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Abstract 
A common behavior in animals and human beings is deception. Deceptive behavior in robotics is potentially 
beneficial in several domains ranging from the military to a more everyday context. In our research, novel algorithms 
were developed for the deceptive behavior of a robot, inspired by the observed deceptive behavior of squirrels for 
cache protection strategies, then evaluating the results via simulation studies. In this paper, we present this bio-
inspired algorithm for robot deception and observe whether the algorithm is truly applicable in actual robot systems.  

1. Introduction 

A common and essential behavior for survival in a variety of intelligent systems ranging from insects to 
human beings is deception. Many biologists and psychologists define deception in various ways. 
According to Vrij (Vrij, 2001), deception is “A successful or unsuccessful deliberate attempt, without 
forewarning, to create in another a belief that the communicator considers to be untrue in order to 
increase the communicators’ payoff at the expense of the other side." Da Waal argued that “Deception 
can be defined as the projection, to one's own advantage, of an inaccurate or false image of knowledge, 
intentions, or motivations" in his paper (de Waal, 1992). We can find a simpler definition of deceptive 
behavior from a paper by Bond and Robinson (Bond & Robinson, 1988) who defined it as “a false 
communication that tends to benefit the communicator."  We have used this straightforward definition in 
earlier research in our laboratory on deceptive behavior for robots (Wilcox & Jackson, 1998) and we 
continue to do so here. 
     In other words, animals act deceptively to gain benefits from others. Biological and psychological 
findings show that deception plays an important role in providing an evolutionary advantage (Bond & 
Robinson, 1988).  It appears in higher-level primates to involve a theory of mind mechanism (Cheney & 
Seyfarth, 2008). We argue that robots can also potentially gain advantage over adversaries by possessing 
deceptive behaviors. For example, it is obvious that the use of deception is important with respect to the 
military context (Meehan, 1988). We further posit that to achieve more socially intelligent robots 
operating in the presence of humans, we must develop robots that interpret, generate, and respond to 
deceptive behavior. Therefore, we investigate deception in robotics using approaches inspired by 
biological findings (Wilcox & Jackson, 1998; Davis & Arkin, 2012).  
     In this article, a novel approach for deceptive behavior by a robot is presented, inspired by 
observations of squirrels in cache protection strategies (Steele, et al., 2008). Section 2 reviews relevant 
animal and human deceptive behaviors and existing research in robotic deception. In Section 3, specific 
deceptive behaviors in food hoarding and protection strategies of squirrels are introduced. In Section 4, a 
computational model enabling robots to emulate these deception behaviors of squirrels is integrated into 
MissionLab, and the results are discussed in Section 5, including both simulation and real robot 
experimental results. Section 6 concludes the article. We note that we are well aware of the ethical 



implications associated with robotic deception and our perspective on this subject is discussed elsewhere 
(Arkin, 2011). 

2. Related Work 

2.1 Animal Deception 
 
Animals use various forms of misinformation. These deception mechanisms, achieved by sending false 
signals either intentionally or unintentionally, are essential for animals' survival. For example, 
camouflage and mimicry are well known in many species. By resembling other animal species or 
inanimate objects, animals transmit misinformation to others so that they can avoid detection by both 
predators and their prey. While camouflage or mimicry are examples of unknowingly deceiving, a 
deceptive behavior can include seemingly more intentional misinformation. 
     Many deceptive behaviors are observed from different animals ranging from insects to primates. 
The spider genus Portia, which preys primarily on other spiders, deceives their prey by vibrating the web 
in ways that resemble a small insect getting ensnared. When the web’s resident spider comes to 
investigate the insects, Portia preys on it (Wilcox & Jackson, 1998). According to Ristau's experiment 
(Ristau, 1991), another interesting deceptive behavior appears in piping plovers. These birds exhibit a 
“broken-wing display'' deceptive behavior. By feigning an injured wing and hopping farther and farther 
from the nest, birds lead the predator away from their young, thus protecting them. 
     Primates are the species most commonly ascribed with the ability to deceive (Cheney & Seyfarth, 
2008; Gouzoules & Gouzoules, 2002). For example, chimpanzees have multiple deceptive behaviors with 
several different objectives. When chimpanzees find fruit, they do not move directly towards it so that 
they do not give any indication to the competitors that they have noticed its location. This food protective 
strategy is not dissimilar to the one described for squirrels later in this article. Deceptive behavior of 
chimpanzees is also observed during interactions with humans. According to one observation, a 
chimpanzee feigned having his arm stuck in the bars of his cage in order to lure a zookeeper nearby. As 
soon as the human entered to help free his arm, he leaped onto the zookeeper (de Waal, 1992). 
      Another relevant class of deceptive behavior occurs in the food hoarding strategies of animals. 
Food hoarding (caching) is an important type of animal behavior needed for their survival through periods 
when nourishment is not readily available. In particular, these caching behaviors are commonly observed 
in rodents such as hamsters or squirrels (Jenkins, Rothstein, & Green, 1995). This caching behavior is of 
particular interest as it can also be useful in a robotic context. In this article caching and protecting 
resources are investigated for application in a resource protection strategy.  In the military domain, 
robots might face this situation, where it is important to discourage an adversary from discovering a 
protected site, so the application of these bio-inspired animal food protection behaviors can be 
particularly beneficial. 
     In this research, we focus specifically on the observed deceptive behavior of squirrels while they 
protect cached food acquired during hoarding (Steele, et al., 2008).  Recent research in the field of 
biorobotics implemented a robotic squirrel (Joshi, Johnson, Rundus, Clar, Barbour, & Owings, 2011). In 
this study, robosquirrel are successfully used for long-term studies on rattlesnake behavior during squirrel 
encounters. Even though it provided a model of some aspects of a squirrel’s behavior vis-à-vis predation, 
it did not include a squirrel’s deceptive behaviors. Our research focuses on employing this form of 
deception to guide robots in their interaction with other competitive agents. Section 3 describes this set of 
behaviors in more detail. 



