
USING MULTIPLE AGENTS IN UNCERTAINTY

MINIMIZATION OF ABLATING TARGET SOURCES

A Dissertation
Presented to

The Academic Faculty

By

Richard A. Coogle

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy
in

Electrical and Computer Engineering

School of Electrical and Computer Engineering
Georgia Institute of Technology

December 2014

Copyright© 2014 by Richard A. Coogle



USING MULTIPLE AGENTS IN UNCERTAINTY

MINIMIZATION OF ABLATING TARGET SOURCES

Approved by:

Dr. Ayanna M. Howard, Committee Chair
Professor, School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Ayanna M. Howard, Advisor
Professor, School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Magnus Egerstedt
Professor, School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Mary Ann Weitnauer
Professor, School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Thomas R. Collins
Principal Research Engineer
Georgia Tech Research Institute

Dr. Ronald Arkin
Professor, College of Computing
Georgia Institute of Technology

Date Approved: August 2014



For my family.



ACKNOWLEDGMENTS

While one person must eventually write the text of a doctoral thesis, what brings them to

the point of completing such a task is generally a large and often colorful cast of characters.

While I would love to write an individual note to all of you, that would likely make

this acknowledgements section longer than the actual thesis. So consider this my apology,

while I hit the highlights.

I would like to thank first and foremost my family for their support when I decided to

embark on this “final” adventure at Georgia Tech. Without your love and encouragement,

I am not sure I would have made it this far. Nor would I have even begun it if you had not

instilled in me from a very early age a boundless need for knowledge and a boundless want

for understanding the world around us.

Of course, I would also like to thank Dr. Ayanna Howard, my advisor, for taking a

chance on me, for guiding me through my research, for being extremely patient with me

(especially when it came to my absent-minded tendencies), and for helping to untangle

the issues that came up here and there. I used to be the so-called “model student” once, I

promise.

I would also like to thank my dissertation committee for contributing their time to eval-

uating my thesis and for their valuable input that strengthened it.

In addition, the support and camaraderie of my colleagues in Dr. Howard’s Human-

Automation Systems (HumAnS) Lab and my colleagues at the Georgia Tech Research In-

stitute (GTRI) has been invaluable. Thanks for simply being there and being (and continue

being) awesome.

Finally, and hardily the least, thank you to all my friends who have had to put up with

me during this entire adventure. Your love and support has been fantastic.

Undertaking this endeavor can be easily compared to the classic story archetype of the

Hero’s Journey. Consider this a slain dragon.

iv



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 BACKGROUND AND MOTIVATION . . . . . . . . . . . . . . . 5
2.1 Previous Iceberg Surveys . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Robotic Over-Water Monitoring . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Buoy-like Data Recorders . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Autonomous Boats . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Robotic Harmful Algal Bloom Monitoring . . . . . . . . . . . . . . . . . 12
2.4 Search-and-Rescue Applications . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Multi-robot Observation of Multiple Moving Targets . . . . . . . . . . . . 14
2.6 Summary of Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 17

CHAPTER 3 METHODOLOGY FOR MODELING ABLATING SOURCES 19
3.1 Problem Definition and Assumptions . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Summary of Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Definitions and Assumptions Specific to Iceberg Observation . . . . . . . 25

3.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Modeling Ablating Sources . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.1 Model Definition and Computation . . . . . . . . . . . . . . . . . 29
3.4.2 Model Reduction and Target Streams . . . . . . . . . . . . . . . . 36
3.4.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Example Models Using IIP Data . . . . . . . . . . . . . . . . . . . . . . 48
3.5.1 Model Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Search Region Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.6.1 Contour of Constant Probability . . . . . . . . . . . . . . . . . . 62
3.6.2 Fitting a Rectangle . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.6.3 Search Pattern Parameters . . . . . . . . . . . . . . . . . . . . . . 64
3.6.4 Contour Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.7 Search Region Extraction Using IIP Data . . . . . . . . . . . . . . . . . . 68

v



3.8 Real-time Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 72

CHAPTER 4 METHODOLOGY FOR RESOURCE ALLOCATION USING THE
ICEBERG MODEL . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1 The Assignment Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 Defining a Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3 Selecting an Appropriate Assignment Algorithm . . . . . . . . . . . . . . 82

4.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.2 Auction Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Arbitration of Resource Allocation . . . . . . . . . . . . . . . . . . . . . 87
4.5 Algorithms for Region Assignment . . . . . . . . . . . . . . . . . . . . . 89

CHAPTER 5 EXPERIMENTAL SETUP . . . . . . . . . . . . . . . . . . . . . 93
5.1 Implementation of the Robot Controller . . . . . . . . . . . . . . . . . . . 93

5.1.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.1.2 Controller Organization . . . . . . . . . . . . . . . . . . . . . . . 95
5.1.3 Search Pattern Controllers . . . . . . . . . . . . . . . . . . . . . 97
5.1.4 Agent Finite State Machine . . . . . . . . . . . . . . . . . . . . . 99
5.1.5 Configuration and Outputs . . . . . . . . . . . . . . . . . . . . . 106

5.2 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3 Scenario Replay Environment . . . . . . . . . . . . . . . . . . . . . . . . 111
5.4 Hardware Platform and Software . . . . . . . . . . . . . . . . . . . . . . 112

5.4.1 Robot Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4.2 Driver Software and Firmware . . . . . . . . . . . . . . . . . . . 114

CHAPTER 6 EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . . 116
6.1 Initial Pilot Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.2 Data Coverage Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2.1 Model Similarity Metrics . . . . . . . . . . . . . . . . . . . . . . 122
6.2.2 Test Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.2.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.3 Target Coverage Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.3.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.4 Full-Scale Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.5 Hardware Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

CHAPTER 7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
7.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
7.2 Recommendations for Future Work . . . . . . . . . . . . . . . . . . . . . 182

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

vi



LIST OF TABLES

Table 1 Metrics descriptions and definitions. . . . . . . . . . . . . . . . . . . . . 48

Table 2 Parameters of the region used in the IIP data set studies. . . . . . . . . . 49

Table 3 Metrics for the analyzed IIP data. . . . . . . . . . . . . . . . . . . . . . 61

Table 4 IIP 2011 dataset search pattern parameters. . . . . . . . . . . . . . . . . 71

Table 5 Cost function parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 79

Table 6 Parameters used for the cost function sweep. . . . . . . . . . . . . . . . 80

Table 7 Summary of activity region parameters. . . . . . . . . . . . . . . . . . . 118

Table 8 Simulation metrics summary. . . . . . . . . . . . . . . . . . . . . . . . 119

Table 9 Summary of activity region parameters - Uniform Velocity. . . . . . . . . 126

Table 10 Summary of activity region parameters - Uniform Size. . . . . . . . . . . 126

Table 11 Summary of activity region parameters - Non-uniform Size and Velocity. 126

Table 12 Agent starting positions - Non-fixed. . . . . . . . . . . . . . . . . . . . . 127

Table 13 Agent starting positions - Fixed. . . . . . . . . . . . . . . . . . . . . . . 127

Table 14 Model similarity - Control, lawnmower pattern, initial data set. . . . . . . 130

Table 15 Model similarity - Control, patroller pattern, initial data set. . . . . . . . 130

Table 16 Model similarity - Using reallocation, lawnmower pattern, initial data set. 131

Table 17 Model similarity - Using reallocation, patroller pattern, initial data set. . . 131

Table 18 Model similarity - Fixed, initial data set. . . . . . . . . . . . . . . . . . . 132

Table 19 Model similarity p-values - Control, lawnmower pattern, initial data set. . 132

Table 20 Model similarity p-values - Control, patroller pattern, initial data set. . . 133

Table 21 Model similarity p-values - Using reallocation, lawnmower pattern, ini-
tial data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Table 22 Model similarity p-values - Using reallocation, patroller pattern, initial
data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Table 23 Model similarity p-values - Fixed, initial data set. . . . . . . . . . . . . . 134

Table 24 Model similarity - Control, lawnmower pattern, characteristic data set. . . 151

vii



Table 25 Model similarity - Control, patroller pattern, characteristic data set. . . . 151

Table 26 Model similarity - Using reallocation, lawnmower pattern, characteristic
data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Table 27 Model similarity - Using reallocation, patroller pattern, characteristic
data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Table 28 Model similarity - Fixed, characteristic data set. . . . . . . . . . . . . . . 153

Table 29 Target coverage summary - Control. . . . . . . . . . . . . . . . . . . . . 155

Table 30 Target coverage summary - Reallocation. . . . . . . . . . . . . . . . . . 156

Table 31 Target coverage summary - Fixed. . . . . . . . . . . . . . . . . . . . . . 156

Table 32 Target coverage p-values - Control. . . . . . . . . . . . . . . . . . . . . 157

Table 33 Target coverage p-values - Reallocation. . . . . . . . . . . . . . . . . . . 157

Table 34 Target coverage p-values - Fixed. . . . . . . . . . . . . . . . . . . . . . 158

Table 35 Simulation Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Table 36 Simulation metrics summary - Control. . . . . . . . . . . . . . . . . . . 167

Table 37 Simulation metrics summary - Modeling and Assignment. . . . . . . . . 167

Table 38 Summary of activity region parameters - Hardware Test. . . . . . . . . . 174

Table 39 Hardware metrics summary. . . . . . . . . . . . . . . . . . . . . . . . . 175

Table 40 Features of each observation method. . . . . . . . . . . . . . . . . . . . 179

viii



LIST OF FIGURES

Figure 1 Flow rates of Antarctic glaciers. Image courtesy of NASA. . . . . . . . . 3

Figure 2 International Ice Patrol iceberg limit chart. . . . . . . . . . . . . . . . . 6

Figure 3 An example layout of the objects defined in Section 3.1.2. . . . . . . . . 20

Figure 4 Example probabilistic model of an ablating source. . . . . . . . . . . . . 24

Figure 5 Diagram of the problem definitions. . . . . . . . . . . . . . . . . . . . . 26

Figure 6 Mixture model generated from arbitrary data. Three independent bivari-
ate Gaussians were used in the data generation process, and they have
been uniquely identified. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 7 Mixture model for four target streams. Note that all target streams have
been identified. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 8 Mixture model for three target streams. Note that all target streams have
been identified. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 9 Reduced mixture model for four target streams (Salmond algorithm). . . 41

Figure 10 Reduced mixture model for three target streams (Salmond algorithm). . . 41

Figure 11 Map of region used in the IIP data set studies (Google Earth). The points
used are from the 2007 data set. . . . . . . . . . . . . . . . . . . . . . . 49

Figure 12 Mixture model generated from the 2006 IIP data set. . . . . . . . . . . . 51

Figure 13 Mixture model generated from the 2007 IIP data set. . . . . . . . . . . . 52

Figure 14 Mixture model generated from the 2008 IIP data set. . . . . . . . . . . . 53

Figure 15 Mixture model generated from the 2009 IIP data set. . . . . . . . . . . . 54

Figure 16 Mixture model generated from the 2010 IIP data set. . . . . . . . . . . . 55

Figure 17 Mixture model generated from the 2011 IIP data set. . . . . . . . . . . . 56

Figure 18 3-σ error ellipses for the 2007 IIP data set. . . . . . . . . . . . . . . . . 59

Figure 19 Fitting a rectangle to a contour of constant probability. . . . . . . . . . . 64

Figure 20 Examples of search patterns. Top: arithmetic spiral pattern. Bottom:
parallel-transect/lawnmower pattern. . . . . . . . . . . . . . . . . . . . . 65

Figure 21 Expansion of the search region as a result of a measurement with a
greater spacing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

ix



Figure 22 Probability contours for the model generated from the 2011 IIP data set. . 69

Figure 23 Search regions for the model generated from the 2011 IIP data set. . . . . 70

Figure 24 Initial agent allocation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 25 Assignment of agents to search regions based on mixture components. . . 78

Figure 26 Plot of cost C versus versus FOV area AFOV and search region area AR.
The cost behavior is linear with respect to the region area, and exponen-
tial with respect to the FOV area. . . . . . . . . . . . . . . . . . . . . . 80

Figure 27 Plot of cost C versus target velocity v̄ j and average agent speed vr. The
cost behavior is linear with respect to the target velocity, and exponential
with respect to the robot velocity. . . . . . . . . . . . . . . . . . . . . . 81

Figure 28 Organization of controller components and their functionality. Although
it is not shown in this illustration, the three components communicate as
necessary to pass data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Figure 29 Search patterns used by the controller. From left to right: patroller,
parallel-transect/lawnmower, and arithmetic spiral. . . . . . . . . . . . . 98

Figure 30 Finite state machine for the robot main loop. . . . . . . . . . . . . . . . 99

Figure 31 State machine for the parallel-transect search method. . . . . . . . . . . 105

Figure 32 Saved mixture model state XML file example. . . . . . . . . . . . . . . 108

Figure 33 Screenshot of Stage simulation environment. . . . . . . . . . . . . . . . 111

Figure 34 Screenshot of the scenario replay environment. . . . . . . . . . . . . . . 112

Figure 35 Pololu 3pi robot platform and base station. . . . . . . . . . . . . . . . . 113

Figure 36 Target source configuration. . . . . . . . . . . . . . . . . . . . . . . . . 117

Figure 37 Gaussian mixture model resulting from a single-agent solution. Note
only one target stream is represented. . . . . . . . . . . . . . . . . . . . 120

Figure 38 Gaussian mixture model resulting from a two-agent solution. There are
two well-defined regions for reallocating sensors and capturing the be-
havior of the targets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Figure 39 Gaussian mixture model resulting from a three-agent solution. All three
regions amply capture the target behavior. . . . . . . . . . . . . . . . . . 121

x



Figure 40 Illustration of different types of data sets as compared with a pre-generated
model. The leftmost model is generated from tightly clustered data. The
middle image illustrates the problems with a change in the ablation re-
gions using a model generated with that type of data. The rightmost
image illustrates more diverse measurements used in the model, which
should improve its performance. . . . . . . . . . . . . . . . . . . . . . . 124

Figure 41 Lawnmower mixture model for uniform velocity scenario. Note that the
components are spread out across the target streams. . . . . . . . . . . . 135

Figure 42 Patroller mixture model for uniform velocity scenario. Note that com-
ponents are centered directly on each target stream. . . . . . . . . . . . . 136

Figure 43 Plot of minimum similarity measures for the control scenario. This plot
shows the apparent dependence of the similarity on the field-of-view ra-
dius, and only some dependence on search pattern. . . . . . . . . . . . . 138

Figure 44 Plot of minimum similarity measures for the reallocation algorithms. For
the reallocation algorithms the apparent dependence on sensor field-of-
view is weaker, and more of a dependence on search pattern exists. . . . 139

Figure 45 Plot of maximum similarity measures for the control scenario. An ap-
parent dependence on the sensor field-of-view radius is shown, but the
overall behavior depends on the scenario more strongly than the search
pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Figure 46 Plot of maximum similarity measures for the reallocation algorithms.
The results are less consistent overall than the control, but there is still
an apparent dependence on the sensor field-of-view radius, but less of a
dependence on the search pattern and scenario. . . . . . . . . . . . . . . 141

Figure 47 Uniform velocity characteristic trajectory. Note the sparsity of the tra-
jectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Figure 48 Uniform size characteristic trajectory. Note the similarity to the uncorre-
lated velocity trajectory; it is not shown, but each of the resulting targets
are the same in terms of dimensions. . . . . . . . . . . . . . . . . . . . . 142

Figure 49 Uncorrelated velocity characteristic trajectory. The result is similar to
that of the uniform size trajectory. . . . . . . . . . . . . . . . . . . . . . 143

Figure 50 Correlated velocity characteristic trajectory. Note the bending in the tra-
jectory paths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Figure 51 Overall similarity to the characteristic trajectories for the control scenar-
ios. The results stay within the range 1-σ and 2.5-σ, but the models
generated for the uniform case using the patroller pattern fit very well. . . 144

xi



Figure 52 Overall similarity to the characteristic trajectories for the reallocation
algorithm scenarios. Like the control scenario, the results stay within
the range 1-σ and 2.5-σ, but the models generated for the uniform case
using the patroller pattern fit very well. . . . . . . . . . . . . . . . . . . 145

Figure 53 Minimum similarity measures for the control scenario and characteristic
trajectories. Note that the overall similarity is worse (greater) compared
to the data set used to generate it, in Figure 43, but the plot structure is
similar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Figure 54 Minimum similarity measures for the reallocation algorithms and char-
acteristic trajectories. Note that the overall similarity is worse (greater)
compared to the data set used to generate it, in Figure 44, but the plot
structure is similar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Figure 55 Maximum similarity measures for the control scenario and characteristic
trajectories. Note that the overall similarity is worse (greater) compared
to the data set used to generate it, in Figure 45, but the plot structure is
similar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Figure 56 Maximum similarity measures for the reallocation algorithms and char-
acteristic trajectories. Note that the overall similarity is worse (greater)
compared to the data set used to generate it, in Figure 46, but the plot
structure is nearly identical. . . . . . . . . . . . . . . . . . . . . . . . . 150

Figure 57 Target coverage for the lawnmower pattern control scenarios. The per-
formance correlates to the sensor field-of-view. . . . . . . . . . . . . . . 159

Figure 58 Target coverage for the lawnmower pattern scenarios using reallocation
algorithms. Coverage is smaller in magnitude than in the control case,
as in Figure 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Figure 59 Target coverage for the patroller pattern control scenarios. The perfor-
mance is similar to that of the lawnmower pattern in the control case
illustrated in Figure 57, except in the uncorrelated case. . . . . . . . . . 160

Figure 60 Target coverage for the patroller pattern scenarios using reallocation al-
gorithms. The coverage is smaller in magnitude than in the control case,
but the same behavior for the uncorrelated scenario is present as in Fig-
ure 59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Figure 61 Acquisition times for the uniform target velocity scenario. Note the over-
all improvement in the acquisition time when using reallocation of re-
sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

xii



Figure 62 Acquisition times for the uniform target size scenario. There is signifi-
cant improvement in the acquisition time when using reallocation, except
in the small sensor field-of-view cases, corresponding to the coverage re-
sults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Figure 63 Acquisition times for the uncorrelated velocity scenario. There is no im-
provement in the acquisition time for the smaller sensor fields-of-view,
while the improvement is present in the greater field-of-view radii for
the sensor reallocation algorithms. . . . . . . . . . . . . . . . . . . . . . 164

Figure 64 Acquisition times for the correlated target velocity scenario. Note that
there is improvement when using the reallocation algorithms, but the
improvement is not as drastic as in the previous scenarios. . . . . . . . . 164

Figure 65 Average acquisition times. Note the overall improvement across the sce-
narios when using the reallocation algorithms. . . . . . . . . . . . . . . 168

Figure 66 Average global model acquisition times. Individual global models indi-
cate an acquisition time improvement when using the reallocation algo-
rithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Figure 67 Average local model acquisition times. Local models do not show the
same improvement, but do show the overall trend of the difficulty of
obtaining target measurements as the number of target streams decreases. 169

Figure 68 Average distance traveled. Note that the distance traveled has a small dif-
ference between the control and reallocation algorithms. This is indica-
tive of obtaining better performance in terms of acquisition time when
using the same amount of energy. . . . . . . . . . . . . . . . . . . . . . 169

Figure 69 Lab environment for hardware experiments. . . . . . . . . . . . . . . . . 173

Figure 70 Initial agent allocation for hardware scenario. . . . . . . . . . . . . . . . 174

Figure 71 Hardware target model showing distinct target streams. . . . . . . . . . . 177

Figure 72 Hardware target model showing regions correlating to target sources. . . 177

Figure 73 Hardware target model showing fewer well-defined target streams. . . . . 178

xiii



SUMMARY

The objective of this research effort is to provide an efficient methodology for a multi-

agent robotic system to observe moving targets that are generated from an ablation process.

An ablation process is a process where a larger mass is reduced in volume as a result of

erosion; this erosion results in smaller, independent masses. An example of such a process

is the natural process that gives rise to icebergs, which are generated through an ablation

process referred to as ice calving.

Ships that operate in polar regions continue to face the threat of floating ice sheets

and icebergs generated from the ice-ablation process. Although systems have been imple-

mented to track these threats with varying degrees of success, many of these techniques

require that the operations are conducted outside of some boundary where the icebergs are

known not to drift. Since instances where polar operations must be conducted within such

a boundary line do exist (e.g., resource exploration), methods for situational awareness of

icebergs for these operations are necessary. In this research, efficacy of these methods is

correlated to the initial acquisition time of observing newly ablated targets, as it provides

for the ability to enact early countermeasures.

To address the research objective, the iceberg tracking problem is defined such that it is

re-cast within a class of robotic, multi-agent, target-observation problems. From this new

definition, the primary contributions of this research are obtained: 1) A definition of the

iceberg observation problem that extends an existing robotic observation problem to the

unique requirements for the observation of floating ice masses; 2) A method for modeling

the activity regions on an ablating source to extract ideal search regions to quickly acquire

newly ablated targets; and 3) A method for extracting metrics for this model that can be

used to assess performance of observation algorithms and perform resource allocation. A

robot controller is developed that implements the algorithms that result from these contri-

butions, uses methods for using multiple robotic agents to observe a region according to
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the modeling methodogy, and performs reallocation of observation resources as the model

changes. Comparisons are made to existing target acquisition techniques.
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CHAPTER 1

INTRODUCTION

The danger of collision with floating ice is a threat that continues to exist for polar, ship-

based operations [1]. Organizations and systems have been implemented to track and pro-

vide information about these threats. The most well-known and perhaps important of these

organizations is the International Ice Patrol (IIP) [2], a multinational coalition dedicated to

tracking iceberg threats in the northern Atlantic Ocean. They provide data products that

establish an iceberg boundary or “iceberg limit,” outside of which a ship is safe from colli-

sion with icebergs. However, for polar operations such as resource exploration and mining,

operations within the iceberg limit may be necessary.

Collision avoidance takes an amount of advance planning by the ship’s crew, as a result

of the slow speeds and lack of mobility of the craft involved. Oil platforms have no mobility

to speak of. Therefore, a method of sensing and tracking floating ice is necessary for

situational awareness. Usually, the primary means available to build such avoidance plans

is derived from radar and visual observations. Unfortunately, disadvantages exist for both

radar and visual observations [3]. Smaller icebergs, for example, can be difficult for a

radar to track because of their low-magnitude radar cross sections (RCS), confusion with

sea-clutter in stormy situations, and the fact that they typically are not detected in satellite

imagery as a result of their size [4]. These smaller icebergs, which range from the size of

a car to the interior of a small house, are generally a greater threat than the larger ones,

as a result of the fact that they present only a small portion of their full mass above water,

and may not be detected until it is too late. In addition to the limitations on detecting

smaller icebergs, satellite-based synthetic aperture radar (SAR) imaging is generally not

available in real-time. Aircraft radar sweeps can be expensive and cannot be continously

conducted. Visual observation requires that a dedicated crew continuously monitors for

new threats. Furthermore, ice threats are not completely observable in this manner, and
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once a threat is observed, depending on the type of ship, not enough time will exist for the

crew of the ship to begin evasive maneuvers. Additionally, for the case of an oil platform,

other countermeasures would have to be used. Therefore, a method of remotely sensing

these threats with a minimized emphasis on radar sensing may be the best approach to the

problem, with a focus on understanding the sources of these threats.

Floating ice masses are generated by an ice-ablation process called ice calving [5].

Depending on temperature, glacial-flow rate, and the base strength of their source glaciers,

these ice masses have varying rates of iceberg and floating-ice generation. For example,

Figure 1 is a diagram of the flow rates of Antarctic glaciers, which vary depending on the

proximity of the glacier to the coast and other factors. The diagram shows that the flow

rate is not the same at different interface regions of the ice with the ocean. Indeed, in some

cases, the flow rate is much higher at some regions than at others. These high-activity

regions in the figure are the regions that fade in to a faint green color from the yellow. The

iceberg calving rate of these ice masses would be higher at the regions with a greater flow

rate at the glacier-sea interface. However, this information might either not be immediately

available to an observer or difficult to accurately interpret. The flow rate might be higher at

these regions, but that does not guarantee a higher calving rate. In such cases, observations

of the calved ice masses would be a more appropriate means of determining which ablating

sources should have a greater monitoring emphasis.
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Figure 1. Flow rates of Antarctic glaciers. Image courtesy of NASA.

Based on observations of a floating ice source and the masses calved from it, a model

can be developed for the locations on the source where new ice masses are generated with

highest probability. Using this information, sensor resources can be reallocated to place a

greater focus on the sources that generate more targets. In this case, a multiagent, robotic

observation system is proposed to act as the sensor system, based on an existing, robotic,

sensing framework problem.

To enable an efficient solution to this observation problem, the specific contributions of

this research are as follows:

• Contribution 1: A definition of the iceberg observation problem that extends an ex-

isting robotic observation problem to the unique requirements for the observation of

floating ice masses.

• Contribution 2: A probabilistic method for in-situ modeling of the expected locations

of regions of activity on an ablating target source, so that observation resources can
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be retasked to these regions.

• Contribution 3: A method for scoring the model based on a set of metrics defined

according to the parameters that are of concern to such an observation task.

Multi-agent robotic techniques and probabilistic modeling techniques are applied to

minimize the initial acquisition time for first observing such ablating targets. The results

of these techniques are evaluated using a set of metrics developed for both this modeling

technique and for any approach to this observation problem.

The remainder of this thesis is organized as follows:

Chapter 2: The background and the motivation for this research. Related research is

reviewed and compared to the solutions outlined in the thesis.

Chapter 3: The theory behind the methodology used for modeling ablating sources

and the definitions of the metrics used to score the resulting model.

Chapter 4: The theory behind the methodology and algorithms used for assigning

agents to particular search regions derived from the model.

Chapter 5: Setup and implementation of the algorithms used for controlling the robot,

including the simulation and hardware environments used for the experiments.

Chapter 6: Experimental results which explore and validate the theory in Chapters 3

and 4.

Chapter 7: Concluding remarks and recommendations for future work.
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CHAPTER 2

BACKGROUND AND MOTIVATION

The process of monitoring icebergs is related to other aquatic robot applications, particu-

larly applications in which a set of in-situ environmental parameters must be monitored.

While the aim of iceberg monitoring is, at its core, a target observation and tracking prob-

lem, other aquatic monitoring applications may not be concerned with physically moving

targets. However, some of the techniques used are universal across the problems that these

systems are intended to solve. In this section, some of the pertinent literature for existing

iceberg and sea-ice surveys will be outlined, some of the previous work in aquatic monitor-

ing applications will be examined, and other work that has similar properties to the iceberg

tracking problem will be examined.

2.1 Previous Iceberg Surveys

As previously stated in Chapter 1, one of the most well-known and publically available

collections of iceberg survey data comes from the International Ice Patrol (IIP) [2]. This

organization was founded in 1914 as a result of the HMS Titanic disaster. The IIP moni-

tors icebergs and other floating ice in the regions near the Arctic and the northern Atlantic

Ocean. Any sea-based operation close to or within the “iceberg limit,” an imaginary bound-

ary line determined by the IIP that indicates the safest region with respect to the density

of icebergs, uses data from this organization to maintain safety. Reports that indicate the

current iceberg limit are issued daily, and they are possibly reissued depending on whether

icebergs have been detected outside of the iceberg limit. One of the daily charts that the IIP

generates is shown in Figure 2. The solid line represents the current iceberg limit, while

the dotted line indicates the “sea-ice limit,” which represents the extent of at least 1/10 of

sea ice coverage at the time the chart was generated.
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The data contained in the IIP databases is obtained through radar sweeps, visual ob-

servation (from both the IIP and outside observers), and satellite data. However, cases

may exist such that an operation must be conducted from within the iceberg limit. In such

a situation, the daily reports from the IIP would need to be supplemented with real-time

situational awareness. To maintain situational awareness would require continuous visual

monitoring by crew or use of ice-detecting radars. Such a task would be suited for an

autonomous robotic observation system.

Figure 2. International Ice Patrol iceberg limit chart.

An extended study of the Austfonna ice cap in northeastern Svalbard, an unincorporated
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region of Norway in the Arctic Ocean, also has been conducted [6–9]. While primarily

concerned with the overall glacier dynamics in terms of mass loss, some of the common

means by which icebergs are detected and tracked are demonstrated in this study. For

example, in [6], synthetic aperture radar (SAR) imaging, satellite imaging, and airborne

ice-penetrating radar are used to determine properties of ice motion and thickness. This

study also provides useful data from which calving models can be derived, based on the

rates of mass loss from the glacier.

Finally, many studies and observations have been conducted of the floating ice activity

surrounding Antarctica, e.g. the study documented in [10]. One particular study focused

on iceberg drift in the Weddell Sea [11]. The study used GPS buoys attached to icebergs to

track their locations over time, making measurements of various iceberg properties prior to

tracking and using the GPS data to observe iceberg drift and melt patterns within the Wed-

dell Gyre, one of the ocean currents that flows around the Antarctic. This study demon-

strates developing models and making measurements of iceberg movement through passive

observation. Each iceberg that was tracked had its dimensions recorded; its initial recorded

GPS position was recorded as well. Observations of iceberg drift velocity were derived

from the iceberg position observations. In addition, the median volumes, iceberg drafts,

and transit times were recorded, which provides a clear picture of iceberg behavior in the

Weddell Sea.

This study also provided a complete data set of the icebergs that were monitored; this

is additional data that can be used in model development. This method of tracking icebergs

requires a more active component, since the buoys would have to be set up. For opera-

tions that simply require monitoring for danger, such an effort would only be necessary

for the largest icebergs. Notably, results of these studies are usually incorporated into al-

gorithms for forecasting sea ice activity, and, more recently, for producing what is known

as a “nowcast” for sea ice [12]. A nowcast is an extremely short-term forecast. The fore-

casts themselves are produced by data assimilation [13] of offline data produced from other
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surveys [14–16].

2.2 Robotic Over-Water Monitoring

Environmental monitoring of oceans and bodies of fresh water is a research activity that

has some of the same characteristics as iceberg monitoring and is performed in many of

the same ways: for example, one can set a buoy filled with sensing equipment out on the

ocean, collect data, and then retrieve it later. However, depending on the region in which

the monitoring is to take place, it is also possible to use mobile robots instead, in particular

unmanned boats. These boats have the ability to travel to places that humans cannot, and

can be teleoperated as opposed to autonomous, which is ideal for positioning the boats

prior to data collection. As a result of the large areas that they need to cover, GPS is

typically used for localization as opposed to GPS-free localization algorithms. In the case

of fixed buoys, their locations are static; therefore, localization concerns are related to the

uncertainty about the buoy location as a result of ocean currents. This section will outline

a few examples of over-water monitoring, including buoys, underwater sensor platforms,

and robot boats.

2.2.1 Buoy-like Data Recorders

Buoys can be considered the simplest method of collecting data over the ocean, similar to

laying out a set of data loggers at key points as in a wireless-sensor network. However,

often it is desirable to be able to observe certain properties of a particular water column

that cannot be ascertained from a simple surface deployment; an autonomous instrument

platform is useful for such an exercise. An older example of this type of platform is the

Bottom Stationing Ocean Profiler (BSOP), detailed in [17]. Technically, the BSOP is not

a robot: it is better described as an autonomous mobile sensor. The BSOP’s ability to

move vertically through a water column while drifting allows for the mapping of the water

density field in addition to collecting other useful information about the water column. This

information includes ocean current flow, temperature gradients, and optical characteristics.
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The density field is the most important of these data items, as the field is generally difficult

to measure without a human in the loop. And in the case of inclement weather on the ocean,

deploying a manned ship to take these measurements is undesirable.

