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SUMMARY 

 

Due to rapid advancements in sensing and computation technology, multiple 

types of sensors have been embedded in various applications to online automatically 

collect massive amounts of production information. Although this data-rich environment 

provides a great opportunity for a more effective process control, it also raises new 

research challenges on data analysis and decision making due to the complex data 

structures, such as large-volume and high-dimensional characteristics and heterogeneous 

data dependency. 

This thesis contributes to the area of System Informatics and Control (SIAC) to 

develop systematic data fusion methodologies for effective quality control and 

performance improvement in complex systems. These advanced methodologies enable (1) 

a better handling of the rich data environment communicated by complex engineering 

systems, (2) a closer monitoring of the system status and (3) a more accurate forecasting 

of future trends and behaviors. The research bridges the gaps in methodologies among 

advanced statistics, engineering domain knowledge and operation research. It also forms 

close linkage to various application areas such as manufacturing, health care, energy and 

service systems.  

This thesis started from investigating the optimal sensor system design and 

conducting multiple sensor data fusion for process monitoring and diagnosis in different 

applications. In Chapter 2, we first studied the couplings or interactions between the 

optimal design of a sensor system in a Bayesian Network and quality management of a 

manufacturing system, which can improve cost-effectiveness and production yield by 



 xvi 

considering sensor cost, process change detection speed and fault diagnosis accuracy in 

an integrated manner. An algorithm named “Best Allocation Subsets by Intelligent 

Search” (BASIS) with optimality proof is developed to obtain the optimal sensor 

allocation design at minimum cost under different user specified detection requirements. 

Chapter 3 extended this line of research by proposing a novel adaptive sensor allocation 

framework, which can greatly improve the monitoring and diagnosis capabilities of the 

previous method. A max-min criterion is developed to manage sensor reallocation and 

process change detection in an integrated manner. The methodology was tested and 

validated based on a hot forming process and a cap alignment process. Next in Chapter 4, 

we proposed a Scalable-Robust-Efficient Adaptive (SERA) sensor allocation strategy for 

online high-dimensional process monitoring in a general network. A monitoring scheme 

of using the sum of top-r local detection statistics is developed, which is scalable, 

effective and robust in detecting a wide range of possible shifts in all directions. This 

research provides a generic guideline for practitioners on determining (1) the appropriate 

sensor layout; (2) the “ON” and “OFF” states of different sensors; and (3) which part of 

the acquired data should be transmitted to and analyzed at the fusion center, when only 

limited resources are available.  

To improve the accuracy of the remaining lifetime prediction, Chapter 5 proposed 

a data-level fusion methodology for degradation modeling and prognostics. When 

multiple sensors are available to measure the degradation mechanism of the same system, 

it becomes a high dimensional and challenging problem to determine which sensors to 

use and how to combine them together for better data analysis. To address this issue, we 

first defined two essential properties, that if present in a degradation signal, can enhance 
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the effectiveness for prognostics. Then, we proposed a generic data-level fusion 

algorithm to construct a composite health index to achieve those two identified properties. 

The methodology was tested using the degradation signals of aircraft gas turbine engine, 

which demonstrated a much better prognostic result compared to relying solely on the 

data from an individual sensor.  

In summary, this thesis is the research drawing attention to the area of data fusion 

for effective employment of the underlying data gathering capabilities for system 

modeling, performance assessment and improvement. The fundamental data fusion 

methodologies are developed and further applied to various applications, which can 

facilitate resources planning, real-time monitoring, diagnosis and prognostics. 

 

 



 

1 

CHAPTER 1 

INTRODUCTION 

 

 

 

1.1 Motivation 

 The rapid developments of sensor technology, communication network, and 

computing power have resulted in temporally and spatially dense data-rich environments 

in a variety of manufacturing and service systems. Although this data-rich environment 

provides unprecedented opportunities for quality and productivity improvements, it also 

poses challenges on data analysis and decision making due to the high dimensionality and 

heterogeneity of the data, the extensive levels of uncertainty in the dynamics of the 

systems and operational environments, the potential lack of a prior knowledge of the 

system structure, etc. Since massive data collected from different sources can involve 

dependent or even redundant information, there is a pressing need to develop advanced 

methodologies and associated tools that will enable and assist (1) the effective selection 

and handling of the rich data streams in the complex systems, (2) the extraction of 

pertinent features to better characterize the data dependences and the system performance, 

and (3) the integration of the acquired information with engineering domain knowledge 

for more enhanced process modeling, monitoring, diagnosis, prognosis, and improvement. 

On the basis of these initiatives, this research focuses on developing systematic data 

fusion methodologies for effective system modeling, quality control, performance 

assessment and improvement in complex systems.  

 

1.2 Research Objectives 

The objectives of this research are:  
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1) developing the optimal design of a sensor system in a Bayesian Network at 

minimum cost under different user specified detection requirements.  

2) proposing a novel approach to adaptively reallocate sensor resources in a 

Bayesian Network with online measurements, which can enhance both monitoring 

and diagnosis capabilities.  

3) generalizing the adaptive sensor allocation strategy for online high-dimensional 

process monitoring in a general network.  

4) and developing a generic data-level fusion methodology for degradation modeling 

and prognostic analysis with the data collected from multiple sensors. 

 

1.3 State-of-the-art 

 The advancement in sensor technology facilitates vigorous development in the 

distributed sensor network (DSN), which has been widely used in industrial and civilian 

applications such as industrial process monitoring and control, healthcare surveillance, 

and decision support systems. While a fully deployed sensor system can minimize 

information loss, the total cost (e.g. installation, maintenance, and operational costs) 

associated with these sensors can be overwhelming (Edan and Nof 2000). In addition, a 

fully deployed sensor system can place high demands on bandwidth and energy 

consumption (Willett et al. 2004). In general, the efficiency of a sensor network can be 

benchmarked by the sensing cost in achieving customer demand (Ding et al. 2003). 

Extensive research and practices have shown that the effective use of sensor data with an 

optimal sensor system design can provide unprecedented opportunities for quality and 

productivity improvement, such as increasing production throughput, reducing lead time 

and improving customer demand satisfaction (Ding et al. 2006).  

 The optimal design of a DSN is a decision making process to determine which 

variables to measure in order to best detect the change of environment in real time. 
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Depending on the application domains, the problem of sensor allocation can be 

conducted with different objectives (Tarabanis et al. 1995; Katenka et al. 2008; 

Azarbayejani et al. 2008). In quality engineering, the problem of optimal sensor 

allocation has recently become a promising research topic (Shi 2006). For this area, much 

research has been done to improve detection delay and root cause diagnosis, with the 

assumption that certain prior knowledge (i.e. location and distance information of 

physical variables) is sufficient to quantitatively describe variable relationships involved 

in the physical system (Khan et al. 1998; Khan and Ceglarek 2000). When such prior 

information is unavailable, Li and Jin (2010) proposed a sensor allocation method based 

on a probabilistic model for single mean shift detection using a univariate control chart. 

A comprehensive overview of the state-of-the-art developments in DSNs for quality and 

productivity improvements was presented by Ding et al. (2006). Mandroli et al. (2006) 

further provided a survey of inspection strategy and sensor distribution studies for both 

quality assurance and fault diagnosis purposes.  

 Although the aforementioned methods are effective to identify the optimal sensor 

allocation strategy for different process control applications, they assume that the sensor 

layout is fixed during online monitoring. This fixed sensor allocation strategy is 

preferable if we have prior information about potential shifts in variables. Unfortunately, 

such prior information is usually unknown or unreliable in practice. With this in mind, 

the adaptive strategy is usually considered to overcome the limitations of the monitoring 

schemes of the fixed strategy. In quality engineering, there are mainly three types of 

adaptive strategies: adaptive charting technique, adaptive sampling and adaptive sensor 

allocation. Adaptive charting techniques are widely used in the quality control area, 

which adaptively changes control chart philosophy for better process monitoring and 

diagnosis (Zhu and Jiang 2009; Tsung and Wang 2010). Most adaptive charting 

techniques assume that the sensor network is fully deployed and thus all variables are 

measurable. On the other hand, adaptive sampling techniques are mainly used for field 
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estimation, which aim at exploring the correlation between measured samples to either 

sequentially add/reduce the amount of acquisitions in the spatial domain or adjust the 

sampling rate in the time domain (Fiorelli et al. 2006). Finally, the last type of adaptive 

strategy is called adaptive sensor allocation, which focuses on redistributing scarce 

resources based on online measurements to maximize capability (e.g. maximize signal to 

noise ratio) (Hitchings and Castañón 2010). For example, adaptive sensor allocation 

strategy has been widely used to track object movement (Lim et al. 2006; Zoghi and 

Kahaei 2010). Although many research efforts have been made on this topic, adaptive 

sensor allocation strategy is seldom explored in the quality control field for improving 

monitoring and diagnosis capabilities. 

 A common question that arises in DSNs is how to develop an effective process 

control scheme with the objectives of reducing variability and improving the final quality 

of products (Montgomery 2009). A typical process control problem includes three steps: 

process monitoring, fault diagnosis, and process recovery. In process monitoring, various 

methods have been developed, such as univariate statistical process control (Shewhart 

1931), multivariate Hotelling    statistical process control (Hotelling 1947), MCUSUM 

and MEWMA control charts (Woodall and Ncube 1985; Lowry et al. 1992), and some 

principal component analysis (PCA) based techniques (Bakshi 1998). Regarding the fault 

diagnosis procedure, one popular technique developed is the MTY    decomposition 

(Mason et al. 1997). A causation-based    decomposition method is further proposed to 

improve the diagnosability (Li, Jin, and Shi 2008) in a causal model. On the other hand, 

the diagnosis problem can be viewed as a task to correctly classify a fault into one of the 

pre-defined classes. New techniques are developed based on the classification point of 

view, such as Fisher Discriminant Analysis (Duda et al. 2000) and Support Vector 

Machine (SVM) (Vapnik 1999). Although the aforementioned methodologies have been 

successfully applied into different process control applications, they assume that all the 

variables of interest are available during online monitoring.  
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  On the other hand, with the data collected from multiple sensors, another 

interesting question is how to combine them together for better degradation modeling and 

prognostic analysis. The literature pertaining to modeling degradation processes is indeed 

rich, and contains numerous methods and techniques (Meeker and Escobar 1998; Nelson 

1990). However, most of the existing models study only a single measure for degradation. 

Although it is possible to use multiple sensors and individually analyze the corresponding 

data, this can often result in significant over or under estimation of the remaining lifetime 

(Gebraeel 2006). Two key challenges when performing prognostics using multiple 

sensors are: deciding (1) which specific sensor data to use for modeling degradation; and 

(2) how to combine/fuse multiple relevant sensor data. Generally, data collected from 

multiple sensors may contain only partial information about the same degradation process, 

and thus fusing this information has the potential to provide more accurate and robust 

prognostic capability. There are three categories of data fusion that are classified based 

on the level of implementation of the fusion methodology: data-level fusion, feature-level 

fusion, and decision-level fusion (Hall and Llinas 1997; Volponi et al. 2004). Data-level 

fusion combines multiple sensor data that measure correlated parameters (Heger and 

Pandit 2004; Simon and Simon 2005; Kobayashi and Simon 2007; Salahshoor et al. 

2008). On the other hand, feature-level fusion integrates feature information that results 

from independent analysis methods (Goebel and Bonissone 2005; Volponi et al. 2004). 

Finally, decision-level fusion involves integrating diagnostic actions (e.g. preliminary 

determination of an entity’s location, attributes, and identity) (Sun 2002). A review of 

some of the literature on multi-sensor data fusion approaches to condition monitoring, 

fault diagnosis, and prognostics can be found in (Jardine et al. 2006). Although some 

efforts have focused on developing feature-level and decision-level fusion methodologies 

for prognostics (Hu et al. 2010; Byington et al. 2007), little research has targeted the 

development of data-level fusion models.  
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1.4 Organization of the Thesis 

 This thesis is organized in a multiple manuscript format. Each of Chapters 2, 3, 4 

and 5 are written as a research paper, which has either been accepted or submitted for 

journal publications. Figure 1.1 outlines the structure of this thesis and also the 

relationship among these chapters. 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.1:  Outline of the thesis 

 

 In Chapter 2 (Liu and Shi 2012), we study the couplings or interactions between 

the optimal design of a sensor system in a Bayesian Network and quality management of 

a manufacturing system, which can improve cost-effectiveness and production yield by 

considering sensor cost, process change detection speed, and fault diagnosis accuracy in 

an integrated manner. An algorithm named “Best Allocation Subsets by Intelligent 

Search” (BASIS) with optimality proof is developed to obtain the optimal sensor 
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allocation design at minimum cost under different user specified detection requirements. 

The methodology is tested and validated based on a hot forming process and a cap 

alignment process. 

 In Chapter 3 (Liu et al. 2013), we develop a novel approach to adaptively 

reallocate sensor resources in a Bayesian Network based on online observations. A max-

min criterion is proposed to manage sensor reallocation and process change detection in 

an integrated manner. The proposed method can significantly improve the detection delay 

and diagnosis accuracy compared with the existing fixed sensor allocation strategies (Liu 

and Shi 2012).  

 In Chapter 4 (Liu et al. manuscript), a systematic adaptive sensor allocation 

strategy is proposed with the purpose of minimizing detection delay in a general network. 

A monitoring scheme of using the sum of top-  local detection statistics is developed, 

which is scalable, effective and robust in detecting a wide range of possible shifts in all 

directions. The methodology is tested with a hot forming process and a real solar flare 

process. The use of this framework has several advantages over other approaches, which 

include significant decreases in computational cost (i.e. the complexity is only linear in 

the number of variables), and extensive savings for physical sensors, data acquisition, 

transmission and processing time. 

 In Chapter 5 (Liu et al. 2012), we first define two essential properties, that if 

present in a degradation signal, can enhance the effectiveness for prognostics. Then, we 

propose a generic real-time sensor selection and data-level fusion algorithm to construct a 

composite health index to achieve those two identified properties. This methodology 

includes data selection, data processing, and data fusion steps that lead to an improved 

degradation-based prognostic model. Our goal is to identify that the composite health 

index provides a much better characterization of the condition of a system compared to 

relying solely on the data from an individual sensor. 
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 In the end, Chapter 6 concludes the thesis and summarizes the original 

contributions. In addition, future research directions related to this thesis are also 

discussed. 
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CHAPTER 2 

OBJECTIVE-ORIENTED OPTIMAL SENSOR ALLOCATION 

STRATEGY FOR PROCESS MONITORING AND DIAGNOSIS IN A 

BAYESIAN NETWORK 

 

 

 

2.1 Introduction 

 The advancement in sensor technology facilitates vigorous development in the 

distributed sensor network (DSN), which has been widely used in industrial and civilian 

applications such as industrial process monitoring and control, healthcare surveillance, 

and decision support systems.  

 One of the fundamental issues in a DSN is process control with the objectives of 

reducing variability and improving the final quality of products (Montgomery 2009). A 

typical process control problem includes three steps: process monitoring, fault diagnosis 

and process recovery. In process monitoring, various methods have been developed, such 

as univariate statistical process control (Shewhart 1931), multivariate Hotelling    

statistical process control (Hotelling 1947), MCUSUM and MEWMA control charts 

(Woodall and Ncube 1985; Lowry et al. 1992), and some principal component analysis 

(PCA) based techniques (Bakshi 1998). Regarding the fault diagnosis procedure, one 

popular technique developed is the MTY    decomposition (Mason et al. 1997). While 

the MTY approach is theoretically sound and appealing, it involves a significant amount 

of computational issues for high dimensional variables and has inherent deficiencies in 

identifying the root cause variables in a system. Therefore, a causation-based    

decomposition method is proposed to improve the diagnosability (Li, Jin, and Shi 2008) 

in a causal model. On the other hand, the diagnosis problem can be viewed as a task to 
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correctly classify a fault into one of the pre-defined classes. New techniques are 

developed based on the classification point of view, such as Fisher Discriminant Analysis 

(Duda et al. 2000) and Support Vector Machine (SVM) (Vapnik 1999).  

 Another critical concern about a DSN is the cost, which includes installation, 

maintenance, and operational costs (Edan and NOF 2000). While a fully deployed sensor 

system can minimize information loss, the total cost associated with these sensors can be 

overwhelming. Moreover, massive data collected from different sensors can involve 

dependent or redundant information. The efficiency of the sensor network can be 

benchmarked by the sensing cost in achieving customer demand (Ding et al. 2003). 

Therefore, it is desirable to quantify the dependencies via a statistical model in order to 

effectively and efficiently collect sufficient information with minimum cost.  

 In the past decades, extensive researches and practices have been made for 

improving manufacturing system design and product quality. In most of cases, 

manufacturing system design aims at increasing production throughput, reducing lead 

time and improving customer demand satisfaction. On the other hand, product quality 

improvement focuses on quick abnormality detection and accurate fault diagnosis (Li et 

al. 2007). Some efforts have also been made to investigate the couplings or interactions 

between production system design and product quality (Li, Blumenfeld, and Marin 2008; 

Li and Meerkov 2009). In general, different system designs may result in different quality 

performance. In this chapter, we focus on developing an optimal sensor allocation 

strategy for detecting and diagnosing process variation sources in a timely manner, so 

that the customer demand can be satisfied economically and efficiently. The effective use 

of sensor data has provided unprecedented opportunities for quality and productivity 

improvement (Ding et al. 2006). With the guaranteed customer satisfaction, 

implementing minimum number of sensors in the system can significantly reduce the cost 

and time associated with sensor operation and maintenance, so that lead time and 

inventory level can be reduced. It has been shown that an optimal sensor system enables 
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manufacturers to improve product quality, and reduce production downtime as well as 

inventory level (Liu et al. 2005).  

 The optimal sensor allocation problem is a decision making process that involves 

the determination of (i) the minimum cost of sensors required to achieve customer 

demand and (ii) which variables to measure. Most methodologies developed for this type 

of problem are based on the assumption that certain prior knowledge is sufficient to 

quantitatively describe the relationship among physical parameters (Khan et al. 1998; 

Khan and Ceglarek 2000). However, there is a lack of general formulation when such 

prior knowledge is unknown. Li and Jin (2010) proposed an optimal sensor allocation 

method by integrating causal models and set-covering algorithms for single mean shift 

detection using a univariate control chart, which addressed the problem of sensor 

allocation for process monitoring in causal models. Although the problem is well defined 

in their paper, the developed method does not take the Bonferroni correction into 

consideration when searching for the optimal solution. Therefore, the proposed allocation 

strategy in their paper cannot guarantee to satisfy the specified ARL requirement in 

certain detection cases. This point will be further elaborated in the case study section of 

this chapter. In addition, the single mean shift assumption in their paper also leads to 

limited applications in practice, because there could be cases with multiple mean shifts 

having different signs and magnitudes in a complex DSN. Although it is possible to build 

a univariate control chart for each variable, the false alarm rate of the system will raise 

and the charts will be unable to describe the interrelationships among variables. Thus, 

multivariate statistical control chart is preferred and adopted.  

 The objectives of this chapter are to study the optimal sensor allocation strategy 

that can meet the customer requirement in terms of ARL with minimum sensing cost, and 

then conduct a generic root cause diagnostic analysis with partial information after 

implementing the optimal strategy. This research focuses on mean shifts detection and 

diagnosis with an assumption that the variance of each variable keeps constant.  
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 To conduct the tasks mentioned above, a Bayesian Network (BN) is employed in 

this chapter to represent the causal relationships among a set of variables in a DSN. The 

application of BN has recently been successfully demonstrated in fault detection and 

diagnosis (Verron et al. 2008). The advantages of choosing BN as a framework can be 

summarized as follows: (1) BN can handle incomplete datasets since the dependency 

information is embedded visually and numerically. (2) BN provides an effective tool to 

describe a causal relationship that is mathematically defined in terms of probabilistic 

independence statements. The causal interpretations facilitate the application of BN to 

solve real world problems (Pearl and Verma 1991; Li and Shi 2007). (3) BN in 

conjunction with Bayesian statistical techniques facilitates the combination of domain 

knowledge and data (Heckerman 1995). Generally speaking, BN can be obtained by 

integrating engineering knowledge and observational data (Buntine 1994; Koller and 

Friedman 2009). Li and Shi (2007) presented an example using a BN to describe the 

causal relationships in a multistage rolling manufacturing process. In this chapter, we 

assume that the BN has already been correctly acquired, so that no more learning 

procedures are involved in the following discussions.   

 The rest of the chapter is organized as follows: Section 2.2 introduces the key 

terminologies of BN. Section 2.3 presents a concrete formulation for the optimal sensor 

allocation problem and an intelligent searching algorithm for the optimal solution. 

Section 2.4 proposes a diagnosis ranking method to find the root cause variables, 

followed by diagnosability analysis, which includes discussions about diagnosability 

criteria and minimum diagnosable class. Section 2.5 performs case studies based on a hot 

forming process and a cap alignment process to illustrate and evaluate the proposed 

methodologies under different mean shift detection and diagnosis scenarios. Finally, 

Section 2.6 draws a conclusion.  
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2.2 BN Representation and Terminology 

 A BN is a probabilistic graphic model that can be used to represent causal 

relationships in a system of   physical variables   {          }. A BN has two 

components, one qualitative and the other quantitative. The qualitative component is 

referred to as the structure of a BN, which is a directed acyclic graph (DAG). This 

structure conveys two pieces of information. First, each node corresponds to one physical 

variable of the system. Second, each directed arc connects two variables and represents 

their probabilistic dependence. In this chapter, we use an Arabic number to represent 

each node, and use    to represent the physical variable or the numerical value of node,  . 

The quantitative component, also called the parameter of a BN, is a conditional 

probability annotated on each directed arc of the structure. If there is a directed arc from 

node   to  ,   is the direct cause (called the parent) of   and   is the direct effect (also 

called the child) of  , in which “direct” means that the causal influence from   to   is not 

mediated through any other nodes. A path exists from node   to   if there is one or several 

directed arcs linking together from   to  , i.e.      . In this case,   is an ancestor of   

and   is a descendant of  , respectively. If   does not have any ancestors (descendants), 

then it is called a root (leaf) of the system. In this chapter, the sets of parents, children, 

descendants and ancestors of variable    or node   are denoted as 

                           , respectively. The sets of root and leaf nodes of the 

system are denoted by          , respectively. In addition, the     component of each 

set is denoted as                                        .  

 For example, Figure 2.1 shows a linear Gaussian BN to represent the causal 

relationships involved in a hot forming process (Li and Jin 2010). It has four process 

variables (  : temperature;   : material flow stress;   : tension in workpiece;   : Blank 

Holding Force (BHF)), and one quality variable (  : final dimension of workpiece). A 

two-dimensional (2-D) physical illustration of the hot forming process is shown in Figure 
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2.2. According to the definition, nodes 5 and 4 are parents of node 2, and they are the 

roots of the system; nodes 2 and 3 are the children of node 4; {2, 3, 4, 5} are ancestors of 

node 1; and {1, 2, 3} are descendants of node 4. There are two distinct paths from node 4 

to 1, 4→2→1 and 4→3→1.  

 

                                  

          

 

 In this chapter, it is assumed that when the system is under normal operational 

condition, all variables will follow standard normal distributions, which can be achieved 

by standardizing all variables. Then, a linear Gaussian parameterization given the BN is 

represented as (Lauritzen and Wermuth 1989; Li and Jin 2010):  

                     ∑                      
           
   ,                          (2.1) 

where                   is called the path coefficient, which resembles the conditional 

probability distribution               to represent the influence from the     parent of   

to  ;             is the cardinality of the set      , the number of parents of  . In 

addition, we assume that          
   is independent to         and    (   ), which 

represents the randomness of variable    itself, or the random noise that cannot be 

described by the linear part of the model. It is used to maintain the unit variance of each 

variable   . Moreover, the path effect from   to   is defined to be the product of all path 

coefficients on that path connecting   to  . Since there may be several paths between   and 

 ,  ̃      is defined to be the total effect of   on    which equals to the sum of all the path 

effects from   to  , so that 

X5 X4

X2 X3

X1

0.6880.493
0.325

0.574 0.335
Punch

Die Die

BHF BHF

Workpiece

Binder Binder

Figure 2.1: BN structure of a hot 

forming process (Li and Jin 2010) 

Figure 2.2: 2-D illustration of the hot 

forming process (Li and Jin 2010) 
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 ̃      {
                

          
.                                      (2.2) 

 ̃      represents the regression coefficient when    is directly regressed on   . For 

example in Figure 2.1,  ̃                                     and  ̃      

 . Since each variable follows standard normal distributions under regular operational 

condition,    is equal to    (i.e.          ), which is not influenced by any other 

variables, while    is equal to                    (i.e.             )), which is 

influenced by both variables    and   . 