 
2.2  Human Deception 
 
Deception is common not just in animals but also in humans. Therefore, understanding human deception 
is also important to design robot deception capabilities. Human deception often requires planning and 
second-guessing when compared to what most animals are capable of. Many psychologists have offered 
various perspectives. According to Vasek (Vasek, 1984), the development of deception follows the 
development of other skills used in social understanding such as perspective taking, 
communicational/linguistic skills, and understanding one’s own and other’s intentionality. In other words, 
deception is a good indicator of the Theory of Mind mechanism (Baron-Cohen, 1995). Therefore, the 
ability to deceive can be used to assess children’s developmental disabilities such as autism (Baron-
Cohen, 2007). 
     Human deception routinely happens in sports. Work by Mawby and Mitchell (Mawby & Mitchell, 
1986) illustrates principles used in sports to enact or avoid deception. For example, many players 
misinform opponents thereby redirecting the opponents’ actions, and teams use tactics of deception that 
require the coordinated actions of several players. Recent work analyzed the anticipation skills of 
deceptive movement in sports (Jackson & Warren, 2006) that aimed to predict opponent’s intended 
directions quickly and accurately. Research of this sort enables players to train using virtual agents that 
have anticipation skills. As a result, human players can improve their deceptive abilities in rugby, soccer, 
and handball (Brault, Bideau, Craig, & Kkulpa, 2010; Dessing & Craig, 2010; Vignais, Kulpa, Craig, 
Brault, Multon, & Bideau, 2010).   
     People have consistently used deception in warfare to cloak their intentions and movements 
(Hawthorne, 2006; Meehan, 1988; Gerwehr & Russell, 2003). In the military sense, the term “deception” 
is applicable to “any planned measure undertaken for purposes of misleading or deceiving the enemy” 
(Sexton, 1986). Often a “story” is an essential instrument for executing a military deception. Here, “story” 
means a detailed scenario of “that which you want the enemy to think in order to make him do what your 
commander wants him to do.” Because the military typically utilizes relatively fixed scenarios drawn 
from histories of thinking and acting, military deception is feasible and frequently implemented.      

For animal instances, deception can be defined as “a false communication that tends to benefit 
the communicator (Bond & Robinson, 1988).” In other words, animals usually act deceptively to accrue 
benefits for themselves. An interesting aspect of human deception is that people sometimes deceive for 
the benefit of the deceived (Lewis & Saarni, 1993; Barnes, 1994; Ariely, 2012). For example, the use of 
placebos aims for a beneficial effect on patients, one form of deception employed by doctors/nurses 
among others. It is important to focus on this aspect when we consider a robot’s deceptive capabilities in 
human-robot interaction to achieve socially-intelligent robot agent (Shim & Arkin, 2013). 
 
 
2.3  Robot Deception 

 
Endowing robots with the capacity for deception has significant potential utility (Wagner & Arkin, 2011), 
affording advantages comparable to its use of animals. Clearly, deception behaviors are useful in the 
military domain (Hawthorne, 2006; Meehan, 1988). Sun Tzu stated in The Art of War, “All warfare is 
based on deception”. Military robots capable of deception could mislead opponents in a variety of ways. 
As both individual and robot teams become more prevalent in the military’s future (Wilcox & Jackson, 
1998), robotic deception can provide new advantages apart from the more traditional one of force 
multiplication.  In other areas, such as search and rescue or battlefield triage, deceptive robots might also 
add value, for example, for calming victims or patients when required for their own protection. 



Conceivably even in the field of educational robots, a deceptive robot teacher may potentially play a role 
in improving human learning efficiency (Shim & Arkin, 2012). 
     Despite its ubiquity in nature and its potential benefits, very few studies have been conducted on 
robot deception to date. Floreano’s research group (Floreano, Mitri, Magnenat, & Keller, 2007) 
demonstrated robots that evolve deceptive strategies in an evolutionary manner, learning to protect energy 
sources. Their work illustrates the ties between biology, evolution, and signal communication and does so 
on a robotic platform. They showed that cooperative communication evolves when robot colonies 
consists of genetically similar individuals. In contrast, when the robot colonies were dissimilar the robots 
evolved deceptive communication signals. 

