheric exposure to successfully accomplish associative 

learning.   
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Figure 5.18: Average Performance (Solid) & Uncertainty (X) Comparison of  

PENS-3 to Competitive Historical Estimators for the 1400 km Trajectory  
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 Figure 5.18 illustrates the performance improvement realizable with the PENS 

method relative to the best historical alternatives (the ρTABLE and ρK-EXP models). Even 

though the PENS-3 estimator has the greatest degree of uncertainty of the three PENS 

estimators, its uncertainty is comparable to the most competitive of the historical 

methods. The average performance of PENS-3 (i.e. the average location of the ∆V-λ 

curve), however, is far better as it offers significantly lower risk design options than the 

historical methods.  
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Figure 5.19: Composite ∆V-λ Diagram for 1 Sol PENS Estimators Including Both 

Average Performance (Solid) and Uncertainty Window (X) 

 

 Interesting new trends begin to emerge when performing a similar analysis on the 

fast 1 Sol trajectory. Figure 5.19 displays the uncertainty windows around the three 

PENS estimators which are now markedly larger for this trajectory. In order to explore 

the changes in the uncertainty windows of the density estimators between the 1400 km 

and 1 Sol trajectories, the average window width was determined (Table 5.1). This 

average, taken over all ∆V budgets up to 1000 m/s, is an indicator of the expected 

variation in the failure rate λ for a given estimator and orbit type. For example, the 
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PENS-3 estimator for the 1 Sol orbit has an average failure rate λ uncertainty of 2.05%. 

This indicates that a given ∆V budget, the horizontal location of the PENS-3 ∆V-λ curve 

varies by 2% on average. From Figure 5.19, for a ∆V budget of 300 m/s, uncertainty 

window extends from λ = 4.5% to λ = 6.4% for a total uncertainty of 6.4% -4.5% = 1.9% 

which roughly agrees with the average uncertainty of 2%.   

The third column of the table presents the average change in uncertainty 

associated with a given estimator when the trajectory is changed from the 1400 km orbit 

to the 1 Sol orbit. Note that the uncertainty of all of the PENS estimators increases when 

changing to the 1 Sol orbit. This observation is revealing when considering the nature of 

the 1 Sol orbit. Recall from Section 4.3.3 that the atmospheric trajectory which produces 

the 1 Sol orbit is significantly faster than the 1400 km trajectory. The atmospheric flight 

time of the 1 Sol trajectory is approximately half that of the 1400 km trajectory with a 

significantly earlier peak dynamic pressure. This ultimately presents the 1 Sol trajectory 

with a very narrow time window in which to make use of the lessons learned from 

atmospheric observation.  

Table 5.1: Average Estimator Failure Rate Uncertainty (∆λ) 

 1400 km 1 Sol Difference 

PENS-3 1.4397 2.0498 0.6101 

PENS-5 0.9351 2.4936 1.5585 

PENS-8 0.9055 3.2213 2.3158 

KPENS-3 2.0947 1.3443 -0.7504* 

KPENS-5 3.2344 2.2045 -1.0299* 

KPENS-8 1.9455 2.0368 0.0913* 

Exponential 2.3951 3.2035 0.8084 

K-Exponential 1.8295 1.9044 0.0749* 

Exponential (short) 2.9414 4.1965 1.2551 

K-Exponential (short) 3.4366 2.4663 -0.9703* 

Table 2.3199 1.3502 -0.9697* 

Minimum Uncertainty PENS-8 KPENS-3 -- 

*indicates a model with a short-range corrective multiplier K 

On average, the 1 Sol trajectory has enough time to make gross trajectory 

adjustments to attain an orbit close to the desired exit state. However, the dynamic 
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pressure rapidly falls away after periapsis as the vehicle leaves the atmosphere much 

more quickly than the 1400 km orbit (recall the nominal trajectories in Figure 4.16). 

Therefore, very little control authority is available for the short outbound leg. The 1400 

km orbit, on the other hand, has a much longer outbound leg while retaining a modicum 

of control authority. Even though the dynamic pressure in the outbound leg is, on 

average, much smaller than the peak pressure, it persists over a longer timeframe for the 

1400 km orbit. This permits the vehicle to use the small resulting lift vector over time to 

perform fine trajectory adjustments which ultimately improve the final orbital state. 

Because the 1 Sol trajectory does not have this opportunity, the increase in uncertainty 

relative to the 1400 km orbit is expected for the PENS estimators.   

As noted earlier, a tradeoff exists between ensemble complexity and prediction 

accuracy. Smaller ensembles are not as complex, and therefore, the PENS algorithm can 

successfully assign appropriate weights to the prediction model soon after entry. Larger 

ensembles, however, require more atmospheric exposure over broad altitude ranges in 

order to eliminate closely spaced members. Observe in Table 5.1 that the 1 Sol 

uncertainty increases with ensemble size for the PENS estimators. For the 1 Sol 

trajectory, as soon as the larger ensembles are exposed to the altitude range of interest, 

the dynamic pressure begins to rapidly decrease and the vehicle is already on its way out 

of the atmosphere. The smaller PENS-3 ensemble requires less atmospheric exposure and 

is therefore able to make more consistent predictions than the larger ensembles in the 1 

Sol trajectory.       

For some of the historical estimators with limited learning capability or simplistic 

model physics, the shorter prediction ranges associated with the 1 Sol trajectory reduces 

the difficulty of the density prediction problem. Some historical models are therefore able 

to generate more consistent predictions and their associated uncertainty decreases when 

switching to the 1 Sol orbit. This is especially true for models with K multipliers which 

bias the prediction model to favor short-range performance. Observe that the uncertainty 
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of all of the models utilizing a short-range corrective multiplier K (marked with an * in 

Table 5.1) either decreases or remains approximately the same when changing to the 1 

Sol orbit.  

 Note that the KPENS estimators enjoy both accurate model physics and a short-

range corrective multiplier K. It seems reasonable then to expect these models to produce 

superior performance in the 1 Sol orbit where the average prediction ranges are smaller. 

Indeed, the KPENS-3 estimator achieves the lowest uncertainty of all the estimators for 

the 1 Sol orbit. However, while this estimator is very consistent (i.e. has a small 

uncertainty), the average performance (i.e. location of the ∆V-λ curve) is similar to 

historical estimators. This is again due to the effect of the multiplier K on the PENS 

prediction model (see the discussion supporting Equation 5.3 in Section 5.2). In biasing 

the prediction model to emphasize short-range performance, the long-range accuracy 

resulting from the PENS associative learning process is curtailed. The model produces 

very consistent results because the associative learning process, the main source of 

adaptive freedom for PENS, is restrained. As mentioned in Section 5.2, the inhibition of 

the KPENS learning and adaptation mechanisms forces KPENS to behave much like the 

table model. Note in Table 5.1 that KPENS-3 has very similar average uncertainties to 

the table estimator for both the 1 Sol and 1400 km orbits.  

 Figure 5.20 illustrates the uncertainty and performance differences between the 

most competitive estimators for the 1 Sol orbit. Note that, for clarity, the KPENS-3 is 

plotted in blue rather than the usual red. Observe that, as expected, the KPENS-3 and the 

table models are nearly identical in both performance and uncertainty windows. While, 

the historical models become more competitive at lower failure rates, the PENS-3 

estimator exhibits the best performance throughout the design space.  
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Figure 5.20: Average Performance (Solid) & Uncertainty (X) Comparison of  

Competitive Historical & PENS Estimators for the 1 Sol Trajectory  
 

5.4  Impact of On-Board Remote Sensing on Aerocapture Guidance 

 The final series of guided trajectory simulations examine the impact of 

atmospheric remote sensing in an attempt to provide context for the performance 

improvements attained with the PENS algorithm. The remote sensing architecture 

adopted herein is based on the use of lidar (light detection and ranging) technology. Lidar 

sensor equipment has been tested and developed extensively for decades resulting in 

applications to both ground-based
124,125

 and space-based
126

 sensing platforms. Lidar 

systems are a form of laser-based remote sensing which have the potential to permit 

direct measurement of atmospheric information in real time. Such systems utilize a laser 

to excite the constituent gases in an atmospheric volume and the excited gases then re-

radiate the absorbed laser energy. The re-radiated photons which are backscattered 

directly toward the emitter are detected with a telescope and used to determine 

information such as constituent gas concentration or aerosol profiles
126

.  
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Recent research
127

 has suggested that a 2-mircon coherent differential absorption lidar 

(DIAL) system has the capability to measure the atmospheric density on Mars. This 

development has spawned interest in the application of such a system aboard an entry 

vehicle for real time atmospheric measurement. This would allow the spacecraft to 

directly measure the upcoming atmospheric density trends along the predicted flight path. 

Thus the goals of this discussion are twofold;  

1. To provide an optimistic best-case scenario as context for the performance 

improvements achieved with the PENS estimator and; 

2. To examine the impact of on-board laser-based remote sensing on aerocapture 

guidance, focusing on the formation of fundamental system requirements.  

 

Because the goal of this analysis is to provide a best-case context, the assumptions 

concerning the lidar system and its integration into both the vehicle and guidance scheme 

are intended to produce optimistic results. Future work should focus on testing the 

feasibility of the assumptions discussed in the following paragraphs. This will, in most 

cases, require the assumption or specification of more detailed vehicle/lidar system 

parameters. This is purposely avoided here, however, to ensure that the fundamental 

requirements generated from this study are generally applicable to a wide range of 

atmospheric entry vehicles and scenarios.  

The vehicle is assumed to carry at least one laser-based remote sensor such as a 

lidar system which is used to obtain atmospheric density data. During atmospheric flight, 

the lidar is used by the NPC guidance scheme in an interactive fashion. The NPC 

guidance numerically integrates the equations of motion to construct a predicted 

trajectory. During the integration process, the total predicted acceleration vector is 

computed using information such as the local atmospheric density provided by the 

guidance sub-models. In the case of remote sensing, it is assumed that the lidar is capable 
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of rapidly scanning the spatial region in front of the entry vehicle to provide information 

to the atmospheric sub-model.  

For example, before the vehicle reaches periapsis, it must construct a trajectory 

prediction from its current location, through periapsis, and up to atmospheric exit. As the 

on-board trajectory integration process reaches the predicted periapsis location, the 

iteration scheme requires an estimate of atmospheric density at the spatial location 

(altitude, latitude, and longitude) of the predicted periapsis. The lidar system must scan 

this location, determine an atmospheric density, and pass this information back to the 

NPC guidance so the integration process may continue. It is further assumed that the lidar 

is capable of scanning the correct altitude, longitude, latitude requested by the NPC 

guidance with negligible position error. This scheme, while challenging to implement due 

to the fast required lidar scanning cycles, provides an optimal, best-case configuration 

which is of most use to the NPC guidance.  

Because one of the main goals of this discussion is to determine requirements for 

future lidar systems, two of the most basic variables, the range and measurement error of 

the lidar, are chosen for study. Unlike most of the assumptions discussed in this section 

which are intended to be optimistic and in favor of the lidar, these two trade variables are 

deliberately varied over broad ranges in order to stress the combined lidar/guidance 

system. This approach is adopted to permit useful range and measurement error 

requirements to be obtained from the guided trajectory data.  

The operational concept of the atmospheric remote sensing architecture is visually 

illustrated in Figure 5.21. In this figure, the lidar rapidly scans ahead of the vehicle from 

its current location in order to provide the guidance with the requisite information to 

construct a predicted trajectory (red and blue lines). The lidar is used to measure 

atmospheric density up to a user-defined maximum range (green point on the trajectory in 

Figure 5.21). Beyond the maximum lidar range (red curve), the guidance obtains density 

estimates from the table look-up model ρTABLE. This model was chosen because it is one 
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of the most competitive of the historical estimators and also requires little computational 

effort. This offsets some of the complexity of the remote sensing scheme. The table 

multiplier K is computed to ensure a smooth transition between the lidar density 

measurements and the table model at the maximum lidar range (the green point in the 

figure). The table multiplier K is therefore determined by the ratio of the lidar density to 

the table-predicted density at the maximum range or K = ρlidar,max_range /ρtable. This 

multiplier is only computed once per predicted trajectory at the point of transition from 

the lidar to the table model. 

 
Figure 5.21: Remote Sensing Operations Concept & Line of Sight Limits 

 

Within the NPC simulation environment developed in Section 4.2, the lidar is 

simulated by querying the MarsGRAM climate model at each point of the predicted 

trajectory. Because the same MarsGRAM model is now used by both the predicted and 

real world trajectories, the density “measured” by the lidar subroutine exactly matches 

the real world density. (Note that the user-defined lidar measurement error must be set to 

zero for the lidar density to exactly match the real world density.) The simulation tracks 

the elapsed distance traveled along the predicted trajectory which in Figure 5.21 is the arc 

length of the blue curve. Once this distance exceeds the user-defined maximum lidar 
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distance, then the table model replaces the lidar in the inner loop for the remainder of the 

predicted trajectory.      

