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Abstract. Though significant progress on autonomous navigation has
been made, the natural world offers interesting examples of navigational
techniques that are worth exploring and understanding. The cognitive
mechanism of mental rotation has been revealed in numerous cognitive
and neuroscientific experiments; its reason for existence and evolution,
however, has yet to be thoroughly understood. It is speculated that this
mechanism may assist primates in navigation. This paper explores how
mental rotation can be used in navigation by developing an autonomous
robotic navigation algorithm that draws inspiration from the mechanism.
This algorithm was tested on a robot tasked with navigating to a spec-
ified goal location contained within the agent’s initial view. The testing
suggests that mental rotation can be used as an asset in navigation.
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1 Introduction

Autonomous navigation is a problem with a set of robust and efficient solutions
[1,2]. The fact that these solutions are sufficient for many applications does
not imply that autonomous navigation is a domain where no further progress
needs to be made. The natural world offers interesting examples of alternative
navigational techniques that are worth taking the time to understand and may
offer insights that supplement or enhance existing algorithms.

Evolution has fashioned primates into adept and efficient navigators [3,4].
The ability of nonhuman primates (and human children) to use mapping is
limited, therefore, other mechanisms must have evolved in primates to allow for
successful navigation [5]. Many studies have identified the mechanism of mental
rotation, an ability that allows primates to “envision” a reorientation of an
object/scene [6,7,8]. There has been speculation that this mechanism contributes
in some way to the navigational capabilities of primates, but there have been
few studies conducted to verify these speculations.

The goal of this ONR-funded project is to understand what mental rota-
tions might contribute to the ability of primates to navigate by implementing
an autonomous navigation algorithm that draws inspiration from the ability of
mental rotations, incorporating this algorithm into our existing robotic specifi-
cation software, MissionLab [9]. In theory, given the view of a scene from a goal



location and a view of the scene from the robot’s current location, an agent can
use “mental” rotations to visualize the current view at a three-dimensional ori-
entation that is aligned with its goal’s three-dimensional orientation. This view
will allow the agent to accurately assess the translational and rotational offset
between the current position and goal position.

It is posited that this research could provide the foundation for a navigation
algorithm that supports advice giving in robotic navigation. If an agent did not
“know” its goal view a priori, something/someone external to the agent could
provide a high level description of its goal by relating its relative position and
orientation to known objects in the scene. The agent could then use these ob-
jects to define the scene and travel appropriately using the biologically-inspired
algorithm introduced below. For example, if an agent had to fetch something
from a file cabinet in an office within an office building, it might have a map to
the office, but it might not know the precise layout of every office in the building.
If the agent knew what a file cabinet looks like, upon arriving at the office, it
could identify the file system (if there are multiple, one could be specified to the
agent) and navigate to the appropriate position relative to the file cabinet using
an algorithm like the one described here to carry out its task.

2 Related Work

Research has shown that although human children and nonhuman primates are
robust navigators, they do not use maps or precise distances to navigate to a
location [3,5]. It is suggested that they instead use mental transformations to
overcome changes in perspective and to make general assessments about the
direction in which they must move to reach a certain location. Research by
Kosslyn et. al. [10] affords more concrete evidence for the use of mental images
in humans through neuroimaging studies.

Hutcheson and Wedell [11] discuss how, when humans are immersed in an
environment and navigating to a certain location, they tend to use these qual-
itative, abstract representations to navigate as opposed to using more precise
distances or explicit directions; Menzel et al. [4] observed a similar tactic with
a nonhuman primate. The Bonobo being observed had to travel from a start
location to a designated goal; it did not take a rigid trajectory but varied its
path [4]. Starting position did not affect its ability to successfully navigate, im-
plying it possesses the ability to mentally encode the “entire spatial layout” of
the area, and can mentally manipulate this encoding to localize itself and travel
appropriately [5].