Lisy et al. (Lisy, Zivan, Sycara, & Pechoucek, 2010) have studied deception by an adversary, when the 
mobile sensing agents are coped with each other. During the mission, opponents frequently use deception 
to distract the agents of sensor team. To increase the efficiency of the team, they analyzed and modeled 
the adversary’s deception using game theoretic approaches, and demonstrated the success of their model 
via empirical study.  
     Wagner and Arkin (Wagner & Arkin, 2011) used interdependence theory and game theory to 
develop algorithms that allow a robot to determine both when and how it should deceive others. More 
recent work at Georgia Tech explores the role of deception according to Grafen’s dishonesty model 
(Johnstone & Grafen, 1993) in the context of bird mobbing behavior (Davis & Arkin, 2012). 
     Terada and Ito (Terada & Ito, 2010) demonstrated that a robot is able to deceive a human by 
producing a deceptive behavior contrary to the human subject’s prediction. These results illustrated that 
an unexpected change of a robot’s behavior gave rise to an impression in the human of being deceived by 
the robot.  
     Other research shows that robot deception behavior can increase users' engagement in robotic game 
domains. Work at Yale University (Short, Hart, Vu, & Scassellati, 2010) illustrated increased engagement 
with a cheating robot in the context of a rock-paper-scissor game, demonstrating greater attribution of 
mental state to the robot by the human players when participants played against a cheating robot.  At 
Carnegie Mellon University (Vazquez, May, Steinfeld, & Chen, 2011) a study showed an increase of 
user's engagement and enjoyment in a multi-player robotic game in the presence of a deceptive referee. 
By declaring false information to game players about how much players win or lose, they observed 
whether this behavior affects a human's general motivation and interest based on the frequency of 
winning, duration of playing, etc. These results indicate that deceptive behaviors are potentially beneficial 
not only in the military domain but also in an everyday context. 

3. Deceptive Behaviors in Food Hoarding 

The deceptive behavior of squirrels in terms of their food hoarding strategies is now addressed. Food 
hoarding is an important behavior for many animal species, such as birds and rodents, which are mainly 
comprised of two parts: caching and protecting the food. The deceptive component falls in the food 
protection phase. 

 
3.1  Cache Formation 

 
Food caching activity in animals ranges widely from highly dispersed (scatter hoards) to highly clumped 
(larder hoards). Scatter hoarders cache a few items in many small/scattered caches. On the other hand, 
larder hoarders place most of the food in one or a few central locations referred to as middens. The 
evolution of the particular hoarding strategy for a species depends on the abilities of individuals to defend 



their caches against pilfering (Gerhardt, 2005). According to observation, animals use a larder hoarding 
cache strategy when their competitors are conspecifics (same species) or they are weaker animals; 
however, when potential competitors are heterospecific or stronger adversaries, animals tend to use a 
scatter hoarding strategy (Gerhardt, 2005). 

 
3.2  Cache Protection 
 
After hoarding food items, animals begin to protect their resources from pilfering by patrolling the 
caches. First, animals move around the caching areas and check whether the cached food items are safe. 
However, animals generally change their behavior after they experienced pilfering.  
     One general food protection behavior of animals is changing the locations of its food items. 
According to Preston (Preston & Jacobs, 2001; Preston & Jacobs, 2005), after kangaroo rats experienced 
pilfering from conspecific or heterospecific competitors, they moved the location of their food items.  
     Of particular use for our research is an interesting deceptive behavior observed in the food 
protection strategy of certain squirrels (Steele, et al., 2008). Social context (i.e., presence or absence of 
competitors) appears to be pivotal to the expression of cache protection behaviors. Deceptive behavior in 
the tree squirrel has been observed with respect to food protection. 
     While patrolling, tree squirrels visit the 
cache locations and check on their food (Figure 1a). 
However, if potential competitors are detected 
nearby, the animals visit several empty cache 
locations. This deceptive behavior attempts to 
confuse competitors regarding the food's location, 
so they can protect against the loss of their hoarded 
food. After the potential competitors leave the 
territory, the tree squirrels move the location of 
their stored food items, if pilfering has occurred 
(Figure 1b). 

4. Computational Model and Implementation 

A bio-inspired behavior-based model (Arkin, 1998) of squirrel caching and protecting behaviors for 
application to robotic systems is now presented. Simulation studies and real robot experiments were 
performed in MissionLab1, a mission specification software package developed by the Mobile Robotics 
laboratory at Georgia Tech (MacKenzie, Arkin, & Cameron, 1997). MissionLab provides a graphical user 
interface that enables users to easily specify behavioral states and the control transitions between states, 
yielding a finite state acceptor (FSA), which can then be compiled down to executable code for both 
simulations and robots (MacKenzie & Arkin, 1998). 
     Each behavior component is an assemblage, a coordinated aggregation of primitive behaviors. The 
new caching and patrolling behaviors created are combined with pre-existing behaviors, such as avoiding 
obstacles, moving toward an object, or injecting randomness (noise). 
     The computational model determines how robots behave in resource caching and protecting 
scenarios as inspired by squirrel behaviors. The model consists of two main parts - caching behavior and 

                                                             
1 MissionLab is freely available for research and educational purposes at: http://www.cc.gatech.edu/ai/robot-lab/research/MissionLab/ 

(a)        (b) 

Figure 1. Cache Protection (a) True Patrolling and 
(b) Deceptive Patrolling 



patrolling (protecting) behavior.  The simulation and robot experiments are based on the interactions 
between two robotic agents: a “squirrel” robot (resource storer) and a competitor robot (resource pilferer). 
   
