Overview of Wavelet Analysis and Applications in Engineering

Dr. Alessio Medda Georgia Tech Research Institute

Environmental Fluid Mechanics and Water Resources Seminar Series 2014

October 24, 2014 College of Civil Engineering Georgia Institute of Technology

Atlanta, Georgia

Under the Wave off Kanagawa Katsushika Hokusai (Japanese, Tokyo (Edo) 1760–1849)

Aerospace, Transportation, and Advanced Systems Laboratory

Outline

• Overview

Introduction

- Stationarity
- Fourier domain
- Real signals and examples
- Shortcomings of Fourier Analysis
- Windowed Fourier Transform
- Short Time Fourier Transform
- Window size and time-frequency resolution

• Wavelets

- What is a wavelet?
- Connection with frequency
- Time-frequency resolution
- Examples
- Discretization and orthogonality
- Multiresolution approximations
- Fast orthogonal wavelet transform
- Wavelet packets
- Examples 1D and 2D
- Wavelet types

Applications

- Denoising
- Compression
- Neuroimaging: clustering of fMRI data
- Structural Health Monitoring: Damage Detection
- Conclusions
- Resources

Overview

• What are wavelets?

- Wavelets are mathematical functions that look like waves (small waves ondelette)
- They have varying frequency, limited duration and zero mean

• What do they do?

- Wavelets analyze signals at different level of resolution
- Provide an adaptive time-frequency representation

• Why are wavelets needed?

- Fourier analysis is best for stationary signals
- Most real signals are non-stationary

Fields of application are numerous

- Electrical Engineering, Civil Engineering, Mechanical Engineering, Computer Science, Communications, Physics, Geology, Astronomy, Music, ...
- Signal Processing, Image Analysis, Medical Imaging, Structural Health Monitoring, ...
- Denoising, Compression, Sparse Representation, System Identification, Clustering and Classification, Nonstationary analysis, Transient Detection, ...

• Stationarity

A signal can be considered stationary if its characteristics are not changing with time. Classical analysis techniques assume the signal to be stationary and last from $-\infty$ to $+\infty$

How do we best represent a stationary signal ?

• Fourier Domain

In 1807 Fourier claims that any periodic function can be represented as a series of harmonically related sinusoids

$$X(\omega) = \Im\{x(t)\} = \int_{-\infty}^{+\infty} x(t)e^{-i\omega t}dt$$

$$x(t) = \Im^{-1}\{X(\omega)\} = (2\pi)^{-1} \int_{-\infty}^{+\infty} X(\omega) e^{i\omega t} d\omega$$

Jean-Baptiste Joseph Fourier (1768 – 1830) https://en.wikipedia.org/wiki/Joseph_Fourier

Power estimate for each frequency $Periodogram = |X(\omega)X^*(\omega)|^2$ -----

Real Signals

100

50

2

3 4

5

Time

Most real signals can be considered non-stationary, and have complex timefrequency characteristics

-30.05

-30.1

50

100

150

200

250

Frequency (Hz)

300

350

400

Chirp signal with frequencies from 10Hz to 500Hz sampled at 1kHz

6

450

Spectrogram

7

6

8

Examples of Real Signals

• Shortcoming of Fourier Analysis

- The signal is represented globally
- The time information is lost: which frequency appears when and where? (*localization problem*)
- Most real signals have a frequency contents that changes with time
- To properly describe a non-stationary evolving signal we need <u>time</u> and <u>frequency</u> localization

Windowed Fourier Transform

- Partially stationary condition can be obtained dividing the signals into short segments in which the signal can be assumed *quasi* stationary
- In 1946 Dennis Gabor (Nobel in physics) decomposed a signal over a dictionary of elementary waveforms, called <u>time-frequency atoms</u>
- A <u>windowed Fourier Transform</u> can be thought using a windowed Fourier dictionary, obtained by translating a time window g(t) in time and frequency

The Short Time Fourier Transform

$$STFT(t,\omega) = \int_{-\infty}^{+\infty} x(t)h(t-\tau)e^{-i\omega\tau}d\tau = \langle x(t)h(t,f) \rangle$$

 $Spectrogram(t, \omega) = |STFT(t, \omega)|^2$

How to select the proper window size?

