15:56:06 CCA PAD AMENDMENT - PROJECT HEADER INFORMATION 08/14/92
Active
Project #: E-16-654 Cost share #: E-16-382 Rev #: 12
Center # R6101-0A0 Center shr #: F6101-0A0 OCA file #:
Work type : RES
Contract#: NAG-1-637 Mod #: ADMIN. Document GRANT
Prime #: Contract entity: GTRC

Subprojects ? : N
Main project #:

Project unit: AERO ENGR
Project director(s):

ARMANIOS E A AERO ENGR
Sponsor/division names: NASA
Sponsor/division codes: 105
Award period: 860212 to 921225

New this change
0.00
0.00

Sponsor amount
Contract value
Funded

Cost sharing amount

Does subcontracting plan apply ?: N

fitle:

CFDA: 43.002
PE #: N/A

Unit code: 02.010.110

(46061894-8202

/ LANGLEY RESEARCH CTR, VA
/ 001

(performance) 921225 (reports)
Total to date
3645,000.00
345,000.00

36,986.00

ANALYSIS OF DELAMINATION RELATED FRACTURE PROCESSES IN COMPOSITES

PROJECT ADMINISTRATION DATA

CA contact: Ina R. Lashley

Sponsor technical contact

DR T KEVIN O'BRIEN, MD 188t
(804)864-3465

NASA LANGLEY RESEARCH CENTER
1AMPTON VA 23665-5225

curity class (U,C,S5,TS) : U
fense priority rating NA

894-4820

Sponsor issuing office

MS. BEVERLY THOMAS-BURSE
(B04)8646-24617

NASA LANGLEY RESEARCH CENTER
MAIL STOP 126
HAMPTON VA 23665-5225

ONR resident rep. is ACO (Y/N):
NASA supplemental sheet
GIT X

o ‘
T RN
. ot
s T
N L

uipment title vests with: Sponsor
GOV'T RESERVES RIGHT FOR ITSELF IF >$1000.
ministrative comments -

ADMIN MOD TO EXERCISE MEXTENSION™
3-MONTHS TO ALLOW TIME FOR COMPLETION. NASA WAS NOTIFIED ON 8/146/92.




GEORGIA INSTITUTE OF TECHNOLOGY
OFFICE OF CONTRACT ADMINISTRATION

NOTICE OF PROJECT CLOSEOUT

Closeout Notice Date 03/26/93

Project No. E-16-654% Center No. R6101-0A0

Project Director ARMANIOS E A School/Lab AERO ENGR

Sponsor NASA/LANGLEY RESEARCH CTR, VA

Contract/Grant No. NAG-1-637 Contract Entity GTRC

Prime Contract No.

Title ANALYSIS OF DELAMINATION RELATED FRACTURE PROCESSES IN COMPOSITES

Effective Completion Date 921225 (Performance) 921225 (Reports)

Date
Closeout Actions Required: Y/N Submitted

Final Invoice or Copy of Final Invoice

Final Report of Inventions and/or Subcontracts
Government Property Inventory & Related Certificate
Classified Material Certificate

Release and Assignment

Other

Tz Tz

CommentsLETTER OF CREDIT APPLIES. EFFECTIVE DATE 2-12-86.

CONTRACT VALUE $345,000.

Subproject Under Main Project No.

Continues Project No.

Distribution Required:

Project Director
Administrative Network Representative
GBTRI Accounting/Grants and Contracts
Procurement/Supply Services
Research Property Managment
Research Security Services
Reports Coordinator (0CA)
GTRC
Project File
0ther HARRY VANN-FMD
FRED CAIN-00D

€L L L LT < << <<

NOTE: Final Patent Questionnaire sent to PDPI.



SEMI-ANNUAL REPORT

ANALYSIS OF DELAMINATED RELATED
FRACTURE PROCESSES IN COMPOSITES

NASA GRANT NAG-1-637
GEORGIA TECH PROJECT E16-654

PRINCIPAL INVESTIGATORS
Lawrence W. Rehfield and Erian A. Armanios

This report covers the research work performed under Grant
NAG-1-637 for the period starting Ffebruary 1986 and ending August
1986. The work described herein was performed at the School of
Aerospace Engineering, Georgia Institute of Technology. The research
objectives are:

(1) Develop an analysis of a symmetric edge delamination
specimen including residual strain effects due to
temperature and moisture;

(2) Compare predictions with those of Ref. 1 for the example
cases;

(3) Develop an analysis for delamination in tapered specimens;
and

(4) Create appropriate computer programs and documentation for
the NASA Langley Research Center.

In relation to the first objective, the computer code for the
edge delamination (ED) analysis without residual strains has been
modified to deal with hybrid Taminates (plies of different materials).
The code has been exercised through comparison with the finite element
results provided by NASA Langley. A complete validation stugdy of this
version is underway.

The sublaminate analysis of the ED specimen is modified to
include residual strain effects. The governing equations have been
established. They are being checked before inciuding them in the
computer code.

An equilibrium analytical model has been developed for tapered
specimens. The interlaminar stresses predicted by this model have
been validated through comparison with the finite element results of
Ref. 2. The total energy release rate will be compared with the
recent simple analysis method of Ref. 3.

Final results for the tapered specimens and residual strain
effects in the ED specimens are expected at the end of the year grant.
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Overview:

This report covers the research work performed under Grant
NAG-1-637 for the period starting August 1986 and ending February
1987. The work described herein was performed at the School of
Aerospace Engineering, Georgia Institute of Technology. The research
objectives are:

(1) Develop an analysis of a symmetric edge delamination
specimen including residual strain effects due to
temperature and moisture;

(2) Compare predictions with those of Ref. 1 for the example
cases;

(3) Develop an analysis for delamination in tapered specimens;
and

(4) Create appropriate computer programs and documentation for
the NASA Langley Research Center. N

The first objective is completed. A computer program and
documentation has been developed based on the analysis. The code has
been checked and the second objective is under completion. A summary
paper describing the analysis and the validation study through
comparisons with the results of Ref. 1 will be sent to the technical
monitor for his review. Also a computer tape will be provided to run
cases of interest.

The total energy release rate analysis for the tapered specimens
is underway. This represents the final phase of work associated with
the third objective. A validation study of the analysis will be
performed by comparison with the results of Ref. 2 and other available
test cases.

[



In analyzing the ED specimen, emphasis is given to the evaluation
of the total energy release rate as well as the energy release rate
components. Based on these modal components, the onset and growth of
edge delaminations can be predicted using an appropriate fracture law.
The present analysis provides aiso estimates of the interlaminar shear
stress distribution ahead of the delamination front. These distribu-
tions can be sensitive to hygrothermal conditions. A preliminary
assessment of hygrothermal conditions on interlaminar stresses has
heen performed and the results are summarized in the following.

Effect of Hygrothermal Conditions on Interlaminar Stresses

To investigate the influence of residual and moisture conditions
on interlaminar stresses, the case of [35/-35/0/90]5, [35/0/—35/90]S

and [0/35/—35/90]s ED specimens are considered. The specimens are

subjected to a mechanical strain of 0.00254 at a room temperature of
70°F. The specimens are made of T300/5208 graphite/epoxy material
with a cure temperature of 350°F. The moisture weight gain is 0.6
percent. The material properties are those of Reference 1. A
comparison of the interlaminar shear stress (oyz) distributions is

presented in Figures 1-3. Labels M, M+T and M+T+H denotes Mechanicai,
Mechanical and Thermal and Mechanical, Thermal and Moisture effects,
respectively. For the layups considered M+T and M+T+H distributions
are indistinguishable at this level of moisture weight gain. 1In
contrast, the shape of Oyz distribution ahead of the delamination

front is drastically changed due to thermal effects as well as the
maximum value at the crack front. The maximum shear stress due to
hygrothermal effect is 3.20, 3.25 and 3.35 times the mechanical shear
stress at the crack front for the first, second and third Tlayups,
respectively. This 1is due to the fact that hygrothermal residual
stresses produce considerable mismatch between the effective thermal
and moisture expansion between the upper ply units and the 90 ply in
each Tayup.

A similar finding is presented in Reference 3 for a bidirectional
graphite/epoxy laminate subjected to a mechanical strain £=0.01, with
a temperature differential from cure temperature to test temperature
of -243°F (-117°C). The laminate layup is [03/903]5. Moisture

effects were not considered in this work. The ratio of the maximum
peel stress (ozz) due to thermal residual stress is 2.8 the mechanical

stress as shown in Fig. 4 of the Reference.



Closing Remarks

Residual stresses due to fabrication and moisture can have a
significant influence on the interlaminar stress distribution at the
deTamination front. Preliminary results on their effect on the total
energy release rate and the energy release rate components show a
similar trend. The interlaminar stress increase associated with
hygrothermal effects can lead to premature failure and should be
considered in the design stage. The present study points to new
directions and inquiries. For example, the cases of nonuniform
distribution of moisture through-the-thickness and the variation of
ambient temperature with the laminate thickness. In this situation,
the hygrothermal gradients through-the-thickness may create an un-
balance effect in an originally balanced construction. This addi-
tional consideration should be accounted for specially for aerospace
structural components subjected to a large temperature difference
between their upper and Tower surfaces.



REFERENCE

0'Brien, T.K., Raju, I.S. and Garber, D.P., "Residual
Thermal and Moisture Influences on the Strain Energy Release
Rate Analysis of Edge Delamination," Journal of Composites
Technology & Research, Vol. 8, No. 2, Summer 1986, pp.
37-47.

0'Brien, T.K., “Delamination Durability of Composite
Materials for Rotorcraft: Analysis, Characterization and
Design," RPI Workshop on Composite Materials and Structures
for Rotorcraft, Rensselaer Polytechnic Institute, Troy, NY,
September 10-11, 1986.

Whitney, J.M., "Stress Analysis of a Mode I Edge
Delamination Specimen for Composite Materials," Proceedings
of the AIAA/ASME/AHS 26th Structures, Structural Dynamics,
and Materials (SDM) Conference, Orlando, Florida, 15-17

April 1985. AIAA paper No. 85-0611, pp. 34-40.



INTERLAMINAR SHEAR STRESS IN KSI

15.00

12.50

10.00

7.50

5.00

2.50

0.00 &

vz

(b-a) , 8 M+T+H
2 ’ M+T
[ 3510/—354/90];"
€=0.00254
M
. ,y/(b-a)

0.90 0.92 0.94 0.96 0.98 1.00

FIGURE 1



INTERLAMINAR SHEAR STRESS IN KSI

15.00

12.50

10.00 |

7.50

5.00

2.50

0.00

yz

M+T+H
S T M+T
(b-a) 8
£ ‘
,,....).y
_*_.. . — ll
[0135/—35{90] .
€=0.00254
M
, . y/(b-a)

0.0 0.92 0.94 Q96 0.98 1.00

FIGURE 2



INTERLAMINAR SHEAR STRESS IN KSI

vz

15.00 | e
g(b—a) a M+T+H
1

i | M+T

+_ [p——

12,50 |-
[35/-35/0{901,
€=0.00254

10.00

7.50

5.00

‘ M
2.50
0.00 . ,y/(b-a)

0.90 0.92 0.94 096 098 1.00.

FIGURE 3



Qverview

{\
T
s

SEMIANNUAL REPORT

ANALYSIS OF DELAMINATED RELATED
FRACTURE PROCESSES IN COMPOSITES

NASA GRANT NAG-1-637
GEORGIA TECH PROJECT E16-654

PRINCIPAL INVESTIGATORS
Lawrence W. Rehfield and Erian A. Armanios

This report covers the research work performed under Grant NAG-1-637 for

the period starting February 12, 1987 and ending August 11, 1987. The work

described herein was performed at the School of Aerospace Engineering, Georgia

Institute of Technology. The research objectives for the first year were:

(1)

(2)
(3)
(4)

Develop an analysis of a symmetric edge delamination (ED) specimen
including residual strain effects due to temperature and moisture;
Compare predictions with those of Reference 1 for the example cases;
Develop an analysis for delamination in tapered specimens; and

Create appropriate computer programs and documentation for the NASA

Langley Research Center.

The research objectives for the second year are:

(1)

(2)

(3)
(4)

Extend the sublaminate analysis for the delamination in tapered
specimens to predict the energy release rate components under tensile
loading;

Develop an analysis for the delamination 1in tapered specimens
subjected to bending loading;

Develop an analysis for isolated, internal ply cracks;

Compare predictions in (1), (2) and (3) with available results in the

literature or with finite element simulations;



(5) Create appropriate computer programs and documentation for the NASA
Langley Research Center.

A summary of the first year program is presented first. This is followed
by the work accomplished to date for the second year and a discussion of some
issues regarding the influence of residual thermal and moisture strains on the
energy release rate and the discrepancy between the results of this research

work and those of Reference 1.

Summary of First Year Progress

The objectives of the first year focused on two geometric configurations,
the edge delamination specimen and the tapered specimen. A simple analysis
methodology predicting the interlaminar stresses in a tapered configuration was
developed. The predictions of the method are in good agreement with a finite
element simulation.

The influence of residual thermal and moisture strains on interlaminar
stresses and total energy release rate in the edge delamination specimen was
studied. Of major importance are the findings that: (1) the interlaminar stress
distribution and total energy release rate are sensitive to hygrothermal
conditions; (2) residual moisture strain tends to alleviate the thermal
influence for both the interlaminar stresses and total energy release rate; and
(3) the moisture content producing complete alleviation from the thermal effect
is the same for the total energy release rate and interlaminar stresses. While
the first two findings are in agreement with the results of previous
investigators?,? the third finding is new. It establishes a similarity in
behavior between a delamination analysis expressed in terms of the energy

release rate?® and the strength approach“ expressed by the interlaminar stresses.



An illustration of these findings 1is provided in Figures 1-3. The
influence of hygrothermal condition on the interlaminar shear stresses Tyz and
Tz and total energy release rate appears in Figures 1 and 2. The labels M, M+T
and M+T+H in the figures stand for mechanical, mechanical and thermal and
mechanical, thermal and moisture, respectively. The material considered is
T300/5208 graphite/epoxy. Its material properties are those of Reference 1.
The cure temperature for this material is 350° F while the operating temperature
is 70° F. The moisture weight gain percent is 0.4 in Figure 1. The mechanical
strain is 0.00254 which represents a practical value for this material. In
Figure 2, the moisture level for total alleviation of the energy release rate
from thermal effects is 0.76 for a [-35/55/10/—80]S layup with delamination at
the 55/10 interface.

A comparison of the interlaminar shear stresses at this level of moisture
with the case of mechanical loading alone appears in Figure 3. It is seen that
a level of moisture of 0.76 results in the total alleviation of the interlaminar
shear stresses also. The same conclusion is reached studying eight other

layups.

Second Year Progress

Due to the discrepancy between the results of the hygrothermal effects on
the ED specimen mentioned earlier, an extensive investigation has been performed
in order to resolve the disagreement. A study of the computer program and the
details of the analytical method used in Appendix A of Reference 1 clarified
these differences. The computer program and the analytical expressions used in
Reference 1 were provided at our request by Donald Garber of Kentron
International Inc. A description of our findings is given in the following

section.



Hygrothermal Effects on Interlaminar Fracture

Some deviation from the proposed research plan has been made due to some
unanticipated findings. In attempting to correlate our new delamination
analysis® results for test cases analyzed previously at the Langley Research
Center!, we found discrepancies. A thorough investigation revealed that there
is a fundamental mistake in the equations appearing in Appendix A of Reference

1. The strain energy is defined in Equation (A,;) of the Appendix as:

.1
U= 5 Igijcijdv (1)
v
where the stress tensor for a given ply is defined as the product of the

transformed reduced stiffness matrix and the mechanical strain of the ply. The
strain tensor however, 1is taken to be the total strain rather than the
mechanical strain. Due to this error the expressions for strain energy and,
hence, strain energy release rate are incorrect. As a result, the conclusions
drawn and the fundamental nature of the process are actually different than
those presented in Reference 1. This situation is depicted in Figure 4 where
the variation of the energy release rate with moisture percentage content is
shown for a [35/-35/0/90]S layup with delamination at the 0/90 interface. The
agreement is good for the case of mechanical loading. When hygrothermal effects
are included however, there is a difference in the distribution as well as the
numerical values. The moisture content corresponding to total alleviation from
thermal effects is close for both predictions.

In the course of investigating the discrepancy, it was found that an
analysis by Whitney® for a Mode I example agrees with our predictions for the
same analysis. Whitney's analysis is considered to be correct, so this provides
important substantiating evidence.

Additional substantiating evidence is expected from analysis resuits to be

provided by Dr. Wen Chan of Bell Helicopter Textron Inc. The test case



represented by results in Fig. 3 of Reference 1 will be independently reanalyzed
by Dr. Chan at our request.

As a result of the above unanticipated problem, in the first six months
work on tapered specimen analysis has been deferred.

Progress has been made in modeling the situation caused by isolated trans-

verse cracks in laminates. A description of our preliminary work follows.

Analysis of Progressive Damage Initiated by Isolated Ply Cracks

Considerable attention has been devoted to transverse matrix microcracking
for first generation brittle epoxy matrix composites. One characteristic that
has been documented is the crack characteristic spacing or, conversely, crack
density. In the usual characteristic damage patterns, the intercept of trans-
verse cracks with neighboring ply surfaces often serve as sites for the initia-
tion of delamination cracks. As delamination cracks isolate individual plies
and sublaminates, failure of the isolated units by fiber fracture occurs in the
terminal stages of the process. Currently, we are concerned with modeling and
analyzing the early stages of the process through the onset of delamination.

There is no consensus on methods for predicting transverse cracking. A key
assumption has been utilized in creating our analysis methodology. It is that
matrix microcracking is predicted by strain level only. This is valid for
damage characteristic dimensions greater than a ply thickness. For damage on a
smaller scale, fracture mechanics concepts and means for detecting sub-ply
microcracks are required. For most purposes, strain level predictions are quite
satisfactory.

A model for an isolated ply crack has been created. We call it the Mem-
brane Ply-Sublaminate Model. The analysis is quite simple to perform as local

bending of the modeling units is neglected.



The isolated cracked ply of a laminate under tensile loading causes a
redistribution of loading locally. The axial stress at the crack surface of the
cracked ply drops to zero. The interlaminar shear stresses are very large at
interply surfaces on either side of the cracked ply and tend to decay away from
the crack front. As load is again picked up by the cracked ply through shear
transfer, it approaches the original level, which was sufficient to produce the
original crack. Consequently, a characteristic pattern of periodic cracks is
produced.

The next phase of the damage process is the onset of delamination at the
intercepts of the transverse cracks with neighboring plies. For the onset of
delamination, it seems that the strain energy release rate can be predicted on
the basis that the cracks are isolated. This is because they are situated at
the shear stress decay distance apart.

A stress analysis based upon our Membrane Ply-Sublaminate model has been
performed. For the case analyzed, a [0,90]s laminate of AS/3501 graphite-epoxy,
the predicted transverse crack spacing is 1.160 mm. The average value of
measured crack spacings for this configuration is 1.131 mm as determined by
Reifsnider. Consequently, at least to this extent, our model appears very
promising.

An energy release rate analysis 1is underway. After it is completed and
validated, a correlation study with experimental data in the literature will be
performed. At a later time, an extensive finite element, numerical correlation

may be undertaken.
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Overview

This report covers the research work performed under Grant
NAG-1-637 for the period ending February 28, 1989. A detailed de-
scription of the fracture analysis of transverse crack tip delaminations
is presented in the following sections. This work was performed
during the first six months of the grant period and has been accepted
for presentation at the 30th Structures, Structural Dynamics and
Materials Conference (Mdbile, Alabama, April 1989). The following

sections are adapted from the aforementioned paper.

Abstract

Delamination is a predominant failure mode in continuous fiber
reinférced laminated composite structures. One type of delamination
is the transverse crack tip delamination which originates at the tip of
transverse matrix cracks. An analytical model based on the sublami-
nate approach and fracture mechanics is developed in this paper to
study the growth of such delaminations. Plane strain conditions are
assumed and estimates are provided for the total strain energy release
rate as well as the mode I and mode II contributions. The energy re-
lease rate estimates are used in combination with a simple failure law
to predict critical delamination growth strains and stresses. These
predictions are compared with experimental data on T300/934
Graphite Epoxy [£25/90pls laminates in the range n=.5 to 8. A good
agreement is demonstrated for the range of n where the experimental
observations indicate transverse crack tip delamination to be the pre-

dominant failure mode.



Introduction

F?ber reinforced composites are now being used in a wide variety
of engineering structures. The concept of directional strength and
stiffness has been, for the mostvpart, understood sufficiently to enable
efficient load beéring designs. One of the current major issues in
composite structures is the understanding and prediction of damage
modes and failure mechanisms. A thorough knowledge of the failure
mechanisms is bound to lead to the design of efficient and durable
structures. Failures in these materials often initiate in the form of ma-
trix cracks or delaminations. Matrix cracks refer to intralaminar fail-
ures whereas delaminations refer to interlaminar failures.

Matrix cracks usually occur within laminates where the fibers
run at an angle to the primary load direction. Hence, such matrix
cracks are also called transverse cracks. Based on the location and di-
rection of growth, two distinct types of delamination can be discerned.
These two types are called edge delamination and local or transverse
crack tip delamination. Edge delaminations initiate at the load free
edges of the laminate whereas local delaminations start from a trans-
verse matrix crack. In many cases, both types occur concurrently with
varying levels of interaction. It has been observed in simple tension
tests of uniform rectangular cross section specimen (Edge
Delamination tests) that delaminations initiate along the load free
edges and propagate normal to the load direction. Transverse matrix
cracks running parallel to the fibers have also been observed in off axis
plies such as 90° plies. Such transverse cracks terminate where the
~ ply orientation changes. Delaminations can also originate at the inter-

faces where transverse cracks terminate. These delaminations, called

2



transverse crack tip delaminations or local delaminations, grow nor-
mal to the transverse crack from which they originate. In the case of
90° plies, the growth direction is parallel to the load.

The growth process of edge delaminations and local delamina-
tions is often modelled using a fracture mechanics approach leading to
the calculation of a strain energy release rate. This is because the
strain energy release rate can correlate delamination behavior from ‘
different loading conditions and can account for geometric depen-
dencies. The strain energy release rate associated with a particular
growth configuration is a measure of the driving force behind that fail-
ure mode. In combination with appropriate failure criteria, the strain
energy release rate provides a means of predicting the failure loads of -
the structure.

Several methods are available in the literature for analyzing edge
delaminations. These include finite element modellingl-3, complex
variable stress potential approach?, simple classical laminate theory
based techniqueS and higher order laminate theory including shear
deformations6. Finite element models provide accurate solutions but
involve intensive computational effort. Classical laminate theory (CLT)
provides simple closed form solutions and is thus well suited for pre-
liminary design evaluation. However, CLT provides only the total en-
ergy release rate, and thus, in a mixed mode situation, there is insuf-
ficient information to completely assess the delamination growth ten-
dency. A higher order laminate theory including shear deformations
has the ability to provide the individual contributions of the three frac-

ture modes while retaining the simplicity of a closed form solution. A



shear deformation model is available for edge delamination and has
been shown to agree well with finite element predictions®.

Crossman and Wang’ have tested T300/934 Graphite epoxy
[£25/904]s specimens in simple tension and reported a range of be-
“havior including transverse cracking, edge delamination and local de-
lamination. O'Brien® has presented classical laminate theory solutions
for these specimen, demonstrating reasonable agreement in the case
of edge delamination but with some discrepancies in the local delami-
nation predictions. A finite element model combining edge and local
delaminations has been proposed by Law?®. His predictions, however,
do not fully explain the dependency of the critical strain on the num-
ber of 90° plies.

In this paper, a shear deformation model is developed for the
analysis of local delaminations originating from transverse cracks in
90° plies located in and around the specimen midplane. Plane strain
conditions are assumed and thickness strain is neglected. Delamina-
tions are assumed to grow from both ends of the transverse crack tip.
The transverse crack is treated as a free boundary and the delamina-
tion is considered to be the crack whose growth behavior is to be
modelled. The sublaminate approachl0.11 is used to model different
regions of the specimen. The resulting boundary value problem is
solved to obtain the interlaminar stresses, total strain energy release
rate and energy release rate components. Critical local delamination

growth loads are predicted for [+25/90ph]s specimens.

Analytical Model

The formulation is based on the sublaminate approach detailed

in Ref. 10. A longitudinal section illustrating the geometry of a generic

4



configuration is shown in fig. 1. The central region is assumed to be
made of 90° plies with an isolated transverse crack in the middle.
Delaminations are assumed to grow from both ends of the transverse
crack, and towards both ends as shown. From symmetry considera-
tions, only one quarter of the configuration is modelled. The modelléd
portion is divided into four sublaminates as shown in fig. 2. The top
surface (sublaminates 1 and 4) is stress free. In order to simplify the
analysis, plane strain conditions are assumed and the thickness strain
(ez) is set to zero. The consequence of this, combined with the fact
that the w displacement is zero along the center line, is that w is zero
in sublaminates 1, 2 and 3. Also, this approximation does not allow for
the enforcement of boundary conditions on the shear stress resultants,
leading to incorrect estimates of the interlaminar normal stresses.
The interlaminar shear stresses, however, are not affected by this as-
sumption®.10, These assumptions lead to considerable simplifications
in the analysis. In spite of the simplifications, reliable energy release
rate components can be estimated based on the interlaminar shear
stress distributions®6.10,

A generic sublaminate is shown in fig. 3 along with the notations
and sign conventions. The peel and interlaminar shear stresses are
denoted by P and T, respectively, with t and b subscripts for the top
and bottom surfaces, respectively. The axial stress resultant, shear
stress resultant and bending moment resultant are denoted by N, Q
and M, respectiveiy. A summary of the governing equations is pre-
sented in the following paragraphs for convenience. These equations
are derived for a generic sublaminate using the principle of virtual

work in Ref.12.



The x and z displacements within the sublaminate are assumed

to be of the form
ulx,z) = Ux)+zB(z) (1)
wix,z) = Wix) - | | - (2)
Here U represents the axial midplane stretching and W is the trans-
verse displacement. The shear deformation is recognized through the
rotation B. The origin of the coordinate axes for the sublaminates is
taken at the delamination tip as shown in fig. 4. The equilibrium

equations take the form

Q.x+P+-Pp=0 (4)
h
M.x-Q+5(Tt+Tp) = O (5) -

where h is the thickness of the sublaminate. The constitutive rela-

tions in terms of the force and moment resultants are

N =A;1U.x+B11B.x (6)
Q = Ass5(B+W,») (7)
M =B11U,x+D11B.x (8)

where Ay, By and Dy are the classical laminate theory axial, coupling
and bending stiffnesses, respectively. The boundary variables to be
prescribed at the sublaminate edges are
NorU
Morp
Qorw
Additionally, at the interfaces between sublaminates, reciprocal
traction and displacement matching boundary conditions have to

specified.



Solution Procedure

A detailed solution is provided in the Appendix. A summary is
provided in this section for convenience. The variables are Subscripted
to indicate the sublaminate in which they occur. The solutions in
sublaminates 1 and 2 are coupled by the reciprocal interlaminar-
stresses denoted T; and P; and by displacement continuity at the
common interface. Assuming exponential solutions for the axial force
and bending moment resultants leads to an eigenvalue problem involv-
ing the exponential parameter s. The eigenvalues turn out to be 0 and
two nonzero values (say s; and sp) occurring in positive and negative
pairs. Since the response decays from the delamination (crack) tip,
only the exponentially decaying terms are considered in the solutions.

The following boundary conditions from the ends of the mod-

elled region are enforced.

N2(0) = 0 (9)

Q4@ =0 (10)

Ba(a) = 0 (11)

N1+Ng = Applied Load (12)

Further, the following displacement matching ‘conditions are
applied.

u (x,-%) =ug (x%z-) (13)

U1(0) = U4l(0) (14)

U2(0) = Uz(0) (15)

B1(0) = B4(0) (16)

It should be noted that a B2 and 3 matching condition cannot be
applied at this level of modeling since it would amount to specifying

both W and Q6.12. Consequently, there is a displacement discontinuity
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at the delamination tip. The effect of this will be discussed subse-
quently. To eliminate rigid body displacements, U; is set to zero at
the left end. The following solutions can then be obtained for the re-

sultants in sublaminates 1 and 2.

N; = ajeS1X+ageS2X+€A711(1) (17)
N = -ajesS1X¥-ageS2X+€A11(2) (18)
M; = ajkjeS1X+agkoesax (19)
Ms = ajkzeS1X+agkyes2x (20)

The interlaminar shear and peel stresses between sublaminates 1 and

2 can be obtained from equilibrium as

T1=a151e51x+a252eséx (21)
h
P1=(k1+-2—1)(alsl2eslx)
h;
+(k2+?)(a2322e821i) (22)

In the above solutions, the k; parameters are dependent on the
eigenvalues and the stiffness of sublaminates 1 and 2, the a; parame-
ters depend on the ki parameters and the crack length a, and € is de-

fined as
P 1

€=2p Ar11()+A11(2) (23)

where P is the uniform axial force applied on the specimen and b is
the specimen width. Expressions for the eigenvalues and the a; and k;
parameters are provided in the Appendix.

Proceeding on to sublaminates 3 and 4, the following solutions

can be written.

N3 = 0 (24)
M3 = @1 sinh(W3x)+Q2 cosh(wW3x) (25)
where Q2 = ajkz+agky, (26)



@1 = -@2 coth(wsza), (27)

A /Assgzg
and 03 = D11(2) (28)

N4 = € (A110)+A11(2)) (29)
My = a1kj+asks (30)
The corresponding displacement solutions are provided in the

Appendix. The compliance of the specimen can be evaluated as
Ugyla)

C=2—5— (31)
The total energy release rate, G, per crack is then given by
P2 dC
Gr= b da (32)

Use of the previously described solutions leads to the following ex-

pression.

Gredo (-t L 4 (33)
- 2b2 (A11(1) Ary(p+Arie) ! 2)

where the quantities I; and I3 contain exponential terms dependent
on the delamination length. Using the virtual crack closure technique,
from the relative displacements in the cracked portion and the inter-
laminar stresses ahead of the crack tip, the mode I and mode II en-
ergy release rate contributions can be obtained. The mode III energy
‘release rate is zero from the assumption of plane strain. The mode II
energy release rate is given by

li

Gu=5,

m
) 21—6 JTl(x-S)Au(x)dx (34)

where 8 is the virtual crack step size. The result of the limiting pro-
cess is zero if there is no singularity in the stress field10. So, the limit
~ is usually taken as the crack step size d tends to a small value, say A,

based on the decay length or the length required to capture the



essential features of the stress and displacement fields near the crack
tip. The decay length is dependent on the eigen values s; and s2. In
this study, the value of A has been set to

1,1 1 .
A=Z(‘S—1'+'s;) (35)

since it reasonably fulfills the criterion given above. In a similar fash-
ion, the mode I energy release rate can be obtained based on the nor-
mal stress (P) and the w displacements near the crack front. The
normal (peel) stress estimate is inaccurate due to the absence of
thickness strain. Hence, an alternate approach was used to estimate
Gj, the mode I energy release rate. The total energy release rate for
this problem is made up entirely of G; and Gy (Gi;=0). From an esti-
mate of Gt and Gjj, an estimate for G can be obtained simply as
G1 = G1-Gnt (36)
The critical load for a given specimen can then be evaluated
based on an appropriate fracture law. This is illustrated in the follow-

ing section.

Results and Discussion

The solutions derived in the previous section have been used to
model the behavior of [+25/904]s T300/934 Graphite Epoxy specimen
for n values of .5,1,2,3,4,6,and 8. These correspond to the specimen
tested by Crossman and Wang?. The specimen width and length were
fixed at .0381m and .015m, respectively, as in the tests and the ap-
plied uniform axial stress was 100MPa. The solutions were generated
using a simple computer program based on the closed form expres-

sions for the interlaminar stress and energy release rates.

10



An example of the total energy release rate variation with the
crack length is presented in fig. 5. The asymptotic value of Gris de-
noted By Gro in the figure. It can be observed that after a certain
crack length, the Gt is independent of the crack length. On the basis
of curves like the one shown in fig. 5, the crack length was fixed at 10
ply thicknesses for the remainder of the study. The dependence of
the mode II contribution of the energy release rate on crack length (a)
is depicted in fig. 6. Typical interlaminar shear and normal stress
profiles are presented in figs. 7 and 8, respectively. The correspond-
ing energy release rates have also been calculated and are presented in
Table I and fig. 9.

In order to evaluate the critical loads, an appropriate mixed -
mode fracture law has to be applied, based on the calculated energy
release components. Since the calculated mode split shows only a
small variation with n, the simple Griffith criterion Gt=GT: has been
used to scale the stresses to obtain the critical delamination growth
stress (O¢) and strain (€¢) values. The critical energy release rate Gre
was chosen as 415 J/m?2 to obtain the critical stresses and strains
listed in Table I. This value of Gt is larger than Gy to account for the
presence of mode II and the fact that for the material system under
consideration, Gyc is about four times Gic.. The critical strains are
plotted against n, the number of 90° plies in fig. 10. The experimental
results of Ref. 7 and the predictions of Refs. 8 and 9 are also pre-
sented in the figure for comparison. The predictions of the model de-
veloped in this paper are represented by the solid line while the ex-
perimental results are shown as filled squares. The classical laminate

theory and finite element critical strain predictions of Refs. 8 and 9

11



are represented by triangles with a connecting line and a dotted line
respectively. The CLT based model agrees well with the shear defor-
mation model in terms of the total energy release rate. However, the
CLT based model does not provide information on the mode split and
thus, the value of G¢(=Gic) used leads to bias in the predictions.

In the experiments, the local delamination phenomenon was ob-
served as the predominant failure mode only for the n=4, 6 and 8
specimens. The shear deformation model presented in this paper
provides good agreement with the experimental data in this range.
For n<4, edge delamination either in the mid plane or in the 25/90
interface was observed in the tests. Hence, the predictions of the lo-
cal delamination models in this region are not of consequence as long -
as they do not predict critical loads lower than those predicted by
edge delamination models. Thus, it can be seen that the shear defor-
mation model predicts the observed behavior with reasonable accuracy
and can be used in conjunction with an appropriate edge delamination
model to predict critical loads accurately for the complete range of n
values. The edge delamination model presented in Refs. 6 and 12 can
be used for this purpose. However, a separate model is required to
account for the midplane (Mode 1) edge delamination behavior. The

development of such a model is described in Ref. 13.

Conclusions
" A shear deformation model has been developed to analyze local
delaminations growing from transverse cracks in 90° plies located
around the mid plane of symmetric laminates. The total energy re-
lease rate calculations yield the same results as in the case of CLT

based models. The predictions of the shear deformation model agree

12



reasonably with critical strain experimental data from [+25/90p]s
T300/934 Graphite Epoxy laminates. The predicted behavior is such
that, in combination with an edge delamination model, the critical

loads can be predicted accurately in the range of n from .5 to 8.
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Appendix

Sublaminate Analysis for Local Delaminations

A generic sublaminate is shown in fig. 3 along with the notations
and sign conventions: The interlaminar normal (peel) and shear
stresses are denoted by P and T respectively with the t and b sub-
scripts for the top and bottom surfaces respectively. The axial force
resultant, shear force resultant and bending moment resultant are de-
noted by N, Q and M respectively. Plane strain conditions are assumed
to prevail in the x-z plane and the thickness strain €, is neglected.
These assumptions lead to considerable simplification in the analysis.
The displacements in the x and z directions are assumed to be of the
form

u = U(x)+zb(x) (A.1)

w = W(x) (A.2)

Here U represents the axial stretching and W is the transverse

(thickness direction) displacement. This formulation recognizes

shear deformation through the rotation B. The equilibrium equations
take the form |

N,x+Tt+-Tp = O (A.3)
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Q.x+Pt-Pp =0 (A.4)
M,x—Q+g (T¢+Tp) = O (A.5).

where h is the thickness of the sublaminate. The constitutive equa-

tions in terms of the force and moment resultants are

N =A11Ux+B11B.x (A.6)
Q = As5(B+W.,x) (A.7)
M =B11U,x+D11B.x (A.8)

where A,B and D are the classical laminate theory axial, coupling and

bending stiffnesses defined in the customary manner as
h/2
(Ay,By,Dy) = JCg(l,Z,Zz)dZ
-h/2
Here, the Cys are the material moduli. For the case of plane strain in _
the x-z plane, the Cs are defined as follows.
Oxx C11Ci3 O Exx
Oz =| C13C2 0 €22 (A.9)
0 0 C55 'sz

The boundary quantities to be prescribed at the sublaminate

Txz

edges are

NorU

Morp

Qorw
Further, at the interfaces between sublaminates, reciprocity of trac-
tions and continuity of displacements have to be enforced.

The four sublaminates along with the loads acting on each are

shown in fig. 4. Setting P; and T; as shown automatically satisfies the
traction matching boundary condition at the 1-2 interface. From

symmetry, we get w=0 and zero shear stress along the bottom faces of
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sublaminates 2 and 3. This leads to w=0 in sublaminates 1, 2 and 3.
Thus, W has been prescribed in these sublaminates and the vertical
shear force resultant Q cannot be prescribed on these sublaminates.
Consequently, the calculated peel stress distribution will not be cor-
rect. In addition, at the 2-3 interface, the Bs cannot be matched,
since in these sublaminates, specifying B is equivalent to specifying Q
(through Eq. A.7). Inspite of these simplifications, reliable energy re-
lease rate components can be estimated based on the interlaminar
shear stress distributions. The mode I contribution can then be evalu-
ated using the total energy release rate, which is not affected signifi-
cantly by these simplifications. o

For the (x25/904)s laminates under consideration, B is zero in -
all the four sublaminates. For sublaminates 1 and 2, the equilibrium

equations and constitutive relationships can be written as

N1 x-T1 =0 (A.10)

Ng x+T1 = 0 (A.11)
Q1xP1=0 (A.12)

Q2 x+P1-P2 = 0 (A.13)
Ml,x+% T1-Q1 =0 (A.14)
Mz,x+% T1-Qo2 =0 (A.15)
N1 =AnmUix (A.16)
N2 = A1112)U2,x (A.17)
Q1 = Ass(1)p1 (A.18)
Q2 = Ass(2)B2 (A.19)
M1 =D1i)Bix (A.20)
Mgz = D11(2)B2.x (A.21)
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The subscripts in parentheses refer to the sublaminates to which the
stiffness coefficients correspond. Egs. A.14, A.15 and A.12 can be

rewritten in a modified form as

hy |
Mix+ 5 Nix=Ass1)B1 (A.22)
hg
Mo x - 5 Nax = As5(2)B2 (A.23)
Pi1=Qi1x
h;
- Ml’;gg‘f' —2—T1‘x (A.24)

Matching the u displacement along the 1-2 interface implies
h; ho
u (X,-?) =ug (x7)

h h -
or Ut- ?lbl =U2+—23b2 (A.25) .

Combining the equations to eliminate the displacement and in-
terlaminar stress terms leads to the following system of homogeneous

coupled ordinary differential equations.

N} x+tNox =0 (A.26)
h; Ass(1
M1,xx+§ Nixx- EH((T)) M;=0 (A.27)
hg Ass5(9)
M2.}G{' 2 N2,xx" D11(2) My =0 (A.28)

N, hiM; No hoMo

Al 2Dn Ane  2Due (A.29)
The solution is assumed of the form
N1 Ay
No Ao
M [ =)As[ & (A.30)
Mo Ay

Substitution of this solution into Egs. A.26-A.29 leads to an eigenvalue

problem with the following characteristic equation.
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s[B1s%+B2s2+B3] = 0 (A.31)
where the B's involve the stiffness and thickness parameters A, D and
h. For the material system and ply stacking sequence considered,
B22>4B;B3. Hence, the roots can be written as

“Bot\Bg2-4B B
s=o,i\/ Y2 LS

2B;

(A.32)

Only the zero and positive roots of eq. A.32 are considered as they give
solutions decaying exponentially from the crack tip. Then, the axial

force and moment resultants can be written as

N; = ajeS1X + ageS2X + a1 (A.33)
Ng = -ajeS1X - ageS2X + g9 (A.34)
M; = ajkjeSiX + askoeSoX (A.35) -
My = ajksesS1X + agskges2X (A.36)

The k parameters in the above solutions involve the eigenvalues
and the stiffness coefficients (A,D). For example, we have the defini-
tion for k; as

ky = %Eﬂ—itlz (A.37)
111)
Using the equilibrium Eqgs. A.10, A.12 and A.14 along with the

applied axial force P and specimen width b, the axial force resultants

and interlaminar stresses can be written as

Ni= ajeS1¥ + agesSaX + b AL1(1)*A11) (A.38)
_ P Al

No=-aj1eS1X - ageSoX + 2b AL +*AL1E) (A.39)
T1 = Nj x = a1sjeSi¥ + agsgeSeX (A.40)

hy
P1 =M xx+5 Tix
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h h
- (kl+—i-1-)alsl2e31x+(k2+~§1—)a2822es2x (A.41)

- The constitutive equations are used to write down the displace-
ment srl;lutions. The arbitrary constants associated with the displace-
ments and rotations are determined from the matching conditions be-
tween sublaminates 1 and 2 and the end conditions. Proceeding to

sublaminate 3, the governing equations are

N3x =0 (A.42)
Q3x+P3=0 (A.43)
M3x-Q3=0 (A.44)

N3 =A1112)Usx (A.45)
Q3 = Ass(2)B3 (A.46)
Ms = Di1(2) Bax (A.47)

Matching U at the 2-3 interface and applying the boundary con-
dition at the free end, N3(a) = O, gives
N3 =0 (A.48)

ax as
" S1Allg)  S2Al1g) T 28 (A.49)

U3 = U2(0) =

In order to solve for the bending moment, Egs. A.44, A.46 and A.47
are combined to yield

M3 = @ sinh ©3 x + @2 cosh W3 x (A.50)

A /A55[2)
w3 = D11(2) (A.51)

Since the B matching conditon cannot be used at the.2-3 interface,

where w3 is defined by

the (remaining) boundary conditions are
Ms(a) = 0 (A.52)
M3(0) = M2(0) (A.53)
The @s can be solved using the boundary conditions A.52 and A.53 as
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¢2 = alrks + agks (A.b4)

@1 = -¢2 coth ®w3a (A.55)
The solution for sublaminate 3 can be completed by writing the ex-
pressions for Qs, B3 and P3 based on the M3 solution.

The equilibrium equations for sublaminate 4 are

Ngx =0 (A.56)
Q4x=0 | (A.57)
Mg x Q4=0 (A.58)

The constitutive relations take the form

Ng = A11(Usx (A.59)
Q4 = Ass5(1)(B4+Wa ) (A.60)
My = D11(1)Bax (A.61) -
Using Eq. A.56 with the boundary condition N4(a)=2lib yields
Ny = 225 (A.62)

Similarly, using Eq. A.57 with Q4(a)=0 results in
Qs4=0 (A.63)
Matching M; and M4 at the 1-4 interface and using Eq. A.58
gives
M4 = a1k; + agksy (A.64)
The U4 displacement is obtained by integrating Eq. A.59 and
using the displacement matching boundary condition U4(0) = U;(0).

1 (P ay ag

4=A_—11(1) %X+s_1+§)+ as (A.65)

Similarly, integrating Eq. A.64 and setting Ba(a) to zero gives the
solution for B4. Using the solutions for Q4 and B4 and the boundary

condition W4(0)=0 in Eq. A.63 yields the solution for Wy.
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In order to determine aj, ag and as, the following boundary

conditions are used.

P
N;1(0) = b

B1(0) = B4(0)
Ui(-L+a) = 0

It is convenient to define the following parameters.

S1 hy
01 =57 (kl + 2) (A.66)
ki
02 D11y (A.67)
S92 hy
83 = ar (kz + 5 ) (A.68)
ko -
04 = D1 (A.69)
03 =063-01+ (04 -062)a (A.70)
The nominal (far field) strain is given by
P 1
€=2p A1)+ A11(2) (A.71)

The a parameters are obtained as

034042
a; =A1112€ Sed (A.72)

61+62a
az =-A11(2)€ 6q (A.73)

_ a1l sl
ag =€ (L-a) - stAv © sy(L-a)
a2
- -So(L-a)

S2A11(1) e-S2 (A.74)

The specimen compliance C is defined as the ratio of specimen
extension to applied load. This is obtained as

2U4(a)
C= P
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__2 [Pa a a }
~ PA11(1) {2b T35 T sg T ABA1NY (A.75)

The total energy release rate associated with the crack
(delamination) growth under a constant load P is given by

P2 dC
Gt = Q—S a (A.76)

Substituting the compliance expression from Eq. A.75 in Eq.
A.76 yields the following expression for the total energy release rate.

P2 1 1
Gr=3p3 (An(l) * AIALE) +Il-12) (A.77)
where |
_— 9293;92194 (1-e-:(1fal ) l-e‘:z“fa’ ) (A.78)
) (93+94a)e'51(1fa)e-d(91+923)e's2(1"a) (A.79)
with
X=7] 1(1)1A1 1(2) ﬁiiﬁi (480

The individual fracture mode contributions to the energy release
rate can be calculated using the virtual crack closure method, based on
the interlaminar stresses and displacements in the vicinity of the
crack tip. From the assumed plane strain condition, the mode III con-
tribution is zero (Gy=0}. The mode II energy release rate, Gy, is cal-
culated using the virtual crack closure technique while Gy is evaluated
using

G1=Gt - Gn (A.81)

Gy is calculated from the interlaminar shear stress and relative

sliding displacement as

51

Gn=g

m ]
o ES-O[Tl(x—S)Au(x) dx (A.82)
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In the absence of a singularity in the stress field, the limiting
process leads to the trivial result Gyj=0. Hence, the limit is calculated
as § tends to some finite value, say A. The value of A is chosen de-
pending on the decay length associated with the problem i.e. the
length within which the presence of the crack significantly alters the
specimen response in comparison with the corresponding far field
values. The decay length in this problem is dependent on the eigen-
values s; and s2. The following value of A has been chosen in order to

reasonably fulfil the decay length criterion.

A =%(§1{+§1§) (A.83)

The relative sliding displacement Au is based only on the differ-
ence Ug-Us so that the kinematic condition of zero relative displace-
ment at the crack tip is fulfilled. This also simplifies the calculations.
If the true value of Au (based on ug4-u3z) is used, the B mismatch at the
3-4 interface leads to a kinematically inadmissible displacement dis-
continuity at the interface. This discontinuity causes a non trivial lim-
iting value Gy as §—0. But this value is an artifact of the modeling as-
sumptions and cannot 'be used as the true value of Gj;. The mode II
energy release rate component, using Au=U4-Ug, is obtained as

I3
G = oA (A.84)

where the parameter I3 depends on Aji(1), A11(2). S1, S2, a1, az, A and

the specimen nominal strain €.
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Summary of Results

number of Gr Gii/Gr o €
90° plies | J/m? MPa %
1/2 2.404 0.276 | 1313.9 | 1.6747
1 6.752 0.275 | 784.0 | 1.1685
2 22.849 0.267 | 426.2 | 0.8058
3 51.049 0.261 | 285.1 | 0.6427
4 93.603 0.256 | 210.6 | 0.5444
6 228.871 0.250 134.7 | 0.4264
8 440.065 0.247 97.1 | 0.3555
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INTRODUCTION

This is a proposal to extend the sublaminate analysis method!,? developed
under the current Grant NAG-1-637, to the interlaminar failure analysis of
laminated tapered composites under combined loading. Tapered laminates are
used in composite rotorcraft and airframe components. An example is the
flapping flexure region of the Bell 680 tapered hub. In the airframe context
tapered laminates are the result of inserting internal plies at locations of
stress concentrations such as holes, cut outs and connections between
structural members in order to tailor stiffness and strength. The potential
increase in stiffness and strength in tapered laminates is often limited by
premature failure initiated by interlaminar fracture. An accurate knowledge
of interlaminar stresses and strain energy release rate in tapered laminates
is essential in predicting and designing against interlaminar fracture.

The sublaminate analysis methods provides accurate prediction of
interlaminar stresses and strain energy release rate. They are intended to be
used for preliminary design studies where a large number of candidate
configurations need to be evaluated quickly and economically. The methods are
effective in developing insight and understanding fundamental behavior by
isolating the parameters controlling the damage mechanisms. '

A brief summary of the status of the current research work under the
present grant is given in the next section. This is followed by a discussion
of some issues associated with the research and a presentation of the proposed
research program. Biographical and budgetary information appear in
appendices.

SUMMARY OF ACCOMPLISHMENTS

The sublaminate analysis of tapered rotor hubs made of glass/epoxy
material subjected to tensile loading 1is under completion. A generic
configuration of a tapered hub appears in Figure 1 where a 38 ply thick
laminate is reduced to 26 ply by dropping three inner sets of plies. The
basic analysis approach that is adopted utilizes two levels of modeling, a
global scale and a local scale. The global scale is concerned with overall
generalized forces and strains such as axial force and extension. A simple
consistent deformation assumption 1is the foundation of this model. Global
equilibrium equations are written and solved.



The generalized strains determined from the global analysis served to
provide estimates for the key primary stresses in the belt of the tapered
section. Local estimates of interlaminar stresses are determined on the basis
of equilibrium condition.

The total strain energy release rate is computed from the work done by
the external applied loads. It 1is based on the axial stiffness of the
different elements in the tapered configurations. This work is the subject of
Reference 3.

The second objective of the research under the current grant is the
analysis of Tlocal or transverse crack-tip delamination. This damage mode
appears in Figure 2 along with a representation of the predominant damage
modes in Taminated composites.

Three analytical models, sublaminate shear, membrane and shear lag have
been developed in order to estimate the transverse crack spacing distance.
The saturation crack spacing corresponds to the distance from the crack where
the broken plies regain their uniform stress/strain state i.e. where the
interlaminar shear stress has decayed down to its far field (uniform) value.

The analysis of transverse crack tip delamination 1is based on the
sublaminate shear model. Closed form expressions for the interlaminar stress-
es, total strain energy release rate and energy release rate components are
obtained. A computer code based on this analysis is developed and implemented
into an earlier mixed-mode edge delamination code developed under the previous
NASA grant NAG-1-558 and presented in References 4 and 5. This code was used
to estimate the critical strain levels and the associated delamination damage
mode with increasing number of 90° plies in a [z 25/90n]s laminate. Since
mid-plane edge delamination is a possible damage mode in this type of lami-
nates a mid-plane delamination analysis was developed and presented in Refer-
ence 6. A computer code based on this analysis is developed and implemented
in the mixed-mode edge delamination code. The critical strain and associated
delamination damage modes predicted appear in Figure 3.

Experimental results? show that the 71local (crack-tip) delamination
phenomenon is the predominant damage mode only for n=4, 6 and 8 specimens.
For n<4 edge delamination either in the mid-plane or in the 25/90 interface
were observed in tests. The present analysis predicts mide-plane edge
delamination for n=1/2 and 1 and mixed mode edge delamination for n=2 and 3,



respectively. For n=4, 6 and 8 local delaminations are predicted to be the
controlling damage mode. The critical strains in Figure 3 are computed based
on a fracture toughness values of 415 J/mz, 140 J/mz, and 120 J/m2 for local
delamination, mixed mode edge delamination and mid-plane edge delamination,
respectively. A detailed description of this work is presented in References
8 and 9.

An assessment of the influence of residual thermal and moisture stresses
is wunderway. The effects of hygrothermal stresses on mid-plane edge
delamination has been completed® and final results for mixed-mode edge
delamination are expected by the end of the grant year.?!?®

PROPOSED RESEARCH

Background Information

Tapered laminates constructions are used in rotorcraft dynamic components
as well as airframe members. The flapping flexure region of composite rotor
hubs are tapered in order to create an effective hinge for elastic tailoring.
The tapered design is achieved by dropping a number of plies at discrete
locations. The ply drop creates 1large interlaminar stresses causing
delaminations. This is illustrated in Figure 4 where the transverse normal
stress resultants between the belt and the core region of the tapered laminate
appearing in Figure 1 is plotted. The applied tensile load is denoted by P in
Figure 4. Peak values occur at the ply drop Tlocations and precipitate
delaminations.