The platform has the appearance of a watertight cylinder. It contains a flotation appa-

ratus that is deployed at key times to raise the platform to the surface to transmit its data;

the BSOP continues to collect information about the water column as it ascends. After the

platform has completed transmitting this data, it descends back to the ocean floor, collect-

ing data as it moves downward. The BSOP stops moving once it strikes the ocean floor.

This data may then be used to create a picture of the ocean properties of the water column

at the location of the platform, as it also acquires GPS position and transmits that along

with the data. Communications are via satellite, using specially formatted emails. Emails

sent to the BSOP alter its behavior, while emails sent from the BSOP indicate the status of

the platform and contain transmitted data.

2.2.2 Autonomous Boats

In addition to monitoring various properties of the ocean, the monitoring of properties of

surface water (i.e., fresh water) is also critical. The primary reason is that most of the

population relies on surface water for potable drinking water, as do animals. Therefore,

an autonomous and mobile system of monitoring rivers and lakes that are primary water

sources would be ideal: as one cannot be certain where contamination can occur, placing

buoys will not guarantee maximum coverage. The Robot Sensor Boats (RSB) in [18] are

an attempt to solve this problem. They are autonomous, are small enough to reach areas

that larger research vessels cannot, and are mobile, which allows them to provide sufficient

coverage. Also, one person can monitor several of these boats simultaneously and in real-

time, which is considerably safer than being near a source of contamination, if one exists.

One other advantage is the simple fact that they are not fixed: if a body of water is only

monitored using static buoys, criminal dumpers can introduce contaminants in areas that

do not have sufficient coverage by said buoys and thus not be detected until it is too late.
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Such autonomous boats would not be viable if they were not relatively inexpensive in

the same sense that wireless-sensor networks are; therefore, the RSBs are constructed from

commercially-available materials. The boats are small kayaks with ducted propulsion that

allows for differential steering and is loaded with standard measuring and communication

equipment that is all connected to the boats’ computers. Communication is accomplished

via the use of a cellular modem, and the data is aggregated on a remote server. The robot

boats themselves are safe for people in the waters and allow operation for over six hours.

Finally, there is one last thing to consider, and that is efficient deployment of the boats.

They were kept within 100 lbs to allow two people to easily launch one.

The key aspect of this system is the way that the boats’ control and their data are

tied together, via the authors’ Multilevel Autonomy Robot Telesupervision Architecture

(MARTA) [19]. The system allows for complete autonomy and for allowing humans to

take teleoperated control of the robot boats as necessary. Goals such as directing a group of

boats to check a certain region of water can be assigned, and the system will automatically

break down the task into chunks, and assign each sub-goal to one of the assets involved

in the investigation. The activities of the robots are then monitored by the “Robot Team

Coordinator,” one of the system components and by a human operator. The human operator

always has the option of intervening directly and performing a manual replan of a boat’s

route or taking direct control using teleoperation.

The planned routes themselves allow for a degree of error, since it is not imperative that

the boat reaches each waypoint of its route precisely. Each waypoint has an “achievement

circle” which allows for fuzzy waypoint navigation as a function of both the steering ca-

pability of the boats and the accuracy of the onboard GPS units, augmented with onboard

compasses. This is intended to mitigate the positional uncertainty in using GPS navigation.

The authors’ initial experiments with the sensor boats in a man-made lake near Carnegie-

Mellon University allowed quick determination of several, near complete mappings of the

lake, in terms of dissolved oxygen and pH among other quantities. Such a task could not
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have been easily done with stationary sensors. The ultimate goal is to be able to perform

in-situ scanning of an area without significant initial preparation.

Aside from freshwater properties that can be measured from the surface, as the RSBs

do, there is always a need to push down further into a water column and gain more in-

formation. This next autonomous boat, referred to as an Autonomous Surface Vehicle or

ASV, has a sensing apparatus that allows for such a function [20]. Unlike the RSBs, this

vehicle is fully autonomous without the option for teleoperation: the purpose of the ASV

is to make circuits of a defined route composed of waypoints in a body of water, generate

measurements of its current water column using its onboard sensor suite, and communicate

this information back to shore. This data can then be used for early warning of certain

events, such as algal blooms. The sensor suite is composed of an optical methane detector,

a sonde for general water measurements, a wind sensor, and profiling sonar.

For navigation, the ASVs are equipped with a GPS, digital compass, depth sensor, laser

scanner, and camera. With the position information, directing an ASV toward its goal point

is accomplished through the technique of virtual forces, an adaptation of artificial potential

fields [21]. In summary, a goal force attracts the ASV, an alignment force attempts to

keep the vehicle on a straight line between the start and goal, and a repelling force pushes

the vehicle away from any obstacles, which may be slow-moving or stationary. A set of

feedback controllers then set the motor commands. The end result is the ASV essentially

pulling itself from waypoint to waypoint.

Finally, to assuage power concerns, the robot boats use solar panels to recharge their

batteries. The ASV has the ability to interface with the floating wireless-sensor network on

the lake, which the authors configured as part of their experiments. This sensor network

acts as the primary method by which the operators and the ASV communicate; the ASV

sends its measurements via this sensor network to shore. This allows for decentralized

communication that does not require line of sight.
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2.3 Robotic Harmful Algal Bloom Monitoring

Closely related to over-water monitoring is the monitoring of harmful algal blooms. The

methods that are used in robotic systems that are directed to monitor harmful algal blooms

is similar to methods one would use to monitor icebergs; however, the primary difference is

that only one or two large “targets” exist for the case of an algal bloom. Therefore, the goal

in this case is to determine the extents and spread of a single bloom, rather than acquire

and track individual targets.

The ASV in [20] has as one of its alternate functions the ability to monitor the water for

the parameters necessary for such blooms to form. However, there are certain cases when

monitoring only for changing water parameters might not be sufficient; there may be other

and perfectly natural reasons for certain parameters to be out of balance. The work of a few

groups of authors will be primarily discussed here. One may note that a significant amount

of this work has been concerned with harmful algal blooms in the Pacific Ocean.

A particular series of papers [22–24] describe research efforts to extend the Robot Sen-

sor Boats of [18] for this sort of application through the use of a new system that extends

the MARTA architecture [19]. This new system is called the Telesupervised Adaptive

Ocean Sensor Fleet (TAOSF), which is composed of five separate components: the OASIS

ASV System, the Multi-Platform Simulation Environment, the Platform Communicator,

the Adaptive Sensor Fleet (ASF), and the System Supervision Architecture (SSA). In terms

of assigning goals and directing the robot boats, the SSA is the component that is directly

based on the MARTA infrastructure; in terms of algorithms, it is very similar to this earlier

work. Some of the main differences are the use of more sophisticated ASVs, with more

sensors as opposed to the RSBs made from off-the-shelf components and the additional

control systems provided by the ASF. The significant aspect of this system is how it is

applied to the task of harmful algal bloom monitoring.

The desire to detect and monitor harmful algal blooms has increased in recent years

as a result of the detrimental effects on humans and sea life. Time of year, salinity, and
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sea-surface temperature are metrics used to predict abundance of certain types of algae;

in this paper, it is the dinoflagellate Karlodinium micrum, notable for its red color. The

sensor suite on the OASIS ASVs has the ability to measure water salinity and conductivity,

the temperature of the surface, and chlorophyll; all of which, collectively, can be used

to analyze and predict algal bloom formations. To test the system, rhodamine dye was

used to simulate the algal bloom; the diffusion of the dye was then mapped aerially using

an aerial observation platform integrated with the TAOSF as part of characterizing the

performance of the system. To correlate the observed time and space varying properties,

the Inference Grid (IG) model [25] was used as a general spatial representation. An IG

is a Markov random lattice that stores the collected sensor information, which is further

used in inferencing and mission planning. Mapping the dye patch was accomplished via

an unsupervised clustering algorithm; the clusters were identified by the known spectral

characteristics of the dye. A similar technique can be used for the algae itself. The ASF

system can then plan and execute a path for the ASVs to follow based on known initial

observations; in the case of characterizing the system, a spiral path was used to observe

the simulated algal bloom. The ASVs can then form a probabilistic map of where algae

has been found, and then subsequently this data can be analyzed and a so-called “blob”

hypothesis can be formed. These hypotheses are a method of aggregating the values of

the probabilistic map to generate an approximate “terrain map” of the algal bloom density,

taking the uncertainties in the spread of the bloom into account.

2.4 Search-and-Rescue Applications

Search-and-rescue operations, like tracking icebergs, also require minimization of the time

to acquire a target. Consider searching for survivors in a collapsed building as the result of

a natural disaster using a robot expressly designed for that purpose. Such robots often have

dedicated operators that use teleoperation to direct the actions of the robot, and a limited

amount of autonomy on the part of the robot, so that the human operator can spend more
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time concentrating on the rescue effort. The robot typically integrates various sensors and

uses sensor fusion techniques to better assist the searcher in finding targets.

An examination of various user interfaces is provided by the work summarized in [26],

which gives the results of several approaches to the problem in a simulated urban search

and rescue (USAR) environment during the Robocup 2003 USAR competition and pro-

vides recommendations for sensory interfaces for future robotic platforms intended to work

in this area. A summary of key issues in this area is given by [27], which includes the dan-

gers that are involved, and an approach to the problem using “micro-bots” that are assigned

to various disaster regions such as a collapsed building as the result of an earthquake. Ad-

ditional applications of artificial intelligence techniques to the problem are also examined,

such as neural networks and expert systems.

Another application of multiple robots to USAR as opposed to a single operator and

robot to maximize coverage is given in [28]. A simulation was developed using the Unreal

engine to determine any sensory and human-robot interaction (HRI) issues that may arise,

and from the results of that simulation, developed robotic platforms that would be useful for

USAR tasks. A probabilistic model was also used to determine whether locations contained

victims: each probability of victim detection was weighted by a confidence value assigned

to the corresponding sensor.

In [29], an “ant-like” approach is shown that provides for maximum unpredictability

of the resulting robot paths by using a frequency distribution to determine the locations

visited, which would improve area coverage. Unpredictable paths, however, may result

in paths that miss a wide swath of targets, which does not contribute to the stated goal of

minimization of initial target acquisition time.

2.5 Multi-robot Observation of Multiple Moving Targets

In terms of existing robot observation problems, the one that relates most closely to the

iceberg observation problem is Cooperative Multi-robot Observation of Multiple Moving
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Targets (CMOMMT) [30]. The primary objective of solutions to this problem is the deter-

mination of the best placement of robots that will observe targets that move through a region

of interest. This problem class can be adapted through changes to the base assumptions,

but the original problem is difficult enough that many solutions to it have been investigated

by researchers; indeed, it has been proven to be NP-hard. Some of the solutions to the

CMOMMT problem will be examined in this section.

One of the first solutions to the CMOMMT problem used a behavior-based approach

[30] [31]. A set of heuristics for placing the robots at the correct points was developed,

and force vectors were used for navigation. The force vectors were designed such that a

robot was attracted to a target and repulsed from other robots. To deal with the issue of

local minima, motivational heuristics were used to weight the contributions of each target’s

force field. The result is that all targets are efficiently observed by all robots. This solution

is referred to as A-CMOMMT. Follow-up research used a learning algorithm to learn the

correct behaviors for observing a particular target space, as opposed to hand generating the

behaviors as in A-CMOMMT [32].

This research was concerned with indoor applications; soon solutions appeared for the

outdoor problem. Issues such as environment occlusion occur in these sorts of environ-

ments; one of the solutions used a region-based method for solving the CMOMMT prob-

lem [33]. This approach divided the environment into convex regions based on landmarks,

and the robots attempt to maximize the number of targets that are observed within a region.

The regions are used to determine target and robot density: the main idea is that if there are

more targets than robots in a given region, then another robot should move to that region to

assist the other robots. Otherwise, any otherwise untasked robots should explore unoccu-

pied regions for targets. This research was followed up by a generalized approach [34] that

eliminated the need for landmarks to determine search regions. The regions, instead, were

computed as a function of a robot’s sensing capability. This method allowed for a number

of advantages, such as automatic grouping of targets and a removal of the need for motion
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planning. However, the function used to determine target region “urgency” is unbounded;

this problem was resolved by limiting the size of the search area.

Another application for this problem was a “tunably decentralized” approach [35]. In

this approach, all of the agents knew the locations of all of the other agents and the tar-

gets. The k-means clustering and hill-climbing algorithms were then applied separately

and jointly to determine observation points for the agents. The algorithms were tunable

in that the number of subsets generated changed based on a single parameter; i.e., the k

clusters in k-means and the number of observer positions for hill-climbing. In their study,

the authors find that k-means is unaffected by decentralization; they conclude this result

occurred as a result of the very nature of k-means clustering. That is, targets far away from

a particular cluster will never be claimed by that cluster. As for comparing the two algo-

rithms, hill-climbing worked best for slow-moving targets, and k-means worked best for

fast-moving targets. Combining the two produced a good “middle ground,” according to

the authors.

In [36], the authors built upon A-CMOMMT to develop B-CMOMMT, which is a be-

havioral version of A-CMOMMT. Essentially, they treated the problem within a decision-

process framework. They use the same force-vector paradigm as in A-CMOMMT; the main

difference is that they used hard-switching among behaviors to direct the robots, as opposed

to the softer heuristic approach in A-CMOMMT. These behaviors included a follow target

mode, help mode (a robot may assist others in monitoring targets), and an exploration

mode. They demonstrated superior performance to A-CMOMMT with this algorithm. The

authors further refined their results in [37], adding improved target loss prediction and mod-

ifications to the calls for help. They additionally proved that their algorithm is stable, and

they demonstrated greater performance with their improvements to the algorithm.

Finally, a decentralized, model-predictive approach to the CMOMMT problem is taken

by the authors of [38]. The primary focus was ensuring that their approach had a certain
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degree of optimality. Using the mixed-logical-dynamical (MLD) framework, they devel-

oped a model for the agents and a cost function for the task, with which they could solve

the resulting optimal control problem. Their decentralized approach allowed for the size

of the subproblem to be solved to vary (e.g., individual target and agent counts), and the

approach did not require constant communication with a central controller. Their results

demonstrated that their algorithm is superior to the A-CMOMMT approach.

2.6 Summary of Related Work

Previous work related to the iceberg observation problem can be summarized by consider-

ing the following categories, and the pieces that may be taken from each of these categories

to improve in-situ observation of icebergs for situational awareness:

• Iceberg surveys using aircraft and radar imaging systems: Such surveys provide a

bigger picture for situational awareness. The data provided can be used as a-priori

planning data for missions for efficient iceberg observation.

• Over-water monitoring using buoys and autonomous vehicles, including monitoring

of harmful algal blooms: The techniques used in these observation methods, such

as clustering and coverage patterns, can be adapted and improved for the iceberg

problem.

• Search-and-rescue applications and monitoring of moving targets: Search-and-rescue

applications are concerned often with coverage to determine the most efficient ways

to find survivors, which may be moving targets. Techniques used to improve cover-

age can also be applied to iceberg observation. The latter provides a starting point

for a model for the iceberg observation problem, and solutions to the problem of

monitoring moving targets can be examined within the context of the ways that the

iceberg observation problem differs.
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In any case, the techniques and algorithms developed by previous researchers can be

viewed as inspiration for developing efficient algorithms for observing icebergs. The par-

ticular interest, as previously stated, is for in-situ observation, which is not an area of

primary concern for most iceberg monitoring operations, which are more interested in pro-

ducing forecasts and emphasizing that operations stay outside of regions of moderate to

high iceberg risk. However, operations that must be conducted within such regions provide

a motivation for developing a robotic system that can efficiently locate potential iceberg

threats.
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CHAPTER 3

METHODOLOGY FOR MODELING ABLATING SOURCES

In this chapter, the methodology by which ablating target sources are modeled is outlined.

The problem definition is motivated by an existing robotic observation problem. This orig-

inal problem is extended by a set of additional assumptions, to make it fully applicable to

the ablating target source observation problem. A methodology is then defined that uses

probabilistic techniques to develop a model for determining the regions at which observa-

tion resources should be focused. From this model, a set of metrics are defined that extract

useful information from the model that allow for evaluation of algorithms that are used to

address the observation problem after a model has been generated, in addition to provid-

ing quantities that can be used in cost functions that provide for allocation of observation

resources.

3.1 Problem Definition and Assumptions
3.1.1 Overview

Since masses of floating ice are moving targets, and an observation region can be defined in

which ice masses float into and out of the region, the problem of remotely observing these

targets is very similar to the class of well-known, robotic observation problems defined as

Cooperative Multi-robot Observation of Multiple Moving Targets (CMOMMT) [30]. The

primary objective of solutions to this problem is the determination of the best placement

of robots that will observe targets that move through the region of interest. This placement

must maximize the amount of time that any given target is observed.

This problem class can be adapted through changes to the base assumptions, as de-

scribed below, to fit many observation tasks; however, the general problem itself is difficult

enough that many solutions have been developed by researchers [30–38]. The CMOMMT

problem is useful as a framework that can be extended to obtain a general model for the

iceberg observation problem.
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3.1.2 Definition

The standard CMOMMT problem is defined using the following definitions:

S: A two-dimensional, polyhedral region.

R: A set of M robot positions ri.

O(t): A set of target positions o j(t), such that o j(t) is contained within S at time t.

The cardinality of O(t) at time t is N(t).

The robots have omnidirectional sensors that are limited in observation range. The target

positions contained in O(t) can change, and the initial positions are not known in advance.

The members of O(t) are assumed to enter and exit S through well-defined entrances on

the boundary of S. Figure 3 is an illustration of an example layout for this problem. The

thick bars at the top and bottom of S are target entrances and exits.

Figure 3. An example layout of the objects defined in Section 3.1.2.
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With these definitions and assumptions, for CMOMMT, the M × N(t) matrix Ai j(t) for

a specific time t can be defined with the elements

ai j(t) =


1 if robot ri is monitoring target o j(t) in S

0 otherwise.

With this matrix, the CMOMMT objective function for time t, with a range 0 to T ,

divided into discrete ∆t steps, is defined to be1

T∑
t=0

N(t)∑
j=1

M∨
i=1

ai j(t). (1)

The goal of the CMOMMT problem is to maximize this objective function: the time

that each object is being monitored by at least one robot under some set of assumptions.

Additional base assumptions exist for the CMOMMT problem; however, they are not rele-

vant to the framework as given here. Further details are contained in the reference [30].

For the problem of ice mass generation and observation, the targets are assumed to have

a highly variable but bounded velocity, which is reasonable to assume for an object under

the influence of ocean currents. An object called a target source will also be defined: a

target source is any member of O(t) at t = 0.

To account for the ice mass generation and observation of environmental phenomena,

the CMOMMT assumptions are modified as follows:

1. No specific target entrances or exits are defined at the boundary of S. Targets may

exit from any location on the boundary of S. This assumption accounts for iceberg

behavior in the middle of the ocean; no boundaries prevent iceberg drift.

2. Targets are generated from target sources located within the interior of S; i.e., the set

O(t) grows in membership over time as the target sources undergo ablation.

3. A-priori information regarding approximate target source locations is available at

1The ∨ operator indicates a logical “or” over all members in the set.
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t = 0. For example, information from the IIP sightings databases may be used to

determine these target source locations.

Assumptions 1 and 2 are derived directly from the ice mass problem as discussed in Chapter

1. Note that the fact that the targets are generated from ablation suggests that an upper

bound on the number of targets that a given source can generate in a time interval exists.

That is, a target source will eventually break up and cease to exist as a unique entity in O(t).

Assumption 3 is necessary to provide an initial allocation of the agents directed to observe

the target sources.

The objective of this modified problem is slightly different from the general CMOMMT

problem. Since early detection is paramount, the amount of time required to obtain the

initial contact on a target contained withinSmust be minimized. The contact time, denoted

by Ts, is defined as the time at which a robot’s sensors detect the target referenced from

the start of the ablation process. These target contacts can be obtained by a variety of

different search algorithms. For the purposes of this problem definition, the target contacts

will be obtained by the agents using some type of search pattern [39] [40] [41] to execute

their search, and any further target tracking will be accomplished by agents dedicated to

that task. The search patterns used in this research are discussed quantitatively in this

chapter; Chapter 5 provides a further qualitative discussion of the search patterns as they

are incorporated in a robot controller.

In addition, as a result of sensor uncertainties, the sensors used by the robots will not

have a probability of detection equal to 1. Hence, the contact time Ts for a single target is

the contact time of a “perfect” sensor plus zero-mean noise. The noise variance is depen-

dent on the sensor errors. However, Ts is different for each of the targets contained in O(t)

for a given t as a result of the different robot positions ri with respect to the targets o j(t).

This dependency means that to obtain the expected value of the contact time for a given

target source, the expectation must be taken over all of the targets.
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Given these conditions, the objective function for the modified CMOMMT problem can

be defined to be the following:

min
R

E[Ts|O(t)], (2)

where E[·] denotes the expected value operator.

3.2 Summary of Methodology

With the problem defined in Section 3.1, a methodology can be outlined for minimizing

the objective function using multiple robotic agents. For areas of higher activity on a target

source, more sensing resources will be required to ensure that all targets are observed in a

minimum amount of time. Therefore, more resources should be allocated to regions with a

high probability of a new target being generated. As the target probability for a particular

region decreases, agents should be reallocated in a more equal manner around a target

source. This agent allocation scheme will not only minimize the initial contact time, but it

will also reduce the uncertainty in quantifying the activity around a particular target source.

To determine the appropriate probability density of the targets, observations must be

incorporated into a model. Observations are composed of the following elements: the po-

sition at which the target was first observed, the time at which the target was first observed

(observation time), and which agent made the observation. The model incorporates these

observations and the current number of observed targets across all agents and the a-priori

probability density of a new target being formed, which is obtained from a previous iter-

ation of this process. In the case of the very first observations being made, the a-priori

density is initialized using the a-priori observed position of the target source.

On-line analysis of the a-posteriori density will indicate whether to undergo a reallo-

cation of resources. When no a-posteriori density is avaliable, e.g., during mission start,

a default allocation of resources will be used. This default allocation is the following: the

region of interest is divided into M equally-sized cells, with each agent placed at the cen-

ter of each cell. A metric of variability will be developed to indicate when the allocation
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should change, and new search regions will be devised from the most active regions in the

model. The level of activity will be computed by determining which regions in the model

have the highest probability of generating a new target.

An example of such a model is shown in Figure 4. The glacier-sea interface is indicated

by the jagged line on the left. There are two regions of high ice mass probability; therefore,

a reallocation of resources would either split the number of currently active agents between

the two regions, or allocate more agents to the mode of the distribution with a greater spread

(corresponding directly to a greater area of required coverage). Note that the probability

of a calving event is not necessarily proportional to the size of the coverage area; glacier

properties such as flow rate have a greater influence on the probability.

Figure 4. Example probabilistic model of an ablating source.

Note that certain aspects of this methodology have some similarities to the coverage

problem. However, in the coverage problem, the region of interest is generally static and

the problem of interest is determining the most efficient means of observing the entire

region or some aspect of the entire region. What is outlined here resembles an adaptive

coverage solution, since a model of the target sources is determined and the resources (i.e.,
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agents) and regions of coverage are adapted to fit that model.

3.3 Definitions and Assumptions Specific to Iceberg Observation

Given the methodology in the previous section for probabilistically modeling iceberg ac-

tivity regions for reallocating sensor resources and the problem definition in Section 3.1.2,

additional definitions and assumptions are required to further constrain the problem with

respect to the methodology and provide a framework in which algorithms can be developed.

In this section, these additional definitions and assumptions are provided.

3.3.1 Definitions

The following definitions further define the overall problem. To begin, S from Section

3.1.2 is more precisely defined, as are the iceberg ablation regions.

Definition 3.3.1.1 S ⊂ R2 is the rectangular and topologically connected region of inter-

est.

S defines the region of the ocean in contact with the glacier with the ablation points that

are to be observed.

Definition 3.3.1.2 U is the set of ablation points in S; i.e., U ⊂ S. The cardinality of U is

finite: |U | = l, l ∈ N. Individual ablation points are ui ∈ U, with i = 1...l.

For each ablation point ui, there is a corresponding random process pi that results in the

generation of targets from the ablation point ui.

Definition 3.3.1.3 The random process pi, for i = 1...l and associated with an ablation

point ui, is a homogeneous Poisson process with intensity λi: pi ∼ Poisson (λi).

The random process pi for each ui results in sets of iceberg target trajectories.

Definition 3.3.1.4 Bi(t) ⊂ R4, for i = 1...l, is the set of all target trajectories at a specific

time t resulting from the ablation processes of a specific ui. Bi(t) is referred to as a target

stream. Ni(t) ∈ N is the cardinality of Bi(t) at time t.
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Definition 3.3.1.5 βi,d(t) ∈ Bi(t), with i = 1...l and d = 1...Ni(t), is an individual target

trajectory state vector at time t, containing the position and velocity at that time.

Figure 5 illustrates each of these definitions graphically, with respect to the iceberg

observation scenario.

Figure 5. Diagram of the problem definitions.

Before defining the model and the mathematical objects associated with it, two function

definitions are necessary to provide a convenient way of extracting state from a trajectory

βi,d(t).

Definition 3.3.1.6 The function g : R4 −→ R2 returns the velocity vector of a specific

βi,d(t).

Definition 3.3.1.7 The function h : R4 −→ R2 returns the position vector of a specific

βi,d(t).

With the region of interest and the objects within it defined, the probabilistic model

used to model the spread of icebergs and their probability of generation may be defined.

The model parameters are defined according to the parameters of a Gaussian mixture dis-

tribution, which will be further elaborated upon in Section 3.4.1.
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Definition 3.3.1.8 Q =
{
q j

}k

j=1
is the set of mixture components that represents the target

trajectory dispersion within the region of interest S. The cardinality of Q is finite: |Q| = k,

k ∈ N.

Definition 3.3.1.9 Z j ⊂ R
2 is a set of target measurements associated with a mixture com-

ponent. The cardinality of Z j is finite: |Z j| = n, n ∈ N.

Definition 3.3.1.10 Target measurements z j,m ∈ Z j, for m = 1...n, are noisy position mea-

surements of iceberg position. That is, for some time t, i ∈ [1, l], and d ∈ [1,Ni(t)]:

z j,m = h(βi,d(t)) + w, (3)

where w ∈ R2 is a sensor noise term.

Definition 3.3.1.11 Each member q j ∈ Q, with j = 1...k, is a mixture component. Each

mixture component q j is defined as the 4-tuple

q j =
(
µ j,Σ j,Z j, v̄ j

)
, (4)

where µ j ∈ R
2 is the component mean vector; Σ j ∈ R

2×2 is the component covariance

matrix; Z j ⊂ R
2 is the set of target measurements associated with the component; and

v̄ j ∈ R is the estimated velocity magnitude of targets within a component.

The following definitions further elaborate on the structure of the set of target measure-

ments Z j.

Definition 3.3.1.12 For Ω(t) =
⋃l

i=1 Bi(t), W j(t) ⊂ Ω(t) is the set of unique target tra-

jectories generating the target measurements z j,m ∈ Z j. The cardinality of W j(t) is finite:

|W j(t)| = α j(t).

Definition 3.3.1.13 The number of unique target trajectories NT (t) acquired across all sen-

sors at the time t is the following sum:

NT (t) =

k∑
j=1

α j(t) (5)
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Finally, for evaluating the acquisition time and other parameters that involve iceberg

drift, a time window is required. All times are measured relative to the beginning of ablation

activity. The following definition constrains the total time that bounds the number of target

measurements acquired by the set of sensors.

Definition 3.3.1.14 The time T is the time at which all possible targets ablated from all

sources in U have exited the region of interest S.

3.3.2 Assumptions

Based on the problem definitions of the previous sections, the following assumptions fur-

ther constrain the overall iceberg observation problem.

1. Once created, targets move at a constant velocity with respect to their originat-

ing ablating source; that is, the targets move according to laminar flow. Precisely,

g(βi,d(t)) = V , V ∈ R2 is a constant vector.

2. Within the region of interest S, target streams Bi(t) do not cross. That is, Ba(t) ∩

Bb(t) = ∅ where Ba(t) and Bb(t) are target streams with indices a, b ∈ [1, l] at time t.

3. The target distribution in S is not a uniform distribution over S.

4. One retrieved target measurement z j,m, with j ∈ [1, k] and m ∈ [1, n], corresponds to

one target trajectory βi,d(t), with i ∈ [1, l] and d ∈ [1,Ni(t)].

5. The sensor noise term w is drawn according to a zero-mean, Gaussian white noise

process with noise covariance matrix Σw ∈ R
2×2. That is, w ∼ N(0,Σw).

6. Target measurement false alarms z f a ∈ R
2, z f a ∈ Z j are uniformly distributed within

S with a constant probability P f a of occurring.

7. A target measurement z j,m is either a false alarm z f a or a true target measurement, but

not both.
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8. More than one component q j of a model Q can contain a measurement of the same

target.

9. Estimated target velocity v̄ j is constant within a model component q j. (i.e., v̄ j = v

where v ∈ R is a constant).

10. The probability of detection PD of targets generated from all members of U over S

is constant over the time interval 0 ≤ t ≤ T .

3.4 Modeling Ablating Sources

The methods by which these ablating sources can be modeled will be discussed in the

following sections. The results of these methods are twofold: a model which can be used

to predict future iceberg movement based on the regions of activity and efficiently search

for new targets, and a set of metrics that can be used to characterize the behavior of the

icebergs which will assist in assigning resources and predicting future iceberg behavior.

3.4.1 Model Definition and Computation

A probabilistic model for the target source as described in Section 3.2 and defined in Sec-

tion 3.3.1 as Q would allow for multiple modes and for quantifying the spread of the targets

that have been generated. With respect to the given requirements, a Gaussian mixture model

(GMM) [42] is one appropriate way of modeling the regions of activity on a target source;

the individual components in the mixture will be assumed to directly correspond to the re-

gions of activity at the glacier-sea interface. Hence, the mixture will act as the a-posteriori

density described in Section 3.2; the a-priori density is derived from the initial parameters

for the search conducted by the agents, which are set as part of a mission planning process.

Each agent will maintain its own “picture” of the model. This allows for each agent to

make its own decisions based on how it views the model and redundancy in the case that

an agent is disabled.

GMMs are defined in terms the means and covariances of their components; i.e., the
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probability density function p(x) for a GMM is defined as the weighted sum of mixture

components

p(x) =

k∑
j=1

w jφ(x|µ j,Σ j), (6)

where each w j is the component weight, x is the vector-valued parameter at which to eval-

uate the function, and µ j and Σ j are the component means and covariance matrices, respec-

tively. φ is the multivariate Gaussian probability density function

φ(x) = (2π)
κ
2 |Σ j|

1
2 e−

1
2 (x−µ j)T

Σ−1
j (x−µ j), (7)

where κ is the dimension of µ j. The weights of each of the components correspond to the

probability that a measurement belongs to a certain component.