 To obtain the variance of   , we can recursively represent the term         by 

equation (2.1) until parameterization on the root nodes of the system. It can be readily 

shown that equation (2.1) can be transformed into: 

   ∑  ̃                  
           
     .                             (2.3) 

Since    follows standard normal distribution under normal operational condition and    

is independent to each other, the variance   
  can be obtained by: 

   
    ∑   ̃           

        
            

   .                           (2.4) 

At each step, we acquire the variance   
  if all        

             (     )  are 

obtained. Then in the end, all variance   
        can be known sequentially. 

 

2.3 Optimal Sensor Allocation for Quick Mean Shifts Detection 

2.3.1 Problem Formulation 

 The optimal sensor allocation strategy is a “mission-specific” task under given 

objectives. In this chapter, we investigate the optimal allocation strategy under the 

requirement that at most   variables in the system may possibly have a mean shift with at 

least magnitude  . 
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 Since the graphic representation of a BN has already embedded the numerical 

relationship among variables, it is possible to monitor the propagation of multiple mean 

shifts by investigating a multivariate distribution. Although most linear Gaussian 

Bayesian Networks are represented by equation (2.1) to show the causal influences from 

parents (Li and Jin 2010; Koller and Friedman 2009), we find that a matrix representation 

is easier and more compact to illustrate mean shifts propagation within a BN. Specifically, 

  can be represented by the following forms: 

           ,                                                (2.5) 

where           , is the measurement value of each physical variable with mean   

and the diagonal elements of    are all ones;      is the path coefficient matrix of the 

BN;           , represents the randomness of   needed to maintain the unit variance 

of each variable; and   indicates the expected mean shift of each variable. For 

compactness, we define        . According to the definition of   ,   is a 

triangular matrix, whose diagonal elements are all ones. Thus,   is an invertible matrix. 

The measurement value of a physical variable is available if and only if a sensor is 

deployed on it, so that only partial elements of   can be obtained during online 

measurements. Denote the sensor allocation set by  , then 

                 ,                                             (2.6) 

where           represents the sub-vector of        with rows indexed by  . 

From the definition of  , its covariance matrix    is a diagonal matrix, where the 

diagonal elements can be obtained by equation (2.4). 

                                    , where                is a sub-block 

matrix of             with rows and columns indexed by  . 

 Considering the null hypothesis         against the alternative hypothesis 

       , the chi-square control chart based on individual observation rejects    if 

  
 {              }

       
          ,                            (2.7) 
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where   
           is the upper control limit, the         quantile of the chi-square 

distribution with degree of freedom        . When the system becomes abnormal and 

has a mean shift, the type two error   of the test is  

     {  
 {              }

       
              }.               (2.8) 

Thus,         
 

   
 denotes the ARL needed to detect the expected mean shift   

corresponding to the sensor allocation set  . Denote         as the upper bound of the 

ARL specified by a practitioner to detect the expected mean shift   with at least 

magnitude   in its nonzero elements. Accordingly, we give a definition about detectable 

as follows: 

Definition 2.1: A mean shift   is detectable as long as                . 

 According to this definition, the optimal sensor allocation problem can be 

formulated as a searching problem for the best set of nodes,  , which satisfies: 

       ∑                                                          (2.9) 

subject to                , 

where    is the cost of the sensor on node  . 

  

2.3.2 Best Allocation Subsets by Intelligent Search (BASIS) 

 For a mean shift    ,   
 {              }

              
       , where 

         
        represents a noncentral chi-square distribution with noncentrality 

parameter             
 {              }

          and degree of freedom        . 

According to the analysis in Section 2.3.1,   is detectable if and only if  

            
                           

 

       
,               (2.10) 

where           
                         is a build-in function in Matlab 

computing the noncentral chi-square cumulative probability at the value   
           

with the corresponding degrees of freedom         and noncentrality parameter     . 
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Assume equation (2.10) achieves equality at       ̃          given the cardinality of 

the set  . Since         is a decreasing function in terms of noncentrality parameter 

given the degree of freedom parameter, a definition about feasible solution is presented as 

follows: 

Definition 2.2: An allocation set   is a feasible solution to detect the mean shift   if and 

only if       ̃(       ).  

In other words, equation (2.9) is simplified into the following problem: 

       ∑                                                      (2.11) 

subject to        ̃(       ). 

 Since the optimal solution depends on the cardinality of the set  , in this chapter 

we propose an algorithm named “BASIS” in terms of         to intelligently search the 

optimal sensor allocation solution. The BASIS algorithm resembles the idea of the “best” 

subsets algorithm for model selection in regression (Hocking and Leslie 1967). In the 

“best” subsets algorithm, several “good” candidate sets are identified for each possible 

number of predictors, which provide additional information for the investigator in making 

final selection of predictors for the regression model. Similarly, several feasible solution 

sets can be identified in terms of different number of sensors allocated in the system. The 

"intelligent" here means the optimal sensor allocation solution can be derived 

exhaustively without conducting complex simulation studies. The BASIS algorithm is 

illustrated in Figure 2.3 and all of the feasible solutions are recorded in the set “Opt”. 

Accordingly, the optimal solution can be achieved by choosing the one from “Opt” with 

the lowest sensor cost. It can be shown that the computation intensity of the BASIS 

algorithm is      . In fact, it is impossible to detect the mean shift that occurs from leaf 

nodes without allocating sensors on them. Therefore, the total number of sensors needed 

in the system is at least          and all of the leaf nodes are required to deploy sensors. 
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After taking this fact into consideration, the running time of the proposed algorithm is 

shortened to be  {           }. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: BASIS algorithm for optimal sensor allocation solution 

 

2.3.3 Solution to Optimal Sensor Allocation 

2.3.3.1 Single Mean Shift Case 

 We start by investigating the simplest case in which our interested detection 

scenario is that at most one variable in the system may possibly have a mean shift with at 

least magnitude  . Denote all of our interested detection scenarios of   in Figure 2.3 as  ̅, 

which form a space as    (i.e.     ). In addition, denote the space specified by the     

mean shift scenario as   
 . Let        

  be the single mean shift case with the     

element equal to              . Then  ̅ can be summarized as a countable set which 

1. For i=m:-1:1, Compute  ̃   , where        (  
        ̃   )    

 

       
. 

2. List all searching sets with cardinality i. The number of sets is    ( 
 
) and 

each set is denoted as                 . Denote flagsol=0. 

a) For j=1:   , 

b) Compare  (     )         𝑖   
𝑇 {           𝑇  𝑖   

}         𝑖   
 

with  ̃   . 

c) If  (     )   ̃   , 

d)       is a feasible solution and record       into set Opt. flagsol=1; 

 e) End. 

If (flagsol==0), break. 

3. End. 
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only contains   elements,  ̅  {                }. Modifying  (     ) in Figure 2.3 

to be  

   
    {(       )

 𝑖   

 

{              𝑖   
}  (       )

 𝑖   
}                 (2.12) 

we get the following proposition: 

Proposition 2.1: For single mean shift detection, if   is a feasible solution obtained from 

the BASIS algorithm, then any  ̃     is detectable. 

Proof: see Appendix A.1. 

 It can be shown that the running time of the BASIS algorithm for single mean 

shift case is bounded by  {(           )   }. 

 

2.3.3.2 Multiple Mean Shifts Case 

 The BASIS algorithm proposed in Figure 2.3 can also be generalized for detection 

of multiple mean shifts where at most   variables in the system may possibly have a 

mean shift with at least magnitude  . Denote the space of our interested detection 

scenarios by   . Given that at most   variables may possibly have a mean shift, the total 

number of faulty scenarios is ∑ ( 
 
) 

   . Denote the space defined by the     mean shift 

scenario as   
   so that    ⋃   

 ∑ ( 
 )

 
   

   . In the single mean shift case, all of our 

interested detection scenarios  ̅ can be treated as a finite countable set, of which the 

cardinality equals the total number of variables in the system. In addition, each element 

of the set  ̅, has exactly one nonzero entry that equals to  . However, in the multiple 

mean shifts case, since positive and negative mean shifts mitigate each other, the 

cumulative mean shift propagated to the descendant node can be indiscernible though the 

magnitudes of mean shifts from ancestors are significant. Thus,  ̅  cannot be easily 

expressed as a countable set as in the single mean shift case.  
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 In order to address the problem of optimal sensor allocation for multiple mean 

shifts detection by BASIS algorithm in Figure 2.3, we rewrite  (     ) to be a quadric 

optimization function with the following form: 

 (     )  
   
 

{
   
    

{    𝑇      𝑖
    

 {              𝑖   
}        𝑖

        }} (2.13) 

subject to        
          ∑ ( 

 
) 

   , 

where       𝑖
     is the sub-block matrix of     with only rows indexed by      ; 

       
  is any mean shift case that belongs to the     faulty scenario (   

      ∑ ( 
 
) 

   ). Since       𝑖
    

 {              𝑖   
}        𝑖

     has already been 

proved to be a positive semidefinite (P.S.D.) matrix (in Appendix A.1), the objective 

function is bounded below on the feasible region and the global minimizer exists as long 

as the problem has a feasible solution. In addition, it can be shown that the running time 

of the BASIS algorithm for multiple mean shifts case is bounded by  {(           )  

∑ ( 
 
) 

   }. 

 Intuitively, when the interested maximum number of mean shift variables   

increases, or when the interested smallest magnitude of mean shift   reduces, or when the 

interested maximum average run length requirement         decreases, the final 

number of sensors needed to satisfy the specified requirement will be increased. In other 

words, the higher the uncertainty about the system, the more the number of sensors is 

required. Therefore, choosing the allocation strategy is a trade-off problem in practice, 

and the final solution depends on how to allocate priorities on cost and detection.   

 In reality, the practitioner can determine the interested minimum magnitude of 

mean shifts for detection, the maximum number of simultaneous mean shift variables and 

the upper bound of the specified ARL based on engineering domain knowledge to ensure 

production yield. The engineering knowledge includes, but not limited to: the tolerance 

specifications for each variable specified in product/process design (related to the 
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interested minimum magnitude of mean shifts,  ), the probability of a fault occurred at 

each variable (related to the maximum number of simultaneous mean shift variables,  ), 

and the cost of defective products produced (related to the specified ARL requirement, 

       ).  

 

2.4 Diagnosis Ranking for Multiple Mean Shifts 

2.4.1 Problem Formulation  

 After implementing the optimal allocation strategy, the next topic would be how 

to diagnose the root cause variables if an out-of-control signal is detected by the control 

chart. The existing methodologies, such as MTY    decomposition (Mason et al. 1997) 

or causation-based    decomposition (Li, Jin and Shi 2008), cannot be applied here since 

it requires the measurements of all variables are available. Therefore, it is desirable to 

develop a new diagnosis method for the case when only partial information is at hand. 

The difficulties of this problem arise from two aspects: (1) it is challenging to diagnose 

mean shifts from   nodes by fewer numbers of sensors, since only the variables with a 

sensor deployment are measurable; (2) it becomes more complicated when different 

combinations of the signs and magnitudes of the mean shifts are taken into consideration. 

To solve the aforementioned problem, we propose a diagnosis ranking method, which can 

be regarded as an extension to the LASSO-based variable selection method (Wang and 

Jiang 2009). Recall that we investigate the optimal allocation strategy subjected to the 

requirements that at most   variables in the system may possibly have a mean shift before 

an out-of-control signal is triggered, and the diagnosis procedure is conducted after 

implementing the optimal sensor allocation strategy. Therefore, we further assume that 

the number of true mean shift variables are bounded by  . As a result, the total number of 

faulty scenarios is ∑ ( 
 
) 

    and the space defined by the     mean shift scenario is 
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denoted as   
 . Similarly,        

  is any mean shift case that belongs to the     faulty 

scenario (        ∑ ( 
 
) 

   ). 

 Constrained to the space defined by each mean shift scenario, the constrained 

maximum likelihood approach can be implemented to rank the possibility of each mean 

shift given the out-of-control sample. It is aware that the constrained maximum 

likelihood approach is equivalent to solve the following problem given the out-of-control 

signal   :  

   
    

            
 {              }

                           (2.14) 

subject to        
 . 

Again, equation (2.14) can be transformed into a quadratic optimization problem as 

follows: 

   
    

{            
                 

             }               (2.15) 

subject to        
 , 

where {              }
   is defined as   for compactness. If the minimized objective 

value is larger than or equal to the critical value   
             

    , then we have 

at least        confidence to say that the     faulty scenario is unlikely to be the true 

root cause. The proposed diagnosis ranking method is illustrated in Figure 2.4, where the 

final ranked solutions are recorded in the set   ̃. Assume there are   ranked solutions 

included in   ̃ and the     one is denoted as   ̃ . Therefore, the final conclusion about 

the mean shift variables is identified in   ̃ . 

 The idea behind Figure 2.4 is inspired by the LASSO-based variable selection 

method (Wang and Jiang 2009). The LASSO-based variable selection method assumes 

that not all variables would shift simultaneously and there is an upper bound for the total 

number of nonzero mean shift variables. This upper bound can be set to be   as discussed 

in the beginning of this section. The original LASSO-based variable selection algorithm 
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assumes all variables are measurable, and here, we extend this diagnosis method into the 

case where only partial observations are available. Due to this extension, new issues (e.g. 

fault diagnosability and minimal diagnosable class) will be illustrated and discussed in 

the following sections. One problem associated with the proposed diagnosis ranking 

method is that the faulty scenarios with the number of   true mean shift variables always 

obtain the first few ranks in   ̃ since more degrees of freedom are available for those 

cases in the quadratic optimization function. Recall that the procedure suggested by 

classic SPC design recommends the investigator to stop the machine and take the out-of-

control action plan immediately when certain out-of-control sample occurs. Therefore, it 

is more desirable that some in control variables are false positives than the case that 

certain true mean shift variables are excluded from   ̃ . Accordingly, the definition for 

correct diagnosis is given as follows: 

Definition 2.3: A diagnosis result is called correct if all true mean shift variables are in 

  ̃ . 

 

 

 

 

 

 

 

 

 

Figure 2.4 Diagnosis ranking method for multiple mean shifts 

 

2.4.2 Fault Diagnosability and Minimal Diagnosable Class 

For k=1: ∑ ( 
 
) 

   , 

Solve        
   
    

{            
                 

             } , subjected 

to        
 . 

If          
             

    , 

Add        into RD. 

End. 

Sort RD according to     values and record into   ̃. 
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 One problem for diagnosis with partial information is that certain faulty scenario 

might be aliases of others. Given that the total number of faulty scenarios is ∑ ( 
 
) 

    and 

the space defined by the     fault is denoted as   
 , we get the following definition for 

diagnosable: 

Definition 2.4: The diagnosis problem is said to be diagnosable if for any nonzero 

     
 𝑖       

  
, such that                  , then 

         {      ∑ ( 
 
) 

   }  . 

 The intuition behind this definition is that if two mean shift cases are from 

different faulty scenarios, we can see distinct measurement values on sensors. In other 

words, we should be able to distinguish different mean shift scenarios in order to 

uniquely identify the root cause variables. According to the definition of diagnosable, we 

introduce the definition of minimal diagnosable class. The concept of minimal 

diagnosable class was first discussed in (Zhou et al. 2003; Shi 2006) and the definition 

was given based on a state space model. The minimal diagnosable class reveals the 

interrelationship among different faults. A minimal diagnosable class is a group of faults 

that cannot be further distinguished. The definition of minimal diagnosable class is 

represented as follows: 

Definition 2.5: A set of faults {       } (    {      ∑ ( 
 
) 

   })  forms a minimal 

diagnosable class, if there exists nonzero      
 𝑖         

  
 such that          

          . 

 

2.4.3 Analysis to Diagnosis Ranking Method and Diagnosability 

2.4.3.1 Single Mean Shift Case  

 We start by investigating the simplest case where a single variable in the system 

may possibly have a mean shift. By implementing the algorithm as shown in Figure 2.4 
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where    , the group of faults in a minimal diagnosable class will achieve the same 

objective value by the diagnosis ranking method. Therefore, if one of the faults in a 

minimal diagnosable class is identified in   ̃ , the root cause cannot be further 

distinguished. Given a sensor allocation set  , the minimal diagnosable class can be 

identified in the single mean shift scenario by the following proposition: 

Proposition 2.2: Given a single mean shift diagnosis case with   faults   

{          } and    is the     mean shift fault, the fault set        is a minimal 

diagnosable class if the nonzero column vector      of the reduced row echelon form 

(RREF) of         can be expressed as            for                , where      

is a column index for      and   is a constant number.  

Proof: see Appendix A.2. 

 

2.4.3.2 Multiple Mean Shifts Case 

 To extend the single mean shift case to the multiple mean shifts case, we consider 

the framework where the number of true mean shift variables is bounded by  . Similarly 

to the single mean shift case, the group of faults in a minimal diagnosable class will 

achieve the same objective value by implementing the diagnosis ranking method in 

Figure 2.4. The minimal diagnosable class can be identified in terms of the number of 

out-of-control variables   from the following proposition, where      .  

Proposition 2.3: Given           out-of-control variables with ( 
 
)  faults   

{         
( 

 )
} and    is the     mean shift fault, the fault set        is a minimal 

diagnosable class if the nonzero column vector      of the RREF of         can be 

expressed as ∑        
 
    ∑          

 
    for                , where      is the 

column index for     ,         is the     element of     , and    is a constant number. 

Proof for proposition 2.3 follows the same logic as proposition 2.2 and thus is omitted 

here. 
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 An example is provided here to illustrate this proposition. We consider a sensor 

allocation strategy for the hot forming problem in Figure 2.1. Sensors are allocated on {1, 

3, 5} to monitor the system where at most two variables (   ) have a mean shift until 

an out-of-control signal is detected. Then the RREF of         is as follows: 

(
                 

             
         

) 

From proposition 2.2, when only one mean shift occurs (   ),   {{1}, {2}, {3}, {4}, 

{5}}.      {{1}, {2}} forms a minimum diagnosable class and the total minimal 

diagnosable classes are {{1}, {2}}, {{3}}, {{4}}, {{5}}   Similarly, when two mean 

shifts occur (   ), the total minimal diagnosable classes are {{1, 3}, {2, 3}, {1, 4}, {2, 

4}, {3, 4}}, {{1, 5}, {2, 5}}, {{1, 2}}, {{3, 5}}, {{4, 5}}. 

 

2.5 Case Studies 

 In this section, we revisit the hot forming process introduced in Section 2.2 to 

evaluate the performance of the proposed BASIS algorithm in Figure 2.3 and the 

diagnosis ranking method in Figure 2.4 under different specified objectives for mean shift 

detection and diagnosis. The parameters selected in the case studies are within the typical 

ranges of actual systems, and thus the case studies could represent the characteristics of 

the actual systems. In addition, in order to demonstrate the effectiveness of the BASIS 

algorithm, a cap alignment process is also considered. The cost of each sensor is assumed 

same in the following case studies.  

 

2.5.1 Optimal Sensor Allocation Strategy in the Hot Forming Process  

2.5.1.1 Single Mean Shift Case 

 Table 2.1 shows the feasible solutions obtained by the BASIS algorithm for a 

single mean shift fault subjected to different specified objectives (different combinations 
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of   and        ). These different objectives reflect the specific needs in practice. In the 

study,   is chosen to be 0.01. The optimal solution is the allocation strategy that has the 

smallest cardinality among all feasible solutions under each specified objective. As 

expected, the proposed BASIS algorithm is able to provide all feasible solutions in terms 

of the number of sensors needed in the system. 

 

Table 2.1: BASIS algorithm solutions for single mean shift case under different specified 

objectives 
 

        
  

1.5 2 2.5 3 

10 
No 

solution 
{1,2,3,4,5}

2 
{1,3,5}

4 

{1,2,3,5},{1,3,4,5} 

{1,2,3,4,5} 

{1,3,5} 

{1,2,3,5},{1,3,4,5} 

{1,2,3,4,5} 

15 
No 

solution 
{1,2,3,4,5} 

{1,3,5} 

{1,2,3,5},{1,3,4,5}

{1,2,3,4,5} 

{1,3,5} 

{1,2,3,5},{1,3,4,5} 

{1,2,3,4,5} 

20 {1,2,3,4,5}
1 

{1,3,5}
3 

{1,2,3,5},{1,3,4,5} 

{1,2,3,4,5} 

{1,3,5} 

{1,2,3,5},{1,3,4,5}

{1,2,3,4,5} 

{1,2,5}
5
,{1,3,5} 

{1,2,3,5},{1,2,4,5} 

{1,3,4,5},{1,2,3,4,5} 

 

2.5.1.2 Simulation Evaluation and Comparison With the Integrated Causal Models and 

Set-Covering Algorithms (Li and Jin 2010) 

 This section will evaluate the performance of the sensor allocation solutions 

proposed by the BASIS algorithm. There are five scenarios for a potential single mean 

shift, where each mean shift magnitude is equal to or greater than  . However, it is 

sufficient for us to consider the case with mean shift magnitude  , since a larger 

magnitude of mean shift is more notable by sensors under the single mean shift case. 

Moreover, it is sufficient to evaluate the boundary cases which either have a lesser 

number of sensors proposed as   increases given the same         requirement, or has a 

lesser number of sensors proposed as         increases given the same magnitude  . As 

a result, there are in total five boundary cases identified (bold font) and the case number 
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is denoted in superscript in Table 2.1. In fact, the algorithms (Li and Jin 2010) choose to 

allocate sensors on the bold entries or the subsets of bold entries in the five boundary 

cases of Table 2.1. Recall that the more the variables to be measured, the quicker the 

mean shift can be detected. Thus, comparing the ARL result with sensors deployed on the 

bold entries could provide a clearer demonstration about the advantages of the BASIS 

algorithm over the integrated causal models and set-covering algorithms. The comparison 

performances of the five boundary cases by these two algorithms are shown in Table 2.2.  

 The evaluation process involves the following steps: 

1) In each selected boundary case, a mean shift   to each variable    (  {         }) 

is introduced. 

2) A           samples dataset of   {              }  in terms of their 

distributions with the introduced mean shift at the first sample of each    is simulated.  

3) For each sample, testing statistics   
 {              }

     is plotted on a chi-

square control chart with upper control limit   
           and lower control limit 0. On 

the other hand, each univariate          is plotted on a Shewhart control chart with 

control limits    

         
, where the Bonferroni correction method is implemented to 

maintain system type one error as in the integrated causal models and set-covering 

algorithms.  

4) Indices of the first out-of-control sample on the control charts proposed by these 

two methods are recorded as      𝑖
 and      𝑖

, respectively.  

5) Repeat steps 1)-4) for            times. The average of      𝑖
        , 

  ̅̅̅̅
   𝑖

 of the introduced mean shift on each variable    for these two methods are 

computed and presented in Table 2.2.  
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Table 2.2: Estimated ARL for the BASIS algorithm and the integrated causal models and 

set-covering algorithms 
 

 =0.01 BASIS Algorithm (1) 
Integrated causal models and set-

covering algorithms (2) 

Mean shift in                               

Case 1:   ̅̅̅̅
    5.65 10.14 7.49 17.44 17.47 16.21 15.59 16.04 12.86 15.29 

Case 2:   ̅̅̅̅
    2.48 4.45 3.30 8.29 8.28 7.03 6.73 6.84 6.03 6.92 

Case 3:   ̅̅̅̅
    3.68 15.42 5.66 14.90 6.06 5.62 23.38 5.55 12.44 5.57 

Case 4:   ̅̅̅̅
    2.04 8.99 3.08 8.31 3.31 2.99 13.87 2.93 7.14 3.02 

Case 5:   ̅̅̅̅
    1.18 1.80 15.61 9.45 2.10 1.92 1.89 31.45 8.14 1.89 

 

 According to the evaluation studies in Table 2.2, the following conclusions can be 

inferred: (1) The BASIS algorithm outperforms the algorithms (Li and Jin 2010) in the 

sense of meeting ARL requirement. It is aware that all the solutions proposed by the 

BASIS algorithm can satisfy ARL requirement under each scenario, while the algorithms 

(Li and Jin 2010) cannot guarantee that, as shown in cases 3, 4 and 5. The reason is that 

the algorithms (Li and Jin 2010) do not take the Bonferroni correction method into 

consideration during the searching procedure for the optimal solution. However, it is not 

a problem for the BASIS algorithm since it is conducted in terms of the number of 

sensors deployed. (2) It is guaranteed that there is no other better allocation solution 

beyond the ones indicated by the BASIS algorithm due to the exhaustive property of the 

proposed method. For example, when     and           , {1, 3, 5} is not 

identified as a feasible solution, which can be verified by case 3 in Table 2.2 since the 

ARL needed to detect a mean shift happened from    is greater than 15. (3) The mean 

shift occurred from a variable with sensor deployment is straightforwardly shown to be 

able to be detected faster than the one without sensor deployment. This phenomenon is 

consistent with the one in the algorithms (Li and Jin 2010). 

