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Overview

• What are wavelets?
– Wavelets are mathematical functions that look like waves (small waves - ondelette)
– They have varying frequency, limited duration and zero mean

• What do they do?
– Wavelets analyze  signals at different level of resolution
– Provide an adaptive time-frequency representation

• Why are wavelets needed?
– Fourier analysis is best for stationary signals
– Most real signals are non-stationary  

• Fields of application are numerous
– Electrical Engineering, Civil Engineering, Mechanical Engineering, Computer Science, 

Communications, Physics, Geology, Astronomy, Music, …
– Signal Processing, Image Analysis, Medical Imaging, Structural Health Monitoring, …
– Denoising, Compression, Sparse Representation, System Identification, Clustering and 

Classification,  Nonstationary analysis, Transient Detection, …
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Introduction

• Stationarity
A signal can be considered stationary if its characteristics are not changing with 
time. Classical analysis techniques assume the signal to be stationary and last 
from −∞ to +∞
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𝑓𝑓 𝑡𝑡 = sin(2𝜋𝜋 10 𝑡𝑡)

𝑓𝑓 𝑡𝑡 = sin 2𝜋𝜋 10 𝑡𝑡 +
sin 2𝜋𝜋 50 𝑡𝑡 + sin 2𝜋𝜋 100 𝑡𝑡

How do we best represent a stationary signal ?
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Introduction

• Fourier Domain

𝑋𝑋 𝜔𝜔 = ℑ 𝑥𝑥 𝑡𝑡 = �
−∞

+∞
𝑥𝑥 𝑡𝑡 𝑒𝑒−𝑖𝑖𝜔𝜔𝑡𝑡𝑑𝑑𝑡𝑡

Jean-Baptiste Joseph Fourier (1768 – 1830)
https://en.wikipedia.org/wiki/Joseph_Fourier

In 1807 Fourier claims that any periodic function can be 
represented as a series of harmonically related sinusoids

𝑥𝑥 𝑡𝑡 = ℑ−1 𝑋𝑋 𝜔𝜔 = 2𝜋𝜋 −1 �
−∞

+∞
𝑋𝑋 𝜔𝜔 𝑒𝑒𝑖𝑖𝜔𝜔𝑡𝑡𝑑𝑑𝜔𝜔
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Power estimate for each frequency
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Introduction

• Real Signals
Most real signals can be considered non-stationary, and have complex time-
frequency characteristics
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Introduction
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Introduction

• Shortcoming of Fourier Analysis
– The signal is represented globally
– The time information is lost: which frequency appears when and where? 

(localization problem)
– Most real signals have a frequency contents that changes with time
– To properly describe a non-stationary evolving signal we need time and 

frequency localization

• Windowed Fourier Transform
– Partially stationary condition can be obtained dividing the signals into short 

segments in which the signal can be assumed quasi stationary
– In 1946 Dennis Gabor (Nobel in physics) decomposed a signal over a dictionary 

of elementary waveforms, called time-frequency atoms 
– A windowed Fourier Transform can be thought using a windowed Fourier 

dictionary, obtained by translating a time window 𝑃𝑃(𝑡𝑡) in time and frequency
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Introduction

• How to select the proper window size?
– Short windows yields poor frequency resolution
– Long window increase resolution but compromise assumption of stationarity

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡,𝜔𝜔 = �
−∞

+∞
𝑥𝑥 𝑡𝑡 ℎ 𝑡𝑡 − 𝜏𝜏 𝑒𝑒−𝑖𝑖𝜔𝜔𝜏𝜏𝑑𝑑𝜏𝜏 = 𝑥𝑥 𝑡𝑡 ℎ 𝑡𝑡, 𝑓𝑓

𝑆𝑆𝑆𝑆𝑒𝑒𝑆𝑆𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡,𝜔𝜔 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡,𝜔𝜔 2

Dennis Gabor (1900 – 1979)
https://en.wikipedia.org/wiki/Dennis_Gabor

• The Short Time Fourier Transform
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Introduction
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• A windowed Fourier Transform decomposed signal over a basis with constant 
time-frequency resolution

• Signal with localized features in time/frequency are not represented well
• Not adaptive to the signal