Tapered composite laminates used in dynamic rotorcraft components are
subjected to centrifugal tensile and combined bending-extension-torsion
loading. A sublaminate analysis!! of a uniform laminate subjected to bending
and combined bending and extension loading indicated that bending loading is
not as critical as tension or combined bending and extension. However, the
energy release rates under a combined bending-extension loading can be more
critical than tension loading only. This is shown in Table I from Reference
11 where the strain energy release rates for a [08/904]s laminate made of
T300/5208 graphite/epoxy laminated is presented. The strain €0 in the table
is lpin/in. For a delamination occurring at the 0/90 interface, the presence
of bending loading



in addition to in-plane extension results in a 68% increase in the total
strain energy release rate (GT) and a 3% in the Mode I ratio (GI/GT)' These
results were found to be in good agreement with the finite element formulation
of Wen Chan'?.

While these findings are limited to uniform laminates they indicate,
however, the potential detrimental effect of combined loading.

Statement of the work

The research program consists of the following elements:

(1) Develop a delamination analysis for tapered Taminates under bending
and combined bending and tension loading.

(2) Validate the predictions 1in item (1) through comparison with
numerical simulation and test results performed at the NASA Langley
Research Center and Bell Helicopter Textron Inc

(3) Create appropriate computer codes and documentation based on the
analysis in item (1).

Interaction with Dr. Wen Chan of the University of Texas at Arlington and
Mr. Ed Lee of Bell Helicopter Textron, Inc., is planned through this research
work in order to adapt and apply the developed analysis and computer codes to
the practical design needs. Computer codes developed under WNASA Grant
NAG-1-558 are being implemented for the preliminary design of laminates prone
to mixed-mode free edge delaminations at Bell Helicopter and the University of
Texas.



REFERENCES

Armanios, E.A. and Rehfield, L.W., "Sublaminate Analysis of Interlaminar
Fracture in Composites: Part I - Analytical Model," accepted for
publication in the Journal of Composites Technology and Research.

Armanios, E.A., Rehfield, L.W., O0'Brien, T.K. and Raju, I.S.,
"Sublaminate Analysis of Interlaminar Fracture in Composites: Part II -
Applications," accepted for publication in the Journal of Composites

Technology and Research.

Armanios, E.A. and Parnas, L., "Delamination Analysis of Tapered
Laminated Composites Under Tensile Loading," to be presented at the third
ASTM Symposium on Composite Materials: Fatigue and Fracture, November
6-9, 1989, Orlando, Florida.

Armanios, E.A. and Rehfield, L.W., "Interlaminar Analysis of Laminated
Composites Using a Sublaminate Approach," Proceedings of the
AIAA/ASME/ASCE/AHS 27th Structures, Structural Dynamics, and Materials
(SDM) Conference, San Antonio, Texas, 19-21 May, 1986. AIAA Paper No.
86-0969CP, Part 1, pp. 442-452.

Armanios, E.A. and Rehfield, L.W., "Sublaminate Analysis of Interlaminar
Fracture in Composites," Final Report, NASA Grant NAG-1-558, March 1986.

Armanios, E.A., Badir, A. and Sriram, P., "Sublaminate Analysis of Mode I
Edge Delamination 1in Laminated Composites," Proceedings of the
ATAA/ASME/ASCE/AHS/ASC 30th SDM Conference, Mobile, Alabama, April 3-5,
1989, pp. 2109-2116.

Crossman, F.W., and Wang, A.S.D., "The Dependence of Transverse Cracking
and Delamination on Ply Thickness in Graphite/Epoxy Laminates," in Damage
in Composite Materials, ASTM STP 775, K.L. Reifsnider, Ed., pp. 118-139
(1982).




10.

11.

12.

Sriram, P., and Armanios, E.A., "Fracture Analysis of Local Delaminations
in Laminated Composites," Proceedings of the AIAA/ASME/ASCE/AHS/ASC 30th
SDM Conference, Mobile, Alabama April 3-5, 1989, pp. 2109-2116.

Armanios, E.A., Sriram, P. and Badir, A., "Fracture Analysis of Matrix
Crack-tip and free edge delamination in Laminated Composites" to be
presented at the third ASTM Symposium on Composite Materials: Fatigue
and Fracture, November 6-9, 1989, Orlando, Florida.

Armanios, E.A. and Badir, A., "Hygrothermal Influence on the Edge
Delamination of Laminated Composites," to be presented at the ASC Fourth
Technical Conference on Composite Materials, October 3-5, 1989,
Blacksburg, VA.

Armanios, E.A. and Rehfield, L.W., "Interlaminar Fracture Analysis of
Composite Laminates Under Bending and Combined Bending and Extension,"
Composite Materials: Testing and Design (Eighth Conference). ASTM STP
972, J.D. Whitcomb, Eds., American Society for Testing and Materials,
Philadelphia, 1988, pp. 81-94.

Chan, W.S. and Ochoa, 0.0., "An Integrated Finite Element Model of Edge -
Delamination Analysis for Laminates due to Tension, Bending, and Torsion
Loads," Proceedings of the AIAA/ASME/ASCE/AHS 28th SDM Conference,
Monterey, CA, April 6-8, 1987, pp. 27-35.



TABLE I - Energy release rate comparison for a [08/904]s
laminate-graphite/epoxy material.

Energy Combined Bending
Release Uniform Extension Uniform Bending Extension
Rate € T €5, T g, €y T "€y T €, € = ZEo,ez =0

GI/GT 0.61 - 0.82 0.63

108 & (3/m2) 0.34 0.05 0.57
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This report covers the research work performed for the period starting September
1989 and ending February 1990. In the first phase of the program, a study was conducted
to analyze tapered composite laminates under tensile loading. A simple extensional model
was used to calculate the total strain energy release rate from the work done by the external
forces. The model used is concerned with overall generalized forces and strains such as
axial force and displacements leading to the global energy balance of the laminate. A
simple consistent deformation assumption is the foundation of this model.

The sublaminate modelling of cracked laminate configurations and corresponding
sublaminate stiffnesses are shown in Fig 1. These stiffnesses change from one ply drop
group to another with crack growth. The tapered laminate shown in Fig. 1 is assumed to be
fixed at x=0, and subjected to an axial load at x=c.
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Figure 1. Dependency of Core and Belt Stiffnesses on Delamination

The stress and displacement fields used in the strain energy release rate calculations
were determined based on the effective section stiffnesses. The load share between the
core and belt portions is based on their relative stiffness ratios and on the continuity of
displacements at the belt-core interface. The analysis resulted in the following expressions

for the end displacements!
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where
"=a-cosf

and section stiffnesses are denoted by A with their respective subscripts.

The solution resulted in a mismatch between the axial end displacements. This is due to
the membrane modeling approach where the interlaminar stresses are neglected. The model
leads to a configuration which is schematically shown in Fig. 2. The delamination extends
from the crack front in the taper section to the end of the uniform thin section.

Figure 2. Discontinuity of End Displacements



Although there is an agreement with the FE strain energy release rate distributions for
delamination growth in the tapered section, there is a quantitative difference in the thin
uniform region. Some efforts were undertaken to investigate this discrepancy. These are
summarized in the following.

. The strain energy stored due to the interlaminar stresses between core-belt interface
in the uniform section is added to the strain energy release rate calculation. The
interlaminar shear stresses are calculated by a local sublaminate analysis. This
seems to alleviate the problem, but a considerable difference in both G values
continued to exist.

. In another attempt, the axial displacements are determined in such a way that the
end displacements become continuous. In this model as opposed to the original
one, belt and core stiffnesses are treated together all along the belt-core interface.
The solution led to an increase in the difference between the FE and current G
values.

. Finally, an attempt is made to see the effect of the location where the load share is
performed. The results showed that this effect is negligible.

This investigation is still continuing.

TAPERED LAMINATES UNDER COMBINED LOADING

Rotor hubs are subjected to combined extension, bending and torsion loadings.
Combined extension and bending are considered in this phase of the program. The problem
of bending load is treated first.

A schematic view of the tapered laminate under bending load is shown in Fig. 3.
According to the bending moment distribution, the upper section of the laminate is under
tensile and the lower section is under compressive load. In contrast to the uniaxial loading
case, the laminate is not symmetric in terms of loading and therefore the whole laminate
should be considered in the analysis. Under this load distribution, the upper section is
expected to have a mixed-mode delamination originating at the junction between the taper
and thin uniform regions. In the lower section, however, delamination initiates at the thick
uniform and taper junction due to high interlaminar stress concentration around this
location. This is a Mode II dominated delamination behavior.
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Figure 3. Tapered Laminate under Combined Loading

A sublaminate modelling approach is used in the analysis. The tapered laminate is
represented with 7 sublaminates as shown in Fig. 4. Each sublaminate has its
corresponding axial and bending stiffnesses. The stiffness properties of each generic
section are smeared to obtain the effective sublaminate stiffness values. A linear stress
distribution is assumed as shown Fig. 4. The analysis is underway, closed form
expressions for the interlaminar stresses and total energy release rate are expected by the
end of the grant.

Figure 4. Modelling of Tapered Laminate
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BACKGROUND

Elastically tailored composite designs are being used to achieve favorable deformation
modes under a given loading environment. Coupling between deformation modes such as
extension-twist or bending-twist is created by an appropriate selection of fiber orientation,
stacking sequence and materials. An example is the X-29 swept forward wing aircraft
where a laminated composite skin is used to create the bending-twist coupling required to
handle divergence. This design uses AS-1/3501-5A graphite/epoxy wing covers with -45°
outboard plies 9° forward of the wing's 40% chord line.

Elastically tailored composite rotor blades can be used in rotorcraft structures in order
to control twisting motions at different rotor speeds. This concept can be utilized in tilt rotor
aircraft in order to achieve a compromise between hover performance and forward flight
propulsive efficiency [I]. A change in the blade twist between flight modes can be
developed through the use of extension-twist coupling as outlined in Ref. 2 for the XV-15
tilt rotor aircraft. Twist control was achieved by assuming a 15 percent change in operating
rpm between hover and forward flight regimes.

The fundamental mechanism producing elastic tailoring in composite beams is a result
of their anisotropy. Several theories have been developed for the analysis of thin-walled
anisotropic beams. A review is provided in Ref.3. A pertinent element in the analytical
modeling development is the inclusion of section warping. The major difference between
various theories lies in the methodology used to eliminate warping and consequently obtain
a one-dimensional theory. A description of the major approaches is provided in Refs.4-13.
The works described in Refs.11-13 are based on a finite element formulation.

The finite element analysis developed in Ref.13 is based on the anisotropic beam
theory of Ref. 6. This simple theory includes shear deformation and provides closed form
expressions of coupling stiffnesses in terms of familiar laminate parameters. While this
theory accounts for torsional warping, It does not, however, include the effects of bending-
related section warping which can be significant in thin-walled laminated composites. A
modification was proposed in Ref. I3 in order to minimize the error associated with
neglect of bending-related warping. This modification was based on shear stiffness
correction factors determined by numerical comparison of results with an MSC/NASTRAN
simulation. However, these correction factors are based on the beam configurations
considered and require an alternative approach which includes section warping such as the
MSC/NASTRAN model to validate.

The potential of elastically tailored composite rotor blade designs to achieve weight and
performance benefits was shown in Refs./ and /4. An optimization methodology was
presented in Ref.]4 for a minimum-weight structural design of composite main rotor
blades subject to aerodynamic performance, material strength, autorotation, and frequency
constraints. Damage tolerance constraints were not considered. This may explain the fact
that the resulting multiple composite-spar design was heavier than the comparably designed
single composite-spar. The author concludes that if ballistic tolerance is considered in the
design, the multispar design will probably have the minimum weight .

The behavior of elastically tailored structures in the presence of damage should
therefore be investigated in order to ensure their damage tolerance and durability. While a
local damage mode may have a negligible effect on the structure's overall strength it can
however, significantly reduce its elastic coupling and consequently fail to perform as
designed. The primary objective of this work is to assess the effect of the damage modes
relevant to laminated composite structures on their elastic coupling and performance.



PRELIMINARY INVESTIGATION
Design Configurations

In order to investigate the effect of damage in elastically tailored structures. Two
designs have been considered. The first is a closed cell designed to exhibit extension-twist
coupling. This is representative of single cell rotor blade sections where blade twist
distribution is adjusted according to rotor speed. The second is a flat laminated composite
with bending-extension coupling similar to a swept forward wing skin design.

A simple analytical methodology based on Rehfield"s model [6] has been developed in
order to determine the optimum stacking sequence that produces maximum extension-twist
coupling in a generic closed cell. A similar procedure was developed for the flat laminate
configuration. The optimum stacking sequence for both constructions was unidirectional
with a fiber orientation of approximately 30° to the loading axis. This is due to the fact that
the controlling parameter for extension-twist coupling in a closed cell is strongly influenced
by Aj1e while bending-twist coupling in a flat laminate is controlled by Dj¢. The variation
of the extension-twist coupling parameter, S14, with fiber orientation is shown in Figure 1
for several material systems. Maximum coupling occurs at approximately +30° or -30°.

A similar result is achieved for a multilayered laminate as illustrated in Figure 2 for the
case of a two-ply laminate. The coupling parameter is plotted on the vertical axis against the
two ply angles denoted by a and B in the figure. The material system is T300/5208
graphite/epoxy. The maxima depicted in the figure correspond to a unidirectional
construction with a fiber angle of approximately +30° or -30°. It can be shown that the
fiber orientation corresponding to maximum coupling in a single ply is a local maximum for
the multilayered construction. Moreover, the coupling corresponding to a single ply is at
the most 5% smaller compared to the global maximum. Minimization of residual curing
stresses was not considered in the optimization scheme. Residual thermal coupling due to
curing can be avoided when the laminate is composed of 0/90 set of plies stacked
symmetrically even if some of the sets are rotated[/5].

Damage Models

Two damage modes have been considered in the analysis. The first is matrix dominated
where the stiffness components controlled by matrix properties are progressively reduced.
These are Q12, Q22 and Qgg. In the limiting case when Q12, Q22 and Qgg tend to zero the
stiffness component Qp1 will be equal to Ej1. This damage mode can be significant in
elastically tailored designs due to the use of a larger number of off-axis plies. The second
damage mode is fiber dominated. This mode ultimately precipitates final failure. The effect
of damage on Ejj and G2 appears in Figure 3 and Figure 4, respectively. The horizontal
axis shows the accumulation of damage percentage. Each damage mode (matrix or fiber
dominated) varies from 0 to 100% with solid diamond symbol representing fiber damage.
As expected, the longitudinal modulus is primarily affected by fiber damage while the shear
modulus is influenced by both fiber and matrix dominated damage modes.

In order to gain confidence in this simple engineering model a comparison of
predictions is provided in Figure S. The variation of the longitudinal modulus ratio relative
to the undamaged state is plotted against matrix damage percent in the 90° plies of a [0/903]s
laminate. The percent of matrix damage is based on the crack density per mm.[16].
Hashin's analysis[/6] is based on a complementary energy variational approach and an
admissible stress field which satisfy equilibrium and all boundary and interface conditions.
Halpin-Tsai and Ekvall's equations are given in Ref.]7. Test data from Ref.18 are
represented by the solid dots in Figure 5. The present model shows a distribution similar
to the Halpin-Tsai model with a slightly improved correlation compared to the test data.

These damage modes have been applied to the single cell laminate shown in Figure 6
with a [30]3 layup. Three damage mode sequence are considered . The first, or case A,



represents a partial damage in the outer ply at one side of the cell while the second, is a
damage in all the plies of that side. The third, denoted as case C, is a peripheral damage of
the outer ply. This damage sequence is shown schematically in Figure 7.

Results and Discussion

The effect of progressive fiber damage on the extension-twist coupling is shown in
Figure 8. The normalized coupling parameter in Figure 8 is defined as the ratio of damaged
to the undamaged section coupling. As fiber damage increases the coupling is enhanced for
all three damage sequences. At 100% fiber damage cases A,Band C show 8%,37% and
50% increase in coupling, respectively. The same trend is also found for matrix damage
progression as shown in Figure 9. The increase in normalized coupling is 8%,37% and
55% for cases A,B an C, respectively at 100% matrix damage. Also appearing in the figure
is the combined effect of matrix and fiber damage. While fiber damage alone results in a
coupling increase its interaction with matrix damage has a negligible effect on the coupling.
At 100% fiber damage in addition to matrix damage the coupling increase remains at 8% for
case A while it decreases by 5% for case C. For case B,however, the coupling vanishes
since the cell becomes an open section.

The results appearing in Figures 8 and 9 are significant in assessing the failure of
elastically coupled composite structures. An increase in the laminate coupling with damage
progression may result in an increase of the aerodynamic loading which ultimately can lead
to an aeroelastic divergence . Furthermore, the damage effect on coupling is a nonlinear
phenomenon. This is depicted in Figure 9 where the combined influence of fiber and matrix
dominated damage does not follow a superposition law. It is even more significant in the
limit where a damage mode results in an opening of the section . In this case the coupling
drops to zero.

The findings of this preliminary work show the significance of investigating the
influence of damage on the behavior of elastically tailored structures. Moreover, this
ir}vestigation is essential in establishing a damage tolerance design procedure for this types
of structures.

OVERVIEW OF THE RESEARCH PROGRAM

A research program to investigate the effect of damage in elastically tailored structures
consists of the following tasks:

(1) Develop a thin-walled laminated composite analysis including the effect of section

warping. The analysis should consider moderate and large deformations in order to

account for the effects of damage.

(2) Develop a mechanics model that accounts for matrix and fiber dominated damage in

elastically tailored generic composite sections.

(3) Verify the model developed in task#2 with predictions from other models and

available test data .

(4) Incorporate the damage model in #2 with the thin-walled analysis in #1 in order to

study the effect of damage on the elastic coupling.

(5) Verify the predictions in #4 with selected tests of extension-twist and bending-twist

laminated sections.

In developing the thin-walled composite beam theory described in task #1 a variational-
asymptotic approach [79] will be adopted in order to ensure the consistency of the theory.
This approach is outlined in Ref.19 in connection with the development of a nonlinear shell
theory. It allows investigating the influence of small, moderate and large deformation
kinematic assumptions on the response in a variationally consistent manner.



Based on the preliminary results obtained, these tasks will provide a sound
scientific and technological basis for predicting and managing damage in elastically tailored
composite structures. Interaction with Dr. Raymond Kvaternik, Mr. Mark Nixon and Mrs.
Renee Lake of the Army Aerostructures Directorate is planned throughout this work.
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This report covers the research work performed for the period
starting September 1990 and ending February 1991. In the first phase of the
program, a variationally consistent theory for thin-walled composite beams
has been developed. Three major aspects are considered in the
development: the first is concerned with its simplicity and ease of
implementation in any existing rotorcraft code such as TAIL [1]. The
second, deals with its ability to be applied to the investigation of damage.
Consequently, restrictions on the uniformity of stiffness and thickness
along the periphery of the section have been relaxed. Finally, consistency of
the assumptions used is ensured by deriving the theory from a variationally
asymptotic energy principle. Comparisons of stiffness coefficients and
response with Rehfield's theory (2] and finite element solutions have been
performed.

The details of the derivation and comparisons of predictions is
provided in the attached paper which will be presented at the AHS
International Specialists’ meeting on Rotorcraft Basic Research. A
summary of the significant aspects of this work is outlined in the following.

Stiffness Coefficients

The derivation is based on an energy formulation where the
contribution of in-plane shear stresses and out-of- plane bending and
twisting curvatures are identified. An order of magnitude analysis shows
that the contribution of the out-of-plane terms is asymptotically small
compared to the in-plane terms. This provides a consistent basis for
deriving a one-dimensional theory from the two-dimensional thin shell
theory.

The resulting constitutive relationships are obtained in terms of four
generalized force and deformation-related variables.

N Cii Ciz2 Ci3 Cuajju,
M| [Cia Cg2 Caz Coul| o
Myl |Ciz3 Co3 C33 C34||Uj
M,] |Cia C2a Csq Cyqjiu, (0



where N, M, My, and M,, denote the axial force, torsional moment, and

bending moments about y and z axis, respectively. The deformation- related
variables Uy’, ¢, Us” and Ug” represent the axial strain, twist rate and

bending curvatures associated with the xz and xy planes, respectively. The
stiffness coefficients in Eq. (1) are obtained in closed form in terms of
familiar parameters such as stacking sequence and geometry.
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K2
C34= (K“--ﬁ)yzds-k
56 K7

¢I/K22ds
2 [F(K._ /Kap)yds]?
Cyq =9§(K11—I—(lg)y2d$+ g 12! 22279
Kao $(1/ Kop)ds 2)



where

(A12)2
Ky =4y~ ‘;2
22
Kz =Ajg ~A1zfz6 (3)
Agg
(Agg)
Koz = Aee ~ Azs
22

The axial stiffnesses from CLT are denoted by A;j in Eq. (3). In order
to compare the stiffness coefficients in Eq. (2) with those of Rehfield's
theory, the 7x7 stiffness matrix in Rehfield's theory is reduced to a 4x4
matrix by first neglecting the kinematical variable associated with
restrained torsional warping. The resulting 6x6 matrix is then reduced by
minimizing the associated energy expression with respect to the transverse
shear strains. For the case of a Circumferentially Uniform Stiffness (CUS)
configuration the result is

REHFIELD'S THEORY
2 _—
CII=¢[K11—K1221d3+[¢(K12/K22)ds] C11—¢K“ds
Ka @1/ Kgz)ds
Cio =2A %(K}g / Ky5)ds C1y =24, ¢ 12ds
12 € ¢.(1/K22)d$ 12 = ¢d3
1
=44 Kyds
CZZ Ae ¢'(1/K22)ds C22 - 4A3 f¢’;§2‘)2
: ay . ;2
- Kb, 2 155(1(12 / Kgz)zds] [9§K12——zds]
St”Kzz(
2 dZ )
- _ K 2 [$(K,, / Ka)yds] I9§K12—-—yds]
$FKao(Z2)ds

Ci3 =C1q4 =C33 =Cgq =C3zq =0

C13=C13=Cg3=C324 =C34 =0

(4)

It is worth noting that in Rehfield's theory the K;; coefficients are
assumed to be constant and consequently independent of the
circumferential coordinate s in Eq. (4). This is a result of the displacement
function adopted in Rehfield's work. In the present theory, the
displacement derived from the energy principle is a function of the
anisotropy of the section. This displacement function coincides with
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Rehfield's expression when isotropic materials' constraints are enforced.
That is, the anisotropic stiffness coefficients in Rehfield’'s theory are based
on the classical St. Venant's displacement function used in the analysis of
thin-walled isotropic beams. If the Kj; coefficients are considered constant
in the present theory, Cj7, Cy2 and C22 become identical to those of
Rehfield's. However, Cg3 and C44 will be different. For the case of a
circular section all C;'s are the same. A comparison between these
stiffness coefficients and their effect on the response is illustrated in the
following applications.

Applications

A comparison of the flexibility coefficients S;; for the box-beam

shown below [3] with the predictions from two models is provided in Table
I.

1

0.033"
T300/5208 Graphite/Epoxy T

0.66"

(20/-70/20/-70/-70/20) T

132"
Fig. 1. Beam Cross Section

The flexibility coefficients are obtained by inverting the 4x4 matrix in
Eq. (1). The NABSA (Nonhomogeneous Anisotropic Beam Section
Analysis) is a finite element model based on an extension of the work
presented in Ref. 4. In this model all possible types of warping are
accounted for. The TAIL model is based on Rehfield's theory with the
restrained torsional warping ignored.The predictions of the NABSA and
TAIL models are provided in Ref. 3. The percentage differences appearing
in Table I are relative to the NABSA predictions. The present theory is in
good agreement with NABSA. Its predictions show a difference ranging
from +0.7 to +3.6 percent while those of TAIL range from +3.6 to -18.4
percent.



Table I. Comparison of Flexibility Coefficients of NABSA, TAIL and Present

Flexibility =~ NABSA PRESENT  %Diff. TAIL % Diff.
S, bl 0.143883E-05  0.14491E-05 +0.7 0.14491E-05 +0.7
Syy,Ib'l-in?  0312145E-04 0.32364E-04 +3.6 0.32364E-04 +3.6
Sy, b'l-inl  .0417841E-05 -0.43010E-05 +2.9 -0.43010E-05 +2.9
S3s, Ib'l-in2  0183684E-04  0.1886E-04 +2.6 0.17291E-04 -5.8
Sy b'lin2  0614311E-05  0.63429E-05 +3.2 0.50157E-05 -18.4

The present theory is applied to the prediction of the tip deflection in a
cantilevered beam made of Graphite/Epoxy and subjected to different

loading types. The beam has a square cross section with [12]4 lay-up.

Table II. MSC/NASTRAN and Present Solutions for a Cantilevered Beam* with
[+12]4 Layups Subjected to Various Tip Load Cases

Load Type Tip Load Tip Deformation % Diff.
NASTRAN  Present

Axial Force 100D Axial Dis.: 0.002189in. 0.002202in. +0.6%

Axial Force 100D Twist 0.3178 deg. 0.32325deg. +1.7%

Torsional 100 1b-in Twist 2.959 deg. 2.998 deg. +1.32%
Moment

Transverse 1001 Deflection : 1.866 in 1.853 in. -0.7 %
Force

*Geometry of Beam (Ref. 1). Thin-walled square cross section; length=24.0 in.,

width=depth=1.17 in.; ply thickness=0.0075 in., number of plies=4, wall thickness=0.03

in. Mechanical Properties: E11=11.65 Msi., E99=11.65 Msi., G19=0.82 Msi.,079=0.05
5



Comparison of results with the MSC/NASTRAN finite element analysis of
Ref. 1 is provided in Table II. The predictions of the present theory range
from +0.6 to -1.7 percent difference relative to the finite element results.
Since the cross section has a CUS layup the predictions of the present
model coincide with values calculated from Rehfield's theory, not shown in
Table II, except for the tip deflection due to transverse force. The tip
deflection predicted from Rehfield's theory is 1.6917 inch resulting in 9.34
percentage difference compared to the NASTRAN result.

A comparison of the present theory predictions with experimental
data appears in Figs. (2) and (3). The Experimental results are obtained
from Ref. 6§ for two cantilevered beams. Their geometry and material
properties are given in Table III. The spanwise variation of the bending
slope in a symmetric [30]¢ beam under a transverse tip load appears in

Fig. (2).

Table HIL Cantilever Geometry and Properties

Ply Thickness=0.005 in
Width=0.953 in.

Depth=0.53 in.
E11=20.59 Msi.

E99=1.42 Msi.
G19=0.89 Msi.
v19=0.42
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Fig. 2. Bending Slope of a Symmetric [30]g Cantilever Under 1 Ib Transverse Tip Load

Analytical predictions from a simplified linear analysis ( Ref. 6) and
the refined finite element analysis of Ref. 7 are provided. The spanwise
twist distribution in an antisymmetric {15]¢ beam under tensile loading is
shown in Fig. (2). Figures (2) and (3) show that the predictions of the
present theory are in good agreement with the experimental data and the
closest when compared to the other analytical approaches. For the
extension-twist variation appearing in Fig. (3), the prediction of Rehfield's
theory coincides with the present theory this is because the section is a CUS
and Sjg is identical.
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Fig. 3. Twist of an Antisymmetric [15]g Cantilever
under 1 1b Tensile Load

Closing Remarks

Applications of the present theory to the effect of damage on the
elastic coupling of tailored composite beams is underway . A preliminary
investigation is provided in the attached paper. The development of a thin-
walled theory for composite beams with open cross sections is necessary in
order to assess damage modes that lead to an opening of an initially closed
cross section. The influence of restrained warping is expected to be
significant for thin-walled composite beams with open cross section.
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Effect of Damage On Elastically Tailored
Composite Laminates

Erian Armanios, Ashraf Badir and Victor Berdichevsky
School of Aerospace Engineering
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ABSTRACT

A variationally consistent theory is
derived in order to predict the response of
anisotropic thin-walled closed sections
subjected to axial load, torsion and bending.
The theory is valid for arbitrary cross-
sections made of laminated composite
materials with variable thickness and
stiffness. Closed form expressions for the
stiffness coefficients are provided as
integrals in terms of lay-ups parameters
and cross-sectional geometry. A
comparison of stiffness coefficients and
response with finite element predictions
and a closed form solution is performed.
The theory is applied to the investigation
of the effect of damage on the extension-
twist coupling in a thin-walled closed
section beam. The damage is simulated as a
progressive ply-by-ply failure. Results
show that damage can have a significant
effect on the extension-twist coupling.

INTRODUCTION

Elastically tailored composite designs
are being used to achieve favorable
deformation modes under a given loading
environment. Coupling between
deformation modes such as extension-
twist or bending-twist is created by an
appropriate selection of fiber orientation,
stacking sequence and materials.

The fundamental mechanism producing
elastic tailoring in composite beams is a
result of their anisotropy. Several theories
have been developed for the analysis of
thin-walled anisotropic beams. A review is
provided in Ref. (1). A pertinent element in

the analytical modeling development is the
inclusion of section warping. The major
difference among various theories lies in
the methodology used to eliminate warping
and consequently obtain a one-dimensional
theory. A description of the major
approaches is provided in Refs. (2)-(13).
The works described in Refs. (11)-(13) are
based on a finite element formulation.

The finite element analysis developed
in Ref. (13) is based on the anisotropic
beam theory of Ref. (4). This simple theory
includes shear deformation and provides
closed form expressions of stiffness
coefficients in terms of familiar laminate
parameters. While this theory accounts for
torsional warping and transverse shear
deformation, It does not however, include
the effects of bending-related section
warping. The theory also assumes
implicitly that the cross-section stiffness
and thickness are constant. A modification
was proposed in Ref.(13) in order to
minimize the error associated with neglect
of bending-related warping. This
modification was based on shear stiffness
correction factors determined by numerical
comparison of results with an
MSC/NASTRAN solution of cantilevered
beam configurations loaded transversely at
the free end.

The potential of elastically tailored
composite rotor blade designs to achieve
weight and performance benefits was
shown in Refs. (14) and (15). An
optimization methodology was presented in
Ref. (15) for a minimum-weight structural
design of composite main rotor blades
subject to aerodynamic performance,
material strength, autorotation, and
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frequency constraints. Damage tolerance
constraints were not considered. This may
explain the fact that the resulting multiple
composite-spar design was heavier than the
comparably designed single composite-
spar. The author concludes that if ballistic
tolerance is considered in the design, the
multispar design will probably have the
minimum weight .

The behavior of elastically tailored
structures in the presence of damage needs
to be investigated in order to ensure their
damage tolerance and durability. While a
local damage mode may have a negligible
effect on the structure's overall strength it
can however, significantly influence its
elastic coupling and consequently alter its
designed performance.

The primary objective of this work is to
assess the effect of damage in thin-walled
laminated composite closed-section beams
on their elastic coupling. A prerequisite is
the development of a consistent theory for
predicting the response of anisotropic thin-
walled beams . The theory should be
simple and suitable for parametric studies.
The derivation is based on the
asymptotically variational analysis provided
in Refs. (16) and (17). In the present
approach, the one dimensional theory for
thin-walled closed-cell anisotropic beam is
derived from the two-dimensional shell
analysis.

An outline of the analysis is presented
first. This is followed by a comparison of
the predicted stiffness coefficients and
response with closed form solutions and
finite element results. Finally, the analysis
is applied to the prediction of the extension-
twist coupling in a composite beam with
various stages of damage.

ANALYSIS

Consider in a three dimensional space
R the prismatic shell shown in Fig. 1. The
shell has a thin-walled closed cross-section
with variable thickness #(&2). The cartesian

coordinates x!in R are related to the
curvilinear frame &7, & and € by

X =riE%) + En(EY) (1)

The curvilinear frame is associated with
the undeformed shell configuration V and
the equation of the mid-surface 21is given

by x' =r'(£%). Latin superscripts run from
1 to 3, while Greek superscripts run from 1
to 2. The components of the outward
normal 7 are denoted by n! in Eq.(1).
The curvilinear coordinates associated with
the mid-surface {2 are denoted by £& with
the third component &£3=E&. The
displacement components associated with
£ and & are denoted by vy and v,

respectively.

Fig. 1. Curvilinear Coordinate System

The shell strain-displacement equations
can be written as (Ref.18):

‘y =ﬂ
11 dﬁ‘(
dv; v
R i
Y22 d<§2 R 2
dl)_l dUz
2y,,=22L 272
12 d§2 d§1

where R is the radius of curvature. The
mid-surface of the shell is determined by
the position vector 7 as

F = xiy + Y(S)L, + 2(s)i, 3)
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where i, &y and i, are unit vectors
associated with the cartesian coordinate
system X, y and z shown in Fig. 2. The
circumferential coordinate s is measured
along the mid-surface of the cross section.
The displacement vector corresponding to
the cartesian system is given by

@ = ugly + ugly +usi; (4)

where u; , up and u3 are the displacements
in the direction of x, y and z, respectively,
as shown in Fig. 2. The unit tangent
vector ; along s , and the unit outward
normal 7 to the mid-surface of the cross
section are defined by

. dr dy- dz -
[=—=—"j +— 5
ds dsly dslz ®)
and
— T _dzr dy:
R=lXi =—-ly ==, (6)

The projection of the position vector 7
in the normal and tangential directions to
the surface of the shell are given by r), and
r;, respectively, where

r,=r.n= E—zﬂ 7

n ==Y s T s O
and

r=r.d= __dy+z___dz 8

£ yds ds (8)

The displacements in both the
curvilinear and cartesian systems are
related by

vy =Zi=uy Ly &

2 st 3ds

V=U.n=u E~-u iy_ ®
zds 3ds

Displacement Fiel

The displacement field in the cartesian
coordinate system may be expressed as

uy =U(x)+u;(s,x)
uy =Uy(x)—z¢(x)
uz =Usz(x)+yp(x)

(10)

where Uj(x),Uz(x) and U3(x) represent

the rigid body translation and ¢(x)
represents the rigid body rotation, i.e. the
angle of twist. The unknown function

iy(s,x) is determined from energy
considerations.
U
Y 2
XU,

Fig. 2 Cartesian Coordinate System
The energy density, @, of the two-

dimensional classical anisotropic shell is
given by

20 =hCPy 575+ B2CPP y00p.5

n S
+EC§‘B7 PapPys 11
where c%Pr0 P nd PP are "two-

dimensional projection” of the elastic
moduli tensor. The in-plane strain
components are denoted by Yop and the
change in curvatures of the reference
surface by papg - The energy of the shell
is given by
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1=/ @dw (12)

where dw 1is the area element of 2. The
first terms in Eq. (11) represents the energy
associated with the in-plane strains. Their
contribution to the energy is much larger
than the bending contribution expressed by
the remaining terms. Therefore, the strain
energy density can be approximated by

(13)

This approximation enables the
derivation of a one-dimensional theory
from the two-dimensional energy function.
Furthermore, in the case of no internal
pressure acting on the shell, the hoop stress
resultant is negligibly small and may be
ignored, thus

20 = hCPPy 5y

9% _p (14)

0722

Combine Eq. (14) with Eq. (13) to
obtain

1
Y22 = —67277(5'1122711 +2C12227’12) (15)

The energy density takes the form

20, = ';“"‘2‘1’ =S5+ 2827112 + 52712 (16)
22

where

( CI 122 )2 I
C2222

1122 ~1222
_apelinz CUC
Sp2=2[C - Cz"zzz -~

§; = [t _

h Q7

12222
1212 (C°F)
S2=4[C" - o222 Th

and the shear flow N5 can be written as

o '
—L =871+ 52712 =2N12 (18)
427,

thus,

2y =ay; +bNj; (19)

where

S 4
=-2-12 gpd p=—
a S2 a S2 (20)

Combine Egs. (9) and (10) with Egs. (7)
and (8), to get

v =U1(x)+111

d d;
v, = Uz(x)zy+ Ug(x)d—§+ ra($)9(x)

v=Uy0)Z Uy 2 -r(sipx) @D
ds ds

The strain-displacement relations take the
form

Yi1 -_-U}’(X)-I-ﬁ],(S,X) (22)
dﬁ] 4 dy ‘ dz

295, =2 U, 0 U, (0%

Yiz=—-+U2 (x) 2T Ys (X)ds

+r,(s)p’(x) (23)

where a prime in Egs. (22) and (23)
denotes differentiation with respect to x.
From Egs. (19) and (23) get

iy By
s +U2 (X)ds +U3 (X)ds
+1,(s)p’(x)=ay; +bNj, (24)

2Yp =

By expressing #; as

i = _Uz’(x)y—U3'(x)z +8(5,x) (25)

where g(s,x) is an unknown function of s
and x, Eq. (24) takes the form

—‘;f = —r () (x)
+alU{(x)-U; (x)y-Us (x)z+g"(s,x)]
-+ bNIZ
(26)

For long shells, L/d >>1, where L and d
are measures of the shell length and the
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cross section size, respectively. Thus d(
)ox <<d( )lds. Consequently adg/dx is
asymptotically small compared to dg/ds
and hence can be neglected in Eq. (26).
The shear flow Ny is determined

from the condition that g(s,x) should be a
single valued continuous function, i.e.

§%245-0 @7
ds

Therefore, N;, is independent of s.
Substitute Eq. (26) into Eq. (27) to get

1
Ny = [24,0°
12 Sfbds[ P (x)

~GaU; (x)-U," (x)y -U;" (x)2)ds] (28)
where A, is the enclosed area of the cross
section given by

A, = -;-95 r, (s)ds (29)

Integrate Eq. (26) and use Eq. (28) to
obtain

8(s,x) =(p’(x)[¢2.:;sfbds—fr,,(s)ds]
o 0

+[aU) (x)-U; " (x)y U3 (x)z]ds
0

) Fa(U; (x)-U," (x)y~Us" (x)z)ds ¢

¢ bds

the axial displacement takes the form

bds

(30)

u; =U1(x)—-U2’(x)y—U3’(x)z+go'(x)y/(s)

+[afUy (x)=U; " (x)y -U3" (x)2]ds
0

_9§a[U1'(x) ~U,"(x)y-Us " (x)z]ds }bds
§bds /
{(31-a)

The coefficient of ¢’(x) in Eq. (30)
represents the torsion-related warping

function yfs) in Eq. (31-a). This function
emerges naturally and is expressed as

2Aes 5

w(s)=[—2 [bds— [r,(s)ds]  (31-b)
¢bds 0 )
Force-Deformation Relationships
The displacement field is now

completely defined. The expression for the
u; component is provided in Eqgs. (31)
while u; and u3 are given in Eq. (10).
Combining Egs. (16) and (19) the energy
density takes the form

2d; =Ey, +GN%, (32)
where
Sz
E - SI - -—'12' (33)
S2
and
4
G =— 34
5, (34)

Using Eqgs. (35) and (28), the axial strain
can be written as

v =U; (x)=U, (x)y-Us (x)z+g"(x,5)
(35)

Substitute Egs. (35) and (28) into Eq.(32),
and use Eq. (12), while neglecting dg/dkx, to
get the following expression for the energy
of the shell

1 2 )2 w2 2
! ='§(C11U1 +Cpe™ +C33U3; +CyU; )

+CpU; ¢"+C3U; Us +CU;p Uy

+Cp30 Uz +CpupU,; +C34Up Us
(36)

For a laminated section made of N
plies, with arbitrary fiber orientations, an
appropriate transformation of the elastic
moduli C2B7 is required. Summation of
the plane stress stiffnesses for each ply
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leads to the following explicit expressions
for the stiffness coefficients Cjj in terms of

the laminate axial stiffness A;; (Ref. 19)

2 [F(K | Ky )ds]?
CII =¢-[K11—K12]d8+ ¢ 12 2
K7 55(1/1(22)615
Sb’(Kzz/Kzz)ds

Cpp =24
270 g1k )ds

K2
Ci3= ‘Sf[Ku *?;;—szx

F(K , 1K2p)ds F(K ,1Ky)zds
¢1/Kypds

57
Cr =-$1Kyy —;(z—zlyds

9((1(12 IKgp)ds $(K |, 1 Kzp )yds
$1/K;ds

1
(o =4A2———————
2 ¢ ¢(1/K22)d.§‘

K2 1Ky )ads
24 §( 12/K3)

Cy3 = =
2 @11k )ds
R G(Kyp 1 Kpp)yds
u ¢(1/K22)d§
2 {B(K 1Ky )zds]?
C33 =¢‘(K11 —"—Klz)lzdS'f' ¢‘ 12 2
Ky F(11Ky)ds

K
Cy =§(Kyy - E))’st

) 9§(K12 1Ky )yds 9((1(12 1K 3 )2ds

$1/K;pds
k% 5. I$(K, 1Kyp)yds]?
C44 =¢(K11 ———)y ds +
Ky, 95(1/K22)ds
@37
where
(Ap)
Ky =4y - ‘;;
A A
KIZ =A16 - 32226 (38)
(Azs)
Ky = Ags — ™

The constitutive relationships between
the stress resultants and deformation-
related variables can be written as

N Cii Cnz Ci3 Cully
My| 1Cp Cup Cp3 Colj ¢
Myl |Ci3 C Cs3 Cal|luy
M, Cia Cyy Cyy

A

(39)

where N, M, M ¥ and M,, represent the
axial force, torsional moment, and the
bending moments about y and z axis,
respectively.

The classical St. Venant's theory of
bending and torsion may be recovered if
Eq. (39) is applied to isotropic materials.
For the case of isotropic sections with
constant thickness 4, the coefficients a and
b in Eq. (20) take the values

a=0 and b=constant (40)
Substitute Eq. (40) into Egs. (31), to get
the axial displacement for isotropic material

as

uy =Uy(x)=Uy (x)y -Us (x)z

ZA 5 g
+ @ (x)[== [ds— [ r.(s)ds]
g/

(41)

which coincides with the expression given
in Ref. (4). This displacement function
associated with isotropic materials was
adopted in Ref. (4) for composite materials.
As a result, the stiffness expressions
obtained in Ref. (4) are different from
those of Eqs.(37).

By neglecting the kinematical variable
associated with restrained warping, the 6x6
stiffness matrix in Ref. (4) can be
compared with the 4x4 stiffness matrix of
Eqgs. (39). This is done by minimizing the
energy expression with respect to the
transverse shear strains. The resulting
stiffness expressions are all different from

Egs. (37).
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It is worth noting that for the case of
Circumferentially Uniform Stiffness
(CUS) layups, the stiffness coefficients in
Egs. (37) coincide with those of Ref. (4),
except for the bending stiffnesses C33 and
C44 and the coupling coefficient C 5 .
Moreover, the stiffness coefficients
coincide fully in the case of a circular CUS
configuration.

APPLICATIONS

In order to assess the accuracy of
the predictions, the present theory is
applied to the box beam given in Ref. (20).
The cross sectional configuration is shown
in Fig. 3 and the material properties in
Table I. A comparison of the flexibility
coefficients S;;j obtained by inverting the
4x4 matrix in Egs. (39) with the
predictions from two models is provided
in Table II. The NABSA
(Nonhomogeneous Anisotropic Beam
Section Analysis) is a finite element model
based on an extension of the work
presented in Ref. (6). In this model all
possible types of warping are accounted
for. The TAIL model is based on Ref. (4)
where the restrained torsional warping is
ignored.The predictions of the NABSA and
TAIL models are provided in Ref. (20).
The percentage differences appearing in

Table II are relative to the NABSA
predictions. The present theory is in good
agreement with NABSA. Its predictions
show a difference ranging from +0.7 to
+3.6 percent while those of Ref. (4) range
from +3.6 to -18.4 percent.

T300/5208 Graphite/Epoxy

0.66"

(20/-70/20/-70/-70/20) T

132"

Fig. 3. Beam Cross Section

Table L Properties of T300/5208
Graphite/Epoxy

Ej; =21.3 Msi
Ezo =FE33 =1.6 Msi
G2 =Gz =09 Msi

G23 =0.7 Msi
vy =v73 =028
v23 =05

Table IL. Comparison of Flexibility Coefficients of NABSA, TAIL and Present

Flexibility NABSA PRESENT %DifT. TAIL % Diff.
Sy, bl 0.143883E-05  0.14491E-05 +0.7 0.14491E-05 +0.7
Sog, Ib'l-in2  0.312145E-04  0.32364E-04 +3.6 0.32364E-04 +3.6
Sig, Ib'linl  -0.417841E-05 -0.43010E-05 +2.9 -0.43010E-05 +2.9
Ss3, Iblin2  0.183684E-04  0.1886E-04 +2.6 0.17291E-04 -5.8
Sy bl-in?  0614311E-05 0.63429E-05 +3.2 0.50157E-05 -18.4




Table III. MSC/NASTRAN and Present Solutions for a Cantilevered Beam* with [+12]4
Layups Subjected to Various Tip Load Cases

Load Type Tip Load Tip Deformation % Diff.
NASTRAN Present

Axial Force 1001b Axial Disp.: 0.002189in. 0.002202in. +0.6%

Axial Force 100b Twist 1 0.3178 deg. 0.32325deg. +1.7%

Torsional 100 1b-in Twist 2.959 deg. 2.998 deg. +1.32%
Moment

Transverse 100b Deflection 1.866 in 1.853 in. -0.7 %
Force

*Geometry of Beam (Ref. 13): Thin-walled square cross section; length=24.0 in., width=depth=1.17 in,;

ply thickness=0.0075 in.,

number of plies=4, wall thickness=0.03 in.

Mechanical Properties:

Ell=11.65 Msi., %2=11.65 Msi., 612=0.32 MSi.,‘012=0.05

The present theory is applied to the
prediction of the tip deformation in a
cantilevered beam made of Graphite/Epoxy
and subjected to different loading types.
The beam has a square cross section with
[+12]4 lay-up. Comparison of results with
the MSC/NASTRAN finite element
analysis of Ref. (13) is provided in Table
III. The MSC/NASTRAN analysis is
based on a 2-D plate model accounting for
both shear deformation and warping.The
predictions of the present theory range
from +1.7 to -0.7 percent difference
relative to the finite element results. Since
the cross section has a CUS layup the
predictions of the present model coincide
with values calculated on the basis of Ref.
(4), not shown in Table III, except for the
tip deflection due to the transverse force.
The tip deflection predicted from the theory
of Ref. (4) is 1.6917 inch resulting in -9.34
percentage difference compared to the
NASTRAN result .

In order to investigate the effect of
damage on the extension-twist coupling,
the theory is applied to a thin-walled
composite beam with a rectangular cross
section. The layup is [405 / 80}t and the
dimensions of the cross section are shown
in Fig. (3). This stacking sequence
maximizes the extension-twist coupling for

a T300/5208 Graphite-Epoxy laminate
made up of six plies as reported in Ref.
(21). Damage is simulated by progressive
ply failure in the upper member of the
cross section. The variation of the
normalized coupling parameter S;, with

damage appears in Fig. (4).

1.8 D
—0— Present /

1.6 /
Ref. 4 /

-——-.o-——

Normalized Coupling Parameter

Number of 40 Degree Plies
in Top Horizontal Member = (5-N)

Figure 4. Effect of Ply Reduction on The
Extension-Twist Coupling

The normalized coupling parameter is
defined as the ratio of extension-twist
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flexibility coefficient of the damaged
relative to the undamaged laminate. The
number of failed plies starting from the top
portion of the cross section is denoted by N
along the horizontal axis. The lay-up of the
top flange is [40(s.N) / 80]1 , while the
layups of the bottom flange and both
vertical webs are unaltered.

Results obtained on the basis of
Ref. (4) and the present theory show a
gradual increase in the extension-twist
coupling parameter reaching a 42 percent
increase when the upper flange is reduced
to a [40 / 80]t laminate, i.e. at N=4,
Further damage results in a sharp decrease
in the coupling according to the present
theory. A value of 0.95 is predicted when
the top five plies in the upper flange fail.
The theory of Ref. (4) shows a continuous
increase in coupling with a maximum of
1.77. This difference in behavior is due to
the fact that the stiffness, K ij, vary with
damage while the theory of Ref. (4) is
developed for a cross section with uniform
thickness. Since for an open section with a
[405 / 80]T lay-up the extension-twist
coupling is considerably small compared to
the closed section, the abrupt drop in the
coupling parameter suggests that the
prediction of the present model approaches
the behavior of the opened section as
damage progresses.

The influence of damage progression in
one of the webs when the load carrying
capacity of the upper flange is reduced to
one ply, appears in Fig. (5). Damage
progression in the web portion corresponds
to values of N ranging from 5 to 10.
Additional damage in the web region
shows similar behavior with an initial
increase at a slightly smaller gradient
followed by a sharp drop. The predictions
of Ref. (4) show a steady increase at a
smaller rate compared to damage
progression in the flange portion.

For a rotor blade construction using a
box beam as shown in Fig. (3), the
behavior depicted in Figs. (4) and (5)
indicate that at the initial stages of damage

the extension-twist coupling increases. The
resulting loss in torsional stiffness or shift
in the effective shear center may lead to
divergence. This consideration should be
accounted for when establishing the static
margins in damage tolerant rotor blades.

3
5 — T Present
-~
@ _———— o
& 3 ° Ref. 4 o
S rd
< P
B oL )
oo A
£ b
& ’
]
[=3
&)
=
8 19
o
g
5 L
Z
0 CHIEE DR T B Y L 1 ]

N
Fig. 5. Effect of Ply Reduction on The
Extension-Twist Coupling
CONCLUSION

A Variationally consistent theory has
been developed for the analysis of thin-
walled anisotropic composite beams.
Closed form expressions for the stiffness
coefficients in terms of geometry , material
and layup parameters are obtained. The
theory has been validated by comparison of
predictions with finite element analyses and
a closed form solution.

The theory has been applied to the
investigation of the influence of damage on
the extension-twist coupling in laminated
composite beam configuration. Results
indicate that damage progression results in
an initial increase in the coupling followed
by a sharp decrease at the final stage. This
effect should be accounted for when
establishing the static margins for the
damage tolerance design of composite rotor
blades.
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INTRODUCTION

This is a proposal to apply the thin-walled anisotropic beam theory
developed under the current Grant NAG-1-637 to the interlaminar fracture
analysis in elastically tailored composites. The work has two major
objectives. The first, is to investigate the influence of delamination on the
elastic stiffnesses and specially elastic couplings. The second, is to obtain
the interlaminar stresses and strain energy release rate in order to predict
delamination onset. Combined loading conditions associated with
composite rotorcraft components will be considered. The analysis will
include also the influence of residual thermal and moisture stresses.

A major emphasis of the work is to maintain simplicity and provide
closed form expressions for the stiffness coefficients, stresses and strain
energy release rate. This approach is effective in developing insight,
understanding of fundamental behavior and evaluating competitive design
configurations.

A summary of the status of the current research under the present
work is given in the next section. This is followed by a discussion of some
issues associated with the research and a presentation of the proposed
research program. Biographical and budgetary information appear in
appendices.

SUMMARY OF ACCOMPLISHMENTS

A variationally consistent theory for thin-walled composite beams
has been developed [1]. Its predictions have been validated by comparisons
with available finite element [2-4], analytical [5,6] and test results [7]. These
comparisons are given in Ref. I and in the semi-annual report [8].

More importantly an understanding of the reasons for the
predictions of Rehfield's /5] and Chopra's [6] models was achieved. Both
models are based on an apriori assumed displacement field that does not
account accurately for the anisotropy of the material. In Ref. 5 the assumed
warping function is identical to the one used for isotropic materials while
in Ref. 6 the material's shear rigidity only is considered in an approximate
manner. Consequently the predicted rigidities and response are inaccurate
for a generally anisotropic beam with varying circumferential stiffnesses.
This key issue is presented in some detail in the following section.

Warping Function:

In our approach the functional form of the beam's displacement
emerges naturally and the effect of the material's anisotropy is accounted
for from the variationally asymptotic thin shell energy. The warping
function obtained has the following form.

$)U(x,y,2)ds §
b(&)d
$b(&)dE g (c)do 1)

g(s,x)= @ (x)y(s)+ [a(&) U(x,y,z)dE -
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where

y(s)= fb(i)df I n(6)ds
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The enclosed area is denoted by A, in Eq. (2) and the projection of the
position vector in the normal direction to the surface of the beam is given by
rn. Parameter b represents the shear flexibility contribution to the warping
while parameter a the in-plane coupling. Both parameters are a results of
the material's anisotropy. The function Ufx,y,z) in Eq.(1) represents the
axial strain due to uniform extension along the x-axis and bending about
the y- and z- axes. A comparison of Eq. (1) with the corresponding warping
functions show that the first term only is considered in the formulations of
Refs. 5 and 6. The absence of the second and third terms which include
bending effects leads to significant error in the bending flexibilities as
illustrated in Table II of Ref.1. Moreover, the function y(s) in Ref. 5 is given
as

AS 5
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which implies that the section is circumferentially uniform. In Ref. 6 this
function is considered as
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The wall thickness is denoted by ¢, in Eq.(5). The shear contribution
expression given in Eqs. (5) and (6) was determined using a "practical
approximate manner" as mentioned by the authors. This expression
however, is different from the b parameter in Eq.(3). Moreover, Eq. (5) is
dimensionally incorrect.