   

2.5.1.3 Multiple Mean Shifts Case 
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 As discussed in Section 2.3.3.2, the BASIS algorithm can be extended to multiple 

mean shifts case where at most   variables in the system may have a mean shift with at 

least magnitude  . In this case study,   is chosen to be two. Similar to the single mean 

shift case, different specified objectives for detection (different combinations of   and 

       ) are considered. By replacing the objective function in Figure 2.3 3b) with 

equation (2.13) as discussed in Section 2.3.3.2, the feasible solutions are shown in Table 

2.3. The evaluation process is similar to the single mean shift case as shown in Section 

2.5.1.2, and thus it is omitted here. 

 

Table 2.3: BASIS algorithm solutions for multiple (two) mean shifts under different 

specified objectives 
 

        
  

1.5 2 2.5 3 

10 No solution {1,2,3,4,5} 
{1,2,3,5} 

{1,2,3,4,5} 

{1,2,3,5} 

{1,2,3,4,5} 

15 No solution {1,2,3,4,5} 
{1,2,3,5} 

{1,2,3,4,5} 

{1,2,3,5} 

{1,2,3,4,5} 

20 {1,2,3,4,5} 
{1,2,3,5} 

{1,2,3,4,5} 

{1,2,3,5} 

{1,2,3,4,5} 

{1,2,3,5} 

{1,2,3,4,5} 

 

2.5.2 Diagnosis Ranking Method for the Hot Forming Process 

2.5.2.1 Single Mean Shift Case 

 Since there are five variables in the hot forming process, five potential single 

mean shift faults are of interest. Specifically, we conduct the evaluation process based on 

the allocation solution {1, 3, 5}, which is a feasible solution under most of the specified 

objectives in Table 2.1. Furthermore, the minimum diagnosable class can be shown as 

{{1}, {2}}, {{3}}, {{4}}, {{5}} by proposition 2.2. Therefore, the mean shift scenarios 

from    and    are indiscernible and these two faults will achieve the same objective 

value by the diagnosis ranking method. Table 2.4 provides the correct diagnosis rate in 
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terms of definition 2.3 by the diagnosis ranking method in Figure 2.4, where the single 

mean shift scenarios with different mean shift values are studied. 

 

Table 2.4: Single mean shift scenarios and correct diagnosis rates for solution {1, 3, 5} 

 Mean Shift in                         

Sce.                 Corr. Prob Corr. Prob Corr. Prob Corr. Prob 

1       0.852 0.923 0.962 0.981 

2       0.665 0.766 0.838 0.889 

3       0.600 0.684 0.739 0.780 

4       0.485 0.577 0.641 0.700 

5       0.832 0.913 0.947 0.974 

  

 It can be seen from Table 2.4 that the correct diagnosis rate increases as the mean 

shift magnitude gets larger, which is consistent with our intuition since the chi-square 

control chart is insensitive in detecting small mean shifts. Moreover, when the mean shift 

happens on variable   , the correct diagnosis rate is the lowest. Since no sensor is 

allocated on   , the mean shift happened on    is likely to be mistakenly identified as 

either a mean shift from    or   .  

 

2.5.2.2 Multiple Mean Shifts Case 

 As discussed in Section 2.4.3.2, the diagnosis ranking method can also be 

generalized for multiple mean shifts case. According to the result in Table 2.3, we 

implement the sensor allocation solution {1, 2, 3, 5} and then continue the diagnosis 

procedure. Furthermore,  , the maximum number of true mean shift variables is chosen 

to be two. The minimum diagnosable classes are identified as {{1}}, {{2}}, {{3}}, 

{{4}}, {{5}}, {{1, 2}}, {{1, 3}}, {{1, 4}}, {{1, 5}}, {{2, 3}, {2, 4}, {3, 4}}, {{2, 5}}, 

{{3, 5}}, {{4, 5}} by proposition 2.3. To make a thorough study of the diagnosis 

performance in response to different faults, a set of 25 experiments is designed to cover 

three general groups of possible mean shift patterns as shown in Table 2.5. The first 
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group (cases 1-5) represents the single mean shift fault on each variable. The second and 

third groups (cases 6-15 and 16-25) represent the situations in which two variables 

simultaneously have an identical shift magnitude but in the same and opposite directions. 

Different magnitudes of mean shift in each fault scenario are also studied.  

  

Table 2.5: Multiple mean shifts and correct diagnosis rates for solution {1, 2, 3, 5} 

 Mean Shift in                         

Sce.                 Corr. Prob Corr. Prob Corr. Prob Corr. Prob 

1       0.987 0.997 0.999 1.000 

2       0.825 0.882 0.914 0.923 

3       0.631 0.688 0.729 0.762 

4       0.555 0.631 0.681 0.713 

5       0.942 0.978 0.992 0.998 

6        0.632 0.778 0.999 0.931 

7        0.546 0.667 0.751 0.837 

8        0.428 0.507 0.587 0.670 

9        0.662 0.778 0.875 0.937 

10        0.301 0.377 0.426 0.465 

11        0.440 0.566 0.673 0.768 

12        0.576 0.719 0.827 0.907 

13        0.273 0.355 0.442 0.550 

14        0.501 0.640 0.740 0.818 

15        0.408 0.507 0.605 0.673 

16         0.646 0.774 0.869 0.933 

17         0.538 0.651 0.746 0.834 

18         0.410 0.507 0.580 0.662 

19         0.665 0.788 0.870 0.935 

20         0.547 0.693 0.814 0.904 

21         0.339 0.430 0.526 0.622 

22         0.589 0.727 0.831 0.907 

23         0.242 0.315 0.364 0.422 

24         0.505 0.634 0.732 0.822 

25         0.408 0.508 0.601 0.673 

 

 According to the result in Table 2.5, a similar pattern exists here as in the single 

mean shift diagnosis case: the larger the mean shift magnitude, the higher the correct 

diagnosis rate. Moreover, there are no significant differences in the correct diagnosis 
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rates comparing cases 6-15 and cases 16-25. Generally speaking, the diagnosis accuracy 

is poor when the mean shift variable contains   , since    has no sensor allocated. 

 

2.5.3 Computational Time Analysis of the BASIS Algorithm 

  

 

Figure 2.5: BN of a cap alignment process (Wolbrecht et al. 2000) 
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 To demonstrate the effectiveness of the proposed BASIS algorithm, we further 

conduct the optimal sensor allocation study in a large-scale manufacturing process under 

the same combinations of   and         requirements as shown in Table 2.1. 

Specifically, a BN with 35 variables involved in a cap alignment process at Hewlett 

Packard is considered (Wolbrecht et al. 2000; Li and Jin 2010), which is shown in Figure 

2.5. Due to the page limits, we only focus on the computational time of the BASIS 

algorithm in this case study.  

 All experimental studies were performed using MATLAB V7.9 in Windows 7 

operating system with two Intel Core i7-2820QM 2.30 GHz processors and 8 GB RAM. 

The average computational time to derive the optimal sensor allocation solution in a 

single mean shift case is about 75 seconds, while the average computational in a multiple 

mean shifts case (   ) is about 495 seconds. 

 

2.6 Conclusion 

 Mean shift monitoring and diagnosis are fundamental problems in multivariate 

process control. While numerous methodologies have been developed with adequate 

performance when all the variables are measurable, it usually requires excessive cost of 

sensors in practice. Therefore, this chapter studies the problems of (1) how to optimally 

allocate sensors with minimum cost under different detection requirements, and (2) how 

to identify the process root cause with only partial information measurable.  

 In this chapter, a BN model is assumed available to represent the causal 

relationships among variables. The BASIS algorithm is proposed to find the optimal 

solution for process monitoring and then a diagnosis ranking method is developed to 

identify the root cause. The developed methodologies are successfully demonstrated on a 

hot forming process and a cap alignment process. The proposed BASIS algorithm is 

conducted in a systematic and intelligent way, such that for any potential solution  , we 
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only need to compare its noncentrality parameter      with the benchmark value 

 ̃(       ) in order to determine its feasibility. Without the BASIS algorithm, in order 

to derive the optimal solution, expensive Monte Carlo simulations have to be 

implemented to evaluate the ARL performance of each potential sensor allocation 

solution under each objective, which is nearly inapplicable in real practice. We would 

also like to point out that the sensor allocation problem is an off-line effort made in the 

system design stage. Thus, it is critically important to generate the best sensor placement 

strategy under given requirement in the design stage. As a result, the computation time 

spent in searching for the optimal solution is less concern in this situation comparing with 

real-time applications.  

 This study has revealed that a trade-off problem occurs when detection speed, 

fault diagnosis accuracy and cost saving are taken into consideration. The monitoring and 

diagnosis capabilities that a DSN is able to provide depend strongly on the sensor 

deployment strategy in the system. Although an allocation design with fewer sensors can 

lower the running cost, fewer sensors can also prolong detecting time and cause a loss in 

diagnosability. In contrast, although an allocation plan with many sensors is able to 

expedite the detection for a mean shift and identify faulty variables more accurately, the 

cost associated with these sensors can be overwhelming. The final optimal strategy 

requires integrating the analysis of cost and product quality, which therefore is contingent, 

objective-oriented, and will ultimately depend on how the practitioner allocates the 

priorities towards cost, detection, and diagnosis. With the guaranteed customer 

satisfaction by optimally designing sensor allocation strategy, the average cycle time and 

cost associated with sensors and inventory can be eventually cut down. 
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CHAPTER 3 

ADAPTIVE SENSOR ALLOCATION STRATEGY FOR PROCESS 

MONITORING AND DIAGNOSIS IN A BAYESIAN NETWORK 

 

 

 

3.1 Introduction 

 As discussed in Chapter 2, the literature pertaining to sensor system design in 

quality engineering is indeed rich; however, most existing studies assume that the sensor 

layout is fixed once sensors are deployed in the network. The fixed sensor allocation 

strategy is preferable if the probability of a shift occurs at each variable is known, so that 

the sensor network can be centralized to monitor the shift variables. Unfortunately, such 

prior information is usually unknown or unreliable in practice. Due to the stochastic 

nature of the system in practice, different types of faults can occur at any time during 

production, which can result in a large detection delay and poor diagnosis accuracy. In 

fact, both Li and Jin (2010), and Liu and Shi (2012) have shown that the detection delay 

will be longer and the fault diagnosis accuracy will be deteriorated if the root cause 

variable is not directly measured, since a shift will be propagated and diluted in the 

downstream variables.  

 To address this problem, the adaptive strategy can be considered to compensate 

for the unresponsiveness of the monitoring schemes provided by the fixed strategy. There 

are mainly three types of adaptive strategies related to process control: adaptive charting 

techniques, adaptive sampling, and adaptive sensor allocation. Adaptive charting 

techniques are widely used in the quality control area to achieve certain optimality (e.g. 

minimize detection delay). Zhu and Jiang (2009) proposed an adaptive    control chart 

that combined process monitoring and diagnosis in a unified manner. Tsung and Wang 
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(2010) did a literature review about adaptive charting techniques. They classified 

adaptive charts into two categories: those with variable sampling parameters and those 

with variable design parameters. Most adaptive charting techniques assume that the 

sensor network is fully deployed and thus all variables are measurable. On the other hand, 

adaptive sampling techniques exploit the correlation between measured samples to timely 

reduce/add the amount of acquisitions at certain region or adjust the sampling rate, which 

is mainly used for field estimation. Rahimi et al. (2005) proposed an adaptive sampling 

method by considering both actuation and sampling costs in an integrated manner for 

environmental field estimation. Fiorelli et al. (2006) described a methodology for 

cooperative control of multiple vehicles based on virtual bodies and artificial potentials 

for missions such as gradient climbing in an environmental field and feature tracking in 

an uncertain environment. Popa et al. (2006) proposed an extended Kalman filter-based 

adaptive sampling method to optimally estimate the parameters of distributed variable 

field models. Finally, adaptive sensor allocation strategy aims to redistribute scarce 

resources based on online observations to minimize a predefined cost function or 

maximize capability (e.g. maximize signal to noise ratio) (Hitchings and Castañón 2010). 

For example, adaptive sensor allocation strategy has been widely used to track object 

movement (Lim et al. 2006; Zoghi and Kahaei 2010). Although many research efforts 

have been focused on this topic, adaptive sensor allocation strategy is seldom explored in 

the quality control field in terms of improving monitoring and diagnosis capabilities. 

Instead of adaptively changing charting techniques and sampling strategy, this chapter 

focuses on adaptively reallocating sensors based on online observations to reduce 

detection delay and also improve fault diagnosis accuracy. Thus, adaptive strategy refers 

to the adaptive sensor allocation strategy in the remaining of this chapter.  

 Adaptive strategy for process control is a challenging problem due to the 

following reasons: (i) the number of potential decisions is large. Assume that there are 

total of   variables in a system and the number of available sensors is   (e.g.    ). 
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Thus, at each moment, there are (
 
 ) ways to redistribute sensors. (ii) The available 

information is incomplete due to partial deployment of sensors.  

 To develop the adaptive strategy, a BN is adopted to represent the causal 

relationships among a set of variables in a DSN. BN has been widely used in fault 

detection, diagnosis, and prognostic applications (Li, Jin, and Shi 2008; Camci and 

Chinnam 2010). To limit the scope of the chapter, we assume that a BN has already been 

obtained, so that no more learning procedures are involved in the following discussions. 

Under this framework, we focus on single mean shift detection and diagnosis when 

developing the adaptive sensor allocation strategy. From our experience working with 

industrial process, this assumption is typically true for a well-maintained manufacturing 

system, in which a process change can be quickly detected and corrected. As a result, the 

proposed methodology is more favorable for a relatively robust manufacturing production 

system, in which it is unlikely to see multiple variables change simultaneously. On the 

other hand, both the process change detection and the root cause diagnosis will become 

much more challenging, when multiple shifts occur simultaneously in a system. We 

decide to leave the change detection and the fault diagnosis of multiple shifts as a future 

work. We further assume that a shift will remain constant until it is detected and 

corrected, whereas the variance of each variable stays constant when the system operates 

in abnormal conditions. In addition, the number of available sensors,  , is assumed to be 

fixed, which is subjected to the budget constraint.  

 The objective of this chapter is to study the adaptive sensor allocation strategy, 

which can enhance process monitoring and diagnosis capabilities compared with the 

fixed sensor allocation strategy. The adaptive strategy discussed in this chapter can not 

only be used to update the sensor layout, but also to determine the operating mode of 

each sensor (i.e. when only   sensors can be in active state in a fully deployed DSN) for 

online data acquisition and transmission purposes due to the limited bandwidth or energy 
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constraint. An overview of the proposed adaptive strategy is shown in Figure 3.1. The 

proposed methodology has three major steps, which include: (i) determining when to 

reallocate sensors; (ii) estimating the shift variables based on each incoming sample; and 

(iii) redistributing sensors onto the identified shift variables. Since this procedure also 

involves automatic fault isolation, the diagnosis accuracy is expected to be boosted. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1:  The overall flow chart of the proposed adaptive strategy 

 

 The rest of the chapter is organized as follows: Section 3.2 proposes an adaptive 

strategy that can update the sensor layout based on online observations to improve 

detection delay and fault diagnosis accuracy. Section 3.3 further illustrates and evaluates 

the proposed methodology based on a hot forming process and a cap alignment process. 

Finally, Section 3.4 draws a conclusion and discusses future research directions. 

  

3.2 Adaptive Sensor Allocation Strategy in a BN 

 The proposed adaptive sensor allocation strategy is built upon the fixed sensor 

allocation strategy (Liu and Shi 2012). For simplicity, the variables notations and 
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problem formulations will be consistent with (Liu and Shi 2012), and thus are omitted in 

this chapter. Although the aforementioned monitoring and diagnosis methods are 

theoretically sound, there are two fundamental limitations: (i) If the root cause variable 

has no sensor deployed, the detection delay will be much longer than the case when it is 

directly measured (Li and Jin 2010; Liu and Shi 2012). Since a shift will be propagated 

and diluted in its downstream variables, this result is consistent with the analysis in (Li, 

Jin and Shi 2008; Hawkins 1993). (ii) Due to the existence of minimal diagnosable class, 

the root cause variable cannot be uniquely identified with certain sensor allocation 

strategy. This phenomenon is more obvious as the number of available sensors becomes 

smaller. To tackle these two issues, we propose an adaptive sensor allocation strategy 

which can improve both monitoring and diagnosis capabilities.  

 Since the adaptive strategy is conducted during online monitoring before an out-

of-control signal is triggered, there are two challenging questions: (i) when to reallocate 

sensors; and (ii) how to update sensor layout. One possibility is to establish two separate 

tables to record the number of times that incoming samples indicate adding or removing 

sensors in each variable. Then, reallocation strategy can be implemented once the 

cumulative counter information crosses a predefined threshold, as the approaches in 

CUSUM control chart (Page 1954). However, this approach will not only aggravate the 

workload in the monitoring system design (e.g. determine the optimal value of the 

threshold), but also require considering where to remove (add) sensors when the criterion 

for adding (removing) a sensor is satisfied. In addition, the time when an out-of-control 

sample occurs in a system is usually unknown and unpredictable. Therefore, the 

cumulative counter information collected during normal operation condition can affect 

the performance of the adaptive strategy if it is inappropriately used. In order to address 

these issues, a novel adaptive sensor allocation strategy is proposed as follows. 

 

3.2.1 When to Reallocate Sensors 
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 In this section, we will show that the diagnosis ranking method (Liu and Shi 2012) 

is equivalent to the penalized likelihood ratio test (PLRT), which can be extended to 

determine when to reallocate sensors. Since the PLRT is a variant of the generalized 

likelihood ratio test (GLRT), we first go over the GLRT when examining the following 

hypothesis        with       . The statistics for the GLRT can be expressed as: 

      
             

             
,                                                 (3.1)         

where         is the likelihood when observing    with the mean shift  . The null 

hypothesis is rejected if            , where       is a constant number that 

corresponds to a specific type I error and sensor allocation set  . Since  
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the rejection region can be expressed as: 

 (     )        ( 
        

   
              

   
          )       ,    (3.2) 

where  (     )      (     ) and                   . 

 It is straightforward to see that equation (3.2) will be minimized when 

           . However, since   is contaminated by noise  , this solution needs to be 

revised to consider the noise factors. To address this problem, we introduce the PLRT 

with a    penalty norm, ∑           , where      is the absolute value of the     

element of  . Since we only focus on single mean shift detection and diagnosis, the 

rejection region can be transformed into: 

 (     )        ( 
        

   
              

   
          )        

subject to ∑             .                                       (3.3) 

Because increasing the number of nonzero elements in   will always decrease  (     ), 

the inequality constraint in equation (3.3) will be deterministically achieved. Thus, the 

rejection region can be rewritten as: 
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 (     )      {       {            
   

             

    
   

             }}        

subject to        ,                                              (3.4) 

where the left hand side of the inequality is consistent with equation (2.15). The PLRT 

formulation can force small mean shifts to zero and automatically leave out the most 

significant shift variable. Thus, equation (3.4) can be used to identify the root cause 

variable if we assume a mean shift will be propagated and diluted along the directed arcs 

towards the descendants in a BN. Let  

              {             
   

                 
   

             } and 

             , 

subject to        .                                               (3.5) 

Then, the rejection region can be expressed as follows for better interpretation: 

       ,                                                        (3.6) 

where             and can be considered as a warning sign to determine when to 

reallocate sensors. Note that the boundary point      is a function of  , which 

corresponds to a specific type I error   . To determine the value of     , for each given  , 

we can implement the Monte Carlo simulation to estimate the empirical distribution of   , 

         given     (see Appendix A.3 for details). Depending on the different values of 

warning signs (i.e. associated with different values of   ),      can be set as   ̂    

     
        , where      

         is the inverse of the empirical distribution function of 

         at percentile           . 

 

3.2.2 How to Update Sensor Layout 

 Once the condition of reallocating sensors is satisfied (i.e.      ̂   ), the next 

question is how to update sensor layout. Hawkins (1993) and Li, Jin and Shi (2008) have 

shown that a mean shift will be propagated and diluted in its downstream variables, and 
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thus it is desirable to add a sensor onto the root cause variable that identified by the 

PLRT. Although this approach sounds straightforward, there are two open questions to be 

addressed: (i) since the number of available sensors is fixed, one sensor needs to be 

removed first in order to be redeployed onto the identified variable; however, which 

sensor should be removed is hard to determine. (ii) Due to the existence of minimal 

diagnosable class, the PLRT can only identify the class of variables that are equally likely 

to be responsible for the shift. In other words, variables within the same minimal 

diagnosable class will achieve the same objective value in equation (3.4). To address 

these two problems, we will first give a definition about active adding variable and active 

adding set: 

Definition 3.1: The     variable is said to be active adding if                  and 

     ̂   . The set that consists of all the active adding variables is defined as active 

adding set, which is denoted as  .  

 Since the monitoring statistics      
   

     follows a noncentral chi-square 

distribution          
        with noncentrality parameter 

            
   

                  
   

          , the reallocation strategy    

should maximize       in order to enhance monitoring capability. Let       

  
        

   
           , where             𝑇  with the     element equal to one. 

Therefore,       can be treated as a benchmark value to evaluate the performance of the 

sensor allocation strategy   to detect the mean shift that occurs at variable   . In other 

words, when a mean shift occurs at variable   , the larger the value of       is, the 

smaller the out-of-control ARL will be. Since all variables within the active adding set 

are equally likely to be responsible for the shift, we propose a max-min criterion, in 

which the reallocation strategy will maximize the minimum of       for any variable    

that belongs to the active adding set,  . Mathematically,  

          {      (      )}.                                       (3.7) 
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 In certain cases, there may be multiple reallocation strategies that can achieve the 

same optimum in equation (3.7). Then, the max-min criterion can be implemented again 

based on the variables from the set    {     }  , where    represents the set of 

elements in {     } but not in  . The motivation behind this approach is that if the 

solution is not unique by implementing the max-min criterion running on the active 

adding set, considering a reallocation strategy which optimizes the max-min criterion 

based on the remaining variables can further enhance monitoring capability, in case the 

root cause variable is not identified in the active adding set. Mathematically, 

          
    {       (     

 
)} 

if           {      (      )} is not unique.                       (3.8) 

It is worth mentioning that once the sensor on any leaf node is removed, it cannot be 

added back. Thus, all leaf nodes are required to have sensors deployed all the time (i.e.   

is required to be larger than         ). On the other hand, since the adaptive strategy is 

implemented online, the computational time is critical. We can offline calculate the value 

of       for    {     }  and   , where the computational complexity is     

(          

          ) . In this way, the computational complexity for implementing the max-min 

criterion online is  (the number of potential different active adding sets). 

 Because the PLRT can automatically identify the variable that is most likely to be 

responsible for the mean shift and the max-min criterion can maximize the noncentrality 

parameter, both the type II error of    control chart and the out-of-control ARL are 

expected to be decreased after reallocating sensors each time. In addition, since the 

procedure of the adaptive strategy automatically involves fault isolation by redistributing 

sensors to concentrate on monitoring the shift variables, the fault diagnosis accuracy is 

expected to be boosted. Another advantage of this proposed adaptive strategy is that the 

in-control ARL will not be affected, since it only depends on the type I error   of    
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control chart (i.e.       
          ), but is independent to the value of warning sign 

(i.e. associated with   ) and how sensors are redeployed during online monitoring.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2:  Adaptive sensor allocation strategy for single mean shift detection and 

diagnosis 

 

 The initial sensor allocation strategy is not crucial since the adaptive strategy will 

be updated based on online observations; however, we can implement the BASIS 

algorithm (Liu and Shi 2012), which can provide the optimal solution when the fixed 

strategy is considered. This sensor deployment strategy can ensure a fast response to an 
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List all possible sensor allocation strategies that contain 𝑳𝑭 and have a 

cardinality 𝑞. The number of sets is (𝑚 𝑐𝑎𝑟𝑑 𝑳𝑭 
𝑞 𝑐𝑎𝑟𝑑 𝑳𝑭 

). Denote each set as 𝒔𝑗 , 

𝑗      (𝑚 𝑐𝑎𝑟𝑑 𝑳𝑭 
𝑞 𝑐𝑎𝑟𝑑 𝑳𝑭 

) , and estimate the empirical distribution of 𝐶𝒔𝑗 , 

𝐹𝑛(𝒔𝑗)
 𝑡 . 

