
A NON-ASYMPTOTIC STUDY OF LOW-RANK
ESTIMATION OF SMOOTH KERNELS ON GRAPHS

A Thesis
Presented to

The Academic Faculty

by

Pedro A. Rangel

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Mathematics

Georgia Institute of Technology
December 2014

Copyright c© 2014 by Pedro A. Rangel

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/77094542?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A NON-ASYMPTOTIC STUDY OF LOW-RANK
ESTIMATION OF SMOOTH KERNELS ON GRAPHS

Approved by:

Professor Vladimir Koltchinskii,
Advisor
School of Mathematics
Georgia Institute of Technology

Professor Anton Leykin
School of Mathematics
Georgia Institute of Technology

Professor Karim Lounici
School of Mathematics
Georgia Institute of Technology

Professor Le Song
College of Computing
Georgia Institute of Technology

Professor Greg Blekherman
School of Mathematics
Georgia Institute of Technology

Date Approved: 21 July 2014



To Erika,

the lighthouse of my life.

You loved me even when I did not deserve it.

iii



ACKNOWLEDGEMENTS

This dissertation would not have been possible without the support of all those who

helped me during my time as a graduate student. My deepest gratitude goes to my

adviser Vladimir Kotchinskii. Without Vladimir’s patience and guidance, I would

have been completely hopeless. Not only did he introduce me to interesting questions

in mathematics, but also he shed light on all the mathematical difficulties that I

faced during my studies. I am also extremely grateful to Professor Karim Lounici for

listening to my research ideas and for giving me helpful feedback. And I cannot go

without mentioning my academic big brother Stanislav Minsker, who I thank for the

many insightful discussions we had.

The School of Mathematics at Georgia Tech fosters a perfect environment to

create math, and for that I must thank them profusely. Without their hard work and

kindness, graduate student life would have been even harder. I also want to express

my gratitude to the National Science Foundation for supporting my research through

grants CCF-0808863 and DMS-1207808.

During times of madness, my friends helped me keep my sanity. In particular,

without Erika and Alejandro, I would certainly have been in an asylum. Important

also are those who were kind enough to listen to my many nonsensical ramblings.

Arguably, those ramblings were the core of my graduate student experience. Instead

of including an insanely long list of names, I will make sure to thank these patient

souls in person.

Last, but not least, I want to thank my parents for their unwavering support.

They gave me all the tools I needed, and they always encouraged me to become the

person I wanted to be.

iv



Contents

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

I RECOMMENDER SYSTEMS AND MATRIX COMPLETION 1

1.1 Noiseless Low-Rank Matrix Completion . . . . . . . . . . . . . . . . 1

1.1.1 Low-rank matrix completion under low coherence assumptions 3

1.1.2 Algorithmic considerations . . . . . . . . . . . . . . . . . . . 5

1.1.3 An example in image processing . . . . . . . . . . . . . . . . 6

1.2 Noisy Matrix Completion . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Lower bounds for noisy low-rank matrix completion . . . . . 9

1.2.2 Upper bound for noisy low-rank matrix completion . . . . . . 11

1.3 Trace regression model and matrix LASSO . . . . . . . . . . . . . . 16

1.3.1 Trace regression model . . . . . . . . . . . . . . . . . . . . . 17

1.3.2 Matrix LASSO . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.3 Linearized matrix LASSO . . . . . . . . . . . . . . . . . . . . 21

1.4 Proximal Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4.1 Proximal operator . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.2 Proximal gradient method . . . . . . . . . . . . . . . . . . . 24

1.4.3 Accelerated proximal gradient method . . . . . . . . . . . . . 24

1.4.4 An accelerated proximal gradient algorithm for matrix LASSO 27

II LOW RANK ESTIMATION OF SIMILARITIES ON GRAPHS 30

2.1 Modeling the problem . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Characterizing smoothness . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Estimation method . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

v



2.4 Spectral characteristics of S∗ and W . . . . . . . . . . . . . . . . . . 34

2.4.1 Spectral properties of W . . . . . . . . . . . . . . . . . . . . 34

2.4.2 Coherence function . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.3 Spectral characteristics on Erdős-Rényi graphs . . . . . . . . 36

2.5 Analysis of the estimator . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6 Proof of Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6.1 Bounding the first term . . . . . . . . . . . . . . . . . . . . . 44

2.6.2 Bounding the second term . . . . . . . . . . . . . . . . . . . 46

2.6.3 Bounding the third term . . . . . . . . . . . . . . . . . . . . 46

III LOWRANK ESTIMATION OF SMOOTHKERNELS ONGRAPHS
57

3.1 Modeling the problem . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.1 Estimation problem in the trace regression model . . . . . . . 59

3.1.2 Characterizing smoothness . . . . . . . . . . . . . . . . . . . 61

3.1.3 Reduction to symmetric kernels . . . . . . . . . . . . . . . . 63

3.2 Estimation on symmetric kernels . . . . . . . . . . . . . . . . . . . . 64

3.3 Minimax lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Proof of lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5 Least squares estimators with nonconvex penalties . . . . . . . . . . 79

3.5.1 Least square estimator . . . . . . . . . . . . . . . . . . . . . 79

3.5.2 Adaptive choice of parameters . . . . . . . . . . . . . . . . . 83

3.6 Combining nuclear norm and squared Sobolev norm . . . . . . . . . 86

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

vi



List of Tables

1 Proximal algorithm with backtracking . . . . . . . . . . . . . . . . . . 25

2 Accelerated proximal algorithm with backtracking . . . . . . . . . . . 26

vii



List of Figures

1 Recovering Lenna through low-rank matrix completion . . . . . . . . 7

2 Recovering Fabio through low-rank matrix completion . . . . . . . . . 8

3 Recovering Lenna and Fabio using matrix LASSO from 30.000 samples
contaminated with gaussian noise with variance σ2 . . . . . . . . . . 29

4 Mean value of the spectral function F and mean value of the majorant
F̄ for Erdős-Rényi graphs on 100 vertices and p = 0.2, 0.5 and 0.8 . . 37

5 Comparison of spectral function F and its mayorant F̄ for Erdős-Rényi
graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Mean value of the projection P and mean value of the coherence func-
tion φ̄ for Erdős-Rényi graphs on 100 vertices and p = 0.2, 0.5 and
0.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7 Comparison of projection P and the coherence function for Erdős-
Rényi graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

viii



SUMMARY

This dissertation investigates the problem of estimating a kernel over a large

graph based on a sample of noisy observations of linear measurements of the kernel.

We are interested in solving this estimation problem in the case when the sample

size is much smaller than the ambient dimension of the kernel. As is typical in

high-dimensional statistics, we are able to design a suitable estimator based on a

small number of samples only when the target kernel belongs to a subset of restricted

complexity. In our study, we restrict the complexity by considering scenarios where

the target kernel is both low-rank and smooth over a graph. The motivations for

studying such problems come from various real-world applications like recommender

systems and social network analysis.

In the first part, we study the problem of estimating similarity kernels on graphs by

employing a modified least squares method with a complexity penalization involving

both the nuclear norm and Sobolev-type norm. There are two main contributions in

this first part: 1) we introduce a low-coherence function which measures the amount

of information that we obtain from a random sample of a kernel on a graph; 2) we

prove upper bounds on L2-type errors of such estimators with explicit dependence

on both the rank and the degree of smoothness of the target kernel. The upper

bound shows that the proposed estimator requires less samples than standard matrix

completion techniques in scenarios where a matrix is naturally indexed by a graph. In

particular, the proposed estimator could be used for the problem of predicting links

in a social network.

In the second part, we study a more general problem of estimating smooth kernels

on graphs. Using standard tools of non-parametric estimation, we derive a minimax

ix



lower bound on the L2-error in terms of the rank and the degree of smoothness of

the target kernel. To prove the optimality of our lower-bound, we proceed to develop

upper bounds on the L2-error for a least-square estimator based on a non-convex

penalty. The proof of these upper bounds depends on bounds for estimators over

uniformly bounded function classes in terms of Rademacher complexities. We also

propose a computationally tractable estimator based on least-squares with convex

penalty. We derive an upper bound for the computationally tractable estimator in

terms of the coherence function introduced in the first part. Finally, we present some

scenarios wherein this upper bound achieves a near-optimal rate.

x



Chapter I

RECOMMENDER SYSTEMS AND MATRIX

COMPLETION

A retail company, hoping to increase its sales, hires us to implement a recommender

system. That is, a system that accurately predicts the rating that a user would give

to an item in an inventory based on previously known ratings [31, 56]. We tackle

the problem from a matrix completion perspective where our goal is to predict the

blanks of an incomplete utility matrix indexed by users and items. A known entry of

this utility matrix contains a value that represents what is known about the degree of

preference of that user for that item. Filling the missing values at random completes

the matrix without giving any real information about future ratings. Therefore, to

achieve meaningful predictions, we assume that few characteristics determine what

items a user likes. Based on this heuristic, we are interested in finding a low rank

matrix that agrees with our observations.

1.1 Noiseless Low-Rank Matrix Completion

As a first approach, we model the recommender system problem in the noiseless low-

rank matrix completion setting [10, 13, 14, 32, 54]. In this framework, our goal is

to recover an unknown low-rank objective m1 ×m2 matrix M∗ from n observations

M∗(i1, j1), . . . ,M∗(in, jn) of its entries. We assume that the indexes (i1, j1), . . . , (in, jn)

are picked independently and uniformly from the set {1, . . . ,m1} × {1, . . . ,m2} of

indexes of M∗, and that our observations are not corrupted by noise.

For a complex-valued m1 × m2 matrix M , let rank(M) denote the rank of M ,

M∗ denote its adjoint and MT denote its transpose. In the case when M is a square
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matrix, that is when m1 = m2, we denote its trace by trace(M). By singular value

decomposition, there are orthonormal bases {u1, . . . , um1} ⊆ Cm1 , {u1, . . . , um2} ⊆

Cm2 , and non-negative real numbers σ1 ≥ · · · ≥ σr such that M =
∑r
k=1 σk(uk ⊗ vk),

where r is the rank of M . The vectors u1, . . . , um1 and v1, . . . , vm1 are called left and

right singular vectors respectively, while the non-negative real numbers σ1, . . . , σr are

called singular values. Note that we follow the standard convention of ordering the

singular values decreasingly.

In the study of matrix completion problems, we mainly use three different matrix

norms. The spectral norm ‖M‖ := σ1, the nuclear norm ‖M‖∗ :=
∑r
k=1 σk and the

Frobenius norm ‖M‖2
F :=

∑r
k=1 σ

2
k. We define the Hilbert-Schmidt inner product

between two m1 ×m2 matrices M1 and M2 as

〈M1,M2〉 := trace(M1M
∗
2 )

The Frobenius norm turns out to be the norm induced by the Hilbert-Schmidt inner

product.

For the sake of simplicity, in this section, we restrict our presentation to the

case where the target matrix M∗ belongs to the space of hermitian matrices Hm

of size m × m. The most general case follows by hermitian dilation [52, 8]. The

spectral representation ofM has the formM =
∑r
k=1 λk(uk ⊗ uk), where r = rank(S),

λ1 ≤ · · · ≤ λr are non-zero eigenvalues of S repeated with their multiplicities; and

u1, . . . , ur are the corresponding orthonormal eigenfunctions. Note that, in the case

of repeated eigenvalues, the choice of the eigenfunctions ujs is not unique. Also note

that, unlike the singular values, we order the eigenvalues of an Hermitian matrix

increasingly. We extend any real function f to the space of hermitian matrices by

the usual “functional calculus”, that is f(M) :=
∑r
k=1 f(λk)(uk ⊗ uk). For hermitian

matrices, we can calculate the matrix norms by:

‖M‖ = max
k=1,...,r

|λk|, ‖M‖∗ =
r∑

k=1

|λk|, ‖M‖2
F =

r∑
k=1

λ2
k.

2



As a means to exemplify the difficulties of noiseless low-rank matrix completion, let

us consider the case where our target matrix M∗ has one entry equal to 1 and all

the other entries equal to 0. Then rank(M∗) = 1 but the probability that the only

nonzero entry is not present in the sample is
Ä
1− 1

m2

än, which is close to 1 when

n = o(m2). It is therefore impossible to recover an arbitrary low-rank matrices from

a “small” set of sampled entries unless we restrict our search to a certain subclass of

low-rank matrices. Some of the approaches to restrict the space of matrices include

the use of low-coherence assumptions [13, 14, 29], spikeness [47, 25], and genericity

[34].

1.1.1 Low-rank matrix completion under low coherence assumptions

In this presentation, we restrict the objective matrix using low-coherence assumptions.

The coherence coefficient of an r-rank m ×m matrix is a number ν between 1 and

m/r that, roughly speaking, measures how much information a random entry of the

matrix can give us. One can check that the coherence constant of an m×m matrix

with one entry equals to 1 and all the other entries equal to 0 is m. In contrast,

for instance, the coherence constants of the 256 × 256 matrices of rank 40 shown in

figures 1b and 2b are 2.7 and 2.1 respectively.

As we will see, the number of samples needed to recover M∗ depends linearly on

its coherence coefficient with respect to the standard basis. To be precise, let U be the

range of M and let PU be the orthogonal projection to U . The coherence coefficient

for the matrix M with respect to a basis {φ1, . . . , φm} ⊆ Cm is the smallest constant

ν satisfying:

‖PUφi‖2
2 ≤ ν

r

m
, i = 1, . . . ,m∣∣∣〈sign(M)φi, φj〉2

∣∣∣2 ≤ ν
r

m2
, i, j = 1, . . . ,m

(1)

where 〈·, ·〉2 is the standard inner product in Cm, and ‖ · ‖2 is the euclidean norm.

With enough observations, we might hope that there is only one low-rank matrix
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matching the known entries. If this were the case, we would recover the target matrix

by solving the optimization problem

MR = arg min{rank(M) : M(ik, jk) = M∗(ik, jk)}

This optimization problem is a common sense approach which simply seeks the

simplest explanation fitting the observed data. As a matter a fact, with enough

observations, this estimator returns the target matrix correctly. Unfortunately, all

known algorithms which calculate this estimator precisely require time doubly expo-

nential in the dimensionm of the matrix. A tractable approach for matrix completion

is based in convex relaxation of the rank minimization problem. The main idea is

to substitute rank by its convex envelope over the matrices with bounded spectral

norm. This convex envelope turns out to be the nuclear norm ‖M‖∗ of a matrix M

[13]. As a result, we define the estimator MN as the solution of the following convex

optimization problem:

MN = argmin{‖M‖∗ : M(ik, jk) = M∗(ik, jk)}

The following highly nontrivial result was proved originally by Candes and Tao

using an involved combinatorial argument [14]. The version stated here is an im-

provement due to Gross [29] with a great simplification of the proof. The ingenuity

of Gross argument lies in the use of non-commutative Bernstein inequalities to bound

certain stochastic error. The theorem shows that target matrices of “low coherence”

can be recovered exactly using the nuclear norm minimization algorithm provided

that the number of observed entries is of the order mr up to a log factor.

Theorem 1.1 (Candes and Tao [14], Gross [29]). Let ν be the coherence of the target

matrix M∗ with respect to the standard basis and C > 0 a numerical constant. If

n ≥ Cνrm log2(m), then MN = M∗ with probability at least 1−m−2.

4



1.1.2 Algorithmic considerations

A large amount of research has been devoted to develop improved algorithms for nu-

clear norm minimization and matrix completion. In [54], Recht, Fazel and Parrilo

posted the nuclear norm optimization problem as the following semidefinite program-

ing optimization problem,

min
M,W1,W2

trace(W1) + trace(W2)

subject to:

Ü
W1 M

MT W2

ê
� 0,

M(ik, jk) = M∗(ik, jk),

k = 1, . . . , n.

Although theoretically interesting, semidefinite programming has a complexity of

O(m6) for m × m-matrices, which is unbearable for large scale applications. This

has encouraged efforts to find more efficient algorithms that perform well in prac-

tice. In [10], Cai, Candes and Shen propose an iterative singular value thresholding

algorithm which does not require the rank to be specified and iteratively optimizes

an approximation of the nuclear-norm objective function. In [28], Goldfarb, Ma and

Wen analyze a fixed point continuation algorithm for nuclear norm minimization that

incorporates an approximate singular value decomposition procedure. In [61], Wen,

Yin and Zhang introduce a Low-Rank Matrix Fitting algorithm which fixes the rank

by explicitly writing the matrix in terms of its low-rank factors and uses an optimiza-

tion technique based on successive over-relaxation to minimize the error. In [50], Ngo

and Saad present an algorithm that re-interprets Low-rank Matrix Fitting as opti-

mization on the Grassmann manifold and then improves convergence by changing the

metric on the manifold and using conjugate gradients rather than standard gradient

descent. In [4], Balzano, Nowak, and Recht study a Grassmannian Rank-One Update

Subspace Estimation algorithm for tracking subspaces from highly incomplete obser-

vations with applications to matrix completion in the case where the observations

arrive on-line. In [16], Dai and Milenkovic design an optimization algorithm based

5



on the observation that matrix completion can be solved by searching for a column

space that matches the observations.

1.1.3 An example in image processing

Greyscale digital images are usually encoded as matrices where each entry represents

a pixel, and each entry value represents the intensity of the corresponding pixel. In

this section, to exemplify the power of matrix completion, we consider the problem of

recovering a grayscale digital image from some observations of its pixels. In figures 1

and 2, we present the matrix completion recovery results for two different 256× 256

images. Before sampling from the images, we restricted their rank to 40 using singular

value thresholding. The figures show both the mask and the recovered images for two

different cases, first for a mask containing half of the pixels and second for a mask

containing 30% of the pixels. For these examples, we implement the singular value

thresholding algorithm introduced by Cai, Candes and Shen in [10].

1.2 Noisy Matrix Completion

We proceed to consider the more realistic scenario where the observed entries of the

matrix are contaminated with additive zero mean noise [11, 12, 33, 40]. In this case,

we do not hope to recover the target matrix exactly, but instead we are interested in

designing a statistical estimator that approximates the target matrix accurately with

high probability. We measure the performance of an estimator by a norm of its error.

In the analysis of statistical estimators, we are interested in two kinds of results.

First, we are interested in finding lower bounds for the best possible error that any

estimator can achieve. Second, we are interested in designing estimators and measur-

ing their performance through probabilistic upper bounds on their error. Our final

goal is to design computationally tractable estimators with upper bounded error of

the same order given by the theoretical limitation imposed by the lower bound. We

exemplify this methodology in the analysis of an estimator for a matrix completion

6



(a) Original Lenna Image (b) Rank 40 Lenna image

(c) 50% masked Rank 40 image (d) Image recovered from 50%
mask

(e) 30% masked Rank 40 image (f) Image recovered from 30%
mask

Figure 1: Recovering Lenna through low-rank matrix completion
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(a) Original Fabio Image (b) Rank 40 Fabio Image

(c) 50% masked Rank 40 image (d) Image recovered from 50%
mask

(e) 30% masked Rank 40 image (f) Image recovered from 30%
mask

Figure 2: Recovering Fabio through low-rank matrix completion
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problem with observations contaminated with additive gaussian noise.

1.2.1 Lower bounds for noisy low-rank matrix completion

To be precise, we consider the problem of estimating a matrix M∗ in the setM(r, a)

of real-valued r-rank m×m matrices with entries bounded by a. To solve this task,

we have access to noisy observations of its entries yk = M∗(ik, jk) + ηk, k = 1, . . . , n,

where ηk, k = 1, . . . , n are independent zero-mean Gaussian random variables with

variance σ2.

In this scenario, by standard techniques in the analysis of non-parametric estima-

tors, we can prove the following lower bound on the Frobenious norm error,

Theorem 1.2 (Koltchinskii, Lounici, Tsybakov [40]). If n ≥ rm, then the following

bound holds for absolute constants β ∈ (0, 1) and c > 0,

inf
M̂

sup
M∗∈M(r,a)

PM∗
Ç

1

m2
‖M∗ − M̂‖2

F > c(σ ∧ a)2mr

n

å
≥ β

where infM̂ denotes the infimum over all estimators M̂ with values in Rm×m, PM∗

denotes the probability of the observations given that the objective matrix is M∗.

Proof. The proof is based on classical lower bounds for non-parametric estimators

using Kullback-Leibler divergence. We define the Kullback-Leibler divergence of dis-

tributions P and Q, with P absolutely continuous with respect to Q (denoted by

P � Q), as

K(P‖Q) := EP log

Ç
dP

dQ

å
where dP

dQ
denotes the Radon-Nikodym derivate of P with respect to Q, and EP

denotes expected value with respect to distribution P . The proof follows from an

application of theorem 2.7 in [59]. Here, we present a version of the theorem adapted

for the case of matrix completion problems,

Theorem 1.3. If there exists M0, . . . ,ML matrices in a subset M satisfying the

following conditions,

9



1. Each distribution PMi
is absolutely continuous with respect to PM0 .

2. The following inequality holds

1

L

L∑
l=1

K(PMl
‖PM0) ≤ 1

4
log(L)

3. There is an s > 0 such that ‖Mi −Mj‖2
F ≥ s, for each i 6= j, i, j = 0, . . . , L.

then

inf
M̂

sup
M∗∈M

PM∗
Ä
‖M∗ − M̂‖2

F > c · s
ä
≥ β

where c > 0 and β > 0 are absolute constants.

We proceed by finding an appropriate collection of matrices satisfying the con-

ditions of the theorem. Let M̃k be the collection of m × r-matrices with entries

+k and −k, where k > 0 is a real number that we will pick later. Due to the

Varshamov-Gilbert bound (see lemma 2.7 in [59]), there is a subset M̆k ⊆ M̃k such

that |M̆k| = 2rm/8 and two different matrices have at least rm/8 different elements.

Let M̂ be the set of m ×m-matrices formed by repeating a matrix M̆ ∈ M̆k or by

the zero m×m-matrix. To be precise, if M̂ ∈ M̂k then M̂ is either the zero matrix

or it has the form:

M̂ =
Ä
M̆ | . . . |M̆︸ ︷︷ ︸
bm
r
c-times

|Om,m−rbm
r
c
ä

where M̆ is a matrix on M̆k, and Om1,m2 is the zero m1×m2-matrix. By construction

each matrix in M̆ has rank r and entries bounded by k, and therefore M̆ is a finite

subset ofM(r, a) whenever k ≤ a.

Let M0 be the zero m ×m-matrix. Taking into account that η1, . . . , ηn are i.i.d

zero mean gaussian random variables with variance σ2, we conclude that for each

nonzero matrix M̆ in M̆, PM0 � PM̆ and moreover

K(PM0‖PM̆) =
n

2σ2m2
‖M̆‖2

F =
n

2σ2m2
k2
õm
r

û
rm

10



Therefore, to satisfy condition 2 in theorem 1.3, we have to pick k satisfying,

n

2σ2m2
k2
õm
r

û
rm ≤ 1

4
log(2rm/8) =

log(2)

4

rm

8
(2)

Finally, note that if M̆ and M̆ ′ are matrices in M̆, then

‖M̆ − M̆ ′‖2
F ≥ k2|{i, j : M̆(i, j) 6= M̆ ′(i, j)}|

≥ k2
õm
r

û rm
8
≥ c
Å

(σ ∧ a)2mr

n
m2
ã

where c is an absolute constant, and in the last inequality we picked a k smaller than

a and satisfying (2). Having checked all the conditions in theorem 1.3, we conclude

the result as stated.

1.2.2 Upper bound for noisy low-rank matrix completion

In the noisy case, we cannot recover the objective matrixM∗ perfectly and we are faced

with the task of finding a computationally tractable estimator with a performance

close to this theoretical lower bound. We begin with the following estimator

M̆ =
m2

n

m∑
k=1

yk(eik ⊗ ejk)

where {e1, . . . , em} is the standard basis on Rm×m. Note that EM̆ = M∗. Although

this estimator performs poorly when we measure its error in Frobenius norm, we can

bound its spectral norm error using bounds on the sum of random matrices.

Theorem 1.4. Assume that η1, . . . , ηn are i.i.d gaussian random variables with vari-

ance σ2 and that M∗ belongs toM(a, r). For every t > 0, tm := (t+log(2m)) log(m),

n ≥ mtm, the following bound holds with probability at least 1− 3e−t,

‖M̆ −M∗‖ ≤ 6m2(σ ∨ a)

 
tm
mn

(3)
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Proof. From the definition of M̆ and yk, we conclude

‖M̆ −M∗‖ =

∥∥∥∥∥∥m
2

n

n∑
k=1

[M∗(ik, jk)(ei ⊗ ej) + ηk(ei ⊗ ej)]−M∗

∥∥∥∥∥∥
≤ m2

∥∥∥∥∥∥ 1

n

n∑
k=1

ñ
M∗(ik, jk)(eik ⊗ ejk)−

1

m2
M∗

ô∥∥∥∥∥∥
+m2

∥∥∥∥∥∥ 1

n

n∑
k=1

ηk[(eik ⊗ ejk)− E(eik ⊗ ejk)]
∥∥∥∥∥∥+m2

∥∥∥∥∥∥ 1

n

n∑
k=1

ηkE(eik ⊗ ejk)
∥∥∥∥∥∥

= m2‖Ξ1‖+m2‖Ξ2‖+m2‖Ξ3‖ ≤ 3m2[‖Ξ1‖ ∨ ‖Ξ2‖ ∨ ‖Ξ3‖]

where

Ξ1 :=
1

n

n∑
k=1

ñ
M∗(ik, jk)(eik ⊗ ejk)−

1

m2
M∗

ô
, Ξ2 :=

1

n

n∑
k=1

ηk(eik ⊗ ejk).

Ξ3 :=
1

n

n∑
k=1

ηkE(eik ⊗ ejk)

We proceed to bound ‖Ξ1‖, ‖Ξ2‖ and ‖Ξ3‖. We bound ‖Ξ1‖ using the following

bounds on the spectral norm of sums of bounded random matrices [58]:

Lemma 1.5 (Non-commutative Bernstein inequality with bounded entries). Let

Z1, . . . , Zn be i.i.d m × m random matrices with EZk = 0, σ2
Z := ‖EZT

k Zk‖ and

‖Zk‖ ≤ U for some U > 0. Then for all t > 0, with probability at least 1− et,∥∥∥∥∥ 1

n

n∑
i=1

Zi

∥∥∥∥∥ ≤ 2

Ñ
σZ

√
t+ log(2m)

n

∨
U
t+ log(2m)

n

é
For the random matrices Zk := M∗(ik, jk)(eik ⊗ ejk) − 1

m2M∗, i = 1, . . . , n, we

can easily check EZk = 0, ‖EZT
k Zk‖ ≤ 2a2/m, and ‖Zk‖ ≤ a; and therefore, by the

lemma we conclude that, for each t > 0, with probability at least 1− et,

‖Ξ1‖ ≤ 2a

Ñ√
2(t+ log(2m))

mn

∨ t+ log(2m)

n

é
We bound ‖Ξ2‖ using the following bound on the spectral norm of sum of sub-

exponential random matrices,

Lemma 1.6 (Non-commutative Bernstain inequality with bounded moments). Let

W1, . . . ,Wn be i.i.d m ×m random matrices with EWk = 0 and σ2
W := ‖EW T

k Wk‖.