The circumferential uniform stiffness constraint implied in Eq.(3) was
relaxed in Refs.9 and 10 by considering the pure torsion of a thin-walled
beam of isotropic material. A correction factor o was introduced in the
warping function as follows.

24, S dE S
~ 25 _Ir(&)d
y(s) §d§ [Ea(é) (.grn(é)g
a(&) (7
with
ofs) = [ A5~ 216
A11466 (8)

The Aj;" coefficients are identical to those defined in Eq.(6). This corrected
warping function was created by using the principle of virtual work. It is
similar to Eqs.(4) and (5) when G(s)t(s) is replaced by a(€).

This correction was used to modify the torsion-related stiffness only.
An illustration of its influence is shown for the case of a cantilevered beam
under a transverse tip load in Fig.1. The spanwise variation of the bending
slope in a symmetric [30]¢ box-beam is depicted. The predictions of the
corrected warping function are closer to the experimental data.

This is not the case however, for the tip bending deflection where
Rehfield's theory prediction with and without a correction show an 8%
difference compared to the NASTRAN solution f2]. This is because the o
correction does not affect the bending-related stiffness coefficients. This
comparison is for a [12]4 beam made of Graphite/Epoxy with a square cross

section.

Ongoing Research:

A proof of convergence of the developed theory is underway. This is
based on the dual variational principle. In addition to providing a rigorous
proof of convergence of predictions from the present theory compared to a
general nonlinear formulation, this approach provides closed form
expressions of the stress field in terms of familiar stiffness parameters.
The governing differential equations of motion and consistent boundary
conditions are derived for the general case of combined loading. This
enables the solution of boundary value problems including the effects of
dynamic loading.
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This report covers the research work performed for the period
starting September 1991 and ending February 1992. An investigation of the
different physical contributions in the displacement field derived from the
variationally asymptotical analysis is performed. The analytical approach
along with the derived displacement field and stiffness coefficients for a
genera.lly amsotroplc thin-walled beam is presented in’ detall in Ref.1. A
copy is attached in the Appendix for convenience.

Significance of Out-of-plane Warping

The variationally asymptotical approach does not require an a priori
assumed displacement field and the warping function emerges as natural
result. It follows an iterative process. The displacement function
corresponding to the zeroth order approximation is obtained first by keeping
the leading order terms in the energy functional. A set of successive
corrections is added and the associated energy functional is determined.
Corrections generating terms of the same order in the energy functional as
previously obtained, are kept. The process is terminated when the new
contributions generate terms of smaller order. The displacement field
converges to the following expression:

vy =Up(x)-y(s)Uq(x)-2(s)Us +G(s)p (x)
+g3(s)U3(x) + go(s)Uz(x)+ ga(s)Usz(x)

vg = Uz(x)—%+ U3(x)%sz-+ @o(x)ry

dz d
v= Uz(x)-as—-U.g(x)—&%— ol(x)r

1
The axial displacement is denoted by v; while v2 and v denote the
displacement along the tangent and normal to the cross section mid-
surface, respectively as shown in Fig.1. The average displacement over the
cross section along the x,y and z Cartesian coordinate system is denoted
by Uji(x), Ugs(x) and Ug3(x), respectively. The cross sectional rotation is

denoted by #(x). The underlined terms in Eq.(1) represent the extension and
bending-related warping. These new terms emerges naturally in addition

to the classical torsional-related warping G(s) ¢'. They are strongly



influenced by the material's anisotropy and vanish for materials that are
either orthotropic or whose properties are antisymmetric relative to middle
surface of the cross section wall. These out-of-plane warping functions
were derived earlier and presented in Ref.2.

Fig.1 Coordinate system

The contribution of out-of-plane warping was considered recently by

Kosmatka [3 ]. Local in-plane deformations and out-of-plane warping of the
cross section were expressed in terms of unknown functions. These
functions were assumed to be proportional to the axial strain, bending
curvature and twist rate within the cross section and were determined
using a finite element modeling. In our formulation, the out-of-plane
warping is shown to be proportional to the axial strain, bending curvature
and twist rate. Moreover, the functions associated with each physical
behavior are expressed in closed-form by g;(s) for the axial strain, go(s) and
g3(s) for the bending curvatures and G(s) for the twist rate.
An illustration of their effect appears in Figs. 2 and 3 where the bending
slope in a cantilevered beam is plotted along the span. The beam is
subjected to a unit bending load at the tip and has a rectangular cross
section with [15]¢ (Fig.2) and [30]¢ (Fiig.3) layup. Two types of predictions are
compared to the experimental results [4, 5 ]. In the first, the torsional-
related warping is considered only while in the second the contribution of
bending-related warping is included. Extension-related warping is
negligible for this construction. Neglecting bending-related warping leads
to significant errors in predictions for this case.

Shear Deformation Contribution

A similar behavior to the one illustrated in Figs. 2 and 3 was found in
the theory of Ref. 5 when the shear deformation contribution is neglected.
This may indicate that the out-of-plane warping due to bending includes
implicitly the shear deformation contribution. In the theory of Ref.5 the
cross section stiffness coefficients are predicted from a finite element

2
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simulation. The theory is not restricted to thin-walled configurations. In
order to assess the similarity between the shear deformation contribution
and the out-of-plane warping, the present theory and the numerical work of
Ref. 5 are applied to the prediction of the deflection curve in a cantilevered
beam made of graphite/epoxy material and subjected to a transverse tip
load of 1 Ib. The beam has a [15]¢ layup with a rectangular cross section.
The geometry and mechanical properties are similar to those of Ref. 5 and
are provided in Table I.

Table 1. Cantilever Geometry and Properties

Ply Thickness = 0.005 in

Width = 0.923 in.
Depth = 0.50 in.
E11=20.6 Msi.

E22 = E33 = 1.42 Msi.
G12 =G13=0.87 Msi.
Gg3 = 0.696 Msi

v12 =v13=0.30

vog = 0.34

Figure 4 shows a similar behavior suggesting that in the present
theory, shear deformation is implicitly accounted through bending-related
warping. The prediction of Ref.5 are referred to as Classical when shear
deformation is neglected. Further evidence could be provided by estimating
the equivalent shear deformation strain in the present theory which can be
expressed in terms of the slope of the plane that approximates the cross
section warping. This slope is given by

(2)

where A and Iz> denote the cross-sectional area and second moment of

area about the z-axis, respectively. A comparison of the shear strain yxy
over the length of the beam with the prediction of Ref. 5. is shown in Fig. 5.
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The shear strain at the fixed end is 4.5924x10-4 based on Eq.(2) which is
within 2 % of 4.6857x10-4 calculated on the basis of Ref. 5.

0.3
-——— Hodges et al. , NABSA
I
025 - — — Present, with bending-warping
 ceveeraens Hodges et al., Classical /
7/
02 /

—— - . Present, without bending-warping

Vertical Displacement (inches)

0.15
0.1
0.05
0
) 30
gix:d Spanwise Coordinate (inches) Tip
n

Fig. 4 Deflection of a [15]g cantilevered beam under unit tip load
Closing Remarks

The variationally asymptotical theory developed provides a consistent
means for including the effects of the material's anisotropy in thin-walled
beams. Two issues have been addressed in this progress report. The first, is
concerned with the functional form of in-plane deformation and out-of-
plane warping contributions to the displacement field. The second, is
concerned with the significance of shear deformation effects.

A rigorous proof is provided for the assumed displacement field in
Kosmatka's work [3]. Local in-plane deformations and out-of-plane
warping of the cross section are indeed shown to be proportional to the axial
strain, bending curvature and twist rate within the cross section.
Moreover, their closed form functions are determined.
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Fig. 5 Shear strain in a [15]¢ cantilevered beam under unit tip load

The significance of shear deformation in the modeling of laminated
composites was recognized in the early work of Rehfield and was followed
by Chopra et al. by adopting a Timoshenko-type shear deformation
formulation. The displacement field developed in the present work is shown
to include shear deformation through the out-of-plane warping terms. A
closed form expression for the slope of the plane that approximates the
cross section warping is derived and shown to be within 2% of the shear
strain in a cantilever heam problem.
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Theory of Anisotropic Thin-Walled Closed
Cross-Section Beams
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ABSTRACT

A variationally and asymptotically consistent theory is developed in order to derive
the governing equations of anisotropic thin-walled beams with closed sections. The
theory is based on an asymptotical analysis of two-dimensional shell theory. Closed-
form expressions for the beam stiffness coefficients, stress and displacement fields are
provided. The influence of material anisotropy on the displacement field is identified.
A comparison of the displacement fields obtained by other analytical developments
is performed. The stiffness coefficients and static response are also compared with
finite element predictions, closed form solutions and test data.

INTRODUCTION

Flastically tailored composite designs are being used to achieve favorable defor-
mation behavior under a given loading environment. Coupling between deformation
modes such as extension-twist or bending-twist is created by an appropriate selection
of fiber orientation, stacking sequence and materials. The fundamental mechanism
producing eclastic tailoring in composite beams is a result of their anisotropy. Sev-
eral theories have been developed for the analysis of thin-walled anisotropic beams.

* Professor, Associate Professor, and Graduate Rescarch Assistant, respectively.



A review is provided in Hodges (1990). A basic element in the analytical model-
ing development is the derivation of the eflective stiffness coefficients and governing
equations which allows the three-dimensional (3D) state of stress to be recovered
from a one-dimensional (1D) beam formulation. For isotropic or orthotropic materi-
als this is a classical problem, which is considered in a number of text books such as
Timoshenko and Goodier (1951), Sokolnikoff (1956), Washizu (1968), Crandall et al.
(1978), Wempner (1981), Gjelsvik (1981), Libai and Simmonds (1988), and Megson
(1990).

For generally anisotropic materials a number of 1D theories have been developed
by Reissner and Tsai (1972), Mansfield and Sobey (1979), Rehfield (1985), Libove
(1988), Rehfield and Atilgan (1989), and Smith and Chopra (1990,1991). A discussion
of these works is provided in the comparison section of this paper.

The objective of this work is to develop a consistent theory for thin-walled beams
made of anisotropic materials. The theory is an asymptotically correct first order
approximation. The accuracy of previously developed theories is assessed by compar-
ing the resulting displacement fields. A comparison of stiffness coefficients and static
response with finite element predictions, closed form solutions and test data is also
performed.

A detailed derivation of the theory is presented first. This is followed by a sum-
mary of governing equations. Finally a comparison of results with previously devel-
. oped theories is provided.

DEVELOPMENT OF THE ANALYTICAL MODEL

Coordinate Systems

Consider the slender thin-walled elastic cylindrical shell shown in Fig. 1. The
length of the shell is denoted by L, its thickness by h, the radius of curvature of the
middle surface by R and the maximum cross sectional dimension by d. It is assumed
that

d<<L h<<d h<<R (1)

The shell is loaded by external forces applied to the lateral surfaces and at the
ends. It is assumed that the variation of the external forces and material properties
over distances of order d in the axial direction and over distances of order h in the
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circumferential direction, is small. The material is anisotropic and its properties can
vary in the direction normal to the middle surface.

It is convenient to consider simultaneously two coordinate systems for the descrip-
tion of the state of stress in thin-walled beams. The first one is the Cartesian system
z,y and z shown in Fig. 1. The axial coordinate is £ while y and z are associated
with the beam cross section. The second coordinate system, is the curvilinear system
z,s and £ shown in Fig. 2. The circumferential coordinate s is measured along the
tangent to the middle surface in a counter-clockwise direction whereas £ is measured
along the normal to the middle surface. A number of relationships have a simpler
form when expressed in terms of curvilinear coordinates. A relatxonshlp between the
two coordinate systems can be established as follows.

Define the position vector 7 of the shell middle surface as
= 2 + y(s)fy + 2(s)T

where 1z, 7, 7, are unit vectors associated with the cartesian coordinate system z, y
and z. Equations y = y(s) and z = z(s) define the closed contour I' in the y, z plane.
The normal vector to the middle surface 7i has two nonzero components

= ny(s)g + n2(s)% )
The position vector R of an arbitrary material point can be written in the form
R=7+¢f (3)

Equations (2) and (3) establish the relations between the cartesian coordinates z, v,
z and the curvilinear coordinates z, s, £&. The coordinate £ lies within the limits

_k(s) h(s)

<E< ==
2 f

The shell thickness varies along the circumferential direction and is denoted by h(s).

The tangent vector , the normal vector 7 and the projection of the position vector
7 on ¢ and 7 are expressed in terms of the cartesian and curvilinear coordinates as



dy dz

re=T =y 4+ 2
' yds ds

- o dz dy
=T A=y o2y

An asymptotical analysis is used to model the slender thin-walled shell as a beam
with effective stiffnesses. The method follows an iterative process. The displacement
function corresponding to the zeroth-order approximation is obtained first by keeping
the leading order terms in the energy functional. A set of successive corrections is
added to the displacement function and the associated energy functional is deter-
mined. Corrections generating terms of the same order as previously obtained in the
energy functional, are kept. The process is terminated when thé new contributions
do not generate any additional terms of the same order as previously obtained.

Shell Energy Functional

Consider in a 3D space the prismatic shell shown in Fig. 2. A curvilinear frame z,
s, and € is associated with the undeformed shell configuration. Values 1, 2 and 3 de-
noting z, s, and £, respectively are assigned to the curvilinear frame. Throughout this
section, Latin superscripts (or subscripts) run from 1 to 3, while Greek superscripts
(or subscripts) run from 1 to 2, unless otherwise stated.

The energy density of a 3D elastic body is a quadratic form of the strains
U= §E‘Ju€,’j€kt

The material properties are expressed by the Hookean tensor E¥*. Following classical
shell formulation (Koiter (1959), and Sanders (1959)) the through-the-thickness stress
components o3 are considerably smaller than the remaining components ¢®? therefore

a?=0 (4)
The strains can be written as
Eaf = Va3 + EPas (5)

where 7,3 and pop represent the in-plane strain components and the change in the
shell middle surface curvatures , respectively. For a cylindrical shell these are related

to the displacement variables by 5
V)

™=y
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(6)
. 82'1) 1 61)) 6’02
pe= 5o+ 1S 35

where v;, v, and v represent the displacements in the axial, tangential and normal

directions, repectively as shown in Fig. 2. These are related to the displacement
components in cartesian coordinates by

vV = U
dy dz
v = Uy +usg= (M
v= UQE{ - usiy'

ds ds -
where u;, us, and us denote the displacements along the z, ¥ and z coordinates,
respectively.

The energy density of the 2D elastic body is obtained in terms of 7,5 and p,s by
the following procedure.

The 3D energy is first minimized with respect to €;3. This is equivalent to satis-
{fying Eq. (4). The result is

- ) 1
U= min U= -2—D°‘9"66055.,5

(8)

where D?7¢ represents the components of the 2D moduli. The expressions for D87
are given in terms of E*#* in the Appendix.

The strain €,5 from Eq. (5} is substituted into Eq. (8). After integration of the
result over the thickness £ one obtains the energy of the shell ¢ per unit middle
surface area

h3
20 = hcaﬁvé'Yaﬂ'Y'y& + th?M67aﬁp'yé + l_écg[h‘spaﬁp’w

5



where

o = L ¢
2

C?&Yﬁ = ﬁ < Daﬂ‘yﬁf >

C2aﬁ'y6 - }l_f < Daﬂ'yé EQ >

and a function of &, say a(£), between pointed brackets is defined as an integral
through the thickness, viz.,

+h(s)/2

<a>= o)l ©)

~k(s)/2

For an applied external loading P;, the displacement field u; determining the
deformed state is the stationary point of the energy functional

I= / Sdzds — / Pudzds (10)
Asymptotical Analysis of the Shell Energy Functional

Zeroth-Order Approximation

Let A and E be the order of displacements and stiffness coefficients C*#*, re-
spectively. Assume that the order of the external forces is

EAhR
I2

p~of

This assumption is shown later to be consistent with the equilibrium equations.
An alternative would be to assume the order of the external force as some quantity P
and derive the order of the displacements as PL?/Eh from an asymptotical analysis
of the energy functional.

For a thin-walled slender beam whose dimensions satis{y Eq. (1) the rate of change
of the displacements along the axial direction is much smaller than their rate of change
along the circumferential direction. That is, for cach displacement component

o __[ou
oz Js




Using Eq. (6) and assuming that d is of the same order as R, the order of magnitude
of the in-plane strains and curvatures is

A
i ~0 (—Ij)
A
2’)’12“*0(3)
A
Yo2 ~ O (F
A
pu~ 0O (ﬁ

>
o
l
Q
LA W O

&I &>

Since 1, and py; are much smaller than 7,4, Y22 and pia, p9o, respectively, their
contribution to the elastic energy is neglected.

_ By keeping the leading order terms in the strain-displacement relationships, Eq.
(6) can be written as

6‘01
272 = Bs
O v
™= TR
1 6’0]
P12 iR s (11)
621) 6 V9

The order of magnitude of the shell energy per unit area and the work done by
external forces is ' EAZH
@ ~
o(%&")
EA?h
12

Rm~0(



Since Pu; << @, the contribution of external forces is neglected The energy
functional takes the form

20 = [ {4RC 2 (1) + 4hC" s + HCT ) + 4Kz
+2h2C1* 219097 + 2R Cnu’thm + h 02222’722P22

h3
+—3'C:}212(P12)2 3 l222/312P22>+ 022222(P22)2}d3d$ (12)

The integrand in Eq. (12) is a positive quadratic form, therefore the minimum of

the functional is reached by functions v, v;, and v, for which 'm =Yoo = P12 = Py =
0. From Eq. (11) this corresponds to

37}1

0w, v

E-l_ﬁ =0 (14)
52'1) d V2 .
57 o5 (1) =" (15)

The function v in Egs. (14) and (15) should be single valued, i. e.
Ov v
— = 1
(63) ] 8sds (16)

The integral in Eq. (16) is performed along the cross sectional mid-plane closed con-
tour I. The length of contour T is denoted by [. The bar in Eq. (16) and in the
subsequent derivation denotes averaging along the closed contour I'.
Equation (13) implies that v, is a function of z only, i.e.
v = Uy (z) 1n

Integrate Eq. (15) to get

v

= — 5 =~ (18)

where ¢(z) is an arbitrary function which is shown later to represent the cross sec-
tional rotation about the z-axis. From Eq. (16) and (18), one obtains the relation

8




Substitute v from Eq. (14) into Eq. (18), to get the following second-order differential

cquation for v

J . _0Ou, Vo

55 (Fge) + 5 = o) (19)
To solve this equation, one has to recall the relations between the radius of curvature

R and the components y(s) and z(s) of the position vector associated with contour I"

2 _1dy
ds?  Rds

&y 1dz _ A

- Fds (20)

It follows from Eq. (20) that % and ‘-fé are solutions of the homogeneous form of Eq.
(19) and vy = {z)r, is its particular solution. The general solution is therefore given
by

d d
Uy = Ug(x)-(% + U3($)Ez_ + o(z)rn (21)

where U, and Us are arbitrary functions of z. Substitute from Eq. (21) into Eq. (14)
to get -

dz ., . d ’
v=Us(z) 7 ~ Ualz) 3 - o@) (22)
Equations (17), (21) and (22) represent the curvilinear displacement field that mini-

mizes the zeroth order approximation of the shell energy. Using Eq. (7) the curvilinear
displacement field is written in Cartesian coordinates as

U = Ul(I)

up = Uz(z) — z¢p(x)
uz = Us(z) + yo(T)

The variables U;(z), Us(z) and Us(z) represent the average cross-sectional transla-
tion while ¢(z) the cross-sectional rotation normally referred to in beam theory as
the torsional rotation. This displacement field corresponds to the zeroth-order ap-
proximation and does not include bending behavior. For a centroidal coordinate
system Ui (z), U2(z), Us(z) and (z) can be expressed as

U1(.’C) = U
Us(z) =12
Usiz) =3



First-Order Approximation

A first-order approximation can be constructed by rewriting the displacement field
in Egs. (17), (21) and (22) in the form

v = Uy (z) + wi (s, z)
Uy = UQ(I)% + Ug(x)% + (z)rn + wo(s, z) ' (23)

v= UQ(I)%E - U3(I)% = o(z)r + w(s, z)

where wy, w, and w can be regarded as correction functions to be determined based
on their contributions to the energy functional.

Substitute Eq. (23) into Eq. (6) to obtain the strains and curvatures in terms of
the displacement corrections

= 5+
T =Tn a7 |
o 6‘1.02 6w1
272 = 2712 + —— + 24 , M= ——
T2 12 + oz + 272 T2 s
= Va2 +4 L .
Y22 2tTYT2 , Y= 3s R
o 8w
=Py + — 24
An n+ 53 (24)
8w 3 Bw, . 1 Ow,

P12=912+5}5;—;172—8‘;+912 ) P12=4R s
%,

__.B + 5 H _@_._(_wi)
p22 = F22 p22 3 p22 - 632 68 R

where 7°,5 and £°,g are the strains and curvatures corresponding to the zeroth-order
approximation. These are expressed as

Tu = Uj(z)
° N ., 1 dz ,
e = U2(¢)2§ + Us(x)E; + ¢ (T)Ta
Yoz = 0

10



P gy 42 1 d t

bu = V(@) - V(@) — ¢"(@)re (25)
° 1 o 4y , 1 dZ , ,
Pr2= iR [Ug(x)a‘; + Ua(x)a‘; + ¢ (x)rn} —¢'(z)

Pag =0

The prime in Eq. (25) denotes differentiation with respect to z. The order of w;
is (%). Among the new terms introduced by the function w; the leading ones are
denoted by superscript * in Eq. (24). By keeping their contribution over the other
terms, the energy functional can be represented by

&(711,2%12 + 2912, 722, 0, P12, f22)

where terms of order (%%) or smaller such as
o o 29 . 2% .
hPinz, hPuez, RPupiz, h°Pripa

hP12fha s hP12Yas s B2P1apra s h2P12pan
are neglecied in comparison with the following terms
(-] ~ Q - o - o, -
Tunz, Tuyez, Y22, Y2722
of order (%;—). Similarly, the contribution of the work done by external forces, Pw;, is

neglectec since its order is (Eh%;—(%)) in comparison with the order of the remaining

. N . 2 . N .
terms in the energy functional (Eh%,— . Therefore in order to determine the functions
w; one Lzs to minimize the function

fq’('Yu, 2712+ 2%12, 922, 0, P12, P22) ds

If the ricid body motion is suppressed the solution is unique. The terms §i2, f2e are
essential 10 the uniqueness of the solution; however, their contribution to the energy
is of orcer (Eh—ﬁ-;(%)) and is consequently dropped. This aspect is discussed by
Berdichevsky and Misiura (1991) with regard to the accuracy of classical shell theory.
The shel: energy can therefore be represented by

L o [ ~
I= /0 f’l’(’)’n,?hz + 2%12,%22,0,0,0) dsdz (26)

It is worth noting that the bending contribution does not appear in Eq. (26). That
is, to the first order approximation the shell energy corresponds to a membrane state.

¢
11



The first variation of the energy functional is

1=/ f {a@m) (3"“)%"’;5 (aa? )}ds‘i’” )

Equation (27) can be written in terms of the shear flow N2 and hoop stress resultant
[ by recalling that Ny, = 3’(3’-?;5 and Nop = %. The result is

_ L 6(6’11}1) 3((5’(1)2) 1
61 = -/(; f{N;g 5s -+ N22 (-‘-5;—'— + E&w dsdz

Set the first variation of the energy to zero, to obtain the following

ONi2
ds 0
ONjy
ds 0
Noo
7= 0
which result in
Ny = constant - (28)
and
Ny =0 (29)

This is similar to the classical solution of constant shear flow and vanishing hoop
stress. By setting No, to zero the energy density is expressed in terms of v;; and 7vy2

only
29, = r_ryx?l?n 20 = A(s)(vi1)? + 2B(s)mim2 + C(S)(712)2 (30)

The variables A(s), B(s) and C(s) represent the axial, coupling and shear stifinesses,
respectively. They are defined in terms of the 2D shell moduli in the Appendix.

Equation (30) indicates that, to the first order, the energy density function is
independent of functions w, and w. That is the in-plane warping contribution to the
shell energy is negligible. The function w, however, can be determined from Egs. (28)
and (30) and by enforcing the condition on w; to be single valued as follows

1
Ny = =3 (B(s)m + C(s)712) = constant (31)

12



Substitute the leading terms from Egs. (24) and (25) into Eq. (31) to get

-;—BU{ (z) + %C (U;(x)g—i-’ + Ué(z)% + &' (2)ra(s) + %?) = constant (32)
In deriving Eq. (32) the term B%l has been neglected in comparison with %C%‘—‘}.
This is possible if |B] is less or of the same order of magnitude as C. For the
case when |B| >> C additional investigation is needed. Since the elastic energy
is positive definite, B2 < AC, and B could be greater than C only if A >> C. In
practical laminated composite designs [B| < C, as the shear stiffness is greater than
the extension-shear coupling,. -

Equation (32) is a first-order ordinary differential equation in w;. The value of
the constant in the right hand side of Eq. (32) can be found from the single value
condition of function wx:

67.01 _ 1 6w1 _
(E) =7f 5 =0

The solution of Eq. (32) is determined within an arbitrary function of z. This function
can be specified from various conditions. Each one yields a specific interpretation of
the variable U,. For example if @, = 0 the variable U, = 7y according to Eq. (23).
The choice of these conditions does not affect the final form of the 1D beam theory
and therefore will not be specified in this formulation. The result is the following
simple analytical solution of Eq. (32)

wy = ~yUy(z) - 2Us(x) + G(s)'(z) + 91(s)U; () (33)
where _—
G = | [Fc(r_) - r,,(’r)}d’r
gi1(s) = /Os [b(‘/") - gC(T)} dr
b(s) = ——2—?—%3 c(s) = 5%55 A= éﬁ? (34)

The area enclosed by contour I' is denoted by A. in Eq. (34).

The displacement field corresponding to the first correction is obtained by sub-
stituting Eq. (33) into Eq. (23) and dropping w, and w since their contribution to



the shell energy is negligible compared to w;. The result referred to as first-order
approximation is given by '

vy = Ui(z) — y(s)Us(z) — 2(s)Us(z) + G(s)¢' (z) + g1(s)U;(z)
v = U@ + Us(2) 5 + o(a)rn

d d
v= Ug(x)a—z' - Ug(:r)ag— — o(z)r

Displacement Field

The displacement field corresponding to the next correction is found in the same
way. A third correction can also be performed. However, subsequent corrections yield
only smaller terms, as shown in Badir (1992), and the displacement field converges
to the following expression

v = Ui(z) - y(s)Us(z) — 2(s)Us(z) + G(s)¢(z)
+q1(s)U1(z) + 92(8)U; (z) + g5(s)Us ()

= Us (x)%’ + Ua(x)% + o(z)rm (35)

d d
v=Us(@) 3 - Us(2) 5] - v@)re

where

) = = [} st - Zeto)|ar

0s(s) = — /0 ) {b(r)z(r) - %z—c(r)] dr (36)

It is seen from expressions (34) and (36) that G(s), g1(s), g2(s), and g3(s) are single-
valued functions, that is

G(0) = G(I) = g1(0) = g1 (1) = g2(0) = go(l) = 93(0) = g5(!) = 0

The expressions for the displacements v, v and the first four terms in v; are
analogous to the classical theory of extension, bending and torsion of beams. The
additional terms g,(s)Uj, g2(s)Uy and g3(s)Uy in the expression of v; in Eq. (35)
represent warping due to axial strain and bending. These new terms emerge natu-
rally in addition to the classical torsional related warping G(s)¢’. They are strongly

14



influenced by the material’s anisotropy, and vanish for materials that are either or-
thotropic or whose properties are antisymmetric relative to the shell middle surface.
These out-of-plane warping functions were first derived by Armanios et al. (1991) for
laminated composites.

The contribution of out-of-plane warping was considered recently by Kosmatka
(1991). Local in-plane deformations and out-of-plane warping of the cross section
were expressed in terms of unknown functions. These functions were assumed to be
proportional to the axial strain, bending curvature and twist rate within the cross
section and were determined using a finite element modeling. In the present formula-
tion, the out-of-plane warping is shown to be proportional to the axial strain, bending
curvature and torsion twist rate. The functions associated with each physical behav-
ior are expressed in closed-form by g,(s) for the axial strain, go(s) and gs(s) for the
bending curvatures and G(s) for the torsion twist rate.

Strain Field

The strain field is obtained by substituting Eq. (35) into Eq. (6) and neglecting
terms of smaller order in the shell energy. The result is

11 = Uy(z) — y(s)U3 (z) — 2(s)U5 ()

v = 25l + |b0) - 219 U
- [ - Zets] 0 @)

- [b(s)z(s) - bt?c(s)] Us

T2 =0
It is worth noting that the vanishing of hoop stress resultant in Eq. (29) and hoop
strain in Eq. (37) should be interpreted as negligible contribution relative to other
parameters. The longitudinal strain 7, is a linear function of y and z. This result
was adopted as an assumption in the work of Libove (1988).

In deriving Eq. (37), higher order terms associated with G¢” in the energy func-

tional have been neglected in comparison with C (%.jccp')z as shown in Badir (1992).
This is possible if the following inequalities are satisfied

f‘—fi-<<1 §§<<1
C\L C\L

-
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Constitutive Relationships

Substitute Eq. (37) in the energy density, Eq. (30), and integrate over s to get the
energy of 1D beam theory

L
I= /0 @ydz — [ Padzds (38)
where
@ = 3 [CulU)? + Cnl@')? + Oxs(U3) + Cu(U2?]
+CrU ¢ + Cy3UL U + CL U UY ,
+Cg3(p,U;’;’ -+ Cz.gQO’Ug -+ Ca4U U ) (39)
Explicit expressions for the stiffness coefficients C;; (i, j = 1, 4) are given in the

Appendix. .

The constitutive relationships can be written in terms of stress resultants and kine-
matic variables by differentiating Eq. (39) with respect to the associated kinematic
variable or by relating the traction T, torsional moment M., and bending moments
M, and M, to the shear flow and axial stress as follows -

=g%=f/a“dgds=}(m,ds

M, = —6}—)3 = f/algr,,(s)dfds —}(ler,,(s)ds

M, = 3‘1’2 - f / ovzdeds = — f Nuz(s)ds (40)

1. = ?}-)—% = —f/aruydfds = jéNuy s)ds

The shear flow N, is denved from the energy density in Eq. (31) and the axial stress
resultant NNy, is given by

0%
o = Als)m + Bls)ns (41)
T

and the associated axial and shear stresses are uniform through the wall thickness.

T
All'_

Substitute Eq. (37) into Egs. (31) and (41) and use Eq. (40) to get

T Ch Cn Ci Cu U;
M, - Cha Cn Cu Cy ¥ (42)
My Cm 023 033 034 Ug
M, Cuu Cu Ci Cu) LUJ



Equilibrium Equations

The equilibrium equations can be derived by substituting the displacement field
in Eq. (35) into the energy functional in Eq. (10) and using the principle of minimum
total potential energy to get

T+fga=o
M.+ § (Py— R2)ds =0
MY+ ( f P,zds) + f Pds=0 (43)

MY+ (§ Payds) + § Pyds =0
where P;, F, and P, are surface tractions along the z, y and 2 directions, respectively.

One of the member of each of the following four pairs must be prescribed at the

beam ends :
TorUy, Mzor @, MyorUj,and M, or U, (44)

SUMMARY OF GOVERNING EQUATIONS

The development presented in this work encompasses five equations. The first, is
the displacement field given in Eq. (35). Its functional form was determined based
on an asymptotical expansion of shell energy. The associated strain field is given in
Eq. (37) and the stress resultants in Eqgs. (31), (40) and (41). The fourth, are the
constitutive relationships in Eq. (42) with the stiflness coefficients expressed as inte-
grals of material properties and cross sectional geometry in Eq. (56) of the Appendix.
Finally the equilibrium equations and boundary conditions are given in Eq. (43) and
(44), respectively.

In the present development the determination of the displacement field is essential
in obtaining accurate expressions for the beam stiflnesses. A comparison of the derived
displacement field with results obtained by previous investigators is presented in the
following section.

COMPARISON OF DISPLACEMENT FIELDS
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The pioneering work of Reissner and Tsai (1972) is based on developing an exact
solution to the governing equilibrium, compatibility and constitutive relationships
of shell theory. Closed as well as open cross-sections were considered. The derived
constitutive relationships are similar to Eq. (42). However, the authors left to the
reader the derivation of the explicit expressions for the stiffness coefficients. This
may be the reason for their work to have been overlooked. These expressions are
important in identifying the parameters controlling the behavior and in performing
parametric design studies. Furthermore, the explicit form of the displacement field
helps evaluate and understand predictions of other analytical and numerical models.

A number of assumptions were adopted in Reissner and. Tsai’s development re-
garding material properties such as neglecting the coupling between in-plane strains
and curvatures which can be significant in anisotropic materials. It is important to
assess the influence of these assumptions on the accuracy. This has been done in the
present work by using an asymptotical expansion of the shell energy and proving that
the coupling and curvatures contributions to the energy are small in comparison with
the in-plane contribution.

Mansfield and Sobey (1979) and Libove (1988) obtained the beam flexibilities re-
lating the stretching, twisting and bending deformations to the applied axial load, tor-
sional and bending moments for a special origin and axes orientation. They adopted
the assumptions of a negligible hoop stress resultant N, and a membrane state in
the thin-walled beam section. Although they did not refer to the work of Reissner
and Tsai (1972), their stiffnesses coincide for the special case outlined in Reissner and
Tsai (1972). This special case refers to the one where the classical assumptions of
neglecting shear and hoop stresses and considering the shear flow to be constant is
adopted. However, one has to carry out the details to show this fact.

The work of Rehfield (1985) has been used in a number of composite applications.
Rehfield’s displacement field is of the form

w = Uy (&) - 4(5) [Uh(z) — 292y()] - 2() [L3(z) — 27ea ()] + (s, 7)
up = Us(z) — 2(s)p(z) (45)
uz = Us(z) + y(s) ()
where vz, and 7;, are the transverse shear strains. The warping function g(s, z) is

given as : -
9(s,7) = G(s)¥'(z) (46)

with
s

Cls) = 24, /0 ra()dr (47)
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A comparison of the displacement fields in Eq. (35) and (45) shows that the warp-
ing function in Rehfield’s formulation comprises the torsional-related contribution
but does not include explicit terms that express the bending-related warping. The
torsional warping function G(s) in Eq. (34) is different from the function in Eq. (47).
The two expressions coincide when ¢ = constant that is, when the wall stiffness and
thickness are uniform along the cross section circumference.

The torsional warping function in Eq. (47) was modified by Atilgan (1989) and
Rehfield and Atilgan (1989) as

) s 124
&(s) = /0 [ lc_:c,-rn('r)]dr S (48)
where 1
€ = ————— (49)
At — G-
and
’ (A12)?
[ ael= 0 Ao =2 (50)
e Asl | Ay — A Aes — 42L

The A;; in Eq. (50) are the in-plane stiffnesses of Classical Lamination Theory
(Jones (1975) and Vinson and Sierakowski (1987)). They are related to the modulus
tensor by

A=< EV S ’ A =< E“22 > Az =< E2222 >

A =< EMZ2 > | A=< E> | Ag=<E??>

A comparison of the modified torsional warping function in Eq. (48) and G(s) in
Eq. (34) shows that they coincide for laminates with no extension-shear coupling
(<« D12 >=< D2 >= 0, in Eq. (54) of the Appendix). For the case where the
through-the-thickness contribution is neglected in Eq. (54), this reduces to A =
A26 = (.

The warping function obtained by Smith and Chopra (1990, 1991) for composite
box-beams is identical to the expression of Rehfield and Atilgan (1989) and Atilgan
(1989) given in Eqgs. (46) and (48).

An assessment of all the previous warping expressions can be made by checking
whether they reduce to the exact expression for isotropic materials (see, for example,
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Meyson (1990))

é’(s) = /os [2/2:62 - rn('r)} dr (51)

with

where p is the shear modulus.

For isotropic materials the in-plane coupling b is zero and consequently g;, g2 and
g3 in Egs. (34) and (36) vanish. That is the warping is torsion-related and reduces

to G(s)¢'. Moreover, the shear parameter c is equal to —— and the expressions for

_ 4uh(s)
G(s) and G(s) in Egs. (34) and (51) coincide.

Rehfield’s warping function in Eq. (47) coincides with Eq. (51) when the material
properties and the thickness are uniform along the wall circumference. Atilgan’s
(1989), Rehfield and Atilgan’s (1989), and Smith and Chopra’s (1991) formulations
reduce to Eq. (51) for isotropic materials.

APPLICATIONS

- Two special layups: the circumferentially uniform stiffness (CUS) and circumfer-
entially asymmetric stifiness (CAS) have been considered by Atilgan (1989), Rehfield
and Atilgan (1989), Hodges et al. (1989), Rehfield et al. (1990), Chandra et al
(1990), and Smith and Chopra (1990, 1991).

CUS Configuration

This configuration produces extension-twist coupling. The axial, coupling and
in-plane stiffnesses A, B, and C given in Eq. (53) of the Appendix are constant
throughout the cross section, and hence the name circum{erentially uniform stiffness
(CUS) was adopted by Atilgan (1989), Rehfield and Atilgan (1989), Hodges et al.
(1989), and Rehfield et al. (1990). For a box-beam, the ply lay-ups on opposite
sides are of reversed orientation, and hence the name antisymmetric configuration
was adopted by Chandra et al. (1990), and Smith and Chopra (1990,1991).

Since A, B, and C are constants, the stiffness matrix in Eq. (42), for a centroidal
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coordinate system, reduces to

C2 G2 O 0
0 0 (Ci O
0 0 0 Cu

The nonzero stifiness coefficients are given by

Cn = Al
Cl2 = BAe
C?Q = gAz

1
033=A}(z2ds-%2}4z?ds

C'44=Afy2ds—%2fy2ds

(52)

For such a case the out-of-plane warping due to axial strain vanishes and g, does

not affect the response.

CAS Configuration

This configuration produces bending-twist coupling. The stifiness A is constant
throughout the cross section. For a box beam, the coupling stiffness, B in opposite
members is of opposite sign and hence the name circumferentially asymmetric stiff-
ness (CAS) was adopted by Atilgan(1989), Rehfield and Atilgan(1989), Hodges et
al.(1989), and Rehfield et al.(1990). For a box-beam, the ply lay-ups along the hori-
zontal members are mirror images, and hence the name symmetric configuration was
adopted by Chandra et al.(1990), and Smith and Chopra(1990,1991). The stiffness
C in opposite members is equal. The stiffness matrix, for a centroidal system of axes,

reduces to
Cahn O 0 0

0 G Cyu O
0 Cy Ci3 O
0 0 0 Cyu

The nonzero stiflness coefficients are expressed by

B?
= Al - 2—L
Cn Ctd

.‘)1



Table 1: Properties of T300/5208 Graphite/Epoxy

Eu = 21.3 Msi
Gm = Gls = (0.9 Msi

023 = (.7 Msi
Vg = Vg = 0.28
Yoz = 0.5
C
Cp = ——tr e A2
" 2fara(2)]

Ae
Afre e
B}
=

Subscripts t and v denote top and vertical members, respectively. The box width
and height are denoted by d and a, respectively. For the CAS configuration and with
reference to the Cartesian coordinate system in Fig. 1, bending about the y-axis is
coupled with torsion while extension and bending about the z-axis are decoupled.

044=Afy2ds—

In order to assess the accuracy of the predictions the present theory is applied to
the box beam studied by Hodges et al. (1989). The cross sectional configuration is
shown in Fig. 3 and the material properties in Table 1.

Flexibility Coefficients

A comparison of the flexibility coeflicients S;; with the predictions from two models
is provided in Table 2. The flexibility coefficients S;; are obtained by inverting the
4 x 4 matrix in Eq. (42). The NABSA (Nonhomogeneous Anisotropic Beam Section
Analysis) is a finite element model based on an extension of the work of Giavotto
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Table 2: Comparison of Flexibility Coefficients of NABSA, TAIL and Present
(Ib,in units)

Flexibility | NABSA | PRESENT % Diff. TAIL % Diff.
Sn x 10° 0.143883 0.14491 +0.7 0.14491 +0.7
Sao x10% 0.312145 0.32364 +3.6 0.32364 43.6
S12 x 10° | —0.417841 | -0.43010 +2.9 | -0.43010 +2.9
Si3 x 104 0.183684 0.1886 +2.6 0.17294 5.8
Sy x 10° 0.614311 0.63429 +3.2 0.50157 -—18.4

Table 3: Geometry and Mechanical Properties of Thin-Walled Beam with [+12], CUS
square cross-section

Length = 24.0 in. E“ == E22 = E33 = 11.65 Msi
Width = depth = 1.17 in. Glz = G13 = 082, G23 = 0.7 Msi
Ply thickness = 0.0075 in. Vig = Vi3 = 0.05, ve3 =10.3

et al.(1983). In this model all possible types of warping are accounted for. The
TAIL model is based on the theory of Rehfield (1985) while neglecting the restrained
torsional warping. The predictions of the NABSA and TAIL models are provided by
Hodges et al.(1989). The percentage differences appearing in Table 2 are relative to
the NABSA predictions. The present theory is in good agreement with NABSA. Its
predictions show a difference ranging from +0.7 to +3.6 percent while those based
on Rehfield’s theory (1985) range from +3.6 to —18.4 percent.

The present theory is applied to the prediction of the tip deformation in a can-
tilevered beam made of Graphite/Epoxy and subjected to different types of load-
ing. The beam has a CUS square cross section with [+12]4 lay-up. The geometry
and mechanical properties are given in Table 3. Comparison of results with the
MSC/NASTRAN finite element analysis of Nixon (1989) is provided in Table 4. The
MSC/NASTRAN analysis is based on a 2D plate model. The predictions of the
present theory range from +1.7 to —0.7 percent difference relative to the finite ele-
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Table 4: MSC/NASTRAN and Present Solutions for a CUS Cantilevered Beam with
[+12]4 Layups Subjected to Various Tip Load Cases

Tip Load Tip Deformation % Diff.
NASTRAN Present

Axial Force (100 1b) ' Axial Disp. : 0.002189 in. 0.002202in. | +0.6 %

Axial Force (100 1b) Twist : 03178 deg. 0.32325deg. | +1.7%

Torsional Moment (100 1b-in) { Twist : 2.959 deg.  2.998 deg. +1.32 %

Transverse Force (100 1b) Deflection:  1.866in. _ 1.853 in. -0.7%

Table 5: Cantilever Geometry and Properties

Width = 0.953 in. En = 20.59 MSi, E‘22 = E33 = 1.42 Msi
Depth = 0.53 in. G2 = G13 = 0.87 Msi, Ga3 = 0.7 Msi
- Ply thickness = 0.005in. vy = v;3 =042, 13 =0.5

ment results.

For a CUS configuration, the extension-torsional response is decoupled from bend-
ing. Since C is constant and ¢; does not affect the stiffness coefficients, the flexibility
coeflicients controlling extension and twist response, Si;, Si12 and Sy coincide with
those of Atilgan (1989), and Rehfield and Atilgan (1989). As a consequence, the ax-
ial displacement and twist angle predictions coincide. However, the lateral deflection
under transverse load differs. The tip lateral deflection predicted using the theory of
Rehfield (1985), and Atilgan (1989), and Rehfield and Atilgan (1989), is 1.724 inch
resulting in —7.6 percentage difference compared to the NASTRAN result.

The test data appearing in the comparisons of Figs. 4-9, are reported by Chandra
et al. (1990), and Smith and Chopra (1990, 1991). Figures 4 and 5 show the bending
slope variation along the beam span for antisymmetric and symmetric cantilevers
under a 1 lb transverse tip load. The beam geometry and material properties are
given in Table 5. The analytical predictions reported by Chandra et al. (1990), and
Smith and Chopra (1990, 1991) together with results obtained on the basis of the
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analyses of Rehfield (1983), Rehfield and Atilgan (1989), Atilgan (1989), and the
present work are combined in Figs. 4 and 5. Results show that the predictions of the
present theory are the closest to the test data when compared to the other analytical
approaches.

The bending slope in Figs. 4 and 5 is defined in terms of the cross section rotation
for theories including shear deformation. For the geometry and material properties
considered, this effect is negligible as shown in Figs. 4 and 5 where the spanwise slope
at the fixed end predicted by theories with shear deformation, is indistinguishable
from zero. The nonzero value shown by the test data may be due to the experimental
set up used to achieve clamped end conditions.

The spanwise ‘twist distribution of symmetric cantilevered beam with [30]s and
[45]¢ lay-ups is plotted in Figs. 6 and 7, respectively. The beams are subjected to
a transverse tip load of 1 lb. Their dimensions and material properties are given in
Table 5. Results show that the present theory and the works of Rehfield and Atilgan
(1989) and Atilgan (1989) are the closest to the test data. A similar behavior is
found for the bending slope and the twist angle at the mid-span of the symmetric
cantilevered beams appearing in Figs. 8 and 9. The beams are subjected to a tip
torque of 1 lb-in.

CONCLUSION

An anisotropic thin-walled closed section beam theory has been developed based
on an asymptotical analysis of the shell energy functional. The displacement field
is not assumed apriori and emerges as a result of the analysis. In addition to the
classical out-of-plane torsional warping, two new contributions are identified namely,
axial strain and bending warping. A comparison of the derived governing equations
confirms the theory developed by Reissner and Tsai. In addition, explicit closed-form
expressions for the beam stiffness coefficients, the stress and displacement fields are
provided. The predictions of the present theory have been validated by comparison
with finite element simulation, other closed form analyses and test data.
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APPENDIX

In this appendix explicit expressions for some of the relevant variables used in the
development as well as the stiffnesses Cy; (i, 7 =1, 4) in Eq. (42) are provided.

The three stifiness parameters A, B and C in Eq. (30) are expressed in terms of
the Hookean tensor EV* as follows

mi (< D% )2
A(S) =< DM > —TETM_;-
< DN22 5, - p1222
B(s) =2 (< DHE > s ) (53)
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< D122 )2
Cls)=4 (< D™ > "(< D222 >) )

The 2D Young’s moduli D¢ are given by

Eaﬁ33 37633

Do = BT — e = Hn GG (54)

where 533 333
X,
Eo8s _ -————E E”

3333

Gﬂﬂ# =

and H,,, are components of the inverse of the 2D matrix “ Eu3x3 _ E—“?ﬁ%\ﬁfn

Combining Eq. (34) and (53) the variables b and ¢ can be written as

1122 pla22,
< D2 5 _ <DU>c]
b(S) - — <Deeée>

1212 ~ __(<D12225)2
<D > = hmrs
and
1

(55)

c(s) = <D1222>)1;
| 4(<D1212>_§<D 2 )
where the pointed brackets denote integration over the thickness as defined in Eq.

(9)-

Expressions for the stiffness coefficients C;; (i, 7 = 1, 4) in terms of the cross
section geometry and materials properties are as follows

= Fiois
o=~ f (4~ Byeas - L BIOUE {5/Creds
Cu= = § (4~ Zyuas - LELDae S BIOwis
o= rmowEt (56)

A

Ca3 = £(1/C)ds "¢
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Figure 1: Cartesian Coordinate System

Figure 2: Curvilinear Coordinate System

Figure 3: Beam Cross Section

Figure 4: Bending Slope of an Anti-Symmetric [15]¢ Cantilever Under 1 1b Transverse
Tip Load

Figure 5: Bending Slope of a Symmetric [30}¢ Cantilever Under 1 1b Transverse Tip
Load '

Figure 6: Twist of a Symmetric [30]s Cantilever Under 1 1b Transverse Tip Load

Figure 7: Twist of a Symmetric [45]s Cantilever Under 1 1b Transverse Tip Load

Figure 8: Bending slope at mid-span under unit tip torque of Symmetric lay-up
Cantilever beams

Figure 9: Twist at mid-span under unit tip torque of Symmetric lay-up Cantilever
beams
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INTRODUCTION

The work described herein was performed at the School of Aerospace
Engineering, Georgia Institute of Technology during the period 12 February
1986 - September 1988. Professors Erian A. Armanios and Lawrence W. Rehfield
were the Principal Investigators.

This research concerns the analysis and prediction of delamination damage
that occur in composite structure on the on the sublaminate scale --that is
the scale of individual plies or groups of plies. The objective have been to
develop analytical models for mixed-mode delamination in composites. These
includes:

(1} the influence of residual thermal and moisture strains
(2) local or transverse crack tip delamination originating at the tip of
transverse matrix cracks

(3) delamination in tapered composite under tensile loading.

Computer codes based on the anatytical models in (1) and (2) have been
developed and comparisons of predictions with available experimental and
analytical results in the 1iterature have been performed. A simple analysis
for item (3) has been developed and comparisons of predictions with finite

element simulation is underway.

The usual approach to dealing with localized phenomena is large scale
numerical simulation and analysis, mostly by general purpose finite element
codes. This approach is often supplemented by a "build and test" demonstra-
tion, or series of demonstrations if repeated failures are encountered. While
such approaches are often costiy and inefficient, their major drawback is that
fundamental principles are not discovered which provide the means to produce
better results. Furthermore, the steps must be repeated all over again the

next time a similar situation arises.



Overview of the Research

The research program can be separated into three elements: The influence
of residual thermal and moisture stresses on the mixed-mode edge delamination
of composites. The analyses of transverse crack-tip delamination and
delamination analysis in tapered laminates under tensile loading. A detailed
account of the analysis and applications of each element is provided in
Appendices I through III. A brief description and summary of the major find-

ings of each research element is presented in the following sections.

Influence of Hygrothermal Stresses

The sublaminate edge delamination analysis and code which had its origin
in the research conducted under the earlier grant NAG-1-558 has been modified
to include the effects of hygrothermal stresses.

The model is applied to mixed mode edge delamination specimens made of
T300/5208 graphite/epoxy material. Residual thermal and moisture stresses
significantly influenced the strain energy release rate and interlaminar
stresses. Both experienced large increases when thermal conditions were added
to the mechanical strains. These effects were alleviated when moisture
stresses were included. Thermal effects on the interlaminar shear stress and
total energy release rate were totally alleviated for the same specific
moisture content. Moreover, this value of moisture content was not signifi-
cantly affected by the stacking sequence for the laminates considered. This
work is presented in accomplishments 3.4 and 12. A complete derijvation of the
analytical model, Fortran program listing and applications are provided in a
accomplishment 3 and Appendix I.

Transverse Crack Tip Analysis

Transverse crack tip delaminations originate at the tip of transverse
matrix cracks. This situation appears in Figure 1 where a symmetric laminate
‘made of 90° plies in the core region and angle plies in the top and bottom

portions is subjected to a tensiie loading. Under tensile Toading transverse



matrix cracks initiate in the core region reaching a saturation level at a
crack spacing denoted by A in the figure. Delamination often initiate at the
tip of these transverse cracks. This situation is depicted in the generic
" model shown in Figure 1 of a symmetric delamination growing from a transverse
crack tip.

Three analytical models, subliaminate shear, membrane and shear lag have
been developed in order to estimate the saturated crack spacing distance. The
saturation crack spacing corresponds to the distance from the crack where the
broken plies regain their uniform stress/strain state 1i.e. where the
interlaminar shear stress has decayed down to its far fieid (uniform) value.
Based on the closed form expression for the interlaminar shear stress the
crack spacing predicted by each model is presented in Table I. The experimen-
tal result in the table is based on Reifsnider's work for a [0/90]s laminate.
A complete derivation of these models is provided in Appendix II.

The analysis of transverse crack tip delamination is presented in Appen-
dix Il and applied to [% 25/90n]s laminates in the range n=0.5 to 8 made cf
T300/934 graphite/epoxy material. Closed form expressions for the
interlaminar stresses, total strain energy release rate and energy release
rate components are obtained. A computer code based on this analysis is
developed and implemented into an earlier mixed-mode edge delamination code
developed under the previous NASA grant NAG-1-558 and presented in accomplish-
ment 6 and 7. This code was used to estimate the critical strain levels and
the associated delamination damage mode with increasing number of 90° plies in
the [* 25/90n]s‘ Since mid-plane edge delamination is a possible damage mode
in this type of laminates a mid~plane delamination analysis was developed and
presented in accomplishment 10. A computer code based on this analysis is
developed and implemented in the mixed-mode edge delamination code. The
critical strain and associated delamination damage modes predicted appear in
Figure 2 and Table II. The critical stresses and associated delamination

damage mode are provided in Table III.



