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SUMMARY

Multicore and Internet cloud systems have been widely adopted in recent years

and have resulted in the increased development of concurrent programs. However,

concurrency bugs are still difficult to test and debug for at least two reasons. Concur-

rent programs have large interleaving space, and concurrency bugs involve complex

interactions among multiple threads.

Existing testing solutions for concurrency bugs have focused on exposing concur-

rency bugs in the large interleaving space, but they often do not provide debugging

information for developers to understand the bugs. To address the problem, this

thesis proposes techniques that help developers in debugging concurrency bugs, par-

ticularly for locating the root causes and for understanding them, and presents a set

of empirical user studies that evaluates the techniques.

First, this thesis introduces a dynamic fault-localization technique, called Falcon,

that locates single-variable concurrency bugs as memory-access patterns. Falcon

uses dynamic pattern detection and statistical fault localization to report a ranked

list of memory-access patterns for root causes of concurrency bugs. The overall Fal-

con approach is effective: in an empirical evaluation, we show that Falcon ranks

program fragments corresponding to the root-cause of the concurrency bug as “most

suspicious” almost always. In principle, such a ranking can save a developer’s time by

allowing him or her to quickly hone in on the problematic code, rather than having

to sort through many reports.

Others have shown that single- and multi-variable bugs cover a high fraction of

all concurrency bugs that have been documented in a variety of major open-source

packages; thus, being able to detect both is important. Because Falcon is limited

xi



to detecting single-variable bugs, we extend the Falcon technique to handle both

single-variable and multi-variable bugs, using a unified technique, called Unicorn.

Unicorn uses online memory monitoring and offline memory pattern combination

to handle multi-variable concurrency bugs. The overall Unicorn approach is effective

in ranking memory-access patterns for single- and multi-variable concurrency bugs.

To further assist developers in understanding concurrency bugs, this thesis presents

a fault-explanation technique, called Griffin, that provides more context of the root

cause than Unicorn. Griffin reconstructs the root cause of the concurrency bugs

by grouping suspicious memory accesses, finding suspicious method locations, and

presenting calling stacks along with the buggy interleavings. By providing additional

context, the overall Griffin approach can provide more information at a higher-level

to the developer, allowing him or her to more readily diagnose complex bugs that may

cross file or module boundaries.

Finally, this thesis presents a set of empirical user studies that investigates the

effectiveness of the presented techniques. In particular, the studies compare the

effectiveness between a state-of-the-art debugging technique and our debugging tech-

niques, Unicorn and Griffin. Among our findings, the user study shows that while

the techniques are indistinguishable when the fault is relatively simple, Griffin is

most effective for more complex faults. This observation further suggests that there

may be a need for a spectrum of tools or interfaces that depend on the complexity of

the underlying fault or even the background of the user.

xii



CHAPTER I

INTRODUCTION

1.1 Motivation

Multicore systems have been deployed in all kinds of computing systems from Internet

cloud systems to desktops to mobile systems for performance benefits, and thus have

resulted in the increased development of concurrent programs for those systems [8].

For example, a survey performed at Microsoft in 2007 on 684 technical staffs revealed

that concurrency is prevalent; over 60% of respondents had to deal with concurrency

issues, and half of those people do it on at least monthly basis [23]. Furthermore,

most concurrency bugs1 are of high severity; on a severity scale of 1 (most severe) to 4

(least severe), more than 80% of respondents rated concurrency bugs as either 1 or 2.

Even worse, concurrency bugs on the deployed systems can result in serious disasters;

the oft-cited 2003 Northeastern U.S. electricity blackout, which left 10 million people

without power, has been attributed in part to a race condition in a monitoring software

with multi-million lines of code [73]. Recently, Nasdaq’s Facebook IPO glitch, which

occurred because of a race condition, has resulted in a loss of millions of dollars [3].

Thus, it is extremely important for businesses to detect and fix concurrency bugs to

avoid such catastrophic losses.

Attempts to address concurrency bugs are estimated to consume enormous cost

in industrial software development and maintenance. In the Microsoft survey, cited

above, more than half of the respondents of handling concurrency issues had to detect,

debug and fix concurrency bugs. Furthermore, on average, developers spend seven

days between finding a concurrency bug and applying a fix. Sometimes this duration

1We use errors, bugs, and faults interchangeably.
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lasts several months. In aggregate, debugging cost of concurrency bugs account for

“thousands of days of work”.

Testing and debugging concurrent software can be even more challenging than for

sequential programs, for at least two reasons [56]. First, concurrent programs exhibit

more nondeterministic behavior, which can make it difficult to even expose the fault.

Nondeterministic bugs always rank as the most common and difficult errors in numer-

ous studies, independent of the programming model [14, 23, 86]. Second, concurrent

faults typically involve changes in program state due to particular interleavings of

multiple threads of execution, making them difficult to find and understand. These

faults most frequently manifest as data races, atomicity violations, and order vio-

lations, which are consistently ranked as the most common and difficult source of

concurrency faults [50, 86].

To deal with the challenges, many testing-based approaches have focused on ex-

posing concurrency bugs in the large interleaving space. One type of approaches iden-

tifies buggy interleavings that lead to concurrency bugs by exploring the interleaving

space with systematic or random strategies [17,57,58,65,70,82,89]. Another type of

approaches detects specific buggy interleavings that lead to one type of concurrency

bugs, such as data races or atomicity violations [11,19–22,57,60,61,63,77,81,82,90].

These techniques help developers in identifying the existence of concurrency bugs, but

often do not provide much debugging information to understand and fix the bugs. For

instance, the interleaving exploration approaches find the buggy interleaving, but do

not provide the root cause or the type of the concurrency bug. For another instance,

the bug-directed approaches often report many false positives or benign results,2 and

so developers may need more context to determine whether the results contain the

real bug.

2A benign data race is an intentional data race whose existence does not affect the correctness of
the program.
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While testing-based approaches have been well researched, little attention has

been given to debugging concurrency bugs despite its importance. This is because

debugging concurrency bugs are difficult and costly. For example, Mozilla developers

spent nearly two months to completely understand and fix a concurrency bug, even

though they had a test case to the concurrency bug with the specific interleaving [31].

Another recent survey reveals that concurrency bugs are the most difficult types of

software bugs to write a correct patch for, and developers need more guidance for

understanding and fixing them [93].

Thus, this thesis focuses on developing techniques that assists developers for de-

bugging concurrency bugs. In the following overview, we present the steps consisting

of the debugging process and our research techniques, each of which helps the debug-

ging steps.

1.2 Overview

Debugging is a software process that involves several steps: finding a bug, under-

standing it, and fixing it with a patch [71,96]. The first step, fault localization, is an

activity, where the programmer finds the location of the bug in the program. The sec-

ond step, fault understanding, involves understanding of the root cause of the fault.

The final step, fault correction, is to determine how to modify the code to fix the

fault.

For the thesis, we focus on the fault localization and understanding in the debug-

ging steps. We do not present techniques for fault correction, but we discuss existing

fault-correction techniques for concurrent programs in the related work in Chapter 5

and in the future work in Chapter 7.

Figure 1 illustrates the overview of this thesis with a focus on our research steps

and the debugging steps. For our research steps 1 and 2, we develop techniques that

address the fault-localization problem by locating the root cause of single-variable

3
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Figure 1: Overview of the thesis.

and multi-variable concurrency bugs using memory-access patterns. Then, for our

research step 3, we develop a technique that addresses the fault-understanding prob-

lem by presenting the explanation of the fault with context information. Finally, for

our research step 4, we evaluate the developed techniques with a state-of-the-art tool

through empirical user studies.

Step 1: Fault-localization for single-variable concurrency bugs Arguably,

order and atomicity violations are the most important types of non-deadlock concur-

rency bugs, which consist of more than 90% of non-deadlock concurrency bugs [50].

Existing techniques focused on finding one type of concurrency bugs, such as data

races or atomicity violations. A recent trend is to use statistical analysis and re-

port suspicious memory accesses to handle multiple types of bugs. However, these

techniques do not provide information of the bug in detail, e.g., the bug type. To

address such limitations, we develop a fault-localization technique, called Falcon,

that handle both order and single-variable atomicity violations with dynamic pat-

tern detection. In particular, the technique dynamically monitors memory-access

patterns for order and atomicity violations, records outcomes of passing and failing

executions, and associates the outcomes with patterns to compute suspiciousness of

4



patterns. Finally, the technique reports the ranked memory-access patterns, and thus,

the developer can inspect highly ranked patterns as concurrency bugs.

Step 2: Fault-localization for both single-variable and multi-variable con-

currency bugs Falcon is limited to diagnose single-variable non-deadlock con-

currency bugs, where 34% of non-deadlock concurrency bugs are multi-variable con-

currency bugs [50]. Although there exists bug detectors that handle multi-variable

bugs, their coverage is limited to atomicity violations [53, 59]. To address the limi-

tations, we develop a unified technique, called Unicorn, that finds the locations of

concurrency bugs involving both single and multiple variables. Because dynamically

detecting patterns for multiple variables is costly, this technique dynamically collects

pairs of memory accesses. Then, it combines the pairs into patterns for both single-

and multi-variable concurrency bugs. Finally, like Falcon, it applies statistical fault

localization to report ranked memory-access patterns for bug candidates.

Step 3: Fault-explanation for concurrency bugs A recent study has shown

that statistical fault-localization techniques for sequential programs may not provide

enough information for developers to understand the bug, and so the techniques need

to provide more context of the bugs, such as clustering of the results, to improve

the understanding [71]. We found similar problems for statistical fault-localization

techniques for concurrent programs, such as Unicorn. For example, the techniques

provide too many repetitive memory accesses without any clustering and they lack

calling context to the memory accesses. To address the problems, we develop a

fault-explanation technique, called Griffin, that explains concurrency bugs with

context information. This technique inputs memory accesses with calling context from

Unicorn, clusters them based on similar failures, and finally, provides a bug graph,

which includes clustered memory access, calling contexts, and suspicious methods.

Step 4: User studies for evaluating the techniques Several fault-localization
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techniques for concurrency bugs have been proposed recently [52,54,66–69], but none

of them have been empirically evaluated to determine whether they really help devel-

opers in understanding concurrency bugs. We carry out a set of empirical user studies

to investigate the usefulness of the developed automated debugging techniques. In

particular, we choose a baseline debugging technique used in industry and compare it

with our techniques. We implement the techniques in Eclipse plugin tools and let the

developers use the tools for debugging concurrent programs. We observe their activ-

ities during the entire debugging process and analyze the results to estimate whether

our automated debugging tools are effective to developers.

1.3 Thesis Statement

The thesis of this dissertation is that dynamic fault-localization techniques can assist

developers in locating and understanding non-deadlock concurrency bugs by providing

memory-access patterns, calling context, and suspicious methods.

1.4 Contributions

This dissertation makes the following contributions.

• Two fault-localization techniques (Falcon and Unicorn) that handle concur-

rency bugs involving both single and multiple variables using statistical fault-

localization. Unlike existing fault-localization techniques, these new techniques

have several benefits. First, they suggest more buggy results with higher rank

so that developers can focus on the real root cause from benign results. Second,

they detect all important types of non-deadlock concurrency bugs, i.e., order

and atomicity violations [50] within a single tool, and thus developers do not

have to use multiple tools to detect these two types of bugs. Our empirical stud-

ies show that Falcon and Unicorn are effective in ranking memory accesses

responsible for the bugs at rank 1 or 2.
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• A fault-explanation technique (Griffin) that explains concurrency bugs with

calling context, suspicious method, and groups of memory accesses. Unlike ex-

isting fault-localization techniques that present raw-memory accesses, the new

technique presents the bug with a bug graph that reconstructs the buggy inter-

leaving with calling context so that developers can understand the bug easily

especially for a harder task. Our empirical studies show that Griffin is effec-

tive in providing explanations in several ways: clustering memory accesses for

the same bug and pinpointing suspicious method locations.

• A set of empirical user studies that evaluates the effectiveness of the suggested

automated debugging techniques for human developers. The empirical results

show that Griffin improves understanding of concurrency bugs for hard tasks.

The research implications include improvements for the tools and future research

directions for debugging concurrency bugs.

• A toolset that implements the techniques that assist debugging concurrency

bugs,3 and a compilation of concurrency bugs we used for our subjects.4 These

tools can be utilized in multiple ways. First, these tools can be used in a class-

room for students to learn how concurrency bugs work and how to diagnose

concurrency bugs. Second, the code in the toolset can be integrated with ex-

isting debuggers, so that developers can use the tool to locate and understand

concurrency bugs. Finally, other researchers can build their techniques on top

of our implementations and test their tools against ours by using the bugs.

3http://www.cc.gatech.edu/~sangminp/griffin/
4http://www.cc.gatech.edu/~sangminp/bugs/
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CHAPTER II

BACKGROUND

This section presents background information that enables understanding our ap-

proach. Section 2.1 discusses concurrency bugs, and Section 2.2 discusses existing

concurrency bug detectors.

2.1 Concurrency Bugs

We begin by introducing our formal notation and then defining the key concurrency

violations of interest in this thesis: atomicity violations and order violations.

2.1.1 Notation

We denote a memory access to a shared variable by bt,s(x): b is the memory access

type, either read (R) or write (W ); t is the thread that performs the access; s is the

program statement containing the access; and x is the shared variable. For example,

R1,S1(x) represents a read access to shared variable x in statement S1 of thread 1.

2.1.2 Data Race

A data race occurs when two or more threads access a shared memory location,

where at least one of the accesses is a write, and there is no locking to synchronize

the accesses. For example, any of the pairs R1-W2, W1-R2, W1-W2 are, in the absence

of synchronization, data races. As is well-known, a data race does not always imply a

fault. For example, barriers, flag synchronization, and producer-consumer queues are

common concurrency constructs that are implemented with deliberate data races [51].

Therefore, we do not focus on data race detection in this thesis.
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Table 1: Problematic memory-access patterns.

PID Memory-Access Pattern Memory-Access Pairs
P1 R1,Si

(x) W2,S2(x) R1,Si
(x) W2,Sj

(x)
P2 W1,Si

(x) R2,Sj
(x) W1,Si

(x) R2,Sj
(x)

P3 W1,Si
(x) W2,Sj

(x) W1,Si
(x) W2,Sj

(x)
P4 R1,Si

(x) W2,Sj
(x) R1,Sk

(x) R1,Si
(x) W2,Sj

(x), W2,Sj
(x) R1,Sk

(x)
P5 W1,Si

(x) W2,Sj
(x) R1,Sk

(x) W1,Si
(x) W2,Sj

(x), W2,Sj
(x) R1,Sk

(x)
P6 W1,Si

(x) R2,Sj
(x) W1,Sk

(x) W1,Si
(x) R2,Sj

(x), R2,Sj
(x) W1,Sk

(x)
P7 R1,Si

(x) W2,Sj
(x) W1,Sk

(x) R1,Si
(x) W2,Sj

(x), W2,Sj
(x) W1,Sk

(x)
P8 W1,Si

(x) W2,Sj
(x) W1,Sk

(x) W1,Si
(x) W2,Sj

(x), W2,Sj
(x) W1,Sk

(x)
P9 W1,Si

(x) W2,Sj
(x) W2,Sk

(y) W1,Sl
(y) W1,Si

(x) W2,Sj
(x), W2,Sk

(y) W1,Sl
(y)

P10 W1,Si
(x) W2,Sj

(y) W2,Sk
(x) W1,Sl

(y) W1,Si
(x) W2,Sk

(x), W2,Sj
(y) W1,Sl

(y)
P11 W1,Si

(x) W2,Sj
(y) W1,Sk

(y) W2,Sl
(x) W1,Si

(x) W2,Sl
(x), W2,Sj

(y) W1,Sk
(y)

P12 W1,Si
(x) R2,Sj

(x) R2,Sk
(y) W1,Sl

(y) W1,Si
(x) R2,Sj

(x), R2,Sk
(y) W1,Sl

(y)
P13 W1,Si

(x) R2,Sj
(y) R2,Sk

(x) W1,Sl
(y) W1,Si

(x) R2,Sk
(x), R2,Sj

(y) W1,Sl
(y)

P14 R1,Si
(x) W2,Sj

(x) W2,Sk
(y) R1,Sl

(y) R1,Si
(x) W2,Sj

(x), W2,Sk
(y) R1,Sl

(y)
P15 R1,Si

(x) W2,Sj
(y) W2,Sk

(x) R1,Sl
(y) R1,Si

(x) W2,Sk
(x), W2,Sj

(y) R1,Sl
(y)

P16 R1,Si
(x) W2,Sj

(y) R1,Sk
(y) W2,Sl

(x) R1,Si
(x) W2,Sl

(x), W2,Sj
(y) R1,Sk

(y)
P17 W1,Si

(x) R2,Sj
(y) W1,Sk

(y) R2,Sl
(x) W1,Si

(x) R2,Sl
(x), R2,Sj

(y) W1,Sk
(y)

2.1.3 Memory-Access Patterns

Table 1 lists problematic memory-access patterns that represent the concurrency bugs

in which we are interested. The first column shows the pattern ID. The second column

shows the memory-access pattern using the shared-variable notation, bt,s(x). We

discuss the details of the patterns in Sections 2.1.4 through 2.1.6. The third column

shows the memory-access pairs that constitute the memory-access pattern. Note that

the memory-access patterns are always decomposed into one or two memory-access

pairs.

2.1.4 Order Violation

An order violation occurs when threads execute in an unintended order, leading to

incorrect program behavior. An order violation manifests as a pattern consisting of

two sequential thread accesses to a shared-memory location where at least one of the

accesses is a write. See Patterns P1 to P3 in Table 1. Note that the pattern of access
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Thread 1 (main)

S0: // pthread join(worker);
S1: mut = NULL;

Thread 2 (worker)

S2: pthread mutex lock(mut);

Figure 2: Order violation (extracted from PBZip2).

is a race condition; the term order violation signifies that the cause is an incorrect

ordering of threads.

Figure 2 gives an example of an order violation. The example consists of two

threads, where the main thread (Thread 1) should wait at S0 until the worker thread

(Thread 2) finishes. If the main thread does not wait for the worker thread and

deinitializes a shared variable mut with a null value at S1, the program crashes

with a null-pointer exception violation at S2. In the example, an unintended order,

W1,S1(mut)-R2,S2(mut) (Pattern P2), is an order violation.

2.1.5 Single-Variable Atomicity Violation

A single-variable atomicity violation occurs when an unserializable interleaving pat-

tern involving a single variable leads to unintended program behavior. An unserializ-

able interleaving pattern is a sequence of concurrent memory accesses whose resulting

state is not the same as that of sequential memory accesses. Patterns P4 to P8 in

Table 1 are unserializable interleaving patterns involving a single variable [88]. Vaziri,

Tip, and Dolby [88] proved that the unserializable interleaving patterns (P4 to P17

in Table 1) are complete, which means that if an execution conforms to the patterns,

the execution is not serializable.

Figure 3 shows an example of a single-variable atomicity violation. The program

has two threads. Thread 1 closes an old file and creates a new file, during which

log type is temporarily set to CLOSED at S1 and set to the original status at S3.

Thread 2 records a transaction into a log if log type is not a CLOSED status at S2. If
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Thread 1

void new file (. . . ) {
saved type = log type;

S1: log type = CLOSED;

S3: log type = saved type;
}

Thread 2

int mysql insert (. . . ) {

S2: if (log type != CLOSED){
mysql bin logẇrite(. . . );
}

}

Figure 3: Single-variable atomicity violation (extracted from Mysql-791).

log type at S2 reads a CLOSED status, which is set at S1, Thread 2 mistakenly misses

recording a transaction. Here, the interleaving, W1,S1(log type)-R2,S2(log type)-

W1,S3(log type) (Pattern P6 in Table 1), is a single-variable atomicity violation.

2.1.6 Multi-Variable Atomicity Violation

A multi-variable atomicity violation occurs when an unserializable interleaving pat-

tern involving multiple variables leads to unintended program behavior. Patterns

P9 to P17 in Table 1 are unserializable interleaving patterns involving multiple vari-

ables [88].

