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Lawrence W. Rehfield and Erian A. Armanios 

il_ftf/ 
I ::J ~· I 

This report covers the research work performed under Grant 
NAG-1-637 for the period starting February 1986 and ending August 
1986. The work described herein was performed at the School of 
Aerospace Engineering, Georgia Institute of Technology. The research 
objectives are: 

(1) Develop an analysis of a symmetric edge delamination 
specimen including residual strain effects due to 
temperature and moisture; 

(2) Compare predictions with those of Ref. 1 for the example 
cases; 

( 3) Deve 1 op an ana 1 ys is for de 1 ami nation in tapered specimens; 
and 

( 4) Create appropriate computer programs and documentation for 
the NASA Langley Research Center. 

In re 1 at ion to the first objective, the computer code for the 
edge delamination (ED) analysis without residual strains has been 
modified to deal with hybrid laminates (plies of different materials). 
The code has been exercised through comparison with the finite element 
results provided by NASA Langley. A complete validation stu~y of this 
version is underway. 

The sublaminate analysis of the ED specimen is modified to 
include residual strain effects. The governing equations have been 
established. They are being checked before including them in the 
computer code. 

An equ i 1 i br i urn ana 1 yt i ca 1 mode 1 has been deve 1 oped for tapered 
specimens. The i nterl ami nar stresses predicted by this mode 1 have 
been validated through comparison with the finite element results of 
Ref. 2. The tot a 1 energy re 1 ease rate wi 11 be compared with the 
recent simple analysis method of Ref. 3. 

Final results for the tapered specimens and residual strain 
effects in the ED specimens are expected at the end of the year grant. 
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This report covers the research work performed under Grant 
NAG-1-637 for the period starting August 1986 and ending February 
1987. The work described herein was performed at the School of 
Aerospace Engineering, Georgia Institute of Technology. The research 
objectives are: 

( 1) Develop an analysis of a symmetric 
specimen including residual strain 
temperature and moisture; 

edge delamination 
effects due to 

( 2) Compare predictions with those of Ref. 1 for the ex amp 1 e 
cases; 

(3) Develop an analysis for delamination in tapered specimens; 
and 

( 4) Create appropriate computer programs and documentation for 
the NASA Langley Research Center. , 

The first objective is completed. A computer program and 
documentation has been developed based on the analysis. The code has 
been checked and the second objective is under completion. A summary 
paper describing the analysis and the validation study through 
comparisons with the results of Ref. 1 will be sent to the technical 
monitor for his review. Also a computer tape will be provided to run 
cases of interest. 

The total energy release rate analysis for the t~pered specimens 
is underway. This represents the final phase of work associated with 
the third objective. A validation study of the analysis will be 
performed by comparison with the results of Ref. 2 and other available 
test cases. 

I~~, 
I . 



In analyzing the ED specimen, emphasis is given to the evaluation 
of the total energy re 1 ease rate as we 11 as the energy re 1 ease rate 
components. Based on these modal components, the onset and growth of 
edge delaminations can be predicted using an appropriate fracture law. 
The present analysis provides also estimates of the interlaminar shear 
stress distribution ahead of the delamination front. These distribu
tions can be sensitive to hygrothermal conditions. A preliminary 
assessment of hygrotherma 1 conditions on inter 1 ami nar stresses has 
been performed and the results are summarized in the following. 

Effect of Hygrothermal Conditions on Interlaminar Stresses 

To investigate the influence of residual and moisture conditions 
on interlaminar stresses, the case of [35/-35/0/90]s, [35/0/-35/90]s 

and [0/35/-35/90] ED specimens are considered. The specimens are s 
subjected to a mechanical strain of 0.00254 at a room temperature of 
70°F. The specimens are made of T300/5208 graphite/epoxy material 
with a cure temperature of 350°F. The moisture weight gain is 0. 6 
percent. The material properties are those of Reference 1. A 
comparison of the interlaminar shear stress (ayz) distributions is 
presented in Figures 1-3. Labels M, M+T and M+T+H denotes Mechanical, 
Mechanical and Thermal and Mechanical, Thermal and Moisture effects, 
respective 1 y. For the 1 ayups considered M+ T and M+ T +H di stri buti ons 
are indistinguishable at this level of moisture weight gain. In 
contrast, the shape of oyz distribution ahead of the delamination 

front is drastically changed due to thermal effects as well as the 
maxi mum va 1 ue at the crack front. The maxi mum shear stress due to 
hygrothermal effect is 3.20, 3.25 and 3.35 times the mechanical shear 
stress at the crack front for the first, second and thi r'd, 1 ayups, 
respective 1 y. This is due to the fact that hygrotherma 1 r~s i dua 1 
stresses produce cons i derab 1 e mismatch between the effective therma 1 
and moisture expansion between the upper ply units and the 90 ply in 
each layup. 

A similar finding is presented in Reference 3 for a bidirectional 
graphite/epoxy laminate subjected to a mechanical strain £=0.01, with 
a temperature differential from cure temperature to test temperature 
of -243°F (-ll7°C). The laminate layup is [03/903]s. Moisture 

effects were not considered in this work. The ratio of the maximum 
peel stress (azz) due to thermal residual stress is 2.8 the mechanical 
stress as shown in Fig. 4 of the Reference. 



Closing Remarks 

Residua 1 stresses due to fabrication and moisture can have a 
significant influence on the interlaminar stress distribution at the 
delamination front. Preliminary results on their effect on the total 
energy re 1 ease rate and the energy re 1 ease rate components show a 
similar trend. The interlaminar stress increase associated with 
hygrothermal effects can lead to premature failure and should be 
considered in the design stage. The present study points to new 
directions and inquiries. For example, the cases of nonuniform 
di stri buti on of moisture through-the-thickness and the variation of 
ambient temperature with the laminate thickness. In this situation, 
the hygrotherma 1 gradients through-the-thickness may create an un
balance effect in an originally balanced construction. This addi
tion a 1 cons ide ration shou 1 d be accounted for spec i a 11 y for aerospace 
structural components subjected to a large temperature difference 
between their upper and lower surfaces. 
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NASA GRANT NAG-1-637 
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This report covers the research work performed under Grant NAG-1-637 for 

the period starting February 12, 1987 and ending August 11, 1987. The work 

described herein was performed at the School of Aerospace Engineering, Georgia 

Institute of Technology. The research objectives for the first year were: 

(1) Develop an analysis of a symmetric edge delamination (ED) specimen 

including residual strain effects due to temperature and moisture; 

(2) Compare predictions with those of Reference 1 for the example cases; 

(3) Develop an analysis for delamination in tapered specimens; and 

( 4) Create appropriate computer programs and documentation for the NASA 

Langley Research Center. 

The research objectives for the second year are: 

(1) Extend the sublaminate analysis for the delamination in tapered 

specimens to predict the energy release rate components under tensile 

loading; 

(2) Develop an analysis for the delamination in tapered specimens 

subjected to bending loading; 

(3) Develop an analysis for isolated, internal ply cracks; 

(4) Compare predictions in (1), (2) and {3) with available results in the 

literature or with finite element simulations; 



( 5} Create appropriate computer programs and documentation for the NASA 

Langley Research Center. 

A summary of the first year program is presented first. This is followed 

by the work accomplished to date for the second year and a discussion of some 

issues regarding the influence of residual thermal and moisture strains on the 

energy re 1 ease rate and the discrepancy between the results of this research 

work and those of Reference 1. 

Summary of First Year Progress 

The objectives of the first year focused on two geometric configurations, 

the edge delamination specimen and the tapered specimen. A simple analysis 

methodology predicting the interlaminar stresses in a tapered configuration was 

deve 1 oped. The predictions of the method are in good agreement with a finite 

element simulation. 

The influence of residua 1 therma 1 and moisture strains on inter 1 ami nar 

stresses and tota 1 energy re 1 ease rate in the edge de 1 ami nation specimen was 

studied. Of major importance are the findings that: (1} the interlaminar stress 

distribution and total energy release rate are sensitive to hygrothermal 

conditions; (2} residual moisture strain tends to alleviate the thermal 

influence for both the interlaminar stresses and total energy release rate; and 

(3) the moisture content producing complete alleviation from the thermal effect 

is the same for the total energy release rate and interlaminar stresses. While 

the first two findings are in agreement with the results of previous 

investigators 1 , 2 the third finding is new. It establishes a similarity in 

behavior between a de 1 ami nation ana 1 ys is expressed in terms of the energy 

release rate 3 and the strength approach 4 expressed by the interlaminar stresses. 



An illustration of these findings is provided in Figures 1-3. The 

influence of hygrothermal condition on the interlaminar shear stresses Tyz and 

Txz and total energy release rate appears in Figures 1 and 2. The labels M, M+T 

and M+T+H in the figures stand for mechanical, mechanical and thermal and 

mechanical, thermal and moisture, respectively. The material considered is 

T300/5208 graphite/epoxy. Its materia 1 properties are those of Reference 1. 

The cure temperature for this material is 350° F while the operating temperature 

is 70° F. The moisture weight gain percent is 0.4 in Figure 1. The mechanical 

strain is 0.00254 which represents a practical value for this material. In 

Figure 2, the moisture level for total alleviation of the energy release rate 

from thermal effects is 0.76 for a [-35/55/10/-SO]s layup with delamination at 

the 55/10 interface. 

A comparison of the interlaminar shear stresses at this level of moisture 

with the case of mechanical loading alone appears in Figure 3. It is seen that 

a level of moisture of 0.76 results in the total alleviation of the interlaminar 

shear stresses also. The same conclusion is reached studying eight other 

1 ayups. 

Second Year Progress 

Due to the discrepancy between the results of the hygrothermal effects on 

the ED specimen mentioned earlier, an extensive investigation has been performed 

in order to resolve the disagreement. A study of the computer program and the 

details of the analytical method used in Appendix A of Reference 1 clarified 

these differences. The computer program and the analytical expressions used in 

Reference 1 were provided at our request by Donald Garber of Kentron 

International Inc. A description of our findings is given in the following 

section. 



Hygrothermal Effects on Interlaminar Fracture 

Some de vi ati on from the proposed research p 1 an has been made due to some 

unanticipated findings. In attempting to correlate our new delamination 

analysis 5 results for test cases analyzed previously at the Langley Research 

Center 1 , we found discrepancies. A thorough investigation revealed that there 

is a fundamental mistake in the equations appearing in Appendix A of Reference 

1. The strain energy is defined in Equation (A 1 ) of the Appendix as: 

U = -2
1 J £ .• a .. dV , J 1J 

v 
(1} 

where the stress tensor for a given p 1 y is defined as the product of the 

transformed reduced stiffness matrix and the mechanical strain of the ply. The 

strain tensor however, is taken to be the total strain rather than the 

me chanica 1 strain. Due to this error the expressions for strain energy and, 

hence, strain energy release rate are incorrect. As a result, the conclusions 

drawn and the fundamenta 1 nature of the process are actua 11 y different than 

those presented in Reference 1. This situation is depicted in Figure 4 where 

the variation of the energy re 1 ease rate with moisture percentage content is 

shown for a [35/-35/0/90]s layup with delamination at the 0/90 interface. The 

agreement is good for the case of mechanical loading. When hygrothermal effects 

are included however, there is a difference in the distribution as well as the 

numerical values. The moisture content corresponding to total alleviation from 

thermal effects is close for both predictions. 

In the course of i nvesti gating the discrepancy, it was found that an 

analysis by Whitney6 for a Mode I example agrees with our predictions for the 

same analysis. Whitney's analysis is considered to be correct, so this provides 

important substantiating evidence. 

Additional substantiating evidence is expected from analysis results to be 

provided by Dr. Wen Chan of Bell Helicopter Textron Inc. The test case 



represented by results in Fig. 3 of Reference 1 will be independently reanalyzed 

by Or. Chan at our request. 

As a result of the above unanticipated problem, in the first six months 

work on tapered specimen analysis has been deferred. 

Progress has been made in modeling the situation caused by isolated trans

verse cracks in laminates. A description of our preliminary work follows. 

Analysis of Progressive Damage Initiated by Isolated Ply Cracks 

Considerable attention has been devoted to transverse matrix microcracking 

for first generation brittle epoxy matrix composites. One characteristic that 

has been documented is the crack characteristic spacing or, conversely, crack 

density. In the usua 1 characteristic damage patterns, the intercept of trans

verse cracks with neighboring ply surfaces often serve as sites for the initia

tion of delamination cracks. As delamination cracks isolate individual plies 

and sublaminates, failure of the isolated units by fiber fracture occurs in the 

terminal stages of the process. Currently, we are concerned with modeling and 

analyzing the early stages of the process through the onset of delamination. 

There is no consensus on methods for predicting transverse cracking. A key 

assumption has been utilized in creating our analysis methodology. It is that 

matrix microcracking is predicted by strain level only. This is valid for 

damage characteristic dimensions greater than a ply thickness. For damage on a 

smaller scale, fracture mechanics concepts and means for detecting sub-ply 

microcracks are required. For most purposes, strain level predictions are quite 

satisfactory. 

A model for an isolated ply crack has been created. We call it the Mem

brane Ply-Sublaminate Model. The analysis is quite simple to perform as local 

bending of the modeling units is neglected. 



The isolated cracked ply of a laminate under tensile loading causes a 

redistribution of loading locally. The axial stress at the crack surface of the 

cracked ply drops to zero. The interlaminar shear stresses are very large at 

interply surfaces on either side of the cracked ply and tend to decay away from 

the crack front. As load is again picked up by the cracked ply through shear 

transfer, it approaches the original level, which was sufficient to produce the 

original crack. Consequently, a characteristic pattern of periodic cracks is 

produced. 

The next phase of the damage process is the onset of delamination at the 

intercepts of the transverse cracks with neighboring plies. For the onset of --
delamination, it seems that the strain energy release rate can be predicted on 

the basis that the cracks are isolated. This is because they are situated at 

the shear stress decay distance apart. 

A stress analysis based upon our Membrane Ply-Sub laminate model has been 

performed. For the case analyzed, a [0,90]s laminate of AS/3501 graphite-epoxy, 

the predicted transverse crack spacing is 1.160 mm. The average va 1 ue of 

measured crack spacings for this configuration is 1.131 mm as determined by 

Reifsnider. Consequently, at least to this extent, our model appears very 

promising. 

An energy release rate analysis is underway. After it is completed and 

validated, a correlation study with experimental data in the literature will be 

performed. At a later time, an extensive finite element, numerical correlation 

may be undertaken. 
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Overview 

This report covers the research work performed under Grant 

NAG-1-637 for the period ending February 28, 1989. A detailed de

scription of the fracture analysis of transverse crack tip delaminations 

is presented in the following sections. This work was performed 

during the first six months of the grant period and has been accepted 

for presentation at the 30th Structures, Structural Dynamics and 

Materials Conference (Mobile, Alabama, April 1989). The following 

sections are adapted from the aforementioned paper. 

Abstract 

Delamination is a predominant failure mode in continuous fiber 

reinforced laminated composite structures. One type of delamination 

is the transverse crack tip delamination which originates at the tip of 

transverse matrix cracks. An analytical model based on the sublami

nate approach and fracture mechanics is developed in this paper to 

study the growth of such delaminations. Plane strain conditions are 

assumed and estimates are provided for the total strain energy release 

rate as well as the mode I and mode II contributions. The energy re

lease rate estimates are used in combination with a simple failure law 

to predict critical delamination growth strains and stresses. These 

predictions are compared with experimental data on T300/934 

Graphite Epoxy [±25/90n1s laminates in the range n=.5 to 8. A good 

agreement is demonstrated for the range of n where the experimental 

observations indicate transverse crack tip delamination to be the pre

dominant failure mode. 
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Introduction 

Fiber reinforced composites are now being used in a wide variety 

of engineering structures. The concept of directional strength and 

stiffness has been, for the most part, understood sufficiently to enable 

efficient load bearing designs. One of the current major issues in 

composite structures is the understanding and prediction of damage 

modes and failure mechanisms. A thorough knowledge of the failure 

mechanisms is bound to lead to the design of efficient and durable 

structures. Failures in these materials often initiate in the form of ma

trix cracks or delaminations. Matrix cracks refer to intralaminar fail

ures· whereas delaminations refer to interlaminar failures. 

Matrix cracks usually occur within laminates where the fibers 

run at an angle to the primary load direction. Hence, such matrix 

cracks are also called transverse cracks. Based on the location and di

rection of growth, two distinct types of delamination can be discerned. 

These two types are called edge delamination and local or transverse 

crack tip delamination. Edge delaminations initiate at the load free 

edges of the laminate whereas local delaminations start from a trans

verse matrix crack. In many cases, both types occur concurrently with 

varying levels of interaction. It has been observed in simple tension 

tests of uniform rectangular cross section specimen (Edge 

Delamination tests) that delaminations initiate along the load free 

edges and propagate normal to the load direction. Transverse matrix 

cracks running parallel to the fibers have also been observed in off axis 

plies such as 90° plies. Such transverse cracks terminate where the 

ply orientation changes. Delaminations can also originate at the inter

faces where transverse cracks terminate. These delaminations, called 
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transverse crack tip delaminations or local delaminations, grow nor

mal to the transverse crack from which they originate. In the case of 

90° plies, the growth direction is parallel to the load. 

The growth process of edge delamin~tions and local delamina

tions is often modelled using a fracture mechanics approach leading to 

the calculation of a strain energy release rate. This is because the 

strain energy release rate can correlate delamination behavior from 

different loading conditions and can account for geometric depen

dencies. The strain energy release rate associated with a particular 

growth configuration is a measure of the driving force behind that fail

ure r:node. In combination with appropriate failure criteria, the strain 

energy release rate provides a means of predicting the failure loads of -

the structure. 

Several methods are available in the literature for analyzing edge 

delaminations. These include finite element modellingl-3, complex 

variable stress potential approach4, simple classical laminate theory 

based techniqueS and higher order laminate theory including shear 

deformations6. Finite element models provide accurate solutions but 

involve intensive computational effort. Classical laminate theory (CLT) 

provides simple closed form solutions and is thus well suited for pre

liminary design evaluation. However, CLT provides only the total en

ergy release rate, and thus, in a mixed mode situation, there is insuf

ficient information to completely assess the delamination growth ten

dency. A higher order laminate theory including shear deformations 

has the ability to provide the individual contributions of the three frac

ture modes while retaining the simplicity of a closed form solution. A 
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shear deformation model is available for edge delamination and has 

been shown to agree well with finite element predictions6. 

·crossman and Wang7 have tested T300/g34 Graphite epoxy 

[±25/g0n1s specimens in simple tension and reported a range of be

havior including transverse cracking, edge delamination and local de

lamination. O'BrtenB has presented classical laminate theory solutions 

for these specimen, demonstrating reasonable agreement in the case 

of edge delamination but with some discrepancies in the local delami

nation predictions. A finite element model combining edge and local 

delaminations has been proposed by Law9. His predictions, however, 

do not fully explain the dependency of the critical strain on the num

ber of goo plies. 

In this paper, a shear deformation model is developed for the 

analysis of local delaminations originating from transverse cracks in 

goo plies located in and around the specimen midplane. Plane strain 

conditions are assumed and thickness strain is neglected. Delamina

tions are assumed t? grow from both ends of the transverse crack tip. 

The transverse cra~k is treated as a free boundary and the delamina

tion is considered to be the crack whose growth behavior is to be 

modelled. The sublaminate approachlO,ll is used to model different 

regions of the specimen. The resulting boundary value problem is 

solved to obtain the interlaminar stresses, total strain energy release 

rate and energy release rate components. Critical local delamination 

growth loads are predicted for [±25/gOn]s specimens. 

Analvtical Model 

The formulation is based on the sublaminate approach detailed 

in Ref. 10. A longitudinal section illustrating the geometry of a generic 
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configuration is shown in fig. 1. The central region is assumed to be 

made of 90° plies with an isolated transverse crack in the middle. 

Delaminations are assumed to grow from both ends of the transverse 

crac.k, and towards both ends as shown. From symmetry considera

tions, only one quarter of the configuration is modelled. The modelled 

portion is divided into four sublaminates as shown in fig. 2. The top 

surface (sublaminates 1 and 4) is stress free. In order to simplify the 

analysis, plane strain conditions are assumed and the thickness strain 

(Ez) is set to zero. ·The consequence of this, combined with the fact 

that the w displacement is zero along the center line, is that w is zero 

in sub laminates 1, 2 and 3. Also, this approximation does not allow for 

the enforcement of boundary conditions on the shear stress resultants, 

leading to incorrect estimates of the inter laminar normal stresses. 

The interlaminar shear stresses, however, are not affected by this as

sumption6.IO. These assumptions lead to considerable simplifications 

in the analysis. In spite of the simplifications, reliable energy release 

rate components can be estimated based on the interlaminar shear 

stress distributions6.IO. 

A generic ·sublaminate is shown in fig. 3 along with the notations 

and sign conventions. The peel and interlaminar shear stresses are 

denoted by P and T, respectively, with t and b subscripts for the top 

and bottom surfaces, respectively. The axial stress resultant, shear 

stress resultant and bending moment resultant are denoted by N, Q 

and M, respectively. A summary of the governing equations is pre

sented in the following paragraphs for convenience. These equations 

are derived for a generic sublaminate using the principle of virtual 

work in Ref.12. 
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The x and z displacements within the sublaminate are assumed 

to be of the form 

u(x,z) = U(x)+z~(z) 

w(x.z) = W(x) 

Here U represents the axial midplane stretching and W is the trans

verse displacement. The shear deformation is recognized through the 

rotation ~- The origin of the coordinate axes for the sublaminates is 

taken at the delamination tip as shown in fig. 4. The equilibrium 

equations take the form 

N.x+Tt-Tb = 0 

Q.x+Pt-Pb = 0 
h 

M,x-Q+2<Tt+Tb) = 0 

(3) 

(4) 

(5) -

where h is the thickness of the sublaminate. The constitutive rela

tions in terms of the force and moment resultants are 

Q = Ass(~+W.x) 

(6) 

(7) 

(8) 

where A~, BtJ and D1J are the classical laminate theory axial. coupling 

and bending stiffnesses, respectively. The boundary variables to be 

prescribed at the sublaminate edges are 

Nor U 

M or~ 

QorW 

Additionally, at the interfaces between sublaminates. reciprocal 

traction and displacement matching boundary conditions have to 

specified. 
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Solution Procedure 

A detailed solution is provided in the Appendix. A summary is 

provided in this section for convenience. The variables are subscripted 

to indicate the sublaminate in which they occur. The solutions in 

sublaminates 1 and 2 are coupled by the reciprocal inter laminar· 

stresses denoted T1 and P1 and by displacement continuity at the 

common interface. Assuming exponential solutions for the axial force 

and bending moment resultants leads to an eigenvalue problem involv

ing the exponential parameter s. The eigenvalues tum out to be 0 and 

two nonzero values (say s1 and s2l occurring in positive and negative 

pairs. Since the response decays from the delamination (crack) tip, 

only the exponentially decaying terms are considered in the solutions. 

The following boundary conditions from the ends of the mod

elled region are enforced. 

N2(0) = 0 

Q4(a) = 0 

~4(a) = 0 

N 1 +N2 = Applied Load 

(9) 

( 1 0) 

( 11) 

(12) 

Further, the following displacement matching conditions are 

applied. 

u1( x.-~1) = uz ( x.~2) 
U1(0) = U4(0) 

U2(0) = U3(0) 

~ 1 (0) = f34(0) 

( 13) 

(14) 

( 15) 

( 16) 

It should be noted that a f32 and f33 matching condition cannot be 

applied at this level of modeling since it would . amount to specifying 

both W and Q6.12. Consequently, there is a displacement discontinuity 
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at the delamination tip. The effect of this will be discussed subse

quently. To eliminate rigid body displacements, U 1 is set to zero at 

the left end. The following solutions can then be obtained for the re

sultants in sublaminates 1 artd 2. 

N1 = a1e5IX+a2e~X+EAII(l) 

N2 = -ales1x-a2e~X+EA11(2) 

M1 = alk1e5 IX+a2k2es2x 

M2 = a1kse5 IX+a21Lte52x 

( 1 7) 

( 18) 

( 19) 

(20) 

The interlaminar shear and peel stresses between sublaminates 1 and 

2 can be obtained from equilibrium as 

T1 =a1s1e5 IX+a2s2es2x 

P1=(k1+ ~1 )ca1s12eslx) 

+( k2+ ~1) a2s22esvc) 

(21) 

(22) 

In the above solutions, the k1 parameters are dependent on the 

eigenvalues and the stiffness of sublaminates 1 and 2, the aJ parame

ters depend on the kt parameters and the crack length a, and e is de

fined as 
p 1 

E-------
- 2b AII(l)+AI1(2) (23) 

where P is the uniform axial force applied on the specimen and b is 

the specimen width. Expressions for the eigenvalues and the aJ and ki 

parameters are provided in the Appendix. 

Proceeding on to sublaminates 3 and 4, the following solutions 

can be written. 

where 

N3 = o 
Ms = <p 1 sinh(rosx)+<p2 cosh(rosx) 

<p2 = a1ks+a2k4, 
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(25) 

(26) 



and 

<p1 = -<p2 coth(ro3a), 

ro --~ 3-~'J~ 

N4 = e (Att(t)+Atl(2)) 

M4 = a1k1+a2k2 

(27) 

(28) 

(29) 

(30) 

The corresponding displacement solutions are provided in the 

Appendix. The compliance of the specimen can be evaluated as 

The total energy release rate, Gr. per crack is then given by 

p2 dC 
Gr= 2b da 

(31) 

(32) 

Use of the previously described solutions leads to the following ex

pression. 

Gr = p2 ( 1 - 1 +I -I ) 
2b2 Att(l) Att(t)+Atl(2) 1 2 (33) 

where the quantities It and I2 contain exponential terms dependent 

on the delamination length. Using the virtual crack closure technique, 

from the relative displacements in the cracked portion and the inter

laminar stresses ahead of the crack tip, the mode I and mode II en

ergy release rate contributions can be obtained. The mode III energy 

release rate is zero from the assumption of plane strain. The mode II 

energy release rate is given by 

0 
lim 1J Gn = 0~0 20 

Tt(x-o)6u(x)dx (34) 

where o is the yirtual crack step size. The result of the limiting pro

cess is zero if there is no singularity in the stress field 10. So, the limit 

is usually taken as the crack step size d tends to a small value, say Ll, 

based on the decay length or the length required to capture the 
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essential features of the stress and displacement fields near the crack 

tip. The decay length is dependent on the eigenvalues s1 and s2. In 

this study, the value of~ has been set to 

~ = .!. (_!_ + _!_) 
4 Sl S2 

(35) 

since it reasonably fulfills the criterion given above. In a similar fash-

ion, the mode I energy release rate can be obtained based on the nor

mal stress (P) and the w displacements near the crack front. The 

normal (peel) stress estimate is inaccurate due to the absence of 

thickness strain. Hence, an alternate approach was used to estimate 

GJ, the mode I energy release rate. The total energy release rate for 

this problem is made up entirely of G1 and Gn (Gni=O). From an esti

mate of Gr and Gn, an estimate for G1 can be obtained simply as 

G1 = Gr-Gn (36) 

The critical load for a given specimen can then be evaluated 

based on an appropriate fracture law. This is illustrated in the follow

ing section. 

Results and Discussion 

The solutions derived in the previous section have been used to 

model the behavior of [±25/90n1s T300/934 Graphite Epoxy specimen 

for n values of .5, 1 ,2,3,4,6,and 8. These correspond to the specimen 

tested by Crossman and Wang7. The specimen width and length were 

fiXed at . 0381 m and . 0 15m, respectively, as in the tests and the ap

plied uniform axial stress was lOOMPa. The solutions were generated 

using a simple computer program based on the closed form expres

sions for the interlaminar stress and energy release rates. 
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An example of the total energy release rate variation with the 

crack length is presented in fig. 5. The asymptotic value of Gr is de

noted by Gro in the figure. It can be observed that after a certain 

crack length. the Gr is independent of the crack length. On the basis 

of curves like the· one shown in fig. 5. the crack length was fixed at 10 

ply thicknesses for the remainder of the study. The dependence of 

the mode II contribution of the energy release rate on crack length (a) 

is depicted in fig. 6. Typical interlaminar shear and normal stress 

profiles are presented in figs. 7 and 8. respectively. The correspond

ing energy release rates have also been calculated and are presented in 

Table I and fig. 9. 

In order to evaluate the critical loads. an appropriate mixed -

mode fracture law has to be applied. based on the calculated energy 

release components. Since the calculated mode split shows only a 

small variation with n. the simple Griffith criterion Gr=Grc has been 

used to scale the stresses to obtain the critical delamination growth 

stress ( cr c) and strain (Ed values. The critical energy release rate Ore 

was chosen as 415 Jjm2 to obtain the critical stresses and strains 

listed in Table I. This value of Ore is larger than G1c to account for the 

presence of mode II and the fact that for the material system under 

consideration, Gne is about four times Gle· The critical strains are 

plotted against n, the number of 90° plies in fig. 10. The experimental 

results of Ref. 7 and the predictions of Refs. 8 and 9· are also pre

sented in the figure for comparison. The predictions of the model de

veloped in this paper are represented by the solid line while the ex

perimental results are shown as filled squares. The classical laminate 

theory and finite element critical strain predictions of Refs. 8 and 9 

11 



are represented by triangles with a connecting line and a dotted line 

respectively. The CLT based model agrees well with the shear defor

mation model in terms of the total energy release rate. However, the 

CLT based model does not provide information on the mode split and 

thus, the value of Gc(=Gid used leads to bias in the predictions. 

In the experiments, the local delamination phenomenon was ob

served as the predominant failure mode . only for the n=4. 6 and 8 

specimens. The shear deformation model presented in this paper 

provides good agreement with the experimental data in this range. 

For n<4, edge delamination either in the mid plane or in the 25/90 

interface was observed in the tests. Hence, the predictions of the lo

cal delamination models in this region are not of consequence as long -

as they do not predict critical loads lower than those predicted by 

edge delamination models. Thus, it can be seen that the shear defor

mation model predicts the observed behavior with reasonable accuracy 

and can be used in conjunction with an appropriate edge delamination 

model to predict critical loads accurately for the complete range of n 

values. The edge delamination model presented in Refs. 6 and 12 can 

be used for this purpose. However, a separate model is required to 

account for the midplane (Mode I) edge delamination behavior. The 

development of such a model is described in Ref. 13. 

Conclusions 

· A shear deformation model has been developed to analyze local 

delaminations growing from transverse cracks in 90° plies located 

around the mid plane of symmetric laminates. The total energy re

lease rate calculations yield the same results as in the case of CLT 

based models. The predictions of the shear deformation model agree 

12 



reasonably with critical strain experimental data from [±25/90nls 

T300/934 Graphite Epoxy laminates. The predicted behavior is such 

that, in combination with an edge delamination model, the critical 

loads can be predicted accurately in the range of n from .5 to 8. 
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Appendix 

Subiamlnate Analysis for Local Delam.inations 

A generic sublaminate is shown in fig. 3 along with the notations 

and sign conventions; The interlaminar normal (peel) and shear 

stresses are denoted by P and T respectively with the t and b sub

scripts for the top and bottom surfaces respectively. The axial force 

resultant, shear force resultant and bending moment resultant are de

noted by N, Q and M respectively. Plane strain conditions are assumed 

to prevail in the x-z plane and the thickness strain Ezz is neglected. 

These assumptions lead to considerable simplification in the analysis. 

The displacements in the x and z directions are assumed to be of the 

form 

u = U(x)+zb(x) 

w = W(x) 

(A.1) 

(A.2) 

Here U represents the axial stretching and W is the transverse 

(thickness direction) displacement. This formulation recognizes 

shear deformation through the rotation J3. The equilibrium equations 

take the form 

(A.3) 
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(A.4) 

(A.5). 

where h is the thickness of the sublaminate. The constitutive equa

tions in terms of the force and moment resultants are 

N = A11U,x+B11J3,x 

Q = Ass(J3+W,x) 

M = B11U,x+D11J3,x 

(A.6). 

(A. 7) 

(A.8) 

where A,B and D are the classical laminate theory axial, coupling and 

bending stiffnesses defmed in the customary manner as 

h/2 

(AtJ,BiJ,Dijl = Jc1J(1,z,z2)dz 
-h/2 

Here, the C:tjS are the material moduli. For the case of plane strain in 

the x-z plane, the Cs are defmed as follows. 

{~:} = [~~~ ~: g ] {~} 
'txz 0 0 Css 'Yxz 

(A.9) 

The boundary quantities to be prescribed at the sublaminate 

edges are 

Nor U 

M or J3 

QorW 

Further, at the interfaces between sublaminates, reciprocity of trac

tions and continuity of displacements have to be enforced. 

The four sublaminates along with the loads acting on each are 

shown in fig. 4. Setting P1 and T1 as shown automatically satisfies the 

traction matching boundary condition at the 1-2 interface. From 

symmetry, we get w=O and zero shear stress along the bottom faces of 
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sublaminates 2 and 3. This leads to w=O in sublaminates 1, 2 and 3. 

Thus, W has been prescribed in these sublaminates and the vertical 

shear force resultant Q cannot be prescribed on these sublaminates. 

Consequently, the calculated peel stress distribution will not be co.r

rect. In addition, at the 2-3 interface, the J3s cannot be matched, 

since in these sublaminates, specifying J3 is equivalent to specifying Q 

(through Eq. A. 7). Inspite of these simplifications, reliable energy re

lease rate components can be estimated based on the interlaminar 

shear stress distributions. The mode I contribution can then be evalu-

ated using the total energy release rate, which is not affected signifi

cantly by these simplifications. 

For the (±25 /90nls laminates under consideration, B 11 is zero in -

all the four sublaminates. For sublaminates 1 and 2, the equilibrium 

equations and constitutive relationships can be written as 

N1.x-T1 = 0 (A.10) 

N2,x+T1 = 0 (A.ll) 

Q1,x-P1 = 0 (A.l2) 

Q2,x+P1-P2 = 0 (A.l3) 
h1 

M1,x+2T1-Q1 = 0 (A.14) 

h2 
M2,x+2 T1-Q2 = 0 (A.15) 

N 1 = A11(1)U 1.x (A.16) 

N2 = A11(21U2,x (A.17) 

Q 1 = Assu)J31 (A.18) 

Q2 = As5(2JJ32 (A.l9) 

M1 = D11(1)J31.x (A.20) 

M2 = D11(2JJ32.x (A.21) 
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The subscripts in parentheses refer to the sublaminates to which the 

stiffness coefficients correspond. Eqs. A.14, A.15 and A.12 can be 

rewritten in a modified form as 

hi 
MI,x + 2 NI,x = As5(I)~I 

h2 
M2,x- 2 N2,x = As5(2)f32 

PI= QI,x 
hi 

= MI.xx + 2 TI,x 

Matching the u displacement along the 1-2 interface implies 

Ul(~-~l) = ll2 ~.~2) 
hi h2 

UI- 2bi = U2 + 2b2 or 

(A.22) 

(A.23) 

(A.24) 

(A.25) 

Combining the equations to eliminate the displacement and in

terlaminar stress terms leads to the following system of homogeneous 

coupled ordinary differential equations. 

N I,x+N2.x = 0 (A.26) 

M +hi N Ass( I) M - 0 
I,xx 2 I,xx- DII(l) I - (A.27) 

M _ h2 N _ As5(2) M _ O 
2·xx 2 2.XX DI1(2) 2 - (A.28) 

N1 h1M1 N2 h2M2 
A11(1)- 2DI1(1)- A11(2)- 2DI1(2) = O (A.29) 

The solution is assumed of the form 

{SH ={~} esx 
(A.30) 

Substitution of this solution into Eqs. A.26-A.29 leads to an eigenvalue 

problem with the following characteristic equation. 
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(A.31) 

where the B's involve the stiffness and thickness parameters A. D and 

h. For the material system and ply stacking sequence considered, 

B22>4BIB3. Hence, the roots can be written as 

...._ f-B2:b/B22-4BIB3 
s=O,± 'J 2BI (A.32) 

Only the zero and positive roots of eq. A.32 are considered as they give 

solutions decaying exponentially from the crack tip. Then, the axial 

force and moment resultants can be written as 

NI = a1e5 1x + a2e~x+ a1 

N2 = -a I es1x- a2e~x + a2 

MI = a1kies1x + a2k2e52x 

M2 = aikse5 1x + a2k4e5 2x 

(A.33) 

(A.34) 

(A.35) -

(A.36) 

The k parameters in the above solutions involve the eigenvalues 

and the stiffness coefficients (A,D). For example, we have the defini

tion for k I as 
hi 
-si2 

k ___ 2 __ _ 
I - Assu> 2 

DII(l)- SI 

(A.37) 

Using the equilibrium Eqs. A.lO, A.l2 and A.l4 along with the 

applied axial force P and specimen width b, the axial force resultants 

and interlaminar stresses can be written as 

P AII(l) 
NI= aieslx + a2es2x + 2b A +A II(I) I1(2) 

P AI1(2) 
N2=-aieslx- a2e~x + 2b AII(I)+Aii(2) 

TI = NI,x = a1Sie5 1x + a2s2e52x 
hi 

P1 = M1,xx+2 TI.x 
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= (k1+~1 )a1s12esiX+(k2+~1)a2s22e~x (A.41) 

The constitutive equations are used to write down the displace

ment solutions. The arbitrary constants associated with the displace

ments and rotations are determined from the matching conditions be-

tween sublaminates 1 and 2 and the end conditions. Proceeding to 

sublaminate 3, the governing equations are 

N3,x = 0 (A.42) 

Q3.x + p3 = 0 (A.43) 

M3,x- Q3 = 0 (A.44) 

N3 = All(2)U3,x (A.45) 

Q3 = As5(2)~3 (A.46) 

M3 = D 11(2) ~3.x (A.47) 

Matching U at the 2-3 interface and applying the boundary con

dition at the free end, N3(a) = 0, gives 

N3 = 0 

U3 - U2(0) - - a1 - a2 + ~~ 
- - S1All(2) S2A11(2) -v 

(A.48) 

(A.49) 

In order to solve for the bending moment. Eqs. A.44, A.46 and A.47 

are combined to yield 

M3 = <p 1 sinh C03 x + <p2 cosh C03 x 

where Ol3 is defmed by 

ro3 = ~ A55(2) 
D 11 (2) 

(A. 50) 

(A. 51) 

Since the ~ matching conditon cannot be used at the. 2-3 interface, 

the (remaining) boundary conditions are 

M3(a) = 0 

M3(0) = M2(0) 

(A. 52) 

(A. 53) 

The <ps can be solved using the boundary conditions A.52 and A.53 as 
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<p2 = a1k3 + a2k4 

<p 1 = -<p2 coth 003a 

(A. 54) 

(A. 55) 

The solution for sublaminate 3 can be completed by writing the ex

pressions for Qs, ~3 and Ps based on the Ms solution. 

gives 

The equilibrium equations for sublaminate 4 are 

N4.x = 0 

Q4,x = 0 

M4.x- Q4 = 0 

The constitutive relations take the form 

N4 = All(l)U4.x 

Q4 = A55(1)(~4+W4.x) 

(A. 56) 

(A. 57) 

(A. 58) 

(A. 59) 

(A.60) 

M4 = D11(1)~4.x (A.61) 

Using Eq. A.56 with the boundary condition N4(a)-ib yields 
p 

N4 = 2b (A.62) 

Similarly, using Eq. A57 with Q4(a)=O results in 

(A.63) 

Matching M1 and M4 at the 1-4 interface and using Eq. A.58 

(A.64) 

The U4 displacement is obtained by integrating Eq. A.59 and 

using the displacement matching boundary condition U4(0) = U1(0). 

U - -x+-+- + 1 ( P a1 a2) 4 - A11(1) 2b Sl S2 as (A.65) 

Similarly, integrating Eq. A.64 and setting J34(a) to zero gives the 

solution for ~4· Using the solutions for Q4 and J34 and the boundary 

condition W4(0)=0 in Eq. A63 yields the solution for W4. 
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In order to determine a1, a2 and as. the following boundary 

conditions are used. 
p 

N1(0) = 2 b 

J31 (0) = J34(0) 

U 1(-L+a) = 0 

It is convenient to define the following parameters. 

S1 ( h1) 
a1 = As5(1) k1 + 2 

a - k1 2 - D11{1) 

e3 = ~:,11 (k2 + ~1) 
a - k2 4 - D11(1) 

ad = as - a1 + (a4 - a2)a 

The nominal (far field) strain is given by 

p 1 e-------
- 2b A11(1)+ A11(2) 

The a paramet,ers are obtained as 

as+a4a 
a1 = A11(2)£ ad 

a1+a2a 
a2 = -A11(2)£ ad 

(A.66) 

(A.67) 

(A.68) 

(A.69) 

(A.70) 

(A. 71) 

(A. 72) 

(A. 73) 

(A.74) 

The specimen compliance C is defined as the ratio of specimen 

extension to applied load. This is obtained as 

C 
_ 2U4(a) 
- p 
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2 {Pa a1 a2 } = PA11(1) 2b + s1 + S2 + 83A11Ul (A. 75) 

The total energy release rate associated with the crack 

(delamination) growth under a constant load P is given by 

p2 dC 
Gr = 2b da (A. 76) 

Substituting the compliance expression from Eq. A.75 in Eq. 

A. 76 yields the following expression for the total energy release rate. 

~"" ~ p
2 

( 
1 

-
1 

+I -I ) (A 7 7) '-~I--2b2 A11(1) A11(1)+A11(2) 1 2 . 

where 
- e2e3-e1e4 (1-e-sl(L-a)- 1-e-~(L-a)) 

11- X 9d2 S1 S2 (A.78) 

(83+84a)e-s1(L-a)- (91+92a)e-s2(L-a) 
I2= x ed (A. 79) 

with 
_ 1 A11(2) 

X - A11(1)+A11(2) A11(1) (A. SO) 

The individual fracture mode contributions to the energy release 

rate can be calculated using the virtual crack closure method, based on 

the interlaminar stresses and displacements in the vicinity of the 

crack tip. From the assumed plane strain condition, the mode III con

tribution is zero (Grn=O). The mode II energy release rate. Grr, is cal

culated using the virtual crack closure technique while Gr is evaluated 

using 

Gr = Gr- Gu (A.81) 

Gu is calculated from the interlaminar shear stress and relative 

sliding displacement as 
0 

lim 1 
Gn "'~0 20

JTI(x-O).du(x)dx (A.82) 
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In the absence of a singularity in the stress field, the limiting 

process leads to the trivial result Gn=O. Hence, the limit is calculated 

as 8 tends to some finite value, say A. The value of A is chosen de

pending on the decay length associated with the problem i.e.~ the 

length within which the presence of the crack significantly alters the 

specimen response in comparison with the corresponding far field 

values. The decay length in this problem is dependent on the eigen

values s1 and s2. The following value of A has been chosen in order to 

reasonably fulfil the decay length criterion. 

A = .!. (_!_ + _!_) 
4 Sl 52 

(A.83) 

The relative sliding displacement L\u is based only on the differ-

ence U4-U3 so that the kinematic condition of zero relative displace

ment at the crack tip is fulfilled. This also simplifies the calculations. 

If the true value of L\u (based on u4 -u3) is used, the ~ mismatch at the 

3-4 interface leads to a kinematically inadmissible displacement dis

continuity at the interface. This discontinuity causes a non trivial lim

iting value Gn as s~o. But this value is an artifact of the modeling as

sumptions and cannot be used as the true value of Gn. The mode II 

energy release rate component, using L\u=U4-U3, is obtained as 

I3 
Gn = 2A (A.84) 

where the parameter I3 depends on All(l), AI1(2), s1, s2, a1, a2, A and 

the specin1en nominal strain e. 
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Table I Summary of Results 

number of GT 

90° plies .Jjm2 

1/2 2.404 

1 6.752 

2 22.849 

3 51.049 

4 93.603 

6 228.871 

8 440.065 

Gu/GT 

0.276 

0.275 

0.267 

0.261 

0.256 

0.250 

0.247 

, ' , ' 

O'c Ec 

MPa % 

1313.9 1.6747 

784.0 1.1685 

426.2 0.8058 

285.1 0.6427 

210.6 0.5444 

134.7 0.4264 

97.1 0.3555 

Delamination 
Symmetry 

,-..--

Plane 

p 

90° Plies 
Transverse ---
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Fig. 1 Specimen Cross Section 
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INTRODUCTION 

This is a proposal to extend the sublaminate analysis method 1 , 2 developed 
under the current Grant NAG-1-637, to the interlaminar failure analysis of 
laminated tapered composites under combined loading. Tapered laminates are 
used in composite rotorcraft and airframe components. An ex amp 1 e is the 
flapping flexure region of the Bell 680 tapered hub. In the airframe context 
tapered laminates are the result of inserting internal plies at locations of 
stress concentrations such as holes, cut outs and connections between 
structural members in order to tailor stiffness and strength. The potential 
increase in stiffness and strength in tapered laminates is often limited by 
premature failure initiated by interlaminar fracture. An accurate knowledge 
of interlaminar stresses and strain energy release rate in tapered laminates 
is essential in predicting and designing against interlaminar fracture. 

The sublaminate analysis methods provides accurate prediction of 
interlaminar stresses and strain energy release rate. They are intended to be 
used for preliminary design studies where a large number of candidate 
configurations need to be evaluated quickly and economically. The methods are 
effective in developing insight and understanding fundamental behavior by 
isolating the parameters controlling the damage mechanisms. 

A brief summary of the status of the current research work under the 
present grant is given in the next section. This is followed by a discussion 
of some issues associated with the research and a presentation of the proposed 
research program. Biographical and budgetary information appear in 
appendices. 

SlM1ARY OF ACC<I4PLIS..,ENTS 

The sublaminate analysis of tapered rotor hubs made of glass/epoxy 
material subjected to tensile loading is under completion. A generic 
configuration of a tapered hub appears in Figure 1 where a 38 ply thick 
1 ami nate is reduced to 26 p 1 y by dropping three inner sets of p 1 i es. The 
basic ana 1 ys is approach that is adopted uti 1 i zes two 1 eve 1 s of mode 1 i ng, a 
gl oba 1 sea 1 e and a 1 oca 1 sea 1 e. The gl oba 1 sea 1 e is concerned with over a 11 

generalized forces and strains such a_s axial force and extension. A simple 
consistent deformation assumption is the foundation of this mode 1 • Gl oba 1 

equilibrium equations are written and solved. 



The genera 1 i zed strains determined from the g 1 oba 1 ana 1 ys is served to 

provide estimates for the key r>rimary stresses in the belt of the tapered 
section. Local estimates of interlaminar stresses are determined on the basis 
of equilibrium condition. 

The total strain energy release rate is computed from the work done by 
the external applied loads. It is based on the axial stiffness of the 
different elements in the tapered configurations. This work is the subject of 
Reference 3. 

The second objective of the research under the current grant is the 
analysis of local or transverse crack-tip delamination. This damage mode 
appears in Figure 2 a 1 ong with a representation of the predominant damage 
modes in laminated composites. 

Three analytical models, sublaminate shear, membrane and shear lag have 
been deve 1 oped in order to estimate the transverse crack spacing distance. 
The saturation crack spacing corresponds to the distance from the crack where 
the broken p 1 i es regain their uniform stress/ strain state i . e. where the 
interlaminar shear stress has decayed down to its far field (uniform} value. 

The analysis of transverse crack tip delamination is based on the 
sublaminate shear model. Closed form expressions for the interlaminar stress
es, tota 1 strain energy re 1 ease rate and energy re 1 ease rate components are 
obtained. A computer code based on this analysis is developed and implemented 
into an earlier mixed-mode edge delamination code developed under the previous 
NASA grant NAG-1-558 and presented in References 4 and 5. This code was used 
to estimate the critical strain levels and the associated delamination damage 
mode with increasing number of 90° plies in a [± 25/90n]s laminate. Since 
mid-plane edge delamination is a possible damage mode in this type of lami
nates a mid-plane delamination analysis was developed and presented in Refer
ence 6. A computer code based on this analysis is developed and implemented 
in the mixed-mode edge delamination code. The critical strain and associated 
delamination damage modes predicted appear in Figure 3. 

Experimental results' show that the local (crack-tip} delamination 
phenomenon is the predominant damage mode only for n=4, 6 and 8 specimens. 
For n<4 edge delamination either in the mid-plane or in the 25/90 interface 
were observed in tests. The present analysis predicts mide-plane edge 
delamination for n=1/2 and 1 and mixed mode edge delamination for n=2 and 3, 



respectively. For n=4, 6 and 8 local delaminations are predicted to be the 
controlling damage mode. The critical strains in Figure 3 are computed based 
on a fracture toughness values of 415 J/m2, 140 J/m2, and 120 J/m2 for local 
delamination, mixed mode edge delamination and mid-plane edge delamination, 
respectively. A detailed description of this work is presented in References 
8 and 9. 

An assessment of the influence of residual thermal and moisture stresses 
is underway. The effects of hygrothermal stresses on mid-plane edge 
delamination has been completed6 and final results for mixed-mode edge 
delamination are expected by the end of· the grant year. 10 

PROPOSED RESEARCH 

Background Information 

Tapered laminates constructions are used in rotorcraft dynamic components 
as well as airframe members. The flapping flexure region of composite rotor 
hubs are tapered in order to create an effective hinge for elastic tailoring. 
The tapered design is achieved by dropping a number of plies at discrete 
locations. The ply drop creates large interlaminar stresses causing 
delaminations. This is illustrated in Figure 4 where the transverse normal 
stress resultants between the belt and the core region of the tapered laminate 
appearing in Figure 1 is plotted. The applied tensile load is denoted by P in 
Figure 4. Peak values occur at the ply drop locations and precipitate 
delaminations. 

Tapered composite laminates used in dynamic rotorcraft components are 
subjected to centrifugal tensile and combined bending-extension-torsion 
loading. A sublaminate analysis 11 of a uniform laminate subjected to bending 
and combined bending and extension loading indicated that bending loading is 
not as critical as tension or combined bending and extension. However, the 
energy re 1 ease rates under a combined bending-extension 1 oadi ng can be more 
critical than tension loading only. This is shown in Table I from Reference 
11 where the strain energy re 1 ease rates for a [08/904]s 1 ami nate made of 
T300/5208 graphite/epoxy laminated is presented. The strain £

0 
in the table 

is 1~in/in. For a delamination occurring at the 0/90 interface, the presence 
of bending loading 



in addition to in-plane extension results in a 68% increase in the total 

strain energy release rate (GT) and a 3% in the Mode I ratio (G 1/GT). These 
results were found to be in good agreement with the finite element formulation 
of Wen Chan 12 • 

While these findings are limited to uniform laminates they indicate, 
however, the potential detrimental effect of combined loading. 

Statement of the .ork 

The research program consists of the following elements: 

(1) Develop a delamination analysis for tapered laminates under bending 
and combined bending and tension loading. 

(2) Validate the predictions in item (1) through comparison with 
numerical simulation and test results performed at the NASA Langley 
Research Center and Bell Helicopter Textron Inc 

( 3) Create appropriate computer codes and documentation based on the 
analysis in item (1). 

Interaction with Or. Wen Chan of the University of Texas at Arlington and 
Mr. Ed Lee of Bell Helicopter Textron, Inc., is planned through this research 
work in order to adapt and apply the developed analysis and computer codes to 
the practical design needs. Computer codes developed under NASA Grant 
NAG-1-558 are being implemented for the preliminary design of laminates prone 
to mixed-mode free edge delaminations at Bell Helicopter and the University of 
Texas. 
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TABLE I - Energy release rate ca.parison for a [08/904]s 
la.inate-graphite/epoxy material. 

Energy 
Release 
Rate 

Unifo~ Extension 

El = E2 : EO 

0.61 

0.34 

Uniform Bending 

El : -E2 : EO 

0.82 

0.05 

Combined Bending 
Extension 

El = 2E0 ,E2 = 0 

0.63 

0.57 
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Figure 1. Tapered Laminate Configuration 
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This report covers the research work performed for the period starting September 
1989 and ending February 1990. In the frrst phase of the program, a study was conducted 
to analyze tapered composite laminates under tensile loading. A simple extensional model 
was used to calculate the total strain energy release rate from the work done by the external 
forces. The model used is concerned with overall generalized forces and strains such as 
axial force and displacements leading to the global energy balance of the laminate. A 
simple consistent deformation assumption is the foundation of this model. 

The sub laminate modelling of cracked laminate configurations and corresponding 
sublaminate stiffnesses are shown in Fig 1. These stiffnesses change from one ply drop 
group to another with crack growth. The tapered laminate shown in Fig. 1 is assumed to be 
fixed at x=O, and subjected to an axial load at x=c. 

As c=:t>-PI 

AF r::::::::::>-p2 
--~~--- ~x 

--I 
Figure 1. Dependency of Core and Belt Stiffnesses on Delamination 

The stress and displacement fields used in the strain energy release rate calculations 
were determined based on the effective section stiffnesses. The load share between the 
core and belt portions is based on their relative stiffness ratios and on the continuity of 
displacements at the belt-core interface. The analysis resulted in the following expressions 
for the end displacements I 

1 



u
1 

= P ABc + P(d + 3£ +b)< A8 _ A8 ) 

A8 (A8 +Au) (An+ Au) ABI AF 

+ P(d+3l-a') (l- An) 
(An+Au) ABI 

where 
a'=a·cosf3 

and section stiffnesses are denoted by A with their respective subscripts. 

The solution resulted in a mismatch between the axial end displacements. This is due to 
the membrane modeling approach where the interlaminar stresses are neglected. The model 
leads to a configuration which is schematically shown in Fig. 2. The delamination extends 
from the crack front in the taper section to the end of the uniform thin section. 

p 

¢::1 

Figure 2. Discontinuity of End Displacements 
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Although there is an agreement with the FE strain energy release rate distributions for 
delamination growth in the tapered section, there is a quantitative difference in the thin 
uniform region. Some efforts were undertaken to investigate this discrepancy. These are 
summarized in the following. 

• The strain energy stored due to the interlaminar stresses between core-belt interface 
in the uniform section is added to the strain energy release rate calculation. The 
interlaminar shear stresses are calculated by a local sublaminate analysis. This 
seems to alleviate the problem, but a considerable difference in both Gy values 
continued to exist. 

• In another attempt, the axial displacements are determined in such a way that the 
end displacements become continuous. In this model as opposed to the original 
one, belt and core stiffnesses are treated together all along the belt-core interface. 
The solution led to an increase in the difference between the FE and current Gy 
values. 

• Finally, an attempt is made to see the effect of the location where the load share is 
performed. The results showed that this effect is negligible. 

This investigation is still continuing. 

TAPERED LAMINATES UNDER COMBINED LOADING 

Rotor hubs are subjected to combined extension, bending and torsion loadings. 
Combined extension and bending are considered in this phase of the program. The problem 
of bending load is treated first. 

A schematic view of the tapered laminate under bending load is shown in Fig. 3. 
According to the bending moment distribution, the upper section of the laminate is under 
tensile and the lower section is under compressive load. In contrast to the uniaxial loading 
case, the laminate is not symmetric in terms of loading and therefore the whole laminate 
should be considered in the analysis. Under this load distribution, the upper section is 
expected to have a mixed-mode delamination originating at the junction between the taper 
and thin uniform regions. In the lower section, however, delamination initiates at the thick 
uniform and taper junction due to high interlaminar stress concentration around this 
location. This is a Mode II dominated delamination behavior. 

3 



Modell 
Delamination 

Figure 3. Tapered Laminate under Combined Loading 

A sublaminate modelling approach is used in the analysis. The tapered laminate is 
represented with 7 sublaminates as shown in Fig. 4. Each sublaminate has its 
corresponding axial and bending stiffnesses. The stiffness properties of each generic 
section are smeared to obtain the effective sublaminate stiffness values. A linear stress 
distribution is assumed as shown Fig. 4. The analysis is underway, closed form 
expressions for the interlaminar stresses and total energy release rate are expected by the 
end of the grant. 

Figure 4. Modelling of Tapered Laminate 
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BACKGROUND 

Elastically tailored composite designs are being used to achieve favorable deformation 
modes under a given loading environment. Coupling between deformation modes such as 
extension-twist or bending-twist is created by an appropriate selection of fiber orientation, 
stacking sequence and materials. An example is the X-29 swept forward wing aircraft 
where a laminated composite skin is used to create the bending-twist coupling required to 
handle divergence. This design uses AS-1/3501-5A graphite/epoxy wing covers with -45° 
outboard plies 9° forward of the wing's 40% chord line. 

Elastically tailored composite rotor blades can be used in rotorcraft structures in order 
to control twisting motions at different rotor speeds. This concept can be utilized in tilt rotor 
aircraft in order to achieve a compromise between hover performance and forward flight 
propulsive efficiency [1]. A change in the blade twist between flight modes can be 
developed through the use of extension-twist coupling as outlined in Ref. 2 for the XV -15 
tilt rotor aircraft. Twist control was achieved by assuming a 15 percent change in operating 
rpm between hover and forward flight regimes. 

The fundamental mechanism producing elastic tailoring in composite beams is a result 
of their anisotropy. Several theories have been developed for the analysis of thin-walled 
anisotropic beams. A review is provided in Ref3. A pertinent element in the analytical 
modeling development is the inclusion of section warping. The major difference between 
various theories lies in the methodology used to eliminate warping and consequently obtain 
a one-dimensional theory. A description of the major approaches is provided in Refs.4-13. 
The works described in Refs.ll-13 are based on a finite element formulation. 

The fmite element analysis developed in Ref.13 is based on the anisotropic beam 
theory of Ref. 6. This simple theory includes shear deformation and provides closed form 
expressions of coupling stiffnesses in terms of familiar laminate parameters. While this 
theory accounts for torsional warping, It does not, however, include the effects of bending
related section warping which can be significant in thin-walled laminated composites. A 
modification was proposed in Ref. 13 in order to minimize the error associated with 
neglect of bending-related warping. This modification was based on shear stiffness 
correction factors detennined by numerical comparison of results with an MSC/NASTRAN 
simulation. However, these correction factors are based on the beam configurations 
considered and require an alternative approach which includes section warping such as the 
MSC/NASTRAN model to validate. 

The potential of elastically tailored composite rotor blade designs to achieve weight and 
performance benefits was shown in Refs.l and 14. An optimization methodology was 
presented in Ref.14 for a minimum-weight structural design of composite main rotor 
blades subject to aerodynamic performance, material strength, autorotation, and frequency 
constraints. Damage tolerance constraints were not considered. This may explain the fact 
that the resulting multiple composite-spar design was heavier than the comparably designed 
single composite-spar. The author concludes that if ballistic tolerance is considered in the 
design, the multispar design will probably have the minimum weight . 