12



Suppose that,

ϕα(Wk) := inf{u > 0 : E exp(‖Wk‖α)/uα ≤ 2} ≤ Uα

for some α ≥ 1. Then for all t > 0, with probability at least 1− et,∥∥∥∥∥ 1

n

n∑
i=1

Zi

∥∥∥∥∥ ≤ 2

Ñ
σW

√
t+ log(2m)

n

∨
Uα

Ç
log

Uα
σW

å1/α t+ log(2m)

n

é
We apply this result to the random matrices Wk := ηk[(eik ⊗ ejk)− E(eik ⊗ ejk)].

A standard calculation shows that EWk = 0 and that ‖EW T
k Wk‖ ≤ 2σ2/m =: σW .

Moreover, note that ‖Wk‖ ≤ |ηk|, and thus ϕ2(Wk) ≤ σ =: U2. Applying the lemma,

we conclude that, for each t > 0, with probability at least 1− e−t,

‖Ξ2‖ ≤ 2σ

Ñ√
2(t+ log(2m))

nm

∨ (t+ log(2m))
»

log(m)

n

é
We wound Ξ3 by noticing that,

‖Ξ3‖ =

∥∥∥∥∥∥ 1

n

n∑
k=1

ηkE(eik ⊗ ejk)
∥∥∥∥∥∥ ≤

 
1

m

∣∣∣∣∣∣ 1n
n∑
k=1

ηk

∣∣∣∣∣∣ (4)

and since ηk are zero mean normally distributed random variables with parameter

σ, we conclude that, for every t > 0, with probability at least 1− e−t, ‖Ξ3‖ ≤
»

t
nm

.

The result follows by combining the probabilistic bounds on ‖Ξ1‖, ‖Ξ2‖ and ‖Ξ3‖

using the union bound, and by simplifying the resulting expression by taking into

account that n ≥ mtm.

Our goal is to find an estimator with Frobenius norm error comparable to the

bound given by theorem 1.2. To achieve that, we construct a second estimator based

on either hard or soft thresholding of the singular values of the unbiased estimator M̆

[15, 19, 35]. LetM be a matrix with singular value decompositionM =
∑m
k=1 σk(uk⊗

vk), and let σ∗ > 0 be a constant. We consider the matrices Mh
σ∗ and M

s
σ∗ obtained

by hard and soft truncation of the singular values of M with threshold σ∗:

Mh
σ∗ =

∑
{k:σk>σ∗}

σk(uk ⊗ vk),

M s
σ∗ =

∑
{k:σk>σ∗}

(σk − σ∗)(uk ⊗ vk).
(5)

13



As a consequence of the celebrated Young-Eckart theorem [20], the hard-thresholding

matrix Mh
σ∗ is a solution of the following rank minimization problem,

Mh
σ∗ = argmin

N∈Cm1×m2

1

2
‖M −N‖2

F + σ∗ rank(N)

Similarly, the soft-thresholding matrixM s
σ∗ is the solution of the following nuclear

norm minimization problem (For a proof, see lemma 1.14)

M s
σ∗ = argmin

N∈Cm1×m2

1

2
‖M −N‖2

F + σ∗‖N‖∗

These optimization problems suggest that truncation of singular values might be

used to solve low-rank matrix completion. In fact, using matrix perturbation theory,

we study the hard-thresholding estimator M̆h
σ∗ and the soft-thresholding estimator

M̆ s
σ∗ . First, we prove an upper bound for the Frobenius norm error depending on

the nuclear norm of the target matrix M∗. Since the dependance on the number of

samples is of the order 1/
√
n, we refer to this kind of bound as a slow rate bound.

To be precise, let us consider the following theorem.

Theorem 1.7. For each t > 0, tm := (t + log(2m)) log(m), n ≥ mtm, and σ∗ :=

2.02(σ ∨ a)2m2
»

tm
nm

. The following bound holds, with probability at least 1− 3e−t

1

m2
‖M̆σ∗ −M∗‖2

F ≤ C(σ ∨ a)

 
tm
nm
‖M∗‖∗

where M̆σ∗ is either the hard-thresholding estimator M̆h
σ∗ or the soft-thresholding

estimator M̆ s
σ∗ .

Proof. The core of the theorem lies on the following perturbation theory inequality

(for a proof of this perturbation inequality, see theorem 8.1 in [15]),

Lemma 1.8. For any pair of m ×m matrices A and B, for σ∗ := (1 + δ)‖A−B‖,

and for any δ > 0.004, there is an universal constant C such that,

‖Aσ∗ −B‖2
F ≤ C(1 + δ)‖A−B‖‖B‖∗

14



where Aσ∗ is either the hard thresholding matrix Ahσ∗ or the soft thresholding matrix

Asσ∗ .

Define δ by the following relation

(1 + δ)‖M̆σ∗ −M∗‖ = 6.06m2(σ ∨ a)

 
tm
mn

Note that, when n ≥ mtm, theorem 1.4 implies ‖M̆−M∗‖ ≤ 6m2(σ∨a)
»

tm
mn

with

probability at least 1− 3e−t. Thus,

(1 + δ) =
6.06m2(σ ∨ a)

»
tm
mn

‖M̆σ∗ −M∗‖
≥

6.06m2(σ ∨ a)
»

tm
mn

6m2(σ ∨ a)
»

tm
mn

= 0.01

Therefore δ ≥ 0.004, and by lemma 1.8 with A = M̆ and B = M∗, we conclude,

‖M̆σ∗ −M∗‖2
F ≤ C(1 + δ)‖M̆ −M∗‖‖M∗‖∗

= 6.06Cm2(σ ∨ a)

 
tm
mn
‖M∗‖∗

Similarly, we prove an upper bound on the Frobenius norm error depending on

the rank of the target matrix M∗. This upper bound matches the lower bound given

by theorem 1.2. Since the dependance on the number of samples is of the order 1/n,

we refer to this type of bound as a fast rate bound. To be precise, let us consider the

following theorem.

Theorem 1.9. There is an absolute constant C, such that for each t > 0, tm :=

(t + log(2m)) log(m), n ≥ mtm, and σ∗ := 6m2(σ ∨ a)
»

tm
nm

; the following bound

holds, with probability at least 1− 3e−t

1

m2
‖M̆σ∗ −M∗‖2

F ≤ C(σ ∨ a)2mtm
n

rank(M∗)

where M̆σ∗ is either the hard-thresholding estimator M̆h
σ∗ or the soft-thresholding

estimator M̆ s
σ∗ .

15



Proof. Note that,

‖M̆σ∗ −M∗‖2
F ≤ ‖M̆σ∗ −M∗‖2 rank(M̆σ∗ −M∗)

≤ (‖M̆σ∗ − M̆‖+ ‖M̆ −M∗‖)2 rank(M̆σ∗ −M∗)

≤
(

12m2(σ ∨ a)

 
tm
nm

)2

rank(M̆σ∗ −M∗)

= Cm2(σ ∨ a)2mtm
n

rank(M̆σ∗ −M∗)

where the last inequality holds with probability 1 − 3e−t by theorem 1.4 and by the

definition of M̆ . To bound the rank of M̆σ∗ −M∗, we rely on the following classical

lemma in perturbation theory (The proof of the lemma follows from Lidskii’s theorem

[8]),

Lemma 1.10. For any pair of m × m matrices A and B, the following inequality

holds,

max
k=1,...,m

|σk(A)− σk(B)| ≤ ‖A−B‖

where σk(A) and σk(B) are the singular values of A and B respectively in non in-

creasing order.

By this lemma, if σk(M∗) = 0, then |σk(M̆)| ≤ ‖M̆ −M∗‖ ≤ 6m2(σ ∨ a)
»

tm
mn

,

which implies σk(M̆σ∗) = 0. As a consequence, rank(M̆σ) ≤ rank(M∗). Therefore,

rank(M̆σ∗ −M∗) ≤ rank(M̆σ∗) + rank(M∗) ≤ 2 rank(M∗), and the result follows.

1.3 Trace regression model and matrix LASSO

The study of matrix completion problems has been heavily influenced by the research

on compressed sensing and sparse recovery. Let us consider the problem of recovering

a vector s∗ ∈ Rm based on random observations (x1, y1), . . . , (xn, yn) where xk ∈ Rm,

k = 1, . . . ,m, are random measurement vectors, and yk, k = 1, . . . , n are random

variables satisfying E(yk|xk) = xTk s∗. We are interested in the case where the target

vector s∗ is sparse or it can be well approximated by a sparse vector. The support
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of a vector s is the set of coordinates where s is different from zero. We measure the

sparseness of a vector s by its `0-“norm”, defined as the size of its support ‖s‖`0 :=

|{k ∈ [m] : s(k) 6= 0}|. We define the `1-norm of s as ‖s‖`1 :=
∑m
k=1 |s(k)|. We think

of the `1-norm as a convex approximation of the `0-“norm”.

Sparse recovery deals with this problem in the case where we cannot alter the

design of the measurement vectors xk ; while compressed sensing consider the case

where we can design the distribution of the measurement vectors xk. The least ab-

solute shrinkage and selection operator (LASSO) [57], a classic estimator for sparse

recovery, estimates s∗ as the solution of the following regularized least-squares prob-

lem:

ŝ = argmin
s∈Rm

n∑
k=1

(yk − xTk s)2 + ε‖s‖`1 (6)

where ε > 0 is a regularization parameter. In this optimization procedure, we would

prefer to penalize using the `0-norm, that is the number of nonzero entries of vector

s. Similarly to rank minimization, this problem is NP-hard, and therefore we relax it

to an `1-norm minimization problem.

1.3.1 Trace regression model

In this section we consider a generalization of this estimation procedure for matrices.

Let us consider the problem of estimating an m×m matrixM∗ based on observations

(X1, y1), . . . , (Xn, yn) where Xk, k = 1, . . . , n is an m ×m random matrix with dis-

tribution Πk, and yk, k = 1, . . . , n is a random variable satisfying the trace regression

model, that is,

E(yk|Xk) = 〈M∗, Xk〉, k = 1, . . . , n

In this context, we refer to the matrices Xk, k = 1, . . . , n as design matrices and

to the observations Yk, k = 1, . . . , n as the response variables. It is often convenient

to express the response variables as yk = 〈M∗, Xk〉 + ηk, k = 1, . . . , n, where ηk :=

yk − E(yk|Xk) are zero mean random variables representing noise.
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Let Π be the average distribution of the design matrices, that is, Π = 1
n

∑n
k=1 Πk,

we introduce the design dependent inner product and its induced norm,

〈M,N〉L2(Π) :=
1

n

n∑
k=1

E〈M,Xk〉〈N,Xk〉, ‖M‖2
L2(Π) := 〈M,M〉L2(Π)

As exemplified below; in the trace regression framework, we can model matrix

completion, point masks, complete subgaussian designs and fixed design among other

matrix estimation problems.

Example (Matrix Completion). We recover the matrix completion scenario when the

design matrices Xi are i.i.d copies from a random matrix X with distribution Π on

the set

X = {ei ⊗ ej ∈ Cm×m : 1 ≤ i, j ≤ m}.

where ek, k = 1, . . . ,m are the vectors of the canonical basis in Rm. When Π is the

uniform distribution, we recover the widely study uniform sampling matrix completion

scenario. It is possible to consider even more general matrix measurement models in

which, for a given orthonormal basis in the space of matrices, a random sample of

Fourier coefficients of the target matrix M∗ is observed subject to a random noise.

Example (Collaborative sampling). As in matrix completion, in collaborative sam-

pling, the design matrices Xi are sampled from the set

X = {ei ⊗ ej ∈ Cm×m : 1 ≤ i, j ≤ m}.

but the each sampled matrix is different than the previous one. Therefore, the distri-

butions Πk, k = 1, . . . , n are not independent.

Example (Point masks). Instead of sampling from only one entry of the matrix, we

can consider the case where we observe averages of a group of entries. To be precise,

consider the case where the design matrices are sampled from the set

X =

{
K∑
k=1

ei ⊗ ej ∈ Cm×m : 1 ≤ i, j ≤ m

}
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where K is a typically small number. Clearly, when K = 1, this case reduces to the

matrix completion case.

Example (Column masks). In the column mask scenario, we consider the design

matrices Xk as i.i.d. copies of a random matrix X, which has only one nonzero

column. For instance, let the distribution of X be such that all the columns have

equal probability to be non-zero, and the random entries of non-zero column x(j)

are such that E(x(j)x(j)T ) is the identity matrix. In multitask learning, one can

be interested in considering non-identically distributed Xk. The model can be then

reformulated as a longitudinal regression model, with different distributions of Xk

corresponding to different tasks [55].

Example (“Complete” subgaussian design). In the complete subgaussian scenario,

we assume that the design matrices Xk are i.i.d. copies of a random matrix X such

that 〈M,X〉 is a subgaussian random variable for any matrix M . This approach has

its roots in compressed sensing. The two major examples are given by the matrices

X whose entries are either i.i.d. standard Gaussian or Rademacher random variables.

Example (Fixed design). We can model the case of non-random design matrices by

setting all the Πk, k = 1, . . . , n as Dirac measures. In particular, when M∗ and Xk,

k = 1, . . . , n, are diagonal matrices, the trace regression model becomes the usual

linear regression model. In that case, the rank of M∗ becomes the number of its

non-zero diagonal elements. This observation allows us to study the usual LASSO in

sparse linear regression with fixed design.

1.3.2 Matrix LASSO

In the case where matrixM∗ is low rank or it can be well approximated by a low rank

matrix, we consider the following matrix LASSO estimator

M̂ := M̂(ε;M) := argmin
M∈M

1

n

n∑
k=1

(yk − 〈Xk,M〉)2 + ε‖M‖∗ (7)
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where ε > 0 is a regularization parameter andM is a convex domain in the space of

m×m matrices. The matrix LASSO estimator has been studied by several authors

under different conditions on the target and design matrices. In [45], Ma, Goldfarb

and Chen introduce the matrix LASSO and develop algorithms to solve it efficiently

using fixed point continuation. In [12], Candes and Plan derive oracle inequalities for

the matrix LASSO using a matrix version of the restricted isometry conditions used in

the analysis of standard LASSO. In [55], Rohde and Tsybakov develop non-asymptotic

upper bounds for a general version of matrix LASSO where the regularization term

is given by Shatten-p norms. In [47], Negahban and Wainwright analyze the matrix

LASSO for the case where the target matrix is low-rank and non-spiky. In [40],

Koltchinskii, Lounici and Tsybakov exploit the knowledge of the design distributions

to derive lower and upper bounds for a linearized version of the matrix LASSO. In

[39], Koltchinskii develops tight oracle inequalities for a general version of the matrix

LASSO with a quadratic-type loss function. In [36], Klopp derives upper bounds for

the case where the optimization domain is the set of matrices with bounded entries.

As an example of the performance of matrix LASSO, let us consider the case

of matrix completion under uniform sampling where the response variables are con-

taminated by zero mean gaussian noise with variance σ2. Let us assume that the

target matrix M∗ belongs to the setM(a, r) of m×m matrices of rank r and entries

bounded by a constant a. The following theorem, proved by Klopp in [36], shows

that with a proper choice of the regularization parameter ε, and a proper choice of

the optimization domain, matrix LASSO achieves optimal rates up to log factors.

Theorem 1.11 (Klopp [36]). For t > 0, tm := t + log(2m), n ≥ mtm and ε = 4(σ ∨

a)
»

tm
mn

, the following bound holds for the estimator M̂(ε;Ma) = M̂ , with probability

1− e−t,
1

m2
‖M̂ −M∗‖2

F ≤ C(a ∨ σ)2mtm
n

rank(M∗)

whereMa is the convex set of m×m matrices with entries bounded by a, and C is
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an absolute constant.

1.3.3 Linearized matrix LASSO

In [40], Koltchinskii, Lounici and Tsybakov present the following linearized version

of matrix LASSO for the case where the design distributions Πk, k = 1, . . . , n are

known,

M̃ε := M̃ := argmin
M∈M

‖M‖2
L2(Π) +

2

n

n∑
k=1

〈ykXk,M〉+ ε‖M‖∗ (8)

where Π = 1
n

∑n
k=1 Πk, and ε ≥ 0 is a regularization parameter. We define the

stochastic matrix Ξ as follows,

Ξ =
1

n

n∑
k=1

(ykXk − E(ykXk))

The following oracle inequality holds under the assumptions that M is a convex

set, and that there is a constant µ > 0 such that ‖M‖2
L2(Π) ≥ µ−2‖M‖F , for each

M ∈M−M := {M1 −M2 : M1 ∈M,M2 ∈M},

Theorem 1.12 (Koltchinskii, Lounici, Tsybakov [40]). If ε ≥ 2‖Ξ‖, then

‖M̃ −M∗‖L2(Π) ≤ inf
M∈M

î
‖M −M∗‖L2(Π) + Cµ2ε2 rank(M)

ó
where C is an absolute constant.

In the case of matrix completion under uniform sampling, the design matrix Xk

is equal to eik ⊗ ejk , where ik and jk are indexes chosen independently uniformly

at random from {1, . . . ,m}. As a consequence, ‖M‖2
L2(Π) = m−2‖M‖2

F , and the

linearized matrix LASSO estimator reduces to

M̃ε = argmin
M∈M

1

m2

[
‖M‖2

F + 2

〈
m2

n

n∑
k=1

yk(eik ⊗ ejk),M
〉]

+ ε‖M‖∗

= argmin
M∈M

î
‖M‖2

F + 2
¨
M̆,M

∂ó
+m2ε‖M‖∗

= argmin
M∈M

‖M − M̆‖2
F +m2ε‖M‖∗
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where M̆ is the unbiased estimator introduced in section 1.2.2. The solution to

this optimization problem is the soft-thresholding estimator M̆ s
2m2ε.

Note that, in this case, the stochastic matrix Ξ is equal to 1
m2 (M̆−M). When the

response variables are contaminated by zero mean gaussian noise with variance σ2 and

the target matrix has entries bounded by a, for each t > 0, tm := (t+log(2m)) log(m)

and n > mtm, we obtain the following bound on the stochastic error ‖Ξ‖ using bounds

on the spectral norm of the sum of random matrices (compare to theorem 1.4),

‖Ξ‖ ≤ 6(σ ∨ a)

 
tm
mn

We can apply theorem 1.12 to derive an optimal (up to log factors) oracle inequal-

ity for the linearized LASSO estimator,

Theorem 1.13. For t > 0, tm = (t + log(2m)) log(m), n ≥ mtm, ε = 12(σ ∨ a)
»

tm
mn

and an arbitrary matrix M , the following bound holds for the estimator M̃ε = M̃ ,

with probability 1− e−t,

1

m2
‖M̃ −M∗‖2

F ≤
1

m2
‖M −M∗‖2

F + C(a ∨ σ)2mtm
n

rank(M)

where C is an absolute constant.

1.4 Proximal Algorithms

The LASSO, the matrix LASSO, and the linearized matrix LASSO estimators are

well-structured convex optimization problems that can be solved in a theoretically

efficient fashion by using polynomial-time interior point methods [37, 42, 24, 44].

Nevertheless, the time complexity of interior point methods has cubic dependence

on the dimension of the problem. Since most applications lead to extremely large-

scale problems, this cubic dependance makes interior point methods impractical. In

contrast, we consider proximal methods that, when properly designed, lead to nearly

dimension-independent rates of convergence [51, 49, 43, 3]. The main disadvantage of
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proximal methods is that their rate of convergence is only sub-linear with inaccuracy

tending to zero with the number of iterations k at a rate of O(1/k2) at best, or even

O(1/k). However, in the majority of applications of nuclear norm minimization, we

are only interested in medium-accuracy solutions, and therefore, the relatively slow

convergence of proximal methods is compensated by the insensitivity to problem size.

1.4.1 Proximal operator

Let f : Rd → R ∪ {∞} be a proper closed convex function; that is a function f with

an epigraph epi(f) := {(x, y) ∈ Rd × R : f(x) ≤ t} is a nonempty closed convex set.

We define the proximal operator proxf : Rd → R of a proper closed convex function

f by

proxf (x) = argmin
z∈Rd

ñ
f(z) +

1

2
‖z − x‖2

2

ô
(9)

where ‖ · ‖2 is the standard euclidean norm of Rd. Note that proximity operator is

well defined, since the objective function in (10) is a proper strictly convex function,

and therefore there is a unique minimizer for every x ∈ Rd. For a parameter λ > 0,

we often consider the proximal operator of the scaled function λf , which can be

expressed as

proxλf (x) = argmin
z∈Rd

ñ
f(x) +

1

2λ
‖z − x‖2

2

ô
(10)

An useful property of the proximity operator is that a point x∗ ∈ Rd minimizes a

proper strictly convex function f : Rd → R if and only if x∗ = proxf (x∗). Therefore,

one can minimize f by finding fixed points of proxf . A convex function f is called

strongly convex when for all x1, x2 ∈ Rd, the following inequality holds for each

t ∈ (0, 1)

f(tx1 + (1− t)x2) ≤ tf(t) + (1− t)f(t)− 1

2
t(1− t)‖x1 − x2‖2

2

When f is strongly convex, the operator proxf turns out to be a contraction, that is

a Lipschitz continuous operator with constant less than 1, and therefore repeatedly
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applying proxf finds a fixed point. For general convex functions, proxf is not nec-

essarily a contraction, but it always is a firm non-expansive operator ; that is, proxf

satisfies the following inequality for all x1, x2 ∈ Rd

‖ proxf (x1)− proxf (x2)‖2
2 ≤ (x1 − x2)T (proxf (x1)− proxf (x2))

Firm non expansive operators are sufficient for fixed point iterations. Thus, the

so-called proximal point algorithm, defined by the following iterative procedure, will

converge whenever a minimizer exists,

xk+1 := proxλf xk

1.4.2 Proximal gradient method

We are interested in solving optimization problems of the form

x∗ = argmin
x∈Rd

f(x) + g(x) (11)

where f : Rd → R and g : Rd → R ∪ {∞} are closed proper convex functions,

and moreover f is differentiable. Note that we can use g to encode constrains, since

it takes values on the extended real line. The proximal gradient method uses the

following iteration,

xk+1 := proxλkg(xk − λk∇f(xk))

where λk is a step size. For this procedure, we can guarantee a rate of convergence

of O(1/k), when the step size is chosen as a constant λk = λ ∈ (0, 2L], where L is

the Lipschitz constant of ∇f . In practical scenarios, the step size is found in each

step by line search. Table 1 shows a pseudocode for the proximal method where the

parameter λ is chosen iteratively using a backtracking algorithm proposed in [6].

1.4.3 Accelerated proximal gradient method

By including an extrapolation step in the iteration of the proximal gradient method,

we are able to improve its rate of convergence. For a simple version of this idea, let
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Table 1: Proximal algorithm with backtracking

Inputs: A convex and differentiable function f : Rd → R, a convex function
g : Rd → R, an initial point x0, a initial step size λ0, and a line search
parameter β ∈ (0, 1).

Initialize k := 0 and λ := λ0.

Repeat until a stoping criteria is satisfied.

Set z := proxλg(xk − λ∇f(xk)).

If f(z) +∇f(xk)
T (xk − z) < f(xk) + 1

λ
‖xk − z‖2

2.

Update k ← k + 1 and λ← λ0.
Set xk := z.

Update λ← βλ.

Output: A near optimal solution xk to (11) satisfying ‖xk − x∗‖2
2 = O(1/k).

us consider the following iteration,

yk+1 := xk + ωk(xk − xk−1)

xk+1 := proxλkg(yk+1 − λk∇f(yk+1))

where ωk is an extrapolation, and λk ∈ [0, 1) is the usual step size. The extrapolation

parameter can be chosen as ωk := k/(k + 3), while the step size can be chosen as

a constant λk = λ ∈ (0, L], where L is the Lipschitz constant of ∇f . In practical

scenarios, the step size can be found in each step by line search. By choosing a

proper choice of the parameters, we can achieve an “accelerated” rate of convergence

of O(1/k2). Nesterov coined the term accelerated first order method because it has a

worst-case convergence rate that is superior to the standard methods and that cannot

be improved further [48]. Table 2 shows a pseudocode for the accelerated proximal

algorithm where the step size is picked via sidetracking [6].
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Table 2: Accelerated proximal algorithm with backtracking

Inputs: A convex and differentiable function f : Rd → R, a convex function
g : Rd → R, an initial point x0, an initial step size λ0, and a line search
parameter β ∈ (0, 1).

Initialize k := 0, λ := λ0 and y0 := x0.

Repeat until a stoping criteria is satisfied.

Set ωk := k
k+3

.

Set yk := xk + ωk(xk − xk−1).

Set z := proxλg(yk − λ∇f(yk)).

If f(z) +∇f(yk)
T (yk − z) < f(yk) + 1

λ
‖yk − z‖2

2.

Update k ← k + 1 and λ← λ0

Set xk := z.

Update λ← βλ.

Output: A near optimal solution xk to (11) satisfying ‖xk − x∗‖2
2 = O(1/k2).
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1.4.4 An accelerated proximal gradient algorithm for matrix LASSO

The matrix LASSO estimator falls into the category of non-smooth convex opti-

mization problems that we can solve by proximal gradient and accelerated proximal

gradient algorithms. We consider the space of m × m real valued matrices as the

euclidean space Rm×m, and we choose f : Rm×m → R and g : Rm×m → R in (11) as

follows:

f(M) :=
1

n

n∑
k=1

(yk − 〈Xk,M〉)2, g(M) := ε‖M‖∗.

The following lemma provides us with an efficient method to calculate the proximal

operator of the nuclear norm.

Lemma 1.14. For any m ×m real-valued matrix M , and every positive number τ ,

the following holds,

proxτ‖·‖∗(M) := argmin
N∈M

1

2
‖N −M‖2

F + τ‖N‖∗ = M s
τ (12)

where M s
τ is the soft-thresholding matrix defined in (5).

Proof. We define the sub-differential ∂f(x) of a convex function f : Rd → R at a

point x ∈ Rd as the set,

∂f(x) := {z ∈ Rd : zT (y − x) ≤ f(y)− f(x),∀y ∈ Rd}

A sub-gradient of f at x is a vector z ∈ ∂f(x). A vector x̂ ∈ Rd minimizes f if and

only if 0 is a sub-gradient of f at the vector x̂. We proceed to prove that 0 is a sub

gradient of the strictly convex function hτ,M : N ∈ Rm×m 7→ 1
2
‖N−M‖2

F +τ‖N‖∗ ∈ R

at the matrix M s
τ .