   

 
 
Figure 2.  Abstract level of Finite State Acceptors for squirrel robot’s behaviors: (a) High-level FSA: caching 

behaviors of squirrels, (b) sub-FSA: food hoarding, and (c) sub-FSA: food patrolling 
 
 
Figure 2 illustrates the squirrel robot’s storing and patrolling behaviors in an abstract level. Figure 2 (a) 
shows the high-level view of the squirrel robot’s entire behavior strategies. It starts from the caching 
behavior, but if any of the caching location is enough by the food items, it transitions to the patrolling 
strategy. In the patrolling strategy, if the competitor robot is nearby, the squirrel robot performs the 
deceptive patrolling strategy. Otherwise, the true patrolling strategy is procedure. Figure 2(b) and 2(c) 
illustrate the caching and the true/deceptive patrolling sub-strategies briefly. In the following subsections, 
we will explain each strategy with more implementation details.  

 
4.1  Caching Strategy 
 
Many research groups (Bradski, 2000; Sugawara, Kazama, & Watanabe, 2004; Lerman & Galstyan, 
2002), including ours (Balch & Arkin, 1994), have studied foraging behavior in robotics. In the caching 
simulation, one robot is required to store the scattered resources in safe locations. Figure 3(b), illustrates 
the high-level FSA model. To implement the caching behaviors, we used several robot behaviors: 
Wander, GoTo, DetectObject, PickUpObject, and DropObject. Detailed explanations of each behavioral 
state and trigger are shown in Appendix A. 
   With these states and triggers, the squirrel robot’s caching strategy was implemented in simulation. 
Figure 3 illustrates MissionLab implementation of squirrel robot’s caching behaviors. First, the robot 
wanders around searching for food items. When the robot detects a food item during foraging, it is picked 
up. Each food item has yellow mark; therefore, by detecting yellow objects, the pick up behavior is 



triggered. After picking up the item, the robot selects the caching location to store this item in based on a 
pre-defined probabilistic distribution. Probabilities of each caching location indicate how often the robot 
visits each particular location. If the probability of the location is higher than the others, it indicates that 
the robot will cache more food items in this location. When the simulation includes k caching locations, 
we set the probabilities p1, p2, …, pk arbitrarily with the sum of p1 to pk equal to 1.  
     To select the next caching location for a newly acquired item according to this pre-defined 
probability distribution, a weighted roulette wheel algorithm is used (Holland, 1992). This probabilistic 
transition model between behavioral states has been previously used successfully in developing models of 
wolf pack predation in our laboratory (Madden, Arkin, & McNulty, 2010). After selecting the specific 
caching place out of several choices, the robot moves to the selected location and drops the item there. 
The robot repeats this strategy until the “enough food cached” (a predefined parameter) trigger is 
activated in any caching location. 
 

 
 

Figure 3.  Finite State Acceptors for squirrel robot’s food storing strategy in MissionLab  
(implementation for simulation studies) 

 
4.2  Protection Strategy 
 
  4.2.1 True Patrolling Strategy 
 
After caching is complete, the robot begins to patrol between the caching locations to protect the 
resources. The behaviors of the robot include goal-oriented movement, selecting places, and waiting 
behavior (Figure 3c).  
     Initially, the robot employs the true patrolling strategy by selecting one of the true patrolling 
locations. To select the patrolling location, the trigger calculates which of the many caching locations the 
robot should patrol. The calculation results in a random cache selection based on the transition 
probabilities among the places. Again, we used the probabilistic transition model as in the caching 
behavior. In patrolling, the transition probabilities are first determined by the number of previously 



cached items.  If a place has more items, the probability that a robot will visit that location is higher. 
Therefore, the transition probabilities are calculated by the following equation: 

Pij =
# itemsj
# itemsk

1≤k≤n,k≠ j
∑

    
 
Here, Pij is the transition probability that indicates that the location j is selected as the next patrol location 
when the current location is in location i. n is the total number of locations and #itemx indicates the 
number of food items in location x. The next patrol state is determined based on these transition 
probabilities. When the squirrel robot reaches a cache, it calculates the transition probabilities to other 
patrolling locations and decides on one of the transitions using a weighted roulette algorithm (Holland, 
1992; details can be found in Appendix B). When a robot arrives the cache, it remains there for a finite 
amount of time similar to the patrolling behavior of an actual squirrel. In the true patrolling strategy, the 
time spent at the cache is determined by the number of food items in that place. If a place contains n food 
items, the robot stays there for n seconds. At the end of the waiting phase, the robot selects the next 
patrolling location using the probability transition model discussed above and heads off to the next 
patrolling state.  
 