Both the maximum range and measurement error of the lidar are treated as 

discreet random variables in order to permit failure statistics to be collected. Using 

continuous distributions would complicate the compilation of failure rate statistics 

because all cases would have slightly different performance characteristics. Discreet 

distributions, however, permit the data to be sorted into bins where each case in the bin 

has precisely the same range or error. The lidar range variable is simulated by a discreet 

uniform distribution with a lower limit of 200 km and an upper limit of 1600 km in 

increments of 200 km. The lower boundary was selected as it was hypothesized that 

shorter range systems would not be of significant utility. Note that the atmospheric 

backscatter lidar systems on the CALIPSO and ICESat Earth science spacecraft operate 

at orbital altitudes near 650 km. Their lasers are capable of penetrating through most of 

the terrestrial thermosphere and middle atmosphere to reach their respective target 

regions
126

. Thus, it appears to be highly likely that a 200 km lidar system suitable for use 

on an entry vehicle is possible with current methods and materials.  

The maximum range was determined by computing the maximum line-of-sight 

available to the entry vehicle for the original reference trajectory presented in Section 2.7. 

The maximum range line-of-sight (LOS) runs tangent to the planet’s surface and 

intersects the outbound leg of the trajectory (see the black dashed line in Figure 5.21). 

From the perspective of the entry vehicle, this max range LOS is the point where the 

predicted trajectory sets over the local horizon. It is impossible for the entry vehicle to 

see any more of the remaining trajectory because it would require the lidar to look 

through the planet. Note that this is a very conservative case as the lidar laser must 

penetrate the densest region of the atmosphere near the surface in order to measure the 

furthest segment of the observable trajectory. In addition, the lidar telescope must be 

capable of detecting the returning atmospheric backscatter at very long ranges through a 
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potentially dusty lower atmosphere. The lidar is assumed to be able to resolve density at 

all locations up to and including the maximum range with no intermediate zones of 

exclusion. Lastly, it should be noted that the true maximum LOS varies throughout the 

entry as higher altitudes offer a better vantage point and therefore a longer maximum 

LOS. However, for the purposes of this fundamental analysis, the maximum LOS is 

assumed to be fixed at a given value.  

The discreet distribution of error values selected range from -12% to +12% from 

the true atmospheric density in increments of 3%. This distribution is quite broad and 

larger than what contemporary remote sensing literature suggests for possible error 

levels. This broad distribution was dual-purpose:  

1. As previously mentioned, it permits the point at which the lidar error 

significantly affects the guidance to be identified. This allows useful 

design requirements to be derived from the guided trajectory data. 

2. Because a lidar system capable of performing the described mission role 

does not yet exist, unforeseen design or integration challenges may reduce 

the accuracy of the system.   

The assumed lidar error is treated as a constant bias from the true atmospheric 

density over the entire field of view up to the maximum range. This constant error could 

have also been modeled as a continually varying random variable with its own 

distribution. However, a random or Gaussian white noise measurement error is highly 

likely to self attenuate. This conclusion is based on the observations in Sections 4.4 and 

5.1 wherein the high frequency white noise of the standard MarsGRAM density 

perturbation scheme was shown to have relatively little impact on aerocapture guidance. 

The high frequency white noise signal imparts as many positive momentum changes as it 

does negative momentum changes and the resulting trajectory remains nearly the same. 

The same principle applies here. The noisy measured density signal produced by the lidar 

would be used to construct a predicted trajectory and the effects of white noise would self 
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attenuate. A biased measurement error, however, has a much different effect. The 

guidance scheme is unaware of the measurement error and the resulting trajectory 

predictions will differ from the real world behavior. Therefore, because a constant bias is 

a more dangerous and stressful case, the error is assumed to be constant over the entry.  

To evaluate the effectiveness of on-board remote sensing, 6000 additional 

aerocapture trajectories were simulated for each of the two target orbits. The resulting 

data offers insight into the stochastic performance of the lidar-augmented guidance as the 

range and measurement error vary. The average performance and uncertainty window of 

the lidar-augmented guidance for both target orbits is presented in Figure 5.22. The 

analogous PENS results are also presented for comparison. Note that both PENS and the 

lidar-augmented systems perform similarly at high failure rates but the lidar-augmented 

guidance has a clear performance advantage at low failure rates. 

The lidar effectively protects against hard failures and the resulting low hard 

failure rates shifts the lidar ∆V-λ curve far to the left. These results were achieved by 

averaging all of the trajectory data irrespective of the lidar range or level of measurement 

error. All 6000 cases were used to generate the average (solid line) trend while six bins of 

1000 cases each were compared to generate the uncertainty window. These results, 

therefore, indicate that even with uncertainty in the maximum range and measurement 

error, lidar generally produces superior performance under the best-case assumptions of 

this study. However, because the performance of long range, high accuracy lidar systems 

tends to balance the behavior of shorter range, lower accuracy systems, this conclusion is 

somewhat conditional as will be discussed. 
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Figure 5.22: 1 Sol (top) and 1400 km (bottom) General Lidar  

Performance (Solid) and Uncertainty Window (X)  

 

These results provide the desired context for the performance improvements 

achieved by the PENS estimator. The PENS algorithm has been shown to outperform all 

other existing conventional methods. However, in the theoretical limit, general lidar 

systems have the ability to yield larger performance gains than the PENS algorithm if the 

assumptions of this study hold.   
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The 6000 cases for each orbit are now separated into bins according to maximum 

range and measurement error. The ∆V-λ diagrams are again constructed with this new 

data grouping scheme (Figures 5.23 and 5.24). Note that the ∆V-λ curves for a given 

lidar range contain data at all levels of measurement error. Conversely, ∆V-λ curves for a 

given lidar measurement error contain data at all maximum ranges. This approach 

illustrates the performance uncertainty of the lidar-augmented guidance system as a 

function of a single variable. Note in Figure 5.23 that variations in the maximum lidar 

range have relatively little impact on the performance results with the exception of the 

200 km case for the 1 Sol orbit. Here, at failure rates λ > 10%, the PENS estimators begin 

to outperform the lidar-augmented guidance.  

This is not surprising due to the sensitivity of 1 Sol orbit to the level of 

atmospheric knowledge available to the NPC guidance. Recall from Sections 5.2 and 5.3 

that the 1 Sol trajectory exits the atmosphere in very short order and that some of the 

PENS estimators scarcely have the time to apply the information learned through 

atmospheric observation. At short maximum ranges, a similar situation occurs for the 

lidar-augmented guidance. The vehicle does not attain the requisite atmospheric 

knowledge with enough time to prevent apoapsis errors from accruing. These errors raise 

the required post-aerocapture ∆V and shift the ∆V-λ curve upward relative to the other 

lidar systems. In addition, the range-limited systems also produce slightly elevated hard 

failure rates as may be seen in Figure 5.23. 

It is interesting to observe that the ∆V-λ curves of many longer range lidar 

systems exhibit marginally poorer performance than shorter range systems in the 1 Sol 

orbit. For example, compare the results of the 1600 km lidar (black dashed line in Figure 

5.23) to the 1000km lidar. This is again due to the sensitivity of the 1 Sol trajectory to the 

quality and quantity of available atmospheric knowledge. Recall that each ∆V-λ curve 

corresponding to a given lidar range contains cases spanning the full range of lidar 

measurement errors. 
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Figure 5.23: 1 Sol (top) and 1400 km (bottom) Lidar  

Performance as a Function of Maximum Range 

    

If the measurement error of a lidar system is appreciable, the trajectory 

predictions based on the lidar measurements will contain significant errors. This problem 

is exacerbated as the maximum range of the lidar grows because the appreciable 

measurement error is propagated over longer ranges. Because the guidance makes 
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decisions based on these predictions, inaccurate long range lidar systems produce greater 

failure rates and higher ∆V requirements.    

 The system uncertainty due to variations in measurement error is illustrated in 

Figure 5.24. As is readily visible, the impact of measurement error has a more profound 

effect on the performance of the lidar-augmented guidance. Again, due to the sensitivity 

of the 1 Sol orbit to the level of available atmospheric knowledge, the PENS estimators 

begin to outperform several lidar-augmented systems above a failure rate λ > 7.5%. 

However, also observe that the same is true for the 1400 km orbit above a failure rate λ > 

10%. This highlights the sensitivity of the lidar-augmented system to large negative 

measurement errors.     

 It is unsurprising to observe that large negative measurement errors produce much 

higher ∆V requirements than large positive errors. Negative measurement errors, 

indicating that the measured density is smaller than the true value, trick the guidance into 

believing that lower densities lie ahead. Consequently, the guidance commands the 

vehicle to remain at lower altitudes for longer periods to dissipate excess momentum 

before beginning the outbound leg. During the outbound leg the density is much larger 

than predicted which causes the vehicle to exit the atmosphere below the target velocity. 

The derivative of the energy equation from two-body orbital mechanics may be expressed 

as: 

V
dV

d

r

V
=⇒−=

εµ
ε

2

2

    or    VdVd =ε                                    (5.4) 

where V is the velocity of the vehicle, µ is the gravitational parameter, r is the orbit 

radius, and ε is the orbital specific energy. Consequently, a vehicle traveling at a slower 

velocity must expend a larger ∆V to accomplish a given change in energy. Therefore, 

lidar systems which chronically under predict the true density require significantly higher 

∆V budgets. 
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Figure 5.24: 1 Sol (top) and 1400 km (bottom) Lidar  

Performance as a Function of Measurement Error 

 

Conversely, if the lidar over predicts the density (i.e. has a positive measurement 

error), then the reverse situation is true. The vehicle exits the atmosphere above the target 

velocity and the ∆V required to correct to the target orbit is much smaller owing to the 

high vehicle velocity. Exiting the atmosphere above the target velocity, while generating 
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lower ∆V requirements, is not an advisable strategy. Maintaining excess energy increases 

the likelihood that the vehicle will skip-out of the atmosphere if it is unable to rapidly 

compensate for the lidar error. This explains why many of the lidar systems with large 

positive errors have higher hard failure rates even though they have very low ∆V 

requirements. 
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Figure 5.25: Lidar Range/Error Failure Rate Maps for the 1 Sol (Top Row) & 1400 

km (Bottom Row) Orbits for 100 m/s (Left Column) & 160 m/s (Right Column) 

 

Figure 5.25 illustrates the total failure rate of the lidar-augmented guidance as a 

function of both range and error. These “checkerboard” plots decompose all 6000 cases 

for each orbit into 72 range/error bins (8 lidar ranges x 9 measurement error levels). 

Consequently, each range/error bin contains 6000/72 ≈ 83 cases. Due to the relatively 

small sample size, the statistical confidence of these plots is lower than the preceding 

results. However these checkerboard plots are useful because they illustrate the 

correlation between range and error as well as their joint impact on the total failure rate. 
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The left hand checkerboard plots correspond to a ∆V budget of 100 m/s while the right 

hand plots present data for a ∆V budget of 160 m/s.   

As expected, the lidar systems with large negative errors produce the highest 

failure rates (see Figure 5.25, left column). In addition, as discussed earlier, lidar systems 

with long ranges and large positive or negative measurement errors have elevated failure 

rates. For example, examine 160 m/s checkerboards for both orbits. Compare the failure 

rates in the upper right hand corners between 1200-1600 km and errors between 9-12% 

(i.e. the four squares in the upper right corner) to the failure rates with the same ranges 

and no measurement error. It is also readily observable that the largest failure rates occur 

in the lower left hand corner of the plots where the lidar systems have large negative 

measurement errors and short ranges.  

The results from the 12,000 lidar trajectory cases presented in the last three 

figures may be used to derive fundamental lidar system requirements for future use. The 

major quantitative and qualitative requirements may be summarized as follows: 

• Lidar measurement error is a major performance driver whereas the range of the 

lidar is not as significant.  

• Lidar measurement errors should be contained in the range [-3%,+6%] in order to 

circumvent the greatest amount of aerocapture risk at reasonable ∆V budgets. For 

very small ∆V budgets (< 100-130 m/s for the orbits examined herein), avoid 

negative lidar error. 

• Positive measurement errors (over-estimation) are significantly more cost 

effective than negative measurement errors as the vehicle exits the atmosphere at 

higher speeds. However, this is at the cost of a marginal increase in failure rate. 