As previously stated in Section 3.3.1, each component in the mixture will correspond

to a region of ablation activity. The covariance matrix of each component will be used to

derive the extents of a region that the agents must monitor. Since the component weights are

a measure of the influence of a component, they will be used in ranking which component

requires more observation resources in concert with the spread of the observation.

To generate the model, the agents must obtain measurements of target state. Before

defining what a measurement contains, each target’s state vector x, a single point of the

target trajectory βi,d(t) at a given time t, is defined to have the following form:

x =



x

ẋ

y

ẏ


, (8)

where (x, y) are the target position components, extractable using the function h(x), and

(ẋ, ẏ) are the target velocity components, extractable using the function g(x).

Measurements of the target states must be shareable across agents, to provide for the

generation of a complete picture of the target source model at each agent. Therefore, each

measurement will be labeled with an agent identifier, target identifier, and the time at which
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the measurement was obtained. The remainder of the measurement vector consists of po-

sition observations, perturbed by noise. A complete measurement vector z will be defined

as

z =



Λ

η

t

xm

ym


, (9)

where Λ ∈ Z is the label assigned to the target, η ∈ Z is the agent identifier, t is the observa-

tion time, and (xm, ym) is the noisy position observation, according to the assumptions for a

target measurement in Section 3.3.2. Note that target velocity is not part of a measurement

of the state. For the purposes of this model, the sensors are not assumed to have the ability

to measure velocity (e.g., Doppler measurements). This assumption is made because the

target velocities of drifting icebergs are not very high in magnitude, and may be estimated

to a certain degree of accuracy from sequential measurements of position.

Given a set of measurements of target position, the GMM components can be com-

puted. Expectation-maximization [43] (EM) is used to obtain the GMM components once

a sufficient number of measurements has been obtained. As measurements are collected,

either through the actions of an individual agent or by obtaining measurements from other

agents, the EM algorithm is run again on the new set of measurements, developing a clearer

picture of the regions of activity for a particular target source. In this case, the spread of the

iceberg positions with respect to the target sources is of interest, so the (xm, ym) components

of the measurement vector z are used as the samples in the EM algorithm.

The EM algorithm is initialized by first running k-means clustering [44] over the po-

sition measurements. The results of the clustering are used as the initial means in the EM

algorithm, with the covariances initialized to identity matrices. A limit is also placed on

the number of iterations to prevent infinite loops from occurring as a result of the algorithm
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not converging to a suitable solution.

The version of the EM algorithm as given in [43] is then run over the measurements

and the initial means and covariances with one difference: the log-likelihood is not scaled

by the number of measurements n. Scaling the log-likelihood, for this particular applica-

tion, causes numerical stability issues in the algorithm. That is, the resulting minuscule

likelihoods prevents convergence to a solution prior to reaching the limit on the number

of iterations. The modified algorithm is as follows, where m is the index of the current

algorithm iteration:

1. Initialization: Initialize as previously described for the initial component estimates,

and calculate the initial log-likelihood:

`(0) =

n∑
i=1

log

 k∑
j=1

w(0)
j φ

(
zi|µ

(0)
j ,Σ

(0)
j

) .
2. Expectation Step: For j = 1, ..., k, compute the association probabilities as follows,

with i = 1, ..., n:

γ(m)
i j =

w(m)
j φ

(
zi|µ

(m)
j ,Σ(m)

j

)
∑k

s=1 w(m)
s φ

(
zi|µ

(m)
s ,Σ(m)

s

)
and

p(m)
j =

n∑
i=1

γ(m)
i j .

3. Maximization Step: For j = 1, ..., k, compute the updated component parameter esti-

mates:

w(m+1)
j =

p(m)
j

n
;

µ(m+1)
j =

1

p(m)
j

n∑
i=1

γ(m)
i j zi;

Σ
(m+1)
j =

1

p(m)
j

n∑
i=1

γ(m)
i j

(
zi − µ

(m+1)
j

) (
zi − µ

(m+1)
j

)T
.

4. Convergence: Compute the log-likelihood:

`(m+1) =

n∑
i=1

log

 k∑
j=1

w(m+1)
j φ

(
zi|µ

(m+1)
j ,Σ(m+1)

j

) .
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If |`(m+1) − `(m)| > δ for some threshold δ, then return to the expectation step. Other-

wise, terminate the algorithm.

In this algorithm, zs is defined to be the target measurement with index s, prior to assign-

ment to a set Z j.

After the algorithm has computed the corresponding model, the final association prob-

abilities are used to assign measurements to components, generating the individual sets of

measurements Z j, as defined in Section 3.3.1. This measurement assignment allows further

metrics to be computed based on the model and the measurements used to generate it.

One caveat is that one requirement of the EM algorithm is that the number of mixture

components is provided to the algorithm. Since part of the task that is being accomplished

is identifying the regions of activity, sufficient a-priori information to make a good guess

as to what the number of components should be will likely not be available. Hence, several

models are generated with a different number of mixture components. The corrected Akaike

information criterion [45] [46] (AICc) is then used to select which of the models to use.

The AICc is defined as follows:

AICc = 2κ − 2 ln L +
2κ(κ + 1)
n − κ − 1

, (10)

where κ is the number of parameters in the model, L is the maximized value of the likeli-

hood function of the mixture, and n is the number of measurements. The ideal model for

a given set of measurements minimizes the loss of information provided by the measure-

ments. That is, the model that minimizes the AICc is the model used to perform resource

allocation.

Once the target spread and the target source centers are obtained, the model can be

further extended through other observable parameters to aid in resource allocation. For

multiple observations of a target, the agent that observes the target will estimate the com-

ponents of the target velocity. Unlike positional information, this information is not shared

across agents when sharing measurements: the velocity is used as part of determining the
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cost of the agent moving from its current search region to a different search region.

To provide an initial check that the algorithm accurately captures the behavior of a set

of data, Figure 6 is the result of running the model computation and selection algorithms on

arbitrary data. In this case, the data was generated from three different bivariate Gaussian

distributions with 1000 samples per distribution using the following distribution parame-

ters:

µex1 =

[
0 0

]T

;

Σex1 =

 10 4

4 10

 ;

µex2 =

[
14 5

]T

;

Σex2 =

 4 5

5 20

 ;

µex3 =

[
−6 −2

]T

;

Σex3 =

 2 0

0 2

 .
(µex1,Σex1), (µex2,Σex2), and (µex3,Σex3) are the parameters for each distribution, respec-

tively. Note that both correlated and uncorrelated data were used in the process, indicated

by the cross-correlation entries in the covariance matrices. In the figure, the three compo-

nents are uniquely identified within a degree of error. The resulting calculated component
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parameters, including the component weights, are as follows:

wex1 = 0.341996;

µex1 =

[
−0.02076694 0.04622517

]T

;

Σex1 =

 10.21450 3.644476

3.644476 9.509051

 ;

wex2 = 0.332052;

µex2 =

[
13.99328 5.055137

]T

;

Σex2 =

 3.883991 5.044918

5.044918 19.39506

 ;

wex3 = 0.325952;

µex3 =

[
−6.029838 −1.970704

]T

;

Σex3 =

 1.736427 −0.09489484

−0.09489484 1.836282

 .
Note that the estimated parameters are accurate within a small degree of error, with a max-

imum error of 0.7. In addition, the weights indicate that the components have nearly equal

probabilities of containing a given sample. This is expected given the independent sam-

pling of the original distributions.
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Figure 6. Mixture model generated from arbitrary data. Three independent bivariate Gaussians were

used in the data generation process, and they have been uniquely identified.

3.4.2 Model Reduction and Target Streams

While a model properly generated from the measurements and selected will provide a fit

for the data, some of the mixture components of the model Q can be very small in volume

or have a large degree of separation from the rest of the components in the model. Such

components often have very small weights or small covariance volumes, and they can be

generated as a result of outlying iceberg measurements that do not associate with a larger

component. Running the model through a component reduction algorithm prior to using it

can eliminate these components. In addition, as part of detecting when to adjust the regions

that are being monitored, mixture reduction can be used to detect the target streams Bi(t),

i ∈ [1, l], that are being generated by ablating sources in U. Keeping track of how many

streams are active at a given time can be used to determine when to reallocate agents to

new search regions.

3.4.2.1 Model Reduction

Model reduction is a technique that has been primarily studied in the target tracking litera-

ture. References regarding mixture component reduction can be found in the target tracking
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literature, for the following reason: the general solution of attempting to track a target in

clutter in a Bayesian fashion results in a Gaussian mixture. Only a few of the components

may actually be the result of target activity; therefore, methods of reducing the number of

components in a mixture have been developed to deal with this issue. Most of the extra

components have extremely small weights and represent clutter.

Several methods have been devised by researchers to reduce the number of components

in a Gaussian mixture; examples include the following:

• Combine components that are similar according to a weighted, squared Mahalanobis

distance [47] [48].

• Merge components using gradient descent based on a modified Kolmogorov varia-

tional distance, referred to by the investigators as an Integral Square Distance (ISD)

[49].

• Combine components that are similar according to a version of Kullback-Leibler

discrimination [50].

• Perform mixture reduction through homotopy continuation, formalizing the reduc-

tion problem as an optimization problem [51].

As mentioned in [50], aside from using optimization techniques to pick the best mixture

distribution, most merging algorithms can be reduced to the following, given a mixture

with n components to be approximated by a mixture of m components, and while more

than m components remain:

1. Determine measures of similarity between all components in the mixture.

2. Depending on the measure of similarity, for each pair of similar components, replace

the pair with their moment-preserving, merged component.
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The end result is a mixture distribution whose overall mean and covariance (i.e., a weighted

combination of the means and covariances of the individual components) is effectively the

same before and after the mixture reduction process.

A moment-preserved component is formed by combining the weights, means, and co-

variances of a component pair in the following manner, using the notation of [50] and given

that the indices of the components of interest are i and j:

wi j = wi + w j, (11)

wi|i j =
wi

wi + w j
, (12)

w j|i j =
w j

wi + w j
, (13)

µi j = wi|i jµi + w j|i jµ j, (14)

Σi j = wi|i jΣi + w j|i jΣ j + wi|i jw j|i j(µi − µ j)(µi − µ j)T , (15)

where wi j is the combined weight of components i and j, wi|i j and w j|i j are the scaled weights

of components i and j, µi j is the combined mean of the components, and Σi j is the combined

covariance matrix.

Note that when merging components, the new mean is the weighted sum of the means

of the component pair, while the new covariance matrix requires a spreading of the means

term in addition to the weighted covariance matrix sum.

For the purposes of in-situ modeling, an algorithm that converges relatively quickly and

does not result in anomalous behavior in certain corner cases is desired. While optimization

techniques may not have issues in convergence speed, the result may vary depending on

how the algorithm was initialized, which can be a tricky process. Hence, the methods

of Salmond [48] and Runnalls [50] will be candidates for algorithmic components to be

incorporated into a model-processing pipeline. The intent of the result of the pipeline is

to be able to determine whether or not streams of targets have vanished, hence, complete

accuracy is not necessary; the mixtures only need enough reduction to remove spurious

components.
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A comparison between the two reduction techniques may be conducted by analyzing

simulated data that consists of measurements of target positions from multiple streams of

targets Bi(t) from ablating sources. Figures 7 and 8 are two plots of example mixtures

generated from a set of such data. Target measurements are marked with asterisks, and

the covariance ellipses of each of the individual components are the red ellipses. The

component means are the red crosses in the centers of the covariance ellipses. Note that

the results of generating the mixtures clearly distinguish the four streams, with one stream

that is associated with two components. The three-stream example has one stream that

is covered by three components. The application of a mixture reduction technique can

generate a mixture that merges some of these “extra” components.
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Figure 7. Mixture model for four target streams. Note that all target streams have been identified.
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Figure 8. Mixture model for three target streams. Note that all target streams have been identified.

For the two data sets, they were reduced using both the Salmond and Runnalls algo-

rithms. The results for each of the two data sets for both mixture reduction algorithms

were, in fact, identical; the results from using the Salmond algorithm are shown in Figures

9 and 10.
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Figure 9. Reduced mixture model for four target streams (Salmond algorithm).
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Figure 10. Reduced mixture model for three target streams (Salmond algorithm).

In both of these cases, it can be observed that the individual target streams were again

identified. However, for this particular data set, which is the type that one would expect for

observations of iceberg position, there is very little difference between the performance of
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the two algorithms. That is, the observations are tightly clustered and the resulting com-

ponents have relatively high magnitude weights. It may be concluded, from these results,

that which type of reduction algorithm should be used depends on the type of data that is

encountered. If preservation of the overall mean and covariance of the resulting model is

necessary, then the Runnalls algorithm should be used. However, in practice for the types of

models that are generated and the eventual use of these models (generating search regions

for mobile sensors), preserving the overall mixture parameters is not paramount. Since the

Salmond algorithm relies more on the separation of means, and spatial properties are more

of interest here, for most mixture reductions, that algorithm is sufficient.

3.4.2.2 Component Clustering

Once a reduced mixture has been obtained, it may still not be suitable for detecting the

target streams Bi(t). For example, a component with a weight that prevented it from being

merged may reside within the covariance volume of another component. This would be

a spurious result if one were to use the components to determine the number of target

streams.

One solution to the problem is to execute a clustering algorithm on the remaining com-

ponents, ignoring whether or not the overall mean and covariance is changed, since the pri-

mary concern at this point is the components which provide a target stream representation,

rather than search region representations. However, to compare components, a distance

measure of some kind is necessary. In this case, a quantity that measures the separation or

overlap between two distributions is desired.

One such quantity is the Bhattacharyya coefficient [52]. The Bhattacharyya coefficient

has seen use in computer vision (e.g., [53]) and in signal processing applications.

The coefficient is derived as part of the Bhattacharyya distance, which measures the

similarity between two distributions; the distance DB(p, q) between any two probability

distribution functions p(x) and q(x) is defined as follows:

DB(p, q) = − ln (BC(p, q)) , (16)
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where BC(p, q) is the Bhattacharyya coefficient. The coefficient takes varying forms de-

pending on whether the distribution is discrete or continuous. As the distributions of inter-

est are Gaussian, the continuous form is necessary:

BC(p, q) =

∫ √
p(x)q(x) dx. (17)

The coefficient ranges from zero to one, depending on the amount of overlap. For two

fully overlapping distributions, the coefficient will be one. The continuous form of the

coefficient can be difficult to evaluate, but if both p(x) and q(x) are both multivariate Gaus-

sian probability distribution functions, as is the case here, a closed form exists [52] for the

Bhattacharyya distance:

DB(p, q) =
1
8

(µp − µq)T Σ−1(µp − µq) +
1
2

ln

 det Σ√
det Σp det Σq

 , (18)

where

Σ =
1
2

(
Σp + Σq

)
, (19)

and (µp,Σp) and (µq,Σq) are the means and covariances of p(x) and q(x). The Bhattacharyya

coefficient then follows trivially from the definition of the distance, as follows:

BC(p, q) = exp (−DB(p, q)) . (20)

As part of a clustering algorithm, a straightforward design for the algorithm that incor-

porates the coefficient will be used. First, a threshold ζ on the Bhattacharyya coefficient is

set. As the coefficient decays exponentially the further the distributions under consideration

are apart, a small ζ is sufficient to indicate that the components are sufficiently close; for

this research, a ζ = 0.01 is used. Next, a component is selected from the list of components

to act as the initial cluster head. Then, the following steps are performed until all of the

components have been assigned to a cluster:

1. The Bhattacharyya coefficient is computed between the current cluster head and a

component.
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2. If the component distance is greater than the threshold, since the coefficient ap-

proaches one as the distributions overlap, that component is assigned to the cluster.

3. If all clusters are exhausted and the component has not been assigned, a new cluster

with this component is created as the head.

4. The next component is selected from the list and the algorithm is re-iterated.

The resulting set of component clusters, given sufficient separation between the original

components, should then represent the streams of targets that are present. This algorithm

can then be incorporated into a processing pipeline for target measurements.

3.4.2.3 Model Pipeline

Given the previously described algorithms for generating a model and extracting additional

data from it based on the model components of Q, a complete algorithmic pipeline can

be developed for iceberg measurements. Note that this complete pipeline is only intended

for the local, per-sensor iceberg model, so that each mobile sensor has the capability to

assist in reallocation of sensor resources. Additionally, attempting to execute this pipeline

on the global model will not produce the desired results, unless the components are well-

separated, which may not be the case.

The complete pipeline for processing measurements of iceberg target positions is then

as follows:

1. Using local iceberg position measurements, the sensor agent computes and selects an

appropriate Gaussian mixture model using a combination of expectation-maximization

coupled with the corrected Akaike information criterion.

2. The sensor agent computes and stores metrics from the model.

3. The sensor agent then runs a mixture reduction algorithm over the model such that

the overall mean and covariance of the entire mixture are unchanged.
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4. Finally, the sensor agent clusters the remaining components using the Bhattacharyya-

coefficient-based clustering algorithm.

The result will be a handful of mixture components that represent individual target streams,

which can then be used to keep track of their number. Once the number of streams or

other properties of the streams change, then appropriate actions may be chosen, such as

transmitting an indicator that sensor resources should be reallocated.

3.4.3 Metrics

To perform resource allocation, the model must first be scored and metrics computed. With

these metrics, the most effective agent configuration can be determined. In addition, an ap-

propriate set of metrics can be used to predict information about a given model; specifically,

based on past observations, the behavior of the model, and as a consequence iceberg drift,

can be predicted in terms of its metrics. This predicted information can be used in produc-

ing a forecast, or in adjusting sensor parameters to perform more effective observation of

an area.

Metrics are calculated by each of the agents based on their own individual pictures of

the model, and used as part of determining costs for resource allocation. The set of metrics

that will be defined for these models are as follows:

Number of mixture components: The number of components contained within the

GMM generated from a set of iceberg position measurements obtained by a group

of agents. This number represents the potential number of search/ice-ablation re-

gions that may be present. The number of components depends entirely on the target

measurements: their number and spatial diversity. With greater spatial diversity, the

number of components can increase.

Mean acquisition time: The time to acquire the initial contact on a target averaged

across all target measurements. This metric is the key quantity for minimizing the
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objective function. This metric will increase with greater total model area depending

on target velocity and agent velocity.

Total model area: The area covered by the model when all of the components are

taken into account. This area can vary depending on how many sigmas are used in

computing the associated error ellipses of each GMM component; in general, the

area will vary in these terms from one sigma to three sigma. This metric can be used

in determining additional coverage metrics, and as part of determining weighting for

the cost function. The area increases with the volume of the mixture components,

which varies directly with the covariance matrices of the components.

Number of acquired targets: The number of unique targets that have been acquired

during an observation task. This metric is used in characterizing the overall perfor-

mance of a given search algorithm. This metric will vary with target velocity, agent

velocity, sensor field-of-view (FOV), and source-ablation rate. Generally, it will in-

crease with larger fields of view and higher source-ablation rates. However, with

large agent velocities comparable to target velocity, the number of acquired targets

could decrease, with small sensor FOV.

Number of targets acquired per agent: The number of unique targets that have been

acquired per agent; this is not an average, this metric is in fact a set of numbers. This

metric is used to determine agent loading; i.e., whether or not a region should be split

amongst multiple agents if an agent is determined to be overloaded. The same values

that affect the total number of acquired targets affect the number of targets acquired

per agent.

Average target velocity: The average target velocity over all measurements obtained

by all agents. This metric is used to determine search speeds and sensor fields of

view. The target velocity will correlate with the number of acquired targets.
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Agent-specific target coverage: The percentage of targets obtained over all agents

over a given amount of time. This metric is used to determine performance of a

particular search algorithm, if it can be computed. To compute this metric, truth

data is required. This metric will generally increase with greater sensor FOV, greater

numbers of agents, and lower target velocities. Total model area will correlate with

the target coverage.

Predicted number of agents needed to cover an area: This derived quantity is the

number of agents required to effectively search a given area and provide sufficient

region coverage. This metric is determined by a combination of previous metrics,

and it is needed to determine how many agents are available to allocate to particular

search regions. This metric will increase with total model area, and it will decrease

with sensor FOV.

Total number of agents required for a given model: This derived quantity is the total

number of agents required to cover the total area of a particular GMM. This can vary

based on several factors, especially the total model area metric. This metric is used

to characterize algorithm performance and the “difficulty” of a particular model in

terms of required resources. This metric will increase in magnitude with total model

area and number of mixture components, and decrease with sensor FOV.

With the metrics defined, they may then be expressed in terms of expectations with

respect to model parameters. The symbols and equations for each metric are defined in

Table 1.

The metrics can be examined in terms of how they affect one another; performing such

an analysis is key in determining how a model can be predicted to evolve over time.
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Table 1. Metrics descriptions and definitions.

Description Definition

Number of mixture components k

Mean acquisition time Ts,mean = E[Ts|Z j]

Total model area Am,t =
∑

k Ak

Number of acquired targets NT (T )

Number of targets acquired per agent NA(T )

Average target velocity v̄T = E[v̄ j|Z j].

Agent-specific target coverage CA(T ) =
∑

NA(T )
NT (T )

Predicted number of agents needed to cover an area MA

Total number of agents required for a given model Mm

3.5 Example Models Using IIP Data

To validate the modeling approach and illustrate the associated metrics that result from

using the previously described modeling techniques, a selection of data from the IIP yearly

sightings database reports, which are available online [54], has been analyzed using this

methodology [55].

3.5.1 Model Generation

Mixture models were generated from the database reports provided by the IIP. Since each

yearly data set is quite large, to provide a fair comparison of the models between years,

iceberg sightings from the region shown in Table 2 were extracted from each of the data

reports prior to running the modeling algorithms. A map of this region is shown in Figure

11. As suggested by the extents of the region of interest, the coordinates of the iceberg

sightings are recorded as latitude and longitude. To ensure that the scaling is correct in

the resulting models, the coordinates are first converted to Universal Transverse Mercator
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Table 2. Parameters of the region used in the IIP data set studies.
Coordinate Minimum Maximum

Latitude 55.0◦ 57.0◦

Longitude −59.8◦ −58.4◦

(UTM) coordinates, using the equations as described in [56]. Prior to computing the mod-

els, the coordinates are then adjusted to be relative to the center of the region of interest.

Figure 11. Map of region used in the IIP data set studies (Google Earth). The points used are from the

2007 data set.

Figures 12, 13, 14, 15, 16, and 17 illustrate mixture models generated from each of the

IIP data sets from the years 2006 to 2011, inclusive.2 The x and y axes on the plots are

iceberg sighting relative UTM easting and northing, respectively. The white dots are the

2Data from previous years have not been used as part of this study; the data sets are either incomplete, or
do not contain sightings within the region of interest.
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iceberg sightings, while the white crosses are the centers of the resulting mixture compo-

nents. Up to 25 components were allowed as part of each mixture distribution. As a result

of the nature of the data; i.e., its high spread, the Salmond mixture reduction algorithm

was used to see an appreciable difference between the reduced and non-reduced mixture

distributions.

Note that once computed, for these particular results, the magnitude of the metrics will

be very large. In an actual mission when these models are being generated in real-time, the

areas will be much smaller, since the overall region of interest will be closer to a specific

glacier, rather than examining the behavior of icebergs that have already been calved and

are adrift at sea. One can think of analyzing the IIP data as examining a long-duration,

global case, while real missions are focused exclusively on a glacier-specific local case.
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Figure 12. Mixture model generated from the 2006 IIP data set.
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Figure 13. Mixture model generated from the 2007 IIP data set.
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Figure 14. Mixture model generated from the 2008 IIP data set.
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Figure 15. Mixture model generated from the 2009 IIP data set.
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Figure 16. Mixture model generated from the 2010 IIP data set.
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Figure 17. Mixture model generated from the 2011 IIP data set.

In each of the figures, regions of low target-likelihood and high target-likelihood are

present, indicated by the intensity of each of the heat maps. These regions correlate directly

56



with target density. It is also clear that for these particular data sets, mixture reduction

provides a benefit for interpreting various regions of activity. In several cases, particularly

in the years 2007 (Figure 13) and 2008 (Figure 14), the structure in the model is made more

apparent by applying mixture reduction to the results. Additionally, if the results of these

modeling experiments were to be used as part of initializing the search algorithms for a

set of mobile sensors, reducing the mixtures allows for the generation of a smaller number

of regions that should be searched, which can provide for a reduction in the resources

necessary to observe the region of interest.

Visual representation of the target densities provides some insight on the behavior and

spatial density of the icebergs for a given year. In 2009, shown in Figure 15, many of the

icebergs were sighted in very dense regions, while in 2006 and 2007, the spread was much

greater and only a few regions of high target density exist. However, 2006 is far less sparse

in overall model structure than 2007. The regions of high target density in this model may

be indicative of either higher ablation rates when closer to land or clusters of icebergs being

trapped in ocean currents when further at sea.

It should be noted that a qualitative evaluation of the models in this manner does not

necessarily provide an accurate picture of the behavior of the icebergs during each of these

years, especially if the observations are very sparse, as in the case of 2011 (Figure 17).

This sparsity will result in the generation of a large number of highly separated mixture

components with very small weights, and thus structure can be lost if only examining the

resulting map of likelihoods. Another example of this phenomenon is in the year 2007,

where there are two strong components of high target density, while the others have much

smaller weights. If the 3-σ error ellipses for 2007 are plotted, as in Figure 18, discrete

regions of activity can in fact be observed, as in the reduced model shown in Figure 13(b),

but when comparing the ellipses with the likelihood map, almost all of the iceberg proba-

bility is clustered into two components that are smaller in volume with respect to the rest of

the observations. This is suggestive of the existence of a subregion in the region of interest
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where ocean currents trapped icebergs. Comparing the mixture model of 2007 shown in

Figure 18(a) with its reduced counterpart Figure 18(b), only the components close to the

component containing most of the probability were merged, but the combined weights did

not substantially influence the overall distribution of probability, emphasizing the influence

of this smaller subregion.

Given these qualitative analyses, metrics computed using the models and compared

with the pictures of the likelihood functions can provide a more uniform picture of iceberg

behavior for each of these years.
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Figure 18. 3-σ error ellipses for the 2007 IIP data set.
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3.5.2 Metrics

With the models computed in the previous subsection, metrics are computed from the re-

sults. Note that not all of the metrics as defined in Section 3.4.3 can be computed here, as

some of them require ground truth, which is unavailable from the sighting database; e.g.,

coverage. Therefore, the following metrics are computed for each of the models:

• Number of acquired targets.

• Average target velocity.

• Total model area.

• Number of components.

It should also be noted that the average velocity is the best estimate given the data, as

the identifiers that are assigned to an iceberg are not necessarily unique. In many cases,

however, it is reasonable to assume that an identifier that is the same between two sightings

in the database that are reasonably close in time refers to the same iceberg.

The metrics computed from the models are summarized in Table 3. A few observations

can be made from this data:

1. The number of sightings increases considerably in the years 2006 and 2009.

2. The average target velocity has variability between years, yet stays within a range.

3. The spread of the icebergs, as illustrated by the total model area, is similar for all

years except 2007 and 2011.

However, these observations have some caveats. The number of sightings could in-

crease as a result of better algorithms for analyzing and classifying targets identified from

a satellite SAR image, as an example. In addition, models where the maximum number of

components provides the best fit to the data often have single components devoted only to

a small handful of target sightings.
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Table 3. Metrics for the analyzed IIP data.
Year NT v̄T Am,t K
2006 331 0.106 m/s 101,133 km2 22
2007 193 0.181 m/s 57,063 km2 24
2008 155 0.199 m/s 86,351 km2 25
2009 517 0.184 m/s 114,044 km2 24
2010 214 0.175 m/s 176,970 km2 25
2011 115 0.147 m/s 51,670 km2 24

What is more useful from this set of metrics is the velocity and area estimates: thus far,

from six years of observations, a maximum (2010) and minimum (2011) iceberg spread

in terms of area can be characterized. Additionally, some periodicity can be observed in

the magnitude of the area as the icebergs advance and recede over the years of interest.

The velocity is relatively stable for this region, except for two years. Such behavior is

not atypical; the velocities of surface ocean currents vary considerably from year to year.

Incorporating other years of IIP iceberg sightings, and fusing the models would provide a

better picture of past, present, and future iceberg behavior.

3.5.3 Summary

From the results presented in this section, the proposed method of statistical modeling can

be beneficial in understanding certain aspects of iceberg behavior. This modeling method

can be used in determining forecasts of future iceberg behavior based on metrics computed

from generated models or to predict regions of new iceberg activity. It is this latter pre-

diction that is the ultimate goal of this methodology, as it allows for defining regions that

have a higher focus placed upon them for acquiring new targets, and thus minimizing the

objective function: target acquisition time. Therefore, after model generation, new search

regions must be extracted from the model.

3.6 Search Region Extraction

Having generated a model based on the iceberg sightings, a method of extracting the search

regions that a set of agents should use to sufficiently explore the activity regions must be
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devised. Such a method can be developed from the standard method of generating an error

ellipse or contour of constant probability from the mean and covariance of a distribution.

In this case, the error ellipses will be generated from each of the components of the mixture

distribution, which can then be assigned to particular agents for search. Each of the agents

can then use a search pattern [39] [40] to scan the search regions.

To extract the search regions and determine the new search pattern parameters, each

mixture component is considered to be a separate probability distribution in its own right.

The steps in an algorithm to extract the search regions may then be defined as follows:

1. Calculate parameters for the contour of constant probability from the covariance ma-

trix: the parameters of the contour computed using the parameters of the distribution

can be used to determine an appropriate search area.

2. Fit a rectangle to the probability contour: for flexibility in choosing search patterns,

a rectangular search region is fitted to the contour of constant probability, as most

well-known search patterns adapt well to this type of search area.

3. Calculate new search-pattern parameters: these new parameters will allow the search

pattern to appropriately cover the new search area.

The following sections describe these steps in greater detail and provide a method by which

the contour of constant probability may be adaptively resized. In addition, limitations that

must be taken into consideration when extracting these regions are described.

3.6.1 Contour of Constant Probability

The contour is characterized by the eigenvalues λi and eigenvectors ei of the covariance

matrix. Both sets of these parameters fully describe the axes of the resulting ellipsoid; i.e.,

the contour is defined where vectors x satisfy the relation

(x − µ)T Σ−1(x − µ) = c2, (21)
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which is related to the Mahalanobis distance. Specifically, Σ is the covariance matrix, µ is

the mean, x is the vector to compare, and c is a constant Mahalanobis distance.

The axes of the ellipsoid have the form ±c
√
λiei. The constant c is chosen using a chi-

square distribution χ2
k such that c2 = χ2

k(α), as this leads to a contour containing (1 − α) ×

100% of the probability. The number of degrees of freedom k of the chi-square distribution

is equal to the number of dimensions of the multivariate-Gaussian distribution.

3.6.2 Fitting a Rectangle

Once the axes of the probability contour have been determined, a search region can be

generated from the axes. A rectangle is fitted to the contour as stated in Section 3.6 and

the interior of the rectangle is used as the search region. Ample region coverage with the

search patterns to be discussed will be obtained as a result.

