
DECENTRALIZED GRAPH PROCESSES FOR

ROBUST MULTI-AGENT NETWORKS

A Dissertation
Presented to

The Academic Faculty

By

A. Yasin Yazıcıoğlu

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy
in

Electrical and Computer Engineering

School of Electrical and Computer Engineering
Georgia Institute of Technology

December 2014

Copyright© 2014 by A. Yasin Yazıcıoğlu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/77094572?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DECENTRALIZED GRAPH PROCESSES FOR

ROBUST MULTI-AGENT NETWORKS

Approved by:

Dr. Magnus Egerstedt, Advisor
Professor, School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Jeff S. Shamma, Advisor
Professor, School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Fumin Zhang
Professor, School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Eric Feron
Professor, School of Aerospace Engineering
Georgia Institute of Technology

Dr. Douglas Blough
Professor, School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Anthony Yezzi
Professor, School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: Jul 22, 2014

To my parents, Gülşen and Nafi; and my brother, Emre

ACKNOWLEDGMENT

First and foremost, I would like to express my deepest appreciation to my advisors, Dr.

Magnus Egerstedt and Dr. Jeff Shamma. This work would not have been possible with-

out their priceless guidance and endless support. They shared their invaluable knowledge

and experience, trusted in my abilities, granted me freedom in my research, and provided

constructive criticisms and insightful suggestions. I have learned a lot from them about

research, teaching, and mentorship. They have been great sources of inspiration to me pro-

fessionally and personally. It has been a great pleasure to work with them, and I am very

fortunate and proud to have had them both as my advisors.

I am also indebted to Dr. Yücel Altunbaşak for recruiting me as a PhD student and

offering me a research assistantship position during my first two years in the program.

Furthermore, I would like to express my appreciation to Dr. Eric Feron, Dr. Fumin Zhang,

Dr. Douglas Blough, and Dr. Anthony Yezzi for agreeing to be on my PhD committee and

providing many useful comments about my thesis. Also, many thanks to my MS thesis

advisor, Dr. Mustafa Ünel, for teaching me various skills that have been quite helpful

during my PhD.

Furthermore, I would like to thank all my current and former colleagues in DCL and

GRITS lab for many interesting discussions related to my research. I am fortunate to

have worked alongside such kind and pleasant people in a friendly work environment. I

have greatly enjoyed the lunches and the coffee breaks with Dr. Shamma’s group, and the

potlucks and the lab retreats with Dr. Egerstedt’s group. I would also like to thank all my

friends in Atlanta, especially the Turkish community at Georgia Tech, for so many pleasant

memories we shared together.

I am extremely grateful to my family for all the support, encouragement, and love they

have provided. They have always been my main source of strength while pursuing my

goals in life. A special thanks goes to my fiancee, Derya, for her endless love and support

iv

throughout my PhD and her invaluable comments about my research. I am very fortunate to

have a partner, who completes me in both the personal and professional aspects of my life.

Thanks should also go to my uncle, Dr. Engin Mermut, for inspiring scientific curiosity

in me during my childhood. That curiosity has been one of the driving forces throughout

my education. Many thanks to my grandmother, Fatma Mermut, for her unconditional love

and support. I must also thank my younger brother, Emre, for his priceless companionship.

Finally and most importantly, I would like to express my deepest gratitude to my parents

for everything they have done for me. None of my achievements would have been possible

without their steadfast encouragement and support.

v

TABLE OF CONTENTS

ACKNOWLEDGMENT . iv

LIST OF FIGURES . viii

SUMMARY . xii

CHAPTER 1 INTRODUCTION . 1
1.1 Graph Preliminaries . 2
1.2 Graph Robustness . 3
1.3 Graph Coverage . 5
1.4 Thesis Contributions . 7

1.4.1 Formation of Robust Networks 7
1.4.2 Network Protection . 9

1.5 Thesis Outline . 10

CHAPTER 2 DEGREE REGULARIZATION 11
2.1 Problem Formulation . 11
2.2 Proposed Solution . 12

2.2.1 Graph Grammar Preliminaries 12
2.2.2 Degree Regularization . 12

2.3 Simulation Results . 19

CHAPTER 3 RANDOMIZED DEGREE REGULARIZATION 24
3.1 Problem Formulation . 24
3.2 Proposed Solution . 25

3.2.1 Randomized Degree Regularization 26
3.2.2 Markov Chain Preliminaries . 30
3.2.3 Limiting Behavior . 32

3.3 Simulation Results . 36

CHAPTER 4 FORMATION OF RANDOM REGULAR GRAPHS 40
4.1 Problem Formulation . 40
4.2 Proposed Solution . 42

4.2.1 Proposed Grammar . 43
4.2.2 Distributed Implementation . 51

4.3 Simulation Results . 57

CHAPTER 5 DISTRIBUTED GRAPH COVERAGE 60
5.1 Problem Formulation . 61
5.2 Solution Approach . 62

5.2.1 Game Theory Preliminaries . 64
5.2.2 Stochastic Stability Preliminaries 65

5.3 Proposed Solution . 66

vi

5.3.1 Game Design . 66
5.3.2 Learning Dynamics . 68
5.3.3 Sufficient Communications . 70

5.4 Simulation Results . 72

CHAPTER 6 COMMUNICATION-FREE GRAPH COVERAGE 76
6.1 Problem Formulation . 76
6.2 Proposed Solution . 78

6.2.1 Stochastic Stability and Resistance Trees 82
6.2.2 Limiting Behavior . 83

6.3 Simulation Results . 90

CHAPTER 7 CONCLUSIONS . 92

REFERENCES . 95

vii

LIST OF FIGURES

Figure 1 Agents transform a fragile interaction graph, where the failure of a few
nodes (shown in the red rectangle) can disconnect half of the network,
into a robust random regular graph with a similar sparsity as the initial
graph. 8

Figure 2 Some mobile security resources with local capabilities are arbitrarily
deployed on an unknown network, They explore the network and op-
timally locate themselves to protect the network as efficiently as possi-
ble. (Black: There is at least one resource, Gray: Protected, White: Not
protected) . 9

Figure 3 G(t) at some instants along an arbitrary trajectory of (G(0),ΦR). On
this trajectory, the initial graph converges to a 3-regular graph via some
concurrent applications of ΦR in 116 time steps. On each G(t), nodes are
labeled with their degrees. 20

Figure 4 The degree range, f (G(t)), along the trajectory depicted in Fig. 3. 21

Figure 5 G(t) at some instants along an arbitrary trajectory of (G(0),ΦR). On this
trajectory, the initial graph (t=0) is formed with 20 nodes and 19 edges,
and it is a tree. The initial graph reaches a path formation via some con-
current applications of ΦR in 61 time steps. After this point, the path
formation is preserved while the terminal nodes keep their switching lo-
cations with their immediate neighbors. On each G(t), nodes are labeled
with their degrees. 22

Figure 6 Degree range, f (G(t)), along the trajectory depicted in Fig. 5. 23

Figure 7 Spectral gap distribution for the final graphs obtained via ΦR starting
from random initial networks with 100 nodes and the average degrees of
3, 4, 5, 6, 7, and 8. For each value of the average degree, 1000 simula-
tions are performed, each starting with a random G(0). The lower bound
on the spectral gap to be a Ramanujan graph (m − 2

√
m − 1) is marked

as a vertical dashed line for each case. 23

Figure 8 A poorly-connected 3-regular graph (a) and a robust 3-regular graph (b). 25

viii

Figure 9 A feasible iteration of Algorithm II onG in (a) resulting inG′ in (c) along
with the probabilities of the corresponding random events. In this exam-
ple, each node other than 8 is active and picks a neighbor as illustrated
in (b), where each arrow is pointed from a node to its chosen neighbor.
Accordingly, (1,3) and (4,6) are the matched pairs satisfying d3 > d1 and
d4 > d6. With probability 0.25, nodes 3 and 6 both pick r1 as the candi-
date rule. Furthermore, since R3 \{1} = {5} and R4 \{6} = {2, 7}, 3 picks 5
to rewire with probability 0.5, and 4 picks 2 to rewire with probability 1.
Hence, given the configuration in (b), G′ can emerge with a probability
of 0.125. 29

Figure 10 An arrow is pointed from each agent to the neighbor it picked. For each
g ∈ G, the nodes in g have non-zero probability to pick their neighbors
as shown in (a) if r = r1, and as shown in (b) if r = r2. 33

Figure 11 Non-isomorphic graph structures, G1,G2,G3,G4,G5, in G0
8,3, and the

number of labeled graphs isomorphic to each structure. 37

Figure 12 ||v(t) − v∗||2 as a function of time. v(t) approaches v∗ in accordance with
the uniform limiting distribution over G0

8,3. 38

Figure 13 Agents follow Algorithm II so that the initial graph in (a) is transformed
into a robust interaction structure such as the one in (b). 39

Figure 14 The algebraic connectivity, α(G(t)), as the initial graph in Fig. 13a
evolves via Algorithm II. After sufficiently large time, α(G(t)) rarely
drops below 3−2

√
2 (marked with a solid line), since the corresponding

3-regular graphs are almost Ramanujan with a very high probability. . . 39

Figure 15 A graph with an integer average degree (a), and a graph with a non-
integer average degree (b), which is obtained from the graph in (a) by
removing a single edge between the nodes in the circle. 42

Figure 16 An arrow is pointed from each agent to the neighbor it picked. For each
g ∈ G, the nodes in g have non-zero probability to pick their neighbors
as shown in (a) if r = r1, (b) if r = r2, (c) if r = r3, and (d) if r = r4. . . . 53

Figure 17 Agents follow Algorithm IV so that the initial graph in (a) is transformed
into a robust interaction structure such as the one in (b). 58

Figure 18 The average degree, d̄(G(t)), and the degree range, f (G(t)), for the first
1000 time steps. Once f (G(t)) = 0 is reached, both d̄(G(t)) and f (G(t))
remains stationary under Φ∗. 59

Figure 19 The algebraic connectivity, α(G(t)), as the initial graph in Fig. 17a
evolves via Algorithm IV. After sufficiently large time, α(G(t)) rarely
drops below 3−2

√
2 (marked with a solid line), since the corresponding

3-regular graphs are Ramanujan with a very high probability. 59

ix

Figure 20 An illustration of the agent capabilities in the DGC problem. Agent
1 has as cover range δ1 = 1 and communication range δc

1 = 3. The
set of nodes that are covered by agent 1 is known to agent 2 via local
communications. However, agent 3 does not receive that information. . . 62

Figure 21 A possible trajectory to a globally optimal configuration in a simple ex-
ample. Two agents with cover ranges of 1 are initially located as in (a).
The number of covered nodes (shown in gray and black) is reduced in
the intermediate step in (b) to reach the global optimum in (c). 63

Figure 22 Two agents are covering a graph. In ΓDGC, the action of an agent is
its position on the graph, and each agent gathers a utility equal to the
number of nodes that are only covered by itself. Hence, none of the
agents gathers a utility for covering the node shown in red. 67

Figure 23 An illustration of the BLLL algorithm. Two agents have the action pro-
file, (a1, a2), as in (a), and agent 1 is updating its action. Agent 1 ran-
domly picks a candidate action, a′1 ∈ Ac

i (ai), as in (b). Its next action is
picked from {a1, a′1} with probabilities depending on the corresponding
utilities. 69

Figure 24 The number of covered nodes as a function of time. 13 homogeneous
agents initially start at an arbitrary location and use the proposed method
to cover a graph consisting of 50 nodes. The number of covered nodes is
initially 5, whereas a complete coverage is maintained with a very high
probability after a sufficient amount of time. 74

Figure 25 The configuration of the agents on the graph at some instants of the first
simulation with 10 homogeneous agents. Each agent has a cover range
of 1 and a communication ranges of 3. The nodes having at least one
agent located on them are black, the nodes covered by at least one agent
are gray, and the nodes that are not covered are white. 74

Figure 26 The number of covered nodes as a function of time. 10 heterogeneous
agents initially start at an arbitrary location and use the proposed method
to cover a graph consisting of 50 nodes. The number of covered nodes is
initially 10, whereas a complete coverage is maintained with a very high
probability after a sufficient amount of time. 75

Figure 27 The configuration of the agents on the graph at some instants of the first
simulation with 10 heterogeneous agents.Seven agents have cover ranges
of 1 and communication ranges of 4, whereas the remaining three agents
have cover ranges of 2 and communication ranges of 5. The nodes hav-
ing at least one agent located on them are black (square if at least one of
the agents on it has a cover range of 2), the nodes covered by at least one
agent are gray, and the nodes that are not covered are white. 75

x

Figure 28 Distributed graph coverage by agents with identical sensing ranges and
no communication capabilities. Agents 1 and 2 do not know the node
in red is covered by both of them. However, each of them knows its
current position is covered only by itself since no other agent is within
its sensing range. 77

Figure 29 Two agents with sensing ranges of 1 are located on a graph as in (a).
Part of the graph that is not sensed by agent 1 is dashed in the figures.
Agent 1 can estimate its utility form the action profile in (a) by sampling
the partial utilities from the nodes in its sensing range. If agent 2 is
stationary in the meantime, then the resulting estimation will be true.
However, if agent 2 is also moving, then the sampled partial utilities
may be true as in (b) or false as in (c). 79

Figure 30 The number of covered nodes as a function of time. Agents initially start
at an arbitrary location on a graph consisting of 50 nodes. The number of
covered nodes is initially 5, whereas a complete coverage is maintained
with a very high probability after a sufficient amount of time. 91

Figure 31 The configuration of the agents on the graph at some instants of the sim-
ulation. The nodes having at least one agent located on them are black,
the nodes covered by at least one agent are gray, and the nodes that are
not covered are white. 91

xi

SUMMARY

The objective of this thesis is to develop decentralized methods for building ro-

bust multi-agent networks through self-organization. Multi-agent networks appear in a

large number of natural and engineered systems, including but not limited to, biological

networks, social networks, communication systems, transportation systems, power grids,

and robotic swarms. Networked systems typically consist of numerous components that

interact with each other to achieve some collaborative tasks such as flocking, coverage op-

timization, load balancing, or distributed estimation, to name a few. Multi-agent networks

are often modeled via interaction graphs, where the nodes represent the agents and the

edges denote direct interactions between the corresponding agents. Interaction graphs play

a significant role in the overall behavior and performance of multi-agent networks. There-

fore, graph theoretic analysis of networked systems has received a considerable amount of

attention within the last decade.

In many applications, network components are likely to face various functional or struc-

tural disturbances including, but not limited to, component failures, noise, or malicious

attacks. Hence, a desirable network property is robustness, which is the ability to perform

reasonably well even when the network is subjected to such perturbations.

In this thesis, robustness in multi-agent networks is pursued in two parts. The first part

presents a decentralized graph reconfiguration scheme for formation of robust interaction

graphs. Particularly, the proposed scheme transforms any interaction graph into a random

regular graph, which is robust to the perturbations of their nodes/links. The second part

presents a decentralized coverage control scheme for optimal protection of networks by

some mobile security resources. As such, the proposed scheme drives a group of arbitrarily

deployed resources to optimal locations on a network in a decentralized fashion.

xii

CHAPTER 1

INTRODUCTION

Recently, there has been a rapidly growing interest in the analysis, design, and control of

multi-agent networks. Such networks appear in numerous natural and engineered systems.

Some examples include, but not limited to, financial networks, social networks, biolog-

ical networks, communication systems, transportation systems, energy networks, sensor

networks, and robotic swarms (e.g., [1, 2, 3, 4, 5, 6]). While the networks in different

domains are usually distinct from each other in their functioning, they share a set of funda-

mental system attributes. In a nutshell, a multi-agent network typically involves multiple

dynamic entities, possibly with individual decision making and control mechanisms, which

are coupled through some local interactions. Such local interactions typically depend on

the sensing, communication, and actuation capabilities of the agents. For instance, for a

group of mobile robots, being within the sensing range of each other can imply some direct

interaction between the corresponding robots. Typically, interacting agents have some di-

rect influence on the dynamics of each other, which eventually propagates throughout the

network.

Multi-agent networks can be represented via the corresponding interaction graphs, where

the nodes correspond to the agents and the edges exist between the agents having some

direct interaction. Interaction graphs play a significant role in the overall behavior and per-

formance of multi-agent networks. System properties such as robustness, mixing time, and

controllability are often analyzed through the topology of the interaction graph (e.g., [7, 8,

9, 10, 11]). Furthermore, any global behavior, which emerges from the local interactions

among the agents, significantly depends on the interaction graph (e.g., [12, 13]). There-

fore, graph theoretic analysis of networked systems has received a considerable amount of

attention during the last decade (e.g., [14, 15]).

1

In this thesis, multi-agent networks are represented as interactions graphs, and decen-

tralized graph processes are designed for achieving networks robust to external perturba-

tions. Perturbations such as component failures, noise, or malicious attacks are inevitable

in many applications. For instance, computer networks are prone to cyber-attacks, power

grids face severe weather conditions, transportation networks are subject to delays and

congestion, and sensor networks encounter various physical and functional challenges in

hostile environments. Hence, multi-agent networks need to perform reasonably well even

in the face of some structural and functional challenges. In general, reliable network opera-

tion depends on how well the network components are protected against such perturbations,

and how well the the network can function even if some of its components are degraded

(e.g., [16, 17, 18, 19]). Both of these aspects are addressed in this thesis to obtain robust

multi-agent networks through self-organization. In particular, some decentralized methods

are developed for formation of robust interaction graphs and network protection.

The remainder of this chapter is organized as follows: First, some graph theory prelim-

inaries, which will be used extensively throughout the thesis, are provided. After that, an

overview of the related literature about graph robustness and graph coverage is provided.

Finally, this chapter concludes with stating the thesis contributions.

1.1 Graph Preliminaries

An undirected graph,G = (V, E), consists of a set of nodes, V , and a set of edges, E ⊆ V×V ,

given by unordered pairs of nodes. A path is a sequence of nodes such that an edge exists

between any two consecutive nodes in the sequence. For any two nodes, the distance

between the nodes is equal to the number of edges in a shortest path between them. A

graph is connected if there is a path between any pair of nodes. Any pair of nodes nodes

are said to be adjacent if an edge exists between them. The set of nodes adjacent to a node,

i ∈ V , is called its neighborhood, Ni, i.e.

Ni = { j | (i, j) ∈ E}. (1)

2

For any node i, the number of nodes in its neighborhood is called its degree, di, i.e.,

di = |Ni|, (2)

where |Ni| denotes the cardinality of Ni.

1.2 Graph Robustness

One way to assess graph robustness is based on centrality measures. Centrality measures

identify the relative importance of nodes within a graph. In general, if a graph has a small

number of nodes with centrality scores significantly larger than the others, then perturba-

tions applied to those nodes have a stronger impact on the overall system (e.g., [20, 21, 22]).

Hence, graphs with balanced centrality distributions are generally considered to be more

robust to such targeted perturbations. Some widely used centrality measures are degree, be-

tweenness, closeness, and eigenvector centralities. Detailed reviews on centrality measures

and their applications can be found in [23, 24] and the references therein.

In addition to centrality measures, connectivity is one of the fundamental robustness

measures in graph theory. A graph is said to be k-node (or -edge) connected if at least k

nodes (or edges) should be removed to render the graph disconnected. In general, graphs

with higher connectivity have higher robustness to targeted failure of its components [7, 8].

Connectivity can also be quantified via the second-smallest eigenvalue of the Laplacian,

known as the algebraic connectivity or Fiedler eigenvalue [25]. A larger Fiedler eigenvalue

implies a higher connectivity. Also, a related robustness measure is the Kirchhoff index

[26], which is equal to the sum of the reciprocals of non-zero eigenvalues of the Laplacian

scaled by the number of nodes. As such, a smaller Kirchhoff index generally indicates a

higher robustness.

Alternatively, another measure of robustness is the expansion ratio (e.g., [27, 28]),

which is quantified in terms of node and edge expansions. Expansion ratios are refined

notions of connectivity. Edge expansion is also known as the isoperimetric number or the

Cheeger constant. If the edge (or node) expansion of a graph is small, then it is possible to

3

disconnect a large set of nodes by removing only a small number of edges (or nodes). The

isoperimetric number is also closely related to the algebraic connectivity, i.e. each of them

is upper and lower bounded through the other (e.g., [29]). Graphs with high expansion

rates are called expanders. Expanders are sparse yet well-connected, hence they are robust

to noise and failures. A detailed overview of expanders and their numerous applications

are presented in [30].

One class of expanders is Ramanujan graphs [31], which are contained within the fam-

ily of regular graphs. A graph is called a m-regular graph if each node has m edges incident

to itself. An m-regular graph is Ramanujan if the second largest (in absolute value) eigen-

value of its adjacency matrix is at most 2
√

m − 1. As such, the algebraic connectivity of

a Ramunjan graph is at least m − 2
√

m − 1. For m ≥ 3, almost every m-regular graph is

almost Ramanujan, i.e.almost every m-regular graph has the second largest eigenvalue of

its adjacency matrix is at most 2
√

m − 1 + ε for any ε > 0 [28, 32]. Hence, for m ≥ 3, a

random m-regular graph of n nodes, i.e. a graph that is picked uniformly at random from

the set of all m-regular graphs with n nodes, is an expander with a probability approaching

1 as n increases. Such a graph that is selected uniformly at random from the set of all

m-regular graphs with n nodes is called a random regular graph.

In addition to relating network robustness to graph topology, another task is to find

explicit methods for building robust graphs. One way to achieve this task is to construct

expanders via graph operations such as zig-zag product (e.g., [33, 34]), or derandomized

graph squaring [35]. Also, if m−1 is a prime power, then an explicit algebraic construction

of m-regular Ramanujan graphs is presented in [36]. Furthermore, quasi Ramanujan graphs

are obtained from a finite number of degree balancing operations on Watts-Strogatz small-

word networks in [37].

Alternatively, a robust graph can also be built as a random m-regular graph for some

m ≥ 3. A detailed survey of the various models of random regular graphs as well as their

properties can be found in [38] and the references therein. A random m-regular graph

4

with n nodes can be constructed by generating m copies for each node, picking a uniform

random perfect matching on the nm copies, and connecting any two nodes if the matching

contains an edge between their copies (e.g., [39, 40]). On the other hand, graph processes

based on edge additions and removals may be designed to induce a Markov chain with a

uniform limiting probability distribution over all the possible m-regular graphs with n nodes

(e.g., [41, 42]). Also, a distributed scheme for building a class of regular multi-graphs, i.e.

random 2m-regular multi-graphs having m Hamiltonian cycles, is given in [43].

There are also studies on improving the robustness of a given graph through slight

modifications to its topology. This is often achieved by rewiring a small percentage of the

existing edges (e.g., [44]) or adding a small number of edges to the graph (e.g., [45]).

1.3 Graph Coverage

In many networks, one typical task is to provide some service over the network via dis-

tributed agents with limited capabilities. This service may take on different forms such as

security, maintenance, pickup and delivery, or many others (e.g., [46, 47, 48]). One possi-

ble distributed way of providing such a service is to partition the network into responsibility

regions such that each agent takes care of its own region. To this end, it is desirable to drive

the mobile agents to an optimal configuration on the corresponding graph in a decentralized

way. This goal can be formulated as a distributed coverage control problem on a graph.