Experimental results show that the local (crack tip) delamination phenom-
enon is the predominant damage mode only for n=4, 6 and 8 specimens. For n<4
edge delamination either in the mid-plane or in the 25/90 interface were
observed in tests. The present analysis predicts mid-plane edge delamination
for n=1/2 and 1 and mixed mode edge delamination for n=2 and 3, respectively.
For n=4, 6 and 8 local delaminations are predicted to be the controlling
damage mode with approximately 25 percent Mode II for the three specimens.
The critical strains in Figure 2 and Table II are computed based on a fracture
toughness values of 415 J/mz, 140 J/m2 and 120 J/m2 for local delamination,
mixed mode edge delamination and mid-plane edge delamination, respectively. A

complete account of this work appears in Appendix II.

Analysis of Tapered Composites

A generic configuration of a tapered laminated composite is shown in
Figure 3 where a 38 ply thick laminate is reduced to 26 ply by dropping three
inner sets of plies. The basic analysis approach that is adopted utilizes two
levels of modeling, a global scale and a local scale. The global scale is
concerned with overall generalized forces and strains such as axial force and
extension. A simple consistent deformation assumption is the foundation of

this model. Global equilibrium equations are written and solved.

The generalized strains determined from the global analysis serve to
provide estimates for the key primary stresses in the belt of the tapered
section. Local estimates of interlaminar stresses are determined on the basis

of equilibrium condition.

The total strain energy release rate is computed from the work done by
the external applied loads. The work done by the external forces is based on
the axial stiffness of the different elements in the tapered configurations.
These elements are represented by the six sublaminates shown in Figure 4 where
B1 the
effective axial stiffness of the cracked belt portion. The uncracked belt

AB denote the effective axial stiffness of the uncracked belt portion, A

portion in the tapered region makes an angle 8 with the loading axis while the



cracked portion makes an angle a due to delaminations along the taper and the
uniform regions. These are denoted by a and b in Figure 4. The effective
axial stiffness of the uncracked and cracked dropped plies are denoted by Au
and AC respectively. The axial stiffness of the straight portion is denoted
by AS for the belt and Af for the core plies.

The extent of delamination along the tapered and the uniform portion of
the laminate has a significant influence on the axial stiffnesses Au’ AC and
ABl' This is due to the discrete number of ply drops in the core region as

illustrated in Figure 5 and the pop-off of the delaminated belt region.

A three-dimensional transformation is required in corder to estimate the
B and ABl' This is due to the
belt layup and the orientation of the different belt portions to the loading

effective axial stiffness of the belt regions A
axis as shown in Figure 6.

The interlaminar stresses between- the belt and the core plies are pre-
dicted by considering the equilibrium of the belt region. The equilibrium
equations are derived using a complementary potential energy formulation of
the belt on an elastic foundation. The elastic foundation is made of two
contributions. The first, is a continuous shear restraint provided by the
resin pocket regions at the interface between the belt and the inner core
plies. The second, is a discrete number of concentrated transverse normal
(Ri) and shear (Ti) forces at the ply drop locations as shown in figure 7 for
i=1-4. The distributed shear stiffness is denoted by G in Figure 8 while the
transverse normal and shear stiffnesses at the ply drop locations are denoted

by k1 and 9; (i=1-4), respectively.

The variation of the total strain energy release rate G with delamination
a growing along the tapered region appears in Figure 9. The effect of
delamination b along the uniform portion on a is also shown in the figure.
The discrete jumps at a/h equal 20 and 40 correspond to the ply drop. A plot
of the concentrated transverse normal and shear forces and the interface

between the belt and the inner core appears in Figure 10.



A detailed describtion of the analysis, closed form expressions for the
total energy release rate and interlaminar stresses is provided in Appendix
IIT. Additional refinements are planned within this general framework such as
accounting for shear strains in the belt and increasing the number of

sublaminate elements in the analysis.
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Table I Comparison of Transverse Crack Spacing

Model Saturated Crack Spacing
(mm)
Shear | 2 Sublaminates 1.651
4 sublaminates,' a—0 1.105
Membrane 1.004
Shear Lag 1.160
Experimental 1.131




Table II Critical Strains and Associated Delamination Damage Modes

Critical Strains (%)

Number of | Experimental Local Edge Delamination
90° plies Delamination | Mixed Mode | Mid-Plane
1/2 0.6058 1.6747 0.6819 0.6058
1 0.5936 1.1685 0.6262 0.5677
2 0.5934 0.8058 0.5964 0.6402
3 0.5934 0.6427 0.5862 0.7582
4 0.5369 0.5444 0.5810 0.8815
6 0.3914 0.4264 0.5757 1.1133
8 0.3589 0.3555 0.5731 1.3199




Table III Critical Stresses and Associated Delamination Damage Modes

Critical Stresses (MPa)

Number of | Experimental Local Edge Delamination
90° plies Delamination | Mixed Mode | Mid-Plane
1/2 438 1313.9 535.0 475.3
1 409 784.0 420.1 380.9
2 324 426.2 315.4 338.6
3 270 285.1 260.1 336.4
4 211 210.6 224.7 341.0
6 128 134.7 181.8 351.6
8 94 .4 97.1 156.6 360.5
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Abstract

Laminated composite structures exhibit a number of different
failure modes. These include fiber-matrix debonding within individual
layers, delamination or separation of the 1layers, transverse cracks
through one or more layers and fiber fracture. These failures are
influenced by enviromental conditions. Thermal and moisture
conditions are significant factors in interlaminar delamination as
well as the other modes of failures.

A simple delamination analysis method is presented here. It is
based on a shear-type deformation theory and includes hygrothermal
effects. These enviromental conditions are applied to the strain
energy release rate #nd interlaminar shear stresses.

The method 1is applied to mixed mode edge delamination specimens
made of T300/5208 graphite/epoxy material. Residual thermal and
moisture stresses significantly influenced the strain energy release
rate and interlaminar stresses. Both experienced large increases when
thermal conditions were added to éhe mechanical strains. These
effects were alleviated when moisture stresses were included. Thermal
effects on the interlaminar shear stress and total energy release rate
were totally alleviated for the same specific moisture content.
Moreover, this value of moisture content was not significancly

affected by the stacking sequence for the laminates considered.



Introduction

Composites have been used in the aircraft industry since 1969.
One aspect of concern for using composites in structures is separation
of plies or delamination. This occurs in regions of stress raisers
such as holes, ply terminations, cut-outs and free edges.
Delamination along the free edge of laminates have been observed
during testing and service. The presence of delamination, initiated
by interlaminar stresses, causes redistribution of the stresses among
the plies in a laminate. Thus, it usually results in a reduction of
stiffness and strength.

Figure 1 shows delamination in a rotor hub made of S2/5P250
glass/epoxy. The specimen has delaminated in two places that can be
depicted by the dark lines. Figure 2 shows delamination in a single
cracked-lap-shear test spe;imen made of AS4/3502 graphite/epoxy(l]).
The specimen layup is L¢95/0/90]&5 quasi-isotropic with 8 plies in the
strap and 40 plies in the lap. The tests were performed on a
displacement controlled machine. Fiber glass tabs were attached to
the specimen ends. Multiple, isolated free edge delaminations occur
in the neighborhood of the lap/strap junction and the tab. Figure 3
illustrates an I-beam section made of C3000/5225 graphite/epoxy woven
cloth in the post-buckled regime. Free edge delamination depicted in
the flanges precipitated the final failure in the specimen. Figure &
shows how delamination can take place in single cracked-lap-shear
specimens subjected to compressive and tensile loading. Specimens A

and B delaminated under compressive loading while C experienced a



tensile loading. These examples illustrate the importance of
investigating delamination problems in composites.

Thermal residual. and moisture effects on a composite are
practical enviromental conditions. Determining the response of these
conditions on interlaminar stresses and energy release rates in
laminated composites is the primary objective of this work.

Delamination analysis can be based on two approaches. They are
the strain energy release rate and interlaminar stresses. The
interlaminar stresses are due to Poisson’s ratio mismatch  and
difference in the coefficients of thermal and moisture expansion
between plies. Delamination occurs when these stresses reach the
interlaminar strength of the material. An alternative approach is
based on the actual process of fracture rather than the strength
concept. Delamination can propagate when the strain energy release
rate-at the crack front 1is sufficient to overcome the material’s
fracture resistance or toughness.

The strain energy release rate can be - obtained for cthree
particular modes of crack action. These three modes are known as Mode
I or opening mode, Mode II or forward shearing mode and Mode 1III or
tearing mode. Several failure laws are formulated in terms of these
modes [2].

A simple analysis predicting interlaminar shear stresses and tota
energy release rate with the influence of thermal and moisture effects
is developed. This simple approach is useful in understanding the
basic mechanics of the problem and predicting the factors controlling

the behavior. The method is directed to the needs of a pracrical



design environment. It is not intended to compete with large-scale
numerical approaches, but rather to serve as the means for selecting
and screening candidate configurations and providing trend
information. Simple codes for a desktop computer have been created to

analyze laminate configurations.



Literature Summary

A historical discussion of previously developed work for
predicting interlaminar stresses and energy release rates is presented
to establish a basis for the proposed model and to permit the present
work to be placed in proper perspective.

Earlier analyses have reflected the prediction of interlaminar
stress and energy release rate without hygrothermal conditions.
O'Brien[3,4] investigated delamination onset and growth in
graphite/epoxy laminates under uniform extension. A simple expression
was devéloped for the total energy release rate based on classical
lamination theory. Whitney and Knight[5] wused <classical laminated
plate theory to develop an edge delamination specimen analysis. This
work was limited to Mode I behavior.

An analysis based on a shear deformation theory and a sublaminate
formulation [6] was developed by Armanios and Rehfieldi7,8]. This
method provides good estimates for the interlaminar shear stresses.
Energy release rate components are estimated based on these stresses.
However, this method does mnot provide reliable estimates of peel
stress since thickness strain is neglected. This analysis was limited
to mechanical strain only.

O'Brien{9] modified his analysis to include thermal and moisture
conditions, The influence of thermal effects was considered by
Whitney{10].

The work of Reference 9 was based on a classical laminated plate

theory. It was applied to mixed-mode edge delamination specimens.



The results were limited to strain energy release rate. Finite
element modeling was used to determine the strain energy release rate
components. O'Brien'g results reflected an increase in the strain
energy release rate due to thermal effects. It decreased with the
addition of moisture considerations. For a T300/5208 graphite/epoxy
laminate with L130/130490/§U]s layup, the thermal effect increased
the total energy release rate by 170 percent when compared to
mechanical loading alone. However, a specific moisture level of 0.75
percent completely alleviated this increase. In calculating the total
strain energy he showed that bending and coupling effects became
important at high levels of moisture content.

In Reference 10 a higher-order plate theory with transverse
normal strain effects was developéd. Peel as well as interlaminar
shear stresses could be predicted by this method. The thermal
influence on total energy release rate and interlaminar stresses was
investigated using a Mode I specimen. Residual thermal effects showed
a‘ significant influence on the stresses and release rates. For a
graphite/epoxy laminate of [O0j, 903]slayup, thermal effects increased
the maximum peel stress by a factor of 2.7 over that of pure
mechanical strains.

In the present work bocth thermal and moisture influences are
studied in a mixed-mode delamination specimen. The analysis 1includes
total energy release rate as well as interlaminar stresses.
Similarities between the interlaminar stesses and total energy release
predictions with hygrothermal effects is investigated.

In the subsequent sections, the analvytical approach is developec.
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The method is then applied to six graphite/epoxy laminates. A

discussion of the hygrothermal effects on interlaminar shear stress

and total energy release rate predictions is provided.
Recommendations for further investigations are proposed. Appendices
are included  for completeness. The first provides detailed
expressions of the governing equations. Appendix II defines the

hygrothermal expressions and their wuse 1in the analysis. The last

appendix shows a listing of the program used and sample output.
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Analytical Approach

Overview

The sublaminate modeling approach describes the essential
features of the laminate behavior in a simple way. A free edge
delamination specimen is shown in Figure 5. A uniform strain , €, is
applied in the axial direction. From symmetry, only one quarter of the
specimen is considered. 1In Figure 6, the specimen is modeled as if it
were composed of four distinct sublaminates. Sublaminates 2 and 3
represent the group of plies above and below the <crack, respectively
in the cracked portion of the laminate, while sublaminates 1 and 0

denote the same group of plies in the wuncracked portion of the

laminate.
The use of sublaminates -- groups of plies that are conveniently

treated as laminated wunits -- simplifies the analysis considerably.
This approach is applied with confidenc; when the characteristic
length of the response is large compared to the individual sublaminate
thickness[6]. This sublaminate modeling approach has been verified in
Reference 7 by comparison with a ply-by-ply finite element solution.
These sublaminates are connected by enforcing the proper continuity
conditions on stresses and displacements at their interfaces.

Displacement fields within each sublaminate are defined as:

u = xe + U(y) + z8,(y)
v o= V(y) + 28,() (1)

w = W(y)
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where u,v, and w denote the displacements relative to the x, y, and =z
axes, vrespectively. Shear deformation 1is recognized through the
rotations B, and By. The governing equations for each sublaminate are
derived using a virtual work approach. The derivation of the
governing equations used in the development appears in Appendix I. The
derivation is an extension of the work of Referemce 8 with
hygrothermal effects included.

The constituitive relationships in terms of these force and moment

resultants can be written as
Ni = 4;€ + Bikky- NiNM (i,j,k = 1,2,6)

M, = B € + DKy - M

ij € i (i,j,k = 1,2,6) (2)

i

where the subscripts x, y, 2z, yz, xz, and Xy are replaced by the
subscripts 1-6 vrespectively. The force and moment resultants are
denoted by N, and M, , respectively. Non-mechanical forces and moments
resulting from the hygrothermal effects are labeled with a superscript
NM. They are defined as:

h/2
CHENE A -, Q1) (@ AT + b0 dz )

The swelling coefficient is denoted by bj in Equation (3) cthe

thermal coefficient by a The change in temperature is denoted bv

i-

AT and moisture weight gain by C.
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The elastic stiffnesses A; Bj , and Dj are defined in terms of

j +
the sublaminate reduced stiffness Qij for a plane stress situation.

These bear the classical definition.

W2

The equilibrium equations are:
Ny,y + (tyy - t1y) = 0

Qy,y + Py - ) =0 (3)

+

Myy,y - Qx + h/2 (tgy + £ ) = 0

-+

My,y - Qy h/2 (tzx + tlx) = 0

where toxs toysr Pp and €y, tiy, Py denote the interlaminar stress
components in the x-z, y-z and z directions at the sublaminate upper
and lower surfaces, respeétively. These stress components appear in
Figure 7.

The displacements, resultant forces and moments, and interlaminar
shear stresses in each sublaminate is governed by the displacement
distribution (1), constituitive (2), and eduilibrium {5) equations.
These equations are applied to each sublaminate. The wvariables
associated with each sublaminate are coupled through the continuicy

requirements at their interfaces. Enforcement of the boundary

conditions lead to a solution for these variables. This procedure
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discussed in general terms above 1is applied to the analysis of the
edge delamination specimen shown in Figure 2 in the following sections.

The response assﬁciated with sublaminates 1 and 0 shown in Figure
2 1is coupled through the continuity conditions at their common
interface. The situation is different with sublaminate 2 and 3 where
the continuity conditions are relaxed due to the presence of the

crack.
Uncracked Region: Sublaminates O and 1

From symmetry conditions at the sublaminate bottom surface the
shear stresses are zero. Interlaminar stresses at the top surface of
sublaminate 0 are equal to those onn the bottom of sublaminate 1.
Substituting these conditions into the equilibrium and constitutive
relations and’enforcing continuity of displacements at their common
interface yields a homogeneous system of ordinary differential
equations. These can be expressed in terms of the sublaminate

rotations By and By. Assuming an exponential solution of the form

* * »* *
(B]x,Box yB:y :3oy ) - (ﬁlx,ﬁox ,Bly 1BOy ) esy (6)
results in a characteristic equation of the form

3858 + E636 + E4s4 + Ezs2 + EO = (7)

Parameter EO depends only on the stiffness coefficients AA&' ASS
and A5 for both sublaminates while Eg is predominantly influenced by

and B,

the bending and coupling coefficients D ij -

ij Thus, 1its
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numerical value can be orders of magnitude smaller than the other
coefficients. This results in the presence of a boundary zone in the
response.

The characteristic roots controlling the behavior of the laminate

are determined from Equation 7 which has a closed-form solution.
Crack Region of the Laminate: Sublaminates 2 and 3

With this group of laminates, there are free surfaces at both the
top and bottom of sublaminates 0 and 1 respectively. This is due to
the presence of the crack. With the crack dividing the sublaminates,
continuity conditions are not enforced at the boundary interface.
This results in =zero shear stresses at the surfaces of each
sublaminate. Thus, the equilibrium aﬁd constitutive relations combine
to produce a second order differential equation in terms of ;he

sublaminate rotations ﬁzxfor sublaminate 2 and B}(for sublaminate 3.

"Interlaminar Stresses

The arbitrary constants that are obtained from the eighth degree
polynomial are determined by enforcing the stress free boundary
conditions at the free edges of sublaminates 2 and 3, and the
continuity of force, moment, displacement and rotations between
sublaminates O and 3, as well as between 1 and 2. This yields the

following expression for the interlaminar shear stresses.

tx - Nxvl,v" G, & (8)
ty - NYl’Y -1, &S (j=1-6) (9)
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Parameters T;

3 and Gj represent the amplitude of the response.

Energy Release Rate

A complete formulation of the strain energy release rate appears
in Appendix II. The total energy release rate can be determined by

considering the work done by external forces.
G = -1/2 * dW/da (10)

The total energy release rate 1is denoted by G and the crack

length by a. The work done is defined as

b
W- L/Zj(; Nei€mi 97 (11)

where subscript i denotes the sublaminate being referenced. The term €pj
represents the mechanical strain in each ply. .This is defined as the
difference between the total strain and the strain Forresponding to
free expansion for each ply. This strain is estimated by using a
procedure similar to Reference 5. However, in Reference 5 the free
expansion strain was determined by considering groups of plies in the
cracked and uncracked regions of a Mode I edge delamination specimen.
This appreoach is valid for a 1limited class of laminates. A
ply-by-ply analysis rather than a sublaminate modeling should
be used. In the following analysis, free expansion strains are
determined on a ply-by-ply basis.

From the symmetric conditions that exist in the uncracked section

of the laminate, there exist no curvature. In the cracked portion,
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the moment about the y-axis is assumed to be zero. Using both of

these boundary conditions in Equation (2) yields the following.

NM

) NM
le" All €+ Ay €y+ A16 €; + Blz KY- NX2

Strain components ey and €, in Equation 12 are expressed in terms
of the applied strain by

€y= Cy €+ Cy" (13)

€= Cy €+-C§M

NM
The terms . Cy, Cyu, Cy and C, are functions of the extensional

stiffness components A;: of sublaminates 1 and O.

i

Using these expressions, Equation 12 can be re-written in the

form.
k k ck k
N ( Eq €c+ Te ) (14)
k k k k
Nop= C Ep€,+ Ty )
k k k k . - .
Parameters E., T., E_, and T, are defined in Appendix II.
Superscript k denotes the individual ply. Subscripts u and ¢

represent the uncracked and cracked portions, respectively. The

non-mechanical strain in each ply corresponding to a state of free
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expansion is obtained by allowing the stress in each ply to vanish.
This yields the following.
k
ek - Tk / Ey (15)

k k k
ec b 'Tc / EC

The strain corresponding to free expansion of the entire laminate

is obtained by letting the resultant force vanish. The non-mechanical
strain is

k.t o1ty 2am [ ER - (EL-ED) 2am) a6

The terms T:; T:, E: and Ez represent the summation of T, ﬁf, EE
and E: over their respective sublaminates. These strain definitions
for the effects of moisture and temperature can now be used in the
general expression for the strain energy. The strain field is altered
to represent the hygrothermal effects. The total strain for a

sublaminate is expressed as:
T me + MM (17)

The strain energy expression is given below showing the use of

Equations (13) and (17).

W-%{Z( EclfeT +T§) (eT -elé) + ( EEeT +T5) (eT- el’j )J (18)
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Substituting this into Equation (11) yields the total strain

energy release rate per crack.
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Results and Discussion

Benchmark Study

The analytical model is applied to the edge delamination specimen
shown in  Figure 5. The material considered is T300/5208
graphite/epoxy. Its mechanical properties are listed in Table I. The
coefficients of swelling and thermal expansions are also stated. The
geometry of the specimen is given in Table II. Cure temperature for
this material is 350°F. The ambient operating temperature is 70°F.
The moisture level for all cases was allowed to vary from O to 1.2
percéht of the laminate weight. This moisture level reflects feasible
conditions. The mechanical strain is takep as 0.00254. This
particular wvalue of strain was taken from test experiments{9]). It is
considered a practical value for the material.

Six laminates have been analyzed. They can be divided into two

groups. The first group 1is composed of laminates [35/-35/0490%,

[35/0/-35490%, and [0/35/-35490]§ These laminates are prone to
delaminate at the intexfaces indicated by the arrow[9]. The Mode 1III
in these 1laminates 1is negligible. This is due to the fact that

relative sliding at the crack front and the interlaminar shear stress
in the x-z direction, Tz » 1is mneglegible. The second group of
laminates is [30/~60475/15]§ [-35/55410/-80]§ and [35/804-55/-10]§ In
these laminates Mode I, Mode II, and Mode III are finite. The Mode

III1 strain energy release rate component due to mechanical loading in

these laminates are significantly large, ranging from 60 <to 90



20

percent(7].

Interlaminar Shear Stresses

The interlaminar stress TYZ at the delamination interface appear
in Figure 8 - 10, for the first group of laminates. The interlaminar
shear stresses Ty, and Ty, for the second group of laminates appear in
Figures 11 - 13. The labels M, M+T, and M+T+H stand for mechanical,
mechanical and thermal, and mechanical, thermal and moisture
respectively.

The boundary layer of decay for all laminates ranged from 0.85 to
0.93 of the laminate semi-width. In this context the boundary layer
decay length is defined as the distance where the stress decays to
5 percent of its maximum value. -The stress boundary =zone 1is not
significantly influenced by the environmental conditions.

The magnitude of shear stress however showed a strong dependency
on thermal and moisture conditions. At the delamination front, the
ratio of stress with thermal effects as compared to pure mechanical
loading ranged from 3.22 to 3.36 for the first group of laminates.
This maximum was experienced at the crack tip. For the laminates
where Mode III was present, this ratio ranged from 4.16 to 5.23 for
Tyz. The shear in the x-z direction showed a ratio of 1.4 to 2.16 for
the maximum stresses. The maximum Tyz Stress for the second group of
laminates was experienced at the crack front. However, the maximum
Tx2 stress occured slightly ahead of the crack. This can be seen

in Figures 11 - 13.
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The addition of moisture alleviated the thermal effect. A
moisture content of 0.4 has reduced the stress of thermal influence by
approximatly 40 percent as compared to thermal influences alone. This
trend is similar to the results of Reference 9.

Numerical values of interlaminar shear stress at various moisture
levels are provided in the sample output of Appendix III.
Interlaminar -shear stresses show numerical decrease with increase of

moisture levels.

Energy Release Rate

The hygrothermal effect on total energy release rate appears in
Figures 14 -15. The hygrothermal effects on total energy release rate
show a similar trend to that of interlaminar shear stresses. Residual
thermal stress tends to increase: total energy release rate while
residual moisture alleviates this effect. The figures show that for
total alleviation of the thermal effect, the specific moisture content
ranges between 0.70 and 0.77 for all laminates. This indicates there
exist a weak dependency on the stacking sequence.

The effects of thermal conditions alone on the energy release
rate does not correspond to the same numerical value as the
interlaminar shear stresses. The total energy release rate of layups
where Mode III was negligible showed a ratio of 5.1 for mechanical and
thermal compared toc mechanical conditions only. For the laminates
where Mode III is finite, this ratio varied from 1.6 in the

[30/-60475/—15}Slayup to 3.37 in the [35/804—55/-10]slayup.
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The total energy release rate in the first group of laminates 1is
approximately the same for mechanical loading as shown in Figure 1l4.
The influence of thermal and moisture does not appear to alter this
trend. The energy release rate for the [35/-3540/90]slaminate is
indistinguishable from the [0/354-35/90k layup. The rate of
alleviation due to moisture is the same for the three laminates. This
is in contrast with the alleviation rate of the laminates where Mode
II1 is finite as shown in Figure 15. For this class of laminates, the
rate of alleviation due to moisture is different for each laminate.

In some of the laminates, the rate of alleviation is not
constant. There is a steep gradient in the rate of alleviation until
the moisture content approaches the totally alleviated state. After
such moisture content, the decrease in total energy release rate with
respect to moisture addition is not as significant.

It is worth noting there is a similarity between the strain
energy release rate prediction and the interlaminar stresses for the
totally alleviated state. This is shown in Figure 16 for a
[-35/55/'10/—80]s layup. The specific moisture percent producing
complete alleviation of the total energy release rate from the thermal
effect 1is 0.76 as seen in Figure 15. The interlaminar shear stress
distribution corresponding to this level of moisture is
indistinguishable from the mechanical loading alone. The same

conclusion was reached studying the other laminates.
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Conclusions

A simple analy#is was developed that predicted the influence of
thermal and moisture effects on the interlaminar shear stresses and
strain energy release rate. The analysis was applied to six
‘mixedfmode edge delamination specimens. The results provide several

significant findings.

1. Residual thermal strain has a significant influence on the
interlaminar shear stress and total energy release rate.
The interlaminar stress and total energy release rate
increased by 330 and 510 percent respectively over that of

pure mechanical loading.

2. Moisture tends to alleviate the thermal effect for both the
interlaminar stress and energy release rate. At a specific
moisture content of approximately 0.75 percent, the thermal

influence is totally alleviated.

3. The moisture content for total alleviation found from the
total energy release rate analysis also  produced an

interlaminar stress distribution similar to pure mechanical

loading conditions.

The first two findings are in agreement with the results of
previous investigators. The third finding is new. It establishes a
similarity in behavior between a delamination analysis expressed in

terms of the energy release rate and the strength approach expressed
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by the interlaminar stresses.
These findings point to new directions for further inquiry.

These are discussed in the following section.
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Recommendations

The thermal effects on the laminates showed a large increase in
both the interlaminar shear stresses and strain energy release rate.
The analysis should be supplemented with experimental tests to wverify
the result. Several fracture laws are expressed in terms of the
strain energy release components, as well as the total strain energy.
Further analysis should include predictions of these components in the
presence of hygrothermal conditions.

Throughout this work the temperature is assumed to be uniform
through the thickness of the laminate. The same 1is true with the
moisture. An approach corresponding to a practical environment method
should account for temperature and moisture gradients in the laminate,
In this situation, the hygrothermal gradients through the thickness
may create an unbalance effect in an originally balanced construction.
This consideration is of significant importance in aerospace
structural components subjected to a large temperature difference
between the upper and lower surface.

The loadipg considered here is uniaxial extension. However, it
is known that the load transfer points are not always in the plane of
the laminate. Therefore, investigating laminate response  under
combined loads 1is of great practical importance. It is recommended
that bending, torsion as well as their combined effect be addressed.

Findings by previous investigators suggested that delamination
behavior in laminates subjected to fatigue loading follows static

loading conditions. Further work 1is needed to investigste the
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influence of hygrothermal conditions on the delamination of laminates
under fatigue loading.

Finally, the pregent analysis is applied to the mixed-mode edge
delamination specimen. Extension of this work to other specimens such
as the single- and double-crack-lap shear and the Mode II edge notch
flexure specimen 1is recommended.

When' accomplished, these recommendations, together with the
present research will provide a better wunderstanding of the
delamination problem in composites. Consequently, this will enable
predicting, managing and ultimately preventing interlaminar fracrture

in laminated composites.
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TABLE | - T300/5208 GRAPHITE/EPOXY PROPERTIES

Ell = 18.7 MSI
E22 = 1.23 HASY
G12= 0.832 MSI

Poisson Ratioc = 0.292

Swelling Coefficients of the Material direction:
b(i-direction) = 0

b(2-direction) = 5560 %€/ %weight

Thermal Coefficients of the Material direction:
a(l-direction) = <23 pe/*f

a(2-direction) = 14,9 ué/'F

TABLE I - GEOMETRIC DIMENSIONS OF SPECIMEN

Ply thickness = 0.0054 inch

Width = 1.5 inch

Crack Tength = 6 x ply thickness = 0.0324 inch .
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Derivation of the Governing Equations

In this Appendix the governing equations for the sublaminate shown in
Figure 7 are derived using the principle of virtual work.

Consider a sublaminate of thickness h. The origin of a cartesian
coordinate system is located within the central plane (x-y) with the z-axis
being normal to this plane. The material of each ply is assumed to possess a
plane of elastic symmetry parallel to xy as shown in Figure 6.

Stress and moment resultants are given below.

h/2
(Nxo Ny- nyo Qx’ Qy) - (Ux- Uy' 'xy. Tz fyz) dz
h/2
h/2
(Mg, My, Myy) - (oxs 0y, Txy)zdZ (I-1)
Yy Yy h/2 y Yy

Because of the existence of a plane of elastic symmetry, the

constitutive relations are given by

Ix C11 1 €x
Oy Ci2 ©Cao2 STM €y
oz T fc13 €23 €33 €2
| Txy _ C16  C26 C3p Ce6| | Ty |
Tvz - C44 SYM Tyz
Txz C45 Css Txz (1-2)

where Cij are components of the anisotropic stiffness matrix and Txy: Tyz and
Txz are engineering shear strains.

The displacements are assumed to be of the form

u - U(x,y) + zﬂx(xﬂ')
v = V(y) + zﬁy(nﬂ
w - W(xy) ' (1-3)
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where u,v and w are the displacement components in the x, y and z directions,

respectively.

Equation (I1-3)

in conjunction with the strain-displacement

relations of classical theory of elasticity leads to the following kinematic

relations

- U,x* 20, 4

Eyy = V,y + zﬁy,y

tzz = 0

Txy = U,y + V,x+ Z(BX,Y+ ﬁv,x)

Txz = Bx+ W,y

Tyz = By + Wy

(1-4)

Substitute Equation (I-4) into Equation (I-2) and put the results into

Equation (I-1). This yields the following constitutive relations:

Ny [ Ayl

Ny Aro

ny - Ale

My By1

Hy B12

] Mxy | ] B1s

[
Qy
Qx
where

(Ajj, Byj. Dyy) - I

A12
A2
A26
B12
By2

B2g

Alg
A26
Ags
Bis
Bog

Bgg

LYAA

Ays

h/2

B11 Bi2
By B22
B1g B¢
D33 Di2
D11 Diy2
Die D2s
As4s
Ass

B1g
B2g
Bee
Dig
D2¢

Dgg

Cij (1, =z, zz)dz
h/2

and the non-mechanical terms are defined in Appendix II.

NH

(1-5)

The variation of the strain energy due to virtual displacements éu, &v

and 6w {is
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§V = J (oy Sey + oybey + az8ey + Txy Syxy + ’yza7yz + Tyz87xz)dV - (I-6)
v

where §ey, ch, Sey. 57xy' Svxz are the strains associated with the virtual

displacements. Using Equations (I-3) and (I-1) then integrating through the

thickness gives

&V ~ J [Ny 8U, x + NybV,y + Nyy 68U,y + Qg 8B8x + Qy (6By + 6W,y) + MydBx x
A

+My 6By y + Myy 8By y] daA
y *°Fy.y y y (1-7)

The variation of the work done by the external forces and by the

surface tractions is

W - J (ny §U + ny 8V + qSW + my§By + my §8y) dA
A

+ J (Ng 80, + Npg 6Ug + Mp 8B + Mpeffs)ds 4 (1-8)
S
where a bar denotes values on the bouﬁdary. Variables n and s are coordinates
normal and tangential to the edge, and
Ny = T2x - tlx

ny = t2y - tly

q = P2 - Pl
my = % (tox + tix)

- h .
my = B (egy + £1) (1-9)

where ny and ny can be regarded as effective distributed axial forces. Terms
my and my are effective distributed moments and q is an effective latersal

pressure.

From the principle of wvirtual work the equations of equilibrium and
boundary conditions are determined from the Euler equations and beoundary

conditions of the variational equation.

5§V = SW (I-10°
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Substitution of Equations (I-7) and (I-8) into Equation (I-10) leads the
following equations of equilibrium:

Nx,x + Byxy,y + 0x = 0

ny,x + Ny.y + ny = 4]

W,x +Q,y+qa-0

Hx,x + Mxy.y -Qg +tmy =0

Myy,x + My y - Qy + my = 0 (I-1L)

and one member of the following five products must be prescribed on the

sublaminate edges

Nn Un, NpsUg, Mpfn, Mps Bs and Qg W (1-12)

For the ED specimen under uniform extension, U(x,y) in Equation (I-3)
is given by

U(x,y) = Ux(y) + x€ (I-13)

and the response is a function of y and z coordinates only. For this case the

equilibrium equations (I-11) take the form
ny.y +ng =0
' Ny'y + ny = o
Q,y*+a-0
Mxy,y - Qg +my -0

My y - Qy + my = 0 (1-14)

Substitution of the constitutive relations in Equation (I-5) into Equation (I-

14) yields the following equilibrium equations in terms of kinematic

variables.
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r b - b r 7
Agglyy U* Nix
Azelyy A22lyy SYM v ny

0 o ~Ay4lyy w - - -q
BeeLlyy B2elyy -A4slyy (Deglyy - Ass) Bx Ty
Baglyy Baolyy -Aasly  (Daglyy - Ass (Daolyy -Aus)| | By | Y]

(I-15)
where the operators
Lyy - d2/ey2
Ly - d/dy

From these governing equations the basis of the work presented in this
paper 1s formed. Appendix II gives a detailed formulation of the

hygr c thermal terms and the formulation of the total strain energy release

rate and interlaminar stresses.



APPENDIX 1|
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Hygrothermal Effects on Edge Delamination

The displacement field and constitutive relations governing the free
edge ply separation were presented in Appendix I. The hygrothermal
expressions, represented with the superscript NM for non-mechanical, are
defined as follows

h/2 ) _ _
(Ngv H?M) - I (1,z) Qij {aj (T-T.) + ﬂj C} dz (11-1)
h/2

where
aj = Coefficient of thermal expansion
53 ~ Swelling coefficient
T = Local temperature
T, = Reference temperature
C = Specific moisture concentration

Qij - Reduced stiffness coefficient

The terms Ej and 5} are transformed as second order tensors with the

assumption of no thermal or swelling shear strain.

The concept of sublaminates 18 used when enforcing the boundary

conditions.

Cracked Sublaminates
Sublaminate 2:

The boundary conditions for this sublaminate are expressed as:
NyZ - nyz - Myz - QyZ - 0 (I1-2)
nyz,y - Q2 - Q

Using the first three conditions iIn the governing equations, one can

express Vg, Uy and ﬁZy in terms of fy4 to obtain:
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1 1] [ 1 1 1 ( NM
A12 Byg € + | B2 B B22W Va,y W Ny1
1 .1 Pax.y 1 1 1
‘ i _ 3
Ae Bee As M6 A6 | V2uy Nxy1 0 (11-3)
1 1 1 1 1
Bi2 p26 B2 Bae Da2 B2y,y LMYI
X i i j . )
Sublaminate 3:
The boundary conditions for this sublaminate are given as:
Ny3 = Nyxy3 = 0
My3,y - Qy3 = 0
Myy3,y = W3 - 0 (11-4)

These are used in a similar manner (as in sublaminate 2) to obtain

(o] o] o] 0 [ A
Y Viy Aj; Byy Byg € Nyo
+
[o] o] 0. (o]
A6 Usy A6 Bas Bes| |P3.y Rxyo
ﬂSxx
{ J (11-5)

These equations are then substituted back into the governing equations

to obtain expressions

for the force and moment resultants.

expressed in terms of the strain plus non-mechanical effects.

UNCRACKED SUBIAMINATES

Sublaminates 0 and 1:

They can be

The boundary conditions of continuity at the interfaces must be
satisfied.
Ny fO- Nyy1(0) = NyfO Nyyo (0)=0 (11-6)

Mxyl 0) - ny2(0)

Myo(o) - HyB(O)
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Myy0(0) = Myy3(0) (11-7)

and
Hxy1l (0) = Myy2 (O)
Bix (0) = B2x(0)
My0(0) = My3(0) (11-8)
Boy(0) = B3y(0)
Hxy0(0) = HMyy3(0)

Box(0) = B3x(0)

Enforcing equations (II-6) and (II-7) 4in the governing equations
yields the following:

r b r 3 r WNM r h
Al A1 A1 P ) N -N.
12 22 26 yl |- y1
al al Al € - N -t -N §4Gy = O
16 26 66 y xyl xylj| ®31%]
o o o Y
SUEEECPEST] I B Fyo Ny 1
o] 0 [o]
A A A NX 0 Nx
‘ 16 26 66- L }'J L led (11-9)
[ 1 1 1] ) [ .. NM)
Bla Bz By ( c My1 My 138y
-A gl B - AN - M +B
1 26 66 €y 1 xy 135} 15¢c2]
YIxy
[ L (11-10)

(3=1-%)
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The expressions in (II1-9) and (I1-10) are defined below

cy Cy Cy RH
- c +
Yxv Cu Cu (1I-11)
* * * 2
A = A2 a66 - (A2¢) (11-12)
* * * *
Cy A26 Al6 - Ags Al2
-1
A * * * *
Cu Az Al2 - A22 Ale (11-13)
NM * * NM
Cv Ags (Ny3 + Nyo§H - A26 (Ngy1 + Nyyo)
-1
a * M * M
Cu -A2¢ (By) + Nyosl + A2 (Nygy1 + Nyyo) (11-14)

A} and A?M are functions of Aij' Bij and Dij- The superscripts *

implies a summation of the upper and lower sublaminates.

Continuing with the derivation one can substitute the expressions set
forth into equation (I-7) as well as 10 and 11 in the report. This gives the

following expression for the total energy release rate.

1 4 b h/2
2 da A h/2 (11-135)

The concept of free-expansion in the x-direction is implemented to
find the strain induced by the non-mechanical effects on the structure.
Setting Ny = O for each ply in Equation (I-5 ) and using the boundary
conditions of (II-2), (II-4) and (1I-6) allows the following.

c c [ (11-16)
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where
k
k NM -k k NM -k
Tﬁ -0 o7t Al + BF et Al - (D
k .k a2k -k -k
E, = b (Q1 + G Q12 + Cy Q6)

T - Qf, AT X+ @56 B 0"+ BY FiT - ik

C
Eﬁ - @1 1 + af7 B* cayy + @Y h® cafp + BYp Cd3yy (11-17)

Superscript k represents the ply. Expressions Cdij and FLNMare found
by substituting the conditions of (II-2) into (II-3).

F 1 1-1

1 1 1 1]
A22 A6 B22 f A12 B26
1 1 '
[Cd]- -la26  age  Ble ATs Bg6 (11-18)
3R
1
B22 B2e D22 B12 D26
r Tl r N
1 NM
A22 A2 B22 Ny
Fiib - |ajs  Ags . D3y 1Nxy1f (11-19)
3x1 11 1 1
B2 B3¢ D22 (My1 )

Sublaminate 3 has Bij = 0 due to symmetry of the structure. When

considering these plies, the term Ffﬂi and Fgﬂgre found by substituting the
boundary conditions (II-4) into (II-5).
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This gives a second expression of FY for this sublaminate

o o TL NM
NM A2 - A2¢ Nyo

0 o]
A26 Ags Nyyo (11-20)

2x1

To find the total strain assoéiated with the non-mechanical effects,

it is necessary to sum the force over the entire structure and set it to zero.
These are used in order to obtain Equation (16), (17) and (18) in the report
on page 17. Substituting this {n Equation (II-15) gives the total strain

energy release rate expression per unit length

G-

Ny =

T K T K
%‘(E‘éc +1':) (e - cc)+(5§cr+r‘:) (€= )

The expression eI - tb " is in essence the total mechanical strain of
]
that ply.

INTERLAMINAR STRESSES

The interlaminar stresses of the structure are defined in Equations
(8) and (9)

1 2, -
tx = Niy,y = Nxyy s 65 eV
1 2 -S4y § =1-
ty = Ny y = Nyjj s4° Gy e ] (3 =1-4) (11-21)

While S§, the positive roots reulsting from the ploynominal
Egs8 + Eg 86 + B, 5% + E5 s2 + E, = 0, (11-22)

are Independent of the hygrothermal effects, the rest of the terms are not.

Solving Equations (II-3) and (I11-10) gives the term Gj while nylj and
Nylj are found from



N A Ay B B r
v 22 26 B22 26
1
Nyy3 A26 Aee B2g Bge

-

Y]
ht

“j

(G =-1.2,3,4)
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(1I1-23)

where vj, Uj and aj are found by imposing the boundary conditions on the mode

shapes.

sublaminate stiffness matrices.

They are dependent on the four wvalues of sj as well as the






PROGRAM START (INPUT, OUTPUT, TAPES=INPUT, TAPE6=0UTPUT)

THIS PROGRAM 1S FOR THE FINAL PAPER  8-16-87
DIMENSION STATEMENTS

REAL BG(4),E(9),GG(4,k), MATR32(3,2), MATR33(3,3), MATR3(3),

C STRAIN(25), SAVE3(3), SAVE33(3,3), WKAREA(S9), 2R

COMPLEX SJ(8)

DOUBLE PRECISION BNEG, A,. C, DI{FF1, DIFF2, UNSY(2), UNSX(2),
SSSS, SSSC, SSCC, SCCC, 2ZZ0(0:50),J22,J426,FNM(3),STNM,S2NH,
MEMSY, MEMSX, F11M, F22M, SS1, S$S2, SSY, SSX, 2zz1(0:50),
THICK (4O) ,THETA(50), E1(50), E2(50), CCCC, HSS(5),HSN1,HSN2,
Q(6,6,50), z0(0:40), AO(6,6), Al1(6,6), U13, UL, BG}, BG2,
NXO (L), EV5,EV6,E17, E18, E19, ZTT(0:40),

NYT (W), X(2), Y(3), CV, cU, W(2), 2Z(3), W11, WI2

DOUBLE PRECISION ALPHA (L), PHI (L), GAMMA (L), NX1 (L),
B1(6,6), BO(6,6), DO(6,6), D1(6,6), F(L,L), VVI3, VVIL, J66,
ROLT, RTAl, RTA2, RSB1, RSB2, U12, Ull, AINAM,

NXYT (L), MY1(bL), MXY1(4), wp(2,3), Cb(3,2), WIDTH,

vVi2(50), v21(50), SS, CC, K66, K26, K22,

Z1(0:40), FX, FY, GI(2,35), K16,K12, H66
DOUBLE PRECISION Sv(5), Su(s), AL, SC, S(8), DY,

G12(50), G31(50), €2, C1, THETV, THETU, Giti(2,35), €S,

DEL, HO, H1, H22, HE, HG, HNY(50), HNXY (50), HM3,CVNM,

cil, €12, €22, €26, CuL, D, €55, C66, H26, SQ, DUM,CUNM,
CONY, CONXY, SMNY, SMNXY,
SB1,SB2,TAY,TA2,ATHMI (40) , ATHM2 (LO) , ATHM6 (LO) ,BSW2 (LO) ,
NMNYO,NMNXYO,G11 (2,35),

pDVV11, DVV12, DU13, DUIL, DF (4,4), DX, ATH,CCONY,CCONXY,
BSW6 (LO), DELTEMP, BSW1 (40), CMOIST(35),

SIGX (0:40,79:120),

NMNY1,NMNXY1,NMMX1,NMMY1,SIGY (0:40,79:120)

DOUBLE PRECISION  NMSTO(50), NMST2(50) ,NMST3(50), TNC,UNCL,
T1(50), T12(50), T13(50),EX(50) ,EXX(50),EX3(50), JY, '
EXNC,ESTAR, TSTAR, TNMST, GLC(0:50), NXNM(50),B12(50)

DATA Q/1800%0.0/, ZR/0.00/

A R R R R A R R A R e R e e R AN A A SRS AR AR AR ARAS

ARk Rk e e s A A e e A A A AR AR A AR ARk Rk hkhn

OO0 s NeNeNeNe] OO0 0

g N e

DATE OF PROGRAM : SEPT. 1, 1987

THIS |S THE FINAL PROGRAM FOR PREDICTING THE ENERGY RELEASE RATE OF
COMPOSITE LAMINATES INCLUDING HYGROTHERMAL EFFECTS ..........
HOWEVER, [T ONLY CONSIDERS EXTENSION EFFECTS OF STRAIN WHEN DEALING
WITH HYGRALTHERMAL EFFECTS.... LIKE WHITTNEY'S PAPER.....

EXCEPT ON A PLY BY PLY ANALYSIS BAS!S OF THE HYGRALTHERMAL EFFECTS

THE INPUT ALLOWS FOR: THE LAMINATE LAY-UP TO CHANGE AND POSITION
OF THE CRACK, DIFFERENT STRAIN VALUES TO BE EVALUATED,
(UP TO LO LAMINATES AND 25 DIFFERENT STRAIN VALUES)
AND FOR THE EVALUATION OF ONE MOISTURE CONSTANT OR A
RANGE OF THE MOISTURE CONSTANT FROM O TO 1.2.

THIS PROGRAM 1S FOR THE GIVEN DATA TO BE IN ENGLISH UNITS.

ALL LAMINATES ARE EVALUATED WITHOUT THRMAL EFFECTS AUTOMATICALLY

TPk F RN AXRR AR KRR AR AR fh R hdhihhhihhitihiiikhifitioti itk tidit it ihkhiin
Foo g g e v oot g P ok st e e e ok dedk dedk kSt e s v gt A o b s a ok St st e e e e e ol e s e et e e b ok ke

LZQ IS THE NUMBER OF DIFFERENT LAMINATE (OR CRACK POSITIONS)
TO BE EVALUATED.

READ(5,%) LZQ
DO LOO LZz = 1,LZQ



READ(5,%) WIDTH, NPLYO, NPLYI, AL
NEXTPL = NPLYO + 1.
TPLY = NPLYO + NPLY]

FOR EACH PLY IN THE SUBLAMINATE, THE MATERIAL CHARACTERISTICS
MUST BE READ IN.

Pl = L, % ATAN(1.)

HO = 0.0

ATH = 0.0

H1=0.0

D0 3 LK =1

Z0(LK) = 0.0
3 Z1(LK) = 0.0

, TPLY

DO 5 | = 1,NPLYO
READ (5,%) THICK(1), THETA(1), E1 (1), E2(1)
READ (5,%) Vvi2(1)
READ(5,%) G12(1), G31(1)
THETA (1) = THETA{I) * PI / 180.
5 HO = HO + THICK (1)

DO 10 | = NEXTPL, TPLY
READ (5,%) THICK(1), THETA(I), E1(1), E2(1)
READ (5,%) V12 (I)
READ (5,%) G12(1), G31(i)
THETA (1) = THETA(1) * Pl / 180.
10 H1 = HI + THICK (1)

LR T e T R e e e e R s eI eI e R LT
LTS L R e R R T R R R I T R S e
THESE ARE WRITE STATEMENTS TO CHECK THE INITtAL CONDITIONS OF THE
SUBLAMINATE AND VALUES READ IN '
R e e e e e R R e e S s s e e e TR P R I T
khkkrkkkhkkhhkhkfhrhhhrrdbbhthhhhdhhdidrhhhbhhhnddhhihhddhhhikhhittiks

EACH PLY MAY HAVE DIFFERNT PROPERTIES SO THE PROPERTY OF EACH

WRITE (6,289)
cc
WRITE (6,201) WIDTH
WRITE (6,202) NPLY1, NPLYO

WRITE (6, 204)
00 15 J = 1, TPLY
JJ = TPLY + 1 - J
WRITE (6,206) J ‘
WRITE (6,207) THICK (JJ), THETA (JJ)*180/PI
WRITE (6,208) E1(JJ) /1E+06 , E2(JJ)/1E+06
WRITE (6,209) Vi2 (JJ)
15 WRITE (6,214) G12(JJ) /1E+06, G31(JJ)/1E+06

Rk kkhkhhhAhkfkhhhdhhddddhohhhhhfhhthithhkhhkhdhdhhhhfhhhhhhhkhhhhkhkx
khkkdkRhRhhthhhhhdhhhhrhhhthihihkihhihdhhhhdhhibhhohhhihhkhhhhdhhhihhhit

DETERMINE THE Z COMPONENT OF ALL LAMINATES

CHECK = 0.0000000]
ZTT(0) = 0.0
z0(0) = -HO / 2.0

DO 20 t = 1, NPLYO
ZTT(l) = THICK{1) + ZTT(1-1)
20 Zo(1) = THICK (1) + ZzO{(-1)

Z1(NPLYO) = -H1 / 2.0
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DO 25 t = NEXTPL,TPLY
ZTT (1) = THICK(l) + ZTT(1-1)
25 Z1 (1) = THICK(1) + Z1(1-1)

kikkhhhhhkkhhhrhkhhrhhrhhhhhhhhdhdhhhfhhkhhhhhhrhhhhhhhhkhhhhhhhfakhhk
FIRST READ IN THE NUMBER OF STRAINS TO BE EVALUATED AND THEIR VALUE

THEN READ IN IF THE MOISTURE CONTENT SHOULD VARY OVER O TO 1.2 OR
BE A CONSTANT.