The behavior of elastically tailored structures in the presence of damage should 
therefore be investigated in order to ensure their damage tolerance and durability. While a 
local damage mode may have a negligible effect on the structure's overall strength it can 
however, significantly reduce its elastic coupling and consequently fail to perform as 
designed. The primary objective of this work is to assess the effect of the damage modes 
relevant to laminated composite structures on their elastic coupling and performance. 



PRELIMINARY INVESTIGATION 
Design Configurations 

In order to investigate the effect of damage in elastically tailored structures. Two 
designs have been considered. The first is a closed cell designed to exhibit extension-twist 
coupling. This is representative of single cell rotor blade sections where blade twist 
distribution is adjusted according to rotor speed. The second is a flat laminated composite 
with bending-extension coupling similar to a swept forward wing skin design. 

A simple analytical methodology based on Rehfield"s model [6] has been developed in 
order to determine the optimum stacking sequence that produces maximum extension· twist 
coupling in a generic closed cell. A similar procedure was developed for the flat laminate 
configuration. The optimum stacking sequence for both constructions was unidirectional 
with a fiber orientation of approximately 30° to the loading axis. This is due to the fact that 
the controlling parameter for extension-twist coupling in a closed cell is strongly influenced 
by At6 while bending·twist coupling in a flat laminate is controlled by Dt6· The variation 
of the extension-twist coupling parameter, S14, with fiber orientation is shown in Figure 1 
for several material systems. Maximum coupling occurs at approximately + 300 or -30°. 

A similar result is achieved for a multilayered laminate as illustrated in Figure 2 for the 
case of a two-ply laminate. The coupling parameter is plotted on the vertical axis against the 
two ply angles denoted by ex and p in the figure. The material system is T300/5208 
graphite/epoxy. The maxima depicted in the figure correspond to a unidirectional 
construction with a fiber angle of approximately + 30° or -30°. It can be shown that the 
fiber orientation corresponding to maximum coupling in a single ply is a local maximum for 
the multilayered construction. Moreover, the coupling corresponding to a single ply is at 
the most 5% smaller compared to the global maximum. Minimization of residual curing 
stresses was not considered in the optimization scheme. Residual thermal coupling due to 
curing can be avoided when the laminate is composed of 0/90 set of plies stacked 
symmetrically even if some of the sets are rotated[J5]. 

Damage Models 

Two damage modes have been considered in the analysis. The first is matrix dominated 
where the stiffness components controlled by matrix properties are progressively reduced. 
These are Q12, <l22 and Q66. In the limiting case when Q12, <l22 and Q66 tend to zero the 
stiffness component Qu will be equal to Ett· This damage mode can be significant in 
elastically tailored designs due to the use of a larger number of off-axis plies. The second 
damage mode is fiber dominated This mode ultimately precipitates final failure. The effect 
of damage on E 11 and G 12 appears in Figure 3 and Figure 4, respectively. The horizontal 
axis shows the accumulation of damage percentage. Each damage mode (matrix or fiber 
dominated) varies from 0 to 100% with solid diamond symbol representing fiber damage. 
As expected, the longitudinal modulus is primarily affected by fiber damage while the shear 
modulus is influenced by both fiber and matrix dominated damage modes. 

In order to gain confidence in this simple engineering model a comparison of 
predictions is provided in Figure 5. The variation of the longitudinal modulus ratio relative 
to the undamaged state is plotted against matrix damage percent in the 90° plies of a [0/903]s 
laminate. The percent of matrix damage is based on the crack density per mm.[l6]. 
Hashin's analysis[J6] is based on a complementary energy variational approach and an 
admissible stress field which satisfy equilibrium and all boundary and interface conditions. 
Halpin-Tsai and Ekvall's equations are given in Ref.J7. Test data from Ref.J8 are 
represented by the solid dots in Figure 5. The present model shows a distribution similar 
to the Halpin-Tsai model with a slightly improved correlation compared to the test data 

These damage modes have been applied to the single cell laminate shown in Figure 6 
with a [30]3 layup. Three damage mode sequence are considered. The frrst, or case A, 



represents a partial damage in the outer ply at one side of the cell while the second, is a 
damage in all the plies of that side. The third, denoted as case C, is a peripheral damage of 
the outer ply. This damage sequence is shown schematically in Figure 7. 

Results and Discussion 

The effect of progressive fiber damage on the extension-twist coupling is shown in 
Figure 8. The normalized coupling parameter in Figure 8 is defined as the ratio of damaged 
to the undamaged section coupling. As fiber damage increases the coupling is enhanced for 
all three damage sequences. At 100% fiber damage cases A,Band C show 8%,37% and 
50% increase in coupling, respectively. The same trend is also found for matrix damage 
progression as shown in Figure 9. The increase in normalized coupling is 8%,37% and 
55% for cases A,B an C, respectively at 100% matrix damage. Also appearing in the figure 
is the combined effect of matrix and fiber damage. While fiber damage alone results in a 
coupling increase its interaction with matrix damage has a negligible effect on the coupling. 
At 100% fiber damage in addition to matrix damage the coupling increase remains at 8% for 
case A while it decreases by 5% for case C. For case B,however, the coupling vanishes 
since the cell becomes an open section. 

The results appearing in Figures 8 and 9 are significant in assessing the failure of 
elastically coupled composite structures. An increase in the laminate coupling with damage 
progression may result in an increase of the aerodynamic loading which ultimately can lead 
to an aeroelastic divergence . Furthermore, the damage effect on coupling is a nonlinear 
phenomenon. This is depicted in Figure 9 where the combined influence of fiber and matrix 
dominated damage does not follow a superposition law. It is even more significant in the 
limit where a damage mode results in an opening of the section . In this case the coupling 
drops to zero. 

The findings of this preliminary work show the significance of investigating the 
influence of damage on the behavior of elastically tailored structures. Moreover, this 
investigation is essential in establishing a damage tolerance design procedure for this types 
of structures. 

OVERVIEW OF THE RESEARCH PROGRAM 

A research program to investigate the effect of damage in elastically tailored structures 
consists of the following tasks: 

(1) Develop a thin-walled laminated composite analysis including the effect of section 
warping. The analysis should consider moderate and large deformations in order to 
account for the effects of damage. 
(2) Develop a mechanics model that accounts for matrix and fiber dominated damage in 
elastically tailored generic composite sections. 
(3) Verify the model developed in task#2 with predictions from other models and 
available test data . 
(4) Incorporate the damage model in #2 with the thin-walled analysis in #1 in order to 
study the effect of damage on the elastic coupling. 
(5) Verify the predictions in #4 with selected tests of extension-twist and bending-twist 
laminated sections. 

In developing the thin-walled composite beam theory described in task #1 a variational
asymptotic approach [19] will be adopted in order to ensure the consistency of the theory. 
This approach is outlined in Ref.J9 in connection with the development of a nonlinear shell 
theory. It allows investigating the influence of small, moderate and large deformation 
kinematic assumptions on the response in a variationally consistent manner. 



Based on the preliminary results obtained, these tasks will provide a sound 
scientific and technological basis for predicting and managing damage in elastically tailored 
composite structures. Interaction with Dr. Raymond Kvatemik, Mr. Mark Nixon and Mrs. 
Renee Lake of the Army Aerostructures Directorate is planned throughout this work. 
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This report covers the research work performed for the period 
starting September 1990 and ending February 1991. In the first phase of the 
program, a variationally consistent theory for thin-walled composite beams 
has been developed. Three major aspects are considered in the 
development: the first is concerned with its simplicity and ease of 
implementation in any existing rotorcraft code such as TAIL [1] . The 
second, deals with its ability to be applied to the investigation of damage. 
Consequently, restrictions on the uniformity of stiffness and thickness 
along the periphery of the section have been relaxed. Finally, consistency of 
the assumptions used is ensured by deriving the theory from a variationally 
asymptotic energy principle. Comparisons of stiffness coefficients and 
response with Rehfield's theory [2] and finite element solutions have been 
performed. 

The details of the derivation and comparisons of predictions is 
provided in the attached paper which will be presented at the AHS 
International Specialists' meeting on Rotorcraft Basic Research. A 
summary of the significant aspects of this work is outlined in the following. 

Stiffness Coefficients 

The derivation is based on an energy formulation where the 
contribution of in-plane shear stresses and out-of- plane bending and 
twisting curvatures are identified. An order of magnitude analysis shows 
that the contribution of the out-of-plane terms is asymptotically small 
compared to the in-plane terms. This provides a consistent basis for 
deriving a one-dimensional theory from the two-dimensional thin shell 
theory. 

The resulting constitutive relationships are obtained in terms of four 
generalized force and deformation-related variables. 

(1) 



where N, Mx, My, and Mz, denote the axial force, torsional moment, and 
bending moments about y and z axis, respectively. The deformation- related 
variables U 1', ¢', U3" and U2" represent the axial strain, twist rate and 
bending curvatures associated with the xz and xy planes, respectively. The 
stiffness coefficients in Eq. (1) are obtained in closed form in terms of 
familiar parameters such as stacking sequence and geometry. 

(2) 

2 



where 

(3) 

The axial stiffnesses from CLT are denoted by Aij in Eq. (3). In order 
to compare the stiffness coefficients in Eq. (2) with those of Rehfield's 
theory, the 7x7 stiffness matrix in Rehfield's theory is reduced to a 4x4 
matrix by first neglecting the kinematical variable associated with 
restrained torsional warping. The resulting 6x6 matrix is then reduced by 
minimizing the associated energy expression with respect to the transverse 
shear strains. For the case of a Circumferentially Uniform Stiffness (CUS) 
configuration the result is 

REHFIELD'S THEORY 

(4) 

It is worth noting that in Rehfield's theory the Kij coefficients are 
assumed to be constant and consequently independent of the 
circumferential coordinates in Eq. (4). This is a result of the displacement 
function adopted in Rehfield's work. In the present theory, the 
displacement derived from the energy principle is a function of the 
anisotropy of the section. This displacement function coincides with 
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Rehfield's expression when isotropic materials' constraints are enforced. 
That is, the anisotropic stiffness coefficients in Rehfield's theory are based 
on the classical St. Venant' s displacement function used in the analysis of 
thin-walled isotropic beams. If the Kij coefficients are considered constant 
in the present theory, C11, C12 and C22 become identical to those of 
Rehfield's. However, C33 and C44 will be different. For the case of a 
circular section all C ij's are the same. A comparison between these 
stiffness coefficients and their effect on the response is illustrated in the 
following applications. 

Applications 

A comparison of the flexibility coefficients Sij for the box-beam 
shown below [3] with the predictions from two models is provided in Table 
I. 

J 
T300/5208 Graphite/Epoxy 

+0.033" 
(20/-70{20/-70/-70/20) ,. T 

..... ..... - -1.32 It 

Fig. 1. Beam Cross Section 

The flexibility coefficients are obtained by inverting the 4x4 matrix in 

Eq. (1). The NABSA (Nonhomogeneous Anisotropic Beam Section 

Analysis) is a finite element model based on an extension of the work 

presented in Ref 4. In this model all possible types of warping are 

accounted for. The TAIL model is based on Rehfield's theory with the 

restrained torsional warping ignored.The predictions of the NABSA and 

TAIL models are provided in Ref 3. The percentage differences appearing 

in Table I are relative to the NABSA predictions. The present theory is in 

good agreement with NABSA. Its predictions show a difference ranging 

from +0. 7 to +3.6 percent while those of TAIL range from +3.6 to -18.4 

percent. 
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Table L Comparison of Flexibility Coefficients ofNABSA, TAIL and Present 

Flexibility NAB SA PRESENT %Diff. TAIL % Diff. 

81b Ib-1 0.143883E-05 0.14491E-05 +0.7 0.14491E-05 +0.7 

822 , Ib-1-in-2 0.312145E-04 0.32364E-04 +3.6 0.32364E-04 +3.6 

8 12, Ib-1-in-1 -0.417841E-05 -0.43010E-05 +2.9 -0.430 10E-05 +2.9 

8 33, Ib-1-in-2 0.183684E-04 0.1886E-04 +2.6 0.17291E-04 -5.8 

8 44, Ib-1-in-2 0.614311E-05 0.63429E-05 +3.2 0.50157E-05 -18.4 

The present theory is applied to the prediction of the tip deflection in a 

cantilevered beam made of Graphite/Epoxy and subjected to different 
loading types. The beam has a square cross section with [12]4 lay-up. 

Table ll. MSCINASTRAN and Present Solutions for a Cantilevered Beam* with 

[ + 124 Layups Subjected to Various Tip l.Dad Cases 

Load Type Tip Load Tip Deformation % Diff. 

NASTRAN Present 

Axial Force 100lb Axial Dis.: 0.002189 in. 0.002202 in. +0.6% 

Axial Force 100lb Twist 0.3178 deg. 0.32325 deg. +1.7% 

Torsional 100 lb-in Twist 2.959 deg. 2.998 deg. +1.32% 

Moment 

Transverse 1001b Deflection : 1.866 in 1.853 in. -0.7 % 

Force 

*Geometry of Beam (Ref. 1): Thin-walled square cross section; length=24.0 in., 

width=depth=1.17 in.; ply thickness=0.0075 in., number of plies=4, wall thickness=0.03 

in. Mechanical Properties: E11=11.65 Msi., E22=11.65 Msi., G12=0.82 Msi.,u12=0.05 
5 



Comparison of results with the MSC/NASTRAN finite element analysis of 

Ref. 1 is provided in Table II. The predictions of the present theory range 

from +0.6 to -1.7 percent difference relative to the finite element results. 

Since the cross section has a CUS layup the predictions of the present 

model coincide with values calculated from Rehfield's theory, not shown in 

Table II, except for the tip deflection due to transverse force. The tip 

deflection predicted from Rehfield's theory is 1.6917 inch resulting in 9.34 

percentage difference compared to the NASTRAN result. 

A comparison of the present theory predictions with experimental 

data appears in Figs. (2) and (3). The Experimental results are obtained 

from Ref. 5 for two cantilevered beams. Their geometry and material 

properties are given in Table III. The spanwise variation of the bending 
slope in a symmetric [30]6 beam under a transverse tip load appears in 

Fig. (2). 

Table DI. Cantilever Geometry and Properties 

Ply Thickness=0.005 in 

Width=0.953 in. 

Depth=0.53 in. 
E11=20.59 Msi. 

E22=l.42 Msi. 

G12=0 .89 Msi. 

'U12=0.42 
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Fig. 2. Bending Slope of a Symmetric [30]6 Cantilever Under lib Transverse Tip Load 

Analytical predictions from a simplified linear analysis ( Ref 6) and 

the refined finite element analysis of Ref 7 are provided. The spanwise 
twist distribution in an antisymmetric [15]s beam under tensile loading is 

shown in Fig. (2). Figures (2) and (3) show that the predictions of the 

present theory are in good agreement with the experimental data and the 

closest when compared to the other analytical approaches. For the 

extension-twist variation appearing in Fig. (3), the prediction of Rehfield's 

theory coincides with the present theory this is because the section is a CUS 
and 812 is identical. 
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Closin&[ Remarks 

Applications of the present theory to the effect of damage on the 

elastic coupling of tailored composite beams is underway . A preliminary 

investigation is provided in the attached paper. The development of a thin

walled theory for composite beams with open cross sections is necessary in 

order to assess damage modes that lead to an opening of an initially closed 
cross section. The influence of restrained warping is expected to be 

significant for thin-walled composite beams with open cross section. 
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ABSTRACT 

A variationally consistent theory is 
derived in order to predict the response of 
anisotropic thin-walled closed sections 
subjected to axial load, torsion and bending. 
The theory is valid for arbitrary cross
sections made of laminated composite 
materials with variable thickness and 
stiffness. Closed form expressions for the 
stiffness coefficients are provided as 
integrals in terms of lay-ups parameters 
and cross-sectional geometry. A 
comparison of stiffness coefficients and 
response with finite element predictions 
and a closed form solution is performed. 
The theory is applied to the investigation 
of the effect of damage on the extension
twist coupling in a thin-walled closed 
section beam. The damage is simulated as a 
progressive ply-by-ply failure. Results 
show that damage can have a significant 
effect on the extension-twist coupling. 

INTRODUCTION 

Elastically tailored composite designs 
are being used to achieve favorable 
deformation modes under a given loading 
environment. Coupling between 
deformation modes such as extension
twist or bending-twist is created by an 
appropriate selection of fiber orientation, 
stacking sequence and materials. 

The fundamental mechanism producing 
elastic tailoring in composite beams is a 
result of their anisotropy. Several theories 
have been developed for the analysis of 
thin-walled anisotropic beams. A review is 
provided in Ref. ( 1 ). A pertinent element in 
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the analytical modeling development is the 
inclusion of section warping. The major 
difference among various theories lies in 
the methodology used to eliminate warping 
and consequently obtain a one-dimensional 
theory. A description of the major 
approaches is provided in Refs. (2)-(13). 
The works described in Refs. (11)-(13) are 
based on a finite element formulation. 

The finite element analysis developed 
in Ref. ( 13) is based on the anisotropic 
beam theory of Ref. (4). This simple theory 
includes shear deformation and provides 
closed form expressions of stiffness 
coefficients in terms of familiar laminate 
parameters. While this theory accounts for 
torsional warping and transverse shear 
deformation, It does not however, include 
the effects of bending -related section 
warping. The theory also assumes 
implicitly that the cross-section stiffness 
and thickness are constant. A modification 
was proposed in Ref.(13) in order to 
minimize the error associated with neglect 
of bending-related warping. This 
modification was based on shear stiffness 
correction factors determined by numerical 
comparison of results with an 
MSC/NASTRAN solution of cantilevered 
beam configurations loaded transversely at 
the free end. 

The potential of elastically tailored 
composite rotor blade designs to achieve 
weight and performance benefits was 
shown in Refs. (14) and (15). An 
optimization methodology was presented in 
Ref. (15) for a minimum-weight structural 
design of composite main rotor blades 
subject to aerodynamic performance, 
material strength, autorotation, and 



frequency constraints. Damage tolerance 
constraints were not considered. This may 
explain the fact that the resulting multiple 
composite-spar design was heavier than the 
comparably designed single composite
spar. The author concludes that if ballistic 
tolerance is considered in the design, the 
multispar design will probably have the 
minimum weight . 

The behavior of elastically tailored 
structures in the presence of damage needs 
to be investigated in order to ensure their 
damage tolerance and durability. While a 
local damage mode may have a negligible 
effect on the structure's overall strength it 
can however, significantly influence its 
elastic coupling and consequently alter its 
designed performance. 

The primary objective of this work is to 
assess the effect of damage in thin-walled 
laminated composite closed-section beams 
on their elastic coupling. A prerequisite is 
the development of a consistent theory for 
predicting the response of anisotropic thin
walled beams . The theory should be 
simple and suitable for parametric studies. 
The derivation is based on the 
asymptotically variational analysis provided 
in Refs. (16) and (17). In the present 
approach, the one dimensional theory for 
thin-walled closed-cell anisotropic beam is 
derived from the two-dimensional shell 
analysis. 

An outline of the analysis is presented 
first. This is followed by a comparison of 
the predicted stiffness coefficients and 
response with closed form solutions and 
finite element results. Finally, the analysis 
is applied to the prediction of the extension
twist coupling in a composite beam with 
various stages of damage. 

ANALYSIS 

Consider in a three dimensional space 
R the prismatic shell shown in Fig. 1. The 
shell has a thin-walled closed cross-section 
with variable thickness h( ~2). The cartesian 
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coordinates xi in R are related to the 
curvilinear frame ~I, q} and ~ by 

(1) 

The curvilinear frame is associated with 
the undeformed shell configuration V and 
the equation of the mid-surface Q is given 

by i = ri (~a). Latin superscripts run from 
1 to 3, while Greek superscripts run from 1 
to 2. The components of the outward 
normal n: are denoted by ni in Eq.(1). 
The curvilinear coordinates associated with 
the mid-surface !2 are denoted by ~a with 
the third component ~ 3 = ~. The 
displacement components associated with 
~a and ~ are denoted by v a and v, 
respectively. 

Fig. 1. Curvilinear Coordinate System 

The shell strain-displacement equations 
can be written as (Ref.18): 

dv1 
rn = d~J 

dv2 v 
122 = d~2 + R 

dv1 dv2 
2rn=-+-

d~2 d~l 

(2) 

where R is the radius of curvature. The 
mid-surface of the shell is determined by 
the position vector r as 



where lx, iy and lz are unit vectors 
associated with the cartesian coordinate 
system x, y and z shown in Fig. 2. The 
circumferential coordinate s is measured 
along the mid-surface of the cross section. 
The displacement vector corresponding to 
the cartesian system is given by 

where u 1 , u2 and u3 are the displacements 
in the direction of x, y and z, respectively, 
as shown in Fig. 2. The unit tangent 
vector i along s , and the unit outward 
normal ii to the mid-surface of the cross 
section are defined by 

- df dy-: dz-: 
t =-=-z +-z (5) 

ds dsy ds 2 

and 

Dis.placement Field 

The displacement field in the cartesian 
coordinate system may be expressed as 

UJ =U1(x)+u1(s.x) 

u2 =U2(x) -zqJ(x) (10) 

u3 = U3(x) + yqJ(x) 

where U J(X),U2(x) and U 3(x) represent 
the rigid body translation and qJ(x) 
represents the rigid body rotation, i.e. the 
angle of twist. The unknown function 
uJ(s,x) is determined from energy 
considerations. 

The projection of the position vector r 
in the normal and tangential directions to 
the surface of the shell are given by r n and x,ul 
r1, respectively, where 

Fig. 2 Cartesian Coordinate System 

(7) The energy density, <1>, of the two-

and 

_- dy dz 
1j =r.t =y-+z-

ds ds 
(8) 

The displacements in both the 
curvilinear and cartesian systems are 
related by 

__ dz dy 
v u.n=u2--u3 -

ds ds 

(9) 
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dimensional classical anisotropic shell is 
given by 

(11) 

where caPrD, c'f"rD and cfPrB are .. two
dimensional projection If of the elastic 
moduli tensor. The in-plane strain 
components are denoted by r af3 and the 
change in curvatures of the reference 
~u~ace by p af3 . The energy of the shell 
1s gtven by 



I= J cl>dw 
D 

(12) 

where dw is the area element of !J. The 
f"rrst terms in Eq. (11) represents the energy 
associated with the in-plane strains. Their 
contribution to the energy is much larger 
than the bending contribution expressed by 
the remaining terms. Therefore, the strain 
energy density can be approximated by 

24> = hcafJrorapYy5 (13) 

This approximation enables the 
derivation of a one-dimensional theory 
from the two-dimensional energy function. 
Furthermore, in the case of no internal 
pressure acting on the shell, the hoop stress 
resultant is negligibly small and may be 
ignored, thus 

(14) 

Combine Eq. (14) with Eq. (13) to 
obtain 

1 (cn22 2 1222 ) Y22 =- C2222 rn + c r12 (15) 

The energy density takes the form 

where 

1122 2 s - rc1n1- (C J Jh 
1- c2222 

CJJ22c1222 
1112 ( ) S12 = 2[C - 2222 ]h 17 

c 
1222 2 

S - 4[C1212- (C ) ]h 
2- c2222 

and the shear flow N12 can be written as 

thus, 
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2rn = arn + bN12 (19) 

where 

(20) 

Combine Eqs. (9) and (10) with Eqs. (7) 
and (8), to get 

v1 = U1(x)+u1 

dy dz 
v2 = U2(x)-+ U3(x)-+ r11 (s)qJ(x) 

ds ds 
dz dy 

v= U2(x)--UJ(X)--1j(S)qJ(x) 
ds ds 

(21) 

The strain-displacement relations take the 
form 

, , 
ru =U1 (x)+ii1 (s,x) (22) 

du1 ' dy ' dz 
2r12 =-+U2 (x)-+U3 (x)-

ds ds ds 
+ r11 (s)qJ'(x) (23) 

where a prime in Eqs. (22) and (23) 
denotes differentiation with respect to x. 
From Eqs. (19) and (23) get 

dit1 ' dy ' dz 2y12 =-+U2 (x)-+U3 (x)-
ds ds ds 

+ r11 (s)qJ'(x) = arn + bNn (24) 

By expressing it1 as 

, , 
u1 = -U2 (x)y -U3 (x)z + g(s,x) (25) 

where g( s,x) is an unknown function of s 
and x, Eq. (24) takes the form 

H H 

+ a[Uj(x) -U2 (x)y -U3 (x)z + g'(s,x)J 

+bN12 
(26) 

For long shells, Lid >>1, where Land d 
are measures of the shell length and the 



cross section size, respectively. Thus d( 
)ldx <<d( )Ids. Consequently adgldx is 
asymptotically small compared to dglds 
and hence can be neglected in Eq. (26). 

The shear flow N 12 is determined 
from the condition that g(s,x) should be a 
single valued continuous function, i.e. 

(27) 

Therefore, N 12 is independent of s. 
Substitute Eq. (26) into Eq. (27) to get 

Nn -j-£2AelfJ'(x) 
':fbds 

-1a(UJ '(x) -U2 "(x)y -uJ" (x)z)ds] (28) 

function 1fl(s) in Eq. (31-a). This function 
emerges naturally and is expressed as 

2A s s 
yt(s) ly-L lbds- I rn(s)ds] (31-b) 

"J'bds 0 0 

Force-Deformation Relationships 

The displacement field is now 
completely defined. The expression for the 
u 1 component is provided in Eqs. (31) 
while u2 and u3 are given in Eq. (10). 
Combining Eqs. ( 16) and ( 19) the energy 
density takes the form 

where Ae is the enclosed area of the cross where 
section given by 

(29) 

Integrate Eq. (26) and use Eq. (28) to 
obtain 

2A s s 
g(s,x) = qJ'(x)[y-L lbds- I r11 (s)ds] 

':fbds 0 ' 0 

s 

+I a[U/ (x) -U2 "(x)y -U3" (x)z]ds 
0 

1a£U/ (x) -U2 "(x)y -U3 "(x)z]ds Is 
,{ bds 
':fbds 0 

the axial displacement takes the form 

s 

+I a[U/ (x) -U2 "(x)y -U3 "(x)z]ds 
0 

1a£U/ (x) -U2 "(x)y -U3 "(x)z]ds Is 
bds 

1bds 0 

(30) 

(31-a) 

The coefficient of lfJ '( x) in Eq. (30) 
represents the torsion-related warping 
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(33) 

and 

(34) 

Using Eqs. (35) and (28), the axial strain 
can be written as 

' H H ru =U1 (x)-U2 (x)y-UJ (x)z+g'(x,s) 
(35) 

Substitute Eqs. (35) and (28) into Eq.(32), 
and use Eq. (12), while neglecting dgldx, to 
get the following expression for the energy 
of the shell 

1 '2 2 n2 N2 
I =2(CuU1 +C22lfJ' +C33U3 +C44U2 ) 

+C12u/ lfJ' +Cnu/u3" +C14u/u2" 

+C21lfJ'U1" +CulfJ'U2" + C34U2, U3" 
(36) 

For a laminated section made of N 
plies, with arbitrary fiber orientations, an 
appropriate transformation of the elastic 
moduli caf3ro is required. Summation of 
the plane stress stiffnesses for each ply 



leads to the following explicit expressions 
for the stiffness coefficients C ij in terms of 
the laminate axial stiffness Aij (Ref. 19) 

,( Kj2 frj(K12 1 K22JdsJ
2 

Cn =yfK11 --Jds+ ,( 
K22 yO! K22 )ds 

C = 
2

A rj ( K 12 I K22 )ds 
12 

e rj01 K22 )ds 
2 

C13 = -cjtKn- K12 ]zds 
K22 

rj(K 
12 

I K22Jds rj(K 
12

1 K22)zds 

rj11 K22ds 
2 

cl4 =-r}tKn- Kn Jyds 
K22 

rj(K 12 1 K22)ds rj(K 12 1 K22 )yds 

rj11 K22ds 

c22 4A2 J 
e. rj01 K22Jds 

cj(Knl K22 )zds c23 -2A .:....-=----
e. rj01 K22 )ds 

1(K12 1 K22 )yds 

C24 = -
2Ae 101 K22 )ds 

,( Kj2 2 frj(K12/K22)zds]2 
C33 =y(Kn --)z ds+ ,( 

K22 yO I K22Jds 
2 

C34 =1(Kn- Kn )yzds 
K22 

1 ( K 
12 

I K 22) yds 1 ( K 
12 

I K 22 ) zds 
+---=~--~----=------

111 K22ds 

,( Kj2 2 t1(K12 1K22)yds]
2 

C44 =y(Kn--)y ds+ ,( 
K22 yO I K22)ds 

(37) 

where 

2 
Kn =An- (An) 

A.z2 

K -A AnA26 
12- 16- A 

22 

2 
K _ . .L (A26) 22-·"06 __ _ 

A22 

(38) 
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The constitutive relationships between 
the stress resultants and deformation
related variables can be written as 

(39) 

where N, M X' MY' and M Z' represent the 
axial force, torsional moment, and the 
bending moments about y and z axis, 
respectively. 

The classical St. Venant's theory of 
bending and torsion rna y be recovered if 
Eq. (39) is applied to isotropic materials. 
For the case of isotropic sections with 
constant thickness h, the coefficients a and 
b in Eq. (20) take the values 

a 0 and b =constant (40) 

Substitute Eq. (40) into Eqs. (31), to get 
the axial displacement for isotropic material 
as 

, , 
UJ =U1(x)-U2 (x)y-U3 (x)z 

2A s s 
+(j)'(x)[,( e jds- jr,(s)ds] (4l) 

:rdso o 

which coincides with the expression given 
in Ref. ( 4 ). This displacement function 
associated with isotropic materials was 
adopted in Ref. (4) for composite materials. 
As a result, the stiffness expressions 
obtained in Ref. ( 4) are different from 
those of Eqs.(37). 

By neglecting the kinematical variable 
associated with restrained warping, the 6x6 
stiffness matrix in Ref. ( 4) can be 
compared with the 4x4 stiffness matrix of 
Eqs. (39). This is done by minimizing the 
energy expression with respect to the 
transverse shear strains. The resulting 
stiffness expressions are all different from 
Eqs. (37). 



It is worth noting that for the case of 
Circumferentially Uniform Stiffness 
(CUS) layups, the stiffness coefficients in 
Eqs. (37) coincide with those of Ref. (4), 
except for the bending stiffnesses C 33 and 
C 44 and the coupling coefficient C 45 . 

Moreover, the stiffness coefficients 
coincide fully in the case of a circular CUS 
configuration. 

APPLICATIONS 

In order to assess the accuracy of 
the predictions, the present theory is 
applied to the box beam given in Ref. (20). 
The cross sectional configuration is shown 
in Fig. 3 and the material properties in 
Table I. A comparison of the flexibility 
coefficients Sij obtained by inverting the 
4x4 matrix in Eqs. (39) with the 
predictions from two models is provided 
in Table II. The NABSA 
(Nonhomogeneous Anisotropic Beam 
Section Analysis) is a finite element model 
based on an extension of the work 
presented in Ref. ( 6). In this model all 
possible types of warping are accounted 
for. The TAIL model is based on Ref. (4) 
where the restrained torsional warping is 
ignored. The predictions of the NABS A and 
TAIL models are provided in Ref. (20). 
The percentage differences appearing in 

Table II are relative to the NAB SA 
predictions. The present theory is in good 
agreement with NABSA. Its predictions 
show a difference ranging from +0. 7 to 
+3.6 percent while those of Ref. (4) range 
from +3.6 to -18.4 percent. 

J 

,, 
T300/5208 Graphite/Epoxy 

fo.o33" 
(20/-70/20/-70/-70/20) 

T 

....... ..... 
1.32 It 

Fig. 3. Beam Cross Section 

Table L Properties ofT30015208 
Graphite/Epoxy 

E 11 = 21.3 Msi 
E22 = E33 = 1.6 Msi 
G12 =G13 =0.9Msi 
G23 = 0.7 Msi 
VJ2 = V13 = 0.28 
V23 = 0.5 

Table n. Comparison of Flexibility Coefficients ofNABSA, TAlL and Present 

Flexibility NABSA PRESENT %Diff. TAIL % Diff. 

811, lb-1 0.143883E-05 0.14491E-05 +0.7 0.14491E-05 +0.7 
822 , Ib-1-in-2 0.312145E-04 0.32364E-04 +3.6 0.32364E-04 +3.6 
812, lb-1-in-1 -0.417841E-05 -0.43010E-05 +2.9 -0.43010E-05 +2.9 
833, Ib-1-in·2 0.183684E-04 0.1886E-04 +2.6 0.17291E-04 -5.8 
844, Ib-1-in·2 0.614311E-05 0.63429E-05 +3.2 0.50157E-05 -18.4 
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Table 1IL MSC/NASTRAN and Present Solutions for a Cantilevered Beam* with [+ 1214 
Layups Subjected to Various 1ip Load Cases 

Load Type Tip Load Tip Deformation % Diff. 

NASTRAN Present 
Axial Force 1001b Axial Disp.: 0.002189 in. 0.002202 in. +0.6% 
Axial Force 1001b Twist 0.3178 deg. 0.32325 deg. +1.7% 
Torsional 100 lb-in Twist 2.959 deg. 2.998 deg. +1.32% 
Moment 

Transverse 1001b Deflection 1.866 in 1.853 in. -0.7% 
Force 

*Geometry of Beam (Ref. 13): Thin-walled square cross section; length=24.0 in., width=depth=1.17 in.; 
ply thickness=0.0075 in.. number of plies=4. wall thickness=0.03 in. Mechanical Properties: 
Eu=11.65 Msi., ~2=11.65 Msi.. G12=0.82 Msi.;u12=0.05 

The present theory is applied to the 
prediction of the tip deformation in a 
cantilevered beam made of Graphite/Epoxy 
and subjected to different loading types. 
The beam has a square cross section with 
[ + 12]41ay-up. Comparison of results with 
the MSC/NASTRAN finite element 
analysis of Ref. (13) is provided in Table 
III. The MSC/NASTRAN analysis is 
based on a 2-D plate model accounting for 
both shear deformation and warping. The 
predictions of the present theory range 
from + 1. 7 to -0.7 percent difference 
relative to the finite element results. Since 
the cross section has a CUS layup the 
predictions of the present model coincide 
with values calculated on the basis of Ref. 
(4), not shown in Table III, except for the 
tip deflection due to the transverse force. 
The tip deflection predicted from the theory 
of Ref. (4) is 1.6917 inch resulting in -9.34 
percentage difference compared to the 
NASTRAN result . 

In order to investigate the effect of 
damage on the extension-twist coupling, 
the theory is applied to a thin-walled 
composite beam with a rectangular cross 
section. The layup is [ 40s I 80]T and the 
dimensions of the cross section are shown 
in Fig. (3). This stacking sequence 
maximizes the extension-twist coupling for 
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a T300/5208 Graphite-Epoxy laminate 
made up of six plies as reported in Ref. 
(21). Damage is simulated by progressive 
ply failure in the upper member of the 
cross section. The variation of the 
normalized coupling parameter S 12 with 
damage appears in Fig. ( 4). 

~ 
Q,) 

.,..;a 
1.8 Q,) 

s 
QS --o- Present ~ 
QS 1.6 

ll.c --o-- Ref. 4 
bD 
~ 1.4 ..... ....... 
p.. 
::i 
0 

C) 1.2 
'"d 

Q,) 
N 

1.0 ..... ....... 
QS 

s 
~ 

0.8 0 

z 0 2 3 4 5 

N 

Number of 40 Degree Plies 
in Top Horizontal Member= (5-N) 

Figure 4. Effect of Ply Reduction on The 
Extension-Twist Coupling 

The normalized coupling parameter is 
defined as the ratio of extension-twist 



flexibility coefficient of the damaged 
relative to the undamaged laminate. The 
number of failed plies starting from the top 
portion of the cross section is denoted by N 
along the horizontal axis. The lay-up of the 
top flange is [ 40(5-N) I 80]T , while the 
layups of the bottom flange and both 
vertical webs are unaltered. 

Results obtained on the basis of 
Ref. ( 4) and the present theory show a 
gradual increase in the extension-twist 
coupling parameter reaching a 42 percent 
increase when the upper flange is reduced 
to a [ 40 I 80]T laminate, i.e. at N=4. 
Further damage results in a sharp decrease 
in the coupling according to the present 
theory. A value of 0.95 is predicted when 
the top five plies in the upper flange fail. 
The theory of Ref. (4) shows a continuous 
increase in coupling with a maximum of 
1. 77. This difference in behavior is due to 
the fact that the stiffness, Kij, vary with 
damage· while the theory of Ref. ( 4) is 
developed for a cross section with uniform 
thickness. Since for an open section with a 
[ 405 I 80]T lay-up the extension-twist 
coupling is considerably small compared to 
the closed section, the abrupt drop in the 
coupling parameter suggests that the 
prediction of the present model approaches 
the behavior of the opened section as 
damage progresses. 

The influence of damage progression in 
one of the webs when the load carrying 
capacity of the upper flange is reduced to 
one ply, appears in Fig. (5). Damage 
progression in the web portion corresponds 
to values of N ranging from 5 to 10. 
Additional damage in the web region 
shows similar behavior with an initial 
increase at a slightly smaller gradient 
followed by a sharp drop. The predictions 
of Ref. (4) show a steady increase at a 
smaller rate compared to damage 
progression in the flange portion. 

For a rotor blade construction using a 
box beam as shown in Fig. (3), the 
behavior depicted in Figs. (4) and (5) 
indicate that at the initial stages of damage 
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the extension-twist coupling increases. The 
resulting loss in torsional stiffness or shift 
in the effective shear center may lead to 
divergence. This consideration should be 
accounted for when establishing the static 
margins in damage tolerant rotor blades. 

3------------, 
""' -o-- Present Q.) 

....... 
Ref.4 Q.) ---o-- ,. 

8 d 
as / 

""' ;'d as 
~ 2 ;'d 
b.O A 
c:: Cf 

'"'"" I -c.. I 
::I 
0 

0 
"'CC 

Q.) 
N 

'"'"" -as 
8 
""' 0 z 

0 
0 2 4 6 8 10 

N 

Fig. 5. Effect ofp]y Reduction on The 
Extension-Twist Coupling 

CONCLUSION 

A Variationally consistent theory has 
been developed for the analysis of thin
walled anisotropic composite beams. 
Closed form expressions for the stiffness 
coefficients in terms of geometry , material 
and layup parameters are obtained. The 
theory has been validated by comparison of 
predictions with finite element analyses and 
a closed form solution. 

The theory has been applied to the 
investigation of the influence of damage on 
the extension-twist coupling in laminated 
composite beam configuration. Results 
indicate that damage progression results in 
an initial increase in the coupling followed 
by a sharp decrease at the final stage. This 
effect should be accounted for when 
establishing the static margins for the 
damage tolerance design of composite rotor 
blades. 
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INTRODUCTION 
This is a proposal to apply the thin-walled anisotropic beam theory 

developed under the current Grant NAG-1-637 to the interlaminar fracture 
analysis in elastically tailored composites. The work has two major 
objectives. The first, is to investigate the influence of delamination on the 
elastic stiffnesses and specially elastic couplings. The second, is to obtain 
the interlaminar stresses and strain energy release rate in order to predict 
delamination onset. Combined loading conditions associated with 
composite rotorcraft components will be considered. The analysis will 
include also the influence of residual thermal and moisture stresses. 

A major emphasis of the work is to maintain simplicity and provide 
closed form expressions for the stiffness coefficients, stresses and strain 
energy release rate. This approach is effective in developing insight, 
understanding of fundamental behavior and evaluating competitive design 
configurations. 

A summary of the status of the current research under the present 
work is given in the next section. This is followed by a discussion of some 
issues associated with the research and a presentation of the proposed 
research program. Biographical and budgetary information appear in 
appendices. 

SUMMARY OF ACCOMPLISHMENTS 
A variationally consistent theory for thin-walled composite beams 

has been developed [1]. Its predictions have been validated by comparisons 
with available finite element [2-4], analytical [5,6] and test results [7]. These 
comparisons are given in Ref. 1 and in the semi-annual report [8]. 

More importantly an understanding of the reasons for the 
predictions of Rehfield's [5] and Chopra's [6] models was achieved. Both 
models are based on an apriori assumed displacement field that does not 
account accurately for the anisotropy of the material. In Ref. 5 the assumed 
warping function is identical to the one used for isotropic materials while 
in Ref. 6 the material's shear rigidity only is considered in an approximate 
manner. Consequently the predicted rigidities and response are inaccurate 
for a generally anisotropic beam with varying circumferential stiffnesses. 
This key issue is presented in some detail in the following section. 

WarninU' Function; 

In our approach the functional form of the beam's displaceptent 
emerges naturally and the effect of the material's anisotropy is accounted 
for from the variationally asymptotic thin shell energy. The warping 
function obtained has the following form. 

2 



where 

(2) 

The enclosed area is denoted by Ae in Eq. (2) and the projection of the 
position vector in the normal direction to the surface of the beam is given by 
rn. Parameter b represents the shear flexibility contribution to the warping 
while parameter a the in-plane coupling. Both parameters are a results of 
the material's anisotropy. The function U(x,y,z) in Eq.(l) represents the 
axial strain due to uniform extension along the x-axis and bending about 
they- and z- axes. A comparison of Eq. (1) with the corresponding warping 
functions show that the first term only is considered in the formulations of 
Refs. 5 and 6. The absence of the second and third terms which include 
bending effects leads to significant error in the bending flexibilities as 
illustrated in Table II of Ref.l. Moreover, the function VJ(s) in Ref. 5 is given 
as 

(3) 

which implies that the section is circumferentially uniform. In Ref. 6 this 
function is considered as 

(4) 
where 

(5) 
and 

(6) 
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The wall thickness is denoted by tw in Eq.(5). The shear contribution 
expression given in Eqs. (5) and (6) was determined using a "practical 
approximate manner" as mentioned by the authors. This expression 
however, is different from the b parameter in Eq.(3). Moreover, Eq. (5) is 
dimensionally incorrect. 

The circumferential uniform stiffness constraint implied in Eq.(3) was 
relaxed in Refs.9 and 10 by considering the pure torsion of a thin-walled 
beam of isotropic material. A correction factor a was introduced in the 
warping function as follows. 

(7) 

with 

(8) 

The Aij' coefficients are identical to those defined in Eq.(6). This corrected 
warping function was created by using the principle of virtual work. It is 
similar to Eqs.(4) and (5) when G(s)t(s) is replaced by a(~). 

This correction was used to modify the torsion-related stiffness only. 
An illustration of its influence is shown for the case of a cantilevered beam 
under a transverse tip load in Fig.l. The spanwise variation of the bending 
slope in a symmetric [30]s box-beam is depicted. The predictions of the 
corrected warping function are closer to the experimental data. 

This is not the case however, for the tip bending deflection where 
Rehfield's theory prediction with and without a correction show an 8% 
difference compared to the NASTRAN solution [2]. This is because the a 
correction does not affect the bending-related stiffness coefficients. This 
comparison is for a [12]4 beam made of Graphite/Epoxy with a square cross 
section. 

One-oina- Researeh; 

A proof of convergence of the developed theory is underway. This is 
based on the dual variational principle. In addition to providing a rigorous 
proof of convergence of predictions from the present theory compared to a 
general nonlinear formulation, this approach provides closed form 
expressions of the stress field in terms of familiar stiffness parameters. 
The governing differential equations of motion and consistent boundary 
conditions are derived for the general case of combined loading. This 
enables the solution of boundary value problems including the effects of 
dynamic loading. 
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This report covers the research work performed for the period 
starting September 1991 and ending February 1992. An investigation of the 
different physical contributions in the displacement field derived from the 
variationally asymptotical analysis is performed. The analytical approach 
along with the derived displacement field and stiffness coefficients for a 
generally anisotropic thin-walled beam is presented in· detail in Ref.1. A 
copy is attached in the Appendix for convenience. 

-of Out-of-plane Warping 

The variationally asymptotical approach does not require an a priori 
assumed displacement field and the warping function emerges as natural 
result. It follows an iterative process. The displacement function 
corresponding to the zeroth order approximation is obtained first by keeping 
the leading order terms in the energy functional. A set of successive 
corrections is added and the associated energy functional is determined. 
Corrections generating terms of the same order i~ the energy functional as 
previously obtained, are kept. The process is terminated when the new 
contributions generate terms of smaller order. The displacement field 
converges to the following expression: 

v1 = U1(x)-y(s)U~(x)-z(s)U~ +G(s)q,' (x) 
I H tt 

+ Yl(s)Ul(x)+ Y2(s)U2(x)+ g3(s)U3(x) 

v2 = U2(x)dy +U3(x)dz + fP(xJrn 
ds ds 

v = U2(x)dz -U3(x)dy- fP(x)rt 
ds ds 

(1) 
The axial displacement is denoted by v 1 while v2 and v denote the 

displacement along the tangent and normal to the cross section mid
surface, respectively as shown in Fig.l. The average displacement over the 
cross section along the x, y and z Cartesian coordinate system is denoted 
by U1(x), U2(x) and U3(x), respectively. The cross sectional rotation is 
denoted by t/J(x). The underlined terms in Eq.(1) represent the extension and 
bending-related warping. These new terms emerges naturally in addition 
to the classical torsional-related warping G(s) tfJ'. They are strongly 



influenced by the material's anisotropy and vanish for materials that are 
either orthotropic or whose properties are antisymmetric relative to middle 
surface of the cross section wall. These out-of-plane warping functions 
were derived earlier and presented in Ref.2. 

Fig.l Coordinate system 

The contribution of out-of-plane warping was considered recently by 
Kosmatka [3 ]. Local in-plane deformations and out-of-plane warping of the 
cross section were expressed in terms of unknown functions. These 
functions were assumed to be proportional to the axial strain, bending 
curvature and twist rate within the cross section and were determined 
using a finite element modeling. In our formulation, the out-of-plane 
warping is shown to be proportional to the axial strain, bending curvature 
and twist rate. Moreover, the functions associated with each physical 
behavior are expressed in closed-form by g 1(s) for the axial strain, g2(s) and 
g3(s) for the bending curvatures and G(s) for the twist rate. 
An illustration of their effect appears in Figs. 2 and 3 where the bending 
slope in a cantilevered beam is plotted along the span. The beam is 
subjected to a unit bending load at the tip and has a rectangular cross 
section with [15]s (Fig.2) and [30]s (Fig.3) layup. Two types of predictions are 
compared to the experimental results [4, 5 ]. In the rrrst, the torsional
related warping is considered only while in the second the contribution of 
bending-related warping is included. Extension-related warping is 
negligible for this constrection. Neglecting bending-related warping leads 
to significant errors in predictions for this case. 

Shear Deformation Contribution 

A similar behavior to the one illustrated in Figs. 2 and 3 was found in 
the theory of Ref. 5 when the shear deformation contribution is neglected. 
This may indicate that the out-of-plane warping due to bending includes 
implicitly the shear deformation contribution. In the theory of Ref.5 the 
. cross section stiffness coefficients are predicted from a finite element 
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simulation. The theory is not restricted to thin·walled configurations. In 
order to assess the similarity between the shear deformation contribution 
and the out-of-plane warping, the present theory and the numerical work of 
Ref. 5 are applied to the prediction of the deflection curve in a cantilevered 
beam made of graphite/epoxy material and subjected to a transverse tip 
load of lib. The beam has a [15]6 layup with a rectangular cross section. 
The geometry and mechanical properties are similar to those of Ref. 5 and 
are provided in Table I. 

Table I. Cantilever Geometry and Properties 

Ply Thickness = 0.005 in 
Width = 0.923 in. 

Depth = 0.~0 in. 
E11 = 20.6 Msi. 

E22 = E33 = 1.42 Msi. 
G12 =G13 = 0.87 Msi. 
G23 = 0.696 Msi 
'l>l2 = 'l>l3 = 0.30 
'U23 = 0.34 

Figure 4 shows a similar behavior suggesting that in the present 
theory, shear deformation is implicitly accounted through bending-related 
warping. The prediction of Ref.5 are referred to as Classical when shear 
deformation is neglected. Further evidence could be provided by estimating 
the equivalent shear deformation strain in the present theory which can be 
expressed in terms of the slope of the plane that approximates the cross 
section warping. This slope is given by 

2rxy = _fyvldA 
lzz 

(2) 

where A and Izz denote the cross-sectional area and second moment of 
area about the z-axis, respectively. A comparison of the shear strain 'Yxy 
over the length of the beam with the prediction of Ref. 5. is shown in Fig. 5. 
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The shear strain at the ftxed end is 4.5924xl0 .. 4 based on Eq.(2) which is 
within 2% of 4.6857xl0 .. 4 calculated on the basis of Ref. 5. 
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Fig. 4 Deflection of a [15]6 cantilevered beam under unit tip load 

Closing Remarks 

The variationally asymptotical theory developed provides a consistent 
means for including the effects of the material's anisotropy in thin .. walled 
beams. Two issues have been addressed in this progress report. The first, is 
concerned with the functional form of in-plane deformation and out-of
plane warping contributions to the displacement field. The second, is 
concerned with the significance of shear deformation effects. 

A rigorous proof is provided for the assumed displacement field in 
Kosmatka's work [3]. Local in-plane deformations and out .. of-plane 
warping of the cross section are indeed shown to be proportional to the axial 
strain, bending curvature and twist rate within the cross section. 
Moreover, their closed form functions are determined. 

5 



b 
...-.! 

r.< 
.5 r; 
CI'J 

::a 
.8 
CI'J 

5 

4.5 

4 

3.5 

3 

2.5 

2 

1.5 

1 

0.5 

0 
0 

Fixed 
End 

Present 

Hodges et al. 

10 20 

Spanwise Coordinate (inches) 

30 
Tip 

Fig. 5 Shear strain in a [15]6 cantilevered beam under unit tip load 

The significance of shear deformation in the modeling of laminated 
composites was recognized in the early work of Rehfield and was followed 
by Chopra et al. by adopting a Timoshenko-type shear deformation 
formulation. The displacement field developed in the present work is shown 
to include shear deformation through the out-of-plane warping terms. A 
closed form expression for the slope of the plane that approximates the 
cross section warping is derived and shown to be within 2% of the shear 
strain in a cantilever beam problem. 
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Theory of Anisotropic Thin-Walled Closed 
Cross-Section Beams 

Victor Berdichevsky, Erian Armanios, and Ashraf Badir * 
School of Aerospace Engineering 
Georgia Instit~te of Technology , 

Atlanta, Georgia 30332-0150 

ABSTRACT 

A variationally and asymptotically consistent theory is developed in order to derive 
the governing equations of anisotropic thin-walled beams with closed sections. The 
theory is based on an asymptotical analysis of two-dimensional shell theory. Closed
form expressions for the beam stiffness coefficients, stress and displacement fields are 
provided. The influence of material anisotropy on the displacement field is identified. 
A comparison of the displacement fields obtained by other analytical developments 
is performed. The stiffness coefficients and static response are also compared with 
finite element predictions, closed form solutions and test data. 

INTRODUCTION 

Elastically tailored composite designs are being used to achieve favorable defor
mation behavior under a given loading environment. Coupling between deformation 
modes such as extension-twist or bending-twist is created by an appropriate selection 
of fiber orientation, stacking sequence and materials. The fundaJTiental mechanism 
producing clastic tailoring in composite beams is a result of their anisotropy. Sev
eral theories have been developed for the analysis of thin-walled anisotropic beams. 

•Professor, Associate Professor, and Graduate Research Assistant, respectively. 
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A review is provided in Hodges (1990). A basic element in the analytical model
ing development is the derivation of the effective stiffness coefficients and governing 
equations which allows the three-dimensional (3D) state of stress to be recovered 
from a one-dimensional (1D) beam formulation. For isotropic or orthotropic materi
als this is a classical problem, which is considered in a number of text books such as 
Timoshenko and Goodier (1951), Sokolnikoff (1956), Washizu (1968), Crandall et al. 
(1978), Wempner (1981), Gjelsvik (1981), Libai and Simmonds (1988), and Megson 
(1990). 

For generally anisotropic materials a number of 1D theories have been developed 
by Reissner and Tsai (1972), Mansfield and Sabey (1979), "Rehfield (1985), Libove 
(1988), Rehfield and Atilgan (1989), and Smith and Chopra (1990;1991). A discussion 
of these works is provided in the comparison section of this paper. 

The objective of this work is to develop a consistent theory for thin-walled beams 
made of anisotropic materials. The theory is an asymptotically correct first order 
approximation. The accuracy of previously developed theories is assessed by compar
ing the resulting displacement fields. A comparison of stiffness coefficients and static 
response with finite element predictions, closed form solutions and test data is also 
performed. 

- A detailed derivation of the theory is presented first~ This is followed by a sum
mary of governing equations. Finally a comparison of results with previously devel
oped theories is provided. 

DEVELOPl\1ENT OF THE ANALYTICAL MODEL 

Coordinate Systems 

Consider the slender thin-walled elastic cylindrical shell shown in Fig. 1. The 
length of the shell is denoted by L, its thickness by h, the radius of curvature of the 
middle surface by R and the maximum cross sectional dimension by d. It is assumed 
that 

d<< L h <<d h<< R (1) 

rfhe shell is loaded by external forces applied to the lateral surfaces and at the 
ends. It is assumed that the variation of the external forces and material properties 
over distances of order d in the axial direction and over distances of order h in the 
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circumferential direction, is small. The material is anisotropic and its properties can 
vary in the direction normal to the middle surface. 

It is convenient to consider simultaneously two coordinate systems for the descrip
tion of the state of stress in thin-walled beams. The first one is the Cartesian system 
x, y and z shown in Fig. 1. The axial coordinate is x while y and z are associated 
with the beam cross section. The second coordinate system, is the curvilinear system 
x, s and { shown in Fig. 2. The circumferential coordinate s is measured along the 
tangent to the middle surface in a counter-clockwise direction whereas { is measured 
along the normal to the middle surface. A number of relationships have a simpler 
form when expressed in terms of curvilinear coordinates. A relationship between the 
two coordinate systems can be established as follows. 

Define the position vector r of the shell middle surface as 

T =X~+ y(s)ty + z(s)~ 

where~' iy, ~ are unit vectors associated with the cartesian coordinate system x, y 
and z. Equations y = y( s) and z = z( s) define the closed contour r in the y' z plane. 
The normal vector to the middle surface ii has two nonzero components 

(2) 

The position vector R of an arbitrary material point can be written in the form 

(3) 

Equations (2) and (3) establish the relations between the cartesian coordinates x, y, 
z and the curvilinear coordinates x, s, {. The coordinate { lies within the limits 

The shell thickness varies along the circumferential direction and is denoted by h(s). 

The tangent vector f, the normal vector ii and the projection of the position vector 
ron t and ii are expressed in terms of the cartesian and curvilinear coordinates as 

- dr dy_ dz_ 
t = ds = ds ty + ds 'lz 

_ - _ dz... dy_ 
n = t x tx = ds 'ly - ds 'lz 
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.... .... dy dz 
Tt = r · t = y- + z-

ds ds 
.... .... dz dy 

Tn = r · n = y- - z-
ds ds 

An asymptotical analysis is used to model the slender thin-walled shell as a beam 
with effective stiffnesses. The method follows an iterative process. The displacement 
function corresponding to the zeroth-order approximation is obtained first by keeping 
the leading order terms in the energy functional. A set of successive corrections is 
added to the displacement function and the associated energy functional is deter
mined. Corrections generating terms of the same order as previously obtained in the 
energy functional, are kept. The process is terminated when the new contributions 
do not generate any additional terms of the same order as previously obtained. 

Shell Energy Functional 

Consider in a 3D space the prismatic shell shown in Fig. 2. A curvilinear frame x, 
s, and ~ is associated with the undeformed shell configuration. Values 1, 2 and 3 de
noting x, s, and~' respectively are assigned to the curvilinear frame. Throughout this 
section, Latin superscripts (or subscripts) run from l to 3, while Greek superscripts 
(or subscripts) run from 1 to 2, unless othenvise stated. 

The energy density of a 3D elastic body is a-quadratic form of the strains 

1 . "kl 
U = 2£'' CijCkl 

The material properties are expressed by the Hookean tensor _Eiikl_ Following classical 
shell formulation (Koiter (1959), and Sanders (1959)) the through-the-thickness stress 
components ai3 are considerably smaller than the remaining components a 0 f3 therefore 

(4) 

The strains can be written as 

(5) 

where 'Yof3 and Pof3 represent the in-plane strain components and the change in the 
shell middle surface curvatures , respectively. For a cylindrical shell these are related 
to the displacement variables by 

OVt 
1'11 =-8x 
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8v1 8'U2 
2rt2 = 8s + 8x 

8112 v 
122 = 8s + R 

82v 
Pu = 8x2 

82v 1 8v1 8v2 
p12 = 8s8x + 4R ( 8s - 3 8x ) 

82v 8 v2 
PZJ. = 8s2 - 8s ( R) 

(6) 

where v1, v2 and v represent the displacements in the axial, tangential and normal 
directions, repectively as shown in Fig. 2. These are related to the displacement 
components in cartesian coordinates by 

dy dz 
'V2 = u2 ds + ua ds (7) 

dz dy 
v = u2 ds - ua ds 

where Ut, u2 , and u3 denote the displacements along the x, y and z coordinates, 
respectively. 

The energy density of the 2D elastic body is obtained in terms of "fo:f3 and Po.fi by 
the following procedure. 

The 3D energy is first minimized with respect to £ia· This is equivalent to satis
fying Eq. (4). The result is 

.... . 1 Q 6 
U = min U = -D0~-'7 £o.f3£ 6 

€i,3 2 'Y 
(8) 

where Do:f376 represents the components of the 2D moduli. The expressions for D 0 r;76 

are given in terms of earn6 in the Appendix. 

The strain £ 0 r; from Eq. (5) is substituted into Eq. {8). After integration of the 
result over the thickness € one obtains the energy of the shell 4> per unit middle 
surface area 
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where 
ca/3"'(6 = ~ < no/3"'(6 > 

h 

c;fh6 = ~ < DCX/3"'(6 ~ > 
1 h2 

~/3"16 = 12 < ncx/3"!6 c2 > 
2 h3 <-:. 

and a function of~, say a(~), between pointed brackets is defined as an integral 
through the thickness, viz., 

j_
+h(s)/2 

< Q' >= o:(~)de 
-h(s)/2 

(9) 

For an applied external loading ~' the displacement field ui determining the 
deformed state is the stationary point of the energy functional 

(10) 

Asymptotical Analysis of the Shell Energy Functional 

Zeroth-Order Approximation 

Let .6. and E be the order of displacements and stiffness coefficients cafh
6

, re
spectively. Assume that the order of the external forces is 

This assumption is shown later to be consistent with the equilibrium equations. 
An alternative would be to assume the order of the external force as some quantity P 
and derive the order of the displacements as P L2 / Eh from an asymptotical analysis 
of the energy functional. 