Distributed coverage control is widely studied for continuous spaces (e.g., [49, 50, 51,

52, 53, 54]), whereas some extensions to discretized spaces (e.g., [55, 56, 57]) also ex-

ist in the literature. Essentially, distributed coverage control is a locational optimization

problem, where the goal is to optimally locate a number of resources in a feasible do-

main. Locational optimization problems are widely studied in the literature, but most of

the earlier solutions inherently assume centralized computations for a size-limited, static

environment [51]. However, in distributed coverage control, solutions are expected to be

implementable by agents having limited computation capabilities and partial information

5

available through local sensing and communications. As a possible solution, distributed

behavior-based robotics was utilized in [49] for territorial multi-robot task division. On the

other hand, a distributed method based on potential fields for mobile robots to spread out in

an environment by moving away from nearby robots and obstacles was presented in [50].

Alternatively, one prevailing approach, first presented in [51], is to employ Lloyd’s

algorithm [58] to drive agents on a convex continuous space. As such, the agents are driven

onto a local optimum, i.e. a centroidal Voronoi configuration. In a centroidal Voronoi

partition, each point in the space is assigned to the nearest agent, and each agent is located

at the center of mass of its own region. The resulting control law in [51] is decentralized

in terms of Voronoi partitions, i.e. each agent needs to sense the density function within

its Voronoi cell and to communicate with another agent only if their Voronoi cells share a

boundary. Later on, this method was extended for agents with distance-limited sensing and

communications [59] and limited power [60], as well as for heterogeneous agents covering

non-convex regions [54]. Also, the requirement of sensing density functions was relaxed

by incorporating methods from adaptive control and learning (e.g., [53]).

In some recent studies, distributed coverage control was studied on discretized spaces

represented as graphs (e.g., [55, 56, 57]). In [55], agents are driven to centroidal Voronoi

partition of the graph via a pairwise gossip algorithm. In [56], a centroidal Voronoi partition

is achieved via asynchronous updates, where each agent moves to a node in its current cell

leading to the maximum reduction in the local cost.

Alternatively, distributed coverage control on discrete spaces can be studied in a game

theoretic framework (e.g., [57]). Game theoretic methods have been used to solve many

cooperative control problems such as vehicle-target assignment (e.g., [61]), coverage op-

timization in static sensor networks (e.g., [62]), or dynamic vehicle routing (e.g. [63]).

A game theoretic formulation was employed in [57] to drive mobile sensors with variable

footprints to a power-aware optimal coverage.

6

Distributed coverage control on graphs is closely related to some combinatorial opti-

mization problems such as p-median (e.g., [64]) or maximum coverage [65]. In the p-

median problem, p facilities are located on some nodes of a graph in order to minimize a

weighted sum of distances between each node and the nearest resource. Note that this cost

function is analogous to the one employed in [51]. In the maximum coverage problem,

given some subsets of weighted elements, the goal is to pick p of those subsets such that

the total weight in their union is maximized. There is also a more generalized version of

this problem, i.e. budgeted maximum coverage [66], where each subset has a cost, and

the goal is to choose a maximum value combination subjected to the budget limit. Detailed

reviews of the literature on some related combinatorial optimization problems can be found

in [64, 67, 68] and the references therein.

Combinatorial optimization problems are generally NP-hard. Hence, exact solutions

to these problems are unlikely (impossible if P , NP) to be obtained via polynomial-time

algorithms. As such, exact algorithms to solve these problems can be arbitrarily slow in

the worst case. Hence, fast approximation algorithms providing near-optimal solutions are

preferred in most cases (e.g. [69, 70, 71]). Such approximations can be obtained through

greedy algorithms (e.g. [69]), convex relaxations (e.g. [70]), or metaheuristics (e.g. [71])

including, but not limited to, ant colony optimization [72], evolutionary algorithms (e.g.,

[73]), iterated local search (e.g., [74]), simulated annealing (e.g., [75]), and tabu search

(e.g., [76]).

1.4 Thesis Contributions
1.4.1 Formation of Robust Networks

Motivated by the expansion properties of almost every m-regular graph for m ≥ 3, this the-

sis presents a decentralized graph reconfiguration scheme to obtain random regular interac-

tion graphs. Using this scheme, multi-agent networks can achieve robust interaction graphs

via self-organization. Formation of random regular graphs has been studied in many earlier

7

works (e.g., [38, 39, 40, 41, 42, 43]). However, majority of these studies present central-

ized algorithms (e.g., [38, 39, 40, 41]), whereas the distributed algorithms (e.g., [42, 43])

require some strong properties such as the initial graph already being a regular graph. Such

properties may hold if the initial graph has emerged through a process strictly imposing

them, whereas they may be very hard to satisfy if the initial graph is rather arbitrary. The

first part of this thesis considers the following problem: Assume that a multi-agent network

has an arbitrary connected interaction graph. How can the agents locally modify their in-

teractions in a decentralized fashion such that the interaction graph is transformed into a

random regular graph with a similar number of edges (sparsity) as the initial graph? This

problem is illustrated in Fig. 1.

Figure 1. Agents transform a fragile interaction graph, where the failure of a few nodes (shown in the
red rectangle) can disconnect half of the network, into a robust random regular graph with a similar
sparsity as the initial graph.

This thesis presents a sparsity-aware decentralized scheme that asymptotically trans-

forms any connected interaction graph into a connected random regular graph. To this

end, three global objectives are simultaneously pursued while maintaining the connectivity:

balance the degree distribution, randomize the local neighborhoods, and drive the average

degree to an integer close to its initial value. If the average degree of the initial graph, k,

8

satisfies k > 2, then the proposed method results in a connected random m-regular graph

such that k ≤ m ≤ k + 2. As such, m ≥ 3 is ensured, and the graphs observed in the limit

are (almost) Ramanujan with an arbitrarily high probability for large networks.

1.4.2 Network Protection

This thesis presents a decentralized scheme for driving a group of mobile security resources

with local capabilities to an optimal configuration on any interaction graph that is unkown

apriori. In particular, the second part of this thesis considers the following problem: As-

sume that some resources with local monitoring and protection capabilities are arbitrarily

deployed on a network that is unkown apriori. How can these resources explore the network

and optimize their locations in a decentralized manner to efficiently protect the system?

This problem is illustrated in Fig. 2.

Figure 2. Some mobile security resources with local capabilities are arbitrarily deployed on an un-
known network, They explore the network and optimally locate themselves to protect the network as
efficiently as possible. (Black: There is at least one resource, Gray: Protected, White: Not protected)

Driving a group of mobile resources to optimal locations on a network is essentially

a distributed coverage control problem on a graph. Distributed coverage control has been

widely studied within the last decade for both continuous (e.g., [49, 50, 51, 52, 53, 54])

and discrete settings (e.g., [55, 56, 57]). In many of these studies (e.g., [51, 52, 53, 54, 55,

56]), mobile resources are driven to local optima by each of them taking actions locally

improving its own coverage. However, when the coverage control problem is considered

9

on graphs with arbitrary structures, resulting local optima can be arbitrarily poor. Hence,

an efficient solution needs to rely on exploration and exploitation. Such solutions can be

designed by formulating the problem in a game theoretic framework (e.g. [57, 61, 62, 63]).

This thesis presents a game theoretic solution for distributed coverage control on graphs.

Furthermore, different from the earlier studies on distributed coverage control, the problem

is also considered for scenarios, where no explicit communications are allowed among the

resources. Using the proposed scheme, a group of mobile resources can optimally pro-

tect a network by asymptotically maintaining maximum coverage with an arbitrarily high

probability.

1.5 Thesis Outline

The first part of this thesis presents the proposed scheme for decentralized formation of

random regular interaction graphs. The method is incrementally built in Chapters 2, 3, and

4. Chapter 2 presents a local graph transformation rule for balancing the degree distribution

in a multi-agent network while maintaining the graph connectivity and the total number of

edges. This scheme is extended in Chapter 3 by incorporating a neighborhood randomiza-

tion rule to obtain random regular graphs in order to avoid any possible convergence to an

undesired regular graph. Chapter 4 extends the proposed method to deal with the general

case, where the initial average degree is not necessarily an integer.

Chapters 5 and 6 present the proposed method for distributed coverage control on

graphs. In Chapter 5, the distributed graph coverage problem is solved in a game theo-

retic framework by designing a corresponding game and employing a learning algorithm.

Chapter 6 extends the game theoretic approach presented in Chapter 5 to the cases, where

no communications are allowed among the resources. In particular, a communication-free

learning algorithm is designed. It is shown that maximum coverage can be asymptoti-

cally maintained with an arbitrarily high probability using the proposed algorithm. Finally,

Chapter 7 concludes the thesis.

10

CHAPTER 2

DEGREE REGULARIZATION

This chapter presents a decentralized scheme for balancing the degree distribution in a

multi-agent network. In particular, a locally applicable edge-rewiring rule is presented for

this task. In order to execute the proposed rule, each node only needs to know the degrees

of its immediate neighbors. The resulting dynamics preserves the graph connectivity and

the total number of edges. Furthermore, any feasible trajectory is a minimizing sequence

for the difference between the maximum and the minimum degree in the network (with

probability 1). As such, this difference converges to 0 if a regular graph is achievable using

the initial number of edges, and it converges to 1 otherwise.

2.1 Problem Formulation

For any graph G, let δ(G), ∆(G), and d̄(G) denote the minimum, the maximum and the

average degrees, respectively. A graph is said to be m-regular, if all the entries of its degree

vector are equal to d, i.e. δ(G) = ∆(G) = m. As such, the degree non-regularity of a graph

can be measured via the difference of the maximum and the minimum node degrees. Let

f (G) be the degree range defined as

f (G) = ∆(G) − δ(G). (3)

The objective in this chapter is to find a decentralized scheme for minimizing the de-

gree range in a networked system while m its connectivity and the total number of edges.

In multi-agent networks, connectivity is crucial for various applications since information

and interactions cannot spread throughout the network without connectivity. Furthermore,

each edge of an interaction graph typically implies some power consumption, communica-

tion, sensor measurement, or a physical link. As such, sparsity (having a small number of

edges) is also an important feature of networked systems. In the decentralized degree reg-

ularization problem, the goal is to find some locally applicable graph transformation rules

11

leading to a balanced reallocation of the available edges.

Definition (Decentralized Degree Regularization (DDR) Problem): Design a locally ap-

plicable graph transformation scheme such that, for any connected G(0) = (V, E(0)), any

trajectory, τ = {G(0),G(1), . . .}, of the resulting system is a minimizing sequence for the

degree range, f (G(t)), subject to G(t) being connected and |E(t)| = |E(0)| for everyG(t) ∈ τ.

2.2 Proposed Solution

In this section, the proposed solution to the DDR problem is presented as a graph grammar,

ΦR. Before presenting ΦR, some graph grammar preliminaries are provided below.

2.2.1 Graph Grammar Preliminaries

One systematic method of representing locally applicable graph transformations is to use

graph grammars (e.g., [77]). A grammar, Φ, is a set of rules, where each rule is defined

as a label-dependent graph transformation. More precisely, each rule is represented as an

ordered pair of labeled graphs, r = (gl, gr), where the labels represent the node states.

Graph grammars operate on labeled graphs. A labeled graph, G = (V, E, l), consists of a

node set, V , an edge set, E, and a labeling function, l : V 7→ Σ, where Σ is the set of

feasible node labels. A rule is said to be applicable to a labeled graph, G = (V, E, l), if G

has a subgraph isomorphic to gl, i.e. if there is a bijection, which preserves node labels and

edges, between gl and a subgraph of G. A rule, r = (gl, gr), transforms graphs isomorphic

to gl to graphs isomorphic to gr. An initial labeled graph, G(0), along with a grammar, Φ,

defines a non-deterministic system represented as (G(0),Φ).

2.2.2 Degree Regularization

A graph grammar, ΦR = {r1}, is designed as a solution to the DDR problem. In this setting,

each node is labeled with its degree, i.e.

l(i) = di, ∀i ∈ V. (4)

12

The proposed grammar, ΦR, consists of a single rule, r1, defined as

dj

di

dh dj + 1

di − 1

dh

if di > djr1 : ,ΦR:

where di, d j and dh denote the degrees of the corresponding nodes. The rule requires

d j < di, whereas dh is arbitrary and invariant to the application of the rule.

In accordance with ΦR, nodes behave as follows: Let i and j be two adjacent nodes,

and let di and d j denote their degrees, respectively. If d j < di, then a new link is formed

between j and an arbitrary neighbor of i, say h, that is not currently linked with j. At the

same time, the link between i and h is terminated. As such, ΦR only requires information

available within local neighborhoods. If each node knows the degrees of its immediate

neighbors, then whenever ΦR is applicable, at least one node will be able to detect it. Note

that (G(0),ΦR) is a non-deterministic dynamical system since, at any instant, a node may

have multiple neighbors having degrees smaller than its own degree. Furthermore, for each

such less-connected neighbor, the node may have multiple exclusive neighbors that can be

rewired to its less-connected neighbor. In such cases, a feasible option is randomly chosen.

One of the important properties for distributed systems is concurrency. In graph gram-

mars, concurrency is modeled by the commutativity of rule applications. In particular, if

an application of a rule needs the output of another rule application, then these events need

to happen in order. Since ΦR consists of a single rule, it can be simultaneously executed at

distinct locations on the graph.

In Lemmas 2.1 and 2.2, it is shown that any trajectory induced by ΦR satisfies the

constraints of the decentralized degree regularization problem.

Lemma 2.1 Let G(0) be a connected graph, and let τ = {G(0),G(1), . . .} be any trajectory

of (G(0),ΦR). Then, G(t) is connected for every G(t) ∈ τ.

13

Proof: LetG(t) andG(t+1) be two consecutive graphs in τ, and letG(t) be connected.

If G(t) is connected, then for every node pair, v, v′ ∈ V , there exists a finite simple path P

from v to v′. If P does not traverse any edge rewired in the transition from G(t) to G(t + 1),

then P is also a valid path on G(t). Otherwise, let {i, j, h} be any node triplet such that (i, h)

is traversed on P, and h is rewired from i to j in the transition from G(t) to G(t + 1). For

each such triplet, {i, h} (or {h, i}) in P can be replaced with {i, j, h} (or {h, j, i}) to obtain a

valid path between v and v′ on G(t + 1). Hence, if G(0) is connected, then every G(t) ∈ τ is

connected. �

Lemma 2.2 LetG(0) be a graph, and let τ = {G(0),G(1), . . .} be any trajectory of (G(0),ΦR).

Then, |E(t)| = |E(0)| for every G(t) ∈ τ.

Proof: ΦR contains a single rule that preserves the number of edges in the system.

Hence, it is not possible to change the number of edges in the system via ΦR, and the

number of edges remains constant along any feasible trajectory, τ. �

Next, the equilibrium points for the dynamics induced by ΦR are presented. These

equilibrium points are the graphs such that ΦR is not applicable anywhere on them. In

particular, the connected equilibrium points are inspected since ΦR maintains connectivity.

Lemma 2.3 A connected graph, G, is an equilibrium point for ΦR if and only if G is a

regular graph.

Proof: ⇒:(Contradiction) Let G be an non-regular graph. Since G is connected, if

G is non-regular, then there exists i, j ∈ V such that (i, j) ∈ E and di > d j. Note that

di = |Ni \ N j| + |Ni ∩ N j| + 1 and d j = |N j \ Ni| + |Ni ∩ N j| + 1. If di > d j, then

|Ni \ N j| − |N j \ Ni| > 0 implying |Ni \ N j| > 0. Hence, for such i and j, node i always has

a neighbor that is not adjacent to node j. Consequently, ΦR is applicable to G and it is not

an equilibrium point.

⇐: If G is a regular graph, then by definition all the nodes have the same degree. So, there

14

is no pair i, j ∈ V such that (i, j) ∈ E and di > d j. Consequently, ΦR is not applicable

anywhere on the graph G, and G is an equilibrium point. �

Note that for a given initial configuration, G(0), the maintenance of connectivity and

the total number of edges define a feasible set of graphs. In general, depending on G(0),

this feasible set may not contain an equilibrium point for ΦR. In particular, if the average

degree of the initial configuration, d̄(G(0)), is not an integer, then the feasible set does not

contain any regular graph. Hence, two questions are of particular interest: 1) if the feasible

set includes equilibrium points, will (G(0),ΦR) converge to an equilibrium point?, 2) how

does (G(0),ΦR) behave if the feasible set does not contain any equilibrium point? These

two questions are addressed by inspecting the degree range along the possible trajectories

of (G(0),ΦR).

Lemma 2.4 Let G be a graph, and let f (G) denote its degree range. Then, f (G) ≥ 0.

Furthermore, f (G) = 0 if and only if G is a regular graph.

Proof: By definition ∆(G) ≥ δ(G), and we have f (G) = ∆(G) − δ(G) ≥ 0. Moreover,

δ(G) ≤ di ≤ ∆(G) for all i ∈ V . Hence, if ∆(G) − δ(G) = 0, we obtain di = δ(G) = ∆(G) for

all i ∈ V . In that case, the corresponding graph is regular. �

Lemma 2.5 LetG(t) andG(t+1) be two consecutive graphs on any trajectory of (G(0),ΦR).

Then, their degree ranges satisfy

f (G(t + 1)) − f (G(t)) ≤ 0. (5)

Proof: The proof is based on showing that, under ΦR, ∆(G(t)) is monotonically de-

creasing and δ(G(t)) is monotonically increasing. For the sake of contradiction, assume

that ∆(G(t)) increases using ΦR. Then, a node, j, such that d j = ∆(G(t)) participates in an

application of ΦR increasing in its degree. However, that would require d j = ∆(G(t)) < di,

whereas by definition ∆(G(t)) ≥ di for any i ∈ V . Similarly, assume that δ(G(t)) decreases

using ΦR. Then, a node a node, i, such that di = δ(G(t)) participates in an application of ΦR

15

decreasing in its degree. However, that would require d j < di = δ(G) whereas by definition

d j ≥ δ(G(t)) for any j ∈ V , which is again a contradiction. Consequently, ∆(G(t)) is mono-

tonically decreasing and δ(G(t)) is monotonically increasing, i.e. f (G(t + 1))− f (G(t)) ≤ 0.

�

Corollary 2.6 Let τ = {G(0),G(1), . . .} be any trajectory of (G(0),ΦR). The corresponding

degree range sequence τ f = { f (G(0)), f (G(1)), . . .} converges to a finite integer, τ∗f .

Proof: In light of Lemma 2.4, τ f is bounded below. Furthermore, Lemma 2.5 states

that it is monotonically decreasing. Hence, one can conclude that τ f is a convergent se-

quence, and since f (G) is an integer valued function, it converges to a finite integer, τ∗f .

�

In the remainder of this section, the almost sure convergence of τ f to the minimum

possible value that can be achieved with |E(0)| edges is shown. To this end, first it is shown

that for any G, if f (G) ≥ 2, then a graph G′ having f (G′) < f (G) can be reached via ΦR.

In particular, Algorithm I provides a feasible sequence of ΦR applications that eventually

reduces the degree range as long as f (G) ≥ 2. For any such G, let P∗ = {i∗, j∗, . . . , q∗}

denote a shortest simple path such that di∗ = ∆(G) and dq∗ = δ(G). In other words, for any

path, P = {i, j, . . . , q}, if di = ∆(G) and dq = δ(G), then let P∗ satisfy |P∗| ≤ |P|. Algorithm

I transforms any G with f (G) ≥ 2 into a graph with a smaller degree range by recursively

applying ΦR along such P∗.

16

Algorithm I

1 : input: G = (V, E) s.t. f (G) ≥ 2

2 : initialize: G− = G, d f = 0

3 : while (d f = 0)

4 : Find a P∗ = {i∗, j∗, . . . , q∗} on G−,

5 : Find an h∗ ∈ V s.t. (i∗, h∗) ∈ E−, (j∗, h∗) < E−

6 : E+ = (E− \ {i∗, h∗}) ∪ {(j∗, h∗)}, G+ = (V, E+)

7 : d f = f (G+) − f (G−), G− = G+,

8 : end while

9 : return G+

Lemma 2.7 For any connected G satisfying f (G) ≥ 2, Algorithm I executes a feasible

sequence of ΦR applications resulting in a graph, G+, such that f (G+) < f (G).

Proof: For any connected graph, a shortest simple path between a node with the max-

imum degree and a node with the minimum degree, P∗, can always be found. Note that

d j∗ < di∗ for such a P∗ = {i∗, j∗, . . . , q∗}. Since di∗ is the maximum degree in the system,

d j∗ ≤ di∗ is immediate. Furthermore, d j∗ can not be equal to di∗ since this would contra-

dict with the definition of P∗ by resulting a shorter path, { j∗, . . . , q∗}, between a node with

maximum degree and a node with minimum degree. Since d j∗ < di∗ , a node, h∗, as de-

scribed in line 5 of Algorithm I can always be found. Hence, the rewiring in line 6 is a

valid application of ΦR, and Algorithm I executes a feasible sequence of ΦR applications.

At each iteration of the while loop in Algorithm I, G+ has either fewer nodes having a

degree ∆(G) (i.e. d j∗ < di∗ −1), or a shorter P∗ compared to G− (i.e. d j∗ = di∗ −1). Note that

obtaining a shorter P∗ also eventually reduces the number of nodes having degree ∆(G).

In particular, when |P∗| = 1, Algorithm I executes a feasible application of ΦR, where a

pair of nodes having degrees ∆(G) and δ(G) participate to have their degrees updated as

∆(G) − 1 and δ(G) + 1, respectively. As such, for any connected G with f (G) ≥ 2, a graph,

G+, where each node has a degree smaller than ∆(G) is eventually obtained via Algorithm

17

I. Furthermore, since the minimum degree is monotonically increasing, f (G+) < f (G).

�

Theorem 2.8 Let G(0) be a connected graph, and let τ = {G(0),G(1), . . .} be a feasible

trajectory of (G(0),ΦR). Then, τ f = { f (G(0)), f (G(1)), . . .}, almost surely converges to an

integer, τ∗f ∈ {0, 1}.

Proof: Corollary 2.6 shows that τ f converges to an integer τ∗f . If τ∗f ≥ 2, then

f (G(t)) ≥ 2 has to be satisfied for an infinitely long interval. However, for any connected

G(t) satisfying f (G(t)) ≥ 2, Lemma 2.7 implies a non-zero probability that the degree range

will decrease after a finite sequence of ΦR applications. Hence, if G(0) is connected, then

the probability that f (G(t)) ≥ 2 is satisfied for an infinitely long interval under ΦR is 0.

Consequently, τ∗f ∈ {0, 1} with probability 1. �

Next, the result in Theorem 2.8 is improved for the cases, where it is possible to form a

regular graph, i.e. d̄ ∈ N.

