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SUMMARY

Bacteriophages (viruses that infect bacteria) are the most abundant biological

life-forms on Earth. However, very little is known regarding the structure of phage-

bacteria infections. In a recent study we showed that phage-bacteria infection assay

datasets are statistically nested in small scale communities while modularity is not

statistically present [60]. We predicted that at large macroevolutionary scales, phage-

bacteria infection assay datasets should be typified by a modular structure, even if

there is nested structure at smaller scales. We evaluate and confirm this hypothesis

using the largest study of the kind to date [62].

The study in question represents a phage-bacteria infection assay dataset in the

Atlantic Ocean region between the European continental shelf and the Sargasso Sea.

We present here a digitized version of this study that consist of a bipartite network

with 286 bacteria and 215 phages including 1332 positive interactions, together with

an exhaustive structural analysis of this network. We evaluated the modularity and

nestedness of the network and its communities using a variety of algorithms includ-

ing BRIM (Bipartite, Recursively Induced Modules), NTC (Nestedness Temperature

Calculator) and NODF (Nestedness Metric based on Overlap and Decreasing Fill-

ing). We also developed extensions of these standard methods to identify multi-scale

structure in large phage-bacteria interaction datasets. In addition, we performed an

analysis of the degree of geographical diversity and specialization among all the hosts

and phages.

We find that the largest-scale ocean dataset study [124] , as anticipated by Flores

et al. [60], is highly modular and not significantly nested (computed in comparison to

null models). More importantly is the fact that some of the communities extracted

xvii



from Moebus and Nattkemper dataset were found to be nested. We examine the role

of geography in driving these modular patterns and find evidence that phage-bacteria

interactions can exhibit strong similarity despite large distances between sites. We

discuss how models can help determine how coevolutionary dynamics between strains,

within a site and across sites, drives the emergence of nested, modular and other

complex phage-bacteria interaction networks.

Finally, we releases a computational library (BiMAT)to help to help the ecology

research community to perform bipartite network analysis of the same nature I did

during my PhD.
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CHAPTER I

INTRODUCTION

1.1 Context

1.1.1 A little bit of history in complex networks

The foundation of complex networks research started with the famous Euler’s proof

that no solution exist for the Königsberg bridge problem, which consisted in finding

a way of crossing seven bridges once and only once across different points of the city

of Königsberg. The genius of Euler’s proof, performed in 1735 was to realize that the

only relevant information to solve this problem was the list of land points (vertices or

nodes) and the bridges interconnecting them (edges or links). Hence, he introduced

the concept of a graph, thus giving birth to the very fruitful mathematical field of

graph theory. This graph concept can be mathematically described as G = {V,E},

with V and E representing nodes and edges respectively. Because any set of items

with interactions between each other can be represented as a graph, a broad set of

important applications have been found for graph theory (i.e., route problems, search

problems, map coloring, and many others).

More than two hundred years later, Erdös and Rényi introduced the first random

graph model (better known as Erdös–Rényi model) in 1959 [56], which is a very

important concept for the complex networks research field. One way to describe it

mathematically is by G(n, p), where n represents the number of nodes and p the

probability of having an edge between each pair of nodes. As we will see next, the

importance of this concept is that many real–world networks (or graphs) can be better

understood as deviation from random graphs.

A revival of interest in the study of networks was made possible by increasing
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availability of network data, as well as algorithms (and computing power) to analyze

them. Initiated by two very famous papers [184] and [12], real–world networks study

has exploded in recent years, giving rise to the birth of complex networks research.

Some examples of complex networks are social networks of acquaintances, the WWW,

the Internet, food webs, financial networks, neural networks, metabolic networks and

many others. What these networks have in common is that they are not well described

by the Erdös–Rényi model. In other words, having features that deviate from random,

they have make scientists wonder why they exist. Some of these features are high

clustering [184], power-law degree distribution [12], community structure [128], motifs

(sub-graphs that appear more or less than randomly expected) [121], to name some

of the most well studied. Understanding what are the causes for real–world networks

to deviate from random has been the main focus of study of the complex networks

field.

1.1.2 Complex networks in ecology

Many ecological systems can be represented as a graph, where nodes are populations

of living organisms and edges are the interactions among them. Hence, it is not

surprising that the complex networks research field has made many important con-

tributions to ecology during the last years. One of the most important examples in

ecology are food webs, which are networks composed of species (nodes) and who-eats-

whom? relationships (edges). Some of the contributions to food web research are

studies about how degree distribution in food webs compare to other networks[53],

network models to explain its network structure [38, 39, 191, 192, 5], and sampling

strategies to improve the quality in the data [111].

Another important ecological relationship, in which this thesis work has been

based, is plant–pollinator networks [17, 130, 18, 20]. These networks have the eco-

logical property that both plants and pollinators benefit each other with regard to
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survival. Hence, they are called mutualistic networks, which can be represented as

a bipartite network (see below). Researchers have shown that these networks have

specific features that distinguish them from random networks. Specifically, they are

nested networks [18] (see Figure 1).

As with any other real–world network, understanding the structure of ecological

networks have profound implications. For instance, it can help conservation policy

makers predict which species are most likely to go extinct [84].

1.2 Phage–bacteria interactions: Who-kills-whom?

Bacteria are among the most abundant organisms on Earth, with estimates of around

1030 individuals. A very important predator of bacteria are bacteriophages (virus that

infect and kill bacteria). As is the case for plant–pollinator networks, this relationship

can be represented as a bipartite complex network. A bipartite network is a network in

which nodes can be grouped in two different subsets such that edges can happen only

between nodes across subsets. Mathematically, it can be defined as G = (U, V,E),

where U and V representing the two different subsets of nodes (in this case bacte-

ria and phages), and E the edges across them (in this case which phage can infect

which bacteria). However, a big difference exist between this type of networks and

plant–pollinator networks. While the last one is a mutualistic relationship (plant and

pollinators benefit one another), the phage-bacteria relationship is often an antago-

nistic one (phages need bacteria to survive, but bacteria do not need phages, and in

fact they often do better without phages).

Despite the importance of phage–bacteria communities very little is know about

the structure of the who-kills-whom? interaction network. To prove that these net-

works have features that distinguish them from random can give us insight about

what are the ecological and biological mechanisms that lead to the structure in this

type of ecological networks. To find the features that distinguish this kind of networks
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from random networks is the main topic of this thesis. These features have a very

important implication in microbiology and ecology in general. For instance it can help

us to understand how the co–evolution race between these two species happens (i.e.,

does phage evolution follow bacterial evolution, the opposite, or a mixing of both).

It can give us insight about how coexistence mechanisms exist between these two

species. However, to study those mechanisms is far beyond the scope of this thesis,

which concentrates on the quantitative characterization of phage-bacteria infection

networks.

1.2.1 Possible scenarios

In order to describe and find features in phage–bacteria networks, we started from

the hypothesis that bipartite networks can be described in reference to four general

bipartite network patterns, which are described in Figure 1. More details about these

patterns will be given in the body of this thesis.

1.3 And then, what are the phage–bacteria network fea-
tures?

It is not possible to describe the features of a network without having appropriate

data sets. In order to solve this problem, the Weitz group performed a literature

search for phage–bacteria cross infection networks looking at papers that date as

far back as 1950 to current years (2011)1. In order for a cross–infection study to be

considered an appropriate data set we required that at least two species of both phage

and bacteria to exist in the study, and that no NA (no value available) interactions to

be present. Further, quantitative infections were considered Boolean. Therefore all

the analyzed networks were treated as Boolean (with 1/0 indicating interaction/no

interaction respectively). Altogether 38+1 matrices were found and analyzed with the

1I want to thank Lauren Farr (a Biology undergrad student at the time), who did a splendid job
in collecting the data.
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Figure 1: Potential patterns that could exist in phage–bacteria infection networks.
Random: the pattern of who infects whom is not statistically different than what
would be expected if interactions occurred by chance. One-to-one: an infection
network with elevated specialization, such that each phage can only infect one host,
and each host is only infected by one phage. Perfectly Modular: interactions
happen only between predefined sets of bacteria and phages with no interactions
across these sets. Perfectly Nested: Bacteria can be ranked in increasing order
of infectivity from bacteria that can be infected by a single phage (hard to infect)
to bacteria that can be infected by all phage species (susceptible). Similarly, phages
can be ranked in terms of the number of bacteria they can infect (increasing from
specialists to generalists).

last one being the largest cross–infection study to date (to my knowledge). Hence,

this data–collection is by far the largest compilation of phage–bacteria cross–infection

studies.

Visual inspection immediately discarded the one–to–one type of network (i.e.,

most species in the analyzed networks interact with more than one specie). Hence,

we focus in distinguishing nested and modular patterns from random ones. For

accomplishing this goal, we used a series of algorithms belonging to the complex

networks literature to evaluate nestedness and modularity values, and then compare
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them to the ones evaluated in random networks.

1.3.1 From Nestedness . . .

We first analyzed the first 38 networks, which are by nature small in size compared to

the last matrix. We used the simplest null model, which is basically the generalization

of the Erdös–Rényi model [56] to bipartite networks with number of nodes and proba-

bility of interaction the same as the number of nodes and connectance of the network

that is being tested. After performing appropriate statistical tests (to be described in

Chapter 2, which is adapted from Flores et al. [60]), we found that these networks are

nested (27 of 38), which is a very similar result to what is found in plant–pollinator

networks [17, 130, 18, 20]. The fact that mutualistic and antagonistic networks can

be explained as a deviation of the same pattern is an intriguing discovery because the

their underlying mechanisms would seem to be totally different.

1.3.2 . . . To Modularity . . .

One important characteristic of the previous 38 studies is that they have a small

number of tested strains, and that in most cases they belong to the same species

(i.e., E. coli vs. λ–phage strains). Hence, the genetic distance between them is

short. Our next step in the study of this kind of networks was to understand what

will happen if the network increased by including strains of different species and

geographical locations. To answer this question we used the largest data set to date,

which is the K. Moebus and H. Nattkemper [124] study (details on Chapter 3, which

is adapted from Flores et al. [62]). We find that in fact the network become modular

and the nestedness is lost. Hence, we demonstrated that structure depends on size

of the network.
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1.3.3 . . . And back again

Finally, we used the same study to look at local parts of the network. Specifically,

we look at the identified modules of the community structure algorithms, and found

similar results that we found for the case of the 38 matrices. That is, we found that

the structure at this smaller scale is also nested. This result is very significant because

it tell us that the structure of these networks will depend on the scale at which we

look at them.

1.4 BiMAT: a software for performing bipartite network anal-
ysis

Data analysis, in general, involves (i) getting data, (ii) asking insightful questions, and

(iii) visualizing the answers. My final contribution to the ecology research community

was the release of BiMAT. While nothing can be done about (i) without a direct

collaboration with the community, BiMAT’s main goal is to help researchers to attack

(ii) and (iii) for the case of bipartite ecological network data.

This library comes after three years of thinking about what are the best algorithms

and relevant questions of bipartite ecological networks that can be answered. In a

sense, we have to take a lot of decisions about which kind of analysis give us insightful

results and which do not. Hence, the library allows the users to perform exhaustive

initial analysis of their data without having them invest time in deciding what are

the appropriate analyses and algorithms that can be used (decisions that take a lot

of time when the users are inexperienced). This library will be introduced in Chapter

4, which is adapted from Flores et al. [61].
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CHAPTER II

STATISTICAL STRUCTURE OF HOST–PHAGE

INTERACTIONS

Adapted from Cesar O. Flores, Justin R. Meyer, Sergi Valverde, Lauren Farr, and

Joshua S. Weitz. Statistical structure of host–phage interactions. PNAS (2011) [60].

Interactions between bacteria and the viruses that infect them (i.e., phages) have

profound effects on biological processes, but despite their importance, little is known

on the general structure of infection and resistance between most phages and bacteria.

For example, are bacteria–phage communities characterized by complex patterns of

overlapping exploitation networks, do they conform to a more ordered general pat-

tern across all communities, or are they idiosyncratic and hard to predict from one

ecosystem to the next? To answer these questions, we collect and present a detailed

metaanalysis of 38 laboratory–verified studies of host–phage interactions representing

almost 12,000 distinct experimental infection assays across a broad spectrum of taxa,

habitat, and mode of selection. In so doing, we present evidence that currently avail-

able host–phage infection networks are statistically different from random networks

and that they possess a characteristic nested structure. This nested structure is typi-

fied by the finding that hard to infect bacteria are infected by generalist phages (and

not specialist phages) and that easy to infect bacteria are infected by generalist and

specialist phages. Moreover, we find that currently available host–phage infection net-

works do not typically possess a modular structure. We explore possible underlying

mechanisms and significance of the observed nested host–phage interaction structure.

In addition, given that most of the available host–phage infection networks examined

here are composed of taxa separated by short phylogenetic distances, we propose that
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the lack of modularity is a scale–dependent effect, and then, we describe experimental

studies to test whether modular patterns exist at macroevolutionary scales.

2.1 Introduction

Bacteria and their viruses (phages) make up two of the most abundant and ge-

netically diverse groups of organisms [55, 175, 67]. The extent of this diversity

has become increasingly apparent with the advent of community genomics. Micro-

bial DNA isolated from oceans, lakes, soils, and human guts has revealed tremen-

dous taxonomic diversity in a broad range of environmental habitats and conditions

[180, 88, 10, 195, 43, 177, 73, 176]. The ongoing discovery of new taxonomic diversity

has, thus far, outpaced gains in understanding the function of specific microbes and

their most basic ecology of who interacts with whom. One of the starkest examples

of this disparity is the lack of an efficient (bioinformatic or otherwise) approach for

determining which viruses can infect which bacteria. Although it is well–known that

individual phages do not infect all bacteria, we have little understanding of what the

precise host range for any given phage is or whether there are universal patterns or

principles governing the set of viruses able to infect a given bacterium and the set of

bacteria that a given virus can infect. This deficit is unfortunate given that phage–

bacterial interactions are important for both human health and ecosystem function

[106, 145, 57, 58, 76].

Phages have multifaceted effects on their hosts: they can lyse host cells, thereby

releasing new virons, transfer genes between hosts, and form lysogens that can mod-

ify host function [185, 2]. In some cases, phages can transfer genes for pathogenicity

between pathogenic and labile strains (e.g., for both Vibrio cholerae and Shigella), fa-

cilitating the spread of bacterial infections [23, 155, 149]. Phages also alter ecosystem

functions by the high levels of bacterial mortality that they cause. Bacteria lysed by

phage will release their contents, which consequently are scavenged by other bacteria

9



rather than being incorporated into bactivorous eukaryotes [68, 74]. This weakened

connection early in the food chain can have effects that ripple throughout the ecosys-

tem. Information on a general pattern of infection by phages on hosts could improve

predictions of microbial population dynamics, ecosystem functioning, and microbial

community assembly [22, 170].

What is our expectation for the general pattern of host–phage infection networks?

Host–phage infection networks have, in the past, been measured by performing pair–

wise infections of hosts by phages isolated from natural ecological communities, evo-

lution experiments, or strain collections. The results of such pair–wise infections can

be represented as a network or a matrix, where the rows indicate host isolates, the

columns indicate phage isolates, and the cells within the matrix describe whether

each combination results in a successful infection. We consider different classes of

host–phage interaction networks as alternative hypotheses for an expected pattern

(Figure 2). First, phages may infect a unique host or a limited number of closely

related hosts, leading to nearly diagonal matrices (Figure 2A) or block–like matrices

that exhibit high degrees of modularity (Figure 2B). These patterns should occur if

host–viral interactions are the result of coevolutionary processes that lead to special-

ization. Second, diversification of hosts and phages may result in nested matrices

in which the most specialist phages infect those hosts that are most susceptible to

infection rather than infecting those hosts that are most resistant to infection (Figure

2C). The nested pattern is the predicted outcome of a prominent theory of gene–

for–gene coevolution, where phages evolve so as to broaden host ranges and bacteria

evolve so as to increase the number of phages to which they are resistant [139, 4].

We should note that these two patterns and hypotheses for the forms of coevolution

are not mutually exclusive and in fact, could be scale–dependent. Nested patterns

could form within modules if, for instance, microevolutionary changes result in nest-

edness; however, genetic differences between species or genera that accumulate over
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macroevolutionary time may limit the exchange of viruses between these phylogenetic

groups and create an overall modular structure. Finally, we consider a null model

to be that matrices of host–phage infection are statistically indistinguishable from

random matrices (Figure 2D).

Contrary to this null expectation, we show that currently available host–phage in-

teraction matrices are, as a whole, statistically distinguishable from random matrices

and possess a characteristic nested structure. We reach this conclusion by perform-

ing a metaanalysis on the patterns of host–phage infection matrices collected by a

comprehensive search of the literature and supplementing these matrices with an ex-

perimental analysis of host–phage infection. The data that we assemble consist of 38

matrices of host–phage infection assays representing the cumulative study of 1,009

bacterial isolates, 502 phage isolates, and almost 12,000 separate attempts to infect a

bacteria host with a phage strain [1, 14, 24, 29, 31, 32, 33, 41, 42, 47, 49, 54, 70, 77,

83, 86, 97, 101, 102, 104, 114, 118, 120, 122, 131, 133, 139, 140, 147, 152, 161, 163, 164,

168, 182, 189, 197] (See Appendix A, Tables 7 and 8 have more information on the

examined studies). This work is an attempt to subject host–phage infection assays to

a unified analysis. In doing so, we find a general pattern of host–phage interactions.

We discuss biophysical, ecological, and evolutionary mechanisms that could lead to

this nested (and not modular) pattern as well as future studies to explore how such

a pattern may change as a function of phylogenetic scale.

2.2 Results

2.2.1 Compiling a Large–Scale Host–Phage Interaction Dataset

We compiled a set of 37 studies with direct laboratory evidence of host–phage inter-

actions using an extensive literature search supplemented by an experimental study

of an evolved Escherichia coli and phage λ–system (Appendix A, Tables 7 and 8 have

complete details of all studies) [1, 14, 24, 29, 31, 32, 33, 41, 42, 47, 49, 54, 70, 77, 83, 86,
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Figure 2: Schematic of expected host–phage interaction matrices (white cells denote
infection). (A) Host–phage interactions are unique (i.e., only one phage infects a
given host, and only one host is infected by a given phage). (B) Host–phage interac-
tions are modular (i.e., blocks of phages can infect blocks of bacteria, but cross-block
infections are not present). (C) Host–phage interactions are nested (i.e., the gen-
eralist phage infects the most sensitive and the most resistant bacteria, whereas the
specialist phage infects the host that is infected by the most viruses). (D) Host–phage
interactions are random and lack any particular structure. For (B–D), a connectance
of 0.33 was used so that the expected total number of interactions was the same in
each case.
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97, 101, 102, 104, 114, 118, 120, 122, 131, 133, 139, 140, 147, 152, 161, 163, 164, 168,

182, 189, 197]. The method of evaluating infection ability in assembling a host–phage

infection matrix varies; however, the most commonly used approach is that of spot

assays, in which a single virus type is combined with a population of bacteria cells

from a single strain. Infection is considered to have occurred given evidence that the

phage has infected and lysed (part of) the bacterial population. Hence, the result of

each study is a matrix of the infection ability for each phage on each host. The studies

included in the host–phage infection assays analyzed here were isolated from one of

three sources: co-occurring isolates within natural communities taken directly from

the environment and then cultured, coevolutionary laboratory experiments where a

single bacterial clone and a single phage clone were allowed to coevolve for a fixed

amount of time and then, their evolved progenitors examined, and laboratory stocks

of phages and hosts that were artificially combined. Some of the matrices used were

composed of bacteria and phage acquired from two separate isolation strategies. For

these studies, we classified the matrix by which isolation strategy represented the

majority of matrix cells and made a note of the other sources (Appendix A, Table

8). The criterion by which we searched and cataloged these studies is explained in

more detail in Appendix A. Overall, we identified and analyzed a wide range of in-

fection networks for organisms that varied in their phylogenic position, traits, and

habitats. For example, the bacterial hosts included Gram–positives and –negatives,

heterotrophs, and phototrophs as well as pathogens and nonpathogens.

Some of the assays include graded information about infection (for example,

whether a phage simply inhibits bacterial growth or forms regions of complete bacte-

rial mortality like plaques). In other studies, replicate phage populations were used

to deduce whether phages always or only sometimes cause plaques. Details of the

criteria for the interactions can be found in the original works [1, 14, 24, 29, 31, 32,

33, 41, 42, 47, 49, 54, 70, 77, 83, 86, 97, 101, 102, 104, 114, 118, 120, 122, 131, 133,
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139, 140, 147, 152, 161, 163, 164, 168, 182, 189, 197], and the experimental methods

for the experimental study of host–phage infection can be found in Materials and

Methods. Because graded information about infection was not uniformly available in

all studies, assays were standardized using hand–curated extraction of original data

into a single matrix of ones and zeros with H rows (one for every bacterial host) and P

columns (one for every phage), where a 1–valued cell represents evidence for infection

(either full or partial) and a 0–valued cell represents no evidence for infection (Figure

3 shows a visual depiction of all host–phage interaction matrices).

2.2.2 Host–Phage Infection Statistics Do Not Vary with Study Type or
Show Significant Cross-Correlations

We calculated a variety of global properties of these matrices: number of hosts (H),

number of phages (P ), number of interactions (I), number of species (S = H+P ), size

(M = HP ), connectance (C = I/M), mean number of interactions across host species

(LH = I/H), and mean number of interactions across phage species (LP = I/P )

(Appendix A, Tables 7, 8, and 9 show values of each property within each of the

38 studies). Importantly, on a per-study basis, we find that the average number of

phages infecting a given host is 4.88 (median = 3.04), whereas the average number of

hosts that a phage can infect is 10.91 (median = 6.13). Both results are inconsistent

with the hypothesis that phages only infect one host and that hosts are only infected

by one phage (Figure 2A).

We first sought to establish whether the source type (natural communities taken

directly from the environment and then cultured, coevolutionary laboratory experi-

ments where a single bacterial clone and a single phage clone were allowed to coevolve

for a fixed amount of time and then, their evolved progenitors examined, and labora-

tory stocks of phages and hosts that were artificially combined) had any influence on

basic characteristics of the matrices. We performed a principal component analysis

(Appendix A, Table 10, and Figure 20) using these eight global properties. Despite
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Figure 3: Matrix representation of the compiled studies. The rows represent the hosts,
and the columns represent the phages. White cells indicate the recorded infections.
Note the diversity in the size of these matrices.

the significant variation in global properties, we find no statistically significant dis-

tinction between the three different types of studies. For example, the distributions of

type-specific matrices do not cluster into three groups. We apply a Jaccard clustering

validity index [91] and find that the degree of clustering validity is 0.26 (indicating
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poor separation of labeled classes into distinct clusters), which is not significantly

different from random (P = 0.33) (Appendix A, Figs. 22 and 23).

Not only do we not find evidence for clustering, we also do not find evidence for

significant and biologically meaningful correlations among the global properties of

all matrices when grouped together. For example, previous work on the analysis of

bipartite networks within plant and pollinator systems found inverse relationships

between the total number of species in the network and the fraction of interactions

that actually occurred [115, 18]. We do not find this relationship here. Appendix A,

Figure 21 plots connectance (C) vs. number of species (S). The observed slope is

small and nonsignificant (Appendix A, Table 11). Moreover, the other correlations

between connectance and the size of host–phage infection matrices are not significant

(Materials and Methods has details and Appendix A, Table 11 shows the correlation

values).