For a thin-walled slender beam whose dimensions satisfy Eq. (1) the rate of change 
of the displacements along the axial direction is much smaller than their rate of change 
along the circumferential direction. That is, for each displacement component 

1~:1 << ~~~~ 
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Using Eq. (6) and assuming that dis of the same order as R, the order of magnitude 
of the in-plane strains and curvatures is 

'Yll- 0 (~) 

2'Yl2- 0 (~) 

'Y22- 0 (~) 

Pu-0 (t) 
P12-o(~) 

~-o(~) 

Since /11 and p11 are much smaller than 112, 122 and p12 , P22, respectively, their 
contribution to the ela$tic energy is neglected. 

. By keeping the leading order terms in the strain..:displacement relationships, Eq. 
(6) can be written as 

avl 
21'12 = as 

a?>J v 
1'22 = as + R 

1 avl 
PI2 = 4R as 

a2v 8 V2 

p22 = 8s2 - 8s ( R) 

(11) 

The order of magnitude of the shell energy per unit area and the work done by 
external forces is 

<I>_ O ( E~2

h) 

P;U; _ O ( E~:h) 
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Since ?;,Ui < < ~, the contribution of external forces is neglected. The energy 
functional takes the form · 

21 = foL f { 4hCI212( /'!2)2 + 4hCI222/'12/'22 + hC2222( /'22)2 + 4h2Cf212/'12Pl2 

+2h2Cf222
"Yt2P22 + 2h2C'f_212'Y22Pt2 + h2Ct222

'Y22P22 
h3 h3 h3 + -Ct2t2(p )2 + _C1222P P + -c2222(p )2}dsdx 3 2 12 3 2 12 22 12 2 22 (12) 

The integrand in Eq. {12) is a positive quadratic form, therefore the minimum of 
the functional is reached by functions v, Vt, and 1.12 for which·'Yt2 = ·'Y22 = P12 = P22 = 
0. From Eq. {11) this corresponds to 

avl = 0 
as 

at12 + ~ = 0 as R 

a2v _ !__ (v2) = 0 as2 as R 

The function v in Eqs. {14) and (15) should be single valued, i. e. 

(av) = ! j av ds = o as l as 

(13) 

(14) 

(15) 

(16) 

The integral in Eq. {16) is performed along the cross sectional mid-plane closed con
tour f. The length of contour r is denoted by l. The bar in Eq. (16) and in the 
subsequent derivation denotes averaging along the closed contour r. 

Equation (13) implies that v1 is a function of x only, i.e. 

v1=Ut(x) 

Integrate Eq. {15) to get 
av 'l12 
--- = -~(x) as R 

(17) 

{18) 

where cp(x) is an arbitrary function which is shown later to represent the cross sec
tional rotation about the x-axis. From Eq. (16) and (18), one obtains the relation 
between cp(x) and v2. 

\O(X) = (~) 
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Substitute v from Eq. (14) into Eq. (18), to get the following second-order differential 
equation for v2 

a aV<J v2 
-(R-) +- = rp(x) as as R 

(19) 

To solve this equation, one has to recall the relations between the radius of curvature 
Rand the components y(s) and z(s) of the position vector associated with contour r 

\ 

tflz 1 dy 
ds2 = Rds 

tfly 1 dz 
ds2 = - R ds (20) 

It follows from Eq. (20) that~ and : are solutions of the homogeneous form of Eq. 
(19) and v2 = cp(x)rn is its particular solution. The general solution is therefore given 
by 

(21) 

where U2 and U3 are arbitrary functions of x. Substitute from Eq. (21) into Eq. (14) 
to get · 

(22) 

Equations (17), (21) and (22) represent the curvilinear displacement field that mini
mizes the zeroth order approximation of the shell energy. Using Eq. (7) the curvilinear 
displacement field is written in Cartesian coordinates as 

u2 = U2(x)- zcp(x) 

u3 = U3(x) + yr.p(x) 

The variables U1 (x), U2(x) and U3(x) represent ihe average cross-sectional transla
tion while rp(x) the cross-sectional rotation normally referred to in beam theory as 
the torsional rotation. This displacement field corresponds to the zeroth-order ap
proximation and does not include bending behavior. For a centroidal coordinate 
system U1 (x), U2(x), U3(x) and c,o(x) can be expressed as 

Ut(x)=ui 

U2(x) = u2 

U3(x) = 113 
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First-Order Approximation 

(ii. (' <p(x) = _I;J 
Tn 

A first-order approximation can be constructed by rewriting the displacement field 
in Eqs. (17), (21) and (22) in the form 

Vt = Ut(x) + Wt(s,x) 

dy dz . 
V2 = U2(x) ds + Ua(x) ds + rp(x)rn + w2(s, x) {23) 

dz dy 
v = U2(x) ds - Ua(x) ds - rp(x)rt + w(s, x) 

where WIJ w2 and w can be regarded as correction functions to be determined based 
on their contributions to the energy functional. 

Substitute Eq. {23) into Eq. {6) to obtain the strains and curvatures in terms of 
the displacement corrections 

0 awl 
/11 ='Yu +-8x 

0 .... 

/22 = l22 + /22 
... 8w2 w 
/22=-+as R 

(24) 

where / 0 crfJ and P0 crfJ are the strains and curvatures corresponding to the zeroth-order 
approximation. These are expressed as 

7u = u:(x) 

z¥12 = U~(x): + U~(x) ~ + cp'(x)rn 
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o "( ) dz "( ) dy "( ) Pu = u2 X - - Ua X - - <p X Tt 
ds ds 

(25) 

P12 = 4~ [ U~(x): + U~(x) ~; + <p'(x)rn] - <p'(x) 

0 

P22 = 0 

The prime in Eq. (25) denotes differentiation with respect to x. The order of Wi 

is (~d). .~ong the new terms introduced by the function wi the leading ones are 
denoted by superscript ... in Eq. {24). By keeping their contribution over the other 
terms, the energy functional can be represented by 

0 0 

~("Yu, 2"YI2 + 2i't2, 1'22, 0, fh2, P22) 

where te:-:::1s of order ( ~;~) or smaller such as 

0 0 20 20 

hpl2i'l2' hP12i'22' h Pl2P12' h Pt2P22 

are neglec:.ed in comparison with the following terms 

0 0 0 0. 

"Yni'12, "Yui'22, "Yt21'12, "Y12i22 

of order ( ~ ). Similarly, the contribution of the work done by external forces, ~wi, is 
neglecteC. ~ince its order is ( Eh~(f)) in comparison with the order of the remaining 

terms in :he energy functional ( Eh ~). Therefore in order to determine the functions 
wi one }.:;..s to minimize the functionJ 

If the rig:d body motion is suppressed the solution is unique. The terms p12 , P22 are 
essential :o the uniqueness of the solution; however, their contribution to the energy 
is of orcer ( Eht: ( ~)) and is consequently dropped. This aspect is discussed by 
Berdiche..-sky and Misiura (1991) with regard to the accuracy of classical shell theory. 
The she~: energy can therefore be represented by 

{Lf o o ~ 
I = Jo ~("Yu, 2"Yt2 + 2it2, 1'22, 0, 0, 0) dsdx (26) 

It is wo~h noting that the bending contribution does not appear in Eq. (26). That 
is, to the fir~t order approximation the shell energy corresponds to a membrane state . 
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The first variation of the energy functional is 

61 = fLj { a<I> 6 (awl) + a<P 8 (aw2 + w)} dsdx (27) 
lo a (21t2) as a122 as R 

Equation (27) can be written in terms of the shear flow N12 and hoop stress resultant 
N22 by recalling that N12 = a(g~2) and N22 = :.:_

2
• The result is 

Set the first variation of the energy to zero, to obtain the following 

which result in 

and 

aN12 = O 
as 

aN22 = O 
as 

N22 = O 
R 

N12 = constant (28) 

(29) 

This is similar to the classical solution of constant shear flow and vanishing hoop 
stress. By setting N22 to zero the energy density is expressed in terms of 1 11 and 1 12 

only 
24->t =min 2<I> = A(s)(1u)2 + 2B(s)ru1t2 + C(s)('Yt2? 

"Y22 
(30) 

The variables A(s), B(s) and C(s) represent the axial, coupling and shear stiffnesses, 
respectively. They are defined in terms of the 2D shell moduli in the Appendi..x. 

Equation (30) indicates that, to the first order, the energy density function is 
independent of functions w2 and w. That is the in-plane warping contribution to the 
shell energy is negligible. The function w 1 however, can be determined from Eqs. (28) 
and (30) and by enforcing the condition on w 1 to be single valued as follows 

a<I>l 1 
N12 =a (

2112
) = 2 (B(s)rJt + C(s)r12) =constant (31) 
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Substitute the leading terms from Eqs. (24) and (25) into Eq. {31) to get 

1 1 ( dy dz awl) 
2su~ (x) + 4c U~(x) ds + U~(x) dx + <p'(x)rn(s) + as =constant (32) 

In deriving Eq. (32) the term B~' has been neglected in comparison with ~C8:S'· 
This is possible if IBI is less or of the same order of magnitude as C. For the 
case when JBI >> C additional investigation is needed. Since the elastic energy 
is positive definite, B2 ~ AC, and B could be greater than C only if A > > C. In 
practical laminated composite designs IBI < C, as the shear stiffness is greater than 
the extension-shear coupling. 

Equation (32) is a first-order ordinary differential equation in w1• The value of 
the constant in the right hand side of Eq. (32) can be found from the single value 
condition of function w1: 

(awl)=~~ 8wlds = 0 
OS l as 

The solution of Eq. (32) is determined within an arbitrary function of x. This function 
can be specified from various conditions. Each one yields a specific interpretation of 
the variable U1• For example if w1 = 0 the variable U1 = v1 according to Eq. (23). 
The choice of these conditions does not affect the final form of the ID beam theory 
and therefore will not be specified in this formulation. The result is the following 
simple analytical solution of Eq. (32) 

where 

w1 = -yU~(x)- zU~(x) + G(s)<p'(x) + g1 (s)U~ (x) 

G(s) =fa' (21; c(-r_)- rn(-r) ]dr 

9J(s) = f [b(r)- ~c(-r)]dr 
b(s) = -2B(s) 

C(s) 
1 

c(s) = C(s) 

The area enclosed by contour r is denoted by Ae in Eq. (34). 

(33) 

(34) 

The displacement field corresponding to the first correction is obtained by sub
stituting Eq. {33) into Eq. (23) and dropping w2 and w since their contribution to 
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the shell energy is negligible compared to w 1. The result referred to as first-order 
approximation is given by 

v1 = U1(x)- y(s)U~(x)- z(s)U~(x) + G(s)ql(x) + 91 (s)U~(x) 

dy dz 
'V2 = U2(x) ds + U3(x) ds + ep(x)rn 

dz dy 
v = U2(x) ds - U3(x) ds- ep(x)rt 

Displacement Field 

The displacement field corresponding to the next correction is found in the same 
way. A third correction can also be performed. However, subsequent corrections yield 
only smaller terms, as shown in Badir (1992), and the displacement field converges 
to the following expression 

where 

v1 - U1(x)- y(s)U~(x)- z(s)U~(x) + G(s)ep'(x) 

+ 91 (s)U~ (x) + 92(s)U;(x) + 93(s)U~'(x) 

dy dz 
'V2 = U2(x) ds + U3(x) ds +.ep(x)rn 

dz dy 
v = U2(x) ds - U3(x) ds- ep(x)rt 

92(s) =-fa' [b(r)y(r)- ~ c(r) ]dr 

93(s) =-fa' [b(r)z(r)- ~ c(r)]dr 

(35) 

(36) 

It is seen from expressions (34) and (36) that G(s), 91(s), 92(s), and 93(s) are single
valued functions, that is 

G(O) = G(l) = 91 (0} = 9t (l) = 92(0) = 92(l) = 93(0) = 93(l) = 0 

The expressions for the displacements 'V2: v and the first four terms in v1 are 
analogous to the classical theory of extension, bending and torsion of beams. The 
additional terms 91 (s)U~, !J2(s)U!f. and 93 (s)U~' in the expression of v1 in Eq. (35) 
represent warping due to axial strain and bending. These new terms emerge natu
rally in addition to the classical torsional related warping G(s)c.p'. They are strongly 
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influenced by the material's anisotropy, and vanish for materials that are either or
thotropic or whose properties are antisymmetric relative to the shell middle surface. 
These out-of-plane warping functions were first derived by Armanios et al. {1991) for 
laminated composites. 

The contribution of out-of-plane warping was considered recently by Kosmatka 
(1991). Local in-plane deformations and out-of-plane warping of the cross section 
were expressed in terms of unknown functions. These functions were assumed to be 
proportional to the axial strain, bending curvature and twist rate within the cross 
section and were determined using a finite element modeling. In the present formula
tion, the out-of-plane warping is shown to be proportional to the axial strain, bending 
curvature and torsion twist rate. The functions associated with each physical behav
ior are expressed in closed-form by g1(s) for the axial strain, g2(s) and g3(s) for the 
bending curvatures and G(s) for the torsion twist rate. 

Strain Field 

The strain field is obtained by substituting Eq. (35) into Eq. ( 6) and neglecting 
terms of smaller order in the shell energy. The result is 

')'11 = U~(x)- y(s)U~(x)- z(s)U~'(x) 

2')'12 = 
2~· c(s)cp' + [b(s)- ~c(s)] u; 

- [b(s)y(s)- ; c(s)] u; 

- [b(s)z(s) - ~ c(s)] u~· 
/22 = 0 

(37) 

It is worth noting that the vanishing of hoop stress resultant in Eq. (29) and hoop 
strain in Eq. (37) should be interpreted as negligible contribution relative to other 
parameters. The longitudinal strain /u is a linear function of y and z. This result 
was adopted as an assumption in the work of Libove {1988). 

In deriving Eq. (37), higher order terms associated with G<p" in the energy func

tional have been neglected in comparison with C ( 1ffc<p1
) 

2 
as shown in Badir (1992). 

This is possible if the following inequalities are satisfied 

~ (~) « 1 ~ (~) « 1 
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Constitutive Relationships 

Substitute Eq. (37) in the energy density, Eq. (30), and integrate overs to get the 
energy of lD beam theory 

where 

<I>2 - 4 [cu(UD2 + C22(cp')2 + c33(u;)2 + c44(U;)2] 

+C12Ufcp' + CtaU~u; + Ct4U~u; 

(38) 

+C2acp'u; + C24cp'u; + Ca4u;u~' (39) 

Explicit expressions for the stiffness coefficients Cii (i, j = 1, 4) are given in the 
Appendix .. 

The constitutive relationships can be \\'Tit ten in terms of stress resultants and kine
matic variables by differentiating Eq. (39) with respect to the associated kinematic 
variable or by relating the traction T, torsional moment Mx, and bending moments 
My and Mz to the shear flow and axial stress as follows · 

EJ<I> . 
T = au{ = f j uu~ds = f N 11ds 

M. = ~~ = f J U12r,.(s)~ds = f N12r,.(s)ds 

My=;~;=- f J uuz~ds =-f Nuz(s)ds (40) 

M: = ;~; = - f J uuyd~ds = - j N11 y(s)ds 

The shear flow N12 is derived from the energy density in Eq. (31) and the axial stress 
resultant /\'11 is given by 

l\'n = 
0
°<1>1 = A(s)"Yu + B(s)"Yt2 

"Yll 
( 41) 

and the associated axial and shear stresses are uniform through the wall thickness. 

Substitute Eq. (37) into Eqs. (31) and (41) and use Eq. (40) to get 

(42) 
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Equilibrium Equations 

The equilibrium equations can be derived by substituting the displacement field 
in Eq. (35) into the energy functional in Eq. {10) and using the principle of minimum 
total potential energy to get 

T' + f Pxds = 0 

M~ + f (PzY- P11 z)ds = 0 

M; + <f Pxzds)' + j Pzds = 0 

M:' + <f Pxyds)' + f P11ds = 0 

(43) 

where Px, P11 and Pz are surface tractions along the x, y and z directions, respectively. 

One of the member of each of the following four pairs must be prescribed at the 
beam ends: 

TorU1, M:z:orcp, M11 orU~,andMzorU~ (44) 

SU11MARY OF GOVERNING. EQUATIONS 

The development presented in this work encompasses five equations. The first, is 
the displacement field given in Eq. (35). Its functional form was determined based 
on an asymptotical expansion of shell energy. The associated strain field is given in 
Eq. (37) and the stress resultants in Eqs. (31), (40) and (41). The fourth, are the 
constitutive relationships in Eq. (42) with the stiffness coefficients expressed as inte
grals of material properties and cross sectional geometry in Eq. (56) of the Appendix. 
Finally the equilibrium equations and boundary conditions are given in Eq. (43) and 
( 44), respectively. 

In the present development the determination of the displacement field is essential 
in obtaining accurate expressions for the beam stiiTnesses. A comparison of the derived 
displacement field with results obtained by previous investigators is presented in the 
following section. 

C0~1PAIUSON OF DISPLACEMENT FIELDS 
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The pioneering work of Reissner and Tsai {1972) is based on developing an exact 
solution to the governing equilibrium, compatibility and constitutive relationships 
of shell theory. Closed as well as open cross-sections were considered. The derived 
constitutive relationships are similar to Eq. ( 42). However, the authors left to the 
reader the derivation of the explicit expressions for the stiffness coefficients. This 
may be the reason for their work to have been overlooked. These expressions are 
important in identifying the parameters controlling the behavior and in performing 
parametric design studies. Furthermore, the explicit form of the displacement field 
helps evaluate and understand predictions of other analytical and numerical models. 

A number of assumptions were adopted in Reissner and- Tsai 's development re
garding material properties such as neglecting the coupling between in-plane strains 
and curvatures which can be significant in anisotropic materials. It is important to 
assess the influence of these assumptions on the accuracy. This has been done in the 
present work by using an asymptotical expansion of the shell energy and proving that 
the coupling and curvatures contributions to the energ:y are small in comparison with 
the in-plane contribution. 

Mansfield and Sobey {1979) and Libove {1988) obtained the beam flexibilities re
lating the stretching, twisting and bending deformations to the applied axial load, tor
sional and bending moments for a special origin and axes orientation. They adopted 
the assumptions of a negligible hoop stress resultant Nss and a membrane state in 
the thin-walled beam section. Although they did not refer to the work of Reissner 
and Tsai {1972), their stiffnesses coincide for the special case outlined in Reissner and 
Tsai {1972). This special case refers to the one where the classical assumptions of 
neglecting shear and hoop stresses and considering the shear flow to be constant is 
adopted. However, one has to carry out the details to show this fact. 

The work of Rehfield {1985) has been used in a number of composite applications. 
Rehfield's displacement field is of the form 

Ut = U1 (x)- y(s) [U~(x)- 2rzy(x)] - z(s) [L.~(x) - 27:rz{x)J + g(s, x) 

u2 = U2(x) - z(s)<p(x) 

u3 = U3(x) + y(s)cp(x) 

{45) 

where l:u and lzy are the transverse shear strains. The warping function g(s, x) is 
given as 

g(s, x) = G(s)<p'(x) {46) 

with 
{47) 
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A comparison of the displacement fields in Eq. (35) and ( 45) shows that the warp
ing function in Rehfield's formulation comprises the torsional-related contribution 
but does not include explicit terms that express the bending-related warping. The 
torsional warping function G(s) in Eq. (34) is different from the function in Eq. (47). 
The two expressions coincide when c = constant that is, when the wall stiffness and 
thickness are uniform along the cross section circumference. 

The torsional warping function in Eq. (47) was modified by Atilgan (1989) and 
Rehfield and Atilgan (1989) as 

(48) 

where 
1 

(49) 

and 

[A
I A' ] [A - (Al2f

2 

11 16 _ 11 A:n 
AI A' -

1s 66 A16-~ 
A:n 

(50) 

The Aii in Eq. (50) are the in-plane stiffnesses of Classical Lamination Theory 
(Jones {1975) and Vinson and Sierakowski (1987)). They are related to the modulus 
tensor by 

Al6 =< Elll2 > , A26 =< £1222 > , A66 =< £1212 > 

A comparison of the modified torsional warping function in Eq. (48) and G(s) in 
Eq. (34) shows that they coincide for laminates with no extension-shear coupling 
( < D 1112 >=< D 1222 >= 0, in Eq. (54) of the Appendix). For the case where the 
through-the-thickness contribution is neglected in Eq. (54), this reduces to A 16 = 
A26 = 0. 

The warping function obtained by Smith and Chopra (1990, 1991) for composite 
box-beams is identical to the expression of Rehfield and Atilgan (1989) and Atilgan 
(1989) given in Eqs. (46) and (48). 

An assessment of all the previous warping expressions can be made by checking 
whether they reduce to the exact expression for isotropic materials (see, for example, 
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iv1e~son {1990)) 

(51) 

with 

where J.L is the shear modulus. 

For isotropic materials the in-plane coupling b is zero and consequently 91, 92 and 
93 in Eqs. (34) and (36) vanish. That is the warping is torsion-related and reduces 
to G(s)rp'. _Moreover, the shear parameter cis equal to 4p.~(s} and the expressions for 

G(s) and G(s) in Eqs. (34) and (51) coincide. 

Rehfield's warping function in Eq. {47) coincides with Eq. {51) when the material 
properties and the thickness are uniform along the wall circumference. Atilgan's 
(1989), Rehfield and Atilgan's (1989), and Smith and Chopra's (1991) formulations 
reduce to Eq. (51) for isotropic materials. 

APPLICATIONS 

. Two special layups: the circumferentially uniform stiffness ( CUS) and circumfer
ential1y asymmetric stiffness (CAS) have been considered by Atilgan (1989), Rehfield 
and Atilgan (1989), Hodges et al. (1989), Rehfield et al. (1990), Chandra et al. 
(1990), and Smith and Chopra (1990, 1991). 

CUS Configuration 

This configuration produces extension-twist coupling. The axial, coupling and 
in-plane stiffnesses A, B, and C given in Eq. (53) of the Appendix are constant 
throughout the cross section, and hence the name circumferentially uniform stiffness 
(CUS) was adopted by Atilgan (1989), Rehfield and Atilgan (1989), Hodges et al. 
(1989), and Rehfie1d et al. (1990). For a box-beam, the ply lay-ups on opposite 
sides are of reversed orientation, and hence the name antisymmetric configuration 
was adopted by Chandra et al. (1990), and Smith and Chopra (1990,1991). 

Since A, B, and Care constants, the stiffness matrix in Eq. (42), for a centroidal 
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coordinate system, reduces to 

The nonzero stiffness coefficients are given by 

Cu = Al 

C12 = BAe 

c 2 c22 =-A l e 

f 2 B
2 f 2 C33 = A z ds - C z ds 

f 2 B
2 f 2 C44 = A y ds - C y ds 

(52) 

For such a case the out-of-plane warping due to axial strain vanishes and 9I does 
not affect the response. 

CAS Configuration 

This configuration produces bending-t\\;st coupling. The stiffness A is constant 
throughout the cross section. For a box beam, the coupling stiffness, B in opposite 
members is of opposite sign and hence the name circumferentially asymmetric stiff
ness (CAS) was adopted by Atilgan(1989), Rehfield and Atilgan(l989), Hodges et 
al.(l989), and Rehfield et al.(1990). For a box-beam, the ply lay-ups along the hori
zontal members are mirror images, and hence the name symmetric configuration was 
adopted by Chandra et al.(l990), and Smith and Chopra(l990,1991). The stiffness 
C in opposite members is equal. The stiffness matrix, for a centroidal system of axes, 
reduces to 

[ ~) ~2 ~3 ~ l 
o C23 c33 o 
o o o c44 

The nonzero stiffness coefficients are e.xpressed by 

B2 
Cu = Al - 2-' d 

Ct 
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Table 1: Properties of T300/5208 Graphite/Epoxy 

E 11 = 21.3 Msi 
E22 = E33 = 1.6 Msi 
G12 = Gta = 0.9 Msi 
G2a = 0.7 Msi 
Zlt2 = Zlt3 = 0.28 
Zl23 = 0.5 

C22 = Ct A2 
2[d+a(g;)] e 

Bt 2 

c23 = 2 [d + a ( ~) J A. 

1 2 B'f{ Ae }A 
C33 = A z ds - 20, a - [ d + a ( ~) j • 

f 
B2da 

C44 = A y2ds - _t -
6Ct 

Subscripts t and v denote top and vertical members, respectively. The box width 
and height are denoted by d and a, respectively. For the CAS configuration and with 
reference to the Cartesian coordinate system in Fig. 1, bending about the y-axis is 
coupled with torsion while extension and bending about the z-axis are decoupled. 

In order to assess the accuracy of the predictions the present theory is applied to 
the box beam studied by Hodges et al. (1989). The cross sectional configuration is 
shown in Fig. 3 and the material properties in Table 1. 

Flexibility Coefficients 

A comparison of the flexibility coefficients Si; with the predictions from two models 
is provided in Table 2. The flexibility coefficients Si; arc obtained by inverting the 
4 x 4 matrix iri Eq. (42). The NABSA (Nonhomogeneous Anisotropic Beam Section 
Analysis) is a finite element model based on an extension of the work of Giavotto 
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Table 2: Comparison of Flexibility Coefficients of NABSA, TAIL and Present 
{lb,in units) 

Flexibility NABS A PRESENT % Diff. TAIL % Diff. 
Su x 105 0.143883 0.14491 +0.7 0.14491 +0.7 
s22 x 104 0.312145 0.32364 +3.6 0.32364 +3.6 
s12 x 105 -0.417841 -0.43010 +2.9 -0.43010 +2.9 
S33 x 104 0.183684 0.1886 +2.6 0.17294 -5.8 
s44 x 105 0.614311 0.63429 +3.2 0.50157 -18.4 

Table 3: Geometry and Mechanical Properties of Thin-Walled Beam with (+12]4 CUS 
square cross-section 

Length = 24.0 in. E 11 = E22 = E33 = 11.65 Msi 
Width = depth = 1.17 in. G12 = G13 = 0.82, G23 = 0.7 Msi 
Ply thickness = 0.0075 in. v12 = v13 = 0.05, 1123 = 0.3 

et al.(1983). In this model all possible types of warping are accounted for. The . 
TAIL model is based on the theory of Rehfield (1985) while neglecting the restrained 
torsional warping. The predictions of the NABSA and TAIL models are provided by 
Hodges et al.(1989). The percentage differences appearing in Table 2 are relative to 
the NABSA predictions. The present theory is in good agreement with NABSA. Its 
predictions show a difference ranging from +0. 7 to +3.6 percent while those based 
on Rehficld's theory (1985) range from +3.6 to -18.4 percent. 

The present theory is applied to the prediction of the tip deformation in a can
tilevered beam made of Graphite/Epoxy and subjected to different types of load
ing. The beam has a CUS square cross section with (+12]4 lay-up. The geometry 
and mechanical properties are given in Table 3. Comparison of results with the 
MSC JN ASTRAN finite element analysis of Nixon (1989) is provided in Table 4. The 
MSC/NASTRAN analysis is based on a 2D plate model. The predictions of the 
present theory range from +1.7 to -0.7 percent difference relative to the finite ele-
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Table 4: MSC/NASTRAN and Present Solutions for a CUS Cantilevered Beam with 
[+ 12]4 Layups Subjected to Various Tip Load Cases 

Tip Load Tip Deformation % Diff. 
NASTRAN Present 

Axial Force (100 lb) Axial Disp. : 0.002189 in. 0.002202 in. +0.6% 
Axial Force (100 lb) Twist: 0.3178 deg. 0.32325 deg. +1.7% 
Torsional Moment {100 lh·in) Twist: 2.959 deg. 2.998 deg. +1.32% 
Transverse Force (100 lb) Deflection : 1.866 in. 1.853 in. -0.7% 

Table 5: Cantilever Geometry and Properties 

Width = 0.953 in. £ 11 = 20.59 Msi, ~2 = £33 = 1.42 Msi 
Depth = 0.53 in. G12 = G13 = 0.87 Msi, G23 = 0. 7 Msi 
Ply thickness= 0.005·in. v12 = V13 = 0.42, v23 = 0.5 

ment results. 

For a CUS configuration, the extension-torsional response is decoupled from bend
ing. Since Cis constant and g1 does not affect the stiffness coefficients, the flexibility 
coefficients controlling extension and twist response, Su, S12 and S22 coincide with 
those of Atilgan (1989), and Rehfield and Atilgan (1989). As a consequence, the ax
ial displacement and twist angle predictions coincide. However, the lateral deflection 
under transverse load differs. The tip lateral deflection predicted using the theory of 
Rehfield (1985), and Atilgan (1989), and Rehfield and Atilgan (1989), is 1.724 inch 
resulting in -7.6 percentage difference compared to the NASTRAN result. 

The test data appearing in the comparisons of Figs. 4-9, are reported by Chandra 
et al. (1990), and Smith and Chopra (1990, 1991). Figures 4 and 5 show the bending 
slope variation along the beam span for antisymmetric and symmetric cantilevers 
under a 1 lb transverse tip load. The beam geometry and material properties are 
given in Table 5. The analytical predictions reported by Chandra et al. (1990), and 
Smith and Chopra (1990, 1991) together with results obtained on the basis of the 
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analyses of Rehfield (1985), Rehfield and Atilgan (1989), J\tilgan (1989), and the 
present work are combined in Figs. 4 and 5. Results show that the predictions of the 
present theory are the closest to the test data when compared to the other analytical 
approaches. 

The bending slope in Figs. 4 and 5 is defined in terms of the cross section rotation 
for theories including shear deformation. For the geometry and material properties 
considered, this effect is negligible as shown in Figs. 4 and 5 where the spanwise slope 
at the fixed end predicted by theories with shear deformation, is indistinguishable 
from zero. The nonzero value shown by the test data may be due to the experimental 
set up used to achieve clamped end conditions. 

The spanwise 'twist distribution of symmetric cantilevered beam with [30]6 and 
[45]6 lay-ups is plotted in Figs. 6 and 7, respectively. The beams are subjected to 
a transverse tip load of 1 lb. Their dimensions and material properties are given in 
Table 5. Results show that the present theory and the works of Rehfield and Atilgan 
(1989) and Atilgan (1989) are the closest to the test data. A similar behavior is 
found for th_e bending slope and the twist angle at the mid-span of the symmetric 
cantilevered beams appearing in Figs. 8 and 9. The beams are subjected to a tip 
torque of 1 lb-in. 

CONCLUSION 

An anisotropic thin-walled closed section beam theory has been developed based 
on an asymptotical analysis of the shell energy functional. The displacement field 
is not assumed apriori and emerges as a result of the analysis. In addition to the 
classical out-of-plane torsional warping, two new contributions are identified namely, 
axial strain and bending warping. A comparison of the derived governing equations 
confirms the theory developed by Reissner and Tsai. In addition, explicit closed-form 
expressions for the beam stiffness coefficients, the stress and displacement fields are 
provided. The predictions of the present theory have been validated by comparison 
with finite element simulation, other closed form analyses and test data. 
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APPENDIX 

In this appendix explicit expressions for some of the relevant variables used in the 
development as well as the stiffnesses Ci; (i, j = 1, 4) in Eq. (42) are provided. 

The three stiffness parameters A, B and C in Eq. (30) are expressed in terms of 
the Hookean tensor EJiikl as follows 

( D l122 )2 
A( ) = Dlnt _ < > 

5 < > n2222 < > 

B(s) = 2 ( < D 1112 > 
< n1122 >< n1222 >) 

< n2222 > 

28 

(53) 



C(s) = 4 (< Dt2t2 > - ( < Dl222 > )2) 
< fl2222 > . 

The 2D Young's moduli flDtlh6 are given by 

F;OfJ33 gr633 
DOl/h6 = £Dlfh6 _ _ H GOlf3p.(JY6>. 

where 

£3333 p.>. 

EOtf333 E~-'333 
~{jp. = ~8p.3 - ---

E3333 

and H,.,.>. are components of the inverse of the 2D matrix II E!'3>.3 -. E,.l@f~333 jj. 

Combining Eq. (34) and (53) the variables b and c can be written as 

b(s) = 

and 

(54) 

1 
c(s) = 4 ( fli2t2 (<D1222>)~) (55) 

< > <D2222> 

where the pointed brackets denote integration over. the thickness as defined in Eq. 
(9). 

Expressions for the stiffness coefficients Cii (i, j = 1, 4) in terms of the cross 
section geometry and materials properties are as follows 

f B 2 
\ {J (B JC)ds]2 

Cu = (A- C ;ds + J (l/C)ds 

C _ f (B/C)ds A 
.
12

- f tl/C)ds e 

C = _ f (A_ B
2

) d _ f (B/C)ds J (B/C)zds 
13 C z s f (l/C)ds 

C = -f(A _ B 2
) d _ f (B/C)ds f (BJC)yds 

14 C Y 
5 J (l/C)ds 

1 2 

C22 = f (1/C)ds Ac 

C _ f (B/C)zds A 
23 
-- f (1/C)ds e 

29 

(56) 



C24 = f (B/C)yds Ae 
f (1/C)ds 

Caa= f(A- B\2ds+ {f(B/C)zdsf 
C f(1/C)ds 

Ca4 = f (A- 82 )yzds + f (B/C)yds f (B/C)zds 
C f (1/C)ds 

c44 = f (A_ 
82 

)y2ds + If (B/C)ydsf 
C f(1/C)ds 

30 
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Figure 1: Cartesian Coordinate System 

Figure 2: Curvilinear Coordinate System 

Figure 3: Beam Cross Section 

Figure 4: Bending Slope of an Anti-Symmetric (15]6 Cantilever Under llb Transverse 
Tip Load 

Figure 5: Bending Slope of a Symmetric [30)6 Cantilever Under 1 lb Transverse Tip 
Load 

Figure 6: Twist of a Symmetric (30]6 Cantilever Under 1 lb Transverse Tip Load 

Figure 7: Twist of a Symmetric [45]6 Cantilever Cnder 1 lb Transverse Tip Load 

Figure 8: Bending slope at mid-span under unit tip torque of Symmetric lay-up 
Cantilever beams 

Figure 9: Twist at mid-span under unit tip torque of Symmetric lay-up Cantilever 
beams 
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INTRODUCTION 

The work described herein was performed at the School of Aerospace 

Engineering, Georgia Institute of Technology during the period 12 February 

1986 - September 1988. Professors Erian A. Armanios and Lawrence W. Rehfield 

were the Principal Investigators. 

This research concerns the analysis and prediction of delamination damage 

that occur in composite structure on the on the sublaminate scale --that is 

the scale of individual plies or groups of plies. The objective have been to 

develop analytical models for mixed-mode delamination in composites. These 

includes: 

(1) the influence of residual thermal and moisture strains 

(2) local or transverse crack tip delamination originating at the tip of 

transverse matrix cracks 

(3) delamination in tapered composite under tensile loading. 

Computer codes based on the analytical models in (1) and (2) have been 

developed and comparisons of predictions with available experimental and 

analytical results in the literature have been performed. A simple analysis 

for item (3) has been developed and comparisons of predictions with finite 

element simulation is underway. 

The usua 1 approach to dea 1 i ng with 1 oca 1 i zed phenomena is 1 arge sea 1 e 

numerical simulation and analysis, mostly by general purpose finite element 

codes. This approach is often supplemented by a 11 build and test 11 demonstra

tion, or series of demonstrations if repeated failures are encountered. While 

such approaches are often costly and inefficient, their major drawback is that 

fundamental principles are not discovered which provide the means to produce 

better results. Furthermore, the steps must be repeated all over again the 

next time a similar situation arises. 



Overview of the Research 

The research program can be separated into three elements: The influence 

of residual thermal and moisture stresses on the mixed-mode edge delamination 

of composites. The analyses of transverse crack-tip delamination and 

delamination analysis in tapered laminates under tensile loading. A detailed 

account of the ana 1 ys is and app 1 i cations of each e 1 ement is provided in 

Appendices I through III. A brief description and summary of the major find

ings of each research element is presented in the following sections. 

Influence of Hygrothermal Stresses 

The sublaminate edge delamination analysis and code which had its origin 

in the research conducted under the earlier grant NAG-1-558 has been modified 

to include the effects of hygrothermal stresses. 

The model is applied to mixed mode edge delamination specimens made of 

T300/5208 graphite/epoxy material. Residual thermal and moisture stresses 

significantly influenced the strain energy release rate and interlaminar 

stresses. Both experienced large increases when thermal conditions were added 

to the mechanical strains. These effects were alleviated when moisture 

stresses were included. Thermal effects on the interlaminar shear stress and 

total energy release rate were totally alleviated for the same specific 

moisture cdntent. Moreover, this value of moisture content was not signifi

cantly affected by the stacking sequence for the laminates considered. This 

work is presented in accomplishments 3.4 and 12. A complete derivation of the 

analytical model, Fortran program listing and applications are provided in a 

accomplishment 3 and Appendix I. 

Transverse Crack Tip Analysis 

Transverse crack tip delaminations originate at the tip of transverse 

matrix cracks. This situation appears in Figure 1 where a symmetric laminate 

·made of 90° p 1 i es in the core region and ang 1 e p 1 i es in the top and bottom 

portions is subjected to a tensile loading. Under tensile loading transverse 



matrix cracks initiate in the core region reaching a saturation level at a 

crack spacing denoted by A in the figure. Delamination often initiate at the 

tip of these transverse cracks. This situation is depicted in the generic 

model shown in Figure 1 of a symmetric delamination growing from a transverse 

crack tip. 

Three analytical models, sublaminate shear, membrane and shear lag have 

been developed in order to estimate the saturated crack spacing distance. The 

saturation crack spacing corresponds to the distance from the crack where the 

broken plies regain their uniform stress/strain state i.e. where the 

interlaminar shear stress has decayed down to its far field (uniform) value. 

Based on the closed form expression for the interlaminar shear stress the 

crack spacing predicted by each model is presented in Table I. The experimen

tal result in the table is based on Reifsnider's work for a [0/90]s laminate. 

A complete derivation of these models is provided in Appendix II. 

The analysis of transverse crack tip delamination is presented in Appen

dix II and applied to [± 25/90n]s laminates in the range n=0.5 to 8 made of 

T300/934 graphite/epoxy material. Closed form expressions for the 

inter 1 ami nar stresses, tota 1 strain energy re 1 ease rate and energy re 1 ease 

rate components are obtai ned. A computer code based on this ana 1 ys is is 

developed and implemented into an earlier mixed-mode edge delamination code 

developed under the previous NASA grant NAG-1-558 and presented in accomplish

ment 6 and 7. This code was used to estimate the critical strain levels and 

the associated delamination damage mode with increasing number of goo plies in 

the [± 25/90n]s. Since mid-plane edge delamination is a possible damage mode 

in this type of laminates a mid-plane delamination analysis was developed and 

presented in accomp 1 i shment 10. A computer code based on this ana 1 ys is is 

developed and implemented in the mixed-mode edge delamination code. The 

critical strain and associated delamination damage modes predicted appear in 

Figure 2 and Table II. The critical stresses and associated delamination 

damage mode are provided in Table III. 



Experimental results show that the local {crack tip) delamination phenom

enon is the predominant damage mode only for n=4, 6 and 8 specimens. For n<4 

edge de 1 ami nation either in the mi d-p 1 ane or in the 25/90 interface were 

observed in tests. The present analysis predicts mid-plane edge delamination 

for n=1/2 and 1 and mixed mode edge delamination for n=2 and 3, respectively. 

For n=4, 6 and 8 local del ami nations are predicted to be the controlling 

damage mode with approximately 25 percent Mode II for the three specimens. 

The critical strains in Figure 2 and Table II are computed based on a fracture 

toughness values of 415 J/m2, 140 J/m2 and 120 J/m2 for local delamination, 

mixed mode edge delamination and mid-plane edge delamination, respectively. A 

complete account of this work appears in Appendix II. 

Analysis of Tapered Composites 

A generic configuration of a tapered 1 aminated composite is shown in 

Figure 3 where a 38 ply thick laminate is reduced to 26 ply by dropping three 

inner sets of plies. The basic analysis approach that is adopted utilizes two 

levels of modeling, a global scale and a local scale. The global scale is 

concerned with overall generalized forces and strains such as axial force and 

extension. A simple consistent deformation assumption is the foundation of 

this model. Global equilibrium equations are written and solved. 

The generalized strains determined from the global analysis serve to 

provide estimates for the key primary stresses in the be 1 t of the tapered 

section. Local estimates of interlaminar stresses are determined on the basis 

of equilibrium condition. 

The tot a 1 strain energy re 1 ease rate is computed from the work done by 

the external applied loads. The work done by the external forces is based on 

the axial stiffness of the different elements in the tapered configurations. 

These elements are represented by the six sublaminates shown in Figure 4 where 

A8 denote the effective axial stiffness of the uncracked belt portion, A81 the 

effective axial stiffness of the cracked belt portion. The uncracked belt 

portion in the tapered region makes an angle ~with the loading axis while the 



cracked portion makes an angle a due to delaminations along the taper and the 

uniform regions. These are denoted by a and b in Figure 4. The effective 

axial stiffness of the uncracked and cracked dropped plies are denoted by A u 
and Ac respectively. The axial stiffness of the straight portion is denoted 

by As for the belt and Af for the core plies. 

The extent of delamination along the tapered and the uniform portion of 

the laminate has a significant influence on the axial stiffnesses A , A and u c 
A61 . This is due to the discrete number of ply drops in the core region as 

illustrated in Figure 5 and the pop-off of the delaminated belt region. 

A three-dimensional transformation is required in order to estimate the 

effective axial stiffness of the belt regions A6 and A61 . This is due to the 

belt layup and the orientation of the different belt portions to the loading 

axis as shown in Figure 6. 

The interlaminar stresses between- the belt and the core plies are pre

dicted by considering the equilibrium of the belt region. The equilibrium 

equations are derived using a complementary potential energy formulation of 

the belt on an elastic foundation. The elastic foundation is made of two 

contributions. The first, is a continuous shear restraint provided by the 

resin pocket regions at the interface between the belt and the inner core 

plies. The second, is a discrete number of concentrated transverse normal 

(Ri) and shear (T;) forces at the ply drop locations as shown in figure 7 for 

i=l-4. The distributed shear stiffness is denoted by G in Figure 8 while the 

transverse normal and shear stiffnesses at the ply drop locations are denoted 

by ki and gi (i=l-4), respectively. 

The variation of the total strain energy release rate G with delamination 

a growing along the tapered region appears in Figure 9. The effect of 

delamination b along the uniform portion on a is also shown in the figure. 

The discrete jumps at a/h equal 20 and 40 correspond to the ply drop. A plot 

of the concentrated transverse norma 1 and shear forces and the interface 

between the belt and the inner core appears in Figure 10. 



A detailed description of the analysis, closed form expressions for the 

total energy release rate and interlaminar stresses is provided in Appendix 

III. Additional refinements are planned within this general framework such as 

accounting for shear strains in the belt and increasing the number of 

sublaminate elements in the analysis. 
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Table I Comparison of Transverse Crack Spacing 

Model Saturated Crack Spacing 

(1nn1) 

Shear 2 Sublru.ninates 1.651 

4 sublanunates, a --1 0 1.105 

Membrane 1.004 

Shear Lag 1.160 

Experimental 1.131 



Table II Critical Strains and Associated Delamination Damage Modes 

Critical Strains (%) 

Number of Experimental Local Edge Delamination 

90° plies Delrunination Mixed Mode Mid-Plane 

1/2 0.6058 1.6747 0.6819 0.6058 

1 0.5936 1.1685 0.6262 0.5677 

2 0.5934 0.8058 0.5964 0.6402 

3 0.5934 0.6427 0.5862 0.7582 

4 0.5369 0.5444 0.5810 0.8815 

6 0.3914 0.4264 0.5757 1.1133 

8 0.3589 0.3555 0.5731 1.3199 



Table III Critical Stresses and Associated Delamination Damage Modes 

Critical Stresses (MPa) 

Number of Experi1nental Local Edge Delamination 

90° plies Delamination Mixed lYiode Mid-Plane 

1/2 438 1313.9 535.0 475.3 

1 409 784.0 420.1 380.9 

2 324 426.2 315.4 338.6 

3 270 285.1 260.1 336.4 

4 211 210.6 224.7 341.0 

6 128 134.7 181.8 351.6 

8 94.4 97.1 156.6 360.5 
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Abstract 

Laminated composite structures exhibit a number of different 

failure modes. These include fiber·matrix debonding within individual 

layers, delamination or separation of the layers, transverse cracks 

through one or more layers and fiber fracture. These failures are 

influenced by envircimental conditions. Thermal and moisture 

conditions are significant factors in interlaminar delamination as 

well as the other modes of failures. 

A simple delamination analysis method is presented here. It is 

based on a shear·type deformation theory and includes hygrothermal 

effects. These enviromental conditions are applied to the strain 

energy release rate and interlaminar shear stresses. 

The method is applied to mixed mode edge delamination specimens 

made of T300/5208 graphite/epoxy material. Residual thermal and 

moisture stresses significantly influenced the strain energy release 

rate and interlaminar stresses. Both experienced large increases when 

thermal conditions were added to the mechanical strains. These 

effects were alleviated when moisture stresses were included. Thermal 

effects on the interlaminar shear stress and to~al energy release rate 

were totally alleviated for the same specific moisture content. 

Moreover, this value of moisture content was not significantly 

affected by the stacking sequence for the laminates considered. 
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Introduction 

Composites have been used in the aircraft industry since 1969. 

One aspect of concern for using composites in structures is separation 

of plies or delamination. This occurs in regions of stress raisers 

such as holes, ply terminations, cut-outs and free edges. 

Delamination along the free edge of laminates have been observed 

during testing and service. The presence of delamination, initiated 

by interlaminar stresses, causes redistribution of the stresses among 

the plies in a laminate. Thus, it usually results in a reduction of 

stiffness and strength. 

Figure 1 shows delamination in a rotor hub made of S2/SP250 

glass/epoxy. The specimen has delaminated in two places that can be 

depicted by the dark lines. Figure 2 shows delamination in a single 

cracked-lap-shear test specimen made of AS4/3502 graphite/epoxy[l). 

The specimen layup is lt45/0/90]
68 

quasi-isotropic with 8 plies in the 

strap and 40 plies in the lap. The tests were performed on a 

displacement controlled machine. Fiber glass tabs were attached to 

the specimen ends. Multiple, isolated free edge delaminations occur 

in the neighborhood of the lap/strap junction and the tab. Figure 3 

illustrates an I-beam section made of C3000/5225 graphite/epoxy woven 

cloth in the post-buckled regime. Free edge delamination depicted in 

the flanges precipitated the final failure in the specimen. Figure 4 

shows how delamination can take place in single cracked-lap-shear 

specimens subjected to compressive and tensile loading. Specimens A 

and B delaminated under compressive loading while C experienced a 
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tensile loading. These examples illustrate the importance of 

investigating delamination problems in composites. 

Thermal residual and moisture effects on a composite are 

practical enviromental conditions. Determining the response of these 

conditions on interlaminar stresses and energy release rates in 

laminated composites is the primary objective of this work. 

Delamination analysis can be based on two approaches. They are 

the strain energy release rate and interlaminar stresses. The 

interlaminar stresses are due to Poisson's ratio mismatch and 

difference in the coefficients of thermal· and moisture expansion 

between plies. Delamination occurs when these stresses reach the 

interlaminar strength of the material. An alternative approach is 

based on the actual process of fracture rather than the strength 

concept. Delamination can propagate when the strain energy release 

rate at the crack front is sufficient to overcome the material's 

fracture resistance or toughness. 

The strain energy release rate can be obtained for three 

particular modes of crack action. These three modes are known as Mode 

I or opening mode, Mode II or forward shearing mode and Mode III or 

tearing mode. 

modes (2]. 

Several failure laws are formulated in terms of these 

A simple analysis predicting interlaminar shear stresses and total 

energy release rate with the influence of thermal and moisture effects 

is developed. This simple approach is useful in understanding the 

basic mechanics of the problem and predicting the factors controlling 

the behavior. The method is directed to the needs of a practical 
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design environment. It is not intended to compete with large-scale 

numerical approaches.· b-t.~.t rather to serve as the means for se~ecting 

and screening candidate configurations and providing trend 

information. Simple codes for a desktop computer have been created to 

analyze laminate configurations. 
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Literature Summary 

A historical discussion of previously developed work for 

predicting interlaminar stresses and energy release rates is presented 

to establish a basis for the proposed model and to permit the present 

work to be placed in proper perspective. 

Earlier analyses have reflected the prediction of interlaminar 

stress and energy release rate without hygrothermal conditions. 

O'Brien[3,4J investigated delamination onset and growth in 

graphite/epoxy laminates under uniform extension. A simple expression 

was developed for the total energy release rate based on classical 

lamination theory. Whitney and Knight[5] used classical laminated 

plate theory to develop an edge delamination specimen analysis. This 

work was limited to Mode I behavior. 

An analysis based on a shear deformation theory and a sublaminate 

formulation (6] was developed by Armanios and Rehfield(7,8]. This 

method provides good estimates for the interlaminar shear stresses. 

Energy release rate components are estimated based on these stresses. 

However, this method does not provide reliable estimates of peel 

stress since thickness strain is neglected. This analysis was limited 

to mechanical strain only. 

O'Brien{9] modified his analysis to include thermal and moisture 

conditions. The influence of thermal effects was considered bv 

Whitney[lO]. 

The work of Reference 9 was based on a classical laminated plate 

theory. It was applied to mixed-mode edge delamination specimens. 
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The results were limited to strain energy release rate. Finite 

element modeling was used to determine the strain energy release rate 

components. O'Brien's results reflected an increase in the strain 

energy release rate due to thermal effects. It decreased with the 

addition of moisture considerations. For a T300/5208 graphite/epoxy 

laminate with [+30/+30190/9TI]
5 

layup, the thermal effect increased 

the total energy release rate by 170 percent when compared to 

mechanical loading alone. However, a specific moisture level of 0.75 

percent completely alleviated this increase. In calculating the total 

strain energy he showed that bending and coupling effects became 

important at high levels of moisture content. 

In Reference 10 a higher-order plate theory with transverse 

normal strain effects was developed. Peel as well as interlaminar 

shear stresses could be predicted by this method. The thermal 

influence on total energy release rate and interlaminar stresses was 

investigated using a Mode I specimen. Residual thermal effects showed 

a significant influence on the stresses and release rates. For a 

graphite/epoxy laminate of [03, 903 ]
5 

layup, thermal effects increased 

the maximum peel stress by a factor of 2.7 over that of pure 

mechanical strains. 

In the present work both thermal and moisture influences are 

studied in a mixed-mode delamination specimen. The analysis includes 

total energy release rate as well as interlaminar stresses. 

Similarities between the interlaminar stesses and total energy release 

predictions with hygrothermal effects is investigated. 

In the subsequent sections, the analytical approach is develope~. 
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The method is then applied to six graphite/epoxy laminates. A 

discussion of the hygrothermal effects on interlaminar 

and total energy release rate predictions 

shear stress 

is provided. 

Recommendations for further investigations are proposed. Appendices 

detailed are included for completeness. The first provides 

expressions of the governing equations. Appendix II defines the 

hygrothermal expressions and their use in the analysis. The last 

appendix shows a listing of the program used and sample output. 
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Analytical Approach 

Overview 

The sublaminate modeling approach describes the essential 

features of the laminate behavior in a simple way. A free edge 

delamination specimen is shown in Figure 5. A uniform strain , E, is 

applied in the axial direction. From symmetry, only one quarter of the 

specimen is considered. In Figure 6, the specimen is modeled as if it 

were composed of four distinct sublaminates. Sublaminates 2 and 3 

represent the group of plies above and below the crack, respectively 

in the cracked portion of the laminate, while sublaminates 1 and 0 

denote the same group of plies in the uncracked portion of the 

laminate. 

The use of sublaminates 

treated as laminated units 

groups of plies that are conveniently 

simplifies the analysis considerably. 

This approach is applied with confidence when the characteristic 

length of the response is large compared to the individual sublaminate 

thickness[6]. This sublaminate modeling approach has been verified in 

Reference 7 by comparison with a ply-by-ply finite element solution. 

These sublaminates are connected by enforcing the proper continuity 

conditions on stresses and displacements at their interfaces. 

Displacement fields within each sublaminate are defined as: 

u - X€ + U(y) + zpx(Y) 

v - V(y) + z~Y(y) 

w - ~(y) 

(1) 
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where u,v, and w denote the displacements relative to the x, y, and z 

axes, respectively. Shear deformation is recognized through the 

rotations Px and ~y· The governing equations for each sublaminate are 

derived using a virtual work approach. The derivation of the 

governing equations used in the development appears in Appendix I. The 

derivation is an extension of the work of Reference 8 with 

hygrothermal effects included. 

The constituitive relationships in terms of these force and moment 

resultants can be written as 

N- - A;i ej + Bik "k- N~M (i,j ,k- 1,2,6) I I 

M; - B·· €j + D;kiCk- M~M (i,j ,k- 1,2,6) (2) IJ I 

Qi -A··~ IJ J 
(i,j - 4,5) 

where the subscripts x, y, z, yz, xz, and xy are replaced by the 

subscripts 1-6 respectively. The force and moment resultants are 

denoted by N, and Mi, respectively. Non-mechanical forces and moments 

resulting from the hygrothermal effects are labeled with a superscript 

NM. They are defined as: 

NM h/2 
M . ) -f Q iJ. ( 1, z) ( a1 AT + b1· C) dz 

I -h/2 
(3) 

The swelling coefficient is denoted by b j in Equation <3>, the 

thermal coefficient by a;j . The change in temperature is denoted bv 

AT and moisture weight gain by C. 
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The elastic stiffnesses A ij • B ij , and D~ are defined in terms of 

the sublaminate reduced stiffness Qij for a plane stress situation. 

These bear the classical definition. 

(4) 

The equilibrium equations are: 

(5) 

My,y - Qy + h/2 (t 2x + t 1x) 0 

where t 2x• t 2y. p2 and tlx• t 1y. p 1 denote the interlaminar stress 

components in the x-z, y-z and z directions at the sublaminate upper 

and lower surfaces, respectively. These stress components appear in 

Figure 7. 

The displacements, resultant forces and moments, and interlarninar 

shear stresses in each sublaminate is governed by the displacement 

distribution (1), constituitive (2), and equilibrium (5) equations. 

These equations are applied to each sublaminate. The variables 

associated with each sublaminate are coupled through the continuity 

requirements at their interfaces. Enforcement of the boundarv 

conditions lead to a solution for these variables. This procedure 
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discussed in general terms above is applied to the analysis of the 

edge delamination specimen shown in Figure 2 in the following sections. 

The response associated with sublaminates 1 and 0 shown in Figure 

2 is coupled through the continuity conditions at their common 

interface. The situation is different with sublaminate 2 and 3 where 

the continuity conditions are relaxed due to the presence of the 

crack. 

Uncracked Region: Sublaminates 0 and 1 

From symmetry conditions at the sublaminate bottom surface the 

shear stresses are zero. Interlaminar stresses at the top surface of 

sublaminate 0 are equal to those on the bottom of sublaminate 1. 

Substituting these conditions into the equilibrium and constitutive 

relations and enforcing continuity of displacements at their common 

interface yields a homogeneous system of ordinary differential 

equations. These can be expressed in terms of the sublaminate 

rotations flx and f3·y. Assuming an exponential solution of the form 

* * * * s .f3oy ) - (/31x, f3ox ,f31y , f3oy ) e Y (6) 

results in a characteristic equation of the form 

= 0 (7) 

Parameter Eo depends only on the stiffness coefficients A44 , Ass 

and A45 for both sublaminates while Eg is predominantly influenced by 

the bending and coupling coefficients D· •J and B· 
'J 

Thus, its 
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numerical value can be orders of magnitude smaller than the other 

coefficients. This results in the presence of a boundary zone in the 

response. 

The characteristic roots controlling the behavior of the laminate 

are determined from Equation 7 which has a closed-form solution. 

Crack Region of the Laminate: Sublaminates 2 and 3 

Yith this group of laminates, there are free surfaces at both the 

top and bottom of sublaminates 0 and 1 respectively. This is due to 

the presence of the crack. With the cra.ck dividing the sublaminates, 

continuity conditions are not enforced at the boundary interface. 

This results in zero shear stresses at the surfaces of each 

sublaminate. Thus, the equilibrium and constitutive relations combine 

to produce a second order differential equation in terms of the 

sublaminate rotations 13zx for sublaminate 2 and 133X for sublaminate 3. 

·rnterlaminar Stresses 

The arbitrary constants that are obtained from the eighth degree 

polynomial are determined by enforcing the stress free boundary 

conditions at the free edges of sublaminates 2 and 3, and the 

continuity of force, moment, displacement and rotations between 

sublaminates 0 and 3, as well as between 1 and 2. This yields the 

following expression for the interlaminar shear stresses. 

(8) 

(j-1-4) (9) 
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Parameters Tj and Gj represent the amplitude of the response. 

Energy Release Rate 

A complete formulation of the strain energy release rate appears 

in Appendix II. The total energy release rate can be determined by 

considering the work done by external forces. 

G - - 1/2 * dW Ida (10) 

The total energy release rate is denoted by G and the crack 

length by a. The work done is defined as 

(11) 

where subscript i denotes the sublaminate being referenced. The term Emi 

represents the mechanical strain in each ply .. This is defined as the 

difference between the total strain and the strain corresponding to 

free expansion for each ply. This strain is estimated by using a 

procedure similar to Reference 5. However, in Reference 5 the free 

expansion strain was determined by considering groups of plies in the 

cracked and uncracked regions of a Mode I edge delamination specimen. 

This approach is valid for a limited class of laminates. A 

ply-by-ply analysis rather than a sublaminate modeling should 

be used. In the following analysis, free expansion strains are 

determined on a ply~by-ply basis. 

From the symmetric conditions that exist in the uncracked section 

of the laminate, there exist no curvature. In the cracked portion. 
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the moment about the y-axis is assumed to be zero. Using both of 

these boundary conditions in Equation (2) yields the following. 

(12) 

Strain components E¥ and Ez in Equation 12 are expressed in terms 

of the applied strain by 

(13) 

E'z- Cu € + C~ 

NM 
and Cu are functions of the extensional 

stiffness components A ij of sub laminates l and 0. 