Lemma 2.9 Let G = (V, E) be a non-regular graph, let d̄(G) be the average degree of G,

and let f (G) be the degree range of G. If d̄(G) ∈ N, then f (G) ≥ 2.

Proof: For any graph G = (V, E), its degree vector, d, can always be expressed as

d = δ(G)1 + d̃, (6)

where 1 is a vector having all its entries equal to 1. Since there is at least one node having

the minimum degree, d̃ has at least one entry equal to 0. The average degree, d̄(G), satisfies

d̄(G) =
1
|V |

1T d = δ(G) +
1
|V |

1T d̃. (7)

Using (7),

d̄(G) − δ(G) =
1
|V |

1T d̃. (8)

18

Note that if d̄(G) ∈ N and G is non-regular, then d̄(G) − δ(G) ≥ 1, and (8) implies

1
|V |

1T d̃ ≥ 1. (9)

Since at least one entry of d̃ is equal to 0, d̃ can have at most |V | − 1 positive entries. In

light of (9), the sum of those positive entries are greater than or equal to |V |. Hence, at least

one of them is greater than 1, and f (G) ≥ 2. �

Theorem 2.10 Let G(0) be a connected graph, and let d̄(G(0)) denote its average degree.

If d̄(G(0)) ∈ N, then (G(0),ΦR) almost surely converges to a d̄(G(0))-regular graph.

Proof: Let τ = {G(0),G(1), . . .}, be a trajectory of (G(0),ΦR)). Then, in light of The-

orem 2.8, the sequence τ f = { f (G(0)), f (G(1)), . . .} almost surely converges to an integer,

τ∗f ∈ {0, 1}. Furthermore, in light of Lemma 2.9, f (G) , 1 for any G having an integer

average degree, d̄(G) ∈ N. Note that d̄(G(t)) = d̄(G(0)) due to Lemma 2.2. Hence, if

d̄(G(0)) ∈ N, then almost surely τ∗f = 0 and (G(0),ΦR) converges to a d̄(G(0))-regular

graph. �

Theorems 2.8 and 2.10 imply the following corollary for the convergence of τ f =

{ f (G0), f (G1), . . .} along the possible trajectories of (G0,Φ
∗).

Corollary 2.11 Let G(0) be a connected graph and let τ = {G(0),G(1), . . .} be a feasible

trajectory of (G(0),ΦR). Then, τ f = { f (G(0)), f (G(1)), . . .}, almost surely converges to an

integer, τ∗f , such that

τ∗f =

0 if d̄(G(0)) ∈ N

1 otherwise,
(10)

where d̄(G(0)) is the average degree of G(0).

2.3 Simulation Results

In this part, some simulation results are presented to demonstrate the proposed scheme.

In the first simulation, a connected graph, G(0), is randomly generated using 20 nodes

19

and 30 edges. Note that 20 nodes and 30 edges result in d̄(G(0)) = 3. Starting from the

initial configuration, nodes concurrently update their neighborhoods according to ΦR, and

the system converges to a 3-regular configuration. Some graph configurations along an

arbitrary trajectory of the system (G(0),ΦR) are depicted in Fig. 3, whereas the degree

range, f (G(t)), along the same trajectory is shown in Fig. 4.

t= 0

3

4
1

234
2

3

1

2

3

5
2

3 4 2
5

4

3

4

t= 15

3

4
3

333
3

2

3

3

3

3
2

3 3 3
3

3

4

3

t= 30

3

3
3

333
3

3

2

3

3

3
3

3 4 3
3

3

3

3

t= 45

3

3
3

333
3

3

3

3

3

3
2

3 3 4
3

3

3

3

t= 60

3

3
3

433
3

3

3

3

3

3
3

3 3 2
3

3

3

3

t= 75

2

3
4

333
3

3

3

3

3

3
3

3 3 3
3

3

3

3

t= 90

3

3
3

343
3

3

3

3

3

3
3

3 3 3
3

3

3

2

t= 105

3

3
3

333
3

3

3

3

3

3
3

3 4 3
3

3

3

2

t= 116

3

3
3

333
3

3

3

3

3

3
3

3 3 3
3

3

3

3

Figure 3. G(t) at some instants along an arbitrary trajectory of (G(0),ΦR). On this trajectory, the initial
graph converges to a 3-regular graph via some concurrent applications of ΦR in 116 time steps. On
each G(t), nodes are labeled with their degrees.

20

0 20 40 60 80 100 120
0

1

2

3

4

time (t)

f
(G

(t
))

Figure 4. The degree range, f (G(t)), along the trajectory depicted in Fig. 3.

The second simulation presents a case in which a regular configuration is not achiev-

able. A connected initial graph is randomly generated using 20 nodes and 19 edges. As

such, the initial graph is a tree. Since the average degree and the connectivity are pre-

served, this initial configuration almost surely converges to a tree with a degree range of

1, i.e. a path graph. Once a path graph is reached, then that structure is preserved since

only the terminal nodes keep switching locations with the internal nodes adjacent to them.

In the simulation, the initial graph follows a trajectory as depicted in Fig. 5, along which

the degree range evolves as shown in Fig. 6. On this trajectory, the system reaches a path

formation in 61 time steps.

Finally, a set of simulation results is presented to provide some insight into the expan-

sion properties of the regular graphs obtained through ΦR. In these simulations, integer

average degrees ranging from 3 to 8 are considered. For each value of the average degree,

1000 simulations are performed. Each simulation starts with an arbitrary connected initial

graph having 100 nodes. The initial graph is evolved according to ΦR, and it converges to

a regular graph. The distributions of the spectral gap for the resulting regular graphs are

depicted in Fig. 7. In Fig. 7, for each value of the average degree, the smallest value of

spectral gap to be defined as a Ramanujan graph is marked with a dashed vertical line.

21

t= 0

2

2

2

2

2

1

3
2

1

1

1

2

6
2

2

1

1

1

2

2

t= 13

1

2

2

1

2

2

2
2

2

2

1

3

3
1

2

2

2

2

1

3

t= 26

2

2

2

2

1

2

2
2

2

1

2

3

2
1

2

2

1

2

3

2

t= 39

2

2

2

2

2

2

2
3

2

2

1

2

2
2

2

2

1

1

2

2

t= 52

2

2

2

1

1

2

2
2

2

2

2

2

2
1

2

2

2

2

2

3

t= 61

2

2

2

2

2

2

2
2

2

2

2

2

2
2

2

2

1

1

2

2

Figure 5. G(t) at some instants along an arbitrary trajectory of (G(0),ΦR). On this trajectory, the initial
graph (t=0) is formed with 20 nodes and 19 edges, and it is a tree. The initial graph reaches a path
formation via some concurrent applications of ΦR in 61 time steps. After this point, the path formation
is preserved while the terminal nodes keep their switching locations with their immediate neighbors.
On each G(t), nodes are labeled with their degrees.

Note that while (G(0),ΦR) almost surely converges to a regular graph if d̄(G(0)) ∈ N, the

resulting graph may not be an expander. This is because the undesired rare configurations

can also be attractive under ΦR, and the probability of reaching such equilibrium points may

not be converging to zero although they form a zero-measure subset of all the equilibrium

points as the network size increases. However, the distributions shown in Fig. 7 suggest that

if the initial configuration,G(0), is random, and a regular graph is reachable, then (G(0),ΦR)

converges to an almost Ramanujan graph with a very high probability. As the ratio of the

average degree to the network size decreases, the distribution is more concentrated around

m − 2
√

m − 1, which is the largest spectral gap a m-regular graph can have for a fixed m as

the graph size goes to infinity.

22

0 10 20 30 40 50 60 70
0

1

2

3

4

5

time (t)

f
(G

(t
))

Figure 6. Degree range, f (G(t)), along the trajectory depicted in Fig. 5.

250

200

150

100

50

0.172 0.536 1 1.528 2.101 2.709

spectral gap

N
u
m
b
er

of
gr
ap

h
s

m=3 m=4 m=5 m=6 m=7 m=8

Figure 7. Spectral gap distribution for the final graphs obtained via ΦR starting from random initial
networks with 100 nodes and the average degrees of 3, 4, 5, 6, 7, and 8. For each value of the average
degree, 1000 simulations are performed, each starting with a random G(0). The lower bound on the
spectral gap to be a Ramanujan graph (m− 2

√
m − 1) is marked as a vertical dashed line for each case.

23

CHAPTER 3

RANDOMIZED DEGREE REGULARIZATION

In this chapter, the degree regularization grammar, ΦR, is extended to obtain a decentralized

scheme leading to connected random d̄(G(0))-regular graphs, where d̄(G(0)) is the average

degree of the initial graph. The proposed scheme can be represented as a graph grammar,

ΦRR = {r1, r2}, which consists of the degree regularization rule, r1, and a randomization

rule, r2, that was first introduced in [42]. The resulting dynamics minimize the degree

differences and randomize the local neighborhoods simultaneously while maintaining the

graph connectivity and the total number of edges. As such, it transforms any connected

interaction graph with an integer average degree into a connected random regular graph.

A distributed implementation, which leads to a uniform limiting distribution over the con-

nected d̄(G(0))-regular graphs, is also provided.

3.1 Problem Formulation

In the previous chapter, the decentralized degree regularization (DDR) problem was con-

sidered. The DDR problem was motivated by the expansion properties of random regular

graphs, and a single-rule grammar, ΦR, was designed as a solution to the DDR problem. In

Theorem 2.10, it was shown that (G(0),ΦR) almost surely converges to a d̄(G(0))-regular

graph for any connected G(0) such that d̄(G(0)) ∈ N. Such an initial graph, G(0), may

converge to any of the regular graphs that is reachable via ΦR since (G(0),ΦR) is a non-

deterministic process. However, one cannot reach a conclusion about the expansion prop-

erties of the resulting graph without some information about the set of regular graphs reach-

able from G(0) via ΦR, and the probability distribution induced by ΦR over that reachable

set. Although almost every m-regular graph is almost Ramanujan for m ≥ 3, ΦR can still

lead to a configuration with an arbitrarily small expansion rate, with some probability de-

pending on the initial graph. Fig. 8 illustrates a pair of 3-regular graphs on 30 nodes.

24

Note that both graphs are stationary under ΦR. However, the graph in Fig. 8a is a poorly-

connected configuration that has the lowest possible edge expansion ratio, i.e. have half of

the network can be disconnected from the rest due the removal of a single edge.

(a) (b)

Figure 8. A poorly-connected 3-regular graph (a) and a robust 3-regular graph (b).

The problem addressed in this chapter is to design a locally applicable graph trans-

formation scheme that leads to connected random regular graphs to avoid any possible

convergence to poorly-connected regular graphs.

3.2 Proposed Solution

One way of avoiding any possible convergence to a poorly-connected regular graph is to

modify ΦR so that it leads to a limiting distribution over all the feasible connected regular

graphs, rather than converging to one of the reachable regular graphs. In order to that, reg-

ular graphs should not be stationary under the modified grammar, and some neighborhood

randomization should be active at all times without distorting the degree distribution in the

network. The solution presented in this section is a modified grammar, ΦRR, that achieves

this task.

25

3.2.1 Randomized Degree Regularization

The proposed grammar, ΦRR = {r1.r2}, extends ΦR by incorporating a locally applicable

randomization rule (r2), which was introduced in [42]. Under the resulting dynamics, a

connected interaction graph is never stationary (unless it is a complete graph). Furthermore,

it is transformed into a random regular graph as time goes to infinity, if its average degree

is an integer. In ΦRR, each node is labeled with its degree, and the rules are given as

dj

di

dh dj + 1

di − 1

dh

r1 :

dj di

dh

r2 :

df

dj di

dhdf

ΦRR:

if di > dj

In accordance with ΦRR, if a node has more links than one of its neighbors, then it rewires

one of its other neighbors to the less-connected node (r1). Furthermore, adjacent nodes also

exchange their exclusive neighbors (r2). As such, while the first rule r1 aims to balance the

degree distribution, r2 randomizes the neighborhoods.

In the remainder of this section, the dynamics induced by ΦRR is analyzed. First, it is

shown that ΦRR maintains the graph connectivity and the average degree, and the degree

range is monotonically decreasing under ΦRR

Lemma 3.1 Graph connectivity and the average degree are maintained under ΦRR.

Proof: Both r1 and r2 preserve the number edges, so the number of edges and the

average degree are invariant to the applications of ΦRR. Furthermore, both rules preserve

the connectivity of the local structures. Hence, the global connectivity is also maintained

under the concurrent applications on disjoint subgraphs. �

26

Lemma 3.2 The degree range, f (G), monotonically decreases under ΦRR.

Proof: Node degrees are invariant to the applications of r2, and the degree range can

only change due to the applications of r1. Due to Lemma 2.5, the degree range monoton-

ically decreases under the applications of r1. Hence, the degree range is monotonically

decreasing under ΦRR. �

In general, there may be many feasible applications of ΦRR on an interaction graph. In

such cases, the agents need to randomly execute ΦRR on disjoint subgraphs without any

global coordination. To this end, Algorithm II is proposed as a distributed implementa-

tion of ΦRR. By following Algorithm II , the nodes can concurrently modify their local

neighborhoods in accordance with ΦRR such that any feasible transformation occurs with a

non-zero probability.

In accordance with Algorithm II, the nodes behave as follows: At each iteration, each

node is inactive with a small probability ε. The inactivation probability, ε, ensures that any

feasible application of ΦRR can be realized through Algorithm II, as it will be shown in

Lemma 3.3. Inactive nodes do not participate in any rule execution in that time step. Each

active agent, i, picks one of its neighbors, j ∈ Ni, uniformly at random, and it commu-

nicates its degree to that neighbor. Based on these communications, each active agent, i,

checks the list of neighbors that picked itself, Ri ⊆ Ni, to see if j ∈ Ri. If that is not the

case, then i is a follower in that time step, i.e. it will not initiate a rule execution but it will

participate if j wants to rewire i to some other node. If j ∈ Ri, then i and j are matched.

Each matched pair picks a candidate rule, r ∈ ΦRR, that they will potentially execute. In

Algorithm II, the agent with the larger node ID, i.e. max{i, j}, picks the candidate rule uni-

formly at random. If r1 is picked, and one of the nodes, say i, has higher degree than the

other, and i is picked by at least one other neighbor (|Ri| ≥ 2), then i chooses a neighbor,

h , j ∈ Ri, uniformly at random. If h < N j, then r1 is executed by rewiring h to j. If

r2 is to be executed and |Ri|, |R j| ≥ 2, both i and j choose one neighbor, h , j ∈ Ri and

f , i ∈ R j, uniformly at random. If neither h nor f is linked to both i and j, then r2 is

27

executed by rewiring h to j and f to i. A feasible iteration of the algorithm on a small

network is illustrated in Fig. 9.

Algorithm II: Distributed Implementation of ΦRR

1 : initialize: G = (V, E) connected, ε ∈ (0, 1) small

2 : repeat

3 : Each agent, i, is active with probability 1 − ε.

4 : Each active i picks a random j ∈ Ni.

5 : For each i, Ri = {i′ ∈ Ni | i′ picked i}.

6 : for (each (i, j) s.t. i ∈ R j, j ∈ Ri, di ≥ d j)

7 : max{i, j} picks a random r ∈ ΦRR.

8 : if (r = r1, di > d j, |Ri| ≥ 2)

9 : i picks a random h ∈ Ri \ { j}.

10 : if ((j, h) < E)

11 : E = (E \ {(i, h)}) ∪ {(j, h)}.

12 : end if

13 : else if (r = r2, |Ri| ≥ 2, |R j| ≥ 2)

14 : i picks a random h ∈ Ri \ { j}.

15 : j picks a random f ∈ R j \ {i}.

16 : if ((i, f) < E, (j, h) < E)

17 : E = (E \ {(i, h), (j, f)}) ∪ {(i, f), (j, h)}.

18 : end if

19 : end if

20 : end for

21 : end repeat

28

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

w.p. ǫ(1− ǫ)7
∏

i 6=8

1

di

1

2

3

4

5

6

7

8

R1 = {3}

R2 = ∅ R4 = {2, 6, 7} R6 = {4}

R3 = {1, 5} R5 = ∅ R7 = ∅

R8 = ∅

w.p. 1
8

G

G′

(b)

(a)

(c)

Figure 9. A feasible iteration of Algorithm II on G in (a) resulting in G′ in (c) along with the prob-

abilities of the corresponding random events. In this example, each node other than 8 is active and

picks a neighbor as illustrated in (b), where each arrow is pointed from a node to its chosen neighbor.

Accordingly, (1,3) and (4,6) are the matched pairs satisfying d3 > d1 and d4 > d6. With probability 0.25,

nodes 3 and 6 both pick r1 as the candidate rule. Furthermore, since R3 \ {1} = {5} and R4 \ {6} = {2, 7},

3 picks 5 to rewire with probability 0.5, and 4 picks 2 to rewire with probability 1. Hence, given the

configuration in (b), G′ can emerge with a probability of 0.125.

In the remainder of this section, the Markov chain induced by Algorithm II will be

analyzed. In particular, it will be shown that if d̄(G(0)) ∈ N, then PRR has a unique lim-

iting distribution that is uniform over the connected d̄(G(0))-regular graphs. Prior to this

analysis, some background on Markov chains is provided.

29

3.2.2 Markov Chain Preliminaries

A Markov chain is a sequence of random variables, X0, X1, X2 . . ., with the Markov property,

i.e.

Pr[Xt+1 = x | X0 = x(0), . . . , Xt = x(t)] = Pr[Xt+1 = x | Xt = x(t)]. (11)

The possible values of Xt form a countable state space of the chain, X. A Markov chain is

said to be time-homogeneous if the the probability of transition between any two states is

identical at each step. A time-homogeneous Markov chain is characterized by a state space,

an initial state (or an initial probability distribution over the states), and a transition matrix,

P, describing the state transition probabilities. The transition matrix defines the dynamics

of the probability distribution over the state space, µ, as

µT (t + 1) = µT (t)P. (12)

A state x j is said to be reachable from a state xi if a system started in state xi has a non-

zero probability of transitioning into state x j after a sufficient number of steps, i.e. there

exists an integer, k ≥ 0 such that

Pr[Xk = x j | X0 = xi] = Pk(xi, x j) > 0. (13)

A state xi is said to communicate with state x j if each of them is reachable from the

other. A set of states, C ⊆ X, is a communicating class if every pair of states in C com-

municate with each other, and no state in C communicates with any state outside C. A

communicating class, C, is closed if the probability of leaving the class is zero, i.e. any

state outside C is not reachable from any state in C. A Markov chain with a finite state

space always has at least one closed communicating class [78]. A Markov chain is said to

be irreducible if its state space is a single communicating class.

A state, xi, is said to be transient if, given that the chain starts xi, there is a non-zero

probability that it will never return to xi. A state is recurrent if it is not transient. Recurrence

is a class property, i.e. the states in a communicating class are either all recurrent or all

30

transient. If the state space is finite, then a communicating class is recurrent if and only if

it is closed [78].

For any state xi ∈ X, the period of the state is defined as

k = gcd{n : Pr[Xn = xi | X0 = xi] > 0}, (14)

where ‘gcd’ stands for the greatest common divisor. If k = 1, then the state is aperiodic.

As such, any xi is aperiodic if P(xi, xi) > 0. All the states in a communicating class have

the same period.

For a Markov chain with the transition matrix P, a vector, µ∗, is called a stationary

distribution of the chain if it satisfies

µ∗T = µ∗T P. (15)

Every Markov chain with a finite state space has a unique stationary distribution if and only

if it has exactly one closed communicating class [79]. Hence, an irreducible Markov chain

with a finite state space has a unique stationary distribution, µ∗. Furthermore, if the chain

is also aperiodic, then µ∗ is called the limiting distribution, and it satisfies

lim
t→∞

µ(t) = µ∗. (16)

Moreover, if a Markov chain has a doubly stochastic state transition matrix, i.e. if the

sum of elements in each column of the transition matrix is equal to 1, then the chain has a

stationary distribution that is uniform over the state space. Hence, if a Markov chain with

a finite state space is irreducible, aperiodic, and it has doubly stochastic transition matrix,

then the its limiting distribution is uniform over the state space.

If a Markov chain is reducible, then its limiting behavior depends on the initial state

as well as the limiting behavior of the chain within each closed communicating class. If a

chain has multiple closed communicating classes, {C1,C2, . . . ,CK}, then each closed com-

municating class, Ck, has its own unique stationary distribution. Extending any of these

distributions to the overall chain and setting all values to zero outside the corresponding

31

communicating class, Ck, yields to a stationary distribution of the original chain, µ∗k. The

set of stationary distributions of the original chain is the set of all convex combinations of

the extended stationary distributions, i.e. span{µ∗1, µ
∗
2, . . . , µ

∗
K}. Furthermore, if each closed

communicating class is aperiodic, then the chain initialized at any xi ∈ X converges to a

limiting distribution

µ∗xi
=

K∑
k=1

Pr[xi → Ck]µ∗k, (17)

where Pr[xi → Ck] is the probability that the chain starting at xi eventually enters the closed

communicating class Ck [80].

3.2.3 Limiting Behavior

Algorithm II is memoryless since each iteration only depends on the current graph, and the

probability of any feasible transition is independent of the past. Furthermore, the average

degree and the connectivity are preserved due to Lemma 3.1. As such, Algorithm II induces

a Markov chain over the state space of simple connected graphs having the same number

of nodes and the same average degree, i.e.

Gn,m = {G = (V, E) | |V | = n, d̄(G) = m}. (18)

Let µ(t) denote the probability distribution over the state space at time t. Then, µ(t)

satisfies

µT (t + 1) = µT (t)PRR, (19)

where PRR is the corresponding probability transition matrix. Accordingly, the probability

of transition from anyG to anyG′ is denoted by PRR(G,G′). Note that for any pair of graphs,

G,G′ ∈ Gn,m, the corresponding probability of transition under Algorithm II, PRR(G,G′), is

non-zero if and only if it is possible to transform G into G′ in a single time step via ΦRR.

Lemma 3.3 Let G,G′ ∈ Gn,m be any pair of graphs. PRR(G,G′) > 0 if and only if G′ can

be reached from G in one step via ΦRR.

32

Proof: ⇒: Since any possible transformation in Algorithm II (lines 11, 17) satisfies a

rule in ΦRR, PRR(G,G′) > 0 implies that G′ can be reached from G in one step via Φ∗.

⇐: Let G′ be reachable from G in one step via Φ∗, and let G = {g1, g2, . . .} denote the

corresponding set of disjoint subgraphs of G to be transformed to reach G′. Note that for

each g ∈ G there is a r = (gl, gr) ∈ ΦRR satisfying g ' gl. Here, we present a feasible flow

of Algorithm II that transforms G by applying the corresponding r to each g ∈ G. For each

g ∈ G, let the nodes in g be active at that time step, and pick a neighbor as illustrated in Fig.