NSTRA = ..... NUMBER OF VARIQUS STRAIN VALUES
IF MOISTV =1 ... CMOIST VARIES OVER O TO 1.2
IF MOISTV = 0 ... CMOIST IS A SPECIFIC VALUE
Fokk Rk ok kkkRhfhhiikkihikhkhhhhkdhdikskihhhhiihhkihikiddkhkihihrirskst
READ (5,%) NSTRA
DO 27 J=1,NSTRA
27 READ (5,%) STRAIN(J)

DO 400 LST = 1,NSTRA
READ (5,%) ROLT,RSB1,RSB2,RTA1,RTA2
WRITE (6,231) STRAIN(LST) ,ROLT, RSB1, RSB2, RTAl, RTA2

READ (5,%) MOISTV :
IF (MOISTV.EQ.O) READ(5,%) CM
IF (MOISTV.EQ.0) MMC = )
IF (MOISTV.EQ.0) WRITE(6,232) CH
IF (MOISTV.EQ.1) MMC = 25
IF (MOISTV.EQ.1) WRITE (6,233)
ARR AR AR AR AT R AR ARARAAARRA AR AR AR RARA R AR AR A A AR KA RT AR R A LA A A RA S hhkR
DO 300 JHM = 1,MMC +1]

FIND Q'S AS WELL AS Q-BAR , SAVING Q-BAR .
AND READ AND CALCULATE THE HYGRO THERMO EFFECTS

khfhkkdrhkhhhkhihhhhhhrthhhRtthhhihRthrhhiidithhithbdah iRttt dhihidnix
DO 200 1ZZ = 1,2
LiIL=0
IF (1ZZ.EQ.T) JMM = UM
IF {1ZZ.EQ.2) JMM =0
IF (JM.EQ.1. AND .1ZZ.EQ.1) LIL =1
IF (JM.GT.1 .AND. 1ZZ.EQ.2) GO TO 200

NMNY1 = ZR
NMNXY1 = ZR
NMMX1 = ZR
NMMY1 = ZR
NMNYO = ZR
NMNXYO = ZR
HM3 = ZR
SMNY = ZR
SMNXY = ZR

Do 24 i1=1,5
E(1) = ZR
E(1+h) = ZR

24 HSS (1) = ZR

DO 26 I=1,6
DO 26 J= 1,6
NXNM(1)= ZR
DF (1,d4) = ZR
A0 (1,J4) = ZR
BO(1,d) = ZR
po(i,J) = ZR
AV (1,d) = ZR
B1(1,J) = IR

26 DY (i,d) ZR

64



28

35

Lo

1ZZ =
1227 =

Do
READ THE

SS
cc
CsS

nonon

$SSS
SSSC
sscc
scce
ceee
(1,
Q(1,
Q(2,
Q1,
Q(2,

Q (6,

HS

DO 28 MM = 1,TPLY

F( THICK(MM) .GT. ATH ) ATH = THICK (MM} 65
2 1S FOR LAMINATE WITHOUT ANY HYGROTHERMAL EFFECTS

1 1S FOR HYGROTHERMAL EFFECTS CONSIDERED

30 1 =1, TPLY
HYGROTHERMO EFFECTS, BOTTOM PLY IS FIRST AND UPWARD

F (1ZZ.EQ.2) GO TO 35
IF (MOISTV.EQ.O) CMOIST (JM) = CM
IF (MOISTV.EQ.1) CMOIST(JM) = 0.05 % (JM-1)
DELTEMP = RDLT
SB1 = RSBI
SB2 = RSB2
TA1 = RTAI
TA2 = RTA2
GO TO 4O

DELTEMP = ZR
CMOIST (UM) = ZR

SB1 = ZR

SB2 = ZR

TA1 = ZR

TA2 = ZR

V21 (1) = vi2() * E2(1) / E1(1)

Cil =E1(1) /7 (0 - vi2(1) * v21(1) )
Ci2 = E2(1) * vi2a{1) / (1 - V12(1) * v21 (1) )
€22 = E2(1) 7/ (1 - vi2(1) = v2i(1) )
CLl = G371 (1)

€55 = G31(1)

€66 = G612 (1)

DSIN(THETA(I)) #* DSIN(THETA (1))
1 - SS
0.5 %= DSIN{(2%THETA{I))

= 55 # §§
= §S % (S
= 5§ % CC
= LC * (S
= CC % CC
1,1) = C11 % CCCC + 2 % (C12 + 2 % C66 ) * SSCC
+ €22 % SSSS
2,1) = (C11 + C22 - &4 * C6B) * SSCC + C12 * ( SSSS
+ ccce )

2,1) = Cl1 & SSSS + 2 % ( Cl12 + 2 % C66) * SSCC
+ €22 * (CCC
6,1) = (C11 - Cc12 - 2 * C66) % SCCC
+ (C12 - €22 + 2 * C66 ) % SSSC
6,1) = (C11 - €12 - 2 % C66 ) * SSSC
+ (C12 - C22 + 2 * C66 ) * scce

6,1) = (C11 + C22 - 2 % Ci2 -~ 2 * C66) * SSCC
+ C66 % ( SSSS + CCCC )

L,1)= ClL % CC+ C55 * SS

5,1) = Clk * SS + C55 % CC

5,1) = €S ®* (Chbk - C55)

v2,1) = Q(2,6,1)

1,10 = Q(1,6,1)

L, =qQ0,2,1)

S(1) = HSS(1) + Q(1,2,1)
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L5

HSS (2) = HSS(2) + Q(2,2,1)

HSS (3) = HSS(3) + Q(2,6,1)

HSS (L) = HSS (L) + Q(1,6,1)

HSS(5) = HSS(5) + Q(6,6,1)
ATHMI (1) = TA1 % CC + TA2 % SS
ATHM2 (1) = TAl * SS + TA2 % CC
ATHMG (1) = CS * (. TA2 - TAD)
BSW1 (1) = SB1 % CC + SB2 * SS
BSW2 (1) = SB1 * SS + SB2 * CC
BSW6 (1) = €S # ( SB2 - SB1 )
CONT INUE

FIND THE A, B, AND D MATRICES FOR THE LOWER AND UPPER SUBLAMINATE.
ALSO FINDS HYGRALTHERMAL EXPRESSIONS ON A PER LAMINA AND PER
SUBLAMINATE BASHS.

zZz0(0) = Z0(0) * z0o(0) * Zzo(0O)
DO L5 | = 1,NPLYO

NXNM(I) = (Q(l 1,1)%( ATHMY (1) #*DELTEMP + BSWI1 (1) *CMOIST (JM))
(1 2,1)% ( ATHM2 (1) *DELTEMP + BSW2 (1) *CMOIST (UM))
c + Q(1,6,1)*( ATHHG(I)*DELTEMP + BSWE (1) *CMOIST (JM)) ) * THICK (1)

NMNYO= NMNYO+(Q (1,2,1) % ( ATHM] (1) *DELTEMP + BSW1 (1) *CMOIST (JM) )
o + Q(2,2,1)%( ATHM2 (1) *DELTEMP + BSW2 (1) *CMOIST (JM) )
C+ Q(2,6,1)*{ ATHME (1) *DELTEMP + BSW6 (1) *CMOIST (JM)) ) * THICK(I)

NMNXYO= NMNXYO+(Q(1,6,1) % ( ATHMI (1) *DELTEMP + BSW1 (1) *CMOIST (JM) )
c + Q(2,6,1) % ( ATHM2 (1) *DELTEMP + BSW2 (1) *CHMOIST (UM) )
C + Q(6,6,1)%( ATHM6 (1) *DELTEMP + BSW6 (1) *#CMOIST(JM)) ) * THICK (1)

2Zzo (1) = zZo(l) % zo (1) * zZo (1)
B12(1) = Q(1,2,1)%0.5%((Z0(1)*Z0 (1)) -(zOo (1-1) *Z0(I1-1)))
DO 45 L =1,6
DO 45 J = 1,6
{F( REAL( Q(J,L, 1) ).EQ.ZR) GO TO 45
A0 (J,L) = AO(J,L) + Q(J,L, 1) * THICK(!)
BO (J,L) = BO(J,L)+Q(J,L, 1) *0.5% ((ZO (1) *Z0o (1))} -(ZO(1=-1)*Z0(1-1)))
DO(J,L) = DO(J,L)+Q(J,L, 1) /3.0%( zzZO(1) - zZZO(1-1) )
CONT INUE

ZZZ1 (NPLYO) = Z1{(NPLYO) * Z1(NPLYO) * Z1(NPLYO)

DO 50 | = NEXTPL,TPLY
ZzZ1 (1) = zZi(1) = z1(1) #* 21 (1)

NXNM(1) = (Q(1,1,1)%( ATHMT (1) *DELTEMP + BSW1 (1) *CMOIST (JM) )
o + Q{1,2,1) % ( ATHM2 (1) *DELTEMP + BSW2 (1) *CMOIST (JM) )
C  + Q(1,6,1)%( ATHME (1) *XDELTEMP + BSW6 (1) %CMOIST (JM) )) = THICK (1)

NMNY 1= NMNY1+ ( Q(1,2,1) % ( ATHMI (1) #DELTEMP + BSW1 (1) *CHOIST (JM) )
o + Q(2,2,1)%( ATHM2 (1) XDELTEMP + BSW2 (1) *CMOIST (JM) )
C  + Q(2,6,1)%( ATHM6 (1) XDELTEMP + BSW6H (1) XCMOIST(JM)) )% THICK (1)
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NMNXY 1= NMNXY1+(Q(1,6,1) *( ATHM1 (1) *DELTEMP + BSW1 (1) *CMOIST (UM) )
+ Q(2,6,1) % ( ATHM2 (1) *DELTEMP + BSW2 (1) *CMOIST (JM) )

C

67

C 4+ Q(6,6,1)%( ATHM6E (1) *ADELTEMP + BSW6 (1) *CMOIST (JM)) ) * THICK (1)

NMMX1= NMMXT + 0.5 * ( Z1(1)*Z1(1) -

c (Q(1,

o) % ( ATHMI (1) *DELTEMP

c + Q(1,2,1)x( ATHM2 (1) *DELTEMP
c + Q(1,6,1)*( ATHM6 (1) *DELTEMP

NMMY 1= NMMY1 + 0.5 * ( Z1(1)*Z1 (1) -

ZV (-1 %21 (1-1) ) *
+ BSW1 (1) *CMOIST (UM)
+ BSW2 (1) *CMO1ST (JM)
+ BSW6E (1) *CMOIST (JM)

Z1 (-1 %21 (1=1) ) =

C (Q(1,2,1)%( ATHMI (1) *XDELTEMP + BSW1 (1) #CMOIST (JM) )
C + Q(2,2,1)%( ATHM2 (1) *DELTEMP + BSW2 (1) *CMOIST (JM) )
c + Q(2,6,1) % ( ATHM6 (1) *DELTEMP + BSWE (1) *CMOIST (JM) ) )

50

B12(1) = Q(1,2,1)*0.5%x((ZV(1)*Z1 (1)) = (Z1(1=1)*Z1(1-1)))
D0 50 L=1,6
DO 50 J=1,6
If ( REAL( Q(J,L,1) ).EQ.0 ) GO TO 50
A1 (J,L) = AT (J,L) + QJ,L, 1) * THICK (1)
B1(J,L) = B1(J,L)+Q(J,L, l)*O 5*((Zl(l)*Zl(l))-(Zl(I-I)*Z%(l-l)))
D1 (4,L) = D1 (,L)+QW,L, 1) /3.0%( ZZZ1 (1) - zzzAi(t-1) )

CONTINUE

AERAAKARAKIRARAARK A KA R AL XR AR A SRR AR IR N AT R R RhRRTh R Ak dbhdh R khihkhkik

SEE IF COUPLING 1S TAKING PLACE vieveineenrennnannnnannnnans
AR A AR A A R AR R A AR AR AR AAR SRR AR AR ARE AR A AR AR ARk kR kit
COUPL = 2
DO 60 1=1,6
po 60 J=1,6
IF ( REAL(BO(1,J)).GT.CHECK ) COUPL=1
60 IF ( REAL(B1(1,Jd)).GT.CHECK )} COUPL=1
IF ( REAL (D1(2,6)).GT. CHECK ) COUPL=]
IF ( REAL (DO(2,6)) .GT. CHECK ) COUPL=1
IF ( COUPL.EQ.1 .AND. LIL.EQ.1 ) WRITE (6,205)
IF {( COUPL.EQ.2 .AND. LIL.EQ.1 ) WRITE(6,210)

FkkEARAARR ARk ARk hhARARkhkhhrLhhdhhhhfkhkthhkihbddhkhihddhhkhhihihiiidik

CHECK THE S!IGN OF THE PEEL STRESS hfkkfkhkdidkkfhhhkihhhhdhhhhhik

HSNT1 = NMNY1 + NMNYO
HSN2 = NMNXY1 + NMNXYO

ERARXKRARAARRKARAR AR AA A AR AR R ARA AR AR AR A AR XA SRR AR R AR R AR ARk AR LA kAt

HDD= HSS (2) * HSS(5) - HSS(3) * HSS(3)
HE =  HSS(3) * HSS (L) - HSS(1) * HSS(5)
HE = HE /HOD

HG = HSS(1) % HSS(3) - HSS(2) =* Hss(h)
HG = HG / HOD

D0 65 I=1,TPLY

HNY (1) = ATH * STRAIN(LST) * ( Q(1,2,1) + Q(2,2,1) = HE +

c Q(2,6,1) * HG )
HNXY (1) = ATH % STRAIN(LST) * ( Q(1,6,1) + Q(2,6,1) * HE +
c Q(6.6,1) * HG)
65 CONTINUE

DO 70 | = 1,NPLY1



(e NalEaNeNeNel

HM3 = HM3 + ATH * HNY (1) * ( NPLY! - | + .5)

SMNY = SMNY + HNY (1)

70 SHNXY = SMNXY + HNXY (1)

IF ( HM3.GT.ZR) GO TO 85

IF (LIL.EQ.1) WRITE(6,%)' CASE OF COMPRESSIVE PEEL STRESS
WRITE (6,218) ‘
DO 75 I=1,TPLY
5 WRITE (6,220) THETA (1) ,HNY (1) , HNXY (1)
WRITE (6,%) * THE MOMENT CALCULATED WAS = ',HM3
85 00 80 I=1,6
00 80 J=1,6

IF ( ABS( REAL(BO(1,J)) ).LT.CHECK) BO(i,J)=ZR

80 {F( ABS{ REAL(B1(1,J)) ).LT.CHECK) B1(1,J) = ZR
P2 PR LR 2T SRR IETILLED L SR TIL LT ESLT T LT L TR L L2 8 3

hEkhkhkkhkAhRkARAAhkIARRhkAkfhfhhhhrhhhkhdhhihhkdhhhhhhhhhkhkihk

DEFINE SOME PARAMETERS NEEDED IN THE PROGRAM

dededek Kk kK ok ik ki fhddodoh ik ok ik ki dchk ki kR fohkfk %k
H22 = B1(2,2) + H1 / 2.00.% A1(2,2)
H26 = B1(2,6) + H1 / 2.00 * A1(2,6)
H66 = B1(6,6) + H1 / 2.00 * A1(6,6)

€22 = BO(2,2) + HO / 2.00 * A1(2,2)
HO / 2.00 * A1(2,6)
HO / 2.00 # A1(6,6)

C26 =
c66

K22
K26
K66
K12
K16

rnononon

D = K2

E15
E16
E17
£18
El19

W11
w12
w13
Vil

un
(1
U3
Uty

FO,1)
F(2,1)
F(3,1)
FL,1)

F(2,2)
F(3,2)
F(L,3)

F(3,3)
“F(L,2)

BO(2,6)
BO (6,6)

A1 (2,2)
A1 (2,6)
Al (6,6)
A1(1,2)
A1 (1,6)

2 * K66

D0 (2,2)
D0 (2,6)
DO (6,6)
80(1,2)
BO(1,6)

nononn

e nan

+
+

+ 4+ 4+

| I B |

K26
K26
K26
K26

K26
K26
K26
K26

( K26 * K26)

¥ % % R

¥ % 4 %

A0 (2,2)
A0 (2,6)
A0 (6,6)
A0 (1,2)
A0 (1,6)

HO/2%B0 (2,2)
HO/2%B0O(2,6)
HO/2%BO (6,6)
HO/2%A0 (1,2)
HO/2%A0 (1,6)

H26
c26

-

-

H66 -
ce6 -

H22
c22
H26
€26

K66
K66
K66
Ké6

K22
K22
K22
K22

%
*

* %

% ¥ % %

H22
c22
H26
€26

H26
€26
H66
€66

= D1(2,2) + B1(2,2) * H1 /

oo

po(2,2)
H26 % VV12 + H66 * (12
H26 * VWik + H66 * U4

- B0(2,2)

H22 * VW12 + H26 % U12
D1(2,6) + B1(2,6) * H1 /
H22 * VV1k + H26 * U1l

* HO /

= D1(6,6) + B1(6,6) * HI /

= D0 (2,6)

- B0(2,6) * HO /

~N R N et
.

N
o

2

[ S 2 ]
.

[w] e T S N

.0

oooo
+
Irx
Q —

NN
(NN 8
(o R e}
oo

4+ (H1 / 2.00)
+ ( HO / 2.00)

Lo Bl ow B we 8 o J

+ H22#%VV11 + H26 * U1}

+ H22%VV13 + H26 * U13

+ €22 * VW12 + (C26%U12

+ H26%VV1I3 + H66 * U13
+ C22%VViLk + C26 * U1k



F(L,4) = D0(6,6)

BO(6,6) * HO / 2.0 + C26%VV1L + C66 * U1k

DX = K22 * Ké6 69
DVWI1l = - K66 *# H22 / DX + ( Hl / 2.00)
DVVI2 = - K66 % C22 / DX + (HO / 2.00)

DUI3 = - K22 * H66 / DX + ( H1 / 2.00)

DUIL = - K22 * C66 / DX + ( HO / 2.00)
DF(1,1) = D1(2,2) + B1(2,2) * Hl / 2.0 + H22#DVVI1]
DF (2,1) = H22 % DVVI12
DF(2,2) = D0(2,2) - BO(2,2) *# HO / 2.0 + C22 * DVVI2
DF (4,3) = H66 * DUL
DF (3,3) = D1(6,6) + B1(6,6) * H1 / 2.0 + H66 * DUI3
DF (k,4) = DO(6,6) - BO(6,6) % HO / 2.0 + C66 = DUIL

W) = F(3,3)*( F(2,2) *F (b, 4) -F (L,2) *F (4,2) )~ F(3,2) *F (3,2) *
c F(bL,bL) + 2%F (L, 3) *F (4,2) %F (3,2) - F(2,2) *F (b, 3) *F (4, 3)

W(2) = - F(3,3)*(F(2,2) xA0(5,5) + F (L4,b4)*A0(L,k4) - 2%F (4,2)
* AO(4,5) ) - A1(5,5) * ( F(2,2) * F(4,L) -
F(4,2) * F(L,2)) + F(3,2) * F(3,2) * AO(5,5) -

2.0 *F (4,3) *F (3,2) *A0 (4,5) + F(L4,3) * F(4,3) % AO(L,4)

OO0

X (1) =F (3, 1) *(F (2,2) *F (L, L) -F (k,2) *F (L,2)) -F (3,2) % (F (2, 1) *F (L, L)
o = F(L,1)*F (4,2)) + F(L,3)%(F(2,1)%F (4,2) - F(L,1)%F(2,2))

X(2) = - F(3,1) « (F(2,2) * AO(5,5) + F(4,L) * AO(L,L)
=2 % F(4,2) * AO(L,5) ) - AT(4,5) * ( F(2,2) * F(h,b)
- F(4,2) * F(4,2) ) + F(3,2) % ( AO(5,5) * F(2,1) -
Fh,1)*A0(4,5)) = F(L4,3)*( F(2,1)%A0(L,5) - F(4,1)*A0(L,4))

aNeNel

Y1) = F(3,10)%(F(3,2) %F (L,b4) - F(L,3)%F (4,2))- F(3,3)*(F(2,1) %
c Fb, ) - F (b, 1) xF (L,2))+F (&,3) x (F (2,1) *F (4, 3) -F (4, 1) *F (3,2))

Y(z) = 0 - Al (5'5)*(‘7 (3'2)*F (l‘lh) - F(‘#,Z)"‘F(h,3))

c - F(3,1) * ( F(3,2)%A0(5,5) - F(L,3) * AO(L,5) ) +
c A1(5,5) *= ( F(2,1) * F(L,L) - F(4,1) * F(L4,2) ) +
o F(3,3) * ( F(2,1) * A0(5,5) - F(L4,1) * AO(L,5) )
Y(3) = A1 (4,5) % (F(3,2)*A0(5,5) - F(4,3)*A0(L,5)) ~ A1(5,5) =%
o ( F(2,1) = A0(5,5) - F(L,1) * AO(L,5) )

22(1) = F(3, 1) *(F(3,2)#F (4,2) - F (4,3) *F (2,2)) - F(3,3)%(F(2,1)*
c F(4,2) -F (4,1) *F (2,2))+F (3,2) % (F (2, 1) *F (4,3) -F (4,1) *F (3,2))

2z2(2) = F(3,1)*(F (4,3) %R0 (k,4) - F(3,2)%A0(4,5)) - A1(4,5)*
c (F(3,2) %F (L,2) - F(4,3)%F(2,2))+ A1(5,5)*%(F(2,1)* F(L,2)-
C F(L,1)%F (2,2)) - F(3,3)*(F (L, 1) *A0 (4, L)~ F(2,1)*A0(L,5))
ZZ(3) = 0 - Al (L,5)*(F (k,3) %A0 (4, L) -F (3,2) *AO (4,5) ) +A1 (5,5) *
c ( F(b,1) * A0 (L, k) - F(2,1) * AO(L,5) )
ek sk A Ak Stk ded koo e e e dede ke dedk ek db AR e dek ok e g e A sk e de ek e ok e ok

NOW OBTAIN THE VALUES OF £ SO THAT THE 8TH ORDER POLYNOMIAL MAY BE SOLVED

o o fe ok ot ok e ek ot A Sk ok s ok S s sk ok A sk s sk S de R R T R R sk Tk e R ek e Rt ok R Aok ek b ek e ok vy
E(L) =FQO,0)%xWw () - F@R,DEX() + F,D=Y(1) - Fk,1)®22(1)
EQ3) = FO,1) %W (2) - AT, L)xw (1) - F(3,1)*X(2) + A1(4,5)%xx (1)

C + F(2,1) * Y(2) - F(b,1) =% ZZ(2)

E(5) = (AO(L,L)*A0(5,5) - AO(L,5)*AO(L,5))*(F (1,1)%*F(3,3)
o - F(3,1)%F(3,1)) + (F(2,2)*%A0(5,5) + F (k,L)*AO(L,L) -
C 2%F (hvz)*Ao(l‘vS))*(F(]11)*A](5!5) - F(3"‘)"‘A‘l (1‘95) )



C - AV (L, L) AW (2) + AV (L,5) %X (2)+ F(2,1)%Y (3) - F(4,1)%*2Z2(3)
E(7) = - (AO(L,L)*A0(5,5) - AO(4,5)*A0(L,5))*(F (},1)*A1(5,5)

c + F(3,3) %A1 (4,L)- 2%F (3,1) %A1 (L,5)) - (A1 (L,L)*A1(5,5)-
c A1 (L,5) %A1 (L4,5)) *(F(2,2) *A0 (5,5) + F (L,L)*A0 (L,L)
c - 2 % AO(4,5) * F(L,2) )

E(9) = (A0 (L,L)*A0O(5,5) - AO(4,5)*AO(L,5) ) *

CALL UP SUBROUTINE TO SOLVE 8TH ORDER POLYNOMIAL

NDEG = 8
IER = 0
CALL ZPOLR (E,NDEG,SJ,IER)

KK = 0
khkAhkFAdhkhkAxkfhhhhhfirhhhhthhkhhhoikrhhhhihhihhihhhfhhihhihhkhrkhhhikhrk
KRAKKRRKARKRARARARARKAARR R AR KA KRR AR AR KRR K AR A KRR KA hA R hhkhhRrRhdkik

IF (LIL.EQ.1) WRITE(6,217)

pDOg0 L =1, 8

S(L) = REAL(SJ(L))

IF (REAL(SJ(L)) .GT.0) KK = KK + 1

90 IF (REAL(SJ(L)).GT.0) S(KK) = S(L)
DO 95 KK = 1,4
95 IF (LIL.EQ.Y) WRITE(6,221) KK, S (KK)

EERRE 2 22 P SR R PR R PR PR S T R R Rl 2 P R R R RS PR R 43

Fokkk ki do kR fdodd ke dootdostobst oo d Stk datdodotdo R R st st de e e dod s e e doob e e de st ek
NOW FIND THE UNCOUPLED S VALUES AND THOSE OF THE MEMBRANE

BNEG= DF (1,1) * AO(L,L) + DF(2,2) * A1 (4,4)
A =DF(1,1) * DF(2,2) - DF(2,1) % DF(2,1)
C = A0(L, L) * AT (4,L) .
SQ = DSQRT (BNEG * BNEG - ( 4.0 % A % C))
DIFF1 = DABS ( BNEG - SQ )
DIFF2 = DABS ( BNEG + SQ )
iF (DIFF1.GT.DIFF2) GO TO 100
UNSY (1) = DSQRT ( (BNEG+SQ) / 2.0 / A )
GO TO 105
100 UNSY (1)
105 UNSY (2)

DSQRT ( (BNEG-SQ) / 2.0/ A )
DSQRT( (BNEG/A) - UNSY (1)#* UNSY(1) )

tn

BNEG= DF (3,3) * A0(5,5) + DF (L,L) * A1 (5,5)
A = DF(3,3) * DF (L,4) - DF(L,3) * DF(4,3)
C = AO(S:S) * Al (SvS)
SQ = DSQRT (BNEG * BNEG - ( 4.0 *# A * C) )
DIFF1 = DABS ( BNEG - SQ )
DIFF2 = DABS ( BNEG + SQ )
IF (DIFF1.GT.DIFF2) GO TO 110
UNSX (1) = DSQRT ( (BNEG+SQ) / 2.0 / A )

GO0 TO 115
110 UNSX (1) = DSQRT ( (BNEG-SQ) / 2.0 / A )
115 UNSX (2) = DSQRT ( (BNEG/A) - UNSX (1) * UNSX(1) )

ook do ok ook o o o ok e sk e ok ok ok dl ot S e s e R ek sk oot ot e e e et e e e b sk e ok ok e ks sk sk sk ok ok ok ke

IF (LIL.EQ.1) WRITE(6,22L4) UNSX (1), UNSX(2)
1F (LILLEQ.1) WRITE(6,223) UNSY (1), UNSY(2)

Fr TR R R T T T S R A R R R R A A AR AR R h ARk A o e e A A R o ek

NOW THE S FOR THE MEMBRANE ONLY

70



FIIM = H1/2. % ( A1(2,2) * (DVV11 + DVVI2XHO/H1*A1 (4, L) /A0 (&, 4))
o + B1(2,2) )

F22M = H1/2. % ( A1(6,6) * (U13 + UILXHO/H1%A1 (5,5)/A0(5,5))
C + B1(6,6) )

MEMSY = DSQRT ( A1{4,L) / F11M )
MEMSX = DSQRT ( A1(5,5) / F22H )

Kok fedok ok ek R kot R kRl e ek ool e ke ek ot e e e ke e e ks b e e e kot

IF (LIL.EQ.1) WRITE(6,219) MEMSX, MEMSY

FhkRhhkkAkAhALkdkFArARAhrrhRdokfhdihbdtrhihhhihfhioitihikihiohkhhihhhhidik

DUM = A0(2,2) * AD(6,6) - AO(2,6) * AO(2,6)

SINM = ( AO(6,6) *NMNYO - AO (2,6) *NMNXYO ) / DUM

S2NM = ( AD(2,2) *NMNXYO - AO(2,6) ANMNYO ) / DUM
If (LIL.EQ.1) WRITE(6,288) SINM,S2NM

IF ( COUPL.EQ.2)GO TO 130

SOLVE FOR WD, CD, CU AND CV

120

122

MATR33(2,1)

MATR33(1,2)

MATR33(2.2) = A1(6.8)
MATR33(2,3) = B1(2,6)
MATR33(3,1) = MATR33(1,3)
MATR33(3,2) = MATR33(2,3)
MATR33(3,3) = D1(2,2)
MATR32(1,1) = - A1(1,2)
MATR32(1,2) = - B1(2,6)
MATR32(2,1) = - A1(1,6)
MATR32(2,2) = - B1(6,6)
MATR32(3,1) = - B1(1,2)
MATR32(3,2) = - D1(2,6)
IF (1ZZ.EQ.2) GO TO 122

D0 120 i=1,3
DO 120 K=1,3

wo{1,1) = (AO(2,6) = AO(1,6) - AO(6,6) * AD(1,2) ) / DUM
wp(1,2) = (AD(2,6) * BO(2,6) - AO(6,6)*B0O{2,2) ) / DUM
Wwo(1,3) = (AO(2,6)*BO(6,6) - AO(6,6)*B0O(2,6) ) / DUM
WD (2,1) = (A0(2,6) * AO(1,2) - AO(2,2) * a0(1,6) )/DUM
WD (2,2) = (AO(2,6)#*B0(2,2) - AO(2,2)* BO(2,6) ) / DUM
wD(2,3) = (A0(2,6) * BO(2,6) - A0(2,2)%BO(6,6) ) / DUM

MATR33(1,1) = A1(2,2)

MATR33(1,2) = A1(2,6)

MATR33(1,3) = B1(2,2)

SAVE33(i,K) = MATR33(1,K)
SAVE3 (1) = NMNY)
SAVE3(2) = NMNXY]

SAVE3 (3) = NHMY]

IRR = 0
CALL LEQT2F (SAVE33,1,3,3,SAVE3,0,WKAREA, IRR)

M=2
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N=3
1A=3
tRR=0
10D=0

CALL LEQT2F (MATR33,M,N, 1A, MATR32, IDD,WKAREA, IRR)

D0 125 I=1,3
I'F (122.€Q.2) SAVE3(1) = ZR
FNM(1) = SAVE3 (1)
DO 125 L=1,2
125 co(1,L) = MATR32(l,L)

SC = DSQRT( ( A1(5,5) - AV(L,5) * AV(L,5) / A1(4,4) )
c / (D1(6,6) + B1(2,6)*CD(1,2) + B1(6,6)*CD(2,2)
c + D1(2,6) * CD(3,2) ) )
GO TO 135
fedede ke deosk dedk ek Kok ke db ok ke g dede ok Ao d e ok ded ok ko ek Ak kg ok ok

IN CASE THE LAYERS ARE UNCOUPLED

T T R ey s R e S e s e 2T
130 oYy = -1/ ( A1(2,2)*%A1(6,6) - A1(2,6) * A1(2,6) )

co(1,1) = ( A1 (6,6)*%A1(1,2) - A1(2,6)%A1(1,6) ) / DY
co(2,1) = ( A1(2,2)%A1(1,6) - A1(2,6)*% A1 (1,2) ) / DY
€D(3,2) = ( AY(2,2)%A1(6,6) + A1 (2,6)%A1(2,6) ) *

o D1(2,6) / D1(2,2)/ DY
€5(1,2) = ZR
co(2,2) = ZR
€D (3,1) = ZR
DR = -1 / { A0(2,2)*A0(6,.6) - AO(2,6)*A0{2,6) )
Wo(1,1) = ( AO(6,6)*%A0(1,2) - AD{(2,6)*A0(1,6) ) / DR
wp(2,1) = ( AO(2,2)*A0(1,6) - AO(2,6)*A0(1,2) ) / DR
WD (1,2) = ZR
wo(1,3) = ZR
WD (2,2) = ZR
WD (2,3) = ZR

SSY = DSQRT( A0(5,5) / DO(6,6) )
SSX = DSQRT( AO(Lk,4) / DO(2,2) )

FNM(1) = (A1(2,6) *NMNXY1 - A1(6,6) *NMNY1) / DY
FNM(2) = (A1(2,6)*NMNY1 - A1(2,2) *NMNXY1 ) / DY
FNM(3)=(A1(2,6) *A1 (2,6) - A1(2,2)*A1(6,6))/DY * NMMY1/D1(2,2)

SC = DSQRT( (A1(5,5)*% A1(6,6)) / (A1(6,6)*D1(6,6)
c - (81(6,6)*B1(6,6)) ) )

Fehkhkhhkhkhkhkhhhhhfhhhhhkhhhkhhhkhhhhhhhihbhhhhhrkhrhihihihihs
*hRRRRFARKRAFRAKRARKARKARFANARKAR KR KRR A AR R KRRKRFARARRK KRR R A K ARAK

135 Cl1 =81(1,6) + c0D(1,1)*B1(2,6) + CD(2,1)%B1(6,6)
C + €D (3,1) * D1(2,6)
C2 = D1(6,6) + C0O(1,2)*B1(2,6) + CD(2,2)*B1(6,6) +
o £D(3,2) * D1(2,6)
J22 = 00(2,2) + BO(2,2) * wD(1,2) + BO(2,6) * wWD(2,2)
J66 = pO(6,6) + BO(2,6) * WD(1,3) + BO(6.6) * wWwD{(2,3)
J26 = D0(2,6) + BO(2,2) * WwD(1,3) + BO(2,6) * WD(2,3)
BNEG = J22 % AO{5,5) + J66 # a0 (L,L4) - 2. % J26 * AD{L,5)

A = J22 * J6b - J26 * J26
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C = AO(L,L4) * AO(5,5) - AO(4,5) * AO(4,5)

SQ = DSQRT ( (BNEG * BNEG) - 4.0 * C % A ) 73
DIFF1 = DABS( BNEG + SQ )

DIFF2 = DABS( BNEG - SQ )

IF (DIFF1.GT.DIFF2) GO TO 14O

SS1 = DSQRT ((BNEG + SQ) / 2. / A )

GO TO 145
140 SS1 = DSQRT ( (BNEG-SQ) / 2. / A )
145 $S2 = DSQRT ( (BNEG/A) - SS1 * SS1 )

SSY = DSQRT ( AO(4,L) * 422 )
SSX = DSQRT ( AO(5,5) * J66 )

Kk kkhkkdhkhihthhhokhkbkhhfkchkithikdhlhkhhhhhtkkhhkihhiokhhhhhhhhhhhkiihk

{F (LIL.EQ.1) WRITE(6,%)" ST AND S2 = ',5S81, SS2
IF (LIL.EQ.1) WRITE(6,%)" SX AND SY = ',SSX, SSY

FhfdkhhdhhkAkkhhhibhhhhkhhhdihhkhhhhrhfthlhhhhfkhhbhkihihhrhhrhRkihis

CVNM = ( K66 #* (NMNY1 + NMNYO) - K26 * (NMNXY] + NMNXY0) ) / D
CUNM = ( K22 % (NMNXY! + NMNXYO) - K26 * (NMNY1 + NMNYD) ) / D

CV = STRAIN(LST) / D * ( K26 % K16 - K66 * K12 ) + CVNM
CU = STRAIN(LST) / D * ( K26 * K12 - K22 * K16 ) + CUNM

KEARARRRREARARAKRAAKAIARKAARKARARARKARAKARKAAKKAKRARFRARK AR ARRAAXRE

NOW FIND SOME OF THE NEEDED CONSTANTS.....
FIRST DO LOOP 1S TO VARY THE VALUES OF S

DO 150 | = 1,k

FORM THE A MATRIX (MATR32) AND ITS B (MATR3)

MATR33(1,2) = - (F(2,1) *=S(1) * S(1) )
MATR33(1,3) = = ( F(&,}) ®* S(1) ®=S(1))
MATR33(2,1) = - ( F(3,3) # S(1) = S(1) - A1(5,5) )
MATR33(2,2) = - ( F(3,2) ® S(1) * S(1) )
MATR33(2,3) = -~ ( F(L,3) * S(1) * S(1) )
MATR33(3,1) = ~ (F(3,2) * S(1) % S(1) )
MATR33(3,2) = - ( F(2,2) * S{1) * S(1) - AO(L,4) )
MATR33(3,3) = - (F(L,2) * S(1) * S(1) - AO(L,5) )
MATR3I (1) = (F(1,1) * S(1) * S(1) ) - A1(4,4)
MATR3(2) = F(3,1) * S(1) * S(I) - Al (k,5)

MATR3(3) = F(2,1) * S(1) % S(i)

CALL UP ROUTINE TO FIND THE VALUES OF ALPHA, PHI AND GAMMA

CALL LEQT2F (MATR33,M,N,!A,MATR3, IDD,WKAREA, IRR)
ALPHA (1) = MATR3(1)

PHI (1) = MATR3(2)

GAMMA (1) = MATR3 (3)

sv (1)
50  su(i)

VVIT + ALPHA (1Y RVVIZ + PHI (1) %VV12 + GAMMA (1) *VV1il
UT1 + ALPHA (1) *U13 + PHI (1) %UT2 + GAMMA (1) *Ulk



DO 155 1 = 1,4

NXT(1)=A1(1,2) %SV (1) + A1 (1,6)*SU(1) + B1(1,2) + B1(1,6)*ALPHA(!)
NY1 (t)=A1(2,2) %SV (1) + AV (2,6)*%SU(I) + B1(2,2) + B1(2,6)*ALPHA (1)
NXYT1(1)=A1(2,6)*%SV (1) + A1(6,6)*SU(I) + B1(2,6) + B1(6,6)*ALPHA (1)
MYT(1)=B1(2,2) xSV (1) + B1(2,6)*#SU(1) + D1(2,2) + D1(2,6)*ALPHA (1)
MXY1 (1) =B1(2,6) %SV (i) + B1(6,6)*SU(1) + DB1(2,6) + B1(6,6) *ALPHA (I)
NXO (1) =A0(1,2) %SV (1) + AO(1,6) #SU(1) + E1B*PHI (1) + E19%GAMMA (1)
GG(1,1) = NYYL (1)
GG(2,1) = NXY1 (1)
GG (3,1) = MY (1)
FTH = C2 * SC
155 GG (L, 1) = MXY1 (1) + FTH = ALPHA(1)/ S (1)
AINM = B1(2,6)% FNM(1) + B1(6,6) *FNM(2) + D1(2,6) * FNM(3)
*%
BG (1) = A1(1,2) XSTRAIN(LST) + CV #* A1(2,2) + A1(2,6) * CU-NMNYI
BG(2) = A1(1,6)ASTRAIN(LST) + CV * A1(2,6) + A1(6,6) * CU-NMNXY1
BG(3) = B1(1,2) *STRAIN(LST) + B1(2,2) * CV + B1(2,6) * CU-NMMY1
BG (L) = B1(1,6) *STRAIN(LST) + B1(2,6) * CV + B1(6,6) * CU-AINM
c - C1 * STRAIN(LST)
BG1= BG (1)
BG2 = BG (2)
M=1
N=L
1A=4
1DD=0
IRR=0

CALL LEQT2F (GG,M,N,lA,BG, 10D,WKAREA, IRR)

ffRkkkhhikkithldthhftiiithkiorhhfrd it hitdhthdthdhhiihdtihitihhitik

TVUNM =  SINM - FNM(1) + K1 / 2.0 * FNM(3)
TUNM =  S2NM - FNM(2)

THETV -¢0(1,1) + WD(1,1) + H1/2.0%CD(3,1)
THETU -C0(2,1) + WD(2,1)

THETV = THETV + TVNM

THETU = THETU + TUNM

won

IF (LIL.EQ.1) WRITE(6,215) THETV, THETU
IF (LIL.EQ.)) WRITE(6,216) SMNY, SMNXY

Kkikkhhkddhfhfihhkhhhdhhihhhhihhhkhdodhiohfdfhhhdiidhhhdirhihkhihiatis
THE STEPS USED TO FIND THE TOTAL ENERGY RELEASE FROM USING A PURE
EXTENSION ANALYSIS FOR THE HYGRALTHERMAL EFFECTS. (SIMILAR TO
WHITNEY'S) . ANALYSIS (S CARRIED OUT ON A PLY BY PLY BASIS

ZV = ( K26 * K16 - K66 * K12 ) / D
ZU = ( K26 * K12 - K22 * K16 ) /D

DO 162 LL = 1,TPLY

EX(LL) = THICK(LL) * ( Q(1,1,LL) + Zv#Q(1,2,LL) +
C zu*Q(1,6,LL) )

T1(LL) = NXNM(LL) - CVNMATHICK (LL)*Q(1,2,LL) -
C CUNM * THICK (LL) * Q(1,6,LL)

EXX(LL) = QQ1,1,LL)*THICK (LL) + Q(},2,LL) *THICK (LL) *CD (1, 1)
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c + Q(1,6,LL) #THICK (LL) *CD(2,1) + B12(LL) *CD(3,1)
T12(LL) = NXNM(LL) - FNM(1)%Q(1,2,LL) *THICK (LL) -

c FNM(2) #Q (1,6,LL) *THICK (LL) - FNM(3)*B12 (LL)

EX3(LL) = Q(1,1,LL) *THICK(LL) + WD (1, 1) *Q(1,2,LL) *THICK (LL)
c + WO (2,1)*Q(1,6,LLY ATHICK (LL)

T13(LL) = NXNM(LL) - Q(1,2,LL) *THICK (LL) *SINM - Q(1,6,LL)
c % THICK(LL) * S2NM

IF (122.EQ.2) NMSTO(LL)
IF (1ZZ.EQ.2) NMST2(LL)
IF (1ZZ.EQ.2) NMST3(LL)
(F (1ZZ.€Q.2) GO TO 162

oo
[eNeNe
[oN =N o]

NMSTO (LL) = Ti(LL) / EX(LL)
NMST2 (LL) = Ti12(LL) / EXX(LL)
NMST3(LL) = TI13(LL) / EX3(LL)

162 CONTINUE

WRITE (6,%) ' JMM, NMSTO,2,3 OF ALL PLYS ', ( NMSTO (JP),
c NMST2 (JP) ,NMST3 (JP), ' --- ',JP=1,TPLY)

WRITE(6,%) ' EX, EXX EX3 OF ALL PLYS ', ( EX(4P),
C EXX (JP} ,EX3(UP),"' =-- ',J4P=1,TPLY)

TNC = 0.0

EXNC = 0.0

TSTAR = 0.0

ESTAR = 0.0

DO 163 LK = 1,TPLY
TNC = TNC + T1(LK)
EXNC = EXNC + EX (LK)
IF (LK.LE.NPLYO) TSTAR

TSTAR + T13{LK)
1F (LK.GT.NPLYO) TSTAR

TSTAR + T12 (LK)

IF (LK.LE.NPLYO) ESTAR

ESTAR + EX3 (LK)
163 (F (LK.GT.NPLYO) ESTAR

ESTAR + EXX (LK)

[F(1ZZ.EQ.2) TNMST = 0.0
IF (12Z.£Q.2) GO TO 89

TNMST = ( TNC - (TNC-TSTAR) #*2%AL/WIDTH ) / ( EXNC -
c (EXNC-ESTAR) #2%AL/WIDTH )
89 WRITE(6,%) ' TNMST EQUALS ',TNMST

DO 164 LL = 1,TPLY
1F (LL.LE.NPLYO) WWL = (EX3(LL) *
C (STRAIN (LST) + TNMST) - T1i13(LL) )
C * ( STRAIN(LST) - NMST3(LL) + THNMST )
If (LL.GT.NPLYO) WWC = (EXX(LL) =*
C (STRAIN (LST) + TNMST) - Ti12(LL) )
C % ( STRAIN(LST) - NMST2(LL) + TNMST )
WWO = ( EX(LL)Y® (STRAIN(LST) 4+ TNMST) - T1(LL) )
C % ( STRAIN(LST) - NMSTO(LL) + TNMST )
54 GLC (JMM) = GLC({JMM) + WWO - WWC

GLC (JMM) = GLC(UMM) / 2.0
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THIS S TO CALCULATE THE INTERLAMINAR SHEAR STRESSES.

AR A R R R AR AR A A AR KA AR ARARRAARAARRRA AR AR A AR AR kR khdk
UNCL =(WIDTH / 2.0)- AL
DO 180 JX = 80,100
JY =( 1.0 - JX /100.0) * UNCL
SIGX (JMM,JX) = 0
SIGY (JMH,JX) =0

D0 180 JS = 1,k
S1GX (JMM,JX) = BG(JS) * S(JS) * DEXP ( -S(JS)* JY )
c % NXY1(JS) + S1GX (JHM,JIX)
SIGY (JMM,JX) = BG(JS) * S(JS) * DEXP ( -S(JS)* JY )
c * NY1(JS) + SIGY (JMM, JX)
180 CONT I NUE

THE PROGRAM CONTINUES AND FINDS THE VARIOUS STRAIN ENERGY RELEASE
COMPONENTS .....
If (COUPL.EQ.1) GO TO 165
THIS S FOR A SYSTEM THAT IS COUPLED, THE CRACK LENGTH 1S
DEL = S(4) * S(2) * ATH % ATH
DEL = DEL * DEL * 0.6144
GO TO 170

THIS 1S FOR AN UNCOUPLED SYSTEM...vceeennrenennnens

165 SSW = .65 % ( S()) + S(2) + S(3) )
DEL = 18.7 * S(4) * SSW % ATH % ATH
DEL = DEL % DEL / 571.00
170 DEL = 135.7 * DEL * ATH
c IF (LIL.EQ.1) WRITE(6,211) DEL
FY = ZR
FX = ZR

Do 175 JP=1,4

CONY= NY1(JP)*BG (JP)*( DEXP ( -S(JP) * DEL ) - 1)
CONXY= NXY1 (JP)* BG(JP)*( DEXP( -S(JP) *DEL)- 1)
CCONXY = CCONXY + CONXY/S (JP)

175 CCONY = CCONY + CONY/S (JP)

fhhkdhhhkhhhkhkikhhhhhhikhhhhdhbihhakhhkdhhhhhhhhhbhhhhhhhhhhthhiin
Edkkkhkhhkhhhhhhhhihhhhkrktdidthhhihhhrhhhfhkrrkikihhikhhdhikik

FY = BG1 + CCONY / DEL
FX = BG2 + CCONXY / DEL

Gl (1ZZ,JH) = FY / 2.0 % THETV *STRAIN(LST)
GIHi(1Z2Z,JM) = FX / 2.0 % THETU * STRAIN(LST)

DIFFG= G111 (1ZZ,JM) - GII1{(1ZZ,JN)
CON = 2
IF (DIFFG.GT.REAL (GLC (JMM))) CON=1
IF (DIFFG.GT.REAL{(GLC(JMM))) DEL = DEL * .9
IF (DIFFG.GT.REAL (GLC (JMM))) WRITE (6,%) ' IT EXPLODES

Gl (1ZZ,JM) = GLC(JMH) -GI 1 (1ZZ,JM) -GHit (1ZZ,JN)
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200 CONTINUE

RESULTS ARE PRINTED FOR EACH RUN.

300 CONTINUE
WRITE (6,266) STRAIN(LST)
WRITE (6,267) )
WRITE (6,269) GLC(0) , GI(2,1), GII(2,1), GlI1(2,1),
o Gl (2,1)/6LC (0) :

D0 350 i=1,MMC +1
WRITE (6,268) CcMOIST(1),GLC (1), GI(1,1),G11(0,1),
c GIt1 (1, 1), G611, 1)/GLC (1)
350 CONTINUE

WRITE (6,287)

DO 360 NS = B80,90,2
360 WRITE (6,285)NS/100., SI1GX(0,NS), ( SIGX(KL,NS) ,KL=1,22,4)

DO 365 NS = 91,100
365 WRITE (6,285)NS/100.,S51GX (0,NS), ( SIGX(KL,NS),KL=1,22,4)

WRITE (6,286)
DO 370 NS = 80,90,2

370 WRITE (6,285) NS/100.,SIGY (0,NS), { SIGY (KL,NS) ,KL=1,22,4)
DO 375 NS = 91,100

375 WRITE (6,285) NS/100.,SIGY (O,NS), ( SIGY (KL,NS), KL=1,22,k)

500 CONT INUE

201 FORMAT(//,' THE WIDTH OF THE LAMINATE IS ',F8.5)
287 FORMAT(/////,' THESE ARE THE IN-PLANE [INTERLAMINAR SHEAR ',
"STRESSES -- SIGMA XY ',/,' THEY ARE FOUND AT VARIOUS',
‘- MOISTURE CONTENTS -*,//,' Y LOCATION',7X,' MECH ONLY',8X,
'H=0.0', 10X, 'H=0.2"', 10X, 'H=0.4"', 10X,
'H=0.6',10X, 'H=0.8"',10X, ‘H=1.0",//)
285 FORMAT (3X,F7.2,LX,7F15.8)
202 FORMAT (' THE NUMBER OF LAMINATES ABOVE AND BELOW THE CRACK IS
C ,13,5X,13)
204 FORMAT(///,' THE PLYS ARE INPUTTED FROM BOTTOM TO TOP',/.
~C ' BUT THE PLY CHARACTERISTICS FROM TOP TO BOTTOM ARE ')
206 FORMAT(//,' FOR PLY',!5,' THE SUBLAMINATE HAS THESE PROPERTIES')
205 FORMAT(//,' WITH THIS LAYUP, THE PLYS ARE COUPLED ',//)
210 FORMAT(//,' WITH THIS LAYUP, THE PLYS ARE DECOQUPLED ',//)
286 FORMAT(//,' THESE ARE THE OQUT-QF-PLANE INTERLAMINAR SHEAR ',
'STRESSES -- SIGMA YZ ',/,' THEY ARE FOUND AT VARIOUS',
* MOISTURE CONTENTS ',//,' Y LOCATION',8X,! MECH ONLY',8X,
'H=0.,0', 10X, 'H=0.2"', 10X, *H=0.4", 10X,
‘H=0.6"', 10X, '‘H=0.8"',10X, 'H=1.0",//)
208 FORMAT(* E1 AND E2 ARE (MS1) 'LFBLL,10X,F8.4)
289 FORMAT(//.,' THE LAMINA PLY CHARACTERISTICS INITIALLY ARE ',/)
288 FORMAT{/,' SINM AND S2NM ARE EQUAL TO ',F1L.10,4X,F14.10)
211 FORMAT(//.' THE CRACK LENGTH STEP SIZE 1S *,F12.8)

sReNaNel

eNaNeNeal

266 FORMAT (*O','1%,*  THE STRAIN IS EQUAL TO ',F12.7,/,
C ' THE VALUES OF GT, Gi, Gil, AND GI!It ARE IN IN-LB/IN/IN
c " ‘

267 FORMAT (/,3X,'% CMOIST',8X, ‘GGG (WHITNEY) ',6X,'GI"',9X,
C CGIHEYL,BX, G ,BX, ! GI/G(W-T) L,/

269 FORMAT(/,' MECH. ONLY ',3X,F12.9,4(2X,F11.7),/)

268 FORMAT (5X,F8.3,3X,F12.9,4 (2X,F11.7) )

215 fORMAT(////.,' THETA V. IS ',F15.10,' THETA U 1S ',F24.79)
216 FORMAT(//,* NY IS ',F23.11,' NXY IS ',F23.18)



207
209
214
217

218
219
220
221
223
224
231

OO0

232
233

FORMAT (/,' THE THICKNESS AND THETA VALUES ARE ',F9.6,5X,FB8.3)
FORMAT (' THE POISSON RATIO (1,2) IS ' ,F10.5)

FORMAT(* G OF (1-2), AND (3-1) ARE -MSt ‘', 2(F9.4,2X))

FORMAT ('0',////.8X,'THE FOUR CHARACTERISTIC VALUES ASSOCIATED!
,/.8X," WITH THE 8 DEGREE POLYNOMIAL FOR THE COUPLED CASE ARE')
FORMAT (//,5X,' THETA *',6X,' NY ',8X,' NXY ',//)

FORMAT (///.' THE S VALUES OF THE MEMBRANE ARE ',715.5,3X,F15.5)
FORMAT (/,bLX,F9.4,3X,F9.2,3X,F9.2)

FORMAT(/,' S OF ',12,' IS EQUAL TO ',F20.10)

FORMAT (/,' THE UNCOUPLED SY (1,2) VALUES ARE ',F15.5,3X,F15.5)
FORMAT (/,' THE UNCOUPLED SX (1,2) VALUES ARE ',F15.5,3X%,F15.5)
FORMAT (//,' THE STRAIN 1S EQUAL TO ',F12.8,/,

*  THE CHANGE IN TEMPERATURE IS ',F12.5,/,

'  THE COEFFICIENTS SWELL{NG DUE TO MOISTURE ARE ',2(2X,F12.8)
./,' THE COEFFICIENTS OF THERMAL EXPANSION ARE ',2(2X,F15.9))

FORMAT (/,' THE MO!STURE COEFFICENT 1S ',F15.8)
FORMAT (/,' THE MOISTURE COEFFICIENT VARIES FROM O TO 1.2 ')

STOP
END
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THE LAMINA PLY CHARACTERISTICS INITIALLY ARE

THE WIDTH OF THE LAMINATE IS 1.51200
THE NUMBER OF LAMINATES ABOVE AND BELOW THE CRACK IS 3 1

FOR PLY 1 THE SUBLAMINATE HAS THESE PROPERTIES

THE THICKNESS AND THETA VALUES ARE .005400 35.000

E1 AND E2 ARE (MS1) 18.7000 1.2300
THE POISSON RATIO (1,2) 1S .29200

G OF (1-2), AND (3-1) ARE ~MSI .8320 .8320

FOR PLY 2 THE SUBLAMINATE HAS THESE PROPERTIES

THE THICKNESS AND THETA VALUES ARE .005L00 -35.000

E1 AND E2 ARE (MSI) 18.7000 1.2300
THE POISSON RATIO (1,2) IS .29200

G OF (1-2), AND (3-1) ARE -MSI .8320 .8320

FOR PLY 3 THE SUBLAMINATE HAS THESE PROPERTIES

THE THICKNESS AND THETA VALUES ARE .005400 .000

E1 AND E2 ARE (MSI) 18.7000 1.2300
THE POISSON RATIO (1,2) IS .29200

G OF (1-2), AND {3-1) ARE -MS! .8320 .8320

FOR PLY L, THE SUBLAMINATE HAS THESE PROPERTIES

THE THICKNESS AND THETA VALUES ARE .005400 90.000

E1 AND E2 ARE (MS1) 18.7000 1.2300
THE POISSON RATIO (1,2) 1S .29200

5 OF (1-2), AND (3-1) ARE -MSI .8320 .8320

THE STRAIN (S EQUAL TO .00254000

THE CHANGE IN TEMPERATURE IS -280.00000

THE COEFFICIENTS SWELLING DUE TO MOISTURE ARE .00000000 .00556000
THE COEFFICIENTS OF THERMAL EXPANSION ARE ~.000000230 .000014900

THE MOISTURE COEFFICIENT VARIES FROM O TO 1.2

WITH THIS LAYUP, THE PLYS ARE COUPLED

THé FOUR CHARACTERISTIC- VALUES ASSOCIATED
WITH THE 8 DEGREE POLYNOMIAL FOR THE COQUPLED CASE ARE

S OF 1 IS EQUAL TO L07.05736827LL
S OF 2 IS EQUAL TO 141.11977804L18
S OF 3 1S EQUAL TO 116.7332723860
S OF L (S EQUAL TO 55.554L4207729

THE UNCOUPLED SX (1,2) VALUES ARE 392.22478 106.21737
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THE UNCOUPLED SY (1,2} VALUES ARE

STINM AND S2NM
ST AND S2
SX AND SY

THETA V 1S

NY IS

THE STRAIN 1S
THE VALUES OF

% CMOIST
MECH. ONLY

.000
.050
.100
.150
.200
.250
.300
.350
.L00
450
.500
.550
.600
.650
.700
.750
.800
.850
.900
.950
.000
.050
.100
.150
.200

— o - —t —

ARE EQUAL TO
= 134.932471163957803943120257 641.500299099584182787943089
= 7.00358208142090671392409983 33.296655k398959572557 143052

THE S VALUES OfF THE MEMBRANE ARE

56.25754

134.68589
177.38945 66.26L66
-.0000157292 .0000000000

.39325594L41 THETA U IS

EQUAL TO
6T, &I, GtlI,

GGG (WHITNEY)

101653935

.522939955
.4BB576635
.L55156902
.422680755
.39714819%
.360559220
.330913832
.302212031
.27LL53816
.247639187
.221768145
. 196840689
.172856820
.149816537
.127719840
. 106566730
.086357206
.067091269
.048768918
.031390154
.014954976
-.000536616
-.01508L4621
-.028689040
-.041349872

-38.32041690358 NXY 15

.0025L400

AND G111

G!