2.2.3 Host–Phage Infection Assays Are Typically Nested and Not Mod-
ular

We measured higher–order properties of the host–phage interaction matrices, specif-

ically modularity and nestedness. In this context, modularity is determined by the

occurrence of groups of phages that infect groups of hosts significantly more often

than they infect other hosts in the system. Modularity is typically found in biological

systems in which groups of organisms preferentially interact with organisms within

the group (e.g., plant–pollinator network) [115, 18] and is thought to be an impor-

tant feature underlying the maintenance of biodiversity [173]. Likewise, nestedness

is determined by the extent to which phages that infect the most hosts tend to in-

fect bacteria that are infected by the fewest phages [179, 6]. Nestedness has been

used to characterize species interactions because it is predicted to affect important

properties of communities such as stability and extinction potential [18, 20]. Both

modularity and nestedness may emerge because of coevolutionary adaptation of hosts
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and phages [4, 150]. The individual host–phage infection studies collected here were

not subjected to a network analysis with one exception [139]. Hence, we examined

each study to see if previously unrealized patterns existed within each host–phage

interaction network (Figure 4 and Appendix A, Figure 24 have an example of how

network properties are extracted from two matrices, Datasets S1 and S2 shows data

corresponding to each matrix, and Materials and Methods has additional details on

how to calculate modularity and nestedness).

Phages
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(A)

Q = 0.68
zQ = 3.27

Zinno 2010

N = 0.85
zN = 0.44

Phages

B
a
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ia

(B)

Q = 0.19
zQ = −0.83

Holmfeldt 2007

N = 0.83
zN = 16.92

Figure 4: Two example matrices were resorted to maximize modularity and nested-
ness. ((A) and (B)) The matrix in Left is the original data, the matrix in Center is
the output from the modularity algorithm [13], and the matrix in Right is the output
from the modified nestedness algorithm [11, 143]. Colors represent different commu-
nities within the maximal modular configuration. (A) An example of a matrix with
significantly elevated modularity and insignificant nestedness. (B) An example of a
matrix with insignificant modularity and significantly elevated nestedness.

For the 38 matrices shown in Figure 3, the maximally modular relabeling of each

matrix is displayed in Figure 5 and the maximally nested resorting of each matrix is

displayed in Figure 6. To evaluate the statistical significance of the modularity and

nestedness values of observed host–phage matrices, we have to compare the observed

values to those values of random matrices. We generate random matrices that have
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the same size and number of interactions as the original data (Appendix A, Materials

and Methods). In that way, we constrain our null model to have exactly the same

global properties as detailed in Appendix A, Table 7 for each study, whereas the

nestedness and modularity will vary between realizations.

The titles of the study in Figure 5 (the maximally modular configuration) are

red if they are significantly modular, blue if they are significantly antimodular, and

black if they are nonsignificantly modular. The majority of studies are significantly

antimodular (where we used a p–value = 0.05 and 105 random matrices as our null).

Our findings stand in contrast to expectations that groups of phages adsorb to non–

overlapping groups of hosts, which would be expected if groups of phages had special-

ized on groups of hosts within the study systems. The titles of each study in Figure

6 (the maximally nested configuration) are red if they are significantly nested, blue if

they are significantly antinested, and black if they are nonsignificantly nested. The

majority of studies are significantly nested (p < 0.05), where we used 105 random

matrices as our null. Overall, we find 27 of 38 studies to be significantly nested, and

when broken down by type, we find significant nestedness in 13 of 19 ecological, 7 of

10 experimental, and 7 of 9 artificial studies. Our findings corroborate, in one case,

an earlier effort to characterize nestedness by Poullain et al. [139] using a different

nestedness metric. It is also apparent that some matrices are almost perfectly nested

[e.g., matrices in the works of Ceyssens et al. [33], McLaughlin and King [114], and

Seed and Dennis [152]]. In some cases, like the work of Middelboe et al. [118], the

data came from a mix of ecological and experimental studies in that the bacteria were

derived from environmental and experimentally evolved isolates, whereas the phages

were wild from the same environment as the host. Does the finding of a strongly

nested matrix mean, in this case, that in vitro evolution mimics selection in nature,

suggesting that there exists robust principles underlying the emergence of nestedness?

Hence, given the number of studies, we ask what evidence is there that host–phage
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1 − Abe 2007 2 − Barrangou 2002 3 − Braun−Breton 1981 4 − Campbell 1995 5 − Capparelli 2010 6 − Caso 1995

7 − Ceyssens 2009

8 − Comeau 2005 9 − Comeau 2006

10 − DePaola 1998

11 − Doi 2003 12 − Duplessis 2001

13 − Gamage 2004 14 − Goodridge 2003 15 − Hansen 2007

16 − Holmfeldt 2007

17 − Kankila 1994 18 − Krylov 2006

19 − Kudva 1999 20 − Langley 2003 21 − McLaughlin 2008 22 − Meyer unpub

23 − Middelboe 2009

24 − Miklic 2003

25 − Mizoguchi 2003 26 − Pantucek 1998 27 − Paterson 2010 28 − Poullain 2008 29 − Quiberoni 2003 30 − Rybniker 2006

31 − Seed 2005 32 − Stenholm 2009

33 − Sullivan 2003

34 − Suttle 1993 35 − Synott 2009 36 − Wang 2008

37 − Wichels 1998
38 − Zinno 2010

Figure 5: Modularity sorts of the collected studies. Blue labels (20/38) represent
studies statistically antimodular, and red labels (6/38) represent studies statistically
modular.

matrices are, as a whole, nested and not modular. We rank all 38 matrices from lowest

to largest modularity and lowest to largest nestedness (Figure 7 A and B). It is evident

that matrices tend to be more nested than their random counterparts but not more

modular (and apparently, antimodular) than their random counterparts. How often
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1 − Abe 2007 2 − Barrangou 2002 3 − Braun−Breton 1981 4 − Campbell 1995 5 − Capparelli 2010 6 − Caso 1995

7 − Ceyssens 2009

8 − Comeau 2005 9 − Comeau 2006

10 − DePaola 1998

11 − Doi 2003 12 − Duplessis 2001

13 − Gamage 2004 14 − Goodridge 2003 15 − Hansen 2007

16 − Holmfeldt 2007

17 − Kankila 1994 18 − Krylov 2006

19 − Kudva 1999 20 − Langley 2003 21 − McLaughlin 2008 22 − Meyer unpub

23 − Middelboe 2009

24 − Miklic 2003

25 − Mizoguchi 2003 26 − Pantucek 1998 27 − Paterson 2010 28 − Poullain 2008 29 − Quiberoni 2003 30 − Rybniker 2006

31 − Seed 2005 32 − Stenholm 2009

33 − Sullivan 2003

34 − Suttle 1993 35 − Synott 2009 36 − Wang 2008

37 − Wichels 1998
38 − Zinno 2010

Figure 6: Nestedness sorts of the collected studies. Red line represents the isocline
(see Equation 18 of Appendix A). Blue labels (0/38) represent studies statistically
antinested, and red labels (27/ 38) represent studies statistically nested. See

do we expect to find 27 significantly nested matrices in a sample of 38 random matrices

if each of the significantly nested matrices has a p < 0.05? Combinatorically, such a

result is highly improbable and given by a binomial distribution with resulting p �

1010. Likewise, the finding of an excess of antimodular matrices (20 of 38) compared

20



with a small number of modular matrices (6 of 38) is a highly improbable result.

Moreover, most of the significantly modular matrices have low values of modularity,

suggesting that, although modularity may be deemed significant in a few cases, it is

not a driving mechanism underlying the structure of most of these matrices and may

be incidental to other patterns. Together, these results imply that currently available

host–phage infection networks are typically nested and not modular.

2.2.4 Previously Overlooked Nested Patterns Uncovered

An additional power of subjecting host–phage infection networks to a unified analysis

is that, by doing so, we can extract meaningful biological information about the

organization of a system that may not have been possible given the original placement

of hosts and phages in matrix format. For example, the work by Zinno et al. [197]

mentions variability in phage infection; however, Zinno et al. [197] make no mention

of the fact that there are evidently groups of phages that preferentially infect groups

of hosts (Figure 4A). Such block-like variability suggests that resistance mechanisms

are less haphazard than they seem when network characteristics are not analyzed.

Similarly, the work by Holmfeldt et al. [86] highlighted the variability and possibly

unique signature of infection for each host and phage. However, reordering hosts

according to the number of infecting phages while also reordering phages based on the

number of hosts that they can infect leads to a nested pattern, suggesting that specific

forms of infection rules may underlie infection variability (Figure 4B). To what extent

is our finding of nestedness novel? As a reminder, nestedness is a property of a host–

phage infection matrix as calculated for a given row and column ordering. Hence, we

calculated nestedness for all of the matrices in the format as they were first reported

in the literature and then compared these results to the nestedness calculated from

our reshuffled matrices. We found that, in 35 of 37 cases of the previously published

studies, the reshuffled matrix had a nestedness value higher than that of the original
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publication, whereas in 2 of 37 studies, the nestedness was equal [102, 118] (Appendix

A, Figure 25). Hence, our results suggest that, by and large, prior efforts did not

identify the extent to which their matrices were nested or whether such nestedness

was significant.

2.2.5 Addressing Sample Composition Biases as Potential Drivers of Net-
work Structure

We report a set of analyses to quantify the extent to which potential biases might

impact our results. One potential bias in our study derives from the methods some

researchers used for phage isolation. Phages require a bacterial host to reproduce,

and therefore, the bacterial host(s) chosen by the researcher can affect the form of the

interaction matrix. For instance, if researchers used a single host to isolate phages and

included this host in the matrix, then their matrix will necessarily possess a full row of

positive infections, thereby introducing the first element of a perfectly nested matrix.

We found only six studies that used such an approach [101, 102, 114, 118, 147, 161]. To

determine if phage isolation strategy biased our results to nestedness, we reanalyzed

all six of these matrices after removing the isolation host(s). We found no significant

difference between the nestedness and modularity for each of these six matrices with

or without the excluded host (Appendix A, Table 12).

Another potential bias is that studies included zero rows and columns, which

implies that there are hosts that no phages infect and phages that do not infect

hosts, respectively. Note that inclusion of zero rows and columns has the potential

to bias the structure to a nested pattern. However, such zero rows and columns

may be biologically meaningful if hosts or phages have evolved resistance that leads

to noninteraction between particular sets of strains. Nonetheless, we performed the

entire analysis again by generating alternative matrices such that hosts and phages

were only included if they had had at least one nonzero element in their row or

column, respectively. Then, we recalculated nestedness for the modified matrices

22



and compared it to the nestedness of appropriately resized null matrices. We found

that 26 of 38 studies were nested compared with 27 of 38 using the original analysis

(Appendix A, Figure 26). Moreover, although the quantitative value of nestedness

did decrease in one case, that particular study [49] was, in fact, still highly nested

and marginally significant at a p = 0.067 level. We also recalculated modularity for

the modified matrices and found that 9 of 38 are modular compared with 6 of 38

in the original analysis (Appendix A, Figure 27). Hence, although there are minor

changes in the number of significantly nested and modular networks, our finding that

matrices have a characteristic nested structure is robust to either of these sources of

bias.

Finally, we ask whether there are certain characteristics of matrices that defy

the general pattern of nestedness and if it is possible to learn from these outliers?

Interestingly, the three matrices with the most significant modular structures [54, 140,

197] were determined for a single bacterial species, Streptococcus thermophilus, and

its phages. This finding seems robust, because different laboratories performed the

studies and the microbes were isolated from three separate continents. Additionally,

we did not find an example where a matrix that included S. thermophilus did not

have the modular structure. We examined bacteria from the same taxonomic order

(Lactobacillales) and isolated from the same environment (dairy products), but these

bacteria lacked a modular structure. The consistent modularity observed for this

species suggests that species-specific traits may have strong deterministic effects on

the form that their interactions with parasites take. We are unsure of which traits

produce the modular interactions; however, additional research may help reveal if and

what resistance mechanisms determine the shape of microbial interaction networks.
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2.2.6 Possible Scale Dependence of Host–Phage Interactions: From Nest-
edness to Modularity?

The data that we analyzed included almost 12,000 separate attempts to infect a host

isolate with a phage isolate. Although the scale of the current data is beyond the

scope of any individual project, it still pales compared with the number of possible

interactions in a community at local or regional levels. Scaling up to larger assays

presents technical challenges aside from increasing the depth of sampling. Studying

many host strains beyond the species (or genus) level often requires distinct culture

conditions, a prerequisite for studies that many laboratories cannot or do not want

to reach. Here, we present an analysis of what such a hypothesized study may reveal.

Consider an experiment in which the hosts from two groups of experiments were

combined in a large cross-infection assay with the phages from the same two groups

of experiments. If the original matrix sizes were H1 × P1 and H2 × P2, then the final

matrix size is (H1 + H2)(P1 + P2). A total of H1 × P2 + H2 × P1 new experiments

would need to be performed. If the hosts were of sufficiently distant types (e.g., E.

coli and Synecoccocus), we should expect that nearly all of the new cross-infection

experiments would lead to no additional infections. Hence, if the original matrices

were nested, then the new matrix would have two modules, each of which was nested

(Figure 8 has the results of such a numerical experiment). In other words, we predict

that, at larger, possibly macroevolutionary scales, host–phage interaction matrices

should be typified by a modular structure, even if there is nested structure at smaller

scales.
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2.3 Discussion

2.3.1 Summary of Major Results

We have established a unified approach to analyzing host–phage infection matrices.

In so doing, we find that a compilation of 38 empirical studies of host–phage inter-

action networks is nested on average and not modular (Figures 5 and 6). In most

cases, our finding of higher–order structure such as nestedness within an individual

study was not previously observed, in that prior analyses of host–phage interaction

matrices usually did not attempt to estimate the network characteristics examined

here. We found that host–phage interaction networks are not perfectly nested and

that interactions that defy perfect nestedness are typical throughout nearly all of

the data. Additionally, we found no significant difference in nestedness or modular-

ity based on taxa, sources, or isolation method. This dataset, although far larger

than any individual study, is limited to (largely) microevolutionary scales, an issue

that we addressed in Results and will return to later in Discussion. Considering the

large range of taxa, habitats, and sampling techniques used to construct the matri-

ces, the repeated sampling of a nested pattern of host–phage infections is salient,

although the process driving the nestedness is not obvious. It could result from mul-

tiple mechanisms or a single principle. Here, we examine three hypotheses to explain

the nestedness pattern based on biochemical, ecological, and evolutionary principles.

Note that these hypotheses are not mutually exclusive and that we have only lim-

ited ability to test them given our comparative approach. However, each of these

hypotheses can be tested with additional laboratory- based or field experiments.

2.3.2 Mechanisms Responsible for Nestedness: Biophysical, Ecological,
and Evolutionary

Phage and bacterial infection matrices at microevolutionary scales may be constrained

to a nested shape by the nature of their molecular interactions. Phages infect bacteria
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by using specialized proteins that target and bind to molecules on the outer mem-

branes of bacteria (receptor molecules). Nested infection matrices have been shown

for T-phages, which infect strains of E. coli, to be the result of the interactions of the

phage proteins and receptor molecules [63]. T-phages bind to the lipopolysaccharide

(LPS) chains on the cell surface. Mutant E. coli has been observed with shortened

LPS chains that confer resistance to some but not all T-phages. There are T-phages

that are able to infect these mutants, because they require fewer segments of the LPS

molecule to bind. If phage–bacterial molecular interactions are dominated by single

traits and variation in these traits is constrained along a single hierarchical dimension

such as LPS, then one should expect the nested pattern to arise. There are other

examples of traits with physical characteristics that behave similarly: bacteria that

evolve a thicker and thicker protective coating [103], phages that evolve increased

host range by continually reducing tail length [63], bacteria that reduce their number

of receptors, and phages that target fewer receptors [89]. Although there are many

examples of this type of one-dimensional interaction, the problem with this finding

being a universal explanation for the form of bacterial–phage interactions are that

host–phage interactions are governed by hundreds of other genes [113], bacteria can

use multiple strategies for resistance [103], and phages have complex mechanism to

evade bacteria defenses [103, 87]. Moreover, a recent discovery of an adaptive im-

mune system, where bacteria acquire targeted sequences to prevent phage infection

and phages evolve to evade such immunity, suggests a complex interaction space [98].

Given the diversity of host–phage interactions, it seems unlikely that the molecular

details alone would constrain the form of their relationship [78]. Instead, we turn to

the potential guiding forces of community assembly and coevolution to explain this

reoccurring pattern.

The nested pattern may be common, because the processes of microbial commu-

nity assembly select for species with nested relationships. One could imagine that
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communities may settle into this pattern if this interaction structure is more stable

than others [18, 20], noting that the stability of host–phage interaction structures

may depend on ecological factors such as resource availability [137]. Cohesive inter-

action structures such as nested patterns have been shown to be more stable than

other structures for mutualistic networks [16, 15]. The regularity of the interactions

and redundancies make these communities less susceptible to the random removal of

nodes. However, these networks are thought to be susceptible to invasion by new

species that violate the nested pattern, suggesting that migration of a species would

perturb the nestedness. Furthermore, the spatiotemporal complexity of microbial

and viral communities suggests that prior theoretical efforts that consider commu-

nity addition as a process in which invasions occur infrequently may not be widely

applicable. Moreover, community assembly models rarely invoke the influence of evo-

lutionary change at similar time scales as ecological change–an issue highly relevant

to the study of microbial and viral communities.

Indeed, there may be an evolutionary explanation for nestedness. Most attempts

to characterize the form of coevolution with host–phage experiments to date have

shown a form of antagonistic evolution called expanded host range (or gene for gene)

coevolution [122, 105, 28]. Under this model, bacteria evolve ever-increasing resistance

to more and more phage genotypes, and phages evolve broader host ranges. If one

were to sample a community of bacteria and phages coevolving under this model, they

would uncover a diversity of phages and bacteria that exhibit a nested interaction

pattern. At any time point, the most-derived bacteria should exist, which is either

completely resistant or depending on the timing, sensitive to the most-derived phage.

Given that selection by phage may be slow to alleviate the more sensitive ancestral

variants or that there may be a trade-off between resistance and competitiveness,

there will exist a diversity of bacteria with ever decreasing sets of phages to which

they are resistant. Similarly, the most-derived phages will have the broadest host
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range, and by the same logic as for the bacteria, its ancestors are likely to persist in

the community and display ever-decreasing host ranges. The nested pattern could be

a product of taking a snapshot of a dynamically evolving community. Although the

majority of experimental results observed in artificial laboratory settings support this

hypothesis, there is a single laboratory experiment [75] and models of bacterial host–

parasite coevolution that suggest that other forms of coevolution are possible when

there are bottom-up costs for modifications to resistance [186, 159]. Furthermore, if

coevolution provided the only explanation, then the artificially assembled matrices

would not have the nested pattern.

2.3.3 Dispelling and Recognizing Potential Biases

Three sources of sampling bias challenge the generality of our findings. First, the

taxa sampled may poorly represent microbial diversity given that they are subject to

both human and methodological biases. If, for instance, only taxa associated with

humans were selected or all taxa were cultured similarly, then our results would only

be relevant for a small group of microbes. Indeed, the majority of microbial studies

were performed on the family Enterobacteriaceae, which lives within human digestive

systems; however, the spectrum of bacteria that we examined is much broader and

includes both heterotrophic and photosynthetic species. Further, gram-negative and

-positive bacteria examined here were isolated from six continents and many disparate

environments from the extreme conditions of hot springs, the rich resource conditions

of sewage, depauperate marine environments, and the complex matrix of soil to the

simplified laboratory environment. Although this study cannot feasibly test the full

microbial diversity of the globe, it does include examples from much of it (Appendix

A, Tables 7 and 8).

Second, as previously discussed, the number of hosts used to isolate phages and the

inclusion of noninteracting hosts and phages have the potential to alter the nestedness
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of a matrix. Ideally, the same number of hosts studied in the matrix would be used

to isolate phages, or if only a subset of hosts was used, then these hosts would not

be included in the matrix. This finding is important to ensure that the pattern of

infection is independent of how the parasites were isolated. We found that these biases

were not a problem by (i) testing matrices that were created by isolating phages on a

single host and (ii) removing hosts and phages that were not interacting. We found

that whether the matrices were significantly nested was not affected by including the

isolation host in the matrix or by removing noninteracting hosts and phages, which

is strong support that the isolation method did not enrich for nestedness.

The last category of bias, phylogenetic, is likely to mean that our results define

a pattern at relatively narrow taxonomic scales. The majority of our studies was of

closely related genotypes and species. As described in Results, we anticipate that

more complex patterns of infection may form at larger phylogenetic scales that likely

include increasing compartmentalization. Hence, we hypothesize that a multiscale

view of host–phage infection networks will reveal nestedness at small scales and mod-

ularity at large scales. Our finding of nested interaction matrices is still relevant for

characterizing patterns at short phylogenetic distances; they are, arguably, the most

relevant for many ecological and evolutionary scenarios, because they likely share the

richest connections.

2.3.4 Prospective View

Whatever the limitations of this dataset, it is important to point out that viewing

host–phage interaction networks through a unifying lens will likely unveil other com-

monalities of microbial and viral communities. By way of analogy, over 25 y ago,

the study of food webs was radically altered by the compilation of many small food

webs that were subject to a unified analysis [38, 39, 134, 37]. The key finding of the

earliest food web studies was that the members of a community could be ranked, and
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that larger species would eat a random fraction of those species smaller than them.

From this stage, there were two ways forward. First, by studying larger food webs,

the original pattern was refined such that species ranking was found to be correlated

with body size (but not equivalent to body size); therefore, individuals eat prey that

are smaller, although they are a part of a well-defined size class [5, 191]. Second, the

topology of food webs was then used as a target and basis for dynamic models of

community behavior (i.e., what mechanisms can explain the patterns and how do the

patterns influence community function) [132]. We hope and envision that a similar

process unfolds here in that the finding of a general pattern in the current dataset

will stimulate the collection of more and larger host–phage infection networks to con-

tinue to provide a fuller picture of who infects whom across an entire community.

In so doing, we caution that data completeness can alter the observed patterns of

connectivity and refer readers to a number of recent papers that address this topic

[116, 129, 183, 66, 72].

What do we expect to find when analyzing ever larger host–phage interaction

networks collected from an ecological community, evolution experiments, or culture

collections? We hypothesize that host–phage interaction matrices are likely char-

acterized by modularity at larger taxonomic scales even if there is structure (e.g.,

nestedness) at small taxonomic scales (Figure 8). What would such a multiscale phe-

nomenon inform us about the structure and function of microbiological communities?

First, it would suggest the existence of diversifying coevolutionary-induced selection

that gave rise to (largely) independent host–phage communities. The molecular basis

of such diversification could then be explored. Second, cross-infection assays or sim-

ilar laboratory-based strategies [36] that test whether phages can infect or at least

transmit their genes between phylogenetically divergent hosts have the potential to

provide significant advances in understanding patterns of global gene transfer. Such

phages (and the bacteria that they infect) may be critical to understanding the direct
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transfer of genes on a global scale. Instead of phages acting locally (in a taxonomic

sense) to shuttle genes between closely related bacteria, a few rare links would permit

greater cross-talk between bacterial taxa. Quantifying the frequency of such events

may represent the small- world links that connect distant microbial populations [184],

and it is in need of experimental testing.