Let M =
∑m
k=1 σk(uk ⊗ vk) be the singular value decomposition of M and thus,

by definition, M s
τ =

∑
σk>τ (σk− τ)(uk⊗ vk). On one hand, any sub-gradient V of the

nuclear norm at M s
τ can be represented as (see [60])

V =
∑
σ>τ

(uk ⊗ vk) +W
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where W ∈ Rm×m satisfies

‖W‖ ≤ 1,
∑

{j:σi>τ}

∑
{i:σj>τ}

|〈W,ui ⊗ vj〉| = 0 (13)

On the other hand, any sub-gradient of hτ,M at M s
τ can be represented as M s

τ −

M + τV where V ∈ ∂‖M s
τ ‖∗. Therefore, if τ−1(M −M s

τ ) is a sub-gradient of the

nuclear norm at the point M s
τ , we would conclude that 0 ∈ ∂hτ,M(M s

τ ), and the

lemma will follows. Note that

1

τ
(M −M s

τ ) =
1

τ

(
r∑

k=1

σk(uk ⊗ vk)−
∑
σk>τ

(σk − τ)(uk ⊗ vk)
)

=
∑
σk>τ

(uk ⊗ vk) +
∑
σk≤τ

σk
τ

(uk ⊗ vk)

From standard algebraic calculations, we can check W =
∑
σk≤τ

σk
τ

(uk ⊗ vk) satisfies

the properties in (13), therefore τ−1(M −M s
τ ) is a sub-gradient of the nuclear norm

at M s
τ , and the result follows.

Now that we have a procedure to calculate the proximal operator of the nuclear

norm, we are in shape to solve the matrix LASSO optimization problem (7) using

the accelerated proximal algorithm with backtracking shown in table 2. To exemplify

this procedure, we revisit the problem of recovering a grayscale digital image from

some observations of its pixels. As before, we represent each image by a matrix with

entries between −1 and 1. Each observation consists of an index of the matrix chosen

uniformly at random, and the value of that index contaminated with zero mean

gaussian noise. The matrices representing the images are normalized to make their

entries between −1 and 1. We consider the same two images studied in section 1.1.3.

In figure 3, we present the recovered images using matrix LASSO under different

levels of noise.
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(a) Recovered Lenna. Standard
deviation of noise σ = 0.01

(b) Recovered Fabio. Standard
deviation of noise σ = 0.01

(c) Recovered Lenna. Standard
deviation of noise σ = 0.005

(d) Recovered Fabio. Standard
deviation of noise σ = 0.005

(e) Recovered Lenna. Standard
deviation of noise σ = 0.001

(f) Recovered Fabio. Standard
deviation of noise σ = 0.001

Figure 3: Recovering Lenna and Fabio using matrix LASSO from 30.000 samples
contaminated with gaussian noise with variance σ2
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Chapter II

LOW RANK ESTIMATION OF SIMILARITIES ON

GRAPHS

With the hope of increasing its connectivity, a social network site [9] commissions us

to develop a system for providing users with recommendations of people to invite into

their circle of friends. A social network ability to proliferate depends strongly on its

ability to provoke users to connect to each other, therefore, the problem of predicting

potential friendships accurately is highly important for its survival [30]. To solve this

problem, we base our strategy on predicting accurately the similarity between users.

With that idea in mind, our goal is to design an estimator for similarities based on two

kind of information: 1) The social network architecture, and 2) similarity information

between some random pairs of members in the network.

2.1 Modeling the problem

We model the social network architecture by a simple graph G = (V , E) where V is

a finite set of vertices representing users, and E is the set of edges representing links

between users. Let (U, V, Y ) ∈ V ×V ×{−1,+1} be a random triple, where U and V

are independent uniformly distributed vertices and Y is a label indicating the degree

of similarity between U and V . More precisely, Y = +1 indicates that the vertices U

and V are similar, while Y = −1 indicates that they are not. We refer to Y as the

similarity between U and V . The conditional distribution of the similarity Y given

U and V is completely characterized by the regression function

S∗(u, v) := E(Y |U = u, V = v), u, v ∈ V
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where S∗ is a real valued function on V × V such that S∗(u, v) = S∗(v, u) for all

u, v ∈ V . In what follows, we refer to this kind of functions as similarity kernels

over V . We usually identify the linear space of similarity kernels with the space of

real-valued symmetric matrices of dimension |V| and we denote it by SV .

Our goal is to find a predictor g for the similarity Y based on U and V . Namely,

a function g : V × V → {−1, 1} able to predict the similarity between two vertices u

and v correctly. We measure the performance of a predictor g by its generalization

error

P{Y 6= g(U, V )}

A Bayes classifier is a predictor that minimizes the generalization error. In the

setting of our problem, the Bayes classifier is given by the function that maps each

pair of vertices (u, v) to sign(S∗(u, v)). Therefore, the problem of finding a predictor

for Y based on U and V can be reduced to the problem of estimating S∗ as accurate

as possible.

We base our estimate of S∗ on training data (U1, V1, Y1), . . . , (Un, Vn, Yn) consisting

of n i.i.d. copies of (U, V, Y ). We consider situations where S∗ is a kernel of relatively

small rank that possesses some degree of “smoothness” on the graph. On one hand, we

justify the low-rank assumption by the belief that there are few underlying features

characterizing the behavior of similarities. While, on the other hand, we justify

the smoothness assumption by the belief that close vertices share some degree of

similarity.

2.2 Characterizing smoothness

A simple graph G is a pair (V , E) where V is an arbitrary set and E is a collection of

2-element subsets of V . The elements of V are called vetices, and the elements of E

are called edges. When a 2-element set {u, v} ⊆ V is an edge, we say that u and v are

neighbors and we write u ∼ v. The number of neighbors of a vertex u is called the
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degree of u and it is denoted by deg (u). We identify the space of real-valued functions

over V with the euclidean space RV endowed with the standard inner product 〈·, ·〉

and the euclidean norm ‖ · ‖. Note that we are using the same notation 〈·, ·〉 and

‖ · ‖ for the Hilbert-Schmidt inner product and for the spectral norm respectively. It

is our hope that this little abuse of notation will cause no confusion to the attentive

reader. We characterize the smoothness of a function f : V → R by its energy,

E 2(f) =
∑
u∼v
|f(u)− f(v)|2

In order to study the energy function E , we introduce the Laplacian ∆G of G,

∆G(u, v) = ∆(u, v) :=



deg (u) u = v

−1 u ∼ v

0 u 6∼ v

In this context, we are interested in the Laplacian because it induces a positive

semi-definite bilinear form. The induced seminorm calculates precisely the energy of

functions as defined before. In other words, the Laplacian induces a geometry on the

graph that is compatible with our measure of energy. To be precise,

〈f, g〉∆ := 〈f,∆g〉 = 〈∆1/2f,∆1/2g〉

‖f‖2
∆ := 〈f, f〉∆ = E 2(f)

We characterize the smoothness of a symmetric kernel S : V × V 7→ R in terms

of Sobolev type norms ‖∆p/2S‖2
F for some p > 0. Note that if S is a kernel of rank r

with spectral representation S =
∑r
k=1 µk(ψk ⊗ ψk), then

‖∆p/2S‖2
F = tr(∆p/2S2∆p/2) = tr(∆pS2)

=
r∑

k=1

µ2
k〈∆pψk, ψk〉 =

r∑
k=1

µ2
k‖∆p/2ψk‖2,

so, essentially, the smoothness of the kernel S depends on the smoothness of its

eigenfunctions ψk on the graph. In particular, for p = 1, we have

‖∆1/2S‖2
F =

r∑
k=1

µ2
k

∑
u∼v
|ψk(u)− ψk(v)|2,
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2.3 Estimation method

Without loss of generality, we assume that the vertex set of the graph V is the set of

the first m positive natural numbers [m] := {1, . . . ,m}. We begin with the following

estimator

S̆ =
m2

n

m∑
k=1

Yk(eUk ⊗ eVk)

where {e1, . . . , em} is the standard basis on Rm. Note that ES̆ = S∗. Although this

estimator performs poorly when we measure its error in Frobenius norm, for several

cases of interest, we can control its spectral norm error using bounds on the sum of

random matrices.

Given a kernel S, let Ln(S) denote the following penalized empirical risk:

Ln(S) :=
1

m2
‖S − S̆‖2

F + ε∗‖S‖∗ +
εF
m2
‖W 1/2S‖2

F
(14)

where W := ∆p for some constant p > 0, and for some regularization parameters ε∗

and εF > 0. We analyze the following extremum estimator:

Ŝ := argmin
S∈S

Ln(S), (15)

where S is a closed convex subset of the linear space SV of all symmetric kernels.

Note that there are two complexity penalties involved in the definition of penalized

empirical risk (14). The first penalty is based on the nuclear norm ‖S‖∗ and it is

used to “promote” low rank solutions. The second penalty is based on a “Sobolev

type norm” ‖W 1/2S‖2
F and it is used to “promote” the smoothness of the solution on

the graph. In principle, W in the definition of Ln(S) could be an arbitrary symmetric

positive semi-definite matrix. Therefore, alternative interpretations of the problem

under consideration are possible. For instance, we can design a matrix W to learn

similarities on weighted graphs or on Hilbert spaces.

Our goal is to derive an upper bound on the error ‖Ŝ − S∗‖2
F of estimator Ŝ in

terms of spectral characteristics of the target similarity kernel S∗ and the matrix W .
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2.4 Spectral characteristics of S∗ and W

2.4.1 Spectral properties of W

Suppose that W has the following spectral representation W =
∑m
k=1 λk(φk ⊗ φk),

where 0 ≤ λ1 ≤ · · · ≤ λm are the eigenvalues ofW (repeated with their multiplicities)

and φ1, . . . , φm are the corresponding orthonormal eigenfunctions (of course, there is

a multiple choice of φk in the case of repeated eigenvalues). Let k0 be the smallest k

such that λk > 0. We will assume that for some (arbitrarily large) ζ ≥ 1, λm ≤ mζ

and λk0 ≥ m−ζ . In addition, it is assumed that, for some constant c > 1 and for

all k = k0, . . . ,m − 1, λk+1 ≤ cλk. The following spectral function characterizes the

distribution of the eigenvalues:

F (λ;W ) = F (λ) :=
m∑
j=1

I(λj ≤ λ), λ ≥ 0.

Our goal is to express our bounds in terms of spectral function F ; nevertheless,

due to some technicalities in the proof, we rely on an upper bound F̄ (λ) ≥ F (λ) that

possesses some “regularity” in the sense that λ 7→ F̄ (λ)
λ

is a nonincreasing function

and, for some γ ∈ (0, 1),

∫ ∞
λ

F̄ (t)

t2
dt ≤ 1

γ

F̄ (λ)

λ
, λ > 0.

It is easy to see that the last two conditions are satisfied if λ 7→ F̄ (λ)
λ1−γ is a nonin-

creasing function and that the smallest upper bound on T with this property is

F̄ (λ) = sup
s≤λ

s1−γ sup
t≥s

F (t)

t1−γ
, λ ≥ 0.

Without loss of generality, we assume that, for all λ ≥ m, F̄ (λ) = m; otherwise,

F̄ can be replaced by the function F̄ ∧m.

2.4.2 Coherence function

Suppose now that the spectral representation of S∗ is S∗ =
∑r
k=1 µk(ψk ⊗ ψk), where

r = rank(S∗) ≥ 1, µk are non-zero eigenvalues of S∗ (possibly repeated) and ψk are
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the corresponding orthonormal eigenfuctions. Let L be the range of S∗ and PL the

orthogonal projection to L. The following function characterizes the relation between

kernels S∗ and W ,

k 7→
k∑
j=1

‖PLφj‖2

Ideally, we would like to express our bounds in terms of this function; nevertheless,

due to some technicalities in the proof, we rely in a surrogate function ϕ such that

k 7→ ϕ(k)
F̄ (λk)

is nonincreasing and

k∑
j=1

‖PLφj‖2 ≤ ϕ(k), k = 1, . . . ,m

It will be convenient to set ϕ(k) = ϕ(m) for all k ≥ m. We will denote by

Ψ = ΨS∗,W the class of all the functions satisfying these properties.

The following coherence function will be crucial in our analysis:

ϕ̄(k) := ϕ̄(S∗, k) := max
l≤k

F̄ (λl) max
j≥l

1

F̄ (λj)

k∑
j=1

‖PLφj‖2,

k = 1, . . . ,m, ϕ̄(0) = 0.

It is straightforward to check that ϕ̄ ∈ Ψ and, for all ϕ ∈ Ψ, ϕ̄(k) ≤ ϕ(k), k =

0, . . . ,m. Thus, ϕ̄ is the smallest function ϕ ∈ Ψ. Also, ϕ̄(m) = r since∑m
j=1 ‖PLφj‖2 =

‖PL‖2
F = r. Moreover, since ϕ̄(k)

F̄ (λk)
is nonincreasing, we have

ϕ̄(k) ≥ rF̄ (λk)

m
, k = 0, . . . ,m.

The coherence function ϕ̄ has some connection to the coherence constant used

in noiseless low rank matrix completion problems. To be specific, when ν is the

coherence of matrix S∗ with respect to the basis {φ1, . . . , φm}, the following bound

holds
k∑
j=1

‖PLφj‖2 ≤ νrF̄ (λk)

m
, k = 1, . . . ,m. (16)

and thus

ϕ̄(k) ≤ νrF̄ (λk)

m
, k = 1, . . . ,m.

which implies that condition (16) can be viewed as a weak version of low coherence.

35



2.4.3 Spectral characteristics on Erdős-Rényi graphs

We illustrate the spectral characteristics of W and S∗ on a problem of estimating

smooth kernels over random graphs. For this purpose, we draw a random graph from

the famous Erdős-Rényi model introduced independently by Edgar Gilbert [27], and

by Paul Erdős and Alfréd Rényi [21]. In this model, we construct a random graph by

including each possible edge at random with probability p ∈ [0, 1] independently from

every other edge. Equivalently, we consider the Erdős-Rényi model as a distribution

Gm,p over graphs on m vertices, where the probability of a graph G = ([m], E) is equal

to p|E|(1− p)(
m
2 )−|E|. For a statistical analysis of the spectrum of random graphs, see

[18, 23, 22, 5].

We estimate the spectral function F (λ; ∆) and its majorant F̄ (λ; ∆) where ∆ is

the Laplacian of a random graph G = ([m], E). In figure 4, we show the expected

value and confidence intervals for functions F and F̄ in the case where G is sampled

from Gm,p, for m = 100 and different values of p. Let us remember that our goal is to

find bounds in term of the spectral function F , but that due to technical reasons, we

rely on the surrogate function F̄ . This implies that our bounds will be tighter when F̄

is closer to F . In figure 5, we show F and F̄ in the same plot for a better comparison.

The smaller p is, the better F̄ approximates F . The reason of this behavior is the

spectral gap between the zero eigenvalue λ1, and the first positive eigenvalue λk0 .

Let G = ([m], E) be an Erdős-Rényi graph with Laplacian ∆ with spectral repre-

sentation ∆ =
∑m
k=1 λk(φk ⊗ φk). We construct a smooth and low-rank target kernel

S∗ over G by picking the parameters rB and rT in the following way,

S∗ = S∗(rB, rT ) :=
rB∑
k=1

(φk ⊗ φk) +
m∑

k=m−rT+1

λ−1
k (φk ⊗ φk)

Note that, if we chose rB < k0 and rT ≤ m − k0 + 1, then rank of S∗ is equal to

rank(S∗) = rB + rT , and the energy of S∗ is equal to ‖∆1/2S∗‖2
F = rT ,
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(a) F (λ) for p = 0.2
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(b) F̄ (λ) for p = 0.2
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(c) F (λ) for p = 0.5
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(d) F̄ (λ) for p = 0.5
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(e) F (λ) for p = 0.8
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(f) F̄ (λ) for p = 0.8

Figure 4: Mean value of the spectral function F and mean value of the majorant F̄
for Erdős-Rényi graphs on 100 vertices and p = 0.2, 0.5 and 0.8
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(a) F (λ) and F̄ (λ) for p = 0.2
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(b) F (λ) and F̄ (λ) for p = 0.5
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(c) F (λ) and F̄ (λ) for p = 0.8

Figure 5: Comparison of spectral function F and its mayorant F̄ for Erdős-Rényi
graphs

In our estimation problem, we are interested in studying the following three co-

herent type functions,

P (λ) =
∑

{k:λk<λ}
‖PLφk‖2, φ̄(λk) = ϕ̄(k), ν

r

m
F̄ (λk).

Remember that the majorant of P (λk) is the coherent function φ̄(λ) which is in

turn bounded by ν r
m
F̄ (λk). As explained in section 2.5, the proposed double penalty

estimator performs better than the usual nuclear norm minimization estimator for

matrices S∗ with a large gap between φ̄(λk) and ν r
m
F̄ (λk). Moreover, the upper

bound in theorem 2.1 is tighter when the gap between P (λk) and φ̄(λk) is small.

In figure 6, we show the expected value and confidence intervals for P (λ) and φ̄(λ)

in the case where G is sampled from Gm,p, for m = 100 and different values of p. For
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(b) φ̄(λ) for p = 0.2
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(c) P (λ) for p = 0.5
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(d) φ̄(λ) for p = 0.5
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(e) P (λ) for p = 0.8
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(f) φ̄(λ) for p = 0.8

Figure 6: Mean value of the projection P and mean value of the coherence function
φ̄ for Erdős-Rényi graphs on 100 vertices and p = 0.2, 0.5 and 0.8
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(a) P (λ) and φ̄ for p = 0.2
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(b) P (λ) and φ̄ for p = 0.5
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(c) P (λ) and φ̄ for p = 0.8

Figure 7: Comparison of projection P and the coherence function for Erdős-Rényi
graphs

the construction of matrix S∗, we choose rB = rT = 10. In figure 7, we show the

three coherence type functions in the same plot for a better comparison.

2.5 Analysis of the estimator

Given t > 0, we define tn,m := t+ log(2m logF (16nζm(3/2)ζ)). In what follows, we as-

sume that n ≥ mtn,m. When t � logm, which is a typical choice of t, this assumption

means that n should be larger than m times a log factor. We set the regularization

parameter ε in (14) as:

ε := 4

√
t+ log(2m)

nm
.

Theorem 2.1. There exist constants C,C1 depending only on c such that, for all

40



s ∈ {k0 + 1, . . . ,m+ 1} and all εF ∈ [λ−1
s , λ−1

s−1], with probability at least 1− e−t,

1

m2
‖Ŝ − S∗‖2

F ≤ C
ϕ̄(S∗; s)mtn,m

n
+
εF
m2
‖W 1/2S∗‖2

F

+C1 max
j=1,...,m

‖PLej‖2
Åmtn,m

n

ã2

.

(17)

Note that maxv∈V ‖PLev‖2 ≤ 1. Thus, the last term in the righthand side of bound

(17) is smaller than the first term, provided that

ϕ̄(S∗; s) ≥
mtn,m
n

Moreover, this term is much smaller under a low coherence condition

max
v∈V
‖PLev‖2 ≤ νr

m

for some ν ≥ 1. In this case,

max
v∈V
‖PLev‖2

Åmtn,m
n

ã2

≤
νrmt2n,m
n2

≤ νrtn,m
n

.

Note also that Theorem 2.1 holds in the case when εF = 0. In this case, s = m

and ϕ̄(S∗,m) = r, so the bound of Theorem 2.1 becomes

1

m2
‖Ŝ − S∗‖2

F ≤ C
rmtn,m
n

, (18)

which also follows from corollary 2 in [40].

Under condition (16), the following corollary of Theorem 2.1 holds.

Corollary 2.2. Suppose that condition (16) holds. Then, there exists a constant

C > 0 depending only on ζ such that, for all s ∈ {k0 + 1, . . . ,m + 1} and all εF ∈

(λ−1
s , λ−1

s−1], with probability at least 1− e−t,

1

m2
‖Ŝ − S∗‖2

F ≤ C
νrF̄ (λs)tn,m

n
+
εF
m2
‖W 1/2S∗‖2

F

+C1 max
v∈V
‖PLev‖2

Åmtn,m
n

ã2

.
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Note that, if λk � k2β for some β > 1/2, then it is easy to see that one can choose

F̄ (λ) � λ1/2β and, with this choice, F̄ (λs) � s. Thus, the value of s that minimizes

the bound of Corollary 2.2 is

s �
Ç

n

νrm2tn,m

å1/(2β+1)

‖W 1/2S∗‖2/(2β+1)
F ,

which, under a low coherence assumption maxv∈V ‖PLev‖2 ≤ νr
m
, yields the bound

‖Ŝ − S∗‖2
F ≤ C

Ç
νrtn,m
n

å2β/(2β+1)

‖W 1/2S∗‖2/(2β+1)
F . (19)

The advantage of (19) comparing with (18) (that holds for εF = 0 and does not rely

on any smoothness assumption on the kernel S∗) is due to the fact that there is no

factor m in the numerator in the right hand side of (19). Due to this fact, when m is

large enough and ν is not too large, bound (19) becomes sharper than (18).

2.6 Proof of Main Theorem

Given that the estimator Ŝ arises as the solution of a convex optimization problem,

we begin the analysis by studying the sub-differential of the penalized empirical risk

Ln. To do so, we need a characterization of the sub-differential of the nuclear norm.

Such characterization is based on the following orthogonal projectors in the space SV

with the Hilbert Schmidt inner product:

PL(A) := A− PL⊥APL⊥ , A ∈ SV

P⊥L (A) = PL⊥APL⊥ , A ∈ SV ,

where L ⊆ RV is a given linear subspace, L⊥ is its orthogonal complement, and

PL denotes the orthogonal projection to subspace L. Using these projections, we

introduce the following well known representation of sub-differential of the convex

function S 7→ ‖S‖∗ (see [60]):

∂‖S‖∗ =
¶
sign(S) + P⊥L (M) : M ∈ SV , ‖M‖ ≤ 1, L = range(S)

©
,

Using this representation, we are able to proof the following bound,
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Lemma 2.3. The following inequality holds for the estimator Ŝ,

2

m2
‖Ŝ − S∗‖2

F + ε‖P⊥L (Ŝ)‖∗ +
2εF
m2
‖W 1/2(Ŝ − S∗)‖2

F

≤ −ε〈sign(S∗), Ŝ − S∗〉 −
2εF
m2
〈W 1/2S∗,W

1/2(Ŝ − S∗)〉+ 2〈Ξ, Ŝ − S∗〉
(20)

where

Ξ :=
1

m2
(S̆ − S∗)

Proof. An arbitrary matrix Â ∈ ∂Ln(Ŝ) can be represented as follows:

Â =
2

m2
(Ŝ − S̆) + εV̂ +

2εF
m2

WŜ, (21)

where V̂ ∈ ∂‖Ŝ‖1. Since Ŝ is a minimizer of Ln(S), there exists a matrix Â ∈ ∂Ln(Ŝ)

such that −Â belongs to the normal cone of S at the point Ŝ. This implies that

〈Â, Ŝ − S∗〉 ≤ 0 and, in view of (21),

2

m2
〈Ŝ − S̆, Ŝ − S∗〉+ ε〈V̂ , Ŝ − S∗〉+

2εF
m2
〈WŜ, Ŝ − S∗〉 ≥ 0

It follows by a simple algebra that

2

m2
‖Ŝ − S∗‖2

F +
2εF
m2
‖W 1/2(Ŝ − S∗)‖2

F + ε〈V̂ , Ŝ − S∗〉

≤ −2εF
m2
〈S∗,W (Ŝ − S∗)〉+ 2〈Ξ, Ŝ − S∗〉,

(22)

On the other hand, let V∗ ∈ ∂‖S∗‖∗. Therefore, the representation V∗ = sign(S∗)+

P⊥L (M) holds, where M is a matrix with ‖M‖ ≤ 1. It follows from the trace duality

property that there exists an M with ‖M‖ ≤ 1 such that

〈P⊥L (M), Ŝ − S∗〉 = 〈M,P⊥L (Ŝ − S∗)〉 = 〈M,P⊥L (Ŝ)〉 = ‖P⊥L (Ŝ)‖∗

where in the first equality we used that P⊥L is a self-adjoint operator and in the

second equality we used that S∗ has range L. Using this equation and monotonicity

of subdifferentials of convex functions, we get

〈sign(S∗), Ŝ − S∗〉+ ‖P⊥L (Ŝ)‖∗ = 〈V∗, Ŝ − S〉 ≤ 〈V̂ , Ŝ − S∗〉

Substituting this in (22), we get the result
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The rest of the proof consists on bounding each term in the right hand side of

(20) in terms of an arbitrary function ϕ ∈ ΨS∗,W with ϕ(k) = r, k ≥ m. Then we get

the main result (17) by substituting ϕ for ϕ̄ which is the smallest function in ΨS∗,W .

Throughout the proof, we assume that s ∈ {k0, . . . ,m} and εF ∈ [λ−1
s+1, λ

−1
s ] (at the

end of the proof, we replace s+ 1 7→ s).

2.6.1 Bounding the first term

First note that

ε|〈sign(S∗), Ŝ − S∗〉| ≤ ε‖sign(S∗)‖F‖Ŝ − S∗‖F

= ε
√
r‖Ŝ − S∗‖F ≤

1

2
rm2ε2 +

1

2m2
‖Ŝ − S∗‖2

F .
(23)

We will also need a more subtle bound on 〈sign(S∗), Ŝ − S∗〉, expressed in terms of

function ϕ. Note that, for all k0 ≤ s ≤ m,

〈sign(S∗), Ŝ − S∗〉 =
m∑
k=1

〈sign(S∗)φk, (Ŝ − S∗)φk〉

=
s∑

k=1

〈sign(S∗)φk, (Ŝ − S∗)φk〉+
m∑

k=s+1

Æ
sign(S∗)φk√

λk
,
»
λk(Ŝ − S∗)φk

∏
,

which easily implies

|〈sign(S∗), Ŝ − S∗〉|

≤
Ç s∑
k=1

‖sign(S∗)φk‖2

å1/2Ç s∑
k=1

‖(Ŝ − S∗)φk‖2

å1/2

+Ç m∑
k=s+1

‖sign(S∗)φk‖2

λk

å1/2Ç m∑
k=s+1

λk‖(Ŝ − S∗)φk‖2

å1/2

≤
Ç s∑
k=1

‖PLφk‖2

å1/2

‖Ŝ − S∗‖F

+

Ç m∑
k=s+1

‖PLφk‖2

λk

å1/2

‖W 1/2(Ŝ − S∗)‖F .

(24)

We will now use the following elementary lemma.