Using these expressions, Equation 12 can be re-written in the 

form. 

(14) 

Parameters are defined in Appendix II. 

Superscript k denotes the individual ply. Subscripts u and c 

represent the uncracked and cracked portions, respectively. The 

non-mechanical strain in each ply corresponding to a state of free 
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expansion is obtained by allowing the stress in each ply to vanish. 

This yields the following. 

k 
Eu -T~ I E~ 

.:~ - -T~ I E~ 

(15) 

The strain corresponding to free expansion of the entire laminate 

is obtained by letting the resultant force vanish. The non-mechanical 

strain is 

NM { * * * } { * * * } E - Tu - (Tu - Tc ) 2ajb I Eu - ( Ec - Eu ) 2ajb (16) 

* * * k .k k The terms Tu·, T c, Eu and E~ represent the summation of T u. Tc . Eu 

and E~ over their respective sublaminates. These strain definitions 

for the effects of moisture and temperature can now be used in the 

general expression for the strain energy. The strain field is altered 

to represent the hygrothermal effects. The total strain for a 

sublaminate is expressed as: 

(17) 

The strain energy expression is given below showing the use of 

Equations (13) and (17). 

'W - ~ [ L { E~ € T + T~) ( €T - €~ ) + { E~ €T + T ~ ) ( € T - € ~ ) J ( 18 ) 
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Substituting this into Equation (11) yields the total strain 

energy release rate per crack. 
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Results and Discussion 

Benchmark Study 

The analytical model is applied to the edge delamination specimen 

shown in Figure 5. The material considered is T300/5208 

graphite/epoxy. Its mechanical properties are listed in Table I. The 

coefficients of swelling and thermal expansions are also stated. The 

geometry of the specimen is given in Table II. Cure temperature for 

this material is 350°F. The ambient operating temperature is 70°F. 

The moisture level for all cases was allowed to vary from 0 to 1.2 

percent of the laminate weight. This moisture level reflects feasible 

conditions. The mechanical strain is taken as 0.00254. This 

particular value of strain was taken from test experiments(9J. It is 

considered a practical value for the material. 

Six laminates have been analyzed. They can be divided into two 

groups. The first group is composed of laminates [ 35/- 35/0)90 ~· 

and These laminates are prone to 

delaminate at the interfaces indicated by the arrow[9]. The Mode III 

in these laminates is negligible. This is due to the fact that 

relative sliding at the crack front and the interlarninar shear stress 

in the x-z direction, Txz is neglegible. The second group of 

laminates is [ 30/- 60,f7 5/15 JS' [- 35/55110/-80 Js' and [ 35/801-55/-10 ]
5

. In 

these laminates Mode I, Mode II. and Mode III are finite. The Mode 

III strain energy release rate component due to mechanical loading in 

these laminates are significantly large, ranging from 60 to 90 
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percent[7]. 

Interlaminar Shear Stresses 

The interlaminar stress '-yz at the delamination interface appear 

in Figure 8 - 10, for the first group of laminates. The interlarninar 

shear stresses Txz and Tyz for the second group of laminates appear in 

Figures 11 - 13. The labels M, M+T, and M+T+H stand for mechanical, 

mechanical and thermal, and mechanical, thermal and moisture 

respectively. 

The boundary layer of decay for all laminates ranged from 0.85 to 

0.93 of the laminate semi-width. In this context the boundary layer 

decay length is defined as the distance where the stress decays to 

5 percent of its maximum value. ·The stress boundary zone is noL 

significantly influenced by the environmental conditions. 

The magnitude of shear stress however showed a strong dependency 

on thermal and moisture conditions. At the delamination front, the 

ratio of stress with thermal effects as compared to pure mechanical 

loading ranged from 3.22 to 3.36 for the first group of laminates. 

This maximum was experienced at the crack tip. For the laminates 

where Mode III was present, this ratio ranged from 4.16 to 5.23 fo~ 

Tyz· The shear in the x-z direction showed a ratio of 1.4 to 2.16 for 

the maximum stresses. The maximum Tyz stress for the second group of 

laminates was experienced at the crack front. However, the maximu~ 

Txz stress occured slightly ahead 

in Figures 11 - 13. 

of the crack. This can be seen 
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The addition of moisture alleviated the thermal effect. A 

moisture content of 0.4 has reduced the stress of thermal influence by 

approximatly 40 percent as compared to thermal influences alone. This 

trend is similar to the results of Reference 9. 

Numerical values of interlaminar shear stress at various moisture 

levels are provided in the sample output of Appendix III. 

Interlaminar shear stresses show numerical decrease with increase of 

moisture levels. 

Energy Release Rate 

The hygrothermal effect on total energy release rate appears in 

Figures 14 -15. The hygrothermal effects on total energy release rate 

show a similar trend to that of interlaminar shear stresses. Residual 

thermal stress tends to increase· total energy release rate while 

residual moisture alleviates this effect. The figures show that for 

total alleviation of the thermal effect, the specific moisture content 

ranges between 0.70 and 0.77 for all laminates. This indicates there 

exist a weak dependency on the stacking sequence. 

The effects of thermal conditions alone on the energy release 

rate does not correspond to the same numerical value as the 

interlaminar shear stresses. The total energy release rate of layups 

where Mode III was negligible showed a ratio of 5.1 for mechanical and 

thermal compared to mechanical conditions only. For the laminates 

where Mode III is finite, this ratio varied from 1.6 in the 

[30/-60l75j-15]
5 

layup to 3.37 in the [35j80fr-55/-l0]
5 

layup. 
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The total energy release rate in the first group of laminates is 

approximately the same for mechanical loading as shown in Figure 14. 

The influence of thermal and moisture does not appear to alter this 

trend. The energy release rate for the [35j-35fr0/90}
5

laminate is 

indistinguishable from the [0/351·35/90~ layup. The rate of 

alleviation due to moisture is the same for the three laminates. This 

is in contrast with the alleviation rate of the laminates where Mode 

III is finite as shown in Figure 15. For this class of laminates, the 

rate of alleviation due to moisture is different for each laminate. 

In some of the laminates, the rate of alleviation is not 

constant. There is a steep gradient in the rate of alleviation until 

the moisture content approaches the totally alleviated state. After 

such moisture content, the decrease in total energy release rate with 

respect to moisture addition is not as sign~ficant. 

· It is worth noting there is a similarity between the strain 

energy release rate prediction and the interlarninar stresses for the 

totally alleviated state. This is shown in Figure 16 for a 

[-35j55jl0j-80~ 
t 

layup. The specific moisture percent producing 

complete alleviation of the total energy release rate from the thermal 

effect is 0.76 as seen in Figure 15. The interlaminar shear stress 

distribution corresponding to this level of moisture is 

indistinguishable from the mechanical loading alone. The same 

conclusion was reached studying the other laminates. 
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Conclusions 

A simple analysis was developed that predicted the influence of 

thermal and moisture effects on the interlaminar shear stresses and 

strain energy release rate. The 

mixed~mode edge delamination specimens. 

significant findings. 

analysis was 

The results 

applied 

provide 

to six 

several 

1. Residual thermal strain has a significant influence on the 

interlaminar shear stress and total energy release rate. 

The interlaminar stress and total energy release rate 

increased by 330 and 510 percent respectively over that of 

pure mechanical loading. 

2. Moisture tends to alleviate the thermal effect for both the 

interlaminar stress and energy release rate. At a specific 

moisture content of approximately 0.75 percent, the thermal 

influence is totally alleviated. 

3. The moisture content for total alleviation found from the 

total energy release rate analysis also produced an 

interlaminar stress distribution similar to pure mechanical 

loading conditions. 

The first two findings are in agreement with the results of 

previous investigators. The third finding is new. It establishes a 

similarity in behavior between a delamination analysis expressed in 

terms of the energy release rate and the strength approach expressed 
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by the interlaminar stresses. 

These findfngs point to new directions for further inquiry. 

These are discussed in the following section. 
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Recommendations 

The thermal effects on the laminates showed a large increase in 

both the interlaminar shear stresses and strain energy release rate. 

The analysis should be supplemented with experimental tests to verify 

the resul~. Several fracture laws are expr~ssed in terms of the 

strain energy release components, as well as the total strain energy. 

Further analysis should include predictions of these components in the 

presence of hygrothermal conditions. 

Throughout this work the temperature is assumed to be uniform 

through the thickness of the laminate. The same is true with the 

moisture. An approach corresponding. to a practical environment method 

should account ~or temperature and moisture gradients in the laminate. 

In this situation, the hygrothermal gradients through the thickness 

may create an unbalance effect in an originally balanced construction. 

This consideration is of significant importance in aerospace 

structural components subjected to a large temperature difference 

between the upper and lower surface. 

The loading considered here is uniaxial extension. However, it 

is known that the load transfer points are not always in the plane of 

the laminate. Therefore, investigating laminate response under 

combined loads is· of great practical importance. It is recommended 

that bending, torsion as well as their combined effect be addressed. 

Findings by previous investigators suggested that delamination 

behavior in laminates subjected to fatigue loading follows static 

loading conditions. Further work is needed to investigate the 
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influence of hygrothermal conditions on the delamination of laminates 

under fatigue loading. 

Finally, the present analysis is applied to the mixed·mode edge 

delamination specimen. Extension of this work to other specimens such 

as the single- and double-crack-lap shear and the Mode II edge notch 

flexure specimen is recommended. 

When· accomplished, these recommendations, together with the 

present research will provide a better understanding of the 

delamination problem in composites. Consequently, this will enable 

predicting, managing and ultimately preventing interlaminar fracture 

in laminated composites. 
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- T300/5208 GRAPHITE/EPOXY PROPERTIES 

E 11 = 18. 7 l'lS I 

E22 = 1.23 l'lSl 

G12= 0.832 MSI 

Poisson Ratio= 0.292 

Swelling Coefficients of the Material direction: 

b(l-direction) • 0 

b (2-d i recti on) • 5560 ~£/%weight 

Thermal Coefficients of the Material direction: 

a(l-direction) • ";23 '-1£/•f 

0!(2-direction) • 14,9 tJc/•f 

TABLE II - GEOMETRIC IJIMENSIONS OF SPECIMEN 

Ply thickness • 0.0054 inch 

Width • 1.5 inch 

Crack length = 6 x ply thickness = 0.0324 inch . 
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FIGURES 1--16 
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Derivation of the Governing Equations 

In this Appendix the governing equations for the sublaminate shown in 

Figure 7 are dertved using the principle of virtual work. 

Consider a sublaminate of thickness h. The origin of a cartesian 

coordinate system is located within the central plane (x-y) with the z-axis 

being normal to this plane. The material of each ply is assumed to possess a 

plane of elastic symmetry parallel to xy as shown in Figure 6. 

Stress and moment resultants are given below. 

(I-1) 

Because of the existence of a plane of elastic symmetry, the 

constitutive relations are given by 

c11 £X 

c12 c22 SYH £y 

c13 c23 CJ3 £z 

rxy cl6 c26 CJ6 c66 'lxy 
M 

[c44 SYM] [ '1yz 

L c4s css '1xz (1-2) 

where Cij are components of the anisotropic stiffness matrix and 7xy• 'lyz and 

7xz are engineering sh~ar strains. 

The displacements are assumed to be of the form 

u - U(x,y) + zf3x(x,v) 

v - V(y) + z/3y(x~) 

w - W(x,Y) (I-3) 
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where u,v and w are the displacement components in the x, y and z directions, 

respectively. Equation (1-3) in conjunction wtth the strain-displacement 

relations of classical theory of elasticity leads to the following kinematic 

relations 

C XX - U ' X+ z /J>t X 
I 

«=yy y,y + zPy,y 

Czz 0 

7xy U,y + V,x+ z(Sx,v+ flv,x) 

7xz Px + W,x 

7yz (1-4) 

Substitute Equation (I-4) into Equation (1-2) and put the results into 

Equation (I-1). This yields the following constitutive relations: 

NM 
Nx .f\11 A12 Al6 Btl B12 B16 U,x Nx 

Ny A12 Azz Az6 Btz Bzz Bz6 V,y Ny 

Nxy Al6 A26 A66 B16 B26 B66 U ,y+V,x Nxy 

Mx B11 B12 B16 011 012 016 flx,x Mx 

My ~12 B12 Bz6 011 012 Oz6 Py,y My 

Mxy B16 826 866 016 026 066 flx1+flv,x Mxy 

[ :: l [ l [ ;: : ::: l 
where 

(I-5) 

and the non-mechanical terms are defined in Appendix II. 

The variation of the strain energy due to virtual displacements 6u, ov 
and 6w is 



r•-

oV - J (ax OCx + ayocy + azOCz + Txy 07xy + Tyz07yz + Txz07xz)dV 
v 

so 

(I-6) 

where Sex, ocy, ocz. 07xy• 57xz are the strains associated with the virtual 

displacements. Using Equations (I-3) and (I-1) then integrating through the 

thickness gives 

(I-7) 

The variation of the work done by the external forces and by the 

surface tractions is 

oW - J (nx oU + ny oV + qoY + mx5Px + my SPy) dA 
A 

+ JS (N~ &Un + Nns &Us + Mn &Pn + Mns&Ps)ds (I-8) 

where a bar denotes values on the boundary. Variables n and s are coordinates 

normal and tangential to the edge, and 

nx tzx - tlx 

ny - tzy - tly 

q - P2 - Pl 

mx -
h (tzx + tlx) 
2 

m - h 
y 2 (tzy + tly> (I-9) 

where nx and ny can be regarded as effective distributed axial forces. Terms 

mx and my are effective distrib_uted moments and q is an effective lateral 

pressure. 

From the principle of virtual work the equations of equilibrium and 

boundary conditions are determined from the Euler equations and boundar:: 

conditions of the variational equation. 

sv - 6w (I-10' 
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Substitution of Equations {I-7) and (I-8) into Equation (I-10) leads the 

following equations of equilibrium: 

Nx·, x + Nxy • y + nx - 0 

Nxy 9x + Ny,y + ny - 0 

Qx9x + Qy,y + q - 0 

Mx,x + Mxy,y - Qx + mx- 0 

Mxy,x + My,y - Qy +my - 0 (I-ll) 

and one member of the following five products must be prescribed on the 

sublaminate edges 

For the ED specimen under uniform extension, U(x,y) in Equation (I-3) 

is given by 

U{x,y) - U*(y) + xE (I-13) 

and the response is a function of y and z coordinates only. For this case the 

equilibrium equations (I-ll) take the form 

Nxy,y + nx - 0 

Ny,y + ny - 0 

Qy,y + q - 0 

Mxy,y - Qx + mx - 0 

My,y - Qy + my - 0 (I-14) 

Substitution of the constitutive relations in Equation (I-5) into Equation (I-

14) yields the following equilibrium equations in terms of kinematic 

variables. 



r· 
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A66Lyy U* nx 

A26ryy A22'Lyy SYM v ny 

0 0 -A44Lyy y -q 

B66l.yy B26Lyy ·A4sLyy (D66lyy - Ass> /Jx mx 

B26Lyy B22Lyy -~4Ly (D26lyy - A4s (D22Lyy -A44) f3y my 

(I-15) 
where the operators 

From these governing equations the basis of the work presented in this 

paper is formed. Appendix II gives a detailed formulation of the 

hygr c thermal terms and the formulation of the total strain energy release 

rate and interlaminar stresses. 
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APPENDIX II 
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Hyg r o thermal Effects on Edge Delamination 

The displacement field 'and constitutive relations governing the free 

edge ply separation were presented in Appendix I. The hygrothermal 

expressions, represented with the superscript NM for non-mechanical, are 

defined as follows 

(Il-l) 

where 

- Coefficient of thermal expansion aj 

-
Pj Swelling coefficient 

T Local temperature 

Tr Reference temperature 

c Specific moisture concentration 

Qij Reduced stiffness coefficient 

The te~ms aj and Pj are transformed as second order tensors with the 

assumption of no thermal or swelling shear strain. 

The concept of aublaminatea is uaed when enforcing the boundary 

conditions. 

Cracked Sublaminates 

Sublaminate 2: 

The boundary conditions for this sublaminate are expressed as: 

Ny2 - Nxy2 - My2 - Qy2 - 0 

Mxy2,y - Qx2 - ~ 

(11-2) 

Using the first three conditions in the governing equations, one can 

express v2. u2 and P2y in terms of P2x to obtain: 



1 1 
B12 D26 

Sub1aminate 3: 

NM 

0 

fJ2y.y 

The boundary conditions for this sublaminate are given as: 

Ny3 Nxy3 - 0 

MyJ,y - Qy3 - 0 

Mxy3,y - Qx3 - 0 
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(11•3) 

(11-4) 

These are used in a similar manner (as in sublaminate 2) to obtain 

0 
v3,v 

0 0 0 
Nyo A22 Al2 822 B26 E 

+ 0 
0 

u3,v 0 Bo. 0 
fJ3 ,y Nxyo A26 Al6 26 8 66 

fJ3x,v 
(II-5) 

These equations are then substituted back into the governing equations 

to obtain expressions for the force and moment resultants. 

expressed in terms of the strain plus non-mechanical effects. 

UNCRACKED SUBLAMINATES 

Sublaminates 0 and 1: 

They can be 

The boundary conditions of continuity at the interfaces must be 

satisfied. 

Nyf:.O)- Nxy1 (0) - Ny/P>- Nxyo {0) = 0 (II-6) 

Mxy1 (0) - Mxy2(0) 
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Mxyo(O) - Mxy3(0) (11-7) 

and 

Mxy1 (0) - Mxy2 (O) 

P1x (O) - P2x(O) 

Myo(O) - My)(O) (II-8) 

Poy(O) - jJ3y(O) 

Mxyo(O) - Mxy3(0) 

Pox(O) - PJx(O) 

Enforcing equations (II-6) and (II-7) in the governing equations 
yields the following: 

NH 
1 1 1 

A12 A22 A26 Ny1 ·Ny]j 

1 1 1 
Al6 A26 A66 .f:.y Nxyl . + ·Nxylj SjGj - 0 

0 0 0 'Yxv A12 A22 A26 Nyo Nylj 

0 0 0 
A16 A26 A66 Nxyo Nxylj 

(11·9) 

1 1 1 M NM B12 B22 B26 y1 My JjSj 

·A 1 
B66 

ANM Mxy]jSj + B1sccrj 1 B26 c.y 1 

'Yxv 
(1!·10) 

(j=l-4) 



The expressions in (II-9) and (II-10) are defined below 

* * ll - A22 A66 

* * A16 - A66 
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(II-11) 

(11-12) 

(II-13) 

(II-14) 

A1 and ArM are functions of Aij, Bij and Dij. The superscripts * 
implies a summation of the upper and lower sublaminates. 

Continuing with the derivation one can substitute the expressions set 

forth into equation (1-7) as well as 10 and 11 in the report. This gives the 

following expression for the total energy release rate. 

G- ~ 
2 

b[ h/2 ] ~1 I Nx £m dz DY 
da h/2 

0 
(II-15) 

The concept of free-expansion in the x-direction is implemented to 

find the strain induced by the non-mechanical effects on the structure. 

Setting Nx - 0 for each ply in Equation (1-5 ) and using the boundary 

conditions of (11-2), (11-4) and (11-6) allows the following. 

k 
t: 
c -i< I~ c c (II-16) 



where 

by 

k k k NM ·k k NM -k _ _NM 
T - h CV Q12 + ·h Cu Ql6 - <~x-> u 

k -k _NM k -k __NM k k _NM __ NM k 
T - Q12 ~l-- h + Ql6 ~2-- h + B12 ~j-- - (lrx--) 

c 

k ·k k -k k -k k k k 
E - Qll h + Q12 h Cd11 + Ql6 h Cd12 + B12 Cd31 c 

Superscript k represents the ply. Expressions Cdij and 

substituting the conditions of (11·2) into (11-3). 

1 1 1 -1 1 1 
A22 A26 B22 A12 B26 

[cd]- - 1 1 1 1 1 
A26 A66 B26 At6 B66 

3x.2 

1 1 . D1 1 
D26 B22 B26 22 B12 

1 1 -1 
NM 1 

Ny A22 A26 B22 

{ ~l- 1 1 1 
Nxyl A26 A66 . D22 

3Xl 1 1 1 
B22 B26 n22 My1 

58 

(II-17) 

NM F1 are found 

(II-18) 

{II-19) 

Sub1aminate 3 has Bij - 0 due to symmetry of the structure. When 

considering these plies, the term FfM and FfMare found by substituting the 

boundary conditions {II-4) into (II-5). 
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This gives a second expression of FNH for this sublaminate 

rNyo ]NH 

lNxyO (11-20) 

To find the total strain associated with the non-mechanical effects, 

it is necessary to sum the force over the entire structure and set it to zero. 

These are used in order to obtain Equation (16), (17) and (18) in the report 

on page 17. Substituting this in Equation (11-15) gives the total strain 

energy release rate expression per unit length 

The expression cT - ck is in essence the total mechanical strain of c,u 
that ply. 

1NTERLAM1NAR STRESSES 

The interlaminar stresses of the structure are defined in Equations 

(8) and (9) 

(j =1-4 ) 

While Sj, the positive roots reulsting from the ploynominal 

E8 s 8 + E6 s 6 + E4 s 4 + E2 s 2 + E0 -· 0 , 

(1!-21) 

(1!-22) 

are independent of the hygrothermal effects, the rest of the terms are not. 

Solving Equations (II-9) and (II-10) gives the term Gj while Nxylj and 

Ny lj are found from 
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(j - 1. 2 t 3 '4) 

where Vj, Uj and aj are found by imposing the boundary conditions on the mode 

shapes. They are dependent on the four values of Sj as well as the 

sublaminate stiffness matrices. 
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PROGRAM START {INPUT, OUTPUT, TAPE5=1NPUT, TAPE6=0UTPUT) 

THIS PROGRAM IS FOR THE FINAL PAPER 8-16-87 
DIMENSION STATEMENTS 

REAL BG{4),E{9),GG{4,4), MATR32{3,2), MATR33(3,3), MATR3(3), 
C STRAIN{25), SAVE3{3), SAVE33(3,3), WKAREA(99), ZR 

COMPLEX SJ (8) 
DOUBLE PRECISION BNEG, A,. C, DIFFl, DIFF2, UNSY(2), UNSX(2), 

C SSSS, SSSC, SSCC, SCCC, ZZZ0(0:50),J22,J26,FNM(3) ,S1NM,S2NM, 
C MEMSY, MEMSX, F11M, F22M, SSl, SS2, SSY, SSX, ZZZl {0:50), 
C THICK(40) ,THETA(50), El (50), E2(50), CCCC, HSS(5) ,HSNl,HSN2, 
C Q(6,6.50), Z0(0:40), A0(6,6), A1{6,6), U13, Ul4, BGl, BG2, 
C NXO (4), El5,E16,E17, E18, E19, ZTT(0:40), 
C NY 1 { 4) , X { 2) , Y { 3) , C V , C U , W ( 2) , Z Z ( 3) , VV 1 1 , VV 1 2 

DOUBLE PREC lSI ON ALPHA (4) , PH I (4), GAMMA (4) , NX 1 (4) , 
C 81(6,6), 80{6,6), 00(6,6), 01(6,6), F{4,4), VV13, VV14, J66, 
C RDLT, RTAl, RTA2, RSBl, RSB2, U12, U11, AlNM, 
C NXY1{4), MY1{4), MXY1(4), WD{2,3), CD(3,2), WIDTH, 
C V12 (50), V21 (50), SS, CC, K66, K26, K22, 
C Z1 (0:40), FX, FY, Gl (2,35), K16,K12, H66 

DOUBLE PRECIS I ON SV (5), SU (5), AL, SC, S {8), DY, 
C G 12 (50) , G31 (50) , C2, C 1, THETV, THETU, G I I I (2, 35) , CS, 
C DEL, HO, H1, H22, HE, HG, HNY(50), HNXY(50), HM3,CVNM, 
C Cll, Cl2, C22, C26, C44, D, C55, C66, H26, SQ, DUM,CUNM, 
C CONY, CONXY, SMNY, SMNXY, 
C SBl,SB2,TAl,TA2,ATHM1 (40) ,ATHM2(40) ,ATHM6(40) ,BSW2(40), 
C NMNYO,NMNXYO,GII (2,35), 
C DVVll, DVV12, DU13, DU14, DF(4,4), OX, ATH,CCONY,CCONXY, 
C BSW6 (40) , DEL TEMP, BSW1 {40), CMO I ST (35) , 
C S I GX {0: 40,79: 120) , 
C NMNYl,NMNXYl,NMMXl,NMMYl,SIGY(0:40,79:120) 

DOUBLE PRECISION Nt\ST0(50), NMST2(50) ,NMST3(50), TNC,UNCL, 
C Tl{50), T12(50), Tl3(50),EX(50),EXX(50),EX3(50), JY, 
C EXNC,ESTAR, TSTAR, TNMST, GLC(0:50), NXNM(50) ,B12(50) 

DATA Q/1800*0.0/, ZR/0.00/ 
************************************************************************* 
************************************************************************* 

DATE OF PROGRAM : SEPT. 1, 1987 

THIS IS THE FINAL PROGRAM FOR PREDICTING THE ENERGY RELEASE RATE OF 
COMPOSITE LAMINATES INCLUDING HYGROTHERMAL EFFECTS .••.•.•.•. 
HOWEVER, IT ONLY CONSIDERS EXTENSION EFFECTS OF STRAIN WHEN DEALING 
WITH HYGRALTHERMAL EFFECTS •••• LIKE WHITINEY'S PAPER ...•• 
EXCEPT ON A PLY BY PLY ANALYSIS BASIS OF THE HYGRALTHERMAL EFF-ECTS 

THE INPUT ALLOWS FOR: THE LAMINATE LAY-UP TO CHANGE AND POSITION 
OF THE CRACK, DIFFERENT STRAIN VALUES TO BE EVALUATEDt 
(UP TO 40 LAMINATES AND 25 DIFFERENT STRAIN VALUES) 

AND FOR THE EVALUATION OF ONE MOISTURE CONSTANT OR A 
RANGE OF THE MOISTURE CONSTANT FROM 0 TO 1.2. 

THIS PROGRAM IS FOR THE GIVEN DATA TO BE IN ENGLISH UNITS. 

ALL LAMINATES ARE EVALUATED WITHOUT THRMAL EFFECTS AUTOMATICALLY 

************************************************************************ 
************************************************************************ 

LZQ IS THE NUMBER OF DIFFERENT LAMINATE (OR CRACK POSITIONS) 
TO BE EVALUATED. 

READ (5, ,·c) LZQ 
DO 400 Lzz·= 1,LZQ 
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READ(5,*) WIDTH, NPLYO, NPLYl, AL 
NEXTPL = NPLYO + 1. 
TPLY = NPLYO + NPLYl 

FOR EACH PLY IN THE SUBLAMINATE, THE MATERIAL CHARACTERISTICS 
MUST BE READ IN. 

PI -= 4. * ATAN(l.) 
HO -= 0.0 
ATH == 0.0 
Hl=O.O 
DO 3 LK 1 ' TPLY 
ZO (LK) - 0.0 

3 Z1 (LK) c: 0.0 

DO 5 I = l,NPLYO 
READ(5,*) THICK(!), THETA(I), E1 (I), E2(1) 
R E AD (5 , *) V 1 2 ( I ) 
R E A 0 (5 , *) G 1 2 ( I ) , G 3 1 ( I ) 
THETA{I) = THETA(I) *PI I 180. 

5 HO-= HO + THICK(I) 

DO 10 I = NEXTPL, TPLY 
READ (5, *) THICK (I) , THETA (I) , E 1 (I) , E2 (I) 
READ(5,*) V12(1) 
READ (5,*) G12 (I), G31 (I) 
THETA (I) = THETA.(I) * PI I 180. 

10 Hl = Hl + THICK(I) 

********************************************~************************ 
********************************************************************* 

THESE ARE WRITE STATEMENTS TO CHECK THE INITIAL CONDITIONS OF THE 
SUBLAMINATE AND VALUES READ IN 

********************************************************************* 
********************************************************************* 

cc 

EACH PLY MAY HAVE DIFFERNT PROPERTIES SO THE PROPERTY OF EACH 

WR I T E ( 6 , 2 8 9) 

WRITE(6,201) WIDTH 
WRITE(6,202) NPLYl, NPLYO 

WRITE (6, 204) 
00 15 J = 1, TPLY 
JJ = TPLY + 1 - J 
WR I T E ( 6 , 2 0 6) J 
WRITE (6, 207) THICK (JJ) , THETA (JJ) *180IP I 
WRITE (6,208) El (JJ)I1E+06 , E2 (JJ)I1E+06 
WR I T E ( 6 , 2 0 9) V 1 2 ( J J) 

15 WR I T E ( 6 , 2 1 4) G 1 2 ( J J) I 1 E +06 , G 3 1 { J J) I 1 E +0 6 

******************************************************************** 
******************************************************************** 

DETERMINE THE Z COMPONENT OF ALL LAMINATES 

CHECK = 0.00000001 
ZTT(O) = 0.0 
ZO(O) =-HOI 2.0 

DO 20 I = 1, NPLYO 
ZTT ( I ) = T H I C K ( I ) + ZTT ( I - 1 ) 

20 ZO (I) = THICK (I) + ZO (I -1) 

Z1 (NPLYO) = -Hl I 2.0 
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25 

DO 25 I -= NEXTPL,TPLY 
ZTT ( I ) = TH I C K ( I ) + ZTT ( I -1) 
Z1 (I) -=THICK(!) + Zl (1-1) 

********************************************************************* 
FIRST READ IN THE NUMBER OF STRAINS TO BE EVALUATED AND THEIR VALUE 
THEN READ IN IF THE MOISTURE CONTENT SHOULD VARY OVER 0 TO 1.2 OR 

BE A CONSTANT. 

NSTRA = .••.. NUMBER OF VARIOUS STRAIN VALUES 
IF MOISTV = 1 ••• CMOIST VARIES OVER 0 TO 1.2 
IF MOISTV = 0 ••• CMOIST IS A SPECIFtC VALUE 

********************************************************************* 
READ(5,*) NSTRA 

DO 27 J=1,NSTRA 
27 READ(5,*) STRAIN(J) 

DO 400 LST = l,NSTRA 
READ(5,*) RDLT,RSB1,RSB2.RTA1,RTA2 
WRITE(6,231) STRAIN{LST) ,RDLT, RSB1, RSB2, RTAl, RTA2 

READ(5,*) MOISTV 
IF (MOISTV.EQ.O) READ(5,*) CM 
IF (MOISTV.EQ.O) MMC-= l 
IF (MOISTV.EQ.O) WRITE{6,232) CM 
IF (MOISTV.EQ.l) MMC • 25 
IF (MOISTV.EQo 1) WRITE (6,233) 

********************************************************************* 
DO 300 JM = 1,1'\MC +1 

FIND Q'S AS WELL AS Q-BAR , SAVING Q-BAR. 
AND READ AND CALCULATE THE HYGRO THERMO EFFECTS 

********************************************************************* 
DO 200 IZZ = 1,2 

LIL = 0 
I F (I ZZ. E Q. 1) J MM = J M 
IF (IZZ.EQ.2) JMM = 0 
IF(JM.EQ.l. AND .IZZ.EQ.l) LIL = 

IF (JM.GT.l .AND. IZZ.EQ.2) GO TO 200 

NMNYl -= ZR 
NMNXYl -= ZR 
NMMXl = ZR 
NMMYl -= ZR 

NMNYO = ZR 
NI'\NXYO = ZR 
HM3 = ZR 
SMNY = ZR 
SMNXY = ZR 

DO 24 1=1 ,5 
E (I) • ZR 
E (1+4) = ZR 

24 HSS(I) = ZR 
DO 26 1=1 ,6 
DO 26 J= 1,6 

NXNM (I)= ZR 
DF(I,J) = ZR 
AO(I,J) ZR 
BO (I , J) ZR 
DO(I,J) = ZR 
A 1 (I , J) ZR 
Bl (I ,J) ZR 

26 D 1 (I , J) = ZR 
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28 
DO 28 MM = l,TPLY 

If ( THICK (MM) • GT. ATH ) ATH c: THICK (MM) 

IZZ = 2 IS FOR LAMINATE WITHOUT ANY HYGROTHERMAL EFFECTS 
IZZ = 1 rs FOR HYGROTHERMAL EFFECTS CONSIDERED 

DO 30 I = 1, TPLY 

READ THE HYGROTHERMO EFFECTS, BOTTOM PLY IS FIRST AND UPWARD 

IF (IZZ.EQ.2) GO TO 35 
IF (MOISTV.EQ.O) CMOIST(JM) = CM 
IF (MOISTV.EQ.1) CMOIST(JM) = 0.05 * (JM-1) 

OELTEMP = RDLT 
SB1 = RSBl 
SB2 = RSB2 
TA 1 = RTA 1 
TA2 = RTA2 
GO TO 40 

35 DELTEMP = ZR 
CMO I ST (JM) -= ZR 

SBl -= ZR 
SB2 = ZR 
TAl = ZR 
TA2 = ZR 

40 V2 1 (I ) :;f V 1 2 ( I ) * E 2 ( I ) I E 1 (I ) 
C 1 1 = E 1 ( I ) I ( 1 - V l 2 ( I ) * V2 1 ( I ) ) 
C 1 2 = E 2 { I ) ,., V 1 2 { I ) I ( 1 - V 1 2 ( I ) * V2 1 { I ) 
C 2 2 = E 2 ( I ) I ( l - V 1 2 ( I ) ,<: V 2 .1 ( I ) ) 
C44 = G31 (I) 
C55 = G31 (I) 
C66 = G12(1) 

SS = DSIN(THETA(I)) * DSIN(THETA(I)) 
cc = 1 - ss 
CS = 0.5 * DSIN{2*THETA(I)) 

ssss = ss i: ss 
sssc = ss '/~ cs 
sscc = ss * cc 
sccc = cc * cs 
ecce = cc * cc 

Q (1, 1, 1) = c 11 * ecce + 2 * (c 12 + 2 * c66 ) * sscc 
C + C22 * SSSS 

Q(1,2,1) = (Cll + C22- 4 * C66) * SSCC + Cl2 * { SSSS 
c + ecce ) 

Q(2,2, I) = Cll * SSSS + 2 * ( C12 + 2 * C66) * SSCC 
c + c22 * ecce 

Q(1,6, I) = (Cll - Cl2- 2 * C66) * SCCC 
C + (Cl2 - C22 + 2 * C66 ) * SSSC 

Q (2, 6, I) = (C 11 - C 12 - 2 * C66 ) * SSSC 
C + (C12 - C22 + 2 * C66 ) * SCCC 

Q(6,6, I) == (Cll + C22 - 2 'lc C12 - 2 * C66) * SSCC 
c + c66 * ( ssss + ecce > 

Q(4,4, I)= C44 * CC+ C55 * SS 
Q(5,5, I) = C44 * SS + C55 * CC 
Q (4, 5, I) = CS 1': (C44 - C55) 
Q (6, 2, I) = Q {2, 6, I) 
Q (6, 1 , I) = Q ( 1 , 6, I) 
Q (2, 1 , f) = Q ( 1 , 2, I) 

HSS(l) = HSS(l) + Q(1,2,1) 
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'''· 

HSS (2) -= HSS (2) + Q (2, 2, I) 
HSS(3) -=HSS(3) +Q(2,6,1) 
HSS (4) -= HSS (4) + Q (1 ,6, I) 
HSS (5) -= HSS (5) + Q (6, 6, I) 

ATHMl (I} =TAl * CC + TA2 * SS 
ATHM2(1) -=TAl* SS + TA2 * CC 
ATHM6(1) = CS * (-TA2- tAl) 
BSWl (IY = SBl * CC + S82 * SS 
BSW2(1) -= SBl * SS + SB2 * CC 
BSW6 {I) = CS * ( S82 - SB 1 ) 

30 CONTINUE 

FIND THE A, B, AND 0 MATRICES FOR THE LOWER AND UPPER SUBLAMINATE. 
ALSO FINDS HYGRALTHERMAL EXPRESSIONS ON A PER LAMINA AND PER 
SUBLAMINATE BASIS. 

c 

ZZZO(O) -= ZO(O) * ZO(O) * ZO(O) 
DO 45 I -= l,NPLYO 

NXNM(I) = (Q(l, 1, l),'t( ATHMl (I)*DELTEMP + BSWl (I)*CMOIST(JM)) 
C + Q(l,2,1),'t( ATHM2(1)*DELTEMP + BSW2(1)*CMOIST(JM)) 
C + Q(l,6,1)*( ATHM6(1)*DELTEMP + BSW6(1)*CMOIST(JM))) *THICK(!) 

NMNYO= NMNYO+(Q(1,2,1)*( ATHM1 (I)*OELTEMP + BSWl (I)*CMOIST(JM) ) 
C + Q(2,2,1)1~( ATH/",2(1),'tDELTEMP + BSW2(1)*CMOIST(JM)) 
C + Q(2,6,1)*( ATHM6(1)*0ELTEMP + BSW6(1)*CMOIST(JM)) ) * THICK(J) 

NMNXYO= NMNXYO+(Q(1,6,1),'t( ATHMl (I)*DELTEMP + BSWl (I)*CMOIST(JM) ) 
C + Q(2,6,1),'c( ATHM2(1)*0ELTEMP + BSW2(l)*CMOIST(JM)) 
C + Q(6,6,1)*( ATHM6(1)*DELTEMP + BSW6(1)*CMOIST(JM)) ) *THICK(!) 

ZZZO (I) = ZO (I) 1c ZO (I) * ZO (I) 
8 12 (I) -= Q ( 1 , 2, I) *0. 5,"; ( (ZO (I) 1cZO (I) ) - (ZO ( 1-1) *ZO (I -1) ) ) 

DO 45 L -=1,6 
DO 45 J-= 1,6 

IF {REAL( Q(J,L, I) ) .EQ.ZR) GO TO 45 
AO (J, L) • AO (J, L) + Q (J, L, I) * THICK (I) 
BO (J, L) -= BO (J, L) +Q (J, L, I) *0. 5* ( (ZO (I) *ZO (I)) - (ZO ( 1-1) *ZO (I -1))) 
DO{J,L) = OO(J,L)+Q(J,L,I)/3.0*( ZZZO(I) - ZZZO(I-1) ) 

45 CONTINUE 

ZZZ 1 (NPL YO) -= Z 1 "(NPL YO) * Z 1 (NPL YO) * Z 1 (NPL YO) 

00 50 I • NEXTPL,TPLY 
ZZZ 1 ( I ) = Z 1 ( I ) * Z 1 ( I ) * Z 1 ( I ) 

NXNM(I) = ( Q(l,l,l),·~( ATHM1 (I),'<DELTEMP + BSWl (I)*CMOIST(JM) ) 
C + Q(1,2,1),'c( ATHM2(1),'cDELTEMP + BSW2(1)*CMOIST(JM)) 
C + Q(1,6,1),•c( ATHM6(t),'cOELTEMP + BSW6(1),'tCMOIST(JM) )),'t THICK(!) 

NMNYl= NMNYl+. ( Q(l,2,1),'c( ATHMl (I)*DELTEMP + BSWl (I)*CMOIST(JM) ) 
C + Q(2,2,1),•c( ATHM2(1)*DELTEMP + BSW2(1),'cCMOIST(JM)) 
C + Q(2,6,1)*( ATHM6(1),'tOELTEMP + BSW6(1),'tCMOIST(JM)) )* THICK(I) 
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c 

NMNXY1c: NMNXY1+ (Q (1 ,6, I)* ( ATHI'\1 (I) *DEL TEMP + BSW1 (I) *CMOI ST (JM) 
C + Q(2,6,1)*( ATHM2(1)*DELTEMP + BSW2(1)*CMOIST(JM)) 
C + Q (6,6, I)* ( ATHI'\6 (I) *DEL TEMP + BSW6 (I) *CMOIST (JM)) ) * THICK (I) 

N MMX 1 = N MMX 1 + 0 • 5 * ( Z 1 ( I ) * Z 1 ( 1 ) - Z 1 ( I - 1) * Z 1 ( I -1) ) * 
C ( Q (1, 1, I)* ( ATHM 1 (I) *DEL TEMP + BSW1 (I) *CMO I ST (JM) 
C + Q(1,2,1),':( ATHM2(1)*DELTEMP + BSW2(1)*CMOIST(JM) 
C + Q (1 ,6,1) * ( ATHM6 (I) *DEL TEMP + BSW6 (I) *CMOI ST (JM) 

NMMY1= NMMY1 + 0.5 * ( Zl (I)*Z1 (I) - Z1 (I-1)*Z1 (1-1) ) * 
C ( Q (1 ,2, I)* ( ATHMl (I) *DEL TEMP + BSW1 (I) *CMOIST (JM) ) 
C + Q(2,2,l)*( ATHM2(1)*DELTEMP + BSW2(1)*CMOIST(JM)) 
C + Q(2,6,1)*( ATHM6(1)*DELTEMP + BSW6(1)*CMOIST(JM)) 

812(1) -= Q(1,2, l)*0.5*((Z1 (I)*Zl (I))-(Z1 (1-l)*Zl (1-1))) 
DO 50 lc:l,6 
DO 50 J-=1, 6 

IF (REAL ( Q(J,L, I) ) .EQ.O) GO TO 50 
A 1 (J, L) -= A 1 (J, L) + Q (J, L, I) * THICK (I) 
81 (J,L) -= 81 (J,L)+Q(J,L,l)*0.5*((Z1 (I)*Zl (1))-(Zl (I-1)*Z1 (1-1))) 
Dl (J,L) -= Dl (J,L)+Q(J,L, 1)/3.0*( ZZZ1 (I) - ZZZl (t-1) ) 

50 CONTINUE 

******************************************************************* 

SEE 1F COUPLING IS TAKING PLACE ••••••••••••••••••••••••••.• 

******************************************************************* 
COUPL = 2 

DO 60 1=1,6 
QO 60 J=1,6 

IF ( REAL(BO(I,J)).GT.CHECK) CQUPL=l 
60 IF ( REAL(Bl (I ,J)) .GT.CHECK) COUPL=l 

IF ( REAL (01 (2,6)) .GT. CHECK ) COUPL-=1 
IF (REAL (00(2,6)) .GT. CHECK) COUPL=l 

I F ( C 0 UP l • E Q • 1 • AN 0 • L I L • E Q • 1 ) WR l T E ( 6 , 2 0 5) 
IF ( COUPL.EQ.2 .AND. LIL.EQ.1) WRITE{6,210) 

·****************************************************************** 

CHECK THE SIGN OF THE PEEL STRESS *************************** 

HSNl -= NMNYl + NMNYO 
HSN2 c: NMNXYl + NMNXYO 

****************************************************************** 
HOD= HSS (2) * HSS (5) - HSS (3) * HSS (3) 
HE -= HS S ( 3) * H S S ( 4) - H S S ( 1 ) * H S S {5) 
HE -= HE /HOD . 
HG = HSS (1) * HSS (3) - HSS (2) * HSS (4) 
HG • HG I HOD 

00 65 I= 1 , TPL Y 
HNY(I) = ATH * STRAIN(LST) * ( Q(l,2,1) + Q(2,2,1) *HE+ 

C Q (2, 6, I) 'ic HG ) 
HNXY(l) = ATH * STRAIN(LST) ,'( ( Q(1,6,1) + Q(2,6, I) ,·c HE+ 

C Q (6, 6, I) ,-c HG) 
65 CONTINUE 

DO 10 I = l,NPLYl 
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70 

c 

HM3 c HM3 + ATH * HNY(I) * ( NPLY1 - I + .5) 
SMNY c SMNY + HNY(I) 
SMNXY c SMNXY + HNXY(I) 

IF ( HM3.GT.ZR) GO TO 85 

C IF (Lil.EQ .. l) WRITE (6,*)' CASE OF COMPRESSIVE PEEL STRESS 
C WR I T E ( 6 , 2 1 8) 
C DO 75 l=1,TPLY 
75 WRITE(6,220)THETA(I) ,HNY(I) .HNXY(I) 
C WRITE(6,*)' THE MOMENT CALCULATED WAS= '.HM3 
c 

85 DO 80 1-1,6 
00 80 J=1,6 

IF ( ASS { REAL (80 (I ,J)) ) .LT .CHECK) 80 (l.J) cZR 
80 IF ( ABS ( REAL (81 (l ,J)) ) .LT .CHECK) 81 (I ,J) c:: ZR 
******************************************************************** 

********************************************************* 

DEFINE SOME PARAMETERS NEEDED IN THE PROGRAM 

********************************************************* 
H22 • 81 (2,2) + Hl I 2.00. * Al (2,2) 
H26 • 81 (2,6) + Hl I 2o00 * Al (2,6) 
H66 c 81 {6,6) + Hl I 2.00 * Al (6,6) 

C22 -= 80 (2, 2) + HO I 2. 00 * A 1 {2, 2) 
C26 c 80(2,6) +HOI 2.00 * Al (2,6) 
C66-= 80(6,6) +HOI 2.00 * Al (6,6) 

K22=Al(2,2) + A0(2,2) 
K26 = A 1 (2,6) + AO (2,6) 
K66 c:: A 1 (6, 6) + AO (6, 6) 
Kl2 = Al (1,2) + AO(l,2) 
K16 • Al (1 ,6) + AO (1 ,6) 

D c K22 * K66 -( K26 * K26) 

E15 = 00(2,2) HOI2*80(2,2) 
E16 c D0(2,6) - HOI2*B0(2,6} 
E17 = D0(6,6) - HOI2*80(6,6) 
E 18 = 80 ( 1, 2) - HOI2,'tAO ( 1, 2) 
E19 = 80(1,6) - HOI2*A0(1,6) 

VVll c ( K26 * H26- K66 * H22) I D + ( Hl I 2.00) 
VV12 = ( K26 * C26 - K66 * C22 ) I D + ( HO I 2.00 ) 
VV13 = ( K26 * H66 - K66 * H26 ) I D 
VV14 = ( K26 * C66 - K66 * C26 ) I D 

Ull = ( K26 * H22- K22 * H26) I D 
Ul2 = ( K26 * C22 - K22 * C26 ) I D 
U13 = ( K26 * H26 - K22 * H66 ) I D + ( H1 I 2.00 ) 
U14 c:: ( K26 * C26 - K22 * C66 ) I D + ( HO I 2.00 ) 

F ( 1 , 1 ) • 0 1 ( 2 , 2) + B 1 ( 2 , 2) * H 1 I 2 • 0 + H 2 2 * VV 1 1 + H 2 6 * U 1 1 
F (2,1) = H22 * VV12 + H26 * U12 
F ( 3 , 1 ) = D 1 ( 2 , 6) + 8 1 ( 2 , 6) * H 1 I 2 . 0 + H 2 2 ,'< VV 1 3 + H 2 6 * U 1 3 
F (4, 1) = H22 * VV14 + H26 * Ul4 

F (2,2} = 00(2,2) - 80(2,2) *HOI 2.0 + C22 * VV12 + C26*Ul2 
F {3,2} = H26 * VV12 + H66 * U12 
F (4,3) = H26 * VV14 + H66 * U14 

F (3,3) = Dl (6,6) + 81 (6,6) * Hl I 2.0 + H26,'tVV13 + H66 ,·c U13 
· F (4,2) = 00(2,6) - 80(2,6} *HOI 2.0 + C22*VV14 + C26 ,~ U14 
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F (4,4) • 00(6,6) - 80(6~6) *HOI 2.0 + C26*VV14 + C66 * U14 

OX • K22 * K66 

OVVll = - K66 * H22 I OX + ( Hl I 2.00) 
OVV12 = - K66 * C22 I OX + ( HO I 2.00 ) 

DU13 = - K22 * H66 I DX + ( H1 I 2.00 ) 
DU14 -= - K22 * C66 I OX + ( HO I 2.00 ) 

D F ( 1 , 1 ) -= 0 1 ( 2 , 2) + B 1 ( 2 ~ 2) * H 1 I 2 • 0 + H 2 2 * 0 VV 1 l 
OF (2, 1) -= H22 * DVV12 
OF (2,2) • 00(2,2) - 80(2,2) *HOI 2.0 + C22 * OVV12 
OF (4,3) -= H66 * OU14 

OF (3,3) -= 01 (6,6) + Bl (6,6) * Hl I 2.0 + H66 * DU13 
OF (4,4) = 00(6,6) - 80(6,6) *HOI 2.0 + C66 * DU14 

W(l) • F(3,3)1:( F(2,2)*F(4,4)-F(4,2)*F(4,2) )- F(3,2)*F(3,2)* 
C F(4,4) + 2*F(4,3)*F(4,2)*F(3,2)- F(2,2)*F(4,3)*F(4,3) 

W(2) •- F (3,3)*(F (2,2)*A0(5,5) + F (4,4)*A0(4,4) - 2*F (4,2) 
C * AO (4, 5) ) - A 1 (5, 5) 1< ( F (2, 2) * F (4, 4) -
C F (4,2) * F (4,2)) + F (3,2) * F (3,2) * A0(5,5) -
C 2.0 *f (4,3) *F (3,2) *AO (4,5) + F (4,3) * F (4,3) 'lc AO (4,4) 

X (1) •F (3, 1) * (F (2, 2) *F (4,4) -F (4, 2) *F (4,2)) -F (3, 2) * (F (2, 1) *F (4,4) 
C - F (4, l)*F (4,2)) + F (4,3),':(f (2, l),'cf (4,2) - F (4, l)*F (2,2)) 

X{2) =- F (3, 1) 1c ( F (2,2) * A0(5,5) + F (4,4) * A0(4,4) 
C - 2 1: F (4,2) ,•: AO (4,5) ) - Al (4,5) ,·~ ( F (2,2) * F (4,4) 
C - F(4,2) ·lr. F(4,2)) + F(3,2) ,., ( A0(5,5) ,•c F(2,l)-
C F(4,1)*A0(4,5))- F(4,3),':( F(2,l),'cA0(4,5)- F(4,1)*A0(4,4)) 

Y(l) = F (3, l)*(F (3,2)1cf (4,4) - F (4,3),'rf (4,2))- F (3,3)*(F (2, l)* 
C F (4,4) - F (4, 1) ,~F (4,2) )+F (4,3) * (F (2, 1) *F (4,3) -F (4, l) *F (3,2)) 

Y (2) = 0 - A 1 (4, 5) * (F (3, 2) ,'tf (4, 4) - F (4, 2) 1cf (4, 3)) 
C - F(3,1) * ( F(3,2),'cA0(5,5)- F{4,3) * A0{4,5)) + 
C A 1 (5 , 5) ,<: ( F ( 2 , l ) ,-; F ( 4 , 4) - F ( 4 , l) * F ( 4 , 2) ) + 
C F (3,3) * { F (2, 1) * A0(5,5) - F {4, 1) * A0(4,5) ) 

Y(3) • A1{4,5)*(F(3,2)*A0(5,5)- F(4,3)?'tA0(4,5))- Al(5,5) '" 
C ( F { 2 , 1 ) ,·: A 0 (5 , 5) - F ( 4 , l) ,•c A 0 ( 4 , 5) ) 

ZZ(l) = F (3, l)*(F (3,2)*F (4,2)- F (4,3)*F (2,2)) - F (3,3)*(F (2, 1),•, 
C F (4, 2) -F {4, 1) *F (2,2) )+F (3,2) * (F (2, l) *F (4, 3) -F (4, 1) *F (3,2)) 

ZZ{2) -= F (3, 1)*(F (4,3)*A0(4,4)- F (3,2)*A0(4,5)) - Al (4,5)* 
C {F(3,2)*F(4,2)- F(4,3),'cF(2,2))+ A1(5,5)*(F(2,1)* F(4,2)-
C F (4, l) *F (2, 2)) - F (3, 3) * (F (4, 1) *AO (4,4)- F (2, 1) *AO (4,5)) 

ZZ(3) = 0- Al (4,5)*(F (4,3)*A0(4,4)-F (3,2)*A0(4,5))+A1 (5,5)* 
C ( F (4, 1) * A0(4,4) - F (2, 1) * A0(4,5) ) 

************************************************************************ 

NOW OBTAIN THE VALUES OF E SO THAT THE 8TH ORDER POLYNOMIAL MAY BE SOLVED 

*********************************************************************** 
E (1) F (1, 1) ,.<W(l) - F (3, 1) '/{X (1) + F (2, 1) ,·:y (l) - F (4, 1) *ZZ (1) 
E(3) = F(1,l),tcW(2)- A1(4,4),"W(l)- F(3,1),tcX(2) + Al(4,5)*X(l) 

C + F(2,1) * Y(2)- F(4,1) ,·: ZZ(2) 
E(5) = (A0(4,4),._A0(5,5)- A0(4,5)*A0(4,5))*(F(l,l)*F(3,3) 

C - F(3,l),'cF(3,l)) + (F(2,2),'cA0(5,5) + F(4,4),'cA0(4,4)-
C 2,'cf (4,2) *AO (4,5)) * (F (1, 1) ,'tA 1 (5,5) - F (3, l) *A 1 (4,5) ) 
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C - A 1 (4,4) *W (2) + A 1 (4,5) *X (2)+ F (2, 1) *Y (3) - F (4, 1) *ZZ (3) 

E {7) = - {AO {4,4) *AO {5,5) - AO (4,5) *AO {4,5)) * {F {1, 1) *A 1 (5,5) 
C + F { 3 , 3) *A 1 ( 4 , 4) - 2 * F { 3 , 1 ) *A 1 ( 4 , 5) ) - {A 1 { 4 , 4) *A 1 {5 , 5) -
C A 1 ( 4 , 5) *A 1 { 4 , 5) ) * ( F ( 2 , 2) *A 0 {5 , 5) + F { 4 , 4) *A 0 ( 4 , 4) 
C - 2 * A0{4,5) * F{4,2) ) 

E {9) = {AO (4, 4) *AO (5, 5) - AO {4, 5) *AO {4, 5) ) * 
C (A1 {4,4) * A1 {5,5) - Al (4,5) * A1 {4,5) ) 

CALL UP SUBROUTINE TO SOLVE 8TH ORDER POLYNOMIAL 

NOEG = 8 
I ER -= 0 
CALL ZPOLR (E,NDEG,SJ,IER) 

KK = 0 
******************************************************************** 
******************************************************************** 

I F { Ll L • E Q • 1 ) WR I T E ( 6 , 2 1 7) 
00 90 L = 1, 8 
S {L) = REAL {SJ {L)) 
IF {REAL {SJ {L)) .GT .0) KK = KK + 1 

90 IF {REAL {SJ {L)) .GT .0) S (KK) = 5 (L) 
DO 95 KK a:: 1,4 

9 5 I F { Ll l • E Q • 1 ) WR I T E ( 6 , 2 2 1 ) K K , S ( K K) 

******************************************************************** 

******************************************************************** 
NOW FINO THE UNCOUPLED S VALUES AND THOSE OF THE XEMBRANE 

BNEG= OF (1, 1) * AO (4,4) + OF (2,2) * A 1 {4,4) 
A= OF{1,1) * OF(2,2)- OF(2,1) ,'c OF{2,1) 
C-= A0{4,4) * A1(4,4) 

SQ = DSQRT (BNEG * BNEG - ( 4.0 *A *C)) 
OIFF1 = DABS { BNEG - SQ) 
OIFF2 = DABS { BNEG + SQ ) 

If {OlFFl.GT.OIFF2) GO TO 100 
UNSY {1) = OSQRT ( (BNEG+SQ) I 2.0 I A ) 
GO TO 105 

100 UNSY {1) = OSQRT { (BNEG-SQ) I 2.0 I A ) 
105 UNSY(2) = OSQRT( (BNEGIA) - UNSY(l)* UNSY{1) ) 

BNEG= OF {3,3) * A0{5,5) +OF (4,4) * Al (5,5) 
A a: OF (3,3) * OF {4,4) - OF (4,3) *OF {4,3) 
C a: A 0 (5 , 5) * A 1 (5 , 5) 

SQ = OSQRT {BNEG * BNEG - { 4.0 * A * C) ) 
OIFFl =DABS ( BNEG- SQ) 
DIFF2 = DABS { BNEG + SQ) 

IF (0 I F f 1 • GT. 0 IFF 2) GO TO 110 
UNSX (1) = OSQRT ( (BNEG+SQ) I 2.0 I A ) 
GO TO 115 

110 UNSX {1) = OSQRT { (BNEG-SQ) I 2.0 I A ) 
115 UNSX (2) = DSQRT ( (BNEGIA) - UNSX (1) * UNSX (1) 

******************************************************************** 
IF (LIL.EQ.l) WRITE(6,224) UNSX(l), UNSX(2) 
IF (L I L.EQ. 1) WRITE (6,223) UNSY (1), UNSY (2) 

******************************************************************** 

NOW THE S FOR THE MEMBRANE ONLY 
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F11M = Hl/2. * ( Al (2,2) * (DVVll + DW12*HOIH1*A1 (4,4)1A0(4,4)) 
C + S 1 (2, 2) ) 

F 22M -= H 1/2. * ( A l (6, 6) * (U 13 + U 14*HOIH 1 *A 1 (5, 5) / AO (5, 5)) 
C + S 1 (6, 6) ) 

MEMSY-=DSQRT (A1{4,4) IF11M) 
MEMSX -= DSQRT ( A 1 (5 ,51 I F 22M ) 

******************************************************************** 

I F ( L I L • E Q • 1 ) WR I T E ( 6 , 2 1 9) 1'\ EMS X 1 ME MS Y 

******************************************************************** 

DUM - AO (2 t 2) * AO (6 I 6) - AO (2 '6) * AO (2 '6) 
SlNM • ( A0(6,6)*NMNYO- A0(2,6)*NMNXYO) I DUM 
S2NM • ( A0(2,2)*NMNXYO - A0(2,6)*NMNYO) I DUM 

IF (LIL.EQ.1) WRITE (6,288) S1NM,S2NM 

IF ( COUPL.EQ.2)GO TO 130 

SOLVE FOR WD, CO, CU AND CV 

WD(l,l) • (A0(2,6) * A0(1,6)- A0(6,6) * A0(1,2)) I DUM 
WD (1 ,2) = (AO (2,6) * SO (2,6) - AO (6,6) *SO (2,2) ) I DUM 
WO(l,3) • (A0(2,6)*S0(6,6)- A0(6,6)*S0(2,6)) I DUM 
WD(2,1) = (A0(2,6) * A0(1,2)- A0(2,2) * A0(1,6) )/DUM 
WD (2,2) • (AO (2,6) *SO (2,2) - AO (2,2) * 80 (2,6) ) I DUM 
WD (2,3) = (AO (2,6) * SO (2,6) - AO (2,2) *SO (6,6) ) I DUM 