Furthermore, infections of distantly related groups by the same phages would

imply that the bacteria are in indirect competition with one another, even if they

do not seem to compete directly for the same set of carbon and nutrient sources.

Although whole genome-based approaches to infer host range and phage susceptibil-

ity may help provide candidates for such rare links, they are not the only solution.

Rather, we suggest that the continued use of laboratory-based assays to catalog the

life history traits of culturable host–phage pairs is essential if we are to improve our

understanding of the population dynamics of host–phage communities in the wild. Of

course, many (if not most) bacteria and phages are not currently culturable. Hence,

in parallel, we recommend attention be given to the development of inverse methods

to catalog the life history traits of phages based on community infection assays in

those circumstances in which culturing is impossible or yet intractable.

2.4 Materials and Methods

2.4.1 Network Statistics

Modularity is estimated by reshuffling the rows and columns of the matrix to find

groupings of highly interconnected phages and bacteria, labeling these groups and

assessing matrix-wide the ratio of the number of within to outside group connections.

This calculation is done using a heuristic called the BRIM algorithm [13] to efficiently

find the configuration that maximizes this ratio. We ported the BRIM algorithm to

MATLAB from the original code in Octave and used the adaptive BRIM algorithm

for all calculations here. By this definition, a perfectly modular matrix is comprised
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of clusters of completely isolated groups, and modularity declines as the number of

cross-group connections increases. Nestedness is estimated by reordering the rows and

columns [11, 143] to determine whether phages that infect fewer hosts are only able

to infect a subset of bacteria that are susceptible to many phages. This reordering

tries to maximize the position of ones in the matrix such that they clusters above

a nullcline (Figure 2C shows a perfectly nested matrix). The value for nestedness

depends on how frequently ones fall above rather than below this nullcline. Complete

details are provided in Appendix A, Materials and Methods.

2.4.2 Host–Phage Infection Assay

Matrix 22 is the only dataset not previously published.Weconstructed thematrix by

coevolving an obligately lytic phage- strain with its host E. coli. The E. coli stud-

ied was of strain REL606, a derivative of E. coli B acquired from Richard Lenski

(Michigan State University, Lansing, MI) and described in ref. [45], and phages were

of strain cI21 (vir) provided by Donald Court (National Cancer Institute, Frederick,

MD). The phages and bacteria were cocultured in 50-mL Erlenmeyer flasks with 10

mL liquid medium, shaken at 120 rpm, and incubated at 37 ◦C (New Brunswick In-

nova 4300 Incubator Shaker). This flask was incubated, and the cycle of transfer and

incubation was continued one more time. Three 24-h incubations were long enough

for the bacteria to evolve resistance and the phages to counter it; however, it was not

long enough for a second round of coevolution. We randomly selected 150 bacteria

and 150 phage isolates. We determined which of the 150 bacteria isolates were re-

sistant to the 150 phage isolates. To do this task, we performed spot plate assays.

All bacterial– phage combinations were replicated five separate times, and a total of

28,125 spots were assayed. To make this processes more efficient, we placed up to

96 separate phage stocks onto a single dish (150 mm radius). Phage stock replicates

were never placed on the same plate to reduce the signal of any stochastic plating
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effects. The five replicates were combined, and a phage was only determined to be

able to infect a bacterium if three of five replicates were given ones. Lastly, phages

or bacteria that had identical infection or resistance profiles as their ancestors were

removed from the matrix. Complete details are provided in Appendix A, Materials

and Methods.
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Figure 7: Statistical distribution of modularity and nestedness for random matrices
compared with that of the original data. (A) Sorted comparison of modularity of the
collected studies vs. random networks. (B) Sorted comparison of nestedness of the
collected studies vs. random networks. In both cases, error bars denote 95random-
izations.
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Figure 8: Union of two nested matrices indicates possible host–phage interaction
structure at larger, possibly macroevolutionary scales. In this figure, we selected
two of the most nested studies and performed a union while presuming that there
were no cross-infections of hosts by phages of the other study. In this case, E. coli
and cyanobacteria were the host types. (A) Depiction of the original matrices. (B)
Randomization of the union matrix. (C) Nested sort of the union matrix. (D)
Modularity sort of the union matrix with a nested sort of each module.
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CHAPTER III

MULTI-SCALE STRUCTURE AND GEOGRAPHIC

DRIVERS OF CROSS-INFECTION WITHIN MARINE

BACTERIA AND PHAGES

Adapted from Cesar O. Flores, Sergi Valverde, and Joshua S. Weitz. Multi-scale

structure and geographic drivers of cross–infection within marine bacteria and phages.

ISME Journal (2013) [62].

Bacteriophages are the most abundant biological life forms on Earth. However,

relatively little is known regarding which bacteriophages infect and exploit which

bacteria. A recent meta-analysis showed that empirically measured phage-bacteria

infection networks are often significantly nested, on average, and not modular. A

perfectly nested network is one in which phages can be ordered from specialist to

generalist such that the host range of a given phage is a subset of the host range

of the subsequent phage in the ordering. The same meta-analysis hypothesized that

modularity, in which groups of phages specialize on distinct groups of hosts, should

emerge at larger geographic and/or taxonomic scales. In this paper, we evaluate the

largest known phage-bacteria interaction data set, representing the interaction of 215

phage types with 286 host types sampled from geographically separated sites in the

Atlantic Ocean. We find that this interaction network is highly modular. In addition,

some of the modules identified in this data set are nested or contain sub-modules,

indicating the presence of multi-scale structure, as hypothesized in the earlier meta-

analysis. We examine the role of geography in driving these patterns and find evidence

that the host range of phages and the phage permissibility of bacteria is driven, in

part, by geographic separation. We conclude by discussing approaches to disentangle
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the roles of ecology and evolution in driving complex patterns of interaction between

phages and bacteria.

3.1 Introduction

Bacteriophages can have a significant effect on microbial communities and ecosystems

[190, 194, 165, 166, 27]. Bacteriophages are responsible for a significant fraction of

bacterial mortality [167, 185], engage in coevolutionary arms races with their hosts

[28, 9, 85, 110], and redirect organic material to the microbial loop via a process

known as the viral shunt [190, 119, 94]. A key event in all of these ecological func-

tions is the interaction with and exploitation of a bacterium by a phage. It is widely

hypothesized that phages can infect a very limited subset of bacteria in a given en-

vironment. However, given the high diversity of bacteria in natural environments

[146, 141], even infecting a limited subset can nonetheless represent a heterogeneous

range of hosts. Indeed, there is a long record of evidence to suggest that phages com-

monly infect multiple distinct bacterial types in natural environments (for example,

[189, 86], including examples where individual phages can infect hosts from distinct

genera (for example, cyanophages infecting hosts from Prochlorococcus and Synechoc-

coccus [163]). Recently, we utilized a network-based approach in order to identify and

characterize patterns within published data sets of infection and exploitation of bac-

teria by phages [60].

The key interaction patterns examined in Flores et al., (2011) were nestedness

[143, 179, 7, 178] and modularity [128, 13]. In the context of phage-bacteria interac-

tions, nestedness indicates the extent to which the host ranges of phages are subsets

of one another. In a maximally nested network, the most specialized phage could in-

fect hosts most permissive to infection. Then, the next most specialized phage could

infect the host most permissive to infection as well as one additional host, and so on.

Nestedness is thought to emerge in coevolutionary arms race dynamics in which hosts
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evolve resistance to current and past pathogens, while pathogens evolve counter resis-

tance that enables them to infect past hosts [4], for example, as observed between the

bacterium Pseudomonas fluorescens SB25 and the DNA phage SBW25F2 [28]. Simi-

larly, modularity indicates the extent to which interactions, in this case an infection of

a bacterium by a phage, can be partitioned into groups with many interactions within

them and few interactions between them. These groups are referred to as modules.

In a maximally modular network, there would be no cross-infections between phages

of one module and hosts of another module. There are many possible drivers of mod-

ularity, including geographic isolation, which can facilitate the divergent coevolution

of interacting species [174, 75].

In our re-analysis of published studies, we found that infection networks tended to

be nested and not modular [60]. However, we hypothesized that modularity should

be expected when a greater diversity of bacteria and phages interact. The work

described here follows up on our earlier study by analyzing a previously published

cross-infection data set [124] not included in our earlier analysis. The Moebus and

Nattkemper (1981) data set is the largest phage–bacteria infection network available

in the literature (as far as we are aware), representing interactions between marine

phages and bacteria in the Atlantic Ocean. The data set contains cross-infection

and geographic information but no sequence information. As such, we focus our

analysis on the following questions: (i) how do patterns of infection change at different

scales, that is, when examining the entire network (large scale) vs subcomponents of

the network (small scale); (ii) what role does geographic separation have in shaping

cross-infection? Despite the cosmopolitan nature of viruses [26, 10] (for an exception

see [48], multiple lines of evidence suggest that phages are often better adapted to

hosts from the same location than they are to hosts from a different location [85,

181, 75, 100]. Hence, by examining explicit cross-infections among many microbes

isolated across a large geographic range, we hope to shed light on the structure of
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phage–bacteria infection networks.

3.2 Materials and methods

3.2.1 Data set

We analyzed the cross-infection data set of Moebus and Nattkemper (1981). This

data include phage and bacteria collected from February to April 1979 in the At-

lantic Ocean between the European continental shelf and the Sargasso Sea [123].

Bacteria were cultured and isolated using seawater-based media and bacteriophages

were enriched from the same water sample [123]. In the original analysis of cross-

infection [124], the authors describe cross-reaction tests among 733 bacteria and 258

phage strains collected at 48 stations separated, in some cases, some 200 miles apart

(Appendix B, Figure 28). However, the authors do not report results from strains,

which have both (i) identical infection patterns and (ii) that were isolated from the

same station. The reported data set is included as a fold-out table in the main text

(see Appendix B, Figure 29). We digitized and automatically extracted the positive

infection results and then manually curated the results, yielding a network of 286

bacteria strains and 215 phage strains with 1332 positive infection outcomes out of

a possible 61, 490 = 286× 215 interactions (see Appendix B.1 for more details). The

interactions were classified in the original study as either (i) ‘More or less clear spots

due to lysis of bacteria’; (ii) ‘More or less turbid spots’. We classified all interactions

as either positive (either clear or turbid spots) or negative (neither clearing nor turbid

spots). We refer to this data set as the MN (Moebus and Nattkemper) matrix. The

resulting digitized data set is shown in Figure 9.
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Figure 9: Digitized version of the MN matrix with 286 hosts (rows) and 215 phages
(columns) in the same orientation as originally published (Moebus and Nattkemper,
1981). The 1332 black cells represent positive interactions between hosts and phages
(see Materials and methods). The connectance of the network (interactions/total
size) is approximately 0.022 ≈ 1332/61490.
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3.2.2 Network Analysis

3.2.2.1 Disjoint components

An interaction network is considered bipartite when it contains two types of agents

that interact, for example, bacteria and phages. Any bipartite network can be de-

composed into disjoint components such that no cross-infections are found between

components. Formally, each disjoint component in a bipartite network of host-viral

cross-infection is defined in terms of a set of hosts, H, and viruses V, such that: (i)

there is no virus V outside of V that can infect any host in H; (ii) there is no host

H outside of H that can be infected by any virus in V; (iii) for each virus in V there

is at least one host in H that it can infect.

3.2.2.2 Modularity

We used the standard BRIM (Bipartite Recursively Induced Modules) algorithm [13],

which utilizes a local search heuristic to maximize a bipartite modularity value Q (see

Appendix B.2 for more details). The value of Q represents how often a particular

ordering of phages and bacteria into modules corresponds to interactions that are

primarily inside a module (Q ≈ 1 or modular), primarily outside of modules (Q ≈ −11

or antimodular) or somewhere in between (−1 ≤ Q ≤ 1). BRIM helps find the

arrangement of phages and bacteria in modules that maximize Q. We used two

different approaches of the BRIM algorithm depending on the size of the matrix. For

the entire matrix, we extended the BRIM algorithm to first partition the network into

different isolated modules and then subsequently recursively subdivide the network as

has been done in the case of unipartite networks [127, 128], that is, networks with only

one type of node. Our approach (described in Appendix B.2) yields higher values of

Q than both BRIM and LP-BRIM [108]. Within each module, we used the adaptive

heuristic of the BRIM algorithm [13], which has been verified to perform well in small

matrices [108].
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3.2.2.3 Nestedness

We utilized two algorithms to measure the extent to which hosts and phage interac-

tions have a nested pattern.

3.2.2.4 Nestedness Temperature Calculator

The nestedness temperature calculator (NTC) algorithm was originally developed by

[11] and has been reviewed elsewhere [143]. In the present context, the ‘temperature’,

T , of an interaction matrix is estimated by resorting the row order of hosts and the

column order of phages such that as many of the interactions occur in the upper left

portion of the matrix. In doing so, the value of T quantifies the extent to which

interactions only take place in the upper left (T ≈ 0), or are equally distributed

between the upper left and the lower right (T ≈ 100). Perfectly nested interaction

matrices can be resorted to lie exclusively in the upper left portion and hence have

a temperature of 0. The value of temperature depends on the size, connectance and

structure of the network. Because the temperature value quantifies departures from

perfect nestedness, we define the nestedness, NNTC , of a matrix to range from 0 to

1, NNTC = (100− T )/100, such that NNTC = 1 when T = 0 (perfect nested pattern)

and NNTC = 0 when T = 100 (chessboard pattern).

3.2.2.5 Nestedness metric based on overlap and decreasing filling

NODF is a nestedness metric introduced by Almeida-Neto et al. (2008) [7]. NODF is

independent of row and column order. This algorithm measures the nestedness across

hosts by assigning a value MH
ij to each pair i, j of hosts (rows) in the interaction

matrix, which is defined as:

MH
ij =


0, if ki = kj

nij/min(ki, kj), otherwise

(1)
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where ki and kj are the degree of hosts i and j respectively, and nij is the number

of common interactions between them. ‘Degree’ is a standard network science term

that is defined as the number of interactions that a given type has [126]. For example,

in this context, the degree of a host is the number of viruses that can infect it and

the degree of a virus is the number of hosts it can infect. The same method is used

to calculate nestedness across phages, such that the total nestedness value is:

NNODF =

∑
i<j M

H
ij +

∑
i<j M

P
ij

H(H−1)
2

+ P (P−1)
2

(2)

The meaning of nestedness as calculated by NODF is that higher values denote

matrices whose (i) pairs of rows are typically subsets of each other, that is, host

pairs share some, but not all, viruses that can infect them; (ii) pairs of columns are

typically subsets of each other, that is, viral pairs share some, but not all, hosts that

they can infect.

3.2.2.6 Null Models

We utilized two null models in order to measure the statistical significance of mod-

ularity and nestedness. The first is a Bernoulli random null model in which the

null matrix has the same total number of interactions as the original matrix, albeit

randomly positioned. The second is a probabilistic degree null model in which each

interaction between host i and phage j in the null matrix is assigned with a probability

pij according to:

pij =
1

2

(
ki
P

+
dj
H

)
(3)

where the degree ki is the number of phages that infect host i, the degree dj is the

number of hosts infected by phage j, P is the number of phages and H is the number

of hosts. In all cases, we utilize 100, 000 random matrices to evaluate the statistical

significance of modularity and nestedness. Finally, given the two null models, we

evaluate modularity using two significant tests, and we evaluate nestedness using

four significance tests (two each for the NTC and NODF).
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3.2.3 Multi-scale Analysis

Nestedness metrics may overestimate the statistical significance of nestedness, partic-

ularly when the fraction of realized interactions of a network becomes either very large

or very small, for example, [59]. In addition, in cases where a network is comprised

of nested modules, we expect that some nestedness measures will spuriously identify

the entire network as nested (see for example, Figure 7 of Flores et al. (2011)). We

developed two approaches to characterize nestedness given a large, sparsely connected

network. These two approaches are consistent with recent calls to take a local, rather

than a strictly global, approach to identifying community structure [66]. First, in

the case of nestedness as calculated using NTC, we identify modules in the original

matrix, and then constrain the row/column re-ordering so that rows and columns

cannot break the modular structure. Hence, we still sort the rows and columns, but

only inside modules. In addition, we permit random permutations of the modular

blocks along the main matrix diagonal and select the configuration that minimizes

temperature (maximizes nestedness). Second, in the case of nestedness as calculated

using NODF, we again identified modules and then restricted the comparisons of

overlap to rows and columns across modules. In this way, we can evaluate the over-

all nestedness of the original matrix without considering the nestedness contribution

that comes from inside of modules. More details are found in Appendix B.3.

3.2.4 Geographical Analysis

Modules identified in our network analysis include hosts and phages collected at

potentially different sample sites. The sample site of each phage and host corresponds

to different ‘stations’ in the Atlantic Ocean. We estimated the geographic diversity

of stations within a given module using Shannon (Hk) and Simpson indices (Dk)

[153, 157] where the subscript k denotes the module number. Both indices measure

the variability in the stations of isolation of phages and hosts within a given module.
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In addition, both indices were applied to hosts and phages separately. The diversity

indices of a given module are:

Hk = −
R∑
i=1

ni

N
log

ni

N
, and Dk = 1−

R∑
i=1

ni(ni − 1)

N(N − 1)
(4)

where N are the number of different strains inside the module, R are the number of

stations inside the module, and ni are the number of strains from station i. Low values

in both indices indicate low geographical diversity. We determined the significance of

a measured diversity value by comparing observations with an ensemble of randomized

matrix assignations of station labels to modules (see Appendix B.4 for details).

3.3 Results

3.3.1 Characteristics of a large-scale phage-bacteria infection network

The network properties of the MN phage-host infection data set are shown in Table

1. We find that only a small percentage of the cross-infections yield a positive result

(2.17% = 1332/61490), in contrast to a previous meta-analysis where many cross-

infections yielded positive results (36.6% =4365/11944) [60]. However, in agreement

with the prior meta-analysis we find that phages can infect multiple hosts (average

of 6.20, median of 4 in the present study, average of 8.75, median of 6 in the prior

meta-analysis). Similarly, we find that hosts are infected by multiple phages (average

of 4.66, median of 3 in the present study, average of 4.34, median of 3 in the prior

metaanalysis). These averages and medians were calculated over all strains in the

current study and by aggregating strains from the prior analysis. Importantly, the

degree distribution of this network is not unimodal, that is, it does not have a single

peak. Instead, we find long-tailed distributions of the number of hosts that a phage

can infect, and similarly, the number of phages that can infect a host (see Appendix

B, Figure 30). Hence, there exists a spectrum of viral types spanning specialists to

generalists; we find there are many more specialists than generalist viral types in this
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Table 1: General properties of a large-scale phage–bacteria infection network

General properties Definition Value
Nc Number of components 38
H Number of hosts 286
P Number of phages 215
I Number of interactions 1332
S = H + P Number of species 501
M = HP Size 61490
C = I/M Connectance or fill 0.0217
LH = I/M Mean host degree 4.6573
max(ki) Max host degree 20
min(ki) Min host degree 1
LP = I/M Mean phage degree 6.1953
max(di) Max phage degree 31
min(di) Min phage degree 1
Nc Number of components 38

study. Similarly, hosts can span a spectrum of types from permissive to resistant

types; we find there are many more resistant types than permissive types in this

study.

3.3.2 Evaluating modularity at the whole-network scale

The MN matrix is comprised of 38 disjoint components, that is, sets of phages and bac-

teria, which have cross-infections within a component but no crossinfections between

components (see Figure 10). Given the finding of disjoint components, we expect that

the MN matrix is significantly modular. We confirm this via a modularity analysis

using the BRIM algorithm in which we identify 49 separate modules (see Appendix

B, Table S2). The 49 modules include the subdivision of some of the 38 disjoint com-

ponents as identified in the BRIM analysis such that the overall modularity value Q

is increased. These results enable in-depth resolution of the specialization within the

system, in contrast to the conclusion by Moebus and Nattkemper (1981) via visual

inspection that ‘two large groups of bacteriophage–host systems were encountered’
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and ‘8 small ones were found’. Figure 11 shows the modularity sorting of the MN

matrix resulting from the BRIM algorithm, in which rows and columns inside mod-

ules were sorted in order to highlight the possible nested structure within modules.

Remarkably, 1219/1332 = 91.52% of the interactions occurs within modules rather

than between modules. The calculated modularity of the MN matrix (Q = 0.7950)

is larger than any of the 105 realizations in either null model (p < 10−5), which is

a conservative upper bound). As a point of reference, the highest value of any of

the random matrices was Q = 0.4503. The z-score, representing the relative number

of standard deviations the actual modularity is larger than the mean of the random

ensemble, as calculated for modularity was 87.55 using the Bernoulli null model and

51.02 using the probabilistic degree null model. It is important to note that although

most interactions occur within a module, these modules include phages and bacteria

from multiple stations. Hence, we find that 76% (∼1012/1332) of infections transcend

the site of isolation.

3.3.3 Evaluating nestedness at the whole-network scale

We evaluated the nestedness of the MN matrix using a combination of algorithms

and null models. First, we resorted the row and columns in order of increasing de-

gree, a heuristic that tends to maximize nestedness using the temperature calculator.

Visually, it would seem that the MN matrix is not nested (see Figure 11 and Ap-

pendix B, Figure 31). We showed in a previous study that a community of nested

modules can lead to apparent nestedness at the whole-matrix scale [60]. Indeed, for

the four nestedness tests (two null models and two algorithms) we find that the MN

matrix is apparently significantly nested in all cases except for the NODF algorithm

using the probabilistic interaction null model. We argue that the apparent finding of

nestedness is driven by the fact that the matrix contains nested modules, rather than

a nested arrangement of hosts and phages spanning the entire matrix. We applied
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Figure 10: Network representation of the study. We observe 38 isolated components.
Black nodes represent phages, and white nodes represent hosts. The station IDs of
each host and phage are contained in the center of each node.

a multi-scale network analysis to evaluate this hypothesis (see Materials and meth-

ods and Appendix B.3). The results of the conventional and multi-scale nestedness
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Figure 11: Modularity sorting of the network. We detect 49 modules (shaded rectan-
gles). The 15 largest modules discussed in the main document begin at the left of the
matrix. Black symbols represent those interactions within a module. Gray symbols
represent those occurring between modules. The p-value for the observed modularity
is smaller than 10−5.
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analysis are summarized in Table 2. The multi-scale analysis enables us to reject

the finding of nestedness for both algorithms when using the probabilistic degree null

model. Nestedness can also be rejected even in the case of the Bernoulli null model

for NODF and for one of the multi-scale analysis methods using NTC.