To fit the rectangle, the two extreme points of the ellipse are obtained and are used as

the basis points. First, the maxima and minima of the parametric equations of the ellipse

must be computed. The ellipse equations are the following:

x(t) = xµ + a cos t cos φ − b sin t sin φ; (22)

y(t) = yµ + a cos t sin φ + b sin t cos φ, (23)

parameterized by the time t, where xµ and yµ are the components of the point at the mean,

and φ is the rotation angle with respect to the x-axis of the major semiaxis a. This angle

may be found via the following equation:

φ =
1
2

tan−1
(

2σxy

σ2
x − σ

2
y

)
, (24)

where σxy is the off-diagonal cross-covariance from the covariance matrix, and the two σ

terms are the variances of the x and y coordinates. To obtain the appropriate extrema, the

ellipse equations are differentiated

dx(t)
dt

= −a sin t cos φ − b cos t sin φ; (25)

dy(t)
dt

= b cos t cos φ − a sin t sin φ, (26)
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and set equal to zero, which results in the following expressions for t:

tx = tan−1
(
−

b
a

tan φ
)

; (27)

ty = tan−1
(
b
a

cot φ
)
. (28)

The t value that gives the maximum is found with the appropriate substitutions for a, b,

and φ; t + π provides the minimum. The points are obtained by substituting the values of

t into the original parametric equations x(t) and y(t). The resulting set of rectangle corner

points is {(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin)}. An illustration of the result is

shown in Figure 19. Despite the fact that the figure shows an angle of rotation of the ellipse

indicating correlation between the coordinates, the resulting rectangle has the same corner

points regardless of any cross-covariance terms in the covariance matrix.

Figure 19. Fitting a rectangle to a contour of constant probability.

3.6.3 Search Pattern Parameters

With the points that characterize the polygon that acts as the search region, the search

pattern parameters may be modified to constrain the extents of the search to this new region.
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Two search patterns will be considered in this section: the parallel-transect or “lawnmower”

search pattern and the arithmetic spiral pattern. Illustrations of these search patterns are

shown in Figure 20. The pattern at the top illustrates the arithmetic spiral, while the pattern

at the bottom illustrates the parallel-transect pattern.

Figure 20. Examples of search patterns. Top: arithmetic spiral pattern. Bottom: parallel-

transect/lawnmower pattern.

In the case of the parallel-transect search pattern, the horizontal distance is set to the

range of the sensor used to scan for targets, which will be defined to be ds.

The vertical distance traversed by the agent is set to Dv = |ymax − ymin|, and the number

of search-pattern traversals Ntrav is set to

Ntrav =

⌈
|xmax − xmin|

ds

⌉
, (29)

where a traversal is defined to be one vertical path followed by a horizontal path.

The spiral pattern has fewer degrees of freedom: only the furthest extent of the spiral

can be fitted to the spatial representation of the distribution. The standard equation for the
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arithmetic spiral in polar coordinates is the following:

r(θ) = a + bθ, (30)

where a sets the orientation of the spiral, and b sets the spacing between arms of the spiral.

As it is a cosmetic parameter, a is set to zero. To properly set b, first note that the distance

between arms of the spiral is 2πb. 2πb must be at least ds to have a similar detection

capability as that of the parallel-transect pattern while traveling along the curve of the

spiral. Hence, b = ds/2π.

From the polar definition of the spiral, a parametric representation is derived:

x(t) = αt cos ξt; (31)

y(t) = αt sin ξt, (32)

where α = bξ. ξ is a design parameter that sets the spacing in angular units between

individual points on the spiral; ξ may be considered a number effectively equivalent to a

frequency. For the experiments conducted throughout this research, the value of ξ is set to

25◦.

Next, the spiral-pattern parameters are computed for the reduced search area defined by

the rectangle. For the spiral, only the final value of t, t f , can be manipulated:

t f =

√
|ymax − ymin| · |xmax − xmin|/π

bξ
. (33)

The final value becomes the initial value of t when traveling in a reverse direction along

the spiral. In a practical implementation, the maximum of the two distances between the

coordinates is chosen and is used in calculating the extent; i.e.,

t f =

√
d2

max/π

bξ
, (34)

where dmax is that maximum.
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3.6.4 Contour Sizing

A design choice may be made with respect to the error ellipses computed from the mixture

model: to fully cover the active regions of a particular glacier, should additional area be

added to the search region? Or, is the extent such that the area that should be searched is

much smaller than expected; e.g., ocean currents are such that the iceberg velocities have

vectors that take them through a certain region at a slow rate, requiring less effort to detect

them. One solution to this problem is to adjust the number of sigmas used to generate the er-

ror ellipse based on the measurements; i.e., change the percentage of probability contained

within the probability contour based on the statistical distance of the measurements from

the mean, as opposed to the fixed-size search regions that are generated by the algorithm

described in Section 3.6. The Mahalanobis distance of samples from the estimated distri-

bution can be used to determine the appropriate size of the search region. The following

formulation of this distance is used:

d = (zk − µk)TΣ−1
k (zk − µk), (35)

where zk is a position measurement at some time instant k, µk is the mean, and Σk is

the covariance matrix. This formulation, which is an extension of the Euclidean-distance

metric, is the definition of the distance between a sample and the mean in
√

d-σ increments.

The distance is chi-squared distributed with n degrees of freedom, where n is the dimension

of the measurements zk. The percentage of probability that is required is readily obtained

by applying the cumulative-distribution function F of the chi-squared distribution to the

Mahalanobis distance; i.e., p = F(d, n), where p is the percentage.

The uncertainty ellipse may now expand and contract based on the total measurement

spread. The ellipses are initialized as 99% ellipses, to effectively cover the search region.

If the measurements require a much smaller containment region as shown by the calcu-

lated Mahalanobis distance for some threshold α of the number of measurements, this new

percentage will be used and the ellipse will contract. However, if a great number of are
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detected using a similar threshold, then the parameters are relaxed and the ellipse is ex-

panded. The expansion case is illustrated in Figure 21, where previous measurements are

tightly clustered, but a recent measurement with a wider spacing that was assigned to the

same component causes an expansion of the search region.

Figure 21. Expansion of the search region as a result of a measurement with a greater spacing.

3.7 Search Region Extraction Using IIP Data

To demonstrate the procedure for extracting search regions from a mixture model, the pro-

cess is applied to one of the IIP datasets, using one of the mixture models generated in

Section 3.5. To be specific, the mixture model generated from the 2011 dataset without the

application of search region reduction will be used to demonstrate the process, and show

cases where reducing the model can be beneficial.

The first step is to generate the contours of constant probability from the mixture; this is
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a straightforward task by iterating over the individual components and applying the requi-

site equations. The result, when graphed, is shown in Figure 22. From examining this plot,

it can be seen that a few components exist where the search region will be of negligible

area. These regions can be absorbed into larger regions, if the component merging process

does not combine them with other components.
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Figure 22. Probability contours for the model generated from the 2011 IIP data set.
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Figure 23. Search regions for the model generated from the 2011 IIP data set.

Once the contours have been generated, the search regions can then be computed, as

shown in Figure 23. Once the search regions have been generated, the parameters for the

search parameters can be computed. In this case, the parallel-transect and spiral search

patterns as described in Section 3.6.3. To compute these parameters, nominal values for

the design parameters must be chosen. The sensor field-of-view radius ds is set to 500 m,

and the spacing between points of the spiral ξ is set to 25◦. Table 4 shows the results of

calculating the parameters. Note that the distances are very large; in an actual mission, the

travel distances will likely not be on the order of several kilometers. However, in this case,

the distances demonstrate what is required to search regions with areas of this magnitude.

Each of the identifiers in the table correspond to the labels in Figure 23.

Most of the resulting lawnmower vertical traversal distances are reasonable; in this

case, a reasonable distance is less than 20 km. Additionally, there are regions that have

smaller vertical traversals that require many more total traversals to cover the region. This

result of having a longer traversal distance with fewer horizontal traversals is more efficient
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Table 4. IIP 2011 dataset search pattern parameters.
Component Lwm. Vertical Dist. Dv Lwm. Traversal Count Ntrav Spiral End Index t f

0 64.758696 34 527
1 3.997773 11 39
2 80.517556 165 664
3 38.547115 76 314
4 70.151608 65 570
5 277.157686 100 2252
6 43.638355 157 634
7 45.460628 79 370
8 0.818322 2 7
9 2.919672 27 104

10 27.789877 122 488
11 81.424907 186 751
12 133.123829 33 1082
13 107.572144 83 874
14 0.479012 2 4
15 0.818322 2 7
16 0.450948 2 4
17 0.475326 2 4
18 34.220631 81 325
19 75.172304 63 611
20 7.209261 86 344
21 12.058957 25 98
22 28.876854 8 235
23 48.078386 70 391
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in covering the region. When compared with the plot of the search regions, there are cases

where the sightings taken within these larger search regions are very sparse, and they could

have been captured within a different region. Hence, these larger search regions could be

removed from the mission altogether, if it is possible to obtain target measurements from

smaller search regions.

In the case of the spiral pattern parameters, the magnitude of the final index corresponds

directly to the required parameters for the lawnmower pattern. That is, for the larger search

regions in terms of area, the index is greater than 500. It should be noted that the total

distance traversed within the region, depending on the separation between turns, can be

greater than that of the lawnmower pattern.

3.8 Real-time Considerations

When implementing these algorithms on real hardware, resources may be limited as a re-

sult of the use of microcontrollers or small embedded processor boards as opposed to a

complete computer system. It should also be noted that the overall iceberg observation

problem, considering that it uses CMOMMT as a framework, has NP-hard complexity:

as a result of the problem being based on CMOMMT, the problem can be reduced to the

same underlying problem to which CMOMMT can be reduced. This underlying problem

is vertex cover [30].

Algorithm complexity should be also taken into consideration. Expectation-maximization

has linear time complexity with regard to the number of measurement dimensions D, the

total number of possible iterations I, and the number of measurements N; i.e., O(NDI).

Mixture reduction is linear in the number of components K and the measurement dimen-

sion D, i.e., O(KD). The clustering algorithm also has a linear time complexity of O(LD),

where L is the number of components resulting from the mixture reduction process.

Note that the clustering algorithms are highly parallelizable, and they either may be

offloaded to a centralized fuser or computed in pieces across all of the agents. However,
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the resulting model must still be reassembled at some central point to be usable. This

again suggests the need for the use of a centralized data fuser or the alternative approach

of the broadcast of results as they are generated by each of the agents. Once all of the

computation is completed, each of the agents individually reconstructs the iceberg model,

and then makes decisions based on this reconstructed model.
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CHAPTER 4

METHODOLOGY FOR RESOURCE ALLOCATION USING THE
ICEBERG MODEL

By using a data-derived model to better characterize the ablation regions on a glacier, ice-

bergs can be efficiently detected before they become a significant issue for arctic operations.

However, a default allocation of resources to continuously track these targets may not be

the best allocation for detecting new icebergs. An example of such a default allocation

would be the division of the region surrounding the glacier into equally-sized rectangular

subregions, equal in count to the number of available agents. Such a division is equivalent

to a centroidal Voronoi tesselation of the region [57].

This resource allocation issue is a primary reason for developing methods to generate

and extract search regions from the model: the new search regions computed from the

model should be designed to seek and detect new icebergs as they include previous iceberg

positions and speeds.

Therefore, methods for reassigning resources to the regions as produced from the model

must be developed. In this chapter, the general assignment problem for assigning agents to

tasks is discussed, and a cost function is defined that uses the target model and robot param-

eters to determine an optimal allocation of resources [58]. Finally, appropriate assignment

algorithms for assigning agents to search regions are considered. It should be noted that this

assignment approach is one of many possible approaches for allocating agent resources; the

primary contribution of this chapter is to show the design methodology for a method using

the model as defined in Chapter 3.

4.1 The Assignment Problem

The assignment problem is among the most common of resource allocation problems. The

common definition of the problem is as follows: given a set of resources and a set of tasks,
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what is the optimal one-to-one assignment of resources to tasks? While this definition

seems simple, it may be generalized to any number of dimensions; e.g., developing the

optimal assignment of a one-to-many mapping of resources to tasks. For the purposes of

this research, however, only the nominal definition of the problem will be considered. As

such, a mapping can be represented by entries within a table, which then equates to defining

the problem as a two-dimensional assignment.

To formalize the definition of the two-dimensional assignment problem, the following

definitions are necessary:

T : A set of N tasks t j.

R: A set of M resources ri that can complete a task contained in T .

C: The cost required for a resource ri to complete a task t j. The cost function is the

one-to-one mapping C : T × R −→ R. Although it is implied by the name, the cost

may not necessarily be monetary or even physical in nature. Energy or additional

resources (e.g., tools required to complete a task) may also act as costs.

In two-dimensional assignment problems, an optimal assignment of resources to tasks

based on the costs exists that allows for the most efficient method of completing the task.

This optimal assignment minimizes the cost across all tasks and resources.

Defining the assignment as the mapping X : T −→ R, the objective function of the

two-dimensional assignment problem is the following:

min
R,T

C, (36)

which results in the optimal mapping X.

In the case of the iceberg observation problem, assigning robots to search regions can

be considered within the context of the two-dimensional assignment problem: the set of

tasks T is the set of search regions, and the set of resources R is the set of robots in the
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mission.1

Many methods and algorithms have been developed over the years to solve the two-

dimensional assignment problem. The canonical algorithmic solution to the assignment

problem is the Hungarian method (Kuhn-Munkres algorithm) for performing an assign-

ment [59] [60]. This algorithm is a combinatorial method for solving the problem. Of

course, other well-known assignment algorithms exist and provide an assignment more ef-

ficiently, such as the Jonker-Volgenant shortest-path algorithm [61] and the various auction

algorithms by Bertsekas [62].

Solutions to the assignment problem may also use greedy algorithms; greedy, nearest-

neighbor assignment [63] is one of the more common ways of implementing such an algo-

rithm. Additionally, decentralized, market-based assignment algorithms lend themselves

well to robotics applications. These types of algorithms allow each of the robots to deter-

mine their own costs and bid in an auction-like fashion for tasks either tracked by a central

arbiter or empirically determined based on the current needs of the robotic system [64–76].

In the case of iceberg observation, since the types of observation tasks are all the same,

a standard two-dimensional assignment approach would serve well. The main problem is

determining what the cost function should be. Such a function can be defined based on

the parameters of the model generated from previous iceberg observations and the physical

parameters associated with each of the robotic agents.

4.2 Defining a Cost Function

To determine an appropriate cost function for the iceberg observation problem, an appro-

priate statement of the assignment problem must be developed. Hence, the assignment

problem that is to be solved is as follows:

• The initial allocation of agents has each of the agents assigned to a region derived

1For the remainder of the chapter, the terms “two-dimensional assignment problem” and “assignment
problem” will be considered as interchangeable.
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from the initial mission plan. Each agent has an average speed and a sensor field-of-

view that covers a fixed area. Figure 24 illustrates an example of such a default al-

location: the mission area is divided into equally-sized, rectangular cells, and agents

search within those cells. That is, a centroidal Voronoi tessellation of the region S.

• New regions of varying area and position are then extracted from the computed ice-

berg model Q using the parameters of the model components qk, j = 1...k. Agents are

deployed to the new regions. Figure 25 shows an example of these extracted regions.

Figure 24. Initial agent allocation.
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Figure 25. Assignment of agents to search regions based on mixture components.

One of the more common cost functions in the assignment problem uses the Euclidean

distance from the position of a robot to a set of given goal points; the assumption is made

that the paths that have this distance are both the shortest and, as a consequence, the mini-

mum energy paths to the goal points.

However, in the case of evaluating the cost of a search region for the iceberg coverage

problem, additional factors must be considered. Such factors include how quickly and

efficiently the region can be covered while still acquiring a significant number of the targets

contained within it. To accommodate these factors, two weighting factors are placed on the

distance to the centers of the search regions, which will generally be defined by the means

of the Gaussian mixture components used to generate them.

This leads to a definition of the cost function C as follows:

C =
AR

AFOV

v̄ j

vr

√(
x − µ j

)T (
x − µ j

)
, (37)
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Table 5. Cost function parameters.

Variable Definition

AR Area of a given search region.

AFOV Area of a given sensor field of view.

v̄ j Average velocity of targets within a search region j.

vr Average velocity of a given robot.

x Robot position.

µ j Component mean or center of a given search region.

where the symbols are given in Table 5 and j = 1...k, k being the number of components

in the model Q.

The first weighting factor AR/AFOV depends on the area of a search region and the field

of view of the robot’s sensors, which is the contribution of R to the cost function, where R

was defined in Section 4.1. This factor, as defined, is the ratio of the search region’s area to

the area covered by the robot’s sensor field of view. The justification is that this ratio will

be 1 when the areas are equal, indicating that the only relevant cost is the distance required

to travel to the sensor. However, the cost will increase if the search area increases without

increasing the area that the agent’s sensor can cover; i.e., more energy is required to cover

the search region. The converse is true for smaller search areas.

The second weighting factor v̄ j/vr relies on the average velocities of targets that have

been acquired and the average robot velocity; it is the contribution of T to the cost function,

where T was defined in Section 4.1, in addition to the distance to the search region center.

This factor implies that if these quantities are equal, then again, no additional energy is

required by the robot to have parity with the speed of the targets. However, for higher

target velocities with respect to the robot, the cost will increase as the robot will have to

increase its speed to acquire targets, and likely consume more energy to do so.
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Table 6. Parameters used for the cost function sweep.

Variable Value

AR 100 m2

AFOV 4π m2

v̄ j 0.1 m/s

vr 100 m/s

Figures 26 and 27 are examples of holding a set of the cost function parameters constant

and sweeping one of the other parameters to demonstrate the effects on the cost function. In

all cases, the distance to the region has been held fixed at 100 m. The other fixed parameter

values are given in Table 6.
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Figure 26. Plot of cost C versus versus FOV area AFOV and search region area AR. The cost behavior is

linear with respect to the region area, and exponential with respect to the FOV area.

80



2
4

6
8

10

20
40

60
80

100

1000

2000

3000

4000

5000

6000

7000

Robot Velocity (m/s)

Cost

Target Velocity (m/s)

C
o
s
t 
(m

)

Figure 27. Plot of cost C versus target velocity v̄ j and average agent speed vr. The cost behavior is linear

with respect to the target velocity, and exponential with respect to the robot velocity.

These plots show that, as one would expect from the equation for the cost function,

that the overall behavior of the cost is linear with respect to the region parameters and

exponential with respect to the agent parameters. Note that while search region area can

grow to be extremely large, as demonstrated by the study of the IIP database data in Section

3.5, the velocities of these targets remain relatively low. Hence, for search regions, the rise

in cost as the region size increases will have a steeper slope than that of the targets, as

demonstrated in Figure 26.

Similarly, depending on the sensors and agents used, widening the sensor field-of-view

would likely be cheaper in terms of energy than it would be to increase the agent velocity to

more quickly cover an area. Therefore, like the case of search regions and target velocity,

the cost will decay more sharply as the sensors are improved, which is shown in Figure 26.
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4.3 Selecting an Appropriate Assignment Algorithm
4.3.1 Motivation

The selection of an algorithm to use depends on how optimal the resulting assignment so-

lution should be in comparison to the computational resources required. The consideration

in this particular case is whether the best allocation for the agents is the most resource-

conservative when moving from one search region to another. It is of little use to provide

an optimal allocation if the agent does not have enough energy to conduct a search. For

the given cost function, this can occur for high agent velocities coupled with small search

regions in comparison to the sensor field-of-view, without verifying the resources required

to operate the sensor into consideration.

Therefore, the relative benefits of a sub-optimal allocation must be taken into consid-

eration. First, note that cost minimization is the problem of interest. A greedy approach

will always select the smallest cost first, regardless of the considerations that were a part

of its computation. This will occur in the case of high agent velocity coupled with small

search regions. Hence, this suggests that an optimal approach, with appropriate computa-

tion times, would be a better choice for the assignment algorithm that lies at the core of the

resource allocation algorithm.

4.3.2 Auction Algorithms

Based on the requirements for the complete resource allocation algorithm for this applica-

tion, the Bertsekas forward-reverse-auction algorithm [62] will be used. The algorithm is

an extension of the standard auction algorithm, which, by its name, resembles an auction

process in that for a given object (e.g., a task), the actor that wants the object attempts to

make it as unattractive as possible to the other actors in the auction such that the desiring

actor wins the object once the auction process has concluded. In particular, the actor makes

an object undesirable by taking turns raising the price at which the object will be sold. The

algorithms will be briefly summarized here; further details, theorems, and proofs associated

with these algorithms may be found within the reference [62].
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The forward-auction process operates in this manner; the actors attempt to maximize

the value of their desired objects with respect to the price, while raising the price during

each round of the auction. Each round ends with a partial assignment of objects to actors;

several rounds of auction are conducted until each actor has an object assigned to it.

Complementary to forward-auction is the reverse-auction process. The main difference

between the two auction processes is what is assigned to whom: for forward-auction, ac-

tors are assigned to objects; for reverse auction, objects are effectively assigned to actors.

Instead of maximizing an individual object value, the profit associated with winning the

object is maximized by the object for the assigned actor.

Before defining the algorithms, some definitions in addition to the definitions given in

Section 4.1 are required. For these definitions, the actors are the robots contained in the set

R, and the objects are the tasks contained in the set T .

The definitions for the forward-auction algorithm are as follows:

P: The vector of prices p j of each of the tasks contained in T .

V: The value v j of each of the tasks contained in T with respect to its corresponding

entry p j in the price vector P.

Bi: The vector of bids bi, j for each of tasks t j by the robots ri. Each robot has its own

vector of bids.

Conversely, the definitions for the reverse-auction are as follows:

Π: The vector of the profits πi for each of the robots contained in R. The difference

between profits and prices is that a profit is the additional value received by a robot

for winning a task, as opposed to obtaining it at the highest price.

W: The value wi provided by each of the robots contained in R with respect to its

corresponding entry π j in the profit vector Π.

83



B j: The vector of bids b j,i for each of robots ri by the tasks t j. Each task has its own

vector of bids.

Both the forward-auction and reverse-auction algorithms have two main steps: a bid-

ding and an assignment step. The forward-auction algorithm, summarized, proceeds as

follows:

Bidding step: For each of the tasks t j, using the values of C for each ri and t j contained

within the cost matrix (i.e., ci j), determine which task t j has the best value v j (i.e., the

maximum value) in the set of all tasks:

t j = arg max
t j∈T

{
ci j − p j

}
. (38)

The value that corresponds to this task is

v j = max
t j∈T

{
ci j − p j

}
. (39)

The next best task value is then obtained:

u j = max
t j∈T ,t j,t j,next

{
ci j − p j

}
, (40)

where t j,next is the task that possesses this next best value.

Finally, the given bid for a particular robot ri is computed using the following equa-

tion:

bi, j = v j −
(
ci, j − p j

)
− 2u j + 2ε, (41)

where ε is a small value, bounded above in this study by ε = 10−9. The bidding step

is repeated until all of the robots that have not been assigned to a task have issued a

bid for any of the remaining tasks.

Assignment step: For each of the tasks that received a bid, given the set of robots that

bid on a particular task, raise the price of that task to the maximum bid:

p j = max
t j∈T

bi, j (42)
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Remove any previous assignments to those tasks, and assign tasks to the robot which

has currently won that task. The algorithm terminates once all of the tasks have been

assigned to a robot.

Given the description of the forward-auction algorithm, reverse-auction may then be

described as follows:

Bidding step: For each of the robots ri, using the values of C for each ri and t j

contained within the cost matrix (i.e., ci j), determine which robot ri has the best

value wi (i.e., the maximum value) in the set of all robots:

ri = arg max
ri∈R

{
ci j − πi

}
. (43)

The value that corresponds to this robot is

wi = max
ri∈R

{
ci j − πi

}
. (44)

The next best robot value is then obtained:

ui = max
ri∈R,ri,ri,next

{
ci j − πi

}
, (45)

where ri,next is the robot that possesses this next best value.

Finally, the given bid for a particular task t j is computed using the following equation:

bi, j = wi −
(
ci, j − π j

)
− 2ui + 2ε, (46)

where ε is a small value, bounded above in this study by ε = 10−9, as in forward

auction. The bidding step is repeated until all of the tasks that have not been assigned

to a robot have issued a bid for any of the remaining robots.

Assignment step: For each of the robots that received a bid, given the set of tasks that

bid on a particular robot, raise the profit of that robot to the maximum bid:

πi = max
ri∈R

bi, j (47)
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Remove any previous assignments to those robots, and assign robots to the task which

has currently won that robot. The algorithm terminates once all of the robots have

been assigned to a task.

Forward-reverse-auction is a combination of the two algorithms, where rounds of forward-

auction are alternated with rounds of reverse-auction. Both price and profit vectors are

maintained each iteration in addition to the current partial assignment of robots to tasks.

Ultimately, the forward-reverse-auction algorithm converges to the optimal assignment in

much less time than either of the algorithms operating alone.

In the forward-reverse-auction algorithm, potentially multiple rounds of forward-auction

are run. At the conclusion of the assignment step, the profit vector Π is set according to

who won the current assignment and the current prices P of the tasks. Similarly, multiple

rounds of reverse auction are run, and once the assignment has been made, the price vector

P is modified according to the current assignment Q and the current profit vector Π for each

task. This back-and-forth approach between each of the algorithms assists in converging to

the solution faster and prevents price wars. A price war is defined as a contention between

two bidders where each bidder raises the price by a small increment during each iteration

of the bidding step [62]. Price wars most commonly occur when using the forward-auction

algorithm. This aspect of the forward-reverse auction algorithm, a reduction in price wars,

is a highly desirable one for this particular resource allocation problem: when the model

has been shown to reflect a change in iceberg behavior such that new search regions must

be generated and the agents must be reassigned, the assignment portion will not require

the bulk of the processing time with respect to the time required to initially generate the

model, communicate the changes in target assignment, and move the agents from their

current search regions to their new assignments.
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4.4 Arbitration of Resource Allocation

Once the costs have been computed with respect to the search regions, arbitration is em-

ployed to execute the assignment algorithm and assign the agents to the search regions.

Arbitration is officially defined as the process by which a dispute between two parties is

settled by an impartial third party. In the case of resource allocation, this definition may be

modified to state that arbitration is the process by which resources are allocated to agents

by another agent. In this case, while the assignment process is ultimately deterministic, ar-

bitration is used to ensure that the model that is used for reassignment is consistent across

all of the agents in the mission; i.e., other agents may have collected measurements, but

have yet to transmit them, yet they have already been incorporated into their own indi-

vidual versions of the iceberg model. The fact that an assignment algorithm will be used

for processing the cost matrix and performing region assignment will play a key role in

determining how arbitration will be handled.

Several methods exist for handling the arbitration of a resource allocation algorithm. A

few examples are as follows, representing generalizations of most of the methods used in

resource allocation:

• A single arbiter separate from the agents.

• An agent that acts as an arbiter.

• Arbitration is distributed across agents.

There are advantages and disadvantages to each of these approaches. For the first option,

the single arbiter is a kind of base station for the operation of the agents. Therefore, reliable

communications are required to ensure that it can provide information to the agents in a

timely fashion. Since the world is not ideal, the communications channel would certainly

not be completely reliable. The arbiter might be required to be placed far away from the

agents, such as being based on an oil platform many kilometers away. An agent acting as

the arbiter is a better option, as it will be closer to its fellow agents and communications
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will be more reliable. However, if the agent must drop out of the mission for any reason,

the advantages of a single fixed arbiter are lost.

The last option thus sounds like the best option: communication between agents will

have theoretically fewer errors as a result of proximity, and the agents are handing off the

arbiter role, ensuring that an agent dropping out of the mission will not hinder the rest of

the agents. Much like the individual methods of arbitration, there are multiple ways of

implementing distributed arbitration:

• A single agent acts as arbiter until it is forced to hand off arbitration to another agent.

• The agents periodically call for a vote on which agent should be the arbiter.

• The agents self-arbitrate by determining allocations individually and collectively fus-

ing them together to produce the final allocation.

Again, there are advantages and disadvantages to each of these options. For the last two

options, error correction or fail-safe procedures must be in place to ensure that if the agent

fails while tallying votes or producing the final allocation, the other agents can recover.

For example, if the election method is considered, the agents do not receive a response in

a certain amount of time, a new election is held, with a new vote counter determined by

a hand-off algorithm, such as a round-robin scheduling algorithm. Alternatively, the votes

can be broadcast to all agents, they are all counted individually, and the winner declares

itself the arbiter, which is a variant of the third option. However, communications errors

could cause votes to not be received by certain agents.

Hence, the option that will be chosen is the first option, as it provides sufficient reli-

ability at the sacrifice of a single agent having to store a significant amount of the state

required to arbitrate the rest of the agents. It should also be noted that even if the agent

is unable to perform the hand-off in time, some fail-safe measures can be put into place.

If the other agents determine that the model has changed sufficiently that a reassignment

should be occurring (as they all hold a global form of the model), the agents can elect a

88



new arbiter, or an agent automatically assumes arbitration duties based on a fixed sequence

of agents.

4.5 Algorithms for Region Assignment

Given the definitions and the selected algorithms in the previous sections, a complete re-

source allocation algorithm may now be defined. Note that prior to this assignment process,

if a model has not been computed, the agents are assigned to the default search regions.

First, some initial conditions must be stated with regard to the system:

• The default resource allocation is the division of the region around the glacier that

is currently calving icebergs into equally sized search regions. The number of initial

search regions is equal to the number of agents in the system.

• A default arbiter is assigned at the start of the mission, but it is not assumed to be the

same arbiter throughout the mission, depending on agent dropout.

• A model is generated prior to assigning agents to search regions.

• The search regions are generated from the model prior to assignment.

• An assignment is not initiated until the arbiter has received appropriate state vectors

from each of the agents in the mission.

The steps in the search region assignment algorithm for the global iceberg model as run

on the current arbiter are thus as follows:

1. The model is first verified as a valid model (i.e., there are no statistical validity is-

sues). If it is not, then the system exits from the assignment routine, and the agents

remain in their currently assigned search regions.

2. The number of measurements obtained for the model are verified as sufficient for

providing an accurate picture of iceberg activity. If not, then the system exits from
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the routine, and the agents remain in their currently assigned search regions. Alter-

natively, this test can be bypassed if one of the agents informs the arbiter that an

assignment must take place as a result of some significant event (e.g., an ablation

region dropped out of the model in an agent’s local model).

3. The model’s components are computed, and then search regions are computed from

the components. Combined with the current state and sensor properties of each of the

agents in the mission, the forward-reverse-auction assignment algorithm is executed.

4. The assignment vector resulting from the forward-reverse-auction assignment algo-

rithm is examined. If an agent was assigned to a particular search region, a redirect

request is sent over the network to that agent.