         
Figure 4.  Finite State Acceptors for squirrel robot’s patrolling strategy in MissionLab 

(implementation for real robot experiments) 



 

Figure 4 illustrates the MissionLab FSA implementation of a squirrel robot’s patrolling strategy. This 
FSA was used for the real robot experiments. Due to the limitations of lab space, we used two true 
caching locations and three deceptive caching locations. Therefore, as shown in figure 5, in the true 
patrolling part, the robot moves back and forth between two locations, and, as a result, we don’t have to 
use the probabilistic transition model here. When the robot detects the competitor robot, which has an 
orange marking, it transitions to the deceptive patrolling strategy. Here, we set three deceptive locations, 
and the transitions among these three locations are determined by the transition probabilities model that 
were explained above. Further details of deceptive patrolling strategy will be discussed in the next 
section. 

 
4.2.2 Deceptive Patrolling Strategy 
 

When the squirrel robot detects the presence of a competitor, deceptive behavior is triggered and the 
squirrel robot patrols the false (empty) caching locations to attempt to deceive the competitor. All objects 
and robot agents are marked by specific colors. Therefore, in our implementation, the deceptive patrolling 
strategy is activated by the DetectColorBlob trigger. In the deceptive patrolling strategy, the squirrel robot 
moves to and stays among the different deceptive caching locations. These locations actually include no 
food items, and the squirrel robot tries to mislead the competitor robot by visiting these false places. 
Again, the selection of deceptive locations is also calculated by transition probabilities. Here, the 
transition probabilities among the false locations are set as uniform distributions. In other words, the 
probabilities of each location are distributed equally. 
 As shown in Figure 4’s deceptive patrolling part, the squirrel robot selects one deceptive caching 
location among several places based on transition probabilities. When the robot arrives in the deceptive 
caching location, it stays there for a while (time to stay is empirically set) to show the deceptive patrolling 
behavior to the competitor. After patrolling, it again determines the next deceptive patrolling location and 
repeats the patrolling behaviors.  When the competitor robot is no longer detected in the vision of 
squirrel robot, the end of deception trigger is activated and it returns to the true patrolling strategy.  
 
 
4.3  Competitor Robot Behavior 
 
A competitor robot has a simple strategy in the current scenario (Figure 5), where it wanders around the 
map to try and find the squirrel robot. When it detects the quarry, it determines whether it is at a potential 
caching location or not, by observing how long the squirrel robot stays in place. Since the squirrel robot 
takes time to patrol the caching place proportional to the number of food items, the competitor robot 
obtains evidence of the caching area based on the robot’s time onsite. Therefore, if the duration is over a 
threshold, set empirically, the competitor robot recognizes the place as a caching area. The competitor 
robot then goes to the detected location and pilfers. In our robot implementation, in the pilferage step, the 
competitor robot confirms whether the detected location truly contains the items by discriminating food 
items based on the colors. If it confirms the caching location, it sends the alert message to the system that 
it has found the cached item. If it determines the location doesn’t include the caching item, it returns to 
“wander” state and repeats the detecting process again. Figure 5 shows the FSA of the competitor robot in 
the real robot experiment. As shown in this figure, the robot used GoTo, Wander, MoveTowardObject, 
Detect, and Alert behaviors for the competitor robot’s strategy.  
 
 



 
Figure 5.  Finite State Acceptors for competitor robot’s hunting strategy in MissionLab  

(implementation for real robot experiments) 
 
 

5. Experimental Results2 

To evaluate our deception algorithm, several experiments were performed both in simulation and with 
real robot systems. For the simulation results, the algorithm was implemented in MissionLab as shown in 
Section 4 and the performance of the algorithm evaluated by comparing the competitor robot’s cache 
pilferage times with and without the squirrel robot’s deception capabilities. Real robot experiments were 
also performed. First, we tested whether the algorithm is successfully applied to the robot system in a 
simple scenario. In addition, we evaluated the performance of robot’s deception capabilities in the real 
world system by observing whether and how often the competitor robot is deceived by the squirrel robot.  
 
5.1 Simulation Results 
 
A simple scenario of the squirrel-like deceptive behavior was simulated in MissionLab. The simulation 
environment is shown in Figure 6. Yellow-colored food items were randomly placed around the map. In 
this simulation, the robot detects these food items by discriminating colors. Three caching places and 
three empty places were chosen arbitrarily.  
     First, the robot finds a food item and stores it in the pre-defined caching places as shown in Figure 
6a. When the number of the cached items is over a threshold for any of the caches, the state of the robot 
switches to cache protection. If a competitor is not present, it patrols the true caching locations (Figure 

                                                             
2  Experiment videos are available at: http://www.cc.gatech.edu/ai/robot-lab/hunt/squirrelProject.html 



6b) Otherwise, the deceptive patrolling strategy is activated, and the robot moves to the empty caching 
places (Figure 6c). 

  To evaluate the approach, the performance was evaluated by measuring the time duration until the 
competitor robot detects the true caching places and begins pilfering. The same scenarios without 
deceptive behaviors formed the baseline. Comparing the baseline results to the measured time when 
deception is active, serves as an evaluation of its effectiveness. The simulation was run 30 times per each 
condition: with and without deceptive behaviors. 
  