E
m

p
ir

ic
a

l 

d
is

tr
ib

u
ti

o
n

 a
n

a
ly

si
s 

While  𝑇  𝑿𝒔
𝑻𝑴𝒔

 𝟏𝑿𝒔  𝑈𝐶𝐿  𝒳𝛼
 (𝑐𝑎𝑟𝑑 𝒔 )  

If 𝐶𝒔  𝐷𝛼̂ 𝒔 , find the active adding set 𝑯 according to definition 3.1;   

If 𝑎𝑟𝑔𝑚𝑎𝑥𝒔{𝑚𝑖𝑛𝑖 𝑯(   𝒔 ⬚
𝑖 )}  is unique, implement the reallocation 

strategy 𝒔  based on equation (3.7) and let 𝒔  𝒔 ; Otherwise, implement 

the reallocation strategy 𝒔   based on equation (3.8) and Let 𝒔  𝒔  .  

Else, stick to the current sensor allocation strategy 𝒔. 
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 Once an out-of-control signal is detected, find the active adding set 𝑯 

according to definition 3.1. All elements in 𝑯 are diagnosed as the root 

causes. 
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initial out-of-control situation. The idea of our proposed adaptive sensor allocation 

strategy is summarized in Figure 3.2. 

 

3.2.3  An Illustration Example 

 Consider the hot forming process in Figure 2.1 with initial sensor deployment as 

  {     }. A series of sample points with 1.5 mean shifts at the first sample of    are 

generated until an out-of-control sample is detected by the    control chart with   

     (i.e.          
           ). Table 3.1 shows the value of each       for all 

six (i.e. (   
   

)) potential sensor allocation strategies, where a “ ” represents a sensor is 

deployed on the variable. Table 3.2 illustrates how the adaptive sensor allocation strategy 

evolves over time based on the online measurements.    is chosen to be     for illustration, 

which indicates sensor layout is updated after each sample. The second to the sixth 

columns (i.e. the columns associated with the headers “   ”) record the sensor 

measurement; the seventh to the eleventh columns illustrate the       value; the twelfth 

column shows the active adding set given by definition 3.1; and the last column lists the 

updated sensor layout based on the max-min criterion after each sample. In this example, 

the    control chart signals at the fourth sample. With sensor placement on nodes {1, 2, 

4}, {2, 5} forms a minimum diagnosable class and thus the final conclusion about the 

root cause variable is either    or   .  

 The initial allocation strategy {1, 3, 5} is suggested by the BASIS algorithm (Liu 

and Shi 2012) which is the optimal solution when fixed sensor allocation strategy is 

considered. However, {1, 3, 5} is not effective to detect the mean shift that occurs at 

variable    or   , since the value of       or       (  ={1, 3, 5}) is relatively small 

compared to other allocation strategies. Thus, this example illustrates how the adaptive 

strategy can be favorable to mean shift detection via timely self-adjusted sensor 

redeployment. 
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Table 3.1: The value of each       for all potential sensor allocation strategies (“ ” 
represents a sensor is deployed on the variable) 

 

                                             

        2.337 1.13 1.13 0.55 0.119 

        2.054 1.321 0.23 1 0.14 

        1.902 1.149 0.213 0.325 1 

        1.477 0.486 1.899 1 0.051 

        1.461 0.481 1.055 0.506 1 

        1.425 0.47 0.16 1 1 

 

Table 3.2: Evolutions of sensor layout by implementing the adaptive strategy when 1.5 

mean shifts occur at    
 

No.                       𝑠     𝑠     𝑠     𝑠    
Active 

adding set 

Updated 

   
1 2.71  1.30  0.49 5.456 5.456 0.533 3.419 0.243 {1, 2} {1, 2, 4} 
2 1.26 2.07  -0.11  0.019 5.925 0.019 0.011 5.925 {2, 5} {1, 2, 5} 
3 -0.07 1.00   0.19 1.111 1.336 1.111 0.233 0.035 {2} {1, 2, 4} 
4 1.06 3.15  -1.03  0.533 17.638 0.533 1.051 17.638 {2, 5}  

 

3.3 Case Studies 

3.3.1  Hot Forming Process 

3.3.1.1 Simulation Setup 

 This study will evaluate the performance of the proposed adaptive sensor 

allocation strategy (Figure 3.2) based on the hot forming process (Figure 2.1). There are 

five variables in the hot forming process. Thus, five potential single mean shift scenarios 

with different shift magnitudes will be discussed in this study. In addition, different 

number of available sensors   with different combinations of    values will be 

implemented in the system to thoroughly compare the performance of the adaptive and 

the fixed strategy. It is aware that the fixed strategy corresponds to the case when    

equals to 0. The parameters selected in the case study are based on the characteristics of 

the actual system.  
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 The adaptive strategy is conducted during online monitoring no matter when the 

system is in-control or out-of-control. Therefore, at the moment when a mean shift occurs, 

the sensor layout is not unique in reality, but it can affect the monitoring performance. In 

order to address this issue, we consider the least favorable sensor layout for mean shift 

detection, which is called the worst initial sensor deployment (WISD), when a mean shift 

occurs. In other words, when a mean shift occurs at variable   , we assume that sensors 

are deployed right on the variables that result in the smallest       value based on Table 

3.1, no matter how sensor layout has evolved before the mean shift occurs. In this way, 

we can get the most conservative comparisons between the adaptive and the fixed 

strategy. For example, if    , sensors are deployed on nodes {1, 3, 4} when a mean 

shift occurs at variable   , whereas sensors are deployed on nodes {1, 2, 5} when a mean 

shift occurs at variable   . 

 To evaluate the monitoring capability, we will focus on two metrics for ARL 

performance evaluation: (i) the maximum out-of-control ARL to detect the same amount 

of mean shift that occurs at each variable; and (ii) the average out-of-control ARL to 

detect the same amount of mean shift that occurs at each variable. Both metrics have 

practical meanings. The first metric is intended to show the maximum ARL needed in the 

worst detection case, which can provide a benchmark value to satisfy customer 

requirements (i.e. how fast an out-of-control status can be detected if a mean shift is 

possible to occur at any variable), whereas the second metric assesses the overall 

detection delay. On the other hand, to evaluate the fault diagnosis capability, we give two 

definitions about correct diagnosis and uniquely correct diagnosis:  

Definition 3.2: A diagnosis result is called correct if the root cause variable belongs to the 

active adding set.   

Definition 3.3: A diagnosis result is called uniquely correct if the root cause variable 

belongs to the active adding set and the cardinality of the set is one.  
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 Specifically, we focus on the rates of these two metrics: (i) the rate of correct 

diagnosis divided by the average cardinality of the active adding set; and (ii) the rate of 

uniquely correct diagnosis. The first metric measures the overall capability of the fault 

diagnosis accuracy, which is insensitive to the number of solutions identified in the active 

adding set. For example, if the random guess algorithm is implemented in the fault 

diagnosis step, then the result of the first metric will always be     (recall   is the total 

number of variables), no matter how many solutions are identified in the active adding set. 

In other words, the first metric evaluates on average, the probability that a solution in the 

active adding set will be the root cause variable. On the other hand, the second metric 

measures the probability that the mean shift variable can be uniquely and correctly 

diagnosed. The detailed simulation steps can be found in Appendix A.4.  

 

3.3.1.2 Performance Evaluations and Comparisons 

 Tables 3.3, 3.4 and 3.5 summarize the performance comparisons between the 

adaptive and the fixed strategy under different combinations of mean shift magnitudes  , 

number of available sensors   and    values. Seven metrics      ,   ̿̿̿̿ ,     ,      ,  ̿, 

  ̿̿ ̿̿   and   ̿̿̿̿  are considered for performance evaluations (see Appendix A.4 for details). 

According to the definitions of these metrics,       and   ̿̿̿̿  are desired to be as small as 

possible, which measure the monitoring capability, whereas     ,      ,  ̿ and   ̿̿ ̿̿  are 

desired to be as large as possible, which measure the fault diagnosis capability. There is 

one additional column called “Impv.”, which shows the percentage of improvement (i.e. 

positive value) or deterioration (i.e. negative value) by implementing the adaptive 

strategy (    ) over the fixed strategy (    ).  

 According to the results in Tables 3.3, 3.4 and 3.5, the following conclusions can 

be drawn: 
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(i) The adaptive strategy outperforms the fixed strategy in terms of detection delay and 

fault diagnosis accuracy. Generally speaking, the adaptive strategy significantly 

improves the monitoring capability (which is measured by       and   ̿̿̿̿  metrics) 

and the diagnosis capability (which is measured by     ,  ̿,       and   ̿̿ ̿̿  metrics) 

under different fault scenarios. This enhanced monitoring capability ensures that the 

mean shift abnormality can be detected in a timely manner, and thus less defective 

products can be produced. In addition, the enhanced diagnosis capability ensures that 

less effort spent in investigating the assignable causes, and thus production downtime 

and inventory level can be reduced.  

(ii) As    increases from 0 to 1, the advantages of the adaptive strategy over the fixed 

strategy become more significant. Both monitoring and diagnosis capabilities 

achieve the best at     , where sensors are reallocated after each sample. However, 

the side effect is the increased number of times of sensor redeployment. If we 

assume that it is costless to change sensor layout or minimizing detection delay is the 

first priority, the adaptive strategy with      is preferred. In this way, the 

computational time spent in estimating the appropriate value for the warning sign can 

be saved. Otherwise, the best    value should be determined by considering the 

detection delay, the fault diagnosis accuracy and the cost of reallocating sensors in an 

integrated manner. Another interesting phenomenon is that as    increases from 0 to 1, 

the amount of improvement in the monitoring and diagnosis capabilities becomes 

less significant. For example, in the case of     and       in Table 3.3, the 

amount of reductions in   ̿̿̿̿  is [9.602, 1.377, 0.621, 0.406, 0.357] as    increases from 

0 to 1 with equal interval of 0.2.  

(iii) As   becomes larger, the mean shift abnormality is easier to be detected by the 

control chart, which is consistent with our intuition. However, the diagnosis accuracy 

is not guaranteed to be always increased. For example in Table 3.4, all the metrics 
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associated with the diagnosis capability,     ,  ̿,       and   ̿̿ ̿̿  are deteriorated as   

increases from     to  . There are three reasons for these observations: (a) As the 

mean shift becomes significant, it is more noticeable and can be detected even with a 

poorly deployed sensor strategy. Thus, the sensor layout may not be able to update to 

the one that is most favorable to fault diagnosis when an out-of-control signal is 

triggered. (b) The WISD in Tables 3.3-3.5 only shows the most conservative 

comparisons between the adaptive and the fixed strategy. (c) The adaptive strategy 

with the max-min criterion is proposed primarily to minimize detection delay instead 

of maximizing diagnosis accuracy, and thus it is not guaranteed to outperform the 

fixed strategy in term of diagnosis capability in any fault scenario. Due to the 

aforementioned reasons, in certain cases, the metrics associated with the diagnosis 

capability in the “Impv.” column can even be negative, especially when   and   are 

relatively large.  

(iv) As   increases, the advantages of the adaptive strategy over the fixed strategy 

become less pronounced. This is because the sensor network gets closer to the fully 

deployed network as the number of available sensors increases. Thus, there is less 

number of candidate allocation strategies when redeploying sensors. At the extreme 

case when     (i.e. a fully deployed sensor network), the adaptive strategy is the 

same as the fixed strategy.  
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Table 3.3: Performance comparisons between the adaptive and the fixed strategy under 

different mean shift magnitudes when the number of available sensors is 2 
 

 Fixed Adaptive with WISD  Fixed Adaptive with WISD  

     and           and     

    0 0.2 0.4 0.6 0.8 1.0 Impv. 0 0.2 0.4 0.6 0.8 1.0 Impv. 

      62.16 27.76 27.58 27.42 27.32 27.24 0.56 44.97 15.35 15.29 15.24 15.19 15.15 0.66 

  ̿̿̿̿  30.03 20.42 19.05 18.43 18.02 17.66 0.41 19.02 11.33 10.12 9.58 9.26 9.06 0.52 

     0.22 0.26 0.26 0.26 0.26 0.26 0.16 0.23 0.27 0.27 0.27 0.27 0.27 0.18 

 ̿ 0.33 0.39 0.4 0.41 0.41 0.42 0.28 0.36 0.44 0.46 0.47 0.48 0.48 0.36 

      0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  ̿̿ ̿̿  0.18 0.36 0.38 0.39 0.4 0.4 1.2 0.19 0.41 0.43 0.44 0.45 0.45 1.37 

  ̿̿̿̿  0 3.78 5.76 7.28 8.55 9.57 - 0 2.46 3.36 3.95 4.38 4.72 - 

     and           and     

      33.52 9.26 9.19 9.17 9.16 9.16 0.73 23.85 7.34 5.74 5.72 5.7 5.69 0.76 

  ̿̿̿̿  12.81 7.11 6.16 5.77 5.53 5.38 0.58 8.65 4.97 4.25 3.94 3.76 3.66 0.58 

     0.23 0.27 0.27 0.27 0.27 0.27 0.17 0.24 0.27 0.27 0.27 0.27 0.27 0.15 

 ̿ 0.37 0.46 0.49 0.5 0.51 0.52 0.38 0.39 0.47 0.5 0.52 0.52 0.53 0.37 

      0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  ̿̿ ̿̿  0.2 0.43 0.45 0.46 0.47 0.47 1.42 0.2 0.43 0.46 0.47 0.48 0.48 1.42 

  ̿̿̿̿  0 1.74 2.17 2.43 2.59 2.71 - 0 1.29 1.52 1.63 1.7 1.75 - 

 

Table 3.4: Performance comparisons between the adaptive and the fixed strategy under 

different mean shift magnitudes when the number of available sensors is 3 
 

 Fixed Adaptive with WISD  Fixed Adaptive with WISD  

     and           and     

    0 0.2 0.4 0.6 0.8 1.0 Impv. 0 0.2 0.4 0.6 0.8 1.0 Impv. 

      28.41 21.78 19.5 18.77 18.26 17.75 0.38 15.84 12.85 10.54 9.57 9 8.67 0.45 

  ̿̿̿̿  17.79 15.04 13.87 13.47 13.21 13.03 0.27 9.2 8.13 7.09 6.64 6.4 6.26 0.32 

     0.4 0.42 0.43 0.43 0.43 0.44 0.08 0.44 0.45 0.47 0.47 0.48 0.48 0.1 

 ̿ 0.53 0.59 0.61 0.61 0.61 0.62 0.16 0.6 0.65 0.68 0.69 0.7 0.7 0.17 

      0 0.19 0.19 0.2 0.2 0.2 - 0 0.2 0.22 0.22 0.23 0.23 - 

  ̿̿ ̿̿  0.39 0.59 0.6 0.61 0.61 0.61 0.57 0.44 0.64 0.67 0.68 0.68 0.69 0.57 

  ̿̿̿̿  0 3.39 5.05 6.37 7.43 8.25 - 0 2.03 2.63 3 3.28 3.48 - 

     and           and     

      9.22 9.01 6.83 5.9 5.39 5.06 0.45 5.46 6.86 4.92 4.19 3.77 3.5 0.36 

  ̿̿̿̿  5.21 5.29 4.44 4.08 3.88 3.76 0.28 3.22 3.87 3.19 2.93 2.78 2.68 0.17 

     0.46 0.46 0.48 0.48 0.49 0.49 0.07 0.47 0.41 0.42 0.42 0.42 0.42 -0.12 

 ̿ 0.64 0.67 0.69 0.7 0.71 0.71 0.12 0.68 0.66 0.68 0.69 0.7 0.7 0.04 

      0 0.2 0.21 0.21 0.22 0.22 - 0 0.15 0.17 0.18 0.18 0.18 - 

  ̿̿ ̿̿  0.46 0.64 0.66 0.67 0.68 0.68 0.47 0.49 0.6 0.62 0.63 0.64 0.64 0.3 

  ̿̿̿̿  0 1.42 1.66 1.78 1.86 1.91 - 0 1.06 1.17 1.22 1.25 1.27 - 
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Table 3.5: Performance comparisons between the adaptive and the fixed strategy under 

different mean shift magnitudes when the number of available sensors is 4 
 

 Fixed Adaptive with WISD  Fixed Adaptive with WISD  

     and           and     

    0 0.2 0.4 0.6 0.8 1.0 Impv. 0 0.2 0.4 0.6 0.8 1.0 Impv. 

      28.33 18.62 17.59 17.49 17.46 17.44 0.39 15.56 10.42 9.06 8.58 8.39 8.35 0.46 

  ̿̿̿̿  14.62 13.48 12.63 12.38 12.19 12.08 0.17 7.18 7.07 6.36 6.09 5.94 5.86 0.19 

     0.52 0.63 0.66 0.67 0.67 0.67 0.3 0.62 0.6 0.61 0.62 0.62 0.63 0.01 

 ̿ 0.73 0.71 0.72 0.73 0.73 0.73 0.01 0.82 0.77 0.79 0.8 0.81 0.81 -0.01 

      0.52 0.48 0.53 0.55 0.56 0.56 0.08 0.62 0.36 0.39 0.41 0.42 0.42 -0.32 

  ̿̿ ̿̿  0.73 0.69 0.71 0.72 0.72 0.72 -0.01 0.82 0.72 0.75 0.76 0.77 0.77 -0.06 

  ̿̿̿̿  0 1.28 1.68 1.98 2.22 2.42 - 0 0.97 1.11 1.2 1.26 1.31 - 

     and           and     

      8.67 6.76 5.56 5.09 4.86 4.7 0.46 5.27 4.98 4 3.6 3.39 3.27 0.38 

  ̿̿̿̿  3.95 4.42 3.87 3.65 3.53 3.46 0.13 2.48 3.17 2.77 2.61 2.52 2.47 0.01 

     0.72 0.54 0.55 0.55 0.55 0.55 -0.23 0.77 0.51 0.51 0.51 0.51 0.51 -0.34 

 ̿ 0.88 0.79 0.81 0.82 0.82 0.82 -0.07 0.92 0.78 0.8 0.81 0.82 0.82 -0.11 

      0.72 0.16 0.18 0.19 0.19 0.2 -0.73 0.77 0.05 0.05 0.05 0.05 0.05 -0.93 

  ̿̿ ̿̿  0.88 0.7 0.73 0.74 0.75 0.75 -0.15 0.92 0.67 0.7 0.71 0.72 0.72 -0.21 

  ̿̿̿̿  0 0.81 0.88 0.92 0.94 0.95 - 0 0.69 0.74 0.76 0.77 0.77 - 

 

 In addition, we have also studied the random initial sensor deployment (RISD) 

approach, in which we will randomly distribute   sensors when the mean shift just occurs 

in the system. Similar results can be achieved as shown in Tables 3.3-3.5, though the 

RISD approach can provide a smaller detection delay and a better fault diagnosis 

accuracy. However, the difference between the WISD and the RISD approach in terms of 

the number of times of sensor redeployment (i.e.   ̿̿̿̿ ) is smaller than one in almost all 

scenarios. Thus, the sensor layout at the moment when a mean shift occurs in the system 

has little effect on the monitoring and diagnosis capabilities, and the proposed method is 

able to timely update the sensor layout for process change detection. Due to the page 

limits, the detailed results are omitted here. 

 

3.3.2 Cap Alignment Process 
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 Since the adaptive strategy is implemented during online monitoring, the 

computational time taken by the adaptive strategy is another critical concern, which is 

required to be at least less than the cycle time (i.e. the amount of time between two 

consecutive products). In order to demonstrate the feasibility and effectiveness of our 

proposed adaptive strategy in real time, a cap alignment process (Liu and Shi 2012; 

Wolbrecht et al. 2000) with 35 variables in Figure 2.5 is considered. For demonstration, 

in this study, we choose      and        when establishing the    control chart.  

 Experimental studies were conducted based on MATLAB V7.9 in Windows 7 

operating system with two Intel Core i7-2820QM 2.30 GHz processors and 8 GB RAM. 

The average computational time taken by the adaptive strategy is about 0.0083 seconds at 

each time, which can satisfy the requirement of most real production systems.  

 Table 3.6 further summarizes the performance comparisons between the adaptive 

strategy with WISD and the fixed strategy when 1.5 mean shifts are possible to occur at 

any single variable. It clearly shows that the adaptive strategy is superior to the fixed 

strategy in terms of both monitoring and diagnosis capabilities. 

 

Table 3.6: Performance comparisons between the adaptive and the fixed strategy with 28 

available sensors and 1.5 mean shifts 
 

     and       Fixed (      Adaptive WISD (      Impv. 

      71.451 53.49 0.251 

  ̿̿̿̿  38.966 35.99 0.076 

     0.113 0.217 0.92 

 ̿ 0.391 0.441 0.128 

      0.113 0.222 0.965 

  ̿̿ ̿̿  0.391 0.442 0.13 

  ̿̿̿̿  0 24.461 - 

 

3.4 Discussion and Conclusion 
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Process control with only partial observations is a common and challenging 

problem in most production systems. This chapter proposes a novel adaptive sensor 

allocation strategy, which can enhance both monitoring and diagnosis capabilities 

compared with the fixed strategy (Liu and Shi 2012). Unlike the fixed strategy, which is 

conducted offline to minimize the detection delay of an overall system, the adaptive 

strategy is performed during online monitoring, which aims at reallocating sensors to 

concentrate on monitoring the shift variables. To develop the adaptive strategy, a BN 

model is assumed available to represent the causal relationships among a set of variables. 

The experimental results, which are demonstrated on a hot forming process and a cap 

alignment process, have shown that the adaptive strategy can significantly improve the 

detection delay and fault diagnosis accuracy while maintaining the same in-control ARL. 

This fundamental investigation establishes a new research question that focuses 

on adaptively reallocating sensors for abnormality detection during online monitoring. 

This study also reveals that a trade-off problem occurs when the cost of reallocating 

sensors, the monitoring capability (associated with the cost of producing defective 

products), and the diagnosis capability (associated with the cost spent in investigating 

root causes) of a sensor system are taken into consideration. The optimal adaptive 

strategy should be the one that can minimize the total cost. When it is costless to 

reallocate sensors or minimizing detection delay is the first priority, sensor layout should 

be updated after each sample. In this way, the computational time spent in estimating the 

appropriate value for the warning sign can be saved.  

This chapter assumes that only a single mean shift may occur at any variable and 

a BN model exists in a DSN. However, these two assumptions may be invalid in some 

applications. Thus, our further research will focus on proposing an efficient adaptive 

strategy that enables to detect and diagnose a wide range of possible shifts with all 

directions in a general DSN. 
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CHAPTER 4 

SCALABLE-EFFICIENT-ROBUST ADAPTIVE (SERA) SENSOR 

ALLOCATION STRATEGY FOR ONLINE HIGH-DIMENSIONAL 

PROCESS MONITORING 

 

 

 

4.1 Introduction 

In the last chapter, we introduced an adaptive algorithm for process control, which 

was proposed in Liu et al. (2013) by investigating the multivariate    control chart and 

causal structures. Although the algorithm (Liu et al. 2013) is better in the sense of 

reducing detection delay and increasing diagnosis accuracy as compared with the fixed 

sensor allocation strategy, it has four limitations when applied in practice. First, it 

assumes that a prior knowledge about the BN for the system is always available. Second, 

it assumes that only a single mean shift may occur in the system until it is detected by the 

control chart. Third, it only takes the spatial relationship of measurements into 

consideration, but ignores the temporal relationship when detecting process changes. 

Hence, it still results in a relatively long detection delay. Fourth, the computational cost is 

exponential in the total number of variables (i.e.  ), which makes it difficult to be 

implemented online, especially for large-volume and high-dimensional datasets.  

To address the aforementioned issues, this chapter proposes an improved novel 

adaptive sensor allocation strategy to further minimize detection delay while maintaining 

a pre-specified false alarm rate in a general network. The proposed method is scalable, 

efficient and robust in detecting a wide range of possible shifts in all directions. We name 

the new algorithm as Scalable-Efficient-Robust Adaptive (SERA) sensor allocation 

strategy. Here, scalable means that the proposed algorithm can be easily implemented 
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online for large-volume and high-dimensional datasets, since its computational cost is 

only linear in the total number of variables (i.e.  ). Efficient means that the proposed 

algorithm can significantly improve the detection delay, compared with the adaptive 

strategy proposed by Liu et al. (2013). Robust means that the proposed algorithm is able 

to detect a wide range of possible shifts in all directions without making the single mean 

shift and the BN assumptions. Our approach is inspired by the monitoring scheme in 

(Mei 2011), which is based on investigating the sum of top-  local CUSUM statistics. 