Note that the final step suggests that partial assignments can occur (i.e., there are more

agents in the mission than there are search regions). In this case, agents either revert to the

default resource allocation, otherwise they remain at the search region to which they were

last assigned. In addition, there is the issue of region hand-off : one agent may be placed

in a similar or identical region as another agent. Note that the regions will generally not

be identical: this would only occur as the result of a forced reallocation and no new ice-

berg position measurements having been obtained prior to this reallocation. The impact of

hand-off depends on the assignment algorithm that is used: so long as a unique allocation

where agents are placed in unique and separate regions is produced each time that the allo-

cation algorithm is run, region hand-off is a non-issue. This is the case in the reallocation

algorithm described here. If the algorithm can produce such resource conflicts, then the

current and previous assignment vectors must be compared to ensure that there will not

be a conflict. If a conflict exists, then either the assignment must be run again, or if there

are more regions than agents, the conflicting resource must be allocated to one of these

“extra” regions. Alternatively, if the search region has an “excessively large” area, the re-

gion can be tesselated into smaller regions, and the resource allocation algorithm run once
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more against this new set of regions. The constraint on reverting to the default allocation is

whether the agent can travel the distance to the center point of their default search region

without wasting too much energy to do so.

Finally, once conditions for hand-off arise (e.g., the arbiter must exit the mission as a

result of low energy levels), arbiter hand-off is accomplished using the following algorithm

based on the reasoning in Section 4.4:

1. The current arbiter searches for a candidate to act as the new arbiter. The selection

process starts by examining the list of agents that have most recently reported their

positions to the arbiter for assignment to search regions. An agent is first selected

from this list as an arbiter candidate, based on current loading.

2. The current arbiter queries the agent via network message to determine if it can

become the arbiter. The agent issues a reply based on certain conditions of its state;

e.g., how close is it to dropping out of the mission as a result of energy levels.

3. If the agent cannot become the arbiter, the current arbiter moves down the list of

agents until the list of agents is either exhausted or an agent states that it can become

the arbiter. If the list is exhausted, the current arbiter selects the arbiter candidate to

be the best fit in terms of remaining energy.

4. The current arbiter issues the arbiter hand-off network message to the candidate.

5. Upon receipt of the message, the arbiter candidate broadcasts a message to all agents

that it is the new arbiter. All agents in the mission then adjust their internal state to

reflect that a new arbiter has been selected, including the original arbiter. Current

agent states are then sent to this new arbiter as confirmation.

6. If the original arbiter does not receive the new arbiter message within a certain time-

out, then it attempts to notify the candidate again. After a fixed number of attempts,

the original arbiter chooses a new candidate using the same method as above, and the
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steps repeat until a new arbiter has been selected. If no candidates report, then the

original arbiter starts selection again from the start of the list.

Note that this algorithm has a potential flaw, which is difficult to eliminate using a

distributed arbiter approach: the condition may exist that the original arbiter is never able

to select a new arbiter. Such a condition may occur as a result of network errors: the original

arbiter never receives replies, or the arbiter’s original transmissions never reach the arbiter

candidates. The arbiter would become stuck in an loop as it continues to repeat the hand-off

process. The issue would manifest itself in search region reassignments never taking place.

Such a loop can be broken by having the arbiter defer to a base station when such an issue

arises; e.g., if the hand-off process repeats N amount of times with no success, where N

is a chosen limit on attempts, inform the base station that it must handle arbitration. The

original arbiter can then freely leave the mission area.
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CHAPTER 5

EXPERIMENTAL SETUP

In Chapter 3, the methodology for computing models of ablating target sources and met-

rics associated with those models was outlined, applied to a problem definition that was

obtained by extending the CMOMMT problem definition. Models were generated from the

iceberg sighting databases provided by the IIP to demonstrate how the modeling techniques

can extract the structure from the target measurements, and how the metrics for each of the

years compare with each other. Chapter 4 described a methodology for assigning resources

to monitor those target sources by using a distributed set of agents that communicate with

each other to determine to which search regions they should be assigned, based on a cost

function that is computed from the metrics obtained from the models in Chapter 3 and the

properties of the individual agents, including their sensors.

In this chapter, the requirements, assumptions, and implementation of the robot con-

troller used to control individual agents are provided. In addition, the simulation platforms

and robot hardware platform are described.

5.1 Implementation of the Robot Controller

The techniques and algorithms described in Chapters 3 and 4 may be integrated into a

complete controller for a mobile robot acting as a single agent in the iceberg observation

system. In this section, the configuration and the algorithmic components of the robot

controller are described.

5.1.1 Assumptions

A few assumptions must be made with regard to the robot controller and the robot itself,

as the primary concern in this section is how the algorithms given in previous chapters

are implemented, rather than some of the low-level details that are generally part of any

advanced robotic system. To emphasize, these algorithms may be implemented on any
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type of robot that is required for monitoring such ablating target-sources; specific platforms

such as autonomous underwater vehicles (AUVs) or unmanned aerial vehicles (UAVs) are

not assumed in this implementation.

The robot is assumed to have an obstacle avoidance capability that is integrated into

its control laws. Examples of such control laws are the algorithms given in [77], which

provide a fuzzy-logic approach to behavior integration.

The robot is also assumed to have a localization method. Examples of localization

methods that could be used on a robot operating in similar conditions include dead-reckoning

via odometry, satellite-based navigation such as the Global Positioning System (GPS), in-

ertial navigation, or a fusion of various localization techniques [78] [79]. It is likely that

odometry will have a lower emphasis in a localization solution for this problem, as a result

of the difficulty in obtaining odometry with the types of autonomous vehicles that would

likely be used in such an observation mission. Hence, the primary means of localization

would likely be an integrated inertial measurement unit (IMU) and GPS solution [80].

The primary means of controlling robot movement is assumed to be manipulation of

the linear (v) and angular (ω) velocities of the robot. Note that the cost function in Section

4.2 requires the assumption that an average speed of the agent can be computed; such an

average can be computed from the velocities used to control the robot.

The robot must also have a means of communicating with other agents, and potentially

with a base station or other communications stations for sharing the results of the obser-

vation mission. For a lab-based implementation, such a means of communication would

include Wi-Fi-based or Zigbee-based communications, which is what will be used in the

experiments. In the field, inter-agent radio links or satellite links would provide communi-

cations across agents.

Finally, the robot must have sensors for obtaining target measurements. While the mod-

eling methodology in Chapter 3 assumes a world-relative Cartesian measurement model,
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such as an Earth-Centered, Earth-Fixed (ECEF) Cartesian frame, no requirement is im-

posed on the sensor to provide measurements in this coordinate frame. Indeed, a chain of

coordinate transforms may be required to transform from sensor coordinates to the desired

frame. Such coordinate transforms may be found in any reference on navigation; [80] pro-

vides several of the more important coordinate transforms, such as transforming to ECEF

or local geodetic (e.g., East-North-Up) coordinates from and to latitude, longitude, and

altitude. If the sensor provides range-bearing-elevation measurements, then the first trans-

formation is the well-known spherical-to-Cartesian transformation, with an offset to the

bearing angle to transform it into an azimuth angle.1 Also, as it is a key assumption given

in Section 3.1.2, the sensors are assumed to be noisy. Observations are assured not to be

perfect.

5.1.2 Controller Organization

The controller is organized into a set of loosely-defined components, each with its own

particular function. The primary component of the robot controller is referred to as the

main component, which handles reading the current state of the robot hardware, simulated

or real, and executes much of the controller logic, but there are other controller components

that each handle a specific task.

A simplified overview diagram of the organization and function of each of the controller

components and their internal modules is shown in Figure 28. Arrows indicate the direction

of outputs from each module to another; each component runs as a loop, such that the

topmost module in each component generates the data that is operated upon by the modules

further down.
1The bearing angle in most sensors is referenced from zero degrees true-north, which would be 90◦ az-

imuth, if referenced from the x-axis.
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Figure 28. Organization of controller components and their functionality. Although it is not shown in

this illustration, the three components communicate as necessary to pass data.

A more detailed description of these components, including the main component, is as

follows:

• Main component: The main component handles acquiring target measurements, main-

taining robot state (position, velocity, etc.), path planning in terms of search patterns,

and executing individual search patterns. The robot’s finite state machine (FSM) is

contained within the main component, which is further explained in Section 5.1.4.

This component runs in a continuous loop, executing each of its individual tasks.

This loop is designed to run each cycle in the same amount of time; this time con-

straint exists to ensure that the main component does not desynchronize with respect

to any timing requirements imposed by the hardware platform on which it is run,

since it is actively querying the underlying platform, unlike the other controller com-

ponents. For this implementation, the execution rate of the main component is 25

times per second (a period of 40 milliseconds), locked to the execution rate of the
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underlying driver software.

• Networking component: The networking component processes user datagram proto-

col (UDP) packets received from other agents. These packets control resource allo-

cation, measurement sharing, and more basic operations such as current behavioral

state. This component is effectively a large C++ case statement that examines the

header of every received packet and executes the appropriate logic for each type of

packet, dispatching commands to the appropriate component.

• Modeling component: The modeling component recomputes the models based on

measurements acquired by the agent and transmitted to the agent over the network.

The models are computed as described in Chapter 3. Both the local and global mod-

els are computed, including their associated metrics. This component also handles

component reduction and target-stream detection.

All three components are activated at controller initialization. The networking and

modeling components wait to receive data as a result of main component processing before

executing. The main component waits until fresh state data is received from the robot prior

to executing the next iteration of the main loop.

5.1.3 Search Pattern Controllers

Each agent is capable of executing a search pattern from a bank of search patterns as part of

a scanning mission. For this implementation, three search patterns have been defined; two

of which have been previously discussed in some detail with regard to their mathematical

definitions in Section 3.6.3. Figure 29 is an illustration of the three search patterns. From

left to right in the illustration, they are as follows: the patrolling pattern, the parallel-

transect/lawnmower pattern, and the arithmetic/Archimedean spiral pattern. In this section,

the discussion of the search patterns will be qualitative rather than quantitative in nature.
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Figure 29. Search patterns used by the controller. From left to right: patroller, parallel-

transect/lawnmower, and arithmetic spiral.

The search pattern controllers built into the controller are as follows:

• Patrolling pattern: The behavior embodied in this search pattern is similar to what

is often referred to as a “loitering” pattern [81]. Loitering patterns are search pat-

terns where the agent travels in a closed loop around a particular area; this loop is

often circular. The patrolling pattern is a pattern where the robot travels in a straight

line between two points; i.e., effectively a compressed loitering pattern. This search

pattern is intended for computing an a-priori distribution to assist in determining the

initial allocation of agents to search regions; e.g., running several patrol scans with

one agent and then switching off to a different search pattern in concert with the other

agents included in the mission.

• Parallel-transect/lawnmower pattern: This pattern is the most common pattern used

in search operations, as a result of its coverage properties [82]. The result resembles

the pattern formed when mowing a lawn, hence the name. For rectangular regions, it

provides the best coverage. Modifications to this pattern have been made to provide

for more efficient sampling of a region [41], but for the controller implemented for

the iceberg observation problem, the standard lawnmower pattern will be used.

• Arithmetic/Archimedean spiral pattern: This pattern is another commonly used pat-

tern; it provides good coverage for regions that are more circular than rectangular in
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shape. The name “arithmetic spiral” comes from the fact that each of the turns of

the spiral are equally spaced, as opposed to the logarithmic spiral, where the spacing

between turns increases based on a logarithmic progression [83]. The reference to

Archimedes originates from the fact that during his studies of geometry, he eluci-

dated the geometric properties of the arithmetic spiral. The property of the spiral that

the turns are equally spaced allows for the arithmetic spiral to act as an analog to the

lawnmower pattern for circular regions.

5.1.4 Agent Finite State Machine

A finite state machine (FSM) approach was used to implement the robot behaviors in the

main component; specifically, the FSM was implemented as the core part of the main

processing loop that runs each time a new robot state is received from the underlying robot

driver software. Each state in the state machine uses a separate controller for a particular

robot behavior.

A state-transition diagram of the state machine used for this implementation is shown in

Figure 30. Note that this is a state machine that may be used as part of any robot controller

that must perform the task of retrieving data from a goal point.

Figure 30. Finite state machine for the robot main loop.
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5.1.4.1 Start State

The start state is the initialization state for the controller; the FSM never returns to this

state during execution. The controller loads a mission plan as part of initialization. This

mission plan contains information on all of the agents that are present in the mission. Such

information includes the fixed agent names, the network information required for commu-

nication between agents and the software drivers controlling the agents, and indication of

which agent is the starting arbiter for search-region assignment.

Additionally, a search pattern is configured based on parameters provided to the con-

troller. These parameters include the number of traversals, the length of a single traversal,

and the distance between individual sub-points within a traversal. The robot then transitions

to the go-to-goal state.

5.1.4.2 Go-to-goal State

While the robot controller is in the go-to-goal state, the robot is advancing to a commanded

position. The only commanded position to which the robot would be moving is the center

point of a newly assigned search region.

The controller uses “follow-the-carrot” navigation to move between points. “Follow-

the-carrot” navigation may be explained as follows. A checkpoint (xc, yc) is computed

and placed a short distance ahead of the robot, given the robot’s pose (xr, yr, φr). This

checkpoint lies between the current known position of the robot and the goal point (xg, yg)

to which it is moving. By the use of proportional feedback-controllers, the robot con-

troller computes the appropriate speed v and angular velocity ω to move and turn toward

the checkpoint. As the robot reaches these checkpoints, the robot controller continues to

generate and drive toward new checkpoints until it reaches the goal point. This means of

control provides a stable method of moving from a starting point to an ending point. Algo-

rithm 1 illustrates the complete navigation algorithm in pseudocode. Note that a procedure

is required to calculate the velocity to move and steer toward a goal point from a given start-

ing point; Algorithm 2 is the form of the velocity calculation algorithm that is used in the
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implementation of the robot controller. Various angular corrections have been omitted from

the pseudocode listing for clarity. Additionally, the atan2() function is the four-quadrant

arctangent function, a common component of most mathematical software libraries. The

velocity calculation algorithm allows for reconfiguration of how the velocities are com-

puted based on particular robot properties; in this case, the maximum and minimum linear

(vmin and vmax) and angular (ωmin and ωmax) velocities that a robot platform is capable of.
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Algorithm 1 “Follow-the-carrot” navigation algorithm.
Require: (xr, yr, φr) set to the current robot pose; (xg, yg) set to the goal position; a switch-

ing range set to s > 0; a limit N set to the number of checkpoints; and a maximum

distance between the robot position and a checkpoint set to Dmax > 0.

Ensure: v and ω will steer the robot toward the goal.

1: procedure FollowCarrot(xr, yr, φr, xg, yg, s, N, Dmax, v, ω)

2: d ←
√

(xg − xr)2 + (yg − yr)2 . Calculate distance to goal.

3: if d ≥ s then . Compute checkpoint; initial checkpoint is the goal position.

4: xc ← xg

5: yc ← yg

6: for i← 1,N do

7: d ←
√

(xc − xr)2 + (xg − xr)2

8: if d ≤ Dmax then

9: exit for . A proper checkpoint has been calculated.

10: end if

11: xc ← xr + xc−xr
2

12: yc ← yr +
yc−yr

2

13: end for

14: CalcVelocities(xr, yr, φr, xc, yc, v, ω)

15: else . Arrived at goal.

16: v← 0

17: ω← 0

18: end if

19: end procedure
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Algorithm 2 An implementation of the velocity calculation procedure.
Require: W is set to an appropriate weighting factor.

1: procedure CalcVelocities(xr, yr, φr, xg, yg, v, ω)

2: ∆x← xg − xr

3: ∆y← yg − yr

4: d ←
√

∆x2 + ∆y2

5: φnew ← atan2 (∆y,∆x)

6: ∆φ← φnew − φr

7: v← vmin + d
W (vmax − vmin)

8: ω← ωmin +
|∆φ|

π
(ωmax − ωmin)

9: if ∆φ < 0 then

10: ω← −ω

11: end if

12: end procedure

Once the robot reaches its set goal point, the state machine transitions to the search

state.

5.1.4.3 Search State

Upon entering the search state, the robot begins to execute its search pattern, as set by

the initial configuration. The robot remains in the search state throughout the duration of

the mission unless otherwise commanded to transition from the state. Such a commanded

condition would be when the robot receives an indication to move to a new search region.

Both the parallel-transect and spiral patterns are implemented by stitching together in-

dividual points such that the desired pattern is formed. In either case, the robot computes a

destination point based on the last point on the search pattern that it reached. The robot then

drives to this destination point from the previous point on the path. The next point in the

search pattern is computed upon reaching this intermediate point; Algorithm 3 provides a
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pseudocode sketch of how these algorithms operate. The patroller pattern is relatively sim-

ple compared to the other two search patterns, i.e., only two points ever exist for this search

pattern. When the robot arrives at the point that is designated as its current destination, the

search pattern cycles back to the previous start point. Overall, the algorithm remains the

same as for the spiral and lawnmower search patterns. To navigate from point to point, the

robot uses the same navigation algorithm that is used when it is in the go-to-goal state.

Algorithm 3 A sketch of the implementations of the search patterns.
Require: (xr, yr, φr) set to the current robot pose; (xg, yg) set to the current search pattern

point; and Dmax as a distance at which the pattern switches to the next point.

1: procedure PatternControl(xr, yr, φr, xg, yg, Dmax)

2: d ←
√

(xg − xr)2 + (yg − yr)2

3: if d < Dmax then

4: if Reverse pattern then

5: Compute next “reverse” point (xg, yg).

6: else

7: Compute next “forward” point (xg, yg).

8: end if

9: end if

10: Steer to goal point (xg, yg).

11: end procedure

For the spiral pattern, the next point is computed based on a synthetic time index, using

the parametric equations for the arithmetic spiral, as given in Section 3.6.3. The index is

an integer index that is incremented or decremented as the robot reaches destination points

on the spiral. Once the time index has reached its maximum value, the robot travels along

the reverse of the spiral path until it reaches its original starting point. The search process

is then restarted after the robot reaches the starting point.
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The parallel-transect pattern is slightly more complex than the spiral pattern. An addi-

tional state machine, illustrated in Figure 31, is used by the robot controller to determine

whether or not a vertical or horizontal traversal is necessary. Depending on the current state

of this state machine, the next point is either directly horizontal or vertical from the current

robot position, or reversed along the current path of travel.

Figure 31. State machine for the parallel-transect search method.

The ablated-target sensor mounted to the robot monitors for any potential targets as the

robot performs each sweep of the search area; if any targets are detected, the resulting target

measurements are sent to the modeling component to add to the local and global ablation

region models. In addition, the sensor error model may generate a false alarm rather than

a true target measurement. Each of these false alarms are uniformly distributed within the

field of view of the sensor, but as stated in the assumptions in Section 3.3.2, a false alarm

will never be generated simultaneously with a target measurement.
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The robot can collect multiple target contacts within its sensor field-of-view; the main

component bundles all of these target contacts together, and posts the entire bundle of

measurements to the list of measurements that is consumed by the modeling component.

5.1.4.4 Return-home State

The return-home state can only be entered upon receiving a command to do so, either

by direct command issued by one of the other agents on the network, or from within the

controller itself, if the controller determines that the robot cannot continue the mission (e.g.,

the robot’s energy has fallen below a certain threshold). This state allows the robot to return

to a predefined home location, stored within its initial configuration and set at initialization

time during the start state, and exit gracefully from the controller. Navigation to this home

position follows the same navigation algorithm as in the go-to-goal state.

5.1.5 Configuration and Outputs

To define the behaviors and missions for the robot, the controller must accept several con-

figuration files that detail this information. Three configuration files must be specified to

the controller:

• Robot limits: contains the physical limits of the robot relevant to the controller, such

as minimum and maximum turn rates and speeds. These limits assume unicycle-like

or differential-drive-type robot platforms. That is, robots that use the type of control

assumed in Section 5.1.1. While this is the model assumed, other types of robots can

fit into this paradigm.

• General controller configuration: this file includes specialized parameters for the

selected search method, as well as other controller parameters. For parallel-transect

patterns, the file includes the default traversal distances. For spiral patterns, the file

includes the spacing between turns and the spacing between points on the spiral. For

a patroller, the direction and distance to be patrolled are the key parameters. General

configuration options include the distance at which the robot should switch to new
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waypoints, and whether or not the agent should travel to a separately defined goal

point before initiating its search algorithm.

• Mission file: this file contains definitions of the agents in the mission that are used

for communication between agents, and information on which agents are the arbiters

and patrollers.

The robot controller also persists part of its internal state across missions for later anal-

ysis. This internal state consists of the parameters of the last mixture model that was

generated by the agent, the iceberg position measurements used to generate that model,

and the metrics that were computed from that model. To accommodate later analysis of the

data, an Extensible Markup Language (XML) schema was developed to describe the data.

The robot stores the data in this format upon termination of the controller. Figure 32 is

an example output from the IIP dataset study in Section 3.5, if latitude and longitude were

used as the measurements. As it shows, the resulting XML file contains the components of

the mixture model, the extents of the search regions generated from it, the metrics, and the

complete measurement history. This file is output for both the local and global model for

each of the agents in the mission.
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<? xml v e r s i o n=” 1 . 0 ” e n c o d i n g=”UTF−8” s t a n d a l o n e=” yes ” ?>
<gmodel v a l i d =” 1 ”>
< s t a r t p o s x=” 55 .000000 ” y=” −59.000000 ” />
<components dim=” 2 ” lhood=” −27936.222234 ” i t e r s =” 149 ”>
<comp i n d e x=” 0 ”>
<we ig h t>0 .019058< / we ig h t>
< a v g v e l>0 .010000< / a v g v e l>
<a v g t i m e>500< / a v g t i m e>
< c o s t>0 .000000< / c o s t>
<mean x=” 5 .644478 e+01” y=” −5.909476 e+01” />
<c o v a r>
< e n t r y x=” 1 ” y=” 1 ” v a l u e=” 3 .257878 e−02” />
< e n t r y x=” 1 ” y=” 2 ” v a l u e=” 0 .000000 e+00” />
< e n t r y x=” 2 ” y=” 1 ” v a l u e=” 0 .000000 e+00” />
< e n t r y x=” 2 ” y=” 2 ” v a l u e=” 1 .569725 e−03” />

< / c o v a r>
< / comp>

< !−− Component l i s t t r u n c a t e d −−>
< / components>
< h i s t o r y>

< !−− Measurement h i s t o r y has been t r u n c a t e d . −−>
< / h i s t o r y>
< r e g i o n s>
< r e g i o n l e f t =” 55 .773895 ” t o p=” −58.947492 ” r i g h t =” 57 .115674 ”

bot tom=” −59.242019 ” />
< r e g i o n l e f t =” 55 .014234 ” t o p=” −59.290016 ” r i g h t =” 56 .782876 ”

bot tom=” −59.603262 ” />
< r e g i o n l e f t =” 55 .159702 ” t o p=” −59.022707 ” r i g h t =” 55 .781570 ”

bot tom=” −59.516521 ” />
< !−− Search r e g i o n s t r u n c a t e d −−>
< / r e g i o n s>
<m e t r i c s>
<c o u n t>230< / c o u n t>
< a i c c>56243.902413< / a i c c>
<meantime>0 .000000< / meantime>
< t o t a l m o d e l a r e a>7 .358898< / t o t a l m o d e l a r e a>
<un iq ue>334< / un iq ue>
< t o t a l t a r g e t s>334< / t o t a l t a r g e t s>
< a v g t a r g e t v e l>0 .034311< / a v g t a r g e t v e l>
<c o v e r a g e>0 .000000< / c o v e r a g e>
<p r e d a g e n t>20 .000000< / p r e d a g e n t>
< a g e n t c o u n t>20 .000000< / a g e n t c o u n t>

< / m e t r i c s>
< / gmodel>

Figure 32. Saved mixture model state XML file example.
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5.2 Simulation Environment

For initial validation of the algorithms, a simulation environment was employed. The

Player project and its associated robot simulator project, Stage, were used in developing

the controller [84]. The Player project provided the libraries used for interfacing with the

simulation and for interfacing with real robot hardware, which proved convenient when the

controller was moved from simulation to hardware.

The robotic agents were modeled in Stage using a slightly modified version of the

iRobot Roomba/Create model included with the Player/Stage source distribution. The

Roomba/Create model is a differential-drive model, which adheres to the assumption on

the robot’s movement model (as discussed in Section 5.1.1). The agent’s position is de-

termined by calculation from odometry measured from simulated wheel encoders. The

primary modification to the models was the addition of a fiducial detector. This fiducial

detector acts as the sensor that each of the robots must have to detect targets; instead of

detecting fiducials on larger obstacles or items in the environment, entire moving targets

are designated as fiducials in and of themselves, which allows for the agents to identify and

localize the targets within the sensor’s field-of-view. In this case, as a result of the nature

of the Stage fiducial detector, this field-of-view is a circle with a fixed radius centered at

the robot.

To model the targets, an ablating source controller was developed using the Stage li-

braries. This controller can be attached to any object within the Stage environment, allow-

ing any object to generate targets in a similar manner to a glacier that is calving icebergs.

Each ablation point also generates targets of differing size and velocity to be comparable to

the activity of realistic target sources at the glacier-sea interface. To provide for variations

in ablating target sources and the targets that they generate, a set of parameters is associ-

ated with each ablation point. The target source can have many of these ablation points

with varying behavior. These parameters include the following: positions of the ablation

points on the source, the mass calving rate (in terms of tons of ice per target), the means
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and standard deviations of the dimensions of new targets, the means and standard devia-

tions of the velocities of the calved targets, and the correlation coefficients of the velocities

with respect to other ablating sources. Adding correlation between target sources allows

for noise in the velocity to be drawn from an l-dimensional multivariate Gaussian, where l

is the number of ablation regions. Each target source will also have a maximum amount of

mass that may be calved to form targets; once this mass has been ablated away, the target

source can no longer generate new targets.

Setting these parameters and the positions of the target sources is accomplished by

providing a configuration file to the controller. Different configuration files may be set for

different target sources in the simulation, which allows for a multitude of different target

sources to be placed within a single simulation. This feature may be used to test extremely

hazardous environments; for example, cases where extremely large icebergs have been

calved from a glacier, which themselves may more slowly generate icebergs as they break

up over time.

A screenshot of an example simulation run is shown in Figure 33. The gray circles are

the simulated agents, the blue blocks are the calved targets, and the red rectangle is the tar-

get source. There are four individual ablation regions on this target source, which accounts

for the four target streams that may be seen. The dotted lines emanating from the two

agents on the left side of the screenshot to targets that appear to be close to them graphi-

cally indicate the bearing and range of the agent to a target that falls within its sensor’s field

of view.
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Figure 33. Screenshot of Stage simulation environment.

5.3 Scenario Replay Environment

For a more accurate and visually-pleasing presentation of the results of a simulation run, a

scenario replay environment using the Unity3d engine was developed. Given a “unified”

log file containing all of the agent and target positions from a given simulation run, this

environment can reconstruct how the scenario developed over time. This environment does

not execute a physics simulation of its own to replicate the scenario; it relies entirely on

the contents of the log file to direct the objects contained in the scene. A screenshot of the

environment is shown in Figure 34.

The agents are represented using generic UAV models, and the icebergs are represented

by the variously colored iceberg models that float away from the larger glacial region. The

colors of the icebergs depend on whether or not they have been detected by an agent: white

indicates a target that has not been detected by any agent, magenta indicates a target that

has been detected once, and blue indicates that it has been detected twice or more.
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Figure 34. Screenshot of the scenario replay environment.

5.4 Hardware Platform and Software

To appropriately evaluate the algorithms in the real world, a hardware platform must be

developed. While it would be appropriate to develop a platform that would operate in Arctic

regions, a platform that can be used within a laboratory setting would also be desirable for

initial testing. This was the goal in developing this particular multiagent platform. In this

section, the design of the hardware used in the hardware platform is described, as is the

design and implementation of the driver software used with the hardware.

5.4.1 Robot Platform

The robotic base that was used is the Pololu 3pi robot. It is a small, two-wheeled, differential-

drive, mobile platform that has several on-board resources driven by an Atmel ATmega328

(AVR) microcontroller. In addition, Pololu provides an expansion board to attach different

types of hardware to the robot. In this case, the additional expansion board is used to attach

an XBee radio transceiver for wireless communications between the robots. Since the robot

base does not provide sufficient current on its own to drive the XBee transceiver, an adapter

module produced by Parallax that provides sufficient current in addition to regulating the
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power supply voltage to 3.3V, as is required for the XBee, was installed between the Pololu

3pi and the XBee. The complete platform is shown in Figures 35(a) and 35(b).

(a) Modified Pololu 3pi for wireless communica-

tions.

(b) Pololu 3pi side view.

(c) Example base station for controlling the Pololu

3pi robots.

Figure 35. Pololu 3pi robot platform and base station.

Since the microcontroller used on the Pololu 3pi does not have sufficient resources to

run the complete controller as previously described, the robots are driven by commands

issued by a base station, which runs the controllers that issue the commands to the robots.

There are no particular requirements for the base station, other than having the ability to

run the necessary driver software and the robot controller; an example configuration is

shown in Figure 35(c). The driver software and the firmware for the Pololu 3pi platform is
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discussed in the next section.

5.4.2 Driver Software and Firmware

To use the Pololu 3pi robots with the robot controller, a software driver is necessary for

communication between the base station and the robots. Firmware was written for the

Pololu 3pi that allows for commanding the robot to perform different tasks and querying

robot state that mimics the commands used by the K-Team Khepera robot. This command

set uses a simple, string-based protocol. The benefit of using this command set is that

the Player project has a driver for the Khepera, therefore using the Pololu 3pi robots with

Player becomes straightforward. However, there are several issues that must be taken into

account:

• The Player driver does not provide a way of obtaining the current energy for the robot

through the standard Player interfaces. That is, a command to obtain the current robot

battery power is not documented in the code.

• The physical dimensions of the Pololu 3pi are different from the Khepera. In addi-

tion, parameter scaling is performed within the driver that must be adjusted for the

Pololu 3pi.

• The driver must be modified to allow for multiple robots of the same type to be driven

using different commands from the same XBee device.

• Sensors to detect targets must be added to the robot, and an interface to the sensors

must be added to the capabilities of the driver.

The first problem is easily resolved by adding the appropriate capabilities to the firmware.

The second and third issues are resolved by modifying the Player driver and the associated

configuration files such that the parameters are correct. In addition, the Khepera commands

have been extended in a backward-compatible manner to add an optional robot identifier.

If a robot receives a command that does not contain this identifier, then it executes the
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command as normal. Otherwise, the robot checks to see if the identifier matches the iden-

tifier that has previously been stored within the microcontroller’s electrically-eraseable,

programmable, read-only memory (EEPROM). If the identifiers match, then the robot exe-

cutes the command, otherwise the command is ignored.

The last issue, however, requires a different solution. There are many ways of simu-

lating or implementing a target in a lab environment. Some examples include using other

robots as targets and detecting them either using beacons or computer vision, making small

motorized devices solely for the purpose of acting as targets, or devising a method of simu-

lating the glacier-sea interface in a water tank. Since the types of robots that are being used

here are ground-based, an augmented-reality solution to the target problem was used.

The augmented-reality target-simulator or virtual-target simulator runs as a server that

broadcasts target positions to all of the robots. The target positions are broadcast using the

same XBee device that transmits commands to the Pololu 3pi robots. The target positions

are, in fact, similar in syntax to the Khepera commands, except with a command code that

indicates that it is a target position.

To implement the capability of broadcasting these positions, socket communications are

employed to deliver the packets to the robot-driver software. The target simulation is based

on the same Stage controller that is used to implement an ablating-target source, which was

described in Section 5.2. The same configuration-file format that is used to configure the

Stage controller is used to configure the virtual-target simulator; this allows for scenarios

to be developed using Stage and transferred directly to a test for a real hardware system.