Mental rotation must be differentiated from the cognitive process of perspective-
taking spatial abilities and visual servoing or homing techniques. Hegarty and
Waller [12] show an explicit distinction between cases where an observer is men-
tally manipulating a scene or scene object to view it differently and cases where
the observer is mentally viewing the scene from a different viewpoint. They [12]
state that humans may use both of these skills, but most people have a strong
preference for one or the other. As expressed by Arkin [13], visual servoing is dis-



tinct from the navigational approach described here in that the visual approach
described in this paper is a more deliberative approach. Our approach, described
in more detail below, will derive the appropriate navigation direction using ab-
stract representations of the scene rather than working with image features. The
three-dimensional, structured representations of the scenes used by our algo-
rithm allow for correspondence between elements of like form in the different
scenes (models of identifiable objects or object parts) as opposed to correspond-
ing image features. In the context of advice-giving, full object recognition and
semantic labeling will be required.

The evidence presented above has made a case that primates can maintain
abstract mental images and manipulate these representations. The navigation
approach introduced below has an agent rotating a “mental” visual represen-
tation of an object in order to inform its motion. It has also been theorized
that mental rotation could be accomplished through the manipulation of propo-
sitional logic statements [13], which has received less support than the visual
analog approach. We use the visual analog approach.

Stein [14] presents the idea of a robotic system using “mental” simulation
in order to guide itself toward a goal location. Stein’s [14] system, MetaToto,
used an extended simulation where the agent would “imagine” what its sensors
would experience at various locations on a floor plan and build a world model.
This project is not as deliberative as MetaToto. This work explores a biologically-
inspired, semi-reactive navigation algorithm that makes use of a process inspired
by mental rotation to continually inform/update the movement of the robotic
agent.

3 Navigation Algorithm

3.1 Algorithm Formation

This lab has previously developed a navigational procedure that explored the
mechanism of mental rotation [13,15,16]. This system used depth information
in order to construct occupancy grids that represented the current view of the
scene and the goal view of the scene. Figure 1 shows a view for the robotic
agent, the depth image capturing that view, as well as the occupancy grid that
was generated from that depth information. The points composing the generated
occupancy grids had discrete states of occupied or unoccupied, projecting the
scene onto the two dimensional depth and width space.

At the outset of its mission, the agent generated the occupancy grid given the
depth image for both its goal and its current location. The agent used a discrete
number of “mental” transformations on the current occupancy grid in an attempt
to match it to the goal occupancy grid. The correspondence between the two
occupancy grids was scored for each transformation. A motion vector was derived
from the transformation that resulted in the closest correspondence between
the two occupancy grids [13,15]. After the robot had moved a short, specified
distance, it would capture the depth information at its new current location,



generate the occupancy grid representation at this new location, and repeat the
process until the occupancy grids sufficiently corresponded without requiring
“mental” transformations1. This algorithm had the depth imagery projected
onto the ground plane, which is not biologically plausible. To be biologically
plausible, the algorithm must work directly within the view of the scene [16].

The neuroscience literature discussing mental rotation is often focused on
the rotation of simple objects, not entire scenes. The work done by Aretz and
Wickens [6] and by Bläsing et. al. [7] each note a certain amount of fragility
in the mechanism of mental rotation. The work presented by Khooshabeh and
Hegarty [8] found that in order to overcome this fragility many humans will
segment a scene/complex object into distinct parts and mentally rotate these
parts individually. This paper’s navigation algorithm begins by segmenting the
view into discrete planar segments that can be acted on individually.

3.2 Segmentation Algorithm

An overview of the segmentation algorithm used in navigation is presented here;
for more depth on its theory, see Erdogan et. al. [17] and Srinivasan and Dellaert
[18]. The segmentation algorithm takes as its input RGBD images; these images
are captured via the Microsoft Kinect. To begin, these images are smoothed using
a bilateral, edge-preserving filter. In order to decrease the size of the algorithm’s
search space when labeling planar segments, the pixels composing the images are
grouped into related, atomic regions known as superpixels. Pixels are uniquely
assigned to a superpixel; the pixels are grouped into superpixels based on three
different factors: spatial proximity, color, and disparity. The result of performing
this “oversegmentation” on the goal views of the two different scenes introduced
below are shown as part of Figure 2. The noisiness of the oversegmentations
seen is largely due to the limited smoothing of the input RGBD images from the
Kinect. The neighborhood in which the bilateral filter smoothed was restricted
to allow for the agent’s direction to be updated more regularly. As long as the
segment(s) the agent is using for navigation is/are consistently recovered, the
surrounding noise can be ignored successfully.