However, our approach is different to the one in (Mei 2011) because the monitoring 

scheme proposed by Mei (2011) assumes that all variables are measurable and 

independent. Therefore, it cannot be directly employed to the adaptive sensor allocation 

topic. 

The adaptive sensor allocation strategy discussed here includes a broad scope of 

applications: (1) when only a limited number of sensors is available during online 

monitoring; (2) when only a limited number of sensors can be in “ON” state in a fully 

deployed DSN at any moment for data acquisition and transmission purposes; and (3) 

when only partially acquired data sources can be analyzed at the fusion center due to 

limited transmission and processing capabilities (i.e. those partially analyzed data can be 

considered to have sensor deployed while others do not). For example, in the area of 

structure health monitoring, one major problem is the availability of responses. Due to 

budget constraint or practical reasons such as the inaccessibility of some degrees of 

freedom, the number of sensors is usually smaller than the total number of degrees of 

freedom of the structure (Limongelli 2003). Another example is in the area of volcanic 

earthquake detection, in which only a limited number of sensors can be selected in “ON” 

state for online data processing and communication due to bandwidth or energy 

constraint (Tan et al. 2012). Last but not least, when analyzing large-volume and high-

dimensional datasets (e.g. video stream data), especially in fast and transient processes, 

one major problem is that the transmission and processing time by taking into account of 
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the full data frame may not satisfy the detection requirement in real-time monitoring. 

Thus, the challenging question here is how to adaptively determine which part of the data 

is to be transmitted and processed at each acquisition time for quick change detection. 

The chapter is organized as follows: In Section 4.2, we will state our problem 

formulation and then review the CUSUM-based methodologies. Section 4.3 proposes an 

improved adaptive sensor allocation strategy with only partial information available for 

online process monitoring and further provides two properties with the developed method. 

Parameter settings involved in the algorithm will also be discussed. Section 4.4 first 

conducts a case study based on a hot forming process and then compares the performance 

with the one in (Liu et al. 2013). A real solar flare process is also implemented to test and 

validate our proposed algorithm in practice.  Finally, Section 4.5 draws a conclusion. 

 

4.2 Problem Formulation and CUSUM-Based Methodology Review 

This section describes the problem of adaptive sensor allocation in the quality 

control field, and introduces the notations and assumptions used in the chapter. Since our 

approach is derived on the basis of the CUSUM philosophy, we also review the CUSUM-

based methodologies, especially focusing on the monitoring technique proposed by Mei 

(2011). 

 

4.2.1  Problem Formulation 

In a standard quality control setup, there are   variables   {       }  of 

interest and    {           } is the observed value of each variable at time  . When 

the process is in-control,    is independently and identically distributed (i.i.d.) across 

different time   with a joint distribution function     , where each variable   has a 

probability density function      . In this chapter, the in-control mean vector    and the 

covariance matrix    of      are assumed to be known (Hawkins 1993). In practice, 
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these parameters can be estimated from a sufficiently large sample of measurements on 

the process or known from engineering specifications when designing the process. 

Without losing generality, a preliminary transformation has been applied to the data, so 

that each variable has a mean of 0 and a standard deviation of 1.  

In this chapter, we are interested in developing a monitoring scheme when only   

out of   measurements are available at each acquisition time. The number of sensors,  , 

is assumed to be a fixed number and it is costless to change the sensor locations. In 

addition, we assume that sensor redeployment can be timely conducted at each time  , so 

that the measurements taken at time     will be based on the updated sensor layout. 

Moreover, we only focus on the possible shifts in the mean vector of    and assume that 

covariance matrix    is unchanged after the shift. Specifically, we assume that at some 

unknown finite time, different mean shifts with unknown magnitudes and directions 

occur at certain variables and remain constant in the process until they are detected and 

corrected. The shifts will affect an unknown subset of data streams, and thus a variable 

that deviates from normal condition does not necessarily indicate the root cause (Zhou et 

al. 2003). For example, in a multistage manufacturing process, a mean shift will be 

propagated to its downstream variables and reflect different shifts in multiple channels. 

We denote the distribution after process changes as     , where each variable   has a 

probability density function       with mean    and variance  . While this study only 

focuses on mean shift detection, it can be extended to detect shifts in both mean and 

variance.  

The objective of this article is to develop a novel adaptive sensor allocation 

strategy with only partial information available in a general network, which can quickly 

detect the process changes while under a false alarm constraint. The proposed method 

simultaneously manages sensor relocation and process change detection. 

 

4.2.2  CUSUM-Based Methodology Review 
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CUSUM-based methodologies are a set of sequential procedures to calculate 

cumulative sums based on likelihood ratios, which can be used for detecting a shift in a 

process. The CUSUM procedure was first developed by Page (1954), who proposed to 

monitor a univariate variable (i.e.    ) with CUSUM statistic      at time  : 

        (          
 (    )

 (    )
  ),       .                        (4.1) 

In the case that       and       are normal distribution density functions with 

variances all 1 and means 0 and   , respectively, equation (4.1) can be simplified as: 

        (              
  

 

 
  ),       .                       (4.2) 

When the post-change mean (i.e.   ) is unknown, the standard approach is to 

estimate it by the maximum likelihood method (Lorden 1971; Tsui at el. 2012) or replace 

it with a constant parameter, which represents the interested-smallest magnitude of mean 

shift for detection,     . When       , the CUSUM control chart is only able to detect 

a positive mean shift. In order to detect the mean shift in both positive and negative 

directions, the two-sided CUSUM procedures are suggested (Page 1954). In addition, 

several efforts have been made to combine the two-sided procedures into a single control 

chart (see Crosier 1986; Cheng and Thaga 2005a).  

Since the univariate CUSUM control chart was proposed, numerous contributions 

have been made to study the CUSUM control chart for the multivariate case. Woodall 

and Ncube (1985) suggested monitoring CUSUMs of individual measurements 

simultaneously and raised an out-of-control alarm whenever any of the univariate 

CUSUM charts indicates out-of-control. Healy (1987) viewed the CUSUM procedures as 

a series of sequential probability ratio tests and proposed a method for detecting a shift in 

both the mean vector and the covariance matrix based on a linear combination of 

individual measurements. Crosier (1988) suggested two multivariate CUSUM procedures, 

in which the first one is based on the square root of     statistics and the second one is 

based on a vector-valued CUSUM scheme. Pignatiello and Runger (1990) proposed two 
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similar multivariate CUSUM schemes, which are simpler but have a better average run 

length (ARL) performance than the ones in (Crosier 1988). Hawkins (1993) introduced 

CUSUM procedures based on a set of regression-adjusted variables. Ngai and Zhang 

(2001) considered a two-sided CUSUM chart for monitoring process mean via projection 

pursuit method. Chan and Zhang (2001) further extended the method for monitoring the 

covariance matrix. Qiu and Hawkins (2001, 2003) proposed a rank-based multivariate 

CUSUM procedure, which is distribution free. Cheng and Thaga (2005b) developed a 

multivariate max-CUSUM chart to simultaneously monitor the shifts in both mean vector 

and covariance structure with different directions.  

On the other hand, a different approach of using CUSUM for the multivariate case 

is to combine local procedure together into a single global scheme. One is a CUSUM 

scheme based on the maximum of local CUSUM statistics (see Tartakovsky 2006). 

Specifically, an alarm will be raised at time  : 

            {              },                               (4.3) 

where   is a constant number that determines the operating characteristics of the 

procedure (i.e. maintain a pre-specified false alarm rate requirement). The approach of 

using the maximum of local CUSUM statistics is preferable when the number of root 

cause variable is one. Another monitoring scheme was proposed by Mei (2010), which is 

based on the sum of all local CUSUM statistics. The proposed stopping time is: 

 𝑠          {    ∑     
 
     },                               (4.4) 

where   is a suitable constant number like   in equation (4.3). This procedure is most 

effective when multiple variables simultaneously shift. Recently, Mei (2011) further 

proposed a generalized CUSUM procedure based on the sum of top-  local CUSUM 

statistics with the stopping time: 

               {    ∑       
 
     },                           (4.5) 
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where                          are the decreasing order statistics of {       

       } and   is a suitable constant number like   and   in equations (4.3) and (4.4). 

The procedures of using the maximum of local CUSUM statistics and the sum of all local 

CUSUM statistics can be regarded as the special cases of the sum of top-  local CUSUM 

statistics when     and    , respectively. Empirical results have shown that using 

the sum of top-  local CUSUM statistics is robust and efficient with suitable choices of   

(Mei 2011). Due to only   local CUSUM statistics are recursively calculated at each 

time epoch, the computational cost is linear in  . Therefore, the method (Mei 2011) is 

scalable for online monitoring of a large number of data streams.  

 

4.3 Adaptive Sensor Allocation Strategy 

In this chapter, we employ the sum of top-  local CUSUM statistics (Mei 2011) 

as the baseline method, and further integrate it with the idea of max-CUSUM control 

chart (Cheng and Thaga 2005a, b). We call the new monitoring statistic as “the sum of 

top-  local statistics”, and it will be used in the adaptive sensor allocation framework. 

Two properties and parameter settings associated with the developed methodology will 

be discussed in Sections 4.2 and 4.3, respectively. Unlike the approach in Liu et al. 

(2013), which only focuses on the spatial relationship of measurements, our approach 

first look at the temporal domain information to derive individual local statistic for each 

variable, and then combine the spatial domain information among different local statistics 

by using the sum of top-  approach (Mei 2011). For simplicity, we assume       and 

      follow normal distributions for          . However, our method is not limited 

to this assumption and can be generalized to other distributions. 

 

4.3.1  Methodology Development 
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There are three fundamental questions when developing the adaptive sensor 

allocation strategy: (1) how to construct local statistics; (2) when to indicate process is 

out-of-control; and (3) how to redistribute sensor layout. 

 

4.3.1.1 Local Statistic 

In this chapter, our interest is to detect both positive and negative mean shifts. 

Inspired by the max-CUSUM control chart (Cheng and Thaga 2005a, b), we construct the 

two-sided local statistic for each variable   at time   as follows: 

              
   

     
   

 ,                                             (4.6) 

where     
   

 and     
   

 are the local statistics for detecting positive and negative mean 

shifts, respectively. 

Depending on whether a sensor is deployed on the variable, there are two 

approaches to construct the local statistics,     
   

 and     
   

. When a sensor is deployed on 

variable   at time  , we use the following approach to calculate the local statistics based 

on equation (4.2): 

    
   

    (      
   

          
  𝑖 

 

 
  )  

and     
   

    (      
   

          
  𝑖 

 

 
  ),                          (4.7) 

where     
   

     
   

  . Since the post-change mean (i.e.   ) in equation (4.2) is 

usually unknown, it has been replaced by a constant parameter      (i.e.       ), the 

interested-smallest magnitude of mean shift for detection, as introduced in Section 4.2.2. 

(see the guidelines in Section 4.3.3 on how to determine the value for     ). 

When a sensor is not deployed on variable   at time  , we use the second 

approach to construct the local statistics by introducing an incremental parameter   (i.e. 

   ): 

    
   

       
   

   and     
   

       
   

  ,                             (4.8) 
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where   is a constant tuning parameter and is related to how frequently the sensor 

recourses will be reallocated (see the guidelines in Section 4.3.3 on how to determine the 

value for  ).  

It is worth mentioning that the two-sided local statistic      is always nonnegative 

for    and    based on equations (4.6)-(4.8), and it will be large no matter when the 

process has a positive or negative mean shift in variable  . In the following study, we 

will assume the constructed local statistics are all two-sided, unless otherwise specified. 

 

4.3.1.2 Stopping Time and Redistribute Sensor Layout 

As discussed in Section 4.2, we employ the approach in (Mei 2011) to determine 

the stopping time by equation (4.5):               {    ∑       
 
     } (see the 

guidelines in Section 4.3.3 on how to determine the values for   and  ). Recall that      

is the local statistic to detect the mean shift in each variable  , while the sum of top-  

local statistics is the monitoring statistic to detect the change in the system.  

Denote the variable index of the decreasing order statistic        as       . Since a 

larger local statistic indicates the variable is more likely to have a shift, we will 

redistribute sensor resources onto the variables with the first   largest local statistics after 

checking the stopping rule at each time  : 

  {               },                                                 (4.9) 

where   denotes the new sensor layout. In case that there are a non-unique solution for  , 

we will randomly choose one of the solutions to update  .  

 

4.3.1.3 Overview of the SERA Algorithm. 

The initial sensor layout is not critical since the adaptive sensor allocation strategy 

will be timely updated according to the online measurements. An overview of the SERA 

algorithm is illustrated in Figure 4.1.  
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Figure 4.1: The overall flow chart of the SERA algorithm 

 

4.3.2 Properties of SERA Algorithm 

In this section, we provide two properties associated with the SERA algorithm. 

These two properties ensure that the SERA algorithm can not only quickly detect a wide 

range of possible shifts in all directions, but also identify the shift variables under certain 

constraints. In the properties, the following variable plays an important role:    

            
  𝑖 

 

 
  , which characterizes the difference between the true post-change 

mean         and our pre-assigned parameters      and  .  

Denote   {     }. We first investigate the property when where is no mean 

shift or only small mean shifts (i.e.      for     ) occurring in the system. 

 
Set appropriate parameter values for 𝑢𝑚𝑖𝑛, Δ, 𝑟 and 𝑑. Let 𝑡    and 𝑊𝑘 𝑡  
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 based on equation (4.7); Otherwise, 
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Property 4.1: Let     and      for       Denote    as the sensor allocation at 

time  . For any    and any variable    , denote          {             }, then 

 (    <  )    (Proof is given in Appendix A.5). 

The first property discusses the randomness of sensor layout when the system is either in-

control or only small mean shifts happen. When     , sensor resources will not stick to 

the variable  , but will be redistributed to other variables with infinite number of times as 

   . In other words, sensor resources will not stick to a certain layout and any 

variable will not be left unattended during online monitoring though only limited 

resources are available for a given time.  

Denote         as the cardinality of the set   . Next, we investigate the property 

when modest mean shifts happen (i.e.     , for     ) in the system.  

Property 4.2: Let     and   {        }. Let event    represent the existence 

of a set      and                                 at time  , where      for 

all     . Then               (Proof is given in Appendix A.6). 

The second property indicates that sensor resources will eventually swarm and stick to 

the set of variables with modest mean shifts. In other words, when     , there is 

always a nonzero probability that once a sensor is deployed on variable  , it will never be 

redistributed to other variables. In this way, the sum of top-  local statistics can be 

significantly large. Thus, this property also shows that the SERA algorithm is able to 

localize the process changes. However, since the SERA algorithm is developed based on 

individual local information, it can only identify the shift variables instead of the root 

causes.  

 

4.3.3  Parameter Settings 

In this section, we will discuss how to set the values of four parameters,     ,  , 

 , and   in the SERA algorithm.  
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(1) The selection of     : As discussed in Section 4.3.1.1, the parameter      (i.e. 

      ) represents the interested-smallest magnitude of mean shift for detection. In 

reality, the practitioner can determine the value of      based on engineering domain 

knowledge to ensure production yield. For example, in a manufacturing process, the 

tolerance specifications for each variable specified in product/process design can be used 

to determine the interested-smallest magnitude of mean shift,      (Liu and Shi 2012).  

(2) The selection of  :   (i.e.    ) is a tuning parameter, which is associated 

with how frequently the sensor recourses will be reallocated. In practice,   cannot be 

either too large or too small. If   is too large, then the reallocation scheme will be 

dominated by  . As a result, sensors will be redistributed onto the variable that currently 

does not have sensor deployed after each time no matter whether this variable has a shift 

or not. By property 4.2, if we want to detect the shift resulted from variable  , then 

     or equivalently,          
  𝑖 

 

 
  . On the other hand, according to property 

4.1, if   is too small, then the monitoring system may take a longer time to reallocate 

sensors from the in-control variables onto the shift variables.  

(3) The selection of  : At first,   should be smaller than  , the total number of 

sensors. Otherwise, the sum of top-  local statistics will include unobserved variables 

when the system is out-of-control, which will degrade the performance of the control 

chart. Ideally,   should be chosen approximately equal to the total number of root cause 

variables. On the other hand, Mei (2011) has shown that when the total number of root 

cause variables is unknown, the monitoring scheme with relatively small   value is more 

robust to detect a wide range of possible shifts.  

(4) The selection of  :   is the threshold to stop the monitoring procedure. The 

practitioner can determine the optimal   value from sufficiently large in-control 

measurements or via Monte Carlo simulation with bootstrap technique (Efron and 
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Tibshirani 1993; Chatterjee and Qiu 2009). The value of   is related to the false alarm 

rate,   of the monitoring scheme:  

        ,                                                   (4.10) 

where      is the prescribed in-control ARL when no change occurs in the system. 

 

4.4 Case Studies 

4.4.1  Hot Forming Process  

In this section, we will evaluate the performance of the proposed SERA algorithm 

and compare with the existing one in Liu et al. (2013) under different shift scenarios 

based on a hot forming process. A BN for the hot forming process was identified by Li 

and Jin (2010) and is shown in Figure 2.1. As mentioned in Section 4.1, the method in 

Liu et al. (2013) is based on investigating the multivariate    control chart and the causal 

structures (in the following pages, we denote this algorithm as causation-based adaptive 

(CBA) algorithm) when only partial information is available during online monitoring. 

As a result, a BN must be known before conducting this algorithm. In addition, the CBA 

algorithm can only detect single mean shift. To demonstrate the effectiveness of our 

proposed SERA algorithm, in the following case studies, we assume that the BN is 

unknown when implementing the SERA algorithm, whereas the BN is available when 

implementing the CBA algorithm in phase 2 monitoring and diagnosis. 

 

4.4.1.1 Single Mean Shift Case 

In this case study, we focus on comparing the performance of the proposed SERA 

algorithm with the CBA algorithm when only a single mean shift may occur at any 

variable in the hot forming process. The following discussions will consider five potential 

single mean shift scenarios with different shift magnitudes,   (i.e.              ) and 

different number of available sensors,   (i.e        ). In addition, the false alarm rate, 
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  is chosen to be 0.01. Since the SERA algorithm can only identify the shift variables, it 

is not suitable for root cause diagnosis, especially when the causal structure is unknown. 

However, since only a single mean shift may occur in the system and the shift will 

propagate and dilute along the BN (e.g. a mean shift in    with      will result in a 

mean shift in    with         ), we will use a simple rule of root cause diagnosis for 

the SERA algorithm: the variable with the largest CUSUM statistic. This diagnosis 

approach can demonstrate how many times the out-of-control alarm is triggered with the 

largest contribution from the root cause variable. To evaluate the monitoring and the root 

cause diagnosis capabilities, specifically, we focus on the following metrics when each 

time the same amount of mean shift occurs at each variable: (1) the maximum out-of-

control ARL,      ; (2) the average out-of-control ARL,   ̿̿̿̿ ; (3) the minimum rate of 

uniquely correct diagnosis,      ; and (4) the average rate of uniquely correct diagnosis, 

  ̿̿ ̿̿ . A diagnosis result is called uniquely correct if the true mean shift variable is 

uniquely identified. According to the definitions of these metrics,       and   ̿̿̿̿  are 

desired to be as small as possible, whereas       and   ̿̿ ̿̿  are desired to be as large as 

possible. Parameter settings (e.g. values for  ,   and  ) and performance evaluation 

metrics (e.g.      ,   ̿̿̿̿ ,       and   ̿̿ ̿̿ ) are selected to be consistent with (Liu et al. 

2013).  

The SERA algorithm is implemented during online monitoring no matter when 

the system is in-control or out-of-control. Thus, the sensor layout is not unique at the 

moment when a mean shift occurs, and thus it can affect the monitoring performance. In 

order to address this issue, we consider the worst initial sensor deployment (WISD), 

which will provide the least favorable sensor layout for detection when a mean shift 

occurs in the system. Define {    } as the increasing order statistics of {  }. In other 

words, when a mean shift occurs at variable  , we assume that sensors are deployed right 

on the variables associated with {           }, no matter how sensor placement has 
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evolved before. In this way, we can get the most conservative performance evaluation of 

the SERA algorithm.  

 

Table 4.1: Performance comparisons between the SERA and the CBA algorithm under 

different combinations of   ,  , and   values for single mean shift case 
 

 CBA SERA 

       

SERA 

      

SERA 

      

Impv.  

(%) 

CBA SERA 

       

SERA 

      

SERA 

      

Impv. 

(%) 

     and           and     

      27.24 9.03 8.77 10.36 67.80 15.15 6.45 6.19 7.25 59.14 

  ̿̿̿̿  17.66 8.40 8.17 9.93 53.74 9.06 5.98 5.79 6.95 36.09 

      0 0.56 0.60 0.75 - 0 0.49 0.54 0.73 - 

  ̿̿ ̿̿  0.40 0.83 0.84 0.92 110 0.45 0.82 0.84 0.92 86.67 

     and           and     

      9.16 5.25 5.05 5.83 44.87 5.69 4.67 4.41 5.01 22.50 

  ̿̿̿̿  5.38 4.90 4.74 5.58 11.90 3.66 4.32 4.16 4.81 -13.66 

      0 0.41 0.45 0.66 - 0 0.33 0.36 0.54 - 

  ̿̿ ̿̿  0.47 0.80 0.82 0.91 74.47 0.48 0.77 0.79 0.88 64.58 

     and           and     

      17.75 7.88 7.72 7.65 56.51 8.67 5.51 5.40 5.33 37.72 

  ̿̿̿̿  13.03 7.27 7.16 7.10 45.05 6.26 5.10 5.01 4.97 19.97 

      0.20 0.64 0.67 0.73 235 0.23 0.58 0.62 0.74 169.57 

  ̿̿ ̿̿  0.61 0.87 0.88 0.90 44.26 0.69 0.87 0.88 0.92 27.54 

     and           and     

      5.06 4.43 4.36 4.28 13.83 3.50 3.53 3.76 3.69 -7.43 

  ̿̿̿̿  3.76 4.10 4.03 3.99 -7.18 2.68 3.86 3.46 3.42 -29.1 

      0.22 0.52 0.55 0.69 150 0.18 0.44 0.46 0.61 155.56 

  ̿̿ ̿̿  0.68 0.86 0.87 0.92 27.94 0.64 0.84 0.86 0.91 34.38 

     and           and     

      17.44 7.51 7.36 7.14 57.8 8.35 5.22 5.16 5.03 38.2 

  ̿̿̿̿  12.08 6.85 6.75 6.55 44.12 5.86 4.74 4.69 4.57 19.97 

      0.56 0.63 0.65 0.71 16.07 0.42 0.56 0.59 0.67 40.48 

  ̿̿ ̿̿  0.72 0.86 0.87 0.89 20.83 0.77 0.85 0.86 0.89 11.69 

     and           and     

      4.70 4.22 4.14 4.03 11.91 3.27 3.59 3.57 3.47 -9.17 

  ̿̿̿̿  3.46 3.76 3.72 3.64 -7.51 2.47 3.17 3.15 3.10 -27.53 

      0.20 0.46 0.49 0.59 145 0.05 0.36 0.39 0.48 680 

  ̿̿ ̿̿  0.75 0.82 0.83 0.87 10.67 0.72 0.79 0.80 0.84 11.11 
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Table 4.1 summarizes the performance comparisons between the SERA algorithm 

and the CBA algorithm under different combinations of mean shift magnitude  , 

incremental parameter  , and number of available sensors  . In this study, we choose 

    and          according to the characteristics of the actual system. The detailed 

simulation steps can be found in Appendix A.7. The numbers in the “CBA” column can 

be referred to (Liu et al. 2013). The column “Impv.” shows the percentage of 

improvement (i.e. positive value) or deterioration (i.e. negative value) in each 

performance metric by implementing the SERA algorithm (     ) over the CBA 

algorithm. According to Table 4.1, we can draw the following conclusions: 

(1) The SERA algorithm outperforms the CBA algorithm in both monitoring and 

diagnosis capabilities. In most of the scenarios, the SERA algorithm can significantly 

improve the detection delay (which is related to       and   ̿̿̿̿  metrics) and also the 

diagnosis accuracy (which is related to       and   ̿̿ ̿̿  metrics) compared with the 

CBA algorithm, although the causal information is unknown when implementing the 

SERA algorithm. On the other hand, the differences between the       and the   ̿̿̿̿  

metrics are much smaller for the SERA algorithm under different mean shift 

scenarios. This characteristic ensures that a mean shift can be detected in a timely 

manner no matter where the root cause is. In this way, a more robust monitoring 

scheme is obtained, and thus less defective products will be produced due to quick 

detection of process changes.  