• For lidar measurement errors bounded between ±3%, all lidar ranges exhibit 

similar failure rate performance.  
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• If larger measurement errors (>3%) are unavoidable, attempt to maximize the 

effective range. Lidar ranges greater than 1000 km appear to be best but the 

failure rate sensitivity to range is quite small compared to measurement error. 

5.5  Guided Trajectory Results Summary 

The key results from the analysis of the PENS estimator and the lidar-augmented 

guidance may be summarized as follows: 

• The PENS estimator was proven to outperform all conventional density 

estimators examined in this study even in the presence of large atmospheric 

perturbations.  

• The enhanced physical fidelity and flexibility of the PENS estimator leads to 

significant reductions in failure rate for a given ∆V or the required ∆V for a 

given failure rate. 

• The PENS estimator leads to performance improvements when targeting both 

high-altitude, high-energy orbits as well as low-altitude, low-energy orbits. 

• A tradeoff exists between ensemble complexity and prediction performance. 

Larger ensembles produce smaller performance uncertainties (in both the 

failure rates and required ∆V for aerocapture) with sufficient atmosphere 

exposure. The large quantity of atmospheric information available in a larger 

ensemble enables the Hebbian learning process implemented in the ensemble 

echo to produce very consistent performance by learning from atmospheric 

observations. 

• Smaller ensembles simplify the associative learning process and often offer 

better performance. However, this performance gain is commonly associated 

with higher performance uncertainties due to the limited amount of knowledge 

contained in a smaller ensemble. 
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• Future studies should focus on smaller ensembles where each of the 3-5 

members are distinct and widely spaced from one another. These models 

should span the range of conditions which may be encountered during the 

entry, including even extreme weather phenomena like dust storms. 

• The PENS-augmented guidance alters the cost/risk trade inherent in 

aerocapture orbit selection. Higher orbits such as the 1 Sol orbit have 

traditionally been found to produce small ∆V requirements but at an increased 

risk of aerocapture failure. The same trend is confirmed herein using 

conventional density estimators. However, when the PENS estimator is 

employed, the lower 1400 km orbit is shown to be more affordable (require 

less ∆V) than the 1 Sol at equivalent or lower level of risk for certain regions 

of the trade space. Thus, the PENS estimator has the potential to alter the cost 

and risk trade of aerocapture to the point where the low-altitude orbit may 

become the lowest cost option at commensurate or slightly lower levels of 

risk.      

• Under the conditions and assumptions of this study, laser-based remote 

sensing from on-board the entry vehicle in real time has been shown to 

produce superior performance to the PENS estimator. Future studies should 

focus on determining whether these assumptions hold for specific mission 

architectures. 

• Even a perfect lidar system (no measurement error with practically no sensor 

range limit) can still fail to complete a successful aerocapture, though the 

failure rates are quite small.  

• The lidar sensor range is not a major driver of aerocapture performance within 

the ranges examined (200–1600 km).  
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• The lidar measurement error is a major performance driver. Underestimation 

of density by the lidar produces a significantly elevated failure risk relative to 

overestimation.    
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CHAPTER 6 

CONCLUSIONS, CONTRIBUTIONS, & RECOMMENDATIONS 

 The PENS density estimator developed herein generates accurate and adaptable 

atmospheric density models throughout the entry. This estimator has been designed to 

replace the simplistic and inaccurate atmospheric density estimators utilized in modern 

guidance methods. Such estimators, like the common exponential density model, have 

little predictive power over large spatial volumes, particularly in highly variable 

environments such as the Martian atmosphere. When implemented into a numerical 

guidance scheme, the PENS estimator produces significant performance improvements, 

reducing both the likelihood of irrecoverable failures and the required post-aerocapture 

∆V. The PENS estimator achieves these performance gains by combining accurate 

physical models stored aboard the vehicle with atmospheric observations.  

6.1  Contributions of PENS to the State-of-the-Art 

A series of innovations was required in order to create the PENS algorithm and 

expand the current state-of-the-art of adaptive density forecasting. These innovations 

provide solutions to the supporting research questions discussed in Section 1.5 and 

contribute to the overall solution of the primary research question. Recall the primary 

question under study: “Can an improved atmospheric density estimator be created that 

reduces the impact of atmospheric dispersions on the performance of aerocapture 

guidance?” In order to approach this question, the problem was decomposed into several 

supporting research questions with a more limited scope. This decoupled the prime 

problem into smaller, more readily conquerable components.  

The first supporting research question sought to examine how the atmospheric 

state uncertainty may be reduced throughout the entry. This issue was approached with 

ensemble forecasting techniques commonly used in terrestrial applications. By employing 
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a series of climate models spanning the range of anticipated atmospheric conditions, 

ensemble techniques are useful for reducing the uncertainty of atmospheric forecasts in 

highly variable environments. However, these analyses are often complex and 

computationally expensive, requiring significant time and computational resources to 

complete. By employing the ensemble neural architecture and the ADALINE gating logic 

introduced in Sections 2.4-5, it was possible to adapt ensemble techniques for use aboard 

an entry vehicle.  

The second supporting research question sought to determine a means for 

utilizing the ensemble to form density forecasts which are consistent with observed flight 

data. The ability to use a density ensemble on-board an entry vehicle (an innovation 

provided by the first supporting question) enabled the creation of a data assimilation 

problem. Data assimilation is the process of combining information from a numerical 

climate model with measured/observed weather data while maintaining consistency in 

both datasets. Common in meteorology and the climate sciences, classical data 

assimilation problems are also computationally complex and require significant resources 

and time to complete. However, a new approach is used herein to reduce this complexity 

and still achieve the same end goal. The classic data assimilation problem is converted 

into a parameter estimation problem. Parameter estimation is quite common in real time 

applications as the current literature reveals (see Section 2.6). This conversion is 

accomplished by introducing the ensemble linear combination strategy, the weighting of 

the ensemble members based on their average errors, and the ensemble pruning scheme 

(see Sections 2.5-6 and 3.2). Combining the information stored in the ensemble with the 

measured/observed atmosphere density permits efficient use of all available atmospheric 

information in order to produce an effective and adaptable forecast model.     

 As discovered in Section 3.3.1, the estimator architecture created above, while 

effective, had no means of remembering good solutions or learning from atmospheric 

experience. It was conjectured that a novel associative learning mechanism could be 
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created in order to improve forecast performance. This led directly to the third supporting 

research question which sought to identify methods for leveraging atmospheric prediction 

experience to improve future forecast models. To answer this question, an associative 

learning mechanism known as an ensemble echo is introduced herein (see Section 3.3). 

This construct provides the means to selectively store past density prediction models 

which have been found to be effective and consider them again for future use. By only 

storing a limited set of the top performing models, the system continues to learn and 

evolve throughout the entry. The prediction models resulting from the echo selectively 

absorb critical atmospheric information and reject spurious trends and noise. This results 

in an effective and efficient PENS forecasts with a high degree of accuracy and 

flexibility.  

 The last supporting question sought to determine how a guidance scheme could be 

created which leverages the information produced by the new PENS density estimator. 

Contemporary guidance schemes were examined and it was determined that a numerical 

predictor corrector (NPC) offered the best option for properly using the estimator 

information throughout the entry (see Sections 4.1-2). In using simplistic atmospheric 

density models, most modern guidance schemes are forced to compensate for 

atmospheric dispersions after they have already affected the trajectory. This directly leads 

to prevalent guidance failure modes identified in the literature (see Section 1.3). Because 

the primary research question is concerned with reducing the impact of atmospheric 

uncertainty on aerocapture guidance, preventing or reducing the occurrence of these 

atmosphere-induced guidance failure modes is critical. Proper implementation of the 

PENS estimator into the NPC guidance scheme is crucial. The need to continually correct 

for atmospheric dispersions overwhelms many modern guidance schemes leading to 

incorrect or untimely guidance decisions and ultimately complete failure of the entry. 

Thus, it was determined that the PENS estimator should operate in parallel to the 

guidance scheme rather than in subordination to it (see Figure 3.7 in Section 3.3). This 
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permits the PENS estimator to unburden the guidance scheme by absorbing both the 

atmospheric noise and atmospheric state uncertainty. The prediction models resulting 

from the PENS estimator are linear combinations of the noiseless ensemble members and 

are, therefore, noise free. The guidance scheme may then plan maneuvers and base 

guidance decisions on smooth (i.e. noise free) yet accurate average density forecasts. This 

results in better guidance decisions which reduce the likelihood that an irrecoverable state 

will be reached leading to guidance failure.      

As mentioned, the innovations discussed above each answer one of the supporting 

research questions. These unique innovations, when combined, produce the novel PENS 

approach to adaptive density estimation and atmospheric uncertainty mitigation. The 

efficacy of these innovations at answering the prime research question is demonstrated 

through guided entry simulations in Chapter 5. The performance of the PENS estimator 

has been tested with over 144,000 guided trajectory simulations in order to fully 

characterize its impact under a variety of situations. These simulations reveal that the 

PENS estimator is effective in all of the examined scenarios. Reductions of 33% in both 

the average post-aerocapture ∆V and entry failure rates relative to the best contemporary 

density estimators are routinely observed. Much larger performance increases are also 

commonly observed. In one Monte Carlo simulation, for example, the PENS estimator 

decreased the maximum observed apoapsis error by 63%, the maximum required post-

aerocapture ∆V by 69%, and reduced the range of periapsis altitudes by 18%. Thus, the 

PENS algorithm successfully addresses the primary research question by reducing the 

impact of atmospheric dispersions on the aerocapture guidance process.  

 In addition, the PENS estimator is free of arbitrary tuning and start-up gains. At 

guidance activation, PENS is able to produce a density model as soon as the first 

measured density data point is collected. As the vehicle descends towards periapsis, the 

primary goal of the guidance is to ensure a successful capture. Detailed atmospheric 

information is not yet needed giving PENS time to learn from the atmosphere and adapt. 
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By the time the vehicle nears periapsis, the experience gained by PENS from atmospheric 

exposure produces more refined density prediction models suitable for accurate path 

prediction and control.  

 Lastly, PENS has no need for a priori assumptions about the atmospheric noise or 

atmospheric dynamics. The only recommended practice is to develop ensembles which 

span the possible day-of-flight conditions such that the measured density will remain 

bounded by the ensemble. However, even this is not a strict limitation. The PENS-3 

estimator which was shown to have excellent performance among the three ensembles 

examined included no dust storm models. The test simulations, however, included dust-

storm conditions with very high levels of suspended dust present in many cases. Limited 

ensembles which do not span the entire range of possible atmospheric densities may still 

performed well if the extreme density members are sufficiently close to actual extremes 

encountered in flight.   

6.2  Significance of the PENS Results 

6.2.1 Improved Aerocapture Risk-Adjusted Benefit 

The reduction in required ∆V achievable with aerocapture often has beneficial 

effects on multiple architecture elements by reducing propellant and engine mass 

requirements. However, the price of this ∆V reduction is the need to rely on a variable 

and uncertain planetary atmosphere instead of a traditional propulsive system. Because 

the majority of the world’s space faring nations have the capacity to produce reliable in-

space propulsive systems, traditional propulsive orbit insertion techniques are often 

viewed as less risky. Therefore, the architectural benefits of utilizing aerocapture on past 

missions have often been contradicted by the perceived risk and fiscal cost increases. For 

example, the Mars Odyssey mission originally planned to use aerocapture but this was 

changed to traditional propulsive capture in the early mission design phases
128

. Hence, 
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the risk-adjusted benefit of aerocapture has classically been considered too high to 

warrant its use to date. The PENS estimator, however, has the demonstrated capacity to 

improve the risk-adjusted benefit of aerocapture by simultaneously reducing the inherent 

operational risks and increasing the achievable ∆V savings. These benefits come at the 

cost of relatively benign programmatic risks as discussed in Section 6.2.3. 

Enhancing the safety and utility of aerocapture is significant for two reasons. 

First, it permits current robotic missions in the same class as Odyssey or MRO to be 

conducted more efficiently with smaller propellant requirements and therefore larger 

payload fractions. Second, for high-mass robotic or human scale architecture 

components, the addition of even small quantities of ∆V may require large design 

changes and generate considerable mass growth. High-mass architectures often involve 

many more elements than contemporary missions, many of which act as payloads for 

other elements. Mass reduction techniques such as aerocapture are therefore increasingly 

important in larger architectures in order to constrain flow-down mass growth. For this 

reason, the Office of the Chief Technologist (OCT) at NASA recently highlighted the 

importance of aerocapture as a “crosscutting” capability which has the potential to yield 

large mass savings in future Mars exploration architectures
129

. By increasing the risk-

adjusted benefit of aerocapture, the PENS algorithm has the potential to fulfill this 

requirement from the OCT and make future exploration architectures more affordable.     