Once the oversegmentation has completed, the superpixels are grouped prob-
abilistically using the Rao-Blackwellized Markov Chain Monte Carlo (MCMC)
algorithm presented by Srinivasan and Dellaert [18]. Each segmentation consists
of a set of planar segments where each planar segment is a set of superpixels.
There are eight hundred segmentations generated by the algorithm, and the most
commonly occurring segmentation is returned as the three-dimensional represen-
tation of the view. The chosen segmentations for the two tested goal views are
shown in Figure 2.

1 A video demonstrating these results is available at:
http://www.cc.gatech.edu/ai/robot-lab/brc/movies/brc_video.mp4

http://www.cc.gatech.edu/ai/robot-lab/brc/movies/brc_video.mp4


Fig. 1. A) The image of the scene. B) The depth image captured at that view. C) The
occupancy grid generated from the depth information.

Fig. 2. A) View of scene at goal location for both tested scenes. B) Oversegmentation
of goal image for both tested scenes. C) Final segmentation of goal image for both
tested scenes. The first test scene appears in the top row. The bottom row contains
the second test scene.

3.3 Navigation Algorithm

A high level overview of the navigation algorithm appears in Figure 3. The algo-
rithm is provided with a conception (RGBD image) of the goal. The algorithm
immediately captures an RGBD image of its current view using an onboard Mi-
crosoft Kinect. It is able to generate a probable planar segmentation, similar
to those seen in Figure 2, for both the goal view and the current view using
the segmentation algorithm described above. The algorithm must now match
segments in the goal view with the corresponding segments in the current view
to try to align them using a process inspired by mental rotation. The two views
have different segment sets and many of the segments are inconsequential to
the scene; therefore, the segments that truly define the scene such as the box
in the first scene’s goal view or the white board in the second scene’s goal view
must be identified as segments that the algorithm will use to move the agent to
the goal. Ultimately, this process will be automated, however, currently in this
bootstrap phase a human user identifies the segments “key” to the goal view



and the corresponding segments in the initial current view. After this bootstrap
step is complete, the agent navigates to its target goal location autonomously.

A human hand-matching the “key” segments for the agent is a shortcoming
of this algorithm; however, the bootstrap step will be a focal point of the research
moving forward. In the context of advice-giving, something external to the agent
will still be identifying what is “key” to the agent for navigation (though not
identifying it in either scene). The agent will have to be given or generate a model
of the object(s) described by the person assisting it and identify and match these
objects for itself in the starting view and goal view.

Immediately following this bootstrap step, the algorithm considers each pair
of corresponding segments in turn. It computes the average normal vector for
the planar segment in both images. The estimated average normal vector for
each plane segment is computed by estimating the normal at each pixel in the
given segment using PCL’s normal estimation [19] and averaging each pixel
normal in the segment. The algorithm attempts a discrete number of rotations
to align the current normal vector with the goal normal vector. In a process
attempting to mimic mental rotation, the normal vector of the current segment
is gradually rotated around each of the three axes. After each rotation, the inner
product between the current view segment’s normal vector and the goal view
segment’s normal vector is computed. The maximum value of this computation
corresponds to the mental rotation that most closely aligns the orientation of the
current view and goal view. The algorithm estimates the offset of the segment
in the current view from its position in the goal by using the mental rotation
(i.e. using the rotation matrix that aligned the normal vectors) to “visualize” the
segment at the same orientation as the goal and determine the three-dimensional
spatial distance between the center point of the segment in the goal view and the
rotated center point of the segment in the current view. The algorithm makes
this assessment for each of the corresponding planes designated as “key” in the
scene and finds the average rotation and average estimated offset.

Due to the limited field of view of the Microsoft Kinect, the algorithm is
not going to simply send the agent in the direction of the goal. If the agent
is oriented and does not simply have to move in depth to reach the goal, the
algorithm recommends the agent moves left/right (whichever direction is advised
by the comparison stage) as quickly (as much) as possible to avoid being turned
away from the segments later in the navigation when they can be more easily
lost from view. If the agent is not oriented with its goal view orientation, then
the algorithm will orient the agent to avoid losing segments in the periphery of
the agent’s view. These decisions assumed the agent could “see” all segments
used to navigate when oriented at the start and goal locations. After making
this assessment, the algorithm sends the angle that points the agent in the
appropriate direction. A depth difference between the goal view and current
view is also sent.