MATR33 (1, 1) = A 1 (2,2) 
MATR33(1,2) = A1 (2,6) 
MATR33(1,3) = Bl (2,2) 

MATR33(2,1) = MATR33(1,2) 
MATR33(2,2) = A1 (6,6) 
MATR33 (2, 3) ~!== S 1 (2, 6) 

MATR33(3, 1) = MATR33(1,3) 
MATR33(3,2) • MATR33(2,3) 
MATR33(3,3) • 01 (2,2) 

MATR32(1,1) = - A1(1,2) 
MATR32 (1 ,2) = - Bl (2,6) 

MATR32 (2, 1) -= - A 1 (1 ,6) 
MATR32 (2, 2) = - S 1 (6, 6) 

MATR32(3,1) = - S1(1,2) 
MATR32 (3,2) = - Dl (2,6) 
IF (IZZ.EQ.2) GO TO 122 

DO 120 1=1,3 
DO 120 K=1,3 

120 SAVE33(1,K) = MATR33{l~K) 
SAVE3 (1) = NMNYl 
SAVE3(2) = NMNXYl 
SAVE3(3) = NMMYl 

IRR = 0 
CALL LEQT2F (SAVE33, 1,3,3~SAVE3.0~WKAREA, IRR) 

122 M=2 
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N=3 
IA=3 
IRR=O 
100=0 

CALL LEQT2F(MATR33,M,N,IA,MATR32,1DO,WKAREA,IRR) 

DO 125 1-=1,3 
IF (IZZ.EQ.2) SAVE3(1) -= ZR 

FNM (I) = SAVE3 (I) 
DO 125 L=1 ,2 

125 CD(I,L) -= MATR32(1,L) 

SC-= DSQRT( ( Al (5,5) - Al (4,5) * Al (4,5) I Al (4,4) 
c I ( 01 (6,6) + 81 (2,6) *CO (1 ,2) + 81 (6,6) *CO {2, 2) 
C +01(2,6) * CD(3,2))) 

GO TO 135 
******************************************************************* 

IN CASE THE LAYERS ARE UNCOUPLED 

********************************************************************* 
130 DY -= -11 ( Al (2,2)*Al (6,6) - A1 (2,6) * A1 (2,6) ) 

CO(l, 1) • ( Al (6,6)*A1 (1,2) - A1 (2,6)*A1 (1,6) ) I DY 
CO (2, 1) -= ( A 1 (2, 2) *A 1 ( 1 , 6) - A 1 (2, 6) * A 1 ( 1 , 2) } I DY 
CO (3, 2} • ( A 1 (2, 2} *A 1 (6, 6} + A 1 (2, 6) *A 1 (2, 6) ) * 

C 01 (2,6} I 01 (2,2}1 DY 
CO ( 1 , 2) -= ZR 
CD (2, 2} = ZR 
CD(3, 1} = ZR 

DR = -1 I ( AO (2, 2} *AO {6, 6) - AO (2, 6} *AO (2, 6) ) 
WD (1, 1} = ( AO (6,6} *AO (1 ,2) - AO (2,6} *AO (1 ,6) } I DR 
WO (2, 1) = ( AO (2, 2} *AO ( 1, 6} - AO (2, 6) *AO ( 1 , 2) } I DR 
WO (1, 2) = ZR 
WO ( 1 , 3) -= ZR 
WD (2,"2) = ZR 
WD ( 2 , 3) -= Z R 
SSY = DSQRT( A0(5,5) I D0(6,6) } 
SSX = DSQRT( A0(4,4) I 00(2,2} } 

FNM(l) -= (A1 (2,6}*NMNXY1 - A1 (6,6}*NMNYl) I DY 
FNM(2) • (A1 (2,6}*NMNY1 - A1 (2,2)*NMNXY1 } I DY 

F NM (3) =(A 1 (2, 6) *A 1 (2, 6) - A 1 (2, 2) *A 1 (6, 6}) lOY * NMMY 1 ID 1 (2, 2) 

S C -= 0 S Q RT ( (A 1 (5 , 5) * A 1 ( 6 , 6} ) I (A 1 ( 6 , 6} * D 1 ( 6 , 6) 
C - (81 (6,6) *81 (6,6)) } } 

************************************************************** 
****************************************************************** 

135 Cl-= Bl (1,6) + C0(1, 1}*81 (2,6) + CD(2, 1)*S1 (6,6} 
C + CD (3, 1} * 01 (2,6) 

C2 = 01 (6, 6) + CD ( 1, 2) *S 1 (2, 6) + CO (2, 2) *8 l (6, 6) + 
C C0(3,2) * D1 (2,6) 

J22 = DO (2,2) + SO (2,2} * WO (l, 2) + 80 (2,6) * WD (2, 2) 
J66 = 00 (6, 6) + SO (2, 6) * WO ( 1, 3) + SO (6, 6) * WD (2, 3) 
J26 = DO (2, 6) + SO (2, 2) * WD ( 1 , 3) + 80 (2, 6) * WD (2, 3) 

SNEG = J22 * A0(5,5) + J66 * A0(4,4} - 2. * J26 * A0(4,5) 
A = J22 * J66 - J26 * J26 
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140 
145 

C -= AO (4,4} * AO (5,5) - AO (4,5) * AO (4,5) 

SQ -= OSQRT ( (BNEG * BNEG) - 4.0 * C * A } 
OIFF1-= DABS( BNEG + SQ} 
DIFF2-= DABS( BNEG- SQ} 
IF (DI FF l.GT .D I FF2) GO TO 140 
SSl = DSQRT ((BNEG + SQ) I 2. I A) 
GO TO 145 
SSl -= DSQRT ( (BNEG-SQ). I 2. I A ) 
SS2 = OSQRT ( (BNEGIA) - SSl * SSl ) 

SSY = DSQRT ( A0(4,4) * J22) 
SSX = DSQRT ( A0(5,5) * J66) 

******************************************************************** 

I F ( L I L • E Q • 1 ) WR I T E ( 6 , *) 1 

I F (L I L. EQ. 1) WRITE (6, *) 1 

Sl AND S2 = ',SSl, SS2 
SX AND SY = ',SSX, SSY 

******************************************************************** 

CVNM -= ( K66 * (NMNYl + NMNYO) - K26 * (NMNXYl + NMNXYO) ) I D 
CUNM = ( K22 * (NMNXYl + NMNXYO) - K26 * (NMNYl + NMNYO} ) I 0 

CV-= STRAIN(LST) I 0 * ( K26 * K16- K66 * K12) + CVNM 
CU = STRAIN(LST) I 0 * ( K26 * Kl2 - K22 * Kl6) + CUNM 

******************************************************************. 

NOW FINO SOME OF THE NEEDED CONSTANTS ••••• 
FIRST DO LOOP IS TO VARY THE VALUES OF S 

DO 150 I = 1, 4 

FORM THE A MATRIX (MATR32) AND ITS B (MATR3) 

MA TR 3 3 ( 1 , 1) = - ( F(3,1) * S (I) * S (I) - Al (4,5) 
MATR33(1,2) = - ( F (2, 1) * S (I) * s (I) 
MATR33 ( 1, 3) = - ( F(4,1) ,'r. S (I) * S (I) 
MATR33 (2, 1) = - ( F (3, 3) * S {I) ,'t S (I) - Al (5,5) 
MATR33 (2, 2) = - ( F (3, 2) ,-c S (I) 2':. S (I) 
MATR33 (2, 3) = - (F(4,3) * S (I) * S (I) 
MATR33 (3, 1) = - ( f (3' 2) ,-c S (I) * S (I) 
MATR33 (3, 2) = - ( f(2,2) * S (I) * S (I) - AO (4,4) 
MATR33 (3, 3) -= - ( F (4, 2) * S (I) * S (I) - AO (4, 5) 

MATR3(1) = (F(1,1) * S(l) * S(l) ) -A1(4,4) 
MATR3 (2} = F (3, 1) * S (I) * S (I) - Al(4.5) 
MATR3 (3) = F (2 , l) * S ( I ) * S (I ) 

CALL UP ROUTINE TO FIND THE VALUES OF ALPHA, PHI AND GAMMA 

M=1 
N=3 
IRR=O 
IDO=O 
IA=3 
CALL LEQT2F (MATR33,M,N, IA,MATR3,1DO.WKAREA, IRR) 

ALPHA(I) = MATR3(l) 
PHI(!)= MATR3{2) 
GAMMA (I) = MATR3 (3) 

SV(J) = VVll + ALPHA(I)*VV13 +PHI (l),'cVV12 + GAMMA(I),'cVV14 
50 SU(I) = Ull + ALPHA(I),'<Ul3 +PHI (l),'cUl2 + GAMMA(I),T.Ul4 
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DO 155 I = 1 , 4 

NXl (I}=Al (1,2)*SV(I) + A1 (1,6}*SU(I} + 81 (1,2} + 81 (1,6}*ALPHA(t) 
NY 1 (I} a::A 1 (2, 2) *SV (I) + A 1 (2, 6) *SU (I) + B 1 (2, 2) + B 1 (2, 6} *ALPHA (I) 

NXYl (I)=Al (2,6)nSV(I) + ·Al (6,6)*SU(I) + 81 (2,6) + Bl (6,6}*ALPHA(I) 
MY1 (1)-=Bl (2,2)*SV(I) + Bl (2,6)*SU(I) + D1 (2,2} + D1 {2,6)*ALPHA(I) 

MXY1 (I) -=81 (2,6) *SV {I) + 81 (6,6) *SU (I) + D1 (2,6) + D1 (6,6) *ALPHA (I) 
NXO (I) -=AO ( 1, 2) *SV (I) + AO (1 , 6) *SU (I) + E 18*PH I (I) + E 19*GAMMA (I) 

GG ( 1 • I) = NY 1 (I) 
GG (2, I) -= NXY 1 (I) 
GG (3. I) -= MY 1 {I) 

FTH = C2 * SC 
15 5 G G { 4 , I ) -= MX Y 1 ( I ) + F TH * ALPHA ( I ) I S { I ) 

c 

c 
c 

A1NM-= 81 (2,6)* FNM{l) + 81 (6,6)*FNM(2} + D1 (2,6) * FNM(3) 

** 
BG ( 1) -= A 1 ( 1, 2) *STRAIN (LST) + CV * A 1 (2, 2) + A 1 (2, 6) * CU-NMNY 1 
BG (2) -= A 1 ( 1, 6) *STRAIN (LST} + CV * A 1 (2, 6) + A 1 (6, 6) * CU-NMNXY 1 
BG (3) = B 1 ( 1 , 2} *STRA l N (LST) + B 1 (2, 2) * CV + B 1 (2, 6) * CU-NMMY 1 
BG(4) -= 81 (1,6)*STRAIN(LST) + 81 (2,6) * CV + 81 (6,6) * CU-A1NM 

C - C1 * STRAIN(LST) 

BG 1 = BG (1) 
BG2 -= BG (2) 

M=l 
N=4 
IA=4 
IDD=O 
IRR=O 

CALL LEQT2F(GG,M,N,IA,BG,IOD,WKAREA,IRR) 

******************************************************************** 

TVNM = SlNM - FNM(l) + H1 I 2.0 * FNM(3) 
TUNM = S2NM - FNM(2} 

THETV = -C0(1,1) + W0(1,1) + H112.0*CD(3,1) 
THETU = -C0(2,1) + W0(2,1) 

THETV = TH£TV + TVNM 
THETU • THETU + TUNM 

IF (LIL.EQ.l) WRITE(6,215) THETV, THETU 
IF (L I L. EQ. 1) WRITE (6, 216) SMNY, SMNXY 

******************************************************************** 
THE STEPS USED TO FINO THE TOTAL ENERGY RELEASE FROM USING A PURE 
EXTENSION ANALYSIS FOR THE HYGRALTHERMAL EFFECTS. (SIMILAR TO 
WHITNEY 1 S). ANALYSIS IS CARRIED OUT ON A PLY BY PLY BASIS 

ZV • ( K26 * Kt6 - K66 * K12 ) I 0 
ZU = ( K26 * K12 - K22 * K16 ) ID 

DO 162 LL = 1,TPLY 

EX(LL) = THICK(LL) * ( Q(1,1,LL) + ZV*Q(1,2,LL) + 
C ZU,'cQ(1,6,LL)) 

T1 (LL) = NXNM(LL) - CVNM*THICK(LL),'cQ(1,2,LL) -
C CUNM ,~ THICK(LL) * Q(1,6,LL) 

EXX (LL) = Q (1, 1, LL) *THICK (LL) + Q (1 ,2,LL) *THICK (LL) icCO (1, 1) 
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C + Q ( l, 6, L L) *THICK (L L) *CD (2, 1) + B 12 (L L) *CD (3, 1) 
Tl2(LL)-= NXNM{LL)- FNM{l)tcQ(l,2,LL)*THICK{LL)-

C FNM(2)*Q(l,6,LL)*THICK{LL)- FNM(3)*Bl2(LL) 
EX3(Ll) -= Q{1, l,LL)*THICK(LL) + WD{1, l)tcQ{1,2,LL)*THICK{LL) 

C + W0{2, 1)tcQ(1,6,LL)*THlCK{LL) 
T13{LL) • NXNM(LL) - Q{l,2,LL)*THICK(LL)*S1NM- Q{1,6,LL) 

C * THICK(Ll) * S2NM 

IF (IZZ.EQ.2) NMSTO{LL) = 0.0 
IF {IZZ.EQ.2) NMST2 (LL) = 0.0 
I F { I Z Z • E Q • 2) N MS T 3 ( l L) = 0 • 0 
IF {IZZ.EQ.2) GO TO 162 

NMSTO (LL) = Tl {LL) I EX {LL) 
NMST2 {LL) T 12 {L L) I EXX (L L) 
NMS T 3 ( L L) = T 1 3 { l L) I EX 3 ( L L) 

162 CONTINUE 

WR f TE (6, ,-c) ' JMM, NMSTO, 2, 3 OF ALL PL YS ', ( NMSTO {JP) 9 

C NMST2 {JP) , NMST3 (JP) , 1 
---

1
, JP= 1, TPL Y) 

WRITE{6,*)' EX, EXX EX3 OF ALL PLYS ',{ EX(JP), 
c EXX (JP) 'EX3 {JP) 'I It JP=l, TPL Y) 

TNC • 0.0 
EXNC • 0.0 
TSTAR = 0.0 
ESTAR = 0.0 
DO 163 LK = l,TPLY 

TNC = TNC + Tl (LK) 
EXNC = EXNC + EX(LK) 
IF (LK.LE.NPLYO) TSTAR = TSTAR + Tl3(LK) 
IF {LK.GT.NPLYO) TSTAR = TSTAR + T12(LK) 

IF {LK. LE .NPLYO) ESTAR = ESTAR + EX3 (LK) 
IF (LK.GT.NPLYO) ESTAR = ESTAR + EXX(LK) 

IF (IZZ.EQ.2) TNMST = 0.0 
IF (IZZ.EQ.2) GO TO 89 

TNMST = ( TNC -(TNC-TSTAR)*2*ALIWIOTH) I ( EXNC-
C {EXNC-ESTAR)*2*ALIWIDTH) 

89 WRITE (6, ,-:) I TNMST EQUALS I' TNMST 

DO 164 LL = l,TPLY 

IF (LL.LE.NPLYO) WWC = (EX3(Ll) i; 

C (STRAIN(LST) + TNMST) - Tl3(LL) ) 
C * ( STRAIN(LST) - NMST3(LL) + TNMST) 

IF (LL .GT .NPLYO) WWC • (EXX (LL) * 
C (STRAIN(LST) + TNMST) - T12(LL) ) 
C * ( STRAIN(LST) - NMST2(LL) + TNMST) 

WWO = EX(LL)* (STRAIN(LST) + TNMST) - Tl (LL) 
C ,., ( STRAIN (LST) - NMSTO (LL) + TNMST ) 

;4 GLC(JMM) = GLC(JMM) + WWO- WWC 

GLC(JMM) = GLC(JMM) I 2.0 

********************************************************************* 
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THIS IS TO CALCULATE THE INTERLAMINAR SHEAR STRESSES~ 

********************************************************************* 
UNCL z{WIDTH I 2.0)- AL 

DO 180 JX • 80,100 
JY •{ 1.0- JX 1100.0) * UNCL 
SIGX{JMM,JX) = 0 
SIGY{JMM,JX) • 0 

DO 180 JS = 1,4 
SIGX{JMM,JX) =· BG{JS) * S(JS) * DEXP { -S{JS)* JY 

C * NXY 1 (JS) + S I GX (JMM, JX) 

SIGY(JMM,JX) = BG(JS) * S{JS) * DEXP ( -S{JS)* JY 
C * NY 1 (JS) + S I GY (JMM, JX) 

180 CONTINUE 

THE PROGRAM CONTINUES AND FINDS THE VARIOUS STRAIN ENERGY RELEASE 
COMPONENTS ••••• 

IF {COUPL.EQ.l) GO TO 165 

THIS IS FOR A SYSTEM THAT IS COUPLED, THE CRACK LENGTH IS 

DEL • S(4) * S(2) * ATH * ATH 
DEL = DEL * DEL * 0.6144 
GO TO 170 

THIS IS FOR AN UNCOUPLED SYSTEM ••••••••••••••.••••• 

165 SSW= .65 * ( S(l) + S(2) + S{3)) 
DEL= 18.7 * S(4) *SSW* ATH * ATH 
DEL= DEL* DEL I 571.00 

170 DEL = 135.7 * DEL * ATH 

C I F { L I L • E Q • 1 ) WR I T E ( 6 , 2 1 1 ) D E L 

FY = ZR 
FX = ZR 

DO 175 JP=l ,4 

CONY= NY 1 {JP) *BG (JP) * { DEXP { -S {JP) * DEL ) - 1 ) 
CONXY= NXY 1 (JP} * BG (JP) * ( DEXP ( -S {JP) *DEL)- 1 ) 
CCONXY = CCONXY + CONXYIS{JP) 

175 CCONY = CCONY + CONYIS{JP) 

*************************************************************** 
*************************************************************** 

FY = BG1 + CCONY I DEL 
FX • BG2 + CCONXY I DEL 

Gl I {IZZ,JM) = FYI 2.0 * THETV *STRAIN{LST) 
Gl I I {IZZ,JM) = FX I 2.0 * THETU * STRAIN{LST) 

DIFFG= Gl I (IZZ,JM) - Gill (IZZ,JM) 
CON = 2 

IF (OIFFG.GT.REAL(GLC{JMM))) CON=l 
IF (DIFFG.GT.REAL(GLC(Jt1M))) DEL= DEL ,tr; .9 
1 F ( D I F F G • G T . REAL ( G L C ( J MM) ) ) WR I T £ ( 6 , ,·c) ' I T EX P L 0 0 £ S 

GJ (IZZ,JM) = GLC(JMM)-Gll (IZZ,JM)-GIII (IZZ,JM) 
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200 CONTINUE 

RESULTS ARE PRINTED FOR EACH RUN. 

300 CONTINUE 
WRITE(6,266) STRAIN(LST) 
WRITE (6,267) 
WRITE (6,269) GLC (0) , Gl (2, 1), Gl I (2, 1), Gl I I (2, 1), 

C G I (2, 1) /GLC (0) 

00 350 1=1,MMC +1 
WRITE(6,268) CMOIST(I),GLC(I), Gl (l,I),GII (1,1), 

C Glll(l,l), Gl(l,I)/GLC(I) 
350 CONTINUE 

WRITE (6, 287) 

DO 360 NS -= 80,90,2 
360 WRITE (6,285)NS/100., SIGX(O,NS), ( SIGX(KL,NS) ,KL=l,22,4) 

DO 365 NS-= 91,100 
3 6 5 WR I T E ( 6 , 2 8 5) N S / 1 00 . , S I G X ( 0 , N S) , ( S I G X ( K L , N S) , K L-= 1 , 2 2 , 4) 

WR I T E ( 6 , 2 8 6) 
00 370 NS • 80,90,2 

370 WRITE(6,285) NS/lOO.,SIGY(O,NS), ( SIGY(KL,NS} ,KL=1,22,4) 

DO 375 NS = 91,100 
375 WRITE (6,285) NS/lOO.,SIGY(O,NS), ( SIGY(KL,NS), KL=l,22,4) 

400 CONTINUE 

201 FORMAT{//,' THE WIDTH OF THE LAMINATE IS 1 ,F8.5) 
287 FORMAT(/////, 1 THESE ARE THE IN-PLANE INTERLAMINAR SHEAR 1

, 

C 'STRESSES-- SIGMA XY ',/, 1 THEY ARE FOUND AT VARIOUS', 
C '·MOISTURE CONTENTS ·1 

,//, 
1 Y LOCATION' ,]X, 1 MECH ONLY 1 .,8X, 

C 'H=0.0 1 ,10X, 'H=0.2 1
, lOX,'H=0.4 1

, lOX, 
c I H=O. 6 I ' 1 ox' I H=O. 8 I t 1 ox t I H= 1 • 0 I t I/) 

285 FORMAT(3X,F7.2,4X,7F15.8) 
202 FORMAT(' THE NUMBER OF LAMINATES ABOVE AND BELOW THE CRACK IS' 

C ,13,5X,I3) 
204 FORMAT{///,' THE PLYS ARE INPUTTED FROM BOTTOM TO TOP',/, 

C ' BUT THE PLY CHARACTERISTICS FROM TOP TO BOTTOM ARE ') 
206 FORMAT(//,' FOR PLY',I5,' THE SUBLAMINATE HAS THESE PROPERTIES') 
205 FORMAT(//, 1 WITH THIS LAYUP, THE PLYS ARE COUPLED ',//) 
210 FORMAT(//,' WITH THIS LAYUP, THE PLYS ARE DECOUPLED ',//) 
286 FORMAT(//,' THESE ARE THE OUT-OF-PLANE INTERLAMINAR SHEAR 1 

C 'STRESSES-- SIGMA YZ ',/, 1 THEY ARE FOUND AT VARIOUS', 
C ' MOISTURE CONTENTS 1

,//,
1 Y LOCATION',8X,' MECH ONLY 1 ,aX, 

C 'H=O.O', lOX, 1 H=0.2 1
, lOX, 'H=0.4', lOX, 

c I H=O. 6 I ' 1 OX t I H=O. a I t 1 ox' I H= 1 • 0 I t I/) 
20a FORMAT(' El AND E2 ARE (MSI) 1 ,F8.4, 10X,F8.4) 
2a9 FORMAT(//,' THE LAMINA PLY CHARACTERISTICS INITIALLY ARE 1

,/) 

288 FORMAT(/,' SlNM AND S2NM ARE EQUAL TO ',F14.10,4X,Fl4. 10) 
211 FORMAT(//,' THE CRACK LENGTH STEP SIZE IS ',Fl2.8) 
266 FORMAT( 1 0 1

, I 1' 'I THE STRAIN IS EQUAL TO 1 ,Fl2.7,/, 
C ' THE VALUES OF GT, Gl, Gt I, AND Gill ARE IN IN-LB/IN/IN 
c ') 

267 FORMAT (/,3X, '% cMorsT' ,ax, 'GGG(WHITNEY) ',6x, 'GI' ,9x, 
c ' G 1 ' I , ax, 'G 1 1 1 • , 6x, I G 1 /G (W-T) • , 1 /) 

269 FORMAT(/,' MECH. ONLY ',3X,F12.9,4(2X,Fll.7),/) 
26a FORMAT (5X, Fa. 3, 3X, F 12 .9,4 (2X, F 11. 7) ) 
215 FORMAT(////,' THETA VIS ',F15.10, 1 THETA U IS ',F24.19) 
216 FORMAT(//,' NY IS 1 ,F23.11,' NXY IS 1 ,F23.18) 
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207 FORMAT(/,' THE THICKNESS AND THETA VALUES ARE ',F9.6,5X,F8.3) 
209 FORMAT(' THE POISSON RATIO (1,2) IS ',F10.5) 
211; FORMAT{' G OF (1-2), AND (3-1) ARE -MSI ', 2{F9.1;,2X)) 
217 FORMAT{'0',////,8X,'THE FOUR CHARACTERISTIC VALUES ASSOCIATED' 

C ,/,8X,' WITH THE 8 DEGREE POLYNOMIAL FOR THE COUPLED CASE ARE') 
218 FORMAT(//,5X,' THETA ',6X,' NY ',8X,' NXY ',//) 
219 FORMAT(///,' THE S VALUES OF THE MEMBRANE ARE ',t15.5,3X,F15.5) 
220 FORMAT(/,4X,F9.4,3X,F9.2,3X,F9.2) 
221 FORMAT(/,' S OF ',12,' I.S EQUAL TO ',F20.10) 
223 FORMAT(/9' THE UNCOUPLED SY (1.2) VALUES ARE ',Fl5.5,3X,F15.5) 
221; FORMAT(/,' THE UNCOUPLED SX (1,2) VALUES ARE ',F15.5,3X,F15.5) 
231 FORMAT{//,' THE STRAIN IS EQUAL TO ',F12.8,/, 

C 1 THE CHANGE IN TEMPERATURE IS 1 ,Fl2.5,/, 
C ' THE COEFFICIENTS SWELllNG DUE TO MOISTURE ARE ',2(2X,Fl2.8) 
C ,/,' THE COEFFICIENTS OF THERMAL EXPANSION ARE ',2(2X,F15.9)) 

232 FORMAT(/,' THE MOISTURE COEFFI£ENT IS ',F15.8) 
233 FORMAT{/,' THE MOISTURE COEFFICIENT VARIES FROM 0 TO 1.2 ') 

STOP 
END 
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THE LAMINA PLY CHARACTERISTICS INITIALLY ARE 

THE WIDTH OF THE LAMINATE IS 1.51200 
THE NUMBER OF LAMINATES ABOVE AND BELOW THE CRACK IS 3 

FOR PLY 1 THE SUBLAMINATE HAS THESE PROPERTIES 
THE THICKNESS AND THETA VALUES ARE .005400 35.000 
E 1 AND E2 ARE (MS I) 18.7000 1.2300 
THE POISSON RATIO (1,2) IS .29200 
G OF (1-2). AND (3-1) ARE -MSI .8320 .8320 

FOR PLY 2 THE SUBLAMINATE HAS THESE PROPERTIES 
THE THICKNESS AND THETA VALUES ARE .005400 -35.000 
El AND E2 ARE (MSI) 18.7000 1.2300 
THE POISSON RATIO (1,2) IS .29200 
G OF (1-2), AND (3-1) ARE -MSI .8320 .8320 

FOR PLY 3 THE SUBLAMINATE HAS THESE PROPERTIES 
THE THICKNESS AND THETA VALUES ARE .005400 .000 
£1 AND E2 ARE (MSI) 18.7000 1.2300 
THE POISSON RATIO (1,2) IS .29200 
G OF (1-2), AND (3-1)· ARE -MSI .8320 .8320 

FOR PLY 4 THE SUBLAMINATE HAS THESE PROPERTIES 
THE THICKNESS AND THETA VALUES ARE .005400 90.000 
E 1 AND E2 ARE (MS I) 18.7000 1. 2300 
THE POISSON RATIO (1,2) IS .29200 
ti 0 F (1-2) , AN 0 ( 3- 1 ) ARE - MS I . 8 3 2 0 • 8 3 2 0 

THE STRAIN IS EQUAL TO .00254000 
THE CHANGE IN TEMPERATURE IS -280.00000 
THE COEFFICIENTS SWELLING DUE TO MOISTURE ARE .00000000 
THE COEFFICIENTS OF THERMAL EXPANSION ARE -.000000230 

THE MOISTURE COEFFICIENT VARIES FROM 0 TO 1.2 

WITH THIS LAYUP, THE PLYS ARE COUPLED 

THE FOUR CHARACTERISTIC· VALUES ASSOCIATED 
WITH THE 8 DEGREE POLYNOMIAL FOR THE COUPLED CASE ARE 

s OF IS EQUAL TO 407.0573682744 

s OF 2 IS EQUAL TO 141.1197780418 

s OF 3 IS E"QUAL TO 116.7332723860 

S OF 4 IS EQUAL TO 55-5544207729 

.00556000 
.000014900 

THE UNCOUPLED SX (1, 2) VALUES ARE 392.22478 106.21737 
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THE UNCOUPLED SY (1,2) VALUES ARE 134.,68589 

THE S VALUES OF THE MEMBRANE ARE 177-38945 66.26466 

S1NM AND S2NM ARE EQUAL TO -.0000157292 .0000000000 
S1 AND S2 = 134.932471163957803943120257 641.500299099584182787943089 
SX AND SY = ].00358208142090671392409983 33.2966554398959572557143052 

THETA V IS -3932559441 THETA U IS -.0981017742335529623 

NY IS -38.32041690358 NXY IS -61.959633961712929972 

THE STRAIN 1S EQUAL TO .0025400 
THE VALUES OF GT, G I, G II, AND GIll ARE IN IN-LB/IN/IN 

% CMOIST GGG (WH 1 TNEY) Gl Gl I Gill G 1/G (W-T) 

MECH. ONLY .101653935 .0670191 .0346174 .0000174 .6592868 

.000 .522939955 .4084740 . 1144151 .0000509 .]811106 

.050 .. 488576635 -3794622 . 1090658 .0000486 -7766688 
• 100 .455156902 -3513864 • 1037241 .0000464 .]]20115 
. 150 .422680755 .3242463 .0983903 .00004!+2 .]671187 
.200 • 39, 148194 .2980421 .0930641 .0000420 .]619672 
.250 .360559220 .2727737 .0877458 .0000397 -7565296 
.300 -330913832 .2484412 .0824351 .0000375 -7507731 
.350 .302212031 .,2250445 .0771323 .0000353 .]446576 
.400 .274453816 .2025836 .0718371 .0000331 o]381338 
.450 .247639187 . 1810586 .0665497 .0000308 .7311387 .soo .221768145 • 1604694 .0612701 .0000286 .]235909 
-550 .196840689 .1408161 .0559982 .0000264 .]153809 
.600 .1]2856820 .1220986 .0507341 .0000242 .]063566 
.650 .149816537 • 104 3169 .0454777 .0000220 .6962975 
.700 .127719840 .0874710 .0402291 .0000197 .6848665 
.]50 • 106566730 .0715610 .0349882 .0000175 .6715139 .Boo .086357206 .0565869 .0297550 .0000153 .6552653 
.850 .067091269 .0425486 .0245296 .0000131 .6341891 
.900 .048768918 .0294461 .0193120 .0000109 .6037875 
·950 .031390154 .0172794 .0141021 .0000087 .5504724 

1.000 .014954976 .0060486 .0088999 .0000064 .4044538 
1 .050 -.000536616 -.0042464 .,0037055 .0000042 ].9132595 
1.100 -.015084621 -.0136055 -.0014811 .0000020 .9019465 
1 . 150 -.,028689040 -.,0220288 -.0066600 -.0000002 .]678481 
1.200 -.041349872 -.0295163 -.0118312 -.0000024 .7138182 
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THESE ARE THE lN·PLANE INTERLAMINAR SHEAR STRESSES -- SIGMA xz 
t HF '( M~E FOUND AT VARIOUS MOISTURE CONTENTS 

" I.OI.IITTON MECH ONLY H=O.O H=0.2 H:r0.4 H:0.6 H=0.8 H=1 .0 

.80 .06513504 .21416031 . 0460962 . 13505894 .09550826 .05595758 .01640689 

.82 . 14545604 .47814372 .38984949 .30155526 .21326102 . 12496679 .03667255 

.84 .32456173 1. 06633353 .86946804 .67260256 .47573707 .27887159 .08200610 

.86 .72279559 2.37175315 1. 93411286 1.49647257 1.05883228 . 62119200 . 18355171 

.88 1. 60209840 5.24186753 4.27581313 3.30975873 2.34370433 1.37764993 .41159552 

.90 3.51076178 11.41070230 9.31370571 7.21670913 5.11971255 3.02271596 .92571938 

.91 5.15145827 16.64239220 13.59188733 10.54138246 7.49087759 4.44037273 1.38986786 

.92 7.47883378 23.94089980 19.57004819 15.19919658 10.82834496 6.45749335 2.08664173 

.93 10.67162145 33.68618367 27.57413829 2 1. 46209291 15.35004753 9.23800215 3. 12595677 
94 14.79223282 45.68179330 37.47523970 29.26868609 2 1 . 06 2 1 3 2 4 8 12.85557888 4.64902527 

.95 19.47341229 58.01265161 47.76700252 37.52135343 27.27570433 17.03005524 6.78440615 

.96 23. 13934536 64.48280475 53.47668684 42.47056893 31.46445102 20.45833311 9.45221520 

.97 21.18134698 49.34714597 41.81302367 34.27890137 26.74477908 19.21065678 11.67653448 

.98 2.06849051 -2 1. 49262058 -15.32190098 -9. 151 18 1 39 -2.98046180 3. 19025779 9.36097738 
99 -56.33255229 -192.21483366 -156.17259550 -120. 13035734 -84. 088 1 1 9 18 -48.04588102 -12.00364285 

1.00 -101.55665215 -68.23277131 -76.30397933 -84.37518734 -92.44639536 -100.51760338 -toe. 58881 140 

THESE ARE THE OUT-OF-PLANE tNTERLAMlNAR SHEAR STRESSES -- SIGMA yz 
THE'( ARE FOUND AT VARIOUS MOISTURE CONTENTS 

'r LOf.i\ TION MECH ONLY H=O.O H•0.2 Hc0,4 H=0.6 H•0.8 H:~~t .0 

.80 1.32976655 4.37292262 3.56528382 2.75764502 1. 95000623 1.14236743 .33472863 

.82 2.97130973 9.77117861 7.96652670 6. 16187479 4.35722288 2.55257097 .74791906 

.84 6.63941979 21.834 10057 n. 80150758 13.76891460 9.73632161 5.70372862 1.67113564 

.86 14.83663802 48.79268635 39.78092397 30.76916159 21.75739921 12.74563683 3.73387445 

.88 33. 15858378 109.05518007 88.91263246 68.77008485 48.62753723 28.48498962 8.34244201 

.90 74.12869062 243.83823352 198.79834182 153.75845013 108.71855844 63.67866674 18.63877505 

. 91 1 10.86070837 364.70855904 297.33899561 229.96943219 162.59986876 95-.23030534 27.86074191 

.92 165.83595666 545.65327849 444.85249399 344.05170949 243.25092499 142.45014049 41.64935600 

.93 248. 16757475 816.71124591 665.82431294 514.93737997 364.05044699 213.16351402 62.27658105 

.94 37 I. 58510425 1223. 12780736 997.13593640 771.14406544 545.15219448 319.16032352 93.16845256 

.95 556.84776170 1833.20386401 1494.47103417 1155.73820433 8 n .00537449 478.27254465 139.53971481 

.96 835.49958063 2750.22755443 2242.07591738 1733.92428033 1225.77264328 717.62100623 209.46936917 

.97 1255.78433442 4130.35826748 3367.46245574 2604.56664400 184 1. 67083225 1078.77502051 315.87920877 

.98 1892.06540014 6208.29180153 5062.74636672 3917.20093190 2771.65549709 1626. 1 1006228 480.56462747 

.99 2859.77789575 9329.28302912 7612.08957918 5894.89612924 4177.70267929 2460.50922935 743.31577941 
1.00 4336.01416454 13960.55352851 11405.37993197 8850.20633544 6295.03273890 3739.85914236 1184.68554582 



THE LAMINA PLY CHARACTERISTICS INITIALLY ARE 

THE WIDTH OF THE LAMINATE IS 1.51200 
THE NUMBER Of LAMINATES ABOVE AND BELOW THE CRACK IS 3 

THE PLYS ARE INPUTTED FROM BOTTOM TO TOP 
BUT THE PLY CHARACTERISTICS FROM TOP TO BOTTOM ARE 

FOR PLY 1 THE SUBLAMINATE HAS THESE PROPERTIES 
THE THICKNESS AND THETA VALUES ARE .005400 35.000 
E1 AND E2 ARE {MSI) 18.7000 1.2300 
THE PO I SSON RAT I 0 {1, 2) IS • 29200 
G OF (1-2), AND (3-1) ARE -MSI .8320 .8320 

FOR PLY 2 THE SUBLAMINATE HAS THESE PROPERTIES 
THE THICKNESS AND THETA VALUES ARE .005400 .000 
E 1 AND E2 ARE (MS I) 18.7000 1 • 2300 
THE POISSON RATIO (1,2) IS .29200 
G OF (1-2), AND (3-1) ARE -MSI .8320 .8320 

FOP. PLY 3 THE SUBLAMINATE HAS THESE PROPERTIES 
THE THICKNESS AND THETA VALUES ARE .005400 -35a000 
ElAND E2 ARE (MSI) 18.7000 1.2300 
THE POISSON RATIO (1,2) IS .29200 
G 0 F ( 1 - 2) , AND ( 3- 1 ) ARE - MS I . 8 3 2 0 • 8 3 2 0 

FOR PLY 4 THE SUBLAMINATE HAS THESE PROPERTIES 
THE THICKNESS AND THETA VALUES ARE .005400 90.000 
El AND E2 ARE (MSI) . 18.7000 1.2300 
THE POISSON RATIO (1 ,2) IS .29200 
G 0 F ( 1 - 2) , AND ( 3- 1) ARE - MS I • 8 3 2 0 • 8 3 2 0 

THE STRAIN IS EQUAL TO .00254000 
THE CHANGE IN TEMPERATURE IS -280.00000 
THE COEFFICIENTS SWELLING DUE TO MOISTURE ARE .00000000 
THE COEFFICIENTS OF THERMAL EXPANSION ARE -.000000230 

THE MOISTURE COEFFICIENT VARIES FROM 0 TO 1.2 

WITH THIS LAYUP, THE PLYS ARE COUPLED 

THE FOUR CHARACTERISTIC VALUES ASSOCIATED 
WITH THE 8 DEGREE POLYNOMIAL FOR THE COUPLED CASE ARE 

s OF 1 IS EQUAL TO 360.7162423543 

s OF 2 IS EQUAL TO 136.3961604492 

s or 3 IS EQUAL TO 113.985658~772 

s Of ~ IS EQUAL TO 5S.o8v173869? 

.00556000 
.000014900 
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THE UNCOUPLED SX (1,2) VALUES ARE 

THE UNCOUPLED SY (1,2) VALUES ARE 

THE S VALUES OF THE MEMBRANE ARE 

352.6287I. 

126.45615 

193.07807 

86.89277 

59-53403 

70.65819 

S1NM AND S2NM ARE EQUAL TO -.0000157292 .0000000000 
Sl AND 52= 13I..932471163957803943120257 6I.l.5002990995841827879I.3089 
SX AND SY = 7.003582081I.2090671392409983 33.296655I.398959572557143052 

THETA V IS .978402I.562 THETA U IS .0000000000000009718 

NY IS -38.320I.1690358 NXY IS -61.959633961712929972 

THE STRAIN IS EQUAL TO .0025400 
THE VALUES OF GT, G l, G I I , AND GIll ARE IN IN-LB/IN/IN 

% CMOIST GGG (WHITNEY) Gl G II GIll G I /G (W-T) 

MECH. ONLY .094207177 .0078275 .0863797 .0000000 .0830882 

.000 .510289070 .2262277 .2840614 .0000000 .4I.33324 

.050 .476405835 .2055316 .2708742 .0000000 .4314212 

. 100 .4434I.6720 .1857497 .2576970 .0000000 .4188771 

. 150 .411411727 . 1668819 .2I.45298 .0000000 .I.056324 

.200 .380300856 . 1489284 .2313725 .0000000 -3916067 

.250 • 350 11410.6 .1318890 .2182251 .0000000 -3767028 

.300 -320851477 .1157637 .2050878 .0000000 .3608016 
-350 .292512969 . 1005526 . 1919603 .0000000 .3437545 
.400 .265098582 .0862557 . 1788428 .0000000 .3253723 
.450 .238608317 .0728730 • 1657 353 .0000000 .3054085 
-500 .213042173 .060I.044 • 1526377 .0000000 .2835328 
-550 .188400151 .0488500 .1395501 .0000000 .2592888 
.600 • 164682250 .0382098 .1264724 .0000000 .2320215 
.650 .141888470 .028I.838 .11340I.7 .0000000 .2007475 
-700 • 120018811 .0196719 . 1003469 .0000000 .1639065 
-750 .099073274 .0117741 .0872991 .0000000 . 1188427 
.Boo .079051858 .0047906 .07I.2613 .0000000 .0606005 
.850 .05995I.563 -.0012788 .0612334 .0000000 -.0213295 
.900 .041781389 -.oo6I.340 .048215I. .0000000 -.1539925 
-950 .024532337 -.0106751 .035207I. .0000000 -.4351I.29 

1.000 .008207406 -.0140020 .022209I. .0000000 -1.7060144 
1.050 -.007193403 -.016I.147 .0092213 .0000000 2.2819054 
1 • 100 -.021670092 -.0179132 -.0037569 .0000000 .8266329 
1. 150 -.035222659 -.0184976 -.0167251 .0000000 .5251615 
1. 200 -.047851104 -.0181678 -.0296833 .0000000 -379673L. 
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iHESE ARE THE IN·PLANE lNTERLAMINAR SHEAR STRESSES -- SIGMA xz 
THEY ARE FOUND AT VARIOUS MOISTURE CONTENTS 

Y LOCATION MECH ONLY H=O.O H=0.2 H=0.4 H=0.6 H•0.8 H•1.0 

.eo .07771543 .25410395 .20728704 . 16047014 .11365323 .06683632 .02001942 

.82 .17995738 .58840154 .47999260 .37158366 .26317472 .15476578 .04635684 

.84 .41625242 1.36100874 1.11025224 .85949573 .60873922 .35798272 .10722621 

.86 .96042737 3.14028217 2.56170677 1.98313136 1.40455595 .82598055 .24740514 

.88 2.20343709 7.20451590 5.87713337 4.54975083 3.22236829 1.89498576 ,56760322 

.90 4.98862540 16.31116726 13.30594680 10.30072635 7.29550589 4.29028544 1.28506498 

.91 7.43148427 24.29851376 19.82167961 15.34484547 10.86801132 6.39117717 1.91434302 

.92 10.93853873 35.76543047 29.17589574 22.58636100 15.99682627 9.40729153 2.81775680 

.93 15.78922990 51.62559809 42. 11393649 32.60227488 23.09061327 13.57895167 4,06729006 

.94 22.04642211 72.08456237 58.80347722 45.52239206 32.24130691 18.96022176 5.67913661 

.95 28.96545539 94.70752965 77.25831827 59.80910689 42.35989552 24.91068414 7.46147276 

.96 33.46881767 109.43204584 89.26994356 69.10784128 48.94573900 28.78363672 8.62153445 

.97 26.48582400 86.59994907 70.64450369 54.68905831 38.73361292 22.77816754 6.82272216 

.98 -14.02438527 -45.85513558 ·37.40664203 -28.95814848 -20.50965493 - 12 . 06 116 138 -3.61266792 

.99 -113.31362224 "·370.49834340 -302.23657021 -233.97479701 -165.71302381 -97.45125061 -29.18947741 
1.00 85.42214908 279.30238304 227.84283872 176.38329439 124.92375006 73.46420574 22.00466141 

THESE ARE THE OUT-OF-PLANE INTERLAMINAR SHEAR STRESSES SIGMA YZ 
THEY ARE FOUND AT VARIOUS MOISTURE CONTENTS 

y LOCATION MECH ONLY H=O.O H=0.2 H•0.4 H•0.6 H=0.8 H=1.0 

.80 .94069588 3.07576670 2.50907783 1.94238895 1.37570008 . 80901121 .24232233 

.82 2.18029521 7.12884953 5.81540800 4.50196647 3.18852495 1.87508342 .56164190 

.84 5.05374241 16.52407852 13.47963063 10.43518274 7.39073485 4.34628695 1.30183906 

.86 11.71605439 38.30765144 31.24972996 24.19180849 17.13388701 10.07596554 3.01804406 

.88 27.17098279 88.84019338 72.47199838 56. 10380339 39.73560839 23.36741339 6.99921839 

.90 63.06243899 206.19347184 168.20374189 130.21401195 92.22428201 54.23455207 16.24482213 

. 91 96.12643272 314.30187627 256.39391588 198.48595549 140.57799510 82.67003472 24.76207433 

.92 146.61442086 479.38102208 391.05836372 302.73570537 214.41304702 126.09038866 37.76773031 

.93 223.81654951 731.80663700 596.97629411 462.14595122 327.31560833 192.48526545 57.65492256 

.94 342. 10566992 1118.57322594 912.48379743 706.39436892 500.30494041 294.21551190 88. 12608339 

.95 523.86709173 1712.87340224 1397.28825109 1081.70309995 766.11794880 450.53279765 134.94764651 

.96 804.27369732 2629.71094384 2145.20477742 1660.69861100 1176. 19244458 691.68627816 207. 180 1117 4 

.97 1239. 16420856 405 1 . 66013925 3305.16960716 2558.67907507 1812. 18854298 1065.69801089 319.20747880 

.98 1917.53432739 6269.70771612 5114.55716346 3959.40661080 2804.25605814 1649. 10550548 493.95495282 

.99 2971.17774803 9714.77578612 7924.89512080 6135.01445547 4345.13379015 2555.25312483 765.37245950 
1.00 4429.35526207 14482.53753133 11814.22953505 9145.92153878 6477.61354250 3809.30554622 1140.99754994 



THE LAMINA PLY CHARACTERISTICS INITIALLY ARE 

THE WIDTH OF THE LAMINATE IS 1.51200 
THE NUMBER OF LAMINATES ABOVE AND BELOW THE CRACK IS 2 

FOR PLY 1 THE SUBLAMINATE HAS THESE PROPERTIES 
THE THICKNESS AND THETA VALUES ARE .005400 30.000 
El AND E2 ARE (MSI) 18.]000 1.2300 
THE POISSON RATIO (1,2) IS .29200 
G OF (1-2), AND (3-1) ARE -MSI .8320 .8320 

FOR PLY 2 THE SUBLAMINATE HAS THESE PROPERTIES 
THE THICKNESS AND THETA VALUES ARE .005400 -60.000 
E1 AND E2 ARE (MSI) 18.7000 1.2300 
THE POISSON RATIO (1,2) IS .29200 
G OF (l-2), AND {3-1) ARE -MSI .8320 .8320 

FOR PLY 3 THE SUBLAMINATE HAS THESE PROPERTIES 
THE THICKNESS AND THETA VALUES ARE .005400 75.000 
E1 AND E2 ARE (MSI) 18.7000 1.2300 
THE POISSON RATIO {1,2) IS .29200 
G OF (1-2), AND {3-1) ARE -MSI .8320 .8320 

FOR PLY 4 THE SUBLAMINATE HAS THESE PROPERTIES 
THE THICKNESS AND THETA VALUES ARE .005400 · -15.000 . 
E1 AND E2 ARE (MSI) 18.]000 1.2300 
THE POISSON RATIO (1,2) IS .29200 
G OF (1-2). AND (3-1) ARE -MSI .8320 .8320 

THE STRAIN IS EQUAL TO .00254000 
THE CHANGE IN TEMPERATURE IS -280.00000 
THE COEFFICIENTS SWELLING DUE TO MOISTURE ARE .00000000 
THE COEFFICIENTS OF THERMAL EXPANSION ARE -.000000230 

THE MOISTURE COEFFICIENT VARIES FROM 0 TO 1.2 

WITH THIS LAYUP, THE PLYS ARE COUPLED 

THE FOUR CHARACTERISTIC VALUES ASSOCIATED 
WITH THE 8 DEGREE-POLYNOMIAL FOR THE COUPLED CASE ARE 

s OF IS EQUAL TO 202.3666962066 

s OF 2 ! s EQUAL TO 150.2447234209 

s OF 3 IS EQUAL TO 96.3990023366 

5 0~ L IS EQUAL TO 72.1855545293 

.00556000 
.000014900 

TH: Ut J C 0 U P L·:: 0 5 > ( l • 2) VALU::S ARE 178.08581 9C.7331:: 
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THE UNCOUPLED SY (1.2) VALUES ARE 137-79324 77.57481 

THE S VALUES OF THE MEMBRANE ARE 107.30164 75-55664 

SJNM AND S2NM ARE EQUAL TO -.0013126127 .0012407192 
S1 AND 52 • 145.712738394363145201234304 261.712596265395612237542175 
SX AND SY ~ 35.5756851167439115190147879 60.9585549677314312319553312 

THETA V IS .2402517909 THETA U IS 2.0734384470218017861 

NY IS -35.48501616832 NXY IS -61.461850910940726086 

THE STRAIN IS EQUAL TO .0025400 
THE VALUES OF GT, G I, G I I, .AND GIll ARE IN IN-LB/IN/IN 

% CMOIST GGG {WHITNEY) Gl Gil Gill G I /G (W-T-) 

MECH. ONLY .174065036 .0136734 .0093651 .1510265 o0785535 

.000 .288599244 .0062276 .. 0365562 .2458155 .0215787 

.050 .277169512 .0030909 .0347433 .2393353 .0111516 

. 100 .266289514 .0005010 .0329323 .2328563 .0018813 

. 150 .255959252 -.0015422 .0311230 .2263784 -.0060250 

.200 .246178724 -.0030385 .0293156 .2199016 -.01~3427 

.250 .236947932 - .. 0039880 .0275100 .2134260 -.0168309 

.300 .228266874 - .. 0043908 .. 0257062 .. 2069515 -.0192354 
-350 .220135552 -.0042468 .0239042 .2004781 -.0192916 
.400 .212553964 - .. 0035559 .0221040 • 1940059 -.0167296 
.450 .205522112 -.0023183 .0203057 .1875347 -.0112801 
.500 .199039994 -.0005339 .0185092 .1810647 -.0026824 
-550 .193107612 .0017973 .0167144 .1745959 .0093072 
.600 .187724965 .0046753 .0149215 .1681281 .0249050 
.650 .182892052 .0081001 .0131304 .1616615 .0442888 
.700 .178608875 .0120716 .0113412 . 1551961 .0675870 
·750 .174875432 .0165900 .0095537 .1487317 .0948676 
.Boo • 171691725 .0216552 .. 0077681 .1422685 .1261282 
.850 . 169057753 .0272671 .0059842 .1358064 .1612888 
-900 .166973515 .0334259 .0042022 .1293454 - .2001866 
-950 .165439013 .0401314 .0024220 .1228856 .2425751 

1 .ooo .164454245 .0473837 .0006436 . 1164269 .2881270 
1 .050 .164019213 .0551828 -.0011329 . 1099693 -3364412 
1. 100 . 164133916 .0635287 -.0029077 .1035129 .3870542 
1. 150 .164798353 .0724214 -.0046806 .0970576 .4394548 
1.200 .166012526 .0818609 -.0064517 .0906034 .4931008 
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IHt.:;,t:. At<t fHt IN-PLANE INTERLAMINAR SHEAR STRESSES -- SIGMA XZ 
THEY ARE FOUND AT VARIOUS MOISTURE CONTENTS 

Y LOCATION MECH ONLY H•O.O H=0.2 H:0.4 H=0.6 H=0.8 H•1.0 

.80 .05676172 .13383978 .11323003 .09262028 .07201053 .05140078 .03079103 

.82 .16404039 .38262997 .32416132 .26569268 .20722403 • 14875538 .09028674 

.84 .47716558 1.09647535 .93073896 .76500256 .59926616 .43352976 .25779335 

.85 1. 40027751 3. 15249905 2.58324457 2.21399008 1.74473550 1. 27548112 .80522553 

.88 4.15778238 9. 10572208 7.77928135 6.45284051 5.12539987 3.79995914 2.47351840 

.90 12.53562711 26.47078249 22.72981406 18.98884554 15.24787721 11.50590879 7.76594035 

.91 21.92391761 45.27705638 39.00125296 32.72544955 26.44964613 20.17384271 13.89803930 

.92 38.55372890 77.55399817 67.13410301 56.61420784 46.09431258 35.57441752 25.05452235 

.93 58.22559529 133.62809212 115.00701342 98.38593472 80.76485602 53. 14377733 45.52259863 

.94 121.62386548 230.94005045 201.43654971 17 1. 93303897 142.42952823 112.92601749 83.42250675 

.95 218.74381551 401.50598451 352.07750811 302.54903171 253.22055531 203.79207891 154.35360251 

.96 398.03248718 704.47704597 621.39034887 538.30365177 455.21695468 372.13025758 289.04356048 

.97 736.82244009 1255.70230253 1114.59938720 973.49647187 832.39355653 691.29064120 550. 18772587 

.98 1403.24313766 2305.35974007 2059.22700449 1813.09426892 1556.96153334 1320.82879776 1074.69606219 

.99 2809.86570653 4480. 13776195 4023.01286260 3565.88796325 3108.75306390 2651.63816455 2194.51326520 
1.00 6138.30786283 9650.30926292 8687. 60293079• 7724.89659866 6762. 19026652 5799.48393439 4836.77760226. 