(2) The performance of the SERA algorithm is relatively stable when   changes within a 

certain range. However, when   is set to be a very large number (e.g.      : in this 

way,   <   for       ), the performance of the SERA algorithm deteriorates very 

fast, especially when the number of available sensors is small (due to page limits, the 

result is omitted). On the other hand, the system associated with different number of 

available sensors need different optimal   values. For example, when    ,       
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can provide the best performance compared with        or    . On the contrary, 

when     or  ,       can provide the best performance compared with        

or    . According to the empirical study, as the number of available sensors increases, 

a larger   value is preferred.  

(3) As   increases, the detection delay of both methods decreases, which is consistent 

with our intuitions; however, the amount of improvement in the “Impv.” columns 

becomes smaller. It is known that the CUSUM-type chart is more efficient for 

detecting small mean shifts than the Shewhart chart (Montgomery 2009).  However, 

in this example, even with large mean shifts, the detection delay of the SERA 

algorithm (which is based on the CUSUM statistics) is still comparable to the CBA 

algorithm (which is based on    statistics). On the other hand, the diagnosis accuracy 

of both methods becomes smaller as   increases. This is because as the mean shift 

becomes significant, the abnormality can be more easily noticed by the system even 

with a poorly deployed sensor layout.  

(4) As   increases, less information is lost in the system, and thus the detection delay of 

both methods decreases. In addition, the amount of improvements in both the 

detection delay and the diagnosis accuracy of the SERA algorithm become less 

pronounced. As a result, the SERA algorithm is more efficient and robust than the 

CBA algorithm, especially when the number of available sensors is small.  

 

4.4.1.2 Multiple Mean Shifts Case 

The CBA algorithm is only able to detect single mean shift, but the SERA 

algorithm can detect a wide range of possible shifts in all directions. Consequently, in this 

study, we focus on evaluating the performance of the SERA algorithm when multiple 

mean shifts occur in the network. In addition, we are interested in studying the effect of 

sensor layout on the detection delay of the SERA algorithm when the mean shifts right 
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occur in the system. Specifically, two approaches to the initial sensor deployment are 

considered in the following analysis. The first one is called the WISD as introduced in 

Section 4.4.1.1, and the second approach is called random initial sensor deployment 

(RISD), which will randomly distribute   sensors to the variables when mean shifts right 

occur in the system. By comparing these two approaches, we can get a thorough study 

about the robustness of the SERA algorithm to the initial sensor layout.  

Similarly to the single mean shift case, different mean shift magnitudes   and 

different number of available sensors   are considered. In this study,   is chosen to be 

   . The evaluation process is similar to the single mean shift case as shown in Section 

4.4.1.1, and thus it is omitted here. Tables 4.2 and 4.3 elaborate the performance of the 

SERA algorithm when two variables simultaneously have a mean shift with identical 

magnitude but in the same and the opposite directions, respectively. According to the 

results in Tables 4.2 and 4.3, we can get the following conclusions: 

(1) As   and   increase, less information is lost during online monitoring and the mean 

shift becomes more significant, and thus detection delay decreases. In addition, since 

mean shifts with different directions will mitigate each other when propagating to 

downstream variables, the detection delay in Table 4.3 is larger than that in Table 4.2.  

(2) Compared with the RISD, the WISD only has a little larger detection delay in both 

      and   ̿̿̿̿  metrics (the difference is within one ARL in almost all scenarios). 

Thus, this study shows that the sensor layout at the moment when a mean shift occurs 

in the system has little effect on the monitoring performance. In other words, the 

SERA algorithm is able to timely update the sensor layout for detecting process 

changes.  
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Table 4.2: Performance evaluations of the SERA algorithm under different combinations 

of initial sensor layouts,   and   values for multiple (two) mean shifts with same 

direction 
 

 SERA 

(WISD) 

SERA 

(RISD) 

SERA 

(WISD) 

SERA 

(RISD) 

SERA 

(WISD) 

SERA 

(RISD) 

SERA 

(WISD) 

SERA 

(RISD) 

                         

      5.98 5.20 4.51 3.61 3.86 2.88 3.45 2.41 

  ̿̿̿̿  5.05 4.24 3.94 3.05 3.39 2.46 3.05 2.10 

                         

      5.11 4.43 3.75 3.06 3.13 2.38 2.77 2.01 

  ̿̿̿̿  4.24 3.63 3.20 2.58 2.68 2.05 2.36 1.74 

                         

      4.37 4.12 3.04 2.84 2.43 2.21 2.09 1.85 

  ̿̿̿̿  3.75 3.39 2.73 2.39 2.21 1.89 1.90 1.58 

 

Table 4.3: Performance evaluations of the SERA algorithm under different combinations 

of initial sensor layouts,   and   values for multiple (two) mean shifts with different 

directions 
 

 SERA 

(WISD) 

SERA 

(RISD) 

SERA 

(WISD) 

SERA 

(RISD) 

SERA 

(WISD) 

SERA 

(RISD) 

SERA 

(WISD) 

SERA 

(RISD) 

                         

      8.25 7.59 5.83 5.07 4.78 3.97 4.26 3.43 

  ̿̿̿̿  7.00 6.31 5.08 4.26 4.22 3.34 3.76 2.83 

                         

      7.13 6.49 4.94 4.27 3.98 3.24 3.45 2.71 

  ̿̿̿̿  5.96 5.33 4.23 3.56 3.44 2.75 3.01 2.30 

                         

      6.65 6.01 4.59 3.94 3.61 2.99 3.10 2.44 

  ̿̿̿̿  5.30 4.90 3.68 3.27 2.91 2.52 2.46 2.08 

 

4.4.2 Solar Flare Detection 

In this section, we conduct a case study based on a real dataset collected from the 

solar data observatory, which illustrates the emergences of solar flares. A solar flare is 

defined as a sudden, transient, and intense variation in brightness, which is usually 

observed over the Sun’s surface. A solar flare can emit large energetic charged particles, 

which can disturb the Earth's ionosphere and radio communications. Thus, there is a 

pressing need to detect the solar flare as soon as possible. However, due to the transient 
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characteristic of the solar flare process and large amount of dataset, traditional 

methodologies by analyzing the full data stream can usually exceed the transmission and 

processing capabilities during online monitoring, and thus are incapable of detecting solar 

flares in real time.  

The dataset is recorded in a video format and is publicly available online at 

http://nislab.ee.duke.edu/MOUSSE/index.html. There are in total 300 frames in the video, 

each of which contains a size of                 dimensional online data. 

According to the video, there are at least two obvious transient flares which occur at 

frames           and          , respectively. For monitoring purposes, the 

background information has been already removed and the remaining data is 

approximately normal distributed as mentioned in (Xie et al. 2013).  

 In this study, the parameters are selected as       ,      ,      (we have 

also tried other combinations of the parameters, and achieved a similar result). In addition, 

we assume that only 2000 out of 67744 pixels are available (i.e.       ) at each data 

frame and can be sent to the fusion center for analysis due to limited transmission and 

processing capabilities. Figure 4.2 (a) and Figure 4.3 (a) show the snapshots of the video 

at frames        and      , when the first and second solar flare are brightest, 

respectively. Figure 4.2 (b) and Figure 4.3 (b) illustrate the snapshots at frames        

and      , when the first and second solar flare are nearly over, respectively.  Figure 

4.2 (c) is the snapshot at frame      , which is the moment right before the first solar 

flare occurs, and Figure 4.3 (c) shows the snapshot at frame       , which is the last 

frame of this video. Figures 4.2 (d)-(f) and Figures 4.3 (d)-(f) demonstrate the locations 

of sensors which are marked by white dots at the corresponding frames 

              and              , respectively.  

 

http://nislab.ee.duke.edu/MOUSSE/index.html
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(a)                                       (b)                                      (c) 

       

(d)                                       (e)                                      (f) 

Figure 4.2:  Detection of the first solar flare: snapshots of the video (a) at frame       , 

when the first solar flare is brightest; (b) at frame       , when the first solar flare is 

nearly over; and (c) at frame       , the moment right before the first solar flare starts. 

The locations of 2000 sensors are (d) at frame       ; (e) at frame       ; and (f) at 

frame       . 

 

Figure 4.2 and Figure 4.3 show that our method can not only detect the 

emergences of solar flares, but also localize the flares (i.e. sensors clearly swarm to the 

regions and show the patterns of the solar flare in Figure 4.2 (e) and Figure 4.3 (e)), 

which is due to property 4.2 of the SERA algorithm. On the other hand, when there is no 

solar flare happening, locations of sensors are nearly random and do not show any 

obvious pattern as shown in Figure 4.2 (f). In addition, comparing Figure 4.3 (e) and (f), 

when the solar enters a normal state after the flare disappears, sensors do not stick to the 

locations of the previous solar flare and tend to be redistributed to the random pattern 

again. Therefore, these two phenomena further validate property 4.1 of the SERA 

algorithm. Due to this characteristic, the SERA algorithm is also able to detect multiple 

shifts that occur at different time. 
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(a)                                       (b)                                      (c) 

       

(d)                                       (e)                                      (f) 

Figure 4.3:  Detection of the second solar flare: snapshot of the video (a) at frame 

      , when the second solar flare is brightest; (b) at frame       , when the second 

solar flare is nearly over; and (c) at frame       , the last frame of this video. The 

locations of 2000 sensors are (d) at frame       ; (e) at frame      ; and (f) at 

frame       . 

 

Figure 4.4 plots the values of the sum of top-  local statistics by implementing the 

SERA algorithm at frames          . Although many methodologies have already 

been developed to estimate the threshold  , accurately determining its value given any 

prescribed in-control ARL is still a challenging problem, especially when the training 

sample is small. In this study, we estimate the value of threshold   based on the data in 

the first 100 frames with bootstrap technique (The detailed steps can be found in 

Appendix A.8). In Figure 4.4, the red horizontal line represents       , which 

corresponds to the false alarm rate of       . Although 2000 pixels are available, which 

accounts for only       of the total information, our method can still quickly detect the 

two solar flares at frames       and       as shown in Figure 4.4. This is 

comparable to the results in (Xie et al. 2013), where the two solar flares are detected at 
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frames       and      . However, the method in (Xie et al. 2013) is based on the 

generalized likelihood ratio procedure (Siegmund and Venkatraman 1995) and assumes 

that all 67744 pixels in each data frame are available. In addition, there is no recursive 

formula in (Xie et al. 2013) and thus their method is not suitable for online monitoring 

applications. 

 

 

Figure 4.4:  The monitoring statistics (i.e. the sum of top-  local statistics) over different 

acquisition time by implementing the SERA algorithm. The red horizontal line is the 

threshold       , which corresponds to the false alarm rate of       . 

 

4.5 Conclusion 

Fast process change detection is an important and challenging topic in many 

industrial and civilian applications. Although efforts have been made in developing the 

optimal design of DSNs by assuming that sensor deployment is fixed, few studies have 
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been focused on investigating the adaptive sensor allocation strategy based on online 

measurements to minimize detection delay. This chapter develops a novel monitoring 

scheme by using the sum of top-  local statistics for fast process change detection in a 

general network. The use of this framework has several advantages over other approaches, 

which include significant decreases in computational cost (i.e. the complexity is only 

linear in the number of variables), and extensive savings for physical sensors, data 

acquisition, transmission and processing time. The proposed adaptive algorithm, which is 

named as SERA, is scalable, efficient, and robust to detect a wide range of possible shifts 

in all directions, even in large-volume and high-dimensional data environments. Two 

properties of this algorithm are also given in this chapter. The methodology has been 

tested and validated on a hot forming process and a real solar flare process. Both studies 

have demonstrated the capabilities of the SERA algorithm to quickly detect and also 

localize the process changes (i.e. sensors swarm and stick to the out-of-control region).  
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CHAPTER 5 

A DATA-LEVEL FUSION MODEL FOR DEVELOPING 

COMPOSITE HEALTH INDICES FOR DEGRADATION 

MODELING AND PROGNOSTIC ANALYSIS 

 

 

 

5.1 Introduction 

Unexpected equipment failure often leads to severe economic losses and can 

sometimes have catastrophic consequences. A typical example that occurs in the 

industrial sector is unexpected machine failures that result in production downtime, 

delayed delivery schedule, poor customer satisfaction and safety issues. Condition 

monitoring and prognostics, which utilize sensor data to assess the health status of 

equipment and make inferences about the remaining lifetime, play important roles in 

condition-based maintenance (Mobley 2002). As equipment degrade, sensor data related 

to the underlying failure processes (such as temperature, vibration, emissions, etc.) 

evolve in a manner that is related to the severity of degradation process and are typically 

referred to as degradation signals. Given a predetermined failure threshold, monitoring 

these degradation signals can provide accurate inferences about the remaining lifetime of 

each system or unit.  

The literature pertaining to modeling degradation processes is indeed rich, and 

contains numerous methods and techniques (Meeker and Escobar 1998; Nelson 1990).  

However, most of the existing models study only a single measure for degradation. These 

approaches are effective when the degradation mechanism is well understood and a single 

sensor is capable of capturing most of the characteristics of the underlying degradation 

process. In reality, a single sensor is typically insufficient for characterizing various types 
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of manifestations that may result from even a single degradation process. Although it is 

possible to use multiple sensors and individually analyze the corresponding data, this can 

often result in significant over or under estimation of the remaining lifetime (Gebraeel 

2006). In fact, different sensor data may exhibit different signal patterns. Some sensors 

are highly related to the degradation mechanism, and thus can show a strong degradation 

trend while others may not. Two key challenges when performing prognostics using 

multiple sensors are: (1) deciding on which specific sensor data to use for modeling 

degradation, and (2) how to combine/fuse multiple relevant sensor data. Generally, data 

collected from multiple sensors may contain only partial information about the same 

degradation process, and thus fusing this information has the potential to provide more 

accurate and robust prognostic capability. In addition, the data fusion approach can save 

cost by identifying and collecting only relevant sensor data for prognostics in future 

monitoring.  

There are three categories of data fusion that are classified based on the level of 

implementation of the fusion methodology: data-level fusion, feature-level fusion, and 

decision-level fusion (Hall and Llinas 1997; Volponi et al. 2004). Data-level fusion 

combines multiple sensor data that measure correlated parameters. Heger and Pandit 

(2004) applied a data-level fusion approach by using multi-directional illumination and 

image fusion to generate an image with a high degree of relevant information for grinding 

tool condition monitoring and fault diagnostic applications. Kalman filter is another 

common technique applied to multi-sensor fusion (Simon and Simon 2005; Kobayashi 

and Simon 2007). Salahshoor et al. (2008) presented an integrated design framework 

based on the extended Kalman filter data fusion algorithm for enhancing the detection 

and diagnosis of sensor and process faults. On the other hand, feature-level fusion 

integrates feature information that results from independent analysis methods. Prior 

knowledge about the degradation mechanism and physical laws are usually implemented 

to create desired features. For example, Goebel and Bonissone (2005) applied a feature-
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level fusion approach to predict industrial web paper breakage using an Adaptive Neuro-

Fuzzy Inference System model. Volponi et al. (2004) performed information fusion at the 

feature-level to maximize the amount of meaningful information that can be extracted 

from separate data sources to obtain comprehensive diagnostic and prognostic knowledge 

regarding the health of the aircraft gas turbine engine. Finally, decision-level fusion 

involves integrating diagnostic actions (e.g. preliminary determination of an entity’s 

location, attributes, and identity). Sun (2002) conducted a decision-level fusion analysis 

for vehicle health monitoring and degradation detection where decisions were made 

based on each sensor and their features (e.g. power spectrum, wavelets, autoregressive 

modeling, and entropy spectrum). A review of some of the literature on multi-sensor data 

fusion approaches to condition monitoring, fault diagnosis, and prognostics can be found 

in Jardine et al. (2006).  

While the aforementioned techniques were effective in different levels of data 

fusion, most of them aimed at improving monitoring and diagnostic performances. Little 

literature has discussed how these methodologies can be applied to degradation modeling 

and prognostics. Some extensions to prognostic applications can be found in feature-level 

and decision-level fusion models (Hu et al. 2010; Byington et al. 2007), but seldom at 

data-level fusion. On possible explanation is that feature-level and decision-level fusion 

models are performed on intermediate results, i.e., after analyzing the original data. In 

such scenarios, it is usually more flexible to aggregate the information from independent 

analysis techniques (feature-level) or decisions (decision-level). Nonetheless, these two 

approaches are highly dependent on the quality of the raw data, and how that data is 

analyzed and processed. Therefore, there is a significant need to develop a data-level 

fusion technique that deals with constructing an efficient composite health index that is 

specific and relevant to degradation modeling and prognostics. This composite health 

index can be regarded as the key metric for assessing the health status of each unit. 

Feature-level and decision-level fusion techniques can still be implemented on the basis 
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of the constructed health index to further improve prognostic results. Figure 5.1 illustrates 

the flow chart on different levels of data fusion approaches to final prognostic analysis. 

The contribution of this chapter is highlighted by the dashed rectangle in Figure 5.1.  

 

 

 

 

 

 

 

Figure 5.1:  Different levels of data fusion approaches to prognostic analysis 

 

The remainder of this chapter is organized as follows. Section 5.2 describes the 

simulation model developed using the NASA Commercial Modular Aero-Propulsion 

System Simulation (C-MAPSS) for commercial aircraft gas turbine engines, and provides 

an overview of the degradation dataset taken from (Saxena, Goebel, Simon, and Eklund 

2008). Section 5.3 develops a concrete formulation of constructing an efficient composite 

health index based on the data-level fusion technique for degradation modeling and 

prognostics. Key elements related to the problem formulation, which include essential 

properties for developing degradation signals, algorithm robustness, weight coefficients 

setting, selection of data-fusion function, and tuning parameter setting, will be addressed. 

Section 5.4 demonstrates the improved performance of the composite health index when 
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it is used for model fitting and remaining life prediction based on the dataset introduced 

in Section 5.2. Section 5.5 draws a conclusion and discusses future research directions.  

 

5.2 Overview of the System and Dataset 

5.2.1 System Model Description 

This chapter considers the degradation of a simulated turbofan engine that is 

monitored using multiple sensors. The simulation model of the turbofan engine was 

developed using C-MAPSS, a simulation tool developed at NASA and widely used in 

engine health monitoring research for simulating realistic large commercial turbofan 

engines (Saxena, Goebel, Simon, and Eklund 2008; Sarkar et al. 2011). Figure 5.2 

provides a schematic diagram of a commercial aircraft gas turbine engine that was 

simulated using C-MAPSS. Figure 5.3 presents the main subroutines used in the 

simulation model. 

 

     

 

. 

 

 

A model of a 90,000 lb thrust engine is developed and simulations are run for 

operations at altitude from 0 to 42,000 ft., Mach number (speed) from 0 to 0.84, and 

throttle resolver angle (TRA) from 20 to 100. Users can adjust these three conditions: 

aircraft altitude, Mach number (speed), and TRA to simulate different environmental 

Figure 5.2: Simplified engine diagram 

simulated in C-MAPSS (Frederick et al. 

2008) 

Figure 5.3: A layout of modules and 

connections in the simulation 

(Frederick et al. 2008) 
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conditions. The C-MAPSS simulation model is embedded in a MATLAB Simulink 

platform. The software allows running in a closed-loop environment, and thus no user 

input is required during replications. The software has 14 inputs and can generate 21 

outputs that are available for analysis. Those 21 outputs are described in Table 5.1.  

   

Table 5.1 Sensors with available data (Saxena, Goebel, Simon, and Eklund 2008) 

Symbol Description Units 

T2 Total temperature at fan inlet °R 

T24 Total temperature at LPC outlet °R 

T30 Total temperature at HPC outlet °R 

T50 Total temperature at LPT outlet °R 

P2 Pressure at fan inlet psia 

P15 Total pressure in bypass-duct psia 

P30 Total pressure at HPC outlet psia 

Nf Physical fan speed rpm 

Nc Physical core speed rpm 

epr Engine pressure ratio (P50/P2) -- 

Ps30 Static pressure at HPC outlet psia 

phi Ratio of fuel flow to Ps30 pps/psi 

NRf Corrected fan speed rpm 

NRc Corrected core speed rpm 

BPR Bypass Ratio -- 

farB Burner fuel-air ratio -- 

htBleed Bleed Enthalpy -- 

Nf_dmd Demanded fan speed rpm 

PCNfR_dmd Demanded corrected fan speed rpm 

W31 HPT coolant bleed lbm/s 

W32 LPT coolant bleed lbm/s 

 

The basis for developing the simulation model was that damage accumulation will 

be different for each engine, and thus will not be directly quantifiable based on the flight 

duration and flight conditions. Consequently, the underlying assumption was users had to 

rely on sensor data collected during each flight to make decisions regarding the health 

state of the engine. The simulation model was specifically used to characterize 

degradation in engine performance due to wear and tear based on the usage pattern of the 

engines. In order to make it more realistic, an unknown variance in the initial level of 
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wear and random noise were introduced to represent system variability. In other words, 

each engine started with different degrees of initial wear and manufacturing variation, 

which was unknown to the user until the failure threshold was reached. The failure 

threshold was used to define the EoL (end-of-life) beyond which the unit is considered to 

have failed. Note that users did not have explicit access to the simulation model and the 

failure threshold was not announced a priori. A detailed description of the process by 

which the data was generated is discussed in (Saxena, Goebel, Simon, and Eklund 2008). 

 

5.2.2 Dataset Description 

A total of four datasets were generated using this simulation model along with the 

corresponding failure mode and operational conditions (Saxena, Goebel, Simon, and 

Eklund 2008). In this chapter, we consider the data pertaining to a single failure mode 

and a single operating condition. However, our approach can be extended to scenarios 

with multiple failure modes and multiple operating conditions in future studies. The 

dataset considered in this work consists of 100 training units, 100 testing units, and a file 

recording the actual remaining lifetime of the 100 testing units. Each training unit is run 

to failure, while each testing unit is stopped at some random point prior to its failure. 

Time is measured in observation epochs, in this case, number of flights. Sensor readings 

from the 21 outputs are collected after each observation epoch for each unit. 

 

5.3 Development of a Degradation Data-Level Fusion Methodology 

We develop a data-level fusion methodology for combining degradation signals 

from multiple sensors with the objective of constructing a composite health index that 

accurately characterizes the underlying degradation process and can be used to perform 

precise prognostic analysis. One critical challenge is how to guarantee that the resulting 

composite health index is more suitable for degradation modeling and prognostics than 
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any one of the original sensor signal. To answer this question, we first define a few 

essential properties that if present in a degradation signal, can enhance its effectiveness 

when used for prognostics. 

 

5.3.1 Essential Properties for Developing Degradation Signals 

Saxena, Celaya, Balaban, Goebel, Saha, Saha, and Schwabacher (2008) pointed 

out the inconsistencies in the choice of metrics when comparing the performance of 

various prognostic techniques, and further summarized and suggested several general 

metrics that can be used for prognostic applications. Although the efforts in (Saxena, 

Celaya, Balaban, Goebel, Saha, Saha, and Schwabacher 2008) focused on proposing 

metrics for evaluating performance of prognostic techniques instead of degradation 

signals, the authors indicated some desirable properties that degradation signals should 

have for successful prognostic applications.  

Property 5.1: Once an initial fault occurs, the trend of the degradation signals should be 

monotonic. 

Property 5.2: Given the same environmental conditions and failure modes, the variance 

in the failure threshold of different units should be minimal.  