• Solution Use atoms with different time-frequency resolution
=

WAVELETS
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Wavelets

• What is a wavelet?
– A wavelet is a function 𝜓𝜓 𝑡𝑡 ∈ 𝐋𝐋2 ℝ with 

– It has unit norm 𝜓𝜓 𝑡𝑡 = 1
– Dilations by 𝑠𝑠 and translation by 𝑢𝑢 generates a dictionary of time-frequency 

atoms

– The wavelet transform decomposes a signal over dilated and translated 
wavelets. For a time 𝑢𝑢 and scale 𝑠𝑠, the continuous wavelet transform is 
defined as

�
−∞

+∞
𝜓𝜓 𝑡𝑡 𝑑𝑑𝑡𝑡 = 0

𝜓𝜓𝑢𝑢,𝑠𝑠 𝑡𝑡 =
1
𝑠𝑠
𝜓𝜓

𝑡𝑡 − 𝑢𝑢
𝑠𝑠 𝑢𝑢,𝑠𝑠𝜖𝜖ℝ

𝑊𝑊𝑓𝑓 𝑢𝑢, 𝑠𝑠 = 𝑓𝑓 𝑡𝑡 ,𝜓𝜓𝑢𝑢,𝑠𝑠 𝑡𝑡 = �
−∞

+∞
𝑓𝑓 𝑡𝑡

1
𝑠𝑠
𝜓𝜓∗ 𝑡𝑡 − 𝑢𝑢

𝑠𝑠 𝑑𝑑𝑡𝑡
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Wavelets

• Connection with frequency – wavelet and linear filtering
– We can think of 𝑊𝑊𝑓𝑓 𝑢𝑢, 𝑠𝑠 as a convolution

with 

– Now taking the Fourier Transform of �𝜓𝜓𝑠𝑠 𝑡𝑡 we have

and 

– Therefore, �𝜓𝜓 is the transfer function of a bandpass filter, having zero energy 
for 𝜔𝜔 = 0

𝑊𝑊𝑓𝑓 𝑢𝑢, 𝑠𝑠 = 𝑓𝑓 𝑡𝑡 ,𝜓𝜓𝑢𝑢,𝑠𝑠 𝑡𝑡 = 𝑓𝑓 𝑡𝑡 ⊛ �𝜓𝜓𝑠𝑠 𝑢𝑢

�𝜓𝜓𝑠𝑠 𝑡𝑡 =
1
𝑠𝑠
𝜓𝜓∗ −

𝑡𝑡
𝑠𝑠

ℑ �𝜓𝜓𝑠𝑠 𝑡𝑡 = 𝑠𝑠 �𝜓𝜓∗ 𝑠𝑠𝜔𝜔

�𝜓𝜓 𝜔𝜔 = 0 = �
−∞

+∞
𝜓𝜓 𝑡𝑡 𝑑𝑑𝑡𝑡 = 0

Each coefficient of the wavelet transform is the result of a filtering 
operation between the function and the bandpass filter defined by the 

wavelet atom
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Wavelets

• Time-Frequency Resolution
• A wavelet atom has time support centered at 𝑢𝑢

and proportional to 𝑠𝑠
• The Heisenberg box of a wavelet atom is a 

rectangle centered at 𝑢𝑢, ⁄𝜂𝜂 𝑠𝑠

• The area of the Heisenberg box remain the 
same, but its width and height changes

• The wavelet transform of a function 𝑓𝑓(𝑡𝑡) at any 
scale 𝑠𝑠 and position 𝑢𝑢 is the projection of 𝑓𝑓 on 
the corresponding wavelet atom

This representation is highly redundant and 
not optimal for fast implementation
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Wavelets

Example: the word “CIAO”
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Wavelets

• Discretization and Orthogonality
– It is possible to construct 𝜓𝜓(𝑡𝑡) such that the translation and dilation form an 

orthonormal basis for 𝐋𝐋 2 ℝ
– Discretization using dyadic tree:    𝑠𝑠 = 2𝑗𝑗 ;  𝑢𝑢 = 2𝑗𝑗𝑘𝑘 ∀𝑗𝑗, 𝑘𝑘 ∈ ℤ2