Figure 4 shows an example of a multi-variable violation. The program has two

variables, TABLE and LOG. The program needs to maintain the invariant that LOG

records updates to TABLE in the order in which those updates occurred. For in-

stance, if an entry is inserted into TABLE, the program should immediately log the

transaction in LOG. Note that TABLE and LOG are individually protected by locks, but

the two operations together are not. Consequently, the interleaving, W1,S1(TABLE)-

W2,S2(TABLE)-W2,S3(LOG)-W1,S4(LOG) (Pattern P9), causes TABLE and LOG to become

out-of-sync.
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Thread 1

int generate table (. . . ) {
lock (&LOCK open);

S1: TABLE.remove (. . . );
unlock (&LOCK open);

lock (&LOCK log);
S4: LOG.write (. . . );

unlock (&LOCK log);
}

Thread 2

int mysql insert (. . . ) {

lock (&LOCK open);
S2: TABLE.insert (. . . );

unlock (&LOCK open);
lock (&LOCK log);

S3: LOG.write (. . . );
unlock (&LOCK log);

}

Figure 4: Multi-variable atomicity violation (extracted from Mysql-169).

2.2 Concurrency Bug Detectors

Many different types of concurrency bug detectors have been developed to test concur-

rent programs and debug concurrency bugs. These detectors use static and dynamic

approaches to precisely diagnose one type of bugs, such as data races [19, 57, 60, 61,

63, 77, 81, 82] or atomicity violations [11, 20–22, 90]. For our illustrative examples in

Figures 2 to 4, data race detectors can detect the order violation in Figure 2 and the

single-variable atomicity violation in Figure 3. However, they will miss the multi-

variable atomicity violation in Figure 4 because the shared variables are protected

by common locks, LOCK open and LOCK log. Atomicity violation detectors can find

single- and multi-variable atomicity violations in Figures 3 and 4.

Instead of focusing on the details of the detectors for one type of bugs, we discuss

three recent fault-localization-based detectors for concurrent programs [34,54,83] that

find all the bugs in Figures 2 to 4. We focus on how each technique presents its bug

reports.

All three techniques collect memory accesses between threads during program exe-

cutions and output a set of memory accesses ranked by suspiciousness. Table 2 shows
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Table 2: Memory-access patterns of fault-localization techniques.

Technique
Memory-access pattern
Pattern Memory accesses Additional information

CCI [34] W S4 tag: thread-remote
DefUse [83] WW S3→S4

Recon [54] RWRRW S ′
3→S3→S ′′

3→S ′′′
3 →S4 most suspicious: S3→S4

the comparison of memory-access patterns of the four techniques for the example

in Figure 4. The first column lists the techniques. The second column shows the

memory-access patterns for each technique designated by the memory-access types

(i.e., read (R) or write (W)). The third column shows the memory accesses with re-

spect to the pattern that are ranked 1st for each technique. The fourth column shows

the additional information if it is provided by the technique.

CCI [34] detects concurrency bugs using sampling and statistical methods. The

technique samples memory-access locations, records each access along with a tag that

indicates whether the previous access is thread-local or thread-remote, and records

the execution output as passing or failing. Then, the technique computes the sus-

piciousness of memory-access locations using the statistics of execution output, and

outputs a ranked list of the memory-access locations along with their associated tags.

To illustrate, consider the second row in Table 2. CCI identifies the read access in S4

of Figure 4 as the most suspicious location. CCI also reports a tag indicating that

the write access is thread-remote.

DefUse [83] detects concurrency bugs that violate definition-use (i.e., write and

read) invariants. The technique collects definition-use pairs between two threads in

passing executions. Then, the technique finds the definition-use pairs in the failing

executions that are not in the set of pairs in passing executions. To illustrate, consider

the third row of Table 2. DefUse reports the bug in Figure 4 as the definition-use

pair of LOG appearing in S3 and S4.

Recon [54] detects concurrency bugs using a form of a memory-access graph, called

13



a context-aware communication graph. The graph shows five consecutive accesses of

a memory location regardless of the memory-access type, and computes the most

suspicious context change among the five accesses. Recon collects these memory

accesses as graphs in multiple program executions, and ranks the graphs. To illustrate,

consider the fourth row in Table 2. Recon reports these five consecutive accesses as

a graph; for ease of presentation, we list them instead of showing them as a graph.

Because Recon records all consecutive dynamic accesses near the bug without filtering

non-crucial accesses to the bug, its output contains lines, such as S ′
3, S

′′
3 and S ′′′

3 , that

do not appear in Figure 4. Recon also reports additional information: that S3→S4 is

the most suspicious thread-context edge among the five accesses.

Note that, to identify the multi-variable atomicity violation, techniques should

identify at least four memory locations: entry into an atomic region, two interferences,

and exit out of the atomic region. In this example, the locations are accesses of

TABLE and LOG in S1→S2→S3→S4. However, all three techniques mentioned above

report only partial (i.e., one or two) memory-access locations that constitute the

atomicity violation. We develop and present our techniques to report all critical

accesses consisting of the violations in later Chapters.
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CHAPTER III

FAULT LOCALIZATION FOR SINGLE-VARIABLE

CONCURRENCY BUGS

3.1 Introduction

Numerous efforts have discovered principles and methods to pinpoint these most

frequent concurrent faults. These detectors use static and dynamic approaches to

precisely diagnose one type of bugs, such as data races [19, 57, 60, 61, 63, 77, 81, 82]

or atomicity violations [11, 20–22, 90]. However, benign data races are common and

those data race detectors can yield high false-positive rates [50]. In addition, atomicity

violation detectors typically rely on the developer to explicitly annotate atomic regions

for subsequent static or dynamic verification by a tool [20,22].

To relieve this annotation burden, a recent trend is to apply dynamic pattern

analysis [25, 51]. The technique characterizes faults by likely interleaved sequences

of operations, and then searches for these patterns in an execution. A pattern-based

approach can in principle be applied to both atomicity and order violations, although

existing methods have thus far considered only atomicity [50]. Furthermore, current

methods may report many patterns, only some of which might directly identify the

fault. These methods do not presently have any way to rank or prioritize the patterns.

Many existing effective ranking techniques for fault localization are based on code

coverage. Examples include prior work on Tarantula for sequential programs [38],

and recent work for statement and expression (predicate) ranking for concurrent pro-

grams [34, 52]. These methods work by associating the number of occurrences of a

target coverage criterion with passing and failing executions, and use these data to

compute suspiciousness scores. However, thus far this approach has not been applied
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to concurrency patterns.

We propose a new pattern-based dynamic analysis technique for fault localization

in concurrent programs that combines pattern identification with statistical rankings

of suspiciousness of those patterns. We apply our technique to both single-variable

atomicity and order violations.1 During testing, our technique detects access patterns

from actual program executions, which either pass or fail. For each pattern, the

technique uses the pass/fail statistics to compute a measure of suspiciousness that

is used to rank all occurring patterns, in the spirit of Tarantula in the sequential

case [38]. We also describe Falcon, a prototype implementation of the technique

in Java, that is designed to have reasonable storage and execution time overheads,

so that it may be deployed in realistic testing environments. We used Falcon to

perform an empirical study on several Java benchmarks. The empirical study shows

that the technique can effectively localize the bug locations for our subjects.

The technique has several advantages over existing tools. First, the technique

captures not only order violations but also atomicity violations: existing tools focus

only on either of the bugs. Second, the technique reports the real violation patterns

with high priority, unlike other techniques that report benign and real violations

without priority. In short, our approach provides the same benefits of prior dynamic

pattern analysis methods, and contributes an explicit prioritized ranking of those

patterns to guide the developer toward the most likely cause of a fault.

The main contributions of the work are summarized as follows:

• To the best of our knowledge, our approach is the first to localize malicious

interleaving patterns in concurrent programs. The aim is to help the developer

more quickly identify the source of a concurrency fault.

• Our technique detects both single-variable atomicity and order violations. In

1According to a study of concurrency bug characteristics, order and atomicity violations are the
most important classes of non-deadlock concurrency bugs [50]. However, note that we only handle
single-variable atomicity violations and may miss multi-variable atomicity violations.
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particular, we believe our work is the first to effectively identify order violations.

• We have implemented this technique in a Java-based toolset, called Falcon,

which can be applied to any concurrent program with test cases.

• We evaluate Falcon experimentally, and show that it is effective in localizing

concurrency faults in our subjects.

3.2 Technique

Our technique for identifying these non-deadlock concurrency bugs for Java threads

consists of two main steps. In Step 1, the technique monitors shared-memory accesses

online, detecting and recording patterns of such accesses that correspond to problem-

atic interleaving patterns in Table 1.2 Step 1 associates these patterns with test cases

and pass/fail results of the executions. In Step 2, our technique applies statistical

analysis to the results of Step 1 to compute a suspiciousness value for each detected

pattern, as described in Section 3.2.2. Using these suspiciousness values, Step 2 ranks

the patterns from most to least suspicious, and presents this ordered list to the user.

Section 3.2 describes these steps in detail.

3.2.1 Step 1: Online Pattern Identification

Step 1 of the technique identifies problematic memory-access patterns (P1 to P8 in

Table 1) during the program’s execution. Like other fault-localization techniques [6,

38, 39, 42], our technique records program entities and subsequently associates them

with passing and failing runs.

However, our technique differs from prior fault-localization work in two ways.

First, instead of running the program with many test cases, our technique runs the

program many times (i.e., k times) with the same test case. The program is non-

deterministic; thus, different and possibly faulty interleavings of access to shared

2Recall that these patterns are associated with atomicity violations and order violations,
respectively.
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variables can occur in different executions of the same test cases. (We also apply ran-

dom delays (or irritators) to increase the likelihood of different interleavings [17,89].)

Second, instead of gathering coverage of simple entities, such as statements, branches,

or predicates, our technique tracks patterns (i.e., sequences of shared variable refer-

ences).

An instrumented version of the program, which we call P ′, executes each test

case k times. During these executions, our technique uses a fixed-sized sliding-window

mechanism to identify patterns. For each execution, our technique associates patterns

with program-execution behavior: passing (i.e., the program behaved as expected) or

failing (i.e., the program exhibited unexpected behavior). After all k executions, the

set of suspicious patterns and the number of passing and failing executions associated

with each pattern is passed to Step 2 of the algorithm.

Windowing scheme and update policy. As P ′ executes with a test case, it main-

tains a set of fixed-size windows that store memory-access information. There is one

window for each shared-memory location. When tracking patterns, using a fixed-size

data structure for each memory location reduces the time and storage overheads com-

pared to recording all shared-memory accesses. than maintaining all shared memory

accesses. With fixed-size windows, the storage overhead grows with the number of

shared variables rather than the number of memory accesses.

When any thread references the variable, our technique updates its associated

window. Initially, the window is empty so our technique always records the first ref-

erence. If a new reference occurs in a different thread from the previously recorded

reference—a thread-remote access—our technique records the new reference in the

next slot. Otherwise, the threads are the same—a thread-local access—and our tech-

nique replaces the previous reference. One exception to this replacement is when the

new reference is a read and the last reference was a write, in which case we keep

the write. That is, we heuristically prefer writes, largely because we know that both
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Algorithm 1: GatherPatterns.
Input : m: shared memory location

b: memory access type
t: thread ID
s: memory access location
Pt: current set of patterns (initially null)

Output: Pt: updated set of patterns

1 if m does not yet have any window then
2 w=createWindow ();
3 w.insert(b,t,s);
4 registerWindow (w,m);

5 else
6 w=getWindow (m);
7 (b2,t2,s2)=w.getLastAccess();
8 if t=t2 then
9 w.update(b,s);

10 else
11 if w is full then
12 Pt+=getPatterns (w);
13 w=slideWindow (w);

14 end
15 w.insert(b,t,s);

16 end

17 end
18 return Pt;

order and atomicity violations require at least one write.

This scheme is approximate in the sense that it may prematurely evict references

that are part of some pattern, owing to the limited capacity of the window. Tuning

the window size allows our technique to trade accuracy for time and storage overhead.

The online pattern gathering algorithm. Our overall pattern-collection algo-

rithm, shown in Algorithm 1, is invoked whenever there is a new reference (b, t, s)

to shared-memory location m, and that also includes the window update policy de-

scribed above. Because this algorithm is gathering patterns online, it assumes there

is some current set of patterns, Pt, and updates this set.

The algorithm first checks whether a window exists for m (line 1). If not, it creates

one (lines 2–4). Otherwise, it retrieves the window w from a global table, extracts the
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last access (lines 6–7), and updates the window (lines 8–17) using the window-update

policy described previously.

If, during the window update, the algorithm discovers that the window is full (line

11), then it scans the window for patterns (lines 12), and finally slides the window

(line 13). When extracting patterns, the algorithm checks the window for all of the

interleaving patterns for atomicity violation in Table 1, where the first access in the

pattern indicates the oldest slot. If there is no patterns for atomicity violation, the

algorithm checks the window for patterns for order violation in Table 1. That is, the

algorithm does not doubly count a pair (pattern for order violation) that is already

detected as a triplet (pattern for atomicity violation).

Theoretically, if we want to guarantee that our technique does not miss any pat-

terns, we can argue bounds on the necessary window size as follows. A trivial lower

bound on the window size for detecting the patterns for atomicity violation is the

maximum length of any pattern. For the patterns in this study (Table 1), the longest

pattern has 3 references, so a lower bound on window size for our patterns is 3.

However, the upper bound should also be proportional to the number of threads

(without any compression). To see this bound, suppose we wish only to gather pat-

terns of the form Ri-Wj-Ri, and that there are n threads of execution. Consider an

actual execution with the reference stream, R1-W2-W3-· · · -Wn-R1. Clearly, we need

at least O(n) slots to capture all n − 1 patterns of the form R1-Wj-R1. Thus, we

might expect that as n increases, we need to increase the window size accordingly.

Moreover, we might expect that this window size might need to grow by as much as

O(n2) in the worst possible case, since the O(n) bound applies to just a single thread.

3.2.2 Step 2: Pattern Suspiciousness Ranking

Step 2 of the technique uses the results of Step 1—the gathered patterns and their

association with passing and failing executions—and computes a suspiciousness score
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using statistical analysis.

Basic approach: Suspiciousness scores for patterns. There is a body of re-

search on statistical analysis for fault localization for sequential or deterministic pro-

grams [6, 38, 42]. These approaches assume that entities (e.g., statements, branches,

and predicates) executed more often by failing executions than passing executions

are more suspect. Thus, they associate each entity with a suspiciousness score that

reflects this hypothesis. For example, Tarantula uses the following formula, where s is

a statement, %passed(s) is the percentage of the passing test executions that execute

s, and %failed(s) is the percentage of the failing test executions that execute s [38]:

suspiciousnessT (s) =
%failed(s)

%failed(s) + %passed(s)
(1)

For concurrent programs, we can apply the same methodology, including the Taran-

tula formula, to score patterns. This approach works in a reasonable way most of the

time, but sometimes produces unexpected suspiciousness values.

The problem arises from the non-determinism inherent in concurrent programs.

It is possible that a pattern occurs in only one failing execution and no passing

executions, but is not related to the real fault in the program. In this case, the

Tarantula formula (1) gives this pattern a suspiciousness value of 1—the highest

suspiciousness value. To account for this case, the formula should assign a higher

score to patterns that appear more frequently in failing cases.

Our scoring approach: Jaccard Index. The Jaccard index addresses this weight-

ing issue by comparing the similarity of the passing and failing sets [6]. We use this

measure in our technique. For a pattern s, where passed(s) is the number of passing

executions in which we observe s, failed(s) is the number of failing executions, and

totalfailed is the number of total failures, we use the following score:

suspiciousnessJ(s) =
failed(s)

totalfailed + passed(s)
(2)
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3.3 Evaluation

We implemented a prototype of our fault-localization technique in a tool, called Fal-

con. In this section, we empirically evaluate Falcon by assessing the effectiveness

of our ranking algorithm (Section 3.3.3).

3.3.1 Implementation

We implemented Falcon in Java. Not counting other software that it uses, Falcon

consists of 7224 lines of code.

The first main component of Falcon is its instrumentation and monitoring capa-

bilities. For the instrumentation component of Falcon, we used the Soot Analysis

Framework,3 which analyzes programs in Java bytecode format. Falcon performs

a static thread-escape analysis [24] to determine which variables might be shared

among multiple threads, and instruments the program to observe and record shared

accesses at runtime.

Falcon also instruments methods, to provide detailed stack-trace information in

subsequent bug analysis. Moreover, Falcon provides an option to inject artificial-

delays that can increase the number of interleavings that occur, thereby increasing the

chance of eliciting concurrency bugs [17, 89]. We use this option in our experiments.

The Falcon dynamic monitor executes in a separate thread as the instrumented

program executes. This monitor dynamically receives memory-access information

generated from multiple threads in a non-blocking concurrent queue, which maintains

memory accesses in a sequential order. The accesses are obtained from this queue to

construct windows for extracting patterns (Section 3.2.1).

The second main component of Falcon computes suspiciousness values for each

pattern (Section 3.2.2), and reports the list of ranked suspicious patterns in a text

format. Within the Falcon toolset, each suspicious pattern can be represented in

3http://www.sable.mcgill.ca/soot/
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Table 3: Subjects used in evaluating Falcon.

Program LOC % Failed Type of Bug

Contest
Benchmarks

Account 155 3% Atomicity
AirlinesTickets 95 54% Atomicity
BubbleSort2 130 69% Atomicity
BufWriter 255 14% Atomicity
Lottery 359 43% Atomicity
MergeSort 375 84% Atomicity
Shop 273 2% Atomicity

Java
Collection

ArrayList 5866 2% Atomicity
HashSet 7086 3% Atomicity
StringBuffer 1320 3% Atomicity
TreeSet 7532 3% Atomicity
Vector 709 2% Atomicity

Miscellaneous

Cache4j 3897 3% Order
Hedc 29947 1% Atomicity
Philo 110 0% Atomicity
RayTracer 1924 14% Atomicity
Tsp 720 0% Atomicity

dotty4 graphical format.

3.3.2 Empirical Setup

Table 3 describes the set of subject programs we used in our study. The first and

second columns list the subject programs, classified into three categories: Contest

benchmarks, Java Collection Library, and Miscellaneous (Misc) programs. The third

column shows the size of the subject program in lines of code. The fourth column

displays the empirically observed failure rate, to give a rough sense of the difficulty of

eliciting a fault. The fifth column classifies concurrency violation type for the known

bug as either an atomicity or an order violation.

We ran our experiments on a desktop computer with a 2.66 GHz Intel Core 2 Duo

processor and 4GB RAM, using Windows Vista and Sun’s Java 1.5.

4http://www.graphviz.org/
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3.3.3 Evaluation of Effectiveness

The goal of this study is to investigate how well our technique ranks patterns by

determining whether highly ranked patterns correspond to true bugs. To do this, we

used the Falcon prototype with artificial delays and window size 5 to get the ranked

patterns. We used the benchmark programs with their default number of threads,

and executed each program k=100 times.

Columns 2–5 in Table 4 summarize the results of this study for the programs

listed in the first column. Column 2 reports the highest observed suspiciousness

value; column 3 reports the number of patterns identified; and column 4 reports the

number of patterns appearing in at least one failing execution. We only report the

number of problematic interleaving patterns, according to the program’s violation

type (see Table 3). For instance, in Cache4j, the number of patterns indicates the

number of patterns for order violation since it contains an order violation; in the other

programs, the number of patterns indicates the number of patterns for atomicity

violation. Column 5 shows the highest rank of the first pattern found by Falcon

that corresponds to a true violation. For example, the Account program has 11

patterns typical of atomicity violations, among which 10 patterns appeared in at

least one failing execution, and the highest rank assigned by Falcon to any pattern

corresponding to a true bug was 2.

We observe that Falcon is effective for our subjects because it identifies a true bug

as either its first or its second ranked pattern. This result implies that a programmer

need only look at the first or second pattern reported by Falcon to find an actual

bug.

By contrast, other atomicity violation detectors that do not rank and report more

patterns, implying potentially more programmer effort to examine the report. Several

of these approaches [20, 25] will report the number of patterns shown in Column 3,

without additional filtering. The AVIO technique [51] would reduce these patterns,
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Table 4: Effectiveness of Falcon.

Program Suspiciousness # Patterns # Patterns in Fail Rank

Account 0.8 11 10 2
AirlinesTickets 0.33 4 1 1
BubbleSort2 1 4 4 1
BufWriter 0.33 105 71 1
Lottery 0.1 4 4 1
MergeSort 0.9 76 63 1
Shop 0.16 10 2 2
ArrayList 1 1 1 1
HashSet 1 7 3 1
StringBuffer 1 2 1 1
TreeSet 1 9 5 2
Vector 1 1 1 1
Cache4j 0.51 23 12 1
Hedc 0.01 2 2 0
Philo 0 9 0 0
RayTracer 1 14 14 2
Tsp 0 24 0 0

instead reporting the number of patterns shown in Column 5. However, this number

of patterns still implies more programmer’s effort than with Falcon.