THESE ARE THE OUT-OF-PLANE INTERLAMINAR SHEAR STRESSES SIGMA VZ 
THEY ARE FOUNO AT VARIOUS MOISTURE CONTENTS 

Y LOCATION MECH ONLY H=O.O Hs0,2 H:o:0.4 H•0.6 H•0.8 H= 1.0 

.80 . 16585980 .40442354 .34069983 .27697511 .21325240 . 14952869 .08580498 

.82 .46943498 1.14791593 .96669931 .78548269 .60426608 .42304946 .24183285 

.84 1.32621331 3.25526779 2.74082736 2.22538692 1.70994649 1.19450605 .57905552 

.86 3.73681543 9.22891300 7.76243950 6.29596600 4.82949250 3.36301900 1.89654550 

.88 10.48846496 26.12319742 21.94948048 17.77576354 13.60204660 9.42832956 5.25461272 

.90 29.26971559 73.80117525 61.91744992 50.03372460 38.14999927 25.26627395 14.38254862 

. 91 48.74474315 123.91308072 103.85795283 83.80284494 63.74772705 43.59260916 23.63749127 

.92 80.94539935 207.83462309 173.98914281 140. 14366253 106.29818225 72.45270198 38.60722170 

.93 133.89723658 348.06735925 290. 95937200' 233.85138474 176.74339749 119.63541023 62.52742298 

.94 220.24445378 581.52733260 485.22950028 388.93156795 292.63383563 196.33600331 100.03811099 

.95 359.01194536 967.47546061 805.37239730 643.26933399 481.16627068 319.06320737 156.96014405 

.96 575.60439987 1596.12349454 1324.41972889 1052.71596324 781.01219759 509.30843195 237.60466630 

.97 890.96357501 2584.87680021 2134.31704487 1683.75728954 1233. 19753421 782.63777888 332.07802355 

.98 1261.01507117 3998.83788332 3271.80265391 2544.76742450 1817.73219508 1090.69696567 353.65173625 

.99 1302.72815835 5415.47562712 4327.25291739 . 3239.05020765 2150.83749794 1062.52478821 -25.58792151 
1.00 -883.85251960 3927.98882475 2670.82514260 1413.56146045 156.49777830 -1100.56590385 -2357.82958500 



THE LAMINA PLY CHARACTERISTICS INITIALLY ARE 

THE WIDTH OF THE LAMINATE IS 1.51200 
THE NUMBER OF LAMINATES ABOVE AND BELOW THE CRACK IS 2 2 

FOR PLY 1 THE SUBLAMINATE HAS THESE PROPERTIES 
THE THICKNESS AND THETA VALUES ARE .005400 -35.000 
El AND E2 ARE {MSI) 18.7000 1.2300 
THE POISSON RATIO {1.2) IS .29200 
G 0 F ( 1 - 2) • AND (3- 1 ) ARE - MS I . 8 3 2 0 • 8 3 2 0 

FOR PLY 2 THE SUBLAMINATE HAS THESE PROPERTIES 
THE THICKNESS AND THETA VALUES ARE .005400 55.000 
E1 AND E2 ARE {MSI) 18.7000 1.2300 
THE POISSON RATIO (1.2) IS .29200 
G OF {1-2), AND (3-1) ARE -MSI .8320 .8320 

FOR PLY 3 THE SUBLAMINATE HAS THESE PROPERtiES 
THE THICKNESS AND THETA VALUES ARE .005400 10.000 
El AND E2 ARE (MSI) 18.7000 1 .. 2300 
THE POISSON RATIO (1,2) IS .29200 
G OF (1-2), AND (3-1) ARE -MSI .8320 o8320 

FOR PLY 4 THE SUBLAMINATE HAS THESE PROPERTIES 
THE THICKNESS AND THETA VALUES ARE .005400 -80.000 
E1 AND E2 ARE (MSI) 18.7000 1.2300 
THE POISSON RATIO {1.2) IS .29200 
G ·oF (l-2), AND (3-1) ARE -MSI .8320 .8320 

THE STRAIN IS EQUAL TO .00254000 
THE CHANGE IN TEMPERATURE IS -280.00000 
THE COEFFICIENTS SWELLING DUE TO MOISTURE ARE .00000000 .00556000 

.000014900 THE COEFFICIENTS OF THERMAL EXPANSION ARE -.000000230 

THE MOISTURE COEFFICIENT VARIES FROM 0 TO 1.2 

WITH THIS LAYUP, THE PLYS ARE COUPLED 

THE FOUR CHARACTERISTIC VALUES ASSOCIATED 
WITH THE 8 DEGREE POLYNOMIAL FOR THE COUPLED CASE ARE 

s Of 1 IS EQUAL TO 233.9388572236 

s OF 2 IS EQUAL TO 156.9014619788 

s OF 3 IS EQUAL TO 115.2992565645 

S OF 4 IS EQUAL TO 48.0575100718 

THE. UNCOUPLED sr ( 1 . 2) VALUES ARE 186.ld34i; 96.42121.; 

TH: U ~: C 0 V P L E :· C"" ! : .. :! : VALUE~ ARZ: 122.7857'2 ~S.3703L 
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THE S VALUES OF THE MEMBRANE ARt 119.36060 57-91987 

S1NM AND S2NM ARE EQUAL TO -.0007221149 -.0007139234 
Sl AND S2 E 143.691863396728751259452089 285.264127104852281159045526 
SX AND SY = 32.1436979546791447820272102 62.2049978939766992050711339 

THETA V IS .4347536621 THETA U IS -1.7344415408201789576 

NY IS -54.36619889946 NXY IS 45.618657445050692111 

THE STRAIN IS EQUAL TO .0025400 
THE VALUES OF GT, G I , G I I, AND GIll ARE JN IN-LB/IN/IN 

% CMOIST GGG {WHITNEY) Gl Gil Gill G I /G (W-T) 

11ECH. ONLY .131525889 .0207693 .0219689 .0887877 • 1579102 

.000 -394637005 .1683076 .0866210 • 1397084 .4264871 

.050 .369347077 • 1508205 .0823114 . 1362152 .4083435 

. 100 .345184223 .1344556 .0780061 .1327225 .3895185 

. 150 .322148443 .1192131 .0737050 • 1292304 • 3700564 

.200 .300239735 . 1050929 .0694082 .1257387 -3500298 

.250 .279458102 .0920949 .0651156 .1222475 .3295483 

.300 .259803542 .0802193 .0608274 . 1187569 .3087691 
-350 .241276055 .0694660 .0565434 .1152667 .2879108 
.400 .223875642 .0598350 .0522636 .1117771 .2672688 
.450 .207602302 .0513262 .0479882 . 1082879 .2472335 
.500 . 192456036 .0439398 .0437170 • 1047992 .2283110 
-550 • 178436843 .0376757 .0394500 .1013111 .2111431 
.600 • 165544724 .0325339 .0351874 .0978235 . 1965264 
.650 . 153779678 .0285144 .0309290 .0943363 .1854237 
.]00 .143141706 .0256172 .0266748 .0908497 .1789638 
.]50 . 133630807 .0238423 .0224250 .0873635 .1784190 
.800 . 125246982 .0231897 .0181794 .0838779 .1851516 
.850 . 117990230 .0236594 .0139381 .0803928 .2005198 
.900 . 1 11860552 .0252514 .0097010 .0769081 .2257398 
.950 .106857947 .0279657 .0054683 .0734240 .2617089 

1.000 .102982416 .0318023 .0012397 .0699404 .3088128 
1.050 • 100233958 .0367612 -.0029845 .0664573 .3667539 
1. 100 .098612573 .0428424 -.0072045 .0629747 .4344517 
1. 150 .098118262 .0500459 -.0114202 .0594925 .5100571 
1. 200 .098751025 .0583717 -.0156316 .0560109 -5910999 
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THESE ARE THE IN-PLANE lNTERLAMINAR SHEAR STRESSES -- SIGMA xz 
THEY ARE FOUND AT VARIOUS MOISTURE CONTENTS 

y LOCATION MECH ONLY H=O.O H=0.2 H•0.4 H=0.6 H•0.8 H=1.0 

.80 -.57590259 -1.81324378 -1.48462505 -1.15600631 -.82738757 -.49876884 -. 17015010 

.82 -1.15500766 -3.63542168 -2.97665842 -2.31789515 -1.65913188 - 1 . 00036862 -.34160535 

.84 -2.31809701 -7.29018842 -5.96965162 -4.64911482 -3 .. 32857801 -2.00804121 -.68750441 

.86 -4.66121070 -14.62677009 -11.97991892 -9.33306775 -6.68621658 -4.03936541 -1.39251424 

.88 -9.41933953 -29.38693329 - 2 4 . 08 30 1 17 4 -18.77909019 -13.47516863 -8.17124708 -2.86732552 

.90 -19.28114635 -59.25567119 -48.63455785 -38.01344451 -27.39233116 -16.77121782 -6. 15010448 

. 91 -27.86803356 -84.38953087 -69.36790478 -54.34627868 -39.32465259 -24.30302649 -9.28140039 

.92 -40.76807828 -120.61801802 -99.38712650 -78.15623498 -56.92534347 -35.69445195 -14.46356043 

.93 -60.74791755 -173.40082769 -143.42661283 -113.45239797 -83.47818312 -53.50396826 -23.52975340 

.94 -93.01797598 -251.60892083 -209.36180513 -167.11468943 -124.86757373 -82.62045803 -40.37334233 

.95 -148.04567478 -370.59922298 -311.19653492 -251.79384686 -192.39115881 -132.98847075 -73.58578269 

.96 -248.37373255 -559.47456937 -476.16166609 -392.84876280 -309.53585952 -226.22295624 -142.91005296 

.97 -446.98922674 -881. 36980878 -764.37575049 -647.38169221 -530.38763392 -413.39357564 -296.39951735 

.98 -885.27484698 - 1503 . 2 1 14 1 1 2 5 -1335.11941983 -1167.02742841 -998.93543699 -830.84344557 -662.75145415 

.99 -2013.12212234 -2986.72662307 -2717.77038626 -2448.81414945 -2179.85791263 -1910.90167582 -1641.94543901 
1.00 -5568.98832566 -7674. 18805110 -7084.53781995 -6494.88758880 -5905.23735765 -5315.58712650 -4725.93689534 

THESE ARE THE OUT-OF-PLANE INTERLAMINAR SHEAR STRESSES -- SIGMA vz 
THEY ARE FOUND AT VARIOUS MOISTURE CONTENTS 

Y LOCATION MECH ONLY H=O.O Hc0.2 H=0.4 H=0.6 H•0.8 H• 1.0 

.80 3.27617888 10.31723571 8.44724614 6. 5772565'6 4.70726699 2.83727741 .96728784 

.82 6.56753777 20.68268192 16.93393167 13.18518142 9.43643117 5.68768092 1.93893067 

.84 13.16491904 41.46150260 33.94640184 26.43130108 18.91620032 11.40109956 3.88599881 

.86 26.38654493 83.11303161 68.04745804 52.98188448 37.91631091 22.85073735 7.78516379 

.88 52.87019183 166.59261716 136.39009616 106. 18757515 75.98505414 45.78253314 15.58001213 

.90 105.84680471 333.84310700 273.29260785 212.74210869 152.19160953 91.64111038 3 1 . 0906 1 1 2 2 

.91 149.66289213 472.50148909 386.76451483 301.02754057 215.29056630 129.55359204 43.81661778 

.92 211.43474532 668.58894580 547.18476643 425.78058706 304.37640769 182.97222833 61.56804896 

.93 298.27565716 945.66979161 773.75215728 601.83452295 429.91688862 257.99925428 86.08161995 

.94 419.76910709 1336.64857623 1093. 18597910 849.72338197 606.26078483 362.79818770 119.33559056 

.95 588.25330316 1886.88626457 1542.09703881 1197.30781306 852.51858731 507.72936156 162.94013580 

.96 817.80756656 2656.91555150 2168.73092336 1680.54629522 1192.36166707 704. 17703893 215.99241079 

.97 1117.61798402 3719.40898556 3029.03467417 2338.66036279 1648.28605140 957.91174002 267.53742864 

.98 1460. 19459243 5123.16377041 4151.96405479 3180.76433917 2209.56462355 1238.36490793 267.16519231 

.99 1628.54905698 6683.48801754 5345.79387584 4008.09973414 2670.40559244 1332.71145074 -4.98269096 
1.00 446.83474448 6857.50214542 5171.81141375 3486. 12068207 1800.42995039 114.73921872 -1570.95151296 
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FRACTURE ANALYSIS OF LOCAL DELAMINATIONS IN LAMINATED COMPOSITES 

P. Sriram and E. A. Armanios 
School of Aerospace Engineering 
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Atlanta, Georgia 30332 

Abstract 

Delamination is a predominant failure mode in continuous fiber rein-

forced 1 aminated composite structures. One type of de 1 ami nation is the 

transverse crack tip delamination which originates at the tip of transverse 

matrix cracks. An analytical model based on the sublaminate approach and 

fracture mechanics is developed in this paper to study the growth of such 

delaminations. Plane strain conditions are assumed and estimates are 

provided for the total strain energy release rate as well as the mode l and 

mode II contributions. The energy release rate--estimates are used to 

predict cri ti ca·l de 1 ami nation growth strains and stresses by assuming a 

critical energy release rate. These predictions are compared with experi-

menta 1 data on T300/934 Graphite Epoxy [±25/90 ] 1 ami nates in the range 
n s 

n=.5 to 8. A good agreement is demonstrated for the range of n where the 

experimental observations indicate transverse crack tip delamination to be 

the predominant failure mode. 

Introduction 

Fiber reinforced composites are now being used in a wide variety of 

engineering structures. The concept of directional strength and stiffness 

has been, for the most part, understood sufficiently to enable efficient 

load bearing designs. One of the current major issues in composite struc-

tures is the understanding and prediction of damage modes and failure 

mechanisms. A thorough knowledge of the fai 1 ure mechanisms is oound to 

lead to the design of efficient and durable structures. Failures ~n these 

materials often initiate in the form of matrix cracks or delaminat1ons. 



Matrix cracks refer to intra·laminar failures whereas delaminations refer to 

interlaminar failures. 

Matrix cracks usually occur within laminates where the fibers run at 

an angle to the primary load direction. Hence, such matrix cracks are also 

called transverse cracks. Based on the location and direction of growth, 

two distinct types of delamination can be discerned. These two types are 

called edge delamination and local or transverse crack tip delamination. 

Edge delaminations initiate at the load free edges of the structure whereas 

1 oca 1 de 1 ami nations start from a transverse matrix crack. In many cases, 

both types occur concurrently with varying levels of interaction. It has 

been observed in simple tension tests of uniform rectangular cross section 

specimen (Edge Delamination test) that delaminations initiate along the 

1 oad free edges and propagate norma 1 to the 1 oad direction. Transverse 

matrix cracks running parallel to the fibers have also been observed in off 

axis plies such as goo plies. Such transverse cracks terminate where the 

ply orientation changes. Delaminations can originate at the interface 

where transverse cracks terminate. These delaminations, called transverse 

crack delaminations or local delaminations, grow normal to the transverse 

crack from which they originate. In the case of goo plies, the growth 

direction is parallel to the load. 

The growth process of edge de 1 ami nations and 1 oca 1 de 1 ami nations is 

often modelled using a fracture mechanics approach leading to the calcula

tion of a strain energy release rate. This is because the strain energy 

release rate can correlate delamination behavior from different loading 

conditions and can account for geometric dependencies. The strain energy 

release rate associated with a particular growth configuration is a measure 

of the driving force behind that failure mode. in combination \"'ith 
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appropriate failure criteria, the strain energy release rate provides a 

means of predicting the failure loads of the structure. 

Several methods are available in the literature for analyzing edge 

delaminations. These include finite element modelling1- 3 , complex variable 

stress potential approach4 , simple classical laminate theory based tech

nique5 and higher order laminate theory including shear deformations6 . 

Finite element models provide accurate solutions but involve intensive 

computational effort. Classical laminate theory (CLT) based techniques 

provide simple closed form solutions and are thus well suited for prelimi-

nary design evaluation. Classical laminate theory based techniques provide 

only the total energy release rate, and thus in a mixed mode situation, 

there is insufficient information to completely assess the delamination 

growth tendency. A higher order lamin~te theory including shear deforma-

tions has the ability to provide the individual contributions of the three 

fracture modes while retaining the simplicity of a closed form solution. A 

shear deformation model is available for edge delamination and has been 

shown to agree well with finite element predictions6 . 

Crossman and Wang7 have tested T300/934 Graphite epoxy [±25/90 ] 
n s 

specimens in simple tension and reported a range of behavior including 

transverse cracking, edge delamination and local de1amination. o•srien8 

has presented classical laminate theory solutions for these specimen, 

demonstrating reasonab 1 e agreement in the case of edge de ·i ami nation but 

with some discrepancies in the local delamination predictions. An empiri-

cal finite element based combined edge and local delamination formulation 

has also been proposed9 . Its predictions, however, do not ful'ly explain 

the dependency of the critical strain on the number of goo plies. 

In this paper, a shear deformation model is developed for the analysis 

of 1 oca 1 del ami nations originating from transverse cracks in 90 o p 1 i es 
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located in and around the specimen midplane. Plane strain conditions are 

assumed and thickness strain is neg I ected. De 1 ami nations are assumed to 

grow from both ends of the transverse crack tip. The transverse crack is 

treated as a free boundary and the del ami nation is considered to be the 

crack whose growth behavior is to be mode.lled. The sublaminate ap

proachlO,ll is used to model different regions of the specimen. The 

resulting boundary va·lue problem is solved to obtain the interlaminar 

stresses, total strain energy release rate and energy release rate compo-

nents. Critical ·local delamination growth loads are predicted for the 

[±25/90 ] specimen. 
n s 

Analytical Model 

The formulation is based on the sublaminate approach detailed in ref. 

10. A longitudinal section illustrating the geometry of a generic configu-

ration is shown in fig. 1. The central region is assumed to be made of 90° 

plies with an isolated transverse crack in the middle. Delaminations are 

assumed to grow from both ends of the transverse crack, and towards both 

ends as shown. From symmetry considerations, on 1 y one quarter of the 

configuration is modelled. The modelled portion is divided into four 

sublaminates as shown in fig. 2. The top surface (sublaminates 1 and 4) is 

stress free. In order to simplify the analysis, plane strain conditions 

are assumed and the thickness strain (sz) is set to zero. The consequence 

of this combined with the fact that the w displacement is zero along the 

center line is that w is zero in sublaminates 1,2 and 3. Further, this 

approximation does not allow for the enforcement of boundary conditions on 

the shear stress resultants, 1 eadi ng to incorrect estimates of the inter-

laminar normal stresses. The interlaminar shear stresses, however, are not 

affected by this . 6 10 assumpt 1 on ' . The assumptions lead to considerable 

simplifications in the analysis. In spite of the simplifications, reliable 
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energy release rate components can be estimated based on th~ interlaminar 

h d . "b ·t• 6,10 s ear s~ress 1str1 u 1ons . 

A generic sublaminate is shown in fig. 3 along with the notations and 

sign conventions. The peel and interlaminar shear stresses are denoted by 

P and T respectively with t and b subscripts for the top and bottom surface 

respectively. The axial stress resultant, shear stress resultant and 

bending moment resultant are denoted by N, Q and M respectively. A summary 

of the governing equations is presented here for convenience. These are 

derived for a generic sublaminate using the principle of virtual work in 

Reference 12. 

The x and z displacements within the sublaminate are assumed to be of 

the form 

u(x,z)=U(x)+za(z} 

w(x,z)=W(x}. 

( 1) 

( 2) 

Here U represents the axi a 1 midplane stretching and W is the transverse 

displacement. The shear deformation is recognized through the rotation ~-

The origin of the coordinate axes for the sublaminates is taken at the 

delamination tip as shown in fig. 4. The equilibrium equations take the 

form 

N,x+Tt-Tb=O 

Q,x+Pt-Pb=O 

M,x-Q+(h/2)(Tt+Tb)=O. 

( 3) 

( 4) 

( 5) 

where h is the thickness of the sublaminate. The constitutive relations in 

terms of the force and moment resultants are 

N=Allu,x+81113,x 

Q=Ass(13+W,x) 

M=BllU,x+Olll3,x 

5 

( 6) 

( 7; 

( 
Q \ u,. 



where the A .. , B .. and 0 .. are the classical laminate theory axial, cou-
1J 1J 1J 

pling and bending stiffnesses. The boundary variables to be prescribed at 

the sublaminate edges are 

N or U 

M or f3 

Q or W. 

Additionally, at the interfaces between sublaminates, reciprocal traction 

and displacement matching boundary conditions have to specified. 

Solution Procedure 

A detailed solution is provided in the Appendix. A brief summary is 

provided here for convenience. The variables in sublaminates 1 and 2 are 

coupled by their reciprocal interlaminar stresses denoted T1 and P1 and by 

displacement continuity at their common interface. Assuming exponential 

solutions for the axial force and bending moment resultants (N 1=Aesx, 

M
1
=Besx etc.) leads to an eigen value problem involving the parameter s. 

The eigen values turn out to be 0 and two nonzero values (say s
1 

and s
2

) · 

occurring in positive and negative pairs. Since the resu.ltants maintain 

finite values as x tends to large negative values (left end of sublaminates 

1 and 2), the negative roots are dropped out of the solution. 

The following boundary conditions from the ends of the modelled region 

are enforced. 

N
2

(0)=0 

Q4(a)=O 

f3 4(a)=O 

N1+N 2=Applied Load 

Further~ the following displacement matching conditions are applied. 

u1(x,-.5h1)=u2(x,.Sh2) 

U1(0)=U4(0) 
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(9) 

(10) 

(11) 

(12) 

(13) 

(14) 



U2(0)=U3(0) 

~1(0)=f34(0) 

(15) 

(16) 

It should be noted that a ~2 and ~3 matching condition cannot be applied at 

this level of modeling since it would amount to specifying both Wand 

Q6 , 12 . Consequently, there is a displacement discontinuity at the de-

lamination tip. The effect of this will be discussed subsequent-ly. To 

eliminate rigid body displacements, u1 is set to zero at the left end. The 

following solutions can then be obtained for the resultants in sublaminates 

1 and 2. 

(17) 

(18) 

(19) 

(20) 

The interlaminar shear and peel stresses between sublaminates 1 and 2 can 

be obtained as 

(21) 

(22) 

In the above solutions, the k parameters are dependent on the eigen values 

and the stiffness of sublaminates 1 and 2, the a parameters depend on the k 

parameters and the initial crack length a, and £ is defined as 

(23) 

where a is the applied uniform axial stress. Complete expressions for the 

eigen values and the a and k parameters can be found in the Appendix. 

Proceeding on to sublaminates 3 and 4, the following solutions can be 

written. 

where 

N =0 3 

M3=$1sinh w3x+~2cosh w3x 

$2=a1k3+a2k4, 
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(24) 

(25) 

(26) 



cp 1=-cp2 coth w3 a (27) 

and w3=(A55(2)/D11(2))
0

.S {28) 

N4=£{All(l)+Al1(2)) (29) 

M4=alkl+a2k2 (30) 

The corresponding displacement solutions are provided in the Appendix. 

The compliance of the specimen can be evaluated as 

C=2U4(a)/P (31) 

where P/2 is the load applied to the modelled section. The total energy 

release rate for the modelled section i.e. the total energy release rate GT 

per crack is then given by 

(32) 

where w is the specimen width. Use of the previously described solutions 

leads to the followinq expression. 

P
2 

( 1 1 ) 
Gr = 2w2 ~- A11(1) + Au('2) + 11 - 12 (~3) 

where the quantities r1 and 12 contain exponential terms dependent on the 

initial delamination length. Using the virtual crack closure technique, 

from the relative displacements in the cracked portion and the interlaminar 

stresses ahead of the crack tip, the mode I and mode II energy release rate 

contributions can be obtained. The mode III energy release rate is zero 

from the assumption of plane strain. The mode II energy release rate is 

given by 
1 16 Gu =lim~ T1(x- 8)D.u(x) dx 

s-o .c.o o (34) 

where o is the virtual crack step size. The result of the limiting process 

is zero if there is no singularity in the stress field 10 . So, the limit is 

usually taken as the crack step size o tends to a small value, say 6, based 

on the decay length or the iength required to capture the essential fea-

tures of the stress and displacement fields near the crack tip. The decay 
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length is dependent on the e i gen values s 1 and s2 . In this study, the 

value of 6 has been set to 

60=.25(1/s1 + l/s2 ) (35) 

since it reasonably fulfills the criterion given above. In a simiiar 

fashion, the mode I energy release rate can be obtained based on the normai 

stress (P) and thew displacements near the crack front. The normal (peel) 

stress estimate is inaccurate due to the absence of thickness strain. 

Hence, an altern ate approach was used to estimate G1, the mode I energy 

release rate. The total energy release rate for this problem is made up 

entirely of GI and GII (Grrr=O). From an estimate of GT and GII' an 

estimate for GI can be obtained simply as 

(36) 

The critical load for a given specimen. can then be evaluated based on an 

appropriate fracture law. This is illustrated in the following section. 

Results and Discussion 

The solutions derived in the previous section have been used to model 

the behavior of [±25/90 ] T300/934 Graphite Epoxy specimen for n values of 
n s 

.5~1,2,3,4,6,and 8. These correspond to the specimen tested by Crossman 

and Wang7. The specimen width and length were fixed at .0381 m and .015m 

respectively, as in the tests. The solutions were generated using a simple 

computer program based on the closed form expressions for the interlaminar 

stress and energy reiease rates. The applied load was set to 100 MPa, of 

the same order as in the tests. 

An example of the total energy release rate variation with the crack 

1 ength is presented in fig. 5. The asymptotic va 1 ue of GT is denoted by 

GTO in the figure. It can be observed that after a certain crack length. 

the G1 is independent of the crack length. On the basis of cul~ves like the 

one shown in fig. 5, the crack length was fixed at 10 ply thicknesses for 
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the remainder of the study. The dependence of the mode II contribution of 

the energy release rate on initial crack length (a) is depicted in fig. 6. 

Typical interlaminar shear and normal stress profiles are presented in 

figs. 7 and 8 respectively. The corresponding energy release rates have 

also been calcu1ated and are presented in Table 1 and fig. 9. 

In order to evaluate the critical loads, an appropriate mixed mode 

fracture law has to be applied, based on the calculated energy release 

components. Since the calculated mode split shows only a small variation 

with n, the simple Griffith criterion GT=GTc has been used to scale the 

stresses to obtain the critical delamination growth stress (oc) and strain 

(Ec) values. The critical energy release rate GTc was chosen as 415 J/m2 

to obtain the critical stresses and strains listed in Table 1. This value 

of GTc is larger than Glc to account for the presence of mode II and the 

fact that GIIc is about four times Glc for the material system under 

consideration. The critical strains are piotted against n, the number of 

goo plies in fig. 10. The experimental results of ref. 7 and the predic-

tions of refs. 8 and 9 are also presented in the figure for compar1son. 

The predictions of the model deveioped in this paper are represented by the 

solid line while the experimental results are shown as filled squares. The 

classical laminate theory and finite e·lement critical strain predictions of 

refs. 8 and 9 are represented by tri ang·i es with a connecting 1 i ne and a 

dotted line respectively. 

In the experiments, the local delamination phenomenon was observed as 

the predominant failure mode only for the n=4,6 and 8 specimens. The shear 

deformation model presented in this paper provides good agreement with the 

experimental data in this range. For n<4, edge delamination either in the 

mid plane or in the 25/90 interface was observed in the tests. Hence, the 

predictions of the iocal delamination models in this region are not of 
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consequence as long as they do not predict critical loads lower than those 

predicted by edge delamination mode.ls. Thus, it can be seen that the shear 

deformation model predicts the observed behavior with reasonable accuracy 

and can be used in conjunction with an appropriate edge delamination model 

to predict critical loads accurately for the complete range of n va·lues. 

The edge deiamination model presented in References 6 and 12 can be used 

for this purpose. However, a separate model is required to account for the 

mid-plane (Mode I) edge delamination behavior. 

Conclusions 

A shear deformation model has been developed to analyze local delami

nations growing from transverse cracks in 90° plies located around the mid 

plane of symmetric laminates. The predictions of the model agree reason

ably with experimental data from [±25/90n]s T300/934 Graphite Epoxy lami

nates. The predicted behavior is such that, in combination with an edge 

delamination model, the critical loads can be predicted accurately in the 

range of n from .5 to 8. 
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Appendix A 

Sublaminate Analysis for Local Delaminations 

Interlan1inar Stresses and Energy Release Rates 

A generic sublan1inate is shown in figure 3 along with the notations and sign 

conventions. The interlaminar normal (peel) and shear stresses are denoted by P 

and T respectively \:~:.rith the t and b subscripts for the top and bottom surfaces 

respectively. The axial force resultant, shear force resultant and bending n1on1ent 

resultant are denoted by N, Q and A-1 respectively. Plane strain conditions are · 

assumed to prevail in the x- z plane and the thickness strain tzz is neglected. These 

assumptions lead to considerable si1nplification in the analysis. The displace1nents 

in the x and z directions are assumed to be of the fonn 

u - U(x) + zf3(x) 

w - H1(x) 

(A.l) 

(A.2) 

Here U represents the axial stretching and \tV is the transverse (thickness direction) 

displacen1ent. This fonnulation recognizes shear defonna.tion through the rotation 

{3. The equilibriun1 equations take the fonn 

1V,x + Tt- Tb 

Q,:J: + Pt- Pb 

0 

0 

(:\.3', 

(:\.4) 



2 

(A.5) 

where h is the thickness of the sublauunate. The constitutive equations in tenns of 

the force and mon1cnt resultants are 

N - .tlnU,x + Bu.B,x 

Q - A.ss(.B + T'V,x) 

J..f - Bu U ,x + Du.B,x 

(A. G) 

(A.7) 

(A.S) 

where A, B and D are the classical larninatc theory axial, coupling and bending 

stiffnesses defined in the custon1ary rnanncr as 

h. 

An - /_

2

1:!. Cu dz 
2 

h 

Ell - j 2 
C11 z dz 

" --:; 

Dn t 2 - _!:!. Cu z dz 
2 

h 

A5s - j_: Cssdz 
2 

Here, the Cs are the n1aterial n1oduli. For the case of plane strain in the :r - :: 

plane, the C s are defined as follo\YS. 

lYxx 

lYzz - C13 C22 0 (A.9) 

0 0 Css /xz 

The boundary quantities to be prescribed at the subla111inate edges are 

JV or U 

~1 or f3 

Q or TV 
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Further, at the interfaces between sublaminates, appropriate reciprocal traction and 

displace1nent n1atching boundary conditions have to be used. 

The four sublaminates along with the loads acting on each are shown in figure 4. 

Setting P 1 and T1 as shown automatically satisfies the traction matching boundary 

condition at the 1-2 interface. From symmetry, we get w = 0 and zero shear stress 

along the bottom faces of sublaminates 2 and 3. This leads to w = 0 in sublaminates 

1,2 and 3. Thus, W has been prescribed in these sublaminates and the vertical shear 

force resultant Q cannot be prescribed at both ends of the sublaminates. Conse

quently, the calculated peel stress distribution will not be correct. In addition, at 

the 2-3 interface, the {3s cannot be matched, since in these sublaminates, specifying 

{3 is equivalent to specifying Q (through eq. A.7). Inspite of these sin1plifications~ 

reliable energy release rate components ·can be estimated based on the interlan1inar 

shear stress distributions. The n1ode I contribution can then be evaluated using· the 

total energy release rate, which is not affected significantly by these sin1plifications. 

For the (±25/90n)s laminates under consideration, B 11 is zero in all the four 

sublaminates. For sublanunates 1 and 2, the equilibriUin equations and constitutiYe 

relationships can be written as 

N1,x- T1 -

N2,x + T1 -

Ql,x- P1 -

Q2,x + P1- P2 -
h 

~1l,x + !:;j-T1 - Ql -

~12,x + 4jT1- Q2 -

0 

0 

0 

0 

0 

0 

(A.lO) 

( A.ll) 

(A.l2) 

(A.l3) 

(A.l~) 

( .\ 1 - \ 
."'i. _.J .I 

(A.lG) 
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N2 - An(2)U2,x (A.17) 

Qt - Ass(t)fJt (A.lS) 

Q2 - Ass(2)fJ2 (A.19) 

Aft - Du(t)fJt,x (A.20) 

M2 - Dn(2)fJ2.x (A.21) 

The subscripts in brackets refer to the sublaminates to which the stiffness coefficients 

correspond. Equations A.l4, A.l5 and A.l2 can be rewritten in a modified forn1 as 

h 
Ass(t)/Jt Mt,x+TNl,x -

M2,x-~N2,x - Ass(2)fJ2 

Pt. - Q1,x 

h - A11,xx + 9;"T1,x 

Matching the u displacement along the 1-2 interface implies 

u2 (~,x) 
or - U2 + 4j-1J2 

(A.22) 

(A.23) 

(A.24) 

(A.25) 

Combining the equations to elinunate the displacement and interlan1inar stress 

terms leads to the following homogeneous coupled system of ordinary differential 

equations. 

N1 x + N2x - 0 (A.26) 
' ' 

M 4t N Ass(1) A1 0 ( A.27) 1 XX + 1 1 XX - D 1 -
' ' 11{1) 

AJ2 - 4j N 2 - ~55( 2 ) A12 ,xx . ,xx 11 (2) - 0 (A ·)~) • ~-L j 

J:LJ__fu~-~- h?~ 
An(1) 2 Du(1) A.11(2) 2 Du(2) 

0 (:\.29) 
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The solution is assumed of the fonn 

At 

A2 
esx - (A.30) 

A3 

A4 

Substitution of this solution into the governing equations results in the following 

system of algebraic equations. 

s s 0 0 At 0 

s2~ 0 2 ~55(1) 0 s - A2 0 11(1) esx = (A.31) 
-s24j. 2 ~55(2) 0 0 s - A3 0 

11{2) 

1 1 h 1 h? 1 A4 0 
~ -~ -~~ -~~ 

The corresponding eigenvalue problem has to be solved in order to obtain non trivial 

solutions. The eigenvalues turn out to be the roots of the following characteristic 

equation. 

(A.32) 

where 

1 1 1 (h )2 
1 (h )2 

B 1 - -~- An(1) -~ ~ -~ Y 
B _ _1_ ~55(2) + 1 ~55(1) + ~55(1) 1 (ll:I) 2 

2 
An(2) 11(2) ~ 11(1) 11(1) ~ :l 

1 ~55(1) 1 ~55(2) ~55(2) 1 (4r) 2 

+~ 11(1) + A11(1) n(2) + u(2) Dn(t) :... 

1 ~55(1) ~55(2) 1 1555(1) ~55(2) 
B 3 = - An(2) u(I) 11(2) - An(1) n(1) 11(2) 

For the 1naterial syste1n and ply stacking sequence considered, Bi > 4B1BJ. Hence, 

the roots can be writ ten as 

s = 0,± (A.33) 



G 

Only the zero and positive roots of eq. A.33 are considered as they give exponentially 

decaying solutions, leading to finite values for the resultants at the sublaminate ends. 

Hence, the solution for N 1 can be written as 

(A.34) 

Using this in eq. A.26 yields 

(A.35) 

Substituting N 1 and N 2 in eqs. A.27 and A.28 provides the solutions for the bending 

moments as 

The k pararneters in the above solutions are defined as follows. 

!b_s2 
kl- ? 1 

Ass{l) 2 
~-sl 

k2=~ 2 
-s 

11(1) 
2 

~si k - -,----'----
3- ~55(2) 82 

11(2) - 1 

ll2.2 
k - 2 82 

4 
- ~55(2) 2 -s 

11(2) 
2 

If P is the applied force and w represents the specimen width, 

p 
JV1 + N2 = ::y;;;; 

~W 

(A.36) 

( \ ·~-) 
.~ . .)I 

( \ ·~~) -~ . .)...,; 

(A.39) 

(AAO) 

(A.-±1) 
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Using this in conjunction with eq. A.29 allows detennination of the constants o:1 

and n 2 • The following solutions for the stresses and the resultants can then be 

obtained. 

N1 - alesp: + a2es2x + p An(l) 
2w An(l) + An(2) 

(A.43) 

N2 - p An(~ -al e"lx - a2eszx + . 
2w An(l) + 11(2) 

(A.44) 

T1 - N1,x 

- alsleslx + a2s2es2x (A.45) 

pl h - M1,xx + !fTl,x 

- (kt + ~ )a1sies1x + (k2 + ~ )a2s~e"2 x (A.46) 

The constitutive equations are used to write down the displacement solutions. The 

rigid body displacements of sublaminates 1 and 2 are matched (in order to satisfy 

the displ~cement continuity condition) to obtain 

(A.-±7) 

(.-\AS) 

f3t - A 1( )[atk1s1e"1 x + a2k2s2e"2x + l;y.(a1s1e"1 x + a 2s 2es2 =)] 
55 1 .... 

( A.49) 

/32 - As~(2 ) [a1k3s1e"1x + a2k4s2eszx + ~(a 1 s 1e"1 x + a 2s 2e"2 x)) (A.50) 

The constants ar, a2 and a 3 occurring in the solutions are detennined using the 

boundary condtions. For sublaminate 3 the governing equations are 

(A . .Jl) 

(A 

( :\ .. )3) 



N3 - Att(2)U3,x 

Q3 - A55(2)fJ3 

}vf3 - Dtl(2)fJ3,x 

Matching U at the 2-3 interlace and applying N3(a) = 0 gives 

8 

(A.54) 

(A.55) 

(A.56) 

(A.57) 

(A. 58) 

(A.59) 

In order to solve for the bending moment, eqs. A.53, A.55 and A.56 are combined 

to obtain 

A 
M3xx- M3 = 0 

' 11(2) 
(A.GO) 

The solution of eq. A.60 can be written as 

(A.61) 

where the quantity w3 is defined by 

w2 _ ~55(2) 
3 - 11(2) 

(A.62) 

Since the fJ matching conditon cannot be used at the 2-3 interlace, the (remaining) 

boundary conditions are 

~13(a) - 0 

M3(0) - ~tf2(0) } 
The </>scan be solved using the boundary conditions A.63 as 

(A.63) 

(A.64) 

( A.G5) 
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The solution for sublanunate 3 can be completed by writing the following expres-

Slons. 

Q3 - t/J1 W3 COSh W 3 X + t/J 2w3 sinh W 3 X 

{33 - T-[ .P 1 w 3 cosh w3x + </>2w3 sinh W3X] 
55(2) 

p3 ~[ . J - · </> 1 Sinh W3X + t/J 2 cosh W3X 
11(2) 

The equilibrium equations for sublaminate 4 are 

M4,x- Q4 - 0 

The constitutive relations take the form 

Using eq. A.69 with the boundary condition N 4 ( a) = Jw yields 

Similarly, using eq. A.70 with Q4(a) = 0 results in 

Matching M 1 and M 4 at the 1-4 interlace and using eq. A. 71 gives 

(A.66) 

(A.67) 

(A.68) 

(A.69) 

(A.70) 

(A.71) 

(A.72) 

(A./3) 

(A. I-±) 

(A./5) 

(A./6) 
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The U4 displacen1ent is obtained by integrating eq. A.72 and using the displacement 

matching boundary condition U4(0) = U1(0). 

(A.78) 

Similarly, integrating eq. A.74 and setting {34(a) = 0 gives 

(A.79) 

Using the solutions for Q4 and {34 and the boundary condition W4(0) = 0 in eq. 

A.73 yields the following solution for W4 • 

(A.SO) 

In order to determine a~, a 2 and a3 , the following boundary conditions are used. 

Nt(O) 

f3t(O) -

p 
2w 

It is convenient to define the following parameters. 

(}1 - _2J_(k + ~) 
Ass(t) 

1 

(}2 
k - ~ 

(}3 - A::<~/ k2 + ~) 
(}4 k - ~ 
ed - 03-81 + (84- B2)a 

The nominal (far field) strain is given by 

€- p 1 
- 2W An(l) + An(2) 

(A.Sl) 

(A.S2) 

(A.S3) 

(A.84) 

(A.85) 

(A.SG) 



The a parameters are obtained as 
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(A.87) 

(A.88) 

(A.89) 

The specimen compliance C is defined as the ratio of specimen extension to applied 

load. This is obtained as 

c -
(A.90) 

The total energy release rate associated with the crack (delamination) growth under 

a constant load Pis given by 

P 2 dC 
GT = 2w da (:\.91) 

Using the compliance expression from eq. A.90 in eq. A.91 yields the following 

expression for GT. 

GT = -- - + Il - !2 P
2 

( 1 1 ) 
2w2 An(t) An(t) + An(2) 

(A.92) 

where 

(A.93) 

( A.9-±) 

The individual fracture mode contributions to the energy release rate can be cal-

culated using the virtual crack closure tnethod, based on the interlan1ina1· stres:::es 

and displacetnents in the vicinity of the crack tip. Fron1 the assu1ned plane strain 
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condition, the 1nodc III contribution is zero ( G III = 0). The n1ode II energy re-

lease rate, G u, is calculated using the virtual crack closure technique while G 1 is 

evaluated using 

(A.95) 

G 11 is calculated fro1n the interlan1inar shear stress and relative sliding displacen1ent 

as 

1 las G11 =lim~ T1(x- 8)~u(x)dx s-o .t-o o 
(A.96) 

In the absence of a singularity in the stress field, the result of the limiting process 

leads to the trivial result G II = 0. Hence, the limit is calculated as 6 tends to 

some finite value, say~- The value of~ is chosen depending on the decay length 

associated with the problem i.e. the length within which the presence of the crack 

significantly alters the specin1en response in comparison with the corresponding far 

field values. Evidently, the decay length in this problern is dependent on the eigen-

values s 1 and s 2• The following value of~ has been chosen in order to reasonably 

fulfil the decay length criterion. 

(A.97) 

The relative sliding displacement ~u is based only on the difference U4 - U3 so that 

the kinen1atic condition of zero relative displacement at the crack tip is fulfilled. 

This also simplifies the calculations. The rnode II energy release rate cmnponenr is 

obtained as 

where 13 and 14 are defined as 

G _ 13 +I, 
II- 2.6. (A.9S) 

(A.0J) 
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(A.lOO) 

Transverse Crack Spacing 

Shear Deformation Model 

The model presented so far has dealt with delarninations growing from a trans

verse crack. The same model can be modified to predict the spacing of these trans

verse cracks. In order to accomplish this, the delamination effect has to be isolated 

from the model. This can be achieved approximately by letting the crack length 

a tend to zero. This yields an approximation since the boundary conditions are 

not accounted for properly by this limiting process. To get an accurate shear de

formation model, we consider only sublaminates 1 and 2 and apply the following 

boundary conditions for sub laminate 2. · 

(A.lOl) 

(A.102) 

Using these boundary conditions in eqs. A.37 and A.44 yields t\vo equations in a 1 

and a2 which can be solved to obtain 

al 
k4 P All(2) (A.l03) - k4 - k3 2W Au(I) + An{2) 

a2 
k3 P Au(2) (A.lO-±) - k3- k4 2w A11(1) + An(2) 

The interlaminar shear stress can now be obtained using eq. A.45. The saturation 

crack spacing corresponds to the distance frotn the crack where the broken plies 

regain their uniform stress/strain state i.e. where the interlan1inar shear stress has 

decayed down to its far field ( unifonn) value. Practically, this distance is calculated 

by looking for the x where the interla1ninar shear stress is sou1e s1na.1l fraction (say 
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.001) of its maximutn value. The maximum shear stress evidently occurs at x = 0 

and is given by 

(A.l05) 

The crack spacing .A can then be determined by solving the following transcendental 

equation. 

(A. lOG) 

Membrane Model 

A simpler model can be used to estimate the saturation spacing of the transverse 

cracks. This model treats the sublaminates as membranes i.e. the bending effects 

are ignored. The equilibrium equations for a generic membrane sublaminate are 

The constitutive equations take the form 

N - (Au - Z!~) U,x 

Q - Ass/3 

The displacements are assumed to be of the following form. 

u - U(x)+z,B(x) 

w - 0 

The following governing equations can now be written 

(A.l07) 

(A. lOS) 

(A.l09) 

(A.llO) 

(A.lll) 

(A.ll2) 

(A.ll3) 

(:-\..11-±) 



4j-T1- QI - 0 

} . 

0 4fT~- Q2 -

lVI - ltUI,x 

N2 - 12U2,x 

Q1 - Ass(1),81 

Q2 - Ass(2),82 

h h ul- !!;j-,81 - U2 + !4f,82 

where the IS are defined as 

~ l1 - Au(1) -
11(1) 

~ {2 - An{2)-
11(2) 

Eqs. A.113 and A.ll5 can be combined as 

Using eqs. A.ll 9 and A .117 in this leads to 

a _ fl:t _1_ U 
JJ1 - 2 Ass(1) /1 1,xx 

Following a similar procedure for ,82 yields 

Using these t-wo relations in eq. A.l21 leads to 

( )2 ( )2 h __::u_ - h, ___]l_ u1 - ~ A ul XX - u2 - -:) A Ul,xx 2 55{1) • _, 55(2) 

Combining eqs. A.ll3, A.ll4, A.ll7 and A.llS gives 

15 

(A.l15) 

(A.l16) 

(A.117) 

(A.llS) 

(A.l19) 

(A.l20) 

(A.l21) 

(A.122) 

(A.123) 

(A.l24) 

(A.125) 

(A.l26) 

(A.127) 

(A.l2S) 
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Substituting this into eq. A.127 results in 

(A.129) 

The characteristic roots of this differential equation are 

(A.130) 

The solution for U1 can then be written as 

(A.131) 

where the As are arbitrary constants to be determined from the boundary condi-

tions. The root s 1 is the positive root such that a decaying solution is obtained in 

the negative x region. For the special case of Bu(t) = Bi1(2) = 0, the nonzero roots 

can be writ ten in a sin1pler form as 

The interlaminar shear stress can be obtained as follo,vs. 

The maximu1n shear stress is 

Tt - Nl,x 

- /1U1,xx 

- /tA.lsieslx 

T (ma.x) A 2 
1 = /1 181 

Then, the saturation crack spacing A corresponds to 

(A.l32) 

(A.l33) 

(A.l34) 

(A.l35) 
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Shear Lag Model 

This Inodel allows for a nonlinear displacernent field through the thickness of the 

sublan1inate. Its fundarnental assumption is that the shear deformation neglected 

in the classical theory of bending can be estimated using the shear stress. The 

sublaminate axial force equilibrium condition can be written as 

(A.l36) 

The axial stress is assumed to be uniform and is given by 

N 
ax:r=h (A.137) 

The shear stress is estimated as follows 

a:r;z,z - -ax:r,:r 

-l'·l.:r 
---,;:-

-
Tt- Tn (A.13S) h 

This can be integrated to obtain 

(A.l39) 

Neglecting transverse displacement, the axial displacement can be obtained by in-

tegrating the shear strain, which in turn is obtained from the shear stress. 

a 
U,z - ~ 

- 1 [(7: _ T. )~ + T, + T;] c;- t b h 2 (A.l~O) 

u - 1 [ z
2 l U(x) + 2c55 

(Tt- Tb)h + (Tt + Tb)z (A.l~l) 

where U( x) is the mid-plane axial displace1nent. This displacernent expression can 

be used to obtain an improved axial stress estin1ate as follows. 

a:r;:r = C
1

11'1l,x 
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(A.142) 

The corresponding axial stress resultant can be written as 

h 

N - ]_
2
1!. Uzz dz 
2 

- Cn [hU,x + 24'{;
55 

(Tt- n),x] (A.143) 

The governing equations for the sublaminate are thus eqs. A.l36 (equilibriun1), 

A.141 (displacement field) and A.l43 (constitutive relationship). Using these to 

model sublaminates 1 and 2 results in the following governing equations. 

Nt.z- Tt - 0 

N2,x +T2 - 0 

Nt - Cn(l) [h,U,,x- 245L(l) T1,] 

N2 - Cn(2) [ hzUz, + 24B:s(z) T1,z] 
1 [ z

2 
] u1 - Ut + 2c -Ttr;:; + T1z 

55(1) lt 

1 [ z
2 

] u2 - U2+ 2c Tt~+Ttz 
55(2) 2 

Displacement continuity at the 1-2 interface implies 

or 

Equation A.l46 can be rewritten as 

U - N, + h, T 
l,x- Cn(t)hl 24Css(l) l,x 

Combining eqs. A.l47, A.l51 and A.l52 results in 

(A.l44) 

(A.l45) 

(A.l46) 

(A.147) 

(A.l4S) 

(A.l49) 

(A.150) 

(A.l51) 

(A.l52) 

(A.l53) 
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But from eqs. A.144 and A.145, we have 

(A.154) 

Using this in the differentiated form of eq. A.153 leads to 

(A.l55) 

The nonzero characteristic roots of this equation are given by 

(A.156) 

This is the same as in the membrane model except for the factor 3 which is 4 in the 

membrane model. This difference is related to the fact that the axial displacement 

distribution through the thickness is pa_rabolic in the shear lag model and linear in 

the membrane model. The crack spacing .X for the shear lag model is determined. 

as in the case of the membrane model but using the modified characteristic root. 



Table 1 Summary of Resuits 

nwnber of Gr Gu/Gr O'c €c 

90° plies Jjm2 MPa % 

1/2 2.404 0.276 1313.9 1.6747 

1 6.752 0.275 784.0 1.1685 

2 22.849 0.267 426.2 0.8058 

3 51.049 0.261 285.1 0.6427 

4 93.603 0.256 210.6 0.5444 

6 228.871 0.250 134.7 0.4264 

8 440.065 0.247 97.1 0.3555 
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Appendix III 

III.l Strain Energy Release Rate 

In this analysis, a delamination between belt and core sections is assumed to grow 

parallel t.o the belt direction in the tapered and uniforrn sections. These delanuna

tions in each section are denoted by a and b respectively. The core section in the 

taper portion is modelled by two equivalent sublatninat.es. The stiffness properties 

are sn1eared t.o obtain the effective cracked and uncracked stiffnesses \\·hich are des

ignated by Au and Ac as shown in Figure III.l. These stiffnesses change frotn one 

ply drop group to another with crack growth a by experiencing a sudden change 

at discrete locations. Therefore Au and Ac can be represented in three consecutiYe 

regions as follo\Ys, 

• Region 1: 0 < a < l 

d + 31- a 
(IILl) 

(III.~) 

• Region 2: l < a < 21 

d + 3l- a 
(III.3) 

(IliA) 

1 



• Region 3: 2l < a < 3l 

Au 
d + 31- a 

- _d_ + .l_ 
AsD At 

Ae 
a+b 

- a-21 + .l_ + ~ 
At A2 A3 

where 

h = ply thickness 

d = length of uniform thick portion 

l = distance bet.ween two consecutive ply drop locations 

i G/ Q4:=. ' .,, QO 
--11 = ) 7 . . ' - 1 . . 

Q0 = Q11 of a 0 degree ply 

Q45 = Q11 of a ±45 degree ply 

Geon1etry of the sublaminat.e model is shown in Figure (III.l) 

Also axial stiffnesses AB, A 3 and AF are given by 

d + 3l- a 
_d_ + 31-a 
AsD AsT 

2 

(III.5) 

(III.6) 

(III. I) 



p 
~ 

Figure III.l: Geo1netry· of the Sublanlinate 11odel 

AF - A.3 

\'\:here 

ABT =Taper belt stiffness 

For a n1en1brane behavior, equilibriu1n equations are reduced to 

N,:x=O 

and the displace1nent field is assumed to be 

u(x,z) = U(x) 

and 

'l.U = 0 

3 

(IIL8) 

(IIl.9) 

(III.lO) 

(III. 11) 

(III.l~) 
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The constitutive relations are represented by 

(IIL13) 

The stress and displacement fields, are determined based on the stiffnesses derived 

in Equations(III.l-III.9). In this model, load is shared by the core and the belt. 

portions according to their respective stiffness ratios 

(111.14) 

P 
_ PAu 

2-
AB +Au 

(IIL15) 

where P is half of the total axial load applied at. the ends. 

Using t.he Equations (III.10L (III.13L and the expressions for P1 and P2 fro1n 

Equations (III.14L (IIL1El) the a..x:ial displacen1ent. a.t x = c can be writ.t.en as 

P( d + 3l - a) ( AB ) + 1--
(AB +Au) AB1 

(III.16) 

PAuc P(d + 3l +b) (A1.l Au) 
U6 = A3 (AB +Au)+ (AB +Au) Ac - AF 

P( d + 3l - a) ( Au) + 1--
(AB +Au) Ac 

(III.l7) 

where AB1 is the belt stiffness in the pop-off region as shown in Figure Ill.l. 

A three-ditnensional transfonnation is required in order to estitnate the effective 

axial stiffness of the belt region .. 4.8 and .481 . This is due t.o the belt. layup and 
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the orientation of the different belt portions to the loading axis as shown in Figure 

III.l. The three-din1ensional transformation is presented in section III.3. 

The tapered laminate is assumed to be fixed at· x = 0. Therefore the external 

work done is given by 

(III. IS) 

Substitute from Equations (IIL14) through (IIL17) into Equation (III.18) to get 

by 

(III.19) 

The strain energy release rate G due to the external \vork done is deternuned 

G = _I_dll'" 
2P2 dA 

(III.20) 

where A is the delanrination surface area. G is calculated for delarillnation lengths 

ranging from 0 to 60h. In the analysis, S2/SP250 Glass-Epoxy is used. Its properties 

are given in Table III.l. 

Table III.l: Material Properties of S2/SP250 Glass-Epoxy 

I 
I E11 (MSI) E22 (MSI) G12 (MSI) G1a (MSI) G23 (MSI) l/12 

I 
I 

7.3 2.1 j 0.87 0.5 0.5 . ""'';) I 0 ?~-
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III.2 Interlaminar Stresses 

In this part, an analysis for the interlaminar stresses in the belt-core interface in 

the tapered section will is develope.d. 

The simple analytical model assumes a beam model for the belt in the tapered 

section which is shown in Figure III.2 . Material and geometric discontinuities are 

Inodelled as extensional ki and concentrated shear springs 9i ( i=l-4) as shown in 

Figure 111.3. The resin pockets are assumed to be subjected primarily to shear stress 

and they are represented by a distributed shear spring with a constant stiffness G. 

The effect of the core is incorporated as elastic supports on the bean1-belt modeL 

A minimum complementary potential energy formulation is used to estin1ate 

the interlanlinar stresses. The total complernentary potential energy consists of 

bending, shear and extensional energy ~ontributions, 

( III.21) 

where lib~ II.&~ lie, Ilk represent bending~ shear and extensional energy con1ponents 

and energy stored in elastic springs, respectively. These are given as, 

1 131 ].:['2 ( s) rrb = - ds 
2 o Dn 

1131 o:F2(s) 
II = - ds 

~ 2 o Gr 

1 131 _7V'2 ( s) 
lie=- --ds 

2 o An 

(III.22) 

(IIL23) 

( III.24) 

( III.25) 



p 
<::::::=! 

..-------: 

1 

Figure III.2: Geometry of the 11odel 
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Figure III.3: Modelling of the Beam-Belt. 
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where B.;., Ti ( i=l,2,3,4) are unknowns. The constant shear stress,c, due to resin 

filler is an additional unknown. The total nutnber of unknowns in this forn1ulation 

IS rune. These unknowns are constrained by following equilibrium equations. 

(III.26) 

(III.27) 

(IIL28) 

where N11 , N 12 , N 21 and N 22 denote the components of the extensional load at two 

ends of the belt section. 

The bending lllOillentl shear force ar-td axial force in each of the three ply drop 

regions are '"rit.teu as 

• Region 1: 0 < s < l 

(III.29) 

( IIL30) 

N ( s) = N ll - C$ - T4 ( III.31) 
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• Region 2: l < s < 21 

ct t 
M(s) = -N12s + -s + (Rs + R .. )s- Rsl + (Ts + T4 )-2 . 2 

(III.32) 

V ( s) = N 12 - Rs - R.. (IIL33) 

(IIL34) 

• ·R.egion 3: 2[ < s < 31 

( III.36) 

(III.31) 

Therefore the bending energy in Equation (IIL22) can be written as 
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(IIL38) 

Similarly for the shear energy 

r3l [ t ]2 + r }
21 

-2N12 + R3 + 2R4 + 
21

(N11 - N21) ds ( III.39) 

where 

r - 3 
- 5G:JA • 

The energy of exi.ensioua1 loads can be expressed by 

(IIL40) 

The energy stored in the elastic springs is written as 
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(IIL41) 

The complementary potential energy in Equations (III.38) through (III.41) is ex

pressed in terms of 6 unknowns, namely R3 , R4 , Ti (i=2,3,4) and c. By minimizing 

these expressions the following system of linear equations is obtained 

--+-+- c+-Ra+-R4 + --· +- T2+ -+- T~ (
27t2Z3 

3l 9f2) til 5tl
3 (5t2 

[2 3l) ( t 2 p 3!) 
12D G2 9t D 2D 8D 9t D 91 . ~ 

(III.4:2) 

(IIL43) 

(Ill.44) 
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-- + c + -Ra + -.R.t + - + - + - T2 + - + - T3 (
5t

2
l

2 
3l) tF tfl ( t

2
l 1 1 ) ( t

2
l 1 ) 

BD 91 4D 2D 4D 91 92 4D 9t 

(IIL45) 

- + - c + -R3 + -R4. + - +- T2 + - +- + - T3 (
t

2l2 31) tF 5tz2 (t 2
I 1) (t 2

l 1 1) 
D 91 2D 4D 4D 91 2D 9i 93 

{Ill.46) 

-- ...L- c + -R~~ _:_. -R4 ~ - +- T2 (
9t 2F 3() . tP. 3tf2 (. (21 . 1 .) ( t'2l 
8D 91 2D 2D 4D 91 . . 2D 

3tz2 ]\T 1 (. 7\T 11.• ) -D 12 +- H11 - .!V21 
2 91 

(III.47) 

The concentrated normal and shear forces at the ply drop regions and the inter

lalninar shear in the resin filler are estimated by solving the simultaneous systern of 

equations in (IIL42) through (IIL47) and using Equation (Ill.26) through (III.2:3). 
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III.3 3-D Transformation of Stiffnesses 

It has been determined that a three dimensional transformation of stiffnesses is 

required in order to estimate the effective axial stiffness of the belt regions, AB and 

ABI· This is due to the belt layup and the orientation of the different belt portions 

to the loading axis as shown in Figure III.4. 

The loading axis corresponds to axis 1 in the 123 coordinate systen1 which is the 

transformed system. The principal material coordinates are denoted by 1' ,2' and 

3'. 

The stress-strain relationships in the principal material coordinates for an or

thotropic laminate are given by 

{u}6xl == [Q]sxs {'E}sxl (III.48) 

where 

Qn :::::: ( 1 - l/'2~1.132) ,-£11 (IIL-E• '1 

Q22 = (1- 1/311113)V E22 (IIL50'! 

Q33 = (1 - 11121121) V E33 (IIL.Sl) 

Ql2 - ( 1121 + 11231131 ) F E11 == ( 1112 + 1113 1132 ) V E22 (III.52) 

Q13 - ( 1131 + 1121 1132) 17 E11 = ( l/13 + 11231112) V E33 (III..S3) 

Q23 (v32 + 11121131 )V E22 = (1,23 + 1121v13)F E33 (IIL.S-1 '! 

Q44 = G23 (III .. s.s) 

Qss = G31 (IIL.56) 

Qss = G12 (III..57) 



3 
15 

2' /3' 
~1' 

2 

Figure III.4: 

( III .. 5S) 

The presence of angle plies in the belt region 1naking an angle 8 in the 1 '2' -pla11e 

results in t.~1e follo\ving constitutive relationship 

(III. 59) 

where the transformed reduced stiffnesses Qij are given in t.ern1s of reduced stiff

nesses Q ij as 

(III.60) 

( III.61) 

(III.62) 

( III.63) 
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Q33 - Q33 (III.64) 

Ql3 - c
2
Qia + s 2Q2a (III.65) 

Q23 - s
2
Qia + c2

Q23 (III.66) 

c - cosO 

s - sinO 

Any ply in the belt portion of the taper makes an angle f3 with the loading a_xis 

if it is in the uncracked belt portion and an angle a: if it is in the cracked belt 

portion. By performing a rotation about the 2-a.xis, the stiffness along the loading 

axis , takes the form 

{ o-} == [ C] .{ t.} (IIL67) 

where O"ij and t.1.i are 111 123-axis systern and C\1 represent the ele1nents of trans

fanned stiffness 1natrix in this coordinate syst.en1. 

Since we nave assumed 

u.(x, =) == U(x) 

and 

tLl == 0 

For plane stress condition in 1-3 plane (i.e. o-i2 == 0 ~ ~ 

relations reduce to 

(IIL68) 

( III.69) 

,2~3) stress strain 

(III.70) 
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where 

Cu (III.71) 

(III.72) 

(III.i3) 

where c and s are cosine and sine of the angle which the cracked and uncracked belt. 

portions makes with the loading axis. 

The coefficient of €11 in Equation (III. 70) represents the transfonned a.xial stiff

ness. This value is used in the derivation of AB and ABI· 
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This is a fmal report that summarizes the results achieved under this grant The firSt 
major accomplishment is the development of the sub laminate modeling approach and shear 
deformation theory. The sublaminate approach allows the flexibility of considering one ply 
or groups of plies as a single laminated unit with effective properties. This approach is 
valid when the characteristic length of the response is small compared to the sublaminate 
thickness. The sublaminate approach was validated comparing its predictions with a fmite 
element solution [1]. A shear deformation theory represents an optimum compromise 
between accuracy and computational effort in delamination analysis of laminated 
composites [2]. This conclusion was reached by applying several theories with increasing 
level of complexity to the prediction of interlaminar stresses and strain energy release rate in 
a double cracked-lap-shear configuration. 

The shear deformation theory and sublaminate approach was applied to the free
edge delamination[1,3] and internal delamination analysis [ 4] of laminated plates including 
the influence of hygrothermal stresses [5,6] and combined loading [7]. the analysis was 
also applied to tapered laminates subjected to tensile loading [8,9]. 

The second accomplishment is the development of the variationally asymptotical 
analysis for thin-walled anisotropic beams with closed cross sections [10-12]. The theory 
is a prerequisite for isolating the influence of damage by comparing predictions with an 
reference undamaged configuration. Existing composite beam theories have significant 
differences in the derived expressions for the stiffness coefficients. The variationally 
asymptotical analysis was developed in order to isolate the effects contributing to these 
differences. The major advantage of this approach lies in the fact that the displacement field 
is not assumed a priori as is the case for the existing theories and emerges as a result of the 
analysis. Moreover, the assumed displacement fields in the existing theories follow the 
classical isotropic formulation. However, no proof is provided with regard to the validity 
of such a displacement field for anisotropic materials. 

The displacement field which resulted from the theory showed two new 
contributions which were identified as out-of-plane warping due to axial strain and 
bending. These contributions emerge in addition to the classical out-of-plane torsional 
warping and are significantly influenced by the material's anisotropy. However, they 
vanish for materials that are orthotropic or whose properties are antisymmetric relative to 
the beam middle surface. These configurations coincide with the cases where the 
predictions of the existing theories are in agreement with test results and numerical 
simulations. For generally anisotropic materials the error associated with the existing 
theory predictions correspond to the neglect axial strain and bending related out-of-plane 
warping. 

In addition to providing a defmitive answer to the reasons for the disparity in 
existing theories predictions, the variationally aymptotical theory provides a consistent 
approach to deriving the displacement field in anisotropic structures. A number of 
investigators have now adopted this approach for the modeling of initially curved and 
twisted composite beams and laminated composite plates[13, 14]. Moreover, the closed 



form expressions indicate that the new contributions are proportional to the extensional 
strain and bending curvature. This provides a proof for the work of Kosmatka [15] where 
an improvement to the displacement field was proposed by adding two terms which are 
proportional to the extensional strain and bending curvatures. However, their contributions 
were determined using a fmite element simulation. 

The details of the sublaminate and Variationally asymptotical analyses are provided 
by the work of Ref. 12 which is provided in Appendix A for convenience. A list of the 
publications and presentations related to the Grant is provided in Appendix B. 
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CHAPTER I 

:INTRODUCTION 

1.1 Background 

The use of fiber reinforced composites is increasing in engineering applications. One 

of the major issues in composite structures is the understanding of the role of the ma

terial's anisotropy on the deformation modes, damage modes and failure mechanisn1s. 