– Wavelet expansion in the discrete domain

– 𝑤𝑤𝑗𝑗,𝑘𝑘 𝑡𝑡 are the discrete wavelet transform coefficients

– Computation of 𝑤𝑤𝑗𝑗,𝑘𝑘 𝑡𝑡 can be done efficiently, 𝑂𝑂(𝑁𝑁)

𝜓𝜓𝑗𝑗,𝑘𝑘 𝑡𝑡 =
1
2𝑗𝑗
𝜓𝜓

𝑡𝑡 − 2𝑗𝑗𝑘𝑘
2𝑗𝑗 𝑗𝑗,𝑘𝑘𝜖𝜖ℤ2

𝑓𝑓 𝑡𝑡 = �
𝑗𝑗=−∞

+∞

�
𝑘𝑘=−∞

+∞

𝑓𝑓 𝑡𝑡 ,𝜓𝜓𝑗𝑗,𝑘𝑘 𝑡𝑡 � 𝜓𝜓𝑗𝑗,𝑘𝑘 𝑡𝑡 = �
𝑗𝑗=−∞

+∞

�
𝑘𝑘=−∞

+∞

𝑤𝑤𝑗𝑗,𝑘𝑘 𝑡𝑡 � 𝜓𝜓𝑗𝑗,𝑘𝑘 𝑡𝑡
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• Multiresolution Approximation
– Partial sums defined as 

can be interpreted as the difference between two approximation of 𝑓𝑓(𝑡𝑡) at 
resolution 2−𝑗𝑗 and 2−𝑗𝑗−1

– The subspace spanned by 𝜓𝜓𝑗𝑗,𝑘𝑘(𝑡𝑡) at resolution 2𝑗𝑗 is indicated with 𝐕𝐕𝑗𝑗
– The signal belong to 𝐕𝐕0
– The subspaces 𝐕𝐕𝑗𝑗 are nested:  ∀ j ∈ ℤ 𝐕𝐕𝑗𝑗⊂ 𝐕𝐕𝑗𝑗−1 ⊂ 𝐋𝐋2 ℝ
– 𝐕𝐕𝑗𝑗 is always part of 𝐋𝐋 2 ℝ : 𝐕𝐕𝑗𝑗 ⊂ 𝐋𝐋2 ℝ
– The orthogonal projection of 𝑓𝑓(𝑡𝑡) in 𝐕𝐕𝑗𝑗 is 𝑓𝑓𝑗𝑗 𝑡𝑡 = 𝑃𝑃𝐕𝐕𝑗𝑗𝑓𝑓 ∈ 𝐕𝐕𝑗𝑗

– 𝑃𝑃𝐕𝐕𝑗𝑗𝑓𝑓 is such that 𝑓𝑓 − 𝑃𝑃𝐕𝐕𝑗𝑗𝑓𝑓 is minimized

Wavelets

𝑑𝑑𝑗𝑗(𝑡𝑡) = �
𝑘𝑘=−∞

+∞

��𝑓𝑓 𝑡𝑡 ,𝜓𝜓𝑗𝑗,𝑘𝑘(𝑡𝑡 � 𝜓𝜓𝑗𝑗,𝑘𝑘(𝑡𝑡
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Wavelets

• Multiresolution Approximation 
– Shift Invariant: 𝑓𝑓 𝑡𝑡 ∈ 𝐕𝐕𝑗𝑗 ⟺ 𝑓𝑓 𝑡𝑡 − 2𝑗𝑗𝑘𝑘 ∈ 𝐕𝐕𝑗𝑗 ∀ 𝑗𝑗, 𝑘𝑘 ∈ ℤ2

– Causality: 𝐕𝐕𝑗𝑗 ⊂ 𝐕𝐕𝑗𝑗−1 ⊂ ⋯ ⊂ 𝐕𝐕1 ⊂ 𝐕𝐕0 ⊂ 𝐋𝐋2 ℝ , ∀ 𝑗𝑗 ∈ ℤ
– Dilation: 𝑓𝑓 2𝑡𝑡 ∈ 𝐕𝐕𝑗𝑗−1⟺ 𝑓𝑓 𝑡𝑡 ∈ 𝐕𝐕𝑗𝑗 , ∀ 𝑗𝑗 ∈ ℤ
– Resolution: ⋂j∈ℤ𝐕𝐕𝑗𝑗 = 0 and   ⋃j∈ℤ𝐕𝐕𝑗𝑗 = 𝐋𝐋2 ℝ . 