- Short windows yields poor frequency resolution
- Long window increase resolution but compromise assumption of stationarity

Dennis Gabor (1900 – 1979) https://en.wikipedia.org/wiki/Dennis Gabor

Fig. 1.3. A Wavelet Tour of Signal Processing, 3^{rd} ed. Heisenberg box representing an atom ϕ_{γ} .

- A <u>windowed Fourier Transform</u> decomposed signal over a basis with constant time-frequency resolution
- Signal with localized features in time/frequency are not represented well
- Not adaptive to the signal
- Solution Use atoms with different time-frequency resolution

WAVELETS

- What is a wavelet?
 - A wavelet is a function $\psi(t) \in \mathbf{L}^2(\mathbb{R})$ with

$$\int_{-\infty}^{+\infty} \psi(t) dt = 0$$

- It has unit norm $\|\psi(t)\| = 1$
- Dilations by s and translation by u generates a dictionary of time-frequency atoms

$$\left\{\psi_{u,s}(t) = \frac{1}{\sqrt{s}}\psi\left(\frac{t-u}{s}\right)\right\}_{u,s\in\mathbb{R}}$$

 The *wavelet transform* decomposes a signal over dilated and translated wavelets. For a time u and scale s, the continuous wavelet transform is defined as

$$Wf(u,s) = \left\langle f(t), \psi_{u,s}(t) \right\rangle = \int_{-\infty}^{+\infty} f(t) \frac{1}{\sqrt{s}} \psi^* \left(\frac{t-u}{s} \right) dt$$

Connection with frequency – wavelet and linear filtering

- We can think of Wf(u, s) as a convolution

$$Wf(u,s) = \langle f(t), \psi_{u,s}(t) \rangle = f(t) \circledast \overline{\psi}_s(u)$$

with
$$\bar{\psi}_s(t) = \frac{1}{\sqrt{s}}\psi^*\left(-\frac{t}{s}\right)$$

Now taking the Fourier Transform of $\overline{\psi}_s(t)$ we have

$$\Im\{\bar{\psi}_s(t)\} = \sqrt{s}\hat{\psi}^*(s\omega)$$

and

$$\hat{\psi}(\omega=0) = \int_{-\infty}^{+\infty} \psi(t) dt = 0$$

– Therefore, $\hat{\psi}$ is the transfer function of a bandpass filter, having zero energy for $\omega=0$

Each coefficient of the wavelet transform is the result of a filtering operation between the function and the bandpass filter defined by the wavelet atom

• Time-Frequency Resolution

- A wavelet atom has time support centered at *u* and proportional to *s*
- The Heisenberg box of a wavelet atom is a rectangle centered at $(u, \frac{\eta}{s})$
- The area of the Heisenberg box remain the same, but its width and height changes
- The wavelet transform of a function f(t) at any scale s and position u is the projection of f on the corresponding wavelet atom

This representation is highly redundant and not optimal for fast implementation

Example: the word "CIAO"

Discretization and Orthogonality

– It is possible to construct $\psi(t)$ such that the translation and dilation form an orthonormal basis for L $^{2}(\mathbb{R})$

- Discretization using <u>dyadic tree</u>: $s = 2^j$; $u = 2^j k \forall j, k \in \mathbb{Z}^2$

$$\left\{\psi_{j,k}(t) = \frac{1}{\sqrt{2^j}}\psi\left(\frac{t-2^jk}{2^j}\right)\right\}_{j,k\in\mathbb{Z}^2}$$

- Wavelet expansion in the discrete domain

$$f(t) = \sum_{j=-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} \langle f(t), \psi_{j,k}(t) \rangle \cdot \psi_{j,k}(t) = \sum_{j=-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} w_{j,k}(t) \cdot \psi_{j,k}(t)$$

- $w_{j,k}(t)$ are the discrete wavelet transform coefficients
- Computation of $w_{j,k}(t)$ can be done efficiently, O(N)

• Multiresolution Approximation

- Partial sums defined as

$$d_{j}(t) = \sum_{k=-\infty}^{+\infty} \langle f(t), \psi_{j,k}(t) \rangle \cdot \psi_{j,k}(t)$$

can be interpreted as the difference between two approximation of f(t) at resolution 2^{-j} and 2^{-j-1}