Table 2: Significance of the nestedness of the MN matrix using alternative algorithms

NTC algorithm NODF algorithm
NNTC Bernoulli Probabilistic degree NNODF Bernoulli Probabilistic degree

Normal analysis 0.9541 p < 1e− 5 p < 1e− 5 0.0341 p < 1e− 5 p = 0.2336

Multi-scale analysis
0.93588 p < 1e− 5 p = 1

0.0062 p = 1 p = 10.9263 p < 1e− 5 p = 1
0.8568 p = 1 p = 1

Abbreviations: MN matrix, Moebus and Nattkemper matrix; NODF, nestedness metric based on overlap and
decreasing filling; NTC, nestedness temperature calculator; The P-value denotes the fraction of random matrices
that have a larger value of nestedness, N, than the observed MN matrix. In the ‘normal’ analysis, the NTC algorithm
and NODF algorithms are used to estimate nestedness using alternative null models (see Materials and methods).
For the multi-scale analysis three values have been reported for analyzing the significance of nestedness using the
NTC algorithm: (1) Modules are sorted according to the sort heuristic described in Appendix B.3; (2) Modules are
sorted in descending order of the number of phages; (3) Modules are sorted in ascending order of the number of
phages. See Appendix B, Figure 33 for the details of sorting. Note that the values of nestedness can differ depending
on the algorithm used, it is their relative value to the null model that determines significance.

3.3.4 Network analysis at the intra-module scale

Table 3: Network properties of the largest 15 modules identified using the modularity
analysis (see Table 1 for definitions of all quantities)

# H P S I M C Lp Lh
1 42 23 269 65 966 0.28 6.4 11.7
2 39 12 138 51 468 0.29 3.54 11.5
3 31 31 233 62 961 0.24 7.52 7.52
4 23 13 61 36 299 0.2 2.65 4.69
5 16 20 114 36 320 0.36 7.13 5.7
6 15 5 30 20 75 0.4 2 6
7 12 7 27 19 84 0.32 2.25 3.86
8 11 8 52 19 88 0.59 4.73 6.5
9 8 6 38 14 48 0.79 4.75 6.33
10 8 11 57 19 88 0.65 7.13 5.18
11 7 5 15 12 35 0.43 2.14 3
12 7 7 17 14 49 0.35 2.43 2.43
13 7 9 49 16 63 0.78 7 5.44
14 6 7 21 13 42 0.5 3.5 3
15 6 6 27 12 36 0.75 4.5 4.5

Mean 15.87 11.33 76.53 27.2 241.47 0.46 4.51 5.82
Median 11 8 49 19 84 0.4 4.5 5.44
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We performed a network analysis of the 15 largest modules extracted from the

modularity sort (see Table 3 for summary statistics and Appendix B, Table 14 for

information on all 49 modules). Figures 12 and 13 show the modularity and nestedness

sorting, respectively. We detected that 9/15 modules are statistically modular in at

least one of the two null models, whereas 5/15 are modular using both of the null

models. In addition, we find that 8/15 of the modules are statistically nested in at

least one combination of NTC/NODF vs Bernoulli/Probabilistic degree null models.

The fact that 8 of 15 modules are statistically nested in at least one case is an

indication that nestedness is present at smaller scales. This supports the hypothesis

that modularity may be characteristic at large scales (the scale of the entire network),

whereas nestedness may be observed at small scales (at the scale of an individual

module) [60]. However, here we note that small-scale structure includes nestedness

and modularity.

Module 1 − AB Module 2 − AB Module 3 − AB Module 4 − AB Module 5 − AB

Module 6 − A Module 7 − A Module 8 − a Module 9 − X Module 10 − a

Module 11 − A Module 12 − A Module 13 − ab Module 14 − X Module 15 − X

Figure 12: Modular sort of the internal structure of the 15 largest modules, in the
same order as they appear in Figure 3. The significance of modularity is denoted as
follows: A/a = statistically modular/antimodular using Bernoulli null model, B/b
= statistically modular/ antimodular using probabilistic degree null model. X = no
significant modular or antimodular.
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Module 1 − ABCD Module 2 − AC Module 3 − ABCD Module 4 − AB Module 5 − ABC

Module 6 − X Module 7 − X Module 8 − ABCD Module 9 − X Module 10 − AB

Module 11 − X Module 12 − X Module 13 − A Module 14 − X Module 15 − X

Figure 13: Nestedness sort of the 15 largest modules. The gray line represents
the isocline of the NTC algorithm. A/B = statistically nested using NTC and
Bernoulli/probabilistic degree null model, C/D = statistically nested using NODF
and Bernoulli/ probabilistic degree null model. X = no significance was found.

3.3.5 Geographical diversity of interactions

We find that, on average, there is less geographic diversity in each of the largest 15

modules identified in Figure 11 than would be expected by chance. The result of

the geographic diversity test is shown in Figure 14. Specifically for phages, 11 of 15

modules exhibit statistically significant lower diversity than is expected by chance

using Simpson diversity, and 12 of 15 modules are found to be statistically significant

when using Shannon diversity (see Appendix B, Figure 34 and Appendix B, Table

15). Moreover, the two largest modules have lower geographic diversity of phages

than average, but not significantly lower than might be expected by chance. Similar

results hold for hosts, where 10 of 15 modules exhibit statistical significant lower

diversity using Simpson and 11 of 15 using Shannon diversity (again see Appendix B,

Figure 34). These results imply that strains within modules are overrepresented by

phages and hosts that belong to the same subset of stations. However, it is important

to point out that this data set includes many positive infections (1012 of 1332) of
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hosts by phages that were not isolated from the same sample site.

Module 1

60 °
W 50°

W 40° W 30° W 20
° W 10

° W 0
°

30 °
N 

40 °
N 

50 °
N 

Module 4

60 °
W 50°

W 40° W 30° W 20
° W 10

° W 0
°

30 °
N 

40 °
N 

50 °
N 

Module 7

60 °
W 50°

W 40° W 30° W 20
° W 10

° W 0
°

30 °
N 

40 °
N 

50 °
N 

Module 10

60 °
W 50°

W 40° W 30° W 20
° W 10

° W 0
°

30 °
N 

40 °
N 

50 °
N 

Module 13

60 °
W 50°

W 40° W 30° W 20
° W 10

° W 0
°

30 °
N 

40 °
N 

50 °
N 

Module 2

60 °
W 50°

W 40° W 30° W 20
° W 10

° W 0
°

30 °
N 

40 °
N 

50 °
N 

Module 5

60 °
W 50°

W 40° W 30° W 20
° W 10

° W 0
°

30 °
N 

40 °
N 

50 °
N 

Module 8

60 °
W 50°

W 40° W 30° W 20
° W 10

° W 0
°

30 °
N 

40 °
N 

50 °
N 

Module 11

60 °
W 50°

W 40° W 30° W 20
° W 10

° W 0
°

30 °
N 

40 °
N 

50 °
N 

Module 14

60 °
W 50°

W 40° W 30° W 20
° W 10

° W 0
°

30 °
N 

40 °
N 

50 °
N 

Module 3

60 °
W 50°

W 40° W 30° W 20
° W 10

° W 0
°

30 °
N 

40 °
N 

50 °
N 

Module 6

60 °
W 50°

W 40° W 30° W 20
° W 10

° W 0
°

30 °
N 

40 °
N 

50 °
N 

Module 9

60 °
W 50°

W 40° W 30° W 20
° W 10

° W 0
°

30 °
N 

40 °
N 

50 °
N 

Module 12

60 °
W 50°

W 40° W 30° W 20
° W 10

° W 0
°

30 °
N 

40 °
N 

50 °
N 

Module 15

60 °
W 50°

W 40° W 30° W 20
° W 10

° W 0
°

30 °
N 

40 °
N 

50 °
N 

Figure 14: Geographical representation of the 15 largest modules. Each module is
considered in a separate panel. Large filled circles represent the stations included
in the corresponding module; open circles represent the stations not included in the
corresponding module. Red and green small circles representing phages and bacteria,
respectively, were randomly placed around their corresponding station for improved
visibility. A gray line between a red and green circle denotes an interaction between
a virus and bacteria.

To what extent are the interactions between phages and hosts at a given site more

likely to occur than those between sites? First, we find that the probability of a
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phage infecting and exploiting a host from a different station is lower (0.017) than it

is of infecting and exploiting a host from the same station (0.17). This is a 10-fold

effect in geographic isolation. We caution that the isolation procedures for phages

are heavily biased toward obtaining this effect as phages were isolated from hosts

at a given station. As one means to control for this effect, we reduced the number

of internal station interactions by the total number of viruses and re-perform this

analysis. In doing so, we find a revised probability of 0.061 within modules, which

is a 3.6-fold increase when compared with interactions between modules. Finally, in

Appendix B, Figure 35, we show that the fraction of shared interactions for both

hosts and phages is larger within stations than it is between stations. Altogether

these results show geographic location, whether at a given site or among a subset of

sites, have an important role in driving infection patterns.

3.4 Discussion

We performed the first multi-scale analysis of a phage-bacteria infection network,

comprised of 286 bacteria and 215 phages isolated from the Atlantic Ocean. First,

we found that bacteria and viruses were highly variable in their interactions, corre-

sponding to a spectrum of generalist and specialist viruses as well as hard-to-infect

to permissive bacteria (Appendix B, Figure 30). Second, we found that the infection

network was modular at a large scale and had multi-scale structure such that modules

were themselves nested and/or had further modular organization. Network studies

have suggested that modularity can be topological, for example, functional modular-

ity as found in proteinprotein interaction networks [142] or transcriptional regulatory

networks [90]. Here, a geographic diversity analysis revealed that the modular signal

observed was driven, in part, by geographic isolation. However, it is important to

point out that cross-infections that transcend site of isolation were common, indeed
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approximately 76% of observed interactions occurred between a phage and a bac-

terium isolated at different sites.We discuss the relevance and implications of each of

these results below.

The observation has been made on multiple occasions that the number of hosts a

virus can infect can vary substantially, (for example, [124, 189, 42, 86, 118]. Variabil-

ity in the host range of phages is consistent with the notion that phages have evolved

evolutionary strategies ranging from specialists to generalists. Similarly, variability in

the number of viruses that can infect a given host is consistent with the notion that

hosts have evolved evolutionary strategies ranging from well defended to permissive.

It is thought that the relative ecological success of such strategies depends on envi-

ronmental conditions, for example, bacterial defense specialists may be favored when

resources are abundant and competition strategists may be favored when resources

are limited [193]. However, such conclusions are often based on models of interac-

tion dynamics, such as Kill-the-Winner [172, 170], that do not include significant

cross-infection. Combining cross-infection networks into dynamic models could help

develop predictions relating infection structure to community composition [188].

Although we identified generalist viruses, the most generalist virus could infect 31

of the 286 total hosts in the network, suggesting that nestedness at the whole-network

scale is unlikely. Indeed, the MN matrix is comprised of disjoint components (Figure

10) of which some of these components exhibit additional modular structure within

a component (Figure 11). These modules may themselves have further modularity

and/or nestedness (Figures 12 and 13). This is the first instance, of which we are

aware, of detection of such multi-scale structure in microbial interaction networks.

This result can be interpreted in a number of ways. First, the finding of modules

within modules suggests multiple levels of specialization that may be present in the

community. Second, the finding of nestedness and modularity are not exclusive. In

our prior study [60], we found nearly perfectly nested networks that appear ‘modular’
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using the standard BRIM metric [13]. This warrants separate examination to develop

metrics that can disentangle these two network properties. We developed one such

approach here, by suggesting that estimates of nestedness could be performed under

modular constraints, and in so doing find that modularity at the scale of the entire

MN network and observe nestedness at a local scale (that is, within modules).

What is the biological basis for modules? Given the data available, we evaluate

the role of geography in structuring infection. Moebus and Nattkemper (1981) hy-

pothesized, based on visual inspection, that geographic location drove part of the

interaction signal. Recent work has suggested that viruses are more likely to infect

hosts from the same site than they are hosts isolated at different sites [181, 75, 100].

We found a similar result, in that viruses were at least three times more likely to infect

a host isolated from the same location than a host isolated from a different location,

even after accounting for isolation bias. However, infection across sample sites was

observed frequently, and modules typically contained hosts and phages from multiple

sample sites. Using a geographic diversity method, we found that modules tend to

have phages and hosts from a much smaller number of sample sites than would be ex-

pected by chance. Hence our study is consistent with recent calls for greater attention

to spatial structure to viral biogeography [48, 85]. One interpretation of our results is

that interactions between phages and host may be endemic despite a consensus that

viruses are usually cosmopolitan, that is, they can be observed across a broad range

of locations [26, 10]. This may be the case because geographically separated sites are

comprised of relatively distinct microbes (for example, microbes differ at the genus

level or higher) so that isolated viruses are unlikely to infect the taxa of microbes

across sites. Or, it may be that geographically separated sites have relatively similar

microbial isolates (for example, communities are dominated by culturable microbes

related at the species level or lower) but that their geographic separation facilitated

local coevolution to take place, which enabled divergences in functional interactions
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[85, 133, 25]

The finding of multi-scale structure also suggests that different processes may

drive the emergence of functional interactions at different scales. For example, in the

gene-for-gene model of coevolutionary adaptation [4], hosts and phages accumulate

differences in defense and counter defense that are consistent with the emergence

of nestedness. However, innovations by hosts may also have an important, albeit

less frequent, role in permitting hosts to escape from phage infection and selective

pressure. Similarly, innovations by phages may also permit them to re-establish access

to a host population [117]. A number of evolutionary models of phages and hosts have

proposed mechanisms by which coevolutionary dynamics unfold [170, 186, 144, 35].

We suggest that examining resultant phagebacteria interaction networks will be an

important means to quantify functional complexity in natural systems and to identify

signatures that could discriminate between alternative coevolutionary models.

Ecological patterns depend on the scale of inquiry [107]. In the case of phage-

bacteria infection networks, relevant scales may be taxonomic, environmental and/or

geographic. Hence, measurements of interaction networks coupled with information

on geography, taxa and environmental conditions (for example, [137]) could help dis-

entangle the relative importance of drivers of microbial interactions, in much the same

way that biogeographic studies are beginning to quantify the relative importance of

drivers of microbial species distributions [112]. Of course, in doing so, new methods

to measure cross-infection will be needed. First, our discussion of phage-host interac-

tions in this paper has largely focused on the antagonistic mode. However, the MN

matrix includes turbid plaques, which could be interpreted as indicative of infection

by temperate phages. Followup studies on the differences and similarities between

virulent vs temperate phages in natural environments are worthwhile. Second, it was

recently noted that ‘the true host range for most marine phages is completely unchar-

acterized’ [25]. Previously published cross-infection assays, including the MN matrix
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examined here, use traditional spot-assay or plaque-assay based methods for assessing

interactions between cultured bacteria and phages. In moving forward, we suggest

that methods to evaluate the functional interaction between hosts and phages that do

not rely on cultured isolates [169, 46] will represent an important step to assessing the

general structure of interactions in natural communities. We hope that the network

approach developed here will be of use in such an effort.
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CHAPTER IV

BIMAT : A MATLAB R© PACKAGE TO FACILITATE THE

ANALYSIS AND VISUALIZATION OF BIPARTITE

NETWORKS

Adapted from Cesar O. Flores, Timothée Poisot, Sergi Valverde, and Joshua S. Weitz.

BiMAT: a MATLAB (R) package to facilitate the analysis and visualization of bipar-

tite networks. arXiv:1406.6732 [61].

The statistical analysis of the structure of bipartite ecological networks has in-

creased in importance in recent years. Yet, both algorithms and software packages

for the analysis of network structure focus on properties of unipartite networks. In

response, we describe BiMAT, an object-oriented MATLAB package for the study of

the structure of bipartite ecological networks. BiMAT can analyze the structure of

networks, including features such as modularity and nestedness, using a selection of

widely-adopted algorithms. BiMAT also includes a variety of null models for evaluat-

ing the statistical significance of network properties. BiMAT is capable of performing

multi-scale analysis of structure - a potential (and under-examined) feature of many

biological networks. Finally, BiMAT relies on the graphics capabilities of MATLAB

to enable the visualization of the statistical structure of bipartite networks in either

matrix or graph layout representations. BiMAT is available as an open-source package

at http://ecotheory.biology.gatech.edu/cflores.
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4.1 Background

Biological and social systems involve interactions amongst many components. Such

systems are increasingly represented as networks, where nodes denote the interact-

ing objects, and the edges denote the interactions between them [126]. Of course,

not all networks are alike. For example, networks are often differentiated based on

whether or not individual nodes have the same types of incoming and outgoing links.

A network is termed unipartite if any node can potentially connect to any other

node, as in metabolic networks [93], food webs [40, 52], or friendships/contacts in

a social network [184]. The interactions between nodes in such networks are often

highly structured, i.e. they differ from idealized networks in which the probabil-

ity of interacting between any two nodes is constant (i.e. the so-called Erdös-Renyi

graph [56]). Evaluating the structure of a unipartite network has spurred the devel-

opment of concepts such as modularity, small-world structure, and hierarchy [126].

Measuring these structures has in turn, led to efficient implementations of algorithms

meant to quantify and characterize network structure, primarily that of unipartite

networks [19, 154, 82, 44].

In contrast, a network is termed bipartite if nodes represent two distinct types such

that interactions can only occur between nodes of different types [34]. The canonical

example of bipartite networks is that of interactions among plant and pollinators,

where links represent pollination [52]. Indeed, an abundant literature has emerged

on the use of bipartite networks and associated analysis techniques for analysing

plant–pollinators systems [17, 162, 18, 20, 95]. However, the concept of bipartite

networks (and the specific methodology it carries) can be applied in different domains,

including the study of antagonistic networks such as host-parasite interactions [137,

138, 187, 60, 62]. Bipartite networks, like unipartite networks, are rarely random in

their structure, i.e. the probability of any potential link between each pair of nodes of

different types is not equal. Studies of both plant-pollinator and host-parasite systems
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have shown that bipartite networks can be (i) modular, i.e. subsets of nodes often

preferentially connect to each other, rather than to other nodes [130]; (ii) nested, i.e.

the interaction between nodes can be thought of as subsets of each other [60, 18];

(iii) multi-scale, i.e. the structural properties of the network differ depending on

whether the whole or components are considered [62]. As an example, Figure 15

shows Memmot [115] plant-pollinator network, such that the nested and modular

structure only becomes apparent when the appropriate sorting is used. Besides the

importance of these metrics to quantity the structure of bipartite empirical data, there

is still not a self-contained library or software package for analysing the structure of

bipartite networks.

In response, we describe BiMAT , an open-source software for the analysis of bi-

partite networks. BiMAT is written in MATLAB R© . Although MATLAB R© is proprietary

software, its use has increased among ecological research groups due to the fact that

producing results and plots is easy and quick. The library includes implementations

of the most commonly used algorithms for characterizing the extent to which a bi-

partite network exhibits modular, nested and multi-scale structure. In addition to

measuring the structure of a network, BiMAT also evaluates the statistical significance

of this structure given a suite of null models. Finally, BiMAT provides a range of vi-

sualization tools for exploring bipartite network structure in either matrix or graph

layouts. Here, we first describe the core definitions and methods used in the anal-

ysis of bipartite networks. Then, we describe the implementation of BiMAT and its

application to a number of examples drawn from virus-host interaction data.

4.2 Methods

4.2.1 Bipartite ecological network

A bipartite network, B, is a network in which nodes can be divided in two sets

R (row nodes) and C (column nodes) such that edges exist only across R and C.
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Figure 15: Schematic of an empirical bipartite network (plant-pollinator [115]) in
matrix and graph layout using the original, nested and modular sorting of plant and
pollinator nodes. Color of cells are frequency of visits mapped to log scale, from
small number of visits (darker blue) to large number of visits (dark red). While in
the left panels no structure is apparent, the middle and right panels show the opposite.
Through visual inspection of the panels, we may infer that the network is nested.
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This type of network can be represented as a bipartite adjacency matrix B of size

m× n, where m is the number of nodes in set R and n is the number of nodes in set

C. In our implementation, R and C are the node sets that are represented by the

rows and columns of the bipartite adjacency matrix in a Bipartite object. Although

BiMat takes quantitative matrices as input, all algorithms implemented in BiMAT first

threshold these values such that interactions are either present (1) or absent (0). The

number of links can be defined as E =
∑

ij Bij. Finally ki =
∑

j Bij and dj =
∑

iBij

define the degree (number of interactions) of the two kinds of nodes.

4.2.2 Algorithms

4.2.2.1 Modularity

BiMAT use the standard measure of modularity [128], which for a bipartite network

can be defined as (following Barber [13]):

Qb =
1

E

∑
ij

(
Bij −

kidj
E

)
δ(gi, hj), (5)

where gi and hi are the module indexes of nodes i (that belongs to set R) and j (that

belongs to set C). The idea behind the last equation is to maximize Q by choosing

the appropriate indexes for vectors g and h. Significant debate concerns identifying

the optimal set of modules in the case of bipartite networks [65, 151]. In order to

provide multiple options, BiMAT uses three different algorithms to maximize Equation

5: Adaptive BRIM [13], LP-BRIM [108] and the leading eigenvector method [128].

• AdaptiveBRIM: The standard BRIM (for Bipartite Recursively Induced Mod-

ules) algorithm works in the matricial notation version of Equation 5 given

by:

Qb =
1

E
Tr RT B̃T, (6)

where B̃ij = Bij − kidj
E

is often called the modularity matrix. Further, we

replaced the delta function and vectors g and h by the m × c index matrix
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R = [r1|r2|...|rm]T and the n × c index matrix T = [t1|t2|...|tn]T , for row and

column nodes, respectively, with c denoting the number of modules [13]. Notice

that nodes cannot be classified into more than one module. Hence, vectors ri

and ti consist of a single one (corresponding to the chosen module) with all

the other entries being zero. For example, rik = 1 if the i-th row node belongs

to the k-th module with rij = 0 for all j 6= k. Using the last expression, the

standard BRIM algorithm computes the optimal modularity by inducing the

division of one set of nodes (say vector T) from the division in the other set of

nodes (say vector R). At each step, BRIM assigns nodes of one type to modules

in order to maximize the modularity. BRIM iterates this process until a local

maximum is reached. However, the choice of a predefined number c of modules

limits the efficacy of the algorithm. Hence, we use an adaptive heuristic [13]

to identify the optimal set of modules (and associated modularity Q). This

heuristic assumes that there is a smooth relationship between the number of

modules c and the modularity Qb(c). For continuous and smooth landscapes, a

simple bisection method ensures that we will find the optimal value of c = c?

corresponding to maximum Qb. Starting at c = 1 (and modularity Qb(1) = 0

because all nodes belong to the same module) the adaptive BRIM searches

for optimal c by repeatedly doubling the number of modules while modularity

increases, Qb(2c) > Qb(c). At some point, the search crosses a maximum in the

modularity landscape, i.e. Qb(2c) < Qb(c), and we interpolate the number of

modules c? to some intermediate value in the interval (c/2, 2c).

• LP&BRIM: The algorithm is a combination between the BRIM and LP (Label

Propagation) algorithms. The heuristic of this algorithm consists in search-

ing for the best module configuration by first using the LP algorithm. This

algorithm initially assigns each node to a different module (label). At each

interaction the module of each node is reassigned to the module to which the
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majority of its neighbours belong to. The order of node reassignment is ran-

dom and ties are broken randomly. The algorithm continues until convergence

is achieved. The standard BRIM algorithm is used at the end to refine the

results.

• LeadingEigenvector: This algorithm works with the unipartite adjacency ma-

trix A of size m + n × m + n instead of the bipartite adjacency matrix B.