This research work addresse~ these stiffness and strength related issues by developing 

analytical models for the prediction of deformation modes and their coupling effects 

and damage onset and growth in latninated composites. Accurate prediction of stiff

ness~ response, datnage modes and failure mechanisms is bound to lead to the design 

of efficient. and damage tolerant. composite structures. 

Delatnination is a predominant failure mode in continuous fiber reinforced lam

inated composite structures. Based on the location and direction of growth. there 

are t.wo distinct types of delamination, namely, free edge delamination and local or 

transverse crack tip delamination. In many cases, both types occur concurrently with 

varying levels of interaction. 

In the first part of this work shear deformation models including hygrothermal 

effects are developed for the analysis of mid·plane edge delamination and local de

lamination originating from transverse cracks in 90° plies. The results of these models 

are combined with a previously developed shear deformation model for mixed-mode 

edge delamination to yield a unified analysis of delamination and the ability to iden-



2 

tify the critical failure modes and loads. 

Elastically tailored composite design are being used to achieve favorable defor

mation modes under a given loading environment.. Coupling between deformation 

modes such as extension-twist. or bending-twist is created by an appropriate selec-

·tion of fiber orientation, stacking sequence and materials. An example is the X-29 

swept forward wing aircraft where a laminated composite skin is used to create the 

bending-twist coupling required to handle divergence. This design uses AS-1/3501-5A 

graphite/epoxy wing covers with -45° outboard plies 9° forward of the wing~s 40 o/c 

chord line. Elastically tailored composite rotor blades have the potential to be used 

in rotorcraft. structures in order to control flapping and twisting motions at different 

rotor speeds. This concept can be utilized in tilt rotor aircraft in order to achieve a 

compromise between hover performance and forward fi.igh1 propulsive efficiency. A 

change in the blade twist between flight modes can be developed through the use 

of extension-twist coupling as implemented in the XV-15 tilt rotor aircraft. Twist 

control is achieved by assuming a 15 percent change in operating rptn between hover 

and forward flight regimes. 

The c.oupling of deformation modes provides a flexibility t.o meet design require

ments on the aeroelastic behavior, dynamic response and stability of structures and 

results in improved fatigue life and durability. 

A prerequisite for the implementation of an elastically tailored concept.~ is the 

development of an analytical model which accurately predicts the various stiffness 

components and isolate the material and geometrical parameters controlling the be

havior. 

In the second part, a variationally and asymptotically consistent theory for thin· 

walled beams that incorporates the anisotropy associated with laminated composites 

is developed. The theory is based on an a.symptotical analysis of 2D shell energy. 
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The major ad\a.ntage of this approach lies in the fact. that the displac.ement function 

is not. assumed a priori a.nd is determined as a result of the minimization of the energy 

functional. As a result, two nonclassical contributions to the warping emerge. \\Thile 

these new c.ontributions vanish for isotropir and orthotropic materials, they have a 

significant influence on the response of generally anisotropic materials. The acc.uracy 

of previously developed theories is assessed by comparing the resulting displace1nent 

fields a.nd an assessment of the significance of shear deformation is presented. Conl

parison of predictions with finite element simulation and test results illustrate the 

consistency and ac.curacy of the developed theory. 

The delamination analysis model is presented in the first part of this work. this is 

followed by the development of the thin-walled anisotropic beam theory. Each part 

includes a literature survey in order to place the present. work in proper prospective. 

A comparison of prediction is presented in order to validate the developed theories 

and assess their accuracy. 



4 

CHAPTER II 

DELAMINATION ANALYSIS 

This chapter addresses damage modeling in laminated composite plates. A review 

of previous work is present.ed first, this is followed by a development of the analytical 

model. 

2.1 Review of Previous ·work 

Failure in laminated c.omposit.e materials often initiates in the form of matrix frac~ 

tures, namely, transverse matrix cracks and delaminations. Based on the location and 

direction of growth, two distinct. types of delanuna.t.ion can be discerned. These two 

types are called edge delamination and local or transverse crack tip delanilnation, as 

shown in Fig. 2.1. Edge delatninations initiate at the load free edges of the laminate 

whereas local delaminations start. from a transverse matrix crack. Transverse matrix 

cracks refer to int.ralan1inar failures whereas delaminations refer to interlaminar fail

ures. Transverse cracks usually occur within laminates where the fibers .run at an 

angle to the primary load direction and hence the name. In many cases, both types 

occur concurrently with varying levels of interaction. 

It. has been observed [1] in simple tension tests of uniform rectangular cross section 

specimen (Edge Delamination tests) that delaminations initiate along the load free 

edges and· propagate normal to the load direction as shown in Fig. 2.1. 'Iransverse 

matrix cracks running parallel to the fibers have also been observed in off-axis and 

90° plies. Such transverse cracks extend through the thickness of similarly oriented 
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plies and terminate where the ply orientation changes. Delaminat.ions can also origi

nate at the int.erfa(':es where transverse cracks terminate. These transverse crack tip 

delaminat.ions or local delaminations, grow normal to the transverse crack from which 

they originate. In the case of 90° plies, the growth direction is parallel to the load. 

The growth process of edge delaminations and local delaminations is often mod

eled using a fracture mechanics approach leading to the calculation of a strain energy 

release rate. This is because the strain energy release rate can correlate delamination 

behavior from different loading C'onditions and can acC'ount for geon1etric dependen

cies. The strain energy release rate associated with a particular growth configuration 

is a measure of the driving force behind that failure mode. In combination with ap

propriate failure criteria, the strain energy release rate provides a means of predicting 

the failure loads of the structure. 

Several methods are available in the literature for analyzing edge delaminations. 

These indude finite element. modeling as in [2], [3], and [4]~ the C'omplex variable stress 

potential approach (5], a silnple technique based on classical laminate theory [1 J and 

a hlgher order laminate theory including shear defonnations [6]. Finite element mod

els provide accurate solutions but involve intensive computational effort. Classical 

laminate theory (CLT) provides simple closed form solutions and is thus well suited 

for preliminary design evaluation. However, CLT provides only the total energy re

lease rate, and thus, in a mixed mode situation, there is insufficient information t.o 

completely assess the delamination growth tendenC'y. A hlgher order laminate theory 

including shear deformations has the ability to provide the individual contributions 

of the three fracture modes while retaining the simplicity of a closed form solution. 

A shear deformation model is available for off-mid-plane edge delamination and has 

been shown to agree well with finite elerr.~\:nt pr~dictions [7]. 

Crossman and Wang [8] have tested T300/934 graphite/epoxy [±25/90n], speci-
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mens in simple tension and reported a range of behavior including transverse cracking. 

edge delamination and local delamination. O'Brien (9] has presented classical lam-

. inat.e theory solutions for these specimens, demonstrating reasonable agreement in 

the case of edge delamination but with some discrepancies in the local delamina

tion predictions. The local delamination model overestimates the failure strains for 

{±25/90n]• specimens for small values of 11 mainly due t.o the implicit critical strain 

energy matching used. 

A finite elen1ent n1odel combining edge and local delan1inat.ions has been pro

posed by Law [10}. His predictions, however, do not fully explain the dependency of 

the critical strain on the number of 90° plies. A similar three-din1ensional finite ele

ment. analysis including hygrothermal effects has been performed by \Vang et al. [11) 

to determine the delamination onset. load for combined delamination, qualitatively 

demonstrating stable crack growth. 

A three-dimensional finite element analysis of dela1nination fron1 matrix cracks 

has been developed by Fish and O'Brien[12]. They conducted an experimental and 

analytical study on the influence of matrix cracking on delamination in [+15/ -

90n / -15]. glass-epoxy laminates subjec.t.ed to monotonically increasing tension loads. 

Experimental results showed tha.t local delaminations form at the intersection of 

matrix cracks in the +15° plies and the free-edge. Comparison of a Quasi-three

dimensional ( Q3D) finite element results with a three-dimensional (3D) finit.e ele1nent 

analysis showed significant differences in the relative and absolute magnitudes of the 

interlaminar stress components. Thus, discrepancies in failure predictions may exist 

between Q3D and 3D analysis. The results of this study emphasized the importance 

of incorporating the various damage mechanisms that influence subsequent damage 

development in the failure analysis. 

Thermal and moisture effects on the strain energy release rates for interlaminar 
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fracture of unidirectional graphite/epoxy have been investigated by Russell and Street 

[13]. This investigation also included a study of the effects of shear loading through 

the use of various test configurations (Double Cantilever Beam, Cracked Lap Shear 

etc.). Initiation energies for delamination were found to increase as the proportion 

of shear loading increased and as the temperature was lowered~ but no significant 

moisture influence was observed. The fracture resistance to crack extension was found 

to increase under tensile dominated loadings with both temperature and moisture 

cont.ent~ bu1 for high shear loading, the resistance was insensitive to the hygrothern1aJ 

conditions. 

O'Brien, Raju and Garber ha.ve presented a CLT based analysis of mixed mode 

edge delamination specimens including hygrothermal effects [14]. They have used 

finite element modeling to determine the strain energy release rate components. Their 

results indicate t.ot.al strain energy release rate increases of as much as 170% due to 

thermal effects for some T300/5208 graphite/epoxy lan1inat.es. However, a moisture 

content of 0.75c;( has been shown to totally alleviate this increase. According to 

. this analysis, in general, the consideration of thermal effects increases the energy 

release rate whereas moisture effec.t.s have the opposite influence. These results have 

been confirmed using shear deforn1ation models in the case of off-mid-plane edge 

delaminations {15). It. was found that the int.erlaminar stresses follow the same trend 

as the energy release rate, with increase due t.o thermal effects and alleviation due to 

hygroscopic effects. 

Aoki and Kondo calculated the strain energy release rate under thermal loading 

:for mixed mode edge delamination. They used conventional finite element method 

{16) and a simplified method [16, 17] based on the classical lamination theory in com

bination with the J-integral for mechanical loading. Two types of axial constraint 

conditions were considered : (1) constant strain or fixed-grip and (2) constant load. 
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Numerical examples for cross-ply and angle-ply laminates showed that. in angle-ply 

laminate, t.he energy release rate under free axial elongation increased constantly 

with delamination growth, while it remained c.onstant. under fixed-grip conditions. A 

higher order plate theory including transverse normal strain and thermal effects has 

been developed by '"Thitney [18] for the analysis of mid-plane edge delaminations. 

This approach provides the interla.minar stresses also, in addition to the strain en

ergy release rate. A [03 /903], graphite/epoxy mode I specimen was analyzed and 

the max.i1num int.erlaminar normal stress was shown to increase by a factor of 2.i 

due to thermal effects, when c.ompared with the pure mechanical strain reference 

configuration. 

From this summary it is found that there is a need for a unified approach that 

includes the analysis of free edge as well as local delamination and their interaction. In 

practical c.omposite configuration free edge delamination does not occur in isolation, 

it is accompanied by other dan1age modes. Developing an analysis n1ethodology that 

includes the interaction of delamination with other damage modes is essential for 

designing damage tolerant structures. 

The study of delamination consists of two main sections. These are t.he analysis of 

mid-plane edge delanunat.ion and local delamination in laminated composite plates. 

2.2 Mid-Plane Edge Delamination 

A mid-plane edge delamination specimen is shown in Fig. 2.2. A uniform axial strain 

E is applied in the :r direction. From symmetry only one quarter of the specimen is 

considered. The sublaminate scheme and the choice of coordinate axes are illustrated 

in Fig. 2.3. / 

Sublaminates 1 and 2 in Fig. 2.3 represent the uncracked and the cracked regions, 
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Figure 2.2: Mid-Plane Edge Delatnination 
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Figure 2.3: Sublaminate Modeling Scheme (Mid-Plane Edge Delamination) 
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respectively. ··The analysis is based on the following displacement fields wit.hin each 

sublaminate 

11 = xe + U(y) + =f3:r(Y) 

(2.1) 

where u, 1', and 11' denote the displacements relative t.o the x, y, and = axes, respec-

tively. Shear defonnation is recognized through the rotations t3:r and ;31r In the 

present formulation thickness strain is neglected, and consequently inaccurate values 

of int.erlaminar peel stress, u ==, are expected. However, the peel stress can be n1odified 

by enforcing t.he free edge boundary c.ondition associated with the transverse shear 

stress resultant. 

A generic su blaminate along with the applied forces and moments is shown in 

Fig. 2.4. The force and moment resultants are denoted by If,, Q1, and ltf,·~ respectively. 

The constitutive relationships in terms of these force and moment result.ants can be 

written as 

"-!'.-A· ·If"·+ B·k ... k- "'rnm Ht - ?)'-) 1 "' J\i (i,j.k = 1,2~6) 

(i,j, k = 1, 2, 6) (2.2) 

(i,j=4,5) 

The subscripts :r:,y,z,yz,x:, and xy are replaced by the subscripts 1-6, respec-

tively. The non-mechanical forces and moments resulting from hygrothermal effects 

are labeled with superscript nm for non-mechanical. They are defined as 

• h 

(N;nm, Afi'm) = 1~'2 { .ATli; + .AH:S;} Q;;(l, Z )dz 
2 

(2.3) 



+ 
h 

x,u 

z,w 

Fiber Orientation 

Figure 2.4: Notation and Sign Convention for a Generic Sublaminat.e 
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The thern1al coefficient is denoted by Oj in Eq. (2.3), while the swelling coefficient 

by /3). The Q;j are the plane stress sublaminat.e reduced stiffnesses {19]. The bars on 

O.j,f3j and Q,i indicate that theses quantities are t.o be obtained through appropriate 

coordinate transformations. The change in_ temperature between the ambient and the 

stress free temperature is denoted by "t:..T. The percentage moisture weight gain is 

represented by llH. 

For a sublaminate of thickness h, the elastic stiffnesse& Aij, B1j~ and Dii in Eqs. 

( 2.2) are defined as 
h 

1+2- 2 
(A;;, Bii, Dii) = _!:!. Qii( 1, :, : )d: 

2 

(2.4) 

The equilibriun1 equations can be written as follows 

Qu,y + P2 - P1 = 0 (2.5) 

where t2:r, t 211 , p2 and t1:r, t 1y, p1 denote the int.erlaminar stress components at the 

sublaminat.e upper and lower surfaces, respectively. These stress components appear 

in Fig. 2.4. Partial differentiation is denoted by a comma in Eqs. (2.5 ). Application 

of the boundary conditions and the governing equations to each of the sublaminates 

results in a system of differential equations which are solved to obtain the stresses 

and strain energy release rate. The boundary conditions to be prescribed at constant 

values of y, the sublaminate sections, are N:z:y or U~ N"' or l', Q11 or li', M"' or /3"' and 

Mz"' or f3:r· 
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2.2.1 Uncracked Region (Sublaminate 1) 

From sym1netry conditions a1 the sublaminate bottom surface .. both tl.' and the shear-

ing stresses are zero. Since thickness strain is neglected, this leads to U' being zero 

everywhere in this sublaminate. The equilibrium equations can be written as 

(2.6) 

]lf~Jil,Ji - Q;rl = 0 

where subscript 1 refers t.o sublaminate 1. From Eqs. (2.6) and the continuity of axial 

and in-plane shear stress resultants between sublaminat.es 1 and 2, we get 

J\'~" _ AT _ 0 
1 ' l/1 - J\ ~Y1 - (2.7) 

By substituting from the constitutive relations into Eqs (2.6) and Eq. (2.7)~ and 

assuming an exponential form for the rotations {3111 and {31;r. we get the "following 

characteristic equation 

with 

where 

[

(A12{u + A1e{22 + Bu) (Au6a + Ate{2a + Bt6)] 

[0]3 x2 = (B22{12 + B2ee22 + D22) (B226a + B2ee2a + D2e) 

( B2e{12 + Bee{22 + D2e) ( B2e{13 + Bee{2a + Des) 

(2.8) 
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and 

lel2xa = - [
A22 A26]-

1 [A12 B22 B26] 

A26 A66 .. 416 B26 B6s 

Coefficient Eo depends solely on the sublaminate axial stiffness, while £ 4 is pre-

dominantly influenced by the bending and coupling coefficients Dii and Bij . The 

numerical value of E4 can be orders of magnitude smaller than E2 and E0 • This results 

in the presence of a boundary zone in the response. For the material and lanunate 

layups c.onsidered, the roots of this characteristic equation are real. Only the negative 

roots of Eq. (2.8) are considered as they give solutions decaying exponentially fron1 

the delan1inat.ion tip. The solution can be written as 

where 
n21s~- A44 

TJj = - ----"=~~-
n22S]- A4s 

(O:SySb-a) (2.9) 

(j = 1,2) 

Parameters Jj are arbitrary constants to be determined fron1 the boundary condi-

tions. By substituting Eq. (2.7) into the c.onstitutive relations and using the assumed 

displacement fields, we obtain 

(2.10) 

where 

Substitute from Eqs. (2.10) into the constitutive relations to get the resultant forces 

and moments in terms of the total extensional strain 

l Nz1 l [ .. 4n + Aueu + A16e21 l 
MJil = B12 +B22en+B26e21 {c.} 

MZ'S/1 B16 + B26e11 + B66e21 
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(2.11) 

2.2.2 Cracked Region (Sublan1inate 2) 

From t.he stress free boundary conditions at the face y = -a of sublaminat.e 2 and 

the equilibrium equations, we get. 

The equilibrium equations reduce to 

Following a similar procedure as in sublaminat.e 1, the rotation can be written as 

(-a :S y ~ 0) (2.12) 

with 

~ _ I A44Ass- A~5 
- ~ A •• ( Daa + B26l'I2 + Baal'22 + D26l'32) 

where 

a.nd 

[ 

A22 A2a B22] 

(1/1] = A2a Ass B2a 

B22 l12a lJ22 

H1 is an arbitrary constant. to be determined from the continuity conditions be-

tween su blaminates 1 and 2. The force and moment resultants can be expressed in 
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terms of 11" · o1 n 1 strain 

(2.13) 

where 

I p
1 )nm I ]\r11 )nm 

F2 = {1/~]-l J\1
;r;y 

F3 Af11 

The response associated with sublaminates 1 and 2 shown 1n Fig. 2.3 is c.oupled 

through the following conditions at. y = 0, 

The solution for both sublaminates i.e., t.he \'alues of Jj and H1 can be obtained 

by applying t:hese conditions. The final expressions for the sublamina1e rotations is 

given by Eqs. (2.9) and Eq. (2.12) where 

{ -Eh + (94 + 9s7J2)( & )} e + 9s7J2(&)- E>2 + 94( & ) 
I _ A• A• A• 

1 - A 
e3 - ( e4 + 9s7]2 )*! + 9sth 

!2 = -I. (A1e + A2 + A3/1) 

with 
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and 

The total strain energy release rate can be calculated by considering the work 

done by the external forces. This is given by 

GT = GJ = -it dHri 
i=l da 

(2.14) 

where li"; = work done by the external force in sublaminat.e i, L = laminate ]ength, 

and a = crack length. 

The work done by the external forces is written in terms of the mechanical strain~ 

ei, as 

(2.15) 

with 

£~ = E- t"!m 
1 1 (2.16) 

The sublam.inat.e free expansion strains, tim , are calculat.ed by setting the axial force 

resultant to zero, i.e. 

(2.17) 



L!l......__<r>_l _ __, 

(aT+aH) 
nm 

£ =? 

N - 0 
X 

(a) 

@J ...... '--_co_l _ ... 1 + enm •li ...... l....___co_l _ ... 

(aT+aH) 

£=0 

(b) 

+ 
nm 

£ 

.&T=AH=O 

£=1 

* 

(c) 
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Figure 2.5: Effective non-mechanical free expansion strain across the entire width of 

the laminate 

where J\Tz, is given in Eq. (2.11) and Eq. (2.13). The expression for each sublan1inate 

is 

(2.18) 

The total strain, t, is given by 

(2.19) 

where em is the effective mechanical strain and enm is the effective free-expansional 

strain across the entire width of the laminate estimated by decomposing the non

mechanical problem in Fig. 2.5( a) int.o the superposition of the two cases ·shown in 

Fig. 2.5(b) and Fig. 2.5( c). In case (b) the laminate is subjected to a non-mechanical 

change ( aT+ ll.H), while the strain is prescribed to be zero. In case (c) a unit. axial 

strain is applied, while no hygrothermal change is considered. Knowing that no axial 
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force is applied in the main problem~ i.e. Fig. 2.5(a), t.he sum of the axial forces in 

t.he t.wo subproblems should be zero~ henr.e 

and 

]\T nm ]\T 0 :r,. + f, :r, = 

nm N .. ,. 
f, = -.1.? 

''cc 

(2.20) 

(2.21) 

where }l:r,_ and N:r, are the axial forces in case (b) and case (c), respectively. These 

axial forces are computed by substituting the expressions of Ar:r3 and Ar:r2 from Eq. 

(2.11) and Eq. (2.13) into t.he relations 

(2.22) 

The expressions for }l:r,. and 1\r:r, are found t.o be 

(2.23) 

and 

(2.24) 

The crack length and half of the total laminate width are denoted by a and b, respec

tively~ as shown in Fig. 2.3. 

By combining the expressions of N:r, from Eqs. (2.11) and Eqs. (2.13) with Eqs. 

(2.14 )-(2.24 ), the total energy release rate for t.he Mode I case can be written in the 

form 

(2.25) 



where 

GIL. = - ~: (b- a) {(Au+ A12eu + Ate6t) [(2<- t~m) 
+ (A12S;m + A165;m -1\'";m )]} 

- ::a {(Au + At2l"ll + Ate\"21 + Bn\"31) (2< - t;m) 

+ (A12F;m + A1sF;m + B12F;m- N;m)} 

GIR = -(t- t~m) [(flu +t7lf212)Jlsle-•db-o)+(nu +1]2f212)/2s2e-•2 <b-a)] 

- (t- t~m) (Bl6 + A121P12 + A16'P22 + B12..p32) H1>..e->.a 

GIRo 

and 

df:' = - d: {(nu + 7J1f212)Jl [e-•db-a) -1] +(flu+ t72n12)/2 [e-•1 <b-al -1] 

dt 
da 

+ ( B16 + A12'P12 + A16l?22 + B12't?32) H1 ( 1 - e ->.a)} 

= --- A12( s;m - F;m) + A16( s;m - F;m) - B12F;m 
do ]\iZc 

21 

N:tb [A12(~u- ;on)+ A16(!21- i"2d- B12<r'31) 
}\T2 

(2.26) 
Zc 

The resulting expression for the total energy release rate G I is composed of three 

terms. The first. term, denoted by GIL is independent. of the delamination length while 

the second, GIL., is a linear function of the crack length. The third term denoted by 

( G Ili + G nlo) , is an exponential.ly decaying function of the delamination length. 

In computing the non-mechanical strains, the laminate is assumed to be held a1 

the prescribed temperature and moisture levels. This is followed by testing under 
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fixed-grip condition, i.e., the constant strain measured in the lab is the mechanical 

strain !'m. In Refs.[l8] and [20], Whitney considered the strain measured in the tests 

to be t.he total strain, i.e. !' = !m + !"m = constant . The difference between the 

two int.erpretations is detected by the tern1s GIL. and G1n{l in Eq. (2.25 ). These two 

terms are neglected in R.efs. [18] and [20] since the total strain E is assumed to be 

constant. 

A~ mentioned previously, neglecting the thickness strain leads to inaccurate es1i· 

mates for the peel stress. The peel stress is given by 

(2.27) 

The equilibrium of transverse force requires that 

r<b-a) 
lo pdy = 0 (2.28) 

or from the equilibrium equations (2.6) 

V\Thile for all practical purpose the resultant shear stress Q111 1 
·vanishes due to 

)1=11>-a) 

the free edge, the resultant. shear stress at. the delamination front Q!lq,
1
=" =f. 0. That 

is in order for the peel stress to satisfy transverse force equilibrium, the shear force 

boundary condition at the sublaminate end should be enforced. This is done by 

adding t.o the peel stress distribution an appropriate boundary function expressed in 

terms of the characteristics roots as 

The coefficients a.1 and a2 are obtained by enforcing equilibrium of transverse force 

given in Eq. (2.28) and moment given by 

L
(o-a) 

pydy + M111 = 0 
0 '·~·(•-•) 
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Figure 2.6: Local Delamination Specimen Cross Section 

The corrected peel stress distribution is 

2.3 Local Delamination 

23 

A longitudinal section illustrating the geometry of a generic configuration is shown 

in Fig. 2.6. The central region is assumed to be made of 90° plies with an isolated 

transverse crack in the middle. Delaminations a.re assumed to grow from both ends 

of the transverse crack, and towards both specimen ends as shown. From symmetry 

considerations, only one quarter of the configuration is modeled. The modeled portion 

of length L is divided into four sublaminat.es as shown in Fig. 2.7. The crack length 

is denoted by a. The top surface ( sublaminates 1 and 4) is stress free. In order to 
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free free 

0 8 
P/2 

<V <V free 

------- ----· Symmetry Shear atress=O Shear stress=O 
Plane w=O w=O 

Figure 2.7: Sublaminate Scheme for Local Delamination 

simplify the analysis, the thickness strain t:: is neglected. The consequence of this, 

combined with the fact. that. the transverse displacement. w is zero along the center line, 

is that. tt' is zero in sublaminates 1, 2, and 3. Also, this approximation does not. allow 

for the enforcement. of boundary conditions on the shear stress resultants, leading 

to incorrect estimates of the interlaminar normal stresses. The interlaminar shear 

stress estimates, however, are reliable [6]. These assumptions lead to considerable 

simplifications in the analysis. In spite of the simplifications, reliable energy release 

rate components can be estimated based on the interla.minar shear stress distributions 

(7]. 

A generic sublaminate is shown in Fig. 2.8 along with the notations and sign 

conventions. The peel and interla.minar shear stresses are denoted by P and T, 

respectively, with t and b subscripts for the top and bottom surfaces, respectively. 



25 

Pt z,w 

Q ·-.... Tt " ..... ·-..... ....... 
M 

~\M N I N x,u I 

'~ it' 
...... 

....""" 
""" 

.... """ 
Q 

Tb 

Figure 2.8: C'-reneric Sublam.inate for Local Delamination 

The axial stress resultant, shear stress resultant, and bending moment resultant are 

denoted by /\", Q, and J.f, respectively. The governing equations correspond to the 

one-dimensional form of Eqs. (2.1 - 2.5). These are summarized in the following for 

convenience. 

The r and z displacements within the sublaminate are assumed to be of the form 

u.( X, Z) = U (X) + Z j3 (X) 

Here, U represents the axial mid-plane stretching and li' is the transverse displace

ment. The shear deformation is recognized through the rotation, /3. These displace

ments are the total quantities and include the hygrothermal effects. The origin of 

the coordinate axes for the sublaminat.es is taken at. the delamination tip as shown 

in Fig. 2.9 . The equilibrium equations take the form 

Q ,:r + Pt - P, = 0 (2.29) 
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z 

• 

Figure 2.9: Sublaminate Forces and Coordinate Systems 

where h. is the thickness of the sublaminat.e. The constitutive relationships in t.erms 

of the force and moment resultants are 

The boundary variables to be prescribed at. the sublaminate edges are 

N or ll 

}.1 or f3 

Q or H' 
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Additionally, at. t.he interfaces between sublaminates, reciprocal traction, and dis· 

placement matching boundary conditions have to be specified. The stress result.ants 

in these equations include the equivalent. hygrothermal loads also. 

The solutions in sublamina1.es 1 and 2. are coupled by the reciprocal int.erlaminar 

stresses denoted T1 and P1 and by displacement. c.ontinuit.y at the common interface. 

Assuming exponential solutions for the axial force and bending moment resultants 

leads t.o an eigenvalue problem involving the exponential parameters. The character· 

istic equation is of the form 

where s is the eigenvalue paran1eter, and the B coefficients are given by 

and 

( 
1 1 hi hi ) Dno) Du(2) B1= --+--+ + ----

An(2) Ano) 4Dn(I) 4Du(2} Ass(l) Ass(2) 

B
2 

= _ Dut2l (-1- + _1_ + h; ) 
Ass(2) An(l 1 An(2) 4Dn(2l 

D110 l ( 1 1 hi ) --- --+--+---
Ass(l) Auo) An(2) 4Duo) 

• 
1 1 

B3=--+-
All(l) All(2) 

The eigenvalues turn out to be zero and two ~onzero values given by 

For the problem under consideration, all the square roots in this expression lead to 

real quantities and thus the eigenvalues are real. Since the eigenvalues involve onl)· 

the stiffness parameters, they are not affected by the inclusion of hygrothermal effects. 

Further, due to the fact that B1 has D terms in the numerator, it. is much smaller 
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than B3 • This leads to the boundary layer nat.ure of the solution. Since the response 

(a.xial forces, moments) has finite values at large distances from the origin~ namely~ a1 

the ends of the specimen, only the exponentially decaying and constant. solutions are 

used. Using subscripts t.o denote the subla.minat.e of validity, the following boundary 

conditions from t.he ends of the modeled region are enforced. 

The conditions on l\1 apply only to the mechanical quantities. Further, the fol

lowing displacement matching conditions are applied. 

It. should be noted that. a {32 and {33 matching condition cannot be applied at this 

level of modeling since it would amount. t.o specifying both l·r and Q. To eliminate 

rigid body displacements, ll1 is set. to zero at the left end. The following solutions 

can then be obtained for the stress resultants in sublaminates 1 and 2 
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llr k •t :r + k 12:r Mnm :~ 1 = a1 •1 e a2 "2e - 1 

Here k1 is defined as 
~82 

k 2 l 
1 = -.A~!.&-( 1;;;..1 --2 

Du(l) - 81 

The parameter k2 is defined in a similar manner using the eigenvalue, 8 2 • The re-

maining parameters, k3 and k4 , are similar t.o k1 and k2 but. based on sublaminate 2 

properties. The nominal strain, t, is defined as 

where P is the applied uniform axial force and b is the specimen width. The ajs can 

be derived from the boundary conditions as follows 

Ba +B .. a 1 ( P A ]\TnmA l\""mA ) 0 1 = IJ A A 2b 11(2) + 1 11(2)- 2 11(1) 
t7d 11(1) + ~"111(2) 

81 + B2a 1 ( P A J\Tr'lmA ]\"nm ) 
a2 = - 8 A +A 2b 11(2) + ·"1 u{2}- 2 Aull l 

d 11(1) 11(2) 

wit.h 

and 



30 

The int.erlaminar slu:·<-tr '"'d pc=od stresses between sublaminat.es 1 and 2 can be ob-

tained using the equilibriuiu e<Jun1.ions (2.29) as 

As mentioned previously~ this peel stress estimate is not accurate because of the 

inability t.o apply boundary conditions on shear. R.ecognizing the fact that t.here 

are no applied shear forces, it can be c.oncluded that. the peel stress distribution 

should be self equilibrating. This assumption can be satisfied by including additional 

exponential terms in the above peel stress expression and determining these additional 

terms by setting the net. force and moment due t.o the peel st.ress to zero as shown 

in section 2.2. The peel stress estimated through this correction process is referred 

to as the modified peel stress. Proceeding on to sublaminat.es 3 and 4, the following 

solutions can be written. 

Af3 = t.p 1 sinh(w3x) + 'P2 cosh(w3r) 

where 

and 
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The total energy release rate GT is calculated using GT = dl1,.e / da where lr£ is the 

work done per uni1 width by the external (constant.) loads on the specimen displace

ments. For the case where hygrothermal effects are included, there are additional 

ter1ns due to the work done by :r..r,nm. In reality, these Nrm quantities are not. applied 

loads but correspond to residual stresses. Thus, the additional tern1s are due t.o the 

work done by the applied mechanical strains on these residual stresses. The t.ot.al 

energy release including hygrothermal effects is given by 

GT = --+1\ --- +t-2 p ( p rnm) ( 1 1 I ] ) 
2b b 1 

Au(tJ Auo) + Au(2) 

+ p N;m (-
1 

- la + I2) 
2b Anp) + Au(2J 

(2.30) . 

where the I factors are 

(2.31) 

with 

1 Au(2) 
A=------

Ano) + Au(2) A no} 

Parameter 13 is the san1e as I 1 but with the ratio A110 )/A11 (2J instead of unity in 

Eq. (2.31 ). Using the virtual crack closure technique [21]~ from the relative displace-

ments in the cracked portion and the interlaminar stresses ahead of the crack tip, the 

mode I and mode II energy release rate contributions can be obtained. The mode III 

energy release rate is zero from the assumption of plane strain. The mode II energy 

release rate is given by 

where £, is the virtual crack step size and .£lu is the differential axial displacement 

across the crack surface. This c:.Jculation can be sim.plified using only the linear 
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pari of the differential displacement. [7). In a similar fashion, the mode I energy 

release rate can be obtained based on the normal stress ( P) and the differential 

tl' displacements near the crack front. Since the unmodified peel stress estimate is 

inaccurate, an alternate approach was used to estintate G I, the mode 1 energy release 

rate. The t.otal energy release rate for this problem is made up entirely of G I and G 11 

( G III = 0 ). From an estimate of GT and GIl, an estimate for G 1 can be obtained 

silnply as 

G1 = Gr- Gu 

The critical load for a given specimen can then be evaluated based on an appropriate 

fracture lav:. This is illustrated in the next chapter. 
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CHAPTER III 

APPLICATIONS OF DELAMINATION MODELS 

3.1 Mode I Edge Delan1ination 

The analytical model is applied to the mid-plane edge delamination specimen shown 

in Fig. 2.2. The material considered is T300 /5208 graphite epoxy. Its properties are 

listed in Table 3 .1. 

The difference between the ambient and cure temperature, ll.T, is -156° ('. The 

moisture level was allowed to vary fron1 0 t.o 1.2 percent of the laminate weight. which 

reflects feasible conditions. La1ninates of the class [B /·- 82 /8 /902), and [03 /903 }, have 

been analyzed. 

Normalized v~ues of strain energy release rate are shown in Figs. 3.1-3.6~ where 

the labels J.f, .Af + T, and A1 + T + H stand for mechanical, n1echanical and ther

mal~ and mechanical, thermal and moisture, respect.ivel:y. The strain energy release 

Table 3.1: ED Specimen Geometry and Material Properties 

En= 128 GPa Thermal Coefficients : n1 = -0.41J1£/°C 

E22 = 8.47 GPa a2 = 26.8p.e: ;oc 
G12 = 5.73 GPa Swelling Coefficients : {31 = 0 

G31 = 3.27 GPa {32 = 5560JLc/%l'l' 

G23 = 3.27 GPa Width= 2b = 38.4 mm 

1112 = 0.292 Ply Thickness = 0.14 mm 
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rate parameter in the figures is defined as the total energy release rate divided by 

E22h(tm )2• 

The strain energy release rate in Figs. 3.1-3.3 is zero at a = 0. Residual thenual 

stresses results in an increase of 275%! 40% and 280o/c) of the energy release rate for the 

{15/ -152 /15/902],, [60/ -602 /60/902], and (03 /903),laminat.es, respectively. Residual 

moisture alleviates this effect as illustrat.ed in Figs. 3.4-3.6. The specific moisture 

content for total alleviation from the thermal effect is equal t.o 0. 763o/c. irrespective of 

the layup. 

The peel stress distribution, u==' appears in Figs. 3.7-3.9. The stress paran1eter in 

these figures is defined as the interlan1inar stress divided by E22 cm. The inaccurate 

peel stress distribution given in Eq. (2.27) is plotted for the case where mechanical 

loading only is considered. The corrected peel stress distribution is self-equilibrating 

and yields a tensile peel stress at the delamination front. 

The ntagnitude of the peel stresses shows a strong dependency on the thern1al 

and moisture conditions. The stress increases with thermal effect as compared to 

pure mechanical loading.. The addition of moisture alleviates the thermal effert. 

Moreover, the distance at which the peel stress reverses its sign is not affected by the 

residual thermal and moisture strains. It is worth noting that at the specific n1oist.ure 

percent. {0. 763%) producing complete alleviation of the total energy release rate from 

the thermal effect, the int.erlaminar peel stress distribution is identical to the case 

where only mechanical loadin~ is considered. This is shown in Figs. 3.7-3.9. This 

finding establishes a similarity in behavior between the energy release rate and the 

interla.minar stresses. 

The analytical model presented herein was applied to the I&minates presented in 

Ref. [18). The Graphite/Epoxy lamina properties from Ref. [18] are listed in Table 

3.2. Similar values of strain energy release rate G 1 were calculated for the wide range 



Table 3.2: ED Specimen Geometry and Material Properties, Ref. [18] 

Eu/ E22 = 14 

E3a/ E22 = 1 

Ply Thlckness = 0.126i mm 

G12/ E22 = 0.533 Thermal Coefficients : 

G23/ E22 = 0.323 

1112 = 0.3 

l/23 = 0.55 width= 2b = 38.0mu1 

a:1 = -0.9p£ IcC 

a2 = a:a = 23.0pe loG 
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of a.Jh where the G1 remains constant as shown in Figs. 3.10 and 3.11. Negligible 

c.hange in the G 1 value with decreasingly s1nall values of a/ h were obtained. This 

is in contrast with the increase in G 1 at. small values of a I h reported in Ref. [18]. 

Although thickness strain is neglected in Eqs. (2.1 ), the peel stress distribution has 

been estimated through a modification as described previously, which simplifies con

siderably the computational effort. A comparison of the peel stress distribution with 

Ref. [18] is shown in Figs. 3.12 and 3.13. 

The peel stress intensity at the delamination front in the [30 I - 302 1301902 ]., is 

higher t.han the (03 1903 ], laininate. This is due t.o the difference in poisson's ratio 

between the core plies n1ade of 90° plies and the outer plies. The poisson's ratio 

mismatch is larger for the case of [30/- 302130/902), compared to the [03 /903 ], layup. 

The int.erlaminar peel stress distribution predicted by the present. approach is in good 

agreement with the distribution of Ref. [18) for the case of a [03 /903),1aminat.e. Thls is 

in contrast with the case of a[30/- 302 /30/902 ], where the maximum stress intensity 

as well as the distribution differ from the predictions of Ref. [18]. This difference may 

be due t.o the transverse normal strain influence on the analysis of these laminates. 
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3.2 Edge and Local Delamination 

The delamination models have been used to study the behavior of [±25/90n]. T300/934 

Graphite Epoxy specimen for n. values of 0.5, 1, 2, 3, 4, 6, and 8. These correspond 

to the specimen tested by Crossman and Wang [8]. The specimen width and length 

were fixed at 0.025m and 0.15m, respectively, as in the tests. In computing the non

mechanical strains, the laminate is assumed to be held at the prescribed temperature 

and moisture levels. In predicting critical strains, the difference between test and 

stress free temperatures is assumed to be -155°(.' and specimen is assun1ed to be 

dry. His assumed that local delamination occurs under fixed load conditions whereas 

edge delamination occurs under fixed grip conditions. This difference is a consequence 

of the modeling approaches used in the analyses. The applied uniform load was 100 

MPa axial stress for the local delamination analysis and 0.5% strain for the edge de

lamination analysis. The solutions were generated using simple computer programs 

based on the closed form expressions for the int.erlaminar stresses and energy release 

rates. 

3.2.1 Local Delamination 

An example of the total energy release rate variation associated with local delamina

tion (neglecting hygrothermal effects) with the crack length is presented in Fig. 3.14. 

The asymptotic value of GT is denoted by GTo in the figure. It can be observed that 

after a certain crack length, the GT is independent of the crack length. On the basis of 

curves like the one shown in Fig. 3.14, the crack length was fixed at. 10 ply thicknesses 

for the remainder of the studies. Typical interlaminar shear stress profiles including 

the hygrothermal effect are presented in Fig. 3.15. The corresponding total strain 

energy release rates appear in Fig. 3.16. The inclusion of thermal effects increases 
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the stress a.nd the energy release rate while the inclusion of moisture effects has the 

opposite effect. In fact a moisture level of about 0. 75% almost exactly negates the 

thermal effects. After some initial dependence on crack length, the mode mix tended 

t.o stabilize to a constant value. Using the model developed here, the asymptotic 

mode II component. of the local delamination energy release rate was found to be 

approximately 30 percent for al.l n values. In the case of off-mid-plane edge delanli

nation, the n1ode II contribution was less than 10 percent for the n = 0.5 specimen 

and progressively less for the thicker specimen. 

3.2.2 Edge Delamination 

As in the case of local delaminations, the interlaminar stress increases with thermal 

effects and the addition of moisture alleviates this as shown in Fig. 3.17 for the case of 

mid-plane edge delamination. A moisture level of about 0.75<}(, produces a modified 

peel stress distribution that is indistinguishable from the case of mechanical loading 

alone. Moreover, the distance at which the modified peel stress reverses its sign is 

not affected by the residual hygrothermal strains. The hygrothermal influence on 

mid-plane delamination strain energy release rat.e is illustrated in Fig. 3.18 where the 

strain energy release rate is plotted versus moisture content. for a [±25/902], latninate. 

The strain energy release rate follows the trend of increasing with residual thermal 

stress as in the case of peel stress. Further, residual moisture alleviates the thermal 

effects and a moisture level of about. 0.75% results in a total alleviation of thermal 

effects. Similar behavior is observed in the case of off-mid-plane edge delamination. 

3.2.3 Failure Loads and Modes 

In order to evaluate the critical loads for local delamination, an appropriate mixed 

mode fracture law has to be applied, based on the calculated energy release compo-
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nents. The following mixed mode criterion [22] has been fitted to the test data of 

Ref. (23] to calculate the mixed mode GTc which is then used in the Griffith criterion 

GT = GTc to obtain the critical delamination growth stress t1c and strain tc values. 

Here e is the mode I fraction ( G 1 I GT) and G Jc and G Ilc are the critical strain energy 

release rates for the limiting cases of pure mode I and pure mode II, respectively. 

The exponential parameter TJ is a material constant and for the T300 /934 system. its 

value is approximately 0.9. In the case of mid-plane delamination, since only n1ode 

I is present, GTc was taken as Glc( 125J /m 2 
): Based on the mixed mode criterion, 

GTc was about 400J/m 2 for the local delamination case(~= 0.7). The failure loads 

for edge delamination at. the -25/90 interface have also been calculated using a GTc 

value of 150 J fm 2
• This GTc value is different from the value used for mid-plane 

delamination due t.o the li1nited (less than 10 percent) presenc.e of mode II. 

In order to consider a worst. case situation, thern1al stresses were included and the 

moisture level was set. at zero. Though the thermal stresses had a significant effect 

on the calculated peak stresses, the effect. on the energy release rate was not signifi

cant except in the case of nud-plane edge delamination for the material system and 

layup considered. The critica1 strains are plotted against n, the number of 90° plies 

in Fig. 3.19. The experimenta1 results of Ref. [8] are also presented in the figure for 

comparison. The results of the model developed in this paper are represented by the 

solid and dotted lines while the experimental results are shown as filled squares. The 

CLT based model of Ref. [9] agrees well with the shear deformation model in terms 

of the total energy release rate. However, the CLT based model does not provide in

formation on the mode split and thus, the value of Gc(~ Grc) used can lead to bias in 

the critical strain estimates. In the experiments, the local delamination phenomenon 
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was observed as the predominant. failure mode only for the n = 4, 6 and 8 specimens. 

The shear deformation model presented in this paper provides good agreement with 

the experimental data in this range. For n < 4, edge delamination either in the 

mid·plane or in the 25/90 interface was observed in the tests, in agreement with the 

edge delamination models. Further, the relative closeness of the· calculated critical 

strains from the mid-plane and off-mid·plane edge delamination models implies that, 

in practice, one could have interaction between these two modes. In such cases, one 

can expect the delamination to wander around the mid·plane and the 25/90 inter

faces. This is especially so in the case n = 0.5 where mid-plane delamination is no1 

actually between two distinct. layers but in the middle of a single layer. Experimental 

obser\-at.ions [8] are in agreement with this expectation. Thus~ i1 can be seen tha1 

the shear deformation models reproduce the observed behavior with reasonable ac

curacy and can be used to estimate critical loads for a range specimen thicknesses 

incorporating various delamination modes. 

3.3 Conclusions 

Shear deformation models including hygrotherntal effects have been developed to 

analyze local delaminations growing from transverse cracks in 90° plies and edge 

delaminations located around the mid-plane of symmetric laminates. The models 

have been combined into a unified delamination analysis code in order to predict 

damage modes and loads in laminated composites. The analytical results of the 

shear deformation models agree reasonably with critical strain experimental data 

from [±25/90n], T300/934 graphite epoxy laminates in the range of n from 0.5 to 8. 

Residual thermal and moisture stresses are found to have only minor effects on the 

critical strains except in the case of mid·plane edge delamination for the geometry 
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and material considered. The aame fa.ilure modes as in the tests a.re reprodured in 

the analysis. The integrated delamination rode is expected to be of use in design 

evaluation applicat.ions. 
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Figure 3.1: Mode I Strain Energy Release Rate in a [15/ - 152 /15/902]. Laminate 
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Figure 3.2: Mode I Strain Energy Release Rate in a [60/- 602 /60/902), Laminate 
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Figure 3.7: Peel Stress Distribution a.head of the Crack in a [15/ - 152 /15/902], 

Laminate 
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Figure 3.8: Peel Stress Distribution ahead of the Crack in a {60/ - 602 /60/902], 

Laminate 
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CHAPTER IV 

THEORY OF ANISOTROPIC THIN-WALLED BEAMS 

A variationally and.asymptot.ically consistent theory is developed in order to derive 

the governing equations of anisotropic thin-walled beams with closed cross sections. 

The theory is based on an asymptotical analysis of two-dimensional shell theory. 

Closed-form expressions for the beam stiffness coefficients, stress and displacen1ent 

fields are provided. The influence of material anisotropy on t.he displacement field 

is identified. A comparison of results obtained by other analytical developments is 

performed. 

A review of previous work is presented first., this is followed by a detailed develop

ment. of the t.heory. Finally an analytical c.omparison of the displacen1ent field with 

previously developed theories is provided. 

4.1 Review of Previous Work 

Elastically tailored composite designs are being used to achieve favorable deformation 

modes under a given loading environment. Coupling betwe-en deformation modes 

such a.s extension-twist. or bending-twist is created by an appropriate selection of fiber 

orientation, stacking sequence a.nd mat.erials. The fundamental mechanism producing 

elastic tailoring in composite beams is a result of their anisotropy. Several theories 

have been developed for the analysis of thin-walled anisotropic beams. An extensive 

review is provided in Ref. [26). A number of issues relevant t.o the research undertaken 

in t.his thesis is hlghlited in the :following. 
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A basic element in the analytical modeling development is the derivation of 

the effective stiffness coefficients and governing equations which allows the three

dimensional (3D) state of stress t.o he recovered from a one-dimensional ( lD) beam 

formulation. For isotropic or orthotropic materials this is a classical problem, which 

is considered in a number of text books such as Refs. (52]-[59]. 

For generally anisotropic materials, a description of the major approaches is pro-

vided in Refs. (24]-[49]. A number of ID theories have been developed in Refs. [27], 
" 

{28L [30]~ [42], [43), and [46]. A discussion of the displacetnent provided in these works 

is presented in the analytical con1parison section of this chapter. 

Missing from the review of Ref. [26] and all other current publications is the work 

of Reissner and Tsai in Ref. {27). 1t presents an exact solution to the governing 

equilibriun1, compatibility and constitutive relationships of shell theory. Closed as 

well as open cross-sections were considered. However, the authors ]ef1 to the reader 

the derivation of the explicit expressions for the stiffness c.oefficients. This n1ay be 

the reason for their work to have been overlooked. These expressions are important 

in identifying the parameters controlling the behavior and in perfornung paran1etric 

design studies. Furthern1ore~ the explicit forn1 of the displacetnent field helps evaluate 

and understand predictions of other analytical and numerical models. 

A number of assumptions were adopt.ed in Reissner and Tsai's development re-

garding material properties such as neglecting the coupling between in-plane strains 

and curvature which can be significant in anisotropic materials. It is important to 

assess the infiuence of these assumptions on the accuracy. This has been done in the 

present work by using an asymptotical expansion of the shell energy. 

Mansfield and Sobey [28) and Lihove {29] obtained the beam fiexibilities relating 

the stretching, twisting and bending deformation~ to the applied a.xialload, torsional 

and bending m<'ments for a special origin and a.xes orientation. Their analyses are 
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similar. Although they did not. refer to the work of Reissner and Tsai [27), surprisingly 

when their analyses is applied to the special case outlined in Ref. [2i], their stiffnesses 

coincide. However, one has to carry out details to show this fact. They adopted the 

assumptions of a negligible hoop stress resultant. /\'., and a membrane state in the 

thin-walled beam section. The special case in Ref. [2i] refers to the one where classical 

assumption of neglecting shear, hoop stress and constant shear flow is adopted. 

A pertinent element in the analytical tnodeling development is the inclusion of 

section warping. The n1ajor difference among the various theories lies in the method

ology used to elitninate warping and consequently obtain a one-dimensional theory. 

The work of Refs. [30], [41], [42)~ [43], [44], [45), and {46] use the displacement field 

of thin-walled isotropic beams with shear deformation as the basis of their analytical 

development. In R.efs. [42J and [46] the torsional rigidity is derived in terms of Clas

sical Lamination Theory in what the author described as a "practical manner'~. In 

Refs. [43] and {44] a shear correction factor has been introduced in order to reduce the 

overestimated bending stiffness. This factor was derived for the case of pure torsion 

by using the virtual work method and enforcing compatibility. '"'hile this approach 

shows an in1proven1ent in predictions, it is problem dependent. Another modification 

was proposed in the finite element formulation of Ref. [38]. This fonnulation aims at 

minimizing the error associated with the neglect of bending-related warping in the 

theory of Ref. [30). This modification was based on shear stiffness correction factors 

determined by numerical comparison of results with an MSC/NASTRAN solution of 

cantilevered beam configurations loaded transversely at the free end. 

This summary points to the necessity of addressing three fundamental issues. 

The first, is the effect. of the material's anisotropy on the displacement field and how 

to include its contribution in a consistent manner. No rigorous proof is provided 

to validate the assumed displacement fields in Refs. [30], [42], [43], [44), [45], and 
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[46J for beams made of anisotropic material as indicated by the various correction 

factors introduced. The second, is the significance of the shear deformation relative 

to t.he other contributions such as section related warping. The last is the accuracy 

of the membrane stress state assumption in thin-walled anisotropic beam sections. 

The present work addresses these issues by using an asympt.otical expansion of the 

2D shell energy to derive the ID beam displacement field. As a consequence, the 

material·s anisotropy is accounted for in a consistent manner and the deforn1ation 

modes that have a lead contribution t.o the energy emerge naturally. 

4.2 Coordinate Systen1s 

Consider the slender thin-walled elastic cylindrical shell shown in Fig. 4.1. The length 

of the shell is denoted by L, its thickness by h, the radius of curvature of the middle 

surface by R and the maximum cross sectional dimension by d. It is assumed that 

d << L h << d h << R ( 4.1) 

The shell is loaded by external forces applied to the lateral surfaces and at the 

ends. It is assu111ed that the variation of the external forces and material properties 

over distances of order d in the axial direction and over distances of order h in the 

circumferential direction, is small. The material is anisotropic and its properties can 

vary circumferentially and in the normal direction to the middle surface as well. 

It is convenient to consider two coordinate systems for the description of the state 

of stress in thin-walled beams. The first. one is the Cartesian system z, y a.nd =shown 

in Fig. 4.1. The a.xial coordinate is z while y and z are associated with the beam 

cross section. The second coordinate system, is the curvilinear system z, s and e 
shown in Fig. 4.2. The circumferential coordinate s is measured along the tangent 

to the middle surface in a counter-clockwise direction whereas { is measured along 



... 
h(s) 
d •• 

Figure 4.1: Cartesian Coordinate System 
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L 

(s) 

Figure 4.2: Curvilinear Coordinate System 
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the outward normal to the middle surface. A number of relationships have a simpler 

form whe.n expressed in terms of curvilinear coordinates. A relationship between the 

two coordinate systems can be established as follows. 

Define the position vector r of the she~ middle surface as 

where ia-, iy, i: are unit vectors associated with the cartesian coordinate system x. y 

and z. Equations y = y( s) and = = .:( s) define the closed contour r in theY~ z plane. 

The normal vector to the middle surface ii has two nonzero co1nponents 

( 4.2) 

The position vector R of an arbitrary material point can be written in the form 

(4.3) 

Equations ( 4.2) and ( 4.3) establish the relations between the cartesian coordinates :r, 

y, = and the curvilinear coordinates x, s, (. The coordinate ( lies within the limib 

h( s) . h.( s) 
--<t<-2 _,_ 2 

The shell thickness varies along the circumferential direction and is denoted by h ( s). 

The tangent. vector f, the normal vector nand the projection of the position vector 

ron f and ii are expressed in terms of the cartesian and curvilinear coordinates as 

.... dr dy_ dz .... 
t = - = -ly + -1.-

ds ds ds .. 

_ ... _ dz_ dy .... 
11 = t X lz = -1.11 - -t. 

ds ds • 
_ .... dy dz 

Tt = r · t = y d.s + = ds 

.... ... dz dy 
r = r · n = y- - z-

n ds ds 

( 4.4) 
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An asympt.otical analysis is used to model the slender thin-walled shell as a bean1 

with effective stiffnesses. The method follows an iterative process. The displac.emen1 

function corresponding to the zeroth-order approximation is obtained first. by keeping 

the leading order terms in the energy functional. A set of successive corrections is 

added and the associated energy functional is determined. The process is t.erminated 

when the new cycle does not. generate any additional terms of the san1e order in the 

energy functional. 

4.3 Shell Energy Functional 

Consider in a 3D spac.e the prismatic shell in Fig. 4.2. A curvilinear frame x~ s, and 

~ is associated with the undeformed shell configuration. Values 1, 2 and 3 denoting 

z, s, and {, respectively are assigned to the curvilinear frame. Throughout this 

study~ Latin superscripts (or subscripts) run from 1 t.o 3, while Greek superscripts 

(or subscripts) run from 1 to 2, unless otherwise stated. 

The strain energy density of a 3D elastic body is a quadratic forn1 of the strains 

The material properties are expressed by the Hookean tensor Eijkl. Following the 

classical shell formulation of [60J, [61 ], and [62] the through-the-thickness stress coxn

ponents cri3 ar.e considerably smaller than the remaining components crat3. Therefore 

we can set 

(4.5) 

so that the strains can be written as 

(4.6) 
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where iaf; and Pa/3 represent the in-plane strain components and the change in the 

shell middle surface curvatures, respectively. For a cylindrical shell these are related 

to the displacement variables by 

( 4.i) 

where v1, tr2 and v represent the middle surfaC'e displacements in the axial, tangential 

and normal directions, respectively as shown in Fig. 4.2. These are related to the 

displacen1ent components in Cartesian coordinates by 

1't = 11t 

dy dz 
1'2 = tl2- + t13-

ds ds 
( 4.8) 

d;: dy 
't' = u2-- u3-

ds ds 

where tt1 , u 2 and u 3 denote the displacements along the z ~ y and ;: c.oordinates, 

respectively. 

The energy density of the 2D elastic body is obtained in terms of '"rat; and Pa/3 by 

the following procedure. 

The 3D energy is first minimized with respect to Ei3 • This is equivalent to satis-

fying Eq. ( 4..5 ). The result is 

(4.9) 
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where Do:f3--y/t represent the component. of the 2D Young's mo<lulu '· Tltf· expressions 

for Daf3--yi! are given in terms of Eo:f3--y~ by 

(4.10) 

where 

d H f h II £
~3.).3 - EJ'333 E~33311 Th an ~>. are components of the inverse o t e 2D matrix £3333 1· e 

expression for Dof3..," in terms of fan1iliar Classical Lamination Theory ( CLT) paran1-

et.ers is provided in Eqs. (4.43) and (4.44). 

The strain E:o:f3 frotn Eq. ( 4.6) is substituted into Eq. ( 4.9 ). After integration of 

the result. over the thickness e one obtains the energy of the shell q, per unit. middle 

surface area 

where 

cof3-y6 = .!.. < nofhl> > 
h 

G~fi~b = :2 < D"B~6 ( > 

c;fi~b = ~; < D"i3~b e > 

(4.11) 

and a function of (, say a(e), between pointed brackets is defined as an integral 

through the thickness, viz., 

(4.12) 

The first term in Eq. ( 4.11) represents the in-plane contribution, the second the 

coupling between in .. plane a.nd bending, and the third the bending contribution to 

the shell energy. 
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For an applied external loading P1, the displacement field Ui determining the 

deformed state are the stationary points of the energy functional 

. (4.13) 

4.4 Asymptotical Analysis of the Shell Energy Functional 

4.4.1 Zeroth-Order Approximation 

Let A and E be the order of displacements and stiffness coefficients co1-h~t, respec-

tively. Assun1e that the order of the external forces is 

p _ O ( E~h) ( 4.14) 

This assumption is shown later to be c.onsistent with the equilibriun1 equations. 

An alternative would be to assun1e the order of the external force as some quantity P 

and derive the order of the displacetnents as P L 2 / E h from an asymp1 otir.al analysis 

of the energy functional. 