6.2.2 Alternate Approach for Atmospheric Uncertainty Mitigation 

 For many missions to Mars requiring an atmospheric entry, the variability in the 

atmosphere is a major source of design uncertainty which is often mitigated by the 

addition of large design safety margins
5
. These margins often generate large increases in 

the system mass by favoring overdesign at the system level. This mass growth, in turn, 

may generate other negative consequences such as the need for a larger launch vehicle or 

aerodynamic decelerator system. This current paradigm may lead to non-trivial mass 
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growth in larger robotic or human scale exploration architectures. The variability in the 

Martian atmosphere will likely impact an entry mission in some tangible manner and this 

impact may be observed at both the operational and design levels. For example, 

atmospheric uncertainty often generates the need for large safety margins during the 

design process. Even with these margins, however, the effects of atmospheric dispersions 

still may generate large final state errors under operational conditions.  

The significance of the PENS algorithm partly lies in its approach to atmospheric 

uncertainty mitigation. As mentioned above, the PENS estimator has been developed to 

reduce the impact of atmospheric uncertainty throughout the entry and therefore operates 

in parallel to the guidance system. 

This not only transfers the task of uncertainty mitigation from the guidance 

system to PENS, it also transfers uncertainty mitigation from the design level to the 

operational level. This is a novel alternate approach to atmospheric uncertainty mitigation 

for Mars entry vehicles. By incorporating PENS into the GNC framework, the impact of 

the atmospheric uncertainty may be managed throughout the entry. The management of 

atmospheric variability during operations, using purpose-built mitigation mechanisms 

like PENS reduces uncertainty at the design level. Therefore the size and scope of the 

necessary design safety margins are also reduced leading to the development of a more 

efficient vehicle and exploration architecture. A clear example of this may be seen in 

comparing the ∆V-λ diagrams for any of the PENS estimators to an analogous historical 

density estimator. Because the PENS-augmented guidance produces lower required ∆V at 

an equivalent failure rate, the necessary ∆V safety margin is be reduced. (See, for 

example, the discussion of Figure 5.8 in Section 5.2).  

6.2.3 Comparison of PENS to Atmospheric Remote Sensing  

Alternate means of operational atmospheric uncertainty mitigation also exist. The 

conceptual laser-based remote sensing system (i.e. lidar) examined in Chapter 5 fills the 
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same uncertainty mitigation role as the PENS estimator. Because the lidar remote sensing 

system produced greater performance gains than the PENS estimator, it would seem 

natural to question why on-board density estimators are necessary. By choosing to further 

develop laser-based remote sensing, it would seem that almost all uncertainty and risk 

due to atmospheric perturbations could be completely eliminated. However, the cost-

benefit relationships of the various approaches must be examined. This is necessary to 

prevent the substitution of atmospheric uncertainty for dangerous increases in design 

uncertainty, vehicle cost, and programmatic risk.  

Lidar systems have existed for decades and are quite reliable in many 

applications. For entry vehicles and space applications, however, a significant number of 

developmental and operational challenges exist. Indeed, with sufficient time and 

developmental funding, laser-based remote sensing will likely become a higher 

performing option than conventional on-board density estimation. However, in the near-

term, many technology hurdles and integration considerations must be examined.  

Singh, Heaps, and Komar note that technical problems with several NASA lidar 

systems in the 1990’s led to the formation of an external review panel which 

recommended that NASA work to lower the technology risk of lidar missions
130

. The 

risks and technical challenges of operating a lidar system on even an orbital platform are 

significant. The vibratory and acceleration stresses of launch, the high required laser 

output power, thermal energy management, contamination of optical surfaces, material 

outgassing, radiation exposure, electro-optic component reliability, and mass/volume 

constraints are just a few of these challenges
130

.   

In response to the recommendations made by the external review panel, NASA 

initiated the Laser Risk Reduction Program (LRRP). The goals of this program focused 

on enhancing lidar long term reliability, development of new space-qualified lasers, 

development of enabling hardware (detectors, receiver systems, frequency converters, 

etc.), and management of knowledge advancements
130

. In short, concerted technology 
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incubation and process development programs were required to generate the successful 

lidar instruments utilized aboard the spacecraft in the first decade of this century. It 

should be reiterated that the majority of these instruments are located on orbital 

platforms. The Mars Phoenix lander, however, is equipped with an upward-looking 

meteorological lidar which was activated after landing
126

. This system is designed to 

measure aerosol and dust particulates in the Martian atmosphere up to a few kilometers 

above the surface. While this system did survive the entry environment as a stowed 

payload, it was inactive during atmospheric flight and has a very limited range relative to 

the applications discussed herein.    

For operation during the entry, several additional challenges must be faced. As 

discussed in Section 5.4, the remote sensor used here was assumed to: 

(1.)  have a high degree of pointing and tracking accuracy,  

(2.)  have a constant error/bias,  

(3.)  be capable of very rapid scanning patterns at the pace of the on-board 

numerical integration process, and 

(4.)  have a sufficient field of view to always observe the necessary trajectory 

segment even during maneuvers such as bank reversals.  

The veracity of these assumptions for specific lidar systems and mission architectures 

must be examined in future analyses. If any of these assumptions do not hold, then the 

results discussed in Section 5.4 are likely to be optimistic and not fully reflective of 

achievable performance. In addition to these assumptions, several other developmental 

and integration issues exist which may increase the programmatic cost and/or risk. The 

remote sensing system will likely need to operate behind the thermal protection system of 

the vehicle. This will require the inclusion of one or more transparent viewports in the 

high temperature windward side of the vehicle. While temperature resistant transparent 

materials exist, a window of any appreciable size may add significant weight to the 

vehicle. In addition, thermal radiation may be able to penetrate this window making 
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thermal management of the lidar system critical, perhaps requiring active cooling. An 

articulation system must be available to accurately slew the lidar emitter(s) in the 

direction of intended scanning with sufficient pointing accuracy. The effects of vibration 

and acceleration loading on the active lidar system must be mitigated. The system must 

be supplied with sufficient power by the spacecraft bus in order to resolve density 

features at long ranges.  

The lidar must also be capable of operating behind a dynamically varying shock-

layer. At sufficiently high entry velocities, radiative heating may become appreciable and 

generate added optical noise which the lidar must attenuate. In addition, the higher 

densities near the shock-layer may generate a high degree of backscatter from the layer. 

This would likely require a large increase in laser power in order to successfully penetrate 

this obstruction.  

 
Figure 6.1: Absorption Cross Sections for a 2-Micron Lidar at Earth and Mars

131
 

 

Lastly, the absorption cross section at Mars is very narrow due to the composition 

of the atmosphere (primarily CO2) at very low pressures. The absorption cross section 

refers to the range of wavelengths over which a target atmospheric gas absorbs the laser 
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energy emitted by the lidar. If the laser is not tuned to produce photons in this band of 

wavelengths, then the probability of absorption and subsequent backscattering by 

atmospheric molecules becomes uselessly small. If this were to occur, the lidar would 

effectively be blind as it would receive no return data from the atmosphere. Figure 6.1 

illustrates the absorption cross sections for both Earth and Mars for a candidate 2-mircon 

laser system capable of resolving atmospheric density on Mars
131

.  

Note the very narrow region of wavelengths in which the Mars lidar laser must 

function. This narrow absorption cross section for Mars led Singh et al. to observe that 

“Control of the laser spectrum becomes critical for the Mars application.
131

” Laser 

refraction across the shock structure, vibration, thermal effects, and many other factors 

may cause significant laser detuning making laser spectrum control a significant 

challenge.  

All of the technical issues discussed above may impede the effectiveness of the 

lidar relative to the results obtained herein and will likely increase the cost and weight of 

the entry vehicle. In addition, significant technology development and evaluation 

programs likely would be needed to implement such a system in the short term, adding to 

the programmatic risk and costs. In time, many of these technical issues may be solved 

independently for other applications. However, the vehicle integration issues discussed 

above will likely persist until entry vehicle lidar technology is flight proven. 

In contrast to laser-based remote sensing, on-board density estimators such as the 

PENS algorithm rely on proven methods and systems. The atmospheric density estimates 

required by PENS are obtainable with an entry air data system (ADS). Such systems are 

common and have been used for atmospheric data collection on entry vehicles from the 

X-15
31-33,105

 to the Space Shuttle
29,106-108

 to MSL
30,109

. Therefore, vehicle integration 

considerations, design of the sensors, data collection computers, and heat shield 

penetrations are well understood. In addition, many aerobraking missions have used only 

the information from accelerometers and gyros in the inertial navigation system (INS) to 
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estimate atmospheric density
36-39

. This approach, while simple and effective, has no 

means of separating atmospheric and aerodynamic uncertainties and is therefore less 

accurate. 

The PENS algorithm would also require an additional yet limited development 

effort to ensure fault tolerant operation and computational efficiency. Lastly, the PENS 

algorithm would require computational resources aboard the entry vehicle. However, it 

should be noted that lidar systems also would require both computational resources and 

fault tolerance measures. 

In summary, the potential benefits of remote sensing systems are quite 

appreciable but significant development and integration issues must be considered. The 

large reduction in atmospheric uncertainty afforded by lidar systems must be weighed 

against the increases in programmatic cost, risk, and vehicle design uncertainty. In 

contrast, the PENS algorithm offers a viable alternative in the near term. While less 

effective than lidar, the appreciable performance gains produced by PENS must be 

balanced against more benign expenditures such as greater on-board computational 

capability and the need for an ADS. In addition, future improvements to the PENS 

architecture may generate additional performance gains, further narrowing the gap 

between on-board estimators and remote sensing systems.        

6.3  Recommendations for Future Study and Implementation  

 Several subjects of interest to the development of future adaptive density 

estimators have been identified during the PENS development and testing process. These 

subjects warrant future study either because they may improve the PENS estimator in its 

current form or offer promising new directions for future adaptive estimators. Future 

research efforts should:  

(1.)  Examine small ensembles containing 3-5 distinct, widely space members. As 

currently defined, the parameter estimation scheme may incorrectly trust an 
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inappropriate ensemble model when the members are closely spaced (i.e. have 

very similar density trends). In addition, larger ensembles require more 

atmospheric exposure in order to prune members and assign weights (see Chapter 

5). The PENS-3 estimator demonstrated excellent performance with limited data. 

Therefore, one promising ensemble based on an expanded PENS-3 architecture 

would include average, low, and dust storm density models as well as an 

intermediate density model (between the average and dust storm models). Such an 

ensemble may generate excellent performance with very low performance 

variability/uncertainty. 

(2.)  Examine improvements to the parameter estimation scheme. The approach used 

herein is to weight the models by the inverse of their average (RMSE) errors. This 

approach is designed to be as simple as possible while still maintaining a high 

degree of effectiveness. Least squares fitting was found to produce poor results 

due to the effects of collinearity (see Section 3.2.2). Other techniques exist 

however, such as partial least squares
77

 and principle component regression
78

 

which remove the similarity between the ensemble members before the 

application of a least squares algorithm. While more computationally demanding, 

these algorithms may produce enough performance gains to justify their use. Also 

hybrid approaches could be examined wherein the inverse RMSE scheme is used 

at high frequency and a more detailed regression is performed only occasionally 

throughout the entry. 

(3.)  Examine extensions to the machine learning elements utilized in the PENS 

algorithm. This is a diverse and fascinating field and useful improvements may be 

produced by: 

a. Replacing the pruning process with a classifier neural network which 

would compute the probability that a given ensemble member is useful. 



216 

 

b. Examining the use of multiple adaptive linear neurons (MADALINE). The 

single ADALINE architecture used here is powerful, but additional 

learning and decision making prowess is undoubtedly attainable. 

c. Considering the addition of fuzzy logic to the decision making algorithm. 

Fuzzy controllers are powerful because they can mimic human-like 

reasoning like neural networks and are readily understandable. For this 

reason fuzzy systems are often combined with neural networks (creating a 

so-called neuro-fuzzy system). The weights derived by the parameter 

estimation scheme are reminiscent of fuzzy membership functions. This 

may be a natural avenue to improve the performance of parameter 

estimation without the need for complex and expensive regression 

algorithms.   

(4.)  Further examine lidar and remote sensing techniques for real time entry vehicle 

applications. The significant performance gains achievable with remote sensing 

make it an attractive option for future exploration even in light of the possible 

technical hurdles. Future research should focus on the interaction of the lidar laser 

with the flow field and shock structure near the vehicle. Also of interest are the 

effects of vibration and shock-layer thermal radiation on the laser and on the 

resulting data return signal.  