The modularity using this notation can be defined for two modules in matrix

notation as [128]:

Q =
1

4E
sT Ãs, (7)

where Ãij = Aij − kikj
2E

is the modularity matrix expressed using the unipartite

adjacency matrix with no distinction for degrees or rows and columns. Further,

for a particular division of the network into two modules, si = 1 if node i belongs

to module 1 and si = −1 if it belongs to module 2. The idea of this algorithm

is that we can decompose the previous equation in a linear combination of the

normalized eigenvectors ui of Ã so that s =
∑
aiui with ai = uT

i · s:

Q =
1

4E

∑
aiu

T
i Ã
∑

ajuj =
1

4E

∑
(uT

i · s)2αi, (8)

where αi is the eigenvalue of Ã corresponding to eigenvector ui. The lead-

ing eigenvector name comes from the fact that in order to maximize the last

equation what we can do is to focus only in the sum term with the maximum

eigenvalue αmax which corresponds the leading eigenvector umax. This term

can be maximized by trying to maximize umax · s. Because si can only have the

values ±1, this can be solved by assigning si = 1 and si = −1 when umaxi > 0

and umaxi ≤ 0, respectively, which completes the core of the leading eigenvector

algorithm. After performing the first iteration of the last process we will have a

subdivision of just two modules. Newman [128] then explain that this process
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can be applied recursively in each of the subdivisions. However, instead of iso-

lating each subdivision of each other, we apply this heuristic in the expression

∆Q which defines the change of modularity that a new subdivision in an specific

module will give us. The subdivision is only accepted if ∆Q > 0. For mode

details about ∆Q we recommend to read [128]. Finally, it is worth to mention

that in BiMAT by default each subdivision is refined using the Kernighan–Lin

algorithm [99] too. The essence of this algorithm is swapping nodes between

the two modules such that at each step the node that gives the biggest increase

in Q or the smallest decrease (if increase is not possible) is swapped. In a

complete iteration all nodes are swapped with the constraint that a node is

swapped only once. The intermediate state during the iteration that has the

biggest Q is selected as the new configuration and the process repeats using this

new configuration until no improvement is possible.

In addition to optimize the standard modularity Qb BiMAT also evaluates (after

optimizing Qb) an a posteriori measure of modularity Qr introduced in [136] and

defined as:

Qr = 2× W

E
− 1 (9)

where W =
∑

ij Bijδ(gi, hj) is the number of edges that are inside modules. Alterna-

tively, Qr ≡ W−T
W+T

where T is the number of edges that are between modules. In other

words, this quantity maps the relative difference of edges that are within modules to

those between modules on a scale from 1 (all edges are within modules) to −1 (all

edges are between modules). This measure allows to compare the output of different

algorithms.

4.2.2.2 Nestedness

Nestedness is a term used to describe the extent to which interactions form ordered

subsets of each other. Multiple indices are available to quantify nestedness (see [178]
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for details about many of these measures). Two of the most commonly used methods

are: NTC (Nestedness Temperature Calculator) [11, 143] and NODF (for Nestedness

metric based on Overlap and Decreasing Fill) [7]. Both of these are implemented in

BiMAT and are summarized below:

• NestednessNTC (NTC): A ‘temperature’, T , of the interaction matrix is esti-

mated by resorting rows and columns such that the largest quantity of inter-

actions falls above the isocline (a curve that will divide the interaction from

the non-interaction zone of a perfectly nested matrix of the same size and con-

nectance). In doing so, the value of T quantifies the extent to which interactions

only take place in the upper left (T ≈ 0), or are equally distributed between the

upper left and the lower right (T ≈ 100). Perfectly nested interaction matrices

can be resorted to lie exclusively in the upper left portion and hence have a

temperature of 0. The value of temperature depends on the size, connectance

and structure of the network. Because the temperature value quantifies depar-

tures from perfect nestedness, we define the nestedness, NNTC , of a matrix to

range from 0 to 1, NNTC = (100 − T )/100, such that NNTC = 1 when T = 0

(perfect nestedness) and NNTC = 0 when T = 100 (checkerboard).

• NestednessNODF: NODF is independent of row and column order. This algo-

rithm measures the nestedness across rows by assigning a value M rows
ij to each

pair i, j of rows in the interaction matrix[7]:

M rows
ij =


0 if ki = kj

nij/min(ki, kj) otherwise

(10)

where nij is the number of common interactions between them. A similar term

is used for the column contributions, such that the total nestedness is defined

as:

NNODF =

∑
i<j M

rows
ij +

∑
i<j M

columns
ij

m(m− 1)/2 + n(n− 1)/2
. (11)
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However, BiMAT redefined Equation 10 (and its column version), such that the

last equation can be more easily vectorized:

M rows
ij =

(ri · rj)δ(ki, kj)
min(ki, kj)

, (12)

where ri is a vector that represents the row i of the bipartite adjacency matrix.

Equation 11 can be rewritten in terms of adjacency matrix multiplications (see

code for details). This new vectorized version of calculating the NNODF value

outperforms the naive one (using loops) by a factor over 50 in most of the

matrices that we tested.

Note that a new eigenvalue-eigenvector approach to evaluating nestedness has

recently been introduced [160], which will be introduced in a future BiMAT release.

4.2.3 Statistics

4.2.3.1 Null Models

We propose four null models to test the significance of measured nestedness and

modularity (see [18, 179, 60, 138] for more details). These null models generate

random networks through a Bernoulli process, where the probability of interactions

are determined following different rules. Define ki as the degree of a node i of the

column class and dj as the degree of a node j of the row class. Then, the probability

that two nodes (of distinct classes) interact, Pij is:

EQUIPROBABLE , Pij = E/(mn) – the connectance of the network is respected,

but not the number of interactions in which each node is involved.

AVERAGE , Pij = (ki/n + dj/m)/2 – the connectance, and the expected number

of interactions in which each node is involved, are respected

COLUMNS , Pij = ki/n – the connectance, and the expected number of interac-

tions of row nodes, are respected
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ROWS , Pij = dj/m – the connectance, and the expected number of interactions of

column nodes, are respected

By default, BiMAT generate networks that can have disconnected nodes (i.e. nodes

with no edges to any other nodes in the network). However the user can impose a

constraint that all nodes must be connected to at least one other node (if possible)

in the null model generating process. Note that BiMAT does not include some of

the most constrained null models, e.g., random networks that respect not only the

expectation of connectance and degree but also the exact degree sequences as the

original network [160],

4.2.3.2 Statistic Values

Once an ensemble of random networks is specified, BiMAT will return the following

values:

• value: value to be tested (e.g. nestedness or modularity).

• random_values: the values of all random replicates.

• replicates: number of replicates used during testing.

• mean: mean of the replicate values.

• std: standard deviation of the replicate values (note that distributions of net-

work values are not necessarily well described by a normal distribution).

• zscore: The z-score of value assuming that the replicate values represent the

entire population.

• percentile: The percentage of replicate values that are smaller than value.
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4.2.3.3 Extended statistics

As described above, BiMAT enables the evaluation of the statistical significance of

modularity and nestedness. Additional statistical evaluation is possible, including

the capability to conduct a meta-analysis and a multi-scale analysis.

Meta analysis : BiMAT can simultaneously analyse the network structure of a set

of related bipartite networks (e.g. plant-pollinator networks or virus-host in-

teraction networks). In which case, the distribution of network properties of

the set of networks can be analysed (see example I in the Examples section for

more details).

Multi-scale analysis : Individual modules need not always be homogeneous. Hence,

BiMAT offers functionality to evaluate whether or not the network has different

structures at different scales, e.g., the overall network may be modular, but

individual modules may be nested (see example II in the Examples section for

more details).

4.3 The BiMAT package

BiMAT is a open-source package (see Figure 16) written in MATLAB R© . It is primarily

designed for the analysis and visualization of bipartite ecological networks, thought

it may be used for any type of bipartite networks. The package aims to consolidate

some of the most popular algorithms and metrics for the analysis of bipartite ecological

networks in the same software environment. Specifically, the core features examined

are bipartite modularity [13] and nestedness [11, 7]. Further, BiMAT include the

necessary tools for analysing the statistical significance of these values, together with

tools for visualizing bipartite networks in such a way that these properties becomes

apparent to the user. BiMAT utilizes an object-oriented framework which enables

users to extend the package.
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Figure 16: BiMAT Workflow. The figure shows the main scheme of the BiMAT package.
BiMAT can take matlab objects or text files as main input. The input is analysed
mainly around modularity and nestedness using a variety of null models. The user
may also perform an additional multi-scale analysis on the data, or if he have more
than one matrix to perform a meta-analysis in the entire data. Finally, the user can
observe the results via matlab objects, text files and plots.

4.3.1 Usability

Users are expected to be familiar with the MATLAB R© environment. However, BiMAT

has been designed so that even MATLAB R© beginners or those with very limited expertise

can easily carry out a comprehensive analysis and visualization of their data, in many

cases with a single command. Despite an emphasis on simplicity, BiMAT still retains

all of the functionality and flexibility provided by the MATLAB R© environment (e.g., all

the results are returned to the current session workspace, the results can be stored

in MATLAB R© files, and the class properties can be used for MATLAB R© plotting). A

complete start guide is distributed with the library.
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4.3.2 Comparison with other software

Current and popular available tools for the analysis of complex networks include

implementations that are predominantly: (i) visually oriented (e.g. Gephi [19], Cy-

toscape [154]) or (ii) library-package oriented (e.g. networkx [82], iGraph [44]). Un-

fortunately, these tools have a strong focus on the analysis of unipartite networks, i.e.

bipartite networks are treated as a special case of a unipartite network. As a conse-

quence, algorithms for the analysis of unipartite networks, when applied to bipartite

networks, are not intended to be optimal, neither where designed to the study of eco-

logical bipartite networks. In contrast, specialized tools for the analysis of bipartite

ecological networks are available but they are very specific (e.g. ANINHADO [79],

WINE [69], and recently FALCON [158] focus only in nestedness analysis).

However, the authors acknowledge the existence of bipartite [50], a software

library written in R. Thought this library initially included only nestedness analysis

regarding internal network structure, they just recently aggregated modularity anal-

ysis too [51]. BiMAT does not intent to replace this library but to complemented

by bringing similar tools to the MATLAB R© ecology community. Further, BiMAT also

includes tools for the analysis of many related networks (meta analysis) and for the

analysis of different levels of the same network (multi-scale analysis), which will fa-

cilitate the statistical analysis of bipartite ecological networks. Whereas bipartite

strives for exhaustivity, BiMAT focuses on implementing a well-documented core of

statistical procedures in an optimized way.

In summary, BiMAT provides a broad selection of tools required for the analysis

and visualization of bipartite ecological networks. As such, BiMAT is aimed towards

empiricists seeking to apply a network perspective to their data, and is particularly

suited to exploratory analyses of data derived from ecological, evolutionary, and en-

vironmental datasets. Table 4 show the current tools of current libraries.
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Table 4: Bipartite Ecological libraries

Software Language Open Source Visualization Nestedness Modularity Meta-analysis Multi-scale analysis
ANINHADO [79] Executable 7 7 3 7 3 7

WINE [69] MATLAB R© /R/C++ 3 3 3 7 7 7

FALCON [158] MATLAB R© /R 3 3 3 7 7 7

bipartite [50] R 3 3 3 3 7 7

BiMAT MATLAB R© 3 3 3 3 3 3

4.3.3 Installation

BiMAT stable version can be downloaded directly from the main author webpage:

http://ecotheory.biology.gatech.edu/cflores. Last updated version can be downloaded

from https://github.com/cesar7f/BiMat.

4.3.4 License and bug tracking

The software is distributed using FreeBSD license, which basically means that the

user can redistribute it, with or without modification for any kind of purpose as

long as its copyright notices and the licence’s disclaimers of warranty are maintained.

Though the license do not force users to do so, we encourage them to cite this paper

if the use of BiMAT library leads to any kind of scientific publication.

Users can report bugs directly in the github repository (see URL above), provided

they have a github account.

4.3.5 Configuration

The BiMAT directory should be added to the MATLAB R© paths. At this point, BiMAT

can be executed without any additional configuration. The default parameters for

algorithms implemented in the BiMAT package are available in file main/Options.m.

Additional details are available in the Start Guide, including as part of the BiMAT

package (and released here as Supplementary File X).
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4.3.6 Objected-Oriented Programming Scheme

BiMAT has been coded using the Objected-Oriented Programming (OOP) paradigm.

Note that understanding of OOP is not required for use of BiMAT . Nonetheless,

the use of OOP is meant facilitate maintainability and extensibility of the codebase.

Access to BiMAT functions is granted (with the exception of some static classes) using

instances of the class that implements the functions.

The main package class is the Bipartite class, whose only function is to work

as a common interface to all of the available statistical, algorithmic, plotting, and

input/output classes. Because of this OOP design pattern, most of the MATLAB R©

functionality will be granted using the following syntax:

bip.class_instance_in_bip.method_name(arguments)

where bip is a bipartite instance created by the user, class_instance_in_bip is

a property of the bipartite class which represents an instance of the class which has

access to the method method_name. The method that is called will frequently have

direct read and writeable access to other properties inside bip. Table 5 shows the

main calls from the Bipartite object, assuming that the user call its bipartite instance

bip.

Note that the OOP capabilities of MATLAB R© are not as extensive as those of OOP

focus languages (e.g. python, Java, C++). As such, certain behaviours have been

emulated in BiMAT , e.g. static classes were emulated using private constructors.

However, in contrast to other languages that enable OOP, MATLAB R© enables users to

store created instances as MATLAB R© objects in files. This ensures that users can save,

and subsequently load, the results of partial analysis.

4.3.7 Input/Output

The class bipartite is the main class of the package. Hence, a user will usually need

to work with at least one instance of this class. An instance of this class requires a
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Table 5: Some useful calls using the OOP approach

Call Class Description
bip.community.Detect() BipartiteModularity Calculate Modularity
bip.nestedness.Detect() Nestedness Calculate nestedness
bip.statistics.DoCompleteAnalysis() StatisticalTest Executes the required commands in order to have

a complete analysis of nestedness and modularity
bip.statistics.DoNulls() StatisticalTest Create the null model matrices
bip.statistics.TestCommunityStructure() StatisticalTest Perform the statistical test for modularity values
bip.statistics.TestNestedness() StatisticalTest Perform the statistical test of nestedness value
bip.internal statistics.TestDiversityRows() InternalStatistics Perform diversity analysis across rows
bip.internal statistics.TestDiversityColumns() InternalStatistics Perform diversity analysis across columns
bip.internal statistics.TestInternalModules() InternalStatistics Perform an statistical test

for modularity and nestedness inside modules
bip.plotter.PlotMatrix() PlotWebs Plot a matrix layout of the original data
bip.plotter.PlotModularMatrix() PlotWebs Plot a matrix layout of the modular sorted data
bip.plotter.PlotNestedMatrix() PlotWebs Plot a matrix layout of the nested sorted data
bip.plotter.PlotGraph() PlotWebs Plot a graph layout of the original data
bip.plotter.PlotModularGraph() PlotWebs Plot a graph layout of the modular sorted data
bip.plotter.PlotNestedGraph() PlotWebs Plot a graph layout of the nested sorted data

boolean MATLAB R© matrix object, representing the bipartite adjacency network. Alter-

natively, a integer matrix can be provided e.g., when the values represent categorical

levels of interactions, and these categorical levels can be included in the visualization

tools. Optional arguments that can be passed are the row and column node labels and

classification classes. These arguments need to be passed directly to the properties of

the Bipartite object. In practice, an object of the class Bipartite can be created

as follows:

bip = Bipartite(matrix);

bip.row_labels = rowLabels;

bip.col_labels = colLabels;

bip.row_class = rowClasses;

bip.col_class = colClasses;
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in which the variables matrix, rowLabels, colLabels, rowClasses and colClasses

are previously defined variables. Network information, including adjacency matrix

and node labels, can be read directory from data files using the static class Reading:

• bip = Reader.READ_BIPARTITE_MATRIX(filename): The file should be in the

following format:

1 0 0 2 0 0 0

1 2 0 0 0 2 1

1 1 0 0 1 2 1

1 2 3 0 0 1 1

2 1 1 1 0 0 0

Each row in the file represents a different outgoing set of interaction from a

node (in set A) to a different set of nodes (in set B) in the columns. All values

different from 0 are counted as interactions, such that evaluation of network

structure utilizes Boolean information whereas visualization can leverage the

non-negative strengths of interactions:

• bip = Reader.READ_ADJACENCY_LIST(filename): The file should be an or-

dered list of triples:

row_label_1 1 col_label_1

row_label_1 1 col_label_2

row_label_1 2 col_label_3

row_label_3 1 col_label_2

row_label_3 3 col_label_1

row_label_2 3 col_label_2

such that the first and third columns represent nodes from sets A and B, respec-

tively, and (an optional) second column denoting the strength of interactions.
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Table 6: Useful calls in the functional approach

Call Description
BipartiteModularity.ADAPTIVE BRIM(matrix) Calculate the modularity values using the Adaptive BRIM algorithm
BipartiteModularity.LP BRIM(matrix) Calculate the modularity values using the LP&BRIM algorithm
BipartiteModularity.LEADING EIGENVECTOR(matrix) Calculate the modularity values using the Leading Eigenvector algorithm
Nestedness.NODF(matrix) Calculate the NODF values
Nestedness.NTC(matrix) Calculate the NTC values
PlotWebs.PLOT MATRIX(matrix) Plot the data in matrix layout
PlotWebs.PLOT NESTED MATRIX(matrix) Plot the nested sorted data in matrix layout
PlotWebs.PLOT MODULAR MATRIX(matrix) Plot the modular sorted data in matrix layout
PlotWebs.PLOT GRAPH(matrix) Plot the data in graph layout
PlotWebs.PLOT NESTED GRAPH(matrix) Plot the graph sorted data in matrix layout
PlotWebs.PLOT MODULAR GRAPH(matrix) Plot the graph sorted data in matrix layout
Printer.PRINT GENERAL PROPERTIES(matrix) Print to screen the general properties of the network
Printer.PRINT STRUCTURE VALUES(matrix) Print the modularity and nestedness values of the network

4.3.8 Functional alternative

Static functions can be used as an alternative to interacting with the BiMAT package

in an OOP framework. For example, the network can be visualized in a graph or

matrix layout as follows:

PlotWebs.PLOT_MATRIX(matrix);

PlotWebs.PLOT_GRAPH(matrix);

instead of:

bp = Bipartite(matrix);

bp.plotter.PlotMatrix();

bp.plotter.PlotGraph();

Table 6 shows some of the most important static functions that provide access to

part of the BiMAT functionality.
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4.3.9 Plotting

The class PlotWebs provides the required functions to visualize a bipartite network

in a matrix or graph layout. Visualization can utilize (i) the original sorted version

of the data, (ii) the nested sorted version of the data, or and (iii) the modular sorted

version of the data. BiMAT represents the interaction data with colored cells when a

matrix layout is used. Rows and columns denote members of the the two sets and cells

denote interaction strength. The format of the matrix is specified by modifying the

PlotWebs class properties before calling the plotting functions. Further, the format

of the matrix will depend on what kind of sorting is used. For example, the modular

sorting plot can color the cells according to the module to which they belong to

or the type of interaction. Some features are restricted to particular sortings, e.g.,

plotting an isocline (see Methods) is available only in the nested and modular sorting.

Alternatively, the PlotWebs can plot the data in a graph layout in which members

of the two sets A and B are depicted using a stacked set of circles to the left and

right, respectively. Lines are draw between sets that interact. As for matrices, many

of the properties of PlotWebs can be used to specify the format of the plot (see

documentation).

In addition to this main class, BiMAT has an additional plot class called MetaStatisticsPlotter

that is used for plotting meta-analysis results (analysis of many networks). This class

can plot statistical results of the structural quantities of the algorithms, together with

visual graph or matrix layout representations of the networks (see Examples section).

4.3.10 Performance

The BiMAT packages leverages optimization tools of MATLAB R© . For example, algo-

rithms implemented in BiMAT were vectorized to improve performance. In addition,

a version of BiMAT that uses the MATLAB R© Parallel Computing Toolbox can be re-

quested to the corresponding author.
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4.4 Examples

We present here two examples to illustrate the potential use of BiMAT for visualization

and analysis of bipartite complex networks: (i) a meta-analysis of 38 different phage-

bacteria interaction networks; (ii) a multi-scale analysis of the largest phage-bacteria

interaction network. Scripts and data for these examples are included in the BiMAT

release and additional documentation is included in the start guide.

4.4.1 Example I: Meta-analysis

The study of virus-host interactions includes examination of whom infects whom.

Exhaustive assays of cross-infection of a set of phages (viruses that infect and kill

bacteria) and a set of bacteria are generally reported as a bipartite cross-infection

matrix. These matrices can be standardized such that rows and columns represent

bacteria and phages, respectively. The cell enrties in these matrices represent the

level of infection between phages and bacteria. In a previous study, Flores et al [60]

re-examined 38 such networks extracted from the published literature between 1950

and 2011. In doing so, the authors found that phage-bacteria infection networks (as

published) tend to be nested and not modular. BiMAT can reproduce these results

using the MetaStatistics module.

First, the user should begin by creating an instance of the MetaStatistics class.

This class takes, as input, a cell array matrices containing either a set of MATLAB R©

matrices or a set of Bipartite objects. An automatic meta-analysis, using default

parameters, can be performed by the commands:

mstat = MetaStatistics(matrices);

mstat.names = matrix_names %Labels for networks

%chosing the algorithms:

mstat.modularity_algorithm = @AdaptiveBrim

mstat.nestedness_algorithm = @NestednessNTC
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Figure 17: Visual representation of the statistical tests in the set of matrices. Red
circles represent the value of the analyzed networks. White circles represent the mean
of the null model, while the error bars represent the networks that falls inside a two-
tailed version of the random null model values. The margin of the error bars are
(p,1− p), where p is the p-value that is an optional argument of the plot functions.

mstat.DoMetaAnalyisis();

Results of the meta-analysis are stored in the object gstat, for subsequent examina-

tion. The meta-analysis class (MetaStatistics.m) also has additional plot functions.

e.g., to compare network structures against a null model values:

mstat.plotter.PlotModularValues(0.05);

mstat.plotter.PlotNestednessValues(0.05);

where the argument represent the p-value threshold in determining the variation

about the network statistics generated from the ensemble (lower values denote wider

variation). The output for the modular and NTC values can be observed in Figure

17. As is apparent, the majority of studies have modularity below that of the net-

works in the random ensemble. In contrast, the majority of studies have nestedness

significantly above that of the networks in the random ensemble.