Property 5.1 suggests that although raw sensor data may be non-monotonic due to 

noise, it is important to develop a composite health index that has a clearer monotonic 

trend. On the other hand, property 5.2 implies that for a given raw sensor data, there may 

be significant differences among the failure threshold of different units. However, it is 

important to develop a composite health index that has the least possible variation in its 

failure threshold. Since we assume that each engine fails due to a single failure mode 

under a single operating condition, we expect that a composite health index that exhibits 

a consistent pattern for all units as engine degrades, which can be achieved by jointly 

maximizing the monotonic property and minimizing the variance in the failure threshold 

when constructing the health index. 
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5.3.2 Problem Formulation 

 Using these two properties, we formulate our data-level fusion methodology as a 

quadratic programming problem: 

          𝑖  
     ∑ ∑         

 𝑖  
   

 
            , 

                        , 

                                          ,                                 (5.1) 

where      is the slack variable that measures the amount of violation in monotonicity of 

the composite health index for unit   and observation epoch  ;      is a weight coefficient 

for the slack variable     ;    is the number of available observation epochs in each unit  ; 

  is the total number of training units;    𝑠   is the vector of weight coefficients used 

to combine multiple sensor data at each observation epoch for each unit, where   is the 

number of selected sensors;      𝑠 is the matrix recording the last observations before 

failure with the rows representing each training unit and the columns representing each 

selected sensor;      𝑠 is a symmetric matrix of following form:   
     

   
, where   

is a matrix of all ones and   is an identity matrix;    𝑠 𝑠 is a diagonal matrix denoting 

the degradation trend information with 1 (-1) on the diagonal entry if the corresponding 

sensor information shows an increasing (decreasing) trend;                   𝑖   
  

  𝑠  𝑖      is a vector that needs to be determined for unit   such that the composite 

health index for unit   remains monotonic after adding the slack variables            𝑖   

at each observation epoch;       𝑖     𝑠  𝑖    is the matrix used to maximize the 

monotonicity for unit   and has the following form: 

   [

                 𝑠      𝑠  

    
      𝑖

       𝑖      𝑠  𝑖
    𝑠  𝑖  

],  

where        is the sensor data for unit  , sensor   and observation epoch  ;   is a tuning 
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parameter controlling the relative importance of these two additive terms in the quadratic 

formulation. Discussions on determining the values of     and   can be found in the next 

sub-section.  

 The formulation in equation (5.1) is inspired by the modeling efforts in linear 

support vector machines (SVM) for non-separable case (Hastie et al. 2003). The main 

idea of SVM is to select a hyperplane that creates the biggest margin between the training 

points for two different classes. In the case that a point is classified on the wrong side of 

the margin, which is called non-separable case of SVM, a slack variable is introduced to 

measure the distance of this point to the correct side of the margin. Similarly, the slack 

variable      is added in equation (5.1) to compensate for the violation in monotonicity. 

Thus, if we denote the composite health index for unit   and observation epoch   as     , 

then,         (             ) when solving equation (5.1).  

 The objective function in equation (5.1) is the summation of two parts: 

∑ ∑       𝑠  
 𝑖  
   

 
    measures the total weighted amount of violation in monotonicity for 

Property 5.1 and         measures the variance in the failure threshold for Property 

5.2 (see Appendix A.9 for details). Therefore, equation (5.1) reflects a trade-off between 

maximizing the monotonic property and minimizing the variance in the failure threshold 

for prognostics. 

 To facilitate solving this optimization model, the formulation expressed in 

equation (5.1) can be simplified as follows:  

                       , 

                ,                                          (5.2) 

where     𝑠 ∑   𝑖    
𝑖      is the vector of weights for the selected sensors and all slack 

variables, and equals to     𝑠     
        

   , where the matrix      is an  -by-  matrix 

with all zero entries and                  𝑖   
 ;          , where 

   𝑠  𝑠 ∑   𝑖    
𝑖    and equals to    𝑠  ∑   𝑖    

𝑖    . Note that   is a positive 
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semidefinite (P.S.D) matrix, and therefore it can be shown that   is also P.S.D. (see 

Appendix A.10 for details). Thus, a global minimizer exists in equation (5.2) as long as 

there is a feasible vector     𝑠 ∑   𝑖    
𝑖     , where           

        
    and 

                 𝑖   
 . Finally,    𝑠  𝑠 ∑   𝑖    

𝑖    and is equal to 

   𝑠  ∑   𝑖    
𝑖    ;     𝑠   ∑   𝑖    

𝑖     𝑠 ∑   𝑖    
𝑖    and has the following form: 

  [
  𝑠  ∑   𝑖    

𝑖   

  

  ∑   𝑖     𝑠 
𝑖   

],  

where     ∑   𝑖     𝑠 
𝑖   and   [

  

 
  

] ;       𝑖    𝑠  and 

   [

                 𝑠      𝑠  

   
      𝑖

       𝑖      𝑠  𝑖
    𝑠  𝑖  

]. 

 

5.3.3 Model Settings and Parameter Selections  

 In this section, we discuss several key elements related to our model formulation.  

Specifically, we focus on data processing and sensor selection, algorithm robustness, 

setting weight coefficients for     , selection of data-fusion function, and tuning parameter 

setting.  

 

5.3.3.1 Data Processing and Sensor Selection 

 Since multiple sensors are observed during operation, the first step is to determine 

which of these sensors should be selected as input to our data-level fusion model. As a 

preliminary criterion, we focus on sensors that generate signals that exhibit a 

characteristically increasing or decreasing trend. Thus, we will select a sensor if its last 

observation is relatively larger (increasing trend) or smaller (decreasing trend) than the 

initial observation for all the training units. Once the sensors have been selected and trend 
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information has been identified, then   and   can be determined. Without loss of 

generality, all sensor data will be standardized.  

 

5.3.3.2 Algorithm Robustness  

 In many applications, sensor signals may exhibit a relatively stationary trend 

associated with the non-defective phase of a unit’s operation. This may be followed by a 

defective phase where a unit is still operational but its degradation gradually worsens 

over time. This phenomenon can be reflected in the characteristics of the degradation 

signal. For example, in (Gebraeel and Lawley 2008), the authors identified two distinct 

phases for bearing applications. The first phase was referred to as the non-defective phase 

and extended from the point of new equipment installation until the very first onset of a 

fault. In this work, we refer to the time corresponding to the initial fault as the incipient 

fault time, which we denote as   . The second phase was referred to the defective phase. 

It started from the time of the incipient fault    and extended until the point of failure, i.e., 

when the signal crossed the designated failure threshold.  

 The dataset used in this chapter also exhibits similar characteristics. For example, 

Figure 5.4 illustrates these two phases in the degradation signals observed from two 

sensors “Ps30” and “phi”. A vertical dashed line is used to distinguish these two phases. 

The horizontal dashed line is used to represent the respective failure thresholds. Since no 

degradation occurs in the non-defective phase, the sensor data observed during that phase 

does not show a significant trend. Consequently, from a prognostics perspective, it cannot 

be used to predict remaining lifetime. Thus, only the sensor data pertaining to the 

defective phase should be used to develop our composite health index. Specifically, we 

may replace the term ∑ ∑         
 𝑖  
   

 
    with ∑ ∑         

 𝑖  

   ̃ 
𝑖

 
    in equation (5.1), where  ̃ 

  

is the estimated incipient fault time for unit  .  

 The key challenge now will be to automatically identify the incipient fault time. 
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Detection of incipient faults for automatic inspection and minimization of maintenance 

costs has been studied extensively (Demetriou and Polycarpou 1998). One approach is to 

build a time series model with moving time windows for each training unit. A CUSUM 

or exponentially weighted moving average (EWMA) control chart can then be used to 

monitor the changes in the model residuals (Mousavi and Butler-Purry 2010). Although 

some efforts have been made (Frank 1990; Zhang, Polycarpou, and Parisini 2002; Chow 

and Yee 1991), in numerous applications, the accurate identification of incipient fault 

time using in-situ sensor data is still an ongoing research area. In this chapter, we focus 

on how to assign the weight coefficients       such that the resulting health index is robust 

with respect to the uncertainties in estimating the incipient fault time.  

 

 

Figure 5.4:  Illustration of two phases in degradation signals 

 

5.3.3.3 Setting Weight Coefficients  

Recall that      measures the amount of violation in monotonicity as unit   

Failure Threshold 

Failure Threshold 

Non-defective Phase 

Defective Phase 
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degrades, and      
      is the total weighted sum of violations in monotonicity for unit  . As 

a unit degrades, the accuracy of predicting its remaining lifetime becomes increasingly 

sensitive to the amount of violations in monotonicity of the degradation signal. Therefore, 

we assign higher weights to the slack variables,      (see equation (5.1)), as   increases, 

where   is the observation epoch. Consequently, we define the following condition for     :  

                     ,    ̃ 
        .                        (5.3) 

 If we assume that each training unit is equally important, then the following 

constraint must be satisfied: 

∑     
 𝑖  

   ̃ 
𝑖             .                                       (5.4) 

 We can assume {    } follows an arithmetic series (                     or a 

geometric series      
                depending on the emphasis placed on the 

monotonicity. As a result,      can be computed by initializing  
   ̃ 

𝑖    and using one of 

the following expressions depending on which assumption is chosen: 

  For an arithmetic series:  

      
   ̃ 

𝑖      ̃ 
  

    
𝑖  ̃ 

𝑖   𝑖  ̃ 
𝑖  

  𝑖  ̃ 
𝑖    𝑖  ̃ 

𝑖    
,    ̃ 

        .               (5.5) 

  For a geometric series: 

      
   ̃ 

𝑖      ̃ 
𝑖

    ̃ 
        ,                             (5.6) 

where   statisfies  
   ̃ 

𝑖   𝑖  ̃ 
𝑖

      
   ̃ 

𝑖   . 

Since more weights will be assigned to      as   increases, the estimated vector of 

weight coefficients,  , becomes progressively dominated by the sensor data at 

observation epochs that are closer to the failure point. We will show in the case study 

section that our composite health index has the advantage that it will be robust with 

respect to the uncertainties in estimating the incipient fault time. 
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5.3.3.4 Selection of Data-Fusion Function 

 The formulation expressed in equation (5.2) uses a weighted average data-fusion 

function to combine the selected sensor data (i.e.        ). The vector   measures 

the relative importance of each sensor, and thus the composite health index is a weighted 

average of the sensor data. It is worth noting that the linearity assumption may not be 

suitable in some applications, in which case non-linear functions may be used when 

developing the health index.  

  

5.3.3.5 Tuning Parameter Setting 

 The tuning parameter   is used to control the relative importance given the two 

terms of the objective function, monotonicity and threshold variance, in equation (5.2). 

The optimal value of   can be obtained by cross-validation. For  -fold cross-validation, 

we can split the training data into   equal-sized groups. For a particular value of 

   <  <   , we leave the  th group data out and train the model in equation (5.2) 

based on the     groups of data. Next, we calculate the amount of violation in the 

monotonic property,     and the variance in the failure threshold,    . We repeat the 

procedure for         and combine     and     for different   (e.g.    

∑    
 
     ,    ∑    

 
     ) and use it as the evaluation criterion for the chosen   

value. Clearly, increasing    puts more emphasis on reducing the variance in the failure 

threshold on the expense of increasing the possibility of violating the monotonic property 

of the health index.  

To solve a multi-objective optimization problem, one standard approach is to plot 

the efficient frontier with respect to the two terms of the objective function in equation 

(5.2). It is known that when moving from one solution to another on the efficient frontier, 

there is always a certain amount of sacrifice in one objective (e.g increased amount of 

violation in the monotonic property), in order to achieve a certain amount of gain in the 
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other (e.g. decreased variance in the failure threshold). In practice, the optimal value of   

depends on the different emphasis we place on the two terms of the objective function.  

 

5.3.4 Flow chart of the Data-Level Fusion Approach 

 Figure 5.5 illustrates the flow chart of our proposed data-level fusion approach 

based on multiple sensor data for degradation modeling and prognostics. Denote the 

optimal values of   and   as    and   . Only the first   entries of   , which are the 

optimal values of  ,   , will be used to construct the health index for testing units. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5:  Flow chart of the proposed data-level fusion approach 
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5.4 Case Study 

 In this case study, we investigate the performance of our data-level fusion 

methodology using degradation-based sensor data pertaining to turbofan engines. The 

dataset consists of 100 training units (i.e.      ) with a total of 20631 observation 

epochs (i.e. ∑   
 
         ), 100 testing units with a total of 13096 observation 

epochs, and a file recording the actual remaining lifetime of the 100 testing units. 

(Additional details pertaining to the experimental setup and simulation model used to 

generate the data have been discussed earlier in Section 5.2.)  Detailed procedures for 

data processing and sensor selection, algorithm robustness, weight coefficients setting, 

data-fusion function selection, tuning parameter setting and computational complexity 

analysis are illustrated in this section. 

 To numerically evaluate the improved performance of the composite health index 

when it is used for model fitting and remaining life prediction, the stochastic degradation 

modeling framework (Gebraeel 2006) is adopted to compute and update the remaining 

life distribution (RLD) of each unit in real-time. We will compare the accuracy of 

predictions using the composite health index and that resulting from using each 

individual sensor based on the same stochastic degradation modeling framework 

(Gebraeel 2006). It is worth mentioning that the composite health index can be 

considered as another sensor data, which can be directly treated as an input for other 

feature-level or decision level fusion methods. Since the input data become more 

informative, the accuracy of predictions is expected to be improved by using both the 

composite health index and the original sensor data. 

 

5.4.1 Data Processing and Selection 

Among the 21 outputs listed in Table 5.1, 11 sensor data are selected.  The 

selection is made on the basis that the data shows a consistent degradation trend for all 

training units. Those 11 (i.e.     ) sensors are T24, T50, P30, Nf, Ps30, phi, NRf, BPR, 
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htBleed, W31 and W32. Furthermore, the corresponding diagonal elements of   are 

identified as                             . Recall that 1 refers to an increasing trend, 

while -1 refers to a decreasing trend.  

 

5.4.2 Algorithm Robustness 

 As mentioned before, since more weights will be assigned to      as   increases, 

the estimated vector of weight coefficients,  , becomes progressively dominated by the 

sensor data at observation epochs that are closer to the failure point. To demonstrate this 

point, we consider the constraint:     ̃ 
      , where   represents the number of 

observation epochs in the defective phase. This constraint ensures that the number of 

observations (from the defective phase) used to construct the health index is the same for 

all training units. Since each unit has different values for    and  ̃ 
 , there are no 

guarantees that the defective phases of all the training units will be equal to  . In what 

follows, we will show that even when last   observations before failure are used, the 

methodology still provides a reasonably robust estimation of the weight vector.  

 Figure 5.6 illustrates the relationship between the estimated optimal weights    

and different values of  . It is clear from the graph that beyond specific values for  , the 

estimated    becomes relatively unaffected by changes of  . Furthermore, as   increases, 

the elements of    converge to constant values. Based on our experimental observations 

as shown in Figure 5.6, we use the last 100 observations (i.e.      ) of each unit when 

estimating    in equation (5.1). 

 In addition, a discrete random number has been added to       to simulate the 

estimation uncertainties of the defective phase in each unit. The experiments yield similar 

robust result, where    is also robust with respect to the uncertainties in estimating the 

defective phase in each unit. Results have been omitted due to the page limit restrictions. 

Thus, as long as sufficient observation epochs are selected to represent the defective 
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phase (i.e.   is sufficiently large),    will be relatively robust. 

 

 

Figure 5.6:  Changes in the optimal weights    at different values of    

 

5.4.3 Selecting Weight Coefficients and Data-Fusion Function 

 An arithmetic series for {    } is adopted by assuming linearly increasing weight 

coefficients. Recall that these coefficients capture the violation in the monotonic property 

as unit   degrades. In addition, a weighted average data-fusion function is selected for 

demonstration. 

 

5.4.4 Tuning Parameter Setting 

 As mentioned earlier, the optimal value of the tuning parameter,   , can be 

estimated using  -fold cross-validation. For the purpose of this study,   is chosen to be 5. 

Thus, in each fold validation, we train the model in equation (5.2) using 80 training units. 

For each selected   value, we calculate the average amount of violation in monotonicity, 
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  , and the average variance of the failure threshold,   , of the composite health index 

using 5-fold cross-validation. 

 

Figure 5.7:  Efficient frontier of the amount of violation in the monotonic property V.S. 

the variance in the failure threshold of the health index 

 

 Figure 5.7 plots the relationship between the amount of violation in monotonicity 

versus the variance in the failure threshold for different   values. This efficient frontier 

plot demonstrates that as   becomes larger, the amount of violation in monotonicity trend 

increases and the variance in the failure threshold decreases.  

 In this case study, we choose       because the marginal reduction in the 

violation in monotonicity is small compared to the marginal increase in the variance of 

the failure threshold. In practice, the value of   can be chosen depending on how 

important each property is when developing the composite health index. Setting       

and solving the quadratic formulation in equation (5.2) for the selected sensor data, we 

get the optimal weights   , which are summarized below in Table 5.2.  

 

𝑟     

    

𝑟     

    

𝑟     
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Table 5.2: Optimal weights    to combine the selected sensor data 

Name T24 T50 P30 Nf Ps30 phi NRf BPR htBleed W31 W32 

Value 0.0568 0.1081 -0.0994 0.1021 0.1488 -0.1226 0.1030 0.0726 0.0526 -0.0649 -0.0691 

 

5.4.5 Computational Complexity Analysis 

 All numerical experiments are performed using MATLAB V7.9 and TOMLAB 

V7.8 (Holmström et al. 2008) in Windows 7 operating system with two Intel Core i7-

2820QM 2.30 GHz processors and 8 GB RAM. Most of the computational time was used 

for solving the optimization model expressed in equation (5.2) with   ∑ (    ̃ 
 )  

    

               number of variables and     ∑ (    ̃ 
 )  

          number 

of inequality constraints. Our experimental study shows that on average it takes about 6 

seconds to solve the optimization problem using CPLEX solver in Tomlab (Holmström et 

al. 2008). 

 

5.4.6 Stochastic Degradation Modeling  

5.4.6.1 Degradation Model Development 

 Based on the scatter plot of the sensor data in Figure 5.8, degradation signals 

show exponential functional forms. The exponential functional form has been widely 

used to model cumulative damage processes (Gebraeel 2006; Gebraeel and Lawley 2008; 

Gebraeel 2010). In this case study, we use the stochastic degradation modeling approach 

proposed in (Gebraeel 2006) to evaluate the performance of the composite health index 

when used to predict remaining lifetime.  

 We begin by assuming that the sensor data        satisfies: 

               
 𝑖      𝑖       𝑖      

  
 

 ,                                 (5.7) 

where    is a constant deterministic parameter for sensor  ,     ,      and      are random 

variables, and         is normally distributed random error term with mean   and variance 
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 . Since  (  𝑖      

  
 

 )   , then   (      |              )          
 𝑖      𝑖     

. 

Similar to the work presented in (Gebraeel 2006) we use the log transformation, i.e., we 

define        as: 

         (         )      
                        ,            (5.8) 

where     
         

  
 

 
. We further assume that the stochastic parameters     

 ,      and 

     are jointly distributed and follow a multivariate normal distribution:      

(
 𝑖  

 

 𝑖  

 𝑖  

)      
    

  . 

 

5.4.6.2 Parameter Estimation 

 The prior distribution of the      can be estimated by fitting the degradation path 

of each training unit with the model defined in equation (5.8).   
  can be estimated by 

using the residual sum of square over the total number of degree of freedom in the 

training stage. Once the prior joint distribution of the stochastic parameters is estimated, 

it is updated using sensor data obtained from each individual testing unit. Next, the 

updated degradation model can be utilized to compute the RLD which is particular to this 

testing unit. This process emulates the utilization of in-situ sensor signals to update the 

remaining lifetime estimation based on the unique degradation characteristics of each unit. 

 Figure 5.8 shows the result of fitting the exponential model to each selected 

sensor data, and to the composite health index obtained for a random training unit. Table 

5.3 summarizes the estimated   
   for all selected sensors and the health index. It clearly 

shows that the composite health index gives a much better fitting result.  
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Figure 5.8:  Degradation signals plot and model fittings for all selected sensor data and 

the health index in training unit #1 

 

Table 5.3: Estimated   
   of all selected sensors and the health index 

Name T24 T50 P30 Nf Ps30 phi 

Value 0.0795 0.067 0.0676 0.0634 0.0574 0.0591 

Name NRf BPR htBleed W31 W32 health index 

Value 0.0615 0.0751 0.1052 0.081 0.0789 0.0189 

 

 Let        
 be the sequence of the log transformed data, which records the last 

observations before failure in all training units for sensor  , and 

       
         

          
  . Denote the mean of failure threshold for sensor   as   

  and 

the variance of failure threshold for sensor   as   
 .   

  and   
  can be estimated by 

calculating the mean and the variance of        
, respectively. Table 5.4 summarizes the 

variance of the failure threshold for all selected sensors and the health index, respectively. 

It clearly shows that variance of the failure threshold in the composite health index is 

much smaller than the one in any other sensor data due to the formulation in equation 

(5.2).  
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Table 5.4: Variance in the failure threshold of all selected sensors and the health index 

Name T24 T50 P30 Nf Ps30 phi 

Var. 0.0274 0.0140 0.0264 0.0683 0.0154 0.0206 

Name NRf BPR htBleed W31 W32 health index 

Var.  0.0580 0.0225 0.0435 0.0220 0.0317 0.0101 

 

5.4.6.3 Estimation of Updated Residual Life Distribution 

  Let        be the sequence of the log transformed data observed up to current 

observation epoch    for unit   and sensor  , such that                        𝑖
  . The 

posterior distribution of      still follows a multivariate normal distribution: 

                 
      

    , where   
    (

  
   

  
     

    )
  

 
  

       

  
     

      
  , 

  
    (

  
   

  
     

    )
  

 and      𝑖   

[
 
 
 
 
   
   
    

   
     

 ]
 
 
 
 

 (see Appendix A.11 for 

details). 

 Define  ̃    as the estimated remaining lifetime of testing unit   based on the signal 

from sensor  . We are interested in deriving the RLD by evaluating the distribution of the 

time at which the sensor signal crosses the failure threshold. Since       𝑖       
  

                                   , then       𝑖   is normally distributed with 

mean  ̃     𝑖   and variance  ̃     𝑖  
 , where  ̃     𝑖                     

   
 and 

 ̃     𝑖  
                    

                       
 . Further, we assume that 

the failure thresholds for different units are independent. Thus, the conditional 

cumulative distribution function (cdf) of the estimated remaining lifetime  ̃    given the 

historical data        is: 
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 𝑇̃𝑖         
     ( ̃     |      )   (      𝑖     

 |      )     (      𝑖  <   
 |      )

  

(

 
  

   ̃     𝑖  

√ ̃     𝑖  
    

 

)

   (    ) 

                   , (5.9) 

where      is the cdf of the standard normal distribution. Conditional on the fact that 

 ̃     , the truncated cdf for  ̃    can be written as: 

 ( ̃     |             )  
 (  𝑇̃𝑖    |      )

 (𝑇̃𝑖    |      )
 

 (    )  (    )

   (    )
.          (5.10) 

 Since the RLD is skewed, it is preferable to utilize the median as the point 

estimator of the remaining lifetime. Numerically, this can be estimated by finding the 

observation epoch   where  ( ̃     |        ̃     )     . 

  

 

 Figure 5.9:  Degradation signals plot with original and updated model fitting for all 

selected sensor data and the health index in testing unit #24 

 

Figure 5.9 illustrates the original and the updated degradation model of a random 

testing unit in all selected sensors and the health index. The solid line shows the original 



 106 

model fitting based on the priors which are estimated from training units, whereas the 

dashed line presents the updated model fitting based on the collected sensor data for this 

particular testing unit. Similar to Figure 5.8, the composite health index shows a much 

better monotonic property and model fitting result. 

 

5.4.6.4 Prediction Results 

  To evaluate the performance of the health index for remaining life prediction, we 

compute the percentage difference between the predicted and the actual failure time.  We 

consider two cases for the predicted failure time: (1) when it is estimated based on the 

composite health index, and (2) when it is estimated based on each individual sensor 

signal. Specifically, we define the percentage error,       , as the relative difference 

between the predicted and the actual failure time for unit   and sensor  , which is 

expressed as: 

       
  𝑖 𝑇̃𝑖      𝑖 𝑇𝑖 

 𝑖 𝑇𝑖
 

𝑇̃𝑖   𝑇𝑖

 𝑖 𝑇𝑖
,                                  (5.11) 

where    is the number of available observation epochs of testing unit   when it stops 

further usage;    is the actual remaining lifetime for unit   and  ̃    is the estimated 

remaining lifetime for unit   and sensor  .  