Falcon also works effectively even if the program has multiple concurrency bugs,

which is the case with the Contest benchmarks. For the Contest benchmarks, Falcon

reports different patterns as the most suspicious pattern from different experiments,

but the most suspicious pattern was always a real bug.

There are three special cases in our data. Philo and Tsp did not fail at all during

our many runs of the programs, and thus, we cannot report any suspicious patterns

for them. (That is, we detect all patterns but all suspiciousness scores will be 0 if

there are no failing cases.) Hedc is the only case in which we cannot pinpoint the

real bug, because the bug is hidden in the library code. The bug is triggered when a

shared object concurrently calls a library method from multiple threads. Because the

bug location is in uninstrumented library code, bug detection tools including Falcon
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cannot pinpoint the bug location.

3.4 Related Work

Data race detection. Early work focused on static and dynamic approaches to

detecting data races, which occur when multiple threads perform unsynchronized

access to a shared memory location (with at least one write). Static techniques include

those based on type systems [19], model checking [57], and program analysis [60].

Dynamic techniques include happens-before (RecPlay [77]) and lockset algorithms

(Eraser [81]). There are additional approaches [63,82], including hybrid analysis [64],

that feature improved overheads and reduce the number of false positive reports.

The main drawback of data race detectors is that some races—like those used in

barriers, flag synchronization, and producer-consumer queues—are common parallel

patterns that rely on deliberate but benign races [51]. Programmers are left to sort

out benign and problematic cases on their own. In Falcon, we focus on atomicity

and order violations (though we can also handle data races) and provide additional

information (suspiciousness scores) to help pinpoint a fault’s root cause.

Atomicity violation detection. Researchers have suggested that atomicity (or

serializability) is an alternative higher-level property that could be checked to detect

concurrency faults. Atomicity violation detectors were first advocated by Flana-

gan and Qadeer [22]. Atomicity checkers rely on programmer annotations of atomic

regions or other constructs, which the checkers can then verify or use to do addi-

tional inference. There are numerous static [22], dynamic [20, 21, 90, 92], and hybrid

schemes [11]. The main practical drawback of atomicity violation detectors is the

need for investigating synchronization keywords to infer atomic regions, which Fal-

con avoids by using pattern-analysis techniques.

Pattern analysis. Falcon is most closely related to the class of pattern-analysis

techniques. These include AVIO, which learns benign data access patterns from
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“training” executions; during testing executions, AVIO reports as “malicious” any

data access patterns not part of the training set [51]. As discussed in Section 3.3.3,

Falcon improves on AVIO by computing suspiciousness scores. This approach pri-

oritizes patterns and mitigates false positive cases. Moreover, it can reduce false

negatives, since in AVIO a faulty patterns could appear in both passing and failing

executions; in Falcon, our weighted ranking mitigates this effect.

Hammer et al. [25] develop the notion of atomic-set-serializability, an extension

of conflict-serializability [90], which can capture atomicity violations with more pre-

cision by considering atomic regions. Their tool records data access sequences at

runtime. As with AVIO, Falcon improves on the Hammer, et al., technique by

ranking patterns.

Bug eliciting techniques for concurrent programs. A drawback of any testing-

based approach is that program failures may occur infrequently (if at all). Introducing

random delays using irritators can increase the likelihood of a buggy interleaving [17,

89]. More focused (non-random) schemes exist as well. These include schemes that

control the scheduler to elicit specific interleavings [82]; run-time monitoring and

control of synchronization [65]; and analysis-based methods [70].

Musuvathi et al. published several papers [57, 58] for CHESS model checker,

which reduces the interleaving space by bounding the number of preempting context

switches. The technique is based on a theorem that limiting context switches only at

synchronization points is sufficient to detect all data races in the program [57]. Thus,

the tool investigates polynomial time interleaving space, while checking assertion

violations, deadlock, livelock, and data races.

In Falcon, we provide the option of introducing random delays, though we did

not evaluate it experimentally. In general, we believe bug eliciting methods comple-

ment our approach, and combined schemes are possible.

Fault localization. There are a number of fault-localization techniques based on
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code coverage, particularly for sequential programs [6,38,42]. These methods instru-

ment code predicates (e.g., statements or branches) and check coverage by counting

the number of occurrences of the predicates in a number of passing and failing ex-

ecutions. These predicates are then assigned some suspiciousness score. Aside from

Falcon, CCI [34] and Bugaboo [52] apply to fault localization. The main distinction

of Falcon is that it ranks patterns, which can provide more contextual information

than statement or predicate expression ranking as done in CCI or Bugaboo.

3.5 Summary

Our technique for fault localization in concurrent programs combines two promis-

ing approaches: (1) dynamic analysis to identify shared memory access patterns as-

sociated with single-variable order and atomicity violations, and (2) ranking these

patterns statistically, using pass/fail test case data. We believe ours to be the first

technique to both report and rank patterns. Our empirical study shows that our

implementation, Falcon, is effective in ranking true fault patterns.
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CHAPTER IV

FAULT LOCALIZATION FOR MULTIPLE-VARIABLE

CONCURRENCY BUGS

4.1 Introduction

Chapter 3 showed that Falcon is effective in locating memory-access patterns for

concurrency bugs. However, its bug diagnosis coverage is limited to single-variable

concurrency bugs, like other single-variable atomicity violation detectors [51, 70].

Other techniques report the existence of non-deadlock concurrency bugs involving

both a single variable and multiple variables [34, 52, 54, 83]. However, these tech-

niques do not report the all memory accesses consisting of the patterns for order and

atomicity violations, and thus, provide insufficient information to fully understand

the bug.

There are two main limitations of existing techniques. The first limitation is

that existing techniques that handle multi-variable atomicity violations and provide

sufficient information (e.g., access patterns) are not completely automated. These

techniques require annotations of atomic regions [25, 88] or groups of memory loca-

tions [53] to find multi-variable problematic patterns only in the specified regions or

groups. The second limitation is that there is no unified technique that detects both

single- and multi-variable bugs together with sufficient information. A developer can

use several existing tools, each of which detects a single type of concurrency bug

with sufficient information, to detect all important classes of bugs. However, running

several tools separately may increase testing time significantly, and understanding

formats of reports from separate tools may require additional effort to find and fix

the concurrency bugs.
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To address the limitations of existing techniques, we developed Unicorn, a

dynamic-pattern-detection technique that handles order, single-variable atomicity,

and multi-variable atomicity violations1 with a unified framework. Unicorn is based

on the observation that problematic memory-access patterns representing concurrency

bugs consist of several problematic memory-access pairs. Unicorn consists of three

steps. In Step 1, Unicorn monitors memory-access pairs using a fixed-sized sliding-

window mechanism, and records the program-execution outcome as either passing or

failing. In Step 2, Unicorn combines memory-access pairs into problematic memory-

access patterns using a second fixed-sized sliding-window mechanism for maintaining

pairs. In Step 3, Unicorn computes the suspiciousness of the patterns and orders

them in decreasing order of suspiciousness so that developers can quickly find the

actual concurrency bugs from the bug report.

Unicorn has several benefits over existing techniques. First, Unicorn is effective

in detecting significant classes of bug types, including order violation and single-

variable and multi-variable atomicity violations. Thus, Unicorn can provide more

information to developers about the types of bugs than other techniques. Second,

Unicorn reports patterns in order of suspiciousness, unlike other detectors that

report benign and harmful results together without any ordering. Thus, developers

save time in finding an actual bug using the bug report because they investigate

harmful results before benign results. Finally, Unicorn integrates the detection of

several classes of bugs and is implemented as a highly-automated single tool. In

contrast, other techniques [34,83] consist of several separate techniques implemented

as single tools, which requires a developer to run all tools and to investigate all reports

from the tools to find concurrency bugs that the techniques handle.

We also describe our implementations of Unicorn for both Java and C++, along

1According to a study of concurrency bug characteristics, these three types of violations are the
most important classes of non-deadlock concurrency bugs [50].
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with the results of an empirical study that we performed on a set of subjects to

evaluate Unicorn. The study results show that, for our subjects, Unicorn is effec-

tive in detecting multi-variable atomicity violations, as well as in detecting order and

single-variable atomicity violations.

The main contributions of the work are summarized as follows:

• The presentation of a new technique that handles important classes of concur-

rency bugs: order violation, and single-variable and multiple-variable atomicity

violations. To our knowledge, this is the first technique that targets and detects

all these violations together with pattern and rank information.

• A description of implementations of the technique in Java and in C++.

• The results of a set of empirical studies that show the effectiveness of the tech-

nique in detecting concurrency bugs for multi-threaded programs. Importantly,

problematic patterns that are directly related to the bug in all of our tests

appeared at the top of the ranked list, suggesting that Unicorn will help de-

velopers locate bugs quickly.

4.2 Technique

Unicorn identifies the problematic memory-access patterns, listed in Table 1, that

may cause concurrency bugs. Figure 5 depicts the technique, which inputs a concur-

rent program P and a test suite T , and consists of three steps. In Step 1, Unicorn

executes P with T multiple times, collects memory-access pairs from each execution,

and records the program-execution outcomes as passing or failing. In Step 2, for

each execution, Unicorn combines the pairs into problematic memory-access pat-

terns (listed in Table 1). In Step 3, Unicorn computes the suspiciousness of the

problematic memory-access patterns, and ranks the patterns in decreasing order by

suspiciousness. Algorithm 2 gives the details of each step of the technique, and Sec-

tions 4.2.1 to 4.2.4 discuss the algorithm in detail. The solution presented in these
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Figure 5: Overview of Unicorn; Sections 4.2.1 to 4.2.4 provide details.

sections appears in Reference [68].

4.2.1 Step 1: Collect Pairs from Executions

Step 1 collects memory-access pairs from program executions, and does so online.

This step inputs a concurrent program P and a test suite T , and outputs memory-

access pairs for each execution as pairs, and program execution outcome as passing

or failing for each execution as outcomes.

The algorithm first instruments shared read and write variables in P , and gener-

ates an instrumented program P ′ (line 1). The algorithm uses escape analysis [24]

to instrument only shared variables. Then, P ′ executes T m times to collect pairs

and outcomes (lines 2–6). For each execution, the algorithm collects problematic

memory-access pairs (Patterns P1 to P3) as pairlist, and program-execution outcome

as outcome, determined by T , as passing or failing (line 3). Then, for each execution i,

the algorithm associates pairlist[i] with pairs and outcome[i] with outcomes, respec-

tively (lines 4–5). After all m executions, the algorithm passes pairs and outcomes

to Step 2 of the algorithm.

Fault localization for concurrent programs Like other fault-localization tech-

niques, our technique records program entities and subsequently associates them

with passing and failing executions. However, our technique differs from prior fault-

localization work in two ways. First, instead of running the program with each test

case in the test suite only once, our technique runs the program many times (i.e.,

m times) with each test case in the test suite. The program is non-deterministic,

and thus, different and possibly faulty interleavings of accesses to shared variables
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Algorithm 2: Unicorn algorithm
Input : P : program, T : test suite, w: window size for pairs, m: number of executions
Output: rankedPatterns: a list of patterns ordered by suspiciousness
Data: pairlist: a list of pairs in an execution, orderedPairs: an ordered list of pairs in an

execution, pairs: a map of a run id to pairlist, outcomes: a map of a run id to
Pass/Fail, patternset: a set of patterns in an execution, allpatternset: a set of
patterns in all executions, patterns: a map of a run id to a set of patterns,
patternsToOutcome: a map of a pattern with Pass/Fail to occurrence count,
suspmap: map of a pattern to its suspiciousness value

// Step 1 (online): see Section 4.2.1

1 P ′ = instrument(P)
2 for i ∈ {0..m-1} do
3 (pairlist, outcome) = execute(P ′, T)
4 pairs[i] = pairlist
5 outcomes[i] = outcome

6 end

// Step 2 (offline): see Section 4.2.2

7 for i ∈ {0..m-1} do
8 patternset = empty
9 pairlist = pairs[i]

10 for p ∈ pairlist do
11 patternset.add(p)
12 end
13 orderedPairs = orderPairs(pairlist)
14 n = size(orderedPairs)
15 for j ∈ {0..n-w-1} do
16 for k ∈ {j+1..j+w} do
17 p1 = orderedPairs[j]
18 p2 = orderedPairs[k]
19 if isPattern(p1, p2) then
20 pt = makePattern (p1, p2)
21 patternset.add(pt)

22 end

23 end

24 end
25 patterns[i] = patternset

26 end

// Step 3 (offline): see Section 4.2.4

27 for i ∈ {0..m-1} do
28 outcome = outcomes[i]
29 patternset = patterns[i]
30 for pt ∈ patternset do
31 patternsToOutcome[pt][outcomes] += 1
32 allpatternset.add(p)

33 end

34 end
35 for pt ∈ allpatternset do
36 pass = patternsToOutcome[pt][Pass]
37 fail = patternsToOutcome[pt][Fail]
38 susp = computeSusp (pass, fail)
39 suspmap[pt] = susp

40 end
41 rankedPatterns = rankPattern(suspmap)
42 return rankedPatterns
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can occur in different executions of the same test case. Second, instead of gathering

coverage of simple entities, such as statements, branches, or predicates, our technique

tracks pairs of accesses, and then combines them to patterns (i.e., sequences of shared

variable references).

Shared-memory access instrumentation For each shared-memory access encoun-

tered during execution of P ′ (line 3), the algorithm records five kinds of information:

the memory location, the static source location, the memory-access type as read or

write, the parent thread id, and the global access index of the memory access. The

algorithm maintains a global-access index counter during runtime, and thus, the al-

gorithm issues a global-access index for every shared-memory access. The index is

used for pattern combination in Step 2.

Access window During execution of P ′ (line 3), the algorithm uses a fixed-sized

sliding-window mechanism to collect problematic memory-access pairs of the shared-

memory accesses. Specifically, the algorithm maintains one window (called access

window) for each shared-memory location. When a shared-memory access occurs,

the algorithm recognizes the memory location of the access and adds the access to

the window of the same memory location. Inside an access window, there are fixed-

sized slots, where each slot is occupied by an access.

The window update policy works as follows. When any access to the memory

location occurs, the algorithm updates its associated access window. Initially, the

window is empty and the first access is added to a slot in a window. If a new access

occurs and the access is from a thread different from the access in the latest slot,

the algorithm shifts the accesses in the window and the newest access is added to

the latest slot. If a new access occurs and the access is from the same thread as the

access in the latest slot, the algorithm replaces the previous access. One exception

to this replacement occurs when the new access is a read and the latest access is a

write. In this case, the algorithm keeps the write access. The algorithm heuristically
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Accesses Access window for x Pairs

(a): Collect pairs using access window

(b): Collect patterns using pair window

Ordered pairs Pair window Patterns

Figure 6: Unicorn uses two windows: (a) collects pairs from shared-memory ac-
cesses, and (b) collects patterns from memory-access pairs.

prefers writes because all pairs in Table 1 have at least one write access. When there

is an attempt to add an access to a full window, the algorithm finds memory-access

pairs involving the oldest access and discards the oldest access.

Figure 6(a) illustrates the sliding-window mechanism for access windows. The

left side of the figure (labeled Accesses) shows a serialized representation of three

shared-memory accesses from a program execution. The center of the figure (labeled

Access window for x) shows access windows of size 3; for simplicity, we show windows

only for variable x. The top window shows the contents of the window for x, where

the left slot is the newest access (R3,S3(x)) and the right slot is the oldest access

(R1,S1(x)). When the new shared-memory access (R1,S4(x)) is executed, the algorithm

checks whether the new access and the latest access in the window are from the

same or different threads. Because in the example, the accesses are from different

threads (Thread 1 and Thread 3), the algorithm adds the new access to the latest

slot. However, because the window is full, the algorithm finds pairs involving the
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oldest access R1,S1 , generates the pair R1,S1(x)W2,S2(x), which is shown on the right

side of the figure (labeled Pairs), and discards this oldest access. The algorithm then

updates the window by adding R1,S4 as the newest access. The updated window is

shown at the bottom in the center of Figure 6(a).

The online fixed-sized window scheme enables low time and space overhead. Sup-

pose the number of shared variables is s, and the size of each window is w. Then,

the upper bound of space overhead is O(s × w). Our preliminary study (Study 1

in [67]) suggests, w is effectively a small constant. Other existing techniques [51, 52]

also maintain data structures for each shared variable, and thus, they have the same

overhead of O(s).

Rationale for online pair identification The key idea behind the Unicorn tech-

nique is to collect pairs from executions and combine these pairs offline to get patterns.

By doing so, Unicorn can keep the online overhead as low as other techniques [51,52],

but can extend its fault localization ability to multi-variable concurrency bugs.

Unlike other techniques [25, 51, 53, 67, 88], Unicorn does not collect patterns

online because designing and maintaining online data structures to collect patterns

for multi-variable concurrency bugs are complex to implement and may result in

significant storage and runtime overheads. Suppose we designed a fixed-sized window

technique to identify multi-variable concurrency bug patterns. We could design two

types of windows: (1) windows that contains accesses to a single variable to identify

patterns for a single variable (P1 to P8 in Table 1); (2) windows that contains accesses

of pairs of variables, to identity patterns for multiple variables (P9 to P17 in Table 1).

In this case, the technique would require overhead of O(s) for the first type of window,

and the technique would require overhead of O(s2 × w′) = O(s2), where s is the

number of memory accesses and w′ is the size of the new windows, for the second

type of window. Because an algorithm with runtime O(s2) incurs too much overhead

to maintain during program execution, existing techniques use heuristics to limit
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(a) Atomicity violation (b) Pattern (c) Pair

Figure 7: The technique is based on the observation that patterns consist of one
or two pairs. (a) is an atomicity violation with R1,S1(x)W2,S2(x)R1,S3(x), which is
represented as a pattern in (b), and is represented as two pairs in (c).

the scope of access monitoring (i.e., inside a method or inside an annotated region),

and incur large overhead only in some parts of the program execution [25, 53, 88].

By contrast, Unicorn does not limit the scope of access monitoring for identifying

patterns for multi-variable concurrency bugs.

The intuition for this key idea is that problematic memory-access patterns can

typically be captured by only one or two problematic memory-access pairs. Consider

again Table 1. Problematic memory-access patterns consist of two, three, or four

memory accesses (second column), and they are represented by one or two memory-

accesses pairs (third column). For example, Figure 7(a) shows an atomicity violation

with R1,S1(x)W2,S2(x)R1,S3(x), which is represented as a pattern in (b), and is repre-

sented as two pairs in (c).

This key idea explains the two advantages of the Unicorn technique. First,

Unicorn combines and reports patterns, which are sufficient for detecting multi-

variable atomicity violations. Thus, developers can understand both single and multi-

variable bugs by inspecting the locations expressed in the patterns. Second, Unicorn

maintains reasonable runtime overhead because it monitors only memory-access pairs.

Unicorn performs its work offline to get complete bug information by combining

pairs into patterns (See details in Step 2).
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4.2.2 Step 2: Combine Pairs into Patterns

Step 2 of the algorithm combines memory-access pairs (pairs) into problematic memory-

access patterns (patterns) (line 7), and does so offline. For each execution, a list of

pairs, pairlist, is input and a set of patterns, patternset, is output. For patterns

consisting of a pair (P1-P3), the algorithm adds all pairs in pairlist to patternset

(lines 10–12). For patterns consisting of two pairs (P4-P17), the algorithm considers

the combinations of two pairs in pairlist and combines them when they represent a

pattern (lines 13–25).

Pair window The algorithm uses a fixed-sized sliding-window mechanism to iden-

tify the combinations of the pairs efficiently. Step 1 uses a different window (called

pair window) for each shared-memory location. However, Step 2 maintains only one

window for the entire list of pairs, regardless of shared-memory locations, because

Step 2 must combine patterns that involve two memory locations.

The algorithm first sorts pairlist in increasing order of the global-access index of

the first access in the pair (line 13). Then, the algorithm iterates over the ordered

pairs in orderedPairs (lines 15–25). The nested for loops iterate exactly n by k times,

where n is the number of pairs in orderedPairs, and k is the window size. Note that

k is a key parameter, as it controls both the accuracy and the overall complexity of

our technique, it motivates our study (Study 1 in [68]), we empirically show that k

is a relatively small size. Thus, for any pair p1 and p2, the algorithm checks for a

pattern with p1 and p2 when they are within the sliding window.