10. Furthermore, let any node that is not included in any g ∈ G be inactive, which ensures

that only the subgraphs in G will be transformed. Finally, let each g pick the corresponding

r as the candidate ruler to execute. In that case, the agents are guaranteed to only apply

the corresponding r ∈ ΦRR to each g ∈ G. Hence, the corresponding transformation has a

non-zero probability in PRR, i.e. PRR(GG′) > 0.

dj

di

dh

dj di

dhdf

(a) (b)

Figure 10. An arrow is pointed from each agent to the neighbor it picked. For each g ∈ G, the nodes

in g have non-zero probability to pick their neighbors as shown in (a) if r = r1, and as shown in (b) if

r = r2.

�

In general, Gn,m can be represented as the union of two disjoint sets, G0
n,m (regular

graphs) and G+
n,m (non-regular graphs), defined as

G0
n,m = {G ∈ Gn,m | f (G) = 0}, (20)

G+
n,m = Gn,m \ G

R
n,m. (21)

33

Note that if m ∈ N, then G0
n,m , ∅ and it is possible to build a regular graph with the

available number of edges. In the remainder of this section, we will show that if G0
n,m , ∅,

then PRR has a unique limiting distribution that is uniform over G0
n,m. To this end, first it

is shown that all the graphs in G+
n,m are transient states of PRR if m ∈ N, i.e. whenever the

current graph is non-regular, there is a non-zero probability that the system will leave that

configuration and never return back.

Lemma 3.4 Let G ∈ Gn,m, and let m ∈ N. If G ∈ G+
n,m, then G is a transient state of PRR .

Proof: Let G ∈ G+
n,m, and let m ∈ N. In light of Theorem 2.10, there exists a finite

sequence of r1 applications transforming G to some G′ ∈ G0
n,m. Due to Lemma 3.3, the

corresponding trajectory is also feasible under PRR. Furthermore, due to Lemma 3.2, it is

not possible to return to G once a regular graph G′ is reached. Hence, G is transient.

�

Next, it is shown that if G0
n,m , ∅, then G0

n,m is a closed communicating class of PRR.

Lemma 3.5 [42] Let G = (V, E) be a connected m-regular graph with n nodes and let

m > 2. Then, in the limit, the Random 1-Flipper operation given below constructs all

connected m-regular labeled graphs with the same probability.

Algorithm III: Random 1-Flipper:

1 : Choose a random edge (i, j) ∈ E.

2 : Choose a random node h ∈ Ni \ { j}.

3 : Choose a random node f ∈ N j \ {i}.

4 : if ((i, f) < E, (j, h) < E)

5 : E = (E \ {(i, h), (j, f)}) ∪ {(i, f), (j, h)}.

6 : end if

Proof: This is proved in [42] by showing that a repetitive application of Random

1-Flipper operation (provided below), which is a randomized execution of r2, induces an

aperiodic irreducible Markov chain with a doubly stochastic probability transition matrix

over the set of all connected m-regular labeled graphs on n nodes. �

34

Lemma 3.6 If G0
n,m , ∅, then G0

n,m is a closed communicating class of PRR.

Proof: In light of Lemma 3.5, any G ∈ G0
n,m can be reached from any other G′ ∈ G0

n,m

through a sequence of r2 applications. Due to Lemma 3.3, the corresponding sequence of r2

applications is also feasible under PRR. Hence,G0
n,m is a communicating class. Furthermore,

G0
n,m is closed due to Lemma 3.2. �

Note that since all the states outside G0
n,m are transient, G0

n,m is the only closed commu-

nicating class of PRR. Hence, PRR has a unique stationary distribution, µ∗, with the support

G0
n,m. In the remainder of this section, the limiting behavior within G0

n,m is inspected to

show that µ∗ is a limiting distribution and it is uniform over G0
n,m.

Lemma 3.7 For any pair of regular graphs, G,G′ ∈ G0
n,m,

PRR(G,G′) = PRR(G′,G). (22)

Proof: For any regular graph, G ∈ G0
n,m, r1 is not applicable on G since all the nodes

have equal degrees. Hence, any transition from G to another G′ ∈ G0
n,m is only via r2. Note

that r2 is a reversible rule, i.e. if two nodes, i and j, exchange their neighbors, h ∈ Ni

and f ∈ N j, in accordance with r2, then swapping those neighbors back is also a feasible

application of r2.

Let us consider an arbitrary execution of Algorithm II, where G = (V, E) ∈ G0
n,m is

transformed into G′ = (V, E′) ∈ G0
n,m. Let u be the corresponding vector of randomly

picked neighbors in line 4 of Algorithm II (let ui = ε if i was inactive). For each node, i, let

Ri(u) be the set of nodes that picked i, and let M(u) = {(i, j) | i ∈ R j(u), j ∈ Ri(u)} be the set

of matched pairs. For G′, consider the vector, u′, whose entries are

u′i =

ui if ui = ε or (i, ui) ∈ E′,

uui otherwise.
(23)

Note that Pr[u] = Pr[u′] since the inactive nodes will remain inactive with the same

probability, and each active node picks a neighbor uniformly at random. Furthermore,

35

M(u) = M(u′). Also, for every (i, j) ∈ M(u), we have |Ri(u)| = |Ri(u′)| and |R j(u)| = |R j(u′)|.

Hence, each (i, j) ∈ M(u) will reverse the neighbor-swapping in the transition from G to G′

with the same probability (lines 13-19 in Algorithm II), so Pr[G → G′; u] = Pr[G′ → G; u′].

Consequently, PRR(G,G′) = PRR(G′,G). �

Theorem 3.8 Let Gn,m be the state space, and let m ∈ N. Then, PRR has a unique limiting

distribution, µ∗, satisfying

µ∗(G) =

1/|G0

n,m| if G ∈ G0
n,m,

0 otherwise.
(24)

Proof: For m ∈ N, G0
n,m , ∅ and G0

n,m is a closed communicating class due to Lemma

3.6. Furthermore it is the only closed communicating class since all the other states (graphs

in G+
n,m) are transient due to Lemma 3.4. As such, PRR has a unique stationary distribution,

µ∗, whose support is G0
n,m. In the remainder of the proof, the behavior of the Markov chain

withinG0
n,m is inspected to show that µ∗ is a limiting distribution and it is uniform overG0

n,m.

Let P0
RR be the |G0

n,m| by |G0
n,m| probability transition matrix that only represents the

transitions within G0
n,m. Due to Lemma 3.6, P0

RR is irreducible. Also P0
RR is aperiodic since

P0
RR(G,G) > 0 for every G (for instance, there is a non-zero probability of all the nodes

being inactive). As such, P0
RR has a unique limiting distribution, µ∗0. Furthermore, due to

Lemma 3.7, P0
RR is symmetric, and it is consequently doubly stochastic. As a result, µ∗0 is

uniform over G0
n,m.

�

3.3 Simulation Results

In this section, some simulation results for the proposed scheme are presented. In the first

simulation, an arbitrary G(0) ∈ G+
8,3, which is illustrated in Fig. 9a, is generated, and the

interaction graph is evolved using Algorithm II. In light of Theorem 3.8, the system is

expected to approach a uniform limiting distribution over G0
8,3. Note that G0

8,3 is a very

large set, hence it is not feasible to track the limiting probability corresponding to each

36

individual graph in G0
8,3. However, there are only 5 non-isomorphic structures in G0

8,3 as

depicted in Fig. 11, and the proportions of time spent in each isomorphism class will be

presented instead.

8!
12 graphs

8!
16 graphs

8!
48 graphs

8!
16 graphs

8!
4 graphs

G0
8,3

G1 G2

G3 G4

G5

Figure 11. Non-isomorphic graph structures, G1,G2,G3,G4,G5, in G0
8,3, and the number of labeled

graphs isomorphic to each structure.

Note that the cardinality of the isomporphism classes in G0
8,3 are not equal since each

structure has different symmetry properties. In the simulation, the proportions of the time

spent at each of the five isomorphism classes are recorded in a vector v(t) defined as

vi(t) =
|{0 ≤ τ ≤ t | G(τ) ' Gi}|

t + 1
,∀i = 1, . . . , 5. (25)

As the Markov chain approaches the limiting distribution in (49), v(t) is expected to be in

alignment with the sizes of isomorphism classes in G0
8,3, i.e. it should approach

v∗ = [
4
23
,

3
23
,

1
23
,

3
23
,

12
23

]. (26)

Fig. 12 depicts ||v(t) − v∗||2 throughout the simulation. Since G(0) ∈ G+
8,3, ||v(t) − v∗||2

is stationary at ||v∗|| for a short period (t ≤ 74) until the degree range drops to 0, i.e. the

37

system enters G0
8,3. After that, ||v(t) − v∗||2 rapidly decreases and approaches 0, as expected

from a uniform limiting distribution over G0
8,3.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

||v
(t

)−
v∗
|| 2

time (t)

Figure 12. ||v(t) − v∗||2 as a function of time. v(t) approaches v∗ in accordance with the uniform limiting
distribution over G0

8,3.

In the second simulation, a larger network, G(0) ∈ G+
100,3, is considered to illustrate

how the robustness of the interaction graph changes under Algorithm II during a period of

10000 time seps. Particularly, the change in the algebraic connectivity is inspected. Fig.

13 illustrates G(0) and G(10000), which have algebraic connectivities of 0.032 and 0.195

respectively. On the corresponding trajectory, the degree range drops from 5 to 0 within

2942 steps. After that, the system keeps randomizing within G0
100,3. The evolution of the

algebraic connectivity throughout this simulation is shown in Fig. 14. Note that almost

every 3-regular graph is almost Ramanujan. Accordingly, the algebraic connectivity of the

simulated network is observed to be at least 3 − 2
√

2 with a very high probability after a

sufficient amount of time.

38

(a) (b)
Figure 13. Agents follow Algorithm II so that the initial graph in (a) is transformed into a robust
interaction structure such as the one in (b).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

α
(G

(t
))

time (t)

Figure 14. The algebraic connectivity, α(G(t)), as the initial graph in Fig. 13a evolves via Algorithm II.
After sufficiently large time, α(G(t)) rarely drops below 3 − 2

√
2 (marked with a solid line), since the

corresponding 3-regular graphs are almost Ramanujan with a very high probability.

39

CHAPTER 4

FORMATION OF RANDOM REGULAR GRAPHS

In this chapter, the randomized degree regularization grammar, ΦRR, is extended to obtain

a sparsity-aware decentralized scheme leading to connected random regular graphs, even if

the initial average degree is not an integer. In the resulting grammar, Φ∗, the average degree

is not necessarily maintained, yet it is guaranteed to remain close to its initial value. In par-

ticular, the proposed scheme transforms any connected interaction graph, G(0), satisfying

d̄(G(0)) > 2 into a connected random m-regular graph for some m ∈ [d̄(G(0)), d̄(G(0)) + 2].

A distributed implementation, which leads to limiting distributions uniform over the con-

nected m-regular graphs, is also provided.

4.1 Problem Formulation

In the previous chapter, a randomized degree regularization scheme was proposed to ob-

tain random m-regular graphs, which have desirable expansion properties for m ≥ 3. The

corresponding graph grammar, ΦRR, extended the degree regularization grammar, ΦR, by

complementing the degree regularization rule with a neighborhood randomization rule. A

distributed implementation was provided in Algorithm II, and it was shown that this al-

gorithm induces a Markov chain, PRR, over the state space, Gn,m, consisting of simple

connected graphs having the same number of nodes, n, and the same average degree, m,

as defined in (18). In Theorem 3.8, it was shown that if the state space, Gn,m, consists of

graphs with an integer average degree, i.e. m ∈ N, then PRR has a unique limiting distribu-

tion over the m-regular graphs in Gn,m. As such, any connected G(0) satisfying d̄(G(0)) ∈ N

is transformed into a connected random d̄(G(0))-regular graph, which is almost surely an

expander for d̄(G(0)) ≥ 3.

Algorithm II leads to uniformly realized connected random regular graphs for con-

nected initial graphs with integer average degrees. However, its limiting behavior for

40

graphs with non-integer average degrees requires a further analysis. For such graphs, the

degree range converges to 1 due to the regularization rule, as given in Corollary 2.11. Fur-

thermore, the randomization rule keeps randomizing the local neighborhoods. However, an

exact characterization of the graphs that will be observed in the limit and their expansion

properties are not provided. Note that an initial graph having an integer average degree is a

quite restrictive assumption in general since it is a property that can be easily lost due to the

removal of even a single node or a single edge. Hence, most systems are unlikely to have

an integer average degree unless the interaction graph is designed through a mechanism

that strictly enforces that property. Fig. 8 illustrates a pair of graphs on 30 nodes, which

are identical except for a single edge. The graph in Fig. 8a has an average degree of 3,

whereas the graph in Fig. 8b, which is obtained by removing a single edge from the graph

in Fig. 8a, has an average degree of 2.93. Based on the results in the previous chapter, one

can say that Algorithm II would transform the graph in Fig. 8a into a random 3-regular

graph having desirable expansion properties. However, the results in the previous chapter

do not imply high expansion ratios for the graphs that would originate from the graph in

Fig. 8b under Algorithm II.

The problem addressed in this chapter is to design a locally applicable sparsity-aware

graph transformation scheme that leads to connected random regular graphs, regardless

of the initial average degree being an integer or not. Such a solution can transform any

connected initial graph into a connected random regular graph with a minimal increase

in the overall sparsity. As such, if the initial graph has a sufficient number of edges, the

resulting random regular graphs are almost surely expander graphs. Consequently, this

chapter presents a generic solution for decentralized formation of random regular graphs in

order to transform any connected interaction graph into a robust interaction graph through

self-organization.

41

(a) (b)

Figure 15. A graph with an integer average degree (a), and a graph with a non-integer average degree
(b), which is obtained from the graph in (a) by removing a single edge between the nodes in the circle.

4.2 Proposed Solution

In Chapters 2 and 3, the degree balancing and neighborhood randomization were addressed.

In order to incorporate the task of driving the average degree to an integer, the constraint

of maintaining the number of edges should be relaxed. In other words, the system should

allow for occasional addition and removal of edges as long as the graph is not regular and

the total number of edges stays within some proximity of its initial value. Furthermore,

the admissible change in the average degree should ensure that there is always a feasible

integer value within the reachable interval. In particular, the reachable interval should

always contain an even integer since an odd average degree is not feasible for graphs with

an odd number of nodes. Furthermore, any possible edge removal should not disconnect

the network connectivity. In order to achieve all of these objectives, a graph grammar,

Φ∗, is designed by extending ΦRR. The next section presents Φ∗ along with a distributed

implementation.

42

4.2.1 Proposed Grammar

The proposed grammar, Φ∗ = {r1, r2, r3, r4}, consists of 4 rules. Different from ΦR and ΦRR,

each node, i ∈ V , has a two dimensional vector, l(i), as its label in Φ∗. The first entry of

the label vector is equal to the degree of the node, di, just as in ΦR and ΦRR. The second

entry of the label vector is a binary flag, wi, that denotes whether the corresponding agent

is allowed to add or remove an edge. A node, i, can add an edge to the graph only if wi = 0,

and it can remove an edge only if wi = 1. As such, the labeling function is a mapping,

l : V 7→ {0, 1, 2 . . . , |V |} × {0, 1}, defined as

l(i) =

 di

wi

 ,∀i ∈ V. (27)

For any graph, G = (V, E), the degree of each node is already encoded through the edge

set, E. Hence, for the sake of simplicity, the first entries of the node labels will be omitted

in the notation and a labeled graph will be denoted as

G = (V, E,w), (28)

where w is the vector containing the binary entries of the node labels. Using the node labels

given in (27), the proposed grammar, Φ∗ = {r1, r2, r3, r4}, is defined as

43

dj

if di > dj
r1 :

r3 :

Φ∗:

wj

dh
wh

di
wi

dj + 1
wj

di

dh + 1
wh

dj + 1
wj

di − 1
wi

dh
wh

w.p. ǫ, if wi = 0

w.p. 1− ǫ

r2 :

df
wf

dj
wj

di
wi

dh
wh

r4 : dj
wj

di
wi

dj
wi

di
wj

di
1

dh
wh

dj
wj

if di > dj

di − 1
0

dh − 1
wh

dj
wj

df
wf

dh
wh

dj
wj

di
wi

1

The rules in Φ∗ can be interpreted as follows: The first rule, r1, can be considered

as a perturbation of the degree regularization rule in ΦRR. While it behaves identical to

the degree regularization rule most of the time, there is also a small probability, ε, that if

the higher degree node has its second label equal to 0, then it can maintain its link with

the neighbor introduced to its lower degree neighbor. Note that the total number of edges

increases in that case. The second rule, r2, is the same neighborhood randomization rule

as in ΦRR. The third rule, r3, is the edge removal rule which breaks one edge of a triangle

if all the nodes in that triangle do not have the same degree and one of the higher degree

44

nodes has its second label equal to 1. Note that the total number of edges decreases in that

case. The final rule, r4, is for exchanging the second labels of adjacent nodes. The purpose

of r4 is to ensure that the edge additions and removals will be applicable as long as they

are needed to drive the average degree to an integer. In this setting, the binary labels, w,

enables a distributed way of bounding the total number of edges in the network in a close

proximity of its initial value throughout the dynamics.

In the remainder of this section, the dynamics induced by Φ∗ is analyzed. First, it is

shown that Φ∗ maintains the graph connectivity.

Lemma 4.1 Graph connectivity is maintained under Φ∗.

Proof: All the rules in Φ∗ preserve the connectivity of the local structures. Hence,

the global connectivity is also maintained under any concurrent application of the rules on

disjoint subgraphs. �

Note that, unlike ΦR and ΦRR, the the number of edges is not maintained under Φ∗ due

to the possible edge addition and removals. However, the number of edges is bounded in

an interval through the node labels, w.

Lemma 4.2 Let G = (V, E,w) be a graph, and let τ be any feasible trajectory of (G,Φ∗).

For every G′ = (V, E′,w′) ∈ τ,

|E′| − |E| = 1T w′ − 1T w, (29)

where 1 is the vector of all ones.

Proof: Let G(t) = (V, E(t),w(t)) and G(t + 1) = (V, E(t + 1),w(t + 1)) be a pair of

consecutive graphs on any trajectory, τ, of (G,Φ∗). Note that the number of edges is main-

tained under r2 and r4, and it can increase by 1 only due to r1 or decrease by 1 only due to

r3. If an application of r1 adds an extra edge to the network, then one of the nodes involved

in that transformation, i, satisfies wi(t + 1) − wi(t) = 1, whereas the other two participating

nodes maintain their w entries. On the other hand, for each application of r3, one of the

45

nodes involved in that transformation, i, satisfies wi(t + 1) −wi(t) = −1 while the other two

participating nodes maintain their w entries. Furthermore, any rule application that main-

tains the number of edges also maintains the sum of w entries of the participating nodes. In

particular, any edge rewiring via r1 or any neighbor swapping via r2 maintain the w entries

of the participating nodes, whereas any label exchange via r4 maintains the sum of labels.

Hence, E(t) and E(t + 1) satisfy

|E(t + 1)| − |E(t)| = 1T w(t + 1) − 1T w(t). (30)

Using induction, it can be shown that (30) implies (29) for any G′ = (V, E′,w′) ∈ τ. �

Corollary 4.3 Let G = (V, E, 0) be a graph, and let τ be any feasible trajectory of (G,Φ∗).

For every G′ = (V, E′,w′) ∈ τ,

|E| ≤ |E′| ≤ |E| + |V |. (31)

Proof: Let G = (V, E, 0) be a graph, and let τ be any feasible trajectory of (G,Φ∗). In

light of Lemma 4.2, every G′ = (V, E′,w′) ∈ τ satisfies

|E′| − |E| = 1T w′ − 1T 0 = 1T w′. (32)

Since each entry of w is either equal to 1 or equal 0,

0 ≤ 1T w′ ≤ |V |. (33)

Hence, (32) and (33) together imply (31). �

Corollary 4.3 provides the upper and the lower bounds on the of number of edges along

any trajectory of (G,Φ∗) for any G = (V, E, 0). Next, it is shown that there is always a

number of edges in that interval which implies an integer average degree.

Lemma 4.4 For any G = (V, E), a graph, G′ = (V, E′), satisfying d̄(G′) ∈ N can be formed

by adding at most |V | edges to G.

46

Proof: Let G = (V, E) be a graph, and let G′ = (V, E′) be a graph that is formed by

adding η edges to G. Then,

d̄(G′) =
2(|E| + η)
|V |

. (34)

For any G = (V, E), there exists unique pair of integers, α, β ∈ N, such that 0 ≤ β < |V | and

|E| = α|V | + β. (35)

Let η∗ = |V | − β. Note that η∗ ≤ |V | since 0 ≤ β < |V |. Furthermore, by plugging η∗ into

(34), we obtain

2(|E| + η∗)
|V |

=
2(|E| + |V | − β)

|V |
= 2α + 2

β

|V |
+ 2 − 2

β

|V |
= 2(α + 1). (36)

Since α ∈ N, we have 2(α+ 1) ∈ N. Hence, for any G = (V, E), there exists 0 ≤ η ≤ η∗ such

that a graph, G′ = (V, E′), satisfying d̄(G′) ∈ N can be obtained by adding η edges to G. �

In light of Lemma 4.4, the interval in (31) always has at least one value implying an

integer average degree. Next, it is shown that (G,Φ∗) almost surely reaches a regular graph

for any connected G = (V, E, 0) such that d̄(G) > 2.

Lemma 4.5 Let G = (V, E,w) be a connected graph such that d̄(G) < N. If 1T w < |V |, then

G can be transformed via Φ∗ into a graph, G′ = (V, E′,w′), satisfying |E′| = |E| + 1.

Proof: If d̄(G) < N, then G has to be a non-regular graph. Furthermore, since G is

connected, then there has to be at least a pair of nodes, i and j, with different degrees.

Without loss of generality let di > d j. Then, i should have at least one neighbor that is not

linked to j. As such, r1 is applicable on G = (V, E). Furthermore, since each entry of w

is either 0 or 1, at least one entry of w is equal to 0 if 1T w < |V |. If w j = 0, then an extra

edge can be added to the graph via r1 with probability ε. If wi , 0, then there exists another

node, i′, such that wi′ = 0. Apply r4 along the shortest path between i and i′ to obtain

wi = 0. Once wi = 0 is obtained, then with probability ε an extra edge can be added to the

graph in accordance with r1 to obtain a graph, G′ = (V, E′,w′), satisfying |E′| = |E| + 1. �

47

Lemma 4.6 Let G = (V, E,w) be a connected triangle-free graph. If d̄(G) > 2, then G can

be transformed via Φ∗ into a graph, G′ = (V, E′,w), containing at least one triangle.