(5.)  Examine extensions of PENS-augmented entry guidance for landing missions 

such as MSL and future human exploration architectures. This will likely require 

consideration of winds as well as density. As seen in Section 4.2.3, density 

estimation error due to winds increases as vehicle velocity decreases. In addition, 

many types of landing vehicles can be strongly affected by winds, especially 

systems relying on parachutes. The PENS method could be applied several times; 

one PENS system would be responsible for density estimation as described 

herein. In addition, two more PENS estimators could also be used to estimate 
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zonal (east/west) and meridional (north/south) wind components. This would 

require the extension of the ensemble neural system to include models for average 

wind speeds over the range of possible atmospheric conditions. This would also 

require a means for estimating the wind velocity which can be achieved by 

combining information from the INS and ADS
109

.  

 

 For near-term applications, programs seeking to deploy the PENS algorithm 

aboard a guided entry vehicle should consider several developmental tasks. Aside from 

examining the subjects just highlighted for future study, a notional PENS development 

process is briefly outlined. Future missions should consider the following PENS 

development cycle: 

(1.)  Software-in-the-Loop Simulations: These simulations include detailed and 

mission specific models for actuators, controllers, the ADS, INS, and other 

systems which are necessary to support the guidance system and PENS. These 

simulations should be conducted to search for mission-specific issues, anomalies, 

and algorithmic faults resulting from the interactions among the various software 

components.  

(2.)  Bench Top Testing: Conduct tests with breadboard versions of the mission 

hardware. This phase would permit the refinement of fault tolerance measures, 

drive out system integration roadblocks, and ensure the proposed mission 

hardware has the requisite computational ability for the required load.  

(3.)  Piggyback Payload Test Flight (Optional): Similar to Phases I and II of the 

testing process herein (see Section 3.3), the PENS algorithm would be integrated 

into the mission flight software but be operated in an open loop. In this manner, 

the PENS algorithm has no ability to influence guidance decisions. Such a test 

would give confidence that the PENS algorithm is a flight-ready technology, is 

able to perform its intended purpose, and reduce future flight risks. 
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(4.)  Hardware-in-the-Loop Testing: Conduct tests of the actual flight hardware to be 

used on the maiden test flight of the closed loop PENS system. Fault detection 

and mitigation, fault tolerance measures, and mission specific hardware 

interactions with the PENS algorithm should be of prime interest in these tests. 

(5.)  Operational Test Flight: The first flight of a PENS-augmented guidance scheme 

should have the computational and memory capacity to save (or be able to 

reconstruct at a later time) the computational steps which actually occurred 

aboard the vehicle. This information may be invaluable for future algorithm 

improvements and for solving future integration issues.   
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APPENDIX A 

NEURAL NETWORK PRIMER, EQUATIONS,                                          

& FITTING STATISTICS 

An artificial neural network (NN) is a metamodel similar in function to a response 

surface equation (RSE) or other regression models.  The purpose of an artificial NN is to 

compactly represent large amounts of data in equation form.  The theory underpinning 

NN design and creation stems from the study of biological nervous systems.  As Rojas 

observes, artificial NNs attempt to model the information processing capabilities of 

nervous systems
79

.  The methods and tools used to create NN equations are designed to 

mimic the intuitive and associative learning processes observed in animals with complex 

nervous systems.  Therefore, NNs are adept at modeling complex patterns in datasets 

which regression techniques are unable to capture with high fidelity.  

The general architecture of an artificial NN is presented in Figure A.1. This 

general architecture consists of successive layers of nodes where arithmetic operations 

are performed. (These nodes are sometimes referred to as neurons in the literature.) 

Recall that every NN equation is a function mapping one or more input variables, pi to an 

output variable, q (i.e. q = f(p1, p2,…, pn) where n is the total number of inputs to the NN 

equation).  Thus the black nodes in the input layer each represent an input variable pi to 

the NN function. Each of the training cases in the training dataset provides one input to 

each of the nodes in the input layer.  For the application herein, each training case 

consists of the altitude (p1), latitude (p2), and longitude (p3) of a point in the Martian 

atmosphere for which MCD density information is available.     

At each of the hidden nodes, an arithmetic operation is performed. For example, 

the output of the i
th

 hidden node could be the sine, square, or tangent of its input.  This 

value would then be output to every other node which is connected to the i
th

 node.  The 

data received at the output layer (far right layer in the figure) after all arithmetic 



220 

 

operations have been performed represents the NN function output q. Note in Figure A.1 

that multiple output variables exist. However, for all NNs represented herein, only one 

output q is generated. This output q is the atmospheric density predicted by the NN given 

the three input variables describing a spatial location in the Martian atmosphere; altitude 

(p1), latitude (p2), and longitude (p3).   

 

 
Figure A.1.  General Neural Network Architecture

79
 

 

The basic process for creating an artificial NN first requires the acquisition of a 

training dataset representing the input variables, pi.  In this case, the Mars Climate 

Database (MCD) was used to generate tables of input data which describe the 

atmospheric density in the entry corridor at the time of the entry for various atmospheric 

conditions of interest (e.g. varying levels of dust optical depth, solar flux, etc.). 

Next, a training algorithm iteratively examines the NN output and modifies the 

architecture of the hidden layers until the output (i.e. the atmospheric density) matches 

the known output from the training data.  The training algorithm may alter the hidden 

layer architecture by changing the weights applied to incoming or outgoing data from 

each of the nodes.  It may change the nature of the arithmetic operation performed inside 

each node.  It may change how the nodes are connected to adjacent nodes.  Because many 

training methods are available, specific training algorithms are not discussed here. For a 

more complete introduction to NN training, including the biological origin of network 
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training as well as popular training algorithms, the introductory text of Rojas
79

 is 

recommended.  

Following NN training, a model validation measure of some form is often 

implemented. This validation procedure is necessary to ensure a good model fit and to 

confirm that smooth interpolation between members of the training dataset is possible. 

Once the NN is created, the arithmetic operations represented by each of the NN nodes 

may be collected and summarized as a single equation in order to simplify integration 

into larger algorithms.  

The thirty two NNs used herein to form the neural ensemble were created in the 

statistical software package JMP using single hidden layer perceptron NN models with 

logistic activation. Note that a perceptron is a NN wherein the connections between the 

nodes are weighted. Therefore, only one layer of nodes separates the input nodes 

(latitude, longitude, and altitude) from the output node (density). The number of nodes in 

the single hidden layer depends on the nature of the training data which the NN is 

attempting to describe. In general, more complex datasets require more nodes to generate 

adequate model fits. Because different atmospheric conditions create differing levels of 

atmospheric instability, the NNs created herein have differing numbers of hidden nodes. 

The basic arithmetic operation performed at each node is to apply the logistic function:  
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The arithmetic operation employed in each of the hidden nodes is commonly referred to 

as the activation function. The logistic activation function is commonly used in NN 

modeling packages because it introduces nonlinearity into the model but always maintain 

a positive derivative. As Rojas
79

 explains, maintaining a positive, finite derivative is 

useful in many popular training algorithms using gradient search methods. The results of 

this operation at each of the hidden nodes are then summed at the output layer to form the 

basis of the NN equation. Thus, each NN is a sum of logistic equations of the form: 
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where A, B, C0, and Ci are constants which are determined in the training process by JMP 

and the index i represents the i
th

 node in the hidden layer. The logistic function f(x) 

implemented at each hidden node is a function of the three input variables of altitude, 

latitude, and longitude.  For all the NNs herein, the logistic activation function is of the 

form 
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The constants of the above equation (I, ALTA, ALTB, ALTi, LATA, LATB, LATi, LONGA, 

LONGB, & LONGi) are determined by the NN training process in JMP and the index i 

represents the i
th

 node in the hidden layer.  Note that the logistic function f(xi) is a 

function of the three NN input variables (altitude h, latitude θ, and longitude φ).  Thus the 

arithmetic operation at each of the hidden nodes transforms the three NN inputs into a 

component of the density equation A.2. JMP was utilized to create the thirty two NNs 

which form the onboard ensemble.  The JMP fitting process requires both numerical and 

visual analysis to ensure sufficiently small modeling error.  The NN model fitting 

statistics are presented in Table A.1 while the coefficients of the NN equations are 

presented in Tables A.2-4. The first three labeled columns of Table A.1 (Scenario, 

Region, and Altitude) describe the data set being modeled. The number of nodes 

describes the number of hidden neurons necessary to achieve the stated modeling 

statistics. The coefficient of determination (R
2
) and the coefficient of determination 

following cross validation (CV R
2
) numerically quantify the general quality of the fit 

where better models have R
2
 values closer to unity. Cross validation is a process of 
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creating a NN model using only a portion of the available training data with the 

remaining data (1/3 of the data in this case) withheld. The withheld data is then used to 

test the model to ensure sufficiently high predictive accuracy. If the model is valid, the 

cross validation R
2
 should be close in value to the initial R

2
 as is the case for all the 

models herein. The actual-predicted and residuals-predicted columns are the results of 

visual inspections of two types of error plots. The metric labeled γ results from numerical 

analysis of the residuals-predicted plot. It should be generally less than 5-6% to ensure a 

good model fit. After the NN model is created, the original data is tested in the model and 

the resulting errors are all well described by Gaussian distributions. The last two columns 

(mean and std dev) describe the means and standard deviations respectively of these 

Gaussian error distributions expressed in percentage error. 
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Table A.1. Ensemble NN Fitting Statistics    

Actual - Residuals- Model Error 

NN Scenario Region Altitude 

# 

nodes R
2
 CV R

2
 Predicted Predicted γ, % mean% std dev% 

1 Average North Low 13 0.99995 0.99994 OK OK 4 0.0325 2.54 

2 Average North High 10 0.99967 0.99968 OK OK 1.25 0.055 3.38 

3 Average South Low 9 0.99996 0.99996 OK OK 5 0.023 2.048 

4 Average South High 12 0.99977 0.99972 OK OK 2 0.014 3.163 

5 Minimum North Low 11 0.99994 0.99994 OK OK 4.5 0.0163 2.27 

6 Minimum North High 8 0.99974 0.99975 OK OK 3.13 0.0479 3.154 

7 Minimum South Low 9 0.99995 0.99995 OK OK 5 0.022 2.102 

8 Minimum South High 15 0.99976 0.99976 OK OK 1.67 0.049 3.13 

9 Maximum North Low 11 0.99994 0.99993 OK OK 4.5 0.039 2.792 

10 Maximum North High 11 0.99959 0.99955 OK OK 1.56 0.074 3.818 

11 Maximum South Low 9 0.99995 0.99994 OK OK 5 0.0217 2.138 

12 Maximum South High 10 0.99971 0.99969 OK OK 1.83 0.052 3.327 

13 Warm North Low 7 0.99995 0.99994 OK OK 4.5 0.028 2.338 

14 Warm North High 13 0.99954 0.99953 OK OK 1.67 0.0725 3.847 

15 Warm South Low 9 0.99994 0.99994 OK OK 4 0.027 2.278 

16 Warm South High 11 0.99965 0.99964 OK OK 1.73 0.066 3.653 

17 Cold North Low 6 0.99994 0.99993 OK OK 6 0.038 2.827 

18 Cold North High 9 0.99979 0.99977 OK OK 1.25 0.0424 2.901 

19 Cold South Low 7 0.99996 0.99996 OK OK 4.5 0.025 2.218 

20 Cold South High 14 0.99978 0.99975 OK OK 1.25 0.0472 3.006 

21 Dust Avg North Low 8 0.9999 0.99989 OK OK 1.875 -0.0131 3.304 

22 Dust Avg North High 13 0.99966 0.99963 OK OK 0.909091 0.0623 3.539 

23 Dust Avg South Low 9 0.99989 0.99988 OK OK 1.5625 0.0487 3.1049 

24 Dust Avg South High 10 0.99968 0.99968 OK OK 1.285714 0.063 3.636 

25 Dust Low North Low 9 0.99995 0.99995 OK OK 1.25 0.0241 2.191 

26 Dust Low North High 13 0.99961 0.99964 OK OK 0.909091 0.0745 3.821 

27 Dust Low South Low 6 0.99994 0.99994 OK OK 1.40625 -0.028 2.373 

28 Dust Low South High 6 0.99968 0.99964 OK OK 1.136364 0.0547 3.669 

29 Dust High North Low 8 0.99989 0.99989 OK OK 1.4375 0.0518 3.21 

30 Dust High North High 8 0.99954 0.99954 OK OK 1.071429 0.0746 3.881 

31 Dust High South Low 8 0.99988 0.99988 OK OK 1.625 0.0527 3.236 

32 Dust High South High 10 0.99962 0.99963 OK OK 1.190476 0.0725 3.86 

γ = scaled residuals span = span of residuals / minimum of predicted 

1/3 of training data withheld for cross-validation purposes 
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Table A.2.  Model Coefficients for Neural Networks #1-8 