– Scaling Function:
∃𝜑𝜑 𝑡𝑡 ∈ 𝐋𝐋2 ℝ such that s.t. the family 𝜑𝜑𝑗𝑗,𝑘𝑘 𝑡𝑡

𝑘𝑘∈ℤ
= 2−𝑗𝑗/2 𝜑𝜑 𝑡𝑡−𝑘𝑘

2𝑗𝑗 𝑘𝑘∈ℤ
is 

an orthonormal basis for 𝐕𝐕𝑗𝑗 .

– Complementary subspace of 𝐕𝐕𝑗𝑗
𝐖𝐖𝑗𝑗 = 𝐕𝐕𝑗𝑗−1 − 𝐕𝐕𝑗𝑗
𝐕𝐕𝑗𝑗−1 = 𝐕𝐕𝑗𝑗 ⊕𝐖𝐖𝑗𝑗

𝑃𝑃𝐕𝐕𝑗𝑗−1𝑓𝑓 = 𝑃𝑃𝐕𝐕𝑗𝑗𝑓𝑓 + 𝑃𝑃𝐖𝐖𝑗𝑗𝑓𝑓

Fine 
approximation

Coarser 
approximation

Detail
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Wavelets

• Approximations
– 𝑃𝑃𝐕𝐕𝑗𝑗𝑓𝑓 can be expressed as

𝑃𝑃𝐕𝐕𝑗𝑗𝑓𝑓 = �
𝑘𝑘∈ ℤ

𝑃𝑃𝑗𝑗 𝑡𝑡 � 𝜑𝜑𝑗𝑗,𝑘𝑘 𝑡𝑡

where 𝑃𝑃𝑗𝑗 𝑡𝑡 = �𝑓𝑓 𝑡𝑡 ,𝜑𝜑𝑗𝑗,𝑘𝑘(𝑡𝑡

• Details 
– 𝑃𝑃𝐖𝐖𝑗𝑗𝑓𝑓 can be expressed as

𝑃𝑃𝐖𝐖𝑗𝑗𝑓𝑓 = �
𝑘𝑘∈ ℤ

𝑑𝑑𝑗𝑗 𝑡𝑡 � 𝜓𝜓𝑗𝑗,𝑘𝑘 𝑡𝑡

where 𝑑𝑑𝑗𝑗 𝑡𝑡 = �𝑓𝑓 𝑡𝑡 ,𝜓𝜓𝑗𝑗,𝑘𝑘(𝑡𝑡

𝐋𝐋2 ℝ ⊃ 𝐕𝐕0= 𝐕𝐕𝐿𝐿⨁𝐖𝐖𝐿𝐿⨁𝐖𝐖𝐿𝐿−1⨁𝐖𝐖𝐿𝐿−2⨁... 𝐖𝐖1
𝐕𝐕0

𝐕𝐕1 𝑾𝑾1

𝐕𝐕2 𝑾𝑾2

𝐕𝐕3 𝑾𝑾3

𝐕𝐕𝐿𝐿 𝑾𝑾𝐿𝐿

signal

…

𝑓𝑓 𝑡𝑡 = �
𝑘𝑘∈ ℤ

𝑃𝑃𝐿𝐿 𝑡𝑡 𝜑𝜑𝐿𝐿,𝑘𝑘 𝑡𝑡 + �
𝑗𝑗<𝐿𝐿

�
𝑘𝑘∈ ℤ

𝑑𝑑𝑗𝑗 𝑡𝑡 � 𝜓𝜓𝑗𝑗,𝑘𝑘 𝑡𝑡

L depends on the signals and sets the coarsest scale
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Wavelets

• Fast Orthogonal Wavelet Transform
– There is a connection between wavelets and filter banks