Lemma 2.4. Let c, γ be the constants involved in the conditions on the spectrum of

W and in the definition of F̄ . For all s ≥ k0 − 1,

m∑
k=s+1

‖PLφk‖2

λk
≤ cγ

ϕ(s+ 1)

λs+1

and
m∑

k=s+1

1

λk
≤ cγ

F̄ (λs+1)

λs+1

,
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where cγ := c
γ

+ 1.

Proof. Denote Fs :=
∑s
k=1 ‖PLφk‖2, s = 1, . . . ,m. Then, using the properties of

functions ϕ ∈ Ψ and F̄ , and of the spectrum of W , we get

m∑
k=s+1

‖PLφk‖2

λk
=

m−1∑
k=s+1

Fk

Ç
1

λk
− 1

λk+1

å
+
Fm
λm
− Fs
λs+1

≤
m−1∑
k=s+1

ϕ(k)

Ç
1

λk
− 1

λk+1

å
+
ϕ(m)

λm

≤ ϕ(s+ 1)

F̄ (λs+1)

ñ m−1∑
k=s+1

F̄ (λk)

λkλk+1

(λk+1 − λk) +
F̄ (λm)

λm

ô
≤ c

ϕ(s+ 1)

F̄ (λs+1)

m−1∑
k=s+1

F̄ (λk+1)

λ2
k+1

(λk+1 − λk) +
ϕ(s+ 1)

F̄ (λs+1)

F̄ (λs+1)

λs+1

≤ c
ϕ(s+ 1)

F̄ (λs+1)

∫ ∞
λs+1

F̄ (t)

t2
dt+

ϕ(s+ 1)

λs+1

≤ c

γ

ϕ(s+ 1)

F̄ (λs+1)

F̄ (λs+1)

λs+1

+
ϕ(s+ 1)

λs+1

= cγ
ϕ(s+ 1)

λs+1

.

(25)

The proof of the second bound is similar (with some simplifications).

It follows from from (24) and the bound of Lemma 2.4 that

|〈sign(S∗), Ŝ − S∗〉|

≤
»
ϕ(s)‖Ŝ − S∗‖F +

Ã
cγ
ϕ(s+ 1)

λs+1

‖W 1/2(Ŝ − S∗)‖F
(26)

This implies the following bound:

ε|〈sign(S∗), Ŝ − S∗〉|

≤ ϕ(s)m2ε2 +
1

4m2
‖Ŝ − S∗‖2

F

+cγ
ϕ(s+ 1)

λs+1

m2ε2

εF
+

εF
4m2
‖W 1/2(Ŝ − S∗)‖2

F ,

(27)

where we used twice an elementary inequality ab ≤ a2 + 1
4
b2, a, b > 0. Since, under the

assumptions of the theorem, εFλs+1 ≥ 1, inequality (27) yields the following bound:

ε|〈sign(S∗), Ŝ − S∗〉| ≤ (cγ + 1)ϕ(s+ 1)m2ε2

+
1

4
‖Ŝ − S∗‖2

F +
εF

4m2
‖W 1/2(Ŝ − S∗)‖2

F .
(28)
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2.6.2 Bounding the second term

To bound the second term in the right hand side of (20), note that

|〈W 1/2S∗,W
1/2(Ŝ − S∗)〉| ≤ ‖W 1/2S∗‖F‖W 1/2(Ŝ − S∗)‖F , (29)

which implies

εF |〈W 1/2S∗,W
1/2(Ŝ − S∗)〉| ≤ εF‖W 1/2S∗‖2

F +
εF
4
‖W 1/2(Ŝ − S∗)‖2

F

=
εF
m2
‖W 1/2S∗‖2

F +
εF

4m2
‖W 1/2(Ŝ − S∗)‖2

F .

(30)

2.6.3 Bounding the third term

Finally, we bound 〈Ξ, Ŝ − S∗〉:

|〈Ξ, Ŝ − S∗〉| ≤ |〈Ξ,PL(Ŝ − S∗)〉|+ |〈Ξ,P⊥L (Ŝ)〉|

≤ |〈PLΞ, Ŝ − S∗〉|+ ‖Ξ‖‖P⊥L (Ŝ)‖∗
(31)

To bound ‖Ξ‖, we use a version of noncommutative Bernstein inequality of Ahlswede

and Winter [1]. Other versions of this kind of inequalities can be found in [58] and

[38].

Lemma 2.5. Let Z be a bounded random symmetric matrix with EZ = 0, σ2
Z :=

‖EZ2‖ and ‖Z‖ ≤ M for some M > 0. Let Z1, . . . , Zn be n i.i.d. copies of Z. Then

for all t > 0, with probability at least 1− et∥∥∥∥∥ 1

n

n∑
i=1

Zi

∥∥∥∥∥ ≤ 2

Ñ
σZ

√
t+ log(2m)

n

∨
M
t+ log(2m)

n

é
It is applied to i.i.d. random matrices Zi := Yi(eU ⊗ eV ) − E(Yi(eU ⊗ eV )), i =

1, . . . , n. Since ‖Zi‖ ≤ 2 and, by a simple computation, σ2
Zi

:= ‖EZ2
i ‖ ≤ 1/m (see

Section 9.4 in [38]), Lemma 2.5 implies that with probability at least 1− e−t

‖Ξ‖ =

∥∥∥∥∥ 1

n

n∑
i=1

Zi

∥∥∥∥∥ ≤ 2

ñ√
t+ log(2m)

nm

∨ 2(t+ log(2m))

n

ô
.

Under the assumption that

ε ≥ 4

ñ√
t+ log(2m)

nm

∨ 2(t+ log(2m))

n

ô
,
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this yields ‖Ξ‖ ≤ ε/2 and

|〈Ξ, Ŝ − S∗〉| ≤ |〈PLΞ, Ŝ − S∗〉|+
ε

2
‖P⊥L (Ŝ)‖∗. (32)

For simplicity, it is assumed that n ≥ 2m(t + log(2m)). In this case, one can take

ε = 4
√

t+log(2m)
nm

, as it has been done in the statement of the theorem.

We have to bound |〈PLΞ, Ŝ − S∗〉| and we start with the following simple bound:

|〈PLΞ, Ŝ − S∗〉| ≤ ‖PLΞ‖F‖Ŝ − S∗‖F

≤
√

2r‖Ξ‖‖Ŝ − S∗‖F

≤ 1

2
ε
√

2r‖Ŝ − S∗‖F

≤ 1

2
m2ε2r +

1

4m2
‖Ŝ − S∗‖2

F ,

(33)

where we use the fact that rank(PLΞ) ≤ 2r. Substituting (23), (30), (32) and (33) in

(20), we easily get that

‖Ŝ − S∗‖2
F ≤

3

2
rε2m2 + 2

εF
m2
‖W 1/2S∗‖2

F . (34)

For ε̄ = 0, this bound follows from the results of Koltchinskii, Lounici and Tsybakov

(2011). However, we need a more subtle bound expressed in terms of function ϕ,

which is akin to bound (28). To this end, we will use the following lemma.

Lemma 2.6. For δ > 0, let k(δ) := F (δ−2) (that is, k(δ) is the largest value of k ≤ m

such that λ−1
k ≥ δ2). For all t > 0, with probability at least 1− e−t,

sup
‖M‖F≤δ,‖W 1/2M‖F≤1

|〈PLΞ,M〉| ≤ 2
»

4(cγ + 1)

 
t

nm
δ
»
ϕ(k(δ) + 1)

+2
√

2δmax
v∈V
‖PLev‖

t

n
,

provided that k(δ) < m, and

|〈PLΞ,M〉| ≤ 4
√

2δ

 
rt

nm
+ 2
√

2δmax
v∈V
‖PLev‖

t

n
,

provided that k(δ) ≥ m.
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Proof. The proof is somewhat akin to the derivation of the bounds on Rademacher

processes in terms of Mendelson’s complexities used in learning theory (see Proposi-

tion 3.3 in [38]). Note that, for all symmetric m×m matrices M ,

〈PLΞ,M〉 =
m∑

k,j=1

〈PLΞ, φk ⊗ φj〉〈M,φk ⊗ φj〉.

Suppose that

‖M‖2
F =

m∑
k,j=1

|〈M,φk ⊗ φj〉|2 ≤ δ2

and

‖W 1/2M‖2
F =

m∑
k,j=1

λk|〈M,φk ⊗ φj〉|2 ≤ 1.

Then, it easily follows that

m∑
k,j=1

|〈M,φk ⊗ φj〉|2

λ−1
k ∧ δ2

≤ 2,

which implies

|〈PLΞ,M〉|2

≤
m∑

k,j=1

(λ−1
k ∧ δ2)|〈PLΞ, φk ⊗ φj〉|2

m∑
k,j=1

|〈M,φk ⊗ φj〉|2

λ−1
k ∧ δ2

≤ 2
m∑

k,j=1

(λ−1
k ∧ δ2)|〈PLΞ, φk ⊗ φj〉|2

(35)

Define now the following inner product:

〈M1,MF 〉w :=
m∑

k,j=1

(λ−1
k ∧ δ2)〈M1, φk ⊗ φj〉〈MF , φk ⊗ φj〉

and let ‖ · ‖w be the corresponding norm. We will provide an upper bound on

‖PLΞ‖w =

Ç m∑
k,j=1

(λ−1
k ∧ δ2)|〈PLΞ, φk ⊗ φj〉|2

å1/2

.

To this end, we use a standard Bernstein type inequality for random variables in

a Hilbert space. It is given in the following lemma (which follows, for instance, from

Theorem 3.3.4(b) in [62]).
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Lemma 2.7. Let ξ be a bounded random variable with values in a Hilbert space H.

Suppose that Eξ = 0, E‖ξ‖2
H = σ2 and ‖ξ‖H ≤M . Let ξ1, . . . , ξn be n i.i.d. copies of

ξi. Then for all t > 0, with probability at least 1− et∥∥∥∥∥ 1

n

n∑
i=1

ξi

∥∥∥∥∥
H
≤ 2

[
σ

 
t

n

∨
M
t

n

]

Applying Lemma 2.7 to the random variable ξ = Y PL(eU ⊗eV )−EY PL(eU ⊗eV ),

we get that for all t > 0, with probability at least 1− e−t,

‖PLΞ‖w =

∥∥∥∥∥ 1

n

n∑
j=1

YjPL(eUj ⊗ eVj)− EY PL(eU ⊗ eV )

∥∥∥∥∥
w

≤ 2

ñ
E1/2‖Y PL(eU ⊗ eV )‖2

w

 
t

n
+
∥∥∥∥‖Y PL(eU ⊗ eV )‖w

∥∥∥∥
L∞

t

n

ô
.

(36)

Using the fact that Y ∈ {−1, 1}, we get

E‖Y PL(eU ⊗ eV )‖2
w = E‖PL(eU ⊗ eV )‖2

w

= E
m∑

k,j=1

(λ−1
k ∧ δ2)|〈PL(eU ⊗ eV ), φk ⊗ φj〉|2

=
m∑

k,j=1

(λ−1
k ∧ δ2)E|〈eU ⊗ eV ,PL(φk ⊗ φj)〉|2

=
m∑

k,j=1

(λ−1
k ∧ δ2)m−2

∑
u,v∈V

|〈eu ⊗ ev,PL(φk ⊗ φj)〉|2

≤ m−2
m∑

k,j=1

(λ−1
k ∧ δ2)‖PL(φk ⊗ φj)‖2

F

≤ 2m−2
m∑

k,j=1

(λ−1
k ∧ δ2)(‖PLφk‖2 + ‖PLφj‖2)

= 2m−1
m∑
k=1

(λ−1
k ∧ δ2)‖PLφk‖2 + 2m−2

m∑
k=1

(λ−1
k ∧ δ2)

m∑
j=1

‖PLφj‖2

= 2m−1
m∑
k=1

(λ−1
k ∧ δ2)‖PLφk‖2 + 2m−2

m∑
k=1

(λ−1
k ∧ δ2)‖PL‖2

F

= 2m−1
m∑
k=1

(λ−1
k ∧ δ2)‖PLφk‖2 + 2m−2r

m∑
k=1

(λ−1
k ∧ δ2).

(37)

To bound E‖Y PL(eU ⊗ eV )‖2
w further, note that

m∑
k=1

(λ−1
k ∧ δ2)‖PLφk‖2 ≤ δ2

∑
k≤k(δ)

‖PLφk‖2 +
∑

k>k(δ)

λ−1
k ‖PLφk‖2. (38)
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Assuming that 1 ≤ k(δ) ≤ m − 1, using the first bound of Lemma 2.4, the fact

that λ−1
k(δ)+1 < δ2 and the monotonicity of function ϕ, we get from (38) that

m∑
k=1

(λ−1
k ∧ δ2)‖PLφk‖2 ≤ δ2ϕ(k(δ)) + cγ

ϕ(k(δ) + 1)

λk(δ)+1

≤ δ2ϕ(k(δ)) + cγδ
2ϕ(k(δ) + 1) ≤ (cγ + 1)δ2ϕ(k(δ) + 1).

(39)

It is easy to check that (39) holds also for k(δ) = 0 and k(δ) = m (in the last case,

ϕ(k(δ) + 1) = r). We also have
m∑
k=1

(λ−1
k ∧ δ2) ≤

∑
k≤k(δ)

δ2 +
∑

k>k(δ)

λ−1
k ,

which, in view of the second bound of Lemma 2.4 and the properties of function ϕ,

implies
m∑
k=1

(λ−1
k ∧ δ2) ≤ δ2k(δ) + cγ

F̄ (λk(δ)+1)

λk(δ)+1

≤ (cγ + 1)δ2F̄ (λk(δ)+1) ≤ (cγ + 1)
m

r
δ2ϕ(k(δ) + 1).

(40)

Using bounds (37), (39) and (40), we get, under the condition that k(δ) < m,

E‖Y PL(eU ⊗ eV )‖2
w

≤ 2m−1(cγ + 1)δ2ϕ(k(δ) + 1) + 2m−2r(cγ + 1)
m

r
δ2ϕ(k(δ) + 1)

≤ 4(cγ + 1)m−1δ2ϕ(k(δ) + 1).

(41)

In the case when k(δ) ≥ m, it is easy to show that

E‖Y PL(eU ⊗ eV )‖2
w ≤ 4m−1δ2r. (42)

We can also bound
∥∥∥∥‖Y PL(eU ⊗ eV )‖w

∥∥∥∥2

L∞
as follows:

∥∥∥∥‖Y PL(eU ⊗ eV )‖w
∥∥∥∥2

L∞
=
∥∥∥∥‖PL(eU ⊗ eV )‖w

∥∥∥∥2

L∞

=

∥∥∥∥∥ m∑
k,j=1

(λ−1
k ∧ δ2)|〈PL(eU ⊗ eV ), φk ⊗ φj〉|2

∥∥∥∥∥
L∞

≤ max
1≤k≤m

(λ−1
k ∧ δ2) max

u,v∈V

m∑
k,j=1

|〈PL(eu ⊗ ev), φk ⊗ φj〉|2

≤ max
1≤k≤m

(λ−1
k ∧ δ2) max

u,v∈V
‖PL(eu ⊗ ev)‖2

F

≤ δ2 max
u,v∈V

‖PL(eu ⊗ ev)‖2
F ≤ 2δ2 max

v∈V
‖PLev‖2.

(43)

50



If k(δ) < m, it follows from (35), (36), (41) and (43) that with probability at least

1− e−t, for all symmetric matrices M with ‖M‖F ≤ δ and ‖W 1/2M‖F ≤ 1,

|〈PLΞ,M〉| ≤ 2
»

4(cγ + 1)

 
t

nm
δ
»
ϕ(k(δ) + 1) + 2

√
2δmax

v∈V
‖PLev‖

t

n
.

Alternatively, if k(δ) ≥ m, we use (42) to get

|〈PLΞ,M〉| ≤ 4δ

 
rt

nm
+ 2
√

2δmax
v∈V
‖PLev‖

t

n
.

This completes the proof of Lemma 2.6.

It follows from Lemma 2.6 that, for all δ > 0, the following bound holds with

probability at least 1− e−t

sup
‖M‖F≤δ,‖W 1/2M‖F≤1

|〈PLΞ,M〉|

≤ 4
»
cγ + 1

 
t

nm
δ
»
ϕ(k(δ) + 1) + 2

√
2δmax

v∈V
‖PLev‖

t

n

(44)

(recall that ϕ(k) = r for k ≥ m, so, the second bound of the lemma can be included

in the first bound). Moreover, the bound can be easily made uniform in δ ∈ [δ−, δ+]

for arbitrary δ− < δ+. To this end, take δj := δ+2−j, j = 0, 1, . . . [logF (δ+/δ−)] + 1

and use (44) for each δ = δj with t̄ := t + log([logF (δ+/δ−)] + 2) instead of t. An

application of the union bound and monotonicity of the left hand side and the right

hand side of (44) with respect to δ then implies that with probability at least 1− e−t

for all δ ∈ [δ−, δ+]

sup
‖M‖F≤δ,‖W 1/2M‖F≤1

|〈PLΞ,M〉|

≤ C

√
t̄

nm
δ
»
ϕ(k(δ) + 1) + 4

√
2δmax

v∈V
‖PLev‖

t̄

n
.

(45)

where C > 0 is a constant depending only on c. Indeed, by the union bound, (44)

holds with probability at least

1− ([logF (δ+/δ−)] + 2)e−t̄ = 1− e−t
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for all δ = δj, j = 0, . . . , [logF (δ+/δ−)] + 1.

Therefore, for all j = 0, . . . , [logF (δ+/δ−)] + 1 and all δ ∈ (δj+1, δj]

sup
‖M‖F≤δ,‖W 1/2M‖F≤1

|〈PLΞ,M〉|

≤ 4
»
cγ + 1

√
t̄

nm
δj
»
ϕ(k(δj) + 1) + 2

√
2δj max

v∈V
‖PLev‖

t̄

n

(46)

(by monotonicity of the left hand side). Note that k(δj) ≤ k(δ) ≤ k(δj+1). We can

now use the fact that ϕ(k)
λk

= ϕ(k)
F̄ (λk)

F̄ (λk)
λk

is a nonincreasing function and the condition

λk+1/λk ≤ c to show that√
t̄

nm
δj
»
ϕ(k(δj) + 1)+ ≤ 2

√
t̄

nm
δj+1

»
ϕ(k(δj+1) + 1)

≤ 2

√
t̄

nm

Ã
ϕ(k(δj+1) + 1)

λk(δj+1)

≤ 2
√
c

√
t̄

nm

Ã
ϕ(k(δj+1) + 1)

λk(δj+1)+1

≤ 2
√
c

√
t̄

nm

Ã
ϕ(k(δ) + 1)

λk(δ)+1

≤ 2
√
c

√
t̄

nm
δ
»
ϕ(k(δ) + 1).

This and bound (46) imply that

sup
‖M‖F≤δ,‖W 1/2M‖F≤1

|〈PLΞ,M〉|

≤ 8
»
c(cγ + 1)

√
t̄

nm
δ
»
ϕ(k(δ) + 1) + 4

√
2δmax

v∈V
‖PLev‖

t̄

n
,

(47)

which proves bound (45).

Set δ as

δ :=
‖Ŝ − S∗‖F

‖W 1/2(Ŝ − S∗)‖F

and assume for now that δ ∈ [δ−, δ+]. For a particular choice of M := Ŝ−S∗
‖W 1/2(Ŝ−S∗)‖F

,

we get from (45) that

|〈PLΞ, Ŝ − S∗〉| ≤ C

√
t̄

nm
‖Ŝ − S∗‖F

»
ϕ(k(δ) + 1)

+4
√

2 max
v∈V
‖PLev‖

t̄

n
‖Ŝ − S∗‖F .

(48)
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Suppose now that δ2 ≥ εF . Since, under assumptions of the theorem, εF ∈

(λ−1
s+1, λ

−1
s ], this implies that k(δ) ≤ k(

√
εF ) = s and

|〈PLΞ, Ŝ − S∗〉| ≤ C

√
t̄

nm
‖Ŝ − S∗‖F

»
ϕ(s+ 1)

+4
√

2 max
v∈V
‖PLev‖

t̄

n
‖Ŝ − S∗‖F

≤ 2C2ϕ(s+ 1)mt̄

n
+ 64 max

v∈V
‖PLev‖2

Åmt̄
n

ã2

+
1

4m2
‖Ŝ − S∗‖2

F

(49)

In the case when δ2 < εF , we have k(δ) ≥ k(
√
ε̄) = s. In this case, we again use

the fact that ϕ(k)
λk

is a nonincreasing function and the condition λk+1/λk ≤ c to show

that √
t̄

nm
‖Ŝ − S∗‖F

»
ϕ(k(δ) + 1)

=

√
t̄

mn
‖W 1/2(Ŝ − S∗)‖F

»
δ2ϕ(k(δ) + 1)

≤
√

t̄

mn
‖W 1/2(Ŝ − S∗)‖F

Ã
ϕ(k(δ) + 1)

λk(δ)

≤
√
c

√
t̄

mn
‖W 1/2(Ŝ − S∗)‖F

Ã
ϕ(k(δ) + 1)

λk(δ)+1

≤
√
c

√
t̄

mn
‖W 1/2(Ŝ − S∗)‖F

Ã
ϕ(s+ 1)

λs+1

≤
√
c

√
t̄

mn

√
εF‖W 1/2(Ŝ − S∗)‖F

»
ϕ(s+ 1).

This allows us to deduce from (48) that

|〈PLΞ, Ŝ − S∗〉|

≤
√
cC

√
t̄

mn

√
εF‖W 1/2(Ŝ − S∗)‖F

»
ϕ(s+ 1)

+4
√

2 max
v∈V
‖PLev‖

t̄

n
‖Ŝ − S∗‖F

≤ cC2ϕ(s+ 1)mt̄

n
+

εF
4m2
‖W 1/2(Ŝ − S∗)‖2

F

+32 max
v∈V
‖PLev‖2

Åmt̄
n

ã2

+
1

4m2
‖Ŝ − S∗‖2

F .

(50)
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It follows from bounds (49) and (50) that with probability at least 1− e−t,

|〈PLΞ, Ŝ − S∗〉| ≤ (2 ∨ c)C2ϕ(s+ 1)mt̄

n
+ 64 max

v∈V
‖PLev‖2

Åmt̄
n

ã2

+
1

4m2
‖Ŝ − S∗‖2

F +
εF

4m2
‖W 1/2(Ŝ − S∗)‖2

F ,

(51)

provided that

δ =
‖Ŝ − S∗‖F

‖W 1/2(Ŝ − S∗)‖F
∈ [δ−, δ+]. (52)

It remains now to substitute bounds (28), (30), (32) and (51) in bound (20) to get

that with some constants C > 0, C1 > 0 depending only on c and with probability at

least 1− 2e−t

1

m2
‖Ŝ − S∗‖2

F ≤ C
ϕ(s+ 1)m(t̄+ tm)

n

+
εF
m2
‖W 1/2S∗‖2

F + C1 max
v∈V
‖PLev‖2

Åmt̄
n

ã2

,

(53)

where tm := t+ log(2m).

We still have to choose the values of δ−, δ+ and to handle the case when

δ =
‖Ŝ − S∗‖F

‖W 1/2(Ŝ − S∗)‖F
6∈ [δ−, δ+]. (54)

First note that, since the largest eigenvalue of W is λm and it is bounded from above

by mζ , we have

‖W 1/2(Ŝ − S∗)‖F ≤
»
λm‖Ŝ − S∗‖F ≤ mζ/2‖Ŝ − S∗‖F .

Thus, δ ≥ m−ζ/2. Next note that

‖W 1/2S∗‖2
F ≤ mζ‖S∗‖2

F ≤ mζm2,

where we also took into account that the absolute values of the entries of S∗ are

bounded by 1. It now follows from (34) that, under the assumption 2mtm
n
≤ 1,

1

m2
‖Ŝ − S∗‖2

F ≤
3

2
rm2ε2 + 2εFm

ζ

≤ 24rm2 t+ log(2m)

nm
+ 2

mζ

λs
≤ 12m+ 2m2ζ ≤ 14m2ζ ,
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which holds with probability at least 1−e−t. Therefore, as soon as ‖W 1/2(Ŝ−S∗)‖F ≥

m2n−ζ , we have δ ≤ 4nζmζ .

We will now take δ− := m−ζ/2, δ+ := 4nζmζ . Then, the only case when (54) can

possibly hold is if ‖W 1/2(Ŝ − S∗)‖F ≤ m2n−ζ . In this case, we can set

δ :=
nζ

m2
‖Ŝ − S∗‖F ∈ [δ−, δ+]

and follow the proof of bound (51) replacing throughout the argument ‖W 1/2(Ŝ−

S∗)‖F with m2n−ζ . This yields

|〈PLΞ, Ŝ − S∗〉| ≤ (2 ∨ c)C2ϕ(s+ 1)mt̄

n

+64 max
v∈V
‖PLev‖2

Åmt̄
n

ã2

+
1

4m2
‖Ŝ − S∗‖2

F +
1

4
εFn

−2ζ .

(55)

Bound (55) can be now used instead of (51) to prove that

1

m2
‖Ŝ − S∗‖2

F ≤ C
ϕ(s+ 1)m(t̄+ tm)

n

+
εF
m2
‖W 1/2S∗‖2

F + C1 max
v∈V
‖PLev‖2

Åmt̄
n

ã2

+ εFn
−2ζ

(56)

with some constants C,C1 > 0 depending only on c.

Clearly, we can assume that C1 ≥ 1 and t̄ ≥ 1. Since m ≤ n2 (recall that we even

assumed that mtn,m ≤ 1), ζ ≥ 1, maxv∈V ‖PLev‖2 ≥ r
m

and εF ≤ λ−1
k0
≤ mζ , it is easy

to check that

C1 max
v∈V
‖PLev‖2

Åmt̄
n

ã2

≥ m

n2
≥ mζ

n2ζ
≥ εFn

−2ζ .

Thus, the last term of bound (56) can be dropped (with a proper adjustment of

constant C1).

Note also that with our choice of δ−, δ+

t̄ = t+ log(logF (δ+/δ−) + 2) ≤ t+ log logF (16nζm(3/2)ζ)

and t̄ + tm ≤ 2tn,m. It is now easy to conclude that, with some constants C,C1

depending only on c and with probability at least 1− 3e−t

1

m2
‖Ŝ − S∗‖2

F

≤ C
ϕ(s+ 1)mtn,m

n
+

ε

m2
‖W 1/2S∗‖2

F + C1 max
v∈V
‖PLev‖2

Åmt̄
n

ã2

.

(57)
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The probability bound 1− 3e−t can be rewritten as 1− e−t by changing the value of

constants C,C1. Also, by changing the notation s + 1 7→ s, bound (57) yields (17).