Proof: Let G = (V, E,w) be a connected triangle-free graph. Since d̄(G) > 2, G has

to be a cyclic graph. Consider the shortest cycle on G, Cs. Note that Cs has to contain at

least 4 nodes, since G is triangle-free. Furthermore, if d̄(G) > 2, then Cs cannot contain

all the nodes of G, as otherwise G has to be a cycle graph with d̄(G) = 2. Also, since G is

a connected graph, at least one node on Cs must be linked to a node that is not contained

in Cs. Without loss of generality, let i be a node on Cs connected to an off-cycle node,

h. Furthermore, let j denote a neighbor of i on Cs. Note that h can not be connected to j

since G is triangle-free. Furthermore, since the Cs contains at least 4 nodes, j has to have

another neighbor on Cs, f , which is not connected to i. If i and j execute r2 by rewiring h

and f to each other, Cs becomes a shorter cycle. Note that w is invariant under r2. Hence,

by repeating this process until Cs consists of 3 nodes, G can be transformed into a graph,

G′ = (V, E′,w), containing at least one triangle. �

Lemma 4.7 Let G = (V, E,w) be a connected graph such that d̄(G) < N. If 1T w > 0

and d̄(G) > 3, then G can be transformed via Φ∗ into a graph, G′ = (V, E′,w′), satisfying

|E′| = |E| − 1.

Proof: Let G = (V, E,w) be a connected graph such that d̄(G) < N. Since d̄(G) < N,

the degree range can be reduced to 1 without changing d̄ and w via r1, as given in Corollary

2.11. Furthermore, in light of Lemma 4.6, if the resulting graph is triangle-free, then it can

be transformed via r2 into a graph, G+ = (V, E+,w), which contains at least one triangle.

Since ∆(G+) − δ(G+) = 1 and d̄(G+) = d̄(G) > 3, we have δ(G+) ≥ 3.

If 1T w > 0, then at least one entry of w is equal to 1. As such, wi = 1 can be reached for

any i ∈ V via a sequence of r4 applications. Hence, if any of the triangles in G+ involves

nodes with non-uniform degrees, then one edge of the triangle can be broken in accordance

with r3 to obtain a graph, G′ = (V, E′), satisfying |E′| = |E| − 1.

48

On the other hand, assume that all the triangles on G+ consist of nodes with uniform

degrees. Let i, j, and h be the nodes of such a triangle. Consider the shortest path from

any node of this triangle to a node whose degree is not equal to the degrees of the triangle

nodes. Without loss of generality, let this path be between i and i′ such that d+
i′ , d+

i . Note

that each node other than i′ on this path has its degree equal to d+
i , and either d+

i > d+
i′ or

d+
i < d+

i′ . Both cases are inspected below:

1) If d+
i > d+

i′ , then d+
i ≥ 4 given that δ(G+) ≥ 3. Hence, the node next to i′ on

the shortest path has at least one neighbor outside the shortest path that is not connected

to i′. Applying r1 by rewiring such a neighbor to i′ results in a shorter path from i to a

smaller degree node. Applying the same procedure eventually results in a smaller degree

node being adjacent to i. Since d+
i ≥ 4, i has at least one neighbor other than j and h to

rewire to its smaller degree neighbor. After the corresponding application of r1, we obtain a

triangle of nodes with non-uniform degrees. Hence, one edge of the triangle can be broken

in accordance with r3 to obtain a graph, G′ = (V, E′,w′), satisfying |E′| = |E| − 1.

2) If d+
i < d+

i′ , then i′ can apply r1 to rewire one of its neighbors to the node on the

shortest path next to itself. This results in a shorter path from i to higher degree node

is obtained. Applying the same procedure eventually increases the degree of i, and we

obtain a triangle of nonuniform degrees. Hence, one edge of the triangle can be broken in

accordance with r3 to obtain a graph, G′ = (V, E′,w′), satisfying |E′| = |E| − 1. �

Lemma 4.8 Let G = (V, E, 0) be a connected graph. If d̄(G) > 2, then (G,Φ∗) almost

surely reaches an m-regular graph such that d̄(G) ≤ m ≤ d̄(G) + 2.

Proof: Let G = (V, E, 0) be a connected graph such that d̄(G) > 2. Due to Corol-

lary 4.3, the number of edges stays in {|E|, |E| + 1, . . . |E| + |V |} along any trajectory of

(G,Φ∗). In light of Lemma 4.4, this interval contains at least one value, |E| + η, such that

the corresponding average degree, m, is an integer satisfying

49

d̄(G) ≤ m =
2(|E| + η)
|V |

≤ d̄(G) + 2. (37)

As such, m ≥ 3 since d̄(G) > 2. Let G′ = (V, E′,w′) be a graph reached from G via Φ∗ such

that d̄(G′) < N. Then, either |E′| < |E|+ η or |E′| > |E|+ η. Both cases are inspected below:

1) If |E′| < |E| + η, then 1T w′ = |E′| − |E| < |V |. As such, in light of Lemma 4.5, G′ can

have its number of edges increased by 1 via Φ∗. This process can be repeated unless the

average degree reaches an integer value.

2) If |E′| > |E| + η, then 1T w′ = |E′| − |E| > 0. Furthermore, d̄(G′) > 3 since m ≥ 3. As

such, in light of Lemma 4.7, G′ can have its number of edges decreased by 1 via Φ∗. This

process can be repeated unless the average degree reaches an integer value.

Hence, in either case it is possible to add or remove edges to the network via Φ∗ until the

number of edges implies an integer average degree, m ∈ [d̄(G), d̄(G) + 2]. Once an average

degree of m is obtained, then the graph can be driven to a m-regular configuration through

a sequence of r1 applications. As such, any G′ has a non-zero probability of reaching an

m-regular graph after a finite sequence of Φ∗ applications. Consequently, (G,Φ∗) almost

surely reaches an m-regular graph such that d̄(G) ≤ m ≤ d̄(G) + 2. �

Note that, unlike ΦR and ΦRR, the degree range does not monotonically decrease under

Φ∗ due to the possible edge addition and removals. However, if a regular graph is reached,

then the graph remains regular.

Lemma 4.9 Let G be an m-regular graph. Any feasible trajectory of (G,Φ∗) consists of

only m-regular graphs.

Proof: Since G is a m-regular graph, di = d j for any pair of nodes, i, j. Hence, r1

and r3 are not applicable on any regular graph. Furthermore, since the node degrees are

invariant to the applications of r2 and r4, any feasible trajectory of (G,Φ∗) consists of only

m-regular graphs. �

Once an m-regular graph is reached, the graph evolves only via the randomization rules,

50

r2 and r4. In the next section, a distributed implementation of Φ∗, which leads to uniform

limiting distributions over the connected m-regular graphs, is presented.

4.2.2 Distributed Implementation

In general, there may be many feasible applications of Φ∗ on an interaction graph. In such

cases, the agents need to randomly execute Φ∗ on disjoint subgraphs without any global

coordination. To this end, Algorithm IV is proposed as a distributed implementation of

Φ∗. By following Algorithm IV, the nodes can concurrently modify their local neighbor-

hoods in accordance with Φ∗ such that any feasible transformation occurs with a non-zero

probability.

Note that Algorithm IV is memoryless since each iteration only depends on the current

graph, and the probability of any feasible transition is independent of the past. Furthermore,

connectivity is maintained due to Lemma 4.1. Furthermore, for any connected initial graph,

G(0) = (V, E(0), 0), the average degree remains in [d̄(G), d̄(G) + 2] due to Corollary 4.3.

Let k denote the average degree of the initial graph, i.e.

k = d̄(G(0)). (38)

Algorithm IV induces a Markov chain over the state space, Gn,[k,k+2], consisting of simple

connected labeled graphs with n nodes and average degrees contained in [k, k + 2], i.e.

Gn,[k,k+2] = {G = (V, E,w) | |V | = n, |E| = 0.5k|V | + 1T w,wi ∈ {0, 1}∀i ∈ V}. (39)

Let µ(t) denote the probability distribution over the state space at time t. Then, µ(t) satisfies

µT (t + 1) = µT (t)P∗, (40)

where P∗ is the corresponding probability transition matrix. Accordingly, the probability

of transition from any G to any G′ is denoted by P∗(G,G′). Note that for any pair of graphs,

G,G′ ∈ Gn,[k,k+2], the corresponding transition probability under Algorithm IV, P∗(G,G′),

is non-zero if and only if it is possible to transform G into G′ in a single time step via Φ∗.

51

Algorithm IV: Distributed Implementation of Φ∗

1 : initialize: G = (V, E,w = 0) connected, ε ∈ (0, 1) small

2 : repeat

3 : Each agent, i, is active with probability 1 − ε.

4 : Each active i picks a random j ∈ Ni.

5 : For each i ∈ V , Ri = {i′ ∈ Ni | i′ picked i}.

6 : for (each (i, j) s.t. i ∈ R j, j ∈ Ri, di ≥ d j)

7 : max{i, j} picks a random r ∈ Φ∗.

8 : if (r = r1, di > d j, |Ri| ≥ 2)

9 : i picks a random h ∈ Ri \ { j}.

10 : if ((j, h) < E)

11 : i picks a random ε′ ∈ [0, 1].

12 : if (ε′ ≥ ε)

13 : E = (E \ {(i, h)}) ∪ {(j, h)}.

14 : else if (wi = 0)

15 : E = E ∪ {(j, h)}, wi = 1.

16 : end if

17 : end if

18 : else if (r = r2, |Ri| ≥ 2,|R j| ≥ 2)

19 : i picks a random h ∈ Ri \ { j}.

20 : j picks a random f ∈ R j \ {i}.

21 : if ((i, f) < E, (j, h) < E)

22 : E = (E \ {(i, h), (j, f)}) ∪ {(i, f), (j, h)}.

23 : else if (r = r3, |Ri| ≥ 2, wi = 1)

24 : i picks a random h ∈ Ri \ { j}.

25 : if ((j, h) ∈ E)

26 : E = E \ {(i, h)}, wi = 0.

27 : end if

28 : else if (r = r4)

29 : Swap wi and w j.

30 : end if

31 : end for

32 : end repeat

52

Lemma 4.10 Let G,G′ ∈ Gn,[k,k+2] be any pair of graphs. P∗(G,G′) > 0 if and only if G′

can be reached from G in one step via Φ∗.

Proof: ⇒: Since any possible transformation in Algorithm IV (lines 13, 15, 22, 26,

29) satisfies a rule in Φ∗, P∗(G,G′) > 0 implies that G′ can be reached from G in one step

via Φ∗.

⇐: Let G′ be reachable from G in one step via Φ∗, and let G = {g1, g2, . . .} denote the

corresponding set of disjoint subgraphs of G to be transformed to reacg G′. Note that for

each g ∈ G there is a r = (gl, gr) ∈ Φ∗ satisfying g ' gl. Here, a feasible flow of Algorithm

IV that transforms G by applying the corresponding r to each g ∈ G is presented. For each

g ∈ G, let the nodes in g be active at that time step, and pick a neighbor as illustrated in Fig.

16. Furthermore, let any node that is not included in any g ∈ G be inactive, which ensures

that only the subgraphs in G will be transformed. Finally, let each g pick the corresponding

r as the candidate ruler to execute. In that case, the agents are guaranteed to only apply

the corresponding r ∈ Φ∗ to each g ∈ G. Hence, the corresponding transformation has a

non-zero probability in P∗.

dj
wj

dh
wh

di
wi

df
wf

dj
wj

di
wi

dh
wh

dj
wj

di
wi

di
1

dh
wh

dj
wj

(a) (b) (c) (d)

Figure 16. An arrow is pointed from each agent to the neighbor it picked. For each g ∈ G, the nodes in

g have non-zero probability to pick their neighbors as shown in (a) if r = r1, (b) if r = r2, (c) if r = r3,

and (d) if r = r4.

�

53

The state space, Gn,[k,k+2] can be represented as the union of two disjoint sets, G0
n,[k,k+2]

(regular graphs) and G+
n,[k,k+2] (non-regular graphs), defined as

G0
n,[k,k+2] = {G ∈ Gn,[k,k+2] | f (G) = 0}, (41)

G+
n,[k,k+2] = Gn,[k,k+2] \ G

0
n,[k,k+2]. (42)

In light of Lemma 4.8, G0
n,[k,k+2] , ∅ for k > 2. Let M denote the set of all such m, i.e.

M = {m ∈ N | k ≤ m ≤ k + 2, 0.5m|V | ∈ N}. (43)

Based on the values in M, the set of regular graphs, G0
n,[k,k+2], can be written as the union

of some disjoint sets as

G0
n,[k,k+2] =

⋃
m∈M

G0
n,m, (44)

where each G0
n,m is the set of m-regular graphs defined as

G0
n,m = {G ∈ G0

n,[k,k+2] | d̄(G) = m}. (45)

In the remainder of this section, the limiting behavior of P∗ is analyzed. Note that in

light of Lemma 4.8, if k > 2, then any connected initial graph, G(0) = (V, E(0), 0), almost

surely converges to G0
n,[k,k+2]. Next, it is shown that, for each m ∈ M, G0

n,m is a closed

communicating class.

Lemma 4.11 If k > 2, then G0
n,m is a closed communicating class of P∗ for each m ∈ M.

Proof: In Light of Lemma 4.9, only r2 and r4 is applicable on any m-regular graph,

and any resulting graph is m-regular. Hence, once the system reaches any G0
n,m, it stays in

G0
n,m. Furthermore, in light of Lemma 3.5, any m-regular structure can be reached from any

other via r2. Moreover, since all the graphs in G0
n,m are connected, any permutation of the

elements in w is also reachable via r1 for each graph structure in G0
n,m. Hence, each G0

n,m is

a closed communicating class of P∗. �

54

The limiting behavior of Algorithm IV depends on the limiting behavior of P∗ in each

closed communicating class. Note that for each G0
n,m, there is a unique stationary distribu-

tion, µ∗m, of P∗ whose support isG0
n,m. Next, it is shown that each µ∗m is a limiting distribution

that is uniform over G0
n,m. To this end, first it is shown that the transitions between any two

regular graphs are symmetric.

Lemma 4.12 For any m ∈ M, let G,G′ ∈ G0
n,m be any pair of graphs. Then,

P∗(G,G′) = P∗(G′,G). (46)

Proof: For any m ∈ M, let G,G′ ∈ G0
n,m be any pair of graphs. Note that r1 and r3

are not applicable on any graph in G0
n,m since all the nodes have equal degrees. Hence, any

transition from G to G′ is only via r2 or r4. Note that both r2 and r4 are reversible. Hence,

P∗(G,G′) > 0 if and only if P∗(G′,G) > 0.

Let us consider an arbitrary execution of Algorithm IV, where G is transformed into

G′. Let u be the corresponding vector of randomly picked neighbors in line 4 of Algorithm

IV (let ui = ε if i is inactive). For each node, i, let Ri(u) be the set of nodes that picked i,

and let M(u) = {(i, j) | i ∈ R j(u), j ∈ Ri(u)} be the set of matched pairs. In the remainder

of the proof, it is shown that for any such feasible execution there exists an equally likely

execution of Algorithm IV that transforms G′ back to G. For G′ = (V, E′,w′), consider the

vector, u′, whose entries are

u′i =

ui if ui = ε or (i, ui) ∈ E′,

uui otherwise.
(47)

Note that Pr[u] = Pr[u′] since the inactive nodes will remain inactive with the same

probability, and each active node picks a neighbor uniformly at random. Furthermore,

M(u) = M(u′). Let each (i, j) ∈ M(u) randomly choose the same candidate rule, r, they

executed in the transition from G to G′. As such, if r = r4, then i and j will swap wi and

w j back. On the other hand, if r = r2, then i and j will reverse the neighbor-swapping in

55

the transition from G to G′ with the same probability (lines 12-17 in Algorithm IV) since

|Ri(u)| = |Ri(u′)| and |R j(u)| = |R j(u′)| for every (i, j) ∈ M(u). As such, all the local trans-

formations from G to G′ can be reversed with the same probability under Algorithm IV.

Consequently, P∗(G,G′) = P∗(G′,G). �

Lemma 4.13 For any m ∈ M, there is a unique limiting distribution, µ∗m, of P∗ satisfying

µ∗m(G) =

1/|G0

n,m| if G ∈ G0
n,m,

0 otherwise.
(48)

Proof: For any m ∈ M, G0
n,m is a closed communicating class due to Lemma 4.11.

As such, for each G0
n,m, there exists a unique stationary distribution, µ∗m, whose support

is G0
n,m. Let P∗m be the |G0

n,m| by |G0
n,m| probability transition matrix that only represents

the transitions within G0
n,m. Due to Lemma 4.11, P∗m is irreducible. Also P∗m is aperiodic

since P∗(G,G) > 0 for every G (for instance, there is a non-zero probability of all the

nodes being inactive). As such, the corresponding stationary distribution, µ∗m, is a limiting

distribution. Furthermore, due to Lemma 4.12, P∗m is symmetric, and it is consequently

doubly stochastic. As a result, µ∗m is uniform over G0
n,m.

�

Theorem 4.14 For any connected initial graph, G = (V, E, 0), satisfying d̄(G) > 2, P∗

leads to a limiting distribution, µ∗
G

, given as

µ∗G =
∑
m∈M

Pr[G → G0
n,m]µ∗m, (49)

where Pr[G → G0
n,m] is the probability that the chain initialized at G ever enters the set of

m-regular graphs, G0
n,m, and each µ∗m is uniform over its support, G0

n,m.

Proof: In light of Lemma 4.8, any connected G = (V, E, 0), satisfying d̄(G) > 2

almost surely enters a closed communicating class of m-regular graphs, G0
n,m, such that

m ∈ M. Furthermore, each G0
n,m has a uniform limiting distribution, µ∗m as given in Lemma

4.13. Hence, P∗ leads to the convex combination of limiting distributions, µ∗m, where each

56

µ∗m is weighted by Pr[G → G0
n,m], which is the probability that the chain starting at G ever

enters G0
n,m. �

In light of Theorem 4.14, Algorithm IV asymptotically transforms any connected initial

graph, G = (V, E, 0), satisfying d̄(G) > 2 into a random m-regular graph for some m ∈ M

as given in (43). When M is not a singleton, then the probability of reaching each G0
n,m

depends on the initial graph. Note that d̄(G) > 2 implies m ≥ 3 for every m ∈ M. Hence,

for any connected initial graph, G = (V, E, 0), satisfying d̄(G) > 2, the graphs observed in

the limit are almost Ramanujan with a very high probability.

4.3 Simulation Results

In this section, we present some simulation results for the proposed scheme. In the first

simulation, an arbitrary connected graph, G(0) = (V, E, 0), with 40 nodes and 56 edges. As

such, the initial average degree is d̄(G(0)) = 2.8. The interaction graph is evolved using

Algorithm IV with ε = 0.05 for a period of 10000 steps. The initial and the final graphs

for this simulation are illustrated in Fig. 17. Since d̄(G(0)) = 2.8, the average degree

is guaranteed to remain in [2.8, 4.8] for any feasible trajectory, as given in Corollary 4.3.

Since the number of nodes is even, both integers in this interval are feasible values for the

average degree, i.e. M = {3, 4}. In light of Theorem 4.14, the graph is expected to become

either a random 3-regular graph or a random 4-regular. In the simulation presented here, the

graph reaches a 3-regular graph after 862 time steps. Note that once the system entersG0
40,3,

both f (G(t)) and d̄(G(t)) are stationary. The values of the degree range, f (G(t)), and the

average degree, d̄(G(t)), for the first 1000 steps are illustrated in Fig. 18. Once a 3-regular

graph is reached, the graph keeps randomizing in G0
40,3 via r2 and r4. The evolution of the

algebraic connectivity throughout this simulation is shown in Fig. 19. Note that almost

every 3-regular graph is almost Ramanujan. Accordingly, the algebraic connectivity of the

simulated network is observed to be at least 3 − 2
√

2 with a very high probability after a

sufficient amount of time.

57

(a) (b)
Figure 17. Agents follow Algorithm IV so that the initial graph in (a) is transformed into a robust
interaction structure such as the one in (b).

58

0 100 200 300 400 500 600 700 800 900 1000
2.7

2.8

2.9

3

3.1

time (t)

d̄
(G

(t
))

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

time (t)

f
(G

(t
))

Figure 18. The average degree, d̄(G(t)), and the degree range, f (G(t)), for the first 1000 time steps. Once
f (G(t)) = 0 is reached, both d̄(G(t)) and f (G(t)) remains stationary under Φ∗.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

time (t)

α
(G

(t
))

Figure 19. The algebraic connectivity, α(G(t)), as the initial graph in Fig. 17a evolves via Algorithm IV.
After sufficiently large time, α(G(t)) rarely drops below 3 − 2

√
2 (marked with a solid line), since the

corresponding 3-regular graphs are Ramanujan with a very high probability.

59

CHAPTER 5

DISTRIBUTED GRAPH COVERAGE

This chapter presents a decentralized scheme for optimal protection of networks by a group

of mobile security resources with local capabilities. In particular, the following research

problem is considered: Assume that some resources with local monitoring and protection

capabilities are arbitrarily deployed on a network that is unkown apriori. How can these

resources explore the network and optimize their locations in a decentralized manner to ef-

ficiently protect the overall network? This problem is formulated as a distributed coverage

control problem on a graph, and a decentralized solution is obtained using a game theoretic

framework. The network is modeled as a connected graph, and the resources are modeled

as a group of mobile agents with possibly heterogeneous sensing and communication ca-

pabilities. The agents are initially deployed on some arbitrary nodes of the graph, and their

task is to maximize the number of covered nodes. The agents are assumed to have distance

limitations in their sensing and communication capabilities. Each agent covers the nodes

within its sensing range, and the set of those nodes are only known to the other agents

within its communication range. Furthermore, in the corresponding discrete-time system,

the agents are allowed to move locally, i.e. they either maintain their positions or move to

some adjacent nodes at each time step.

In the remainder of this chapter, the distributed graph coverage problem is formulated,

and a solution to this problem is obtained using a game theoretic framework. Specifically,

a corresponding potential game is designed and a learning algorithm is employed to max-

imize the overall coverage. Using the proposed scheme, the agents can asymptotically

maintain maximum coverage with an arbitrarily high probability.

60

5.1 Problem Formulation

Consider a connected undirected graph, G = (V, E), and let I = {1, 2, . . . ,m} denote a set of

m mobile agents located on some nodes, {v1, v2, . . . , vm} ⊆ V . Let each agent, i ∈ I, have

a sensing range, δi. We assume that each agent, i, can sense the subgraph induced by the

nodes within its δi-neighborhood. As such, an agent i ∈ I located at a node vi ∈ V covers

all the nodes in Nδi
vi given as

Nδi
vi

= {v ∈ V | d(v, vi) ≤ δi}, (50)

where d(v, vi) denotes the distance between v and vi. Any node of the graph is covered if

it is included in the δ-neighborhood of at least one agent, and the set of covered nodes,

Vc ⊆ V , is given as

Vc(v1, . . . , vm) =
⋃
i∈I

Nδi
vi
. (51)

Furthermore, let each agent, i, have a communication range, δc
i . At each time step,

each agent, i, broadcasts the list of nodes covered by itself to the other agents within its

communication range, δc
i . Through such communications, the set of nodes covered by i is

known to j, if j is at most δc
i away from i, as illustrated in Fig. 20. Agents update their

positions on the graph based on the available information. Each agent can either maintain

its position or move to an adjacent node in the consecutive time steps of the corresponding

discrete time system.