- The subspace spanned by $\psi_{j,k}(t)$ at resolution 2^j is indicated with V_j
- The signal belong to \mathbf{V}_0
- − The subspaces V_j are nested: $\forall j \in \mathbb{Z}$ $V_j \subset V_{j-1} \subset L^2(\mathbb{R})$
- **V**_{*j*} is always part of **L**²(ℝ): **V**_{*j*} ⊂ **L**²(ℝ)
- The orthogonal projection of f(t) in \mathbf{V}_j is $f_j(t) = P_{\mathbf{V}_j} f \in \mathbf{V}_j$

-
$$P_{\mathbf{V}_j}f$$
 is such that $\|f - P_{\mathbf{V}_j}f\|$ is minimized

Multiresolution Approximation

- Shift Invariant: $f(t) \in \mathbf{V}_j \Leftrightarrow f(t-2^j k) \in \mathbf{V}_j \quad \forall j, k \in \mathbb{Z}^2$
- Causality: $\mathbf{V}_j \subset \mathbf{V}_{j-1} \subset \cdots \subset \mathbf{V}_1 \subset \mathbf{V}_0 \subset \mathbf{L}^2(\mathbb{R}), \ \forall \ j \in \mathbb{Z}$
- Dilation: $f(2t) \in \mathbf{V}_{j-1} \Leftrightarrow f(t) \in \mathbf{V}_j, \ \forall j \in \mathbb{Z}$
- Resolution: $\bigcap_{j \in \mathbb{Z}} \mathbf{V}_j = \{0\} \text{ and } \overline{\bigcup_{j \in \mathbb{Z}} \mathbf{V}_j} = \mathbf{L}^2(\mathbb{R}).$
- Scaling Function:

 $\exists \varphi(t) \in \mathbf{L}^{2}(\mathbb{R}) \text{ such that s.t. the family} \{\varphi_{j,k}(t)\}_{k \in \mathbb{Z}} = \left\{2^{-j/2} \varphi\left(\frac{t-k}{2^{j}}\right)\right\}_{k \in \mathbb{Z}} \text{ is an orthonormal basis for } \mathbf{V}_{j}.$

 $\begin{array}{l|l} - \mbox{ Complementary subspace of } V_j & & & & & \\ W_j = V_{j-1} - V_j & & & & \\ V_{j-1} = V_j \bigoplus W_j & & & \\ P_{V_{j-1}}f = P_{V_j}f + P_{W_j}f & & & \\ \end{array}$

- Approximations
 - $P_{\mathbf{V}_i} f$ can be expressed as

$$P_{\mathbf{V}_j}f = \sum_{k \in \mathbb{Z}} a_j(t) \cdot \varphi_{j,k}(t)$$

where $a_j(t) = \langle f(t), \varphi_{j,k}(t) \rangle$

Details

 $- P_{\mathbf{W}_i} f$ can be expressed as

$$P_{\mathbf{W}_{j}}f = \sum_{k \in \mathbb{Z}} d_{j}(t) \cdot \psi_{j,k}(t)$$

where $d_j(t) = \langle f(t), \psi_{j,k}(t) \rangle$

$$\mathbf{L}^{2}(\mathbb{R}) \supset \mathbf{V}_{0} = \mathbf{V}_{L} \bigoplus \mathbf{W}_{L} \bigoplus \mathbf{W}_{L-1} \bigoplus \mathbf{W}_{L-2} \bigoplus \dots \mathbf{W}_{1}$$
$$f(t) = \sum_{k \in \mathbb{Z}} a_{L}(t) \varphi_{L,k}(t) + \sum_{j < L} \sum_{k \in \mathbb{Z}} d_{j}(t) \cdot \psi_{j,k}(t)$$

L depends on the signals and sets the coarsest scale

 $\mathbf{V}_L \quad \mathbf{W}_L$

 \rightarrow

• Fast Orthogonal Wavelet Transform

There is a connection between wavelets and filter banks

$$a_{j+1}(k) = \sum_{n \in \mathbb{Z}} h(n-2k) a_j(n) = a_j(k) * h(-2k) = a_j(k) * \overline{h(2k)} = H a_j(k)$$

$$d_{j+1}(k) = \sum_{n \in \mathbb{Z}} g(n-2k) \, d_j(n) = d_j(k) * g(-2k) = d_j(k) * \overline{g(2k)} = \mathbf{G} \, a_j$$

Reconstruction

$$a_{j}(k) = \sum_{n \in \mathbb{Z}} h(k - 2n) a_{j+1}(n) + \sum_{n \in \mathbb{Z}} g(k - 2n) d_{j+1}(n)$$

H and *G* are a pair of conjugated mirror filters

$$g(k) = (-1)^k h(N-k)$$

19

Synthesis

20

Wavelet Packets

- Wavelet packets are an extension of traditional wavelets
- The details are also decomposed using H and G
- They provide a complete tiling of the time-frequency plane

Example 1D

Lena image decomposition

TANK LADA (I)

- 1st wavelet: HAAR
 - In 1910 Haar constructed a piecewise constant function:

Alfréd Haar (1885 – 1933) http://gtwavelet.bme.gat ech.edu/images/haar.html

• Meyer wavelet

Frequency band-limited function with smooth Fourier transform.