This completes the proof of the theorem.
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Chapter III

LOW RANK ESTIMATION OF SMOOTH KERNELS ON

GRAPHS

A recommender system is a platform that seeks to predict the rating that a user would

give to an item. There are two main approaches to design a recommender system:

content-based or collaborative filtering. On one hand, content-based filtering utilizes

characteristics of items to recommend new items with similar properties; while on the

other hand, collaborative filtering exploits information about the past behavior or the

opinions of an existing user community for predicting which items the current user of

the system will most probably like or be interested in. In this chapter, we consider

scenarios where a hybrid approach combining content-based and collaborative filtering

could lead to more accurate predictions.

Content-based filtering recommends items based on a comparison between the

content of the items and a user profile. The content of each item is represented as

a set of descriptors or terms, for instance, words that occur in a document. The

user profile is represented with the same terms and built up by analyzing the content

of items which have been seen by the user. In other words, these algorithms try to

recommend items that are similar to those that a user liked in the past. In particular,

various candidate items are compared with items previously rated by the user and the

best-matching items are recommended. Although, we often use text tags to describe

the similarity among items, we could use a weighted graph for that purpose. Likewise,

we can describe profiles using a properly designed weighted graph [53, 7].

From the collaborative filtering perspective, we can post the recommender system

problem as a matrix completion problem. In this case, we formulate the problem
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as that of inferring the contents of a partially observed utility matrix : each row

represents a user, each column represents an item, and entries in the matrix represent

a given user’s rating of a given item. Our goal is to infer the unknown entries in the

matrix from the observed entries –of which there are typically very few. To make

useful predictions within this setting, we assume that the preference function can be

decomposed into a small number of factors, resulting in the search for a low-rank

matrix which approximates the partially observed utility matrix.

Collaborative filtering can perform in situations where it is difficult to describe

items’ content. On the other hand, since collaborative filtering relies only on previ-

ous users’ ratings to produce recommendations, it usually requires more data than

content-based filtering. For instance, a collaborative filtering method cannot give

any information about an item that no user has rated before. In a low-rank matrix

completion scenario, this means that we cannot make any prediction about a column

for which we have not observed any entry. Nevertheless, this situation is easily re-

solved in content-based filtering, since we can make a recommendation comparing the

descriptions of item content.

In this chapter, we consider a hybrid scheme where we exploit users profile and

content of items (as in content-based filtering), and previous users’ rating to items

(as in collaborative filtering). We assume that the profile information is given by a

weighted graph GU = (U ,AU) with vertex set U representing users and symmetric

matrix AU of nonnegative weights representing relations between users. Likewise,

the items’ content is given by a weighted graph GV = (V ,AV) with vertex set V

representing items and a symmetric matrix AV of nonnegative weights representing

relations between items. Previous users’ ratings are given by an incomplete utility

matrix indexed by U and V . Our goal is to predict the blanks of the utility matrix.

We will base our completion of the utility matrix in two heuristics: first, we assume

that few characteristics determine what items a user likes; and second, we assume
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that similar users are likely to give similar ratings to similar items. Due to the first

assumption we are interested in finding a low-rank matrix, while due to the second

one we are interested in finding a smooth matrix with respect to the graphs GU and

GV .

3.1 Modeling the problem

We are interested in the problem of estimating a “smooth” and low-rank matrix

M∗ : U × V → R indexed by two weighted graphs GU = (U ,AU) and GV = (V ,AV)

of size mU ∈ N and mV ∈ N respectively. As explained in section 3.1.2, we measure

smoothness with respect to the geometry on the graphs induced by their graph Lapla-

cians. We base the estimation on a finite number of noisy linear measurements ofM∗.

For simplicity, assume that these are the measurements of randomly picked entries

of the target matrix M∗, which is a standard sampling model in matrix completion.

More precisely, let (Uj, Vj, Yj), j = 1, . . . , n be n independent copies of a random triple

(U, V, Y ), where U and V are independent random vertices sampled from the uniform

distribution ΠU in U and ΠV in V respectively, and Y ∈ R is a “measurement” of the

matrix M∗ at a random location (U, V ) in the sense that E(Y |U, V ) = M∗(U, V ). In

what follows, we assume that, for some constant a > 0, |Y | ≤ a a.s., which implies

that |M∗(u, v)| ≤ a for u ∈ U and v ∈ V . The target matrix M∗ has to be estimated

based on its i.i.d. measurements (Uj, Vj, Yj), j = 1, . . . , n. Although, we introduced

the problem in the context of recommender systems, our main motivation is mostly

theoretical: we would like to explore to which extent taking into account smoothness

of the target kernel could improve the existing methods of low rank recovery.

3.1.1 Estimation problem in the trace regression model

We consider the problem of estimating a matrix M∗ ∈ RU×V based on observations

(X1, Y1), . . . , (Xn, Yn) be n independent random pairs, where each Xk, k = 1, . . . , n is

a random matrix distributed according to Π̂k, k = 1, . . . , n and each Yk, k = 1, . . . , n
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satisfies the trace regression model

E(Yk|Xk) = 〈M∗, Xk〉, k = 1, . . . , n

In this context, we refer to the matrices Xk, k = 1, . . . , n as the design matrices

and to the observations Yk, k = 1, . . . , n as the response variables. For simplicity, we

concentrate in the case where all the design matrices Xk, k = 1, . . . , n are identically

distributed according to a distribution Π̂. Let M and N be two arbitrary real-valued

matrices with rows indexed by U and columns indexed by V . The following design

dependent inner product is related to the trace regression model

〈M,N〉L2(Π̂) =
∫
RV×U
〈M,X〉〈N,X〉dΠ̂(X) = E〈M,X〉〈N,X〉

Similarly, we define a distribution dependent inner product that is naturally re-

lated to the uniform sampling model. For that purpose, let ΠU ⊗ ΠV be the product

distribution of ΠU and ΠV . By independence, the random pair (U, V ) is distributed

according to ΠU ⊗ ΠV . We are interested in the following inner product,

〈M,N〉L2(ΠU⊗ΠV ) =
∫
V×U

M(u, v)N(u, v)dΠU ⊗ ΠV(u, v) = E〈M,N〉

Let {eu ∈ RU : u ∈ U} and {ev ∈ RV : v ∈ V} be the canonical orthonormal

basis of the spaces RU and RV respectively. Let us consider the case where Π̂ is the

uniform distribution over the natural basis {eu ⊗ ev ∈ RU×V : u ∈ U , v ∈ V} for the

space of matrices RU×V . Picking a matrix X randomly according to Π̂ is equivalent

to picking independently U ∈ U and V ∈ V from the uniform distributions ΠU and

ΠV respectively and then setting X = eU ⊗ eV . In other words, for our purposes,

the uniform sampling model over the vertices V and U is equivalent to the trace

regression model when the design matrices Xk, k = 1, . . . ,m are sampled from the

uniform distribution Π̂. This equivalence is reinforced by noticing that, in this case,

the inner products 〈·, ·〉L2(ΠU⊗ΠV ) and 〈·, ·〉L2(Π̂) are the same.
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The corresponding L2-norm is naturally related to our problem, and it will be

used to measure the estimation error. Since ΠU and ΠV are uniform distributions

over U and V respectively, we note that

〈M,N〉L2(ΠU⊗ΠV ) = 〈M,N〉L2(Π̂) =
1

mUmV
〈M,N〉

‖M‖2
L2(ΠU⊗ΠV ) = ‖M‖2

L2(Π̂)
=

1

mUmV
‖M‖2

F

In what follows, it will be often more convenient to use these rescaled versions rather

than the actual Frobenius norm or Hilbert-Schmidt inner product.

3.1.2 Characterizing smoothness

Given two weighted graphs GU = (U ,AU) and GV = (V ,AV) of size mU ∈ N and

mV ∈ N respectively, we consider the space MGU×GV of real-valued matrices M :

U × V → R indexed by the vertex sets U and V . A weighted graph can be naturally

endowed with a geometry using the graph Laplacian operator. The geometry on

the graphs GU and GV allows us to define a concept of “smoothness” for matrices in

MGU×GV via discrete Sobolev norms.

A weighted graph G is a pair (V ,A) where V is an arbitrary set and A is a

symmetric matrix with nonnegative entries indexed by V . The elements of V are called

vertices, and each pair of vertices v1 and v2 form an edge. For an edge e = {v1, v2},

we interpret the entry A(v1, v2) as the weight of e. For each vertex v ∈ V , we

define deg(v) :=
∑
v′∈V A(v, v′). We identify the space of real-valued functions over V

with the euclidean space RV endowed with the standard inner product 〈·, ·〉 and the

euclidean norm ‖ · ‖. We characterize the smoothness a function f : V → R by its

energy,

E 2
G(f) =

∑
u,v∈V

A(u, v)|f(u)− f(v)|2
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In order to study the energy function EG, we introduce the Laplacian ∆G of G,

∆G(u, v) :=


deg (u) u = v

−A(u, v) u 6= v

As in the case of simple graphs, the Laplacian induces a positive semi-definite

bilinear form that is related to the energy function defined above. In other words,

the Laplacian induces a geometry on the graph that is compatible with our measure

of energy. To be precise,

〈f, g〉∆G
:= 〈f,∆Gg〉 = 〈∆1/2

G f,∆
1/2
G g〉

‖f‖2
∆G

:= 〈f, f〉∆G
= E 2

G(f)

We characterize the smoothness of a matrix M ∈ MGU×GV in terms of the following

Sobolev type norm

‖∆1/2
GU
M‖2

F + ‖∆1/2
GV
MT‖2

F

Note that if M has singular value decomposition M =
∑r
k=1 µk(uk ⊗ vk), then

‖∆1/2
GU
M‖2

F + ‖∆1/2
GV
MT‖2

F =

r∑
i,j=1

µiµj〈∆GU (ui ⊗ vi), uj ⊗ vj〉+
r∑

i,j=1

µiµj〈∆GV (vi ⊗ ui), vj ⊗ uj〉

=
r∑

k=1

µ2
k〈∆GUuk, uk〉+

r∑
k=1

µ2
k〈∆GVvk, vk〉 =

∑
k=1

µ2
k(E

2
GU

(uk) + E 2
GV

(vk))

so, essentially, the smoothness of a matrix M depends on the energy of the singular

functions uk on the graph GU and the energy of the singular functions vk on the graph

GV . In what follows, we will often use rescaled versions of Sobolev norms,

‖∆1/2
GU
f‖2

L2(ΠU ) =
1

mU
‖∆GUf‖2, f ∈ RU

‖∆1/2
GV
g‖2

L2(ΠV ) =
1

mV
‖∆GVg‖2, g ∈ RU

‖∆1/2
GU
M‖2

L2(ΠU⊗ΠV ) + ‖∆1/2
GV
MT‖2

L2(ΠV⊗ΠU ) =
1

mUmV

[
‖∆1/2

GU
M‖2

F + ‖∆1/2
GV
MT‖2

F

]
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3.1.3 Reduction to symmetric kernels

For simplicity, during the rest of this chapter, we concentrate in the case of estimating

a symmetric kernel S∗ over a weighted graph GW = (W ,AW) based on uniform

sample of its entries. By concentrating in this case, we lose little generality since we

can reduce a non-symmetric matrix recovery problem over two graphs to a symmetric

kernel recovery problem over one graph. In this reduction, we map an arbitrary non-

symmetric matrix to a symmetric kernel using hermitian dilation. Under this map,

all the inner products and norms are equivalent up to constants. As a result, we are

able to translate any lower and upper bound in our analysis to the most general case

by changing constants.

Given two weighted graphs GU = (U ,AU) and GV = (V ,AV) of size mU and mV

respectively, we construct their union as the graph GUtV := (UtV ,AUtV) with vertex

set U tV formed by the disjoint union of U and V , and weight matrix AUtV given by

AUtV :=

Ü
AU OmU ,mV

OmV ,mU AV

ê
where, Ok,l denotes the k × l zero matrix for any natural numbers k and l.

For a weighted graph G = (W ,A), let SW be the space of symmetric kernels

S : W ×W → R, that is the space of functions satisfying S(w,w′) = S(w′, w) for

each w,w′ ∈ W . We often identify the space SW with the space of symmetric matrices

on W . We embed the spaceMGU×GV into the space SUtV using hermitian dilation,

that is, for a matrix M ∈MGU×GV we associate a symmetric kernel S(M) ∈ SUtV in

the following way

S(M) =

Ü
OmU ,mV M

MT OmV ,mU

ê
The matrix norms of S(M) are related to the matrix norms of M in the following

way,

‖S(M)‖ = ‖M‖, ‖S(M)‖F =
√

2‖M‖F . ‖S(M)‖∗ = 2‖M‖∗
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Similarly, the Sobolev type norm for the symmetric kernel S(M) with respect to

the graph GUtV is related to the Sobolev type norm of the matrix M with respect to

the graphs GU and GV , that is,

‖∆1/2
GUtV
S(M)‖2

F = ‖∆1/2
GU
M‖2

F + ‖∆1/2
GV
MT‖2

F

Let ΠUtV be the uniform distribution on U t V . Let M and N be two matrices

over the graphs GU and GV . We have the following relation between the distribution

dependent inner products,

〈S(M),S(N)〉L2(ΠUtV⊗ΠUtV ) =
mUmV

(mU +mV)2
〈M,N〉L2(ΠU⊗ΠV )

which leads to the corresponding relation for the L2-norm

‖S(M)‖2
L2(ΠUtV⊗ΠUtV ) =

mUmV
(mU +mV)2

‖M‖2
L2(ΠU⊗ΠV ).

3.2 Estimation on symmetric kernels

We consider the problem of estimating a symmetric kernel S∗ ∈ SV over a weighted

graph G = (V ,A) of size m ∈ N. We base our estimate on a finite number of

noisy linear measurements of S∗. To be precise, let (U1, V1, Y1), . . . , (Un, Vn, Yn) be

independent copies of a random triple (U, V, Y ) where U and V are independent

random vertices sampled from the uniform distribution Π in V , and Y is a random

variable satisfying E(Y |U, V ) = S∗(U, V ).

Let Π2 := Π ⊗ Π be the distribution of random couple (U, V ). We use the dis-

tribution dependent norm ‖ · ‖L2(Π2) to measure the estimation error. Denote by

〈·, ·〉L2(Π2) the corresponding inner product. Since Π is the uniform distribution in V ,

‖S‖2
L2(Π2) = m−2‖S‖2

F and 〈S1, S2〉L2(Π2) = m−2〈S1, S2〉.

We will denote by {ev : v ∈ V} the canonical orthonormal basis of the space RV .

Based on this basis, one can construct matrices Eu,v = Ev,u = 1
2
(eu⊗ ev + ev ⊗ eu). If

v1, . . . , vm is an arbitrary ordering of the vertices in V , then {Evj ,vj : j = 1, . . . ,m} ∪
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{
√

2Evi,vj : 1 ≤ i < j ≤ m} is an orthonormal basis of the space SV of symmetric

matrices with Hilbert–Schmidt inner product.

In standard matrix completion problems, V is a finite set with no further structure

(i.e., the set of edges of the graph or the weight matrix are not specified). In this

problem, a matrix version of LASSO is based on a trade-off between fitting the target

matrix to the data using least squares and minimizing the nuclear norm

Ŝ := argmin
S∈SV

 1

n

n∑
j=1

(Yj − S(Uj, Vj))
2 + ε‖S‖∗

 . (58)

This method and its modifications have been studied by a number of authors

[12, 55, 47, 40, 38]. The following low-rank oracle inequality was proved in [40] for

a “linearized version” of the matrix LASSO estimator Ŝ. Assume that, for some

constant a > 0, |Y | ≤ a a.s. Let t > 0 and suppose that

ε ≥ 4a

Ñ√
t+ log(2m)

nm
∨ 2(t+ log(2m))

n

é
Then, there exists a constant C > 0 such that with probability at least 1− e−t

‖Ŝ − S∗‖2
L2(Π2) ≤ inf

S∈SV

î
‖S − S∗‖2

L2(Π2) + Cm2ε2 rank(S)
ó
.

The last bound was proved in [39] for the matrix LASSO estimator (58) itself in the

case when the domain of optimization problem is {S ∈ SV : maxu,v∈V |S(u, v)| ≤ a}.

Remember that the smoothness of a symmetric kernel S ∈ SV on a graph G =

(V ,A) is given by the Sobolev type norm ‖∆1/2
G S‖2

F . We often use the distribution

dependent version of that norm ‖∆1/2
G S‖2

L2(Π2) = m−2‖∆1/2
G S‖. In our analysis, we

consider an arbitrary positive semi-definite matrix instead of ∆G. We do so to em-

phasize the fact that other interpretations of the problem are possible. The positive

semidefinite matrix W is fixed throughout the paper, and its spectral properties are

crucial in our analysis. Assume that W has the following spectral representation

W =
m∑
k=1

λk(φk ⊗ φk),
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where 0 ≤ λ1 ≤ · · · ≤ λm are the eigenvalues repeated with their multiplicities, and

φ1, . . . , φm are the corresponding orthonormal eigenfunctions (of course, there is a

multiple choice of φk in the case of repeated eigenvalues). Let k0 := min{k ≤ m :

λk > 0}. We will assume in what follows that, for some constant c ≥ 1, λk+1 ≤ cλk

for all k ≥ k0. It will be also convenient to set λk := +∞ for k > m.

Let ρ := ‖W 1/2S∗‖L2(Π2) and r := rank(S∗). It is easy to show (see the proof of

Theorem 3.5 below) that kernel S∗ can be approximated by the following kernel:

S∗,l :=
l∑

i,j=1

〈S∗φi, φj〉(φi ⊗ φj)

with the approximation error

‖S∗ − S∗,l‖2
L2(Π2) ≤

2ρ2

λl+1

. (59)

Note that the kernel S∗,l can be viewed as an l× l matrix (represented in the basis

of eigenfunctions {φj}) and rank(S∗,l) ≤ r ∧ l, so, one needs approximately (r ∧ l)l

parameters to characterize such matrices. Thus, one can expect, that such a kernel

can be estimated, based on n linear measurements, with the squared L2(Π2)-error of

the order a2(r∧l)l
n

. Taking into account the bound on the approximation error (59)

and optimizing with respect to l = 1, . . . ,m, it would be also natural to expect the

following error rate in the problem of estimation of the target kernel S∗:

min
1≤l≤m

ñ
a2(r ∧ l)l

n
∨ ρ2

λl+1

ô
. (60)

We will show that such a rate is attained (up to constants and log factors) for a

version of least squares method with a nonconvex complexity penalty; see Section 3.5.

This method is not computationally tractable, so, we also study another method,

based on convex penalization with a combination of nuclear norm and squared Sobolev

type norm, and show that the rates are attained for such a method, too, provided

that the target matrix satisfies a version low coherence assumption with respect to

the basis of eigenfunctions ofW . More precisely, denote the range of S∗ by range(S∗),
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and by Prange(S∗) the orthogonal projection to range(S∗); we will prove error bounds

involving a coherence function,

ϕ(S∗;λ) :=
∑
λj≤λ

¨
Prange(S∗), φj ⊗ φj

∂
that characterizes the relationship between the kernelW defining the smoothness and

the target kernel S∗; see Section 3.6 for more details; see also [41] for similar results

in the case of “linearized least squares” estimator with double penalization. Finally,

we prove minimax lower bounds on the error rate that are roughly of the order

max
1≤l≤m

ñ
a2(r ∧ l)l

n
∧ ρ

2

λl

ô
subject to some extra conditions and with additional terms; see Section 3.3. In typical

situations, this expression is, up to a constant, of the same order as the upper bound

(60). For instance, if λl � l2β for some β > 1/2, then the minimax error rate of

estimation of the target kernel S∗ is of the orderÇÇ
a2ρ1/βr

n

å2β/(2β+1)

∧
Ç
a2ρ2/β

n

åβ/(β+1)

∧ a
2rm

n

å
∨ a

2

n

up to log factors. When m is sufficiently large, the term a2rm
n

will be dropped from

the minimum, and we end up with a nonparametric convergence rate controlled by

the smoothness parameter β and the rank r of the target matrix S∗ (the dependence

on m in the first two terms of the minimum is only in the log factors).

3.3 Minimax lower bounds

In this section, we derive minimax lower bounds on the L2(Π2)-error of an arbitrary

estimator Ŝ of the target kernel S∗ under the assumptions that the response variable

Y is bounded by a constant a > 0, the rank of S∗ is bounded by r ≤ m and its Sobolev

norm ‖W 1/2S∗‖L2(Π2) is bounded by ρ > 0. More precisely, given r = 1, . . . ,m and

ρ > 0, denote by Sr,ρ the set of all symmetric kernels S : V × V 7→ R such that

rank(S) ≤ r and ‖W 1/2S‖L2(Π2) ≤ ρ.
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Given r, ρ and a > 0, let Pr,ρ,a be the set of all probability distributions of (U, V, Y )

such that (U, V ) is uniformly distributed in V × V , |Y | ≤ a a.s. and E(Y |U, V ) =

S∗(U, V ), where S∗ ∈ Sr,ρ. For P ∈ Pr,ρ,a, denote SP (U, V ) := EP (Y |U, V ).

Recall that {φj, j = 1, . . . ,m} are the eigenfunctions of W orthonormal in the

space (RV , 〈·, ·〉). Then φ̄j :=
√
mφj, j = 1, . . . ,m are orthonormal in L2(Π). We

measure the “density” of these eigenfunctions by the following constant

Qp := max
1≤j≤m

‖φ̄j‖2
Lp(Π), p ≥ 2

and its “sparsity” by the constant

d := max
v∈V

card
¶
j : φj(v) 6= 0

©
,

We will obtain minimax lower bounds for classes of distributions Pr,ρ,a in two

different cases. In the first case, we assume that, for some (relatively large) value of

p ≥ 2, the quantity Qp is not too large. Roughly speaking, it means that most of the

components of vectors φj ∈ RV are uniformly small, say, φj(v) � m−1/2, v ∈ V , j =

1, . . . ,m. In other words, the m×m matrix (φj(v))j=1,...,m,v∈V is “dense,” so we refer

to this case as a “dense case”.

The opposite case occurs when the constant d is small. In that case, the matrix

(φj(v))j=1,...,m,v∈V is “sparse”, and therefore we refer to this case as a “sparse case”.

A typical example occurs when basis of eigenfunctions {φj, j = 1, . . . ,m} coincides

with the canonical basis {ev : v ∈ V} of RV (then, d = 1).

Denote l0 := k0 ∧ 32. In the dense case, the following theorem holds.

Theorem 3.1. Define

δ(1)
n (r, ρ, a) := max

l0≤l≤m

ñ
a2(r ∧ l)l

n
∧ ρ

2

λl
∧ 1

p− 1

1

Q2
p

a2(r ∧ l)
l

1

m4/p

ô
.

There exist constants c1, c2 > 0 such that

inf
Ŝn

sup
P∈Pr,ρ,a

PP
¶
‖Ŝn − SP‖2

L2(Π2) ≥ c1δ
(1)
n (r, ρ, a)

©
≥ c2,
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where the infimum is taken over all the estimators Ŝn based on n i.i.d. copies of

(U, V, Y ).

In fact, it will follow from the proof that, if λk0 ≤ nρ2

a2(r∧k0)k0
(i.e., the smallest

nonzero eigenvalue of W is not too large), then the maximum in the definition of

δ(1)
n (r, ρ, a) can be extended to all l = 1, . . . ,m.

Corollary 3.2. Let

δ(2)
n (r, ρ, a) := max

l0≤l≤m

ñ
a2(r ∧ l)l

n
∧ ρ

2

λl
∧ 1

Q2
logm

a2(r ∧ l)
l

1

logm

ô
.

There exist constants c1, c2 > 0 such that

inf
Ŝn

sup
P∈Pr,ρ,a

PP
¶
‖Ŝn − SP‖2

L2(Π2) ≥ c1δ
(2)
n (r, ρ, a)

©
≥ c2.

Proof. Take p = logm in the statement of Theorem 3.1 and observe that m4/p = e4

and 1
p−1
≥ 1

logm
.

Remark 1. It is easy to check that e−2Q∞ ≤ Qlogm ≤ Q∞.

It is obvious that one can replace the quantity δ(1)
n (r, ρ, a) in Theorem 3.1 (or the

quantity δ(2)
n (r, ρ, a) in Corollary 3.2) by the following smaller quantity:

δ(3)
n (r, ρ, a) := max

l0≤l≤L

ñ
a2(r ∧ l)l

n
∧ ρ

2

λl

ô
,

where L :=
[

1
Qpm2/p

»
n
p−1

] ∧
m. Moreover, denote

l̄ := max

®
l = l0, . . . ,m : (r ∨ l)lλl ≤

ρ2n

a2

´
.

It is straightforward to check that

max
l0≤l≤m

ñ
a2(r ∧ l)l

n
∧ ρ

2

λl

ô
=
a2(r ∧ l̄)l̄

n
∨ ρ2

λl̄+1

and, if l̄ ≤ L, then δ(3)
n (r, ρ, a) = a2(r∧l̄)l̄

n
∨ ρ2

λl̄+1
.
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Example. Suppose that, for some β > 1/2, λl � l2β, l = 1, . . . ,m (in particular, it

means that λl 6= 0 and l0 = k0 = 1). Then, an easy computation shows that

l̄ = (ľ ∧m) ∨ 1, ľ �
Ç
ρ2

a2

n

r

å1/(2β+1)

∧
Ç
ρ2n

a2

å1/(2β+2)

.

Let p = logm and take L :=
[

1
e2Qp

» n
log(m/e)

] ∧
m.

The condition l̄ ≤ L is satisfied, for instance, when either

e2Qp

»
log(m/e)(

ρ2

a2r
)1/(2β+1) ≤ c′n1/2−1/(2β+1)

or

e2Qp

»
log(m/e)(

ρ

a
)1/(β+1) ≤ c′n1/2−1/(2β+2)

where c′ > 0 is a small enough constant (this, essentially, means that n is sufficiently

large). Under either of these conditions, we get the following expression for a minimax

lower bound: ÇÇ
a2ρ1/βr

n

å2β/(2β+1)

∧
Ç
a2ρ2/β

n

åβ/(β+1)

∧ a
2rm

n

å
∨ a

2

n
. (61)

We now turn to the sparse case.

Theorem 3.3. Let

δ(4)
n (r, ρ, a) := max

l0≤l≤m

ñ
a2(r ∧ l)l

n
∧ ρ

2

λl
∧ a2

d logm

l2

m2

ô
.

There exist constants c1, c2 > 0 such that

inf
Ŝn

sup
P∈Pr,ρ,a

PP
¶
‖Ŝn − SP‖2

L2(Π2) ≥ c1δ
(4)
n (r, ρ, a)

©
≥ c2.