Figure 6(b) shows the way in which the sliding window mechanism works for

pairs. The left side of the figure (labeled Ordered pairs) gives the collected pairs or-

dered by the global-access index. The middle of the figure (labeled Pair window)

shows how the sliding window with size 4 works. The sliding window has the

first four patterns, shown within the dotted-line box, and the algorithm finds the
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Table 5: Appearances and suspiciousness values of collected pairs (I1 to I4) and
combined patterns (I5) in six executions of the program in Figure 4.

ID Pairs/Patterns E1 E2 E3 E4 E5 E6 Susp
I1 W1,S1

(TABLE)W2,S2
(TABLE)

√ √ √ √
0.5

I2 W2,S3
(LOG)W1,S4

(LOG)
√ √ √ √

0.5
I3 W2,S2

(TABLE)W1,S1
(TABLE)

√ √
0.0

I4 W1,S4(LOG)W2,S3(LOG)
√ √

0.0
I5 W1,S1(TABLE)W2,S2(TABLE) W2,S3(LOG)W1,S4(LOG)

√ √
1.0

P P P P F F

R1,S1(x)W2,S2(x)R1,S3(x) pattern within the window. Then, the window slides to

the next four pairs, shown within the solid-line box, and the algorithm finds the

W4,S4(z)W2,S5(z)W2,S6(y)W4,S7(y) pattern within the window. The right side of the

figure (labeled Patterns) shows the two patterns.

Pattern combination Given two pairs, Step 2 checks whether the pairs represent

a pattern (P4-P17) (line 19). First, the algorithm checks whether the pairs belong

to the same thread; if not, they cannot be combined. Then, the algorithm checks

whether the pairs are in the form of P4 to P17; if so, the algorithm creates a pattern,

and adds the pattern to patterns (lines 20–21).

4.2.3 Example

Table 5 shows how the algorithm works for Steps 1 and 2. The table shows appear-

ances of collected pairs and combined patterns for six executions of the program in

Figure 4. The first column shows the IDs. The second column shows the collected

pairs and combined patterns. The third (E1) to eighth (E6) columns show appear-

ances of the pairs and patterns in six program executions. The ninth column is the sus-

piciousness values, which will be explained in Section 4.2.4. I1–I4 are collected pairs

with two memory accesses, and I5 is a combined pattern with four memory accesses.

The final row shows program execution outcomes as passing (P) or failing (F). Now,

consider each execution from E1 to E6. In E1, Step 1 detects and records two pairs,

W1,S1(TABLE)W2,S2(TABLE) and W1,S4(LOG)W2,S3(LOG). Then, Step 2 tries to create a
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new pattern consisting of the two pairs, so it checks whether the two pairs represent

a new pattern. Step 2 finds that the two pairs are from the same threads, but the

combination of the two pairs (i.e., W1,S1(TABLE)W2,S2(TABLE)W1,S4(LOG) W2,S3(LOG),

or W1,S4(LOG)W2,S3(LOG)W1,S1(TABLE) W2,S2(TABLE)) are not listed as a pattern in

Table 1. Thus, Step 2 cannot create new patterns from E1. In the same way, Step 2

cannot create any new pattern from E2 to E4. However, Step 2 can create a pattern

I5, W1,S1(TABLE)W2,S2(TABLE) W2,S3(LOG)W1,S4(LOG), in E5 and E6.

4.2.4 Step 3: Rank Patterns

Step 3 of the algorithm computes a rank for each pattern, and presents the result

to a developer. Step 3 inputs combined patterns patterns and program-execution

outcome outcomes, and outputs the ordered list of patterns in decreasing order of

suspiciousness as rankedPatterns.

The algorithm first associates patterns with program-execution outcome; patterns-

ToOutcome records the number of occurrences of a pattern in passing and failing

executions (lines 27–34). Then, the algorithm computes the suspiciousness of each

pattern with its number of occurrences in passing and failing executions, and records

the result in suspmap (lines 35–40). Finally, the algorithm ranks the patterns in

decreasing order of suspiciousness, and returns the result (lines 41–42).

Our technique uses the statistical fault-localization technique, introduced by Jones,

Stasko, and Harrold [39], to compute the suspiciousness of the patterns (line 39). This

technique uses statistical analysis for fault localization for sequential or deterministic

programs, and since it was introduced, there have been other techniques that provide

different statistical formulas for the fault localization [6, 42, 43, 76] These approaches

assume that entities (e.g., statements, branches, and predicates) executed more often

by failing executions than passing executions are more suspicious of being the cause of

the failure. Thus, they associate each entity with a suspiciousness score that reflects
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this hypothesis.

For concurrent programs, we apply the same methodology to score suspiciousness

of patterns. We found that the Jaccard index [6] best addresses the situation in which

a pattern occurs in only one failing execution and no passing executions but is not

related to an actual fault. For a pattern p, where passed(p) is the number of passing

executions in which we observe p, failed(p) is the number of failing executions, and

totalfailed is the number of total failures, we use the following score:

suspiciousnessJ(p) =
failed(p)

totalfailed + passed(p)
(3)

Consider again the example in Table 5. The total number of failures is two. I1

appears in two failing and two passing executions. Thus, the suspiciousness of I1 is

0.5 using Formula (3). However, the suspiciousness of I5 is 1.0 because the pattern

appears only in failing executions. In fact, I5 is the actual multi-variable atomicity

violation.

4.3 Evaluation

To evaluate the Unicorn technique, we implemented prototypes for both C++ and

Java, and used the prototypes to perform empirical studies with a number of C++ and

Java subjects. Section 5.4.1 describes the implementation, and Section 4.3.2 describes

the empirical setup. Then, Sections 4.3.3 presents the study. Finally, Section 4.3.4

discusses the threats to the validity of the studies.

4.3.1 Implementation

We implemented two modules for our technique (see Section 4.2): one module for

Step 1, and the other module for Steps 2 and 3. For Step 1, we implemented modules

in Java and C++. The modules takes a program written in Java or C++, and

instrument shared-variable accesses in the program, so that the instrumented program

will dynamically output memory-access pair information.
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For Java, we used the Soot Analysis Framework,2 which analyzes programs in

Java bytecode format. Unicorn uses static escape analysis to determine possibly

thread-escaping variables [24], and instruments read and write accesses of the shared

variables in the program. Unicorn provides an option to inject artificial-delays that

can increase the number of interleavings that occur, thereby increasing the chance of

eliciting concurrency bugs [17,89]. We use this option in our experiments. The Uni-

corn dynamic monitor executes in a separate thread as the instrumented program

executes. This monitor dynamically receives memory-access information generated

from multiple threads in a non-blocking concurrent queue, which maintains memory

accesses in a sequential order. In this queue, we added a global access index counter,

which is updated for every shared-memory access (recall Section 4.2.1). The accesses

are obtained from this queue to construct windows for extracting pairs of accesses.

For C++, we created a module to instrument the subject programs statically

using the LLVM analysis framework.3 The module performs dynamic thread-escape

analysis to find possibly shared variables in the program [90]. Then, the module

instruments the escaping load and store instructions and memory operations, such as

malloc, memcpy, and memset. During runtime of an execution of the instrumented

program, the module uses the dynamic library-interposition method [32] to collect

memory-access pairs.

The Java and C++ modules for Step 1 generate output files in XML format.

These files contain memory-access pairs and the program execution outcome for each

execution. For Steps 2 and 3, we implemented a module in Java that uses the XML

files generated in Step 1. For Step 2, the module reads each XML file that has memory-

access pair information and generates a new XML file that has memory-access pattern

information. For Step 3, the module inputs the new XML files generated in Step 2,

2http://www.sable.mcgill.ca/soot/
3http://www.llvm.org
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Table 6: Subjects used in evaluating Unicorn.

Type Program %Failed PID LOC Type of Bug

C++
extracted

TimerThread 14.4 P2 68 Order
LoadScript 49.8 P5 110 Single-variable atomicity
MysqlLog 2.8 P6 89 Single-variable atomicity
JsString 1.4 P12 95 Multi-variable atomicity
MysqlDelete 3.8 P9 103 Multi-variable atomicity
MysqlSlave 0.4 P14 94 Multi-variable atomicity

C++
complete

PBZip2 2.8 P2 2K Order
Mysql-791 64.0 P6 372K Single-variable atomicity
AGet 49.0 P9 1.2K Multi-variable atomicity
Mysql-169 63.0 P9 331K Multi-variable atomicity

Java
library

StringBuffer 22.3 P14 1.4K Multi-variable atomicity
Vector 7.6 P14 9.5K Multi-variable atomicity

computes suspiciousness for each pattern, and generates the result.

4.3.2 Empirical Setup

Table 6 lists the subject programs we used for our studies [94]. The first column shows

the types of the subject programs in three categories: C++ extracted programs,

which are extracted buggy parts of program code from Mozilla and MySQL; C++

complete programs, which are complete applications without any simplification; and

Java library programs, which are extracted classes from the Java 1.4 library. The

second column shows the name of the subject program. The third column shows

the failure rate that we observed empirically with our test cases. The fourth column

shows the pattern ID from Table 1. The fifth and sixth columns list the size of the

program in lines of code and the type of the concurrency bug, respectively.

We created test cases for the subjects. For the C++ extracted programs, we

created test cases to call the extracted buggy parts concurrently and to determine

program execution outcome. For C++ complete programs, we provided inputs to the

subjects that can trigger concurrency bugs. PBZip2 is an application that compresses

files using the bzip2 algorithm with parallel threads. We call PBZip2 to compress

a large file with a number of threads. MySQL is a widely used open-source database
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Table 7: Effectiveness of Unicorn.

Program # Pairs # Patterns Sp (P1) Sp (P2) Sp (Pt) R (Pt) # R 1
TimerThread 6 7 1.0 - 1.0 1 3
LoadScript 3 4 0.86 1.0 1.0 1 2
MysqlLog 4 5 0.02 1.0 1.0 1 2
JsString 5 8 0.04 1.0 1.0 1 3
MysqlDelete 7 8 0.04 0.27 1.0 1 1
MysqlSlave 6 11 0.01 0.66 1.0 1 1
PBZip2 59 333 0.42 - 0.42 1 6
Mysql-791 1082 10936 1.0 0.64 1.0 1 4
AGet 37 94 0.51 0.50 0.70 1 1
Mysql-169 894 9051 0.63 0.63 1.0 1 7
StringBuffer 8 18 0.58 1.0 1.0 1 3
Vector 11 25 1.0 1.0 1.0 1 4

application. We concurrently call several queries that can trigger bugs in the database

server. AGet is a multi-threaded download accelerator. We call AGet to download a

large file from the Internet, and send a unix signal to stop the program and to trigger

the concurrency bugs in the program. For Java library programs, we created a test

case that create objects of the Java library classes, and execute the methods of the

objects concurrently.

We ran our studies on a linux desktop with i5 2.8 GHz CPU and 8 GB of memory.

We used gcc 4.4 and Java 1.5.

4.3.3 Effectiveness of Unicorn

The goal of this study is to investigate how well Unicorn ranks the pattern of the

actual bug. To do this, we set the access window size to 5, and collected memory-

access pairs in the C++ and Java subjects. To increase the probability of program

failures, we inserted random artificial delays into the subject programs [17,89]. Then,

we executed each subject program 100 times. We set the pair window size to 100.

Table 7 shows the results of the study. The third and fourth columns report the

number of collected pairs and the combined patterns collected for the study. The

fifth to seventh columns report suspiciousness values of the first memory-access pair,
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the second memory-access pair, and the memory-access pattern of the actual bug.

The eighth column reports the rank of the pattern that represents the actual bug.

The ninth column reports the number of patterns that rank first. For example, for

TimerThread, there are six reported pairs and seven reported patterns. The subject

has an order violation of W1,Si
(x)R2,Sj

(x) pattern, so we report the suspiciousness of

the pair in the fifth and seventh columns, but we do not report any value in the sixth

column. There are three patterns that rank first in the report. We investigated the

three patterns manually, and found that one of the three patterns is an order violation,

and two other patterns are atomicity-violation patterns, which always appear with

the actual order violation.

We make several observations about the results of Study 1 that are summarized

in Table 7. First, the patterns that are ranked first are all actual bugs for all the

subject programs. Thus, for these subjects, our technique is effective in finding non-

deadlock concurrency bugs, and developers can focus on the top-ranked patterns to

locate the actual bug. Second, some pairs that consist of the actual bug have low

suspiciousness, but the pattern that manifests the actual bug has a high suspiciousness

score. Thus, our pattern-combination technique is effective. For example, consider

MysqlSlave. The suspiciousness values of the memory-access pairs are low, because

they appear in both passing and failing executions. However, the two pairs appear

together only in failing executions, and the suspiciousness of the pattern formed from

these two memory-access pairs is 1.0. Third, Unicorn sometimes reports several

bugs at the top rank (e.g., Mysql-169 reports seven patterns with rank 1). From

manual inspection, we found that all patterns ranked at the top are directly related

to the actual bug.
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4.3.4 Threats to Validity

There are several main threats to validity of the studies. Threats to internal validity

include the empirical setup for our empirical evaluation, and in particular the test

suite we used for the study. We did not measure the coverage or diversity of the

interleavings of the test suite. However, to collect passing and failing executions with

different thread schedules, we ran the program many times, which is similar to what

would be done in practice. In addition, to increase the probability of the failures, we

use an artificial delay injection technique.

Threats to external validity limit the extent to which our results will generalize to

other kinds of concurrent programs. Whereas there are large benchmark suites [10]

and benchmark generators [30] for sequential programs, there is no large and widely

accepted bug benchmark suites for concurrent programs, and thus this threat is com-

mon to all prior work in this area. To mitigate this problem, our benchmark suite

includes most of the benchmarks used in other work, and furthermore, includes both

Java and C++ programs.

Threats to construct validity include the way developers find and fix bugs. The

metric we use assumes that developers inspect the program with the memory access

patterns in the rank order, and stop inspection when they reach the fault. Although

this process may not be the real debugging situation, this approach to assessing effec-

tiveness is used in many previous studies for assessing the effectiveness of statistical

fault localization.

4.4 Related Work

There is much research in finding concurrency bugs. In this section, we discuss existing

techniques that find concurrency bugs and compare Unicorn to them. Table 8
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Table 8: Comparison to related techniques: The first column shows the type of tech-
niques, and the second, third, and fourth columns represent whether the techniques
can detect order, single-variable atomicity, and multi-variable atomicity violations.

Techniques Order S-Atom M-Atom

S-Atom Violation Detector [51,70,84]
√

M-Atom Violation Detector [25,53,59,88,95]
√ √

General Concurrency Bug Detector [34,52,54,83] 44 4 4
Unicorn

√ √ √

qualitatively compares Unicorn to the related work in terms of concurrency bug-

detection ability.

Much prior research on concurrency bug detection has focused on bugs involving

a single variable (the second row in Table 8). Some techniques focus on finding single-

variable atomicity violations. AVIO [51] collects benign patterns for single-variable

atomicity violations from passing executions, and finds and reports patterns that

are not included in the benign patterns from failing executions. CTrigger [70] and

PENELOPE [84] statically examine possible atomicity violations from an execution

trace, and dynamically verify the violations. Falcon [67] is one of the first techniques

that can find both order violations and single-variable atomicity violations. Like

Unicorn, Falcon collects memory-access patterns dynamically and computes the

patterns with suspiciousness scores with the same overhead as Unicorn. However,

the bug-detection ability of all these techniques, including Falcon, is limited to

concurrency bugs involving a single variable, whereas Unicorn finds both single-

variable and multi-variable concurrency bugs.

There are several existing techniques for detecting multi-variable atomicity viola-

tions (the third row in Table 8). Some techniques require programmer annotations,

either to specify the atomic regions that should be protected from interleavings [25,88]

44 implies that the techniques neither distinguish the types of concurrency bugs nor show the
details of the causes of each concurrency bug.
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or to specify groups of memory accesses in which the memory accesses should be se-

rialized [53]. More recent techniques [59, 95] automatically infer atomic regions in

passing program executions, and find or avoid multi-variable atomicity violations by

monitoring memory operations on atomic regions. Compared to these approaches,

Unicorn has two advantages. First, Unicorn does not require any annotations.

Second, Unicorn also handles order violation, whereas the other techniques are lim-

ited to only atomicity violations.

There are several existing techniques for detecting non-deadlock concurrency bugs

without identifying the root cause of the bug (the fourth row in Table 8). CCI [34]

monitors and samples shared memory locations and reports the likely buggy location

using statistical methods. Bugaboo [52] collects communication graphs that contain

a list of memory locations between threads and reports the graph with suspiciousness

ranking. Recon [54] extends Bugaboo to reconstruct the buggy source and sink loca-

tions of two different threads from the communication graphs. Defuse [83] monitors

the memory-access pairs between threads and report the most suspicious pairs as

possible concurrency bugs. Unicorn differs from these techniques in several ways.

First, these techniques report bugs without the root causes, so developers need to

manually find the root cause to check whether the bug is an order violation or an

atomicity violation. Second, these techniques may not report all important locations

of the bug, so developers may not fully understand and fix the bug using the bug

report. For example, multi-variable atomicity violations require two pairs of memory

accesses, but techniques, such as Defuse [83], report only one pair of accesses. In

contrast, Unicorn reports the detailed bug information with patterns that show the

cause of the bug and the complete pairs of memory accesses.
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4.5 Summary

This chapter presents Unicorn, the first unified technique that detects and ranks

both single-variable and multi-variable non-deadlock concurrency bugs using patterns.

Unicorn collects memory-access pairs dynamically, and combines memory-access

patterns from memory-access pairs offline. The technique has manageable runtime

overhead, comparable to other techniques, while extending detection ability from

single-variable concurrency bugs to both single- and multi-variable concurrency bugs.

Our empirical studies show that Unicorn is effective for a suite of C++ and Java

subjects.
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CHAPTER V

FAULT EXPLANATION FOR CONCURRENCY BUGS

5.1 Introduction

Existing fault-localization techniques for concurrent programs, including Falcon and

Unicorn, locate likely concurrency bugs as interactions of memory accesses between

multiple threads [34, 54, 67, 68], such as pairs of memory accesses [34, 60], memory-

access graphs [54], or memory-access patterns [22, 67, 68]. However, the techniques

have several limitations. First, the techniques report only memory accesses and lose

context information, such as the call stacks of these accesses. Thus, developers must

infer such information from the bug report to fully understand the concurrency bug.

Second, the techniques do not automatically cluster memory accesses that are respon-

sible for the same bug. Thus, a developer may need to manually cluster the buggy

accesses to understand the bug. Finally, the techniques do not explicitly handle mul-

tiple concurrency bugs and may miss reporting concurrency bugs when multiple bugs

exist. Thus, developers may need to identify multiple bugs manually from the bug

report.

Semi-automatic fix techniques make patches for concurrency bugs [33,35,44]. The

techniques input concurrency bugs reported from bug detectors [29, 97] and produce

patches that enforce correct orderings using synchronization operations. However,

these techniques also have limitations. First, the techniques are not completely auto-

matic, and require a developer’s additional help, such as selecting a fix strategy [35].

Second, the techniques use only simple strategies, such as lock-insertion, which is only

20% of all fix strategies [50]. Put another way, simple fixes may treat symptoms, but

addressing the true cause of a bug may require more insight from the developer.
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To address the limitations of existing techniques, we developed a new fault-

comprehension technique, which we call Griffin. Griffin provides a way to ex-

plain concurrency bugs using additional information over memory accesses, and thus,

bridges the gap between fault-localization and fault-fixing techniques. Griffin aids

developers in understanding concurrency bugs by providing more information over

fault-localization techniques, such as suspicious methods with which developers can

easily locate atomic regions for atomicity violations. To assist automatic fault-fixing

techniques, Griffin again provides more information, such as clusters of memory-

access patterns, that can be used to generate only one patch for each cluster.

The key idea in Griffin is to group suspicious memory-access patterns. The pro-

cess consists of three steps. In Step 1, Griffin executes an existing fault-localization

technique to obtain suspicious memory-access patterns that represent concurrency

bugs and a coverage matrix that shows the occurrences of the patterns in testing

executions. In Step 2, Griffin uses the output of Step 1 to cluster executions that

fail for the same concurrency bug. Finally, in Step 3, Griffin clusters patterns in

the grouped failing executions (obtained in Step 2) and reports information for each

likely bug in the program: suspicious memory-access patterns, suspicious methods

from which suspicious memories are accessed, and bug graphs that show the interac-

tions of groups of memory accesses.