    
(a) 

   
                     (b)                                             (c) 

Figure 6. Simulation Results. (a) Caching, (b) True patrolling, (c) Deceptive patrolling strategies 
 
In each trial, all the other conditions except deceptive behaviors are 
the same. Even though the number of cached items varies in each 
trial, it maintains the same two conditions - with and without 
deceptive behaviors. Table 2 and Figure 7 show the simulation 
results. The average time to successful pilferage when the squirrel 
robot includes deceptive behavior is 10.4 minutes (std: 3.04), 
compared to the average time duration without deception is 7.69 
minutes (std: 2.91). The statistical analysis yielded 0.0009 p-value 
(< 0.05) with the Student’s t-test, a significant difference between 
the results of the two conditions. 
 
  

 

Figure 7. Average time to pilferage 



 
 
5.2  Robot Experiment Results 
 
From the simulation results, we proved that our algorithm for robot deception is beneficial in resource 
protection situations. To evaluate the algorithm further, we also ran real robot experiments. This 
experiments consisted of two phases. In the first phase we aimed to evaluate whether the squirrel robot’s 
deceptive behavior was properly applied to the real robot system. In the second phase, we added a more 
complex competitor robot to the experiment and observed whether the competitor robot is truly deceived 
by the squirrel robot’s deception behavior. 
     We used two pioneer robots for the robot experiment: one as a squirrel robot and the other played 
the role of a competitor robot. The squirrel robot used an additional camera sensor for detecting the 
competitor robot and the caching locations (Figure 8). The external omni-directional camera enabled the 
squirrel robot to observe 360° views of the scene. We used Kumotek Robotics’ omni-directional sensor 
with a Chameleon CCD camera3. 
     The experimental environment was set up as shown in Figure 8. The blue baskets indicate the true 
caching locations for the resources, and the yellow cones represent the empty caching locations. Both 
robot experiments contain simple scenarios for testing the deceptive cache protection strategies, omitting 
the caching strategies. In other words, we assume that resources are already cached in the two true 
caching locations (positions of blue baskets).  
 

 
Figure 8. Robot Experiment Layout 

 
 

                                                             
3  Omni-directional Sensor: Kumotek’s VS-C450MR-TK standard model http://www.kumotek.com/ 
   Chameleon CCD camera from Point Grey: http://www.ptgrey.com/products/chameleon/ 

Table 2. Simulation results of first ten of 30 trials: time duration until competitor successfully 
pilferages resources in contexts; (a) with deceptive behaviors and (b) without deceptive behaviors. 
(Measurements given in minutes). 
 

     Traits              
Deception    

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
9 

 
10 

(a) With 8.76 12.73 5.92 9.25 12.33 10.24 10.97 7.8 15 11.79 
(b) W/O 6.79 7.80 10.82 3.13 5.42 11.02 12.03 6.08 5.83 8.48 



5.2.1 Robot Experiment Phase 1 
 
In phase 1, we intended to test whether our deception algorithm was successfully applied to the real robot 
system. During this experiment, the squirrel robot patrolled true caching locations to observe the cached 
items. Since there were two caching locations in this simple scenario, the squirrel robot conducted back-
and-forth movements in this states (Figure 9a-c). During patrolling, the competitor robot was teleoperated 
to approach the squirrel robot. An orange-colored ball was mounted on the competitor robot, since the 
squirrel robot discriminated objects based on colors. According to the algorithm, the squirrel robot should 
change its behavior to deceptive patrolling when it detects the competitor robot.  
     As figure 9 shows, we observed that the algorithm is successfully working in this simple 
experimental scenario. At the end of scenario, the squirrel robot detected the competitor (Figure 9d-f), 
where it changed it true patrolling to deceptive patrolling. It started to move to the empty caching 
locations, and repeated these behaviors until the competitor robots left the area (Figure 9g-i). 
 
 

       (a)                                  (b)                                (c) 
         GoTo Cache 1       Patrol Cache 1         GoTo Cache 2 

 
      (d)                                 (e)                                 (f) 

          GoTo Cache 1 & Competitor Approaching         Detect competitor                     Change Behavior 
 

       (g)                                 (h)                                 (i) 
         Start Deceptive Behavior          GoTo Empty Cache 1       Patrol Empty Cache 1 

 
Figure 9. Robot Experiment Scenario:  

(a)~(c) True Patrolling, (d)~(f) Competitor Detecting, (g)~(i) Deceptive Patrolling strategies 
 
 
 
 
 

 

 

 



5.2.1 Robot Experiment Phase 2 
 

In phase 1 we confirmed that our deception algorithm is working properly using teleoperation of the 
competitor. However, the more important evaluation is whether the algorithm is effective in deceiving 
other robots, as shown in simulation, i.e., we have to test not just the algorithm, but the performance of 
this deceptive capability.  
     Now, it was required to design the competitor robot’s general behavior for pilfering. In the first test 
phase, the experimenter teleoperated the competitor robot as it only needed to approach the squirrel robot. 
For realizing an autonomous (not teleoperated) competitor robot, we designed and implemented a new 
FSA and behaviors. 
     Figure 10b illustrates the behaviors of the competitor robot in these robot experiments. As shown 
here, the competitor robot wanders around the lab environment until it detects the squirrel robot. When it 
detects the squirrel robot, it observes the squirrel robot’s location and determines whether the squirrel 
robot stays at a certain position for a while. If the squirrel robot’s location does not change during the pre-
defined time period, the competitor robot determines the squirrel robot is currently patrolling a cache, and 
proceeds to that location. This pre-defined time period is empirically determined and set by experimenter. 
If the competitor determines the other robot is not patrolling, the competitor robot goes back to the 
wander behavior and repeats the above behaviors. 