It will be clear from the upper bounds of Section 3.5 (see the remark after Theo-

rem 3.5) that, at least in a special case when {φj} coincides with the canonical basis

of RV , the additional term a2

d logm
l2

m2 is correct (up to a log factor). At the same time,

most likely, the “third terms” of the bounds of Theorem 3.1 (in the dense case) and

Theorem 3.3 (in the sparse case) have not reached their final form yet. A more sophis-

ticated construction of “well separated” subsets of Pr,ρ,a might be needed to achieve
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this goal. The main difficulty in the proof given below is related to the fact that

we have to impose constraints, on the one hand, on the entries of the target matrix

represented in the canonical basis and, on the other hand, on the Soblolev type norm

‖W 1/2S‖L2(Π2) (for which it is convenient to use the representation in the basis of

eigenfunctions of W ). Due to this fact, we are using the last representation in our

construction, and we have to use an argument based on the properties of Rademacher

sums to ensure that the entries of the matrix represented in the canonical basis are

uniformly bounded by a. This is the reason why the “third terms” occur in the

bounds of Theorems 3.1 and 3.3. In this case, when the constraints are only on the

norm ‖W 1/2S‖L2(Π2) and on the variance of the noise and there are no constraints on

‖S‖L∞ , it is much easier to prove the lower bound of the order maxl0≤l≤m[σ
2(r∧l)l
n
∧ ρ2

λl
]

without any additional terms. Note, however, that the condition ‖S∗‖L∞ ≤ a is of

importance in the following sections to obtain the upper bounds for penalized least

squares estimators that match the lower bounds up to log factors.

3.4 Proof of lower bounds

Proof of Theorem 3.1. The proof relies on several well-known facts stated below. In

what follows, K(µ‖ν) := −Eµ log dν
dµ

denotes Kullback-Leibler divergence between two

probability measures µ, ν defined on the same space and such that ν is absolutely

continuous with respect to µ (denoted by ν � µ). We will denote by P⊗n the n-fold

product measure P⊗n := P ⊗ P · · · ⊗ P . The following proposition is a version of

Theorem 2.5 in [59].

Proposition 3.4. Let P be a finite set of distributions of (U, V, Y ) such that the

following assumptions hold:

1. there exists P0 ∈ P such that for all P ∈ P , P � P0;
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2. there exists α ∈ (0, 1/8) such that

∑
P∈P

K
Ä
P⊗n0 ‖P⊗n

ä
≤ α

Ä
card(P)− 1

ä
log
Ä
card(P)− 1

ä
;

3. for all P1, P2 ∈ P , ‖SP1 − SP2‖2
L2(Π2) ≥ 4s2 > 0.

Then, there exists a constant β > 0 such that

inf
Ŝn

max
P∈P

PP
¶
‖Ŝn − SP‖2

L2(Π2) ≥ s2
©
≥ β > 0. (62)

We will also use Varshamov–Gilbert bound (see [59], Lemma 2.9, page 104),

Sauer’s lemma (see [38], page 39) and the following elementary bound for Rademacher

sums ([17], page 21): for all p ≥ 2,

E1/p

∣∣∣∣∣∣
N∑
j=1

εjtj

∣∣∣∣∣∣
p

≤
»
p− 1

Ñ
N∑
j=1

t2j

é1/2

, (t1, . . . , tN) ∈ RN , (63)

where ε1, . . . , εN are i.i.d. Rademacher random variables (i.e., εj = +1 with proba-

bility 1/2 and εj = −1 with the same probability).

We will start the proof with constructing a “well separated” subset P of the class

of distributions Pr,ρ,a that will allow us to use Proposition 3.4. Fix l ≤ m, l ≥ 32

and κ > 0. Denote l′ = [l/2], l′′ = l − l′. First assume that r ≤ l′′. Denote

Rσ := κ((σij) : i = 1, . . . , l′, j = 1, . . . , r), where σij = +1 or σij = −1. Let

Rl′,r = {Rσ : σ ∈ {−1, 1}l′×r} (so, Rl′,r is the class of all l′ × r matrices with entries

+κ or −κ). Given R ∈ Rl′,r, let

R̃ :=
Å
R R · · · R Ol′,l∗

ã
be the l′ × l′′ matrix that consists of [l′′/r] blocks R and the last block Ol′,l∗ , where

l∗ := l′′ − [l′′/r]r and Ok1,k2 is the k1 × k2 zero matrix. Finally, define the following

symmetric m×m matrix:

R♦ :=


Ol′,l′ R̃ Ol′,m−l

R̃T Ol′′,l′′ Ol′′,m−l

Om−l,l′ Om−l,l′′ Om−l,m−l
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Now, given σ ∈ {−1, 1}l′×r, define a symmetric kernel Kσ : V × V 7→ R,

Kσ :=
m∑

i,j=1

Ä
R♦σ
ä
ij

(φi ⊗ φj).

It is easy to see that

Kσ(u, v) = K ′σ(u, v) +K ′σ(v, u),

K ′σ(u, v) = κ
l′∑
i=1

r∑
j=1

σijφi(u)
[l′′/r]−1∑
k=0

φl′+rk+j(v).
(64)

Let Λ := {σ ∈ {−1, 1}l′×r : maxu,v∈V |Kσ(u, v)| ≤ a}. We will show that, if κ is

sufficiently small (its precise value to be specified later), then the set Λ contains at

least three quarters of the points of the combinatorial cube {−1, 1}l′×r. To this end,

define ξ := maxu,v∈V |Kε(u, v)|, where ε ∈ {−1, 1}l′×r is a random vector with i.i.d.

Rademacher components. Assume, in addition, that ε and (U, V ) are independent.

It is enough to show that ξ ≤ a with probability at least 3/4. We have

P{ξ ≥ a} ≤
∑
u,v∈V

P
¶∣∣∣Kε(u, v)

∣∣∣ ≥ a
©

= m2EP
¶∣∣∣Kε

Ä
U, V

ä∣∣∣ ≥ a|U, V
©

= m2P
¶∣∣∣Kε

Ä
U, V

ä∣∣∣ ≥ a
©
≤ m2E|Kε(U, V )|p

ap
.

We will use bound (63) to control E(|Kε(U, V )|p|U, V ) (recall that Kε(u, v),

u, v ∈ V is a Rademacher sum). Denote

τ 2(u, v) :=
l′∑
i=1

r∑
j=1

φ2
i (u)

Ñ
[l′′/r]−1∑
k=0

φl′+rk+j(v)

é2

.

Observe that τ 2(u, v) ≤ l′′

r
q(l′, u)q(l′′, v) ≤ q(l, u)q(l, v) l

r
, where q(l, u) :=∑l

j=1 φ
2
j(u), u ∈ V, and we used the boundÑ

[l′′/r]−1∑
k=0

φl′+rk+j(v)

é2

≤ l′′

r

[l′′/r]−1∑
k=0

φ2
l′+rk+j(v). (65)
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Thus, applying (63) to the Rademacher sum K ′ε, we get

E
∣∣∣Kε(u, v)

∣∣∣p ≤ 2p−1
Ä
E
∣∣∣K ′ε(u, v)

∣∣∣p + E
∣∣∣K ′ε(v, u)

∣∣∣pä
≤ 2p(p− 1)p/2κp

Ä
τ 2(u, v) ∨ τ 2(v, u)

äp/2
≤ 2p(p− 1)p/2κpqp/2(l, u)qp/2(l, v)

Ç
l

r

åp/2
.

Given p ∈ [2,+∞], denote Qp(l) := ‖m
l
q(l, ·)‖Lp/2(Π) = ‖1

l

∑l
j=1 φ̄

2
j‖Lp/2(Π) for l =

1, . . . ,m. This yields

E
∣∣∣Kε

Ä
U, V

ä∣∣∣p = EE
Ä∣∣∣Kε

Ä
U, V

ä∣∣∣p|U, V ä
≤ 2p(p− 1)p/2κp

Ç
l

r

åp/2
E
Ä
qp/2(l, U)qp/2

Ä
l, V
ää

= 2p(p− 1)p/2κp
Ç
l

r

åp/2Ä
Eqp/2(l, V )

ä2
= 2p(p− 1)p/2κp

Ç
l

r

åp/2Ç
l

m

åp
Qp
p(l).

Substituting the last bound into (3.4), we get

P{ξ ≥ a} ≤ m2E|Kε(U, V )|p

ap
≤ m22p(p− 1)p/2

κp

ap

Ç
l

r

åp/2Ç
l

m

åp
Qp
p(l).

Now, to get P{ξ ≥ a} ≤ 1/4, it is enough to take

κ ≤ 2−(1+2/p)(p− 1)−1/2 1

Qp(l)

m

l

a
√
r√
l

1

m2/p
. (66)

Next observe that

|Λ| ≥ 3

4
2l
′r >

[l′r/2]∑
k=0

Ü
l′r

k

ê
It follows from Sauer’s lemma that there exists a subset J ⊂ {(i, j) : 1 ≤ i ≤ l′, 1 ≤

j ≤ r} with |J | = [l′r/2]+1 and such that πJ(Λ) = {−1, 1}J , where πJ : {−1, 1}l′×r →

{−1, 1}J is the projection:

πJ(σij : i = 1, . . . , l′, j = 1, . . . , r) = (σij : (i, j) ∈ J).
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Since l ≥ 32, we have l′r ≥ 16 and |J | ≥ 8. We can now apply Varshamov–Gilbert

bound to the combinatorial cube {−1, 1}J to prove that there exists a subset E ⊂

{−1, 1}J such that |E| ≥ 2l
′r/16 + 1 and, for all σ′, σ′′ ∈ E, σ′ 6= σ′′,

∑
(i,j)∈J

I(σ′ij 6= σ′′ij) ≥
l′r

16
.

It is now possible to choose a subset Λ′ of Λ such that |Λ′| = |E| and πJ(Λ′) = E.

Then, we have |Λ′| ≥ 2l
′r/16 + 1 and

l′∑
i=1

r∑
j=1

I
Ä
σ′ij 6= σ′′ij

ä
≥ l′r

16
(67)

for all σ′, σ′′ ∈ Λ′, σ′ 6= σ′′.

We are now in a position to define the set of distributions P . For σ ∈ Λ′, denote

by Pσ the distribution of (U, V, Y ) such that (U, V ) is uniform in V × V and the

conditional distribution of Y given (U, V ) is defined as follows:

PPσ
¶
Y = δa|U, V

©
= pσ

Ä
U, V

ä
= 1/2 + δKσ

Ä
U, V

ä
/8a, δ ∈ {−1,+1}.

Since |Kσ(U, V )| ≤ a for all σ ∈ Λ′, we have pσ(U, V ) ∈ [3/8, 5/8], σ ∈ Λ. Denote

P := {Pσ : σ ∈ Λ′}. For P = Pσ ∈ P , we have

SP (u, v) = E
Ä
Y |X = u,X ′ = v

ä
= 1

4
Kσ(u, v).

Note that rank(SP ) = rank(Kσ) = rank(R♦σ ) ≤ r; see the definitions of Kσ and R♦σ .

Moreover, we have

∥∥∥W 1/2Kσ

∥∥∥2

F
=

∥∥∥∥∥∥W 1/2
m∑

i,j=1

Ä
R♦σ
ä
ij

(φi ⊗ φj)
∥∥∥∥∥∥

2

F

=
l∑

i,j=1

λi
Ä
R♦σ
ä2
ij
≤ λl‖Kσ‖2

F

and

‖Kσ‖2
F

=

∥∥∥∥∥∥κ
l′∑
i=1

r∑
j=1

σij

[l′′/r]−1∑
k=0

φi ⊗ φl′+rk+j + κ
r∑
i=1

l′∑
j=1

σji

[l′′/r]−1∑
k=0

φl′+rk+i ⊗ φj

∥∥∥∥∥∥
2

F

≤ 2κ2l′r
î
l′′/r

ó
≤ κ2l2.
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Therefore, ‖W 1/2Kσ‖2
L2(Π2) ≤ λlκ

2 l2

m2 , so, we have

∥∥∥W 1/2SPσ
∥∥∥ = 1

16

∥∥∥W 1/2Kσ

∥∥∥2

L2(Π2)
≤ ρ2, (68)

provided that

κ ≤ m

l

4ρ√
λl
. (69)

We can conclude that, for all P ∈ P , SP ∈ Sr,ρ provided that κ satisfies conditions (66)

and (69). Since also |Y | ≤ a, we have that P ⊂ Pr,ρ,a.

Next, we check that P satisfies the conditions of Proposition 3.4. It is easy to see

that, for all σ, σ′ ∈ Λ′Pσ′ � Pσ and

K(Pσ‖Pσ′)

= E
Ç
pσ
Ä
U, V

ä
log

pσ(U, V )

pσ′(U, V )
+
Ä
1− pσ

Ä
U, V

ää
log

1− pσ(U, V )

1− pσ′(U, V )

å
.

Using the elementary inequality − log(1 + u) ≤ −u+ u2, |u| ≤ 1/2 and the fact that

pσ(U, V ) ∈ [3/8, 5/8], σ ∈ Λ, we get that

K(Pσ‖Pσ′) ≤
6

82a2
‖Kσ −Kσ′‖L2(Π2) ≤

1

10a2m2
‖Kσ −Kσ′‖2

F , σ, σ′ ∈ Λ′.

A simple computation based on the definition of Kσ, Kσ′ easily yields that

‖Kσ −Kσ′‖2
F ≤ 8κ2l′r

î
l′′/r

ó
≤ 8κ2l′l′′ ≤ 4κ2l2.

Thus, for the n-fold product-measures P⊗nσ , P⊗nσ′ , we get

K
Ä
P⊗nσ ‖P⊗nσ′

ä
= nK(Pσ‖Pσ′) ≤

4nκ2

10a2

l2

m2
.

For a fixed σ ∈ Λ′, this yields

1

|Λ′| − 1

∑
σ′∈Λ′

K
Ä
P⊗nσ ‖P⊗nσ′

ä
≤ 4nκ2

10a2

l2

m2
≤ 1

10

l′r

16
≤ 1

10
log
Ä
|Λ′| − 1

ä
,

(70)

provided that

κ ≤ 1

16
a
m

l

 
rl

n
. (71)
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It remains to use (67) and the definition of kernels Kσ to bound from below the

squared distance ‖Kσ −Kσ′‖2
L2(Π2) for σ, σ

′ ∈ Λ′, σ 6= σ′,

‖Kσ −Kσ′‖2
L2(Π2) = m−2‖Kσ −Kσ′‖2

F ≥ 4m−2κ2 l
′r

16

î
l′′/r

ó
≥ 1

64
κ2 l

2

m2
.

Since SPσ = 1
4
Kσ, this implies that

‖SP − SP ′‖2
L2(Π2) ≥ 2−10κ2 l

2

m2
, P, P ′ ∈ P , P 6= P ′. (72)

In view of (66), (71) and (69), we now take

κ :=
1

16
a
m

l

 
rl

n
∧ m
l

4ρ√
λl
∧ 2−(1+2/p)(p− 1)−1/2 1

Qp(l)

m

l

a
√
r√
l

1

m2/p
.

With this choice of κ, P := {Pσ : σ ∈ Λ′} ⊂ Pr,a,ρ. In view of (72) and (70), we can

use Proposition 3.4 to get

inf
Ŝ

sup
P∈Pr,a,ρ

PP
¶
‖Ŝ − SP‖2

L2(Π2) ≥ c1δn
©

≥ inf
Ŝ

sup
P∈P

PP
¶
‖Ŝ − SP‖2

L2(Π2) ≥ c1δn
©
≥ c2,

(73)

where δn := a2rl
n
∧ ρ2

λl
∧ 1

p−1
1

Q2
p(l)

a2r
l

1
m4/p and c1, c2 > 0 are constants.

In the case when r > l′′, bound (73) still holds with

δn :=
a2l2

n
∧ ρ

2

λl
∧ 1

p− 1

a2

Q2
p(l)

1

m4/p
.

The proof is an easy modification of the argument in the case when r ≤ l′′. For r > l′′,

the construction becomes simpler: namely, we define

R[ :=


Ol′,l′ R Ol′,m−l

RT Ol′′,l′′ Ol′′,m−l

Om−l,l′ Om−l,l′′ Om−l,m−l


where R ∈ Rl′,l′′ , and, based on this, redefine kernels Kσ, σ ∈ {−1, 1}l′×l′′ . The proof

then goes through with minor simplifications.
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Thus, in both cases r > l′′ and r ≤ l′′, (73) holds with

δn = δn(l) :=
a2(r ∧ l)l

n
∧ ρ

2

λl
∧ 1

p− 1

1

Q2
p(l)

a2(r ∧ l)
l

1

m4/p
.

This is true under the assumption that l ≥ 32. Note also that

Qp(l) ≤ max
1≤j≤m

‖φ̄j‖2
Lp(Π) = Qp

Thus, we can replace Q2
p(l) by the upper bound Q2

p in the definition of δn(l).

We can now choose l ∈ {32, . . . ,m} that maximizes δn(l) to get bound (73) with

δn := min32≤l≤m δn(l). This completes the proof in the case when k0 ≥ 32 and

l0 = 32. If k0 < 32, it is easy to use the condition λl+1 ≤ cλl, l ≥ k0 and to show

that min32≤l≤m δn(l) ≤ c′mink0≤l≤m δn(l), where c′ is a constant depending only on c.

This completes the proof in the remaining case.

Proof of Theorem 3.3. The only modification of the previous proof is to replace bound

(65) by Ñ
[l′′/r]−1∑
k=0

φl′+rk+j(v)

é2

≤ d
[l′′/r]−1∑
k=0

φ2
l′+rk+j(v).

Then, the outcome of the next several lines of the proof is that P{ξ ≥ a} ≤ 1/4

provided that (instead of (66))

κ ≤ 2−(1+2/p)(p− 1)−1/2 1

Qp(l)

m

l

a√
d

1

m2/p
.

As a result, at the end of the proof, we get that (73) holds with

δn = δn(l) :=
a2(r ∧ l)l

n
∧ ρ

2

λl
∧ 1

p− 1

1

Q2
p(l)

a2

d

1

m4/p
.

It remains to observe that Qp(l) ≤ m
l
, which follows from the fact that

l∑
j=1

φ2
j(v) =

l∑
j=1

〈φj, ev〉2 ≤
m∑
j=1

〈φj, ev〉2 = 1, v ∈ V,

and to take p = logm to complete the proof.
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3.5 Least squares estimators with nonconvex penalties

In this section, we derive upper bounds on the squared L2(Π2)-error for a least squares

estimator of the target kernel S∗ with a non-convex feasible region. An appropriate

choice of the feasible region will allow us to prove upper bounds matching the lower

bounds up to log factors in some cases of interest. Firstly, we pick the feasible region

assuming some information about the target matrix S∗ (like its rank and how well it

can be approximated by a small number of eigenvectors of W ). Secondly, we consider

a procedure to pick the unknown parameters adaptively.

In order to define such non-convex feasible region of interest, we introduce some

subsets of symmetric kernels. For a kernel S ∈ SV , let Sa denote the clipping of

S by a. That is, Sa(u, v) = S(u, v) if |S(u, v)| ≤ a, Sa(u, v) = a if S(u, v) > a

and Sa(u, v) = −a if S(u, v) < −a, for each u and v in V . Let Sr(l; a) be the set

of symmetric kernels on V of rank at most r, L2(Π2)-norm bounded by a and with

range in the linear span of {φ1, . . . , φl}. To be precise,

Sr(l; a) :=

S ∈ SV : rank(S) ≤ r, ‖S‖L2(Π2) ≤ a, S =
l∑

i,j=1

sij(φi ⊗ φj)

.
Lastly, we define the set Sr(l; a) of clipped matrices from Sr(l, a),

S̄r(l; a) := {Sa : S ∈ Sr(l; a)}

Note that the sets Sr(l; a) and S̄r(l; a) are not convex.

3.5.1 Least square estimator

We are interested in the following least squares estimator of the target matrix S∗:

Ŝl := Ŝr,l,a := argmin
S∈S̄r(l;a)

1

n

n∑
j=1

Ä
Yj − S

Ä
Uj, Vj

ää2
, (74)

where l and r are parameters that we will choose adaptively as explained below. Note

that the optimization problem (74) is not convex. We will prove the following result

under the assumption that |Y | ≤ a a.s. Recall the definition of the class of kernels

Sr,ρ in Section 3.3.

79



Theorem 3.5. There exist constants C > 0, A > 0 such that, for all t > 0, with

probability at least 1− e−t,

‖Ŝl − S∗‖2
L2(Π2)

≤ 2 inf
S∈S̄r(l;a)

‖S − S∗‖2
L2(Π2) + C

Ç
a2(r ∧ l)l

n
log

Ç
Anm

(r ∧ l)l

å
+
a2t

n

å
.

(75)

In particular, for some constants C,A > 0, for S∗ ∈ Sr,ρ and for all t > 0, with

probability at least 1− e−t,

‖Ŝl − S∗‖2
L2(Π2) ≤ C

ñ
a2(r ∧ l)l

n
log

Ç
Anm

(r ∧ l)l

å
∨ ρ2

λl+1

∨ a
2t

n

ô
. (76)

Proof. Without loss of generality, assume that a = 1; this would imply the gen-

eral case by a simple rescaling of the problem. We will use a version of well-known

bounds for least squares estimators over uniformly bounded function classes in terms

of Rademacher complexities. Specifically, consider the following least squares estima-

tor:

ĝ := argming∈G n
−1

n∑
j=1

(Yj − g(Xj))
2,

where (X1, Y1), . . . , (Xn, Yn) are i.i.d. copies of a random couple (X, Y ) in T × R,

where (T, T ) is a measurable space, |Y | ≤ 1 a.s. and G is a class of measurable

functions on T uniformly bounded by 1. The goal is to estimate the regression

function g∗(x) := E(Y |X = x). Define localized Rademacher complexity

ψn(δ) := E sup
GU ,GV∈G,‖GU−GV‖2

L2(Π̂)
≤δ
|Rn(GU −GV)|,

where Π̂ is the distribution of X and Rn(g) := n−1∑n
j=1 εjg(Xj) is a Rademacher

process, that is ε1, . . . , εn is a sequence of i.i.d. Rademacher random variables inde-

pendent of {Xj}. Define ψ[n and ψ]n as

ψ[n(δ) := sup
σ≥δ

ψn(σ)

σ
, ψ]n(ε) := inf{δ > 0 : ψ[n(δ) ≤ ε}.

The next result easily follows from Theorem 5.2 in [38]:
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Proposition 3.6. There exist constants c1, c2 > 0 such that, for all t > 0, with

probability at least 1− e−t,

‖ĝ − g∗‖2
L2(Π̂)

≤ 2 inf
g∈G
‖g − g∗‖2

L2(Π̂)
+ c1

Ç
ψ]n(c2) +

t

n

å
.

We will apply this proposition to prove Theorem 3.5. In what follows in the proof,

denote Ŝ := Ŝl. In our case, T = V × V , X = (U, V ), and Π̂ = Π2. Let G := S̄r(l; 1),

g∗ = S∗ and ĝ = Ŝ. First, we need to upper bound the Rademacher complexity

ψn(δ) for the class G. Let Sr,m(R) be the set of all symmetric m×m matrices S with

rank(S) ≤ r and ‖S‖F ≤ R. The ε-covering number N(Sr,m(R); ‖ · ‖F ; ε) of the set

Sr,m(R) with respect to the Hilbert–Schmidt distance (i.e., the minimal number of

balls of radius ε needed to cover this set) can be bounded as follows:

N
Ä
Sr,m(R); ‖ · ‖F ; ε

ä
≤
Ç

18R

ε

å(m+1)r

. (77)

Such bounds are well known (see, e.g., [38], Lemma 9.3 and references therein; the

proof of this lemma can be easily modified to obtain (77)). Bound (77) will be used to

control the covering numbers of the set of kernels Sr(l; 1). Since kernels S ∈ Sr(l; 1)

can be viewed as symmetric l × l matrices of rank at most r ∧ l with ‖S‖L2(Π2) ≤ 1

and ‖S‖F = m‖S‖L2(Π2) ≤ m, we conclude that the set Sr(l; 1) can be identified with

a subset of the set Sr∧l,l(m). Therefore, we get the following bound:

N(Sr(l; 1); ‖ · ‖F ; ε) ≤
Ç

18m

ε

å(l+1)(r∧l)
.

Since ‖S1
1−S1

2‖2
F ≤ ‖S1−S2‖2

F (truncation of the entries reduces the Hilbert–Schmidt

distance), we also have

N(S̄r(l; 1); ‖ · ‖F ; ε) ≤
Ç

18m

ε

å(l+1)(r∧l)
.

Let Πn denotes the empirical distribution based on observations (U1, V1), . . . , (Un, V
′
n).

Note that,

‖S1 − S2‖2
L2(Πn) =

1

n

n∑
j=1

〈S1 − S2, EUj ,Vj〉2 ≤ ‖S1 − S2‖2
F .
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Therefore, we get the following bound on the L2(Πn)-covering numbers of the set

S̄r(l; 1):

N(S̄r(l; 1);L2(Πn); ε) ≤
Ç

18m

ε

å(l+1)(r∧l)
.

The last bound allows us to use inequality (3.17) in [38] to control the localized

Rademacher complexity ψn(δ) of the class G as follows:

ψn(δ) = E sup
S1,S2∈S̄r(l;1),‖S1−S2‖2

L2(Π2)
≤δ

∣∣∣∣∣∣ 1n
n∑
j=1

εj
Ä
S1

Ä
Uj, Vj

ä
− S2

Ä
Uj, Vj

ää∣∣∣∣∣∣
≤ C1

√δl(r ∧ l)
n

Ã
log

Ç
Am√
δ

å
∨ l(r ∧ l)

n
log

Ç
Am√
δ

å (78)

with some constant A,C1 > 0. This easily yields ψ]n(c2) ≤ C2
(r∧l)l
n

log( Anm
(r∧l)l) with

some constants A,C2 > 0. Proposition 3.6 now implies bound (75).

To prove bound (76), it is enough to observe that, for S∗ ∈ Sr,ρ,

inf
S∈S̄r(l;1)

‖S − S∗‖2
L2(Π2) ≤

2ρ2

λl+1

. (79)

Indeed, since S∗ ∈ Sr,ρ, we can approximate this kernel by

Sl :=
l∑

i,j=1

〈S∗φi, φj〉(φi ⊗ φj).

For the error of this approximation, we have

‖Sl − S∗‖2
L2(Π2) =

1

m2
‖Sl − S∗‖2

F =
1

m2

∑
i∨j>l
〈S∗φi, φj〉2

≤ 1

m

1

λl+1

∑
i>l

m∑
j=1

λi〈S∗φi, φj〉2 +
1

m2

1

λl+1

m∑
i=1

∑
j>l

λj〈S∗φi, φj〉2 ≤
2ρ2

λl+1

,

which implies ‖S1
l − S∗‖2

L2(Π) ≤ ‖Sl − S∗‖2
L2(Π2) ≤

2ρ2

λl+1
(since the entries of matrix S∗

are bounded by 1 and truncation of the entries reduces the Hilbert–Schmidt distance).