The final issue is how to transfer the resulting measurements of target positions to the

robot controller. The Khepera Player driver was modified to expose a fiducial marker device

with behavior similar to that of the simulated device within Stage. The measured target

positions are then scans returned to the controller through the fiducial interface obtained by

the controller, and the scans are processed as measurements in the exact same manner as

the simulated Stage scans.
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CHAPTER 6

EXPERIMENTAL RESULTS

To provide an evaluation of the performance of the controller and the iceberg modeling and

agent reallocation algorithms, a series of simulations were carried out using synthesized

data that approximates the conditions and behavior of ablating target sources. In this chap-

ter, the overall setup and results of these simulation studies are discussed. These studies

include the following: the initial pilot-study that was conducted for the modeling algorithm;

a simulation study examining the data coverage properties of the modeling methodology;

a simulation study examining the target coverage properties of the modeling methodology;

and a simulation study which contains the full implementation of ablating-source model-

ing and search-region assignment. Finally, tests were conducted using the real hardware

platform described in Chapter 5.

6.1 Initial Pilot Simulation

The model generated by the GMM-based, multiple-agent, modeling algorithm is compared

with that of a more traditional scanning method for icebergs using airborne radar in a sim-

ulation environment [85]. That is, a scan pattern composed of multiple parallel-transects

across an area of interest, similar to the scan pattern used in the study described in refer-

ence [6]. This is a pilot simulation intended to determine the quality of models generated

using the modeling techniques described in Section 3.4.

The necessary robot controllers and target sources were implemented and simulated us-

ing the software libraries provided by the Player/Stage project [84]. The metrics recorded

as a result of the simulation to determine algorithm performance include target coverage

and contact time. Target coverage is important to consider, because missed targets con-

tribute to an incomplete model. Fifty trials were performed for each case, with the target

source configured as shown in Figure 36, with target velocities that correspond to ocean
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currents in the regions of interest. Each trial was time limited to approximately five min-

utes of collection time; the ablation rates of each activity point were thus accelerated to

accommodate this time limit. The sizes of the targets that are calved from the activity re-

gions were also varied; the source parameters are summarized in Table 7. Each parameter

of the calved targets was modeled according to Gaussian errors, where (µdims, σdims) is the

mean and standard deviation of the dimensions of each target, and (µvel, σvel) is the mean

and standard deviation of the velocities. The mean sizes and velocities of the icebergs were

chosen based on the frequency of classes of iceberg sizes and speeds [11]; smaller icebergs

are more commonly encountered in practice. The ice mass from which the icebergs are

calved was placed at the position (x, y) = (50 m,−5 m), with a length of 100 m, and a

width of 10 m. Note that the width is the only “important” dimension for the ice mass; the

length may be considered to measure the extent of the ice mass at the glacier-sea interface.

Figure 36. Target source configuration.

Each robot was equipped with a sensor that could detect a target within a circle that has a

10 m radius. For the multi-agent solution, each agent conducted its search using a parallel
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Table 7. Summary of activity region parameters.
Active Region µdims σdims µvel σvel

1 5 m x 5 m 0.5 m (-0.5, 0.5) m/s 0.05 m/s
2 5 m x 5 m 0.5 m (-0.5, 0.5) m/s 0.05 m/s
3 2 m x 2 m 1.0 m (0, 0.5) m/s 0.05 m/s
4 5 m x 5 m 0.5 m (0.5, 0.5) m/s 0.05 m/s

transect pattern beginning at a starting point a distance away from the ablating source,

within a rectangular cell. The agents began at points (x, y) = (18 m, 5 m), (40 m, 5 m),

and (68 m, 5 m) respectively. In the four agent case, the agents were placed at (x, y) =

(0 m, 5 m), (58 m, 5 m), (28 m, 5 m), and (85 m, 5 m). The single scanning agent was

placed at the initial position (x, y) = (0 m, 5 m). All agents had a minimum speed of 0.1

m/s and a maximum speed of 1 m/s.

The basic metrics from the results of the simulations are given in Table 8. Average Ts

is the average acquisition time of a target referenced from the time at which it is generated

from a given activity point on an ablating source. Average model Ts is the mean acquisition

time from the start of a given agent’s mission; in this case, these times are referenced from

the first agent. Percent coverage is defined as it is in Section 3.4.3: the ratio of the number of

acquired targets to the number of total targets that have been generated. From these results

and for this particular scenario, for near 100% coverage, three agents is sufficient, although

the performance in terms of acquisition time suffers. Indeed, the average acquisition time

is effectively doubled once a fourth agent is introduced, which lends additional empirical

evidence that only three agents are sufficient. This doubling is the result of the further

shrinking of the rectangular search regions in the given scenario: where one agent was

reliably covering two of the ablating sources, further subdividing the regions only allows

for partial coverage of one of the ablating sources by the additional agent. Hence, the lack

of detected targets increases the overall acquisition time. Finally, given that the targets

themselves are not fast-moving, the loss in acquisition time for the three agent case when

compared to the two agent case, is not a significant issue.
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Table 8. Simulation metrics summary.
Scenario Pct. Coverage Avg. Ts Avg. Model Ts

Single Agent 21% 19 s 89 s
2 Agents 80% 6.5 s 58 s
3 Agents 97% 7.1 s 70 s
4 Agents 100% 14.1 s 77 s

In the case of the models generated, a resulting Gaussian mixture model that exhibits

the following characteristics is desired:

• Sufficient target containment. That is, all targets, while perhaps not detected, can be

accounted for within at least one component of the model at any point in time.

• Sufficient overall target coverage. Specifically, a model that results in maximized

target coverage for a single agent. In addition, components that are well-separated in

space will contribute to better identification of individual ablation regions and target

streams, which will assist with target coverage.

Figures 37, 38, and 39 show a selection of the mixture models generated by each of the

scenarios. Target measurements are denoted by stars; the target source is the gray rectangle,

with activity points identified by the circles overlaid on the source. The Gaussian mixtures

are represented by the heatmaps, with their means represented by the black crosses.

Compared with the other results, the mixture model generated by the single agent solu-

tion is not sufficient for this scenario: while there is good separation between components

and given that the measurements are all clustered above a single source and it definitively

identifies a particular activity region, there is insufficient target containment when all tar-

gets are taken into account. That is, Figure 37 only shows one of the four ablating sources;

the targets generated by the other targets were not acquired by the single agent. In the

multiagent cases, target containment is not an issue; search regions can be generated that

can provide sufficient coverage for all of the activity points on the ice mass. Separation

between components is also clear, providing for the generation of distinct search regions.
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However, when generating search regions from the models, there may be a slight overlap

between the regions assigned to particular agents. Additionally, for the model shown in

Figure 39, one of the components may need to be inflated to provide proper coverage for a

given region.

Overall, when taking the metrics into consideration with the resulting model, using mul-

tiple agents is the superior solution for model generation. This is true for target coverage,

acquisition time, and model containment. However, depending on the scenario, it is im-

portant to consider the number of agents that are actually required. In the case here, while

using three agents attained nearly 100% target coverage, the model that was generated us-

ing the two agent solution, as shown in Figure 39, provides sufficient target containment

while sacrificing component separation and potentially resources, as a result of the size of

the search regions that would be generated.
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Figure 37. Gaussian mixture model resulting from a single-agent solution. Note only one target stream

is represented.
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Figure 38. Gaussian mixture model resulting from a two-agent solution. There are two well-defined

regions for reallocating sensors and capturing the behavior of the targets.
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Figure 39. Gaussian mixture model resulting from a three-agent solution. All three regions amply

capture the target behavior.
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6.2 Data Coverage Evaluation

Based on the results of the pilot study, a means of determining the “goodness of fit” of a

generated mixture model needs to be determined, in addition to determining how well a

model fits future data from a given set of ablation regions. Hence, another simulation study

was carried out to determine this goodness of fit.

To evaluate how well the modeling technique captures iceberg behavior in terms of

data collected and data yet to be collected, a measure of similarity between the model and a

given data set will be used. The model will first be compared with the target measurement

data used to generate the model. Afterward, it will be compared with a subset of data

obtained from target trajectories that may or may not have been used to obtain the target

measurements; the trajectories will have similar target stream structure to that of the target

streams used to generate the model.

6.2.1 Model Similarity Metrics

The following dimensionless similarity metric based on the Mahalanobis distance will be

used for a single measurement:

max Ds(Q, z) = max
j=1..k

√(
z − µ j

)T
Σ−1

j

(
z − µ j

)
, (48)

where z is a measurement in the data set, Q =
{
q j

}k

j=1
is the model, k is the number of model

mixture components, µ j is the mean of component q j, and Σ j is the covariance matrix of q j.

In addition, the minimum Mahalanobis distance

min Ds(Q, z) = min
j=1..k

√(
z − µ j

)T
Σ−1

j

(
z − µ j

)
, (49)

and the Mahalanobis distance using the overall mean and covariance of the mixture distri-

bution

Ds,ovr(Q, z) =

√
(z − µovr)T Σ−1

ovr (z − µovr), (50)

where µovr is the overall mean and Σovr is the overall covariance of model Q, will be com-

puted. The overall mean and overall covariance of a Gaussian mixture are computed as
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follows:

µovr =

k∑
i=1

wiµi; (51)

Σovr =

k∑
i=1

wiΣi +

k∑
i=1

wi (µi − µovr) (µi − µovr)T , (52)

where the wi are the component weights, the µi are the component means, and the Σi are the

component covariance matrices. To compute the overall similarity between the model and

the given data set, the average of the metrics plus a standard deviation will be computed.

Verifying data coverage for a model will focus on 1) computing the similarity of a generated

model to the given data set used to generate the model and 2) computing the similarity of a

generated model to a different data set that contains measurements of targets newly ablated

from the same sources used to generate the model.

Good model performance means that every measurement is covered by at least one

model component q j. The hypothesis is that the performance of the model, i.e., how well it

covers future data, is correlated with the spatial diversity of the target measurements. That

is, if the original measurements are tightly clustered, then similarity between the model

and new data will likely be reduced. Figure 40 illustrates this phenomenon. The gray dots

are the points in an arbitrary data set, while the blue ellipses are the model components

of a model generated from some previously acquired data set, specifically, the data set in

the left-hand portion of the figure. The model is generated from highly clustered data; the

center illustration indicates a dataset with lower similarity, while the rightmost illustration

shows a data set with high similarity, with similar clustering as the original model’s data

set.

6.2.2 Test Scenarios

To evaluate the ablating source model with respect to data coverage, several permutations

of the baseline scenario as given in Section 6.1 will be used. Note that “algorithms,” in

this case, refers to the methodology of obtaining measurements and updating the model.

Each of these scenarios varies the target size and target velocity, two of the most important
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Figure 40. Illustration of different types of data sets as compared with a pre-generated model. The
leftmost model is generated from tightly clustered data. The middle image illustrates the problems
with a change in the ablation regions using a model generated with that type of data. The rightmost
image illustrates more diverse measurements used in the model, which should improve its performance.

parameters when considering the detection of icebergs, as the smaller icebergs are the tar-

gets that are more difficult to detect, and unusual patterns in iceberg propagation may cause

model irregularities.

The base scenarios are as follows:

• Uniform target movement: Target streams that move uniformly in a single direction

at the same velocity, with no velocity variance.

• Uniform target size: All resulting targets are equal in size.

• Target movement with uncorrelated velocity variance: Each target stream has its own

variance in velocity, with no correlation between individual target stream velocities.

• Target movement with correlated velocity variance: Ocean currents are not likely to

have uncorrelated velocities in the x and y direction.

The uncorrelated and correlated velocity variance scenarios are collectively referred to

as non-uniform scenarios.

The base scenario parameters are given in Tables 9, 10, and 11. Four ablation regions

are used to correspond with the use of four agents. Ideally, when performing a reallocation

using the data collected from the ablation regions, the assignment will result in each agent

observing a different ablation region. The region of interest S is 100 m wide by 30 m high,
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similar to the same region of interest for the pilot simulation in Section 6.1 as shown in

Figure 36. The ablating sources are modeled according to Gaussian errors, where (µdims,

σdims) is the mean and standard deviation of the dimensions of each target, and (µvel, σvel)

is the mean and standard deviation of the velocities.

Agent starting (x, y) positions are given in Table 12 for mobile agents and Table 13 for

fixed sensors. In each of these tables, “U. Size” refers to the uniform size scenario, “Lwm.”

refers to agents using the lawnmower search pattern, and “Ptl.” refers to agents using the

patroller search pattern. A mobile agent is defined as it is in Chapter 5. A fixed sensor is a

mobile agent that has a constant angular velocity ω = 0 and linear velocity v = 0. Note that

in all scenarios, the fixed sensors are always in the same locations. Additionally, for the

correlated velocity scenario, values for the velocity are drawn using the standard deviations

in Table 11 according to a bivariate Gaussian distribution with nonzero correlation coeffi-

cients between adjacent ablating sources. Stacking the correlation coefficients used in this

scenario into a matrix, indexed by the ablating source index i as defined in Section 3.3.1

by the definition of the ablating sources U = {ui}
l
i=1, results in the following correlation

matrices Rx and Ry, one for each direction:

Rx =



1 0.1 0 0

0.1 1 0.3 0

0 0.3 1 −0.3

0 0 −0.3 1


, (53)

Ry =



1 0.5 0 0

0.5 1 0.5 0

0 0.5 1 0.2

0 0 0.2 1


. (54)
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Table 9. Summary of activity region parameters - Uniform Velocity.

Active Region µdims σdims µvel σvel

1 5 m x 5 m 0.5 m (0.2, 0.2) m/s 0 m/s

2 5 m x 5 m 0.5 m (0.2, 0.2) m/s 0 m/s

3 5 m x 5 m 0.5 m (0.2, 0.2) m/s 0 m/s

4 5 m x 5 m 0.5 m (0.2, 0.2) m/s 0 m/s

Table 10. Summary of activity region parameters - Uniform Size.

Active Region µdims σdims µvel σvel

1 5 m x 5 m 0 m (0.2, 0.2) m/s 0.05 m/s

2 5 m x 5 m 0 m (0.2, 0.2) m/s 0.05 m/s

3 5 m x 5 m 0 m (0.2, 0.2) m/s 0.05 m/s

4 5 m x 5 m 0 m (0.2, 0.2) m/s 0.05 m/s

Table 11. Summary of activity region parameters - Non-uniform Size and Velocity.

Active Region µdims σdims µvel σvel

1 5 m x 5 m 0.5 m (0.2, 0.2) m/s 0.05 m/s

2 5 m x 5 m 0.5 m (0.2, 0.2) m/s 0.05 m/s

3 5 m x 5 m 0.5 m (0.2, 0.2) m/s 0.05 m/s

4 5 m x 5 m 0.5 m (0.2, 0.2) m/s 0.05 m/s
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Table 12. Agent starting positions - Non-fixed.

Agent Uniform

Lwm.

Uniform

Ptl.

U. Size

Lwm.

U. Size

Ptl.

Non-

uniform

Lwm.

Non-

uniform

Ptl.

1 (0,5) (0.25,15) (0,5) (0.25,15) (0,5) (0.25,15)

2 (58,5) (23,15) (58,5) (23,15) (58,5) (23,15)

3 (28,5) (46,15) (28,5) (46,15) (28,5) (46,15)

4 (85,5) (68,15) (85,5) (68,15) (85,5) (68,15)

Table 13. Agent starting positions - Fixed.

Agent Position

1 (13,21)

2 (38,21)

3 (61,21)

4 (87,21)

Each scenario is run for 30 trials for each scenario configuration, for 3000 simulation

frames with a frame rate of 25 Hz. Scenario configurations differ based on sensor configu-

rations: while the targets will behave according to the descriptions above, the sensors will

be changed based on their configuration parameters. Additionally, the generated model for

each trial will be compared with respect to the model similarity measures to characteristic

trajectories, which is a set of target trajectories Bi(t), for i = 1...l, that represents the fu-

ture data from ablating sources that are identical in behavior to the original sources used to

generate the models.

The sensor configurations will be changed for each of the scenarios as follows. The

agents will use two of the scanning patterns in different scenarios: the lawnmower/parallel-

transect pattern and the patroller pattern. Each of the agents’ sensors will also have varying
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sensor field-of-view radii for each set of trials for each scenario. The radii are as follows:

0.5 m, 1 m, 5 m, and 10 m. Each of the sensors will have a constant false alarm probability

P f a = 10−3; typical constant P f a values are approximately 10−6 [86], and hence this is a

purposeful degradation in sensor performance to observe how false alarms affect model

performance. Additionally, the sensors will have noise variances in each direction of σx =

1 m2 and σy = 1 m2. Note that the noise variance will cause detection errors greater than

that of the field of view of one particular sensor configuration. This behavior is intended to

model a sensor that has very poor detection capabilities.

Sensors that are stationary within a fixed-size cell are also used, to examine the benefits

of using search patterns with “inadequate” sensors in comparison. These fixed sensors will

have the same sensor properties as the mobile agents’ sensors, with identical parameters

varied over scenario configurations. The sensors are placed at the centers of the fixed-size

cells.

The baseline or control scenario in all cases is a fixed-cell scanning approach for each

of the sensors. That is, there is no use of the model to modify the sensor trajectories and

allocation once the scanning mission has started. These fixed cells may be generalized as a

centroidal Voronoi tessellation of the region of interest S near the glacier. The purpose of

this comparison is to see if similar data coverage can be obtained for these “standard” scan-

ning solutions, and could act as a-priori models for use with the modeling and reallocation

algorithms.

6.2.3 Simulation Results

The results for each scenario configuration given varying search patterns and sensor fields

of view are given in the following tables. Note that the greater the magnitude of this simi-

larity metric, the more dissimilar the model is from the data, as the metric is a Mahalanobis

distance. The first set of data is the similarity of the data set used to generate the models,

while the second set of data shows the similarity of the characteristic trajectory for each

128



scenario to the generated models. Tables 14, 15, 16, and 17 provide the initial data set sim-

ilarity, while Tables 24, 25, 26, and 27 show the similarity to the characteristic trajectories.

Additionally, Tables 18 and 28 provides data coverage for two fixed sensor scenarios in the

same manner: uniform target movement and uncorrelated target movement. In all of the

tables, µ represents an average of the similarity, while σ is the standard deviation. Entries

that show “N/A” are cases where there were not enough sensor measurements to compute

a model, hence data similarity could not be computed.

To verify the statistical significance of the simulation results, a one-tailed t-test with

null hypothesis mean 3.0, 29 degrees of freedom, and a significance level of p < 0.01

was conducted. The hypothesis mean was chosen based on the fact that the average Ma-

halanobis distance of a data set to a distribution that provides for a good fit will be within

3-σ. The t-scores and p-values for each scenario are shown in Tables 19, 20, 21, 22, and

23. With respect to the significance level, the results are statistically significant except for

the majority of cases for min Ds where the sensor field-of-view radius is set to 1 m or 0.5

m. The results are also not statistically significant for the uniform scenario in control case

using the lawnmower pattern with a 5 m field-of-view radius.

An examination of the raw data for the data set used to generate the models (Tables

14, 15, 16, and 17) shows that for the overall similarity Ds,ovr, all of the measurements are

within, at most, 2-σ from the overall mixture distribution. This is a good fit, as one would

expect for the original data set. The minimum similarity min Ds stays within the 3-σ range

for the non-fixed sensor scenarios, except in most of the 0.5 m sensor radius cases, despite

whether the reallocation algorithms are used or not. This result shows that although the

target measurements may be within the area as defined by the overall distribution of the

mixture model, the targets may not necessarily be strongly associated with any one com-

ponent, especially in cases where the number of measurements acquired is very sparse,

such as this small field-of-view radius case. Note also that this occurs almost exclusively

when using the lawnmower search pattern; when using the patroller pattern, the models
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Table 14. Model similarity - Control, lawnmower pattern, initial data set.
Scenario Sensor

FOV
µ min Ds σ

min Ds

µ
max Ds

σ
max Ds

µ Ds,ovr σ Ds,ovr

Uniform 10 m 1.47 0.939 95.9 180 1.40 0.669
Uniform 5 m 2.32 1.71 360 602 1.38 0.614
Uniform 1 m 1.90 1.18 63.8 50.1 1.34 0.514
Uniform 0.5 m 1.686 1.15 824 787 1.37 0.546
U. Size 10 m 1.40 0.649 30.5 17.7 1.27 0.663
U. Size 5 m 1.49 0.883 419 359 1.34 0.623
U. Size 1 m 1.93 1.49 1670 1350 1.38 0.647
U. Size 0.5 m 5.48 10.5 11700 12300 1.40 0.662
Uncorr. 10 m 1.40 0.639 29.6 15.0 1.26 0.661
Uncorr. 5 m 1.53 0.896 126 253 1.36 0.656
Uncorr. 1 m 1.82 1.26 1430 1070 1.37 0.647
Uncorr. 0.5 m 5.22 7.42 11600 6780 1.39 0.635
Corr. 10 m 1.45 0.733 28.9 15.4 1.34 0.636
Corr. 5 m 1.53 0.853 43.5 25.7 1.32 0.617
Corr. 1 m 1.71 1.08 900 945 1.38 0.520
Corr. 0.5 m 3.89 4.09 6710 4260 1.45 0.569

Table 15. Model similarity - Control, patroller pattern, initial data set.
Scenario Sensor

FOV
µ min Ds σ

min Ds

µ
max Ds

σ
max Ds

µ Ds,ovr σ Ds,ovr

Uniform 10 m 1.89 1.27 284 395 1.34 0.628
Uniform 5 m 1.69 1.08 392 466 1.35 0.611
Uniform 1 m 1.41 1.44 1200 1204 1.29 0.647
Uniform 0.5 m 1.51 1.01 2430 2280 1.29 0.677
U. Size 10 m 1.35 0.682 37.6 22.9 1.28 0.627
U. Size 5 m 1.37 0.768 44.9 39.4 1.43 0.679
U. Size 1 m 1.52 1.16 2410 2060 1.34 0.627
U. Size 0.5 m 2.32 2.46 10800 6690 1.43 0.643
Uncorr. 10 m 1.53 0.927 362 425 1.29 0.649
Uncorr. 5 m 1.48 0.827 528 644 1.30 0.655
Uncorr. 1 m 1.63 1.027 585 641 1.30 0.663
Uncorr. 0.5 m 1.61 0.985 425 699 1.33 0.668
Corr. 10 m 1.39 0.697 37.8 14.6 1.27 0.632
Corr. 5 m 1.43 0.807 209 347 1.43 0.694
Corr. 1 m 1.49 0.974 1814 1649 1.36 0.625
Corr. 0.5 m 1.94 1.76 6163 3533 1.43 0.653
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Table 16. Model similarity - Using reallocation, lawnmower pattern, initial data set.
Scenario Sensor

FOV
µ min Ds σ

min Ds

µ min Ds σ
min Ds

µ Ds,ovr σ Ds,ovr

Uniform 10 m 1.57 1.06 138 269 1.30 0.790
Uniform 5 m 1.91 1.40 537 611 1.31 0.762
Uniform 1 m 3.52 4.72 6043 6737 1.67 0.950
Uniform 0.5 m 3.81 6.81 11037 23204 1.45 0.675
U. Size 10 m 1.84 1.62 1706 1038 1.29 0.711
U. Size 5 m 2.00 1.59 1507 982 1.40 0.698
U. Size 1 m 1.94 1.43 2040 1938 1.43 0.688
U. Size 0.5 m 8.65 12.9 12577 9168 1.49 0.833
Uncorr. 10 m 1.70 1.46 936 645 1.28 0.698
Uncorr. 5 m 1.833 1.34 920 912 1.38 0.626
Uncorr. 1 m 2.30 1.96 2142 2028 1.43 0.665
Uncorr. 0.5 m 4.09 4.56 9642 6130 1.41 0.672
Corr. 10 m 1.43 0.794 61.6 80.4 1.34 0.687
Corr. 5 m 1.88 1.61 1000 1990 1.39 0.673
Corr. 1 m 1.74 1.10 952 959 1.39 0.591
Corr. 0.5 m 6.12 8.99 12700 6430 1.43 0.615

Table 17. Model similarity - Using reallocation, patroller pattern, initial data set.
Scenario Sensor

FOV
µ min Ds σ

min Ds

µ
max Ds

σ
max Ds

µ Ds,ovr σ Ds,ovr

Uniform 10 m 2.01 1.35 688 846 1.37 0.646
Uniform 5 m 1.70 1.09 266 388 1.36 0.661
Uniform 1 m 2.09 3.44 6100 4540 1.36 0.670
Uniform 0.5 m 2.73 5.78 5430 5680 1.35 0.747
U. Size 10 m 1.47 0.893 235 233 1.33 0.685
U. Size 5 m 1.45 0.887 175 307 1.38 0.698
U. Size 1 m 2.247 3.02 5740 5890 1.37 0.662
U. Size 0.5 m 2.73 2.73 6520 5010 1.42 0.712
Uncorr. 10 m 1.56 0.878 408 708 1.32 0.643
Uncorr. 5 m 1.48 0.812 383 342 1.30 0.635
Uncorr. 1 m 1.52 0.881 346 313 1.32 0.676
Uncorr. 0.5 m 1.51 0.816 215 456 1.30 0.636
Corr. 10 m 1.524 0.934 252 365 1.34 0.703
Corr. 5 m 1.47 0.885 96.34 181 1.38 0.675
Corr. 1 m 2.02 2.42 4002 4430 1.42 0.687
Corr. 0.5 m 2.65 3.01 6700 4720 1.46 0.704
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Table 18. Model similarity - Fixed, initial data set.
Scenario Sensor

FOV
µ min Ds σ

min Ds

µ
max Ds

σ
max Ds

µ Ds,ovr σ Ds,ovr

Uniform 10 m 1.28 0.696 4400 3920 1.37 0.368
Uniform 5 m 1.48 1.83 6040 5640 1.25 0.707
Uniform 1 m N/A N/A N/A N/A N/A N/A
Uniform 0.5 m N/A N/A N/A N/A N/A N/A
Uncorr. 10 m 1.26 0.893 498 442 1.37 0.719
Uncorr. 5 m 1.40 0.931 3220 2404 1.22 0.701
Uncorr. 1 m 3.86 12.3 21800 46100 1.23 0.841
Uncorr. 0.5 m 9.60 41.8 18100 30400 4.13 34.7

Table 19. Model similarity p-values - Control, lawnmower pattern, initial data set.
Scenario Sensor

FOV
min Ds

t-score
min Ds

p-value
max Ds

t-score
max Ds

p-value
Ds,ovr

t-score
Ds,ovr

p-value
Uniform 10 m -8.94 9.51e-10 5.39 1.20e-5 -13.1 1.02E-13
Uniform 5 m -2.17 0.0413 5.45 1.01E-05 -14.4 7.71E-15
Uniform 1 m -5.10 2.67E-05 5.15 2.33E-05 -17.7 3.20E-17
Uniform 0.5 m -6.28 1.01E-06 5.46 9.90E-06 -16.3 2.93E-16
U. Size 10 m -13.5 4.25E-14 4.55 0.000123 -14.3 9.99E-15
U. Size 5 m -9.39 3.17E-10 5.43 1.06E-05 -14.6 5.92E-15
U. Size 1 m -3.92 0.000680 5.46 9.66E-6 -13.7 2.97E-14
U. Size 0.5 m 1.29 0.171 5.47 9.37E-6 -13.3 6.59E-14
Uncorr. 10 m -13.7 2.87E-14 4.38 0.000192 -14.4 9.01E-15
Uncorr. 5 m -8.97 8.86E-10 5.41 1.12E-5 -13.6 3.36E-14
Uncorr. 1 m -5.15 2.34E-5 5.46 9.75E-6 -13.8 2.40E-14
Uncorr. 0.5 m 1.64 0.104 5.47 9.40E-6 -13.9 2.17E-14
Corr. 10 m -11.6 2.07E-12 4.41 0.000178 -14.3 9.99E-15
Corr. 5 m -9.46 2.66E-10 4.84 5.53E-5 -14.9 3.34E-15
Corr. 1 m -6.52 5.15E-7 5.46 9.80E-6 -17.1 8.61E-17
Corr. 0.5 m 1.19 0.192 5.47 9.44E-6 -14.9 3.42E-15
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Table 20. Model similarity p-values - Control, patroller pattern, initial data set.
Scenario Sensor

FOV
min Ds

t-score
min Ds

p-value
max Ds

t-score
max Ds

p-value
Ds,ovr

t-score
Ds,ovr

p-value
Uniform 10 m -4.77 6.63E-05 5.43 1.04E-05 -14.4 7.12E-15
Uniform 5 m -6.63 3.77E-07 5.44 1.03E-05 -14.7 4.19E-15
Uniform 1 m -6.06 1.83E-06 5.46 9.70E-06 4.4 7.92E-15
Uniform 0.5 m -8.11 7.47E-09 5.47 9.53E-06 -13.8 2.41E-14
U. Size 10 m -13.2 7.26E-14 4.75 6.87E-05 -15.0 2.83E-15
U. Size 5 m -11.6 2.09E-12 5.06 2.98E-05 -12.6 2.35E-13
U. Size 1 m -6.98 1.49E-07 5.46 9.55E-06 -14.4 7.56E-15
U. Size 0.5 m -1.52 0.124 5.47 9.40E-06 -13.4 5.53E-14
Uncorr. 10 m -8.68 1.76E-09 5.43 1.04E-05 -14.4 7.95E-15
Uncorr. 5 m -10.0 6.10E-11 5.45 1.00E-05 -14.1 1.22E-14
Uncorr. 1 m -7.32 5.87E-08 5.45 1.00E-05 -14.0 1.66E-14
Uncorr. 0.5 m -7.75 1.90E-08 5.45 9.97E-06 -13.6 3.14E-14
Corr. 10 m -12.6 2.45E-13 4.35 0.000210 -14.9 2.97E-15
Corr. 5 m -10.6 1.71E-11 5.42 1.06E-05 -12.3 4.11E-13
Corr. 1 m -8.48 2.95E-09 5.46 9.60E-06 -14.3 9.04E-15
Corr. 0.5 m -3.30 0.00324 5.47 9.46E-06 -13.1 8.35E-14

Table 21. Model similarity p-values - Using reallocation, lawnmower pattern, initial data set.
Scenario Sensor

FOV
min Ds

t-score
min Ds

p-value
max Ds

t-score
max Ds

p-value
Ds,ovr

t-score
Ds,ovr

p-value
Uniform 10 m -7.44 4.29E-08 5.41 1.10E-05 -11.7 1.51E-12
Uniform 5 m -4.23 0.000286 5.45 1.00E-05 -12.1 6.81E-13
Uniform 1 m 0.600 0.328 5.47 9.40E-06 -7.66 2.40E-08
Uniform 0.5 m 0.655 0.317 5.47 9.35E-06 -12.5 3.04E-13
U. Size 10 m -3.92 0.000668 5.46 9.76E-06 -13.1 8.22E-14
U. Size 5 m -3.46 0.00219 5.04 9.78E-06 -12.5 3.15E-13
U. Size 1 m -4.04 0.000479 5.46 9.56E-06 -12.5 3.25E-13
U. Size 0.5 m 2.399 0.0261 5.47 9.38E-06 -9.89 9.55E-11
Uncorr. 10 m -4.85 5.21E-05 5.45 1.00E-05 -13.4 4.98E-14
Uncorr. 5 m -4.76 6.81E-05 5.45 9.82E-06 -14.1 1.25E-14
Uncorr. 1 m -1.95 0.0619 5.46 9.55E-06 -12.9 1.41E-13
Uncorr. 0.5 m 1.302 0.168 5.47 9.41E-06 -12.9 1.36E-13
Corr. 10 m -10.8 1.20E-11 5.27 1.65E-05 -13.2 7.53E-14
Corr. 5 m -3.80 0.000911 5.46 9.55E-06 -13.1 9.29E-14
Corr. 1 m -6.29 9.73E-07 5.46 9.79E-06 -14.9 3.25E-15
Corr. 0.5 m 1.901 0.0678 5.47 9.40E-06 -13.9 1.92E-14
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Table 22. Model similarity p-values - Using reallocation, patroller pattern, initial data set.
Scenario Sensor

FOV
min Ds

t-score
min Ds

p-value
max Ds

t-score
max Ds

p-value
Ds,ovr

t-score
Ds,ovr

p-value
Uniform 10 m -4.02 0.000507 5.45 9.85E-06 -13.8 2.45E-14
Uniform 5 m -6.48 5.72E-07 5.43 1.05E-05 -13.5 3.85E-14
Uniform 1 m -1.45 0.138 5.47 9.43E-06 -13.4 5.22E-14
Uniform 0.5 m -0.254 0.382 5.47 9.41E-06 -12.1 7.04E-13
U. Size 10 m -9.41 3.01E-10 5.40 1.13E-05 -13.3 6.11E-14
U. Size 5 m -9.54 2.20E-10 5.42 1.08E-05 -12.7 2.07E-13
U. Size 1 m -1.36 0.154 5.47 9.41E-06 -13.4 4.80E-14
U. Size 0.5 m -0.53 0.341 5.47 9.42E-06 -12.1 6.85E-13
Uncorr. 10 m -8.96 8.95E-10 5.45 9.96E-06 -14.3 9.11E-15
Uncorr. 5 m -10.2 3.81E-11 5.42 1.06E-05 -14.6 5.57E-15
Uncorr. 1 m -9.19 5.06E-10 5.42 1.08E-05 -13.5 3.91E-14
Uncorr. 0.5 m -10.0 7.19E-11 5.44 1.03E-05 -14.6 5.69E-15
Corr. 10 m -8.65 1.91E-09 5.43 1.05E-05 -12.9 1.42E-13
Corr. 5 m -9.44 2.75E-10 5.38 1.20E-05 -13.1 9.20E-14
Corr. 1 m -2.20 0.038 5.47 9.43E-06 -12.6 2.63E-13
Corr. 0.5 m -0.64 0.320 5.47 9.43E-06 -12.0 9.11E-13

Table 23. Model similarity p-values - Fixed, initial data set.
Scenario Sensor

FOV
min Ds

t-score
min Ds

p-value
max Ds

t-score
max Ds

p-value
Ds,ovr

t-score
Ds,ovr

p-value
Uniform 10 m -13.5 4.55E-14 5.47 9.45E-06 -24.3 4.33E-21
Uniform 5 m -4.54 0.000125 5.47 9.42E-06 -13.5 4.47E-14
Uniform 1 m N/A N/A N/A N/A N/A N/A
Uniform 0.5 m N/A N/A N/A N/A N/A N/A
Uncorr. 10 m -10.7 1.56E-11 5.44 1.04E-05 -12.4 3.95E-13
Uncorr. 5 m -9.42 2.95E-10 5.47 9.52E-06 -13.9 2.16E-14
Uncorr. 1 m 0.380 0.367 5.48 9.35E-06 -11.5 2.47E-12
Uncorr. 0.5 m 0.866 0.270 5.48 9.35E-06 0.178 0.389
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produced constrain the minimum similarity min Ds within the 3-σ range. This is likely the

result of the fact that the patrollers typically produce models with small, highly-separated

components. Figures 41 and 42 demonstrate this phenomenon. The white dots indicate tar-

get measurements, while the heatmaps indicate the likelihood maps of the mixture models.