.0670191’

.408L74L0
.3794622
.3513864
.32L2463
.2980421
-2727737
L2LBLLY2
.2250445
.2025836
.1810586
. 1604694
. 1408161
.1220986
.1043169
.0874710
.0715610
.0565869
.0L25486
.029LL61
.0172794
.0060486
0042464
.0136055
.0220288
.0295163

-.0981017742335529623

-61.959633961712929972

ARE IN IN-LB/IN/IN
Gl Gill

0346174 .0000174
1146151 .0000509
.1090658 .0000486
.10372h1 .0000L6k
.0983903 .0000442
.0930641 .0000420
.0877458 .0000397
0824351 .0000375
.0771323 .0000353
.0718371 .0000331
0665497 .0000308
.0612701 .0000286
.0559982 .0000264
.0507341 .0000242
.0k54777 .0000220
.0402291 .0000197
.0349882 .0000175
.0297550 .0000153
.02L45296 .0000131
.0193120 .0000109
.0141021 .0000087
.0088999 .0000064
.0037055 .0000042

-.0014811 .0000020

-.0066600 -.0000002

-.0118312 -.000002k

GI/G (W-T)
.65392868

.7811106
.7766688
.7720115
.7671187
.7619672
.7565296
-7507731
.JLL6576
.7381338
.7311387
.7235908
.7153809
.7063566
.6962975
.6848665
.6715139
.6552653
6341891
.6037875
.550L72k
.LoLL538
.9132595
.9019465
.7678481
.7138182
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THESE ARE THE IN-PLANE
IHEY ARE FOUND AT VARIDUS MOISTURE CONTENTS

v OLOCATION

MECH ONLY

. 06513504

. 14545604
.32456173

. 72279559
1.60209840
3.51076178
5.15145827
7.47883378
10.67162145
14.79223282
19.47341229
23. 13934536
21.18134698
2.06849051
-56.33255229
~101.55665215

THESE ARE THE OUT-OF-PLANE

THEY ARE FOUND AT VARIOUS MOISTURE CONTENTS

Y LOCATION

MECH ONLY

1.32976655
2.97130973
6.63941979
14.83663802
33.15858378
74.12869062
110.86070837
165.83595666
248.16757475
371.58510425
$56.84776170
835.49958063
1255.78433442
1892.06540014
2859.77789575
4336.01416454

H=0.0

.21416031
.47814372
1.06633353
2.37175315
5.24186753
11.41070230
16.64239220
23.94089980
33.68618367
45.68179330
58.01265161
64.48280475
49.34714597
-21.49262058
-192.21483366
-68,23277131

H=0.2

. 17460962
.38984949
.86946804

-15.
-156.
-76.

.93411286
.27581313
.31370571
.59188733
.57004819
.57413829
.47523%870
. 76700252
.47668684
.81302367

32190098
17259550
30397933

INTERLAMINAR SHEAR STRESSES --

H=0.0

4.37292262

9.77117861
21.83410057
48.79268635

109.055 18007
243.83823352
364,70855904
545.65327849
B816.71124591
1223. 12780736
1833.20386401
2750.,22755443
4130.35826748
6208.29180153
9329.28302912
13960.55352851¢

3.
7
17.
39.
88.
198.

297.
.85249399

444
665,
997.
1494,
2242
3367.
5062.
7612

H=0.2

56528382

.96652670

80150758
78092397
91263246
79834182
33899561

82431294
13593640
47103417

.07591738

46245574
74636672

.08957918
11405.

37993197

INTERLAMINAR SHEAR STRESSES -- SIGMA XZ

S1GMA

H=0.4

. 13505894
.30155526
.67260256
.49647257
.30975873
.21670913
.54138246
. 19919658
.46209291
.26868609
.52135343
.47056893
.27890137
.15118139
. 13035734
.37518734

YZ

H=0.4

. 75764502
. 16187479
.76891460
.76916159
. 77008485
. 75845013
.96943219
.05170949
.93737997
. 14406544
.73820433
.92428033
.56664400
. 20093190
.89612924
.20633544

H=0.86

.09550826
.21326102
.47573707

.05883228
.34370433
. 119712585
.49087759
.82834496
.35004753
.06213248
.27570433
.46445102
. 74477908
.98046180
.08811918
. 44639536

H=0.6

. 95000623
.35722288
.73632161
.75739921
.62753723
.71855844
.59986876
.25092499
.05044699
. 15219448
00537449

77264328

.67083225
.65549709

70267929
03273890

H=0.8

.05595758
. 12496679
.27887159
.62119200

.37764993
.02271596
.44037273
.4574933%
.23800215
.85557888
. 03005524
.45833311
.21065678
. 19025779
.04588102
.51760338

H=0.8

. 14236743
. 55257097
.70372862
.74562683
.48498962
.67866674
. 23030534
.45014049
. 16351402
. 16032352
. 27254465
.62100623

77502051
11006228
50922935
85914236

-0 DI -

3
-
(S o]

-108.

H=1.0

.01640689
.03667255

.082006 10

. 183551714
.41159552

.92571938

.38986786
,08664173
. 12595677
. 64902527
.7B4406 15
. 45221520
.67653448
.36097738
.00364285
$8881140

H=1.0

.33472863
.74791906
.67113564
.73387445
. 34244201
.63877505
.880741914
.64935600
.27658105
. 16845256
.53971481
.46936917
.87920877
.56462747
.3157794/1
.68554582

18



THE LAMINA PLY CHARACTERISTICS INITIALLY ARE

THE WIDTH OF THE LAMINATE IS 1.51200
THE NUMBER OF LAMINATES ABOVE AND BELOW THE CRACK 1S 3

THE PLYS ARE INPUTTED FROM BOTTOM TO TOP
BUT THE PLY CHARACTERISTICS FROM TOP TO BOTTOM ARE

FOR PLY 1 THE SUBLAMINATE HAS THESE PROPERTIES

THE THICKNESS AND THETA VALUES ARE .005400 35.000

E1 AND E2 ARE (MS!) 18.7000 1.2300
THE POISSON RATIO (1,2) IS .29200

G OF (1-2), AND (3-1) ARE -MSI .8320 .8320

FOR PLY 2 THE SUBLAMINATE HAS THESE PROPERTIES

THE THICKNESS AND THETA VALUES ARE .005L00 .000

E1 AND E2 ARE (MS!) 18.7000 1.2300
THE POISSON RATIO (1,2) 1S .29200

G OF (1-2), AND (3-1) ARE -MS! .8320 .8320

FOR PLY 3 THE SUBLAMINATE HAS THESE PROPERTIES

THE THICKNESS AND THETA VALUES ARE .005L00 -35.000

E1 AND E2 ARE (MS!) 18.7000 1.2300
THE POISSON RATIO (1,2) 1S - .25200

6 OF (1-2), AND (3-1) ARE -MSI .8320 .8320

FOR PLY L THE SUBLAMINATE HAS THESE PROPERTIES

THE THICKNESS AND THETA VALUES ARE  .005L0O0 90.000
E1 AND E2 ARE (MS1) . 18.7000 1.2300
THE POISSON RATIO (1,2) IS .29200
G OF (1-2), AND (3-1) ARE -MSI .8320 .8320
THE STRAIN 1S EQUAL TO .00254000
THE CHANGE IN TEMPERATURE 1S  -280.00000
THE COEFFICIENTS SWELLING DUE TO MO!STURE ARE .00000000
THE COEFFICIENTS OF THERMAL EXPANSION ARE -.000000230

THE MO!STURE COEFFICIENT VARIES FROM O TO 1.2

WITH THIS LAYUP, THE PLYS ARE COUPLED

THE FOUR CHARACTERISTIC VALUES ASSOCIATED
WITH THE 8 DEGREE POLYNOMIAL FOR THE COUPLED CASE ARE

S OF 1 IS EQUAL TO 360.71624235L43
S OF 2 IS EQUAL TO 136.3961604L92
S OF 3 1S EQUAL TO 113.985658477:2
S 0F 4 IS EQUAL TO £5.0801738652

.00556000
.000014300



THE UNCOUPLED

THE UNCOUPLED

THE S VALUES OF THE MEMBRANE ARE

SINM AND S2NM
S1 AND S2
SX AND SY

THETA V IS

NY IS

THE STRAIN 1S
THE VALUES OF

% CMOIST
MECH. ONLY

.000
.050
.100
.150
.200
.250
.300
.350
.Loo
450
.500
.550
.600
.650
.700
.750
.Boo
.B50
.900
.950

1.000

1.050

1.100

1.150

1.200

SX (1,2) VALUES ARE 352.62874 86.89277
SY (1,2) VALUES ARE 126.45615 59.53405

193.07807 70.65819
ARE EQUAL fo -.0000157292 .0000000000

= 134.932471163957803943120257 6L1.500299099584182787943089
= 7.00358208142090671392409983 33.296655L398959572557143052

.978L02L562 THETA U IS

-38.32041690358 NXY IS

EQUAL TO .0025400

GT, GI, GII, AND Giit
GGG (WHITNEY) G!
.094207177  .0078275
.510289070 .2262277
.476405835 .2055316
LLL3L46720 .1857L497
RARYREL PY .1668819
. 380300856 . 1489284
.350114106 .1318890
.320851477 .1157637
.292512969 .1005526
.265098582 .0862557
.238608317 .0728730
.213042173 .060L0LY
. 188400151 .0488500
. 164682250 .0382098
. 141888470 .0284838
.120018811 .0196719
.09907327k .0117741
.079051858 .00L7906
.059954563 -.0012788
.0L1781389 ~.006L4340
.024532337 -.0106751
.008207406 -.0140020

-.007193403 -.0164147

-.021670092 -.0179132

-.035222659 -.0184976

-.047851104 -.0181678

.0000000000000009718

-61.959633961712929972

ARE IN IN-LB/IN/IN

Gl

.0863797

.28L0614
.2708742
.2576970
.2L4L5298
.2313725
.218225)
.2050878
.1919603
.1788428
.1657353
.1526377
. 1395501
1264724
.1134047
. 1003469
.0872991
.0742613
.0612334
.0L82154
.0352074
.0222094
.0092213
-.0037569
-.0167251
-.0296833

Grit

.0000000

.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
-0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000

G1/G (W-T)

.0830882

LbL33324
L31k212
4188771
.Lo56324
.3916067
.3767028
.3608016
.34375L5
.3253723
.3054085
.2835328
.2592888
.2320215
.2007L475
. 1639065
1188427
.0606005
.0213295
.1539925
351429
.7060144

2.2819054

.8266328
.5251615
3796734
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THESE ARE THE IN-PLANE
THEY ARE FOUND AT VARIOUS MOISTURE CONTENTS

Y LOCATION

MECH ONLY

.07771543
. 17995738
.41625242
. 96042737

-14,
-1143.
85.

.20343709
. 98862540
.43148427
.93853873
.78922990
.04642211
.96545539
.46881767
.48582400

02438527
31362224
42214908

THESE ARE THE OUT-OF-PLANE

THEY ARE FOUND AT VARIOUS MOISTURE CONTENTS

Y LOCATION

MECH ONLY

.94069588

. 18029521
.05374241
.71605439
. 17098279
.06243899
. 12643272
.61442086
.81654951
. 10566992
.86709173
.27369732

16420856
53432739
17774803
35526207

109.

86
-45
.=370
279

H=0.0

.25410395
.58840154
.36100874
. 14028217
.20451590
.31116726
. 29851376
. 76543047
.62559809
.0B456237
.70752965
43204584
. 59994307
.85513558
.49834340
. 30238304

1.
2.
5.
13.
19.
29.
42,
58.
7.
89.
70.
-37.
-302.
227.

H=0.2

20728704
47999260
11025224
56170677
87713337
30594680
82167961
17589574
11393649
80347722
25831827
26994356
64450369
40664203
23657021
84283872

.

INTERLAMINAR SHEAR STRESSES --

3.

7.
16.
38.
as.
206,
314,
479.
731.
1118.
1712,
2629.
4051.
6269.
8714,
14482,

H=0.0

07576670
12884953
52407852
30765144
84019338
19347184
30187627
38102208
80663700
57322594
87340224
71094384
66013925
70771612
77578612

H=0.2

.50907783
.81540800
.47963063
.24972996
.47199838
.20374189
.39391588
.05836372
.976294 11
912,
1397.
2145,
3305.
5114,
7924.
53753133 11814,

48379743
28825109
20477742
16960716
55716346
89512080
22953508

INTERLAMINAR SHEAR STRESSES -- SIGMA X2

SIGMA

4.
10.
24.

130.
198.
302.
462,
706.

1081
1660
2558
3959
6135
9145

H=0.4

. 16047014
.37158366
.85949573

.98313136

.54875083

. 30072635
.34484547

.58636100
.60227488
.52239206
.80910689
. 10784128
. 68305831
.95814848
.97479701
.38329439

Yz

H=0.4

.94238895
50196647
43518274
19180849
. 10380339
21401195
48595549
73570537
14595122
39436892
. 70309995
.69861100
.67907507
. 4066 1080
.01445547
.92153878

766.

1176
1812
2804
4345
6477

H=0.6

. 11365323
.26317472
.60873922
. 40455595
.22236829
.29550589
.86801132
.99682627
.09061327
.24130691
.35989552
.94573900
.73361292
.50965493
.71302381
.92375006

‘H=0.6

. 37570008
. 18852495
.39073485
. 13388701
.73560839
.22428201
.57799510
.41304702
.31560833
.30494041
11794880
. 19244458
. 18854298
.25605814
. 13379015
.61354250

WD .

~12

1

54

126

691
1065

1649.
2555.
3809.

H=*0.8

.06683632
. 15476578
.35798272
.8259805%
.89498576
. 29028544
.39117717
.40729153
13,
.96022176
24,
28,
22.
.06116138
-97.
73.

57895167
91068414
78363672
77816754

45125061
46420574

H=0.8

.809011214
.87508342
4,
10.
23.
.23455207
82.
.09038866
192.
294,
450.
. 68627816
.69801089

34628695
07596554
36741339

67003472

48526545
21551190
$3279765

10550548
25312483
30554622

DO BN s

H=1.0

.02001942
.04635684

. 10722621

.24740514

.56760322

.28506498
. 91434302
.81775680
. 06729006
.67913661
.46147276
.62153445
.82272216
-3.
-29.
22.

61266782
1894774 ¢
00466141

H=1.0

.24232233
.56164190
.30183906
.01804406
.99921839
.24482213

. 76207433

. 76773031
.65492256

. 12608339

.94764651
. 18011174
.20747880
. 95495282
.37245950
. 99754994

78



THE LAMINA PLY CHARACTERISTICS INITHALLY ARE

THE WIDTH OF THE LAMINATE IS 1.51200
THE NUMBER OF LAMINATES ABOVE AND BELOW THE CRACK iS 2

[ K]

FOR PLY 1 THE SUBLAMINATE HAS THESE PROPERTIES

THE THICKNESS AND THETA VALUES ARE .0054L00 30.000

E1 AND E2 ARE (MSI) 18.7000 1.2300
THE POISSON RATIO (1,2) 1S .29200

G OF (1-2), AND (3-1) ARE -MSI .8320 .8320

FOR PLY 2 THE SUBLAMINATE HAS THESE PROPERTIES

THE THICKNESS AND THETA VALUES ARE  .005L400 -60.000

E1 AND E2 ARE (MS!) 18.7000 1.2300
THE POISSON RATIO (1,2) IS .29200

G OF (1-2), AND (3-1) ARE -MSI .8320 .8320

FOR PLY 3 THE SUBLAMINATE HAS THESE PROPERTIES

THE THICKNESS AND THETA VALUES ARE .005400 75.000

E1 AND E2 ARE (MS1) 18.7000 1.2300
THE POISSON RATI10 (1,2) 1S .29200

G OF (1-2), AND (3-1) ARE -MSI .8320 .8320

FOR PLY L THE SUBLAMINATE HAS THESE PROPERTIES

THE THICKNESS AND THETA VALUES ARE .005400 - -15.000
E1 AND E2 ARE (MSI1) 18.7000 1.2300
THE POISSON RATIO (1,2) IS .28200
G OF (1-2), AND (3-1) ARE -MS| .8320 .8320
THE STRAIN IS EQUAL TO .0025L000
THE CHANGE IN TEMPERATURE 1S -280.00000
THE COEFFICIENTS SWELLING DUE TO MOISTURE ARE .0000000C .00556000
THE COEFFICIENTS OF THERMAL EXPANSION ARE -.000000230 .000014300

THE MOISTURE COEFFICIENT VARIES FROM O TO 1.2

WITH THIS LAYUP, THE PLYS ARE COUPLED

THE FOUR CHARACTERISTIC VALUES ASSOCIATED
WITH THE 8 DEGREE.-POLYNOMIAL FOR THE COUPLED CASE ARE

S OF 1 IS EQUAL TO 202.3666962066
S OF 2 'S EQUAL TO 150.2447234209
S OF 3 IS EQUAL TO 96.3990023366
S G6F & 1S EQUAL YO 72.1855545293

THT UNCOUPLED S (1,2) VALUES ARE 178.08581 9c.7331<
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THE UNCOUPLED SY (1,2) VALUES ARE 137.79324 77.57481

THE S VALUES OF THE MEMBRANE ARE 107.30164 75.5566L4

SINM AND S2NM ARE EQUAL TO  ~.0013126127 .0012407192
S1 AND S2 = 145.71273839L36314520123L304 261.712596265395612237542175
SX AND SY = 35.5756851167439115190147879 60.95855L9677314312319553312

THETA V IS .2402517909 THETA U 1S 2.073438L470218017861
NY IS -35.48501616832 NXY IS -61.461850910940726086
THE STRAIN 1S EQUAL TO .0025400

THE VALUES OF GT, Gf, GI!, .AND Gil! ARE 1IN IN-LB/IN/IN

% CMOIST GGG (WHITNEY) G Gli Glil G1/G(W-T)

MECH. ONLY .17L065036 .0136734 .0093651 .1510265 .0785535

.000 .288599244 .0062276 .0365562 .2L458155 .0215787

.050 .277169512 .0030909 .0347433 .2393353 .0111516

.100 .266289514 .0005010 .0329323 .2328563 .0018813

.150 .255959252 -.0015422 .0311230 .2263784 -.0060250

.200 .2L6178724 -.0030385 .0293156 .2199016 -.0123L27

.250 .2369h7932 -.0039880 .0275100 .2134260 -,0168309

.300 .228266874 -.00L43508 .0257062 .2069515 -.0192354

.350 .220135552 -.0042468 .0239042 .2004781 -.0192916

.Loo .212553964 -.0035559 .0221040 .1940059 °~ -.0167296

.L50 .205522112 -.0023183 .0203057 . 1875347 -.0112801

.500 . 199039994 -.0005339 .0185092 .1810647 -.0026824

.550 .193107612 .0017973 0167144 .1745959 .0093072

.600 .187724965 .0046753 .0149215 .1681281 .0243050

.650 .182892052 .0081001 .0131304 .1616615 .04L2888

.700 .178608875 .0120716 0113412 .1551961 .0675870

.750 .174875432 .0165900 .0095537 .1487317 .0948676

.800 .171691725 .0216552 .0077681 .1422685 .1261282

.850 .169057753 .0272671 .0059842 . 1358064 .1612888

.900 .166973515 .0334259 .0042022 .129345L . .2001866

.950 . 165439013 .0L01314 .0024220 . 1228856 .2425751

1.000 164454245 .0473837 .00064L36 .1164269 .2881270

1.050 .16L4019213 .0551828 -.0011329 .1099693 .3364412

1.100 .16L4133916 .0635287 -.0029077 .1035129 .3870542

1.150 . 164798353 0724214 -.0046806 .0970576 .L394L54L8

1.200 .166012526 .0818609 -.0064517 .0906034 .4931008
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IHMEDE AKE

Y LOCATION

[HE

IN-PLANE

MECH ONLY

218
398
736
1403
2809
6138

.05676172
. 16404039
.47716558
.40027761
. 15778238
.536627114
.92391761
.55372890
. 22669529
. 62386648
.74381651
.03248718
.82244009
.24313766
.86570653
.30786283

THESE ARE THE OUT-OF-PLANE

Y LOCATION

MECH ONLY

. 16585980
.46943498
.32621331
.73681543
.48846496
.26971559
.744743 145
. 94539936
.89723658
. 24445378
.01194536
.60439987
. 96357501
.01507117
.72815835
.85251960

704
1255
2305
4480
9650

INTERLAMINAR SHEAR STRESSES
THEY ARE FOUND AT VARIOUS MOISTURE CONTENTS

967.

1596
2584
3998
5415
3927

H=0.0

. 13383978
.38262997
.09647535
. 15249905
. 10572208
.47078249
.27705638
.65399817
.62809212
. 94006045
.50598451
.47704597
. 70230253
. 35974007
. 13776195
.30926292

H=0.0

.40442354
. 14791593
. 25626779
.22891300
. 12319742
.80117525
. 91308072
.83462309
.06735925
.52733260
47546061
. 12349454
.B7680021
.83788332
.47562712
.98882475

621.

1114
2059
4023
B&87

1324,
2134,

3271
4327
2670

H=0.2

. 11323003
.32416132
. 93073896
.68324457
.77928135
.72981406
.00125296
. 13410301
.00701342
.436549714
.07750811
39034887
.59938720
.22700449
.01286260
. 60293079

H=0.2

.34069983
. 96669931
.74082736
.76243950
. 94948048
.91744992
.85796283
.98914281
.95937200
.22950028
.37239730
41972889
31704487
.80265391

.26291739

.82514260

INTERLAMINAR SHEAR STRESSES -- SIGMA XZ
THEY ARE FOUND AT VARIOUS MOISTURE CONTENTS

H=0.4

.09262028
. 26569268
. 76500256

2.

6.
18.
32.
56.
a8.
171
302.
538.
973.
1813.
3565,
7724.

21399008
45284061
98884564
72544955
61420784
38593472

.93303897

64903171
30365177
49647187
09426892
88796325
89659866

-~ SIGMA Y2

H=0.4

27697611
. 78548269

.22538692
.29596600
.77576354
.03372460
.B0284494
. 14366253
.85138474
.93166795
.26933399
.71596324
. 75728954
.76742450
. 05020766

66146045

1233.
1817.
2150.

156.

H=0.6

.07201083
.20722403
.59926616
. 74473560
. 12639987
.24787721
. 44964613
.09431268
. 76485602
.42952823
.22055531
.21695468
. 39355653
.96153334
.76306390
. 19026652

H=0.6

.21325240
.60426608
. 70994649
.82949250
. 60204660
. 14999927
.74772705
.29818225
.74339749
.63383563
. 16627068
.01219759
19753421
73219508
83749794
49777830

782

1090.
1062.

~1100

H=0.8

.05140078
, 14875538
.43352976
.27548112
. 79995914
. 50690879
. 17384271
.57441752
. 14377733
.92601749
. 79207891
. 13025758
.29064120
.82879776
.63816455
.48393439

H=0.8

. 14952869
. 42304946
. 19450605
. 36301900
.42832966
.26627395
.692609186
.45270198
.63541023
. 33600331
.06320737
.30843195
.63777888
69696567
62478821

H=1.0

.03079103
.09028674
. 26779336
.80622663
.47351840
. 76594036
.898033830
.05452235
.52269863
.42250675
.36360251
.04356048
. 18772587
.68606219
.51326520
.77760226 .

H=1.0

.08580498
.24183285
.67906562
.B9654550
.25461272
. 38254862
.63749127
.60722170
.52742298
.03817099
. 960144086
.60466630
.07802355
.66173626
-25.
.66590385 -2357.

58792151
82958600
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THE LAMINA PLY CHARACTERISTICS INITIALLY ARE

THE WIOTH OF THE LAMINATE IS 1.51200
THE NUMBER OF LAMINATES ABOVE AND BELOW THE CRACK 1S 2 2

FOR PLY 1 THE SUBLAMINATE HAS THESE PROPERTIES

THE THICKNESS AND THETA VALUES ARE .005400 =-35.000

E1 AND E2 ARE (MSt) 18.7000 1.2300
THE POISSON RATIO (1,2) (S .29200

G OF (1-2), AND (3-1) ARE -MSI .8320 .8320

FOR PLY 2 THE SUBLAMINATE HAS THESE PROPERTIES

THE THICKNESS AND THETA VALUES ARE .005400 £5.000

E1 AND E2 ARE (MS!) 18.7000 1.2300
THE POISSON RATIO (1,2) 1S .29200

G OF (1-2), AND (3-1) ARE -MS! .8320 .8320

FOR PLY 3 THE SUBLAMINATE HAS THESE PROPERTIES

THE THICKNESS AND THETA VALUES ARE .005400 10.000

E1 AND E2 ARE (MSt) 18.7000 1.2300
THE POISSON RATIO (1,2) IS .25200

G OF (1-2), AND (3-1) ARE -MS! .8320 .8320

FOR PLY L THE SUBLAMINATE HAS THESE PROPERTIES

THE THICKNESS AND THETA VALUES ARE .005400 -80.000

E1 AND E2 ARE (MSI) 18.7000 ' 1.2300
THE POISSON RATIO (1,2) 1S .28200

G OF (1-2), AND (3-1) ARE -MS! .8320 .8320

THE STRAIN IS EQUAL TO .00254000

THE CHANGE IN TEMPERATURE IS -280.00000

THE COEFFICIENTS SWELLING DUE TO MOISTURE ARE .00000000 .00556000
THE COEFFICIENTS OF THERMAL EXPANSION ARE -.000000230 .00001L900

THE MOISTURE COEFFICIENT VARIES FROM O TO 1.2

WITH THIS LAYUP, THE PLYS ARE COUPLED

THE FOUR CHARACTERISTIC VALUES ASSOCIATED
WiTH THE 8 DEGREE POLYNOMIAL FOR THE COUPLED CASE ARE

S OF 1 1S EQUAL TO 233.9388572236
S OF 2 1S EQUAL TO 156.9014619788
S OF 3 IS EQUAL TO 115.2992565645
S OF L IS EQUAL TO 48.0575100718
THE UNCOUPLED S¥ (1.2) VALUES ARE 186. 41344 g6.4212L

THI UNCOUPLET Y (1.2 VALUE

"

ARZ 128.78572 4G .3703¢%
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THE S VALUES OF THE MEMBRANE ARE

STINH AND S2NM
S1 AND S2

119.36060 57.91987

ARE EQUAL TO -.0007221148 -.0007139234
= 143.691863396728751259452089 285.264127104852281159045526

SX AND SY = 32.14369795L6791447820272102 62.2043978939766992050711339

THETA V IS

NY IS

THE STRAIN 15
THE VALUES OF

% CMOIST

MECH. ONLY

.000
.050
.100
.150
.200
.250
.300
.350
.Loo
.L50
.500
.550
.600
.650
.700
.750
.800
.850
.900
.950
.000
.050
.100
.150
.200

4347536621 THETA U IS

-5L.36619883946 NXY 1§

EQUAL TO .0025400

6T, Gl, G!l, AND Gl
GGG (WHITNEY) Gt
.131525889 .0207693
.394637005 . 1683076
.369347077 .1508205
.3L5184223 . 1344556
.322148443 .1192131
.300239735 . 1050929
.279458102 .0920949
.259803542 .0802193
.2L1276055 .069L660
.2238756L2 .0598350
.207602302 .0513262
.192456036 .0439398
. 178436843 .0376757
165544724 .0325339
.153779678 .0285144
143141706 .0256172
.133630807 .0238423
.125246982 .0231897
.117950230 .0236594
.111860552 .0252514
. 106857947 .0279657
.102982416 .0318023
.100233958 .0367612
.088612573 .0L28L24
.098118262 .0500459
.098751025 .0583717

ARE

-1.734L415L08201789576

45.618657L45050692111

IN IN-LB/IN/IN

G{I
.0219689

.0866210
.0823114
.0780061
.0737050
.0694082
.0651156
.0608274
.05654L34
.0522636
.0479882
.0L37170
.0394500
.0351874
.0309290
.0266748
.0224250
.0181794
.0139381
.0097010
.0054683
.0012397
.0029845
.0072045
.0114202
.0156316

GIil
.0887877

.1397084
.1362152
.1327225
.129230k
.1257387
.1222475
.1187569
.1152667
777
.1082879
. 1047992
.1013111
.0978235
.0943363
.0908497
.0873635
.0838779
.0803928
.0763081
.073L240
.0699404
.066L4573
.0629747
.0594325
.0560109

GI/G(W-T)

.1579102

L2648
.L0B3L35
3895185
.3700564
.3500298
.3295483
.3087691
.2879108
.2672688
.2k72335
.2283110
L211143
.1965264
.1854237
.1789638
.1784190
.1851516
.2005198
.2257398
.2617089
.3088128
-3667539
LL344517
.5100571
-5910998
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THESE ARE THE IN-PLANE
THEY ARE FOUND AT VARIOUS MOISTURE CONTENTS

Y LOCATION

MECH ONLY

-1.
-2.
-4,
-9.
~19.
-27.
~-40.
-60.
~93.
~-148
-248.
~446.
-885.
-2013.
-5568.

.57590259

15500766
31809701
66121070
41933953
28114635
86803356
76807828
74791755
01797598

.04567478

37373255
98922674
27484698
12212234
98832566

H=0.0
-1.81324378 -1,
~-3.63542168 -2.
-7.29018842 -95.

-14.62677009 -
-29.38693329 -24,
-59.25567119 -48.
-84,38953087 -69.
-120.61801802 -99
-173.40082769 -143.
-251.60892083 -209.
-370.59922298 -311.
-559.47456937 -476.
-881.36980878 -764.
~-1503.21141125 -1335,
-2986.72662307 -2717.
~7674.18805110 -7084.

H=0.2

48462505
97665842
96965162

.979891892

08301174
63455785
36790478

.38712650

42661283
36180513
19653492
16166609
37575049
11941983
77038626
53781995

THESE ARE THE QUT-OF-PLANE INTERLAMINAR SHEAR STRESSES --

THEY ARE FOUND AT VARTOUS MOISTURE CONTENTS

Y LOCATION

MECH ONLY

.27617888
.56753777
. 16491904
.38654493
.87019183
.84680471
.66289213
.43474532
.27568716
. 76910709
.25330316
.B0756656

61798402
19459243
54905698
83474448

H=0.0

10.31723571
20.68268192
41.46150260
83.11303161
166,59261716
333.84310700
472.50148909
668.58894580
945.66979161
1336.64857623
1886 .88626457
2656.91555150
3719.40898556
5123.1637704 14
6683.48801754
6857.50214542

H=0.2

.44724614
.93393167
.94640184
.04745804
.390096 16
.29260785
.76451483
. 18476643
. 75215728
. 18587910

09703881
73092336
03467417
96405479
79387584
81141375

INTERLAMINAR SHEAR STRESSES -- SIGMA X2

H=0.4

-1.15600631
-2.31789515
~4.64911482
~9.33306775
~18.77909019
-38.01344451
-54.,34627868
-78.15623498
-113.45239797
~167.11468943
-251.79384686
-392.84876280
~647.38169221
~1167.02742841
-2448.81414945
-6494,88758880

SIGMA YZ

H=0.4

6.57725656
13.18518142
26.43130108
52.98188448

106. 1B757515
212.74210869
301.02754057
425,78058706
601.83452295
849.72338197
1197.3078 1306
1680.54629522
2338.66036279
3180.76433917
4008 .,099734 14
3486 . 12068207

-1,
-3.
-6.

-13
-27,
-39.
-56,
-83.
-124.
-192.
-309.
-530.
-998.
-2179.
-5905.

4.

9.
18.
37.
75.
152.
215
304.
429,
606.
852
t192,
1648.
2209.
2670.
1800.

H=0.6

.82738757

65913188
32857801
68621658

.47516863

39233116
32465259
92534347
47818312
86757373
39115881
53585952
38763392
93543699
85791263
23735765

_H=0.6

70726689
43643117
91620032
91631091
98505414
19160953

.29056630

37640769
91688862
26078483

.518587314

36166707
28605140
56462355
40559244
42995039

H=0.8

-.49876884
-1.00036862
-2.00804121
-4,03936541
~8.17124708

~16.77121782
-24.30302649
-35.69445195
-53.50396826
-82.62045803
-132.98847075
-226.22295624
-413,39357564
-830.84344557

~1910.90167582
-5315,58712650

H=0.8

2.83727744
§.68768092
11.40109956
22.85073735
45,.78253314
91.64111038
129.55359204
182.97222833
267.99925428
362.79818770
507.72836156
704.17703893
957.,91174002
1238.36490793
1332.71145074
114.73921872

-23

-40.
~73.
~-142,
-296.
-662.
-1641.
-47265.

H=1.0

. 17015010
.34160535
.68750441
-1,
-2.
-6.
-9.
~14.
.52975340

38251424
86732552
15010448
28140039
46356043

37334233
58578269
21005296
39951735
75145415
94543901
93689534

H=21.0

.96728784

.93B93067

.88599881
.78516379
-58001213

.09061122

.81661778
.56804896
.08161995
. 33559056
.94013580
.99241079
.53742864
. 16519231
. 98269096
.95151296
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FRACTURE ANALYSIS OF LOCAL DELAMINATIONS IN LAMINATED COMPOSITES

P. Sriram and E. A. Armanios

School of Aerospace Engineering

Georgia Institute of Technology

Atlanta, Georgia 30332
Abstract

Delamination is a predominant failure mode in continuous fiber rein-
forced laminated composite structures. One type of delamination is the
transverse crack tip delamination which originates at the tip of transverse
matrix cracks. An analytical model based on the subliaminate approach and
fracture mechanics is developed in this paper to study the growth of such
delaminations. Plane strain conditions are assumed and estimates are
provided for the total strain energy release rate as well as the mode 1 and
mode II contributions. The energy release rate -estimates are used to
predict critical delamination growth strains and stresses by assuming a
critical energy release rate. These predictions are compared with experi-
mental data on T7300/934 Graphite Epoxy [125/90n]s laminates in the range
n=.5 to 8. A good agreement is demonstrated for the range of n where the
experimental observations indicate transverse crack tip delamination to be

the predominant failure mode.

Introduction

Fiber reinforced composites are now being used in a wide variety of
engineering structures. The concept of directional strength and stiffness
has been, for the most part, understood sufficiently to enable efficient
load bearing designs. One of the current major issues in composite struc-
tures is the understanding and prediction of damage modes and failure
mechanisms. A thorough knowledge of the failure mechanisms is bouna to
Tead to the design of efficient and durabie structures. Failures in these

materials often initiate in the form of matrix cracks or delamirations.



Matrix cracks refer to intralaminar failures whereas delaminations refer to
interlaminar failures.

Matrix cracks usually occur within laminates where the fibers run at
an angle to the primary load direction. Hence, such matrix cracks are also
called transverse cracks. Based on the location and direction of growth,
two distinct types of delamination can be discerned. These two types are
called edge delamination and local or transverse crack tip delamination.
Edge delaminations initiate at the Toad free edges of the structure whereas
tocal delaminations start from a transverse matrix crack. In many cases,
both types occur concurrently with varying levels of interaction. It has
been observed in simple tension tests of uniform rectangular cross section
specimen (Edge Delamination test) that delaminations initiate along the
load free edges and propagate normal to the load direction. Transverse
matrix cracks running paraliel to the fibers have also been observed in off
axis plies such as 90° plies. Such transverse cracks terminate where the
ply orientation changes. [Delaminations can originate at the interface
where transverse cracks terminate. These delaminations, calied transverse
crack delaminations or local delaminations, grow normal to the transverse
crack from which they originate. In the case of 90° plies, the growth
direction is parallel to the load.

The growth process of edge delaminations and local delaminations is
often modelled using a fracture mechanics approach leading to the caicula-
tion of a strain energy release rate. This is because the strain energy
release rate can correlate delamination behavior from different loading
conditions and can account for geometric dependencies. The strain energy
release rate associated with a particular growth configuration is a measure

of the driving force behind that failure mode. Iin combination with



appropriate failure criteria, the strain energy release rate provides a
means of predicting the failure loads of the structure.

Several methods are available in the literature for analyzing edge
delaminations. These include finite element mode11ingl—3, complex variable
stress potential approachq, simple classical laminate theory based tech-
nique5 and higher order laminate theory including shear deformationss.
Finite element models provide accurate solutions but involve intensive
computational effort. Classical laminate theory {(CLT) based techniques
provide simple closed form solutions and are thus well suited for prelimi-
nary design evaluation. (Classical laminate theory based techniques provide
only the total energy release rate, and thus in a mixed mode situation,
there is insufficient information to completely assess the delamination
growth tendency. A higher order laminate theory including shear deforma-
tions has the ability to provide the individual contributions of the three
fracture modes while retaining the simplicity of a closed form solution. A
shear deformation model is available for edge delamination and has been
shown to agree well with finite element predictions6.

Crossman and Wang7 have tested T300/934 Graphite epoxy [125/90n]S
specimens in simple tension and reported a range of behavior including
transverse cracking, edge delamination and local delamination. O'Brien8
has presented classical laminate theory solutions for these specimen,
demonstrating reasonable agreement in the case of edge defamination but
with some discrepancies in the local delamination predictions. An empiri-
cal finite element based combined edge and local delamination formulation
has also been proposedg. Its predictions, however, do not fully explain
the dependency of the critical strain on the number of 90° plies.

In this paper, a shear deformation model is developed for the analysis
of local delaminations originating from transverse cracks in 80° plies

3



located in and around the specimen midplane. Plane strain conditions are
assumed and thickness strain is neglected. Delaminations are assumed to
grow from both ends of the transverse crack tip. The transverse crack is
treated as a free boundary and the delamination is considered to be the
crack whose growth behavior is to be modelled. The sublaminate ap-

proachm’11

is used to model different regions of the specimen. The
resulting boundary value problem is solved to obtain the 1interlaminar
stresses, total strain energy release rate and energy release rate compo-
nents. Critica] local delamination growth Tloads are predicted for the

[t¢5/90n]$ specimen.

Analytical Model

The formulation is based on the sublaminate approach detailed in ref.
10. A longitudinal section illustrating the geometry of a generic configu-
ration is shown in fig. 1. The centrai region is assumed to be made of 90°
plies with an isolated transverse crack in the middle. Delaminations are
assumed to grow from both ends of the transverse crack, and towards both
ends as shown. From symmetry considerations, only one quarter of the
configuration is modelled. The modelled portion 1is divided into four
sublaminates as shown in tig. 2. The top surface (sublaminates 1 and 4) is
stress free. In order to simplify the analysis, plane strain conditions
are assumed and the thickness strain (ez) is set to zero. The consequence
of this combined with the fact that the w displacement is zero along the
center Jline is that w is zero in sublaminates 1,2 and 3. Further, this
approximation does not allow for the enforcement of boundary conditions on
the shear stress resultants, leading to incorrect estimates of the inter-
laminar normal stresses. The interlaminar shear stresses, however, are not

affected by this assumption6’lo.

The assumptions lead to considerable
simplifications in the analysis. In spite of the simplifications, reliable

4



energy release rate components can be estimated based on the interlaminar
shear stress distributions6’10.

A generic sublaminate is shown in fig. 3 along with the notations and
sign conventions. The peel and interlaminar shear stresses are denoted by
P and T respectively with t and b subscripts for the top and bottom surface
respectively. The axial stress resultant, shear stress resultant and
bending moment resultant are denoted by N, Q and M respectively. A summary
of the governing equations is presented here for convenience. These are
derived for a generic sublaminate using the principle of virtual work in
Reference 12.

The x and z displacements within the‘subTaminate are assumed to be of
the form

u{x,z)=U(x)+zg(z) . (1)

w(x,z)=W(x). (2)

Here U represents the axial midpiane stretching and W is the transverse
displacement. The shear deformation is recognized through the rotation 8.

The origin of the coordinate axes for the sublaminates is taken at the

delamination tip as shown in fig. 4. The equilibrium equations take the

form
N,x+Tt-Tb=0 (3)
Q’X+Pt-Pb=0 (43
M,x—Q+(h/2)(Tt+Tb):D‘ (5}

where h is the thickness of the sublaminate. The constitutive relations in

terms of the force and moment resultants are

N=A;U (*B1 1B | (6)
Q=hgg(BHH ) (7
M=B1 U (0118 (8



where the Aij’ Bij and Dij are the classical laminate theory axial, cou-
pling and bending stiffnesses. The boundary variables to be prescribed at
the sublaminate edges are

N or U

Mor B

Q or W.
Additionally, at the interfaces between sublaminates, reciprocal traction

and displacement matching boundary conditions have to specified.

Solution Procedure

A detailed solution is provided in the Appendix. A brief summary is

-

provided here for convenience. The variables in sublaminates 1 and 2 are

coupled by their reciprocal interlaminar stresses denoted Tl and P, and by

1
displacement continuity at their common interface. Assuming exponential
solutions for the axial force and bending moment resultants (N1=Aesx,
M1=Besx etc.) leads to an eigen value problem involving the parameter s.

The eigen values turn out to be 0 and two nonzero values (say s, and s

1 2)
occurring in positive and negative pairs. Since the resuitants maintain
finite values as x tends to large negative values {left end of sublaminates
1 and 2), the negative roots are dropped out of the solution.

The following boundary conditions from the ends of the modelled region

are enforced.

N,(0)=0 (9)
Qu(2)=0 (10)
By (a)=0 (11)
N,+N,=Applied Load (12)

Further, the following displacement matching conditions are applied.
ul(x,—.5h1)=u2(x,.5h2) (13)
U1 (0)=U,(0) (14)

6



Uy(0)=U5(0) (15)

8,(0)=8,(0) (16)

It should be noted that a 32 and 53 matching condition cannot be applied at
this level of modeling since it would amount to specifying both W and
06’12. Consequently, there is a displacement discontinuity at the de-
lamination tip. The effect of this will be discussed subsequently. To

eliminate rigid body displacements, Ul is set to zero at the left end. The

following solutions can then be obtained for the resultants in sublaminates

1 and 2.

o . S.X S,X

N,=a;e”1 +a e 2 +€A11(l) (17)
on oSqX_. _SoX

N2— a,e 1 ae 2 +€A11(2) (18)

_ S, X S, X

Ml—alkle 1 +a2k2e 2 (19)
M2=a1k3eslx+a2k4e52x (20)

The interlaminar shear and peel stresses between sublaminates 1 and 2 can

be obtained as

- S, X S,X
Tl—alsle 1 ta,5,e72 (21)

— - . 2 S.X
Pl-(kl+.bh1)(als1 el )+(k2+.5h1)(a252

In the above solutions, the k parameters are dependent on the eigen values

23Xy (22)

and the stiffness of sublaminates 1 and 2, the a parameters depend on the k
parameters and the initial crack length a, and € is defined as

e=a(h +h,)/ (A1 (1yR11(2)) (23)
where o is the applied uniform axial stress. Complete expressions for the
eigen values and the a and k parameters can be found in the Appendix.

Proceeding on to sublaminates 3 and 4, the following solutions can be

written.
N3=0 (24)
M3:¢lsinh w3x+¢2cosh waX (25)
where ¢2:a1k3+a2k4, (26)
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¢1=“¢2 coth wy a (27)
0.5

Ng=e(hi1(1y*hi1(2)y) (29)
My=a K +a k, (30)

The corresponding displacement solutions are provided in the Appendix.
The compliance of the specimen can be evaluated as
C=2U4(a)/P (31)
where P/2 is the load applied to the modelled section. The total energy
release rate for the modelled section i.e. the total energy release rate GT
per crack is then given by
6;=p%/2 w (dC/da) (32)
where w is the specimen width. Use of the previously described solutions
leads to the following expression.
Gr= QI:—:Z (»4111(1) T An i An(2) +h- Iz) (33)

where the quantities I1 and IZ contain exponential terms dependent on the

initial delamination length. Using the virtual crack closure technique,
from the relative displacements in the cracked portion and the interlaminar
stresses ahead of the crack tip, the mode I and mode II energy release rate
contributions can be obtained. The mode III energy release rate is zero
from the assumption of plane strain. The mode Il energy release rate is
given by ]

G = }ijg%/o Ti(z — 8§)Au(z)dz (34)
where & is the virtual crack step size. The result of the 1imiting process
is zero if there is no singularity in the stress fie]dlo. So, the limit is
usually taken as the crack step size § tends to a small value, say 4, based

on the decay length or the length required to capture the essential fea-

tures of the stress and displacement fields near the crack tip. The decay



length is dependent on the eigen values Sy and S,- In this study, the
value of A has been set to
8g=-25(1/s; + 1/s,) (35)
since it reasonably fulfills the criterion given above. In a similar
fashion, the mode I energy release rate can be obtained based on the normal
stress (P) and the w displacements near the crack front. The normal (peel)
stress estimate 1is inaccurate due to the absence of thickness strain.
Hence, an alternate approach was used to estimate GI’ the mode I energy
release rate. The total energy release rate for this problem is made up
entirely of GI and GII (GIII=O). From an estimate of GT and GII’ an
estimate for GI can be obtained simply as
GI=GT-GII (36)
The critical load for a given specimen can then be evaluated based on an

appropriate fracture law. This is iTlustrated in the following section.

Results and Discussion

The solutions derived in the previous section have been used to model
the behavior of [t25/90n]S T300/934 Graphite Epoxy specimen for n values of
.5.1,2,3,4,6,and 8. These correspond to the specimen tested by Crossman
and Wang7. The specimen width and length were fixed at .0381 m and .0l5m
respectively, as in the tests. The solutions were generated using a simple
computer program based on the closed form expressions for the interlaminar
stress and energy reiease rates. The applied load was set to 100 MPa, of
the same order as in the tests.

An example of the total energy release rate variation with the crack
length is presented in fig. 5. The asymptotic value of GT is denoted by
GTO in the figure. It can be observed that after a certain crack length.

the GT is independent of the crack length. On the basis ot curves like th

M

one shown in fig. 5, the crack Tength was fixed at 10 ply thicknesses for
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the remainder of the study. The dependence of the mode II contribution of
the energy release rate on initial crack length (a) is depicted in fig. 6.
Typical interlaminar shear and normal stress profiles are presented in
figs. 7 and 8 respectively. The corresponding energy release rates have
also been calculated and are presented in Table 1 and fig. 9.

In order to evaluate the critical loads, an appropriate mixed mode
fracture law has to be applied, based on the calculated energy release
components. Since the calculated mode split shows only a small variation
with n, the simple Griffith criterion GT=GTC has been used to scale the
stresses to obtain the critical delamination growth stress (oc) and strain
(ec) values. The critical energy release rate GTC was chosen as 415 J/m2
to obtain the critical stresses and strains listed in Table 1. This value
of GTC is larger than GIc to account for the presence of mode II and the
fact that GIIC is about four times GIC for the material system under
consideration. The critical strains are piotted against n, the number of
90° plies in fig. 10. The experimental results of ref. 7 and the predic-
tions of refs. 8 and 9 are also presented in the figure for camparison.
The predictions of the model developed in this paper are represented by the
solid line while the experimental results are shown as filled squares. The
classical laminate theory and finite element critical strain predictions of
refs. 8 and 9 are represented by triangies with a connecting line and a
dotted line respectively.

In the experiments, the local delamination phenomenon was observed as
the predominant faijure mode only for the n=4,6 and 8 specimens. The shear
deformation model presented in this paper provides good agreement with the
experimental data in this range. For n<4, edge delamination either in the
mid plane or in the 25/90 interface was observed in the tests. Hence, the
predictions of the Tlocal delamination models in this region are not of

10



consequence as long as they do not predict critical Toads lower than those
predicted by edge delamination models. Thus, i1t can be seen that the shear
deformation model predicts the observed behavior with reasonable accuracy
and can be used in conjﬁnction with an appropriate edge delamination model
to predict critical loads accurately for the complete range of n values.
The edge delamination model presented in References 6 and 12 can be used
for this purpose. However, a separate model is required to account for the
mid-plane {(Mode I} edge delamination behavior.
Conclusions

A shear deformation model has been developed to analyze local delami-
nations growing from transverse cracks in 90° plies located around the mid
plane of symmetric laminates. The predictions of the model agree reason-
ably with experimental data from [t25/_90n]S T300/934 Graphite Epoxy lami-
nates. The predicted behavior is such that, in combination with an edge
delamination model, the critical 16ads can be predicted accurately in the
range of n from .5 to 8.
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Appendix A

Sublaminate Analysis for Local Delaminations

Interlaminar Stresses and Energy Release Rates

A generic sublaminate is shown in figure 3 along with the notations and sign
conventions. The interlaminar normal (pecl) and shear stresses are denoted by P
and T respectively with the t and b subscripts for the top and bottom surfaces
respectively. The axial force resultant, shear force resultant and bending moment
resultant are denoted by N, Q and M respectively. Plane strain conditions are’
assumed to prevail in the z — z plane and the thickness strain €., is neglected. These
assumptions lead to considerable simplification in the analysis. The displacements

in the z and z directions are assumed to be of the form
u = U(z)+z20(z) (A1)
w = W(z) (A2)

Here U represents the axial stretching and W is the transverse (thickness direction)
displacement. This formulation recognizes shear deformation through the rotation

B. The equilibrium equations take the form

N,+T,~T, = 0 (A3

Q,J:"}"Pt"P& = 0 (:\4'
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M,.-Q+53(T+T) = 0 (A.5)

where 1 is the thickness of the sublaminate. The constitutive equations in terms of

the force and moment resultants are

N = fllllf,: + Buﬂ’x (A..G)
Q = Asxs(B+ W) (A7)
AI = Bl]_U', + Dllﬁ,x (.‘XS)

where A, B and D are the classical laminate theory axial, coupling and bending

stiffnesses defined in the customary manner as

&
2
A = hCudZ
—2
a
13,
Bu = N CnZdZ
~7
L3
2
Dn = hCuz dz
)
h
2
Ass = thst
)

Here, the Cs are the material moduli. For the case of plane strain in the r — =

plane, the Cs are defined as follows.

Ozx Cn Cis O €zz
T2z =1 Ciz Can O €2z (A '9)
Txz 0 0 055 Tz=

The boundary quantities to be prescribed at the sublaminate edges are
N or U
M or f

Q or W
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Further, at the interfaces between sublaminates, appropriate reciprocal traction and
displacement matching boundary conditions have to be used.

The four sublaminates along with the loads acting on each are shown in figure 4.
Setting P, and T3 as shown automatically satisfies the traction matching boundary
condition at the 1-2 interface. From symmetry, we get w = 0 and zero shear stress
along the bottom faces of sublaminates 2 and 3. This leads to w = 0 in sublaminates
1,2 and 3. Thus, W has been prescribed in these sublaminates and the vertical shear
force resultant @ cannot be prescribed at both ends of the sublaminates. Conse-
quently, the calculated peel stress distribution will not be correct. In addition, at
the 2-3 interface, the 8s cannot be matched, since in these sublaminates, specifving
B is equivalent to specifying Q (through eq. A.7). Inspite of these simplifications,
reliable energy release rate components can be estimated based on the interlaminar
shear stress distributions. The mode I contribution can then be evaluated using the
total energy release rate, which is not affected significantly by these simplifications.