Once the robot begins to move, the system captures its new current view
and uses the segmentation algorithm described above. As Arkin [20] suggests,
finding the segments that correspond in the goal view and this new current



view is a less complex problem than the bootstrap step. This feedforward step
uses information about the robot’s motion, the robot’s speed and the angle
just given to the system, as well as information about the positions of “key”
segments in the previous current view to find a correspondence between the
segments in the new current view and the goal view. The navigation algorithm
considers each segment in the new current view and attempts to inversely map
these segments to the previous current view based on the speed of the robot and
its most recent direction to see if the segments fall within regions occupied by
“key” segments in the previous current view. To limit the number of segments
considered, the algorithm only considers segments that are approximately at
the estimated depth of the matching segment. After the segments in the new
current view that correspond to “key” segments in the goal view have been
identified, the algorithm uses the process inspired by mental rotations to make an
assessment about the agent’s orientation and the appropriate direction in which
it should move. This process is going to continue until the agent reaches the
depth of the goal location. The navigation concludes at the goal depth because
the agent cannot turn ninety degrees without losing the segment(s) being used
for navigation.

Data: RBGD goal image
begin

Bootstrap Step

capture first current view RGBD image
perform planar segmentation on start view and goal view
identify goal view segments and match them to corresponding start view segments
for each key segment do

estimate rotation between segment in current view and segment in goal view
get approximate offset between current view segment and goal view segment

end
compute average rotation and offset between current view segments and goal view
segments
send appropriate motion vector to robotic agent

end
begin

Feedforward Step

while true do
capture new current image
match key segments in new current to those in goal
for each key segment do

estimate rotation between segment in current view and segment in goal view
get approximate offset between current view segment and goal view segment

end
if at goal depth then

send angle to orient the agent/zero goal depth
kill/stop the agent

end
send appropriate motion vector to robotic agent

end
end

Fig. 3. Overview of navigation algorithm.

4 Results/Analysis

The algorithm was tested on a Pioneer 2-DX robotic platform. The testing was
designed to demonstrate the ability of the algorithm to guide the robotic agent
from a variety of starting locations and orientations to a specified goal location



and orientation. The successful navigation of a robotic agent using this algo-
rithm would lend support to the idea that mental rotation can serve primates in
navigation, and it would provide a foundation for the referenced advice-giving
algorithm.

Two different scenes were tested (Figure 2A). Thirty trials were run on each
scene. There were three, ten trial experiments conducted for each scene. Each
of the ten trial experiments was run with the robotic agent starting at a certain
location and orientation and navigating toward the goal location defined for that
scene. A trial was only deemed successful if the agent was within 0.5m of the
goal location, and the difference between the agent’s final orientation and the
goal orientation was no more than 10◦. The distance from the goal location was
measured from the robot center to the goal location. Due to the limited range of
the Kinect, trials were restricted to situations where the agent’s starting locations
were 4.5m from the scene or less. Because the segmentation algorithm extracted
planar segments, each trial included at least one planar element that was “key”
to the scene to ensure reliable segmentation so the average normal vector would
accurately represent orientation.

Figure 4 shows the finite state acceptor (FSA) defined for the robotic agent in
MissionLab. The robot’s behaviors/states are the circular symbols and the trig-
gers for these behaviors are rectangles. In this mission, the agent stops (MENTA-
LALIGNED is true) when the navigation algorithm indicates that the agent is
oriented and an acceptable depth difference has been reached; the robotic agent
has reached the goal location at this point. The MoveMentalDirection behavior
is triggered whenever the agent still has to travel to reach its goal; the behavior
uses the heading computed by the navigation algorithm to move in the appro-
priate direction toward the goal. The OrientAtGoalDepth behavior is triggered
when the agent cannot translate without going beyond the goal yet still must
orient itself properly.

Fig. 4. FSA for robotic agent.