Given a set of mobile agents with local capabilities, the goal in the distributed graph

coverage (DGC) problem is to design some local rules for the agents to follow in updating

their positions such that they asymptotically maximize the number of covered nodes, |Vc(t)|.

In general, a rule is considered to be local if its execution by an agent requires only some

information available within a small distance from the agent. Following such local rules,

the agents can move on the graph in a decentralized fashion.

61

Definition (Distributed Graph Coverage Problem): Let m mobile agents be deployed on

a connected graph, G = (V, E). For each agent i, let vi(t) ∈ V denote its position, and let

Vc(t) denote the set of covered nodes. Find some local rules for updating v1(t), . . . , vm(t) to

asymptotically maximize |Vc(t)| subject to d(vi(t + 1), vi(t)) ≤ 1 for every i.

δ1 = 1

δc1 = 3

1

2

3

Figure 20. An illustration of the agent capabilities in the DGC problem. Agent 1 has as cover range
δ1 = 1 and communication range δc

1 = 3. The set of nodes that are covered by agent 1 is known to agent
2 via local communications. However, agent 3 does not receive that information.

5.2 Solution Approach

In the DGC problem, a group of mobile agents are required to explore a graph, which

is unknown apriori, and to cover as many nodes of the graph as possible. As such, the

underlying locational optimization problem is similar to the maximum coverage problem

in [65] with uniformly weighted nodes. Such NP-hard problems are typically tackled by

finding sufficiently good approximate solutions through fast algorithms (e.g. [81, 82, 69]).

Similarly, in many distributed coverage control studies, a locational optimization function

is optimized by the agents aiming for the best local improvements (e.g., [51]-[56]). Such

a distributed greedy approach can be employed to solve the DGC problem. Accordingly,

the agents may move on the graph to maximally improve the local coverage. However,

the resulting performance would significantly depend on the graph structure and the initial

62

configuration. A distributed greedy method may quickly lead to a good approximation

if the agents start with a sufficiently good initial coverage or if the interaction graph has

certain structural properties. However, it may lead to very inefficient configurations for

arbitrary graphs and initial conditions. For instance, consider the scenario in Fig. 21,

where 2 agents with sensing ranges of 1 can achieve globally optimal coverage in 2 time

steps. In this example, the agents would not leave the initial configuration through a greedy

approach, and the resulting performance would be arbitrarily poor for an arbitrarily larger

graph obtained by adding more nodes attached to the initially uncovered hub.

2

1

2

1

2

1

(a) (b) (c)

Figure 21. A possible trajectory to a globally optimal configuration in a simple example. Two agents
with cover ranges of 1 are initially located as in (a). The number of covered nodes (shown in gray and
black) is reduced in the intermediate step in (b) to reach the global optimum in (c).

In order to ensure efficient coverage for arbitrary graphs and initial configurations, a

solution method should occasionally allow for graph exploration at the expense of a better

coverage. In this work, we present such a solution by approaching the problem from a game

theoretic perspective. In the resulting scheme, while the agents have high probabilities of

taking actions that locally improve coverage, they may also take locally worse actions with

much smaller probabilities in order to allow for further exploration and search for a global

optimum. As such, the proposed method is essentially similar to algorithms such as ε-

greedy, softmax, and simulated annealing (e.g., [83, 75]), whereas the distributed nature of

the system is captured via a game theoretic formulation. Also, through the utility design

and the constrained action sets, both the information required by the agents and the position

updates are local in the resulting scheme.

63

Before presenting the proposed game theoretic solution, some preliminaries about game

theory and stochastic stability are provided.

5.2.1 Game Theory Preliminaries

A finite strategic game Γ = (I, A,U) consists of three components: (1) a set of m players

(agents) I = {1, 2, . . . ,m}, (2) an m-dimensional action space A = A1×A2× . . . ×Am, where

each Ai is the action set of player i, and (3) a set of utility functions U = {U1,U2, . . . ,Um},

where each Ui : A 7→ < is a mapping from the action space to real numbers. For any

action profile, a ∈ A, let a−i denote the actions of players other than i. Using this notation,

an action profile a can also be represented as a = (ai, a−i). Each utility function represents

the preferences of the corresponding agent over the action profiles. In strategic games, each

agent aims to optimize its own utility. A well known notion of equilibrium for such utility

maximizers is Nash equilibrium. An action profile, a∗ ∈ A, is called a Nash equilibrium if

each agent is playing a best response to the actions of the other agents, i.e.

Ui(a∗i , a
∗
−i) = max

ai
Ui(ai, a∗−i), ∀i ∈ I (52)

Game theoretic formulation of a cooperative control problem involves the design of a

corresponding game and a learning algorithm. In game theoretic learning, starting with

an arbitrary action profile, the agents repetitively play a game. At each time instant t ∈

{0, 1, 2, . . .}, each agent i ∈ I plays an action ai(t) and receives some utility, Ui(a(t)). Based

on the history of received utilities, the agents update their actions by following a learning

algorithm. Some learning algorithms include, but not limited to, Cournot best response,

fictitious play, and log-linear learning. In this setting, the role of learning is to drive the

action profile to the set of desired action profiles. The dynamics of the action profile in-

duced by a learning algorithm depends on the utility functions. For instance, if all agents

follow the Cournot best response, then the action profile almost surely converges to a pure

Nash equilibrium if the utility functions imply the finite improvement property, i.e. for any

action profile there is a finite sequence of unilateral best response updates leading to a Nash

64

equilibrium.

A class of games that is widely utilized in cooperative control problems is potential

games. In potential games, there exists a potential function φ : A 7→ < such that the

change of a player’s utility resulting form its unilateral deviation from an action profile

equals the resulting change in φ. More precisely, for each player i, for every ai, a′i ∈ Ai, and

for all a−i ∈ A−i,

Ui(a′i , a−i) − Ui(ai, a−i) = φ(a′i , a−i) − φ(ai, a−i). (53)

In cooperative control applications, usually the potential function φ represents the global

objective of the control problem, which depends on the actions of all agents. Note that

(53) and (52) together imply that the set of potential maximizers is a subset of the Nash

equilibria. Once a cooperative control problem is mapped to a potential game, various

game theoretic learning algorithms, such as log-linear learning (LLL) [84], can be utilized

to drive the action profile to the set of potential maximizers. Essentially, the LLL is a noisy

best response algorithm. It induces a Markov chain over the action space with a limiting

distribution, µ∗ε , where ε denotes the noise parameter. As the noise parameter, ε, goes down

to zero, the limiting distribution, µ∗ε , has an arbitrarily large part of it mass over the set

of potential maximizers. This result pertains to the notion of stochastic stability, which is

presented next.

5.2.2 Stochastic Stability Preliminaries

Definition (Regular Perturbed Markov Chain): Let P be the transition matrix of a discrete-

time Markov chain over a finite state space X. A perturbed Markov chain with the noise

parameter ε is called a regular perturbed Markov chain if

1. Pε is aperiodic and irreducible for ε > 0,

2. limε→0 Pε = P,

65

3. For any x, x+ ∈ X if Pε(x, x+) > 0, then

0 < lim
ε→0+

Pε(x, x+)
εR(x,x+) < ∞, (54)

where R(x, x+) is called the resistance of the corresponding transition.

Since a regular perturbed Markov chain, Pε , is aperiodic and irreducible, it has a limit-

ing distribution µ∗ε .

Definition (Stochastically Stable State): Let Pε denote a regular perturbed Markov chain

over a state space, X. Any state, x ∈ X, is stochastically stable if

lim
ε→0+

µ∗ε(x) > 0. (55)

5.3 Proposed Solution

In this section, the proposed game theoretic solution for the DGC problem is presented.

5.3.1 Game Design

In order to formulate the DGC problem in a game theoretic setting, first a corresponding

game should be designed. In particular, a potential game, ΓDGC = (I, A,U), will be designed

in this section by defining the action sets and the utility functions.

In the DGC problem, the coverage provided by each agent is determined by the position

of the agent. Hence, the action of an agent can be defined as its position on the graph. As

such, each action set is equal to the node set of G = (V, E), i.e.

Ai = V, ∀i ∈ I. (56)

Accordingly, an action profile, a ∈ A, is the vector of agent positions.

In order to obtain a potential game that can be used to solve the DGC problem, the

number of covered nodes is chosen to be the corresponding potential function φ(a), i.e.

φ(a) = |Vc(a)|. (57)

66

Then, the utilities should be designed such that φ(a) in (57) is indeed a potential function

for the resulting game. This can be achieved by setting the agent utility functions as

Ui(a) = |Nδi
ai
\
⋃
j,i

N
δ j
a j |. (58)

As such, for any action profile, each agent gathers a utility equal to the number of nodes

that are only covered by itself. Note that this utility is equal to the marginal contribution

of the corresponding agent to the number of covered nodes. An action profile and the

corresponding utilities are illustrated through an example in Fig. 22, where two agents

with communication ranges of 1 are covering a graph consisting of 6 nodes.

δ1 = 1

δ2 = 1

1
2

U1(a) = 2 U2(a) = 3

Figure 22. Two agents are covering a graph. In ΓDGC , the action of an agent is its position on the graph,
and each agent gathers a utility equal to the number of nodes that are only covered by itself. Hence,
none of the agents gathers a utility for covering the node shown in red.

Lemma 5.1 Utility functions in (58) lead to a potential game ΓDGC = (P, A,U) with the

potential function given in (57).

Proof: Let ai = vi and a′i = v′i be two possible actions for agent i, and let a−i denote

the actions of other agents. Due to (51) and (57),

φ(a) = |
⋃
i∈I

Nδi
ai
| (59)

For any agent i, (59) can be expanded as

φ(a) = |Nδi
ai
\
⋃
j,i

N
δ j
a j | + |

⋃
j,i

Nδi
ai
| = Ui(ai, a−i) + |

⋃
j,i

N
δ j
a j |. (60)

67

Using (60) for any pair of actions ai and a′i ,

φ(a′i , a−i) − φ(ai, a−i) = Ui(a′i , a−i) − Ui(ai, a−i). (61)

�

5.3.2 Learning Dynamics

In order to solve the DGC problem through ΓDGC, a learning algorithm should be employed

to drive the agent to the action profiles that maximize the number of covered nodes. Note

that ΓDGC is designed such that the number of covered nodes is the potential function.

For potential games, a learning algorithm known as log-linear learning (LLL) can be

used to asymptotically reach action profiles that maximize the potential function φ(a) [84].

LLL induces a regular perturbed Markov chain over the action space. Furthermore, the

stochastically stable states are the global maximizers of the potential function, i.e.

lim
ε↓0

µ∗ε(a) > 0 ⇐⇒ φ(a) ≥ φ(a′),∀a′ ∈ A, (62)

where µ∗ε is the limiting distribution of the resulting Markov chain, and ε > 0 is the noise

parameter to be set in the LLL algorithm.

However, the classical LLL assumes that each player i has access to all the actions

in its action set Ai. In general, the stochastic stability of the potential maximizers is not

guaranteed when the system evolves on constrained action sets, i.e. when each agent i is

allowed to choose its next action action ai(t + 1) only from a subset of actions Ac
i (ai(t)) that

depends on its current action ai(t). Note that this is indeed the case for the DGC problem,

where each agent can either maintain its position or move to an adjacent node, i.e.

Ac
i (ai) = {a′i | d(ai, a′i) ≤ 1}, (63)

where d(ai, a′i) denotes the distance between ai and a′i .

The issue of constrained action sets was addressed in [85], and Binary Log-Linear

Learning (BLLL) was proposed as a variant of LLL that can maximize the potential in a

setting with constrained action updates.

68

Algorithm V: Binary Log-linear Learning ([85])

1 : initialization: ε ∈ <+ small, a ∈ A arbitrary

2 : repeat

3 : Pick a random i ∈ I, and a random a′i ∈ Ac
i (ai).

4 : Compute α = ε−Ui(a(t)), β = ε−Ui(a′i ,a−i(t)).

5 : With probability β
α+β , set ai = a′i .

6 : end repeat

In BLLL, a single agent is randomly chosen at each time step. The selection of a single

agent at each time step can be achieved (with a very high probability) without a centralized

coordination. One possible distributed approach is to use the asynchronous time model

proposed in [86]. In this model, each agent has a virtual clock that ticks according to a rate 1

Poisson process, and an agent is chosen whenever its clock ticks. As such, with a very high

probability, a single updating agent is picked at each step. The selected agent, assuming

that all the other agents are stationary, updates its action depending on its current utility

and the hypothetical utility it would receive by playing a random action in its constrained

action set. This is illustrated in Fig. 23.

U1(a1, a2) = 4

2
1

δ1 = 2

δ2 = 1

U1(a
′
1, a2) = 5

2
1

(a) (b)

Figure 23. An illustration of the BLLL algorithm. Two agents have the action profile, (a1, a2), as in (a),
and agent 1 is updating its action. Agent 1 randomly picks a candidate action, a′1 ∈ Ac

i (ai), as in (b). Its
next action is picked from {a1, a′1} with probabilities depending on the corresponding utilities.

69

In [85], it was shown that BLLL can be used to achieve potential maximization in a

constrained setting if the constrained action sets satisfy Properties 1 and 2 provided below.

Property 1 (Reachability) For any agent pi ∈ P and any action pair a0
i , a

k
i ∈ Ai, there exists

a sequence of actions {a0
i , a

1
i , . . . , a

k
i } such that ar

i ∈ Ac
i (a

r−1
i) for all r ∈ {1, 2, . . . , k}.

Property 2 (Reversability) For any agent pi ∈ P and any action pair ai, a′i ∈ Ai,

a′i ∈ Ac
i (ai) ⇐⇒ ai ∈ Ac

i (a
′
i).

Theorem 5.2 [85] Consider any finite potential game and constrained action sets satis-

fying Properties 1 and 2. If all players adhere to binary log-linear learning, then the

stochastically stable states are the set of potential maximizers.

In light of Theorem 5.2, the agents can maximize the coverage by following the BLLL

algorithm in a repetitive play of ΓDGC, if the constrained action sets given in (63) satisfy

Properties 1 and 2. Lemma 5.3 shows that the constrained action sets in ΓDGC indeed satisfy

these properties if the graph to be covered is connected.

Lemma 5.3 The constrained action sets in (63) satisfy Properties 1 and 2 if the graph

G = (V, E) is connected.

Proof: If the graph is connected, then there exists a finite-length path {v0, . . . , vk} be-

tween any pair of nodes v0, vk ∈ V , and Property 1 is satisfied. Furthermore, for undirected

graphs, d(v, v′) = d(v′, v). Hence, Property 2 is also satisfied. �

5.3.3 Sufficient Communications

In order to execute BLLL in a repetitive play of ΓDGC, each agent should be able to compute

its current utility as well as the hypothetical utilities it may gather by moving to a neigh-

boring node. As such, the agents should be able to compute those utilities by using the

information gathered through local communications. This requirement is satisfied if the

agents have sufficiently large communication ranges. Accordingly, a sufficient condition

for the communication ranges is derived as follows.

70

Lemma 5.4 An agent, i ∈ I, is within the communication range of any other agent covering

a node, v ∈ V, if

d(ai, v) ≤ min
j∈I

(δc
j − δ j), (64)

where δ j and δc
j denote the cover range and the communication range of j, respectively.

Proof: Let k be an agent covering v. From the triangle inequality,

d(ai, ak) ≤ d(ai, v) + d(ak, v). (65)

Note that d(ak, v) ≤ δk since v is covered by k. Using this inequality and plugging (64) into

(65),

d(ai, ak) ≤ min
j∈I

(δc
j − δ j) + δk. (66)

Since min j∈I(δc
j − δ j) ≤ δc

k − δk,

d(ai, ak) ≤ δc
k − δk + δk = δc

k, (67)

which implies that i is within the communication range of k. �

Lemma 5.5 Each agent, i, can compute Ui(a′i , a−i) for any action a′i ∈ Ac
i (ai) if

δc
j − δ j ≥ δ

∗ + 1, ∀ j ∈ I, (68)

where δ∗ = max j∈I δ j.

Proof: If (68) holds, then

min
j∈I

(δc
j − δ j) ≥ δ∗ + 1. (69)

Lemma 5.4 and (69) together imply that i located at ai knows the number of agents covering

any node v satisfying

d(ai, v) ≤ δ∗ + 1. (70)

In light of (63), an updating agent, i, can at most be 1 hop away from its current position, ai,

in the next time step. Hence, its coverage set in the next time step can only contain nodes

71

that are at most δi + 1 away from its current position. Note that any such node, v, satisfies

(70) since δi ≤ δ
∗ for any agent pi. Hence, i can compute Ui(a′i , a−i) for any a′i ∈ Ac

i (ai). �

Theorem 5.6 Let each agent, i ∈ I, has a cover range δi and a communication range δc
i

satisfying (68). If all agents follow BLLL in a repetitive play of ΓDGC subjected to the con-

straint in (63), then the stochastically stable action profiles are the coverage maximizers.

Proof: If (68) is satisfied, then Lemma 5.5 implies that the agents can compute the

hypothetical utilities for all the actions in (63). Hence, the agents can follow BLLL to

update their actions. In that case, from Theorem 5.2 and Lemma 5.3, only the potential

maximizers are stochastically stable in a repetitive play of ΓDGC. Due to (57), those are the

configurations maximizing the number of covered nodes, |Vc(a)|. �

5.4 Simulation Results

In this section, some simulation results for the proposed method are presented. In the

simulations, a group of agents are initially deployed on an arbitrary node of a connected

graph. The graph consists of 50 nodes and 78 edges, and it has a diameter of 17. Two

simulations, one for a group of homogeneous agents and one for a group of heterogeneous

agents, are presented below. In both simulations, the agents start with the same initial

condition, and they follow the BLLL algorithm with ε = 0.015. For both simulations, the

number of covered nodes for a period of 10000 time steps, and the configuration of the

agents on the graph at some instants are presented.

In the first simulation, there are 13 homogeneous agents. Each agent has a cover range

of 1 and a communication range of 3. Initially, only 5 nodes are covered by the agents. The

number of covered nodes throughout the simulation is shown in Fig. 24. In accordance

with the BLLL algorithm, the agents are more likely to choose actions that improve their

local coverage, whereas locally worse actions can also be taken with much smaller proba-

bilities to avoid any possible convergence to a poor local optima. Accordingly, the number

of covered nodes is non-decreasing most of the time, but it can occasionally decrease as

72

well. In the simulation, the agents rapidly spread out on the graph, and they cover more

than ninety percent of the graph within 2000 time steps. Once a reasonable coverage is

achieved, reaching the global optima, i.e. a complete coverage, takes relatively longer. Af-

ter a sufficient amount of time, the agents maintain a complete coverage most of the time

due to the stochastic stability of the potential maximizers. The configuration of the agents

on the graph at some instants of this simulation are provided in Fig. 25.

In the second simulation, there are 10 heterogeneous agents. Seven agents have cover

ranges of 1 and communication ranges of 4, whereas the remaining three agents have cover

ranges of 2 and communication ranges of 5. Agents start at the same node as the previous

simulation, and initially they cover 10 nodes. The number of covered nodes throughout the

simulation is shown in Fig. 26. The agents rapidly spread out on the graph, and they cover

more than ninety percent of the graph within 2500 time steps. After 4200 time steps, the

agents maintain a complete coverage majority of the time. The configuration of the agents

on the graph at some instants of this simulation are provided in Fig. 27.

73

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

time (t)

N
u
m
b
e
r
o
f
c
o
v
e
re
d
n
o
d
e
s
(|V

c
(t
)|)

Figure 24. The number of covered nodes as a function of time. 13 homogeneous agents initially start
at an arbitrary location and use the proposed method to cover a graph consisting of 50 nodes. The
number of covered nodes is initially 5, whereas a complete coverage is maintained with a very high
probability after a sufficient amount of time.

Figure 25. The configuration of the agents on the graph at some instants of the first simulation with 10
homogeneous agents. Each agent has a cover range of 1 and a communication ranges of 3. The nodes
having at least one agent located on them are black, the nodes covered by at least one agent are gray,
and the nodes that are not covered are white.

t = 350t = 0 t = 700

t = 2800t = 1400 t = 5600

74

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

time (t)

N
u
m
b
e
r
o
f
c
o
v
e
re
d
n
o
d
e
s
(|V

c
(t
)|)

Figure 26. The number of covered nodes as a function of time. 10 heterogeneous agents initially start
at an arbitrary location and use the proposed method to cover a graph consisting of 50 nodes. The
number of covered nodes is initially 10, whereas a complete coverage is maintained with a very high
probability after a sufficient amount of time.

Figure 27. The configuration of the agents on the graph at some instants of the first simulation with 10
heterogeneous agents.Seven agents have cover ranges of 1 and communication ranges of 4, whereas the
remaining three agents have cover ranges of 2 and communication ranges of 5. The nodes having at
least one agent located on them are black (square if at least one of the agents on it has a cover range of
2), the nodes covered by at least one agent are gray, and the nodes that are not covered are white.

t = 300t = 0 t = 600

t = 2400t = 1200 t = 4800

75

CHAPTER 6

COMMUNICATION-FREE GRAPH COVERAGE

This chapter presents a communication-free solution for optimal protection of networks

by a group of mobile security resources. To this end, the game theoretic approach in the

previous chapter is extended to drive the resources (agents) to optimal locations on the

network without relying on any explicit communications among the agents. In particular,

a communication-free algorithm is designed for the agents to follow in a repetitive play of

ΓDGC that was designed in the previous chapter. In a communication-free setting, the agents

can not compute the exact utilities resulting from their actions. Hence, they need to operate

based on some estimated utilities. In the proposed method, an updating agent obtains these

estimations by moving around its current coverage area to see which of those nodes (if

any) are also covered by some other agents. Using the proposed method, the agents can

asymptotically maintain globally optimum coverage with an arbitrarily high probability.

6.1 Problem Formulation

In the previous chapter, the distributed graph coverage (DGC) problem was solved for a

setting, where each agent i ∈ I has a cover range, δi, and a communication range, δc
i .

As such, each agent can cover all the nodes within δi, and broadcasts the list of nodes

covered by itself to the other agents within its communication range, δc
i . A game theoretic

solution was proposed for this setting by designing a corresponding potential game, ΓDGC,

and employing a learning algorithm, BLLL. Furthermore, Lemma 5.5 provided a sufficient

condition for the cover ranges to ensure that the agents can compute the utilities needed to

execute the BLLL algorithm. In Theorem 5.6, it was shown that if the agents with such

sufficiently large communication ranges follow the BLLL algorithm in a repetitive play of

ΓDGC, then the stochastically stable action profiles are the coverage maximizers . As such,

the agents asymptotically maintain maximum coverage with an arbitrarily large probability.

76

The BLLL algorithm requires the agents to be able to measure their utilities resulting

from their current actions as well as the hypothetical utilities they may gather by unilater-

ally switching to some other actions. Alternatively, payoff-based algorithms may be uti-

lized to avoid the necessity to compute those hypothetical utilities. If the agents execute

a payoff-based algorithm in ΓDGC, then they only need to compute their current utilities,

and the sufficient communication ranges provided in Lemma 5.5 can be reduced by one. A

payoff-based implementation of BLLL was presented in [85]. Alternatively, a payoff-based

learning algorithm to achieve power-aware coverage on a discretized space was presented

in [57]. Note that any algorithm, whether it is payoff-based or not, requires some commu-

nications in ΓDGC if the agents need to know their exact utilities to execute the algorithm.