NN 1 2 3 4 5 6 7 8 

Nodes 13 10 9 12 11 8 9 15 

I1 0.621049 -1.61551 1.765673 -0.27647 0.282786 -0.47402 -2.80192 0.676045 

I2 -2.67946 0.486871 -0.51849 -0.41327 -0.28278 -0.72331 -0.90433 0.997213 

I3 0.322455 0.971849 0.126708 -0.11385 -0.28284 -1.26071 -0.30419 -0.13142 

I4 -0.18146 -0.72349 -1.10613 0.025198 -0.28293 1.066214 -0.29965 0.13141 

I5 -0.18502 -0.45788 -0.47636 0.396961 1.4932 -0.96667 -0.96207 -0.13143 

I6 -0.18191 0.394205 -0.35022 -0.435 0.402463 -0.32075 1.080283 -1.22928 

I7 0.182086 -1.22971 -3.00015 0.259056 -0.28395 -0.25251 -0.19545 0.131332 

I8 1.236334 0.624164 -1.03035 1.894586 -1.54841 1.785239 0.241379 0.059375 

I9 0.203247 0.03756 0.317826 0.995049 -0.28278 0 -0.14856 0.131381 

I10 -0.1821 -0.55206 0 0.288187 0.517579 0 0 0.148745 

I11 0.18215 0 0 -0.51222 1.397028 0 0 -0.13162 

I12 0.318908 0 0 -0.31354 0 0 0 -0.13143 

I13 -0.07752 0 0 0 0 0 0 0.131402 

I14 0 0 0 0 0 0 0 -0.13142 

I15 0 0 0 0 0 0 0 -0.13143 

ALT1 1.406308 -1.06854 1.175109 -1.04606 -0.66751 -2.23082 1.266049 -2.06511 

LAT1 0.197957 -0.12167 -0.60121 1.273755 -0.04083 -0.41191 0.09836 -0.45411 

LONG1 0.118708 -0.05678 0.075877 0.075971 -0.01384 -0.46339 0.086931 -0.11961 

ALT2 1.265871 0.613923 -0.86021 0.140647 0.667572 0.411548 1.105676 0.036668 

LAT2 0.237236 -0.48893 -1.32815 0.758958 0.040791 -0.17967 -0.87583 -1.03926 

LONG2 0.169452 -1.14077 -0.0109 0.619392 0.014111 0.163757 0.073089 -0.4238 

ALT3 0.524618 -0.13983 0.244415 0.406646 0.666745 0.691111 0.474168 -0.39709 

LAT3 -0.48065 -0.51953 0.577782 0.259778 0.041255 0.81037 0.125379 0.056449 

LONG3 -0.40707 -0.41435 -0.23447 -0.00485 0.010514 -0.46417 -0.13357 -0.02048 

ALT4 0.485108 -2.51866 1.561499 -0.13716 0.665861 0.085517 0.055692 0.396368 

LAT4 0.016943 -0.32806 -1.08181 -1.58186 0.041757 -0.48616 1.057293 -0.05639 

LONG4 -0.07769 -0.44117 0.076818 0.144719 0.006599 -0.39539 -0.06959 0.020072 

ALT5 0.48616 0.882974 -0.14602 0.456265 1.841951 0.788213 -0.85796 -0.39711 

LAT5 0.017579 -0.39847 1.010319 0.287609 -0.36065 -0.25612 -0.33203 0.056451 

LONG5 -0.08062 0.164065 0.060247 0.886834 -0.05452 -0.34342 -0.05576 -0.02049 

ALT6 0.485514 -1.38209 1.979407 2.358308 0.113477 -0.17863 0.485894 -0.7718 

LAT6 0.016715 0.038999 0.030618 0.440128 0.776066 0.397244 -0.53961 0.160468 

LONG6 -0.07729 0.356066 0.028067 0.199473 -0.10677 1.147388 0.128272 0.003479 

ALT7 -0.48559 0.584863 1.417541 0.642419 0.656506 -0.556 1.964533 0.395177 

LAT7 -0.01672 0.743833 -0.02009 -0.20695 0.047152 -0.32956 0.116515 -0.05629 

LONG7 0.077365 -0.47714 0.081166 0.044276 -0.03513 -0.26033 0.052145 0.019428 

ALT8 1.404825 0.849655 -0.85401 1.169773 2.026612 1.116995 0.800641 0.012272 

LAT8 -0.48225 -0.13341 -0.56667 -0.15656 0.160711 0.049808 1.222198 -1.71727 

LONG8 -0.16777 -0.13231 -0.1019 -0.05616 0.213409 -0.02552 -0.00374 0.25198 
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Table A.2.  (continued) 

ALT9 -0.49383 -2.22367 0.263337 -0.98327 0.667526 0 0.469532 0.397632 

LAT9 -0.01864 0.256216 0.40583 0.232795 0.040817 0 0.11021 -0.05649 

LONG9 0.089624 0.052405 0.496517 0.455878 0.013906 0 -0.09065 0.020802 

ALT10 0.485338 0.831018 0 -0.63134 0.594415 0 0 0.140761 

LAT10 0.01701 0.827597 0 -0.59881 -0.26652 0 0 0.669623 

LONG10 -0.0781 0.96383 0 0.813388 -0.21862 0 0 0.586576 

ALT11 -0.48534 0 0 0.012973 -0.94709 0 0 -0.39513 

LAT11 -0.01703 0 0 -1.59136 -0.20448 0 0 0.056323 

LONG11 0.078172 0 0 -0.49512 -0.16245 0 0 -0.01929 

ALT12 0.125538 0 0 0.611891 0 0 0 -0.39687 

LAT12 0.698899 0 0 -0.4255 0 0 0 0.056432 

LONG12 -0.14298 0 0 0.343382 0 0 0 -0.02035 

ALT13 0.243577 0 0 0 0 0 0 0.397356 

LAT13 -0.21823 0 0 0 0 0 0 -0.05647 

LONG13 -0.6998 0 0 0 0 0 0 0.020637 

ALT14 0 0 0 0 0 0 0 -0.39727 

LAT14 0 0 0 0 0 0 0 0.056462 

LONG14 0 0 0 0 0 0 0 -0.02058 

ALT15 0 0 0 0 0 0 0 -0.39683 

LAT15 0 0 0 0 0 0 0 0.056429 

LONG15 0 0 0 0 0 0 0 -0.02032 

C0 0.389822 1.071988 2.18454 3.003378 -0.00298 2.64255 1.937184 -2.17331 

C1 -1.12745 1.911941 -1.36662 -0.42849 1.105512 0.786673 -2.2094 0.641256 

C2 -1.88581 0.547173 -0.60785 -0.96793 -1.10551 -1.01756 -0.46091 0.779168 

C3 -0.62149 -1.19179 -0.63384 -0.96985 -1.10551 -0.63666 -1.03964 0.638639 

C4 -0.71493 0.836888 -0.50556 0.836477 -1.10555 -1.1575 -0.69695 -0.63869 

C5 -0.7175 -0.82203 -0.68214 0.540095 0.713954 -1.16457 1.333422 0.638639 

C6 -0.71513 0.941143 -0.89901 -0.67523 0.478812 -0.55512 -1.08905 1.372017 

C7 0.715245 -0.64398 -2.54187 -1.07994 -1.10607 0.998841 -0.66978 -0.6387 

C8 0.616575 -1.19922 1.301796 -2.0202 0.768244 -1.83313 0.62434 0.481085 

C9 0.729772 -0.73579 0.292919 1.13943 -1.10551 0 -0.99929 -0.63855 

C10 -0.71537 -0.51676 0 -0.44356 -0.79585 0 0 0.436031 

C11 0.715417 0 0 -0.53063 1.657747 0 0 0.638929 

C12 0.578129 0 0 -1.02155 0 0 0 0.638664 

C13 0.448435 0 0 0 0 0 0 -0.6386 

C14 0 0 0 0 0 0 0 0.638618 

C15 0 0 0 0 0 0 0 0.63867 

A 3.727505 2.010381 3.424234 1.995987 3.532479 2.126388 3.42971 2.080528 

B -9.05645 -19.1232 -8.64415 -18.4791 -8.7254 -19.253 -8.64681 -18.5653 

ALTA 43.83333 128 43.83333 128 43.83333 128 43.83333 128 

ALTB 31.54537 15.49745 31.54537 15.4948 31.54739 15.49745 31.54537 15.49767 

LATA 45 22.5 -45 -45 22.5 22.5 -45 -45 
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Table A.2.  (continued) 

LATB 27.04021 14.03008 27.04021 27.04334 14.02696 14.03008 27.04021 27.04835 

LONGA 70.30833 70.30833 70.30833 70.30833 70.30833 70.30833 70.30833 70.31667 

LONGB 19.41374 19.4193 19.41374 19.41598 19.41498 19.4193 19.41374 9.630858 

 

Table A.3.  Model Coefficients for Neural Networks #9-16 

NN 9 10 11 12 13 14 15 16 

Nodes 11 11 9 10 7 13 9 11 

I1 -0.12868 -0.18723 -1.11229 -1.07554 -0.13147 -1.25539 -2.26826 0.039154 

I2 -0.12842 -0.79532 -0.59524 -0.65195 -1.74013 0.077074 -0.07887 -0.03945 

I3 0.128844 -1.04943 0.554184 -0.06649 0.641765 -1.26148 0.050861 -1.27644 

I4 0.128728 0.729315 1.687753 -0.55361 -1.29992 0.076095 -0.13398 -0.03918 

I5 -0.59892 -0.31033 -1.0678 1.191368 -0.70054 -0.18565 -0.33596 1.811116 

I6 -0.18659 -0.01596 -0.47797 0.164058 0.829186 -0.07751 -0.85853 -0.70011 

I7 2.682039 0.813585 0.313963 0.680353 -1.00314 0.07757 -0.11211 0.039177 

I8 0.329819 -1.11131 0.327439 1.178184 0 -0.86845 -0.39151 0.597307 

I9 0.767521 -0.01597 -2.9875 2.154479 0 -0.0773 0 0.039174 

I10 -0.55609 -0.74157 0 0.335847 0 0.81219 0 -0.2032 

I11 -0.30204 2.2436 0 0 0 0.122703 0 -0.03914 

I12 0 0 0 0 0 -0.16117 0 0 

I13 0 0 0 0 0 -0.83956 0 0 

I14 0 0 0 0 0 0 0 0 

I15 0 0 0 0 0 0 0 0 

ALT1 0.457673 -0.47974 1.55357 0.423955 -1.97504 -0.76702 1.333303 0.403256 

LAT1 0.070367 -0.99703 -1.06996 0.221518 0.055104 0.802223 0.287452 -0.26275 

LONG1 -0.0608 0.170522 0.098617 -0.5027 -0.24553 0.575702 0.004858 0.091392 

ALT2 0.459274 0.712033 0.498897 0.52034 1.197051 0.475741 -0.90904 -0.40303 

LAT2 0.069208 0.771447 0.106051 0.911044 -0.281 0.022454 0.244672 0.261746 

LONG2 -0.06148 1.205745 -0.153 -0.75837 -0.22539 -0.00519 -0.07111 -0.09193 

ALT3 -0.456 -2.82936 0.143921 0.153915 -0.21094 -1.53294 -0.86267 0.819734 

LAT3 -0.07152 -0.52297 -1.08035 1.779501 -0.95251 -0.12543 0.204236 1.15827 

LONG3 0.060059 -0.56056 -0.02424 -0.66041 0.089463 -0.13413 0.002909 -0.04024 

ALT4 -0.45731 -0.37034 1.108636 0.737543 -0.43932 0.479337 0.077027 -0.40311 

LAT4 -0.07062 0.377969 -0.64565 0.552119 0.159522 0.022857 1.078702 0.262852 

LONG4 0.060645 -0.3353 0.091943 0.254623 0.519576 -0.00734 0.006569 -0.0907 

ALT5 -1.38222 0.769228 -0.91415 -1.22624 -0.96349 0.630539 -0.73998 1.16661 

LAT5 -0.25949 -0.20739 -0.56621 0.357636 -0.11206 -0.03155 -1.21724 0.44777 

LONG5 -0.15638 -0.37884 -0.07802 0.141392 -0.12225 0.229607 -0.03427 -0.05859 

ALT6 0.025011 -0.37727 -0.82354 -2.76749 -0.82803 -0.47541 -0.70941 0.438845 

LAT6 -0.71534 -0.12965 -1.25117 -0.39635 0.078276 -0.02251 -0.39214 -0.43508 

LONG6 0.156242 0.079905 -0.0327 -0.15417 -0.38678 0.005159 0.032928 -0.21342 

ALT7 -1.29069 -0.84013 0.171386 -0.45363 0.807565 0.473763 0.850417 0.403128 

LAT7 -0.25489 -0.74098 0.543614 0.199691 0.417855 0.022228 -0.15817 -0.26285 
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Table A.3.  (continued) 