4.1 Original Scene Revisited

The first test scene (Figure 2A) contains 3 different objects: a television box, an
overturned crate, and a trash barrel. The front of the box was identified as the
“key” planar segment that the agent used to navigate in all trials. The depth
of this surface was uniform, 2.0m. The agent was pointed directly at the center
of the box when the goal RGBD goal image was captured. The results for the
thirty trials run at this scene are summarized in Table 1 below. The horizontal
displacement is negative if the robot stopped to the goal’s left and positive to
the right. The difference in depth from the goal was positive if the agent went
beyond the goal and negative if the agent stopped before the goal. The rotational
offset is positive if the agent finished oriented to the right of the goal orientation.

Table 1. Results: Scene 1. Location: (horizontal, depth). Location 1: (0.5, -2.0),
oriented; Location 2: (-0.75, -2.5), oriented; Location 3: (-0.25, -2.0), rotated 20◦ to the
left. Trials where the algorithm failed to navigate using segments contained within the
scene have been excluded from the average computations.

Location Success
Percentage

Avg. Rotational
Offset
from Goal
Orientation

Avg.
Depth
from Goal

Avg.
Horizontal
Displacement
from Goal

Avg.
Distance
From Goal

Location 1 (avg.
out of 9 trials)

70% 7◦ ± 4.74◦ 13.08cm ±
8.25cm

16.49cm ±
8.25cm

21.96cm ±
8.25cm

Location 2 (avg.
out of 8 trials)

70% 1.38◦ ± 7.48◦ 12.21cm ±
10.09cm

-6.63cm ±
15.44cm

22.65cm ±
4.47cm

Location 3 90% 6.8◦ ± 4.66◦ 8.65cm ±
10.83cm

-4.18cm ±
7.83cm

13.48cm ±
9.44cm

The agent successfully navigated toward and stopped (approximately) at the
goal in 77% of trials for the original scene. When the algorithm accurately kept
track of the segment corresponding to the television box for the extent of the
trial, however, the agent successfully attained the goal in 92% of trials (23/25
cases). This consistency shows that, when an agent can accurately track an
object, it is using to navigate, mental rotation can effectively be used to aid in
navigation. The feedforward step of the algorithm can be attributed, at least in
part, to 71% (5/7 cases) of failure in the first test scene.

The feedforward step of the navigation algorithm failed to identify a matching
segment contained within the scene, for at least a portion of the trial, in 10.0% of
all cases during the testing of the first scene. The algorithm found no matching
segment in one case and human intervention was required to stop the agent. The
matching segment was not found because it was not contained within the depth
range considered by the feedforward step of the algorithm. The estimation of
where the segment should appear in depth was inaccurate. In the other cases,
the depth at which the algorithm was looking for the box segment was again
incorrect and an incorrect segment, not related to the scene, was matched with
the box. The robotic agent navigated away from the goal entirely, treating this
improper segment as the segment corresponding to the box.

All of the initial RGBD image captures during the testing of this scene oc-
curred at or beyond 4m. The box was located 2m beyond the goal location, and



the agent had to travel at least 2m in depth to reach the goal. This distance is
at the edge of the range that the Kinect can be depended upon to accurately
assess depth.

The notion that the noise from the Kinect poses an issue is supported by the
6.7% of cases where the algorithm failed to align the agent’s orientation to its goal
orientation due to incorrectly matching the box segment with another segment
contained within the goal view. In one case, superpixels from the background and
foreground merged with the “key” objects in the scene causing a misidentification
to occur. In the other case, an early misidentification took the agent off course.
Though the algorithm correctly identified the box in its next iteration and kept
track of the box throughout the rest of the trial, the agent was unable to recover
and the trial resulted in failure.

In the two cases (6.7% of all cases) where the agent did not “succeed”, as
defined above, and the feedforward step cannot be attributed to the failure, the
agent stopped within 0.5m of the goal location. The agent failed during these
two trials because it did not appropriately orient itself at the conclusion of the
trial even though the algorithm had instructed it to do so. The algorithm should
capture a final image to ensure that the agent has oriented itself.