There are three main advantages of Griffin over existing fault-localization tech-

niques. First, Griffin assists developers in understanding bugs by providing summa-

rized information for each bug. A developer begins to understand the bugs at a high

level using a bug graph that shows context changes on groups of memory accesses.

Next, the developer may investigate suspicious methods that are likely to contain

the locations to be fixed. Finally, the developer may investigate each access pattern

to understand each raw-memory access. Second, Griffin handles multiple concur-

rency bugs by grouping memory-access patterns. Thus, developers can concentrate on
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investigating patterns in a cluster, instead of investigating an unclustered list of pat-

terns. Moreover, the identified different bugs might be assigned to several developers

and handled concurrently [37]. Finally, Griffin assists automatic fix techniques by

providing groups of fault-localization results. Thus, fix techniques can generate only

one patch for each cluster instead of generating patches for each pattern and merging

them for each bug afterward.

To evaluate Griffin, we implemented it for both Java and C++, and performed

empirical studies on a set of real programs. The first study investigates how well

Griffin clusters failing executions caused by the same bug. The results show that

the technique accurately clusters failing executions with the parameters we used.

The second study investigates how well Griffin clusters the suspicious patterns

associated with the same bug, and presents the details of the bug. The results show

that our technique presents suspicious patterns, suspicious methods, and bug graphs

with only a few false positives.

The main contributions of the work are summarized as follows:

• It identifies problems with existing fault-localization technique for concurrent

programs.

• It presents the Griffin technique, which clusters executions and patterns that

are associated with the same bug, thereby providing a way to explain bugs.

• It carries out empirical studies that show the effectiveness of the Griffin tech-

nique for clustering and explaining concurrency bugs.

5.2 Problems in Existing Techniques

This section presents an example bug (Section 5.2.1), discusses three common prob-

lems with the existing techniques (Section 5.2.2), and discusses the challenges related

to addressing these problems (Section 5.2.3).
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Thread 1

149 Vector(Collection c) {

150 size = c.size ();

151 array = new Object[size];

152 c.toArray(array );

153 }

270 int size() {

271 return size; // read of this.size

272 }

680 Object [] toArray(Object a[]) {

681 // read of this.size

682 // read of this.data

683 }

Thread 2

850 boolean addAll(Collection c) {

851 // write of this.size

852 // write of this.data

853 }

621 void removeAllElements () {

622 // write of this.size

623 // write of this.data

624 }

800 void remove(int index) {

801 // write of this.size

802 // write of this.data

803 }

Figure 8: Atomicity Violation in Vector: Atomicity violations can occur when the ex-
ecution of the atomic region in the Vector constructor (lines 150–152) is interfered by
any of the three methods in Thread 2. For example, an atomicity violation can occur
between Vector and addAll with the following order: 150→151→851→852→152.

5.2.1 Example

We will use this atomicity violation example for this section. Figure 8 shows snippets

from the Vector class of the Java Collection Library, which has an atomicity violation;

statements in the code are labeled with their line numbers. Thread 1 executes the

code on the left, and Thread 2 executes one of the three methods on the right. The

constructor is the atomic region, and it must be executed without interference: c

in lines 150–152 must be accessed without interference from the code in Thread 2.

Otherwise, an atomicity violation can be triggered.

To illustrate, suppose the lines execute in order 150→271→151→851→852→152→

681→682. In lines 150–151, the program retrieves size of c and initializes array of

Vector with the size. However, in lines 851–852, the size and array of c are

increased by the addAll method. Then, in lines 152–682, the increased array of c is

copied to array of Vector, and thus, the program may crash with an exception. In

this example, two patterns are manifested as atomicity violations. The first pattern

involves a single variable, size: a read-write-read (RWR) pattern (i.e., the read

accesses are from Thread 1, and the write access is from Thread 2), and the access
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order is 271→851→681. The second pattern involves two variables, size and array: a

read-write-write-read (RWWR) pattern (i.e., the read accesses are from Thread 1, and

the write accesses are from Thread 2), and the access order is 271→851→852→682.

5.2.2 Problems

Existing fault-localization techniques share three common problems. Since Unicorn

provides the most comprehensive reports, we illustrate these problems using Uni-

corn’s reports, a sample of which appears in Table 9.

Table 9 shows the execution statistics of memory-access patterns and outputs

reported by Unicorn for the example in Figure 8. The first column shows the

pattern index (PI). The second to fourth columns are executions statistics. The

second column reports the associated BugID (B), from 1 to 3, because there are three

atomicity violations in the example. The third and fourth columns report the number

of occurrences of the pattern in passing (P) and failing (F) executions, respectively.

The fifth to ninth columns are outputs of Unicorn. The fifth and sixth columns

show the suspiciousness score of the pattern (S) and the ranking of the pattern (R),

respectively. The seventh column reports the type of the pattern, with memory access

types. The final column reports the access locations of the pattern in the source code.

Problem 1 (Loss of Context): The first problem is that existing techniques report

memory-access locations but not the context of the bug. Unicorn outputs all raw

memory-access locations that are likely associated with concurrency bugs, but even all

raw memory-access locations may not fully explain the cause of the bug. To illustrate,

consider again the example in Figure 8. To understand the bug, the developer would

inspect the code using one of the four first-ranked patterns in Table 9.1 Then, the

developer would locate the size and toArray methods, but may not easily find the

1Like many fault-localization techniques, if patterns result in the same suspiciousness, Unicorn
gives them the same rank, and thus, they would be inspected in any order.
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Table 9: Execution statistics for memory-access patterns and Unicorn output for
the bugs in Figure 8.

PI
Statistics Unicorn output
B P F S R Pattern Pattern accesses

1 1 0 3 0.60 1 RWR 271→851→681
2 1 0 3 0.60 1 RWWR 271→851→852→682
3 1 0 3 0.60 1 WR 851→681
4 1 0 3 0.60 1 RW 271→851
5 1 3 3 0.38 5 RW 852→682
6 2 0 2 0.20 6 RWR 271→622→681
7 3 0 2 0.20 6 RWR 271→801→681
8 2 0 2 0.20 6 RWWR 271→622→623→682
9 3 0 2 0.20 6 RWWR 271→801→802→682

constructor using these accesses. Figure 9 shows the same memory accesses of size

along with the call stack for each memory access. Solid boxes represent methods on

the call stack, and dashed boxes represent memory accesses. Without inspecting the

figure, developers may not find that Vector is the common method that leads to the

two raw-memory accesses.

Problem 2 (True-/False-positive Patterns): The second problem is that ex-

isting techniques report the ranked list of the patterns, but do not group patterns

responsible for the bug. Consider again the example in Figure 8. As discussed in

Section 2.1, two patterns can manifest the same atomicity violation. PIs 1 and 2

are atomicity violation patterns involving a single variable (i.e., size) and multiple

variables (i.e., size and array), respectively. PIs 3–5 manifest the same violation,

and the pattern accesses are part of PIs 1 and 2. Thus, PIs 1–5 manifest as one bug:

B1. However, neither Unicorn nor the other techniques [34,54,83] reveal that these

patterns are associated with the same bug.

Problem 3 (Multiple Bugs): The third problem deals with multiple bugs. PI6 to

PI9 in Table 9 illustrate the problem. The PIs are associated with two different bugs.

PI6 and PI8 are associated with B2, and PI7 and PI9 are associated with B3. B2 is
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120  main()

151  Vector(Collection c)

680  void toArray(Object a[])

681      a.szie = size;

120  main()

150  Vector(Collection c)

270  int size()

271      return size;

130  void run()

850  void addAll(Collection c)

851      size += c.size;

Access 1 (Thread 1) Access 2 (Thread 2) Access 3 (Thread 1)

Figure 9: Problematic memory accesses with call stacks.

an atomicity violation that occurs between the Vector and the removeAllElements

methods. B2 occurs when an execution order is 150→removeAllElements→152.

Similarly, B3 is an atomicity violation that occurs between the Vector and the remove

methods. B3 occurs with an execution order, 150→remove→ 152. When multiple

bugs exist, the patterns manifesting different bugs can be listed with the same or

similar suspiciousness score, and developers may need to associate the patterns with

different bugs manually.

5.2.3 Challenges

The problems of Section 5.2.2 raise a number of challenges.

Challenge 1 (Efficient Information Gathering): Existing techniques collect

and report only pairs of memory accesses or patterns of accesses (in Unicorn). This

property helps to keep the amount of information gathered small, making the tech-

niques efficient overall. However, to present concurrency bugs with high-level context

and clusters of accesses, a new technique needs to collect more context information

with accesses efficiently and process them accordingly.

Challenge 2 (Large Context): The second challenge is related to large size

of calling contexts. It may be argued that Problem 1 can be easily addressed by

reporting only a call stack for each memory access. However, the problem is not so

easy. The stack sizes sometimes grow very large, such as mysql-169, where the size
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of the call stacks grow to over 10 methods spread across five source files. In addition,

the stack comparison involves not only stacks of two memory accesses, but stacks of

patterns of memory-accesses, and moreover, the number of stacks grows to several

thousands.

Challenge 3 (Large Number of Patterns): The third challenge is related to

the large number of patterns. It may be argued that Problems 2 and 3 can be

easily addressed by manual clustering of patterns by a developer. However, it may be

difficult to group patterns manually when the size of the report grows. Our experience

suggests that the size of a report, like mysql-791 in Table 10, can grow to more than

10K in some subjects [68], and the size of the patterns responsible for the same bug

may grow accordingly.

5.3 Technique

Griffin consists of three steps as shown in Figure 10. Step 1 takes as input a con-

current program P and a test suite T . Griffin executes P with T multiple times,

collecting memory-access patterns from each execution and labeling executions as

passing or failing. Then, Griffin computes a ranked list of patterns, F , using a

fault-localization scheme, and generates a coverage matrix, M , that represents the

associations of the patterns and the executions. Step 2 uses F and M to cluster exe-

cutions that likely failed due to the same bug. This clustering is based on Algorithm

1, ClusterFailingExecutions (Algorithm 1), and underlies Griffin’s ability to

handle multiple bugs. The output of Step 2 is a set of clusters, C, where each cluster

contains a set of failing executions. Finally, Step 3 executes algorithm ClusterSus-

piciousPatterns (Algorithm 2) on F , M , and C. This algorithm groups patterns

for constructing higher-level context that will be of direct use to the developer in

identifying the bug. The output C ′ is a set of clusters, where each cluster contains

a set of patterns. For each cluster in C ′, Step 3 also reports two suspicious methods
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Figure 10: Overview of Griffin.

(one for each thread in the cluster), Meth, that are likely to contain the location to

be fixed, and a bug graph G, that visually shows the bug.

5.3.1 Step 1: Localize Problematic Patterns

Step 1 is based on the Unicorn [68] fault-localization technique. We extended Uni-

corn in two ways to provide F and M . First, we extended Unicorn to record

call-stack information for each shared-memory access, and thus, accesses in the pat-

terns in F are also associated with call stacks. This modification is straightforward

and is used in other techniques [33,35,44].

Second, we extended Unicorn to report M . Unicorn maintains M internally

in its pattern-combination step, so we changed Unicorn to output the information.

Figure 11 shows an example of M , for the bug example in Figure 8 and Table 9. In

the figure, the rows represent the pattern indexes (PI1–PI15); the first 15 columns

represent the executions (E1–E15); the labels at the bottom of these columns repre-

sent the results of those executions (P for passing and F for failing); and the last two

columns represent the suspiciousness score and the rank of the PIs, respectively. A

solid circle in a cell in M , denoted by (PI,E), indicates that PI is observed in the exe-

cution of E. For example, the solid circle in (PI1, E1) indicates that pattern accesses

of PI1 were observed in the execution E1, the suspiciousness score of PI1 is 0.6, and

PI1 is ranked 1st. Note that Figure 11 has nine PIs in common (i.e., PI1–PI9) with

Table 9, but it has six more PIs (i.e., PI10–PI15) for illustration of our technique.

58



S
u
sp

R
an
k

F F F F F F F P P P P P P P P

E
1

E
2

E
3

E
4

E
5

E
6

E
7

E
8

E
9

E
1
0

E
1
1

E
1
2

E
1
3

E
1
4

E
1
5

PI1

PI2

PI3

PI4

PI6

PI5

PI7

PI8

PI9

PI10

PI11

PI12

PI13

PI14

PI15

1

1

1

1

6

5

6

6

6

10

10

12

12

14

15

0.60

0.60

0.60

0.60

0.20

0.38

0.20

0.20

0.20

0.15

0.15

0.14

0.14

0.13

0.06

B1 B2 B3Figure 11: Coverage matrix for the atomicity violations in Figure 8 and Table 9.

5.3.2 Step 2: Cluster Failing Executions

The main purpose of Step 2 is to handle multiple bugs by grouping executions that

fail for the same reason. To do this, Step 2 executes a clustering algorithm based on

the results of Step 1, and outputs a set of clusters of failing executions for use in Step

3.

There are several metrics to use for clustering algorithms, such as statement,

branch, definition-use profiles, memory-access pairs between threads, and memory-

access patterns. We tried different metrics and used the fault-localization results (i.e.,

ranked memory-access patterns) to develop our clustering algorithm for two reasons.

First, fault-localization results are available from Step 1, so Step 2 can use them

without collecting additional profile data. Second, concurrency bugs usually occur in

specific thread interleavings and are related to a small portion of program profiles,
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but are not highly related to the entire profile of the program execution.

Figure 11 illustrates the intuition behind our approach. Executions E1–E7 are

failing executions: E1–E3 fail because of the same bug; E4 and E5 fail because of

the same bug; and E6 and E7 fail because of the same bug. Each failing execution

associated with the same bug has a similar set of top ranked patterns. Consider

E1–E3. PI1–PI4 are highly ranked and appear only in these executions. In contrast,

PI10–PI15 are lowly ranked, and mainly appear in passing executions. Even if the

pattern accesses appear in failing executions, they appear randomly. Therefore, using

the top ranked patterns for each failing execution will facilitate the clustering of

executions that fail for the same bug.

Algorithm 3, our fault-localization-based clustering algorithm, inputs a ranked

list of memory-access patterns, F , a coverage matrix, M , the number of suspicious

patterns to be considered, t, and the threshold of similarity of two clusters, s, and

outputs a set of clusters, C={C1, C2, . . . , Ck}, where each cluster Ci is a set of

failing executions. The algorithm starts by initializing each cluster to contain one

failing execution (lines 1–4). Then, the algorithm iterates until there are no more

merged clusters (lines 5–27). In this main loop, the algorithm compares every pair

of clusters to determine whether they can be merged (lines 10–26). To check the

similarity, the algorithm fetches the top t patterns in two clusters (lines 11–12), and

computes the similarity of the two clusters (line 13). For the similarity computation,

the algorithm uses the Jaccard similarity index, which is shown in Equation 4. The

value of the index ranges from 0 (completely different) to 1 (completely alike).

Similarity(A,B) =
|A ∩B|
|A ∪B|

(4)

The algorithm keeps the maximum similarity by comparing the similarity of the

current pair and max similarity (lines 14–17). If the two clusters are exactly the same

(lines 18–20), the algorithm simply merges the two clusters (lines 22–26). Otherwise,

if the maximum similarity is greater than the threshold (lines 22–26), the algorithm
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Algorithm 3: ClusterFailingExecutions
Input : F : ranked list of memory-access patterns

M : coverage matrix
t: number of suspicious patterns to be considered
s: threshold of similarity of two clusters

Output: C: set of clusters, each of which is a set of failing executions
Data: k: number of clusters

merged: true if any two clusters were merged

1 Set k = number of failing executions
2 for failing executions, fi, where 1 ≤ i ≤ k do
3 Ci = {fi}
4 end
5 merged = true
6 while merged do
7 merged = false
8 max similarity = 0
9 cand pair = ∅

10 for all (Ci, Cj) where i 6=j and 0≤i, j≤k do
11 Ri = getSuspiciousPatterns(Ci, M , F , t)
12 Rj = getSuspiciousPatterns(Cj , M , F , t)
13 similarity = getSimilarity(Ri, Rj)
14 if similarity > max similarity then
15 cand pair = (Ci, Cj)
16 max similarity = similarity

17 end
18 if max similarity == 1 then
19 break
20 end

21 end
22 if max similarity ≥ s then
23 merge cand pair
24 k = k - 1
25 merged = true

26 end

27 end
28 C = {C1, C2, . . . , Ck}
29 return C

merges the two clusters. The algorithm terminates the main loop when no more

clusters are merged, and returns the clusters (line 28).

Consider again Figure 11. Algorithm ClusterFailingExecutions starts by

initializing each cluster to one failing execution: for i ∈ 1 . . . 7, Ci={Ei}. Suppose
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t=5 and s=0.5. Consider C1 and C2 as the first pair of clusters. These clusters can be

merged because the five top-ranked patterns of each cluster are exactly the same and

thus, the similarity is 1 (lines 18–20 and 22–26). Let C ′
1={E1, E2}. Note that the

algorithm breaks out of the comparison loop if it finds two identical clusters (line 15).

Now consider C ′
1 and C3 as the next pair of clusters. This pair can also be merged

because the five top-ranked patterns of each cluster are exactly the same resulting

in a similarity of 1. Let C ′′
1={E1, E2, E3}. Another candidate pair is C4 and C5.

E4 has five patterns, and E5 has four patterns. Because three patterns appear in

both E4 and E5 and six distinct patterns appear in E4 and E5, the similarity is 3
6

or 0.5. Thus, the pair can be merged. Likewise, E6 and E7 can be merged. Finally,

the algorithm reports three clusters: C ′′
1={E1, E2, E3}, C ′

2={E4, E5}, and C ′
3={E6,

E7}.

5.3.3 Step 3: Reconstruct Bug Context

The main purpose of Step 3 is to reconstruct high-level bug context from the clustered

patterns to assist understanding of the bug. To do so, Step 3 fetches the top-ranked

patterns for each group of failing executions reported from Step 2, and distinguishes

the true and false positive patterns with respect to the bug. Step 3 outputs a set of

clusters of patterns, C ′, for each cluster in C. Then, for each cluster of patterns in

C ′, Step 3 merges accesses of the patterns, and reports suspicious methods, Meth,

and a bug graph, G.

We use a clustering algorithm based on the similarity of the call stacks [13]. The

intuition behind the call-stack-similarity-based clustering is that accesses appearing

closely in execution are likely to have similar call stacks, and thus, accesses responsible

for the same concurrency bug are likely to have similar call stacks. The same intuition

is applied to patterns. If two patterns are responsible for the same bug, the call stacks

in the patterns are likely to be similar. Specifically, we use common call stacks to
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Algorithm 4: ClusterSuspiciousPatterns
Input : F : ranked list of memory-access patterns

M : coverage matrix
Cf : a set of failing executions
t: number of suspicious patterns to be considered

Output: C ′: set of clusters, each of which is a set of patterns
Data: k: number of clusters

1 Set k = t
2 C ′ = getSuspiciousPatterns(Cf , M , F , t)
3 for patterns pi in C ′ do
4 CLi = {pi}
5 end
6 merged = true
7 while merged do
8 mergeable = false
9 for all (CLi, CLj) where i 6=j and 0≤i, j≤k do

10 mergeable = isMergeable(CLi, CLj)
11 if mergeable then
12 merge(CLi, CLj)
13 k = k - 1
14 merged = true
15 break

16 end

17 end

18 end
19 C ′ = {CL1, CL2, . . . , CLk}
20 return C ′

compare patterns. A common call stack of a group of memory accesses is the common

part of the call stacks from the bottom of the stacks. Consider accesses 1 and 3 in

Figure 9. The common call stack of the two accesses is the common part of the two

call stacks of the accesses: main() and Vector().

Algorithm 4, our suspicious-pattern clustering algorithm, inputs a ranked list of

memory-access patterns F , a coverage matrix M , the number of suspicious patterns

to be considered t, and a set of failing executions, Cf , that fail because of the same

bug. The algorithm starts by fetching the top t patterns from Cf and initializing each

cluster to a pattern (lines 1–4). Then, the algorithm iterates until there are no more

merged clusters (lines 7–17). In the main loop, the algorithm compares every pair of

63



clusters to determine whether the pair can be merged (lines 9–15). The algorithm

terminates the main loop when no more clusters are merged, and returns the clusters

(line 19).

The main part of the algorithm is the isMergeable function that determines

whether two clusters of patterns can be merged. Consider two clusters, CLi and

CLj. There are two cases. First, if CLi and CLj have common call stacks that are

the same, the clusters can be merged. Second, if CLi has only one pair and the pair

in CLi is part of the triple or quadruple in CLj, then the clusters can be merged.