𝑃𝑃𝑗𝑗+1 𝑘𝑘 = �
𝑛𝑛∈ℤ

ℎ 𝑛𝑛 − 2𝑘𝑘 𝑃𝑃𝑗𝑗 𝑛𝑛 = 𝑃𝑃𝑗𝑗 𝑘𝑘 ∗ ℎ −2𝑘𝑘 = 𝑃𝑃𝑗𝑗 𝑘𝑘 ∗ ℎ 2𝑘𝑘 = 𝐻𝐻 𝑃𝑃𝑗𝑗

𝑑𝑑𝑗𝑗+1 𝑘𝑘 = �
𝑛𝑛∈ℤ

𝑃𝑃 𝑛𝑛 − 2𝑘𝑘 𝑑𝑑𝑗𝑗 𝑛𝑛 = 𝑑𝑑𝑗𝑗 𝑘𝑘 ∗ 𝑃𝑃 −2𝑘𝑘 = 𝑑𝑑𝑗𝑗 𝑘𝑘 ∗ 𝑃𝑃 2𝑘𝑘 = 𝐺𝐺 𝑃𝑃𝑗𝑗

𝑃𝑃𝑗𝑗 𝑘𝑘 = �
𝑛𝑛∈ℤ

ℎ 𝑘𝑘 − 2𝑛𝑛 𝑃𝑃𝑗𝑗+1 𝑛𝑛 + �
𝑛𝑛∈ℤ

𝑃𝑃 𝑘𝑘 − 2𝑛𝑛 𝑑𝑑𝑗𝑗+1 𝑛𝑛

Reconstruction

𝐻𝐻 and 𝐺𝐺 are a pair of conjugated 
mirror filters

𝑃𝑃 𝑘𝑘 = −1 𝑘𝑘ℎ(𝑁𝑁 − 𝑘𝑘)
19



Wavelets

H

G

↓2

H
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Analysis

Synthesis

𝑃𝑃2(𝑡𝑡)

𝑑𝑑2(𝑡𝑡)
𝑑𝑑1(𝑡𝑡)

𝑓𝑓(𝑡𝑡)
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Wavelets

• Wavelet Packets
– Wavelet packets are an extension of traditional wavelets
– The details are also decomposed using H and G
– They provide a complete tiling of the time-frequency plane
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Example 1D
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Example 2D

Lena image decomposition
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Wavelets

• 1st wavelet: HAAR
– In 1910 Haar constructed a piecewise constant function: 

Alfréd Haar (1885 – 1933)
http://gtwavelet.bme.gat
ech.edu/images/haar.html

𝜓𝜓 𝑡𝑡 = �
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0 𝑃𝑃𝑡𝑡ℎ𝑒𝑒𝑃𝑃𝑤𝑤𝑃𝑃𝑠𝑠𝑒𝑒

1

-1

½ 1 𝑡𝑡

𝜓𝜓 𝑡𝑡

• Meyer wavelet
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transform.
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Wavelets

• Daubechies Wavelet Family

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-1.5

-1

-0.5

0

0.5

1

1.5
psi

 

 
db1

0 0.5 1 1.5 2 2.5 3
-1.5

-1

-0.5

0

0.5

1

1.5

2
psi

 

 
db2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1.5

-1

-0.5

0

0.5

1

1.5

2
psi

 

 
db3

0 1 2 3 4 5 6 7
-1

-0.5

0

0.5

1

1.5
psi

 

 
db4

p=1 p=2 p=3 p=4

Haar

Support = 
2p-1 = 1 Support = 3 Support = 5 Support = 7

0 1 2 3 4 5 6 7
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
phi

 

 
db4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
phi

 

 
db3

0 0.5 1 1.5 2 2.5 3
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
phi

 

 
db2

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
phi

 

 
db1

Wavelet

Scaling 
function

Daubechies wavelets have finite support of 
minimum size for any given order. 
Daubechies’s are orthogonal wavelets
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Applications

• Denoising
𝑁𝑁𝑃𝑃𝑃𝑃𝑠𝑠𝑒𝑒 𝑃𝑃𝑃𝑃𝑑𝑑𝑒𝑒𝑚𝑚
𝑓𝑓 𝑡𝑡 = 𝑃𝑃 𝑡𝑡 ⨁w(t)