 
 
  
Detection Signals from Vision Server 
Boolean isBlobDetected  true if the pre-defined blob is detected 
Boolean isOverThreshold true if the blob stays in one location 

over threshold time 
Float[] blobLocations  Blob location (x,y,z) 

 
 
 

(a) Robot System Architecture and Signals 
 
 

 
   
 

(b) FSA for the Competitor Robot 
Figure 10. Competitor robot system designs for the robot experiment phase 2 

 
 
 
  

  
 
 

  
 

    Figure 11. Competitor robot detects         Table 3. Pre-defined Color Data 
        the squirrel robot and approaches 

Object Assigned Color 
Competitor Robot Orange 

Squirrel Robot Light Green 
Caching Location Blue 



     For this experiment, the competitor robot also used the external camera as a vision sensor. As 
shown in Figure 10a, this external camera enabled the competitor robot detected the squirrel robot by 
sending detection signals. The competitor robot’s vision system discriminates the squirrel robot using pre-
defined colors (Table 3). We assigned orange to the competitor robot and light green to the squirrel robot, 
by placing green cones on the squirrel robot and an orange ball on the competitor robot (Figure 11).    
     The vision server continuously receives images from the camera sensor, discriminating the blobs 
and determining their locations using the OpenCV color-blob detection algorithm (Bradski, 2000). When 
the vision server detects a blob (isBlobDetected = true) and determines the location, it compares the 
current location to the detected blob’s location and determines how long this blob stays in the same 
location. If the time to stay in the same location is larger than the pre-defined threshold, the server 
determines that the squirrel robot is patrolling and sends this information to the competitor robot’s main 
server (isOverThreshold = true). In our test, we set this pre-defined threshold as three seconds 
empirically. The environmental settings and the behaviors of the squirrel robots were the same as those 
for the first phase. 

To test the performance of the deception algorithm, we measured how often the squirrel robot 
successfully deceived the competitor robot in this scenario. In the experiment, the squirrel robot and the 
competitor robot ran based on their FSA and behaviors as explained above. The competitor robot was 
declared to have successfully pilfered the cached items if it found the true caching locations within the 
specific time period, t. This experiment time t is one of the independent variables and it ranged from one 
to ten minutes.  In each trial, we ran the experiment five times and observed how many times the 
competitor robot successfully pilfers the true locations for all 5 runs. Thus, the maximum successful 
pilfering can be five in each case. The experiments were performed under two different conditions; the 
squirrel robot with deceptive capabilities and the squirrel robot without deceptive capabilities (another 
independent variable). The results are shown in Table 4.   
 

         min 
deception 1 2 3 4 5 6 7 8 9 10 

(a) With 0 2 2 3 5 5 5 5 5 5 
(b) Without 0 2 5 5 5 5 5 5 5 5 

 
Table 4. Robot experimental results: number of successful pilferages (out of five) in each time period  (a) with 

deceptive behaviors and (b) without deceptive behaviors 
 

As the time allowed increases, the number of successful pilferages also increases and converges to the 
maximum pilferage number, five. Based on this convergence rate, the performance of the algorithm can 
be evaluated. Faster convergence to the maximum pilferage number indicates that the algorithm enables 
the competitor robot to find the true caching locations more easily and more rapidly. In other words, 
slower convergence rates illustrate that the squirrel robot can protect resources longer and better. 
     To determine the convergence rate, we plotted the experimental results as shown in Table 5. By 
observing the plot, we formulated the estimation graph of each result with the following equation, 
𝑦 = 𝛼 + 𝛽 ∙ 𝑒!". This function is calculated using a non-linear least-squared regression method. 
     The graphs in table 5 show the results from the experimental data and their estimation functions. 
Column (a) includes the experimental results when the squirrel robot uses deception. In contrast, column 
(b) illustrates the results without deceptive behaviors. The green lines show the original experimental 
results, which are the number of successful pilferages (out of five) for each time period, t. The red lines 
indicate the regression functions for convergence. The figure also includes the exponential equations and 
the computed convergence rate.  
 



 (a) With Deception (b) Without Deception 

Results 

 

 

 

 
Est. Eq. y = 5 – 12.86 exp(-0.9x) y = 5 – 8.06 exp( -0.45x) 

Conv. rate -2.2188 -1.1035 
 

Table 5. Experimental Results Analysis: the graphs, estimation functions, and convergence rates of the results 
 

   In the exponential function, 𝑦 = 𝛼 + 𝛽 ∙ 𝑒!", the convergence rate depends on the exponentiation, 
parameter c. Simply, 1/c can determine the rate of convergence and a larger value of the convergence rate 
indicates a faster convergence speed. As shown in the results from Table 5, the convergence rate of the 
“with deception” condition is -2.2188, which is smaller than the convergence rate under the “without 
deception” condition (-1.1036). Thus, it was observed that the squirrel robot using deception could protect 
the true caching locations longer than without deception capabilities. Therefore, we conclude that our 
deception algorithm is successfully working in the real robot systems.  