Consider again Table 9 and Figures 9 and 11 that were used in Step 2. Step 3

inputs C ′′
1={E1, E2, E3}, C ′

2={E4, E5}, and C ′
3={E6, E7}. Suppose t=5, and we

run Algorithm 4 for C ′′
1 . The top five patterns in C ′′

1 are PI1–PI5. The algorithm

starts by initializing each cluster with each pattern: for i ∈ 1. . . 5, CLi={PIi}. First,

the algorithm compares CL1 and CL3. Each cluster has one pattern, and PI3 (i.e.,

851→681) is part of PI1 (i.e., 271→851→681). Thus, they are merged by exact

subsumption, and let CL′
1={PI1, PI3}. Similarly, PI4 and PI5 are merged to PI2,

and let CL′
2={PI2, PI4, PI5}. Now, the algorithm compares CL′

1 and CL′
2, and

merges them by call stack similarity. The common call stacks of the clusters are:

main() and Vector() from one thread; run() and addAll() from the other thread

as in Figure 12. Finally, the algorithm reports only one cluster, CL′′
1={PI1, PI2, PI3,

PI4, PI5}, for C ′′
1 .

Step 3 reports two suspicious methods Meth one for each thread in the cluster.

We define a suspicious method as the method at the top in the common call stack.

A cluster has two groups of memory accesses for each thread, and thus, Step 3 finds

two suspicious methods, one for each thread. Consider again Figure 9. Suppose a

cluster has only these three accesses. Then, a group of memory accesses for Thread 1

is Access 1 and Access 3, the other group of memory accesses for Thread 2 is Access

2, and the suspicious methods are Vector() and addAll().
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Thread 1 Thread 2 

120  main() 

151  Vector(Collection c) 

680  void toArray(Object a[]) 

681      a.size = size; 

682      copyarray(a.array, array); 

120  main() 

150  Vector(Collection c) 

270  int size() 

271      return size; 

130  void run() 

850  void addAll(Collection c) 

851      size += c.size; 

852      appendarray(array, c.array); 

R

W

R

R

W

Figure 12: Bug graph for the atomicity violation B1 in Table 9.

Step 3 reports a bug graph G for each cluster of patterns. To create the graph,

Step 3 divides memory accesses into two groups, one for each thread. Then, Step 3

investigates memory-access orderings and groups accesses that have the same ordering

sequences. Figure 12 shows an example of a bug graph for the cluster, CL′′
1. Each node

has a group of memory accesses with a common call stack. Solid rectangles represent

methods on the call stack, and dotted rectangles represent memory accesses. For

example, the node in Thread 2 has two write accesses, lines 851 and 852, and their

common call stack has two methods. Edges between threads show the orderings of

the memory accesses, and in this example, the edges can represent all five patterns

in PI1–PI5. For example, PI1 is a RWR pattern of 271→851→681 accesses, and we

can find the corresponding edges of the arrows in the graph.
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5.4 Evaluation

To evaluate the Griffin technique, we implemented it in a prototype tool, and

evaluated the tool on a set of subjects.2 This section describes the implementation

(Section 5.4.1) and the empirical set up (Section 5.4.2), presents our studies (Sections

5.4.3–5.4.4), and discusses the threats to the validity of the studies (Section 5.4.5).

5.4.1 Implementation

We implemented our prototype tool for Java and C++. For Step 1 of our technique,

we implemented modules for both Java and C++. The modules are based on the

implementations of Unicorn [68], and we extended them to record call stacks for

each shared-variable access and to provide the coverage matrix. For both languages,

Step 1 outputs the results in XML format. We implemented the module using the Soot

framework3 and the PIN binary instrumentation tool4 for Java and C++, respectively.

For Step 2, we implemented the module in Java. The module takes XML files

containing the results of Step 1 as input, and produces as ouput a text file of clusters

of failing executions. Finally, for Step 3, we implemented the module in Python and

GraphViz. The module reads the XML and the text files, and produces clusters of

patterns and suspicious methods in text files, and bug graphs in PNG graphics files.

5.4.2 Empirical Setup

Table 10 lists the subject programs we used for our studies. The first column shows

the subject’s language (Language), either Java or C++. The second column shows

the name of the subject program (Program). The third column shows the failure rate

that we observed empirically with our test cases (% Fail). The fourth column shows

the number of concurrency bugs that we identified with our test cases (# Bugs). The

2The details of our empirical studies are available at http://www.cc.gatech.edu/~sangminp/

griffin/
3http://www.sable.mcgill.ca/soot/
4http://pintool.org/
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Table 10: Subjects used in evaluating Griffin.

Language Program % Fail # Bugs KLOC Type

Java

TreeSet-1 42.0 5 7.5 Atomicity
TreeSet-2 29.0 3 7.5 Atomicity
StringBuffer-1 33.0 4 1.4 Atomicity
StringBuffer-2 18.0 1 1.4 Atomicity
Vector-1 8.0 4 9.5 Atomicity
Vector-2 14.0 2 9.5 Atomicity

C++

Mysql-169 29.0 1 331 Atomicity
Mysql-791 24.0 1 372 Atomicity
NSPR-165586 18.0 1 125 Atomicity
PBZip2 75.0 1 2 Order
Transmission 31.0 1 90 Order

fifth column lists the size of the program in KLOCs. Finally, the sixth column shows

the type of the concurrency bug (Type), either an atomicity or an order violation. For

example, TreeSet-1 is a Java program that fails 42% of the time with our test suite.

The size of the program is about 7,500 lines of code, and it fails with five different

atomicity violations.

We created test cases, and ran them multiple times for each subject to collect

various interleavings from multiple executions. For the Java programs, which are a

set of classes in the Java collection library, we created two test cases for each program.

These test cases execute different parts of code with different levels of concurrency, and

thus, programs with different test cases may exhibit different sets of bugs. Specifically,

the program name with suffix 1 has a test case that creates four threads and calls two

methods for each thread, and the program name with suffix 2 has a test case that

creates two threads and calls one method for each thread. Mysql-169 and Mysql-791

are two versions of Mysql open-source database, and NSPR-165586 is a library of the

Mozilla open-source browser. For each program, we created test cases as described

in the program’s bug repository to emulate the real debugging environment of the

developers. PBZip2 is a compression utility program, and we provided a large file for
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the program to compress. Transmission is a torrent download utility, and we used

a torrent file for the program to download and observed whether the program fails.

We ran our studies on a Linux desktop with 2.8 GHz CPU and 8 GB of memory.

We used gcc 4.1 and Java 1.5.

5.4.3 Study 1: Handling Multiple Bugs

The goal of this study is to investigate how well Griffin handles multiple concurrency

bugs by examining the clusters of failing executions it produces. More specifically,

we collected the fault-localization results from Step 1 of our technique, and ran Step

2 on the results. Recall that Algorithm 3 in Step 2 has two parameters, t and s: t is

the number of suspicious patterns to be considered for each failing execution, and s

is the threshold of similarity of two clusters. We performed a preliminary study that

investigates a range of values of t and s to determine the parameter values that are

likely to report the same number of clusters as the number of bugs. From this study,

we let t = 30 and s = 0.8.

To evaluate the effectiveness of the clustering, we used the F-measure metric. This

metric is based on a combination of precision and recall as used in the information-

retrieval domain, and is widely used to evaluate clustering algorithms [13, 85]. In

this case, precision refers to the proportion of clustered failing executions that are

relevant, recall refers to the proportion of relevant failing executions that are clustered;

the F-measure is a weighted combination of precision and recall.

We denote C as the set of clusters. Specifically, let Ci be the ith cluster that our

algorithm reports, Oj be the jth optimal cluster, and N be the total number of failing

executions. Then, we calculate precision and recall as follows.

Precision(Ci, Oj) =
|Ci ∩ Oj|
|Ci|

, Recall(Ci, Oj) =
|Ci ∩ Oj|
|Oj|

We use Van Rijisbergen’s F-measure [85], which computes the weighted average of
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Table 11: Study 1: Handling multiple bugs.

Program # Patterns # Optimal # Clusters F-measure
TreeSet-1 714 5 7 0.88
TreeSet-2 656 3 4 0.91
StringBuffer-1 12 4 4 1.00
StringBuffer-2 3 1 1 1.00
Vector-1 18 4 4 1.00
Vector-2 10 2 2 1.00
Mysql-169 21834 1 1 1.00
Mysql-791 71694 1 2 0.94
NSPR-165586 1479 1 2 0.86
PBZip2 427 1 2 0.96
Transmission 226 1 1 1.00

maximal F-measure values for each cluster. The equations are as follows.

F (Ci, Oj) =
2 ∗ Recall(Ci, Oj) ∗ Precision(Ci, Oj)

Recall(Ci, Oj) + Precision(Ci, Oj)

F -measure(C) =
∑
i

|Ci|
N
∗maxj{F (Ci, Oj)}

The F-measure value ranges from 0 (least effective) to 1 (most effective).

Table 11 shows the results of the study. The first column shows the program name

(Program). The second column shows the number of patterns (# Patterns) that the

fault-localization technique in Step 1 reports. The third column shows the optimal

number of failing execution clusters (# Optimal), which should be the same as the

number of bugs in the program. The fourth column shows the number of clusters

that Griffin reports (# Clusters). Finally, the fifth column shows the F-measure

value (F-measure). For example, for Mysql-791, Griffin reports 71,694 patterns

after Step 1. The optimal number of clusters is one, and Step 2 of the technique

reports two clusters. The F-measure value is 0.94.

The main observation from Table 11 is that most of the F-measure values are 1.00

or are close to 1.00, and none is less than 0.86. The high F-measure values indicate

that the failure clustering algorithm is effective in handling multiple concurrency
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bugs with our parameter settings. One important parameter is t, which we set to

30. Although previous techniques [33, 35, 54, 67, 68] reveal that several patterns may

indicate the same bug, they do not report the number of patterns that are related to

the same bug. Our study showed that, for our subjects, up to 30 patterns are related

to the same bug.

We performed a detailed investigation of the subjects whose F-measure values

are not 1.00. For example, for Mysql-791, we used 24 failing executions as input to

the clustering algorithm. The optimal number of clusters is one, but the algorithm

reported two clusters, one with 23 failing executions and the other with one failing

execution. We manually investigated these clusters, and found that these two clusters

are also similar. We also found that, when we used a lesser value for s (the threshold

of similarity), we get the optimal number of clusters for the subject. Thus, we believe

that there may be a better combination of parameters that more often gives optimal

results, and we plan to investigate this in future work.

Another observation involves the “super-bug effect” [98]: for sequential programs,

the clustering techniques often did not cluster failing test cases effectively when the

program has multiple bugs, and one bug hides the appearance of the other bug. For

concurrent programs and test cases we investigated, we found no executions that

reveals a super bug.

5.4.4 Study 2: Reconstructing Bug Context

The goal of this study is to investigate how well Griffin reconstructs bug contexts.

Specifically, this study investigates how well Griffin clusters true positive patterns

and locates concurrency bugs in both method and access levels. To do so, we run Step

3 of the technique on the optimal clusters of failing executions that Step 2 produces.

Recall that Algorithm 4 in Step 3 has a parameter t, which is the number of patterns

to be re-clustered. We set t = 20 based on the observation that only top-ranked
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Table 12: Study 2: Reconstructing bug context.

Program # Optimal # Clusters FP Meth Call Size
TreeSet-1 5 5 0 Y 6
TreeSet-2 3 3 0 Y 6
StringBuffer-1 4 4 0 Y 1
StringBuffer-2 1 1 0 Y 1
Vector-1 4 4 0 Y 1
Vector-2 2 2 0 Y 1
Mysql-169 1 2 1 Y 9
Mysql-791 1 1 0 Y 1
NSPR-165586 1 1 0 Y 4
PBZip2 1 1 0 Y 0
Transmission 1 1 0 Y 7

patterns are likely to be responsible for the real bugs.

To evaluate the effectiveness of the technique, we investigated the outputs of Step

3: clustered patterns, suspicious methods, and bug graphs, using our understanding of

the bugs. To evaluate the effectiveness of the clustering, we checked whether the bug

graph of the cluster has orderings and contexts consisting of the bug. If the bug graph

does not represent a bug, we set it as a false positive. To evaluate the effectiveness

of the bug locating ability, we manually checked whether the suspiciousness method

locates the method containing the cause of the bug. For example, if the bug is an

atomicity violation, we checked whether the suspicious method locates the atomic

region; if the bug is an order violation, we checked whether the suspicious method

has the location in which incorrect orderings occur.

Table 12 shows the results of the study. The first column shows the program name

(Program). The second column shows the number of optimal clusters of patterns (#

Optimal), which is the same as the number of bugs. The third column shows the

number of clusters that Griffin reports (# Clusters), The fourth column shows

the number of false-positive clusters (FP), which is the difference between the values

in the third and second columns. The fifth column shows whether the suspicious
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methods locate the cause of the bug (Meth). Finally, the sixth column shows the

maximum size of call stacks between suspicious methods and raw-memory accesses

(Call Size). For example, Griffin reports two clusters for Mysql-169, where the

patterns in one cluster indicate the real bug, and the other cluster is a false positive.

The suspicious methods locate the atomic region, and the maximum size of call stacks

between suspicious methods and raw-memory accesses is 9.

We make several observations from the study. First, for our subjects, the technique

successfully clusters patterns. The clusters included all 24 of the true bugs across

all subjects, with just 1 false positive cluster. Thus, for each bug, a developer would

typically need only to investigate one bug graph to understand the bug in a high

level, and investigate only up to 20 patterns to understand the bug in a low level.

However, without such clustering, a developer might need to investigate an indefinite

number of patterns—up to 71k patterns as shown for Mysql-791 in Table 11.

For the subjects we investigated, we found only one false positive in Mysql-169.

The bug is a multi-variable atomicity violation.5 Our manual investigation found

that the bug graph for the true-positive cluster represents the real bug as given in

the bug description. However, the bug graph for the false-positive cluster shows two

thread-context changes, where the context changes resemble those of the real bug but

differ slightly in that the accesses in the false-positive cluster were observed closely

in time. (The details of this bug are given at the link in Footnote 3.)

Second, for our subjects, we found that all suspicious methods locate the method

that is the cause of bug. For Vector-1 and Vector-2, suspicious methods include

the Vector constructor. For another example, for Transmission, Griffin reports

tr sessionInitFull as the suspicious method, where the incorrect ordering actually

occurs.6

5http://web.eecs.umich.edu/~jieyu/bugs/mysql-169.html
6http://web.eecs.umich.edu/~jieyu/bugs/transmission-142.html
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Third, for our subjects, call-stack sizes between suspicious methods and raw-

memory accesses are greater than zero except for PBZip2. Considering the large call

stack sizes in Table 12 and the large number of patterns in Table 11, we can confirm

that Challenges 2 and 3 in Section 5.2.3 are not trivial.

5.4.5 Threats to Validity

There are several threats to validity of our studies. Threats to internal validity include

the empirical setup, especially the test suite that we used for our studies. Because

there is no standard benchmark suite for use in fault-localization of concurrency bugs,

we used programs with known bugs. However, to mitigate this threat, we created and

used the test suites as described in the bug description of the repositories to apply

our technique to test suites of open-source programs.

Threats to external validity limit the generalization of the technique in real de-

bugging situations. Because of the lack of a standard benchmark suite, this problem

is common to all existing work in the area. However, to reduce this threat, we chose

programs with real bugs, and we used programs for both Java and C++.

Threats to construct validity include the way developers utilize the outputs of the

fault-localization techniques. Our technique provides three different forms of output,

so developers may understand bugs in different views with our results. In addition,

we evaluated our technique with a set of experiments, showing that our technique

pinpoints bugs in both method and memory-access levels. However, we acknowledge

that only user studies will inform us about the usefulness and effectiveness of our

techniques.

5.5 Related Work

This section discusses existing fault-localization and fault-fixing techniques, along

with fault-clustering and fault-comprehension techniques, and compares them with

Griffin.
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Fault localization. Early work on fault-localization techniques for concurrent pro-

grams located one type of concurrency faults. These techniques statically inspect

program code [22, 60] or dynamically monitor shared-memory accesses [25, 90], and

report a list of problematic memory-accesses patterns representing data races [60]

or atomicity violations [22, 25, 90]. More recent work investigates memory-access

patterns for several types of concurrency bugs and outputs these patterns as bug

reports [34,54,68,83]. All these fault-localization techniques report a list of memory-

access patterns as bugs. However, Griffin clusters these patterns for each bug and

provides further contextual information to improve comprehension of concurrency

bugs.

Automatic fix. There are a few recent techniques for automatic fixing of concurrent

programs [33,35,44]. AFix [33] and AXis [44] input atomicity violations from the out-

put reports of existing techniques [29], determine the atomic regions from the reports,

and insert locks to protect atomic regions. CFix [35] extends AFix to handle both

atomicity and order violations. Griffin differs from these techniques in two ways.

First, the goal of Griffin is to enhance understanding of bugs by providing clusters

of patterns and suspicious method calls, and to let developers fix the bug with various

strategies. In contrast, these fix techniques assume complete understanding of bugs,

and use simple strategies such as lock-insertion, that developers rarely use [50]. Sec-

ond, Griffin can help automatic fix techniques because it provides a more complete

explanation of bugs, which can be input to these techniques.

Fault clustering. One of the main parts of Griffin is clustering failing executions,

and there are largely two types of techniques for the clustering as discussed in Section

5.3.2: profile-based clustering and fault-localization-based clustering. Podgurski and

colleagues [72] showed that program profiles can be used for clustering failing exe-

cutions according to the causes of the faults. Zheng and colleagues [98] presented a

profile-based clustering algorithm that finds bug predicates and that handles multiple
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bugs. Jones and colleagues [37] utilized both profile-based and fault-localization-based

clustering to improve both sequential and parallel debugging, and showed that both

algorithms save debugging cost over non-clustered techniques. Our technique uses a

fault-localization-based clustering technique because fault-localization data is avail-

able from an existing technique. However, unlike these techniques, our technique also

uses a pattern clustering algorithm to further refine the clustering results.

Fault comprehension. There are several approaches that improve understanding

of bugs by providing additional information over fault-localization results for sequen-

tial programs. The underlying idea of the approaches is that providing suspicious

statements is not enough to identify and understand the bug, and that providing

additional information (e.g., clustering results and explanations) can improve devel-

opers’ understanding [71]. Rapid [28] provides suspicious statements with the method

context leading to the statement so that developers can infer the execution path to the

bug. LEAP [12] provides suspicious graphs at the method and the basic-block levels

using graph-mining algorithms so that developers can understand the bug at a level

higher than statements. Like these approaches, Griffin provides additional infor-

mation over fault-localization techniques. However, unlike these techniques, Griffin

works for concurrent programs.

5.6 Summary

In our view, Griffin makes significant progress toward filling an important research

gap in fault-comprehension, which lies between fault-localization and fault-fixing tech-

niques for concurrent programs. Recall that, to date, fault-localization has focused

on pinpointing basic program fragments (memory references) that lead to bugs, and

fault-fixing techniques attempt (semi-)automatic repair through the use of simple

patches. However, experience suggests that true fixes require deeper program un-

derstanding, which Griffin attempts to provide through explicit identification of
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suspicious methods rather than just memory references; reconstruction of bug context

through analysis of call stacks, rather than just reporting call stacks; and the use of

bug graphs to aid developer understanding of this information.
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CHAPTER VI

EMPIRICAL USER STUDY OF DEBUGGING

TECHNIQUES

6.1 Introduction

Although Falcon, Unicorn, and Griffin aim to improve the understanding of con-

currency bugs, this aim needs empirical testing. This chapter summarizes an empirical

user study whose goal is to observe how programmers use the information provided

by these and a related tool to understand and fix concurrency bugs. In particular,

we implemented a baseline technique with two debugging techniques, Unicorn and

Griffin, in Eclipse plugins and designed an empirical user study in which we as-

signed different tools for developers for different levels of debugging tasks. Then, we

observed the debugging behavior of the participants, surveyed their experience, and

analyzed the responses quantitatively and qualitatively.

The results are interesting in several aspects. For example, Griffin is more useful

for understanding concurrency bugs especially for harder tasks. We also found that

developers use the tools in different ways, e.g., to track the root cause of the bug or to

confirm the root cause after finding it with manual source inspection. Moreover, users

suggested other improvements, such as suggestions for enhanced visual representation

of the tools.