For the (£25/90,), laminates under consideration, B;; is zero in all the four
sublaminates. For sublaminates 1 and 2, the equilibrium equations and constitutive

relationships can be written as

Nie=T; = 0 (4.10)
Noz+Ty = O (A.11)
Q=P = 0 (1.12)

Qrz+Pi—Py = 0 (A.13)

M.+ 3T -Q = 0 (A.19)

Mo+ 8T -Q, = 0 (A.15)

Ny, = Anuglis (A.16)
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Ny = AnlUa: (A7)
Q1 = Assyb (A.18)
Qz: = Ass)b2 (A.19)
My = Duwbis (A.20)
M: = Dbz (A.21)

The subscripts in brackets refer to the sublaminates to which the stiffness coeflicients

correspond. Equations A.14, A.15 and A.12 can be rewritten in a modified form as

M.+ 8N, = Agwb (A.22)

Moo= BN, = Agbs (A.23)
P = Q1,x

= M. +%T, (A.24)

Matching the u displacement along the 1-2 interface implies

w(B) = w(Be)

or  Ui-%8 = v+ 58 (4.25)

Combining the equations to eliminate the displacement and interlaminar stress

terms leads to the following homogeneous coupled system of ordinary differential

equations.

Niz+Npe = 0 (A.26)
h Assi) n . _ .
Ml,rr"*’?"]vl,xx DH(I)A = 0 (:\21)
Iy Ass(a 5o
4 - ]\ h y = .’\.2(_)
AIZ,::I —Z 2, D;t%]“jé 0 ( o)
N1 . Z}_]_ ]\’IL m 1\72 h) A’Ig

_ = (A.29)
All(l) 2 Dll(l) An(z) = D11(2 0 { '



The solution 1s assumed of the form

Nl pN . Al 3
N A

§ =377 e (A.30)
"Ml A3

\ M2 J L A4 7

Substitution of this solution into the governing equations results in the following

system of algebraic equations.

s s (34 0 ( A, 0

32523- (zh s? — pﬁ% 2 (255 2 j A, _ 0
—5 722 0 8% — Dl—l‘((_; Aj 0

i Axll(l) ~A111(2) *%D_lll(_l) “%Dl%(; | A 0

The corresponding eigenvalue problem has to be solved in order to obtain non trivial

(A.31)

solutions. The eigenvalues turn out to be the roots of the following characteristic

equation.
s [Bys* + Bys® + Bs| =0 (A.32)

where

2
o= —A’11(2 A111 D11(2)( ) 111(1) (%l>
2
2
*T‘Tl uur“ P (%)
Bs = #Alll( %1%—1%14??((?) Au(l)ﬁ?ﬁi%_

For the material system and ply stacking sequence considered, B? > 4B, B;. Hence,

the roots can be written as

oo i\l — B, +/B? — 4B, By

55, (A.33)
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Only the zero and positive roots of eq. A.33 are considered as they give exponentially
decaying solutions, leading to finite values for the resultants at the sublaminate ends.

Hence, the solution for N, can be written as

Ny = a,€™% + a4e**" 4 ay (A.34)

Using this in eq. A.26 yields
Ny = —q;eM7% — q9e°* 4+ a4 (A.35)

Substituting N; and Ny in eqs. A.27 and A.28 provides the solutions for the bending

moments as

M1 = alkle”x + agkge”r (ASG)
M, = a,k3e”% + a ke’ (A.37)

The k parameters in the above solutions are defined as follows.

hy 2
Ly = _ oS
VT o Assyy $2

Dugy 1

ks =
37 Ass) 2
11(2)
ho 2
53
by = et
! 55(2) _ 2 ’
1 2

If P is the applied force and w represents the specimen width,

P
Ni+ Ny = 3 (A

shoe
N
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Using this in conjunction with eq. A.29 allows determination of the constants a,

and a;. The following solutions for the stresses and the resultants can then be

obtained.
Ny = 0,€"7 4 ae™" + P Auq (A.43)
2w A1) + Ara)
Ny = —a,e%7% — q,e™" + it Ane) (A.44)
2w Ay + Ang

Tl = Nl,::
= alsle"x + (1252632: (A45)

Pl = Ml,:z:x + %Tl,z
— L h 2, 81z k h 2,527 A 46
= (k1 + F)a1s1e™ + (k2 + 5 )assse (A.46)

The constitutive equations are used to write down the displacement solutions. The
rigid body displacements of sublaminates 1 and 2 are matched (in order to satisfy

the displacement continuity condition) to obtain

= A1 gn1® 2 2z P 1 (A.47

U, Anys + A11(1)32€ + %All(l) T An(z)m + aj (AAT)
U, = — ay s1z as e%2% P 1 415}
i An(l)sle An)$2 + 2w A+ ‘411(2)1; tas | /

b = —A?];(l—)[alkISIGG‘x + azk,s.€%" + bif'(ahﬁes‘:c +azs2e™7)]  (A49)

B2 = 1-5156[‘11]33513511 + azkys,e™” + %(alsleSIx + az82€>%)]  (A.50)

The constants a;, a, and as occurring in the solutions are determined using the

boundary condtions. For sublaminate 3 the governing equations are

N3z = 0 (A.51)
Q3. +P; = 0 (A32)

My, —Qz = 0 (A.33)



N3 = An@Uss (A.54)
Qs = Ass2)0s (A.55)
M; = Dn@bss (A.56)

Matching U at the 2-3 interface and applying N;(a) = 0 gives

Ny = 0 (A.57)
Us = Uy0) (A.58)
—_— _ ag
T s1Ange s24nq) +as (4.59)

In order to solve for the bending moment, egs. A.53, A.55 and A.56 are combined

to obtain
M;=0 - (A.G0)
The solution of eq. A.60 can be written as

M; = ¢, sinhwaz + ¢y coshwsz (A.61)

where the quantity wj is defined by

A
2 55(2) 9
We = A.62
3 11(2) ( )

Since the f matching conditon cannot be used at the 2-3 interface, the (remaining)

boundary conditions are

M. = 0
M;3(0) = My(0)
The ¢s can be solved using the boundary conditions A.63 as
$2 = ajks+ azks (A.G4)

¢ = —dqcothwsa (A.G3)
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The solution for sublaminate 3 can be completed by writing the following expres-

sions.

Qs = ¢wicoshwaz + ¢owssinhwsaz (A.66)

B = Asls(z) [$1w3 coshwiz + ¢ows sinhwaz| (A.67)
_ Asse .

P; = 4D1—1£(;))-[¢1 sinh w3z + ¢, cosh wyz] (A.68)

The equilibrium equations for sublaminate 4 are

Nes = 0 (A.69)
Qi = 0 . (A70)
My ~Q = 0 (A.71)

The constitutive relations take the form

Ny = All(l)U4,1: (A.TZ)
Qs = Assq)(Bs+ Wy2) (A.73)
M, = Dll(l)ﬂ‘t,:r (3-74)

Using eq. A.69 with the boundary condition Ny(a) = 2% yields
Ny =4 (A.73)
Similarly, using eq. A.70 with Q4(a) = 0 results in
Qi=0 (A.76)
Matching M, and My at the 1-4 interface and using eq. A.71 gives

M4 = (Zlk] + (ZQJCQ (:XTT\
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The U, displacement is obtained by integrating eq. A.72 and using the displacement

matching boundary condition Uy(0) = U,(0).

_ P _1 aq as -
Us = 2wdng” + 5141101 + s2A11(1) +as (A.78)

Similarly, integrating eq. A.74 and setting B4(a) = 0 gives

— 1 . 3 _
By = m[alh + asko)(z — a) (A.79)
Using the solutions for @4 and f4 and the boundary condition Wy(0) = 0 in eq.
A.73 yields the following solution for Wj.

2
W, = Assq a1k + Gng](% — az) (A.80)

11(1)

In order to determine @, a; and a3, the following boundary conditions are used.

£1(0) = pa(0)
Ul(—l -+ a) = 0

It 1s convenient to define the following parameters.

o = gi=(t+ '. (A.81)
0, = 75%?5 (A.82)
0 = 72=(lat hay (A.83)
6, = D_%E (A.84)

9,1 = 93 - 91 ~+ (84 - 92)0, (.{85)

The nominal (far field) strain is given by

P 1 o
. A.86
€T wdAnm + Aue (A.36)
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The a parameters are obtained as
a; = A11(2) € ‘3-7—1—6 +d9 a (AS?)
az = WAII(‘Z)EQ‘L':L—"QZQ‘ (‘A‘SS)
- — —- a —s1(l—~a) _ a —s3(1-1)
as €(l — a) me me (A.89)

The specimen compliance C is defined as the ratio of specimen extension to applied

load. This is obtained as

- 2U4(a
¢ = P
—_ ..2_ Pa a, aq }
P {ZWA“(U T S5Ang T S Anm T (4.90)

The total energy release rate associated with the crack (delamination) growth under

a constant load P is given by

2
Gr=45-dC (A.91)
Using the compliance expression from eq. A.90 in eq. A.91 yields the following

expression for Gr.

GT:PQ( L L +I—I) (A.92)
2?.02 All(l) A11(1) -+ All(?) 1 2 Seds
where
— 1 An(z) 8,0- — 6,6, (1 = e—-sx(l—a) 1= e-—-yz(l—-a)) \ an
L = Anq) + A Anq) 93 S1 D) (A.93)
Az (03 + 94a)e"5‘("’“) — (8, + 8,0)e~2¢—2) A
- (A9
I, Ay + A Ang 04 (A.94)

The individual fracture mode contributions to the energy release rate can be cal-
culated using the virtual crack closure method, based on the interlaminar stresses

and displacements in the vicinity of the crack tip. From the assumed plane strain
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condition, the mode III contribution is zero (Gy;; = 0). The mode II energy re-
lease rate, Gy, 1s calculated using the virtual crack closure technique while Gy is
evaluated using

GI=GT—G1[ (A.95)

Gy 1s calculated from the interlaminar shear stress and relative sliding displacement

as
.1 [
G = %1_1}(1) 35 /0 Tiy(z — §)Au(z) dz (A.96)

In the absence of a singularity in the stress field, the result of the limiting process
leads to the trivial rcsult G;; = 0. Hence, the limit is calculated a.s.5 tends to
some finite value, say A. The value of A is chosen depending on the decay length
associated with the problem i.e. the length within which the presence of the crack
significantly alters the specimen response in comparison with the corresponding far
field values. Evidently, the decay length in this problem is dependent on the eigen-

values s; and s,. The following value of A has been chosen in order to reasonably

fulfil the decay length criterion.

A= %(s% + %) (A.97)

The relative sliding displacement Au is based only on the difference Uy — Uj so that
the kinematic condition of zero relative displacement at the crack tip is fulfilled.
This also simplifies the calculations. The mode II energy release rate componen: is
obtained as

G = 132;2_[_1 (A€

(te]
98]
Nl

where I and I are defined as

-
¢~
(9]
e

= 1 1 dy (]  a—stA L —s2A
L= (All(l) + Au(z)) (31 + 32) [(1'1(1 e %)+ azx(l—e™ )}
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—-51A —s2h
L= (aB=ldet, ulolie®, ) Auntdum (4 09

Anq)

Transverse Crack Spacing

hear Deformation Model
The model presented so far has dealt with delaminations growing from a trans-
verse crack. The same model can be modified to predict the spacing of these trans-
verse cracks. In order to accomplish this, the delamination effect has to be isolated
from the model. This can be achieved approximately by letting the crack length
a tend to zero. This yields an approximation since the boundary conditions are
not accounted for properly by this limiting process. To get an accurate shear de-

formation model, we consider only sublaminates 1 and 2 and apply the following

boundary conditions for sublaminate 2.’
Ny0) = 0 (A.101)
My0) = 0 (A.102)

Using these boundary conditions in eqs. A.37 and A .44 yields two equations in a,

and ay which can be solved to obtain

ky P Aii(g)

M F E - 2w Ay + Ang (A.103)
_ ks P An(a)
2 T F—k 2w Anqy+ Au (4.104)

The interlaminar shear stress can now be obtained using ¢q. A.45. The saturation
crack spacing corresponds to the distance from the crack where the broken plies
regain their uniform stress/strain state i.e. where the interlaminar shear stress has
decayed down to its far field (uniform) value. Practically, this distance is calculated

by looking for the z where the interlaminar shear stress 1s some small fraction (say
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.001) of its maximum value. The maximum shear stress evidently occurs at z = 0
and is given by

Tl(m“) = @151 + U252 (A.105)

The crack spacing A can then be determined by solving the following transcendental
equation.

sy A A
a151:1;1 igzﬁie : = 0.001 (4.100)

Membrane Model

A simpler model can be used to estimate the saturation spacing of the transverse
cracks. This model treats the sublaminates as membranes 1.e. the bending effects

are ignored. The equilibrium equations for a generic membrane sublaminate are

No+T.=Ty = 0 (A.107)

Mr-my-@ = o (4.108)

The constitutive equations take the form

N = (A,,-%E) U, (4.109)
Q = Asp (A.110)

The displacements are assumed to be of the following form.

v = U(z)+26(z) (A.111)

w = 0 (A.112)
The following governing equations can now be written

Nl,I——TI = O (.’%.113\}

Noot# Ty = 0 (A114)
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%lTw-Qx = 0 (A.115)
bth—inz 0 (A.116)
Ny = U (A.117)
Ny = 71U, (A.118)
Q1 = Assmb (A.119)
Q2 = Assf2 (A.120)
Ui -8 = U+ B8, (A.121)
where the s are defined as
nm o= Anm—g%i(% (A.122
T2 = Au(z)—g%‘g‘))' (A.123)

Eqgs. A.113 and A.115 can be combined as

Qu="1n,, (A.124)

Using eqs. A.119 and A.117 in this leads to

ﬁl = -I-—L.f- A:s(l)’lel,rz (Al?.vi)

Following a similar procedure for §; yields

52 = 'h?z A;(z)vlvl,rr (A126)

Using these two relations in eq. A.121 leads to

—_ h 2_..:&__ — _ (h’))z Al A 197
Ul <_'2L) ASS(])Ul’Iz - U2 "Z‘ ASS(Z) Ul,_m: (A .1..4)

Combining eqs. A.113, A.114, A.117 and A.118 gives

YUt zz + 72U222 = 0 {A.123)



16
Substituting this into eq. A.127 results in

he)’ b\ _n Ny, . =
Uses ~ [(j) 2=+ (%) Ass(z)} Ussese + LUz = 0 (A.129)

The characteristic roots of this differential equation are

s=0,0,+ — Nt — (A.130)
1 1
nz {(71) y (722) Ass(z)]

The solution for U; can then be written as

U1 = A1631x+A2$+A3 (A131)

where the As are arbitrary constants to be determined from the boundary condi-
tions. The root s; is the positive root such that a decaying solution is obtained in
the negative x region. For the special case of B;,(1) = Byi(2) = 0, the nonzero roots

can be written in a simpler form as

R 4( A1y + Auy) 1

nmAne KM, B
55(1) Ass(2)

(A.132)
The interlaminar shear stress can be obtained as follows.

Tl = Nl,x
- leUl..rx

= ")’1‘41336513 (1&133)

The maximum shear stress is
Tlma:r) == ’}’1A1S¥ (4‘%134)
Then, the saturation crack spacing A corresponds to

st = 0.001 (A.135)



Shear Lag Model

This model allows for a nonlinear displacement field through the thickness of the
sublaminate. Its fundamental assumption is that the shear deformation neglected
in the classical theory of bending can be estimated using the shear stress. The
sublaminate axial force equilibrium condition can be written as

N, +(T,-T)=0 (A.1306)

The axial stress is assumed to be uniform and is given by

e =N (A.137)

The shear stress is estimated as follows

Orzz — —Ozzzx

— _Z\T.I
1

= LzT (A.133)

This can be integrated to obtain

o= L lh,  Tip T (A.139)

Neglecting transverse displacement, the axial displacement can be obtained by in-

tegrating the shear strain, which in turn is obtained from the shear stress.

u'zz%.?s-

= & [m-mE+ THL (4.110)
v = U(z)+ 2—&; [(Tt - Tb)il,; + (T, + T,,)z] (A.151)

where U(z) is the mid-plane axial displacement. This displacement expression can

be used to obtain an improved axial stress estimate as follows.

t
Tz — CH“,I
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= Cy [U + T +(T,+Tb),z} (A.142)

2C(

The corresponding axial stress resultant can be written as

h

N = /i ., dz

-7
- h® (7 _ ]
= Cll [h.U‘x -+ m(Ti Tb),z (A143)
The governing equations for the sublaminate are thus egs. A.136 (equilibrium),

A.141 (displacement field) and A.143 (constitutive relationship). Using these to

model sublaminates 1 and 2 results in the following governing equations.

Nl,:z_Tl = 0 (A144)
Npet Ty = 0 (A.145)
} 2
N1 p=d Cll(l) [hlUl,z' - —2?61;‘;1‘)‘711,;] (Al-iG)
2
N2 = Ciyy [h2U2,z + 57 hss(z)Tl’I] (A.147)
— 1 22 A a
uy = U+ s [——T17l—1- + le] (A.143)
— 1 2? ,
uy, = U+ m [Tl'h—z' + le] (:5&1-19)

Displacement continuity at the 1-2 interface implies

(e, ~8) = uy(z, ) (4.150)
- _ 3| _h h -
or v, = U, -%—L [C;:(l_) -+ ngz(;—):l (A.131)
Equation A.146 can be rewritten as

N, 1m0
U Cll(l + 24055(1)Tl,1‘ (‘A.].D..)

Combining eqs. A.147, A.151 and A.152 results in

: haN h:zT1 z [ ]} -
: ] = 1 o WA 51
N, Cll(? {hlcll 1) Z—J—‘ss(l C—LS';(Q (Ax 1:)3)
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But from eqs. A.144 and A.145, we have

Nys=—Ti=—Ni. (A.154)

Using this in the differentiated form of eq. A.153 leads to

1 1 =1l h hy ] A
[hzcll(z) + hlcll(l)] Me.=3 [ 55(1) + 55(2) Nigzs (A.155)
The nonzero characteristic roots of this equation are given by
C C hCuqy + hoC )
2 _ 55(1) 55(2) 1-11(1) 2%11(2) Al
=3 (hlcll(l)) (hzcu(z)) (Fz@ss(l) + h1Css(2) (4.156)

This is the same as in the membrane model except for the factor 3 which is 4 in the
membrane model. This difference is related to the fact that the axial displacement
distribution through the thickness is parabolic in the shear lag model and linear in
the membrane model. The crack spacing A for the shear lag model is determined

as in the case of the membrane model but using the modified characteristic root.



Table 1  Summary of Resuits

number of Gr G /Gr Oc €.
90° plies | J/m? MPa %

1/2 2.404 0.276 | 1313.9 | 1.6747

1 6.752 0.275 | T784.0|1.1685

2 22.849 0.267 | 426.2 | 0.8058

3 51.049 0.261 { 285.1 | 0.6427

4 93.603 0.256 | 210.6 | 0.5444

6 228.871 0.250 | 134.7 | 0.4264

8 440.065 0.247 97.1 | 0.3555
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Appendix III

II1.1 Strain Energy Release Rate

In this analysis, a delamination between belt and core sections is assumed to grow
paralle]l to the belt direction in the tapered and uniform sections. These delamina-
tions in each section are denoted by a and b respectively. The core section in the
taper portion is modelled by two equivalent sublaminates. The stiffness properties
are smeared to obtain the effective cracked and uncracked stiffnesses which are des-
ignated by A, and A, as shown in Figure III.1. These stiffnesses change from one
ply drop group to another with crack growth a by experiencing a sudden change
at discrete locations. Therefore 4, and A, can be represented in three consecutive

regions as follows,

¢ Region 1: 0 < a <!

d+3—-a ' .
A, = y ; ; T (_111.1)
I i v
A, = A, (I11.2)
e Region 2: [ <a <2
d+ 3l -
PR ma)
Aep T A
’ a+b ,
A, = PP R (1LY
Ay T Ay



o

o Region 3: 2l < a < 3!

d+ 30—
4, = SF2-e ' (I1L5)
Frri
a+b
A, = - (IIL.6)
mtm A

where
h = ply thickness
d = length of uniform thick portion
[ = distance between two consecutive ply drop locations
_J_q = GhQ* = 210Q°
As = 4hQ* + 2RQ°
Az = 2hQ% +2RQ°
App = ThQ° + 2RQ*
Q° = Q,, of a 0 degree ply
Q* = Q,; of a £45 degree ply

Geometry of the sublaminate model is shown in Figure (111.1)

Also axial stiffnesses Ap, A, and A are given by

d+3l—a - .
Ap = T (1.7)
ABD ApT
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Figure II1.1: Geometry of the Sublaminate Model

Arp = A4, (I1L.%Y
A, = App (IT1.9}
where
Agr =Taper belt stiffness
For a membrane behavior, equilibrium equations are reduced to
N,.=0 (II1.10)
and the displacement field is assumed to be
u(z, z) = U(z) (IIL.11)
and

w =0 (II1.12)



The constitutive relations are represented by

N = AuU,;. (III.13)

The stress and displacement fields, are determined based on the stiffnesses derived
in Equations(IIL.1-1I11.9). In this model, load is shared by the core and the belt

portions according to their respective stifiness ratios

PAB
P o= —2 II1.14
Y7 Ap + A ( )
PA
S . S I11.15
Po= 4 (111.15)

where P 1s half of the total axial load applied at the ends.
Using the Equations (II1.10). (II1.13), and the expressions for P and P from

Equations (I11.14). (II1.15) the axial displacement at = = ¢ can be writien as

U = PApe +P(d—;—°l+b)(_45 f@_)
7 AJ(Ap+A)) | (Ap+Au) \Ap A,

P(d+3l—-a)( AB)
il Sl A i R II1.16
(AB +ATL) AB1 ( )
_— PA,c +P(d+3l+b) (ﬁ_é_&)
T A(Ap+A) T (Ap+Au) \A. Ar
P(d+3l-a)( Au) _
—_— - =2 17
(Ag + Au) A, (LL17)

where Apg; is the belt stifiness in the pop-off region as shown in Figure I11.1.
A three-dimensional transformation is required in order to estimate the effective

axial stiffness of the belt region 4g and Ap;. This is due to the belt layup and



the orientation of the different belt portions to the loading axis as shown in Figure
IT1.1. The three-dimensional transformation is presented in section I11.3.

The tapered laminate is assumed to be fixed at-z = 0. Therefore the external

work done is given by

VV - P1U5+P2Ue (11118)

Substitute from Equations (II1.14) through (II1.17) into Equation (III.18} to get

W 1 A3 A
eyl LR LI e R RE RS

Az Az
+ (a+b) (Zf{ + f” (111.19)

The strain energy release rate G due to the external work done is determined

by

1 dW

C=Spiaa

(I11.20)

where A is the delamination surface area. G is calculated for delamination lengths
ranging from 0 to 60k. In the analysis, S2/SP250 Glass-Epoxy is used. Its properties
are given in Table II1.1.

Table II1.1: Material Properties of S2/SP250 Glass-Epoxy

[

Eyq (MSI)

Es (MSI)

Gz (MSI)

Grs (MSI)

Gas (MSI)

Vi2

-~
w2

2.1

0.87

0.5

0.5

to
~1
w




I11.2 Interlaminar Stresses

In this part, an analysis for the interlaminar stresses in the belt-core interface in
the tapered section will is developed.

The simple analytical model assumes a beam model] for the belt in the tapered
section which is shown in Figure II1.2 . Material and geometric discontinuities are
modelled as extensional k; and concentrated shear springs g; (i=1-4) as shown in
Figure II1.3. The resin pockets are assumed to be subjected primarily to shear stress
and they are represented by a distributed shear spring with a constant stiffness G.

The effect of the core is incorporated as elastic supports on the beam-belt model.

A minimum complementary potential energy formulation is used to estimate
the interlaminar stresses. The total complementary potential energy consists of

bending, shear and extensional energy contributions,

e =i, + I, ~ I, - I, (I11.21)

where II,, 1I,. Il., II; represent bending, shear and extensional energy components

and energy stored in elastic springs, respectively. These are given as,

1 38 M2(s)
I, = - ~d 22
v=3 | D, s (111.22)
1 3 al?(s)
M == f d 11.23)
i 2Jo G, y (1 !
1 3 N2(s)
.= - d I11.24
2 0 An g ( )

1 ieis), RS R RY R T T2 T2 T2
sy a R B R T T

= 5 ] Gz 2}\,1 2]\2 + 2’\"3 2;»4 - 2g, + 292 . 2_9_3: 294

i
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Figure II1.2: Geometry of the Model
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where R;, T; (:=1,2,3,4) are unknowns. The constant shear stress,c, due to resin
filler is an additional unknown. The total number of unknowns in this formulation

is nine. These unknowns are constrained by following equilibrium equations.

t
Ry =—-R3;—2R;+2Ny3 + Nyy — :‘27(]\?11 - Nap) (11126)
t
R‘Z = 2R3 + 3R4 - 3]\712 + ‘2‘i(1\7n - N21) (III.QT)
T1 = ""Tg - T3 - Tq - 3CI - jvlg -+ A“Tn (III.EQ)

~where Ny, Nyp, N3; and N2, denote the components of the extensional load at two

ends of the belt section.

The bending moment, shear force and axial force in each of the three plyv dro
O ! .

regions are written as
e Region 1: 0 <s <!
ct {
M(s) = —N123+53+R45+qu (I11.29)

]’f(S) = ng - R4 (11130)

N(s)= Ny —cs—-T, (I11.31)
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e Region 2: [ < s <2

1 i
<Mb)=~Nﬁ&+%s+UQ+Roszd+(%+ﬂu§ (111.32)
V(s)=Ni2—Rs— Ry (I111.33)
N(S) = J\‘Yn — C§ — T3 - T4 (111‘34)

e Region 3: 2l < s < 3l

t t
MB)=—Nﬁ&+%s+bJQ+Rya&m+wma—RQH4E+43+T”;augm

L

V(s)=MN3y—-R:~ Ry~ Ry (I111.36)

N(s)=Ny—cs— Ty~ Ty — T (IT1.37)

Therefore the bending energy in Equation (II1.22) can be written as

= ! /l[ N +Ci 4+ Rgs + 1 trd
1, = —Na P 21 ds
b 2Dy Ja 128 25 49 ‘9

2

1 21 ct ¢
[ PMﬁ+5wu&+Rm~R¢Hn+nh]@

2Dy,

+

: ) d y ! v .
* 2D11 /21’ {_.les N —2—5 i {-Ra - 2R4 + ]\12 - 52(]\'11 - A 21)} S
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3
+ {3R3 + 6Ry — 6Ny + EI'(NU - Nn)} l

i 2
HT+ T+ T) 5 } ds (II1.38)

Similarly for the shear energy

1 2! R
I, = T[O(Nu-m)zdsw/l (Ny2 — Ry — Ry)? ds

t

2
QZ(NH - N21 )} ds (11139)

3!
+‘!‘/ |:—2N12+R3+2R4+
2t

where

The energy of extensional loads can be expressed by

1 ! 1 2 -
L= 5 /G(N11 s — Ty ds + . /{ (Nyy —cs = Ty — Ta)* ds
1 3
+ (Nn — S — Tz - 113 - Tq)z ds (11140)
QAH 2l

The energy stored in the elastic springs is written as

m = iq’-f-z—l+~—1~[ Ry — 2Ry + 2Ny + Nyg — —(Nyy = N )]2
k= 2 Gz ) le 3 L1 12 22 21 11 21

2

1 1 1 t )
+ 'ﬁ; {2}23 + 3R4 - 7A41 -+ 'Zﬂfz - 34’\712 -+ '2'1'(]\111 - .[\21)}
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R T2 T2 1
foie. Rt STl N [~Ty — T3 — Ty — 3cl — Nyy + Ny

B L1

T ok T2k T 20 T 29, 241
2 2 2
P SO Y o (111.41)

29, 2gs3 294

The complementary potential energy in Equations (II1.38) through (I11.41) is ex-
pressed in terms of 6 unknowns, namely R, Ry, T; (i=2,3,4) and ¢. By minimizing

these expressions the following system of linear equations is obtained

274218 31 9P 1 5¢13 5222 3l 22 3l
( +—)c+—R3+-—-—R4+( '+—)T2+(D+9—)T3
1

12D ' G, g D 2D 8D g ,
9?12 3l 5¢3 3, 212
( 3D +;) Ty = ‘2‘D‘AT12+;;(A711“AT21)+ 3D(N11 —~ Ny (IIL42)

112 1l 32 2 6) . 2Ny

. 4 = Ny, = 22

5p 1t apTe (20 ky kz) BTy

it t t
b - 111.43

(12[) 2k, 1 kzl> (M1 = M) ( )
5i° 3 2 6 4 4 9 1 i? 5tl°
— 44— R+ =+~ +— +— Ty + —T
2DC+(2D+k1+k2) 3+(D+k1+k2 k4)R4+2DT‘ D *

Ty = ot

3tl? 43 4 9 2N,, i
' N Ny - N 1.4
2D (D N ky kz) 12+ —— + o= (Nu 21) (I1L.44)
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5312 3l 112 t? 21 1 1 2]
= —R
(55 +5) =+ i+ aphe | )7

1
LA RS LT
2D 4D+g1+gz T2 4D+g1) 3
21 112 1 2l
— 4+ — | Ty = —N —{(N,; — —(Ny — N
+(4D+g1) 1= 97 12+gl( 11 N21)+8D( 11 21)

(IIL45)

22 3! t1? 512 2l 1 2l 1
e J— —_ e —
(D +gl>c+2DR3. R4+( gl)Tz (

LA LRI R
4D 4D 2D " g1 s

gs
2 1 52 1 1t A .
¥ (‘25 ¥ gl) Ta=gp e+ g (Nu = Vo) g5 (N = Naa) - (T1146)

921" 31 tl* 3t 210 201
S et =Ry~ 2R, - SRR § ‘
(SD gl)”w “Tap (4D gl_) (

3t 1 1 3112 1
+ 4+—4+ —|Ty=——=Ny3 + —(N;; — N
(4D 7 94) 4 2D 12 91( 11 21)

t2l
——(N;; — N I11.47
T16p e — ) )
The concentrated normal and shear forces at the ply drop regions and the inter-
laminar shear in the resin filler are estimated by solving the simultaneous system of

equations in (II1.42) through (I11.47) and using Equation (III.26) through (III.23)
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I11.3 3-D Transformation of Stiffnesses

It has been determined that a three dimensional transformation of stiffnesses is
required in order to estimate the effective axial stiffness of the belt regions, Ag and
Ap,. This is due to the belt layup and the orientation of the different belt portions
to the loading axis as shown in Figure I11.4.

The loading axis corresponds to axis 1 in the 123 coordinate system which is the

transformed system. The principal material coordinates are denoted by 1',2" and

!

3.

The stress-strain relationships in the principal material coordinates for an or-

thotropic laminate are given by

{F}ex1 = [Qloxs {Elex (I1L.43)
where |

Oun = (1= a1 Ey (111494
Qn = (1—vss)VEn (1130
Qas = (1—vpvn)VEsy (I1L.51)
Q2 = (vay + v )VEy = (vyz + v13v32)V Eyy (111.52)
Qi = (vs + va1vs)VEn = (113 + va3vns)V Eag (I11.53)
Q2 = (Va2 + v12va )V Ey = (103 + v113)V Egg (ITL.54}
Qu = Gz (11155}
Qss = Ga (IT1.56)

ng = ;12 (IIIRT\



Figure 111.4:

Vo= (1 = vaiy — taaligy — Ualyg — 2?/12"231’31)'-1 (II1.58)

The presence of angle plies in the belt region making an angle é in the 1'2'-plane

results in the following constitutive relationship

{o—‘} - [6] {e} (I111.59)

where the transformed reduced stiffnesses _C—j:-j are given 1n terms of reduced stiff-

nesses (J;; as

Q = Q1 +2%57Qu + ' Qo + 4757 Qs _ (1I1.60)
622 = 5'Qu +25°Quz + " Q22 + 4c%5* Qe (I11.61)
Q= Qu+(c* +5)Qu + 57 Qpn — 4°5° Qe (111.62)

Qo = 4c%s2Qq; —8¢™s%Q12 + 4c%s7 Qg + 4(c% — s1)?Qes (IT1.63)
66
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Qi = @ (1I1.64)
Qs = Qs+ 5°Qxs (I11.65)
Qu = $°Qua+ Qs (I11.66)
¢ = cosb
s = sinb

Any ply in the belt portion of the taper makes an angle 5 with the loading axis
if it is in the uncracked belt portion and an angle a if it is in the cracked belt

portion. By performing a rotation about the 2-axis, the stiffness along the loading

axis , takes the form

{o} =[Cl{e} (I11.67)
where o,; and ¢; are in 123-axis system and (;; represent the elements of trans-

formed stiffness matrix in this coordinate svstem.

S?nce we have assumed
u(z, z) = U(x) (111.68)
and
w=0 ~ (111.69)

For plane stress condition in 1-3 plane (i.e. oy = 0 ; 2z =1,2,3) stress strain

relations reduce to

o1 = (Ciy = CL/Can) en (1IL.70)
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where

Cu = &Qy +26°5°Q 5 + 35 Qus + T5°Qs, (I11.71)
Ci; = ©Q,; +35°Q,, (II1.72)
Co = @y (IIL.73)

where € and § are cosine and sine of the angle which the cracked and uncracked belt
portions makes with the loading axis.
The coefficient of €;; in Equation (I11.70) represents the transformed axial stiff-

ness. This value is used in the derivation of Ap and Ap,;.
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This is a final report that summarizes the results achieved under this grant. The first
major accomplishment is the development of the sublaminate modeling approach and shear
deformation theory. The sublaminate approach allows the flexibility of considering one ply
or groups of plies as a single laminated unit with effective properties. This approach is
valid when the characteristic length of the response is small compared to the sublaminate
thickness. The sublaminate approach was validated comparing its predictions with a finite
element solution [/]. A shear deformation theory represents an optimum compromise
between accuracy and computational effort in delamination analysis of laminated
composites [2]. This conclusion was reached by applying several theories with increasing
level of complexity to the prediction of interlaminar stresses and strain energy release rate in
a double cracked-lap-shear configuration.

The shear deformation theory and sublaminate approach was applied to the free-
edge delamination[/,3] and internal delamination analysis [4] of laminated plates including
the influence of hygrothermal stresses [5,6] and combined loading [7]. the analysis was
also applied to tapered laminates subjected to tensile loading [8,9].

The second accomplishment is the development of the variationally asymptotical
analysis for thin-walled anisotropic beams with closed cross sections [10-12]. The theory
is a prerequisite for isolating the influence of damage by comparing predictions with an
reference undamaged configuration. Existing composite beam theories have significant
differences in the derived expressions for the stiffness coefficients. The variationally
asymptotical analysis was developed in order to isolate the effects contributing to these
differences. The major advantage of this approach lies in the fact that the displacement field
is not assumed a priori as is the case for the existing theories and emerges as a result of the
analysis. Moreover, the assumed displacement fields in the existing theories follow the
classical isotropic formulation. However, no proof is provided with regard to the validity
of such a displacement field for anisotropic materials.

The displacement field which resulted from the theory showed two new
contributions which were identified as out-of-plane warping due to axial strain and
bending. These contributions emerge in addition to the classical out-of-plane torsional
warping and are significantly influenced by the material's anisotropy. However, they
vanish for materials that are orthotropic or whose properties are antisymmetric relative to
the beam middle surface. These configurations coincide with the cases where the
predictions of the existing theories are in agreement with test results and numerical
simulations. For generally anisotropic materials the error associated with the existing
theory predictions correspond to the neglect axial strain and bending related out-of-plane
warping.

In addition to providing a definitive answer to the reasons for the disparity in
existing theories predictions, the variationally aymptotical theory provides a consistent
approach to deriving the displacement field in anisotropic structures. A number of
investigators have now adopted this approach for the modeling of initially curved and
twisted composite beams and laminated composite plates[13, 14]. Moreover, the closed



form expressions indicate that the new contributions are proportional to the extensional
strain and bending curvature. This provides a proof for the work of Kosmatka [15] where
an improvement to the displacement field was proposed by adding two terms which are
proportional to the extensional strain and bending curvatures. However, their contributions
were determined using a finite element simulation.

The details of the sublaminate and Variationally asymptotical analyses are provided
by the work of Ref. 12 which is provided in Appendix A for convenience. A list of the
publications and presentations related to the Grant is provided in Appendix B.
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CHAPTER I

INTRODUCTION

1.1 Background

The use of fiber reinforced composites is increasing in engineering applications. One
of the major issues in composite structures is the understanding of the role of the ma-
terial’s anisotropy on the deformation modes, damage modes and failure mechanisms.
This research work addresses these stiffness and strength related issues by developing
analytical models for the prediction of deformation modes and their coupling effects
and damage onset and growth in laminated composites. Accurate prediction of stiff-
ness, response, damage modes and failure mechanisms is bound to lead to the design
of eficient and damage tolerant composite structures.

Delamination is a predominant failure mode in continuous fiber reinforced lam-
inated composite structures. Based on the location and direction of growth. there
are two distinct types of delamination, namely, free edge delamination and local or
transverse crack tip delamination. In many cases, both types occur concurrently with
varving levels of interaction.

In the first part of this work shear deformation models including hygrothermal
effects are developed for the analysis of mid-plane edge delamination and local de-
lamination originating from transverse cracks in 90° plies. The results of these models
are combined with a previously developed shear deformation model for mixed-mode

edge delamination to yield a unified analysis of delamination and the ability to iden-



tify the critical failure modes and loads.

Elastically tailored composite design are being used to achieve favorable defor-
mation modes under a given loading environment. Coupling between deformation
modes such as extension-twist or bending-twist is created by an appropriate selec-
-tion of fiber orientation, stacking sequence and materials. An example is the X.29
swept forward wing aircraft where a laminated compbsite skin is used to create the
bending-twist coupling required to handle divergence. This design uses AS-1/3501-5A
graphite/epoxy wing covers with —45° outboard plies 9° forward of the wing's 40 %
chord line. Elastically tailored composite rotor blades have the potential to be used
in rotorcraft structures in order to control flapping and twisting motions at different
rotor speeds. This concept can be utilized in tilt rotor aircraft in order to achieve a
compromise between hover performance and forward flight propulsive efficiency. A
change in the blade twist between flight modes can be developed through the use
of extension-twist coupling as implemented in the XV-15 tilt rotor aircraft. Twist
contro] is achieved by assuming a 15 percent change in operating rpm between hover
and forward flight regimes.

The coupling of deformation modes provides a flexibility to meet design require-
ments on the aeroelastic behavior, dynamic response and stability of structures and
results in improved fatigue life and durability.

A prerequisite for the implementation of an elastically tailored concept, is the
development of an analytical model which accurately predicts the various stiffness
components and isolate the material and geometrical parameters controlling the be-
havior.

In the second part, a variationally and asymptotically consistent theory for thin-
walled beams that incorporates the anisotropy associated with laminated composites

is developed. The theory is based on an asymptotical anelysis of 2D shell energy.
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The major advantage of this approach lies in the fact that the displacement function
is not assumed a priori and is determined as a result of the minimization of the energy
functional. As a result, two nonclassical contributions to the warping emerge. While
these new contributions vanish for isotropic and orthotropic materials, they have a
significant influence on the response of gel;eral]y anisotropic materials. The accuracy
of previously developed theories is assessed by comparing the resulting displacement
fields and an assessment of the significance of shear deformation is presented. Com-
parison of predictions with finite element simulation and test results illustrate the
consistency and accuracy of the developed theory.

The delamination analysis model is presented in the first part of this work. this is
followed by the development of the thin-walled anisotropic beam theory. Each part
includes a literature survey in order to place the present work in proper prospective.
A comparison of prediction is presented in order to validate the developed theories

and assess their accuracy.



CHAPTER II

DELAMINATION ANALYSIS

This chapter addresses damage modeling in laminated composite plates. A review
of previous work is presented first, this is followed by a development of the analytical
model.

2.1 Review of Previous Work

Failure in laminated composite materials often initiates in the form of matrix frac-
tures, namely, transverse matrix cracks and delaminations. Based on the location and
direction of growth, two distinct types of delamination can be discerned. These two
types are called edge delamination and local or transverse crack tip delamination, as
shown in Fig. 2.1. Edge delaminations initiate at the load free edges of the laminate
whereas local delaminations start from a transverse matrix crack. Transverse matrix
cracks refer to intralaminar failures whereas delaminations refer to interlaminar fail-
ures. Transverse cracks usually occur within laminates where the fibers run at an
angle to the primary load direction and hence the name. In many cases, both types
occur concurrently with varying levels of interaction.

It has been observed [1] in simple tension tests of uniform rectangular cross section
specimen (Edge Delamination tests) that delaminations initiate along the load free
edges and propagate normal to the load direction as shown in Fig. 2.1. Transverse
matrix cracks running parallel to the fibers have also been obscrveci in off-axis and

90° plies. Such transverse cracks extend through the thickness of similarly oriented
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plies and terminate where the ply orientation changes. Delaminations can also origi-
nate at the interfaces where transverse cracks terminate. These transverse crack tip
delaminations or local delaminations, grow normal to the transverse crack from which
they originate. In the case of 90° plies, the growth direction is paralle] to the load.

The growth process of edge delaminations and local delaminations is often mod-
eled using a fracture mechanics approach leading to the calculation of a strain energy
release rate. This is because the strain energy release rate can correlate delamination
behavior from different loading conditions and can account for geometric dependen-
cies. The strain energy release rate associated with a particular growth configuration
is a measure of the driving force behind that failure mode. In combination with ap-
propriate failure criteria, the strain energy release rate provides a means of predicting
the failure loads of the structure.

Several methods are available in the literature for analyzing edge delaminations.
These include finite element modeling as in {2], [3], and [4], the complex variable stress
potential approach |5, a simple technique based on classical laminate theory [1] and
a higher order laminate theory including shear deformations [6]. Finite element mod-
els provide accurate solutions but involve intensive computational effort. Classical
laminate theory (CLT) provides simple closed form solutions and is thus well suited
for preliminaryv design evaluation. However, CLT provides only the total energy re-
lease rate, and thus, in a mixed mode situation, there is insufficient information to
completely assess the delamination growth tendency. A higher order laminate theory
including shear deformations has the ability to provide the individual contributions
of the three fracture modes while retaining the simplicity of a closed form solution.
A shear deformation model is available for off-mid-plane edge delamination and has
been shown to agree well with finite element pradictions [7].

- Crossman and Wang (8] have tested T300/934 graphite/epoxy {£25/90,], speci-
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mens in simple tension and reported a range of behavior including transverse cracking.
edge delamination and local delamination. O’Brien [9] has presented classical lam-
- inate theory solutions for these specimens, demonstrating reasonable agreement in
the case of edge delamination but with some discrepancies in the local delamina-
tion predictions. The local delamination 'model overestimates the failure strains for
[£25/90,.], specimens for small values of n mainly due to the implicit critical strain
energy matching used.

A finite element model combining edge and local delaminations has been pro-
posed by Law [10]. His predictions, however, do not fully explain the dependency of
the critical strain on the number of 90° plies. A similar three-dimensional finite ele-
ment analysis including hygrothermal effects has been performed by Wang ef al. [11]
to determine the delamination onset load for combined delamination, qualitatively
demonstrating stable crack growth.

A three-dimensional finite element analysis of delamination from matrix cracks
has been developed by Fish and O’Brien[12]. They conducied an experimental and
analytical study on the influence of matrix cracking on delamination in [+15/ —
90,,/—15], glass-epoxy laminates subjected to monotonically increasing tension loads.
Experimental results showed that local delaminations form at the intersection of
matrix cracks in the +15° plies and the free-edge. Comparison of a Quasi-three-
dimensional (Q3D) finite element results with a three-dimensional (3D) finite element
analysis showed significant differences in the relative and absolute magnitudes of the
interlaminar stress components. Thus, discrepancies in failure predictions may exist
between Q3D and 3D analysis. The results of this study emphasized the importance
of incorporating the various damage mechanisms that influence subsequent damage
development in the failure analysis.

Thermal and moisture effects on the strain energy release rates for interlaminar
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fracture of unidirectional graphite/epoxy have been investigated by Russell and Street
[13]. This investigation also included a study of the effects of shear loading through
the use of various test configurations (Double Cantilever Beam, Cracked Lap Shear
etc.). .Initiation energies for delamination were found to increase as the proportion
of shear loading increased and as the temperature was lowered, but no significant
moisture influence was observed. The fracture resistance to crack extension was found
to increase under tensile dominated loadings with both temperature and moisture
content, but for high shear loading, the resistance was insensitive to the hygrothermal
conditions.

O’Brien, Raju and Garber have presented a CLT based analysis of mixed mode
edge delamination specimens including hygrothermal effects [14]. They have used
finite elemexﬁ modeling to determine the strain energy release rate components. Their
results indicate total strain energy release rate increases of as much as 170% due to
thermal effects for some T300/5208 graphite/epoxy laminates. However, a moisture
content of 0.75% has been shown to totally alleviate this increase. According to
. this analysis, in general, the consideration of thermal effects increases the energy
release rate whereas moisture effects have the opposite influence. These results have
been confirmed using shear deformation models in the case of off-mid-plane edge
delaminations [15]. It was found that the interlaminar stresses follow the same trend
as the energy release rate, with increase due to thermal effects and alleviation due to
hygroscopic effects.

Aoki and Kondo calculated the strain energy release rate under thermal loading
for mixed mode edge delamination. They used conventional finite element method
[16] and a simplified method {16, 17] based on the classical lamination theory in com-
bination with the J-integral for mechanical loading. Two types of axial constraint

conditions were considered : (1) constant strain or fixed-grip and (2) constant load.
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Numerical examples for cross-ply and angle-ply laminates showed that in angle-ply
laminate, the energy release rate under free axial elongation increased constantly
with delamination growth, while it remained constant under fixed-grip conditions. A
higher order plate theory including transverse normal strain and thermal effects has
been developed by Whitney [18] for the analysis of mid-plane edge delaminations.
This approach provides the interlaminar stresses also, in addition to the strain en-
ergy release rate. A [0;/90;], graphite/epoxy mode I specimen was analyzed and
the maximum interlaminar normal stress was shown to increase by a factor of 2.7
due to thermal eflects, when compared with the pure mechanical strain reference
configuration.

From this summary it is found that there is a need for a unified approach that
includes the analysis of free edge as well as local delamination and their interaction. In
practical composite configuration free edge delamination does not occur in isolation,
it is accompanied by other damage modes. Developing an analysis methodology that
includes the interaction of delamination with other damage modes is essential for
designing damage tolerant structures.

The study of delamination consists of two main sections. These are the analysis of

mid-plane edge delamination and local delamination in laminated composite plates.

2.2 Mid-Plane Edge Delamination

A mid-plane edge delamination specimen is shown in Fig. 2.2. A uniform axial strain
¢ is applied in the z direction. From symmetry only one quarter of the specimen is
considered. The sublaminate scheme and the choice of coordinate axes are illustrated
in Fig. 2.3. g

Sublaminates 1 and 2 in Fig. 2.3 represent the uncracked and the cracked regions,
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Figure 2.2: Mid-Plane Edge Delamination

L= |

Figure 2.3: Sublaminate Modeling Scheme (Mid-Plane Edge Delamination)
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respectively. “The analysis is based on the following displacement fields within each

sublaminate

v =z + Uly) + =P:Ay)

v=V(y)+ z8,{y) (2.1)
w=W(y)

where u,v, and u denote the displacements relative to the z,y, and = axes, respec-
tively. Shear deformation is recognized through the rotations 3, and 3,. In the
present formulation thickness strain is neglected, and consequently inaccurate values
of interlaminar peel stress, o.., are expected. However, the peel stress can be modified
by enforcing the free edge boundary condition associated with the transverse shear
stress resultant.

A generic sublaminate along with the applied forces and moments is shown in
Fig. 2.4. The force and moment resultants are denoted by A}, Q;, and M,, respectively.
The constitutive relationships in terms of these force and moment resultants can be

written as

N; = Ajjej + Bawky — N[ (2,7.k=1,2,6)
M; = B,'j{:'_,' + Dk — M (2,7,k=1,2.6) (2.2)
Q,'==.4,'56j (i,j=4,5)

The subscripts z,y,s,ys,2z, and zy are replaced by the subscripts 1-6, respec-
tively. The non-mechanical forces and moments resulting from hygrothermal effects

are labeled with superscript nm for non-mechanical. They are defined as

_
(e )= [ "} {ATa, + AHB,) Q,01,2)d: (2.3)
T2
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z,W
)
v Fiber Orientation
e r
(=
e N,
]
1

Figure 2.4: Notation and Sign Convention for a Generic Sublaminate
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The thermal coefficient is denoted by a; in Eq. (2.3), while the swelling coefficient

by B;- The -Q-J- are the plane stress sublaminate reduced stiffnesses [19]. The bars on

a;,B; and @;; indicate that theses quantities are to be obtained through appropriate

coordinate transformations. The change in temperature between the ambient and the

stress free temperature is denoted by AT. The percentage moisture weight gain is
represented by AH.

For a sublaminate of thickness h, th'e elastic stiffnesses A4,;, B;;, and D;; in Egs.

(2.2) are defined as

+35 —

The equilibrium equations can be written as follows
Al’zy.y +il0: btz = 0

]Vy,y “+ t2y bt t1y - 0

[ ]
(4]

Quy+pr—-p =0 (
Alty.y - Q:r + g’(tZ:r + tl:r) =0
ﬂly.y - Qy + 2(123/ + tly) =0

where t,,t2,,p2 and t,1;,,p1 denote the interlaminar stress components at the
sublaminate upper and lower surfaces, respectiveiy. These stress com;;onents appear
in Fig. 2.4. Partial differentiation is denoted by a comma in Egs. (2.5). Application
of the boundary conditions and the governing equations to each of the sublaminates
results in a system of differential equations which are solved to obtain the stresses
and strain energy release rate. The boundary conditions to be prescribed at constant
values of y, the sublaminate sections, are N, or U, N, or V,Q, or W, M, or j, and

M., or 8,.
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2.2.1 Uncracked Region (Sublaminate 1)

From symmetry conditions al the sublaminate bottom surface, both w and the shear-
ing stresses are zero. Since thickness strain is neglected, this leads to w being zero

everywhere in this sublaminate. The equilibrium equations can be written as

Neyy=0
N,,=0
Quy—n=0 (2.6)
M,y ,— Q. =0
M,,~Q, =0

where subscript 1 refers to sublaminate 1. From Egs. (2.6) and the continuity of axial

and in-plane shear stress resultants between sublaminates 1 and 2, we get
N, =Ny =0 (2.7)

By substituting from the constitutive relations into Eqs (2.6) and Eq. (2.7), and
assuming an exponential form for the rotations £, and ;.. we get the Yollowing

characteristic equation

Eys' —Eys*+ Eg =0 (2.8)
with
Eo = AgAss — (Ags)?
E; = Qg1 Ass + Q30440 — §022445 — S231A4s
Ey = Q3,83 — 032805
where

(A12b12 + Arelaz + Bra) (Anzbia + Arebas + Bie)
Q3,5 = | (Bazfaz + Baebaz + Dz2)  (B2zas + Baebas + De)
 L(Buet1z + Besbaz + Dis) (Bastrs + Bestas + Des)
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and

Az Aze]” [Ain By B
[‘f]:’x:i:—

A26 A66 4416 B26 BGS

Coeflicient Ey depends solely on the sublaminate axjal stiffness, while E; is pre-

dominantly influenced by the bending and coupling coefficients D,; and B;; . The
numerical value of E; can be orders of magnitude smaller than E; and Eg. This results
in the presence of a boundary zone in the response. For the material and laminate
layups considered, the roots of this characteristic equation are real. Only the negative
roots of Eq. (2.8) are considered as they give solutions decaying exponentially from

the delamination tip. The solution can be written as

ﬁly 1 —a.
= Ije™"v (0<y<b-a) (2.9)
‘311 ;5
where
Qzlsf — Ay
= s = = 1,2
& Q28] — Aus U )

Parameters I; are arbitrary constants to be determined from the boundary condi-
tions. By substituting Eq. (2.7} into the constitutive relations and using the assumed

displacement fields, we obtain
¥ L By,
{ 1Ly } — [fl]] {E} + { 1 } + [512 613] { lyy} (210)
Ul,y 621 52 {22 623 ﬁl:,y
52 AZG AGG ~Nzy

Substitute from Egs. (2.10) into the constitutive relations to get the resultant forces

where

and moments in terms of the total extensional strain
N, A1 + A + Aseén
M,, ¢ =|Bi2 + Byt + Baebnr | {€}
M., Bie + Basé11 + Beebn
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A ST 4+ ArSpm — NI p
1 s
+ | BozS7™ + ByeSpm — MI™ | + [0, { . i } (2.11)
Mz,
ByoST™ + BeeSy™ — ML ’

2.2.2 Cracked Region (Sublaminate 2)

From the stress free boundary conditions at the face y = —a of sublaminate 2 and

the equilibrium equations, we get
N,=N,,=Q,.=M,=0
The equilibrium equations reduce to
My, y— @z, =0

Following a similar procedure as in sublaminate 1, the rotation can be written as

Baz = Hye™ (—a <y <0) (2.12)
with ‘
i\ AvsAss — A
\ Ass(Des + Bas12 + Besr2o + Dysyras)
where
A1z Bag
[‘P}:uz = [’%!’]_1 Aje Bes
B2 Dy
and
Az Az Bi
[1/’] = |Ax Aes B
By, By D,

H, is an arbitrary constant to be determined from the continuity conditions be-

tween sublaminates ! and 2. The force and moment resultants can be expressed in
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terms of ti "ofal strain

[N An + Avpn + Aiepa + Bups |

l Ay, ] - Bie + Basw11 + Bespa + D:ss-?sx} te}
(A} FP™ + AyeFJ™ + By Fy™ — N7

| BoFP™ + BeoFJ™ + Do FI™ — M:;“}

[ Bis + A129012 + A16922 + Braws:

+ MH, e (2.13)
| Dee + Bas12 + Bespaz + Daepan

ol

where
Fl nm ]\’y nm
F. 2 = [d’] -1 ]\Yzy
F M,

The response associated with sublaminates 1 and 2 shown in Fig. 2.3 is coupled

through the following conditions at y = 0,
M, (0)=M,(0)=0
M., (0) = M,,,(0)=0

£r1=(0) = B2:(0)
The solution for both sublaminates i.e., the values of I; and H; can be obtained
by applying these conditions. The final expressions for the sublaminate rotations is
given by Eqs. (2.9) and Eq. (2.12) where

{~01+ (04 + Osm)(4)} € + Oama(42) — 0, + O4(42)
1=

1
O3 — (04 4 Bs72) 52 + Oy

Iy = =2 (Ase + Az + Asy)
Hy =nl, + 91,

with
Ay = By; + Bibyi + Bl

A2 = 48225';"'I -+ 3265';"" - M:m
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Az = —(Q2 + M2y

Ay = = (2 + 72Q22)8,
and
©1 = Bs6(£11 — p11) + Bes(£21 — p21) — Daepar
©2 = Bao(S7" — FT™) + Beo(S;" — F;™) = DasFy™
O3 = — (03 + mQ32)s;
O4 = —(S231 + 72032)s,
©; = —(Dee + Basp12 + Beswao + Dagipaz ) A

The total strain energy release rate can be calculated by considering the work

done by the external forces. This is given by

2, dW;
=G =-2y ——
GT GI L =1 da

(2.14)

where W, = work done by the external force in sublaminate 7, L = laminate length,

and a = crack length.