We also have rank(Sl) ≤ rank(S∗) ≤ r and

‖Sl‖L2(Π2) =
1

m2
‖Sl‖F ≤

1

m2
‖S∗‖F = ‖S∗‖L2(Π2) ≤ ‖S∗‖L∞ ≤ 1.

Therefore, S1
l ∈ S̄r(l; 1) and bound (79) follows. Bound (76) is a consequence of (75)

and (79).
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Remark 2. Note that, in the case when the basis of eigenfunctions {φj} coincides

with the canonical basis of space RV , the following bound holds trivially:

‖Ŝl − S∗‖2
L2(Π2) ≤

4a2l2

m2
+

2ρ2

λl+1

. (80)

This follows from the fact that the entries of both matrices Ŝl and Sl are bounded by

a, and their nonzero entries are only in the first l rows and the first l columns, so,

‖Ŝl−Sl‖2
L2(Π2) ≤ 4a2l2

m2 . Combining this with (76) and minimizing the resulting bound

with respect to l yields the following upper bound (up to a constant) that holds for

the optimal choice of l:

min
1≤l≤m

ñÇ
a2(r ∧ l)l

n
log

Ç
Anm

(r ∧ l)l

å
∧ a

2l2

m2

å
∨ ρ2

λl+1

ô
∨ a

2t

n
.

It is not hard to check that, typically, this expression is of the same order (up to log

factors) as the lower bound of Theorem 3.3 for d = 1.

3.5.2 Adaptive choice of parameters

Next we consider a penalized version of least squares estimator which is adaptive to

unknown parameters of the problem (such as the rank of the target matrix and the

optimal value of parameter l which minimizes the error bound of Theorem 3.5). We

still assume that |Y | ≤ a a.s. for some known constant a > 0. For K and A constants

to be determined later, define

(r̂, l̂) := argmin
r,l=1,...,m

n−1
n∑
j=1

Ä
Yj − Ŝr,l,a

Ä
Uj, Vj

ää2
+K

a2(r ∧ l)l
n

log

Ç
Anm

(r ∧ l)l

å (81)

The following theorem provides an oracle inequality for the estimator Ŝ := Ŝr̂,l̂,a..

Theorem 3.7. For a proper choice of the constants K and A in (81), there is an

absolute constant C such that for all t > 0, probability at least 1− e−t,

‖Ŝ − S∗‖2
L2(Π2) ≤ 2 min

1≤r≤m,1≤l≤m

ñ
inf

S∈S̄r(l;a)
‖S − S∗‖2

L2(Π2)

+C

Ç
a2(r ∧ l)l

n
log

Ç
Anm

(r ∧ l)l

å
+
a2(t+ logm)

n

åô
.

83



Proof. As in the proof of the previous theorem, we can assume that a = 1; the

general case follows by rescaling. We will use oracle inequalities in abstract penalized

empirical risk minimization problems; see [38], Theorem 6.5. We only sketch the

proof here skipping the details that are standard.

As in the proof of Theorem 3.5, first consider i.i.d. copies (X1, Y1), . . . , (Xn, Yn)

of a random couple (X, Y ) in T ×R, where (T, T ) is a measurable space and |Y | ≤ 1

a.s. Let {Gk : k ∈ I} be a finite family of classes of measurable functions from T into

[−1, 1]. Consider the corresponding family of least squares estimators

ĝk := argming∈Gk n
−1

n∑
j=1

(Yj − g(Xj))
2, k ∈ I.

Suppose the following upper bounds on localized Rademacher complexities for classes

Gk, k ∈ I hold:

E sup
GU ,GV∈Gk,‖GU−GV‖2L2(Π)

≤δ
|Rn(GU −GV)| ≤ ψn,k(δ), δ > 0,

where ψn,k are nondecreasing functions of δ that do not depend on the distribution

of (X, Y ). Define

k̂ := argmin
k∈I

n−1
n∑
j=1

Ä
Yj − ĝk(Xj)

ä2
+K

Ç
ψ]n,k(c1) +

tk
n

å, (82)

Let K and c1 be constants and let {tk, k ∈ I} be positive numbers.

We are interested in the penalized least squares estimator ĝ := ĝk̂ of the regression

function g∗. The next result is well known; it can be deduced, for instance, from

Theorem 6.5 in [38].

Proposition 3.8. There exists constants K, c1 > 0 in the definition (82) of k̂ and a

constant K1 > 0 such that, for all tk > 0, with probability at least 1−∑k∈I e
−tk

‖ĝ − g∗‖2
L2(Π) ≤ 2 inf

k∈I

ñ
inf
g∈Gk
‖g − g∗‖2

L2(Π) +K1

Ç
ψ]n,k(c) +

tk
n

åô
.

We apply this result to the estimator Ŝ = Ŝr̂,l̂,1, where (r̂, l̂) is defined by (81)

(with a = 1). In this case, T = V × V , X = (U, V ), g∗ = S∗, I = {(r, l) : 1 ≤ r, l ≤
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m}, Gr,l = S̄r(l; 1). In view of (78), we can use the following bounds on localized

Rademacher complexities for these function classes:

ψn,r,l(δ) := C1

ñ√
δl(r ∧ l)

n

Ã
log

Ç
Am√
δ

å
∨ l(r ∧ l)

n
log

Ç
Am√
δ

åô
with some constant C1, and we have

ψ]n,r,l(c1) ≤ C2
(r ∧ l)l
n

log(
Anm

(r ∧ l)l
)

with some constant C2 > 0. Define tr,l := t+2 logm, (r, l) ∈ I. This yields the bound

∑
(r,l)∈I

e−tr,l ≤ e−t.

These considerations and Proposition 3.8 imply the claim of the theorem.

It follows from Theorem 3.7 that, for some constant C > 0 and for all t > 0,

sup
P∈Pr,ρ,a

PP
®
‖Ŝ − SP‖2

L2(Π2) ≥ C

Ç
∆n(r, ρ, a) ∨ a

2t

n

å´
≤ e−t, (83)

where

∆n(r, ρ, a) := min
1≤l≤m

[
a2(r ∧ l)l

n
log(

Anm

(r ∧ l)l
) ∨ ρ2

λl+1

].

Denoting

l̃ := min

®
l = 1, . . . ,m : (r ∨ l)lλl+1 log

Ç
Anm

(r ∧ l)l

å
≥ ρ2n

a2

´
,

it is easy to see that ∆n(r, ρ, a) = a2(r∧l̃)l̃
n

log
(
Anm
(r∧l̃)l̃

)
∨ ρ2

λl̃
.

Example. Suppose that, for some β > 1/2, λl � l2β, l = 1, . . . ,m. Under this

assumption, it is easy to show that the upper bound on the squared L2(Π2)-error of

the estimator Ŝ is of the orderÇÇ
a2ρ1/βr

n
log

Anm

r

å2β/(2β+1)

∧
Ç
a2ρ2/β log(Anm)

n

åβ/β+1

∧ a
2rm log(Anm)

n

å
∨ a

2t

n

In fact, the log factors can be written in a slightly better, but more complicated

way. Up to the log factors, this is the same error rate as in the lower bounds of

Section 3.3; see (61).
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3.6 Combining nuclear norm and squared Sobolev norm

The main goal in this section is to study the following penalized least squares estimator

with a combination of two convex penalties:

Ŝε,ε̄ := argmin
S∈D

 1

n

n∑
j=1

Ä
Yj − S

Ä
Uj, Vj

ää2
+ ε‖S‖∗ + ε̄

∥∥∥W 1/2S
∥∥∥2

L2(Π2)

, (84)

where ε, ε̄ > 0 are regularization parameters, and D ⊂ SV is a closed convex set of

symmetric kernels with bounded entries. That is, for all S ∈ D,

‖S‖L∞ := max
u,v∈V

|S(u, v)| ≤ a,

The first penalty involved in (84) is based on the nuclear norm ‖S‖∗, and it is

used to “promote” low-rank solutions. The second penalty is based on a “Sobolev type

norm” ‖W 1/2S‖2
L2(Π2) and It is used to “promote” the smoothness of the solution on

the graph.

We will derive an upper bound on the error ‖Ŝε,ε̄ − S∗‖2
L2(Π2) of estimator Ŝε,ε̄ in

terms of spectral characteristics of the target kernel S∗ and matrix W . As before,

W is a nonnegatively definite symmetric kernel with spectral representation W =∑m
k=1 λk(φk ⊗ φk), where 0 ≤ λ1 ≤ · · · ≤ λm are the eigenvalues of W repeated with

their multiplicities and φ1, . . . , φm are the corresponding orthonormal eigenfunctions.

We will also use the decomposition of identity associated with W :

E(λ) :=
∑
λj≤λ

(φj ⊗ φj), λ ≥ 0.

Clearly, λ 7→ E(λ) is a nondecreasing projector-valued function. Despite the fact that

the eigenfunctions {φk} are not uniquely defined in the case when W has multiple

eigenvalues, the decomposition of identity {E(λ), λ ≥ 0} is uniquely defined (in fact,

it can be rewritten in terms of spectral projectors of W ). The distribution of the

eigenvalues of W is characterized by the following spectral function:

F (λ) := tr
Ä
E(λ)

ä
=
∥∥∥E(λ)

∥∥∥2

F
=

m∑
j=1

I(λj ≤ λ), λ ≥ 0.
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Denote k0 := F (0) + 1 (in other words, k0 is the smallest k such that λk > 0). We

also assume that there exists a constant c ≥ 1 such that λk+1 ≤ cλk for all k ≥ k0.

In what follows, we use a regularized majorant of spectral function F . Let F̄ :

R+ 7→ R+ be a nondecreasing function such that F (λ) ≤ F̄ (λ), λ ≥ 0, the function

λ 7→ F̄ (λ)
λ

is nonincreasing and, for some γ ∈ (0, 1),

∫ ∞
λ

F̄ (s)

s2
ds ≤ 1

γ

F̄ (λ)

λ
, λ > 0.

Without loss of generality, we assume in what follows that F̄ (λ) = m,λ ≥ λm. When

that is not the case, we can take the function F̄ (λ) ∧m instead. The conditions on

F̄ are satisfied if for some γ ∈ (0, 1), the function F̄ (λ)
λ1−γ is nonincreasing: in this case,

F̄ (λ)
λ

is also nonincreasing and

∫ ∞
λ

F̄ (s)

s2
ds =

∫ ∞
λ

F̄ (s)

s1−γ
ds

s1+γ
≤ F̄ (λ)

λ1−γ

∫ ∞
λ

ds

s1+γ
=

1

γ

F̄ (λ)

λ
.

Let S ∈ SV be a kernel that will play the role of an oracle in our analysis.

Consider its spectral representation: S =
∑r
k=1 µk(ψk ⊗ ψk), where r = rank(S) ≥ 1,

µk are nonzero eigenvalues of S (possibly repeated) and ψk are the corresponding

orthonormal eigenfunctions. Denote the range of S by L. The following coherence

function will be used to characterize the relationship between the kernels S and W :

ϕ(S;λ) :=
¨
PL, E(λ)

∂
:=

∑
λj≤λ
‖PLφj‖2, λ ≥ 0. (85)

It is immediate from this definition that ϕ(S, λ) ≤ F (λ) ≤ F̄ (λ), λ ≥ 0. Note also

that ϕ(S;λ) is a nondecreasing function of λ and

ϕ(S, λ) =
m∑
j=1

‖PLφj‖2 = r, λ ≥ λm

For λ < λm, ϕ(S;λ) can be interpreted as a “partial rank” of S. As in the case

of spectral function S, we need a regularized majorant for the coherence function

ϕ(S;λ). Denote by Ψ = ΨS,W the set of all nondecreasing functions ϕ : R+ 7→ R+

such that λ 7→ ϕ(λ)
F̄ (λ)

is nonincreasing and ϕ(S;λ) ≤ ϕ(λ), λ ≥ 0. It is easy to see that
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the class of functions ΨS,W contains the smallest function (uniformly in λ ≥ 0) that

will be denoted by ϕ̄(S;λ) and it is given by the following expression:

ϕ̄(S;λ) := sup
σ≤λ

F̄ (σ) sup
σ′≥σ

ϕ(S;σ′)

F̄ (σ′)
.

It easily follows from this definition that ϕ̄(S, λ) = r, λ ≥ λm. Note that since the

function ϕ̄(S,λ)
F̄ (λ)

is nonincreasing and it is equal to r
m

for λ ≥ λm, we have

ϕ̄(S;λ) ≥ r

m
F̄ (λ) ≥ r

m
F (λ), λ ≥ 0. (86)

Given t > 0, λ̃ ∈ (0, λk0 ], let tn,m := t + 3 log(2 log2 n + 1
2

log2
λm
λ̃

+ 2). Suppose

that, for some D > 0,

ε ≥ Da

Ç√
log(2m)

nm
∨ log(2m)

n

å
. (87)

Theorem 3.9. There exists constants C,D depending only on c, γ such that, for all

ε̄ ∈ [0, λ̃−1] with probability at least 1− e−t,

‖Ŝε,ε̄ − S∗‖2
L2(Π2) ≤ inf

S∈D

î
‖S − S∗‖2

L2(Π2)

+Cm2ε2ϕ̄
Ä
S; ε̄−1

ä
+ ε̄

∥∥∥W 1/2S
∥∥∥2

L2(Π2)

ó
+ C

a2tn,m
n

.

(88)

Remarks 3. Under the additional assumption that m log(2m) ≤ n, one can take

ε = Da
√

log(2m)
nm

. In this case, the main part of the random error term in the right-

hand side of bound (88) becomes

Cm2ε2ϕ̄
Ä
S; ε̄−1

ä
+ ε̄

∥∥∥W 1/2S
∥∥∥2

L2(Π2)

= C ′
a2ϕ̄(S; ε̄−1)m log(2m)

n
+ ε̄

∥∥∥W 1/2S
∥∥∥2

L2(Π2)
.

Note also that Theorem 3.9 holds in the case when ε̄ = 0. In this case, our

method coincides with nuclear norm penalized least squares (matrix LASSO) and

ϕ̄(S; ε̄−1) = rank(S), so the bound of Theorem 3.9 becomes

‖Ŝε,0 − S∗‖2
L2(Π2) ≤ inf

S∈D

î
‖S − S∗‖2

L2(Π2)+

Cm2ε2 rank(S)
ó

+ C
a2tn,m
n

.

(89)
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Similar oracle inequalities were proved in [40] for a linearized least squares method

with nuclear norm penalty.

Using simple aggregation techniques, it is easy to construct an adaptive estimator

for which the oracle inequality of Theorem 3.9 holds with the optimal value of ε̄

that minimizes the right-hand side of the bound. To this end, divide the sample

(U1, V1, Y1), . . . , (Un, Vn, Yn) into two parts,Ä
Uj, Vj, Yj

ä
, j = 1, . . . , n′ andÄ

Un′+j, Vn′+j, Yn′+j
ä
, j = 1, . . . , n− n′,

where n′ := [n/2] + 1. The first part of the sample will be used to compute the

estimators Ŝl := Ŝε,ε̄l , εl := λ−1
l , l = k0, . . . ,m + 1; while the second part of the

sample is used for model selection

l̂ := argmin
l=k0,...,m+1

1

n− n′
n−n′∑
j=1

Ä
Yn′+j − Ŝl

Ä
Xn′+j, X

′
n′+j

ää2
.

Finally, let Ŝ := Ŝl̂.

Theorem 3.10. Under the assumptions and notation of Theorem 3.9, with proba-

bility at least 1− e−t,

‖Ŝ − S∗‖2
L2(Π2) ≤ inf

S∈D

ï
2‖S − S∗‖2

L2(Π2)

+C inf
ε̄∈[0,λ−1

k0
]

Ä
m2ε2ϕ̄

Ä
S; ε̄−1

ä
+ ε̄

∥∥∥W 1/2S
∥∥∥2

L2(Π2)

äò
+C

a2(log(m+ 1) + tn,m)

n
.

Proof. The idea of aggregation result behind this theorem is rather well known; see

[46], Chapter 8. The proof can be deduced, for instance, from Proposition 3.6 used

in Section 3.5. Specifically, this proposition has to be applied in the case when G is

a finite class of functions bounded by 1. Let N := |G|. Then, for some numerical

constant C1 > 0

ψn(δ) ≤ C1

ñ
δ

 
logN

n
∨ logN

n

ô
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(see, e.g., [38], Theorem 3.5), and Proposition 3.6 easily implies that, for all t > 0,

with probability at least 1− e−t

‖ĝ − g∗‖2
L2(Π) ≤ 2 inf

g∈G
‖g − g∗‖2

L2(Π) + C2
logN + t

n
, (90)

where C2 > 0 is a constant. We will assume that a = 1 (in the general case, the result

would follow by rescaling) and use bound (90), conditionally on the first part of the

sample, in the case when G := {ĝl : l = k0, . . . ,m + 1}. Then, given (Uj, Vj, Yj), j =

1, . . . , n′, with probability at least 1− e−t,

‖Ŝ − S∗‖2
L2(Π2) ≤ 2 min

k0≤l≤m+1
‖Ŝl − S∗‖2

L2(Π) + C2
log(m+ 1) + t

n
. (91)

By Theorem 3.9 (with t replaced by t + log(m + 1)) and the union bound, we get

that, with probability at least 1− e−t, for all l = k0, . . . ,m+ 1,

‖Ŝl − S∗‖2
L2(Π2) ≤ inf

S∈D

î
‖S − S∗‖2

L2(Π2)

+C3m
2ε2ϕ̄

Ä
S; ε̄−1

l

ä
+ ε̄l

∥∥∥W 1/2S
∥∥∥2

L2(Π2)

ó
+ C3

log(m+ 1) + tn,m
n

(92)

with some constant C3 > 0. Therefore, we can bound

min
k0≤l≤m+1

‖Ŝl − S∗‖2
L2(Π)

with the same probability by the minimum over l = k0, . . . ,m+1 of the expression in

the right-hand side of (92). Moreover, using monotonicity of the function λ 7→ ϕ(S;λ)

and the condition that λl+1 ≤ cλl, l = k0, . . . ,m−1, it is easy to replace the minimum

over l by the infimum over ε̄. Combining the resulting bound with (91) and adjusting

the constants yields the claim.

Using more sophisticated aggregation methods (e.g., such as the methods studied

in [26]) it is possible to construct an estimator Ŝ for which the oracle inequality similar

to (90) holds with constant 1 in front of the approximation error term ‖S−S∗‖2
L2(Π2).

To understand better the meaning of function ϕ̄ involved in the statements of

Theorems 3.9 and 3.10, it makes sense to relate it to the low coherence assumptions

discussed in section 3.2. Indeed, suppose that, for some ν = ν(S) ≥ 1,
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‖PLφk‖2 ≤ νr

m
, k = 1, . . . ,m. (93)

This is a part of standard low coherence assumptions on matrix S with respect to the

orthonormal basis {φk}. Clearly, it implies that

ϕ̄(S;λ) ≤ νrF̄ (λ)

m
, λ ≥ 0. (94)

Suppose that n ≥ m log(2m) and ε = Da
√

log(2m)
nm

. If condition (94) holds for the

target kernel S∗ with r = rank(S∗) and some ν ≥ 1, then Theorem 3.9 implies that

with probability at least 1− e−t,

‖Ŝε,ε̄ − S∗‖2
L2(Π2) ≤ C

a2νrF̄ (ε̄−1) log(2m)

n
+ ε̄

∥∥∥W 1/2S∗
∥∥∥2

L2(Π2)

+C
a2tn,m
n

,

and Theorem 3.10 implies that with the same probability,

‖Ŝ − S∗‖2
L2(Π2) ≤ C inf

ε̄∈[0,λ−1
k0

]

Ç
a2νrF̄ (ε̄−1) log(2m)

n
+ ε̄

∥∥∥W 1/2S∗
∥∥∥2

L2(Π2)

å
+ C

a2(log(m+ 1) + tn,m)

n
.

Example. If λk � k2β for some β > 1/2, then it is easy to check that F̄ (λ) � λ1/2β.

Under the assumption that ‖W 1/2S∗‖2
L2(Π2) ≤ ρ2, we get the bound

‖Ŝ − S∗‖2
L2(Π2)

≤ C

ÇÇÇ
a2ρ1/βνr log(2m)

n

å2β/(2β+1)

∧ a
2rm

n

å
∨a

2(log(m+ 1) + tn,m)

n

å
.

(95)

Under the following slightly modified version of low coherence assumption (94),

ϕ̄(S;λ) ≤ ν(r ∧ F̄ (λ))F̄ (λ)

m
, λ ≥ 0, (96)

one can almost recover upper bounds of Section 3.5,

‖Ŝ − S∗‖2
L2(Π2)

≤ C

ÇÇÇ
νa2ρ1/βr log(2m)

n

å2β/(2β+1)

∧
Ç
νa2ρ2/β log(2m)

n

åβ/(β+1)

∧a
2rm

n

å
∨ a

2(log(m+ 1) + tn,m)

n

å
.

91



The main difference with what was proved in Section 3.5 is that now the low

coherence constant ν is involved in the bounds, so the methods discussed in this

section yield correct (up to log factors) error rates provided that the target kernel S∗

has “low coherence” with respect to the basis of eigenfunctions of W .

Proof of Theorem 3.9. Bound (88) will be proved for a fixed oracle S ∈ D and an

arbitrary function ϕ ∈ ΨS,W with ϕ(λ) = r, λ ≥ λm instead of ϕ̄. It then can be

applied to the function ϕ̄ (which is the smallest function in ΨS,W ). Without loss of

generality, we assume that a = 1; the general case then follows by a simple rescaling.

Finally, we will denote Ŝ := Ŝε,ε̄ throughout the proof.

For a subspace L of RV , let PL be the orthogonal projection to L. We define the

following orthogonal projectors PL,P⊥L in the space SV with Hilbert–Schmidt inner

product:

PL(A) := A− PL⊥APL⊥ , P⊥L (A) = PL⊥APL⊥ , A ∈ SV .

We will use a well known representation of subdifferential of convex function S 7→

‖S‖∗:

∂‖S‖∗ =
¶
sign(S) + P⊥L (M) : M ∈ SV , ‖M‖ ≤ 1

©
,

where L is the range of S; see [38], Appendix A.4 and references therein. Denote

Ln(S) :=
1

n

n∑
j=1

Ä
Yj − S

Ä
Uj, Vj

ää2
+ ε‖S‖∗ + ε̄

∥∥∥W 1/2S
∥∥∥2

L2(Π2)
,

so that Ŝ := argminS∈D Ln(S). An arbitrary matrix A ∈ ∂Ln(Ŝ) can be represented

as

A =
2

n

n∑
i=1

Ŝ
Ä
Ui, V

′
i

ä
EUi,V ′i −

2

n

n∑
i=1

YiEUi,V ′i + εV̂ + 2
ε̄

m2
WŜ, (97)

where V̂ ∈ ∂‖Ŝ‖∗. Since Ŝ is a minimizer of Ln(S), there exists a matrix A ∈ ∂Ln(Ŝ)

such that −A belongs to the normal cone of D at the point Ŝ; see [2], Chapter 2,
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Corollary 6. This implies that 〈A, Ŝ − S〉 ≤ 0 and, in view of (97),

2Pn
Ä
Ŝ(Ŝ − S)

ä
−

∞
2

n

n∑
i=1

YiEUi,V ′i , Ŝ − S

∫
+ ε〈V̂ , Ŝ − S〉

+ 2
ε̄

m2
〈WŜ, Ŝ − S〉 ≤ 0.

(98)

Here and in what follows Pn denotes the empirical distribution based on the sample

(U1, V1, Y1), . . . , (Un, Vn, Yn). The corresponding true distribution of (U, V, Y ) will be

denoted by P . It easily follows from (98) that

2〈Ŝ − S∗, Ŝ − S〉L2(Pn) − 2〈Ξ, Ŝ − S〉

+ε〈V̂ , Ŝ − S〉+ 2ε̄
¨
W 1/2Ŝ,W 1/2(Ŝ − S)

∂
L2(Π2)

≤ 0,

where

Ξ :=
1

n

n∑
j=1

ξjEUj ,Vj , ξj := Yj − S∗(Uj, Vj).

We can now rewrite the last bound as

2〈Ŝ − S∗, Ŝ − S〉L2(P ) + ε〈V̂ , Ŝ − S〉+ 2ε̄
¨
W 1/2(Ŝ − S),W 1/2(Ŝ − S)

∂
L2(Π2)

≤ −2ε̄
¨
W 1/2S,W 1/2(Ŝ − S)

∂
L2(Π2)

+ 2〈Ξ, Ŝ − S〉

+2(P − Pn)
Ä
(Ŝ − S∗)(Ŝ − S)

ä
and use a simple identity

2〈Ŝ − S∗, Ŝ − S〉L2(P ) = 2〈Ŝ − S∗, Ŝ − S〉L2(Π2)

= ‖Ŝ − S∗‖2
L2(Π2) + ‖Ŝ − S‖2

L2(Π2) − ‖S − S∗‖2
L2(Π2)

to get the following bound:

‖Ŝ − S∗‖2
L2(Π2) + ‖Ŝ − S‖2

L2(Π2) + 2ε̄
∥∥∥W 1/2(Ŝ − S)

∥∥∥2

L2(Π2)
+ ε〈V̂ , Ŝ − S〉

≤ ‖S − S∗‖2
L2(Π2) − 2ε̄

¨
W 1/2S,W 1/2(Ŝ − S)

∂
L2(Π2)

+ 2〈Ξ, Ŝ − S〉

+2(P − Pn)(S − S∗)(Ŝ − S) + 2(P − Pn)(Ŝ − S)2

(99)

For an arbitrary V ∈ ∂‖S‖∗, V = sign(S) + P⊥L (M), where M is a matrix with

‖M‖ ≤ 1. It follows from the trace duality property that there exists an M with

‖M‖ ≤ 1 (to be specific, M = sign(P⊥L (Ŝ))) such that¨
P⊥L (M), Ŝ − S

∂
=
¨
M,P⊥L (Ŝ − S)

∂
=
¨
M,P⊥L (Ŝ)

∂
=
∥∥∥P⊥L (Ŝ)

∥∥∥
∗
,
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where the first equality is based on the fact that P⊥L is a self-adjoint operator and

the second equality is based on the fact that S has support L. Using this equation

and monotonicity of subdifferentials of convex functions, we get 〈sign(S), Ŝ − S〉 +

‖P⊥L (Ŝ)‖∗ = 〈V, Ŝ−S〉 ≤ 〈V̂ , Ŝ−S〉. Substituting this into the left-hand side of (99),

it is easy to get

‖Ŝ − S∗‖2
L2(Π2) + ‖Ŝ − S‖2

L2(Π2) + ε
∥∥∥P⊥L (Ŝ)

∥∥∥
∗

+ 2ε̄
∥∥∥W 1/2(Ŝ − S)

∥∥∥2

L2(Π2)

≤ ‖S − S∗‖2
L2(Π2) − ε

¨
sign(S), Ŝ − S

∂
−2ε̄

¨
W 1/2S,W 1/2(Ŝ − S)

∂
L2(Π2)

+2〈Ξ, Ŝ − S〉+ 2(P − Pn)(S − S∗)(Ŝ − S) + 2(P − Pn)(Ŝ − S)2

(100)

We need to bound the right-hand side of (100). We start with deriving a bound

on 〈sign(S), Ŝ − S〉, expressed in terms of function ϕ. Note that, for all λ > 0,¨
sign(S), Ŝ − S

∂
=

m∑
k=1

¨
sign(S)φk, (Ŝ − S)φk

∂
=
∑
λk≤λ

¨
sign(S)φk, (Ŝ − S)φk

∂
+
∑
λk>λ

Æ
sign(S)φk√

λk
,
»
λk(Ŝ − S)φk

∏
,

which easily implies

∣∣∣¨sign(S), Ŝ − S
∂∣∣∣

≤
Ç∑
λk≤λ

∥∥∥sign(S)φk
∥∥∥2
å1/2Ç∑

λk≤λ

∥∥∥(Ŝ − S)φk
∥∥∥2
å1/2

+

Ç∑
λk>λ

‖ sign(S)φk‖2

λk

å1/2Ç∑
λk>λ

λk
∥∥∥(Ŝ − S)φk

∥∥∥2
å1/2

≤
Ç∑
λk≤λ
‖PLφk‖2

å1/2

‖Ŝ − S‖F +

Ç∑
λk>λ

‖PLφk‖2

λk

å1/2∥∥∥W 1/2(Ŝ − S)
∥∥∥
F

(101)

We will now use the following elementary lemma.