The main contributions of this empirical user study are summarized as follows:

• An empirical user study that determines whether the debugging tools for con-

currency bugs help developers.

• Analyses of the study results, which partially validates the effectiveness of Uni-

corn and Griffin.
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• Discussions of our experience from the empirical user study.

6.2 Related Work

This section discusses empirical user studies for evaluating debugging techniques for

sequential and concurrent software.

6.2.1 Empirical User Studies for Sequential Bugs

Several types of debugging techniques for sequential bugs have been presented over

the past three decades. Weiser proposed one of the first debugging techniques, called

program slicing [91]. Their main idea is that developers can investigate only “slices”

of program behavior. Another debugging approach is statistical fault localization [39,

42], where these techniques identify potentially suspicious statements from multiple

failing executions and often compare the failing executions with passing executions.

Other approaches help developers in debugging software by allowing them to ask

“why” questions on program behavior [40].

These techniques have been evaluated with real programmers and students. Weiser

has evaluated the effectiveness of program slices in debugging 100 lines of programs

with 21 programmers, and found that programmers tend to follow the program exe-

cution flow [91]. Parnin and Orso evaluated the effectiveness of statistical fault local-

ization techniques in debugging programs of 2KLOC and 4KLOC with 34 graduate

students. The results show that the techniques help expert programmers debugging

programs, but the techniques need to provide some more information, e.g., context,

to be more effective [71]. Finally, Ko and Meyers evaluated the WhyLine tool with 10

graduate students [41], and found that WhyLine is effective in debugging sequential

programs both in time and completion of the debugging.
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6.2.2 Visualization Tools for Concurrent Software

As an aid for debugging, visualization tools display traces with focus on the interac-

tions among threads [1,7,55,74,75]. For example, model checkers, such as JPF [26] or

CHESS [1], produce a serialized execute trace when a concurrent program fails. Con-

currency Explorer [1] takes a trace produced by CHESS and displays the sequence of

thread interactions with a list. TIE [55] extends Concurrency Explorer and displays

traces from multiple executions. Artho et al [7] presents the interactions of threads

as a UML sequence diagram to express the bug with the clear interactions. JIVE and

JOVE [74, 75] focus on incurring minimal instrumentation overhead for visualizing

threads for Java programs.

We believe an empirical user study to evaluate these techniques would be useful

for the following reasons. First, most techniques were developed only for research, and

they were not formally evaluated on human subjects [7, 55, 74, 75]. Second, except

Concurrency Explorer, which is used internally in Microsoft, the other tools were

evaluated with toy programs, not with any real programs. Thus, it is not clear

whether the visualization tools are scalable for real concurrency bugs as the trace size

increases.

6.2.3 Empirical User Studies for Concurrency Bugs

There are several empirical user studies on how programmers develop concurrent

programs [15, 16, 27, 45–47, 62, 87]. These studies evaluated several aspects of novice

and experienced programmers, such as how much speedup they achieve, how concisely

they write programs, how they design programs, and so on. However, the studies

do not evaluate on how developers debug concurrency bugs or how developers use

debugging tools for concurrency bugs.

To our knowledge, there are only two related works for debugging concurrent

programs. The first work is Lönnberg et al’s studies on how students understand
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concurrency bugs [48]. They performed several empirical user studies on students,

by asking the students to write concurrent programs and interviewed them several

questions [45, 46]. They then suggest several ways to help students in debugging

concurrent programs. For example, they claim that students usually have different

understanding of concurrency from teachers, and thus software visualization tools will

help both teachers and students get the same view of the programs and bugs. How-

ever, the authors mainly suggest how one might design such visualizations, without

providing user evaluation.

The second work is Sadowski and Yi’s user evaluations on how developers use the

new concurrency notation, called cooperability [79]. They posted three concurrency

bugs on an internet-based survey form, divided participants into two groups, where

one group of people have an aid of cooperability and the others do not, and evaluated

the responses. They scored the correctness of the responses with the ranking scheme

and statistically showed that developers can understand concurrency bugs better with

the aid of cooperability. However, cooperative programming is a concurrent program-

ming scheme, but not a debugging technique, so this study is not an evaluation on

debugging tools for concurrent software.

To our knowledge, there are no user evaluations on automated concurrency bug

debugging tools. Because of this lack of information, existing tools were based on

bug characteristics, not based on developer’s need. In our study, we evaluate whether

existing tools can assist developers in understanding concurrency bugs.

6.3 Goal and Hypotheses

The main goal of our empirical user study is to evaluate whether fault-localization

techniques for concurrent programs can help in understanding concurrency bugs.

Thus, we designed a study to compare fault-localization techniques (Unicorn and

Griffin) with a baseline tool, called Tracer (See Section 6.4.2 for Tracer).
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The central assumption of Unicorn is that providing likely buggy memory-access

patterns will help locate the concurrency bugs, and so will increase the understanding

of the bug. Based on the assumption, we can pose the first hypothesis.

Hypothesis 1: Participants who use Unicorn will understand concurrency bugs

better than participants who use Tracer.

Griffin was developed to address problems in Unicorn, such as memory-accesses

are not enough to explain concurrency bugs and more contextual information is

needed (Section 5.2). Thus, in our study, we will investigate whether participants

perform better with Griffin, and we pose the second hypothesis as follows.

Hypothesis 2: Participants who use Griffin will understand concurrency bugs

better than participants who use Unicorn or Tracer.

Finally, we assumed that if Unicorn and Griffin assist developers in under-

standing concurrency bugs, the developers will continue to perform well in fixing

concurrency bugs as well. Thus, our last hypothesis is as follows.

Hypothesis 3: Participants who use either Unicorn or Griffin will fix concur-

rency bugs better than participants who use Tracer.

A key question is how one measures “understanding”. Essentially, our approach

is to ask the user a series of questions about the nature of the fault, and to grade

these responses. For details, see Sections 6.4.6 and 6.4.7.

6.4 Experimental Protocol

6.4.1 Program Subjects

We selected program subjects that were used in our previous studies with the following

policies. First, we selected only Java subjects and excluded C/C++ subjects, so that

participants can focus on programs written in one language. Second, we selected
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non-trivial programs with different sizes. Thus, we selected one small-sized program

(Bank Account), one medium-sized program (Shop), and one large-sized program

(List). Third, we did not consider programs with “huge” traces. In particular, we

did not select several subject programs because they generate traces that the baseline

tool (Tracer) cannot load.

6.4.1.1 Bank Account

Bank Account is a program included in the Contest Benchmark Suite, which consists

of Java programs with seeded concurrency bugs [18]. The program consists of 116

LOC including comments and blanks. On startup, the program creates multiple

account owners as individual threads and executes them concurrently. Each account

owner initially has $300, deposits $100, withdraws $100 from her own account, and

transfers $100 to the next owner’s account. When the program executes successfully,

each account owner should have $300 in her account in the end. However, when

one owner’s transfer is executed concurrently with another owner’s transfer, the final

amount may be some different values, such as $200 or $400, not $300.

6.4.1.2 Shop

Shop is another program included in the Contest Benchmark Suite [18]. The pro-

gram consists of 296 LOC including comments and blanks. This program is a clas-

sic example of the producer-consumer problem. There are three major objects,

Shop, Supplier, and Consumer, in the program. In the beginning, a Shop object

is initialized, and it is passed to a Supplier thread and multiple Consumer threads.

The Supplier thread generates items using the Shop object, and multiple Consumer

threads take the items from the Shop objects. If two Customer threads take items

concurrently when there’s only one available item, the program can fail with an

ArrayIndexOutOfBoundsException.
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6.4.1.3 List

List is a data structure included in the Java Collection Library.1 We extracted

the library from the JDK 1.4 source, and the total size is 25,814 LOC. Because it

is an open program, we created a test harness, which can fail with a concurrency

bug. The program initially creates three SynchronizedList, initiates four threads that

share these three SynchronizedLists, and executes the threads concurrently. Each

thread executes a method from the List class (e.g., add, addAll, remove, and copy

constructor) for the three shared objects. When the copy constructor is executed,

the passed object is changed concurrently in the other thread, the copy constructor

can take a null item in the list.

6.4.2 Debugging Tools

As our fault-localization techniques, we chose Unicorn and Griffin for the follow-

ing reasons. First, Unicorn and Griffin have distinct features—Unicorn reports

likely buggy memory-access patterns, whereas Griffin reports grouped memory ac-

cesses with calling contexts, so their report type is quite different. Second, we did not

choose Falcon because both Falcon and Unicorn report memory-access patterns

and the coverage of Unicorn subsumes that of Falcon.

To compare Unicorn and Griffin, we selected a baseline technique. Because

there are no industrial automated debugging tools for concurrency bugs, we selected a

visualization tool, ConcurrencyExplorer [1], among many visualization tools [1,7,55,

74,75]. We chose ConcurrencyExplorer over other tools because it is an industry tool

used in Microsoft, and it presents the execution information in an intuitive manner.

We implemented the tools in Eclipse.2 The following subsections discuss the

implementations in detail.

1http://www.agent31.eu/2009/06/hidden-java-concurrency-bugs.html
2https://www.eclipse.org/
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6.4.2.1 Tracer

Tracer is our Eclipse-plugin implementation of ConcurrencyExplorer [1]. Since

ConcurrencyExplorer is implemented for Visual Studio, so we implemented Tracer

in Eclipse for Java programs. Like the original tool, our tool shows a memory dump of

failing program execution. For our study, we instrumented the programs, ran them,

got memory dumps from a failing execution, and showed the dumps using our plugin.

Figure 13 presents a snapshot of Tracer. The list view shows the sequence of

executed memory accesses. Each row represents a memory access, which consists

of the global access index, thread ID, memory access location in the source code,

source statement, access type, and its parent method. For example, the first row in

Figure 13 shows the first shared memory access in a failing execution, where it is a

read access on variable, c, in the method, increment(), in line 5 of Counter.java. To

help developers identify accesses from different threads, the accesses from the same

thread are showed with the same color. The top right shows a thread-selector view,

which contains all execution threads with combo boxes. It allows the participants

to selectively see accesses from specific threads. When the participant double clicks

each row in the list view, the editor opens the related source code file and line. The

plugin records all participant’s activities, including clicks and key strokes in the tool

and editors for evaluation purpose.

Note that, because the tool shows a complete dump of an execution, as the pro-

gram execution becomes larger, the tool may have to show a very huge information.

Thus, we excluded some programs for our subjects because their execution dump was

too huge to show for our empirical user study (more than 10K memory accesses).

6.4.2.2 Unicorn

Our Unicorn technique, presented in Chapter 4, is implemented as an Eclipse plugin.

We instrumented each subject program, ran it with the tool, got suspicious memory
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Figure 13: Eclipse plugin for Tracer.

accesses, and showed the results with our plugin.

Figure 14 shows a snapshot of Unicorn. To minimize the confusion of using dif-

ferent tools, we maintain a similar look-and-feel with Tracer, and so we implemented

the tool with a tree view. Each element in a tree view represents a memory-access

pattern, and the elements are ordered by suspiciousness scores. The memory-access

pattern consists of its pattern type, the summary of the patterns in the method level,

and the actual memory accesses in two threads. For example, the 1st ranked item in

Figure 14 is a RWW pattern, where the three accesses appear in increment method

in two threads, and they are accessed in line 5 of Counter.java. Unlike Tracer which

shows accesses from all threads, this tool shows the interaction of any two threads

and accesses from the same thread are showed with the same color. Like Tracer,

when the participant double clicks each row in the list of accesses, the editor opens

the related source code file and line. The plugin records all participant’s activities,

including clicks and key strokes in the tool and editors for evaluation purpose.

85



Figure 14: Eclipse plugin for Unicorn.

6.4.2.3 Griffin

Our Griffin technique, presented in Chapter 5, is also implemented as an Eclipse

plugin. We instrumented each subject program, ran it with Griffin technique, got

groups of memory accesses with their calling context, and showed the results with

our plugin.

Figure 15 shows a snapshot of Griffin. To maintain a similar look-and-feel with

Tracer and Unicorn, we implemented the tool with a tree view. Each element in a

tree view represents a group of memory accesses with calling context. Like Unicorn,

it shows interleaving of any two threads. For example, the 1st item in Figure 14 is

a set of memory interactions in T1, followed by T2, again by T1. Unlike Unicorn, it

provides more contextual information for concurrency bugs, such as clustered memory

accesses (instead of memory-access patterns up to four accesses), suspicious methods,

and calling contexts. Like Tracer and Unicorn, when the participant double clicks

each row in the accesses and calling contexts, the editor opens the related source code

file and line. The plugin records all participant’s activities, including clicks and key

strokes in the tool and editors for evaluation purpose.
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Figure 15: Eclipse plugin for Griffin.

6.4.3 Tasks

We gave each participant three main tasks, where the goal of each task is debugging a

concurrency failure in a program subject. For each task, the participant was provided

with a description of the subject program, the result of a passing execution, the result

of a failing execution, and information on how to run the subject program. After

reading the description, the participant was instructed to navigate the source code

and identify the root cause using any functionality of the Eclipse IDE (e.g., search

with keyword or see class hierarchy) or by using the tool. In addition, she could

run the program to see the results. However, due to the non-deterministic nature

of concurrency bugs, we made her aware of the difficulty in reproducing them. We

gave the time limit to participants to identify the fault, and then they completed a

questionnaire, which asked them to indicate the root cause of the fault and a possible

fix. We instructed them not to fix the fault in Eclipse, but to write about the fix in

the survey questionnaire.

The complete descriptions of the subject programs, successful execution logs, and

failure execution logs are presented in Appendix A.
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6.4.4 Participants

We recruited graduate students in Computer Science at Georgia Tech as participants

for our study. The participants had at least some multi-threaded programming ex-

periences. They had 2 to 30 years of programming experience with a median of 11;

They had 1 to 20 years of Java experience with a median of four; and, all participants

were familiar with concurrent programming from a class project, an industry/research

project, or multiple projects. As the participants ranged from beginners to experts

in concurrency, we randomly assigned them to assess how the debugging tools could

help different classes of programmers.

6.4.5 Study Design

We used factorial design for our study [2]. The main reason for choosing this study

design was to collect the developer’s impression on using different tools. Specifically,

for three tools and three subjects, we made six different combinations (3×2×1), and

assigned the participants in one of the six groups. Each participant used different tools

for conducting different tasks, and at the end of completing all tasks, the participant

were asked to rank the effectiveness of the tools.

6.4.6 Procedure

Participants performed the study in an office at Georgia Tech. We setup three com-

puters with a Linux virtual machine, on which subject programs and Eclipse tools are

installed. When a participant entered the room, the experimenter gave her the con-

sent document and discussed the instructions for the study. Our instructions included

Java concurrency tutorial, examples of types of concurrency bugs and related fixes,

and demo of all three Eclipse tools. Then, the experimenter randomly assigned her a

group from the factorial design and issued a random four-digit number as unique user

identifier (UUID). The participant used the UUID throughout the survey question-

naires so that their identities were anonymized. Then, the participant completed a
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background survey, which asked their programming experience, and completed each

task for 20 minutes. The survey questionnaire for each task included the usefulness of

the tool, the root cause of the fault in four questions (i.e., type of the bug, problem-

atic variable, problematic method, and the description of problematic interleaving),

and the fix suggestion in two questions (i.e., type of fix and the detailed description

of it). Finally, the participant completed a final survey questionnaire, which askd

the comparison of the tools and their overall experience. The complete list of the

survey questionnaire is in Appendix B. We allocated 1 hour and 30 minutes in total,

which consists of 20 minutes for instruction, 1 hour for completing three tasks, and

10 minutes for the final survey.

6.4.7 Evaluation Method

We collected several data for each task—completion time, Eclipse navigation data,

usefulness score, understanding score, and fix score. To test hypotheses, we compared

the above data for each task and tool pair using statistical hypothesis testing method.

We manually graded the understanding score with the following scheme. If the

participant wrote “I don’t know” or a completely wrong description, we gave the score

of 1. Otherwise, we set the base score to 5 and deducted -1 for each of the followings:

wrong type of bug, wrong variable name, wrong method name, and wrong description

of interleaving. Thus, the score becomes 1 (low) to 5 (high).

We manually graded the fix score with the ranking scheme [4]. We could not

apply the same grading scheme used for computing understanding score because the

participants gave written descriptions of the fix, which usually did not indicate the

specific locations to be modified. Thus, it is difficult to add or deduct points from

the written description. In summary, we reviewed all answers and ordered them from

bad descriptions to good descriptions, and gave them scores from 1 (low) to 5 (high)

scale.
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We calculated the numbers of activities from Eclipse logs. In addition, we man-

ually inspected the navigation data to investigate participant’s activities for special

instances.

6.4.8 Data Availability

The virtual machine, Eclipse plugins, subjects, instructions, and survey forms are pub-

licly available at http://www.cc.gatech.edu/~sangminp/concurrency-study/.

6.5 Results

We conducted the study for 32 students. Before analyzing the results, we removed

two outliers, who scored 1 point in at least two tasks, because they lacked enough

expertise to do concurrent programming. Then, we computed understanding and fix

scores and performed hypothesis testing.

The overall results show that Hypothesis 1 does not hold, but Hypothesis 2 holds

for difficult tasks. More specifically, participants understood the bugs significantly

better when using Griffin for hard tasks. Another result shows that Hypothesis 3

does not hold for all tasks.

We show the overall score distribution in Figure 16 and hypothesis testing results

(unpaired t-test) in Table 13, and discuss the significance of the results in the following

section.

6.5.1 Overall Results

In this section, we investigate the differences of usefulness, understanding, and fix

scores. Recall that participants gave a usefulness score in 1 to 5 scale, and we graded

the understanding and fix scores with our grading scheme (Section 6.4.7). We did not

analyze navigation data and completion time, but discuss them later in this section.

The plots (a) to (i) in Figure 16 show the distributions of scores. The horizontal

axis presents the scores in 1 (low) to 5 (high) scale. The vertical axis presents the
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number of participants. There are three legend entries for each plot. Each entry is

composed of the tool name and the average. For example, plot (a) presents the distri-

bution of usefulness scores for Bank Account task. The participants using Tracer,

Unicorn, and Griffin got average scores, 2.7, 3.7, and 3.5, respectively.

Table 13 shows hypothesis testing results. The numbers in the cells represent

the mean differences. The colored cells represent that the hypothesis testing result

is statistically significant (i.e., p < 0.05). For example, the second row shows the

test results for comparing usefulness of Griffin and Tracer. For Task 1, there’s

no difference in the usefulness because the result is not statistically significant, but

for Task 3, Griffin is more useful than Tracer because the result is statistically

significant with mean difference 2.17.

For Task 1, the distributions of the scores are in plots (a), (d), and (g) in Figure 16.

We found that the differences are not statistically significant as in the third column

of Table 13 although Griffin and Unicorn has higher mean values in most cases.

Plot (d) explains this result. Because Task 1 was the easiest task, most participants

understood the root cause well regardless of the tool and did not differentiate the

usefulness of the tools. Plot (g) explains that there is any correlation among different

tool users. Thus, Hypotheses 1, 2, and 3 do not hold for Task 1.

For Task 2, the distributions of the scores are in plots (b), (e), and (h) in Figure 16.

We found that the usefulness scores are statistically significantly different for com-

paring Griffin and Unicorn with Tracer as in the fourth column of Table 13.

The results indicate that, for the medium sized subject in our study, participants

experienced that Griffin and Unicorn are more useful than Tracer. However,

understanding and fix scores are not statistically significantly greater. We interpret

this result as follows: Since the subject is of medium difficulty, with the help of the

tool, the participants could easily find the bug; however, they apparently found the

bug with manual inspection. Thus, Hypotheses 1, 2, and 3 do not hold for Task 2.
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Table 13: Hypothesis testing results.

Score Type Hypothesis Testing
Task 1:
Bank Account

Task 2:
Shop

Task 3:
List

Usefulness
Griffin > Tracer 0.67 2.53 2.17
Griffin > Unicorn -0.14 0.31 1.44
Unicorn > Tracer 0.81 2.22 0.72

Understanding
Griffin > Tracer 0.96 0.18 0.98
Griffin > Unicorn 0.62 0.07 1.11
Unicorn > Tracer -0.07 0.11 -0.13

Fix
Griffin > Tracer 0.24 0.64 0.42
Griffin > Unicorn 0.51 0.09 1.11
Unicorn > Tracer -0.29 0.56 -0.69

For Task 3, the distributions of the scores are in plots (c), (f), and (i) in Figure 16.