• Daubechies Wavelet Family

Daubechies wavelets have finite support of minimum size for any given order. Daubechies's are orthogonal wavelets

Applications

Denoising

Noise model $f(t) = g(t) \oplus w(t)$

Denoising Estimate $\hat{f}(t)$ such that $\|\hat{f}(t) - g(t)\|$ is minimized

$$f(t) = \sum_{j=-\infty}^{+\infty} \sum_{\left|\langle f, \psi_{j,k} \rangle\right| > THR} \langle f(t), \psi_{j,k}(t) \rangle \cdot \psi_{j,k}(t)$$

Global Threshold $THR = \sqrt{2\log(N)}\sigma$

Good Threshold THR $\approx 3\sigma$

Applications

2D Signal Denoising

Applications

Compression

Retain only the coefficients that carry information in the transform domain

$$f(t) \longrightarrow W f(t) \longrightarrow Coding \longrightarrow W^{-1} f(t) \longrightarrow \tilde{f}(t)$$

Application - Neuroimaging

• Clustering of functional MRI data

- Neurological time series are characterized by long range autocorrelation functions and often exhibit fractal properties in the time domain
- Wavelets represent a natural basis for the analysis tool for 1/f type processes

Application - Neuroimaging

Application – Structural Health Monitoring

Structural damage

- Excessive stress
- Traffic and natural induced vibration
- Time factor: age of the structure
- Cracks generate interfaces that originate reflection boundaries in the structure

Wavelet Packet Energy

$$E_{j,n}^{\%} = \frac{\int f_j^n \left(t\right)^2 dt}{\int f\left(t\right)^2 dt}$$

Application – Structural Health Monitoring

Structural damage

- Excessive stress
- Traffic and natural induced vibration
- Time factor: age of the structure
- Cracks generate interfaces that originate reflection boundaries in the structure

Wavelet Packet Energy

$$E_{j,n}^{\%} = \frac{\int f_j^n(t)^2 dt}{\int f(t)^2 dt}$$

Application – Structural Health Monitoring

Conclusion - a little bit of history...

- 1807- J.-B. Fourier "any periodic function can be represented as a series of harmonically related sinusoids"
- 1909 Alfred Haar First simplest orthogonal wavelet
- 1946 Dennis Gabor
 Windowed Fourier Transform and time-frequency atoms
- 1970s Jean Morlet's problem Application of variable length window to variable signals in geophysics leads to wavelets
- 1980s Alexander Grossman Formalization of wavelet transform
- 1985 Yeves Meyer Orthogonal wavelet basis function
- 1980s Ingrid Daubechies Discretization of the wavelet transform; Wavelet frames; Compactly supported wavelets
- 1980s Stephan Mallat Multiresolution Approximations; Discrete wavelet Transform; Cascade algorithm;
- 1980s Martin Vetterli Wavelets and Filter banks; Perfect reconstruction; Subband coding; Multidimensional filter banks
- 1996 Coifman, Meyer, and Wickerhauser Wavelet Packets

Conclusion - a little bit of history...

J.-B. Fourier

Alex Grossman

Alfred Haar

Dennis Gabor

Yeves Meyer

Jean Morlet

Ingrid Daubechies

Martin Vetterli

Mladen Victor Wickerhauser

Stephan Mallat

Ronald Coifman

Resources - books

a wavelet touu of signal processing The Sparse Way

S. Mallat "A Wavelet Tour of Signal Processing"

Academic Press

Gilbert Strang / Truong Nguyen Wavelets and Filter Banks G. Strang and T. Nguyen "Wavelets and Filter Banks"

Wellesley-Cambridge Press

I. Daubechies "Ten Lectures on Wavelets"

SIAM

SECOND EDITION

B.B. Hubbard "The World According to Wavelets"

CRC Press