4.2 More Complex Scene

The goal view of the second tested scene is shown as part of Figure 2A. This
second round of testing was meant to reveal more about the capabilities of the
navigation algorithm itself by placing the agent at starting positions where the
Kinect would provide less noisy RGBD images. In this complex environment,
there were numerous objects that were decidedly non-planar meaning that the
segmentation could not be trusted to be consistent. There were planar objects
at varying depths in the background of the scene. The segment the agent used
to navigate, the whiteboard, was partially obscured by chair arms, and it was
not at a constant depth. At the goal, the whiteboard was not entirely contained
within the agent’s view, while the starting location was always far enough back
for the agent to be able to view the whiteboard in its entirety. The results for
all three locations are summarized in Table 2, which is shown below.

The results of these thirty trials support the notion that mental rotation can
be used for navigation. The agent succeeded in 90% of trials (27/30 cases) for
this scene compared to 76.67% of trials (23/30 cases) in the other scene. This is
likely due to the fact that the robot started closer to the scene and noise from
the Kinect did not play a role. The feedforward step only failed once out of the
thirty trials. In this one case, the feedforward step identified a segment composed
of the floor directly below the whiteboard and the small barrel to the side of the
whiteboard as the whiteboard segment. The agent failed to come within 0.5m of
the goal in the second scene twice (in 6.67% of all trials). In these two trials, the
agent failed to orient itself when it first began to move (though the algorithm
accurately assessed the angle it needed to turn to align). It oriented itself with
the next update, but the agent was unable to move quickly enough to the left
or right without losing track of the segment being used to navigate to reach the



goal location. Ultimately, in order to overcome the Kinect’s limited field of view,
different hardware will have to be used, or the algorithm will have to incorporate
a memory that “remembers” the segment’s position, even if it is not within view,
so it can be identified when the agent needs to confirm its relative position.

Table 2. Results: Scene 2. Location: (horizontal, depth). Location 1: (0.5, -1.5),
rotated 10◦ to the right; Location 2: (-0.75, -1.75), rotated 15◦ to the right; Location
3: (0.0, -2.25), oriented

Location Success
Percentage

Avg. Rotational
Offset
from Goal
Orientation

Avg.
Depth
from Goal

Avg.
Horizontal
Displacement
from Goal

Avg.
Distance
From Goal

Location 1 80% -1.5◦ ± 6.09◦ 4.34cm ±
11.74cm

34.19cm ±
10.19cm

36.6cm ±
9.47cm

Location 2 90% -1.4◦ ± 5.41◦ 16.89cm ±
14.03cm

-30.47cm ±
12.45cm

37.73cm ±
11.93cm

Location 3 100% -0.4◦ ± 4.65◦ 13.26cm ±
10.03cm

9.7cm ±
15.48cm

21.09cm ±
12.86cm

5 Conclusions and Future Work

This paper has shown how a process inspired by the cognitive mechanism of
mental rotation, a mechanism shown to be present in higher order primates, can
be successfully incorporated into an autonomous robotic navigation algorithm.
The algorithm introduced allowed the robotic agent to navigate in an informed
way toward a goal location without doing any explicit planning. Navigation dur-
ing almost all trials in which the agent was able to keep track of the segment it
was using to navigate was sufficiently robust. Shortcomings in the feedforward
aspect of the algorithm can likely be addressed by designing a more computa-
tionally efficient algorithm that is able to update more often and able to better
smooth noisy input images. Future work also includes using an algorithm like the
one described here in the context of advice giving. An agent can be informed to
recognize particular objects and can be directed relative to these objects. Once
the objects in the scene are recognized a procedure like the one described above
can be used to successfully navigate. The process inspired by mental rotation
will require rotating the entire object and using correpsondence between object
features to assess orientation alignment rather than using normal vectors.

The navigation tasks presented above were simple in nature and had to be
largely restricted due to the limitations of the Microsoft Kinect as a sensor. The
navigation algorithm has been enhanced since these trials to allow for multi-
waypoint navigation where waypoints were composed of multiple “key” seg-
ments. Though not yet rigorously tested, there have been successful demonstra-
tions of this algorithm on the Pioneer 2-DX robotic platform. This improvement
allows for testing in more complex, real-world environments; it helps to overcome
the depth measurement limitations of the Microsoft Kinect.
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