In addition, it is possible to plot all the matrices at once using any of the next

functions:

%Grid of 5 x 8
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Abe 2007 Barrangou 2002 Braun−Breton 1981 Campbell 1995 Capparelli 2010 Caso 1995

Ceyssens 2009

Comeau 2005

Comeau 2006

DePaola 1998

Doi 2003 Duplessis 2001 Gamage 2004 Goodridge 2003 Hansen 2007

Holmfeldt 2007

Kankila 1994 Krylov 2006 Kudva 1999 Langley 2003 McLaughlin 2008 Meyer unpub

Middelboe 2009

Miklic 2003

Mizoguchi 2003 Pantucek 1998 Paterson 2010 Poullain 2008 Quiberoni 2003 Rybniker 2006 Seed 2005 Stenholm 2009

Sullivan 2003
Suttle 1993 Synott 2009 Wang 2008 Wichels 1998

Zinno 2010

Figure 18: The meta-set collected on Flores et al [60] plotted using the modularity
algorithm of the BiMAT library. Red and blue labels represent significant modularity
(p ≥ 0.975) and anti-modularity (p ≤ 0.275), respectively. For bibliographic informa-
tion about these matrices see [60].

mstat.plotter.PlotMatrices(5,8);

mstat.plotter.PlotNestedMatrices(5,8,0.05);

mstat.plotter.PlotModularMatrices(5,8,0.05);

where the first and second arguments are the number the matrices along horizontal

and vertical axis of the plot. If the statistical test have been already performed, red

and blue labels are used for indicate the statistical significance of the corresponding

structure (red for significance, and blue for anti-significance), where the third argu-

ment (optional) is used to assess a critical p-value the significance. Figure 18 shows

the plot for the case of modularity.
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4.4.2 Example II: Multi-scale analysis

Moebus and Nattkemper [124] published the largest phage-bacteria infection network.

The individual phage and bacteria were extracted from different locations across the

Atlantic Ocean. In a previous study we developed a multi-scale analysis of network

structure in this dataset[62]. Here, we demonstrate how such a multi-scale analysis

can be automated. The first objective is to analyze the global-scale structure of a

bipartite network, i.e. to quantify if the overall network has significantly elevated

or diminished modularity and/or nestedness. Assuming that our matrix is called

moebus.weight_matrix left panel of Figure 29 shows a visual representation of this

data in matrix layout after typing:

bp = Bipartite(moebus.weight_matrix);

bp.community.Detect();

bp.plotter.font_size = 2.0;

figure(1);

bp.plotter.PlotModularMatrix();

It becomes apparent that the network is modular. However, what is really im-

portant to observe is that internal nodes seems to have nested structure (triangular

pattern with most of the links above the isocline). Hence, the Moebus network may

have multi-scale structure properties. We will confirm that this is the case for nest-

edness using the NNTC values. In order to perform this test BiMAT make use of the

InternalStatistics class in order to get the statistics of those modules by isolating

them and treating them as independent networks:

%We are interested in only the first 15 modules

%from the most righ-top one.

bp.internal_statistics.idx_to_focus_on = 1:15;

%Perform a default internal analysis
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bp.internal_statistics.TestInternalModules();

figure(2);

bp.internal_statistics.meta_statistics...

.plotter.PlotNestednessValues();

figure(3);

bp.internal_statistics.meta_statistics...

.plotter.PlotNestedMatrices();

where the last two plots are the ones on the right panels of Figure 29. The smart

reader may already notice that meta_statistics property is in fact an instance of

the class MetaStatistics, which translates to be able to use any of the methods

inside MetaStatistics (including its property plotter) in the internal modules.

Finally, another multi-scale analysis that BiMAT can perform is to quantify if a

relation exist between node classification and module distribution. If the extreme

case, if this relation exist nodes inside the same module will share the same classifi-

cation. If the such relationship does not exist, modules will have nodes with random

classification. In order words, the relationship depends in how random is the node

classification inside the each module. In order to perform this analysis BiMAT make

use of both Shannon’s and Simpon’s indexes. And, for evaluating the significance we

use a null model in which we randomly swap all node classifications. We will give

here a simple example about how to print the significance of Simpson’s index for the

case of phage (column) nodes. In order to do so, we will use geographical location

extraction as classification identifier of each node:

% We want to use geographical location

% as classification

bp.col_class = moebus.phage_stations;

% Perform the analysis
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bp.internal_statistics.TestDiversityColumns();

% Print results

bp.printer.PrintColumnModuleDiversity();

The user must be able to visualize an output similar to:

Diversity index: Diversity.SIMPSON_INDEX

Random permutations: 100

Module,index value, zscore,percent

1, 0.94805, -1.3848, 6

2, 0.91738, -5.0054, 0

3, 0.95238,-0.42625, 11

4, 0.81667,-13.1025, 0

5, 1, 0.36742, 12

6, 0.85714, -2.5808, 0

7, 0.66667, -2.4661, 0

8, 0.33333,-13.5825, 0

9, 0.90909, -2.0933, 3

10, 0.9, -1.1203, 2

11, 0.5, -6.6773, 0

12, 0.88889, -2.6493, 1

13, 0.6, -7.0097, 0

14, 0.6, -8.0336, 0

15, 0.83333, -1.3318, 3

If we want to use the percentile as statistical test (using one-tail) and p-value=0.5

we have that 12 modules are not as diverse as the random expectation. Hence,

these modules contain phages that come from similar geographical stations, which

translate to potentially have a relationship between the geographical location and
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C)

Figure 19: Standard plots that can be extracted using the multi-scale analysis capa-
bilities of BiMAT . Here, we focus in the internal nested structure using NNTC values,
but we can also perform an internal study using Qb and NNODF values. A) The
standard output using the modular matrix layout gives us a hint about the potential
multi-scale structure. B) Here we focus on the study of NNTC values with respect
to random expectation. Error bars cover 95 % of the random replicate values. C) A
more closer visual inspection on the analyzed matrices. Read labels indicate statistical
significance of NNTC values.

module formation for the phages case.
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4.5 Future Work

We have developed BiMAT – an extensible MATLAB R© library for the analysis of bipartite

networks. BiMAT implements standard algorithms for the quantification of network

structure, including multiple tools to facilitate the analysis of the significance of

network structure at the whole network scale, across networks and within networks.

The focus on two network features, modularity and nestedness, reflects the importance

both have in analyses of bipartite network structure in ecological datasets. However,

these are not the only potential features of a bipartite network nor are they necessarily

independent.

Indeed, it has been suggested that modularity and nestedness can be strongly

correlated [64]. Such correlations may, on the one hand, lead to spurious attempts at

classifying a network as either network or modular. Poisot et al [135] have suggested

that bipartite networks may be classified based on the degree to which a network

is both nestedness and modularity – such classification may relate to the presence

of functional groups in the network. Finally, both modularity and nestedness fo-

cus on structures of the entire network. However, non-random structures may be

present at alternative scales (e.g., see the work on biological network motifs within

unipartite networks [8]). We have already made inroads in this direction with a prior

proposal [62] and the current automation of a multi-scale bipartite network analysis.

Future work is needed to evaluate the extent to which the projection of bipartite

networks into a lower dimensional state space can help provide insights into distinct

types of networks and, eventually, on connections between network structure and

network function.

In moving forward, we hope that BiMAT will become a dynamic, extensible tool of

use to scientists interested in bipartite networks. We are not the only group to propose

such a comprehensive library. For example, a team of UK scientists recently proposed

FALCON [158], a library of tools for the analysis of bipartite network structure in
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MATLAB R© and R. Similarly, we are aware of unpublished efforts to develop a code-base

with similar toolsets in R1. The study of bipartite networks will necessarily involve

those with distinct scientific and computatoinal backgrounds. Hence, so long as the

code-bases are open-source, such efforts are likely to reduce barriers in the analysis

of bipartite network structure, whether in the ecological, social or physical sciences.

4.6 Citation of methods implemented in BiMAT

The core algorithms implemented in BiMAT are thoroughly described in their original

publications and discussed extensively by others. In the case of nestedness, for the

NTC metric and implementation, see [11] and [143] and for the NODF metric and

implementation, see [7]. In the case of modularity, the standard BRIM algorithms as

well as its adaptive heuristic for module division are described by [13]. For a another

heuristic using the standard BRIM algorithm, see [108]. For the leading eigenvector

algorithm, which is one of the most popular algorithms in unipartite networks, see

[128].

1L. Zaman, personal correspondence
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CHAPTER V

CONCLUSIONS AND FUTURE DIRECTIONS

Many ecological relationships can be expressed as bipartite complex networks. The

initial motivation of this dissertation came from the study of plant–pollinator net-

works and the fact that these networks have features that distinguish them from

random networks. Contrary to these networks, that are mutualistic, phage–bacteria

networks are antagonistic, in the sense that phage survive by killing bacteria. In this

study we first performed the largest collection of phage–bacteria cross–infection stud-

ies and showed that these networks have features that distinguish them from random

networks too.

5.1 Summary of major contributions

5.1.1 Phage–Bacteria cross infection data collection

We performed the largest collection and digitization of phage–bacteria cross infection

studies. In order to perform that, we looked at papers that date back as far as 1950.

The collection includes 38 laboratory–verified studies of phage–bacteria interactions

representing almost 12,000 distinct experimental infection assays across a broad spec-

trum of taxa, habitat, and mode of selection. The collected studies included cross–

infection assays that contained isolates related in one of three manners: co–occurring

within natural communities and obtained directly from the environment and then

cultured, evolved progenitors of a single bacterial clone and a single phage clone that

were allowed to co–evolve for a fixed amount of time in a laboratory experiment, and

phages and hosts that were artificially combined from laboratory stocks.

Finally we digitized the largest data set of cross–infection phage–bacteria network,

from Moebus and Nattkemper [124]. Our digitization of this data set has already been
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used by Beckett and Williams [21].

5.1.2 Phage–Bacteria networks are nested

We performed the very first meta–analysis in phage–bacteria networks and showed

that independently of the type of study, these networks are in general nested. In

doing so, we quantified both nestedness and modularity values of 38 collected data

sets categorized in three different types of study. These values were later evaluated

statistically using a null model based on the Erdös–Rényi random model [56], which

in our case meant that we randomly redistributed the links inside the real networks.

The features of these random networks were later compared with the real values in

order to quantify the statistical significance.

The strong signal of nestedness is similar in nature to the results obtained by

Bascompte and collaborators [17, 130, 18, 20]. The fact that not only mutualistic, but

also antagonistic bipartite ecological networks have profound implications in ecology.

For instance, how antagonistic networks could be stable was already discussed by

Jover et al. [96], where they propose a simple Lotka–Volterra non-linear model in

order to find the conditions for these two types of species to coexist. Further, the

nestedness property of these networks has been already discussed in terms of co–

evolution and species diversity [30, 171, 81].

5.1.3 Phage–Bacteria networks are modular as the study scale increase

Most of the 38 collected networks were studies between different strains of the same

bacteria and phage species (i.e., E. Coli vs. λ–phage). Hence, the genetic distance

between the strains was short. After performing our meta–analysis, we asked ourselves

if, by increasing the genetic diversity in a study (and by consequence the size of the

study), it could become modular (as strains from long genetic distances will not

interact with each other). And the answer is yes. In order to come to this answer

we analyzed the largest cross–infection study, performed by Moebus and Nattkemper
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[124]. This study is composed (after data curation) of 286 bacteria vs. 215 phages

extracted from different locations along the Atlantic Ocean. Moebus and Nattkemper

did not include information related to the taxonomy of the collected strains. However,

they did observe preliminary evidence of a geographic signal to cross-infection.

After confirming that the study is modular, we also showed that geographical

location was a statistically significant factor to explain this structure. In doing so, we

compared the current geographical labeling inside modules to random permutations

and discovered that for 11 of the 15 largest modules the labeling could be explained

by their geographical location. Unfortunately, we could not test if taxonomy is a

stronger signal for explaining the modular pattern.

5.1.4 Phage–bacteria network structure changes with size

Related to the previous contribution, we also tested for nestedness at local parts of

the Moebus and Nattkemper network (i.e., sub–networks of the entire one). In doing

so, we analyzed the structure of each of the 15 largest modules of this study. We find

these modules by using a variation of the Adaptive BRIM algorithm [13]. We showed

that these internal modules have a nested structure (even when the total network

is modular). The multi–scale structure in phage–bacteria networks have profound

implications in stability and evolution mechanisms of these communities. Our results

and conclusions were extended by Beckett and Williams [21], where they constructed

a simple evolution model to explain our multi–scale structure discovery.

5.1.5 Release of BiMAT

We released all the code I did during my PhD as a standard MATLAB R© library for the

analysis and visualization of bipartite ecological networks. This software is already

being used by people at some research labs around the world (i.e., Sullivan’s lab at

the University of Arizona, Lennon’s Lab at the Indiana University, Earth Systems

Science Group at the University of Exeter, and many others). Further, it has been
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already used for producing results in peer–reviewed publications [21].

5.2 Future Directions

5.2.1 Network Structure: Individual vs Species Density

Current metrics of modularity and nestedness when applied to bipartite ecological

networks are limited to the species bipartite adjacency matrix. In other words each

node in the network represent an entire species (all of its individuals). However, each

species population density can vary over many orders of magnitude. And therefore, if

we focus at the individual network level, the structure may look totally different. In

order to study that effect, I started during my PhD work the translation of current

metrics that depends only in the species adjacency matrix B (F = f(B)) to metrics

that depends on the population densities too (F ′ = f(B, ρbacteria, ρphages), where ρ’s

are vectors that represent the corresponding population densities of each species of

bacteria and phages, respectively. Notice that this approach is not the same as ongo-

ing discussions about how to adapt metrics to weighted edge networks. In weighted

edge networks we focus on the weight of the edges, while we propose here is to focus

on the weight of the nodes.

Such weighted node metrics might reveal a number of interesting aspects of phage–

bacteria interaction networks (and any other bipartite ecological relationships). First,

these metrics might lead to reinforcement of the patterns that we are already observing

using standard metrics. But, on the contrary, if we observe that the patterns are lost

when we go to the individual level, we will be able to explain these patterns from a

different angle.

5.3 Conclusions

We used simple network metrics to investigate various aspects of phage–bacteria

cross–infection networks. This study indicates that a strong nested structure exists

in these kinds of networks. However, the nested signal starts to decrease as the scale
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of the study increases. We also helped facilitate the research community to perform

this type of analysis by releasing a library (BiMAT). Finally, we believe that a lot of

work can be done in order to extend the robustness of the current network metrics.
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APPENDIX A

SUPPLEMENTARY MATERIALS FOR CHAPTER 2

A.1 Quantitative estimation of nestedness and modularity

We represent the host-phage network with a bipartite network consisting of three sets

G = (U, V,E), where U and V are disjoint sets of nodes and E = {{ui, vj}} is the

set of edges connecting nodes of different type. For example, Supplementary Figure

24A shows the host-phage network described in Quiberoni [140]. Define P = |U | the

number of phages and H = |V | the number of hosts. The adjacency matrix of the

bipartite network is Bij = 1 if there is an edge {ui, vj} ∈ E or Aij = 0 otherwise (see

Supplementary Figure 24b-c). The number of links attached to node ui is the so-

called degree ki =
∑

j Bij (similarly, we can define the degree for vj as dj =
∑

iBij).

Distinct colors indicate whether the node is a host (blue) or a phage (yellow) and

bright (dark) shading depicts high (low) degree. Visual inspection of the network

reveals significant structure, which can be rigorously detected by means of standard

network measurements.

We have examined different properties of host-phage networks. Many real net-

works have a natural community structure, where disjoint subgroups of nodes ex-

change many internal connections among then than with the rest of nodes. Formally,

we want to compute the optimal division of the network that minimizes the number

of links between subgroups (also called communities). The raw number of links at the

boundary does not give a good partition of the network. For example, the community

structure can be a consequence of random variations in the density of links [80]. A

more reliable approach uses a null 1 model to assess the quality of a given network

partition. Newman and Girvan [125] defines the modularity for a unipartite networks
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as follows:

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(gi, gj) (13)

where 2m =
∑

ij Aij is the number of links and gi gives the label of the community

the node i belongs to. Notice that maximizing the above function yields a partition

that minimizes the expected number of links falling between different communities,

i.e., when δ(gi, gj) = 0. Modularity Q takes values between 0 and 1: low modularity

indicates the number of links between distinct communities is not significantly dif-

ferent from the random distribution and high modularity indicates there is a strong

community structure.

Our networks are different from the networks studied with the standard modular-

ity measure Q (see above). Here, we study bipartite networks, i.e., networks having

two distinct types of nodes and there are no links between nodes of the same type.

Barber defines a new modularity quantity Qbipartite using a specific null model for

bipartite networks:

Qbipartite =
1

m

∑
ij

(
Bij −

kidj
m

)
δ(gi, gj) (14)

where Bij = 1 if nodes i and j are of different type and 0 otherwise. Related

studies of modularity in plant-pollinator networks have used the standard modularity

Q [64]. Empirical analyses of bipartite networks have shown that Qbipartite > Q,

that is, the bipartite modularity can often find better community divisions than the

standard modularity when we do not consider the possibility to have links between

nodes of the same type [13]. We use the BRIM [13] (Bipartite Recursive Induced

Modules) algorithm to maximize this bipartite modularity in our host-phage networks

(see the paper by Barber for full details on the BRIM algorithm). For example

Supplementary Figure 24A and 24D show the matrix and network representations of

the optimal community structure found in a host-phage network. Figure 5B maps
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the four network communities found with BRIM into coherent matrix blocks of the

(sorted) adjacency matrix. Alternatively, the network representation of community

structure in Figure 7d suggests a geometrical interpretation of the maximization of

bipartite modularity in terms of link crossing minimization, a hard problem that has

been extensively studied in literature [71].

Fortunato and Barthélemy have pointed out that, in large networks, modularity

optimization may fail to identify modules smaller than a characteristic size-dependent

scale [66]. A check of the modularity obtained through modularity optimization is

thus necessary. When modularity optimization finds a module S with ls internal

links, it may be that the latter is a combination of two or more smaller modules. In

this case:

ls =
√

2L (15)

where L is the number of links in the full network (see the paper by Fortunato and

Barthlémy [66] for full details on the derivation). Modules close to this resolution limit

can result from the random merging of two or more sub-modules. Then, modularity

optimization might fail to detect the fine modularity structure in these situations.

An important measurement of ecological networks determines to what extent they

form a nested network, i.e., when the specialist species only interact with proper

subsets of the species interacting with the generalists [18]. The computation of the

degree of nestedness involves three steps: (i) computing the isocline of perfect order,

which is the curve that separates all the non–zero entries in the adjacency matrix

(above the isocline) from the absence of interactions (below the isocline) in a perfectly

nested network, (ii) re-arrange all the rows and columns of the adjacency matrix in a

way that maximizes the nestedness and (iii) compute the temperature T as the sum

of distances dij between the expected and unexpected matrix entries and the isocline:

T =
k

HP

∑
ij∈unexpected cells

(
dij
Dij

)2

(16)
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where Dij is the diagonal that cross the unexpected cell and k = 100/Umax with

Umax = 0.04145 is a normalization factor that makes 0 ≤ T ≤ 100 [18, 143]. Finally,

we have normalized the temperature T in such a way that the new range is 0 ≤ N ≤ 1:

N =
100− T

100
(17)

Now, for the isocline of perfect order, basically any function that can separate all

the non–zero entries from the absence of interactions in a perfect nested matrix can

be used. However, in this case we chose the next function from [143]:

f(x, p) =
0.5

n
+
n− 1

n

[
1−

(
1− mx− 0.5

m− 1

)p] 1
p

, (18)

where p is the fill of the matrix, and n and m the number of rows and columns,

respectively. Before using this function, each cell in the matrix must be matched to

a unit square, such that the function will cover the entire matrix using x ∈ (0, 1).

Supplementary Figure 24C shows the sorted matrix corresponding to the optimal

nestedness temperature. This matrix ordering indicates the network is highly nested.

A.2 Criterion for cataloging studies as Co-evolution (EXP),
Natural communities (NAT) or Host-phage typing (TYP):

Representative host-phage studies were found using a literature search using ISI Web

of Science and tracking references (both to and from the original article). Productive

search terms were as follows:

• (phage or bacteriophage) and host and range

• (phage or bacteriophage) and host and typing

• (phage or bacteriophage) and host and infectivity

• (phage or bacteriophage) and characterization
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Searching cross-references were also a useful means of collecting infectivity matri-

ces. Web of Science also generated the BibTex reference information for each article.

The criteria of inclusion of a study was as follows:

1. Data is available in a matrix/table format in the paper

2. The matrix included interpretable quantitative information on infection

3. The matrix had no missing values

4. The matrix could be manually verified at each cell.

5. The matrix included at least 2 hosts and 2 phages.

Thirty-eight matrices were included in the analysis. Infectivity was indicated

either with shading or a (+/-) system. Different amounts of shading would indicate

the degree of infection. In the (+/-) system, a ‘+’ generally indicated a positive

infection, while a ‘-’ indicated no infection. According to these criterion, we excluded

three datasets because of missing data [92, 156, 196]. The criterion for cataloging

studies was as follows:

A.2.1 Natural communities (NAT) 19 studies:

This criterion was applied to studies in which both phages and hosts were isolated

from the environment. These types of studies are indicative of community interactions

within a natural network. These studies were then divided into one of four sub-classes:

1 aquatic, soil, microbiome, and food items. These sub-classes were based upon the

environment from which the hosts and phages were isolated.

A.2.2 Co-evolution (EXP) 10 studies:

This criterion was applied to studies in which phages and/or hosts were allowed to

evolve in the lab. After phages were allowed to evolve, their host ranges were then
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tested. Sub-classes were based upon methodology of the study, and studies were

classified as either serial dilution or chemostat experiments. Importantly, matrices of

the EXP class need not be reflective of a given community at a fixed moment in time.

A.2.3 Artificial (ART) 9 studies:

This criterion was applied to studies in which almost all hosts and phages were ei-

ther generated within the lab or came from a collection. Sub-classes indicated the

origination of the host strains. Host strains were either environmental or pathogenic.

A.3 Principal component analysis

The objective of PCA is to find a new coordinate system such that the maximal

variance is explained in order of each coordinate (i.e., the principal components).

Each variable was normalized to have zero mean and a standard deviation of 1 so that

each contributed equally to the PCA. Supplementary Figure 20 shows the projection

of each study onto the first two principal axes and Supplementary Table 10 shows

the detailed coordinates underlying the principal components. Roughly, principal

component 1 (PC1) corresponds to the size of the matrix, and so those studies to

the right-side of Supplementary Figure 22 tend to be large matrices and those to the

left tend to be small matrices. Roughly, PC2 corresponds to the asymmetry between

number of phages and number of hosts, so that the top-most studies of Supplementary

Figure 22 have more hosts than phages, whereas the bottom-most studies have more

phages than hosts. Finally, the third principal component (not shown) corresponds,

roughly, to the connectance of the study.

A.4 Statistical analysis of clustering validity using a re-
shuffling approach

In order to find clusters the k-means algorithm [109] (with k = 3) has been applied

to the two main components of the PCA analysis output. This 1 output is used as
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benchmark for study the subdivision of the studies and compare with those of random

labels. The way in which this algorithm works is the next.

Given a set of observations (x1,x1, . . . ,xn), where each observation in our case

represents a point in the PCA-analysis output, the k-means aims to partition the n

observations into k sets (k ≤ n) S = (S1, S2, ..., Sk) so as to minimize the within-

cluster sum of squares:

arg min
k∑

i=1

∑
xj∈Si

||xj − µi|| (19)

where µi is the mean of the points in Si. In our case n = 38 and k = 3. See

Supplementary Figure 22 for the output of this algorithm.