Note that agents with overlapping coverage are not necessarily withing the sensing range of

each other. As such, the agents cannot measure the number of nodes that are only covered

by themselves in a communication-free setting. However, if all the agents have identical

sensing ranges, i.e. δ1 = δ2 = . . . = δm = δ, then each agent detect if any other agent is also

covering its current position as illustrated in Fig. 28.

1

2

Figure 28. Distributed graph coverage by agents with identical sensing ranges and no communication
capabilities. Agents 1 and 2 do not know the node in red is covered by both of them. However, each of
them knows its current position is covered only by itself since no other agent is within its sensing range.

Since the exact utilities in ΓDGC are not measurable in a communication-free setting, the

agents need to update their actions based on some estimated utilities. This chapter presents

77

a such communication-free coverage maximization algorithm.

6.2 Proposed Solution

This section presents the proposed communication-free coverage maximization algorithm

(CFCM) to be followed by agents with identical sensing ranges in a repetitive play of ΓDGC.

Without communications, the agents cannot compute their exact utilities at each time step.

However, if all the agents have identical sensing ranges, i.e. δ1 = δ2 = . . . = δm = δ, then

each agent, i, observes a partial utility representing whether its current position is covered

by any other agent. Let ui(ai, a−i) be the binary partial utility denoting if agent i is the only

agent covering its current position, i.e.

ui(ai, a−i) =

1 if d(ai, a j) > δ ∀ j , i,

0 otherwise.
(71)

In the proposed algorithm, the agents update their actions based on estimated utilities

gathered by moving around to sample the partial utilities from the nodes within their sens-

ing range, δ. Note that, for ΓDGC, the agent utilities in (58) can be expanded as

Ui(a) = |Nδ
ai
\
⋃
j,i

Nδ
a j
| =
∑

v∈Nδ
ai

ui(v, a−i), (72)

where, each ui(v, a−i) is the partial utility agent i gathers by covering node v. Note that

Ui(a) is not available to i in the communication-free setting. However, assuming that the

nearby agents will be stationary for a sufficient amount of time, i can construct an estimate

by visiting each v ∈ Nδ
ai

and sampling ui(v, a−i) as defined in (71). Note that the resulting

estimation is not necessarily equal to the actual utility since multiple agents may be moving

simultaneously as illustrated in Fig. 29. However, if the probability of multiple agents

moving at the same time is sufficiently small, then a noisy best-response based on the

estimated utilities can provide an asymptotic performance similar to the solution in the

previous chapter. The proposed communication-free algorithm is based on this approach.

78

2

1?

(a) (b)

2

1

2

1

(c)

?

Figure 29. Two agents with sensing ranges of 1 are located on a graph as in (a). Part of the graph that
is not sensed by agent 1 is dashed in the figures. Agent 1 can estimate its utility form the action profile
in (a) by sampling the partial utilities from the nodes in its sensing range. If agent 2 is stationary in
the meantime, then the resulting estimation will be true. However, if agent 2 is also moving, then the
sampled partial utilities may be true as in (b) or false as in (c).

In the proposed algorithm, each agent i is either stationary or experimenting. Stationary

agents are the ones that maintain their actions in the next time step with a high probability,

1 − εr, where ε ∈ <+ is the noise parameter (small), and r ∈ <+ sets the likelihood (more

likely for higher r) of having a single agent experimenting at a time. Each stationary agent

starts an experiment, with probability εr, to compare its current action, a1
i , to an alternative

randomly picked from its constrained action set, a2
i ∈ Ac

i (a
1
i), where Ac

i (a
1
i) the local neigh-

borhood as given in (63). In this aspect, the agent behavior is similar to the payoff-based

BLLL in [85]. However, since the agents can only observe some partial utilities, ui(ai, a−i),

an experiment consists of visiting all the nodes in Nδ
a1

i
∪ Nδ

a2
i

to see which of those nodes

are also covered by some other agents. During an experiment, the corresponding utility

estimations, Û1
i and Û2

i , are obtained by combining the sampled partial utilities.

In order to compare two actions, a1
i and a2

i ∈ Ac
i (a

1
i), agent i follows an experiment path

between a1
i and a2

i . An experiment path is a finite path from a1
i to a2

i that traverses all the

nodes in Nδ
a1

i
∪ Nδ

a2
i
.

79

Definition (Experiment Path): Let δ be the sensing range of the agents. For any a1
i and

a2
i ∈ Ac

i (a
1
i), a finite path, {a1

i , . . . , a
2
i }, is an experiment path if it traverses Nδ

a1
i
∪ Nδ

a2
i
.

For any a1
i and a2

i ∈ Ac
i (a

1
i), an experiment path can be obtained locally by utilizing meth-

ods such as depth-first search or breadth-first search (e.g., [87]). In the CFCM algorithm,

E(a1
i , a

2
i) denotes an experiment path between a1

i and a2
i . During the experiment, the agent

traverses its experiment path to obtain the estimated utilities, Û1
i and Û2

i . For simplicity,

a partial utility from a node is sampled only at the last visit to that node during the ex-

periment. As such, if it is the last visit of the current position, ai, and the agent does not

sense any other agent within δ, then the utility estimations for the candidate actions within

δ are incremented by 1. Once the experiment path is traversed, the agent randomly chooses

between the two candidate actions based on the estimated utilities, Û1
i and Û2

i . At the next

time step, the agent becomes stationary at its chosen action until its next experiment.

For the CFCM algorithm, the state of any agent i can be defined as

xi = [S i ki Û1
i Û2

i
], (73)

where S i is a sequence of actions, which is either a singleton (stationary) or an experiment

path (experimenting), ki ∈ {1, . . . , |S i|} is an index variable denoting which action in S i is

currently taken by the agent, and Û1
i , Û

2
i are the estimations for Ui(a1

i , a−i) and Ui(a2
i , a−i),

respectively. In this representation, the current action, ai, and the candidate actions, a1
i and

a2
i , are given by S i and ki as

ai = S i(ki), (74)

a1
i = S i(1), (75)

a2
i = S i(|S i|), (76)

where S i(ki) denotes the kth
i element in S i, and |S i| denotes the length of S i.

80

Algorithm VI: Communication-free Coverage Maximization (CFCM)

1 : initialization: ai ∈ Ai arbitrary, S i = {ai}, ki = 1, Û1
i = Û2

i = 0

ε ∈ <+ (small), r ∈ <+.

2 : repeat

3 : ai = S i(ki), a1
i = S i(1), a2

i = S i(|S i|).

4 : if (|S i| = 1)

5 : Generate a random (uniform) γ ∈ [0, 1].

6 : if (γ ≤ εr)

7 : a2
i is randomly (uniform) chosen over Ac

i (a1
i).

8 : S i = E(a1
i , a

2
i).

9 : end if

10 : else

11 : if (ki ≥ k, ∀k ∈ {k | S i(k) = ai})

12 : Û1
i = Û1

i + ui(ai, a−i), if ai ∈ N
δ
a1

i
.

13 : Û2
i = Û2

i + ui(ai, a−i), if ai ∈ N
δ
a2

i
.

14 : end if

15 : if (ki = |S i|)

16 : α = ε−Û1
i , β = ε−Û2

i .

17 : S i =

{a1

i } w.p. α
α+β ,

{a2
i } otherwise.

18 : ki = 1, Û1
i = Û2

i = 0.

19 : else

20 : ki = ki + 1.

21 : end if

22 : end if

23 : end repeat

81

Note that the CFCM algorithm is memoryless since the state of every agent in the next

time step is independent of the past trajectory. As such, if all agents follow the CFCM

algorithm, then a Markov chain is induced over the state space, X, where each x ∈ X is the

global state obtained by concatenating the states of all agents, i.e.

x = [x1, x2, . . . , xm], (77)

where each xi denotes the state of the corresponding agent as given in (73).

In the remainder of this section, it will be shown that the Markov chain induced by

the CFCM algorithm is a regular perturbed Markov chain. Furthermore, it will be shown

that the stochastically stable states are the coverage maximizers for sufficiently large values

of the parameter r. To this end, a resistance-tree analysis will be presented. Prior to this

analysis, some preliminaries about resistance trees are provided.

6.2.1 Stochastic Stability and Resistance Trees

Let Pε be a regular perturbed Markov chain over a state spaceX. For any x ∈ X, a spanning

tree rooted at x, Tx, is a directed graph, where the nodes correspond to states, directed

edges correspond to some feasible state transitions, and there is a unique directed path on

Tx from any state x′ , x to x. The resistance of such a tree, R(Tx), is defined as the sum

of the resistances of its edges, where the resistance of each edge is given as in (54). T ∗x is

called a minimum resistance tree if R(T ∗x) ≤ R(Tx) for any Tx, i.e. any spanning tree rooted

at x has at least as much resistance as T ∗x . The stochastic potential of a state, x, is defined

as the total resistance of its minimum resistance tree, R(T ∗x).

Lemma 6.1 [88] Let Pε be a regular perturbed Markov chain. Any x ∈ X is stochastically

stable if and only if x is a recurrent state of the unperturbed chain, P0, with the minimum

stochastic potential.

In light of Lemma 6.1 and the definition of stochastic potential, the stochastically stable

states can be determined through a resistance tree analysis.

82

6.2.2 Limiting Behavior

For any x ∈ X, the agents can be grouped into two distinct sets consisting of the stationary

agents, Is(x), and the experimenting agents, Ie(x), as

Is(x) = {i ∈ I | |S i| = 1}, (78)

Ie(x) = I \ Is(x). (79)

Using these sets, for any feasible transition, x → x+, the agents can be grouped into 4

disjoint sets based on the transition of their individual states:

Iss(x, x+) = Is(x) ∩ Is(x+), (80)

Ise(x, x+) = Is(x) ∩ Ie(x+), (81)

Iee(x, x+) = Ie(x) ∩ Ie(x+), (82)

Ies(x, x+) = Ie(x) ∩ Is(x+), (83)

where Iss(x, x+) are the agents that remain stationary, Ise(x, x+) are the ones starting to

experiment, Iee(x) are the experimenting agents that have not completed moving along their

experiment paths, and Ies(x) are the agents that have completed traversing their experiment

paths and choose between their candidate actions.

The agents in Ies(x, x+) can be further partitioned as the ones choosing their first candi-

date action and the ones that choose their second candidate action, i.e.

I1
es(x, x+) = {i ∈ Ies(x, x+) | a+

i = a1
i }, (84)

I2
es(x, x+) = {i ∈ Ies(x, x+) | a+

i = a2
i }. (85)

Note that the agents in Ies(x, x+) do not necessarily choose the action resulting in the

higher estimated utility. For each i ∈ I, let Û∗i =max{Û1
i , Û

2
i }. Then, the amount of estimated

utility that is denied in the transition x→ x+ is given as

∆i(xi, x+
i) =

Û∗i − Û1

i if i ∈ I1
es(x, x+),

Û∗i − Û2
i if i ∈ I2

es(x, x+),

0 otherwise.

(86)

83

Lemma 6.2 Let all agents follow the CFCM algorithm to cover a graph, G = (V, E), and

let ∆∗ be

∆∗ = max
(v,v′)∈E

|Nδ
v \ N

δ
v′ |. (87)

Then, for any feasible transition x→ x+,

∆∗ ≥ max
i∈I

∆i(xi, x+
i). (88)

Proof: Let x → x+ be a feasible transition. For any i ∈ Is(x), Û1
i = Û2

i = 0. On

the other hand, for any i ∈ Ie(x), the sampled partial utilities from the nodes Nδ
a1

i
∩ Nδ

a2
i
,

contribute equally to both Û1
i and Û2

i . Hence,

max{|Nδ
a1

i
\ Nδ

a2
i
|, |Nδ

a2
i
\ Nδ

a1
i
|} ≥ |Û1

i − Û2
i |, ∀i ∈ I. (89)

In light of (89) and (86),

max{|Nδ
a1

i
\ Nδ

a2
i
|, |Nδ

a2
i
\ Nδ

a1
i
|} ≥ ∆i(xi, x+

i), ∀i ∈ I. (90)

Since (a1
i , a

2
i) ∈ E for any i ∈ Ie(x), (87) implies

∆∗ ≥ max{|Nδ
a1

i
\ Nδ

a2
i
|, |Nδ

a2
i
\ Nδ

a1
i
|}, ∀i ∈ I. (91)

Finally, (90) and (91) together imply (88).

�

Next, it will be shown that the perturbed Markov process induced by the CFCM al-

gorithm is a regular perturbed process. Furthermore, if the agents follow the CFCM with

r > ∆∗, then the paths between all-stationary (Is(x) = I) states on any minimum resistance

tree consist of unilateral experimentations. Note that with unilateral experimentations, the

utility estimations at the end of an experimentation path is equal to the true utilities. As

such, for r > ∆∗, the stochastically stable states are the all-stationary states maximizing the

number of covered nodes.

84

Lemma 6.3 If all agents employ the CFCM algorithm, then a regular perturbed Markov

chain is induced over X, and the resistance of any feasible transition, x→ x+, is

R(x, x+) = r|Ise(x, x+)| +
∑

i∈Ies(x,x+)

∆i(xi, x+
i). (92)

Proof: In Pε , for ε > 0, any all-stationary state can be reached from any other all-

stationary state by a sequence of experiments, given the graph is connected. Furthermore,

any state that is not all-stationary lies on a feasible path between two all-stationary states.

Hence, Pε is irreducible. Furthermore, since the stationary agents remain stationary with

probability 1 − εr, aperiodicity immediately follows from the resulting self-loops at all-

stationary states.

The probability any feasible transition from x to x+, given in Pε , is the joint probability

of state transitions of individual agents. Note that for any agent, i ∈ Iee(x), the transition

from xi to x+
i does not have any randomness. Hence, the probability of transition from x to

x+ is

Pε(x, x+) = Pr[I1
es(x, x+)] Pr[I2

es(x, x+)] Pr[Iss(x, x+)] Pr[Ise(x, x+)], (93)

where each term on the right side of (93) denote the joint probability of state transitions for

the agents in the corresponding subset, and they are given as

Pr[I1
es(x, x+)] =

∏
i∈I1

es(x,x+)

ε−Û1
i

ε−Û1
i + ε−Û2

i

, (94)

Pr[I2
es(x, x+)] =

∏
i∈I2

es(x,x+)

ε−Û2
i

ε−Û1
i + ε−Û2

i

, (95)

Pr[Iss(x, x+)] =
∏

i∈Iss(x,x+)

(1 − εr), (96)

Pr[Ise(x, x+)] =
∏

i∈Ise(x,x+)

εr

|Ac
i (a

1
i)|

Pr[S +
i ; a1

i , a
2
i], (97)

where Pr[S +
i ; a1

i , a
2
i] is the probability of having S +

i as the experiment path for an agent

comparing a1
i and a2

i . Pr[S +
i ; a1

i , a
2
i] depends on the function E(a1

i , a
2
i), and it is independent

85

of ε. Plugging (94)-(97) into (93), one can verify that the resistance R(x, x+) given in (92)

satisfies

0 < lim
ε→0+

Pε(x, x+)
εR(x,x+) < ∞. (98)

�

Since CFCM induces a regular perturbation, only the recurrent states of the unperturbed

(ε = 0) chain can be stochastically stable as given in Lemma 6.1. Note that if ε = 0, then

no agent starts an experiment. In that case, the set of recurrent states, X0
R, contain the

all-stationary states whereas all the remaining states form the set of transient states, X0
T , i.e.

X0
R = {x | Is(x) = I}, (99)

X0
T = X \ X0

R. (100)

Definition (Unilateral Experimentation Path): A feasible sequence of states,P = {x1, x2, . . . xn},

is a unilateral experimentation path if x1, xn ∈ X0
R, x2, . . . , xn−1 ∈ X0

T and for all 1 ≤ p ≤ n−1

|Ise(xp, xp+1)| =

1 if p = 1,

0 otherwise.
(101)

Lemma 6.4 Let T ∗ be a minimum resistance tree, and let x → x+ ∈ T ∗. If x ∈ X0
R, then

|Ise(x, x+)| = 1.

Proof: Since x ∈ X0
R, |Ise(x, x+)| > 0, as otherwise, x+ = x and x → x+ cannot be

contained in a tree. Assume that |Ise(x, x+)| > 1. Then, choose an arbitrary i ∈ Ise(x, x+) to

define an x̃+ , x as

x̃+
j =

x+

j if j , i,

xi otherwise.
(102)

Note that x→ x̃+ is a feasible transition, and R(x, x̃+) = R(x, x+)− r(|Ie(x, x+)| −1). Replac-

ing x → x+ with x → x̃+ would give an alternative tree with a smaller resistance, which

contradicts with T being a minimum resistance tree. �

86

Lemma 6.5 Let T ∗ be a minimum resistance tree, and let x → x+ ∈ T ∗. If x ∈ X0
T and

r > ∆∗, then we have |Ise(x, x+)| < |Ie(x)|.

Proof: Since x ∈ X0
T , Ise(x, x̃+) = ∅ doesn’t imply x̃+ = x. Hence, there exists an

x̃+ , x such that x→ x̃+ is feasible and Ise(x, x̃+) = ∅. For any such x̃+, we have

R(x, x̃+) − R(x, x+) ≤ −r|Ise(x, x+)| + |Ies(x, x̃+)|∆∗. (103)

Note that |Ies(x, x̃+)| ≤ |Ie(x)|. Hence, given r > ∆∗, the right side of (103) is negative for any

|Ise(x, x+)| ≥ |Ie(x)|. In that case, replacing x → x+ with x → x̃+ would give an alternative

tree with a smaller resistance, which contradicts with T being a minimum resistance tree.

Consequently, |Ise(x, x+)| < |Ie(x)|. �

Lemma 6.6 Let r > ∆∗, and let P = {x1, x2, . . . xn} be a sequence of states, where x1, xn ∈

X0
R and x2, . . . , xn−1 ∈ X0

T . If P ∈ T for some minimum resistance tree T , then P is a

unilateral experimentation path.

Proof: Since x1 ∈ X0
R, from Lemma 6.4, we have |Ise(x1, x2)| = 1 leading to |Ie(x2)| =

1. Furthermore, for r > ∆∗, from Lemma 6.5, we have |Ise(x2, x3)| = 0. Hence, we have

|Ie(x3)| ≤ 1. Using Lemma 6.5 recursively along P we obtain

|Ise(xp, xp+1)| =

1 if p = 1,

0 otherwise.
(104)

Hence, P is a unilateral experimentation path. �

Lemma 6.7 If P = {x1, x2, . . . xn} be a unilateral experimentation path, then

R(P) =

n−1∑
p=1

R(xp, xp+1) = r + max{φ(xn), φ(x1)} − φ(xn). (105)

Proof: Since P = {x1, x2, . . . xn} be a unilateral experimentation path, for xp, xp+1 ∈

X0
T , we have

|Ise(xp, xp+1)| = |Ies(xp, xp+1)| = 0. (106)

87

Hence, such transitions have zero resistance, resulting in

R(P) = R(x1, x2) + R(xn−1, xn). (107)

Note that, since x1 ∈ X0
R and P is a unilateral experimentation path, we have R(x1, x2) = r

and R(xn−1, xn) = ∆i(xn−1
i , xn

i), where i ∈ I is the unique experimenting agent. Since all the

other agents are stationary, i.e. a−i is constant along P, the estimated utilities satisfy

(Û1
i)n−1 =

∑
v∈Nδ

a1
i

u(v, a−i) = Ui(a1
i , a−i), (108)

(Û2
i)n−1 =

∑
v∈Nδ

a2
i

u(v, a−i) = Ui(a2
i , a−i). (109)

Plugging (108) and (109) into (86) we obtain

∆i(xn−1
i , xn

i) = max{Ui(xn),Ui(x1)} − Ui(xn). (110)

Since ΓDGC is a potential game, in light of (53), from (110) we obtain

∆i(xn−1
i , xn

i) = max{φ(xn), φ(x1)} − φ(xn). (111)

�

Lemma 6.8 Let r > ∆∗, and let T ∗x and T ∗x′ be minimum resistance trees rooted at some

x, x′ ∈ X0
R. Then,

R(T ∗x) ≤ R(T ∗x′)⇒ φ(x) ≥ φ(x′). (112)

Proof: For r > ∆∗, in light of Lemma 6.6, paths between states in X0
R on a minimum

resistance tree consists of unilateral experimentations. Let x0
R ∈ X

0
R, and let T ∗

x0
R

be a

minimum resistance tree rooted at x0
R. Let xn

R ∈ X
0
R be a state such that R(T ∗

x0
R
) ≤ R(T ∗xn

R
) and

the unique path, P ∈ T ∗
x0

R
, from xn

R to x0
R consists of n unilateral experimentations, i.e.

R(P) =

n∑
k=1

R(Pk), (113)

88

where Pk is the unilateral experimentation starting at xn−k+1
R and ending at xn−k

R . Note that,

for each such Pk, there exists a feasible unilateral experimentation path P′k in the reversed

direction, starting at xn−k
R and ending at xn−k+1

R . Replacing eachPk withP′k, one can construct

a tree rooted at Txn
R
. Note that the resistances of these trees satisfy

R(Txn
R
) − R(T ∗x0

R
) =

n∑
k=1

(R(P′k) − R(Pk))

=

n∑
k=1

(φ(xn−k
R) − φ(xn−k+1

R))

= φ(x0
R) − φ(xn

R). (114)

Note that by definition R(T ∗xn
R
) ≤ R(Txn

R
). Hence, if R(T ∗

x0
R
) ≤ R(T ∗xn

R
), then R(T ∗

x0
R
) ≤ R(Txn

R
)

for any Txn
R
. Plugging this into (114), we obtain φ(x0

R) ≥ φ(xn
R)

�

Theorem 6.9 Let each agent follow the CFCM algorithm with r > ∆∗, and let x be a

stochastically stable state of the resulting Markov chain, Pε . Then, x ∈ X0
R and

|Vc(x)| ≥ |Vc(x′)|, ∀x′ ∈ X0
R. (115)

Proof: Let x be a stochastically stable state of Pε . Due to Lemma 6.1, x ∈ X0
R and

R(T ∗x) ≤ R(T ∗x′) for all x′ ∈ X0
R. In light of Lemma 6.8, if r > ∆∗, then R(T ∗x) ≤ R(T ∗x′)

implies φ(x) ≥ φ(x′) for all x′ ∈ X0
R. As such, (115) is satisfied since φ(x) = |Vc(x)|. �

Theorem 6.9 indicates that if the agents follow the CFCM algorithm with sufficiently

large r, then the stochastically stable states are all-stationary states globally maximizing the

number of covered nodes. As such, if r is taken sufficiently large, then the agents asymptot-

ically maintain maximum coverage with an arbitrarily high probability for arbitrarily small

values of ε. Note that r > ∆∗ in Theorem 6.9 is a sufficient condition to ensure the stochas-

tic stability of potential maximizers based on the sufficient unlikeliness of simultaneous

experiments as given in Lemma 6.6. However, in many cases, r > ∆∗ may not be necessary

since simultaneously updating agents do not spoil the utility estimations of each other as

long as they are far from each other on the graph.