6. Conclusions and Future Work 

In this paper, a novel approach was presented for deception in robots, focusing on how to preserve 
resource gains. This approach was inspired from biological findings, i.e., deceptive behaviors of eastern 
grey squirrels during cache protection.  Computational algorithms were developed applying these 
deceptive behaviors to robots. In the evaluation phase, several simulations were run and it was found that 
the deceptive behaviors worked effectively and enabled robots to perform better with than without 
deception. In addition, robot experiments were performed to evaluate whether the algorithm is truly 
applicable to the real robot systems with two pioneer robots. The experiments consisted of two parts: 1) 
applying the algorithm to the robot system and 2) testing the performance of the algorithm with the real 
robots. From the results, we could conclude that the algorithm is successfully applied to the robots and the 
robot’s deception capability works properly to protect the resources in the real robot experiments.  

The current version of our algorithm only addresses a scenario with one deceiver robot and one 
competitor robot (which is a realistic case). However, to be more general, it should include multiple 
autonomous agents. In the foraging strategy, robots may need to determine the probabilistic distribution 
for storage locations based on their safety with respect to resource protection instead of a pre-defined 
distribution. This remains for future work. 

As this research focuses on deceptive behaviors for robots in the military domain, where robots may 
hide and protect resources from humans or other autonomous agents, this deceptive behavior can be 
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beneficial. We will potentially extend our research more towards other more human-friendly 
environments. In this respect, we are exploring robot deception in Human-Robot Interaction (HRI) 
contexts. If a robot acts deceptively in HRI situations, can the deceived human partners obtain an 
advantage, and not just the deceiver? The main hypothesis is whether the robot deception can benefit the 
deceived human partners in Human-Robot Interaction (HRI) contexts. We have already published 
preliminary research in this area (Shim & Arkin, 2013). 

 Providing deceptive behaviors to robots leads to ethical questions, such as whether it is ethical for 
robots to deceive humans for any purpose. We have addressed this topic elsewhere (Arkin, 2011). This 
requires considerable discussion in a broader community, which we actively encourage. 
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Appendix A: Essential States and Triggers in MissionLab 
 

 
 
 
Appendix B: Probabilistic Transition 
 
Transitions based on the existence of probabilities to simulate environmental properties such as number 
of cached items.  

State/Trigger Descriptions 

GoTo 
(parameter: location x, y) The robot is move to the parameterized location (x,y). 

Wander The robot is wandering around the specified map. 

 
State and Triggers for Squirrel Robot 

DetectColorBlob 
(parameter: color)  

This trigger is activated when the vision server detects the parameterized color 
(i.e., isBlobDetected() in the vision server is activated). 

StayUntil The robot stop until n seconds, where n is determined by the number of cached 
items.  

Prob_con 
The robot determines the distribution of transition probabilities of the current 
locations and it is probabilistically likely to select one of the location among 
current places. 

Prob_loc The robot is probabilistically likely to select one of the location among current 
places.  

 
State and Triggers for Competitor Robot 

Prey_found 
(parameter: color) 

This trigger is activated when the squirrel robot is detected from the vision server. 
This trigger is the modification from DetectColorBlob trigger. 

Notified_ObjectLocation When the competitor robot receives the location information of the detected prey 
from the vision server, it processes to the next step. 

Exceed_Threshold 
(parameter: time) 

If the maintaining time of the notified object is over the parameterized time (i.e., 
isOverThreshold() in the vision server is activated), this trigger is activated. 



First, Pij is the transition probability that indicates the location j is selected as the next patrol location 
when the current location is in location i. In addition, n is the total number of locations and #itemx 
indicates the number of food items in location x. 

Pij =
# itemsj
# itemsk

1≤k≤n,k≠ j
∑

     - (1)

 

 
 

Based on the determined probabilities, a weighted roulette wheel algorithm is applied to decide the 
next transition. Using the transition probabilities, the proportion of the wheel is assigned to each of the 
possible selections. Then, if the randomly generated number is fitted to one of the proportion, it decides 
as the next transition: 

 
R = random number between 0 and 1      

 

NextLocationi =
Location1 , R < Pi1
Location2 , R < Pi1 +Pi2
!

!

"
##

$
#
#     - (2) 

 
 
Appendix C: Parameters used in the real robot experiments 

 
Squirrel Robot’s parameter setting in MissionLab 
Move_to_location gain 0.9 
Wander_gain 0.0 
Avoid_obstacle_gain 0.9 
Avoid_obstacle_sphere 0.7 
Avoid_obstacle_safety_margin 0.2 
Max_velocity 1.5 
Base_velocity 1.5 
 
Competitor Robot’s parameter setting in MissionLab 
Move_to_location gain 0.9 
Wander_gain 0.5 
Avoid_obstacle_gain 0.9 
Avoid_obstacle_sphere 0.7 
Avoid_obstacle_safety_margin 0.2 
Max_velocity 1.0 
Base_velocity 1.0 

 
 