In order to compare the three clusters found in this algorithm with the three real

categories (NAT, EXP, ART) of our studies we used the Jaccard Index defined as:

J(C,K) =
a

a+ b+ c
(20)

Where C represents the real labels and K the labels of the output in the k-means

algorithm. a denotes the number of pairs of points with the same label in C and

assigned to the same cluster in K, b denotes the number of pairs with the same label,

but in different clusters and c denotes the number of pairs in the same cluster, but

with different class labels. The index produces a result in the range [0,1], where a

value of 1 indicates that C and K are identical.

We find that the three real categories when compared with the output of the k-

means algorithm share a Jaccard Index of 0.26. This value indicates that there exist

a poor clustering of labels of the studies with the labels of the k-means algorithm.

And by consequence we can say (assuming that the k-means output is the perfect

subdivision) that there is not significant subdivision in the three real categories (EXP,

NAT and ART).
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We subjected this index to a randomization test. We generated 10,000 trials

where we relabeled the studies while retaining the number of each class (EXP, NAT

and ART). The distribution of the Jaccard index of these random trials is showed in

Supplementary Figure 23. We found a p-value = 0.34 in the Jaccard index of the real

labels. This indicates that there is not a statistically significant difference between

the real subdivision of the studies and those that are labeled randomly.

A.5 Statistical analysis of correlations among global prop-
erties using a Bonferroni correction

We study the correlations coefficients among the global properties. These values

are show in Supplementary Table 11. In that table is showed also the statistical

significance of those values. For evaluate the statistical significance we used a Bon-

ferroni correction, using both, the number of combinations and the number of global

properties. This correction is used in statistics when one needs to address multiple

comparisons. And comes by the fact that even when there is not statistical signifi-

cance, we can find just by probability that some of the comparisons are statistically

significant. Therefore this correction aims to avoid this problem. We can see in the

indicated table that among the statistically significant values there is only a strong

correlation between the number of hosts and the number of species. Another inter-

esting result is that there is almost no correlation (no statistical significance) between

the connectance and the number of species. This is contrary to the plant–pollinator

networks where the relation follows a power law.

A.6 Experimental assays of host–phage infection

A.6.1 Conditions and microbial cultures

The phage and bacteria were cocultured in 50ml Erlenmeyer flasks, with 10ml of

liquid medium, shaken at 120 rpm, and incubated at 37 ◦C. The medium was an

altered version of Davis Medium (15), in which we added 10 times the magnesium
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sulfate (1g/L) to improve phage viability and 125 mg/L of maltotriose instead of

glucose because E. coli and phage λ are predicted to undergo a coevolutionary arms-

race when provided with maltodextrins as its only source of carbon [105, 159, 186]

The medium was filtered and the magnesium was added just before use in order to

stop crystallization of the magnesium during the experiment. 75 separate flasks were

initiated with very small populations of bacteria (∼ 1, 000 E. coli cells) and phage

(∼ 100 phage λ particles) to assure that the initial populations were isogenic and

that all mutant bacteria and phage arose de novo, this is important to make sure

that each community has the potential to follow its own coevolutionary path. The E.

coli studied were of strain REL606, a derivative of E. coli B acquired from Richard

Lenski (Michigan State University), described in [45] and phage were of strain cI21

(λvir) provided by Donald Court (National Cancer Institute). Most phage λ strains

have two life cycles, lytic and lysogenic, the second includes a latent phase where

the phage genome is incorporated into the bacterial chromosome at which time the

bacteria acquires immunity to phage infection. Because the goal of this study was to

characterize evolved phage resistance instead of acquired resistance, we used a phage

that was 1 unable to create the resistant lysogenic bacteria. cI21 is only able to

reproduce through the lytic phase because it has a chemically induced mutation in

the cI gene which is a repressor protein required for lysogeny. Each flask was cultured

for 24 hours and then a random subsample of 100ul of the culture was removed and

transferred to 9.9ml of fresh medium. This flask was incubated and the cycle of

transfer and incubation was continued once more. Three 24 hour incubations were

long enough for the bacteria to evolve resistance and the phage to counter it, however

not long enough for a second round of coevolution.

101



A.6.2 Isolation strategies

After 72 hours of coculturing, two bacterial clones were isolated from each flask by

streaking on LB (Luria Burtani medium, recipe found in [148]) agar plates and picking

single colonies. These colonies were restreaked twice more to assure the bacteria was

separated from the phage. A mixed phage stock of all coevolved genotypes was created

from each flask by adding 500 l of chloroform to the remaining culture in order to kill

the bacterial cells, which were removed by centrifugation [3]. Two phage clones were

isolated from each of these mixed phage stocks by applying an aliquot of diluted stocks

onto soft agar plates and picking isogenic ‘plaques’. Soft agar plates are created by

suspending an isogenic population of bacteria combined with the diluted phage stock

in a thin agar matrix on top of a petri dish. When a single phage particle infects

a bacterial cell trapped in the agar, the phage reproduces and spreads to nearby

bacteria, this continues for a number of rounds and a clearing known as a plaque

is produced in the ‘lawn’ of viable bacteria after 24 hours of incubations at 37 ◦C.

This plaque contains an isogenic population of phage that can be removed to create

a clonal stock of phage. We made three plates for each coevolved viral population;

one from each bacterial clone isolated from the same population and then one of the

ancestral bacteria REL606. Clonal phage cultures were created by isolating single

plaques from the soft-agar plates and following the procedure given by [49]. Plaques

on the coevolved bacteria were chosen over ones grown on REL606 to increase the

chance of isolating phage that had evolve specialized counter-resistance strategies that

have the plietropic consequence of losing the ability to infect the ancestral REL606.

Despite this effort, none of the phage isolated lost the ability to infect REL606.

Besides favoring plaques on the evolved bacterial plates, we tried to choose plaques

from separate 1 plates to improve our chances of picking different phage genotypes.
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A.6.3 Evaluating patterns of infection and cross-resistance

We determined which of the 150 bacteria isolates were resistant to the 150 phage

isolates. To do this we preformed ‘spot’ plate assays. Spot plates are created just as

the soft agar plates above were, except instead of combining dilute samples of phage

into the agar, one drops 2 ul of concentrated phage stock on top of the bacterial-

agar matrix. If the phage is able to infect and reproduce on the bacterium, then

a clearing or ‘spot’ larger than a single plaque will form in the bacterial lawn after

24 hours of incubations at 37 ◦C. If any clearing or inhibition of bacterial growth

larger than a single plaque was observed a ‘1’ was recorded. Plaque-sized clearings

were excluded because they likely represent cross-contamination or a mutant phage

that has a broader host-range than the originally isolated phage. All bacterial-phage

combinations without ‘1’s were given ‘0’s. All bacterial phage combinations were

replicated five separate times, a total of 28,125 spots were assayed. To make this

processes more efficient, we placed up to 96 separate phage stocks onto a single dish

(150mm radius). Phage stock replicates were never placed on the same plate in

order to reduce the signal of any stochastic plating effects. The five replicates were

combined and a phage was only determined to be able to infect a bacterium if 3 of

5 replicates were given ‘1’s. Lastly, phage or bacteria that had identical infection

resistance profiles as their ancestors were removed from the matrix.
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Table 7: Characteristics of complete host-phage networks included in the present
study

Reference Source Type H P S I M C Lp Lh
1 Abe (2007) ecological 11 4 15 22 44 0.5 5.5 2
2 Barrangou (2002) ecological 14 6 20 25 84 0.3 4.17 1.79
3 Braun-Brenton (1981) experimental 18 3 21 30 54 0.56 10 1.67
4 Campbell (1995) experimental 9 5 14 14 45 0.31 2.8 1.56
5 Capparelli (2010) ecological 18 8 26 54 144 0.38 6.75 3
6 Caso (1995) experimental 23 4 27 17 92 0.18 4.25 0.74
7 Ceyssens (2009) artificial 5 15 20 29 75 0.39 1.93 5.8
8 Comeau (2005) experimental 30 13 43 152 390 0.39 11.69 5.07
9 Comeau (2006) experimental 32 16 48 118 512 0.23 7.38 3.69

10 DePaola (1998) ecological 5 17 22 39 85 0.46 2.29 7.8
11 Doi (2003) artificial 15 10 25 41 150 0.27 4.1 2.73
12 Duplessis (2001) artificial 12 12 24 37 144 0.26 3.08 3.08
13 Gamage (2004) ecological 6 7 13 9 42 0.21 1.29 1.5
14 Goodridge (2003) ecological 93 2 95 60 186 0.32 30 0.65
15 Hansen (2007) ecological 34 12 46 146 408 0.36 12.17 4.29
16 Holmfeldt (2007) artificial 23 46 69 418 1058 0.4 9.09 18.17
17 Kankila (1994) ecological 32 12 44 346 384 0.9 28.83 10.81
18 Krylov (2006) ecological 11 10 21 73 110 0.66 7.3 6.64
19 Kudva (1999) artificial 22 3 25 33 66 0.5 11 1.5
20 Langley (2003) ecological 66 9 75 99 594 0.17 11 1.5
21 McLaughlin (2008) ecological 8 7 15 18 56 0.32 2.57 2.25
22 Meyer (unpub) experimental 25 27 52 314 675 0.47 11.63 12.56
23 Middelboe (2009) experimental 11 24 35 202 264 0.77 8.42 18.36
24 Miklic (2003) ecological 24 14 38 70 336 0.21 5 2.92
25 Mizoguchi (2003) experimental 8 4 12 21 32 0.66 5.25 2.63
26 Pantucek (1998) artificial 102 4 106 322 408 0.79 80.5 3.16
27 Paterson (2010) experimental 100 5 105 267 500 0.53 53.4 2.67
28 Poullain (2008) experimental 24 24 48 107 576 0.19 4.46 4.46
29 Quiberoni (2003) ecological 20 11 31 89 220 0.4 8.09 4.45
30 Rybniker (2006) artificial 17 14 31 70 238 0.29 5 4.12
31 Seed (2005) artificial 24 6 30 31 144 0.22 5.17 1.29
32 Stenholm (2008) ecological 28 22 50 348 616 0.56 15.82 12.43
33 Sullivan (2003) ecological 21 44 65 148 924 0.16 3.36 7.05
34 Suttle (1993) artificial 7 9 16 11 63 0.17 1.22 1.57
35 Synnott (2009) ecological 16 16 32 207 256 0.81 12.94 12.94
36 Wang (2008) ecological 18 7 25 11 126 0.09 1.57 0.61
37 Wichels (1998) ecological 59 23 82 318 1357 0.23 13.83 5.39
38 Zinno (2010) ecological 18 27 45 49 486 0.1 1.81 2.72

Average 26.55 13.21 39.76 114.87 314.32 0.39 10.91 4.88
Median 19.00 10.50 31.00 65.00 203.00 0.34 6.13 3.04
Total 1009 502 1511 4365 11944

First column: These ID’s corresponds to indexes in supplementary figures 20–22.
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Table 8: Characteristics of complete host-phage networks included in the present
study, including additional information on biological context of each study

Reference Bacteria Phage Majority
source

Additional
source

Isolation Habi-
tat

Bacterial
association

Bacterial
trophy

Geography

1 Abe (2007) Escherichia
coli

T2 and PP01 ecological artificial human
pathogen

heterotrophic

2 Barrangou
(2002)

Leuconostoc Caudovirales ecological artificial sauerkraut free heterotrophic North Car-
olina, USA

3 Braun-
Brenton
(1981)

Escherichia
coli

λ experimental lab-agar plates human
symbiont

heterotrophic

4 Campbell
(1995)

Pseudomonas Myoviridae experimental ecological barley roots plant sym-
biont

heterotrophic Hojbakkegaard,
Denmark

5 Capparelli
(2010)

Salmonella ecological gastroenteritis
patients

human
pathogen

heterotrophic Europe

6 Caso (1995) Lactobacillus Siphoviridae experimental food, fresh wa-
ter, soil, sewage

free heterotrophic Spain

7 Ceyssens
(2009)

Pseudomonas
aeruginosa

artificial hospital sewage,
fresh water

human
pathogen

heterotrophic global

8 Comeau
(2005)

Vibrio experimental marine human
pathogen /
oysters

heterotrophic British
Columbia,
Canada

9 Comeau
(2006)

Vibrio Siphoviridae
and Podoviridae

experimental marine human
pathogen

heterotrophic British
Columbia,
Canada

10 DePaola
(1998)

Vibrio vul-
nificus

Podoviridae,
Styloviridae,
and Myoviridae

ecological marine human
pathogen /
oysters

heterotrophic Gulf of
Mexico

11 Doi (2003) Lactobacillus Siphoviridae
and Myoviridae

artificial silage (fer-
mented bovine
feed)

free heterotrophic Japan

12 Duplessis
(2001)

Streptococcus
thermophilus

Myoviridae and
Siphoviridae

artificial Industrial
cheese plants

free heterotrophic Quebec,
Canada

13 Gamage
(2004)

Escherichia
coli

ecological human and an-
imal fecal iso-
lates

human
pathogen

heterotrophic Ohio, USA

14 Goodridge
(2003)

EnterobacteriaceaeMyoviridae ecological human and ani-
mal

human
pathogen

heterotrophic global

15 Hansen
(2007)

Campylobacter Myoviridae ecological poultry intes-
tine

human
pathogen

heterotrophic Denmark

16 Holmfeldt
(2007)

FlavobacteriaceaeMyoviridae,
Siphoviridae,
and Podoviridae

artificial ecological marine free heterotrophic Scandinavia

17 Kankila
(1994)

Rhizobium ecological soil free heterotrophic Finland

18 Krylov
(2006)

Escherichia
and
Salmonella

T-even super-
family

ecological sewage human
pathogen

heterotrophic

19 Kudva
(1999)

Enterobacteriaceae artificial bovine and
ovine feces

human
pathogen

heterotrophic North West
USA

20 Langley
(2003)

Burkholderia T-even and λ-
like

ecological artificial soil, freshwater,
plant

mycorrhizal heterotrophic global

21 McLaughlin
(2008)

Salmonella ecological artificial swine lagoon human
pathogen

heterotrophic Mississippi,
USA

22 Meyer (un-
pub)

Escherichia experimental lab - batch cul-
ture

human
symbiont

heterotrophic

23 Middelboe
(2009)

Cellulophaga
baltica

Myoviridae,
Siphoviridae,
and Podoviridae

experimental ecological marine free photosynthetic Scandinavia

24 Miklic
(2003)

Lactococcus
lactis

Siphoviridae ecological dairy products free heterotrophic Solvania

25 Mizoguchi
(2003)

Escherichia
coli

PP01 experimental lab-chemostat human
pathogen

heterotrophic

26 Pantucek
(1998)

Staphylococcus polyvalent
staphylophage

artificial clinical isolates human
pathogen

heterotrophic Brno,
Czech
Republic

27 Paterson
(2010)

Pseudomonas
fluorescens

φ2 experimental lab - batch cul-
ture

plant sym-
biont

heterotrophic UK

28 Poullain
(2008)

Pseudomonas
fluorescens

φ2 experimental lab - batch cul-
ture

plant sym-
biont

heterotrophic UK

29 Quiberoni
(2003)

Streptococcus
thermophilus

Siphoviridae ecological yogurt indus-
trial plant

free heterotrophic Argentina

30 Rybniker
(2006)

Mycobacterium artificial soil human
pathogen

heterotrophic global

31 Seed (2005) Burkholderia Myoviridae artificial soil, freshwater,
plant

human
pathogen

heterotrophic

32 Stenholm
(2008)

Flavobacterium
psy-
chrophilum

Siphoviridae,
Myoviridae, and
Podoviridae

ecological fresh water fish
pathogen

heterotrophic Denmark

33 Sullivan
(2003)

Prochlorococcus
Synechococ-
cus

Myoviridae and
Podoviridae

ecological marine free photosynthetic Atlantic
Ocean

34 Suttle
(1993)

Synechococcus
and Anacys-
tis

Siphoviridae,
Myoviridae, and
Podoviridae

artificial ecological marine free photosynthetic Texas,
USA

35 Synnott
(2009)

Staphylococcus
aureus

Myoviridae ecological sewage, dairy
products

bovine
pathogen

heterotrophic Tokyo,
Japan

36 Wang (2008) Synechococcus
and
Prochlorococ-
cus

Myoviridae and
Podoviridae

ecological marine free photosynthetic Chesapeake
Bay, USA

37 Wichels
(1998)

PseudoalteromonasSiphoviridae,
Myoviridae, and
Podoviridae

ecological marine free heterotrophic North Sea,
Germany

38 Zinno (2010) Streptococcus
thermophilus

ecological dairy products free heterotrophic Italy
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Table 9: Global properties

Property Definition
H number of hosts
P number of phages
I number of interactions
S = H + P number of species
M = HP size
C = I/M connectance
LH = I/H mean number of interactions across host species
LP = I/P mean number of interactions across phage species

Table 10: PCA Analysis

1st 2nd 3rd 4th 5th 6th 7th 8th
H 0.352 0.446 -0.179 0.131 0.389 -0.131 -0.097 0.67
P 0.247 -0.534 -0.203 0.474 -0.461 -0.14 -0.279 0.279
I 0.47 -0.138 0.143 -0.474 0.008 0.517 -0.498 0

S = H + P 0.444 0.218 -0.257 0.32 0.192 -0.184 -0.208 -0.688
M = HP 0.397 -0.239 -0.359 -0.542 -0.078 -0.373 0.466 0
C = I/M 0.188 0.062 0.743 -0.093 -0.112 -0.601 -0.164 0

LH = I/H 0.281 -0.449 0.359 0.313 0.504 0.224 0.435 0
LP = I/P 0.353 0.431 0.177 0.177 -0.571 0.335 0.434 0

48.95% 27.98% 18.55% 2.03% 1.30% 1.07% 0.11% 0

Table 11: Correlation analysis

H P S I M C Lp Lh
H 1 -0.146 ∗0.916 +0.458 0.394 0.125 ∗0.847 -0.133
P 1 0.264 ∗0.535 ∗0.744 -0.11 -0.191 ∗0.697
S 1 ∗0.664 ∗0.686 0.077 ∗0.748 0.154
I 1 ∗0.752 +0.466 ∗0.553 ∗0.716

M 1 -0.109 0.204 +0.449
C 1 ∗0.501 ∗0.517

Lp 1 0.035
Lh 1
∗
p-value < 0.05/28

+
0.05/28 < p-value < 0.05/8
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Figure 20: PCA Analysis in the global properties of the collected studies. Only the
two main components are showed. There is no distinction between the three different
type of studies.

Table 12: Isolation bias

Modularity Nestedness
Study Original Recalculated Original Recalculated
Krylov 2006 +0.123 +0.136 ∗0.901 ∗0.839
Kudva 1999 +0 +0 0.63 0.63
McLaughlin 2008 - Matrix minus TSB control +0.191 +0.191 ∗0.978 ∗0.951
McLaughlin 2008 - Matrix minus TSB minus isolation host +0.191 0.313 ∗0.978 ∗1
Middleboe 2009 +0.084 +0.079 ∗0.988 ∗0.98
Rybniker 2006 +0.333 +0.274 ∗0.931 ∗0.908
Stenholm 2009 ∗0.183 ∗0.187 ∗0.928 ∗0.931
∗Significant modular/nested studies
+Significant anti-modular/nested studies

107



10 20 30 40 50 60 70 80 90 100 110
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Species (S)

C
o
n
n
e
c
ta

n
c
e
 (

C
)

C vs S

1

2

3

4

5

6

7 8

9

10

11
12

13

14
15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

3334

35

36

37

38

 

 

Ecological

Experimental

Artificial

Figure 21: Correlation between connectance (C) and number of species (S). This plot
shows that there is no relation between the connectance and the number of species.
Numbers in both plots indicate the study id that can be consulted in the appendix
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Figure 22: Output of the k–means (with k = 3) algorithm when applied to the two
main components of the PCA–analysis output.
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Figure 23: Distribution of clustering validity of source types (EXP, NAT and ART)
based on global properties. The histogram denotes 10,000 randomization trials in
which the labels of each study were relabeled while retaining the total number of
each class (EXP, NAT and ART). The value on the x-axis is the Jaccard index of
clustering validity (see Supplementary Materials and Methods). The red line denotes
the observed clustering validity for the data set which is non-significant, p = 0.34.
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(A) (B) (C)

(D) (E)

Figure 24: Matrix and network representations reveal non-random patterns in host-
phage networks. (A) Force-directed layout of the host-phage network where yellow
and blue nodes represent phages and hosts, respectively. Shading represents the
number of node connections, or degree (see text). We can re-arrange the rows and
columns of the adjacency matrix according to optimal network modularity (B) and
degree of nestedness (C). (D) Strong modularity indicates the presence of subsets
of nodes with the same color (communities) having many more internal links than
external links (i.e., less crossings across different modules). (E) Network representa-
tion evidences a high degree of nestedness overall, with a few unexpected interactions
between specialist species (on the right). Notice that generalist species have more
connections and they are located on the left.
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Figure 25: Nestedness value compared for the original publication format of the
matrix (red diamonds) vs. the value found in this study (blue circles). X-axis lists all
studies in alphabetical order. Y-axis denotes the value of nestedness. Lines connect
the points for ease of comparison. Note that in all cases the current value exceeded
that of the original publication.
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Figure 26: Statistical distribution of nestedness for random matrices compared to that
of the original data. Here, empty rows/columns from all matrices were removed so
that matrices only contain hosts that were infected by at least one phage and phages
that infected at least one host. Error bars denote 95 % confidence intervals based
on 105 randomizations of appropriately randomized null networks. Here 26/38 are
significantly nested, where Doi et al.(22) is the only study to no longer be significant at
the 0.05 level compared to the original data, yet it remains highly nested (p = 0.067).
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Figure 27: Statistical distribution of modularity for random matrices compared to
that of the original data. Here, empty rows/columns from all matrices were removed
so that matrices only contain hosts that were infected by at least one phage and
phages that infected at least one host. Error bars denote 95 % confidence intervals
based on 105 randomizations of appropriately randomized null networks. Here 9/38
are significantly modular as opposed to 6/38 which were significantly modular in the
original data.
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APPENDIX B

SUPPLEMENTARY MATERIALS FOR CHAPTER 3

B.1 Dataset

The dataset analyzed here is a subset of the phage-bacteria cross-reaction tests re-

ported by K. Moebus and H. Nattkemper [124]. Among all the datasets reported in

this paper, we have focused in the largest collection of tests, i.e., the so-called A-series

dataset. This dataset consists of H = 733 bacteria and P= 258 bacteriophages strains

collected at 48 water sample stations in the Atlantic Ocean region (see Figure 28).

Only 326 out of the 733 bacteria were found to be susceptible to one or more phages.

From the 326 bacteria strains, 250 are unique (the infection pattern is different from

each other), 38 are inter-sample doublets (bacteria that have the same infection pat-

tern of another bacteria belonging to a different water sample or station), and 38

intra-sample doublets (doublets from the same water samples). Similarly, there are

224 unique phage strains and 4 inter-sample doublets.

The only source of information about the matrix of cross-reaction tests was the

figure shown in the Moebus and Nattkemper paper (see Figure 1 in [124], Figure 29 in

this document). We were unable to find other means to access this dataset and thus,

we have developed a semi-automatic scanning method to recover this matrix from

the printed paper to a digital format suitable for our analysis (see method below).