Figure 41 is a plot of a mixture model generated from a uniform velocity scenario using the

lawnmower pattern with a 10 m sensor field-of-view radius. There are two “weak” compo-

nents near the center, while most of the probability is contained in smaller components on

the left- and right-hand sides of the plot. On the other hand, Figure 42 is a mixture model

generated from a patroller run with a 10 m sensor field-of-view radius. As can be seen,

there are small components sharing much of the mixture probability more equally than for

the lawnmower case. Regardless, the measurements are very sparse since the 0.5 m sensor

does not detect very many targets, but the patroller results fit the target streams much more

closely than the lawnmower pattern does.
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Figure 41. Lawnmower mixture model for uniform velocity scenario. Note that the components are

spread out across the target streams.
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Figure 42. Patroller mixture model for uniform velocity scenario. Note that components are centered

directly on each target stream.

One other case where this occurs is in the uncorrelated fixed sensor case, shown in

Table 18. The distance min Ds is much greater than 3-σ, indicative of the sparsity of the

measurements and the inability of the fixed sensors to acquire targets. A more curious prob-

lem occurs for the uniform case, as the targets are drifting toward the sensors. Although the

fixed sensors are able to acquire some targets in this scenario, as will be seen in Section 6.3,

they are not sufficient to develop a mixture model, as indicated by the “N/A” entries in the

table. This is a consequence of the nature of the scenario and the placement of the sensors:

quite obviously, if the sensors are not placed such that they can acquire the targets, then

they cannot acquire them. This result shows the clear benefits of scanning with these types

of sensors. These issues could be mitigated by increasing the sensor range (expensive) or

by simply relying on existing satellites, with a time delay if the satellite is not geostationary

with respect to the region of interest.

While the minimum and overall similarities min Ds and Ds,ovr indicate how well the

model fits the data, the maximum similarity max Ds indicates the failure of the model to
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fit the data, which is just as important. In fact, the maximum similarity fully reveals the

inability of the sensors with smaller field-of-view radii to produce models that fully reflect

the state of the targets. For example, for the patrollers, it can be seen that the minimum

similarity min Ds stays within the acceptable limits for both the control and reallocation

algorithms. However, if one examines the maximum similarity over the scenarios and

field-of-view radii, the rate of growth is extremely fast with a high standard deviation as

the field-of-view radius shrinks. This behavior is better illustrated by plotting the similarity

data to view these trends, as shown in Figures 43 and 44 for the minimum similarity means

and Figures 45 and 46 for the maximum similarity means.

For the minimum similarity means (Figures 43 and 44), the plots remain relatively flat

until the 1 m radius sensor is used. The patroller scenarios do not grow as rapidly as the

lawnmower scenarios. For the maximum distance means (Figures 45 and 46), the growth is

not as consistent for the scenarios that use the algorithms. Indeed, the profile of growth for

both the minimum and maximum similarity for the control scenarios is very similar. For the

maximum similarity for the scenarios using the reallocation algorithms, the inflection point

is at 1 m for most of the scenarios, except for the uniform target velocity scenarios. The

inflection point for these scenarios is at the 5 m radius; this is the result of early reallocation

moving the agents away from one or more target streams. The other scenarios have a target

spread as a result of the non-zero variances in the target velocities, which allow for mixture

model components (and hence, search regions) to cover target measurements from ablating

sources that are far apart. This cannot occur for the uniform velocity scenario.
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Figure 43. Plot of minimum similarity measures for the control scenario. This plot shows the apparent

dependence of the similarity on the field-of-view radius, and only some dependence on search pattern.
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Figure 44. Plot of minimum similarity measures for the reallocation algorithms. For the reallocation

algorithms the apparent dependence on sensor field-of-view is weaker, and more of a dependence on

search pattern exists.
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Figure 45. Plot of maximum similarity measures for the control scenario. An apparent dependence on

the sensor field-of-view radius is shown, but the overall behavior depends on the scenario more strongly

than the search pattern.
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Figure 46. Plot of maximum similarity measures for the reallocation algorithms. The results are less

consistent overall than the control, but there is still an apparent dependence on the sensor field-of-view

radius, but less of a dependence on the search pattern and scenario.

Next, the models generated must be compared with the characteristic trajectories and

determine the similarity of this data set to the models. The characteristic trajectories are

shown in Figures 47, 48, 49, and 50. Note the overall similarity between the last three: the

uniform size scenario uses the same velocity variances as the uncorrelated velocity, except

the targets are all the same size. The correlated velocities for the trajectories in Figure 50

cause the trajectories to bend, rather than remain straight, as with the other two trajectories

that have variance in their velocities.
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Figure 47. Uniform velocity characteristic trajectory. Note the sparsity of the trajectories.
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Figure 48. Uniform size characteristic trajectory. Note the similarity to the uncorrelated velocity tra-

jectory; it is not shown, but each of the resulting targets are the same in terms of dimensions.
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Figure 49. Uncorrelated velocity characteristic trajectory. The result is similar to that of the uniform

size trajectory.
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Figure 50. Correlated velocity characteristic trajectory. Note the bending in the trajectory paths.

For each of these trajectories, the corresponding similarities were computed with re-

spect to the scenario that generated their respective models. The results are given in Tables
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24, 25, 26, and 27. The first results to examine are the overall similarities Ds,ovr. As be-

fore, with the data sets that generated the models, the overall similarity is within 3-σ of the

model. Figures 51 and 52 show the trend of the overall similarity to stay within 1-σ and

2.5-σ for the characteristic trajectories, which is reasonable.

Figure 51. Overall similarity to the characteristic trajectories for the control scenarios. The results

stay within the range 1-σ and 2.5-σ, but the models generated for the uniform case using the patroller

pattern fit very well.
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Figure 52. Overall similarity to the characteristic trajectories for the reallocation algorithm scenarios.

Like the control scenario, the results stay within the range 1-σ and 2.5-σ, but the models generated for

the uniform case using the patroller pattern fit very well.

Examining the trends for the minimum similarity min Ds and maximum similarity

max Ds shows similar trends as those for the data sets used to generate the models, with

some differences in the resulting magnitudes of the similarity. Figures 53, 54, 55, and 56

illustrate the data. The break points are at similar locations; however, the overall magni-

tude of the similarity is higher than the similarity for the original data sets, especially for

the minimum similarity. The minimum similarity tends to range between 2-σ and 4-σ until

the 1 m radius break point. While not a good fit on the high side of the range, as before,

the trends remain the same. Examining the maximum similarity Ds,max, it is clear that the

failure of the characteristic trajectories to fit the data is similar, if not identical, to that of

the original data sets.

Finally, the fixed sensor model similarity must be considered. As before, for the uni-

form velocity scenario, the models fail to fit anything beyond the 10 m sensor field-of-view.
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In addition, the uncorrelated velocity models do not fit very well, either: despite the over-

all similarity being less than 3-σ, the minimum similarity ranges from 3.55-σ to 25.3-σ.

This suggests that models generated using fixed sensors are satisfactory for characterizing

the target activity at the moment they are generated, but are not good for overall target

modeling. This can be corrected: if the models are used as a-priori distributions for the

models used by multiple agents, more spatially diverse measurements can be obtained and

improve the data coverage of the models. This underlines one problem with using fixed

sensors: the spatial diversity of the measurements is limited. The models generated by the

nonfixed agents provided better overall data coverage, and models generated using either

the “standard” scanning solution of fixed cells and the modeling and reallocation algorithms

provided near equivalent data coverage for sensor fields-of-view that would be reasonably

used in a scenario. In nearly all cases, both cases failed similarly when using substandard

sensors.
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Figure 53. Minimum similarity measures for the control scenario and characteristic trajectories. Note

that the overall similarity is worse (greater) compared to the data set used to generate it, in Figure 43,

but the plot structure is similar.
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Figure 54. Minimum similarity measures for the reallocation algorithms and characteristic trajectories.

Note that the overall similarity is worse (greater) compared to the data set used to generate it, in Figure

44, but the plot structure is similar.
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Figure 55. Maximum similarity measures for the control scenario and characteristic trajectories. Note

that the overall similarity is worse (greater) compared to the data set used to generate it, in Figure 45,

but the plot structure is similar.
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Figure 56. Maximum similarity measures for the reallocation algorithms and characteristic trajecto-

ries. Note that the overall similarity is worse (greater) compared to the data set used to generate it, in

Figure 46, but the plot structure is nearly identical.

6.3 Target Coverage Evaluation

While a model may be able to cover present and future data sets effectively, as shown

in the previous section, if the agents participating in a mission cannot efficiently cover

the majority of the targets, then the algorithm loses some value. Hence, along with data

coverage, target coverage will also be evaluated.

In this section, the resulting model created from a data set will be assessed to determine

how well it improves future data collection such that target coverage and acquisition time

is improved by reshaping the region of interest S using the model. Target coverage over

different scenarios will be studied in detail. The base scenarios and their variants used to

evaluate target coverage will be identical to the ones defined in Section 6.2.2, hence their

definitions will not be repeated in this section. These scenarios will include the use of both
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Table 24. Model similarity - Control, lawnmower pattern, characteristic data set.
Scenario Sensor

FOV
µ min Ds σ

min Ds

µ
max Ds

σ
max Ds

µ Ds,ovr σ Ds,ovr

Uniform 10 m 2.24 0.908 120 189 2.24 0.735
Uniform 5 m 5.52 1.64 708 405 2.51 0.523
Uniform 1 m 3.52 1.16 69.5 47 2.07 0.342
Uniform 0.5 m 3.36 1.23 1200 755 2.31 0.411
U. Size 10 m 1.64 0.752 35.6 18 2.42 0.647
U. Size 5 m 2.75 1.27 267 350 2.29 0.692
U. Size 1 m 3.99 2.38 2180 1380 2.18 0.804
U. Size 0.5 m 12.5 9.31 18900 12500 2.27 0.881
Uncorr. 10 m 1.58 0.709 37.3 15.9 2.41 0.645
Uncorr. 5 m 2.69 1.31 176 218 2.29 0.696
Uncorr. 1 m 3.58 1.74 1320 1030 2.21 0.833
Uncorr. 0.5 m 11.9 8.08 16500 8010 2.29 0.888
Corr. 10 m 1.93 0.955 32.1 16.2 2.41 0.649
Corr. 5 m 2.46 1.08 48.8 23.6 2.37 0.699
Corr. 1 m 3.48 1.74 1110 876 2.04 0.755
Corr. 0.5 m 7.78 5.0248 9110 5150 2.10 0.861

Table 25. Model similarity - Control, patroller pattern, characteristic data set.
Scenario Sensor

FOV
µ min Ds σ

min Ds

µ
max Ds

σ
max Ds

µ Ds,ovr σ Ds,ovr

Uniform 10 m 3.83 1.62 301 162 1.77 0.482
Uniform 5 m 2.73 1.27 393 531 1.13 0.576
Uniform 1 m 4.70 1.73 1150 717 1.38 0.374
Uniform 0.5 m 3.80 1.43 3630 1300 1.67 0.307
U. Size 10 m 2.05 1.17 45.7 28.7 1.99 0.793
U. Size 5 m 3.04 2.14 43 45.5 2.09 0.867
U. Size 1 m 5.08 3.16 3080 2680 2.09 0.854
U. Size 0.5 m 6.99 4.11 12800 8470 2.16 0.915
Uncorr. 10 m 2.40 1.28 279 466 2.09 0.811
Uncorr. 5 m 2.62 1.64 514 946 2.05 0.793
Uncorr. 1 m 2.91 1.79 403 851 2.08 0.810
Uncorr. 0.5 m 2.63 1.42 550 926 2.13 0.833
Corr. 10 m 2.05 1.08 44.6 17.7 1.91 0.826
Corr. 5 m 3.67 2.69 198 342 2.07 0.853
Corr. 1 m 5.69 4.03 2370 2220 2.11 0.892
Corr. 0.5 m 6.09 4.15 7830 4870 2.16 0.952
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Table 26. Model similarity - Using reallocation, lawnmower pattern, characteristic data set.
Scenario Sensor

FOV
µ min Ds σ

min Ds

µ
max Ds

σ
max Ds

µ Ds,ovr σ Ds,ovr

Uniform 10 m 2.56 1.11 154 329 1.95 0.714
Uniform 5 m 4.26 1.51 597 581 2.00 0.604
Uniform 1 m 5.43 2.82 6590 7580 2.27 0.712
Uniform 0.5 m 9.44 2.87 12400 5210 2.48 0.490
U. Size 10 m 3.94 1.77 1160 855 2.43 0.680
U. Size 5 m 3.87 1.91 1470 865 2.31 0.736
U. Size 1 m 3.89 2.06 2202 1940 2.18 0.801
U. Size 0.5 m 15.8 12.3 14100 8750 2.17 0.828
Uncorr. 10 m 3.04 1.66 515 579 2.41 0.669
Uncorr. 5 m 3.52 1.76 1100 892 2.29 0.706
Uncorr. 1 m 4.11 2.34 2240 1940 2.19 0.804
Uncorr. 0.5 m 9.57 5.64 12100 6270 2.27 0.893
Corr. 10 m 2.12 0.998 98.6 55.3 2.44 0.663
Corr. 5 m 3.11 1.89 934 1410 2.38 0.727
Corr. 1 m 3.42 1.69 1180 922 2.13 0.79
Corr. 0.5 m 12.9 9.58 14200 6560 2.12 0.836

Table 27. Model similarity - Using reallocation, patroller pattern, characteristic data set.
Scenario Sensor

FOV
µ min Ds σ

min Ds

µ
max Ds

σ
max Ds

µ Ds,ovr σ Ds,ovr

Uniform 10 m 3.58 1.39 744 670 1.84 0.449
Uniform 5 m 2.98 1.22 211 329 1.18 0.554
Uniform 1 m 5.83 3.6 5340 2710 1.53 0.448
Uniform 0.5 m 7.51 5.21 6790 2703 1.72 0.371
U. Size 10 m 2.22 1.19 220 264 1.98 0.783
U. Size 5 m 2.71 1.85 155 362 1.93 0.821
U. Size 1 m 5.54 3.96 7110 6540 2.13 0.913
U. Size 0.5 m 6.38 4.44 8280 5690 2.16 0.926
Uncorr. 10 m 2.64 1.49 484 682 2.08 0.813
Uncorr. 5 m 2.41 1.32 292 405 2.07 0.814
Uncorr. 1 m 2.34 1.29 254 374 2.09 0.827
Uncorr. 0.5 m 2.52 1.41 174 480 2.08 0.809
Corr. 10 m 2.23 1.22 174 338 1.96 0.797
Corr. 5 m 3.04 2.01 116 198 2.02 0.84
Corr. 1 m 5.39 3.6 5300 4570 2.17 0.917
Corr. 0.5 m 6.79 4.29 8303 6610 2.20 0.958
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Table 28. Model similarity - Fixed, characteristic data set.
Scenario Sensor

FOV
µ min Ds σ

min Ds

µ
max Ds

σ
max Ds

µ Ds,ovr σ Ds,ovr

Uniform 10 m 12.1 6.06 3720 2550 1.49 0.721
Uniform 5 m N/A N/A N/A N/A N/A N/A
Uniform 1 m N/A N/A N/A N/A N/A N/A
Uniform 0.5 m N/A N/A N/A N/A N/A N/A
Uncorr. 10 m 3.55 2.01 542 672 2.13 1.1
Uncorr. 5 m 10.7 9.11 4290 3102 2.21 0.930
Uncorr. 1 m 16.1 18.6 40400 41900 2.20 0.935
Uncorr. 0.5 m 25.3 29.1 21700 15900 1.92 0.740

mobile and fixed agents.

6.3.1 Overview

Formally, target coverage C is defined with respect to the total time T as follows:

C(T ) =
NT (T )

Ntotal(T )
, (55)

where NT (T ) is the number of unique targets acquired by all sensors over the time T and

Ntotal(T ) is the number of targets emitted by all ablating sources over time period T . That

is,

Ntotal(T ) =

l∑
i=1

Ni(T ). (56)

C(T ) as a measure of success may be compared to the measure of success of the general

area coverage problem, where the measure of success is the percentage of the region that

is covered by a mobile sensor. C(T ) may also be reworded as the following: for a model to

successfully capture the ice ablation activity near a glacier, it must identify the maximum

number of target streams Bi(t) that pass through the subdomain of S formed by the model

Q. A miss rate may be defined in terms of this function; i.e., miss rate is equal to 1 - C(T ).

The hypothesis to be tested is that using the modeling methodology, which provides

information on where to acquire target measurements and where the original target streams

are located, provides equivalent or better average target coverage to a standard scanning
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solution. Such a scanning solution is the restriction of mobile sensors to their own, fixed-

size cells. Improving target coverage by limiting spatial coverage is in fact a difficult task.

Such improvement depends on how the data to build the model is collected, similar to how

spatial diversity will improve data coverage. Equivalent coverage indicates that using either

scanning technique is sufficient. As the model evolves from the measurements, whether

target coverage is retained or improved will be investigated. Target coverage for a standard

scanning solution, i.e., the fixed-cell approach, should be fixed for a given scenario.

6.3.2 Simulation Results

As stated previously, the same scenarios used to study data coverage in Section 6.2 are used

to examine target coverage. The resulting target coverage for each scenario configuration

for varying sensor fields of view and search patterns are given in Table 29 and Table 30.

Table 31 provides target coverage for the two fixed sensor scenarios: uniform target move-

ment and uncorrelated target movement. µ C is the average target coverage, while σ C is

the target coverage standard deviation.

To verify the statistical significance of the simulation results for target coverage, a one-

tailed t-test with null hypothesis mean 0.5, 29 degrees of freedom, and a significance level

of p < 0.01 was conducted. For this case, the hypothesis mean was chosen on the basis

that the lowest tolerable target coverage is 50%; i.e., which targets are covered is governed

by what is effectively the result of a fair coin toss. The t-scores and p-values for each

scenario are shown in Tables 32, 33, and 34. With respect to the significance level, the

results are statistically significant except in the following cases, which reflect anomalous

target coverage behavior which will be further explained:

• The uncorrelated velocity scenario when using the patroller pattern when either in

the control or reallocation cases.

• When using reallocation and the patroller pattern in the 10 m field-of-view case and

the lawnmower pattern in the 5 m field-of-view case for the uniform scenario.

154



Table 29. Target coverage summary - Control.
Scenario Sensor

FOV
Lwm. µ
C

Lwm. σ
C

Ptl. µ C Ptl. σ C

Uniform 10 m 0.829 0.0547 0.848 0.0481
Uniform 5 m 0.724 0.0249 0.830 0.0410
Uniform 1 m 0.242 0.0281 0.351 0.0298
Uniform 0.5 m 0.107 0.0162 0.187 0.0285
U. Size 10 m 0.850 0.0284 0.828 0.0530
U. Size 5 m 0.591 0.0175 0.750 0.0364
U. Size 1 m 0.133 0.0181 0.204 0.0238
U. Size 0.5 m 0.0592 0.0174 0.098 0.0214
Uncorr. 10 m 0.859 0.0390 0.418 0.290
Uncorr. 5 m 0.586 0.0187 0.462 0.304
Uncorr. 1 m 0.127 0.0171 0.495 0.296
Uncorr. 0.5 m 0.0587 0.0200 0.421 0.299
Corr. 10 m 0.869 0.0383 0.831 0.0486
Corr. 5 m 0.640 0.0215 0.752 0.0402
Corr. 1 m 0.148 0.0143 0.218 0.0281
Corr. 0.5 m 0.0725 0.0157 0.108 0.0181

• When using reallocation in the uniform size and uncorrelated velocity cases with a

10 m field-of-view and the lawnmower search pattern.

• When using reallocation in the correlated velocity case with a 5 m field-of-view and

the lawnmower search pattern.

From an initial examination of the raw data, there are some overall observations that

can be made. These observations are as follows:

1. The target coverage for the fixed-cell approach is greater than that of the approach

using the reallocation algorithms.

2. The standard deviations for the reallocation algorithms are high when compared to

the fixed-cell approach.

3. When the sensor field-of-view radius falls below a certain value, in this case 5 m,

either approach has equivalent or near equivalent performance.
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Table 30. Target coverage summary - Reallocation.
Scenario Sensor

FOV
Lwm. µ
C

Lwm. σ
C

Ptl. µ C Ptl. σ C

Uniform 10 m 0.662 0.0850 0.485 0.322
Uniform 5 m 0.516 0.0729 0.688 0.226
Uniform 1 m 0.243 0.0463 0.353 0.0392
Uniform 0.5 m 0.115 0.0182 0.197 0.0257
U. Size 10 m 0.455 0.306 0.750 0.0944
U. Size 5 m 0.344 0.212 0.597 0.0830
U. Size 1 m 0.125 0.0145 0.198 0.0294
U. Size 0.5 m 0.0598 0.0109 0.106 0.0192
Uncorr. 10 m 0.436 0.269 0.447 0.311
Uncorr. 5 m 0.361 0.213 0.424 0.310
Uncorr. 1 m 0.119 0.0245 0.432 0.285
Uncorr. 0.5 m 0.0618 0.0158 0.425 0.287
Corr. 10 m 0.707 0.0897 0.741 0.0892
Corr. 5 m 0.529 0.0970 0.695 0.0931
Corr. 1 m 0.149 0.0215 0.220 0.0311
Corr. 0.5 m 0.0678 0.0172 0.109 0.0186

Table 31. Target coverage summary - Fixed.
Scenario Sensor

FOV
µ C σ C

Uniform 10 m 0.725 0.0161
Uniform 5 m 0.250 0.000913
Uniform 1 m N/A N/A
Uniform 0.5 m N/A N/A
Uncorr. 10 m 0.752 0.0166
Uncorr. 5 m 0.308 0.00240
Uncorr. 1 m 0.055 0
Uncorr. 0.5 m 0.02 0
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Table 32. Target coverage p-values - Control.
Scenario Sensor

FOV
Lwm. C
t-score

Lwm. C
p-value

Patrol C
t-score

Patrol C
p-value

Uniform 10 m 32.9 6.93E-25 39.6 3.02E-27
Uniform 5 m 49.2 4.91E-30 44.1 1.22E-28
Uniform 1 m -50.2 2.59E-30 -27.3 1.53E-22
Uniform 0.5 m -132 6.50E-43 -60.0 1.32E-32
U. Size 10 m 67.5 3.94E-34 33.8 2.95E-25
U. Size 5 m 28.6 4.06E-23 37.6 1.33E-26
U. Size 1 m -111 1.36E-40 -68.1 3.07E-34
U. Size 0.5 m -138 1.87E-43 -102 1.47E-39
Uncorr. 10 m 50.4 2.34E-30 -1.55 0.119
Uncorr. 5 m 25.2 1.58E-21 -0.68 0.310
Uncorr. 1 m -119 1.48E-41 -0.08 0.394
Uncorr. 0.5 m -120 1.09E-41 -1.44 0.140
Corr. 10 m 52.7 6.36E-31 37.33 1.71E-26
Corr. 5 m 35.6 6.80E-26 34.38 1.92E-25
Corr. 1 m -134 4.80E-43 -54.8 2.00E-31
Corr. 0.5 m -148 2.25E-44 -118 2.07E-41

Table 33. Target coverage p-values - Reallocation.
Scenario Sensor

FOV
Lwm. C
t-score

Lwm. C
p-value

Patrol C
t-score

Patrol C
p-value

Uniform 10 m 10.4 2.92E-11 -0.262 0.382
Uniform 5 m 1.17 0.19 4.56 0.000117
Uniform 1 m -30.4 6.56E-24 -20.5 5.54E-19
Uniform 0.5 m -116 3.61E-41 -64.5 1.55E-33
U. Size 10 m -0.808 0.28 14.5 7.11E-15
U. Size 5 m -4.02 0.000513 6.43 6.71E-07
U. Size 1 m -141 9.80E-44 -56.3 8.67E-32
U. Size 0.5 m -220 1.74E-49 -112 1.02E-40
Uncorr. 10 m -1.31 0.166 -0.928 0.255
Uncorr. 5 m -3.57 0.00165 -1.33 0.161
Uncorr. 1 m -85.1 3.97E-37 -1.30 0.168
Uncorr. 0.5 m -152 1.16E-44 -1.43 0.141
Corr. 10 m 12.6 2.43E-13 14.8 3.96E-15
Corr. 5 m 1.61 0.109 11.4 2.88E-12
Corr. 1 m -89.5 8.90E-38 -49.2 4.93E-30
Corr. 0.5 m -137 2.32E-43 -115 4.97E-41
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Table 34. Target coverage p-values - Fixed.
Scenario Sensor

FOV
C t-score C p-value

Uniform 10 m 76.7 8.91E-36
Uniform 5 m -1500 1.75E-74
Uniform 1 m N/A N/A
Uniform 0.5 m N/A N/A
Uncorr. 10 m 83.2 7.97E-37
Uncorr. 5 m -438 1.94E-58
Uncorr. 1 m N/A N/A
Uncorr. 0.5 m N/A N/A

The first observation indicates that there is the presence of a trade-off in terms of target

coverage and reducing target acquisition time, as will be seen in Section 6.4. The fixed-cell

approaches provide a greater target coverage, and indeed, a relatively stable target coverage

as indicated by the standard deviations and postulated in Section 6.3.1. This ties into the

second observation: although on the average the coverage is lower, there are instances

where the algorithms provide equivalent performance on the upper side when compared to

the fixed-cell approach. This suggests that, for the controller configuration used in these

tests, the model evolves to cover targets in a reactive manner, losing target coverage until

targets that have been ablated from other ablation regions drift into the new search regions

generated by the model.

Given the results of using the modeling and reallocation algorithms, when choosing

how to use the model to reallocate sensors and to do it in a manner that improves overall

performance, how target coverage is affected must be taken into account external to the

reassignment of agents to new regions, even though target coverage in the sense of this

section might not be directly measurable. This issue with respect to coverage also suggests

that there is an optimum, where both target coverage and acquisition time have optimal

values with respect to a given observation scenario.

The third observation can be clarified by plotting the means of the target coverage; these

plots are given in Figures 57, 58, 59, and 60.
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Figure 57. Target coverage for the lawnmower pattern control scenarios. The performance correlates

to the sensor field-of-view.

Figure 58. Target coverage for the lawnmower pattern scenarios using reallocation algorithms. Cover-

age is smaller in magnitude than in the control case, as in Figure 57.
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Figure 59. Target coverage for the patroller pattern control scenarios. The performance is similar to

that of the lawnmower pattern in the control case illustrated in Figure 57, except in the uncorrelated

case.

Figure 60. Target coverage for the patroller pattern scenarios using reallocation algorithms. The cov-

erage is smaller in magnitude than in the control case, but the same behavior for the uncorrelated

scenario is present as in Figure 59.

For the lawnmower search pattern, the trends between the control (Figure 57) and the
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algorithms (Figure 58) are very similar, although the lines for the algorithms are shifted

downward as a result of the acquisition time-target coverage trade-off. Specifically, the

coverage is much lower for the uncorrelated velocity and uniform size scenarios. This

result can be interpreted as follows: the target size, if the target can be acquired, is not as

much of a deterrent to performance as target movement, since the uniform size scenario

uses the same type of uncorrelated velocity variance as the uncorrelated velocity scenario.