We found that the usefulness and understanding scores are statistically significantly

different for comparing Griffin with Unicorn and Tracer as in the fifth column

of Table 13. The results indicate that, for the most difficult task, participants ex-

perienced that Griffin is a more useful tool than others, and they also understood

the bug better. However, we also found no significant difference of Tracer and

Unicorn. Regarding the fix score, we did not find any correlation among different

tool users. Thus, Hypothesis 1 does not hold, but Hypothesis 2 holds for Task 3.

Overall, here are the hypothesis testing results. First, we did not find strong

support for Hypotheses 1, i.e., either Unicorn does not help developers in under-

standing concurrency bugs, or the experiment was insufficient to confirm the claim.

It is interesting that participants found that Unicorn is useful only for medium task.

We believe that this happens because memory accesses may help developers in con-

firming concurrency bugs for medium task, but memory accesses without contextual

information do not help developers for difficult tasks.

Second, we found support for Hypothesis 2 for difficult tasks. For medium

and large tasks, participants found that Griffin is useful, and for the most difficult

task, they actually understood better with Griffin. We found several supporting
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comments and discuss them in Section 6.7.

Third, we did not find strong support for Hypothesis 3. That is, we did not

find strong support that the tools help developers for fixing concurrency bugs. We

interpret this result as follows: the tools are not designed for providing information

for fix, but providing information for fault localization. Thus, there are no correla-

tion between high scores of fix and high scores for understanding. We believe that

participants wrote their potential fixes based on their prior concurrency experience

without any guidance from the tools. We discuss this observation with supporting

comments in Section 6.7.

We investigated navigation data and completion time. Regarding the navigation

data, we found that, for Task 3, participants had much fewer average Eclipse activi-

ties when using Griffin (39.6) than when using Unicorn (55.3) or Tracer (58.7).

We interpret this result as follows: participants did not have to navigate much using

Griffin because they found the bug early. We did not find any interesting navi-

gation data for Tasks 1 and 2. It is because the tool was designed to improve the

understanding of the bug by presenting information about the bug, but not designed

for reducing the number of activities, e.g., by providing step-by-step clicks to track

the bug.

We did not find any interesting observation in completion time because most

participants used the time limit to complete the tasks.

6.5.2 Results by Tool Preference

In this section, we find the most preferred tool and investigate the reason. To to

the analysis, we collected the results of the tool preference questionnaire in the final

survey and associated the results with the understanding and fix scores. Specifically,

we assigned the users to Group-T, Group-U, and Group-G, for participants who rated

Tracer, Unicorn, and Griffin as their best tools, respectively, and we computed
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Table 14: Average score by tool preference.

Task Score Type
Group-T
(2)

Group-U
(7)

Group-G
(21)

Task 1: Bank Account
Understanding 3.0 3.75 3.78
Fix 2.0 2.37 3.05

Task 2: Shop
Understanding 3.33 4.12 4.26
Fix 2.33 3.75 4.0

Task 3: List
Understanding 2.66 2.75 3.05
Fix 1.33 2.87 2.68

the average understanding and fix scores for each group.

Table 14 shows the results. The first column shows the task type; the second

column shows the score type; and, the final three columns show the average under-

standing and fix scores. The numbers in the header of the final three columns show

the number of the participants. Thus, the number of participants of Group-T, Group-

U, and Group-G are 2, 7, and 21, respectively. For example, for Task 1, Group-T,

Group-U, and Group-G got 3.0, 3.75, and 3.78 average understanding scores, respec-

tively. Note that, we do not perform hypothesis testing because the sample size of

Group-T is only two.

One interesting observation is that Group-G consists of 21 participants, which is

70% of all participants. This observation indicates that Griffin is the most preferred

tool for debugging concurrency bugs. In addition, we observed that participants in

Group-U and Group-G understood and fixed concurrency bugs better than partici-

pants in Group-T with higher average scores.

Another observation is that the size of Group-T is only two, which is 7%, and

the overall performance of Group-T is worse than that of the other groups. We

investigated the comments of the two participants in Group-T to understand why

they prefer Tracer to other tools. They answered that Tracer is better because

it completely shows the whole execution context. However, because the tool does not

provide any summary of concurrency bugs, the participants did not understand and
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fix concurrency bugs well.

6.6 Limitations

Our study has multiple limitations, which future work can address. The first limi-

tation involves the size of the participants. Although we recruited 32 students, we

believe that more participants will make the results more conclusive.

The second limitation involves the technical expertise of the participants. We

mainly recruited graduate students with the following reasons. Most graduate stu-

dents are skilled programmers with many years of programming experience (10.8 years

on average). On the other hand, professional developers have different ranges of expe-

rience and their concurrency experience might vary a lot. Since the tools are to help

professional programmers, the ultimate goal of such a study is to recruit such expert

developers. Thus, a future user study can focus on recruiting professional developers.

The next few limitations are related to the selection of our subject programs. The

third limitation involves the complexity of the subject programs. Bank Account has

100 lines of code, and the concurrency bug may seem to be too easy for developers

to debug. Thus, one may argue that it is not clear whether we might learn anything

from this subject program. However, an easy subject is good to start with because

it helps calibrate the session for participants. In addition, we analyzed the subject

separately and found that the three tools are not distinguishable for the easy subject

case, which confirmed our expectations.

The fourth limitation involves the fact that participants of the study were asked

to debug code written by other developers. One may claim that this situation is rare.

However, if true, we would have found a positive correlation between “understanding”

and “fixing”. This reinforces the need to spend more time studying the difference

between those two aspects of debugging in the future.

The fifth limitation involves the scalability. One may argue that the tools should
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be tested against large programs with millions of lines of code and hundreds of threads.

Since our study investigates the effectiveness of the tool for small numbers of threads

(i.e., up to five threads in List), the scalability limitation can be investigated in a

future study.

The sixth limitation involves the baseline tool selection. One possible baseline

might be simply to ask participants what they would normally do. However, since we

have more narrow experimental setup, which includes an uniform UI, we can measure

the specific effects of certain kinds of information.

The seventh limitation involves the test input we provided. We wrote our test

inputs mainly to trigger concurrency bugs so that developers can focus on tracking

concurrency bugs using the input. However, in the real world situation, a developer

may spend most of her time in minimizing the test input to narrow down a specific

package in the source code and spend less time on tracking concurrency bugs in the

package. Future work may investigate the effect on test minimization.

The eighth limitation involves the factorial study design. We used this design in

order for participants to rank the three tools. However, the participants may not

rank the tools objectively because they used different tools for different tasks. If we

had used a different study design, such as within-subject method [5], a participant

would have used all tools for all tasks and might objectively judge the tools. We did

not use this method because participants are biased once they find a bug.

The final limitation is the stability of the results and the reproducibility of the

study. For instance, the sample size is small, and the grading involves manual inspec-

tion of the answers. To mitigate this limitation, we released the results in public.

6.7 Discussion

This section discusses our findings from the observations on developer’s behaviors

and their comments from the study.
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6.7.1 Experience on The Tools

6.7.1.1 Griffin and Unicorn are more useful for hard tasks

Our results showed that Griffin is useful for medium and hard tasks. We assumed

that Griffin is useful because it provides more contextual information of the root

cause. Many participants confirmed this assumption with supporting comments. One

interesting comment is as follows:

“There are three dimensions to think about: Time vs. Threads vs. code’s stack.

Griffin showed these three dimensions quite effectively. However, the other two tools

provide only some of them.”

In addition, we found that the ranking system did not have a significant effect

to identify the bug, and the ranking scheme of Unicorn and Griffin are still

useful. This observation corresponds to the observation from the study of the fault

localization tools for sequential programs [71]. When using Unicorn and Griffin,

participants investigated several entries at the top in the list and found the bug

without any complaints:

“Though the tool provided false positive as a #1 candidate, it was still useful to

diagnose the error without going deep into the code.”

6.7.1.2 Tracer needs improvements

We assumed that Tracer is not so useful because it does not provide the summary

of concurrency bugs, so the participants might be overwhelmed by too much infor-

mation. Indeed, most participants performed worse with Tracer and confirmed our

assumption with supporting comments. Two interesting comments are as follows:

“Tracer might be used for simple code. However, overall I don’t think it can be

useful in a real life scenario because most codes are likely complicated.”
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“The tool wasn’t very useful on this task because there were too many threads and

instructions to keep track of.”

It is noticeable that the participant of the first comment expected that Tracer

might not be scalable. The problem happened in our program subject selection, and

we also expect that Tracer is only useful for small subject programs.

6.7.1.3 The tools are utilized in multiple ways

We found that developers use the tools in multiple ways. First, some developers used

the tools to track using the information given by the tool. When a participant starts

a task, she clicks the entries in the list of the tool to inspect the code around the

bug. If they want some more contextual information, they would inspect some more

program code on demand.

On the other hand, other developers used the tools to confirm the bugs using

the information by the tool. On startup of a task, these developers ran the program

several times to understand how the program works and inspected the code from

the main entry. Then, they manually find the bug from code inspection, and they

investigated the result of the tool to confirm whether their finding was right. Here is

one comment:

“The tool was very useful in confirming the bug; I used code inspection to determine

the bug.”

This comment was for Griffin and thus we found that Griffin was useful in

both cases.

6.7.2 Improvements

6.7.2.1 The tools need better visualization support

Many participants complained that the current implementations of Unicorn and

Griffin are confusing because they represent thread interactions using treeviews.

That is because of our design policy. We designed the three tools to have similar
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look-and-feels to minimize the effect of using different UIs. Thus, we used a list

view for Tracer and tree views for Unicorn and Griffin. In addition, we used

the same color scheme for all tools for consistency. However, that policy confused

participants. They discussed better visualization supports of the tools with several

interesting insights with the following comments:

I feel that if there could be a report of possible bugs (like doc) using de-

scriptive languages will be quite useful. Or it could be also useful if a

picture of possible bugs, something like SVN’s branch tree, could be also

quite useful and make the programmer immediately knows what branches

might be wrong. Different colours could be used for differentiating which

bugs might be more likely.

Although the tool showed read and write patterns as ‘R’ and ‘W’ in the

square, but it was not visually well noticeable, thus due to the limited time,

I didn’t have much chance to pay attention to my analysis. It would be

great if that aspect can also be visually more highlighted to better guide

users.

In summary, our tools need better visualization support to improve understanding

of concurrency bugs.

6.7.2.2 The tools need to support interactive debugging features

As most participants frequently use breakpoint-based interactive debuggers, they

missed some interactive debugging features from our tools. First, many participants

complained that it would be much better if the tools show variable’s values. However,

it is currently difficult to show in Unicorn and Griffin because the techniques are

not designed to record complete value information. Also, because values may change

in different executions, showing the specific value may be also a problem.
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Second, some participants complained that the tool does not provide any connec-

tion between the program output and the tool results. That is only possible when

the debugger has a complete control over the program execution, but our tool was

not designed in that way. Although these suggestions are not directly addressable,

the future tool developers may consider these aspects.

6.7.2.3 The tools need to provide fix advice

The survey results showed no correlation between understanding and fix scores. To

support complete debugging process, from understanding to fixing concurrency bugs,

a future technique may support information on fix advice in addition to information

on understanding. For example, one future research direction is to suggest fix patterns

for different types of concurrency bugs.

6.8 Summary

A previous study showed that debuggers should provide contextual information to

better explain bugs [71]. In previous Chapter 5, we developed Griffin to provide

contextual information, but is it really helping developers for understanding concur-

rency bugs?

To investigate it, this chapter presented an empirical user study that evaluates

the effectiveness of existing debugging tools for concurrency bugs for 32 developers.

The results showed that Griffin assists better in understanding concurrency bugs

than other tools, especially for harder tasks. The study also suggested the following

research directions: (1) Debuggers for concurrency bugs need to improve the visual-

ization for user interface, (2) Debuggers for concurrency bugs need to support inter-

active debugging features, and (3) Debuggers for concurrency bugs need to provide

fix advice.
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CHAPTER VII

CONCLUSION AND FUTURE DIRECTIONS

The main technical finding of this dissertation is that there exist effective and efficient

techniques to isolate specific program fragments that represent the root-cause of a

concurrency fault. Our work to develop such techniques culminates in the Griffin

technique of Chapter 5. In Chapter 6, we designed a user study which at least partially

validated the effectiveness of the techniques. In particular, Griffin’s combination

of interleaved memory reference and call stack analysis become more effective than

other techniques as the concurrency bug itself becomes more complex.

However, this dissertation also raises a number of questions, which we strongly

believe can form the basis of future work, as outlined below.

Investigate effects on test inputs The empirical studies in Chapters 3 and 4

showed that Falcon and Unicorn are effective in ranking suspicious memory ac-

cesses with rank 1 or 2, for our subjects, but our evaluation relied on a few test inputs

and multiple program executions with random delays to make diverse interleavings

across multiple executions. For sequential programs, recent work addressed this prob-

lem by measuring the effect of test suite on fault localization and then by generating

test inputs to improve fault-localization results [36, 78]. Like the approaches, fu-

ture research can measure the effect of test inputs and interleavings and develop an

improved technique to get better fault-localization results.

Extend bug-diagnosis coverage Another area for future work concerns the faulty

patterns that our fault-localization techniques detect. Our techniques detect order

and atomicity violations, which consist of around 70% of all industrial level con-

currency bugs [50]. However, there are additional types of concurrency bugs, such
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as deadlock, which can be detected with dynamic analysis [9, 80]. Future work can

develop a method to integrate these techniques with our dynamic pattern-based de-

tection techniques to extend the bug-diagnose coverage.

Reduce runtime overhead Current bug-diagnosis approaches, including our tech-

niques, show significant slowdowns over uninstrumented programs. Because these

techniques monitor memory accesses between different accesses, the overhead in-

creases as more instrumented memory addresses are accessed. Thus, developing a

scheme that efficiently monitors memory accesses during program execution is a future

direction. Techniques such as sampling [34], annotation [53], and static analysis [49]

could ameliorate the overheads.

Support interactive debugging features The results of empirical user studies in

Chapter 6 resulted in many research directions. One noticeable research direction is

to support interactive debugging features. Since developers frequently use interactive

debuggers for debugging sequential programs, they want to use those features for

debugging concurrent programs. The features include watching changes of values

for a specific variable, updating values as the developer edits the code, and showing

an enhanced view of concurrency bugs within an IDE. Because our techniques are

designed to improve understanding the root causes, but not to support interactive

features, the fundamental design needs to be changed to support these features. For

example, complete (thus heavy) execution information can be collected and saved

efficiently to enable the debugger to show the values.

Provide fix advice Another interesting observation from the empirical user studies

in Chapter 6 is that our techniques do not suggest any clue on fixing concurrency

bugs. However, a future tool can be extended to automatically fix the bug or suggest

a fix candidate to the developer. Automatic fix is a challenging direction because

concurrency bugs are the most difficult type of software bugs to debug: almost 40%
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of initial patches to concurrency bugs are buggy [93]. In addition, existing automatic

fix approaches are mostly focused on adding synchronizations [33,44], whereas adding

synchronization is a strategy only used 20% among all fix strategies [50]. Thus,

suggesting a possible fix and asking for confirmation from the developer might be

another promising approach. Future research may focus on suggesting fix patterns.
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APPENDIX A

SUBJECT PROGRAMS

A.1 Bank Account

Description: The program creates several account users, where each user has own

account. The program performs three operations (deposit, withdraw, and transfer)

for each user concurrently.

Passing output: Each account has $300 at the end.

The initial values:

The final values:

A–300.0

B–300.0

Failing output: The final amount is not $300.

The initial values:

The final values:

A–200.0

B–300.0

A.2 Shop

Description: The program has one supplier and multiple customers: The supplier

provides items to the shop; The customers buy the items from the shop.
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Passing output: The program exits without any exception. Here is sample “out-

put.txt”.

<shop, customer 2: 10 customer 1: 10, no bug>

Failing output: 1. The program prints “java.lang.ArrayIndexOutOfBoundsException:

-1”. Here is sample “output.txt”.

<shop, customer 2: -1 customer 1: 10, denail ( init sleep) + weak reality (lock

unlock lock)>

A.3 List

Description: It is a part of Java Collection Library of JDK 1.4. In this program, it

creates several List objects and performs multiple operations (add, addAll, remove,

containsAll) concurrently.

Passing output: The program prints nothing

Failing output: The program crashes with the following exception.

java.lang.RuntimeException: Bug found. l1 has a null element. : [2, 3, 4, 5,

6, null]
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APPENDIX B

SURVEY

B.1 Background

1. Please enter your UUID.

2. What is your programming experience in number of years?

3. What is your Java experience in number of years?

4. What is your experience on concurrency?

(a) No experience

(b) Beginner

(c) Used in a class project

(d) Used in projects

(e) Expert

5. What is your current job?

(a) Undergraduate student

(b) Master student

(c) PhD student

(d) Professional programmer

B.2 Task 1: Bank Account

1. Please enter your UUID.

2. Which tool did you use to debug this subject?

(a) Tracer

(b) Unicorn
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(c) Griffin

3. What is the type of the bug?

(a) Order violation

(b) Atomicity violation

(c) Other concurrency bug

(d) I don’t know

4. Root cause (variable level): Select one or more variables that are responsible

for the root cause of the bug.

(a) Account.amount

(b) Account.name

(c) AccountUser.accNum

(d) AccountUser.maxaccounts

5. Root cause (method level): Select one or more methods that are responsible for

the root cause of the bug.

(a) Account.deposit

(b) Account.withdraw

(c) Account.transfer

(d) Account.print

(e) AccountUser.errorCheck

(f) AccountUser.printAllAccounts

6. Root cause (interleaving): Please describe the bug scenario (access orders be-

tween threads).

7. What is your fix strategy of the bug?

(a) Add synchronization

(b) Add condition check

108



(c) Switch order of statements

(d) Other strategies

8. Please describe your possible fix.

9. Is the tool useful? (1,low to 5,high)

10. Are you confident with the result? (1,low to 5,high)

11. Please give us any feedback on this task.

B.3 Task 2: Shop

1. Please enter your UUID.

2. Which tool did you use to debug this subject?

(a) Tracer

(b) Unicorn

(c) Griffin

3. What is the type of the bug?

(a) Order violation

(b) Atomicity violation

(c) Other concurrency bug

(d) I don’t know

4. Root cause (variable level): Select one or more variables that are responsible

for the root cause of the bug.

(a) Shop.items

(b) Shop.storage

(c) Supplier.supply address

(d) Customer.shopping list

(e) Signal.i
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5. Root cause (method level): Select one or more methods that are responsible for

the root cause of the bug.

(a) Shop.isEmpty

(b) Shop.getItem

(c) Shop.putItem

(d) Signal.set

(e) Signal.get

(f) Customer.buy

(g) Supply.supply

6. Root cause (interleaving): Please describe the bug scenario (access orders be-

tween threads).

7. What is your fix strategy of the bug?

(a) Add synchronization

(b) Add condition check

(c) Switch order of statements

(d) Other strategies

8. Please describe your possible fix.

9. Is the tool useful? (1,low to 5,high)

10. Are you confident with the result? (1,low to 5,high)

11. Please give us any feedback on this task.

B.4 Task 3: List

1. Please enter your UUID.

2. Which tool did you use to debug this subject?

(a) Tracer

(b) Unicorn
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(c) Griffin

3. What is the type of the bug?

(a) Order violation

(b) Atomicity violation

(c) Other concurrency bug

(d) I don’t know

4. Root cause (variable level): Select one or more variables that are responsible

for the root cause of the bug.

(a) ArrayList.size

(b) ArrayList.mutex

(c) ArrayList.elementData

(d) ArrayList.modCount

(e) ArrayList.cursor

5. Root cause (method level): Select one or more methods that are responsible for

the root cause of the bug.

(a) ArrayList.toArray

(b) ArrayList.addAll

(c) ArrayList.<init>

(d) ArrayList.remove

(e) ArrayList.ensureCapacity

(f) ArrayList.size

(g) Main.run

6. Root cause (interleaving): Please describe the bug scenario (access orders be-

tween threads).

7. What is your fix strategy of the bug?
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(a) Add synchronization

(b) Add condition check

(c) Switch order of statements

(d) Other strategies

8. Please describe your possible fix.

9. Is the tool useful? (1,low to 5,high)

10. Are you confident with the result? (1,low to 5,high)

11. Please give us any feedback on this task.

B.5 Feedback

1. Please enter your UUID.

2. Please rank the three tools by usefulness and discuss why.

3. Please give us any feedback on the study.
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