For example, the original paper does not indicate the exact number of bacteria and

phages represented in the original figure (see Figure 29). Instead, these numbers have

been inferred from the original figure labels and the information given in the whole

document (see below). The digitalization process includes the following steps:

1. We scanned the source image from the printed figure in [124] (see Figure 1 in
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[124] and Figure 29 in this document). The quality of the image made the

extraction process difficult. First, the original image is slightly rotated by an

angle comprised between 0.4 and 0.6 degrees counterclockwise (depending on

what side of the image is chosen as a reference). In addition, there was a

tear starting at the bottom (phage station number 484) and running to the left

(phage station number 462) of the image that slightly distorts the orientation at

the bottom right section. Here, we have estimated the rotation angle to be 0.45

degrees, which is good compromise between the left and bottom orientations.

As a consequence of the previous rotation, two bacteria records were lost.

2. We assume that matrix size is approximately equal to the number of columns

and rows visible in the source image. We manually cross-checked the row and

column counts and find H = 288 bacteria and P = 222 phages. Further valida-

tion comes from a computer program that counts the number of mouse clicks

performed by a human over each bacteria/phage label in the “source” (scanned)

image. The observed number of bacteria is consistent with the caption of the

source figure that reports 288 bacteria strains (250 unique + 38 inter-sample

doubles). The case for phages is more ambiguous because the original figure

only labels 217 phages out of the 222 (readable) columns. Here, we have only

retained labeled and readable phages to yield H = 286 bacteria and P = 215

phages.

3. We performed a binary thresholding of the source matrix to automatically detect

positive interactions of phages with hosts by computing the density of filled

pixels at every matrix cell. We delimited the matrix cells by overlaying a grid in

the source figure, and the interactions were detected by specifying a threshold

of filled pixels inside each cell. This automatic process makes no distinction

between matrix cells that denote clear lysis or turbid spots.
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4. We manually curated the binary thresholded image to identify and correct any

false negatives (undetected interactions) and false positives (empty cells marked

as interactions). In addition, empty columns were removed. The output is the

curated MN (Moebus and Nattkemper) matrix used for our study (see Figure

9 of Chapter 3, and Figure 29).

B.2 Bipartite Modularity

A host-phage interaction matrix can be described as a bipartite network G = (U, V,E)

having two disjoint sets of nodes (phages and hosts) and a set of edges ([60]). Here,

H = ‖U‖ is the number of hosts and P = ‖V ‖ is the number of phages and there is

an edge {ui, vj} ∈ E when phage vj ∈ V infects host ui ∈ U . Notice that interactions

between nodes of the same type are excluded. Alternatively, the adjacency matrix

A = [Aij] indicates whether the j−th phage can infect the i−th host (Aij = 1)

or not (Aij = 0). Notice that this matrix corresponds to the binary thresholded

image obtained in the previous section. A number of useful network measures can be

obtained from the adjacency matrix alone. The degree ki =
∑

j Aij of the i−th host

is the number of interactions with phages (i.e. how many phages can infect the i−th

host). The degree dj =
∑

iAij of the j−th phage is the number of interactions with

hosts (i.e. how many hosts can be infected by the j−th phage). See Figure 30 for a

plot of the cumulative degree frequency of the MN matrix.

An important collection of network measures involves the quantification of inter-

action patterns in subsets of more than two network nodes. For example, a visual

inspection of the infection matrix shown in Figure 11 of Chapter 3 suggests that

there are modules of hosts and phages exchanging many more “ones” between them

(a higher density of internal links) than with the rest of types (nodes). Following [13],

we assess the quality of a given partition in c (disjoint) modules with the bipartite
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modularity:

Q =
1

m

∑
ij

(Aij − Pij) δ(gi, gj) (21)

where Aij is the adjacency matrix, m =
∑

ij Aij is the total number of links, Pij =

kidj/m is the probability to connect nodes i and j, the node i has been assigned

to the module gi, and δ(x, y) = 1 if x = y and δ(x, y) = 0 when x and y are

different. Intuitively, high values of Q will correspond to highly modular partitions

of the bipartite network. In this case, node i and j are classified in the same module

gi = gj (and thus δ(gi, gj) = 1) because the probability to have a link between nodes

in the same module is significant (e.g., the difference Aij − Pij is a large, positive

value).

For convenience, we use the matrix form of the modularity Equation (21). Here,

we replace the function gi by the H × c index matrix R = [r1|r2|...|rc] and the P × c

index matrix T = [t1|t2|...|tc], for hosts and phages, respectively [13]. Notice that

nodes cannot be classified into more than one module. Vectors ri and ti consist of a

single one (corresponding to the chosen module) will all the other entries being zero.

For example, rik = 1 if the i-th host belongs to the k-th module and rij = 0 for every

other j 6= k. Now, we can rewrite the modularity as follows (see Equation (22) in

[13]):

Q =
1

m
Tr RT B̃T (22)

where B̃ = A − P is the bipartite modularity matrix. The goal of the modularity

algorithm is to find the optimal assignment of nodes to modules (i.e., the index

vectors R and T) in a way that Equation 22 becomes maximized. However, finding

the optimal modularity is a NP-complete problem. In this context, there are a number

of practical heuristics that we can use to guide modularity algorithms in the search for

good solutions within computational constraints (we always check that the solutions

found by the algorithms are meaningful). Next, we discuss the different heuristics

explored here.
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The original modularity algorithm (called BRIM for Bipartite, Recursively In-

duced Modules) described in [13] computes the optimal modularity by inducing the

division of one set of nodes (say vector T) from the division in the other set of nodes

(say vector R). At each step, BRIM assigns nodes of one type to modules in order

to maximize the modularity. BRIM iterates this process until a local maximum is

reached. However, the choice of a predefined number c of modules limits the efficacy

of the algorithm. Barber extended the BRIM algorithm to search for the optimal

number of modules along the modularity maximization process [13]. This method,

which is called “adaptive BRIM”, assumes that there is a smooth relationship be-

tween the number of modules c and the modularity Q(c). For continuous and smooth

landscapes, a simple bisection method ensures that we will find the optimal value

of c corresponding to maximum Q. Starting at c = 1 (and modularity Q(1) = 0

because all nodes belong to the same module) the adaptive BRIM searches for op-

timal c by repeatedly doubling the number of modules while modularity increases,

Q(2c) > Q(c). At some point, the search crosses a maximum in the modularity

landscape, i.e., Q(2c) < Q(c), and we interpolate the number of modules c∗ to some

intermediate value in the current interval (c, 2c). This heuristic gives very good mod-

ularity values for the case of small matrices. For example, we have used the adaptive

heuristic in the analysis of the 15 largest modules identified in the MN matrix.

A shortcoming of adaptive BRIM is that its performance degrades for large net-

works [108]. We propose a recursive algorithm based in [128] to find the optimal

number of modules in the full cross-infection matrix. Following [128], we perform

repeated divisions of the network until a local maximum of modularity is reached.

The algorithm steps are: (i) find all the isolated network components and place them

into separated modules, (ii) subdivide each module into c = 2 sub-modules using the

standard BRIM algorithm and (iii) repeat the subdivision process until there is no

improvement in the overall network modularity. The stop condition evaluates if the

119



modularity change ∆Q corresponding to the subdivision event in (ii) is significant or

not. That is, ∆Q > 0 means there is still room for further subdivisions. Newman

suggests that is not correct to naively remove all edges falling between the subparts

and apply the full modularity algorithm to each subpart in isolation [128]. We com-

pute ∆Q > 0 as the difference between the modularity value computed after and

before the splitting event:

∆Q =
1

m

[
TrR(g)T B̂(g)T (g) − Tr B̂(g)

]
(23)

where B̂(g) is the hg × pg bipartite modularity matrix of the hg hosts and pg pages

within the module g ⊆ G, and R(g) and T (g) are the index vectors describing the

splitting of the subgraph g in two sub-modules. Notice that we can restrict our

computation to the subgraph g and thus, the index vectors are subsets of the full

index vectors (see Equation 22). This is, to the best of our knowledge, the first time

that the Newman’s division algorithm has been applied to bipartite networks.

B.3 Multi-scale nested analysis

The MN matrix is significantly nested according to initial analysis using both the

temperature calculator and NODF. This result is surprising giving the apparent lack

of nestedness in visual inspection. However, prior work has noted that standard nest-

edness measures can signal spurious nested patterns when the network is comprised

of nested modules [60]. In this context, Almeida-Neto and co-workers argue that we

need specific models for distinct non-nested patterns because there is not an unique,

working definition for the opposite of nestedness (“anti-nestedness”) [6]. Here, we

propose two new approaches (one for each nestedness measurement) to discard any

interference of modular organization in the assessment of “true” nestedness.

We start by computing the modular organization of the full network G with our

division algorithm (see Section B.2). The modules will constrain the space of possible

matrix re-arrangements explored by the temperature calculator when searching for
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the maximum nestedness (minimum temperature). In particular, our proposal for

a constrained temperature calculator (i) permutes full modules (or matrix blocks),

(ii) permutes rows and columns within a module, (iii) cannot perform any other

permutation different from (i) and (ii). Still, the space of possible combinations can be

quite large. We developed a heuristic algorithm that obtains good results with simple

and deterministic sorting. First, we sort the rows and columns within any module

in decreasing degree order (notice that rows and columns are sorted independently).

Second, we rank modules according to the (sub-)matrix size and fill. The host (rows)

ranking µg for the module g ⊂ G is:

µg =

∑
i∈g ki

hg × P
(24)

where hg is the number of hosts in the module g, ki is the degree of the i−th host and

P is the number of phages in the full network. Notice that this score can be seen as

the connectance of a network composed of all phages presented in the entire network

but only the hosts that belongs to module g. Similarly, there is a phage (columns)

ranking νg for the module g:

νg =

∑
j∈g dj

pg ×H
(25)

where pg is the number of phages in the module g, dj is the degree of the j− th phage

and H is the number of hosts in the full network.

In order to validate this measure of constrained nestedness, we have designed a

theoretical experiment with synthetic networks having 2 ≤ c ≤ 50 perfectly nested

modules without interactions between them. Model networks have the same size as

the MN network (H = 286, P = 215). Notice that µg = µ and νg = ν for all modules

(blocks) because they have exactly the same size and fill. We place modules along the

main diagonal to achieve optimal nestedness (see Figure 32). Every other arrangement

(for example with off-diagonal blocks) yields sub-optimal nestedness values.

Our experiment confirms the initial hypothesis, i.e., unconstrained nestedness is
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higher than constrained nestedness (see Figure 33). This suggests how high uncon-

strained nestedness of the MN matrix can be a consequence of its nested modular

organization. As expected, we achieve maximum nestedness when the matrix is per-

fectly nested, e.g., there is only c = 1 module (see Figure 32 left). At c = 2 we have

a sudden drop in (both constrained and unconstrained) nestedness because there are

interactions below the isocline and absence of interactions above the isocline (see

Figure 32 center). For small values of modularity (c < 8), the two null models have

significantly lower values of constrained nestedness than the MN matrix. In general,

nestedness increases with the number of modules (c > 20, see Figure 33) because

temperature is directly related to the matrix filling (see Figure 32 right).

B.4 Geographical analysis

Both nestedness and modularity are topological, aspatial characteristics of bipartite

networks. Here, we investigate the relationship between these network patterns and

their spatial context. The MN matrix describes observed infections between host

and phages sampled from a set of nearly equally-spaced, numbered stations in the

Atlantic ocean. Here, we will review the original hypothesis of the MN study, i.e.,

to what extent geographical location drives the infection process. In the presence of

strong spatial modularity, we should observe significant correlations between stations

numbers (a surrogate of geographical location) of nodes within the same module.

Otherwise, the geographical biodiversity will be very large.

We will use two different, standard metrics to measure the degree of geographical

biodiversity in a topological module. For each module, we will compute the Shannon’s

entropy index:

Hk = −
R∑
i=1

ni

N
log

ni

N
(26)

and the Simpson’s diversity index:
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Dk = 1−
R∑
i=1

ni(ni − 1)

N(N − 1)
(27)

where N are the number of different strains inside the module, R are the number

of stations inside the module, and ni are the number of strains from the i−th sta-

tion. Low values in both indices indicate low geographical diversity within modules.

Using a combination of two diversity indexes will provide additional support for our

conclusions.

In order to test the NM hypothesis, we compare the observed diversity indexes

(H1, D1), (H2, D2) ... (H15, D15) for the largest 15 modules found by the BRIM algo-

rithm in the NM matrix (see above) with their expectations coming from an ensemble

of 106 randomized matrices. We generate each sample by randomly permuting the

row and column labels of the NM matrix. Once the random matrix is obtained, we

will compare the diversity indexes of each observed module (Hk, Dk) with the pair of

indices (H̃k, D̃k) of random modules having the same size. Figure 34 indicates that,

overall, the largest 15 modules display low geographical diversity, i.e., the observed

value is lower than expected (considering a one-tailed p-value of 0.05 for statistical

significance). This observation appears to be equally valid for hosts and phages (we

have analyzed the two types of nodes separately), e.g., see Figure 34.

123



Table 13: Geographical data of microbial stations

Station Latitude Longitude Station Latitude Longitude
454 47.717 -6.633 526 29.600 -57.083
456 44.750 -10.917 531 27.933 -57.733
458 43.200 -14.283 536 30.000 -58.333
460 41.350 -18.067 541 31.500 -59.667
462 39.650 -21.800 547 28.833 -59.633
464 38.000 -24.633 554 26.517 -60.233
465 37.817 -29.050 559 28.500 -61.000
469 37.967 -33.283 564 30.500 -61.000
471 37.333 -37.350 565 32.333 -64.633
472 36.550 -42.383 568 33.050 -59.983
474 35.717 -47.083 570 34.017 -55.317
476 34.867 -51.517 572 36.050 -42.467
478 34.017 -55.317 576 36.433 -39.067
480 33.217 -59.333 581 37.050 -34.350
484 32.567 -62.950 588 37.767 -26.367
489 31.967 -65.183 590 37.333 -22.033
492 30.667 -62.750 593 36.850 -17.417
497 28.783 -60.350 596 36.500 -13.000
501 27.117 -58.550 598 36.117 -8.717
504 26.100 -58.583 600 36.333 -7.467
508 26.417 -58.783 601 41.583 -10.333
513 29.617 -58.883 602 43.617 -9.567
518 31.200 -62.017 603 44.783 -8.833
522 31.067 -57.300 605 47.533 -6.283

Information that were extracted from the original Table 1 [123].
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Table 14: Global properties of the extracted modules

Module H P S I M C Lp Lh
1 42 23 269 65 966 0.28 6.40 11.70
2 39 12 138 51 468 0.29 3.54 11.50
3 31 31 233 62 961 0.24 7.52 7.52
4 23 13 61 36 299 0.20 2.65 4.69
5 16 20 114 36 320 0.36 7.13 5.70
6 15 5 30 20 75 0.40 2.00 6.00
7 12 7 27 19 84 0.32 2.25 3.86
8 11 8 52 19 88 0.59 4.73 6.50
9 8 6 38 14 48 0.79 4.75 6.33

10 8 11 57 19 88 0.65 7.13 5.18
11 7 5 15 12 35 0.43 2.14 3.00
12 7 7 17 14 49 0.35 2.43 2.43
13 7 9 49 16 63 0.78 7.00 5.44
14 6 7 21 13 42 0.50 3.50 3.00
15 6 6 27 12 36 0.75 4.50 4.50
16 3 4 12 7 12 1.00 4.00 3.00
17 3 3 7 6 9 0.78 2.33 2.33
18 3 1 3 4 3 1.00 1.00 3.00
19 3 1 3 4 3 1.00 1.00 3.00
20 2 1 2 3 2 1.00 1.00 2.00
21 2 3 6 5 6 1.00 3.00 2.00
22 2 1 2 3 2 1.00 1.00 2.00
23 2 1 2 3 2 1.00 1.00 2.00
24 2 2 4 4 4 1.00 2.00 2.00
25 2 2 4 4 4 1.00 2.00 2.00
26 1 1 1 2 1 1.00 1.00 1.00
27 1 2 2 3 2 1.00 2.00 1.00
28 1 1 1 2 1 1.00 1.00 1.00
29 1 1 1 2 1 1.00 1.00 1.00
30 1 1 1 2 1 1.00 1.00 1.00
31 1 1 1 2 1 1.00 1.00 1.00
32 1 1 1 2 1 1.00 1.00 1.00
33 1 1 1 2 1 1.00 1.00 1.00
34 1 1 1 2 1 1.00 1.00 1.00
35 1 1 1 2 1 1.00 1.00 1.00
36 1 1 1 2 1 1.00 1.00 1.00
37 1 1 1 2 1 1.00 1.00 1.00
38 1 1 1 2 1 1.00 1.00 1.00
39 1 1 1 2 1 1.00 1.00 1.00
40 1 1 1 2 1 1.00 1.00 1.00
41 1 1 1 2 1 1.00 1.00 1.00
42 1 1 1 2 1 1.00 1.00 1.00
43 1 1 1 2 1 1.00 1.00 1.00
44 1 1 1 2 1 1.00 1.00 1.00
45 1 1 1 2 1 1.00 1.00 1.00
46 1 1 1 2 1 1.00 1.00 1.00
47 1 1 1 2 1 1.00 1.00 1.00
48 1 1 1 2 1 1.00 1.00 1.00
49 1 2 2 3 2 1.00 2.00 1.00

Average 5.84 4.39 24.88 10.22 75.41 0.83 2.29 2.75
Median 2.00 1.00 2.00 3.00 2.00 1.00 1.00 2.00

H : Number of hosts
P : Number of phages
S = H + P : Number of species
I : Number of interactions
M = HP : Size
C = I/M : Connectance or fill
Lp = I/P : Mean phage degree (Average number of susceptible hosts by phage)
Lh = I/H : Mean host degree (Average number of virulent viruses by host)
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Table 15: Geographical biodiversity indexes

Module
Phages Hosts

Simpson Shannon Simpson Shannon
1 0.953 (p = 0.086) 2.487 (p = 0.040) 0.970 (p = 0.272) 3.048 (p = 0.221)
2 0.939 (p = 0.065) 2.095 (p = 0.081) 0.964 (p = 0.093) 2.908 (p = 0.048)
3 0.897 (p = 0.000) 2.179 (p = 0.000) 0.920 (p = 0.000) 2.551 (p = 0.001)
4 0.808 (p = 0.000) 1.479 (p = 0.000) 0.909 (p = 0.000) 2.198 (p = 0.000)
5 0.816 (p = 0.000) 1.817 (p = 0.000) 0.825 (p = 0.000) 1.689 (p = 0.000)
6 1.000 (p = 0.280) 1.609 (p = 0.280) 0.962 (p = 0.158) 2.396 (p = 0.227)
7 0.714 (p = 0.000) 1.004 (p = 0.000) 0.833 (p = 0.000) 1.517 (p = 0.000)
8 0.857 (p = 0.004) 1.494 (p = 0.010) 0.909 (p = 0.012) 1.846 (p = 0.011)
9 0.333 (p = 0.000) 0.451 (p = 0.000) 1.000 (p = 0.552) 2.079 (p = 0.552)

10 0.909 (p = 0.020) 1.768 (p = 0.005) 0.893 (p = 0.013) 1.667 (p = 0.027)
11 0.900 (p = 0.025) 1.332 (p = 0.025) 0.857 (p = 0.005) 1.475 (p = 0.007)
12 0.952 (p = 0.111) 1.748 (p = 0.111) 1.000 (p = 0.453) 1.946 (p = 0.453)
13 0.889 (p = 0.010) 1.677 (p = 0.013) 0.857 (p = 0.006) 1.475 (p = 0.008)
14 0.571 (p = 0.000) 0.683 (p = 0.000) 0.533 (p = 0.000) 0.637 (p = 0.000)
15 0.600 (p = 0.000) 0.868 (p = 0.000) 0.733 (p = 0.001) 1.011 (p = 0.001)

Small values means low geographical biodiversity. p < 0.05 means the module is statistically no geographically

diverse. p-values were calculated as the ratio of random permutations index values that are smaller than the

real index. See Equation 4 in Chapter 3 for a mathematical description of these indexes.
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Figure 28: Originally appeared as Figure 1 on [123] with the label Track of RV
“Friedrich Heincke” in the Atlantic Ocean during cruise no. 160 and microbial sta-
tions. Here, each circle represents the geographic location of each station. The radius
of the circles corresponds linearly to the number of strains that were extracted in the
corresponding station. Some number stations are indicated in order to clarify the
direction of the route. Increasing station number indicate the order of visit.
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Figure 29: Moebus & Nattkemper [124] cross-reaction test in the Atlantic Ocean re-
gion. This matrix is subdivided in different stations, where each square delimits the
infections inside strains of the same station. The original label reads: “Fig 1. Sen-
sitivity patterns of A-seres bacteria to A-series bacteriophages in relation to stations
successively sampled. Results found with bacteria and phages isolated from the same
sample are shown in boxes. The area delimited by the broken line comprises only
findings obtained with bacteria and phages found west of the Azores. The numbers of
bacteria intra-sample doublets are given in parentheses. Bacteriophage doublets are
not presented. Circles: clear lysis in PHCR tests; dots: turbid spots in PHCR tests.”.
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Figure 30: Cumulative degree frequency of the MN matrix. a) Cumulative frequency
of the MN matrix with distinction between host and phage nodes. b) Cumulative
frequency of the MN matrix without distinction between host and phage nodes. Both
phages and hosts have a wide range of degree values, in which small degree values are
more likely to occur than large degree values.
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Figure 31: Arrangement of the cross-infection matrix produced with the NTC al-
gorithm. While the nestedness value NNTC = 0.95 has a p-value < 10−5 in both
null models, the nestedness value NNODF = 0.0341 has a p-value < 10−5 only in the
Bernoulli random null model (see text).
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C = 1, N = 1 C = 2, N = 0.73653 C = 7, N = 0.74955

Figure 32: From left to right, correlation between nestedness and modularity in syn-
thetic networks with c = 1, 2, 7 perfectly nested modules. Bold red line represents the
isocline of perfect nestedness (see material and methods in Chapter 3). Blocks with
red outlines indicate modules.

5 10 15 20 25 30 35 40 45 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of nested modules (c)

N
es

te
dn

es
s 

(N
)

 

 

Nestedness without module coinstrains
Nestedness with module coinstrains
Random expectation − Probabilistic degreee null model
Random expectation − Bernoulli null model

Figure 33: Comparison of constrained vs unconstrained temperature. We analyze
synthetic networks with perfect nestedness with varying number of modules 2 ≤ c ≤
50 (see text). The vertical line indicate where the fill of the MN matrix coincides with
that of the synthetic networks. Notice that for the corresponding fill, the nestedness
of the two random expectations are larger than the value of nestedness with module
constraints.
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Figure 34: Distribution of geographical diversity for the 15 biggest modules. The
index represent the module index. The red lines represent the real geographical
diversity value of those modules. a) Simpson’s index distribution for phages. b)
Simpson’s index distribution for hosts. c) Shannon’s index distribution for phages.
d) Shannon’s index distribution for hosts.132
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Figure 35: Fraction of shared interactions across pair of nodes. The top shows phage
species and the bottom shows host species. The left shows the fraction of shared
interactions across every pair of nodes. The right shows the probability density func-
tion of shared interaction between pair of nodes given that the pairs shared at least
one interaction.
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