In both cases, the target coverage drops significantly between the 5 m and 1 m scenarios,

reaching equivalence. This equivalence indicates that the target coverage is bounded once

the sensor field-of-view radius approaches these sizes; the small magnitudes of the standard

deviations for these cases makes it more clear.

Similar statements may be made for the patroller pattern cases as shown in Figures 59

and 60 in terms of overall trend similarity as the sensor field-of-view radius is modified.

The overall coverage is greater in magnitude for the control with the two larger sensor field-

of-view radii, but it decreases quickly to the same lower limits as that for the lawnmower

search pattern. However, for the patrollers, there is the interesting case of the uncorrelated

velocity variance scenarios. In both the control and reallocation cases, the target coverage

is very similar and nearly constant across all four scenario variants, which is a contrast

to the similarity of this scenario with the uniform size scenario for the lawnmower search

pattern. This difference may be attributable to the spread of the targets as generated by this

scenario when compared to the correlated velocity scenario, which tracks closely with the

uniform size scenario. Targets in the correlated velocity scenario may have a tighter spread

than that of the uncorrelated velocity scenario depending on the correlation between ad-

jacent ablating source regions, providing comparable performance to the uniform velocity

scenario. A wider spread for a patroller, which has reduced coverage properties than the

lawnmower pattern, can work to its disadvantage. If a target is altogether missed or does

not approach the sensor’s field-of-view as the sensor is moving toward the target’s future

location, then there is a high likelihood that the patroller pattern will not acquire the target
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at all. Hence, for a patrolling pattern, it is almost required that the agent’s sensor has a large

field-of-view.

Finally, the target coverage for the fixed sensors is interesting when compared to the

target coverage using mobile sensors. With the low-magnitude standard deviations in the

target coverage, it can be stated that for fixed sensors, the coverage is effectively constant,

which should be expected. In two cases, the 1 m and 0.5 m cases for uniform target veloci-

ties, sufficient targets could not be acquired to actually compute target coverage. Compared

to the uncorrelated target velocity case, it is likely that the target coverage would be no

higher than approximately 5.5% even in the uniform case. In all cases, for both the fixed-

cell approach and using the modeling and reallocation algorithms, there is an improvement

in target coverage in comparison to the fixed-sensor approach.

It should be noted that although the resulting average target coverage for the algorithms

is lower overall, in a real-world scenario, that does not mean that there is a significant

issue to overcome. Specifically, the scenarios used to test target coverage were intended to

provide a significant challenge to the algorithms in terms of target coverage. To make this

clearer, the contrast of the target acquisition time with target coverage is shown in Figures

61, 62, 63, and 64, where the acquisition times for both the control and algorithm scenarios

using the lawnmower search pattern are plotted. The fixed sensor and patroller cases are

not shown because in several of the test scenarios, there was insufficient data to compute

appropriate acquisition times as a result of deficiencies in the ability of those methods to

acquire targets.
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Figure 61. Acquisition times for the uniform target velocity scenario. Note the overall improvement in

the acquisition time when using reallocation of resources.

Figure 62. Acquisition times for the uniform target size scenario. There is significant improvement in

the acquisition time when using reallocation, except in the small sensor field-of-view cases, correspond-

ing to the coverage results.
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Figure 63. Acquisition times for the uncorrelated velocity scenario. There is no improvement in the

acquisition time for the smaller sensor fields-of-view, while the improvement is present in the greater

field-of-view radii for the sensor reallocation algorithms.

Figure 64. Acquisition times for the correlated target velocity scenario. Note that there is improve-

ment when using the reallocation algorithms, but the improvement is not as drastic as in the previous

scenarios.
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In almost all cases, there is an improvement when using the modeling and realloca-

tion algorithms over the control methodology for performing target acquisition. The cases

where there is a lack of improvement or the resulting acquisition times are very similar are

in the 1 m and 0.5 m sensor field-of-view radius cases, which is to be expected, considering

target coverage performance for these cases. Additionally, the correlated target velocity

case proved to be a more difficult case as well, with the difference between the control and

algorithm scenarios not as significant.

It should also be noted that real icebergs might not necessarily drift in such a structured

manner, given the dynamics of ocean currents that are not modeled in this ablating source

simulation. That is, current vortices can cause clusters of icebergs to become trapped in a

smaller subregion of the region of interest S for a significant amount of time, as suggested

by the results of the IIP data analysis in Section 3.5. This behavior would make acquiring

the icebergs less difficult and increase target coverage.

6.4 Full-Scale Simulation

Given the results of the previous studies described in the previous sections, a full-scale

simulation incorporating the modeling and assignment techniques from Chapters 3 and 4

was conducted [58,87]. This full-scale simulation usd the same simulation environment as

the pilot study: the same controller was used, except that the additional target assignment

and modeling options were activated. Unlike the target coverage and data coverage studies,

the ablating sources U would also vary substantially to model the starting and stopping of

the target streams Bi(t) generated by the ablating sources ui.

The overall simulation parameters are similar to that of the pilot study summarized in

Section 6.1 and the scenarios used in the coverage evaluation of Section 6.3. The same

target source parameters and robot parameters in the pilot simulation were used to provide

an appreciable extension to the study. The main difference was the number of agents used

in each of the studies. The “control” simulation, which did not use any of the modeling or
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assignment techniques, is essentially the three-agent solution from the pilot study. As for

the solution that uses modeling and assignment, a patroller agent is added to the scanning

agents, which is used to perform the patrolling task as described in Section 5.1.3 as part

of aiding an appropriate a-priori mixture model. This agent switches to a lawnmower

pattern once the first region assignment has been made as the a-priori model will have been

obtained; while this seems to be an additional advantage for the modeling and assignment

solution as compared to the three-agent control solution, as shown in the pilot study, the

most coverage that can be obtained for the given, overall scenario is obtainable with three

agents.

The different simulation scenarios based on the overall scenario are summarized in Ta-

ble 35. In each case, the number of target streams Bi(t) is varied and the amount of ablation

capacity of each of the streams is varied. Varying the capacities of each of the sources al-

lows for fully exercising the capabilities of target modeling and stream detection. A stream

with a regular-sized capacity has an ablation capacity of 1000 tons; smaller streams have

capacities of 200 tons. While these capacities are smaller than the potential capacity of a

real ablation source, they are comparable for the circumstances of this particular test. Each

scenario was run for 3000 simulation frames with a frame rate of 25 Hz, with accelerated

ablation rates as in the pilot simulation. Thirty trials of each simulation were run.

The results of the control simulation are summarized in Table 36 and the results of the

simulation incorporating modeling and assignment are summarized in Table 37.

Some general observations can be made about the results in Table 37. First, the agent-

specific target coverage CA(T ) remains relatively constant across all of the scenarios, re-

gardless of the algorithms used. Second, there is significant improvement in the initial

acquisition time, which is the overall metric of interest. Finally, the average distance trav-

eled remains similar across scenarios. While it can be observed from the raw metrics data

that the solution using the modeling and assignment algorithms is an improvement over the

control, as most of the numbers have significant drops, especially in the average acquisition
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Table 35. Simulation Scenarios
Identifier Description

four Four target streams of equal capacity.
three Three target streams of equal capacity.
two Two target streams of equal capacity.
one One target stream of equal capacity to those before.

one small Three target streams of equal capacity, one stream of small
capacity.

two small Two target streams of equal capacity, two streams of small
and equal capacity.

three small One target stream of “regular” capacity, three streams of
small and equal capacity.

Table 36. Simulation metrics summary - Control.
Scenario CA(T ) Avg. Ts (s) Avg.

Model Ts

(s)

Avg. Local
Ts (s)

Avg. Dist.
(m)

four 100% 12.8 494.13 14.36 311.65
three 100% 13.76 475.07 16.50 296.53
two 100% 14.89 453.20 15.40 292.26
one 100% 21.56 425.27 N/A 279.50
one small 100% 13.90 415.47 16.05 307.5
two small 100% 10.01 288.94 12.48 298.72
three small 99.9% 12.11 212.99 12.83 300.10

Table 37. Simulation metrics summary - Modeling and Assignment.
Scenario CA(T ) Avg. Ts (s) Avg.

Model Ts

(s)

Avg. Local
Ts (s)

Avg. Dist.
(m)

four 100% 7.30 401.73 15.85 263.05
three 100% 8.82 405.04 31.6 261.09
two 100% 6.3 326.19 16.03 235.09
one 100% 17.38 394.93 N/A 324.32
one small 95.8% 8.15 363.88 32.15 263.14
two small 93.6% 11.0 202.24 79.93 250.63
three small 100% 11.7 135.06 66.69 242.96
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time, some clarity can be provided by graphing the data. Figures 65, 66, 67, and 68 com-

pare the two scenarios’ average acquisition time, average global model acquisition time,

average local model acquisition time, and the average distance traveled.

Figure 65. Average acquisition times. Note the overall improvement across the scenarios when using

the reallocation algorithms.

Figure 66. Average global model acquisition times. Individual global models indicate an acquisition

time improvement when using the reallocation algorithms.
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Figure 67. Average local model acquisition times. Local models do not show the same improvement,

but do show the overall trend of the difficulty of obtaining target measurements as the number of target

streams decreases.

Figure 68. Average distance traveled. Note that the distance traveled has a small difference between

the control and reallocation algorithms. This is indicative of obtaining better performance in terms of

acquisition time when using the same amount of energy.

In almost all cases for both the control and the modeling-based methods, the agent-

specific target coverage CA(T ) remained fixed at 100%, which was suggested by the pilot
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simulation’s 100% agent-specific target coverage when using three agents. There are two

specific cases where the target coverage drops: in the one and two small ablation region

scenarios when using modeling and assignment. This drop is attributed to having multiple

agents cover a single target stream, while a single agent remains to cover the other streams.

This case does not occur in the three small stream scenario as a result of the fact that a

single agent is sufficient to cover one stream; as the other streams disappear at nearly the

same time, this results in “overcoverage” for the single target stream once the other streams

vanish.

In Figure 65, an approximate 50% or more reduction in the initial acquisition time

required when using our methodology can be observed. The cases where the behavior is

not 50% or more is in the single target stream case, and the two and three small stream

cases. In the single target stream case, there is a similar overcoverage case as with the three

small streams case when a drop in target coverage is observed. While all of the targets are

acquired, more time is required to detect targets as a result of the fact that there is only one

active stream. This is the result of the fact that an agent is not constantly occupied with

many target sources at a time. Hence, while several agents may be reallocated to this one

stream, only so many targets exist: the acquisition time increases. Similar circumstances

exist for the two and three small-stream cases, which is why the acquisition times are so

similar. They are lower than the single-stream case because unlike the single-stream case,

multiple streams existed at one point, allowing the agents to be occupied with quickly

acquiring targets, driving down the acquisition time.

The trends in the average model-acquisition times, both local and global, are interest-

ing. A model acquisition time, to review, is the time that a target is acquired referenced

from the time that the first observation is made by any agent. The global model acquisition

time is computed using the timestamps of measurements shared across agents, while the

local model acquisition time is computed using the timestamps of the local measurements

of each agent, and averaged across the individual local models computed by each agent.
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There is improvement in the global model acquisition time when using modeling and as-

signment. Also, the time has a decreasing trend as target sources are removed or are of

smaller capacity. This can be attributed simply to the fact that the overall number of tar-

gets was reduced, hence less time was required to acquire the possible targets. As for the

local model results, the control remained flat in terms of variance overall, while there were

significant changes when using modeling and assignment. The first issue to examine is the

fact that there are no local results for one target stream. This result can be attributed to

the fact that for many of the agents, they will not have sufficient results for one stream ex-

cept for one agent or when agents are reallocated. Hence, an average cannot be computed.

The significant increase in the local times for the two and three small stream cases can be

attributed to the overcoverage problem: too many agents are attempting to cover too few

targets.

Finally, the distance traveled in both cases remains fairly close, with some reduction

when applying the algorithms. This is attributable to the shorter distance required to be

traveled by the agents as they generally are allocated to smaller search regions, but the dis-

tance required to travel from search region to search region tends to offset these reductions.

Hence, the difference between the control and the scenario using the algorithms is not as

significant. This shows that better performance can be obtained at the same energy cost by

using the algorithms.

Overall, given the metrics for performance and the differences between the simulation

scenarios, clear improvement in target acquisition time can be observed when using the

modeling and reassignment algorithms. This is especially true for the most important met-

ric of interest, the average acquisition time across all agents and targets, which represents

the iceberg observation framework problem’s objective function. However, as noted in

Section 6.3, this improvement arrives at a loss in target coverage C(T ), and underlines the

overall suboptimality of the approach with this trade-off. Given that, with the observations

regarding target coverage and acquisition time, a point at which there is an optimal balance
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between these two metrics is conjectured to exist for a given scenario. However, it should

also be noted that in a real-world observation mission, there are only approximations to the

scenarios used to test the algorithms as a result of the variability of the ocean. Hence, while

there may be an optimal point at some time in the observation mission, this optimal point

is not guaranteed to exist throughout the lifetime of the ablation regions U that currently

exist on a given glacier.

6.5 Hardware Results

A test was conducted using the hardware configuration described in Section 5.4. The test

environment was a laboratory environment with a motion tracking system, the NaturalPoint

OptiTrack system using the Motive software package, to handle localization of the individ-

ual agents, since the localization problem is not the problem of interest in this research.

Appropriate software, i.e., a Player driver, was written to transfer the robot positions from

the motion tracking system to the controllers used to drive the individual agents. A photo-

graph of the complete test environment is shown in Figure 69.
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Figure 69. Lab environment for hardware experiments.

The test scenario for the hardware was a scaled-down version of the scenario used in

the simulations of Sections 6.1 and 6.4. Instead of four total agents, there are only three:

two agents executing a search pattern and one agent acting as the patroller agent. The

default allocation is similar to that of the simulation, except that there are two cells instead

of three. An illustration of this scenario is given in Figure 70. Since the purpose of the

hardware test is for a validation in the real world of the algorithms on actual hardware,

fewer runs (five each) were conducted than the many runs that were used to aggregate the

simulation results.
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Table 38. Summary of activity region parameters - Hardware Test.
Active Region µdims σdims µvel σvel

1 0.5 m x 0.5 m 0.1 m (-0.1, 0.1) m/s 0.05 m/s
2 0.5 m x 0.5 m 0.1 m (-0.1, 0.1) m/s 0.05 m/s
3 0.5 m x 0.5 m 0.1 m (0, 0.1) m/s 0.05 m/s

Figure 70. Initial agent allocation for hardware scenario.

The parameters for the activity regions for the hardware test are summarized in Table

38, in the manner of the activity region parameters described in Section 6.1. The virtual ice

mass is centered at the OptiTrack origin, (x, y, z) = (0, 0, 0), and it is allowed to generate

targets in all directions. Each source had an ablation capacity of 1000 tons, with each

generated target using 20 tons of this capacity and generated in 30 second intervals. The

patroller agent is placed at the starting position (x, y, z) = (−0.5, 0.1, 0), and the scanning

agents were placed at (x, y, z) = (−0.5, 0.2, 0) and (0, 0.2, 0), respectively. The sensor field-

of-view has a radius of 0.5 m.
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Table 39. Hardware metrics summary.
Type Coverage Avg. Ts (s) Avg.

Model Ts

(s)

Avg. Local
Ts (s)

Avg. Dist.
(m)

Baseline 100% 110 390 112 23
Algorithms 100% 110 390 112 23

The results of the test for the given scenario are shown in Table 39. Examining the

resulting metrics determined from the hardware tests, as compared with the simulation

results, very little difference exists between using the “standard” scanning approach as

compared to using the modeling and reallocation methodology. Indeed, they are identical,

within rounding error. Given the results for the full-scale simulation, where there was a

clear distinction between the control results and results using the algorithms, the fact that

the metrics are equal is likely the result of the size of the region of interest S that is being

examined by the agents. Since the region of interest is much smaller compared to that of

the full-scale simulations, including the distance required by the lawnmower search pattern,

the target trajectories Bi(t) generated by the ablation regions U will be much more closely

spaced within the region of interest. Hence, for small regions of interest, such as a small

coastal inlet where a smaller glacier is calving icebergs, there is little advantage to using

reallocation over using fixed-size cells for scanning.

However, despite the fact that the metrics are not different for small regions of interest,

the observation mission still produces a model that may be used for predicting iceberg

behavior. The resulting models can be visually examined to determine how effectively the

generated mixture models compare with the ablating-target sources. Figures 71, 72, and

73 show a selection of the global mixture models as perceived by the mission arbiter in the

scenario. The mission arbiter, in this case, is the agent with identifier 1. In each figure, the

white circles are the ablation regions, the black dots are the truth positions, and the white

stars are the noisy target position measurements.

In Figures 71 and 73, it can be seen that there are three regions that correspond to
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the ablation regions, specifically the target streams. Additionally, Figure 73 shows two

regions of very high target-probability directly over the ablation regions, which is exactly

what is desired for this modeling methodology. Figure 71 has what appears to be a “stray”

component on the leftmost side, which covers the targets traveling in that direction that are

not covered by the other components. Note also that in Figure 73, the measurements are

not as tightly clustered as in Figure 71, providing for a greater probability near the ablation

regions. For a real-world region, taking of the IIP models in Section 3.5 as an example,

there is a resemblance to the models where the iceberg sightings are closer to shore, with

“stronger” (components with higher probability) components near the shore, and “weaker”

(components with lower probability) components further out at sea.

For Figure 72, the target streams themselves are not as clearly demarcated; most of

the probability is centered atop the ablation regions, which can be compared to the activity

that a real-world glacier with a very low ablation rate would produce. With respect to target

streams, for determining the best regions for placing sensors, the three mixture components

near the top of the plot are the best candidates, as they will capture all of the targets that float

in that direction, again given that the directions of the target streams Bi(t) remain constant

in S according to the problem assumptions. For the small region of interest within the lab,

if the the agents could be made smaller in size in proportion to the region of interest S that

is being examined, then the reallocation would more likely provide the desirable results of

lowered acquisition times in comparison to target coverage.
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Figure 71. Hardware target model showing distinct target streams.
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Figure 72. Hardware target model showing regions correlating to target sources.

177



−1.5 −1 −0.5 0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x (meters)

y
 (

m
e
te

rs
)

Model − alg−hw−results/pololu_hw−results−3 (create1)

 

 

10

20

30

40

50

60

Figure 73. Hardware target model showing fewer well-defined target streams.

6.6 Summary

Given the results in this chapter, it can be said that each method of observation has its

own advantages and disadvantages depending on the conditions of the area of interest S.

Table 40 shows a selection of the features of interest that can affect the choice of method

for observation, “Coverage”, in this case, refers to target coverage. The table includes the

fixed sensor approach, which can only be improved by spending money: that is, to obtain

sensors that can detect wider areas. Although the modeling and reallocation algorithms

improve target acquisition time, the target coverage is inferior to that of the “standard”

observation methodology. However, there are cases when this loss of coverage does not

have a significant impact on situational awareness. For example, icebergs that enter the

region of interest S and almost immediately depart at the boundary usually present no

danger to operations within S. Also, there is the case of current vortices as mentioned

in Section 6.3.2. Icebergs that are caught within these vortices will persist within those

regions, and provided that they do not impose on the operations within the region, they will

also not present a significant threat. Finally, it should be noted that for the modeling and
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Table 40. Features of each observation method.
Method Coverage Acquisition

Time
S Small
Area

S Large Area

No reallocation × ×

Reallocation × × ×

Fixed sensor ×

reallocation techniques used in this chapter, in each case, a-priori data was not used in the

simulations, as the ablation activity was considered to be “new” or previously unreported.

This is a more difficult situation for the algorithms; with a-priori data, the ability of the

algorithms to improve overall observation characteristics, i.e., both target coverage and

acquisition time, would be augmented.

As for practical recommendations as to what observation techniques should be used

for a given scenario, these can be derived from the results of the simulation studies in

Section 6.3, which compare target coverage and target acquisition time. The following list

summarizes these recommendations based on the results:

• Use sensors with a sufficiently wide field of view. This may seem obvious, but as

shown by the target coverage results, sensors with a smaller field of view require

more sensors to amply cover an area and produce consistent models, which has both

monetary and performance costs.

• Use fixed sensors as an adjunct to mobile sensors, but not as the primary means of

observation, since the target coverage is significantly reduced with fixed sensors.

• If maximized coverage is desired, then it is best that no reallocation should be per-

formed. Properly defined, static search regions will provide for ample overall target

coverage. In addition, since coverage performance for most of the scenarios tested

is effectively independent of search pattern, a patrolling or loitering pattern usually

serves well for this type of target observation.

• In contrast, if the case actually occurs that the target movement is uncorrelated in
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velocity, the lawnmower search pattern is a superior choice when compared to the

patroller pattern for target coverage.

• If coverage is not paramount, that is, there are ablation regions ejecting new icebergs

that pose no danger to a sea-based mission but there are ablation regions that will be

a threat, acquisition time is the metric on which more focus should be placed. In this

case, reallocation of sensor resources will improve acquisition time in all scenarios

of concern.

• If the sensor resources are to be reallocated, the lawnmower search pattern is a better

choice for overall target coverage performance.
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CHAPTER 7

CONCLUSION

7.1 Concluding Remarks

This research addresses issues regarding the observation of targets generated from ablating

sources and the development of methodologies to observe the targets more efficiently. By

incorporating measurements of target position into a probabilistic model, search regions

can be extracted from the model that allow for an allocation of robot resources that provides

for better target acquisition. By taking into consideration the search regions in addition to

how to allocate the resources, the amount of time required to obtain the initial detection on

a target can be minimized. In the case of the types of targets considered in this research,

i.e., icebergs, minimizing the time to detect targets is integral to safe, sea-based operations

in Arctic regions. The main contributions to achieving this goal are as follows: a definition

of the iceberg observation problem based on an existing robotic observation problem; a

probabilistic method for in-situ modeling of the expected locations of regions of activity on

an ablating target source, so that observation resources can be retasked to these regions; a

method for scoring the model based on a set of metrics defined according to the parameters

that are of concern to such an observation task; and a framework for using multiple robotic

agents to acquire the necessary measurements to be incorporated into the model.

The contributions are important to addressing the problem of understanding and miti-

gating the threat of icebergs for arctic operations. Minimizing the amount of time required

to acquire these targets is important, since the types of operations that occur in these re-

gions are performed by slow-moving ships or immobile platforms. Countermeasures of

some type must be instigated as soon as a threat is detected to preserve the well-being of

the crews of these missions. Satellite imagery and data products by organizations such as

the IIP help to mitigate these threats, but a robotic system that is continuously monitoring
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for threats and adapting to the current conditions can provide real-time situational aware-

ness, which is important as data products are often only available on a daily or weekly

basis. This research provides for such situational awareness and can provide its own data

products in real-time.

As new robotic sensing platforms for Arctic exploration are developed, e.g., [88], al-

gorithms for efficiently exploring regions and gathering data will be needed, which are

provided by these modeling techniques. In addition, the latest emphasis on the “nowcast”

for sea ice [12] is a useful application of the models generated from the observation process,

since the spread of the icebergs can be derived directly from the models. Usually, forecasts

are produced by data assimilation [13] of offline data [14–16], but the methodology from

this research provides for an online method of generating such a potential nowcast, using

both the model and the metrics generated from the model. Therefore, the overall impact of

this research is that it provides algorithms that are usable right now for improving real-time

situational awareness in Arctic regions and augments existing means of observing icebergs.

7.2 Recommendations for Future Work

The logical extension to this research is to develop a full iceberg tracking system [89]

that uses the model generated by the measurements gathered by the robots as part of its

initialization process. A likely candidate for such a tracker would be a multiple-hypothesis

tracker (MHT), similar to the system briefly described in [3].

An MHT, as opposed to other tracking systems, is a multiple target tracking system that

solves the data association problem by representing a set of target tracks as a set of track hy-

potheses. These hypotheses are based on the possible ways that target measurements may

associate with a track. Every time that a conflict between the current tracks and the current

set of target observations occurs, a new set of hypotheses are generated. This method is dif-

ferent from other tracking systems in that usually only a single set of assignment solutions

is allowed, resulting in many more sets assignment solutions that must be stored. However,
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the solutions are adapted over time to produce the best possible assignment for the data,

one of the primary advantages of using an MHT.

An MHT may be implemented in a variety of ways; different algorithms have been

developed to solve the data association and hypothesis generation portion, while creating

and updating the tracks is usually a derivative of Kalman-filter-based target tracking. A

summary of several of the algorithms used to implement an MHT is given in [90].

An MHT would be an appropriate candidate for the core of an iceberg tracking system

for the following reasons:

• Target classification may be difficult; multiple targets may be identified as the same

target if they are tightly clustered together, which is entirely possible for small, newly

calved icebergs. Target properties such as the radar cross section (RCS), size, and

velocity can account for these mistakes in target identification. Using an MHT allows

for eventual separation of targets with proper data management.

• Icebergs can and will break up into smaller icebergs. These new icebergs can be-

come new hypotheses in the tracker, or a hypothesis that an iceberg has a growing

probability of breaking up can be maintained.

The main issues involved in developing such a tracking system would be the issues that

are often associated with the MHT and tracking systems in general:

• Data management: Currently, the entire measurement history is kept to generate the

mixture models for the ablating sources. Certain tracking algorithms require storing

the entire measurement history, as well [91]. These tracking algorithms are usually

batch-oriented in nature. MHT-based algorithms may also be batch-oriented, and

thus require that a large amount of measurement data be stored for the duration of a

mission.

• Updating the tracker: As the mixture modeling method is batch-oriented, a large his-

tory of measurements is kept, and this history must be incorporated into the tracking
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algorithm. Time and complexity requirements must be taken into account when up-

dating the tracker, and some MHT-type algorithms require a fair amount of time to

update. In this case, the targets will likely not have to be revisited as often as faster

moving targets. As a result, the tracker updates will be more widely spaced in time,

which would mitigate computational delay issues.

• Data association: Multiple measurements may associate to the same target when, in

fact, the measurements were generated as a result of the behavior of different targets.

This would be an especially notable issue with the eventual break-up of an iceberg:

either a cluster of measurements would be generated or a single measurement would

be generated, based on the amount of time that has passed since the breakup. If the

cluster was generated from new icebergs that were still relatively close together, then

an association error could take place; i.e., a measurement could be associated with

an incorrect track. This is an issue where an MHT excels: hypotheses would be

generated for each of the potential measurement assignments.

Other composite tracking methods could be considered, such as a solution that uses

several multiple interacting multiple model (IMM) filters [89], but it could be difficult to

separate targets from one another as a result of their overall similarity.

This research does not address the inherent issues of robotic navigation and sensor data

collection in regions of high iceberg density for unmanned vehicles that operate directly on

the water; i.e., the types of issues that must be considered when constructing robots that

must navigate in these types of harsh and unpredictable conditions. A significant amount

of work has been done in these areas by researchers, in particular for AUVs [92–96], but

there is still an extensive amount of future work that can be done in this area.

Complete agent drop-out as the result of loss of power is a problem that is also of

concern. This is addressed for a centralized arbiter with arbiter hand-off in the description

of the centralized sensor reallocation methodology used in this research in Chapter 4, but

not addressed for other agents. There are several methods of addressing this issue; a few

184



examples are as follows:

1. Continue scanning the currently allocated regions until a new allocation is required.

2. Immediately reallocate the agents to new regions based on the current model.

3. Reallocate the agents to the default sensor allocation, and start the modeling process

over.

Which one of the many approaches would be considered the best would depend on several

factors; e.g., the nature of the environment around the region of interest, proximity to a

base station, or the need for agent recovery.

Furthermore, the studies conducted used agents that were mostly homogeneous in ca-

pabilities and strictly limited in number; the main differences were in the search patterns

used and the capabilities of the sensors. Heterogeneity was demonstrated in the full-scale

simulation in Section 6.4, with different agents assigned different roles through the search

patterns that were used. Further improvements in performance could be enabled by ex-

ploiting agent heterogeneity and having a pool of agents that could adapt in both pattern

and number over time.

Additionally, novel ways of transmitting notifications of detected icebergs could be an

interesting area of research. For example, a method could be developed that leverages exist-

ing social media platforms such as Twitter to provide transmissions of detections/sightings

to organizations such as the International Ice Patrol. While the intent of this research is

to provide situational awareness for local operations, transmitting the results further up the

chain of awareness would be beneficial.

The concept of the ablating source is also not restricted solely to the ice ablation pro-

cesses that result in the generation of icebergs. Other examples include herds of animals

that are separating over time, wreckage deposited in a trail behind a damaged vehicle, and

other geophysical processes that resemble ice ablation, such as the movement of rock (al-

beit an extremely slow ablation process). The approaches in this research can either be
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directly applied or modified to apply to these scenarios, which provides for extensive addi-

tional research in terms of a) identifying which processes can be represented using ablating

sources and b) how to model the generation of new targets, whether by directly applying

the Gaussian mixture-based approach in this research or by developing a different modeling

approach.

One final research topic would be determining what type of sensor load-out would

really be necessary for such a remote sensing task, and what type of vehicle would be best.

For the former, examples of such sensors would be: small radars, different electro-optical

sensors (e.g., infrared sensors), or video cameras coupled with computer vision algorithms.

If necessary, the measurements obtained by these sensors can be fused to produce better

estimates, which can then be fed to the modeling algorithms. As for the case of the vehicles,

no assumptions have been made about whether they should be unmanned aerial vehicles

(UAVs) or autonomous underwater vehicles (AUVs). Not making assumptions about the

type of robotic platform allows for a more general study of the problem. However, both

types of vehicles have their own advantages and disadvantages. For example, an AUV

can be subjected to strong ocean currents, requiring more energy to maintain a consistent

search pattern, in addition to being mindful of how far downward an iceberg penetrates into

the water. The cost function used to perform target assignment would have to take iceberg

depth and ocean current magnitude into account to make superior assignments. Depth or

specific ocean currents of any kind are not currently being taken into account by the cost

function or the metrics extracted from the iceberg model; ocean currents are effectively

rolled into the estimates of iceberg velocity. These specific issues with observing directly

at water-level seem to make the case that target observation via UAV might be the better

choice. If detailed analysis of iceberg structure is not necessary; i.e., shape, surface size,

and position are sufficient, then in-situ aerial observation can provide the types of essential

measurements required to construct and interpret the iceberg model.

This research has provided a theoretical and practical framework for in-situ modeling
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of iceberg behavior to allow for determination of model-based search regions for robotic

iceberg observation, extracting the useful results that can be produced by that model, and

reallocating search resources for more efficient observation of ablating target sources. This

contribution allows the field robotics and maritime communities to have an additional per-

spective on improving observation of these types of targets and target sources, so that op-

erations that are conducted within arctic regions are made safer. In addition to helping

maintain safety on the sea, this work can allow for scientific data to be collected in a more

efficient manner in a localized region, useful for those scientists that do their work study-

ing the Earth’s cryosphere. Icebergs will always be a threat to those who travel across the

northern and southern seas, and with the methodologies developed here, they can be a little

less threatening.
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