Lemma 3.11. Let cγ := c+γ
γ
. For all λ > 0,

∑
λk>λ

‖PLφk‖2

λk
≤ cγ

ϕ(λ)

λ
and

∑
λk>λ

1

λk
≤ cγ

F̄ (λ)

λ
.
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Proof. Denote Hk :=
∑l
j=1 ‖PLφj‖2, k = 1, . . . ,m. Suppose that λ ∈ [λl, λl+1] for

some l = k0 − 1, . . . ,m− 1. We will use the properties of functions ϕ ∈ ΨS,W and F̄ .

In particular, recall that the functions ϕ(λ)
F̄ (λ)

and F̄ (λ)
λ

are nonincreasing. Using these

properties and the condition that λk+1 ≤ cλk, k ≥ k0 we get

∑
λk>λ

‖PLφk‖2

λk
=

m−1∑
k=l+1

Hk

Ç
1

λk
− 1

λk+1

å
+
Hm

λm
− Hl

λl+1

≤
m−1∑
k=l+1

ϕ(λk)

Ç
1

λk
− 1

λk+1

å
+
ϕ(λm)

λm

≤ c
m−1∑
k=l+1

ϕ(λk+1)

λ2
k+1

(λk+1 − λk) +
ϕ(λm)

λm

≤ c
∫ ∞
λ

ϕ(s)

s2
ds+

ϕ(λ)

λ
≤ c

∫ ∞
λ

ϕ(s)

F̄ (s)

F̄ (s)

s2
ds+

ϕ(λ)

λ

≤ c
ϕ(λ)

F̄ (λ)

∫ ∞
λ

F̄ (s)

s2
ds+

ϕ(λ)

λ
≤ c

γ

ϕ(λ)

F̄ (λ)

F̄ (λ)

λ
+
ϕ(λ)

λ

=
c+ γ

γ

ϕ(λ)

λ
,

which proves the first bound. To prove the second bound, replace in the inequalities

above ‖PLφk‖2 by 1 and ϕ(λ) by F̄ (λ). In the case when λ ≥ λm, both bounds are

trivial since their left-hand sides are equal to zero.

It follows from from (101) and the first bound of Lemma 3.11 that

∣∣∣¨sign(S), Ŝ − S
∂∣∣∣ ≤ »ϕ(λ)‖Ŝ − S‖F +

√
cγ
ϕ(λ)

λ

∥∥∥W 1/2(Ŝ − S)
∥∥∥
F

= m
»
ϕ(λ)‖Ŝ − S‖L2(Π2) +m

√
cγ
ϕ(λ)

λ

∥∥∥W 1/2(Ŝ − S)
∥∥∥
L2(Π2)

.

(102)

This implies the following bound:

ε
∣∣∣¨sign(S), Ŝ − S

∂∣∣∣
≤ ϕ(λ)m2ε2 +

1

4
‖Ŝ − S‖2

L2(Π2) + cγ
ϕ(λ)

λ

m2ε2

ε̄
+
ε̄

4

∥∥∥W 1/2(Ŝ − S)
∥∥∥2

L2(Π2)
,

(103)

where we used twice an elementary inequality ab ≤ a2 + 1
4
b2, a, b > 0. We will apply

this bound for λ = ε̄−1 to get the following inequality:

ε
∣∣∣¨sign(S), Ŝ − S

∂∣∣∣
≤ (cγ + 1)ϕ

Ä
ε̄−1
ä
m2ε2 +

1

4
‖Ŝ − S‖2

L2(Π2) +
ε̄

4

∥∥∥W 1/2(Ŝ − S)
∥∥∥2

L2(Π2)

(104)
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To bound the next term in the right-hand side of (100), note that

ε̄
∣∣∣¨W 1/2S,W 1/2(Ŝ − S)

∂
L2(Π2)

∣∣∣
≤ ε̄

∥∥∥W 1/2S
∥∥∥2

L2(Π2)
+
ε̄

4

∥∥∥W 1/2(Ŝ − S)
∥∥∥2

L2(Π2)
.

(105)

The main part of the proof deals with bounding the stochastic term

2〈Ξ, Ŝ − S〉+ 2(P − Pn)(S − S∗)(Ŝ − S) + 2(P − Pn)(Ŝ − S)2

on the right-hand side of (100). To this end, for a fixed S and S∗, define

fA(y, u, v) :=
Ä
y − S∗(u, v)

ä
(A− S)(u, v)

−(S − S∗)(u, v)(A− S)(u, v)− (A− S)2(u, v)

=
Ä
y − S(u, v)

ä
(A− S)(u, v)− (A− S)2(u, v),

and consider the following empirical process:

αn(δ1, δ2, δ3) := sup
{∣∣∣(Pn − P )(fA)

∣∣∣ : A ∈ T (δ1, δ2, δ3)
}
,

where

T (δ1, δ2, δ3)

:=
¶
A ∈ D : ‖A− S‖L2(Π2) ≤ δ1,

∥∥∥P⊥LA∥∥∥∗ ≤ δ2,
∥∥∥W 1/2(A− S)

∥∥∥
L2(Π2)

≤ δ3

©
.

Clearly, we have

2〈Ξ, Ŝ − S〉+ 2(P − Pn)(S − S∗)(Ŝ − S) + 2(P − Pn)(Ŝ − S)2

≤ 2αn
Ä
‖Ŝ − S‖L2(Π2),

∥∥∥P⊥L Ŝ∥∥∥∗, ∥∥∥W 1/2(Ŝ − S)
∥∥∥
L2(Π2)

ä
,

(106)

and it remains to provide an upper bound on αn(δ1, δ2, δ3) that is uniform in some

intervals of the parameters δ1, δ2, δ3. That is, to prove that the norms ‖Ŝ − S‖L2(Π2),

‖P⊥L Ŝ‖∗ and ‖W 1/2(Ŝ − S)‖L2(Π2) belong to these intervals with a high probability.

Note that, under the assumptions that a = 1, |Y | ≤ a and all the kernels are also

bounded by a, the functions fA are uniformly bounded by a numerical constant and we

have Pf 2
A ≤ c1‖A− S‖2

L2(Π) with some numerical constant c1 > 0. Using Talagrand’s

concentration inequality for empirical processes we conclude that for fixed δ1, δ2 and
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δ3 with probability at least 1− e−t and with some constant c2 > 0,

αn(δ1, δ2, δ3) ≤ 2Eαn(δ1, δ2, δ3) + c2

(
δ1

 
t

n
+
t

n

)

We will make this bound uniform in

δk ∈ [δ−k , δ
+
k ], δ−k < δ+

k , k = 1, 2, 3,

for some intervals to be chosen later. Define δjk := δ+
k 2−j, j = 0, . . . , [log2(δ+

k /δ
−
k )] +

1, k = 1, 2, 3 and let t̄ := t +
∑3
k=1 log([log2(δ+

k /δ
−
k )] + 2). By the union bound, with

probability at least 1 − e−t and for all jk = 0, . . . , [log2(δ+
k /δ

−
k )] + 1, k = 1, 2, 3,

αn(δj11 , δ
j2
2 , δ

j3
3 ) ≤ 2Eαn(δj11 , δ

j2
2 , δ

j3
3 ) + c2(δj11

√
t̄
n

+ t̄
n
). By monotonicity of αn and of

the right-hand side of the bound with respect to each of the variables δ1, δ2, δ3, we

conclude that with the same probability and with some numerical constant c3 > 0,

for all δk ∈ [δ−k , δ
+
k ], k = 1, 2, 3,

αn(δ1, δ2, δ3) ≤ 2Eαn(2δ1, 2δ2, 2δ3) + c3

Ç
δ1

√
t̄

n
+
t̄

n

å
. (107)

To bound the expectation Eαn(2δ1, 2δ2, 2δ3) on the right-hand side of (107), note

that, by the definition of function fA,

Eαn(δ1, δ2, δ3)

≤ E sup
{∣∣∣(Pn − P )(y − S)(A− S)

∣∣∣ : A ∈ T (δ1, δ2, δ3)
}

+E sup
{∣∣∣(Pn − P )(A− S)2

∣∣∣ : A ∈ T (δ1, δ2, δ3)
} (108)

A standard application of symmetrization inequality followed by contraction inequal-

ity for Rademacher sums (see, e.g., [38], Chapter 2) yields

E sup
¶∣∣∣(Pn − P )(A− S)2

∣∣∣ : A ∈ T (δ1, δ2, δ3)
©

≤ 16E sup
¶∣∣∣Rn(A− S)

∣∣∣ : A ∈ T (δ1, δ2, δ3)
©
.

(109)

It easily follows from (108) and (109) that

Eαn(δ1, δ2, δ3) ≤ E sup
¶∣∣∣〈Ξ1, A− S〉

∣∣∣ : A ∈ T (δ1, δ2, δ3)
©

+16E sup
¶∣∣∣〈Ξ2, A− S〉

∣∣∣ : A ∈ T (δ1, δ2, δ3)
© (110)
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where
Ξ1 :=

1

n

n∑
j=1

(Yj − S(Uj, Vj))EUj ,Vj − E(Y − S(U, V ))EU,V

Ξ2 :=
1

n

n∑
j=1

εjEUj ,Vj ,

(111)

and {εj} are i.i.d. Rademacher random variables independent of the observations

(U1, V1, Y1), . . . , (Un, V
′
n, Yn). We will upper bound the expectations on the right-

hand side of (110), which reduces to bounding E sup{|〈Ξi, A−S〉| : A ∈ T (δ1, δ2, δ3)}

for each of the random matrices Ξ1,Ξ2. For i = 1, 2 and A ∈ T (δ1, δ2, δ3), we have
∣∣∣〈Ξi, A− S〉

∣∣∣ ≤ ∣∣∣¨Ξi,PL(A− S)
∂∣∣∣+ ∣∣∣¨Ξi,P⊥L (A)

∂∣∣∣
≤
∣∣∣〈PLΞi, A− S〉

∣∣∣+ ‖Ξi‖
∥∥∥P⊥L (A)

∥∥∥
∗

≤
∣∣∣〈PLΞi, A− S〉

∣∣∣+ δ2‖Ξi‖.

(112)

To bound the spectral norm of the stochastic matrices, we use the following sim-

ple corollary of a well-known noncommutative Bernstein inequality (see, e.g., [58])

obtained by integrating exponential tails of this inequality: let Z be a random sym-

metric matrix with EZ = 0, σ2
Z := ‖EZ2‖ and ‖Z‖ ≤ U for some M > 0 and let

Z1, . . . , Zn be n i.i.d. copies of Z. Then

E

∥∥∥∥∥∥ 1

n

n∑
j=1

Zj

∥∥∥∥∥∥ ≤ 4

Ç
σZ

√
log(2m)

n
∨M log(2m)

n

å
. (113)

To bound ‖Ξ1‖, we applied the bound to random variables

Zj :=
Ä
Yj − S

Ä
Uj, Vj

ää
EUj ,Vj − E

Ä
Y − S

Ä
U, V

ää
EX,X′

while to bound Ξ2, we applied the bound to i.i.d. random matrices Zj := εjEUj ,Vj . In

both cases, ‖Zj‖ ≤ 4 and, by a simple computation, σ2
Zj

:= ‖EZ2
j ‖ ≤ 4/m (see, e.g.,

[38], Section 9.4), bound (113) implies that, for i = 1, 2,

E‖Ξi‖ ≤ 16

ñ√
log(2m)

nm
∨ log(2m)

n

ô
=: ε∗. (114)

To control the term |〈PLΞi, A − S〉| in bound (112), we will use the following

lemma.
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Lemma 3.12. For all δ > 0,

E sup
‖M‖F≤δ,‖W 1/2M‖F≤1

∣∣∣〈PLΞi,M〉
∣∣∣ ≤ 4

√
2
»
cγ + 1

 
1

nm
δ
√
ϕ
Ä
δ−2
ä
.

Proof. For all symmetric m×m matrices M ,

〈PLΞi,M〉 =
m∑

k,j=1

〈PLΞi, φk ⊗ φj〉〈M,φk ⊗ φj〉.

Under the following assumptions,

‖M‖2
F =

m∑
k,j=1

∣∣∣〈M,φk ⊗ φj〉
∣∣∣2 ≤ δ2

∥∥∥W 1/2M
∥∥∥2

F
=

m∑
k,j=1

λk
∣∣∣〈M,φk ⊗ φj〉

∣∣∣2 ≤ 1,

we conclude that
m∑

k,j=1

|〈M,φk ⊗ φj〉|2

λ−1
k ∧ δ2

≤ 2,

and it follows ∣∣∣〈PLΞi,M〉
∣∣∣

≤

Ñ
m∑

k,j=1

Ä
λ−1
k ∧ δ2

ä∣∣∣〈PLΞ, φk ⊗ φj〉
∣∣∣2
é1/2Ñ

m∑
k,j=1

|〈M,φk ⊗ φj〉|2

λ−1
k ∧ δ2

é1/2

≤
√

2

Ñ
m∑

k,j=1

Ä
λ−1
k ∧ δ2

ä∣∣∣〈PLΞ, φk ⊗ φj〉
∣∣∣2
é1/2

.

(115)

Consider the following inner product:

〈M1,M2〉w :=
m∑

k,j=1

Ä
λ−1
k ∧ δ2

ä
〈M1, φk ⊗ φj〉〈M2, φk ⊗ φj〉,

and let ‖ · ‖w be the corresponding norm. We will provide an upper bound on

E‖PLΞi‖w = E(
m∑

k,j=1

(λ−1
k ∧ δ2)|〈PLΞ, φk ⊗ φj〉|2)1/2.

Recall that

Ξi = n−1
n∑
j=1

ζjEUj ,Vj − E(ζEU,V ),
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where ζj = Yj − S(Uj, Vj) for i = 1. and ζj = εj for i = 2. Note that in the first case

|ζj| ≤ 2, while in the second case |ζj| ≤ 1. Therefore,

E‖PLΞi‖w ≤ E1/2‖PLΞi‖2
w ≤

√
Eζ2‖PLEU,V ‖2

w

n
≤ 2

√
E‖PLEU,V ‖2

w

n
. (116)

It remains to bound E‖PLEU,V ‖2
w,

E
∥∥∥PL(EU,V )

∥∥∥2

w
= E

m∑
k,j=1

Ä
λ−1
k ∧ δ2

ä∣∣∣¨PL(EU,V ), φk ⊗ φj
∂∣∣∣2

=
m∑

k,j=1

Ä
λ−1
k ∧ δ2

ä
m−2

∑
u,v∈V

∣∣∣¨Eu,v,PL(φk ⊗ φj)
∂∣∣∣2

≤ m−2
m∑

k,j=1

Ä
λ−1
k ∧ δ2

ä∥∥∥PL(φk ⊗ φj)
∥∥∥2

F

≤ 2m−2
m∑

k,j=1

Ä
λ−1
k ∧ δ2

äÄ
‖PLφk‖2 + ‖PLφj‖2

ä
= 2m−1

m∑
k=1

Ä
λ−1
k ∧ δ2

ä
‖PLφk‖2 + 2m−2

m∑
k=1

Ä
λ−1
k ∧ δ2

ä
‖PL‖2

F

= 2m−1
m∑
k=1

Ä
λ−1
k ∧ δ2

ä
‖PLφk‖2 + 2m−2r

m∑
k=1

Ä
λ−1
k ∧ δ2

ä
(117)

Note that
m∑
k=1

Ä
λ−1
k ∧ δ2

ä
‖PLφk‖2 ≤ δ2

∑
λk≤δ−2

‖PLφk‖2 +
∑

λk>δ−2

λ−1
k ‖PLφk‖2. (118)

Using the first bound of Lemma 3.11, we get from (118) that
m∑
k=1

Ä
λ−1
k ∧ δ2

ä
‖PLφk‖2 ≤ δ2ϕ

Ä
δ−2
ä

+ cγδ
2ϕ
Ä
δ−2
ä

= (cγ + 1)δ2ϕ
Ä
δ−2
ä
. (119)

We also have
m∑
k=1

(λ−1
k ∧ δ2) ≤

∑
λk≤δ−2

δ2 +
∑

λk>δ−2

λ−1
k ,

which, by the second bound of Lemma 3.11, implies that
m∑
k=1

Ä
λ−1
k ∧ δ2

ä
≤ δ2F̄

Ä
δ−2
ä

+ cγδ
2F̄
Ä
δ−2
ä
≤ (cγ + 1)δ2F̄

Ä
δ−2
ä
. (120)

Using bounds (117), (119) and (120) and the fact that ϕ(λ) ≥ r
m
F̄ (λ), we get

E
∥∥∥PL(EU,V )

∥∥∥2

w
≤ 2m−1(cγ + 1)δ2ϕ

Ä
δ−2
ä

+ 2m−2r(cγ + 1)δ2F̄
Ä
δ−2
ä

≤ 4m−1(cγ + 1)δ2ϕ
Ä
δ−2
ä
.

(121)

The proof follows from (115), (116) and (121).
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Let δ := δ1
δ3
. Using Lemma 3.12, we get

E sup
{∣∣∣〈PLΞi, A− S〉

∣∣∣ : A ∈ T (δ1, δ2, δ3)
}

≤ E sup
ß∣∣∣〈PLΞi, A− S〉

∣∣∣ : ‖A− S‖L2(Π2) ≤ δ1,
∥∥∥W 1/2(A− S)

∥∥∥
L2(Π2)

≤ δ3

™
= E sup

{∣∣∣〈PLΞi, A− S〉
∣∣∣ : ‖A− S‖F ≤ δ1m,

∥∥∥W 1/2(A− S)
∥∥∥
F
≤ δ3m

}
≤ δ3mE sup

ß∣∣∣〈PLΞi, A− S〉
∣∣∣ : ‖A− S‖F ≤ δ,

∥∥∥W 1/2(A− S)
∥∥∥
L2(Π2)

≤ 1
™

≤ 4
√

2δ3m
»
cγ + 1

 
1

nm
δ
√
ϕ
Ä
δ−2
ä

= 4
√

2
»
cγ + 1

 
m

n
δ1

√
ϕ
Ä
δ−2
ä
.

In the case when δ2 ≥ ε̄, we get

E sup
{∣∣∣〈PLΞi, A− S〉

∣∣∣ : A ∈ T (δ1, δ2, δ3)
}
≤ 4
√

2
»
cγ + 1δ1

√
mϕ(ε̄−1)

n
.

In the opposite case, when δ2 < ε̄, we use the fact that the function ϕ(λ)
λ

= ϕ(λ)
F̄ (λ)

F̄ (λ)
λ

is nonincreasing. This implies that δ2ϕ(δ−2) ≤ ε̄ϕ(ε̄−1), and we get

E sup
{∣∣∣〈PLΞi, A− S〉

∣∣∣ : A ∈ T (δ1, δ2, δ3)
}

≤ 4
√

2
»
cγ + 1

 
m

n
δ1

√
ϕ
Ä
δ−2
ä

= 4
√

2
»
cγ + 1

 
m

n
δ3

√
δ2ϕ
Ä
δ−2
ä

≤ 4
√

2
»
cγ + 1

 
m

n
δ3

√
ε̄ϕ
Ä
ε̄−1
ä

= 4
√

2
»
cγ + 1

√
ε̄δ3

√
mϕ(ε̄−1)

n
.

We can conclude that

E sup
{∣∣∣〈PLΞi, A− S〉

∣∣∣ : A ∈ T (δ1, δ2, δ3)
}

≤ 4
√

2
»
cγ + 1δ1

√
mϕ(ε̄−1)

n
+ 4
√

2
»
cγ + 1

√
ε̄δ3

√
mϕ(ε̄−1)

n
.

This bound will be combined with (112) and (114) toget that, for i = 1, 2,

E sup
{∣∣∣〈Ξi, A− S〉

∣∣∣ : A ∈ T (δ1, δ2, δ3)
}

≤ ε∗δ2 + 4
√

2
»
cγ + 1δ1

√
mϕ(ε̄−1)

n
+ 4
√

2
»
cγ + 1

√
ε̄δ3

√
mϕ(ε̄−1)

n
.

In view of (110), this yields the bound

Eαn(δ1, δ2, δ3) ≤ C ′ε∗δ2 + C ′δ1

√
mϕ(ε̄−1)

n
+ C ′
√
ε̄δ3

√
mϕ(ε̄−1)

n
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that holds with some constant C ′ > 0 for all δ1, δ2, and δ3 > 0. Using (107), we

conclude that for some constants C and for all δk ∈ [δ−k , δ
+
k ], k = 1, 2, 3,

αn(δ1, δ2, δ3) ≤ C

ñ
δ1

√
mϕ(ε̄−1)

n
+ δ1

√
t̄

n
+
t̄

n
+ ε∗δ2 +

√
ε̄δ3

√
mϕ(ε̄−1)

n

ô
that holds with probability at least 1 − e−t. This yields the following upper bound

on the stochastic term in (100) (see also (106)):

2〈Ξ, Ŝ − S〉+ 2(P − Pn)(S − S∗)(Ŝ − S) + 2(P − Pn)(Ŝ − S)2

≤ 2C

ñ
‖Ŝ − S‖L2(Π2)

√
mϕ(ε̄−1)

n
+ ‖Ŝ − S‖L2(Π2)

√
t̄

n
+
t̄

n

+ε∗‖PLŜ‖∗ +
√
ε̄
∥∥∥W 1/2(Ŝ − S)

∥∥∥
L2(Π2)

√
mϕ(ε̄−1)

n

ô (122)

that holds provided that

‖Ŝ − S‖L2(Π2) ∈
î
δ−1 , δ

+
1

ó
,∥∥∥P⊥L Ŝ∥∥∥∗ ∈ îδ−2 , δ+

2

ó
,∥∥∥W 1/2(Ŝ − S)

∥∥∥
L2(Π2)

∈
î
δ−3 , δ

+
3

ó
.

(123)

We substitute bound (122) in (100) and further bound some of its terms as follows:

2C‖Ŝ − S‖L2(Π2)

√
mϕ(ε̄−1)

n
≤ 1

8
‖Ŝ − S‖2

L2(Π2) + 8C2mϕ(ε̄−1)

n
,

2C‖Ŝ − S‖L2(Π2)

√
t̄

n
≤ 1

8
‖Ŝ − S‖2

L2(Π2) + 8C2 t̄

n
,

2C
√
ε̄
∥∥∥W 1/2(Ŝ − S)

∥∥∥
L2(Π2)

√
mϕ(ε̄−1)

n
≤ 1

4
ε̄
∥∥∥W 1/2(Ŝ − S)

∥∥∥2

L2(Π2)
+ 4C2mϕ(ε̄−1)

n
.

We will also use (104) to control the term ε|〈sign(S), Ŝ − S〉| in (100) and (105) to

control the term ε̄|〈W 1/2S,W 1/2(Ŝ − S)〉|. If condition (87) holds with D ≥ 32C,

then ε ≥ 2Cε∗. By a simple algebra, it follows from (100) that

‖Ŝ − S∗‖2
L2(Π2) ≤ ‖S − S∗‖2

L2(Π2) + C1m
2ε2ϕ

Ä
ε̄−1
ä

+ C1
mϕ(ε̄−1)

n

+ ε̄
∥∥∥W 1/2S

∥∥∥2

L2(Π2)
+
t̄

n
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with some constant C1 > 0. Since, under condition (87) with a = 1, m2ε2 ≥

D2m log(2m)
n

≥ D2m
n
, we can conclude that

‖Ŝ − S∗‖2
L2(Π2) ≤ ‖S − S∗‖2

L2(Π2) + C2m
2ε2ϕ

Ä
ε̄−1
ä

+ ε̄
∥∥∥W 1/2S

∥∥∥2

L2(Π2)
+
t̄

n
(124)

with some constant C2 > 0.

We still have to choose the values of δ−k , δ
+
k and to handle the case when conditions

(123) do not hold. Due to the assumption ‖S‖L∞ ≤ 1, S ∈ D, we note that,

‖Ŝ − S‖L2(Π) ≤ 2,

‖P⊥L Ŝ‖∗ ≤ ‖Ŝ‖∗ ≤
√
m‖Ŝ‖F ≤ m3/2,

‖W 1/2(Ŝ − S)‖L2(Π2) ≤ 2
»
λm.

Thus, we can set δ+
1 := 2, δ+

2 := m3/2, δ+
3 := 2

√
λm, which guarantees that the

upper bounds of (123) are satisfied. We will also set δ−1 = δ−2 := n−1/2, δ−3 :=
√

λ̃
n
.

In the case when one of the lower bounds of (123) does not hold, we can still use

inequality (122), but we have to replace each of the norms ‖Ŝ−S‖L2(Π), ‖P⊥L Ŝ‖∗, and

‖W 1/2(Ŝ−S)‖L2(Π2) which are smaller than the corresponding δ−k by the quantity δ−k .

Then it is straightforward to check that inequality (124) still holds for some value of

constant C2 > 0. With the above choice of δ−k , δ
+
k , we have

t̄ ≤ t+ 3 log

Ç
2 log2 n+

1

2
log2

λm

λ̃
+ 2

å
= tn,m.

This completes the proof.
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