  Since different testing units stop further usage at different time, we compare the 

absolute value of the mean percentage error by using each selected sensor and the 

composite health index at different levels of actual remaining lifetime, as shown in Figure 

5.10. For example, the points correspond to the “all” label are the comparison results 

based on all 100 testing units whereas the points correspond to the “80” label are the 

comparison results based on the testing units with equal to or less than 80 actual 

remaining observation epochs. 
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Figure 5.10:  Comparison results of the absolute value of the mean percentage error by 

using each selected sensor and the health index at different levels of the actual remaining 

lifetime 

  

 Using the results in Figure 5.10, we can make the following observations:  

 i) The composite health index outperforms any single sensor data when it is used 

for remaining life prediction, which results from the controls on two terms in equation 

(5.2) when developing the composite health index: maximizing the monotonic property 

and minimizing the variance in the failure threshold.  

 ii) The advantages of the composite health index for remaining life prediction 

become more obvious when the unit approaches the actual failure time. For example, at 

label “40” or “20”, the percentage error of remaining life prediction by using the 

composite health index is much smaller than the one by using any other sensor data. The 

first reason for this phenomenon is that as the actual remaining lifetime becomes smaller, 

our predictions are made for a shorter future time period, and therefore less uncertainty is 

involved. Second, less actual remaining lifetime usually indicates more historical data 

have been collected, and thus we are more confident about the updated fitting models. 
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The final possible explanation is since we assign higher weights to the slack variables, 

     as   increases, the remaining life prediction by using the composite health index 

becomes more accurate when we make the prediction at the observation epoch that is 

closer to the actual failure time. This unique characteristic of the composite health index 

has significant practical impact, especially with regards to safety.  

 Often practitioners are not only interested in point estimation of the remaining 

lifetime, but also interested in evaluating a confidence interval (CI) of the predicted 

remaining lifetime. Confidence intervals can be obtained by the truncated cdf of the 

estimated remaining lifetime  ̃    in equation (5.10). Figure 5.11 shows the 95% CIs of 

the remaining life prediction for testing unit #24 for each selected sensor as well as the 

composite health index. The bars represent the 95% CIs of the remaining life prediction, 

and the dots represent the point estimates. The dashed horizontal line represents the 

actual value of the remaining lifetime.  

   

 

Figure 5.11:  Confidence intervals of the remaining life prediction for the testing unit #24 

by using each selected sensor and the health index 

 

 It is clear that using the composite health index to predict the remaining lifetime 
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provides the narrowest CI. Due to the goodness of model fitting and low variance of the 

failure threshold, the denominator in the      operation of equation (5.9) by using the 

composite health index is smaller than the one by using any other sensor data, which 

results in the narrowest CI in the health index. Table 5.5 summarizes the mean of the 

widths of the 95% CIs of the remaining life predictions for all testing units when 

evaluated using each selected sensor versus the composite health index. According to the 

results of Table 5.5, using the composite health index for remaining life prediction can 

reduce the widths of the 95% CIs by 37.5% (i.e. (157.0-98.2)/157.0). Thus, the composite 

health index can provide a more precise estimation of the remaining lifetime.  

    

Table 5.5: Mean widths of the 95% CIs of the remaining life prediction in all testing units 

using all selected sensors and the health index 
 

Name T24 T50 P30 Nf Ps30 phi 

Width 195.8 168.6 178.7 195.2 160.03 157.0 

Name NRf BPR htBleed W31 W32 health index 

Width 190.0 183.7 212.3 202.8 190.4 98.2 
 

5.5 Discussion and Conclusion 

 This chapter develops a systematic approach which includes data selection, data 

processing, and data fusion steps that lead to an improved degradation-based prognostic 

model. The novelty of this methodology lies in the development of a data-level fusion 

technique that combines signals from multiple sensors. By identifying the two essential 

properties that degradation signals should have for successful prognostic applications (i.e. 

maximizing the monotonic property and minimizing the variance in the failure threshold), 

a composite health index can be developed to better characterize the degradation 

performance of each system. Guidelines for several key elements related to the problem 

formulation, algorithm robustness, weight coefficients setting, selection of data-fusion 

function, and other important aspects are discussed and illustrated in the case study. One 
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advantage of this methodology is that the remaining life prediction becomes more 

accurate as the unit approaches failure compared with using each individual sensor. This 

property could have a great impact on deciding when to schedule maintenance or to stop 

operation in practice. Another advantage of this methodology is that the widths of the CI 

can be significantly reduced by using the composite health index for remaining life 

prediction, which indicates the composite health index can be a more efficient tool for 

prognostics. 

 The methodology was tested and validated using the degradation sensor data of 

aircraft gas turbine engine that were generated by C-MAPSS (Saxena, Goebel, Simon, 

and Eklund 2008). The stochastic degradation modeling framework (Gebraeel 2006) was 

adopted to numerically evaluate the performance of the composite health index by 

computing and updating the RLD of each unit in real-time. However, the methodology 

developed in this chapter is not limited to this type of modeling framework. In other 

words, the composite health index can be considered as another sensor data, which can be 

directly treated as an input for other feature-level or decision level fusion methods. Since 

the input data become more informative, the accuracy of predictions is expected to be 

improved by using both the composite health index and the original sensor data.  

 This research establishes a new direction in data fusion by proposing an 

appropriate data-level fusion technique that is specifically beneficial for degradation 

modeling and prognostic applications. There are several important topics for future 

research that are related to this work. First, further studies can be done to investigate the 

performance when non-linear features are created and the kernel methods are used to map 

in-situ sensor data into higher dimensional space. Second, although this chapter focuses 

on the degradation dataset with a single operation condition and a single failure mode, 

extensions to the cases that have more than one failure mode or operational condition are 

worthy of further exploration. 

 



 111 

CHAPTER 6 

CONCLUSIONS AND FUTURE RESEARCH 

 

 

 

6.1 Summary of Original Contributions 

 This thesis contributes to the area of data fusion for effective employment of the 

underlying monitoring and data gathering capabilities for system modeling, performance 

assessment, diagnosis, and prognosis of the system behavior. The research has 

interdisciplinary nature, and developed new methodologies by integrating techniques in 

advanced statistics, engineering domain knowledge, and operation research. The 

proposed data fusion methodologies mainly focus on two topics: (1) sensor system design 

and (2) degradation modeling and prognostic analysis. The original contributions of this 

thesis include the following aspects:  

 An algorithm named as “Best Allocation Subsets by Intelligent Search” (BASIS) with 

optimality proof was developed to obtain the optimal fixed sensor allocation design 

in a Bayesian Network at minimum cost under different user specified detection 

requirements. In addition, a diagnosis ranking method was developed to identify the 

root cause based on a Bayesian Network. This BASIS algorithm is developed based 

on integrating the analysis of multivariate    control chart and causal structures 

when only partial observations are available. The proposed BASIS algorithm is 

conducted in a systematic and intelligent way, which does not require expensive 

Monte Carlo simulation studies when deriving the optimal sensor allocation solution. 

On the other hand, as an extension to the LASSO-based variable selection method 

(Wang and Jiang 2009), the diagnosis ranking algorithm is developed to find the root 

cause when only partial observations are available. The developed methodologies are 
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successfully demonstrated on a hot forming process and a cap alignment process. 

This study has revealed that a trade-off problem occurs when detection speed, fault 

diagnosis accuracy and cost saving are taken into consideration. 

 A novel approach to adaptively reallocate sensor resources in a Bayesian Network 

based on online observations was developed to enhance both monitoring and 

diagnosis capabilities. This fundamental investigation establishes a new research 

question that focuses on adaptively reallocating sensors for abnormality detection 

during online monitoring. This study proposes a max-min criterion, which enables 

manage sensor reallocation and process change detection in an integrated manner. 

The methodology is tested and validated based on a hot forming process and a cap 

alignment process, which can significantly improve the detection delay and diagnosis 

accuracy compared with the work in Liu and Shi (2012). 

 A systematic Scalable-Efficient-Robust Adaptive (SERA) sensor allocation strategy 

for online high-dimensional process monitoring was proposed with the purpose of 

minimizing detection delay in a general DSN. This methodology involves a novel 

monitoring scheme by using the sum of top-  local statistics for fast process change 

detection. The use of this framework has several advantages over other approaches, 

which include significant decreases in computational cost (i.e. the complexity is only 

linear in the number of variables), and extensive savings for physical sensors, data 

acquisition, transmission and processing time. Two properties of this algorithm are 

also investigated. The methodology is tested and validated on a hot forming process 

and a real solar flare process. Both studies have demonstrated the capabilities of the 

SERA algorithm to quickly detect and also localize the process changes. 

 A generic real-time sensor selection and data-level fusion algorithm was developed 

to construct a composite health index for better degradation modeling and 

prognostic analysis. This methodology is proposed to achieve two essential 

properties that if present in a degradation signal can enhance the effectiveness for 
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degradation modeling and prognostics. Guidelines for several key elements related to 

the problem formulation, algorithm robustness, weight coefficients setting, selection 

of data-fusion function, and other important aspects are discussed in the 

methodology. The case study, which is based on the degradation signals of aircraft 

gas turbine engines, demonstrates that the proposed method can provide a much 

better prognostic result compared to relying solely on the data from any individual 

sensor. 

 

6.2 Future Research 

 There are several important topics to be explored for further development of data 

fusion methodologies for sensor system design and prognostic analysis. Here are some 

examples: 

 Sensor System Design and Data Analytics: 

  Improvement in the searching speed of the BASIS algorithm: The computation 

complexity of the current BASIS algorithm in Chapter 2 is exponential in the 

number of variables. Thus, when the manufacturing workstation has hundreds or 

thousands of variables, directly implementing the BASIS algorithm can be 

inefficient. In this situation, we suggest to sequentially decompose a large Bayesian 

network into clustered sub-graphs if the path coefficient between these sub-graphs 

is insignificantly small. Then, BASIS algorithm can be implemented separately 

within each clustered subsystem. If the number of variables within each cluster is 

still large, then it needs further improvement in the searching algorithm to find the 

optimal solution. 

  Theoretical analysis and assumption relaxation in the SERA algorithm: The current 

SERA algorithm in Chapter 4 assumes each variable follows a standard normal 

distribution and only focuses on mean shift detection. Future studies can be done to 
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relax these assumptions. In addition, there are three parameters,     ,  , and   in 

the SERA algorithm, which are assumed to be all constant in the current 

formulation. Further studies can be done to investigate the adaptive value of these 

parameters based on online measurements and detection requirements to further 

improve the performance. Furthermore, the theoretical basis for the threshold 

selection,   in the SERA algorithm is a challenging, but important topic to study. 

 Prognostic Analytics from Multi-Stream Condition Monitoring: 

  Further investigation of the non-linear features and extension to the cases with 

more than one failure mode or operational condition: The current data fusion 

function is selected and formulated as linear in Chapter 5. However, the linearity 

assumption may not be suitable in some applications, in which case non-linear 

functions may be used when developing the health index. Therefore, further studies 

can be done to investigate the performance when non-linear features are created and 

the kernel methods are used to map in-situ sensor data into higher dimensional 

space. Second, the proposed methodology assumes that the degradation occurs in a 

cumulative manner under a single operation condition, which results from a single 

failure mode. Extensions to the cases that have more than one failure mode or 

operational condition are worthy of further exploration. 
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APPENDIX A 

PROOFS AND ADDITIONAL INFORMATION 

 

 

 

A.1 Proof of Proposition 2.1 

 For any  ̃    , there exists index  , so that  ̃       , where      . If   is a 

feasible solution from the BASIS algorithm, then 

               
 {              }

               ̃          based on definition 

2.2.      can be rewritten as      
        

 {              }
              , where 

        is the matrix     with only rows indexed by  .  

 Thus, it remains to prove that        
 {              }

          is a positive 

semidefinite (P.S.D) matrix, so that      ̃  
 {              }

       ̃        

 ̃         . Since   is a triangular matrix with positive diagonal elements,   and     

are positive definite (P.D.) matrices. Moreover,    is also P.D., since it is a diagonal 

covariance matrix for  . Therefore, {              }
   is a symmetric P.D. matrix. 

Furthermore, {              }
   can be expressed by Cholesky decomposition as 

{              }
      , where   is a lower triangular matrix with strictly positive 

diagonal entries. Thus,                         is a symmetric P.S.D matrix. As a 

result, any  ̃     is detectable if   is a feasible solution obtained from the BASIS 

algorithm. 

 

A.2 Proof of Proposition 2.2 

 Denote the row space of a matrix by        and the RREF of         by 

     
  
    

. Noting that      
  
    

 is unique and    (     
  
    

)              . 
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Therefore, if       
 𝑖       

  
 (where     and            ), and      

  
    

   

     
  
    

    , where   is a constant vector, then   ̃    
 𝑖   ̃    

  
, such that 

        ̃          ̃   . In proposition 2.2, if      can be expressed as      

      for                , then       
 𝑖       

  
, where       

         
    and 

            𝑇  with the  th element equal to one, such that      
  
    

   

     
  
    

  . Thus, from definition 2.5,      is a minimal diagnosable class. 

 

A.3 Detailed Steps of estimating    𝑠     

 This appendix illustrates the details of estimating         , which include the 

following steps: (i) Generate sufficient samples                 . (ii) Calculate the 

statistics    for each sample  , which is denoted as   
 , if      

    
    

      

  
 (       ). (iii) Assume that we collect      points, where the expected value of      

equals to        . (iv) Estimate the empirical distribution function of          by 

using 
 

    
∑     

     
      , where      is an indicator function. 

 

A.4 Details of the Simulation Steps for Tables 3.3, 3.4, and 3.5 

 This appendix elaborates the details of the simulation steps when comparing the 

performance between the adaptive and the fixed strategy. 

1. Given the number of available sensors   and the value of   , the following substeps 

are performed for each single mean shift fault scenario           : 

(i) A dataset of                   
𝑇 with           samples is generated, 

in which a mean shift   is introduced at the first sample of   . 
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(ii) Implement the WISD, where sensors are initially deployed on the variables that 

provide the smallest       value based on Table 3.1. For each incoming 

sample, calculate the testing statistics      
   

     and plot it on a chi-

square control chart with upper control limit   
           and lower control 

limit 0. Conduct the adaptive sensor allocation strategy in Figure 3.2. In this 

case study,   is chosen as 0.01. 

(iii) Index of the first out-of-control sample on the control chart is recorded as    . 

In addition, conduct the fault diagnosis step in Figure 3.2. Set    equal to one if 

the diagnosis result is correct, and set     equal to one if the diagnosis result is 

uniquely correct based on the definitions of 3.2 and 3.3, respectively. In 

addition, record the cardinality of the active adding set. Furthermore, record 

the number of times that sensor locations have been changed by implementing 

the adaptive strategy and denote as    . 

(iv) Repeat steps (i)-(iii) for            times. The average of    ,   ̅̅̅̅
 ; the 

average of    divided by the average of the cardinality of the active adding set, 

 ̅ ; the average of    ,   ̅̅ ̅̅
 ; and the average of    ,   ̅̅̅̅

 , are computed and 

recorded. 

2. Calculate the maximum out-of-control ARL,               ̅̅̅̅
   and the average 

out-of-control ARL,   ̿̿̿̿  ∑   ̅̅̅̅
     . Similarly, calculate the minimum correct 

diagnosis rate,             ̅  ; the minimum uniquely correct diagnosis rate, 

              ̅̅ ̅̅
  ; the average of correct diagnosis rate,  ̿   ∑  ̅    ; and the 

average of uniquely correct diagnosis rate,   ̿̿ ̿̿   ∑   ̅̅ ̅̅
    . Furthermore, calculate 

the average number of times that sensor locations have been changed by 

implementing the adaptive strategy,   ̿̿̿̿  ∑   ̅̅̅̅
    . These metrics      ,   ̿̿̿̿ , 

    ,      ,  ̿,   ̿̿ ̿̿   and   ̿̿̿̿  will be used to thoroughly compare the performance of 

the adaptive and the fixed strategy.  
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3. Repeat steps 1 and 2 under different combinations of   values (  {         

       }) and    values (   {                   }), and present the results in 

Tables 3.3, 3.4 and 3.5. 

 

A.5 Proof of Property 4.1 

 This appendix proves the first property of the SERA algorithm, which is 

equivalent to show the following statement: Suppose sensor resources will never be 

redistributed to the set of variables   after time   , then   must be an empty set,  . 

Denote     {       }. To prove the first property of the SERA algorithm, let 

us first consider the following lemma: 

 Lemma 1:           , for      ,        , and     . 

We can prove lemma 1 via contradiction. Assume      ,        , and     , 

such that           . If  
    , then the sensor on variable    will be redistributed to 

other variables in     at time    . Since the incremental part of the local statistics for 

both variables   and   is always  , sensor resources cannot be redistributed back to 

variable    without first deployed on variable  . In this way,     , which contradicts to 

the assumption. On the other hand, if      , then it follows the same logic that sensor 

resources cannot be redistributed to variable    without first deployed on variable  , 

which also contradicts to the assumption. Therefore, we have proved lemma 1 and now 

we will use it to prove the first property of the SERA algorithm. 

 Since sensor resources will never be redistributed to the variables in   after time 

  ,         must have sensor deployed with infinite number of times as    . Now, 

let us first prove the case when    <  . Without loss of generality, we assume 

 (     )       . The incremental part of the local statistics for any variable without 

sensor deployed is always  , while the incremental part for any variable    with sensor 
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deployed is either           
  𝑖 

 

 
 or            

  𝑖 
 

 
 or  . Since only one term (i.e. 

either           
  𝑖 

 

 
 or            

  𝑖 
 

 
) can be positive at any moment and       is 

an i.i.d. normal random variable, there must be a series of       such that either 

∑ (          
  𝑖 

 

 
)     

    or ∑ (           
  𝑖 

 

 
)     

   . Since    <  , 

 (∑ (          
  𝑖 

 

 
)     

   )   (∑ (            
  𝑖 

 

 
)     

   )  

       (   (
 √ 

  𝑖 
 

√   𝑖 

 
    √ ))         (   (

 √ 

  𝑖 
 

√   𝑖 

 
 

   √ ))   . Thus, there is no such series of      . Second, let us consider the case when 

     . Define                    
  𝑖 

 

 
   and       ∑      

 
   . Then,       is 

an i.i.d. normal random variable with mean    and variance     
 . Consequently, 

{         } refers to the oscillating random walk process. Denote       {        

 }. Thus,  
  𝑠 
→    as     (Gut 1988). In other words, there must exist a time  , such 

that           . Therefore, it is impossible that sensor resources are always reallocated 

among the variables that only belong to    . In other words,   must be an empty set. In 

this way, we have finished the proof for property 4.1. 

 

A.6 Proof of Property 4.2 

 This appendix proves the second property of the SERA algorithm. Considering 

the variable  , where      and    , then            for       . Without loss of 

generality, let  (    )      . Define             
  𝑖 

 
 

 

  𝑖 
 and      

∑     
 
   . Then,      is an i.i.d. normal random variable with mean     

  𝑖 

 
 

 

  𝑖 
 and 

variance 1. Consequently, {        }  refers to the Guassian random walk process, 
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where       . Denote       {        }. We are interested to show that     

   is nonzero if the stopping criteria    . Since                      , it 

is equivalent to show that there is a nonzero probability that once a sensor is deployed on 

the variable     at time  , it will never be reallocated to other variables (i.e.        

        for       ,     ). According to (Chang and Peres 1997; Janssen and Van 

Leeuwaarden 2007), the probability that the minimum of the Gaussian random walk is 

zero satisfies: 

       √       {
  

√  
∑

 (
 

 
  )

        
( 

  
 

 
)
 

 
   } for  <   <  √ , 

where       
  𝑖 

 
 

 

  𝑖 
 and      is the Riemann zeta function. It is worth 

mentioning that        is an increasing function as    gets larger (i.e. even when 

    √ ), which means the random walk is less likely to go back to 0 as    increases. 

Now, we use property 4.1 to prove property 4.2. According to property 4.1, we have 

already shown that sensor resources will not stick to the variables in    , and thus they 

must be redistributed to the variables in   at some time. Since once the sensor is 

deployed on the variable in  , there is always a nonzero probability        such that 

the sensor will never be redistributed to other variables. Therefore, as    , sensors 

will eventually stick to the variables that belong to  . It worth mentioning when the 

number of sensors          , all variables in   will eventually have sensor deployed 

and the remaining sensors are redistributed among the variables in    . 

 

A.7 Details of the Simulation Steps for Table 4.1 

 This appendix elaborates the details of the simulation steps when comparing the 

performance between the SERA algorithm and the CBA algorithm under different 

combinations of   (              ),   (             ), and   (       ) values for 

single mean shift case. 
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1. Given each value of the number of available sensors  , the mean shift magnitude  , 

and the incremental parameter  , the following substeps are performed for each 

single mean shift fault scenario           : 

(i) A dataset of   {              } with           samples is generated, in 

which a mean shift   is introduced at the first sample of   . 

(ii) Implement the WISD. For each incoming sample, calculate the local statistics 

and update sensor layout based on the SERA algorithm in Figure 4.1.  

(iii) Index of the first out-of-control sample is recorded as    . In addition, set     

equal to one if the variable associated with the largest local statistic is the root 

cause variable,   .  

(iv) Repeat steps (1)-(3) for            times. The average of    ,   ̅̅̅̅
  and the 

average of    ,   ̅̅ ̅̅
  are computed and recorded. 

2. Calculate the maximum out-of-control ARL,               ̅̅̅̅
   and the average 

out-of-control ARL,   ̿̿̿̿  ∑   ̅̅̅̅
     . Similarly, calculate the minimum uniquely 

correct diagnosis rate,               ̅̅ ̅̅
   and the average of uniquely correct 

diagnosis rate,   ̿̿ ̿̿   ∑   ̅̅ ̅̅
    .  

3. Repeat steps 1 and 2 for different combinations of   (              ),   (  

           ), and   (       ) values, and present the results in Table 4.1. 

 

A.8 Details of Finding the Threshold Value   

 This appendix describes the detailed steps to estimate the threshold value   given 

any prescribed in-control ARL,     . Specially, we conduct the following evaluation 

processes: 

1. Set      and      a small and a large values as the initial upper and the lower 

bounds of  , respectively. Let   
  𝑖      

 
. 
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2. Generate a bootstrap dataset with           samples by randomly drawing the 

data with replacement from the first 100 frames.  

3. Implement the RISD approach. Record the index of the first out-of-control sample, 

  , based on the proposed SERA algorithm.  

4. Repeat steps 2-3 for            times (i.e. producing   bootstrap datasets). 

Calculate the average of   ,   ̅̅̅̅ .  

5. If the   ̅̅̅̅  is larger than     , let       ; Otherwise, let       . Then update 

  
  𝑖      

 
. 

6. Repeat steps 2-5 until there is only small difference between   ̅̅̅̅  and     . 

 

A.9 Proof of the expression of the variance in the failure threshold of the composite 

health index in equation (5.1) 

 This appendix shows that the variance in the failure threshold of the composite 

health index can be expressed as the quadratic term:        . The unbiased sample 

variance can be estimated by:
           (

    

 
)
 

   
 

       
         

 

   
     (

  
   

 

   
)   

       . 

 

A.10 Proof of   is positive semidefinite (P.S.D) in equation (5.2) 

 This appendix proves that   is positive semidefinite (P.S.D) matrix. First, it is 

straightforward to show that    
     

   
 is a symmetric P.S.D matrix. Then,   can be 

decomposed as:       by Cholesky decomposition, where   is a lower triangular 

matrix. Next,   can be written as:                      . Thus,   is P.S.D. 
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A.11 Proof of the posterior distribution of      follows a multivariate normal 

distribution 

 This appendix derives the posterior distribution of      still follows a multivariate 

normal distribution with mean   
    (

  
   

  
     

    )
  

 
  

       

  
     

      
    and 

variance   
    (

  
   

  
     

    )
  

. The multivariate normal distribution can be 

expressed as  (    )  
 

          
       

 

 
        

      
            

  
.  Thus, 

 (    |      )   (      |    ) (    )

  
 

 

   
 (             )

 
(             )

  
 
 
(       

 )
 
(  
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(       
 )

  
    

 (
  

   

  
  (  

 )
  

)      (
      
   

  
  (  

 )
 
(  

 )
  

)    
       

(5.12) 

It is known that if  (      |    )  follows normal distribution and  (    )  follows 

multivariate normal distribution, the posterior will also follow multivariate normal 

distributions. As a result,                  
      

    and 

 (    |      )    
 

 
        

        
              

    
. 

 Comparing (5.12) with         
        

              
         

    
           

    
        

              
        

        
   

, we get the equations    
       (

  
   

  
  

(  
 )

  
)  and    

        
       (

      
   

  
     

   (  
 )

  
) . This finishes the proof that 

                 
      

    , where   
    (

  
   

  
  (  

 )
  

)
  

and   
    (

  
   

  
  

(  
 )

  
)
  

 
  

       

  
  (  

 )
  

  
  . 
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