LONG7 -0.17434 0.224159 -0.16885 -0.38296 0.023413 -0.00401 -0.01363 0.09078 

ALT8 0.169135 -0.16199 -2.0791 0.298613 0 -0.4497 -2.21997 0.630266 

LAT8 -0.57623 0.503364 -0.0677 -1.61119 0 -0.34814 0.410686 -1.48396 

LONG8 -0.27751 0.586662 -0.05664 -0.54823 0 -0.78923 -0.05612 0.131668 

ALT9 -0.88038 -0.37725 1.386224 1.414069 0 -0.47505 0 0.403137 

LAT9 0.248782 -0.12966 -0.0461 -0.13381 0 -0.02239 0 -0.26286 

LONG9 0.221397 0.079939 0.102297 0.014914 0 0.004803 0 0.090809 

ALT10 -0.73414 -0.72807 0 0.533501 0 0.40323 0 2.461975 

LAT10 0.728574 0.654818 0 0.624523 0 0.175579 0 0.346805 

LONG10 -0.01683 1.207516 0 0.740819 0 -0.36351 0 0.005649 

ALT11 0.35584 1.317564 0 0 0 0.712742 0 -0.40315 

LAT11 -0.33686 0.201062 0 0 0 -0.49107 0 0.262911 

LONG11 -0.70409 0.1289 0 0 0 -1.00335 0 -0.09078 

ALT12 0 0 0 0 0 -0.60038 0 0 

LAT12 0 0 0 0 0 -1.19426 0 0 

LONG12 0 0 0 0 0 0.171189 0 0 

ALT13 0 0 0 0 0 -0.45732 0 0 

LAT13 0 0 0 0 0 -1.09635 0 0 

LONG13 0 0 0 0 0 -0.45622 0 0 

ALT14 0 0 0 0 0 0 0 0 

LAT14 0 0 0 0 0 0 0 0 

LONG14 0 0 0 0 0 0 0 0 

ALT15 0 0 0 0 0 0 0 0 

LAT15 0 0 0 0 0 0 0 0 

LONG15 0 0 0 0 0 0 0 0 

C0 -2.42509 0.259878 1.354096 0.220064 -0.27571 0.62911 0.035109 1.917819 

C1 -0.76335 -0.43705 -0.53508 -1.04856 -0.77979 1.034701 -1.93759 -0.62534 

C2 -0.76315 -0.49144 -0.94866 0.703742 -1.69951 -0.77788 1.365605 0.624232 

C3 0.763473 0.681655 0.623628 -0.45308 -0.43089 1.666516 1.33384 -0.84451 

C4 0.763388 0.734947 -1.31139 -1.03685 0.972745 -0.77736 -0.67046 0.625388 

C5 1.136354 -0.94587 1.078663 1.014906 1.816812 -0.89928 -0.61161 -1.8373 

C6 -0.59757 0.637478 -0.66828 0.653754 1.47043 0.777956 1.246312 -0.8249 

C7 2.076519 1.004047 -0.70785 0.894957 -1.94579 -0.77806 -1.31916 -0.6254 

C8 -0.62334 1.418766 0.713098 0.46676 0 -0.55107 -0.5751 0.707708 

C9 1.048629 0.637478 -2.3609 -2.17982 0 0.777957 0 -0.62541 

C10 -0.45803 -0.569 0 0.480087 0 -1.07278 0 -0.64329 

C11 0.344856 -1.99371 0 0 0 0.986866 0 0.625464 

C12 0 0 0 0 0 -0.88254 0 0 

C13 0 0 0 0 0 0.761355 0 0 

C14 0 0 0 0 0 0 0 0 

C15 0 0 0 0 0 0 0 0 

A 3.52577 1.950763 3.424273 1.952028 3.451546 1.85154 3.253927 1.999472 
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Table A.3.  (continued) 

B -8.72103 -19.074 -8.64229 -18.4536 -8.57536 -18.8804 -8.41218 -18.2296 

ALTA 43.83333 128 43.83333 128 43.83333 128 43.83333 128 

ALTB 31.54739 15.49745 31.54537 15.4948 31.54739 15.49745 31.54844 15.49882 

LATA 22.5 22.5 -45 -45 22.5 22.5 -45 -45 

LATB 14.02696 14.03008 27.04021 27.04334 14.02696 14.03008 27.04284 27.05035 

LONGA 70.30833 70.30833 70.30833 70.30833 70.30833 70.30833 67.5 67.5 

LONGB 19.41498 19.4193 19.41374 19.41598 19.41498 19.4193 7.977544 7.979762 

 

Table A.4.  Model Coefficients for Neural Networks #17-24 

NN 17 18 19 20 21 22 23 24 

Nodes 6 9 7 14 8 13 9 10 

I1 0.068859 -0.50902 -2.96637 0.206482 0.612022 -0.03639 1.532815 -2.17623 

I2 0.08896 0.910966 -0.45347 0.206028 -0.8223 -0.54193 3.959451 0.040869 

I3 -0.15075 -0.41537 0.169347 -0.20586 -0.10457 -0.03637 0.241988 -0.56396 

I4 2.873016 0.548708 -0.46987 -0.87814 0.103154 -0.03637 0.802489 0.041084 

I5 0.900633 0.422053 0.130223 -0.20643 3.669213 0.524198 -0.02718 -0.38296 

I6 0.879811 -0.57037 0.025573 -0.2098 0.104715 0.674197 0.026361 -0.27831 

I7 0 0.706559 -0.90478 -0.4518 -1.50782 -0.03651 0.613304 -0.04086 

I8 0 -1.05407 0 0.20942 -0.30769 0.036379 -0.30177 0.041068 

I9 0 -0.99295 0 0.371436 0 -0.03637 1.902856 0.040812 

I10 0 0 0 -0.0047 0 -0.03678 0 -1.17748 

I11 0 0 0 0.206303 0 -1.1472 0 0 

I12 0 0 0 -0.20637 0 0.036371 0 0 

I13 0 0 0 -0.77487 0 0.036377 0 0 

I14 0 0 0 0.20641 0 0 0 0 

I15 0 0 0 0 0 0 0 0 

ALT1 -2.6789 0.626728 1.501989 0.437857 -0.01629 -0.42858 1.462442 -1.21247 

LAT1 0.156893 -0.32382 -0.03285 -0.12825 -0.51537 -0.12103 -0.2676 -0.19492 

LONG1 0.007694 -0.28312 0.025134 0.036195 -0.27198 -0.02558 0.014322 0.052659 

ALT2 0.480134 0.186453 -0.72578 0.437555 1.080556 -0.39687 -2.42821 0.402088 

LAT2 -0.08569 -0.6986 -1.15756 -0.12847 0.560605 0.914996 -0.03696 -0.03095 

LONG2 -0.08957 -1.33733 -0.1355 0.036319 0.230757 0.169693 -0.05517 0.00352 

ALT3 -0.40564 1.391074 0.729869 -0.43745 0.281032 -0.42783 0.835585 -0.17128 

LAT3 -0.749 0.501866 -0.60485 0.128557 -0.14401 -0.12062 -0.62446 0.061087 

LONG3 0.015805 0.56838 -0.05133 -0.03637 -0.13912 -0.02662 0.159998 -0.43094 

ALT4 -1.42256 -0.6638 -0.29698 -0.71857 0.912924 -0.42824 -0.5372 0.3965 

LAT4 -0.01015 -0.44474 -0.51236 0.147426 -0.75991 -0.12087 0.900472 -0.02147 

LONG4 -0.05099 0.335804 0.039663 -0.00601 -0.10487 -0.02608 -0.02163 -0.01039 

ALT5 -0.66581 -0.71161 -2.04689 -0.43783 -2.33418 0.778415 -0.28168 0.144236 

LAT5 -0.40423 0.382537 -0.16826 0.128275 -0.10065 1.174777 -0.21281 1.200976 

LONG5 -0.00862 -0.27883 0.001107 -0.03621 -0.09093 0.437089 0.100694 0.063011 

ALT6 1.43965 -1.19835 -0.04241 -0.43668 -0.2802 -0.08847 0.281102 2.205385 
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Table A.4.  (continued) 

LAT6 0.206931 -0.10855 0.907538 0.124401 0.143724 0.821265 0.212849 0.572687 

LONG6 0.048958 -0.1197 0.121699 -0.03152 0.137991 0.481913 -0.10221 0.091985 

ALT7 0 0.8472 -1.34026 0.253957 -1.40167 -0.42802 -0.00361 -0.40241 

LAT7 0 0.177707 0.14375 -0.29546 -0.16433 -0.1206 -0.77807 0.03151 

LONG7 0 0.048649 -0.02651 -0.4398 -0.06742 -0.02639 -0.0616 -0.00433 

ALT8 0 2.240615 0 0.435405 0.183884 0.428055 -0.37561 0.396952 

LAT8 0 0.251929 0 -0.12382 -0.65877 0.120752 -0.91665 -0.02222 

LONG8 0 0.410068 0 0.03044 0.042661 0.026339 -0.13896 -0.00929 

ALT9 0 0.118311 0 0.39016 0 -0.42798 -1.86075 0.403867 

LAT9 0 0.47454 0 -1.30676 0 -0.12071 0.693109 -0.03404 

LONG9 0 0.542102 0 -0.01813 0 -0.02643 -0.05026 0.008018 

ALT10 0 0 0 2.248972 0 -0.42933 0 0.632344 

LAT10 0 0 0 0.362834 0 -0.12095 0 -0.48516 

LONG10 0 0 0 0.06878 0 -0.02422 0 -0.18713 

ALT11 0 0 0 0.437736 0 -1.36918 0 0 

LAT11 0 0 0 -0.12834 0 -0.054 0 0 

LONG11 0 0 0 0.036241 0 -0.00139 0 0 

ALT12 0 0 0 -0.43778 0 0.428022 0 0 

LAT12 0 0 0 0.128309 0 0.120739 0 0 

LONG12 0 0 0 -0.03622 0 0.026381 0 0 

ALT13 0 0 0 0.537903 0 0.427988 0 0 

LAT13 0 0 0 0.979343 0 0.120712 0 0 

LONG13 0 0 0 0.033398 0 0.026425 0 0 

ALT14 0 0 0 0.437809 0 0 0 0 

LAT14 0 0 0 -0.12829 0 0 0 0 

LONG14 0 0 0 0.036213 0 0 0 0 

ALT15 0 0 0 0 0 0 0 0 

LAT15 0 0 0 0 0 0 0 0 

LONG15 0 0 0 0 0 0 0 0 

C0 -1.54028 -0.93352 -0.07116 0.371036 -1.73328 -1.78969 -0.48694 1.496927 

C1 0.484409 -0.92723 -2.36049 -0.655 -0.77817 0.618118 -1.93485 1.876292 

C2 -0.89279 0.534561 -0.45849 -0.65459 -1.0014 1.019726 2.036199 -0.55129 

C3 -0.63007 -1.10464 -0.73045 0.654441 -0.57999 0.618231 -0.6498 0.564344 

C4 2.292475 0.925773 0.774273 1.178682 0.57317 0.618206 -0.93556 -0.55222 

C5 1.236218 0.828595 0.920743 0.654956 2.337024 0.616218 0.508698 -0.9888 

C6 -1.35219 1.5773 -0.7059 0.658231 0.580099 -0.66815 -0.50826 -0.81277 

C7 0 -1.43211 1.30185 -0.51651 2.035941 0.618227 0.904349 0.55123 

C8 0 0.774294 0 -0.65797 -0.74278 -0.61823 -0.52169 -0.55216 

C9 0 1.303778 0 0.987387 0 0.618232 0.987632 -0.55093 

C10 0 0 0 -0.49259 0 0.617637 0 -1.28126 

C11 0 0 0 -0.65484 0 1.870136 0 0 

C12 0 0 0 0.654893 0 -0.61823 0 0 
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Table A.4.  (continued) 