89

6.3 Simulation Results

In this section, some simulation results for the CFCM algorithm are presented. For com-

parison, the simulation is performed for the same scenario as in the previous chapter. A

group of 13 homogeneous agents are initially placed at an arbitrary node of a connected

random geometric graph, which consists of 50 nodes and 78 edges, and has a diameter

of 17. Each agent has a sensing range of δ = 1, and the agents follow the CFCM algo-

rithm with ε = 0.015 and r = 1.5. As such, any stationary agent starts an experiment with

probability 0.0151.5 = 0.0018.

Initially, the agents cover only 5 nodes. The number of covered nodes throughout a

period of 200000 time steps is shown in Fig. 30, whereas the configuration of the agents on

the graph at some instants are provided in Fig. 31. As depicted in Fig. 30, after a sufficient

amount of time, the agents maintain complete coverage with a very high probability. In

particular, for t ≥ 150000, the average number of covered nodes at each time step is 49.7.

If the results in Figs. 30 and 31. are compared to those in Figs. 24 and 25, it is seen

that both the BLLL and the CFCM drive the agents to some global optima in a similar

fashion. However, the CFCM algorithm is performing approximately 30 times slower than

the BLLL algorithm for this particular scenario and the particular values of ε and r. The

speed of convergence to the limiting distribution is reduced in the CFCM mostly due to two

things: First, BLLL assumes that a randomly picked agent updates its action at each time

step, whereas each stationary agent starts an experiment with probability εr in CFCM. Sec-

ond, while the exact utilities are available in BLLL, the agents need to gather estimations

by moving around for multiple time steps before making any decision in CFCM. Despite

the reduced speed of convergence, it should be noted that the main advantage of the CFCM

algorithm is to achieve coverage maximization without relying on any communications

among the agents. As such, CFCM can be employed to optimally place security resources

on networks, even in scenarios that do not allow any explicit communications.

90

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000 200,000
0

5

10

15

20

25

30

35

40

45

50

time (t)

N
u
m
b
er

o
f
co
ve
re
d
n
o
d
es

(|
V
c
(t
)|
)

Figure 30. The number of covered nodes as a function of time. Agents initially start at an arbitrary
location on a graph consisting of 50 nodes. The number of covered nodes is initially 5, whereas a
complete coverage is maintained with a very high probability after a sufficient amount of time.

Figure 31. The configuration of the agents on the graph at some instants of the simulation. The nodes
having at least one agent located on them are black, the nodes covered by at least one agent are gray,
and the nodes that are not covered are white.

t = 10000t = 0 t = 20000

t = 40000 t = 80000 t = 160000

91

CHAPTER 7

CONCLUSIONS

This thesis presents some decentralized graph processes for building robust multi-agent

networks through self-organization. Networks are modeled as interaction graphs through-

out the thesis, and robustness is pursued through formation of robust interaction graphs and

optimal protection of networks by some mobile agents with local capabilities. As such, the

thesis consists of two main parts.

The first part of this thesis presents a decentralized graph reconfiguration scheme for

formation of robust interaction graphs. The robustness of an interaction graph is quantified

via its node/edge expansion ratios. Motivated by the expansion properties of almost every

m-regular graph for m ≥ 3, a decentralized graph reconfiguration scheme is designed to

transform any connected interaction graph into a connected random regular graph with a

similar sparsity as the initial graph. In order to transform any connected graph into a con-

nected random regular graph, the proposed scheme achieves three global tasks simultane-

ously while also maintaining the connectivity: balance the degree distribution, randomize

the local neighborhoods, and drive the average degree to an integer close to its initial value.

The proposed scheme is incrementally built in Chapters 2, 3, and 4. In particular, a graph

grammar, Φ∗, is designed and an algorithm for distributed implementation is also provided.

In Chapter 2, a single-rule degree regularization grammar, ΦR, is presented for balancing

the degree distribution in a multi-agent network. In ΦR, if a node has a neighbor with fewer

links, then it rewires one of its exclusive neighbors to its neighbor with fewer links. As

such, ΦR maintains the graph connectivity and the total number of edges while minimizing

the degree differences in the network. Hence, ΦR transforms any connected graph into a

connected regular graph if the average degree is an integer. This scheme is extended in

Chapter 3 to obtain random regular graphs in order to avoid any possible convergence to

an undesired regular graph. This is achieved by combining the degree regularization rule

92

with a neighborhood randomization rule, where adjacent nodes exchange their exclusive

neighbors. The resulting grammar, ΦRR, minimizes the degree differences and randomizes

the local neighborhoods simultaneously while maintaining the graph connectivity and the

total number of edges. As such, it transforms any connected interaction graph with an in-

teger average degree into a connected random regular graph. Note that having an integer

average degree is a strong property, and it may not be satisfied by the initial graph in many

applications. In order to tackle this issue, Chapter 4 extends ΦRR to obtain random regular

graphs even when the initial average degree is not an integer. The resulting grammar, Φ∗,

allows for occasional addition and removal of edges in balancing the degree distribution,

while ensuring that connectivity is maintained and the total number of edges stays within

some proximity of its initial value. In particular, if the initial connected graph has an aver-

age degree, k, satisfying k > 2, then Φ∗ leads to a connected random m-regular graph such

that k ≤ m ≤ k + 2. Note that k > 2 implies m ≥ 3, and the graphs observed in the limit are

expanders with an arbitrarily high probability for large networks.

The second part of this thesis presents a decentralized scheme for driving a group of

arbitrarily deployed mobile security resources to some optimal locations on a network.

This problem is essentially a distributed coverage control problem, where the resources

with local capabilities are required to optimize their locations to protect as many network

components as possible. In order to maximize the number of covered nodes (coverage), re-

gardless of the initial deployment and the graph structure, a solution method should pursue

both exploration and exploitation. This thesis presents a such solution by formulating the

problem in a game theoretic framework. The proposed solution is presented in Chapters

5 and 6. In Chapter 5, the distributed graph coverage is formulated as a potential game,

ΓDGC, such that the coverage is the corresponding potential function. In ΓDGC, the action

of a resource (agent) is defined as its position on the graph, and the utility of an agent is

the number of nodes that are only covered by itself. It is shown that a group of agents

can asymptotically maintain maximum coverage with an arbitrarily high probability by

93

following a learning algorithm such as binary log-linear learning (BLLL) in a repetitive

play of ΓDGC. The method presented in Chapter 5 requires the agents to have sufficient

local communications to compute their utilities. Chapter 6 extends the solution approach

in Chapter 5 to cases, where no communications are allowed among the agents. In par-

ticular, a communication-free coverage maximization algorithm (CFCM) is designed to be

followed by agents with identical sensing capabilities in a repetitive play of ΓDGC. Since the

agents can not compute their exact utilities in a communication-free setting, any updating

agent moves around within its covered area to estimate which of those nodes (if any) are

also covered by some other agents. Based on the estimated utilities, the agent randomly

chooses one of the two alternative actions. It was shown that the agents can asymptotically

maintain maximum coverage with an arbitrarily high probability by following the CFCM

algorithm.

94

REFERENCES

[1] M. Newman, Networks: an introduction. Oxford University Press, 2010.

[2] M. O. Jackson, Social and economic networks. Princeton University Press, 2010.

[3] O. Mason and M. Verwoerd, “Graph theory and networks in biology,” Systems Biol-
ogy, IET, vol. 1, no. 2, pp. 89–119, 2007.

[4] E. Cascetta, Transportation systems engineering: theory and methods, vol. 49.
Springer, 2001.

[5] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor
networks,” IEEE Communications magazine, vol. 40, no. 8, pp. 102–114, 2002.

[6] F. Bullo, J. Cortés, and S. Martinez, Distributed control of robotic networks: a math-
ematical approach to motion coordination algorithms. Princeton University Press,
2009.

[7] A. H. Dekker and B. D. Colbert, “Network robustness and graph topology,” in Aus-
tralasian Conference on Computer Science, pp. 359–368, 2004.

[8] A. Jamakovic and S. Uhlig, “On the relationship between the algebraic connectivity
and graph’s robustness to node and link failures,” in EuroNGI Conference on Next
Generation Internet Networks, pp. 96–102, 2007.

[9] R. Olfati-Saber, “Ultrafast consensus in small-world networks,” in American Control
Conference, pp. 2371–2378, 2005.

[10] A. Rahmani, M. Ji, M. Mesbahi, and M. Egerstedt, “Controllability of multi-agent
systems from a graph-theoretic perspective,” SIAM Journal on Control and Optimiza-
tion, vol. 48, no. 1, pp. 162–186, 2009.

[11] Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási, “Controllability of complex networks,”
Nature, vol. 473, no. 7346, pp. 167–173, 2011.

[12] H. Ohtsuki, C. Hauert, E. Lieberman, and M. A. Nowak, “A simple rule for the evo-
lution of cooperation on graphs and social networks,” Nature, vol. 441, no. 7092,
pp. 502–505, 2006.

[13] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with
switching topology and time-delays,” Automatic Control, IEEE Transactions on,
vol. 49, no. 9, pp. 1520–1533, 2004.

[14] M. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent networks.
Princeton University Press, 2010.

95

[15] A. Barrat, M. Barthelemy, and A. Vespignani, Dynamical processes on complex net-
works. Cambridge University Press Cambridge, 2008.

[16] V. Latora and M. Marchiori, “Vulnerability and protection of infrastructure networks,”
Physical Review E, vol. 71, no. 1, p. 015103, 2005.

[17] T. T. Kim and H. V. Poor, “Strategic protection against data injection attacks on power
grids,” IEEE Transactions on Smart Grid, vol. 2, no. 2, pp. 326–333, 2011.

[18] V. M. Preciado, M. Zargham, C. Enyioha, A. Jadbabaie, and G. J. Pappas, “Optimal
resource allocation for network protection against spreading processes,” IEEE Trans-
actions on Control of Network Systems,, vol. 1, no. 1, pp. 99–108, 2014.

[19] M. Dziubinski and S. Goyal, “Network design and defence,” Games and Economic
Behavior, vol. 79, pp. 30 – 43, 2013.

[20] H. Jeong, S. P. Mason, A.-L. Barabási, and Z. N. Oltvai, “Lethality and centrality in
protein networks,” Nature, vol. 411, no. 6833, pp. 41–42, 2001.

[21] P. Holme, B. J. Kim, C. N. Yoon, and S. K. Han, “Attack vulnerability of complex
networks,” Physical Review E, vol. 65, no. 5, p. 056109, 2002.

[22] Z. Wang, A. Scaglione, and R. J. Thomas, “Electrical centrality measures for elec-
tric power grid vulnerability analysis,” in IEEE Conference on Decision and Control,
pp. 5792–5797, 2010.

[23] S. P. Borgatti, “Centrality and network flow,” Social Networks, vol. 27, no. 1, pp. 55–
71, 2005.

[24] D. Koschützki, K. A. Lehmann, L. Peeters, S. Richter, D. Tenfelde-Podehl, and
O. Zlotowski, “Centrality indices,” in Network Analysis, pp. 16–61, Springer, 2005.

[25] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Mathematical Journal,
vol. 23, no. 2, pp. 298–305, 1973.

[26] D. J. Klein and M. Randić, “Resistance distance,” Journal of Mathematical Chem-
istry, vol. 12, no. 1, pp. 81–95, 1993.

[27] M. S. Pinsker, “On the complexity of a concentrator,” in 7th International Telegraffic
Conference, vol. 4, pp. 318/1–318/4, 1973.

[28] N. Alon, “Eigenvalues and expanders,” Combinatorica, vol. 6, no. 2, pp. 83–96, 1986.

[29] B. Mohar, “Isoperimetric numbers of graphs,” Journal of Combinatorial Theory, Se-
ries B, vol. 47, no. 3, pp. 274–291, 1989.

[30] S. Hoory, N. Linial, and A. Wigderson, “Expander graphs and their applications,”
Bulletin of the American Mathematical Society, vol. 43, no. 4, pp. 439–561, 2006.

96

[31] M. R. Murty, “Ramanujan graphs,” Journal of the Ramanujan Mathematical Society,
vol. 18, no. 1, pp. 33–52, 2003.

[32] J. Friedman, “A proof of alon’s second eigenvalue conjecture,” in ACM Symposium
on Theory of Computing, pp. 720–724, 2003.

[33] O. Reingold, S. Vadhan, and A. Wigderson, “Entropy waves, the zig-zag graph prod-
uct, and new constant-degree expanders,” Annals of Mathematics, pp. 157–187, 2002.

[34] M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson, “Randomness conductors
and constant-degree lossless expanders,” in ACM Symposium on Theory of Comput-
ing, pp. 659–668, 2002.

[35] E. Rozenman and S. Vadhan, “Derandomized squaring of graphs,” in Approxima-
tion, Randomization and Combinatorial Optimization. Algorithms and Techniques,
pp. 436–447, Springer, 2005.

[36] M. Morgenstern, “Existence and explicit constructions of q+1 regular ramanujan
graphs for every prime power q,” Journal of Combinatorial Theory, Series B, vol. 62,
no. 1, pp. 44–62, 1994.

[37] R. Olfati-Saber, “Algebraic connectivity ratio of ramanujan graphs,” in American
Control Conference, pp. 4619–4624, 2007.

[38] N. C. Wormald, “Models of random regular graphs,” London Mathematical Society
Lecture Note Series, pp. 239–298, 1999.

[39] B. Bollobás, “A probabilistic proof of an asymptotic formula for the number of la-
belled regular graphs,” European Journal of Combinatorics, vol. 1, no. 4, pp. 311–
316, 1980.

[40] A. Steger and N. C. Wormald, “Generating random regular graphs quickly,” Combi-
natorics Probability and Computing, vol. 8, no. 4, pp. 377–396, 1999.

[41] M. Jerrum and A. Sinclair, “Fast uniform generation of regular graphs,” Theoretical
Computer Science, vol. 73, no. 1, pp. 91–100, 1990.

[42] P. Mahlmann and C. Schindelhauer, “Peer-to-peer networks based on random trans-
formations of connected regular undirected graphs,” in ACM Symposium on Paral-
lelism in Algorithms and Architectures, pp. 155–164, 2005.

[43] C. Law and K.-Y. Siu, “Distributed construction of random expander networks,” in
IEEE International Conference on Computer Communications, pp. 2133–2143, 2003.

[44] C. M. Schneider, A. A. Moreira, J. S. Andrade, S. Havlin, and H. J. Herrmann, “Mit-
igation of malicious attacks on networks,” Proceedings of the National Academy of
Sciences, vol. 108, no. 10, pp. 3838–3841, 2011.

97

[45] A. Beygelzimer, G. Grinstein, R. Linsker, and I. Rish, “Improving network robust-
ness by edge modification,” Physica A: Statistical Mechanics and its Applications,
vol. 357, no. 3, pp. 593–612, 2005.

[46] W. Goddard, S. M. Hedetniemi, and S. T. Hedetniemi, “Eternal security in graphs,” J.
Combin. Math. Combin. Comput, vol. 52, pp. 169–180, 2005.

[47] T. C. Du, E. Y. Li, and A.-P. Chang, “Mobile agents in distributed network manage-
ment,” Communications of the ACM, vol. 46, no. 7, pp. 127–132, 2003.

[48] G. Berbeglia, J.-F. Cordeau, and G. Laporte, “Dynamic pickup and delivery prob-
lems,” European Journal of Operational Research, vol. 202, no. 1, pp. 8–15, 2010.

[49] M. Schneider-Fontan and M. J. Mataric, “Territorial multi-robot task division,” IEEE
Transactions on Robotics and Automation, vol. 14, no. 5, pp. 815–822, 1998.

[50] A. Howard, M. J. Matarić, and G. S. Sukhatme, “Mobile sensor network deployment
using potential fields: A distributed, scalable solution to the area coverage problem,”
in Distributed Autonomous Robotic Systems 5, pp. 299–308, Springer, 2002.

[51] J. Cortés, S. Martı́nez, T. Karatas, and F. Bullo, “Coverage control for mobile sensing
networks,” IEEE Transactions on Robotics and Automation, vol. 20, no. 2, pp. 243–
255, 2004.

[52] S. Poduri and G. S. Sukhatme, “Constrained coverage for mobile sensor networks,”
in IEEE International Conference on Robotics and Automation, pp. 165–171, 2004.

[53] M. Schwager, D. Rus, and J.-J. Slotine, “Decentralized, adaptive coverage control
for networked robots,” International Journal of Robotics Research, vol. 28, no. 3,
pp. 357–375, 2009.

[54] L. Pimenta, V. Kumar, R. C. Mesquita, and G. Pereira, “Sensing and coverage for
a network of heterogeneous robots,” in IEEE Conference on Decision and Control,
pp. 3947–3952, 2008.

[55] J. W. Durham, R. Carli, P. Frasca, and F. Bullo, “Discrete partitioning and coverage
control with gossip communication,” in ASME Dynamic Systems and Control Confer-
ence, pp. 225–232, 2009.

[56] S. Yun and D. Rus, “Distributed coverage with mobile robots on a graph: Loca-
tional optimization,” in IEEE International Conference on Robotics and Automation,
pp. 634–641, 2012.

[57] M. Zhu and S. Martı́nez, “Distributed coverage games for energy-aware mobile sensor
networks,” SIAM Journal on Control and Optimization, vol. 51, no. 1, pp. 1–27, 2013.

[58] S. Lloyd, “Least squares quantization in pcm,” IEEE Transactions on Information
Theory, vol. 28, no. 2, pp. 129–137, 1982.

98

[59] J. Cortes, S. Martinez, and F. Bullo, “Spatially-distributed coverage optimization and
control with limited-range interactions,” ESAIM: Control, Optimisation and Calculus
of Variations, vol. 11, no. 4, pp. 691–719, 2005.

[60] A. Kwok and S. Martı́nez, “Deployment algorithms for a power-constrained mobile
sensor network,” International Journal of Robust and Nonlinear Control, vol. 20,
no. 7, pp. 745–763, 2010.

[61] G. Arslan, J. Marden, and J. S. Shamma, “Autonomous vehicle-target assignment:
a game theoretical formulation,” ASME Journal of Dynamic Systems, Measurement,
and Control, pp. 584–596, 2007.

[62] J. R. Marden and A. Wierman, “Distributed welfare games with applications to sensor
coverage,” in IEEE Conference on Decision and Control, pp. 1708–1713, 2008.

[63] A. Arsie, K. Savla, and E. Frazzoli, “Efficient routing algorithms for multiple vehicles
with no explicit communications,” IEEE Transactions on Automatic Control, vol. 54,
no. 10, pp. 2302–2317, 2009.

[64] J. Reese, “Solution methods for the p-median problem: An annotated bibliography,”
Networks, vol. 48, no. 3, pp. 125–142, 2006.

[65] N. Megiddo, E. Zemel, and S. L. Hakimi, “The maximum coverage location problem,”
SIAM Journal on Algebraic Discrete Methods, vol. 4, no. 2, pp. 253–261, 1983.

[66] S. Khuller, A. Moss, and J. S. Naor, “The budgeted maximum coverage problem,”
Information Processing Letters, vol. 70, no. 1, pp. 39–45, 1999.

[67] S. H. Owen and M. S. Daskin, “Strategic facility location: A review,” European Jour-
nal of Operational Research, vol. 111, no. 3, pp. 423–447, 1998.

[68] A. Caprara, P. Toth, and M. Fischetti, “Algorithms for the set covering problem,”
Annals of Operations Research, vol. 98, no. 1-4, pp. 353–371, 2000.

[69] Z. Abrams, A. Goel, and S. Plotkin, “Set k-cover algorithms for energy efficient mon-
itoring in wireless sensor networks,” in International Symposium on Information Pro-
cessing in Sensor Networks, pp. 424–432, 2004.

[70] M. Charikar, S. Guha, É. Tardos, and D. B. Shmoys, “A constant-factor approxima-
tion algorithm for the k-median problem,” Journal of Computer and System Sciences,
vol. 65, no. 1, pp. 129 – 149, 2002.

[71] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization: Overview and
conceptual comparison,” ACM Computing Surveys (CSUR), vol. 35, no. 3, pp. 268–
308, 2003.

[72] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony of
cooperating agents,” IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, vol. 26, no. 1, pp. 29–41, 1996.

99

[73] H. Mühlenbein, M. Gorges-Schleuter, and O. Krämer, “Evolution algorithms in com-
binatorial optimization,” Parallel Computing, vol. 7, no. 1, pp. 65–85, 1988.

[74] H. R. Lourenço, O. C. Martin, and T. Stützle, “Iterated local search,” International
Series in Operations Research and Management Science, pp. 321–354, 2003.

[75] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simmulated anneal-
ing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[76] F. Glover, “Tabu search–part i,” ORSA Journal on Computing, vol. 1, no. 3, pp. 190–
206, 1989.

[77] E. Klavins, R. Ghrist, and D. Lipsky, “A grammatical approach to self-organizing
robotic systems,” IEEE Transactions on Automatic Control, vol. 51, no. 6, pp. 949–
962, 2006.

[78] Y. Suhov and M. Kelbert, Probability and Statistics by Example: Volume 2, Markov
Chains: A Primer in Random Processes and Their Applications, vol. 2. Cambridge
University Press, 2008.

[79] R. B. Ash, Basic probability theory. Courier Dover Publications, 2012.

[80] G. F. Lawler, Introduction to stochastic processes. CRC Press, 1995.

[81] L. Jia, R. Rajaraman, and T. Suel, “An efficient distributed algorithm for constructing
small dominating sets,” Distributed Computing, vol. 15, no. 4, pp. 193–205, 2002.

[82] F. Kuhn and R. Wattenhofer, “Constant-time distributed dominating set approxima-
tion,” Distributed Computing, vol. 17, no. 4, pp. 303–310, 2005.

[83] J. Vermorel and M. Mohri, “Multi-armed bandit algorithms and empirical evaluation,”
in European Conference on Machine Learning, pp. 437–448, 2005.

[84] L. E. Blume, “The statistical mechanics of strategic interaction,” Games and Eco-
nomic Behavior, vol. 5, no. 3, pp. 387–424, 1993.

[85] J. R. Marden and J. S. Shamma, “Revisiting log-linear learning: Asynchrony, com-
pleteness and payoff-based implementation,” Games and Economic Behavior, vol. 75,
no. 2, pp. 788–808, 2012.

[86] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algorithms,”
IEEE Transactions on Information Theory, vol. 52, no. 6, pp. 2508–2530, 2006.

[87] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM Journal on Com-
puting, vol. 1, no. 2, pp. 146–160, 1972.

[88] H. P. Young, “The evolution of conventions,” Econometrica: Journal of the Econo-
metric Society, vol. 61, no. 1, pp. 57–84, 1993.

100