Denoising
Estimate 𝑓𝑓 𝑡𝑡 𝑠𝑠𝑢𝑢𝑆𝑆ℎ 𝑡𝑡ℎ𝑃𝑃𝑡𝑡 𝑓𝑓 𝑡𝑡 − 𝑃𝑃 𝑡𝑡 is minimized

𝑓𝑓 𝑡𝑡 = �
𝑗𝑗=−∞

+∞

�
𝑓𝑓,𝜓𝜓𝑗𝑗,𝑘𝑘 >𝑇𝑇𝑇𝑇𝑇𝑇

𝑓𝑓 𝑡𝑡 ,𝜓𝜓𝑗𝑗,𝑘𝑘 𝑡𝑡 � 𝜓𝜓𝑗𝑗,𝑘𝑘 𝑡𝑡

1D Signal Denoising 

𝑆𝑆𝐻𝐻𝑇𝑇 = 2log(𝑁𝑁)𝜎𝜎
Global Threshold

Good Threshold
𝑆𝑆𝐻𝐻𝑇𝑇 ≈ 3𝜎𝜎
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Applications

2D Signal Denoising 

Residuals
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Applications

• Compression
Retain only the coefficients that carry information in the transform domain 

𝑓𝑓(𝑡𝑡) 𝑊𝑊 𝑓𝑓(𝑡𝑡) Coding 𝑊𝑊−1 𝑓𝑓(𝑡𝑡) 𝑓𝑓(𝑡𝑡)
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Application - Neuroimaging

• Clustering of functional MRI data

Voxels Structure
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• Neurological time series are characterized by long range autocorrelation functions and often exhibit 
fractal properties in the time domain

• Wavelets represent a natural basis for the analysis tool for 1/𝑓𝑓 – type processes
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Application - Neuroimaging
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Application - Neuroimaging
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Application – Structural Health Monitoring

Structural damage

• Excessive stress
• Traffic and natural induced vibration
• Time factor: age of the structure
• Cracks generate interfaces that 

originate reflection boundaries in 
the structure
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Application – Structural Health Monitoring

Structural damage

• Excessive stress
• Traffic and natural induced vibration
• Time factor: age of the structure
• Cracks generate interfaces that 

originate reflection boundaries in 
the structure
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Application – Structural Health Monitoring

...

Σ

FIR 
filter

FIR 
filter

FIR 
filter

( )0f t τ−

( )1f t τ−

( )1Nf t τ −−

( )y t

δ0

δ1

δΝ−1

1

2

N-1

Constrained 
Adaptive 
Algorithm
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Conclusion - a little bit of history…

• 1807- J.-B. Fourier
“any periodic function can be represented as a series of harmonically related sinusoids”

• 1909 – Alfred Haar
First simplest orthogonal wavelet

• 1946 – Dennis Gabor
Windowed Fourier Transform and time-frequency atoms

• 1970s – Jean Morlet’s problem
Application of variable length window to variable signals in geophysics leads to wavelets

• 1980s – Alexander Grossman
Formalization of wavelet transform

• 1985 – Yeves Meyer
Orthogonal wavelet basis function

• 1980s – Ingrid Daubechies
Discretization of the wavelet transform; Wavelet frames; Compactly supported wavelets

• 1980s – Stephan Mallat
Multiresolution Approximations; Discrete wavelet Transform; Cascade algorithm;

• 1980s – Martin Vetterli
Wavelets and Filter banks; Perfect reconstruction; Subband coding; Multidimensional filter 
banks

• 1996 – Coifman, Meyer, and Wickerhauser
Wavelet Packets
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Conclusion - a little bit of history…

J.-B. Fourier

Alfred Haar

Dennis Gabor Jean Morlet

Alex Grossman

Yeves Meyer

Ingrid Daubechies Stephan Mallat

Martin Vetterli

Mladen Victor Wickerhauser

Ronald Coifman
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Resources - books

S. Mallat
“A Wavelet Tour of 
Signal Processing”

Academic Press

I. Daubechies
“Ten Lectures on 
Wavelets”

SIAM

G. Strang and T. Nguyen
“Wavelets and Filter 
Banks”

Wellesley-Cambridge 
Press

B.B. Hubbard
“The World According to 
Wavelets”

CRC Press
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