C13 0 0 0 -0.65776 0 -0.61823 0 0 

C14 0 0 0 -0.65493 0 0 0 0 

C15 0 0 0 0 0 0 0 0 

A 3.742515 2.093029 3.593269 2.064919 3.249709 1.883784 3.04986 2.076872 

B -8.96338 -19.6658 -8.81648 -18.925 -8.40308 -18.798 -8.21917 -18.0984 

ALTA 43.83333 128 43.83333 128 43.83333 128 43.83333 128 

ALTB 31.54739 15.49745 31.54537 15.49882 31.55161 15.50298 31.5484 15.49767 

LATA 22.5 22.5 -45 -45 22.5 22.5 -37.5 -45 

LATB 14.02696 14.03008 27.04021 27.05035 14.02883 14.03509 22.70723 27.04835 

LONGA 70.30833 70.30833 70.30833 67.5 70.31667 70.31667 70.31667 70.31667 

LONGB 19.41498 19.4193 19.41374 7.979762 9.629863 9.634155 9.628883 9.630858 

 

Table A.5.  Model Coefficients for Neural Networks #25-32 

NN 25 26 27 28 29 30 31 32 

Nodes 9 13 6 6 8 8 8 10 

I1 0.337035 0.712334 -0.20012 0.425896 0.68871 0.128817 3.92033 1.89444 

I2 0.278487 -0.58327 2.506259 -1.88326 -1.48398 0.15148 -0.24817 -0.1211 

I3 -0.80487 -0.08602 -0.61764 -0.60667 0.939135 0.164572 -0.33949 -0.10794 

I4 -1.21446 -0.43663 -1.43786 -1.38205 -0.11136 -0.80906 -0.57826 -0.10795 

I5 -0.2019 -0.47479 1.036723 -0.9585 0.334249 1.129886 -0.1128 -0.1078 

I6 -0.00818 0.091552 -1.77021 0.258528 -0.11158 -0.69053 0.790002 -0.12073 

I7 0.276906 0.661609 0 0 3.802754 0.484341 1.525775 0.141877 

I8 0.273899 0.731669 0 0 0.070367 -0.54282 1.887156 0.107922 

I9 0.279082 -0.0952 0 0 0 0 0 -1.20795 

I10 0 -0.09099 0 0 0 0 0 -0.10797 

I11 0 0.148469 0 0 0 0 0 0 

I12 0 -0.10088 0 0 0 0 0 0 

I13 0 0.477006 0 0 0 0 0 0 

I14 0 0 0 0 0 0 0 0 

I15 0 0 0 0 0 0 0 0 

ALT1 -0.03488 1.243876 -0.20913 0.129227 -0.07614 0.572902 -2.45696 1.09004 

LAT1 -0.66844 0.235255 1.212975 0.518521 -0.4879 -0.04772 -0.03799 0.166303 

LONG1 -0.07732 0.100528 0.06438 0.597244 -0.2731 -0.06436 -0.04717 -0.00291 

ALT2 -0.67465 0.51068 -1.53118 -1.22492 -1.36377 0.584443 -0.86393 2.356636 

LAT2 -0.08329 0.11713 -0.3603 -0.05593 -0.19875 -0.04592 0.646757 0.540731 

LONG2 -0.02468 0.418454 -0.01474 -0.05934 -0.0772 -0.05724 -0.16372 0.09985 

ALT3 0.840706 -0.30258 -0.66527 1.613495 -1.16223 -0.85942 -0.35976 -0.41934 

LAT3 0.26549 0.011288 -1.33289 0.225494 -0.60334 -0.41094 -0.93788 -0.06365 

LONG3 0.047067 0.097396 -0.10095 0.058762 -0.24426 -0.3932 -0.13438 -0.05056 

ALT4 1.060679 -0.65125 1.413554 0.807883 0.248579 0.072424 -0.00987 -0.41934 

LAT4 -0.33513 0.117404 -0.43808 -0.80291 -0.20677 -0.89045 0.766266 -0.06365 

LONG4 0.012971 0.034134 0.007078 0.032933 -0.13979 -0.32605 0.053127 -0.05057 
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Table A.5.  (continued) 

ALT5 0.607212 0.011881 0.838677 0.494532 -0.15756 1.278307 -0.40147 -0.41945 

LAT5 0.018984 1.065914 0.506349 0.576643 0.56227 0.059056 -0.23046 -0.06355 

LONG5 -0.07011 0.046875 0.002748 0.137733 -0.02932 0.008862 0.11083 -0.05004 

ALT6 1.989186 0.309635 -1.30905 -0.38348 0.247921 -0.93872 -0.54729 -0.42632 

LAT6 -0.0984 -0.01401 0.458707 1.578924 -0.20648 0.058875 0.894632 -0.05615 

LONG6 0.022052 -0.09426 -0.00095 0.024722 -0.13881 -0.0439 -0.02555 0.028416 

ALT7 -0.66761 0.779827 0 0 -2.49197 0.707981 1.469248 -0.20394 

LAT7 -0.0761 -0.01851 0 0 -0.11438 1.113692 -0.2643 -1.13898 

LONG7 -0.01332 -0.02811 0 0 -0.10501 0.645978 0.009626 -0.05306 

ALT8 -0.66014 -0.2816 0 0 0.915236 -0.34376 -1.89363 0.419364 

LAT8 -0.06835 0.846098 0 0 -0.70823 0.838541 0.726521 0.063634 

LONG8 -0.00202 0.272253 0 0 -0.14871 0.137279 -0.04928 0.050483 

ALT9 -0.67993 -0.31426 0 0 0 0 0 0.428303 

LAT9 -0.08845 0.015802 0 0 0 0 0 -0.70261 

LONG9 -0.03376 0.092282 0 0 0 0 0 -0.13682 

ALT10 0 -0.30892 0 0 0 0 0 -0.41932 

LAT10 0 0.013733 0 0 0 0 0 -0.06368 

LONG10 0 0.094576 0 0 0 0 0 -0.05067 

ALT11 0 0.379573 0 0 0 0 0 0 

LAT11 0 -0.04155 0 0 0 0 0 0 

LONG11 0 -0.06915 0 0 0 0 0 0 

ALT12 0 -0.32144 0 0 0 0 0 0 

LAT12 0 0.018592 0 0 0 0 0 0 

LONG12 0 0.089313 0 0 0 0 0 0 

ALT13 0 0.658871 0 0 0 0 0 0 

LAT13 0 -0.11417 0 0 0 0 0 0 

LONG13 0 0.00562 0 0 0 0 0 0 

ALT14 0 0 0 0 0 0 0 0 

LAT14 0 0 0 0 0 0 0 0 

LONG14 0 0 0 0 0 0 0 0 

ALT15 0 0 0 0 0 0 0 0 

LAT15 0 0 0 0 0 0 0 0 

LONG15 0 0 0 0 0 0 0 0 

C0 -1.20114 1.783021 0.017215 0.979016 -2.64803 0.271715 -0.5457 0.493921 

C1 -0.58243 -1.43398 -0.51311 0.435608 -0.83969 -0.83379 2.055688 -1.82438 

C2 1.056194 -0.54759 1.843073 2.112642 2.142904 -0.84444 0.590821 -0.62588 

C3 -1.38453 0.423526 -0.51991 -1.34788 1.021655 0.848584 -0.49067 0.62657 

C4 -1.35697 0.841223 -1.5518 -1.40411 -0.65238 0.886242 -0.89471 0.626574 

C5 -0.99666 0.800198 -1.43847 -1.50966 0.741493 -1.79148 0.757244 0.626447 

C6 0.933833 -0.42913 1.315338 -0.52942 -0.65247 1.308233 -0.93866 0.636327 

C7 1.051486 -1.04583 0 0 2.148999 0.618289 -1.9283 0.903025 

C8 1.045972 -0.73465 0 0 0.54392 0.735213 0.920791 -0.62655 
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Table A.5.  (continued) 

C9 1.059494 0.432905 0 0 0 0 0 -1.25296 

C10 0 0.428552 0 0 0 0 0 0.626597 

C11 0 -0.49279 0 0 0 0 0 0 

C12 0 0.438909 0 0 0 0 0 0 

C13 0 -0.87786 0 0 0 0 0 0 

C14 0 0 0 0 0 0 0 0 

C15 0 0 0 0 0 0 0 0 

A 3.417015 1.946775 3.238627 2.068362 3.260688 1.861445 3.067066 2.039114 

B -8.55499 -18.8507 -8.4082 -18.2226 -8.41282 -18.7753 -8.23112 -18.1252 

ALTA 43.83333 128 43.83333 128 43.83333 128 43.83333 128 

ALTB 31.55161 15.50298 31.54756 15.49767 31.55161 15.50298 31.5484 15.49767 

LATA 22.5 22.5 -45 -45 22.5 22.5 -37.5 -45 

LATB 14.02883 14.03509 27.04208 27.04835 14.02883 14.03509 22.70723 27.04835 

LONGA 70.31667 70.31667 70.31667 70.31667 70.31667 70.31667 70.31667 70.31667 

LONGB 9.629863 9.634155 9.628628 9.630858 9.629863 9.634155 9.628883 9.630858 
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APPENDIX B 

INTERPRETATION OF RMSE/MAX DENSITY ERROR PLOTS  

The goal of the density estimators tested herein is to observe the free stream 

atmospheric density along the entry flight path and use this information to construct 

successive density prediction models throughout the entry. Because the estimator makes 

multiple predictions during the entry and because each of these predictions originates at a 

different point in the trajectory, plotting density error over time for each prediction 

quickly becomes cumbersome. Therefore, it is useful to develop a plot convention which 

permits multiple predictions from various points throughout the trajectory to be visually 

represented on a single plot. The convention introduced here accomplishes this goal and 

permits the results of hundreds of estimator predictions to be presented on a single plot. 

Consider a single entry trajectory wherein an entry vehicle must make successive density 

predictions throughout the entry. The entry begins at some initial time t0 and ends at some 

final time tf. From t0 until some arbitrary time after t0, the density estimator observes the 

atmosphere. At this arbitrary time t1, the atmospheric data gathered from t0 to t1 is used to 

create a density prediction model (Figure B1). The performance of this model is assessed 

by computing the maximum and average (RMS) percent density errors from t1 to tf. In 

order to stressfully test the prediction efficacy of a given density estimator, it is assumed 

that no further density measurements are gathered after time t1. Note that the density error 

is defined as the difference between the density prediction model and the true 

atmospheric density. In addition, the absolute value of the maximum error is computed. 

These two numbers, the RMSE and the maximum error, compactly summarize the critical 

performance information from this single prediction and are useful for judging prediction 

estimator prediction efficacy. 
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Figure B.1: Performance of a Single Density Model At Time t1 

 

If a different arbitrary model generation time was chosen, the results would have likely 

been different because the density estimator would have a different amount of 

information to construct the prediction. Assume that another prediction was made at a 

later time t2 > t1 (Figure B.2).  

 

Figure B.2: Performance of a Single Density Model At Time t2 

 

Again the maximum and average (RMS) percent errors are computed and stored at this 

new arbitrary time t2. If the information from these two prediction models is plotted, 

useful information illustrating the behavior of the estimator at two distinct points during 

the entry can be summarized on a single plot (Figure B.3).  
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Figure B.3: Single Plot Illustrating the Maximum Error 

Now allow this process to be repeated many times for different arbitrary points 

throughout the entry (Figure B.4). The arbitrary points are always selected in the 

direction of increasing time starting at t0 and ending at time tf. This approximates the 

conditions that a density estimator would face in flight. Note that the maximum and 

RMSE trend lines are influenced by differences in the atmospheric physics at varying 

altitudes. Often, the predictions made near the end of the trajectory have higher error than 

those made near periapsis despite the fact that more atmospheric information is available 

as the vehicle approaches tf. This error at high altitude is due to (a) the greater level of 

density uncertainty at higher altitudes (which lead to larger magnitude density 

fluctuations) and (b) differences between the on-board models (i.e. the ensemble) and the 

true atmosphere which are often more significant at high altitudes.  

 

Figure B.4: RMSE and Maximum Prediction Error History Throughout the Entry 
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Prior to the integration of the various density estimators examined herein with a 

guidance system, the above approach offered a compact and simple method for assessing 

the performance of each estimator. This approach separates the main functions of the 

estimator (observe the atmosphere, build a prediction model, apply the prediction model 

to test performance) which is convenient for development and analysis purposes. Note 

that, once integrated with a guidance system, the density estimator must perform all three 

functions simultaneously. For guided simulations, the ∆V-λ plots developed in Chapter 5 

are more appropriate as they illustrate the effect of density estimator on the system-level 

performance.     
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