For a thin-walled slender beam whose dimensions satisfy Eq. ( 4.1) the rate of 

change of the displacements along the axial direction is much smaller than their 

rate of change along the circumferential direction. That is, for each displacement 

component 

~~~~ « 1~:;1 ( 4.15) 

Using Eq. (4.7) and assuming that. dis smaller or of the same order as R, the 

order of magnitude of the in·plane strains and curvatures is 

111-0 (~) 

21t2- 0 ( ~) 



122-0 ( ~) 

Pu- 0 (~) 

Pn "' 0 ( .6. ) . d2 

P22- 0 (~) 
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Since /n and Pu are much smaller than "Y12, 122 and p12, P22, respectively~ their 

contribution to the elastic energy is neglected. 

The order of magnitude of t.he shell energy per unit area and the v:ork done by 

external forces is 

Since P;u; < < 4>, the contribution of external forces is neglected. Therefore the 

energy functional takes the form 

as 

(4.16) 

Using Eq. ( 4.15 ), the strain-displacement relationships in Eq. ( 4.7) can be written 

8tJ1 

2,-12 = Bs 

8t'2 v 
722 = 8s + R 

1 8t'I 

Pu = 4R 8s 

82v 8 t'2 
p22 = 8s2 - 8s ( R ) 

( 4.17) 
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The integrand in Eq. (4.16) is a positive quadratic form, therefore the minimum 

of the functional is reached by functions t', v1 , and 1'2 for which 112 = 122 = P12 = 

P22 = 0. Fron1 Eq. (4.1i) this corresponds to 

8t'2 11 
-+-=0 a .. ~ R 

8
2
tl - !_ ( 1'2 ) = 0 

8s2 8s R 

The function 1' in Eqs. (4.19) and (4.20) should be single valued, i.e. 

( 8v)=~f8t·ds=0 8s 1 8s 

(4.18) 

(4.19) 

( 4.20) 

( 4.21) 

The bar in ( 4.21) and in the subsequent derivation denot.es averaging along the closed 

contour r whose length is denoted by lin Eq. ( 4.21 ). 

Equation (4.18) implies that 111 is a function of :r only, i.e. 

( 4.22) 

Integrate Eq. ( 4.20) to ge1 
811 1'2 
--- = -cp(x) 
8s R 

( 4.23) 

where cp( x) is an arbitrary function \\~hich is shown later to represent the cross-

sectional twist. From Eq. (4.21) and (4.23), one obtains the relation between tp(:r) 

Substitute v from Eq. (4.19) into Eq. (4.23), to get. the following second-order differ-

ential equation for v2 

8 ( 8v2). t12 
- R- +- = 'P(x) 
8s 8s R 

( 4.24) 
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To solve this equation, one has to recall the relations between the radius of curvature 

R and the components y( .. r:.) and .::( s) of the position vector associated with contour r 

tFz 1 dy 
ds 2 = R d .. r:. 

tFy 1 d= 
ds 2 =- R ds ( 4.25) 

It follows from Eqs. ( 4.25) and ( 4.4) that * and ~: are solutions of the homogeneous 

form of Eq. ( 4.24) and v2 = tp( z )r, is its particular solution. The general solution is 

therefore given by 
.. dy d= 

112 = V2( x )-d + U3( :r )-d + If'( z )r, 
s .s 

( 4.26) 

where U2 and V3 are arbitrary functions of z. Substitute from Eq. (4.26) into Eq. 

( 4.19) to get 
d= dy 

1' = U2(z )-- U3(z )-- <p(x )rt 
ds ds 

( 4.27) 

Eqs. ( 4.22 ), ( 4.26) and ( 4.27) represent the curvilinear displacement field that mini-

mizes the zeroth-order approximation of the shell energy. Using Eq. ( 4.8) the curvi-

linear displacement field is written in Cartesian coordinates as 

(4.28) 

The variables ll1 ( x ), lT2 ( z) and U3 ( z) represent the average cross-sectional transla

tion while ;c( z) the cross-sectional rotation normally referred to in beam theory as 

the torsional rotation. This displacement field corresponds to the zeroth-order ap

proximation and does not include bending behavior. For a centroidal coordinate 

system ul (.X), U2( z ), U3( X) 3lld 'P( z) can be expressed as 
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( 4.29) 

4.4.2 First-Order Approximation 

A first-order approximation can be constructed by rewriting the displacen1ent field in 

Eqs. (4.22)~ (4.26) and (4.27) in the form 

( 4.30) 

where UJh 1L'2 and u· can be regarded as correction functions to be determined based 

on their contributions t.o t.he energy functional. 

Substitute Eq. (4.30) into (4.7) to obtain the strains and cur\-"atures in tenus of 

the displacement. corrections 
o 8w1 

1'11 = 'i'u + -
8 ;r 

0 

'1'22 = "')'22 + i22 
.. 8u'2 U' 
i'22 = --+-8s R 

0 82
u.l 

Pn = Pu + 8;r:2 

o EJ2u, 3 8u'2 .. 
Pl2 = p12 + 8s8;r: - 4R 8;r: + Pa 

0 ... 

P22 = P22 + P22 , 

.. 1 8UJ1 
P12 = ---4R 8s 

( 4.31) 
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where 7° o/3 and P0 of3 are the strains and curvatures corresponding to the zeroth-order 

approximation. These are expressed as 

( 4.32) 

The prin1e in Eq. (4.32) denotes differentiation with respect to z. Among the new 

terms introduced by the function w, the leading ones are denoted by superscrip1 ~ in 

Eq. (4.31). The order of U'i is (~d), this is derived fron1 Eqs. (4.31) and (4.32) where 

i1 is seen that the leading terms 2112 and p12 are of the same order of magnitude as 

2'1' 0 
12 and P0 

12 , respectively, i.e. 

.. 1 8w1 ( ~ ) 
Pt 2 = 4R 8s - O dL ( 4.33) 

Therefore, 

(4.34) 

An alternative approach is to assume the order of w1 as { ~) and verify this assump

tion, as shown later, once Wi is determined. The order of magnitude of the remaining 

leading terms in Eq. {4.31) is as follows 



76 

( 4.35) 

keeping the strains a.nd curvature associated with the zeroth-order approxin1at.ion 

and the leading terms contribution over the other terms (i.e., by dropping the ter1ns 

8u•1 8w2 8
2

u• d 8
2
w .l.. 8w2 • E (4 31)) h · f · b · B:r , B:r , B:r2, an a.a:r - 4R a:r 1n q. . t e energ) unctlon can e wr1tt.en as 

0 0 0 0 

()(1u,2i12 + 2i12,0 + i22,Pn,P12 + P12,0 + P22) 

The interaction tern1s associated with P0 
11 and P0 

12 , natnely 

are of order { ~~~) or smaller. They are neglected in comparison with the following 

terms 
0 0 0 0 

l'ni12 ~ ini22, i12i12, 'i'12i22 ( 4.36) 

of order ( ~ ). Similarly, the contribution of the work done by external forces, P;u·1, is 

neglected since its order is ( E h ~: (f)) in comparison with the order of the remaining 

teru1s in the energy functional ( Eh ~:). Therefore in order to determine the functions 

w; one has to minimize the functional 

If the rigid body motion is suppressed the solution is unique. The terms p12 , p22 are 

essential to the uniqueness of the solution; however, their contribution to the energy, 

expressed by the interaction terms 

0 0 0 0 

hp12in, hp12i12, h1122'*Yn, hp22'T12 
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is of order ( ~: ( ~)) or smaller, and is consequently dropped in comparison with the 

membrane contribution listed in ( 4.36 ). This aspect is discussed by Berdichevsky and 

Misiura [63], with regard to the accuracy of classical shell theory. Therefore, the shell 

energy can be represented by 

( 4.37) 

It is worth noting that the bending contribution does not appear in Eq. (4.37). That 

is, t.o the first-order approxintation t.he shell energy corresponds to a mentbrat:le stat e. 

The first variation of the energy functional is 

6] = {L f { .. 89! f. ( (h.vl) + !!_£. (811'2 + 11')} dsd:c 
lo o (2112) 8s 8122 8s R 

Recall that 8 (
8
2 4> , = N12 and 8

8
4> = N22 ~ Eq. (4.38) takes the form 

112 ~22 

,1 J.Lf{l\' 8(6wt) l\i (8(hw:!) 1, )}ad () = 12 8 + . .l\'22 8 + ROU' s .x 
0 s s 

Set the first variation of the energy to zero, to obtain the following 

which result in 

and 

81\''22 
--=0 

8s 

]\"22 = 0 
R 

N12 = constant 

( 4.38) 

( 4.39) 

( 4.40) 

This is similar to the classical solution of constant shear flow and vanishing hoop 

stress resultant. By setting J\122 to zero the energy density is expressed in terms of 
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1'11 and '1'12 only 

The variables A(s), B(s) and G(s) represent. the axial, coupling and shear stiffnesses, 

re~pectively. They are defined in terms of the pa13-rh as follows 

( < nn22 > )2 

D2222 - 0 (Eh) < > 
A(s) =< D1111 > 

[ 
< Du:z2 "'< D1222 >] 

B(s) = 2 < D
1112 >- < ; 2222 > - O(Eh) ( 4.42) 

C(s) = 4 [< Dt2t2 > - ( < Dl222 > )2] - 0 (Eh) 
< n2222 > 

where the 2D Young's modulus nath£. are expressed in terms of the Hookean tensor 

Eathf. in Eq. ( 4.10 ). The pointed brackets denote integration over the t.hic.kness as 

defined in Eq. (4.12). 

For convenience, nat.hr is given in matrix form as 

( 4.43) 

where 
[Dun nn22 Dm2] 

[D] = n1122 D2222 n1222 

Du12 n1222 D1212 

[Qll Q12 Ql6] 
[Q1

] = Ql2 Q22 Q26 

Ql6 Q26 Q66 

[QI3 Q15 Ql.l 
[Q

2
] = Q23 Q25 Q24 ( 4.44) 

Q36 Q56 Q46 

[Q~ Q35 Qul [Q3
] = Q35 Q55 Q45 

Q36 Q46 Q44 
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The indices adopted in Eq. (4.44) follow the convention of Ref. (50]. The bars over 

the reduced stiffness coefficients Qij of Classical Laminate Theory, Refs. [19] and 

[50]~ indicate that these quantities are to be obtained through appropriate coordinate 

transformations. 

Equation ( 4.41) indicates that, to the first-order, the energy density function is 

independent of functions w2 and w. That is, the in-plane warping contribution to 

the shell energy is negligible. The function w 1 however, can be determined fron1 Eq. 

( 4.39) and ( 4.41) and by enforcing the condition on w 1 to be single valued as follows 

8~1 1 
N12 = 

8
(
2112

) = 2 (B(s)(u + G(.s)112 ) =constant ( 4.45) 

Substitute from Eqs. ( 4.31) a~d ( 4.32) into ( 4.45) to get 

Following the relations in Eq. ( 4.15 ), the term ~ is neglected in c.omparison with 

~· Moreover, the term lB~ in Eq. (4.46) may be neglected in comparison with 

~c 8;;1 • This is possible, if IBI is less or of the same order of magnitude as C. For 

the case when IB I > > G additional investigation is needed. Since the elastic energy 

is positive definite, B 2 :5 AG, and B could be greater than C only if A > > C. In 

practical laminated composit.e designs IB I < C a.s the shear stiffness is greater than 

the extension-shear coupling. Therefore, Eq. ( 4.46) becomes 

(4.47) 
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Equation ( 4.47) is a first order ordinary differential equation in w1 • The value 

of the constant in the right hand side of (4.47) can be found fron1 the single value 

condition of the function w1 : 

( 
8w1 ) = ~ f 8w1 ds = 0 
8s l 8s 

( 4.48) 

The solution of Eq. (4.47) is determined within an arbitrary function of z. This func-

tion can be specified from v-arious conditions. Each one yields a specific interpretation 

of the \-ariable U1 • For example ifw1 = 0 the variable U1 = v1 according to Eq. (4.30). 

The choice of these conditions does not. affect t.he final form of the lD beam theory 

and therefore will not be specified in this formulation. The resul1 is t.he following 

simple analytical solution of Eq. (4.47) 

where 

G(s) = f (21~' c(r)- r.(r l]dr - 0 ( d
2

) 

9J(s) = f [b(r)- ~c(r)]dr- O(d) 

~(s) 1 
b( s ) = - 2 C ( 

8
) c( s) = C ( 

8
) 

( 4.49) 

( 4.50) 

The area enclosed by contour r is denoted by A" in Eq. ( 4.50 ). It is seen from expres

sion (4.49) that w1 is of order ( 'id) and relation (4.34) is justified. The displacement 

field corresponding to the first. correction is obtained by substituting Eq. ( 4.49) into 

Eq. ( 4.30) and dropping w 2 and w since their contribution to the shell energy is negli

gible compared to w1 • The result. referred to as the first-order approximation is given 

by 

v1 = U1(z)- y(s)U;(z)- z(s)U~(z) + G(s)!f''(z) + g1(s)U;(z) 

dy dz 
v2 = U2(z) ds + Us(z) ds + fP(z)r, ( 4.51) 
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d:: " dy 
1' = U2(~ )-- V3(:r )-- 1,0(x )r1 

ds ds 

4.4.3 Second-Order Approximation 

Following a similar procedure 1.o the one described in section 4.4.2, a second-order 

approximation can be constructed by rewriting the displacement field in Eq. ( 4.51) 

in the form 

111 = UI(x)- yU~(x)- ::F;(:r) + G(s)~'(x) + gl(s)F~(:r) + t!tds~x) 

dy d:: 
t 12 = V2(:r) ds + V3(:r) ds + l'(:r)r, + w2(s,x) ( 4.52) 

d:: dy 
t' = ll2(x) ds- U3(:r) ds - l'(x)r1 + U'(s,x) 

where u11 , U't2 and U' can be regarded as correction functions t.o be determined based 

on their contributions to the energy functional. 

Substitute Eq. (4.52) into (4.i) to obtain the strains and curvatures in terms of 

the displacement corrections 

\,1 8ii.11 

I'll= Ill+ Bx 
8ii.)2 a 

2112 = 21n + o:r + 2")12 

( 4.53) 

. 
P22 = P22 + P22 ' 

where 1'ati and Par; are the strains and curvatures corresponding to the first-order 

approximation. These are expressed as 
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"" l II d= 11 dy 11 ( fl ) P11= l 2 (x)--U3 (x)--r.p(x)r1 -0 2 
ds ds L 

( 4.54) 

.., 1 dg1 -rl ( 1 2Ac ) 1 ( fl ) PI'>= --l1(x)+ ---c-1 r.p(x)"' -
- 4R ds 4R lc dL 

The tern1s written over t.he over braced expressions in Eq. ( 4.54) denote their order. 

Among the new t.erms introduced by the function wi the leading one5 are denoted by 

superscript· in Eq. (4.53). The order of w1 is assumed to be 

( 4 .. 55) 

Such an assumption will be justified later. Therefore, the order of magnitude of t.he 

leading t.erms, Eq. ( 4.53 ), is as follows 

( 4.56) 

keeping the strains and curvature associated with the firs1-order approximation and 

the leading terms contribution over the other terms (i.e., by dropping the terms ~' 

~ ~ and a:tu_, - ..L 810* in Eq. (4.53)) the en erg'~ function can be written as 
8z ' 8z"' ' 8•8:z 4R 8:z . "' 

( 4.5i) 

In the following, the order of magnitude of the energy due to bending, i.e. due to p11 , 

P12, p12 , and p22 , is investigated. 
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The interaction terms associated with p11 , namely 

are of order ( A~:a) or smaller. They are ~eglec.ted in c.omparison with the following 

membrane contribution to the energy 

associated with U{ and t.p' 

associated with lT~' and F~' 

The interaction terms due to the bending curvature p12 are 

h .., : h"" : 0 ( f:l'J. h) • d • h TTl d 1 Pt2/ 12 , .Pt2i22 ........ 13 assoc1at.e w1t t.- 1 an 4p 

h'J..., ':. h2v ':. 0 [f:l2d (h2)] • d • h TTl d I · P12P12 , P12P22 ........ 13 d2 associate wtt t· 1 an r.p 

( 4.58) 

( 4.59) 

( 4.60) 

These t.erms are of higher order in comparison with the membrane contribution asso

ciated with U{ and ..p' in Eq. ( 4.58), and may be neglected. The remaining interaction 
.. .. 

t.ern1s associated with p12 and p22 ~ namely 

h"'-:. h"-:. h'"' -;. h'"'-:.. { -o(~
2

t) a.ssociat.edwithU{andr' (
461

) 
inP12, i11P22 , iuPu , i12P22 . ( A2 hd) · 

......._ 0 L" associated with P;' and [1~1 

are of higher order when compared to the corresponding me1nbrane ones, listed in 

( 4.58 ). Therefore in order to determine the functions Wi one has t.o minimize the shell 

energy expressed by 

( 4.62) 

The contribution of the new corrections in the work done by external forces is neg

ligible compared to the first·order approximation. Consequently its contribution is 

neglected in Eq. ( 4.62 ). It. is worth- noting that the bending contribution does not 

appear in Eq. (4.62). That is, to the second order approximation the shell energy 

corresponds to a membrane state. 
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The first variation of the energy functional is 

fJJ = (L f { 84? ~ (8ii.,1
) + ~~ (8ii'2 + tt')} dsdx 

lo 8 (2112) 8s 0122 8s R 
( 4.63) 

Recall that .a<~t· L = N12 and !t = N22 ~ Eq. (4.63) takes the form 
u •")'121 f7')2~ 

CJ -foL f { ,._1 8( 6vJ1) ,..; ( 8( 6ti'2) 1 , _) } d d 
(l - H12 + H22 + -o1ll .S .X 

o 8s 8s R 

Set the first. variation of the energy to zero, to obtain Eqs. ( 4.39) and ( 4.40 ). By 

setting N22 to zero, the energy density is expressed in terms of 1n and 112 only as 

given by Eq. ·( 4.41 ). The function w1 can be determined fron1 Eq. ( 4.39) and ( 4.41) 

.and by enforcing the CO)ldition on W1 t.o be single valued as previous]y outlined in 

section 4.4.2. Substitute from Eqs. (4.53) and {4.54) into (4.45) to get 

( 4.64) 

Comparing the order of magnitude of each kinematical variable, Eq. ( 4.64) reduces 

t.o 

( 4.65) 

Using the single value condition of function w1 , the following simple analytical solution 

of Eq. ( 4.65) is obtained 

( 4.66) 
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where 

g2(s) =- f [b(r)y(r)- ~ c(r)]J,. ~ 0 (t12
) 

g3(s) =- fo' [b(r)=(r)- ~c(r)]Jr- 0 (t12
) ( 4.67) 

It is seen from expression ( 4.50) and ( 4.67) that G( s ). 91 ( s ), 92 ( s) and 93 ( s) are 

single-valued functions, with 

Using Eqs. (4.66) and (4.67), ti)1 is found to be of order ( ~
2

) and the assutnption in 

Eq. ( 4.55) is justified. 

4.4.4 Convergence of Displacement Field 

The displacement field corresponding t.o the second correction is obtained by substi-

t.ut.ing Eq. (4.66) into Eq. (4.52) and dropping u12 and u: since their c.ontribution to 

the shell energy is negligible compared t.o U'1 • The result is 

t'I = U1(x)- y(s)U~(x)- .:(s)F;(x) + G(s)cp'(:r) 

+ 9l(s)U;(:r) + gz(s)U;1(x) + 93(s)[T;'(x) 

( 4.68) 

A third cycle is carried out, however no additional terms of the same order in the 

energy functional resuH as shown in the Appendix, and the final displacement field 

converges to the expression given in Eq. ( 4.68). 

The underlined terms in Eq. (4.68) correspond to the classical theory of extension, 

bending and torsion of beams. The additional terms g1(s)U;, g2(s)U;' and g3(s)U;' 

in Eq. ( 4.68) represent warping due to axial strain and bending . These new tern1s 
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emerge naturally in addition to the classical torsional related warping G( s )I.P'. They 

are strongly influenced by the material anisotropy, and vanish for materials that are 

either orthot.ropic or whose properties are a.nt.isymmetric relative to the shell middle 

surface. For these layups the coupling parameter b( s) defined in Eqs. ( 4.50) and 

( 4.42) vanishes. The significance of the axial and bending-related warping terms and 

their effect on the accuracy, is shown in the applications of Chapter V. Moreover, the 

expression for torsional related warping G( s) differs from the work of Refs. [30] and 

[42]- [46]. A comparison of these expressions is presented in section 4.6. 

4.4.5 Strain Field 

We now su bstit.ut.e the displacement. field of Eq. ( 4.68) into the in-plane strain com

ponents of Eq. (4.7), while using Eq. (4.50), to obtain 

(!) (~) (I#) (I#) ,.....,.__ ,__.,.._, ,__.,.._, ~ 
111 = U~(:r)- yU~'(:r)- =lT~'(:r) + G(s )'r'"(:r) 

(~) (~) (*) __..,....__ ~ ~ 
+ 91 ( s )U;' ( :r) + 92F~11 ( :r) + 93U~11 (:x) 

(~) (!) (I#) (~) 
~ ..-----..... ~ ~ 

2112 = 2~· cl"'<:r l + i: u; (:r l + i: u;'<:r l+ ;; u;'(:r l 

1'22 = 0 ( 4.69) 

The terms g1U;', g2Ut, and g3Ut can be neglected in comparison with U~, yF~', and 

zU~', respectively. Therefore, the in-plane strain components become 

1'n = u;(:r)- y(s)U~'(:r)- z(s)U~'(:r) + Gcp'' 

2 _ 2Ae 1 + dg1 U' + dg2 U" + d 93 U" 
112 - lc ct.p ds 1 ds 2 ds 3 (4.70) 

'122 = 0 
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Using Eq. (4.70), the shell energy densit.y, Eq. (4.41), can be written as 

(~) 
(Eh) __....,.__ 

+ ~B dg1 ( lTI )2 dg2 ( ll" )2 dga ( rr" )2 + G 2At I II _ ! -y- - =- , -cy;r.p 
ds 1 ds 2 ds 3 lc _....-.;;;.. __ _ 

+ 2At U' , + dg2 U' ll" + dga U' U" _ 2At U" 1 

lc c 1 r.p ds 1 2 ds 1 3 lc cy 2 r.p 

dgl l'""lr' dgalr"[T" 2A., -cr" I - dg1 ll"l'l - y-d /2 '1 - y-d 1 2 3 - -,_ c .... 3 r.p - ... -d 3 '1 .s s c s 

(~) (~:t) (~:t) 
~~~ 

dg2l'""lr" + Gdgl "l"l + Gdg2 "ern+ Gdga "rr" - =- 13 '2 :-r-r.p 1 1 -r.p '2 -;p '3 ds d$ d$ _d::...;·~:....., __ 

(~) 
(Eh) ,...._..._.__ 2 2 2 

+ ~ "C' (2~, cr.r1
)

2 

+ (dg1 u~) + (dg2 u") + (dg3 u") 
4 lc ds 1 ds 2 ds 3 

(~) (~) (~) 

4A~ dg1 U1 1 4A~ dg2 U" 1 4Ae dg3 U" 1 

+ lc c ds 1 r.p + lc c ds 2 r.p + lC c ds 3 t.p 

+ 2 dg1 dg2 U' U." + 2 dg1 dg3 U1 U" + 2 dg2 dga U" u."] 
ds ds 1 2 ds ds 1 3 ds ds 2 3 ( 4.71) 

where the underlined terms are associated with the Gr.p" contribution in Eq. ( 4. 70 ). 

These terms are of higher order a.nd ruay be neglected in comparison with the remain-
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ing overbrac.ed leading terms, as shown in Eq. ( 4. 71 ). Therefore, one may drop Gi.p" 

from Eq. ( 4. 70 ), and the final expressions for the in-plane strain components, using 

Eqs. ( 4.50) and ( 4.67 ), bec.ome 

2Ae ) 1 [ 0 ] 1 
2rl2 = lc c(s 'P + b(s)- ~c(s) ul 

- [b(s )y(s)- ~ c(s )] c:;' ( 4. 72) 

[ b= ·] II - b( s).: ( s) - c c( s) U 3 

1'22 = 0 

It is worth noting that the vanishing of laoop stress resultant in Eq. ( 4.40) and hoop 

strain in Eq. ( 4. 72) should be interpreted as negligible contribution relative t.o other 

paratnet.ers. The longitudinal strain 1n is a linear {unrt.ion of y and .:. This result 

was adopted as an assumption in the work of Ref. [29]. 

In the present formulation, parameters A., B and C where assumed to be of 

the same order. However, the results are valid for c.onfigurations which satisfy the 

following inequalities 

A (!!..) << 1 
C L 

4.4.6 Constitutive Relationships 

Dropping the underlined terms in Eq. ( 4. 71) and integrating over the shell middle 

surface to get the energy of 1D beam theory 

( 4. 73) 



where 

•h - ~ [Cu(U{)1 + G22(<,o')2 + C33(U~f + c •• (U~')2] 
+C12u;"'' + C13rr;u~' + C14u;u~' 

C 'TT" • c ITTII c T"lll"" + 23Cf'v3.,... '24'r'v2+ '3402 13 
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(4.74) 

Explicit. expressions for the stiffness coefficients Cii ( i, j = 1, 4) are given in Eq. 

(4.78). 

The constitutive relationships can be written in tern1s of stress resultants and kine-

matic variables by differentiating Eq. ( 4. 7 4) with respect. to the associated kinen1atic 

'\-ariable or by relating the traction T, torsional moment A1:z, and bending mon1ents 

1\{11 and AI= t.o the shear flow and axial stress as follows 

T = ~~r; = f I uudeds = f Nnd~ 
M,. = ~:~ = f I 0"12rn(s)d~ds = f J\'12rn(s)ds 

M~ = ;:,;, =- f I uuzdeds =-f N11 z(s)ds 

8
9! fl. f Af= = BU;' = - uuydeds = - > :ftl11y(s )d.~ 

(4.75) 

The shear flow N12 is derived from the energy density in Eq. ( 4.45) and the axial 

stress resultant N11 is given by 

f.lu = 
8
8

4>
1 = A(s)ln + B(s)112 

/11 
(4.76) 

and the associated axial a.nd shear stresses are uniform through the wall thickness. 

Substitute Eq. (4.72) into Eqs. (4.45) and (4.76) a.nd use Eq. (4.75) to get 

T Cu c12 Ct3 Ct4 U' 1 

M:z Cu c22 C2s c2~,. ~.p' 
= ( 4.77) 

Afll CI3 C23 Gs3 C3~, U~' 

M:. c14 G24 Gs" c.4 U" 2 
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where expressions for the stiffness coefficients C'ij (i, j = 1, 4) in terms of the cross 

section geometry and materials properties are as follows 

au£ to tiJ u: 
G . = f (A- B2 'd (.f (B /G)ds]2 

11 G 1 s + j (l/C)ds 

f (B /C)ds 
C12 = .f ( 1/C)ds Ae 

C
13 

= _ f(A _ B 2 
)zds _ f(B/C)ds J(B/G)zds 

C J (l/C)ds 

G = _ f(A _ B 2
) d _ f (B /C)d.• f (B /C)yds 

14 C y s /(1/C)ds 

1 2 

C22 = j (1/C)ds Af! 

C _ .f(B/C)zds A 
'
23
-- f (1/C)ds e: 

J (B/C)yds 
C24 = - J (1/C)ds .. 4f 

C = f< A._ B
2

) ·d f (B /C)yds f (B /G l=ds_ 
34 .. C 11 ... s + j ( 1/ C )ds 

C = f(A- B2) 2d [j (B /C)yds]2 
44 C y s + j(l/C)ds 

( 4. 78) 

The out-of-plane warping contribution to the stiffnesses due to the a.x.ial strain (i.e., 

due to 91 u; ), bending about. y a.x.is (i.e., due to 93u;), and bending about z axis (i.e., 

due to g2 U~') is shown by the overbraces in Eq. (4.78). 
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The coefficients C,i (i, j = 1, 4) can he expressed in terms of the in·plane axial 

stiffness coefficients Aij of Classical Lamination Theory ( CLT) if one neglects the 

t.hrough-the·thickness contribution to the stiffnesses in Eq. ( 4. 78 ). The result is 

C = f (K - Kf2 )d + [J (K 12/1122 )ds]2 
11 11 K22 s j(l/K22)ds. 

where, the stiffnesses Kij are 

R
. _A (A12)

2 
n- n-

A22 

( 4.79) 
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4.4. 7 Equilibrium Equations 

The equilibriun1 equations are derived using the principle of virtual work. The vari

ation of the internal strain energy is 

Using the strain displacen1ent. relations, one-dimensional stretching. twisting, and 

bending generalized internal forces are defined as 

A111 = - f 1\"z:rzds 

Af: = - f J\Tzzyds 

Consider a beam subjected to external force~ and n1omenf resultants T, A1 :r~ AJ ~~~and 

A1: at both ends. l\1oreover~ surface tractions P:r, Py, and P: are applied along the 

z, y, and : directions, respectively. The variation of the virtual work of the external 

forces can be written as 

Using the principle of virtual work 

6U = 6M't' 

':)De obtains a system of linear equilibrium equations as follows 

T' + / P:rds = 0 



1\1; + f (P::Y- P11= )ds = 0 

1\1: + (f P~zds)' + / P:.:ds = 0 

1\f;' + (/ P:r:yds )' + f P11ds = 0 

93 

( 4.80) 

One of the member of each of t.he following four pairs must be prescribed at the 

beam ends: 

( 4.81) 

4.5 Sumn1ary of governing equations 

The development presented in this work encompasses nve equations. The first. is 

the displacement neld given in Eq. ( 4.68 ). Its functional form was determined based 

on an asymptotical expansion of shell energy. The associated strain field is given in 

Eq. (4.72) and the st.ress resultants in Eq. (4.45), (4.75) and (4.76). The fourth~ are 

the constitutive relationships in Eq. ( 4. 77) with the stiffness coefficients expressed as 

integral of material properties and cross sectional geometry in Eq. ( 4. 78 ). Finally the 

equilibrium equations and boundary c.onditions are given in Eqs. ( 4.80) and ( 4.81 ), 

respectively. 

In the present development. the determination of the displacement field is essential 

in obtaining accurate expressions for the beam stiffnesses. A comparison of the derived 

displacement field with results obtained by previous investigators is presented in the 

following section. 

4.6 Analytical comparison with previous results 

In anisotropic materials the importance of physical effects such a.s transverse shear 

strains is influenced by the relative magnitude of elastic moduli. For example in 
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laminated composites the extensional modulus along the fibers direction is usually 

large relative to the shear moduli and consequently transverse shear effects can be 

significant.. Several theories have addressed this issue by including transverse shear 

in the assumed displacement. field (30], ~nd (42]- [46]. The displacement function 

Eq. ( 4.68) derived from the asymptotical analysis does not include transverse shear 

strain terms explicitly. This is a consequence of the vanishing of the through-the· 

thickness stress component. cri3 in Eq. ( 4.5) or ( 4.9) where the transverse shear strains 

are expressed in t.ern1s of other strain components. Their effect however is implicitly 

included in the stretching-related warping t.errn 91 ( .s) and the bending·relat.ed warping 

tenns 92( .s) and 93 ( .s) as illustrated by the applications of Chapter V. 

R.ehfield's theory [30] recognizes the significance of transverse shear strain in thin

walled composite beams. Its displacement field is given by 

u1 = F1(x)- y(s) [U~(:r)- 2i:r11(:r)]- z(.s) [U~(:r)- 2;·z:(x)] + 9(.s,:r) 

u2 = CT2(.:r)- z(s)'P(x) 

U3 = CTa(:r) + y(.s)'f'(:r) 

( 4.82) 

where "'):ry and 1:r.: are the transverse shear strains. The warping function 9(s~ :r) is 

given as 

g(s,z) = G(s)'P'(x) ( 4.83) 

with 

( 4.84) 

A comparison of the displacement fields in Eq. (4.68) and (4.82) shows that the 

warping function in Rehfield 's formulation includes the torsional-related contribution 

and does not include explicit terms that express the bending-related warping. The 

torsional-relaied warping function G(.s) in Eq. (4.50) is different from the function in 



95 

Eq. ( 4.84 ). The two expressions coincide when c = constan1 that. is, when the wall 

stiffness and thickness are uniform along the cross section circumference. 

The torsional related warping function in Eq. (4.84) was modified by Atilgan [44], 

and R.ehfield and Atilgan [43] as 

A {' [2A ] G(.s) = Jo l c
1
' c1 - rn(r) dr (4.85) 

where 
1 

c1 = , :~ 
4.' -~ .. 66 A~ 1 

(4.86) 

and 

A - ApA:~~] 16 A:~:~ 
2 A (A:~~) 

66 - """'A;;-
(4.8i) 

The Aij in Eq. (4.8i) are the in-plane axial stiffnesses of CLT, Refs. [19) and [50], 

they are related to the modulus tensor by 

Au =< £1111 > 

A 66 =< £1212 > 

A comparison of the modified torsional warping function in Eq. ( 4.85) and G( s) in 

Eq. ( 4.50) shows that they coincide for laminates with no extension-shear coupling 

( < D1112 >=< D1222 >= 0, in Eq. (4.10) ). For the case where the through-the-

thickness contribution is neglected in Eq. (4.10), this reduces to A16 = A26 = 0. 

The warping function obtained in ·Refs. (42] and (46] for composite box beams is 

identical to the expression of Refs. (43] and (44] in Eqs. ( 4.83) and ( 4.85 ). 

An assessment. of all the previous warping expressi_ons can be made by checking 

whether they reduce to the exact expression for isotropic materials (see, for example, 

Ref. (59]) 

- (' [2A ] G ( .s) = J 
0 

l c
2
t c2 - r n ( T) d T ( 4.88) 
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with 
1 

c2=--
p.h( $) 

where p is the shear modulus. 

For isotropic materials the in-plane coupling b is zero and consequently 91 , 92 and 

gain Eqs. (4.50) and (4.67) vanish. That. is the warping is torsion-related and reduces 

to G(s )t,o'. Moreover, the shear parameter cis equal to 411~(•) and the expressions for 

G(s) and G(s) in Eqs. (4.50) and (4.88) coincide. 

Rehfie]d~s warping function in Eq. (4.84) coincides with Eq. (4.88) when the tna

terial is isotropic and the wall thickness is constant. Also the works of Refs. [43], [44] 

and (46] reduce to Eq. ( 4.88) for isotropic materials. 

4.7 Closing Remarks 

The major advantage of the approach adopted in this work is the fact that the dis-

placement function enterges as a result of the asympt.ot.ical analysis of the shell energy. 

The influence of the material's anisotropy is accounted for in a consistent manner and 

the deformation modes are determined on the basis of their contribution t.o the asso-

cia1.ed energy. Two new contributions to the warping emerge due to stretching and 

bending. They are of the san1e order of the classical torsional-related warping. Their 

significance is illustrated in the applications provided in the next chapter. 



CHAPTER V 

APPLICATIONS OF ANISOTROPIC THIN-WALLED 

BEAM THEORY 

9i 

An evaluation of the variationally consistent theory developed in chapter IV is 

provided. The theory is applied t.o beams with arbitrary closed cross-sections n1ade 

of laminated con1posite materials with variable thickness and st.iffness subjected to 

axial load, torsion and bending. A comparison of flexibility coefficients and deforma· 

tion with finite element predictions, dosed form solutions and experimental data is 

perforn1ed to validate predictions and isolate the influence of different contributions 1 o 

the section warping. In addition t.o the torsional re1at.ed warping. two new contribu

tions namely, axial strain and bending related out-of-plane warping were identified in 

the developed theory. Extension and bending related out-of-plane warping are shown 

to have a significant effect. on the accuracy of predictions. Comparison of predictions 

provides also a check of the asymptotical analysis result regarding the contribution 

of shear deformation. Although the resulting displacement field does not include 

an explicit shear deformation term similar to Timoshenko's theory, shear deforma

tion contribution is shown to be implicitly accounted for through the out-of-plane 

warping due to extension and bending. 

Two special layups: The circumferentially uniform stiffness (CUS) and circum

ferentially Asymmetric stiffness (CAS) have been considered in Refs. [41)-[46) and 

[51]. They are associated with different non-classical behaviors. These behaviors are 
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shown to be influenced by the out-of-plane warping due to extension and bending in 

the next. section. 

5.1 Effect of Out.-of-Plane Warping due to Extension and Bending 

5.1.1 CUS Configuration 

This configuration produces both extension-twist and bending-transverse shear cou-

plings. The axial, coupling and in-plane stiffnesses A, B, and C given in Eq. ( 4.42) 

are constant throughout the cross section and hence the name circumferentially uni-

form stiffness ( CUS) adopted in Ref. (43], [44), {45] and [51]. Such a configuration 

is manufactured by wrapping the composite lay-up using a winding technique. For 

a box-beam, the ply lay-ups on opposite sides are of reversed orientation~ and hence 

the nan1e antisymmetric configuration adopted in Refs. [41], [42], and {46]. 

Since A, B, and C are constants, the stiffness matrix in Eq. ( 4.i8 )~ for a centroidal 

coordinate system, reduces to 

Cu (.'12 0 0 

c12 (.'22 0 0 
[Cij] = 

0 0 Ca3 0 

0 0 0 c44 

The nonzero stiffness coefficients are given by 

Cu = Al 

Cu =BAr 

c 2 
022 =TAt 

I 2 B
2 I 2 Cs3 = A :. ds - C = ds 

I 2 B
2 I 2 C44 = A y ds - C y ds 

( 5.1) 

(5.2) 
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where l denotes the length of the closed contour r. For such a case the out-of-plane 

warping due to axial strain vanishes and g1 does not affect the response. This is 

shown by considering A, B, and Cas constants in Eq. (4.78). The influence of the 

out-of-plane warping due to bending in the :r-= and :r-y planes are expressed by the 

underlined terms in the expressions of C33 and G'44 , respectively. These terms are 

significant in predicting the deflection of antisymmetric configurations. 

5.1.2 CAS Configuration 

This configuration produces both bending-twist and extension-transverse shear c.ou

plings. The stiffness A is constant throughout the cross section. For a box beam, the 

coupling stiffness, B, vanishes for the vertical members, while its values in the top 

and bottom merr1bers are of opposite signs 

Bvttrtical mem~r.s = 0 ( 5.3) 

and hence the natne circumferentially asymmetric stiffness (CAS) adopted in Ref. [43]~ 

{44], [45) and [51]. For a box-beam, the ply lay-ups on opposite sides are mirror in1ages, 

and hence the name symmetric configuration adopted in Ref. [41],[42], and [46]. The 

stiffness C along the horizontal and vertical members are equal and expressed by 

Cve<r'tical left = Cve<r'tical f'ight (5.4) 

The stiffness matrix, for a centroidal system of axes, reduces to 

Cu 0 0 0 

0 c22 C23 0 
[C,j] = 

C2s c3s 0 
(5.5) 

0 

0 0 0 ·c44 



The nonzero stiffness coefficients are expressed by 

B2 
ell = Al - 2-' d 

SJ_ 

c, 2 

~22 = 2 [a+a (g:)]A. 

( ' B, A2 
'23 = [ ( c )] ~ 2 d +a c: 

(.' f 2 B; { A£ } 
•33 = A · ~ ds - 2G, a - [ d + a ( ~)] A, 

f 
B2d3 

C'44 = A ) y2ds - -' ,-
6Ct 
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( 5.6) 

Subscripts t and t' denote top and vertical men1bers, respectively. The box width 

and height are represented by d and a~ respectively. Equations ( 5.6) are derived by 

substituting Eqs. (5.3) and (5.4) into Eq. (4.78) and considering A to be constant. The 

underlined term in the expression of the axial stiffness C11 represents the extension 

contribution t.o the out-of-plane warping. The bending contributions t.o the out-of

plane warping are represented by the underlined terms in the expressions of C33 and 

C44 • For the CAS configuration, bending about. the y-axis is coupled with torsion 

·while extension and bending about. the .:-axis are decoupled. 

In order to assess the accuracy of the predictions and isolate the influence of 

stretching and bending-related warping, the present theory is applied to the box 

beam given in Ref. [51]. The cross sectional configuration is shown in Fig. 5.1 and 

the material properties in Table 5 .1. 

5.2 Comparison of Flexibility Coefficients 

A comparison of the flexibility coefficients S.;i with the predictions from two n1odels 

is provided in Table 5.2. The flexibility coefficients Sii a1·e obtained by inverting 



Table 5.1: Properties of T300/5208 Graphite/Epoxy 

Eu = 21.3 Msi 

E22 = E33 = 1.6 Msi 

Gu = G13 = 0.9 Msi 

G23 = 0.7 Msi 

V12 = V13 = 0.28 

v23 = 0.5 
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the 4 x 4 matrix in Eq. (4.77). NABSA (Nonhomogeneous Anisotropic Bean1 Section 

Analysis) is a finite element. model based on an extension of the work presented in Ref. 

[32]. In this model all possible types of warping are accounted for. The TAIL n1odel 

is based on Ref. [30], but neglecting the restrained torsional warping. The predictions 

of the NABSA and TAIL models are pro, .. ided in Ref. [51]. The percentage differences 

appearing in Table 5.2 are relative to the NABSA predictions. The present theory is 

in good agreement with NABSA. Its predictions show a difference ranging from +0.7 

to +3.6 percent while those based on Ref. [30] range from +3.6 to -18.4 percent. 

Since the box beam has a CUS configuration, the out-of-plane warping due to 

bending has a significant effect on the prediction of the bending fiexibilities ( -c1 
) and 

33 

( -c1 
) a.s shown in Eq. (5.2). Neglecting 9a a.nd 92 in the expressions of C33 and C44 .. 

leads to values of 0.11424 x 10-4 lb - 1in -! and 0.38410 x 10-4 lb - 1in - 2 for S33 and 

544 , respectively. Comparison of these values with the underlined results in Table 5.2 

shows a 65 percent increase in the bending fiexibilities due to out-of-plane bending 



Table 5.2: Comparison of Fk:;ihili1y Coefficients of NABSA, TAIL and Present 

(lb, in units) 

Flexibility NABSA PRESENT % Diff. TAIL % Diff. 

Su x 105 0.143883 0.14491 +0.7 0.14491 +0.7 

s22 x 104 0.312145 0.32364 +3.6 0.32364 +3.6 

s12 x 105 -0.417841 -0.43010 +2.9 -0.43010 +2.9 

s33 x 104 0.183684 0.1886 +2.6 0.17294 -5.8 

544 X 105 0.614311 0.63429 +3.2 0.50157 -18.4 

related warping. 

5.3 Comparison of Deforn1ation 

102 

The present theory is applied to the prediction of the tip deforn1ation in a cantilevered 

beam made of Graphite/Epoxy and subjected to different types of loading. The bean1 

has a CUS square cross section with [+12]4 la.y-up. The geometry and mechanic.al 

properties are given in Table 5.3. Co1nparison of results with the ~1SC:/NASTRA1\ 

finite element analysis of Ref. (38] is pro,,.ided in Table 5.4. The applied a.xial and 

transverse forces are equal t.o 100 lb, while thE' applied torsional moment is 100 lb·in. 

The MSC/NASTRAN analysis is based on a 2D plate model acc.ounting for both 

shear deformation and warping. The predictions of the present theory range from 

+ 1. 7 to -0.7 percent difference relative to the finite element. results. 

The defiection due to transverse load neglecting out.-of-pla.ne bending related warp

ing is equal to 1.341 inch compared to L853 inch (38% difference) in TablE" 5.4. For 

a CUS configuration, the extension-torsional response is decoupled from bending as 

shown in Eq. (5.2). Since Cis constant and g1 does not affect. the stiffness coefficients, 
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Table 5.3: Geometry and Mechanical Properties of Thin-'"'"ailed Beam with [ + 12)4 

CUS square cross-section 

Length = 24.0 in. E11 = E22 = E33 = 11.65 Msi 

Width = depth = 1.17 in. G12 = G13 = 0.82, G23 = 0.7 Msi 

Ply thickness = 0.0075 in. 1112 = 1113 = 0.05, v23 = 0.3 

as outlined in section 5.1.1, the flexibility c.oefficients controlling extension and twist. 

response, S11 , S12 and S22 coincide with those of Refs. [43] and [44]. As a conse-

quence, the axial displacement and twist angle predictions coincide. However, the 

lateral deflection under transverse load differs. The tip lateral deflection predicted 

using the theory of Ref. [30), which includes shear deformation, and Refs. (43] and 

[44}, which include a shear deformation correction to R.ef. [30], is 1.724 inch resulting 

in -7.6 percentage difference compared t.o the NASTRAN result. This is due to the 

effect of bending-related out-of-plane warping on the bending flexibilities -c1 and -c1 
, 

S3 4f 

(C33 = C44 for this case), as shown by the underlined terms in Eq. (5.2). 

Figures 5.2 and 5.3 show the bending slope variation along the beam span for 

antisymmetric and symmetric. cantilevers under a 1 lb transverse tip load, respec-

tively. The beam geometry and its material properties are given in Table 5.5. The 

experimental results are reported in Refs. [41], [42], and [46]. The influence of the 

out-of-plane warping due to bending is isolated in these figures. The bending related 

out-of-plane warping, g2U;' and g3 U~' terms in Eq. (4.68), results in a 91 and 20 % 

increase in the bending slope for the a.ntisymmetric and symmetric configurations, 
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Table 5.4: AfSC/NASTRAN and Present. Solutions for a CUS Cantilevered Beam 

with [+12]4 Layups Subjected to Various Tip Load Cases 

Tip Load Tip Deformation ')(, Diff. 

NASTRAN l:resen1 . 
Axial Force Axial Disp. : 0.002189 in. 0.002202 in. +0.6% 

Axial Force Twist : 0.3178 deg. 0.32325 deg. +1.7 '/(, 

Torsional Moment Twist.: 2.959 deg. 2.998 deg. + 1.32 o/t. 

Transverse Force Deflection : 1.866 in. 1.853 in. -0.7% 

respectively. The analytical predictions reported in Refs. (41], {42], and l46] together 

with results obtained on the basis of the analyses in Ref. [30), [43), {44] and the present 

theory are combined in Figs. 5.4 and 5.5. Results show that t.he present theory is 

in good agree1nent with the test data and the closest when compared to the other 

analytical approaches which include shear deformation~ Refs. [30J~ [42], and [46], and 

shear deformation corrections, Refs. [43] and [44]. 

The bending slope in Figs. 5.2-5.5 is defined in terms of the cross section rotation 

for theories including shear deformation. For the geon1et.ry and n1at erial properties 

considered, this effect. is negligible as shown in Figs. 5.4 and 5.5 where the spanwise 

slope at the fixed end fron1 theories with shear deformation, is indistinguishable fro1n 

zero. The nonzero value shown by the test data may be due to the experimental set 

up used to achieve clamped end conditions. 

The spanwise twist. distribution of symmetric cantilevered beam with [30]6 and 

[45]6 lay-ups is plotted in Figs. 5.6 a.nd 5. 7, respectively. The beams are subjected to 

a transverse tip load of 1 lb. Their dimensions and material properties are given in 

Table 5.5. Results show that. the present theory and those of Refs. f43] and (44] are 
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Table 5.5: Cantilever Geometry and Properties 

Width = 0.953 in. E11 = 20.59 Msi, E 22 = E33 = 1.42 Msi 

Depth = 0.53 in. G12 = G13 = 0.87 Msi, G23 = 0.7 Msi 

Ply thickness = 0.005 in. v12 = v13 = 0.42, v2a = 0.5 

the closest to the test. data. A similar behavior is found for the bending slope and the 

twist angle at the mid-span of the symn1etric cantilevered beams appearing in Figs. 

5.8 and 5.9. The beatns are subjected t.o a t.ip torque of 1 lb-in. 

5.4 Shear Deformation Contribution 

The significance of the out·of-plane warping due to bending is illustrated in Fig. 5.2. 

A similar behavior is obtained in Ref. [65] when the shear deformation contribution 

is neglected. This indicates that the out-of-plane warping due to bending includes 

implicitly the shear deformation contribution. In order t.o assess this similarity~ the 

present theory and the numerical work of Ref. [65 J are applied to the prediction 

of the deflection in a cantilevered beam made of graphite/epoxy and subjected t.o 

a transverse tip load of 1 lb. The beam has a CUS cross-section with [+15]6 lay

up. The geometry and mechanical property, provided in Ref. {65], are given for 

convenience in Table 5.6. Figure 5.10 shows a similar behavior suggesting that in the 

present theory, shear deformation is implicitly accounted through bending-related 

warping. The prediction of Ref. [65) are referred to Classical when shear deformation 

is neglected. Further evidence could be provided by estimating the equivalent shear 

deformation strain. This can be expressed by the slope of the plane that approximates 
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Table 5.6: CantilE>ver Geometry and Properties 

Width = 0.923 in. E11 = 20.6 Msi, E22 = E 33 = 1.42 ~1si 

Depth = 0.50 in. G12 = G13 = 0.87 Msi, G2a = 0.696 Msi 

Ply thickness = 0.005 in. v12 = v13 = 0.3, v23 = 0.34 

the cross-section warping and is given [66] by 

( 5.7) 

where ..4 and 1::.= represent t.he cross-sectional area and moment of inertia about the 

:-axis, respectively. 

For a CUS box cross-section subjected to a vertical tip transverse load P:, the 

shear strain distribution across the cantilever length is obtained by substituting the 

axial displacement 1'1 from Eq. (4.68) into Eq. (5.7). The result is the following 

analytical expression 

( 5.8) 

where 

Saa - Bending flexibility 

L - Length of cantilever 

z 1 - Cross-section position measured from the fixed end 

h - Laminate thickness 

a - Box height 

d = Box width 
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A comparison of the shear strain ")':ry over the length of the cantilever with the 

prediction of Ref. (65) is shown in Fig. 5.11. The shear strain at the fixed end is 

4.5924 x 10-4 based on Eq. (5.8) which is within 2 percent. of 4.6857 x 10-4 calculated 

on the basis of Ref. [65]. 

5.5 Conclusion 

The anisotropic thin-walled closed section has been "cilidat.ed by comparison of re

sponse predictions with finite element solutions, other dosed form analyses and test 

data. The influence of the two new nonclassical contributions namely, extensional 

and bending related out-of-plane warping on the accuracy of the response predictions 

is shown to be significant. Moreover, the contribution of shear deformation is shown 

to be implicitly accounted for through the bending related out-of-plane warping~ and 

in-plane warping effect is found to be negligible. 

5.6 Closing Remarks 

For anisotropic beams, the major reason for the discrepancy in the predictions of the 

analytical models of Refs. [30] and [41}-[46] and the present theory is due to the apriori 

assumed displacement fields which neglect. the extension and bending-related out-of

plane warping. The influence of the material's anisotropy on the displacement is too 

complex t.o cast in a kinematic assumption similar t.o classical theory of extension

bending and torsion. 

A consistent approach to account for the various behavioral modes associated 

with anisotropic beams was adopted in this work. 11. is based on an asymptotical 

analysis of the energy. The influence of the material's anisotropy on the displacement 

and stiffness coefficients was isolated, and by comparison an assessment of previous 
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analyses was performed. In particular, this approach accounts implicitly the shear 

deformation contribution shown to be significant in previous models. The difference 

being the consistent order of magnitude that. this contribution is accounted for and 

its significance relative to other contributions. 
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Figure 5.2: Significance of out-of-plane bending related warping on the bending slope 

of an antisymmetric [15)6 cantilever under 1 lb transverse tip Load 
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Figure 5.3: Significance of out·of-plane bending related warping on the bending slope 

of a symmetric {30]6 cantilever under 1 lb transverse tip Load 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

This research addresses two key issues for the c.ontinuing implementation of con1-

posites h1 advanc.ed struc.t.ures natnely, the understanding of the role of the n1aterial·s 

anisotropy on its stiffness behavior and its damage modes. An analytical model based 

upon a shear deformation theory and a sublaminate approach was developed in or

der to investigate mid-plane and matrix crack-tip delaminations. This model was 

combined with an earlier analysis for mixed-ntode free-edge delamination to form an 

integrated code for the prediction of damage onset in laminated composites. The 

code predictions were validated by cotnparing its results with test data. Of signif

icance is the ability it provides for the prediction of damage progression sequence 

and corresponding critical strains. Moreover, the effect. of hygrothermal stresses on 

the strain energy release rat.e and interlaminar stresses was isolated. The increase 

in strain energy release rate and int.erlaminar stresses associated with curing stresses 

can precipitate failure and should be considered for an accurate prediction of failure. 

The findings of this research work point to new research inquiries. The first is 

characterization and prediction of damage onset. and growth under cyclic loading 

including the effect of hygrothermal stresses. The investigation can lead to the deter

mination of comporite components' life and inspection intervals. The second is the 

study of the effect of damage modes and their interactions on the vibration charac

teristics and damping of laminated composites. The result of this investigation will 

assess the effect. of damage modes on the natural frequencies and mode shapes and 
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can lead to the development of Non·Destructive Evaluation methods. 

The asymptotical analysis used to develop the thin·walled anisotropic beam theory 

provides a rigorous basis for the prediction of the bean1 stiffnesses and associated 

displacement. field. Closed-form expressi<;ms for the stiffnesses have been developed 

and new contributions t.o the warping have been found. This analysis can be extended 

to beams with multi-cell type cross sections and pretwist.ed configurations. Moreover, 

the previous results on the effects of hygrothermal stresses point to the significance 

of including their contribution in the thin·walled closed section beam analysis. The 

consideration of dynamic and aerodynamic loadings using asympt.otical analysis will 

provide a rigorous basis for the investigation of the dynamic and aeroelastic response 

of composite structures. Finally, the presence of embedded delamination on t.he 

response of composite beams is a first step toward studying the effect of damage 

modes on their stiffness and strength. In this respect, the analysis of composite 

beams with open cross section can be regarded as the final stage of damage in a 

closed section bean1. 

V\Then acc.omplished, these recommended research tasks will provide an under· 

standing of the effects of damage on the performance of advanced structures n1ade 

out. of composite and will lead to the development of reliable design t.ools to ensure 

their damage toleranc.e. 
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Appendix A 

Convergence of Pisplacement Field 

In this appendix detailed calculation of the third and final cycle is provided. 

Results show that no additional correction terms of the sa1ne order in the energy 

functional emerge and the displacement field given in Eq. ( 4.68) is the converged one. 

1.1 Third-Order Approxhnation 

A third cycle is carried out by rewriting the displacement field in Eq. ( 4.68) in the 

forn1 

t•1 = U1(:r)- y(s)U;(;r)- =(s)U;(x) + G(sh/(:r) 

+gt(s)F;(:r) + 92(s)U;'(x) + 93(s)F~'(:r) + J~I(s.:r} 

(A- 1) 

where ti11 , if1 2 and J, are correction functions to he determined based on their contri-

butions to the energy functional. 

Substitute Eq. (A-1) into (4.7) to obtain the strains and curvatures in terms of 

the displacement corrections 

t aih1 
In= In+ ax 

t 8iv2 : 
21'12 = 2112 + 8:r + 2112 

"" "' 
122 = 122 + i22 
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(A- 2) 

V A 

P22 = P22 + P22 ' 

where ~atf and ~af3 are the strains and curvatures co~responding t.o the second-order 

approximation. These are expressed as 

(t) (I#) (I#) (I#) ,......,._.., ,....-"-... .----... ........-----.. 
- U~(x)- yU~'(x)- ;;[!~'(:r) + G(sho"(:r) 

(t4) (~) (~) 
~ ~ ___....._.. 

+ 91 ( s )U;'( X)+ 92F~"( X)+ 93F~"(x) 

(t) (t) (I#) (I#) ........-----.. ~ ~ ~ 
2:::. = 2A, ""'( ) + dgl TT'( . ) + dg2l!"( ) + dg3 [!"( ) 

I 12 lc Clf x ds ll :r. ds 2 x ds 3 :r 

~22 = 0 

~ til d= II dy II ( f:l ) 
Pu = [,2 (.:r) ds - Ua (x) ds -If' (;r )rt - 0 L2 (A- 3) 

~12 = 4~ 7: U{(z) + ( 4~ 
2~' c- 1) ~o?'(x) ~ o(:r) 

~22 = 0 

An order of magnitude comparison for each strain and curvature measure shows that 

some terms of higher order in ~11 can be cancelled and its expression simplifies t.o 

Among the new terms introduced by the function .J,i the leading ones are denoted 

by superscript: in Eq. (A-2). The order of .J,i is assumed to he 

(A- 4) 
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Consequently, the order of magnitude of the leading terms in Eq. (A-2), is as follows 

:. : (lld2 
). 

ll2 ...... 122,..., 0 v 

(A- 5) 

The energy functional can be represented by 4?(1u,21t2,122,Pn,Pt2,P22). By 

keeping the strains and curvature associated with the second-order approximation 

and the leading tenus contribution over the other tenus (i.e., by dropping the terms 

aJ.l aJ.2 a2J, d a2J.. t aJ)2 • E (A 2)) th . f . b . 
Bz , Bz , az2, an e.az - 4R Bz In q. - e energ) unc.t.Jon can e wntten as 

(A- 6) 

In the following, the order of magnitude of the energy due t.o bending, i.e. due t.o ~11 ~ 

~1 2, P12 , and p22 , is assessed. 

The interaction terms associated with ~11 , namely 

are of order ( A~~d
2

) or smaller. They are neg]ected in con1parison with the following 

n1embrane contribution to the energy 

associated with v~ and r.p' 

associated with v;' and V~' 

The interaction terms due to the bending curvature ~12 are 

(A-7) 
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These terms are of higher order of magnitude in comparison with the corresponding 

membrane contribution in Eq. (A-i), and n1ay be neglected. The remaining interac

tion terms associated with p12 and p22 , namely 

.., .. .., .. v .. .., " { ~ 0 ( .l1~~) associated with u; and tp' 
h1nP12, hi12P12, h1u~22' h')·12P22 (.l1,hd') 

~ 0 L" associated with U~' and U~' 

may also be neglected in comparison with (A- i). Therefore in order to determine the 

functions .J1, one has t.o minimize the shell energy expressed by 

(A- 8) 

Setting the first variation of the energy functional to zero to get Eq. ( 4.45 ). Sub

stitute from Eq. (A-2) into Eq. ( 4.45) to obtain 

(Eh) 
1 ,.,..-.. 
- B 
2 

( ~d3) 
( ~d) (~d) (~d) LT v v v ~ (~) 

.--"'--. ,__.._, ,__.._, __.,.._.., QUI 
u; ( :r) - y ( s) V'~' - = ( s ) u~' + G ( s ) ;:-" ( x ) + -

8 
1 

3' 

(!) (!) (~) 
(Eh) __.,.._.., ~ __....,__ 

+ ~ C 21-:{ c<p'( x) + ddgl [T~ ( :r) + ddg2 U~'( x) 
4 c - s s 

(14) 
,---...., 
a.J,l 
OS 

=constant (A- 9) 

Equation (A-9) shows that the contribution of it is of higher order in comparison with 

all other terms and may be canrelled from the left hand side. Therefc!'e no additional 

corrections to the displacement field emerges, and the displacement :field obtained in 
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Eq. (4.68) is the converged one. An alternative is to neglect the terms of higher order 

in Eq. (A·9), while keeping the leading .J,1 term, t.o obtain 

~ B [CT; ( :r) - y( 8 )[!~'- z( 8 )U~'] 

} [2Ae 1 dg1 1 dg2 11 dg3 11 a;t_,l] 
+ 4C lc c..p (:r) + ds U1 (:r) + ds ll2 (:r) + ds U3 (:r) + Bs = constant 

(A- 10) 

Solution of Eq. (A-10) is determined using the single value condition of t.he axial 

displacen1en1 and .J,1 is found to be a function of x only. Such a function has already 

been considered and no new terms of the same order in the energy functional are 

generated from the third and therefore final cycle. 
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