The work done by the external forces is written in terms of the mechanical strain.

e, as

W= g/ €7 N, dy (2.15)
with
e =€e—€ (2.16)

The sublaminate free expansion strains, 7™ , are calculated by setting the axial force

resultant to zero, i.e.

/ N.dy=0 (2.17)
yl
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® © = 7 ® (0] + enm *x | @O 0)
(AT+AH) (AT+ARH) AT=AH=0
nm .
£ =7 e=0 €=
= = N nm N

@ (®) (©)

Figure 2.5: Effective non-mechanical free expansion strain across the entire width of

the laminate

where N, is given in Eq. (2.11) and Eq. (2.13). The expression for each sublaminate
1s
e = _AHS;"" + A7 — NI
An + A + Al
ApFT™ + A1 F7™ + B FJ™ — NIZ™
A+ Apir + Arepn + Brapa

nm
)

The total strain, ¢, is given by

e=¢e" 4" (2.19)

where €™ is the eflective mechanical strain and €™ is the effective free-expansional
strain across the entire width of the laminate estimated by decomposing the non-
mechanical problem in Fig. 2.5(a) into the superposition of the two cases shown in
Fig. 2.5(b) and Fig. 2.5(c). In case (b) the laminate is subjected to a non-mechanical
change ( AT + AH), while the strain is prescribed to be zero. In case (¢) a unit axial

strain is applied, while no hygrothermal change is considered. Knowing that no axial
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force is applied in the main problem, i.e. Fig. 2.5(a), the sum of the axial forces in

the two subproblems should be zero, hence
A?zh + Enm Av=‘ —_— 0

and

Enm = ___:.‘l
e,

where N,, and N, _ are the axial forces in case (b) and case {c), respectively. These

axial forces are computed by substituting the expressions of N, and N, from Eq.

(2.11) and Eq. (2.13) into the relations

{b—a) . 0
N, = / Nody+ [ N.dy
0 ~e e=0,(AT+AH)

{b—a) , 0 .
N, = [ L Ny + 5 J\’,,dy]

=1, AT=AH=0
The expressions for N,, and N, are found to be

Ney = (A0S + A1eS;7 — N7 )b —a)

+ (A" + A1 Fy™ + B Fy™ — N )a

and

N., = (A + A + A )(b— a)

+ (A1 + A12p11 + Arepzr + Biaps: Ja

(2.22)

(2.23)

(2.24)

The crack length and half of the total laminate width are denoted by a and b, respec-

tively, as shown in Fig. 2.3.

By combining the expressions of N,, from Eqgs. (2.11) and Eqs. (2.13) with Egs.

(2.14)-(2.24), the total energy release rate for the Mode 1 case can be written in the

form

Gr=(Gn)+{Gn,)+(Gr +Gir,)

(2.25)
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where

Gir = (€= €]™)[(Au + Ansbar + Areba) € + (A12S]™ + 416857 — NI™)]
— (5 — E;m ) [(All -+ Alzgﬁn + A]G‘PZ] + Bl29931)5

+ (A1 FV™ + A F;™ + By F3™ — NJ7))

de
G, = ~¢—i;(b — a){(An + Ap2bn + Ase2r) [(2¢ — €77)
+ (AS7 + A4Sy — N7}
de

~7a° {{An + Aizon + Asepar + Brapar ) (26 — €57)

+ (A1 Fy" + A7 + By Fy7 = N7}

Gir = —(e—¢€f") [(Qn + m2) s ™) 4 (g + 7200) 12526—'2“_“)]

— (e — €57) (Bye + A12912 + Arezz + Brapar) Hyde ™

ds
G, = == (M +mQa) L [0 = 1] 4 (s 4+ mafa) [ [0 - 1]
Q
+ (Bye + Aj2¢12 + Arsw22 + Brawar) Hy (l - e"“)}

and

de de™m _ A ST = F7™) + Aye(S7™ — F7™) — By Fpm

de = da N..
_ Nzy[A12(€1 — o11) + Are(€ar — 021) — Brapa)

N (2.26)

The resulting expression for the total energy release rate GGy is composed of three
terms. The first term, denoted by Gj; is independent of the delamination length while
the second, Gj,, is 2 linear function of the crack length. The third term denoted by
(Gir + Grg,) , is an exponentially decaying function of the delamination length.

In computing the non-mechanical strains, the lJaminate is assumed to be held at

the prescribed temperature and moisture levels. This is followed by testing under
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fixed-grip condition, i.e., the constant strain measured in the lab is the mechanical
strain €™. In Refs.[18] and |20}, Whitney considered the strain measured in the tests
to be the total strain, i.e. £ = €™ + £€™ = constant . The difference between the
two interpretations is detected by the terms Gy, and G;g, in Eq. (2.25). These two
terms are neglected in Refs. [18] and [20] since the total strain € is assumed to be
constant.

As mentioned previously, neglecting the thickness strain leads to inaccurate esti-

mates for the peel stress. The peel stress is given by
P=Quy= —(As+ Agpnj);s;e7"Y (1=12) (2.27)

The equilibrium of transverse force requires that

(b—a)
/ pdy = (2.28)
0

- Qy”n— =0

While for all practical purpose the resultant shear stress Q,, yetoe vanishes due to
the free edge, the resultant shear stress at the delamination front @, byt # 0. That
is in order for the peel stress to satisfy transverse force equilibrium, the shear force
boundary condition at the sublaminate end should be enforced. This is done by

adding to the peel stress distribution an appropriate boundary function expressed in

terms of the charactenistics roots as
aje™""V 4 ape™"?

The coefficients a; and a, are obtained by enforcing equilibrium of transverse force

given in Eq. (2.28) and moment given by

(b—a)
/o pydy + M,

w lyy=(b-0)

=0
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Figure 2.6: Local Delamination Specimen Cross Section

The corrected peel stress distribution is

8182 _
p=——M,, [s1€
.51 —_— .52 ¥y ={b-a)

%Y __52€—szy]

2.3 Local Delamination

A longitudinal section illustrating the geometry of a generic configuration is shown
in Fig. 2.6. The central region is assumed to be made of 90° plies with an isolated
transverse crack in the middle. Delaminations are assumed to grow from both ends
of the transverse crack, and towards both specimen ends as shown. From symmetry
considerations, only one quarter of the configuration is modeled. The modeled portion
of length L is divided into four sublaminates as shown in Fig. 2.7. The crack length

is denoted by a. The top surface (sublaminates 1 and 4) is stress free. In order to
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free free
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Symmetry Shear stress=0 Shear stress=0
Plane w=0 w=0

Figure 2.7: Sublaminate Scheme for Local Delamination

simplify the analysis, the thickness strain ¢. is neglected. The consequence of this,
combined with the fact that the transverse displacement w is zero along the center line,
is that w is zero in sublaminates 1, 2, and 3. Also, this approximation does not allow
for the enforcement of boundary conditions on the shear stress resultants, leading
to incorrect estimates of the interlaminar normal stresses. The interlaminar shear
stress estimates, however, are reliable [6]. These assumptions lead to considerable
simplifications in the analysis. In spite of the simplifications, reliable energy release
rate components can be estimated based on the interlaminar shear stress distributions
[7].

A generic sublaminate is shown in Fig. 2.8 along with the notations and sign
conventions. The peel and interlaminar shear stresses are denoted by P and T,

respectively, with ¢ and b subscripts for the top and bottom surfaces, respectively.
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Figure 2.8: Generic Sublaminate for Local Delamination

The axial stress resultant, shear stress resultant, and bending moment resultant are
denoted by N,Q, and M, respectively. The governing equations correspond to the
one-dimensional form of Egs. (2.1 - 2.5). These are summarized in the following for
convenience.

The z and = displacements within the sublaminate are assumed to be of the form
u(z,z) = U(z) + zf(z)

w(z,z) = W(z)

Here, U represents the axial mid-plane stretching and W is the transverse displace-
ment. The shear deformation is recognized through the rotation, 8. These displace-
ments are the total quantities and include the hygrothermal effects. The origin of
the coordinate axes for the sublaminates is taken at the delamination tip as shown

in Fig. 2.9 . The equilibrium equations take the form
N,r +Tg - Tb - 0

Qaz +R - Pb =0 (2.29)
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Figure 2.9: Sublaminate Forces and Coordinate Systems

3
M.-Q+5(Ti+Th) =0

where h is the thickness of the sublaminate. The constitutive relationships in terms

of the force and moment resultants are

]\7 = AHU’r +Bllﬁw

Q= Au(B+W2)
M= BllUn' '+D1116’:-
The boundary variables to be prescribed at the sublaminate edges are
N oo U
M o B

Q or W
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Additionally, at the interfaces between sublaminates, reciprocal traction, and dis-
placement matching boundary conditions have to be specified. The stress resultants
in these equations include the equivalent hygrothermal loads also.

The solutions in sublaminates 1 and 2 are coupled by the reciprocal interlaminar
stresses denoted T; and P; and by displacement continuity at the common interface.
Assuming exponential solutions for the axial force and bending moment resultants
leads to an eigenvalue problem involving the exponential parameters. The character-

istic equation is of the form
6[3134 -+ B252 -+ Bs] =0

where s is the eigenvalue parameter, and the B coeflicients are given by

1 1 hi h? \ DugyD
B, = ( + + 1 2 ) 10y Yy
All(?) All(l) 4D11(1) 4D1](2) A55(1] A55(2)

D 1 1 k2
Ass2) \ A, Aney 4D

__Dnm( 1 4 1 + h? )
Assiy \ Ay Aney 4Duag

and
__1 o,
Angy A

B,

' 4
The eigenvalues turn out to be zero and two nonzero values given by

_, (=B (Bi-4B:B )"
8= 2B,

For the problem under consideration, all the square roots in this expression lead to
real quantities and thus the eigenvalues are real. Since the eigenvalues involve only
the stiffness parameters, they are not affected by the inclusion of hygrothermal effects.

Further, due to the fact that B, has D terms in the numerator, it is much smaller
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than B;. This leads to the boundary layer nature of the solution. Since the response
(axdal forces, moments) has finite values at large distances from the origin, namely. at
the ends of the specimen, only the exponentially decaying and constant solutions are
used. Using subscripts to denote the sublaminate of validity, the following boundary

conditions from the ends of the modeled region are enforced.

Q4la) =0
Bs(a) =10

N, + N, = Applied Load

The conditions on N apply only to the mechanical quantities. Further, the fol-

lowing displacement matching conditions are applied.

w(o-3) = (=3)
2 2
U1(0) = Uy(0)
U5(0) = U3(0)
B1(0) = Ba(0)

It should be noted that a £, and B3 matching condition cannot be applied at this
level of modeling since it would amount to specifying both W and Q. To eliminate
rigid body displacements, U, is set to zero at the left end. The following solutions

can then be obtained for the stress resultants in sublaminates 1 and 2
N1 = ale"‘ -+ age"' + EA11(1) s ‘N’;m

sz - _alec;: _ a;e"’ + EAI](Z) _ N;nm
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All = a]kle"' -+ agkze": - Mlnm

M, = a1k3€™™ + agkge®™ — MJ™

Here k, is defined as
hy 2
by
ky= 21
1=
s501) _ o2
Dll(l) 1

The parameter k; is defined in a similar manner using the eigenvalue, s;. The re-
maining parameters, k; and ky , are similar to k; and k; but based on sublaminate 2

properties. The nominal strain, ¢, is defined as

1

P
R L
! 2 Ay + A

2b

where P is the applied uniform axial force and b is the specimen width. The a’s can

be derived from the boundary conditions as follows

93.';" 940 1 (P
= ___A + ]\rnmA _ AmmA )
o ba A11(1)+-411(2) op 112 1 11(2) 2 11(1)
61 + 63a 1 (p
- — — ArnmA _ ?nm‘4 )
“ fq A31(1)+A11(2) 2bA11(2)+ 1 11(2) }\2 11(1)
with
8 h]
' Ass1) ( ! 2
k
6, = —
*~ Duq,
82 h,
0 - k + —
? Assa) ( ? 2)
ks
6, =
*~ Duq,
and

94:93—91 +(94-92)a
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The interlaminar shear wnd peel stresses between sublaminates 1 and 2 can be ob-

tained using the equilil:riuin equations (2.29) as
T] = 01516"1 -+ 0.2526‘2:

h h
P o= (k + -23-)als]e"’ + (ky + El—)azs;e"’

As mentioned previously, this peel stress estimate is not accurate because of the
inability to apply boundary conditions on shear. Recognizing the fact that there
are no applied shear forces, it can be concluded that the peel stress distribution
should be self equilibrating. This assumption can be satisfied by including additional
exponential terms in the above peel stress expression and determining these additional
terms by setting the net force and moment due to the peel stress to zero as shown
in section 2.2. The pee] stress estimated through this correction process is referred
to as the modified peel stress. Proceeding on to sublaminates 3 and 4, the following
solutions can be written.

Ny=0
JM3 = sinh(wsx) -+ P2 COSh(w;«;Z‘)

where

2 = ayks + azkq
1y = —p3 coth{wsa)

and

M, = a1k + axk,
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The total energy release rate Gr is calculated using Gr = dW, /da where W' is the
work done per unit width by the external (constant) loads on the specimen displace-
ments. For the case where hygrothermal effects are included, there are additional
terms due to the work done by N7*™. In reality, these NI quantities are not applied
loads but correspond to residual stresses. Thus, the additional terms are due to the
work done by the applied mechanical strains on these residual stresses. The total

energy release including hygrothermal effects is given by

PP 1 1
Gr = (—-+N;"")( +J,—12)

26 \'b Ang) - Anay+ Ang)
+PNnm( 1 1+1) (2.30)
20" 2 Angy+ Ang BT .

where the I factors are

0203 - 91 94 ) - e"‘l(L_a) 1 - e-—az(L—a)
Il =X 2 —
d ) 89
By + Baa)e="1L=0) _ (6, 4 f,q)e=*rL-a)
12=x( 3+ faa)e (6, + 61a)e 1)
bq
with
1 An(z;

X
Parameter I; is the same as I; but with the ratio A;;(1)/A11(2) instead of unity in
Eq. (2.31). Using the virtual crack closure technique [21], from the relative displace-
ments in the cracked portion and the interlaminar stresses ahead of the crack tip, the
mode I and mode II energy release rate contributions can be obtained. The mode III
energy release rate is zero from the assumption of plane strain. The mode II energy

release rate is given by

1 g8 ,
Gy = lim 55/0 Ti(z — §)Au(z)de

where & is the virtual crack step size and Au is the differential axial displacement

across the crack surface. This cilculation can be simplified using only the linear
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part of the differential displacement {7]. In a similar fashion, the mode I energy
release rate can be obtained based on the normal stress (P) and the differential
w displacements near the crack front. Since the unmodified peel stress estimate is
inaccurate, an alternate approach was used to estimate G, the mode 1 energy release
rate. The total energy release rate for this .problem is made up entirely of G and Gy
(Grrr = 0). From an estimate of Gr and Gyj, an estimate for G; can be obtained
simply as

G =Gr—Gp

The critical load for a given specimen can then be evaluated based on an appropriate

fracture law. This is illustrated in the next chapter.
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CHAPTER III

APPLICATIONS OF DELAMINATION MODELS

3.1 Mode I Edge Delamination

The analytical model is applied to the mid-plane edge delamination specimen shown
in Fig. 2.2. The material considered is T300/5208 graphite epoxy. Its properties are
listed in Table 3.1.

The difference between the ambient and cure temperature, AT, is —156°C". The
moisture level was allowed to vary from 0 to 1.2 percent of the laminate weight. which
reflects feasible conditions. Laminates of the class [§/— 6,/6/90,], and [03/903], have
been analyzed.

Normalized values of strain energy release rate are shown in Figs. 3.1-3.6, where
the labels MM + T,and M+ T+ H stand for mechanical, mechanical and ther-

mal, and mechanical, thermal and moisture, respectively. The strain energy release

Table 3.1: ED Specimen Geometry and Material Properties

E,; = 128 GPa | Thermal Coefficients : a; = —041pe/°C
E,, = 8.47 GPa a; = 26.8uc/°C
G112 = 5.73 GPa | Swelling Coeflicients : Bi=0

Gy = 3.27 GPa B2 = 5560uc /%W
Gz = 3.27 GPa | Width = 2b = 38.4 mm

v12 = 0.292 Ply Thickness = 0.14 mm B
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rate parameter in the figures is defined as the total energy release rate divided by
Egh(e™) .

The strain energy release rate in Figs. 3.1-3.3 is zero at a = 0. Residual thermal
stresses results in an increase of 275%, 40% and 280% of the energy release rate for the
[15/-15,/15/90,],,[60/—60,/60/90.], and [03/903], laminates, respectively. Residual
moisture alleviates this eflect as illustrated in Figs. 3.4-3.6. The specific moisture
content for total alleviation from the thermal effect is equal to 0.763% irrespective of
the layup.

The peel stress distribution, o.., appears in Figs. 3.7-3.9. The stress parameter in
these figures is defined as the interlaminar stress divided by Ej;¢™. The inaccurate
peel stress distribution given in Eq. (2.27) is plotted for the case where mechanical
loading only is considered. The corrected pee] stress distribution is self-equilibrating
and yields a tensile peel stress at the delamination front.

The magnitude of the peel stresses shows a strong dependency on the thermal
and moisture conditions. The stress increases with thermal eflect as compared to
pure mechanical loading.. The addition of moisture alleviates the thermal effect.
Moreover, the distance at which the peel stress reverses its sign is not aflected by the
residual thermal and moisture strains. It is worth noting that at the specific moisture
percent (0.763%) producing complete alleviation of the total energy release rate from
the thermal effect, the interlaminar peel stress distribution is identical to the case
where only mechanical loading is considered. This is shown in Figs. 3.7-3.9. This
finding establishes a similarity in behavior between the energy release rate and the
interlaminar stresses.

The analytical model presented herein was applied to the laminates presented in
Ref. [18). The Graphite/Epoxy lamina properties from Ref. [18] are listed in Table

3.2. Similar values of strain energy release rate G were calculated for the wide range
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Table 3.2: ED Specimen Geometry and Material Properties, Ref. [18]

E\/FE;; = 14 Ply Thickness = 0.1267 mm

Es3/Eqy =1

G12/Eq2 = 0.533 | Thermal Coefficients : ay = —0.9uc/°C
Ga3/Eqp = 0.323 a; = az = 23.0uc/°C
vi2 = 0.3

Va3 = 0.55 width = 2b = 38.0mm

of a/h where the G; remains constant as shown in Figs. 3.10 and 3.11. Negligible
change in the G value with decreasingly small values of a/h were obtained. This
is in contrast with the increase in G at small values of a/h reported in Ref. [18].
Although thickness strain is neglected in Eqs. (2.1), the peel stress distribution has
been estimated through a modification as described previously, which simplifies con-
siderably the computational eflort. A comparison of the peel stress distribution with
Ref. [18] is shown in Figs. 3.12 and 3.13.

The peel stress intensity at the delamination front in the {30/ — 30,/30/90;], is
higher than the [0;/90;], laminate. This is due to the difference in poisson’s ratio
between the core plies made of 90° plies and the outer plies. The poisson’s ratio
mismatch is larger for the case of {30/ —30,/30/90,], compared to the [03/90;], layup.
The interlaminar peel stress distribution predicted by the present approach is in good
agreement with the distribution of Ref. [18] for the case of a [03/905],]Jaminate. This is
in contrast with the case of a[30/ — 30,/30/90,], where the maximum stress intensity

as well as the distribution differ from the predictions of Ref. [18]. This difference may

be due to the transverse normal strain influence on the analysis of these laminates.
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3.2 Edge and Local Delamination

The delamination models have been used to study the behavior of [£25/90,], T300/934
Graphite Epoxy specimen for n values of 0.5, 1, 2, 3, 4, 6, and 8. These correspond
to the specimen tested by Crossman and Wang [8]. The specimen width and length
were fixed at 0.025m and 0.15m, respectively, as in the tests. In computing the non-
mechanical strains, the laminate is assumed to be held at the prescribed temperature
and moisture levels. In predicting critical strains, the difference between test and
stress free temperatures is assumed to b_e —155°C" and specimen is assumed to be
dry. It is assumed that local delamination occurs under fixed load conditions whereas
edge delamination occurs under fixed grip conditions. This difference is a consequence
of the modeling approaches used in the analyses. The applied uniform load was 100
MPa axial stress for the local delamination analysis and 0.5% strain for the edge de-
lamination a.nélysis. The solutions were generated using simple computer programs
based on the closed form expressions for the interlaminar stresses and energy release

rates.

3.2.1 Local Delamination

An example of the total energy release rate variation associated with local delamina-
tion (neglecting hygrothermal effects) with the crack length is presented in Fig. 3.14.
The asymptotic value of Gr is denoted by Gro in the figure. It can be observed that
after a certain crack length, the Gr is independent of the crack length. On the basis of
curves like the one shown in Fig. 3.14, the crack length was fixed at 10 ply thicknesses
for the remainder of the studies. Typical interlaminar shear stress profiles including
the hygrothermal effect are presented in Fig. 3.15. The corresponding total strain

energy release rates appear in Fig. 3.16. The inclusion of thermal effects increases
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the stress and the energy release rate while the inclusion of moisture effects has the
opposite effect. In fact a moisture level of about 0.75% almost exactly negates the
thermal effects. After some initial dependence on crack length, the mode mix tended
to stabilize to a constant value. Using the model developed here, the asymptotic
mode I component of the local delaminé.tion energy release rate was found to be
approximately 30 percent for all » values. In the case of off-mid-plane edge delami-
nation, the mode II contribution was less than 10 percent for the n = 0.5 specimen

and progressively less for the thicker specimen.

3.2.2 Edge Delamination

As in the case of local delaminations, the interlaminar stress increases with thermal
effects and the addition of moisture alleviates this as shown in‘Fig. 3.17 for the case of
mid-plane edge delamination. A moisture level of about 0.75% produces a modified
peel stress distribution that is indistinguishable from the case of mechanical loading
alone. Moreover, the distance at which the modified peel stress reverses its sign is
not aflected by the residual hygrothermal strains. The hygrothermal influence on
mid-plane delamination strain energy release rate is illustrated in Fig. 3.18 where the
strain energy release rate is plotted versus moisture content for a [£25/90,], laminate.
The strain energy release rate follows the trend of increasing with residual thermal
stress as in the case of peel stress. Further, residual moisture alleviates the thermal
effects and a moisture level of about 0.75% results in a total alleviation of thermal

effects. Similar behavior is observed in the case of off-mid-plane edge delamination.

3.2.3 Failure Loads and Modes

In order to evaluate the critical loads for local delamination, an appropriate mixed

mode fracture law has to be applied, based on the calculated energy release compo-
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nents. The following mixed mode criterion [22] has been fitted to the test data of
Ref. [23] to calculate the mixed mode G, which is then used in the Griffith criterion

Gr = Gr. to obtain the critical delamination growth stress ¢. and strain ¢, values.
Gre =§"Gre+ (1-€)"Gre

Here £ is the mode I fraction (G;/Gr) and G;. and Gy, are the critical strain energy
release rates for the limiting cases of pure mode I and pure mode Il respectively.
The exponential parameter 7 is a material constant and for the T300/934 system. its
value is approximately 0.9. In the case of mid-plane delamination, since only mode
I is present, Gr. was taken as G;c(125J/m2).. Based on the mixed mode criterion,
Gr. was about 400J/m? for the local delamination case (¢ = 0.7). The failure loads
for edge delamination at the —25/90 interface have also been calculated using a G,
value of 150 J/m?. This Gr. value is different from the value used for mid-plane
delamination due to the himited (less than 10 percent) presence of mode II.

In order to consider a worst case situation, thermal stresses were included and the
moisture level was set at zero. Though the thermal stresses had a significant effect
on the calculated peak stresses, the eflect on the energy release rate was not signifi-
cant except in the case of mid-plane edge delamination for the material system and
layup considered. The critical strains are plotted against n, the number of 90° plies
in Fig. 3.19. The experimental results of Ref. [8] are also presented in the figure for
comparison. The results of the model developed in this paper are represented by the
solid and dotted lines while the experimental results are shown as filled squares. The
CLT based model of Ref. {9] agrees well with the shear deformation model in terms
of the total energy release rate. However, the CLT based model does not provide in-
formation on the mode split and thus, the value of G.(= G.) used can lead to bias in

the critical strain estimates. In the experiments, the local delamination phenomenon
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was observed as the predominant failure mode only for the n = 4,6 and 8 specimens.
The shear deformation model presented in this paper provides good agreement with
the experimental data in this range. For n < 4, edge delamination either in the
mid-plane or in the 25/90 interface was observed in the tests, in agreement with the
edge delamination models. Further, the relative closeness of the calculated critical
strains from the mid-plane and ofl-mid-plane edge delamination models implies that,
in practice, one could have interaction between these two modes. in such cases, one
can expect the delamination to wander around the mid-plane and the 25/90 inter-
faces. This is especially so in the case » = 0.5 where mid-plane delamination is not
actually between two distinct layers but in the middle of a single layer. Experimental
observations [8] are in agreement with this expectation. Thus, it can be seen that
the shear deformation models reproduce the observed behavior with reasonable ac-
curacy and can be used to estimate critical loads for a range specimen thicknesses

incorporating various delamination modes.

3.3 Conclusions

Shear deformation models including hygrothermal effects have been developed to
analyze local delaminations growing from transverse cracks in 90° plies and edge
delaminations located around the mid-plane of symmetric laminates. The models
have been combined into a unified delamination analysis code in order to predict
damage modes and loads in laminated composites. The analytical results of the
shear deformation models agree reasonably with critical strain experimental data
from [£25/90,], T300/934 graphite epoxy laminates in the range of n from 0.5 to 8.
Residual thermal and moisture stresses are found to have only minor effects on the

critical strains except in the case of mid-plane edge delamination for the geometry
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and material considered. The same failure modes as in the tests are reproduced in
the analysis. The integrated delamination code is expected to be of use in design

evaluation applications.
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CHAPTER IV

THEORY OF ANISOTROPIC THIN-WALLED BEAMS

A variationally and.asymptotically consistent theory is developed in order to derive
the governing equations of anisotropic thin-walled beams with closed cross sections.
The theory is based on an asymptotical analysis of two-dimensional shell theory.
Closed-form expressions for the beam stiffness coefficients, stress and displacement
fields are provided. The influence of material anisotropy on the displacement field
is identified. A comparison of results obtained by other analytical developments is
performed.

A review of previous work is presented first, this is followed by a detailed develop-
ment of the theory. Finally an analytical comparison of the displacement field with
previously developed theories is providéd.

4.1 Review of Previous Work

Elastically tailored composite designs are being used to achieve favorable deformation
modes under a given loading environment. Coupling between deformation modes
such as extension-twist or bending-twist is created by an appropriate selection of fiber
orientation, stacking sequence and materials. The fundamental mechanism producing
elastic tailoring in composite beams is a result of their anisotropy. Several theories
have been developed for the analysis of thin-walled anisotropic beams. An extensive
review is provided in Ref. [26]. A number of issues relevant to the research undertaken

in this thesis is highlited in the following.
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A basic element in the analytical modeling development is the derivation of
the effective stiffness coeflicients and governing equations which allows the three-
dimensional (3D) state of stress to be recovered from a one-dimensional (1D) beam
formulation. For isotropic or orthotropic materials this is a classical problem, which
is considered in a number of text books such as Refs. [52]-[59].

For generally anisotropic materials, a description of the major approaches is pro-
vided in Refs. [24]-[49]. A number of 1D theories have been developed in Refs. [27],
[28]. [30], [42], [43], and [46]. A discussion of the displacv;ment provided in these works
is presented in the analytical comparison section of this chapter.

Missing from the review of Ref. [26] and all other current publications is the work
of Reissner and Tsai in Ref. {27]. It presents an exact solution to the governing
equilibrium, compatibility and constitutive relationships of shell theory. Closed as
well as open cross-sections were considered. However, the authors left to the reader
the derivation of the explicit expreésions for the stiflness coefficients. This may be
the reason for their work to have been overlooked. These expressions are important
in identifying the parameters controlling the behavior and in performing parametric
design studies. Furthermore, the explicit form of the displacement field helps evaluate
and understand predictions of other analytical and numerical models.

A number of assumptions were adopted in Reissner and Tsai’s development re-
garding material properties such as neglecting the coupling between in-plane strains
and curvature which can be significant in anisotropic materials. It is important to
assess the influence of these assumptions on the accuracy. This has been done in the
present work by using an asymptotical expansion of the shell energy.

Mansfield and Sobey (28] and Libove [29] obtained the beam flexibilities relating
the stretching, twisting and bending deformation: to the applied axial load, torsional

and bending moments for a special origin and axes orientation. Their analyses are
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similar. Although they did not refer to the work of Reissner and Tsai [27], surprisingly
when their analyses is applied to the special case outlined in Ref. [27], their stiffnesses
coincide. However, one has to carry out details to show this fact. They adopted the
assumptions of a negligible hoop stress resultant N,, and a membrane state in the
thin-walled beam section. The special case in Ref. [27] refers to the one where classical
assumption of neglecting shear, hoop stress and constant shear flow is adopted.

A pertinent element in the analytical modeling development is the inclusion of
section warping. The major difference among the various theories lies in the method-
ology used to eliminate warping and consequently obtain a one-dimensional theory.
The work of Refs. [30], [41], [42]. [43], [44], [45], and [46] use the displacement field
of thin-walled isotropic beams with shear deformation as the basis of their analytical
development. In Refs. [42] and [46] the torsional rigidity is derived in terms of Clas-
sical Lamination Theory in what the author described as a “practical manner”. In
Refs. [43] and [44] a shear correction factor has been introduced in order to reduce the
overestimated bending stiffness. This factor was derived for the case of pure torsion
by using the virtual work method and enforcing compatibility. While this approach
shows an improvement in predictions, it is problem dependent. Another modification
was proposed in the finite element formulation of Ref. [38]. This formulation aims at
minimizing the error associated with the neglect of bending-related warping in the
theory of Ref. {30]. This modification was based on shear stiffness correction factors
determined by numerical comparison of results with an MSC/NASTRAN solution of
cantilevered beam configurations loaded transversely at the free end.

This summary points to the necessity of addressing three fundamental issues.
The first, is the effect of the material’s anisotropy on the displacement field and how
to include its contribution in a consistent manner. No rigorous proof is provided

to validate the assumed displacement fields in Refs. [30], [42], [43], [44], [45], and
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{46] for beams made of anisotropic material as indicated by the various correction
factors introduced. The second, is the significance of the shear deformation relative
to the other contributions such as section related warping. The last is the accuracy
of the membrane stress state assumption in thin-walled anisotropic beam sections.
The present work addresses these issues by using an asymptotical expansion of the
2D shell energy to derive the 1D beam displacement field. As a consequence, the
material’s anisotropy is accounted for in a consistent manner and the deformation

modes that have a lead contribution to the energy emerge naturally.

4.2 Coordinate Systems

Consider the slender thin-walled elastic cylindrical shell shown in Fig. 4.1. The length
of the shell is denoted by L, its thickness by A, the radius of curvature of the middle

surface by R and the maximum cross sectional dimension by d. It is assumed that
d << L h<<d h<< R (4.1)

The shell is loaded by external forces applied to the lateral surfaces and at the
ends. It is assumed that the variation of the external forces and material properties
over distances of order d in the axial direction and over distances of order k in the
circumferential direction, is small. The material is anisotropic and its properties can
vary circumferentially and in the normal direction to the middle surface as well.

It is convenient to consider two coordinate systems for the description of the state
of stress in thin-walled beams. The first one is the Cartesian system z,y and = shown
in Fig. 4.1. The axial coordinate is z while y and = are associated with the beam
éross section. The second coordinate system, is the curvilinear system z.s and ¢ -
shown in Fig. 4.2. The circumf{erential coordinate s is measured along the tangent

to the middle surface in a counter-clockwise direction whereas ¢ is measured along



Figure 4.1: Cartesian Coordinate System
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Figure 4.2: Curvilinear Coordinate System
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the outward normal to the middle surface. A number of relationships have a simpler
form when expressed in terms of curvilinear coordinates. A relationship between the
two coordinate systems can be established as follows.

Define the position vector 7 of the shell middle surface as
T = z7, + y(s)7, + 2(s)7:

where 1, 1, 7. are unit vectors associated with the cartesian coordinate system z. y
and z. Equations y = y(s) and = = 2(s) define the closed contour I in the y, = plane.

The normal vector to the middle surface # has two nonzero components
= ny(s)5, + n.(s)i: (4.2)
The position vector R of an arbitrary material point can be written in the form
R=r+¢i (4.3)

Equations (4.2) and (4.3) establish the relations between the cartesian coordinates .

v, =~ and the curvilinear coordinates z, s, {. The coordinate £ lies within the limits
_h.(s) ce< h{s)
2 —>7 2
The shell thickness varies along the circumferential direction and is denoted by h(s).

The tangent vector £, the normal vector 7 and the projection of the position vector

7 on t and 7 are expressed in terms of the cartesian and curvilinear coordinates as

F dr  dy._ + dz_
gy ) —1
s ds? ds°
- d: dy
n=tX1l=—1, ——1;
n X1 szy Tk
— dy =z
=r-t=y—+ z— 4.4
mET =Yt (4.4)
: dy
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An asymptotical analysis is used to model the slender thin-walled shell as a beam
with effective stiffnesses. The method follows an iterative process. The displacement
function corresponding to the zeroth-order approximation is obtained first by keeping
the leading order terms in the energy functional. A set of successive corrections is
added and the associated energy functional is determined. The process is terminated
when the new cycle does not generate any additional terms of the same order in the

energy functional.

4.3 Shell Energy Functional

Consider in a 3D space the prismatic shell in Fig. 4.2. A curvilinear frame z, s, and
£ is associated with the undeformed shell configuration. Values 1, 2 and 3 denoting
z, s, and §, respectively are assigned to the curvilinear frame. Throughout this
study, Latin superscripts (or subscripts) run from 1 to 3, while Greek superscripts
(or subscripts) run from 1 to 2, unless otherwise stated.

The strain energy density of a 3D elastic body is a quadratic form of the strains
U= 1Eijk1
=3 EijEn

The material properties are expressed by the Hookean tensor E'*. Following the
classical shell formulation of [60], [61], and [62] the through-the-thickness stress com-
ponents ¢ are considerably smaller than the remaining components 6°?. Therefore
we can set

e =0 (4.5)

so that the strains can be written as

EaB = Yag + {Pas (4.6)
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where 9,45 and p,s represent the in-plane strain components and the change in the
shell middle surface curvatures, respectively. For a cylindrical shell these are related

to the displacement variables by

_ 6'(’]
T -— 5z
Ov, Ov,
2912 = Be -+ —é;‘

_ Ovy + v

Y22 = Gs R

&

P11 = _6_1'_5

8*v 1 (6n 0v,
=55 T IR (73: B 35;)
_ 6 0 (:z_'_g_ )

p2z = 0s? Os \R

where v;, v, and v represent the middle surface displacements in the axial, tangential
and normal directions, respectively as shown in Fig. 4.2. These are related to the

displacement components in Cartesian coordinates by

Ty = uy
dy dz
Vg = ‘uzz + ngs‘ (4.8)
d:z dy
v = uzzs" - 'lla'gs'

where u;, u; and uz denote the displacements along the z, y and : coordinates,
respectively.

The energy density of the 2D elastic body is obtained in terms of v,5 and p,3 by
the following procedure.

The 3D energy is first minimized with respect to €;3. This is equivalent to satis-

fying Eq. (4.5). The result is

- 1
U=minl = -2-D°ﬂ*6eaﬁe,, (4.9)

£i)
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where D> represent the component of the 2D Young’s mocuiu.. The expressions
for DA are given in terms of E*#* by

EaB33Ew’6 33

Dt = B! - — g — Ha GG (410)
where
33
GoPr = pebfus _ EeSprss
= 3333
and H,, are components of the inverse of the 2D matrix ”E“?‘AS ——:——E“zsﬁ:m The

expression for D*?" in terms of familiar Classical Lamination Theory (CLT) param-
eters is provided in Eqgs. (4.43) and (4.44).

The strain c,5 from Eq. (4.6) is substituted into Eq. (4.9). After integration of
the result over the thickness £ one obtains the energy of the shell ¢ per unit middle

surface area
k3
28 = RO 905706 + B2CT 105008 + 550 A Dage (4.11)

where

Cané = ;;_ < DaB-y& >

(vclﬁ‘?é }122 DQB‘)6£ -

12

o66
cy =1

< DaI3'75£2 >

and a function of £, say a(f), between pointed brackets is defined as an integral

through the thickness, viz.,

+h(s)/2
<a>= j (4.12)
h(.)/z

The first term in Eq. (4.11) represents the in-plane contribution, the second the
coupling between in-plane and bending, and the third the bending contribution to

the shell energy.
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For an applied external loading FP,, the displacement field u; determining the

deformed state are the stationary points of the energy functional

I= f@d:cd.s - /P;u;d:cds . (4.13)

4.4 Asymptotical Analysis of the Shell Energy Functional

4.4.1 Zeroth-Order Approximation

Let A and E be the order of displacements and stiffness coefficients ("¢, respec-

tively. Assume that the order of the external forces is

(4.14)

EAhR
reo(2)

This assumption is sl;o“vn later to be consistent with the equilibrium equations.
An alternative would be to assume the order of the external force as some quantity P
and derive the order of the displacements as PL?/Eh from an asymptotical analysis
of the energy functional.

For a thin-walled slender beam whose dimensions satisfy Eq. (4.1) the rate of
change of the displacements along the axial direction is much smaller than their
rate of change along the circumferential direction. That is, for each displacement

component
81),'

<< 81!,'
Or

Bs
Using Eq. (4.7) and assuming that d is smaller or of the same order as R, the

(4.15)

order of magnitude of the in-plane strains and curvatures is

-

A
2912~ 0 (7)
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Since 4;; and p;; are much smaller than 74, 922 and py2, p22, Tespectively, their
contribution to the elastic energy is neglected.
The order of magnitude of the shell energy per unit area and the work done by

external forces is

2
§>~O(EAb)

d?

Since Piu; << @, the contribution of external forces is neglected. Therefore the

energy functional takes the form

L
2l = /o f{‘ihcun(’hz)z + 4"012?2712’7’22 + hcz:zz(,}n)z + 4’?201]212‘712;012

+2h2011222"712{’22 + 2h2012212‘)221012 + hz(_.lzzzz,n?p”
k3 h3 R® .,
+ ‘:'3—6'21212(»012)2 + ‘é’Cz}”zP:zpzz + EC‘; 2(p22)*}dsdx (4.16)

Using Eq. (4.15), the strain-displacement relationships in Eq. (4.7) can be written

as
Ov,
2949 = —
T2 Bs
_ atlz + v
Y22 = 5s R
1 0vy
= o — 4.17
P12 4R 6.5 ( { )
v 8 v



72
The integrand in Eq. (4.16) is a positive quadratic form, therefore the minimum
of the functional is reached by functions v, v;, and v, for which 732 = 720 = p12 =

p22 = 0. From Eq. (4.17) this corresponds to

6111.
ik 0 (4.18)
Ov, v
4 = 4,
s + B 0 (4.19)
2‘U 6 2
— - — (2} = 2
57~ 7 (B) = (4.20)
The function v in Eqs. (4.19) and (4.20) should be single valued, i. e.
v 1 f6v '

The bar in (4.21) and in the subsequent derivation denotes averaging along the closed
contour I whose length is denoted by ! in Eq. (4.21).

Equation (4.18) implies that v, is a function of x only, i.e.
v, = Uy(x) (4.22)

Integrate Eq. (4.20) to get

Or v,

where (x) is an arbitrary function which is shown later to represent the cross-
sectional twist. From Eq. (4.21) and (4.23), one obtains the relation between ¢(z)
and Vs,
(=
o(z) = (%)
Substitute v from Eq. (4.19) into Eq. (4.23), to get the following second-order differ-

ential equation for v,

6 8’02 ) V2 _
5 (RT'?—s—) + R () (4.24)
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To solve this equation, one has to recall the relations between the radius of curvature

R and the components y(s) and z(s) of the position vector associated with contour T

4= _ldy
ds?~ Rds
&y  1d: .
‘:i;z‘ = "I—z'a—s' (420)

It follows from Egs. (4.25) and (4.4) that % and gf are solutions of the homogeneous
form of Eq. (4.24) and v; = p(z)r, is its particular solution. The general solution is
therefore given by

dy z

vy = Uz(l')z- + Us(z) =5 + p(z)ry, (4.26)
s ds

where U, and U; are arbitrary functions of z. Substitute from Eq. (4.26) into Eq.
(4.19) to get
d= dy

v=U(e) - Us(2)3 = (eI (4.27)

Eqgs. (4.22), (4.26) and (4.27) represent the curvilinear displacement field that mini-
mizes the zeroth-order approximation of the shell energy. Using Eq. (4.8) the curvi-

linear displacement field is written in Cartesian coordinates as
u; = Uh(z)
uy = Ua(z) ~ zp0(x) (4.28)

uz = Us(z) + yop(x)

The variables U;(z),U(x) and Us(z) represent the average cross-sectional transla-
tion while ¢(z) the cross-sectional rotation normally referred to in beam theory as
the torsional rotation. This displacement field corresponds to the zeroth-order ap-
proximation and does not include bending behavior. For a centroidal coordinate

system U,(z), Uz(z), Us(z) and ¢(x) can be expressed as

Ui(z) =



U(z) =
Us(z) =T (4.29)
)
plz) = —=

4.4.2 First-Order Approximation

A first-order approximation can be constructed by rewriting the displacement field in

Eqs. (4.22). (4.26) and (4.27) in the form

vy = Uy(z) + wi(s, )

d d:z
vy = Us(z) js’ + Us(z) = + pla)r, + w(s,7) (4.30)
. dz d
v=Us(z) - = Us(2) 72 ~ ple)me + w(s, )

where w;,w,; and w can be regarded as correction functions to be determined based
on their contributions to the energy functional.
Substitute Eq. (4.30) into (4.7) to obtain the strains and curvatures in terms of

the displacement corrections

5,4+ 2w
711 = 5z
o ow . ow
2m2 =272 4+ — 4 2912, 2312 = —
Or b5
° - . Ow, w
Y22 = Va2 + Y22 ’722=-(—9-:s—+-1—2-
8w
P11 = Pn + = e (4.31)
8w 3 aw, . 1 6w,

P:z—P12+83 18 Bz +p12 5, Puz= i Bs

-;J + R . 62‘UJ 8 (‘wg)
P2 =Fa2tp22 5 P2 = as?  8s \R
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where 7%, and P°,g are the strains and curvatures corresponding to the zeroth-order
approximation. These are expressed as

o , A
S =Ul(z) ~ O (I)

° dy d-‘: A
- ]'l II / ~ -
2712 [2(2')-——ds -i-l:,(:t')—-ds + ¢'(z)rn ~ O (L)
";22 =0
o d- dy A
= UMNx)— = [T )2 - " ~ f— 2
P11 lz(f)ds la(z)ds @' (z)r ~ 0O (12) {4.32)
] 1 dy d.‘: A
= U - Tipy— ! - ~ —_
hia= 15 lz(z)ds+l3(r)ds+tp(m)rn] (<) O(dL)

P22 =0

The prime in Eq. (4.32) denotes differentiation with respect to z. Among the new
terms introduced by the function w; the leading ones are denoted by superscript * in
Eq. (4.31). The order of u; is (-Af—'), this is derived from Egqs. (4.31) and (4.32) where
it is seen that the leading terms 24,, and p,, are of the same order of magnitude as

27°, and P°, , respectively, i.e.

ds
- 1 0w, A
b= img ~ O () (4.33)
Therefore,
Ad
w, ~ 0 (—1—) (4.34)
An alternative approach is to assume the order of w; as (9;) and verify this assump-

tion, as shown later, once w; is determined. The order of magnitude of the remaining

leading terms in Eq. (4.31) is as follows

o)



A :
S~ = 4.35

p22~ 0 (dL) (4.33)
The energy functional can be represented by @ (911,272,722, £11,P12,022). By

keeping the strains and curvature associated with the zeroth-order approximation

and the leading terms contribution over the other terms {i.e., by dropping the terms

Suw; Buw; &w Sw 1 6w, : . :
vw, vtuw; cu¥ —_ = g2 -
By 32y 5a7s and o= — ;r a2 in Eq. (4.31)) the energy function can be written as

(711,212 4+ 272,04+ 422, P11, P12 + 12,0 + p22)
The interaction terms associated with £°;; and £°;,, namely
o, o 20 20
hP11%12, hP1aA22 . RP11p1ay REP11f2s

[+] " © . © . Lo} .
hP12912 , RP12722 5 h2P12pra s hPPrafas

are of order (%) or smaller. They are neglected in comparison with the following
terms

© . © . [« . 0’ -

Y112, M11%225 Y122 V12722 (4.36)
of order (%;—). Similarly, the contribution of the work done by external forces, Pu,, is
neglected since its order is (Ehf—:(%)) in comparison with the order of the remaining

terms in the energy functional (Eh %;) Therefore in order to determine the functions

w; one has to minimize the functional

[+ © " n R R
f‘l’('fn, 2712 + 212,922, 0, P12, P22} ds

If the rigid body motion is suppressed the solution is unique. The terms p;,, p;, are
essential to the uniqueness of the solution; however, their contribution to the energy.

expressed by the interaction terms

. (=] - [+ R -] . O
hp12011,hp12712, Riaa Y11, Bp2aTys



-‘--

is of order (-‘2—:(5)) or smaller, and is consequently dropped in comparison with the
membrane contribution listed in (4.36). This aspect is discussed by Berdichevsky and
Misiura [63], with regard to the accuracy of classical shell theory. Therefore, the shell

energy can be represented by
L ° o
I - A f@(‘h],?')l? + 25127'}22? 0,090) d‘SdT (437)

It is worth noting that the bending contribution does not appear in Eq. (4.37). That
is, to the first-order approximation the shell energy corresponds to a membrane state.

The first variation of the energy functional is

aq) 81()1 84) au|2 ur
o= '/ f{ 9(2m32) ( s ) + 3.7.226 ( 5s T )}deT (4.38)

= N;, and % = N,,, Eq. (4.38) takes the form

(6(611’2) -+ -1—5uV) } dsdr

Recall that 6(2-7 )

e

Set the first variation of the energy to zero, to obtain the following

O0s R

0Ny,
ds 0
0N,
s 0
Na;
— O
R
which result in
Ni; = constant (4.39)
and
Ny =0 (4.40)

This is similar to the classical solution of constant shear flow and vanishing hoop

stress resultant. By setting Nj; fo zero the energy density is expressed in terms of
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711 and 732 only
2¢; = min2¢ = min hC* 0006 = A(s) (1) + 2B(s)mma + C(s)(m2)® (4.41)

The variables A(s), B(s) and C(s) represent the axial, coupling and shear stiffnesses,
respectively. They are defined in terms of the p"‘s"'b as follows

(< D1122 >)2

A(s) =< D' "Tffﬁz?")_ ~ O(Eh)
1122 1222
B(s) =2 [< pizs =0 » 1;:22D> >} ~ O (Eh) (4.42)
< D1222 > 2
C(s)=14 {< D2 > ~‘(-—2—5§-5§§—;-)‘] ~ O(Eh)

where the 2D Young’s modulus D*#*® are expressed in terms of the Hookean tensor
E=2" in Eq. (4.10). The pointed brackets denote integration over the thickness as
defined in Eq. (4.12).
For convenience, D**** is given in matrix form as

D)= [@] -2 (7] ] " [0 + 0] @] [e1 (443)

where pun puz:  pns

D)= | pn22 pwe pum

piz  pzz
[Qu @ Q6]
[Ql] = —Q—u 622 aze
.?m ?26 ?ss.
(@15 @15 Q]

[Qz] = .@23 Q2 524 (4.44)
.‘636 a—ae 546.
r633 _Q_ss 536'

[Qs] = _Q-ss -Q-ss 645

;.636 645 -Q-44.
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613 _Q—za -Q—as
[Q‘] = -Q_:s —Q-zs —6756

: Qu Oy Qe
The indices adopted ir Eq. (4.44) follow the convention of Ref. [50]. The bars over

the reduced stiffness coefficients Q;; of Classical Laminate Theory, Refs. {19] and
[50], indicate that these quantities are to be obtained through appropriate coordinate
transformations. |

Equation (4.41) indicates that, to the first-order, the energy density function is
independent of functions w; and w. That is, the in-plane warping contribution to
the shell energy is negligible. The function w; however, can be determined from Eq.

(4.39) and (4.41) and by enforcing the condition on w; to be single valued as follows

(B(s)111 + C(s)932) = constant (4.45)

Substitute from Egs. (4.31) and (4.32) into (4.45) to get

1 611’1
- 7! —
2.B (l](r)-i- e )

1 . dy ,, dz , fw, Owy
v + U {r)— et et ) RO : ’
+ 4( (l 2(r)ds + la(:r)dx + @' (z)ra(s) + e + s ) constant {4.46)

Following the relations in Eq. (4.15), the term a—g‘f is neglected in comparison with
%“-}. Moreover, the term %Ba—g‘f- in Eq. (4.46) may be neglected in comparison with
%C%”;’-. This is possible, if |B| is less or of the same order of magnitude as . For
the case when |B| >> C additional investigation is needed. Since the elastic energy
is positive definite, B> < AC, and B could be greater than C only if A >> C. In

practical laminated composite designs |B| < C as the shear stiffness is greater than

the extension-shear coupling. Therefore, Eq. (4.46) becomes

1 . 1. 1 dy ! dz ' 0w, _ -
-Z-BDI(::) + ZC (Lz(z)zs- + Ua(z)a—m— + @'(z)rn(s) + o) = constant  (4.47)
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Equation (4.47) is a first order ordinary differential equation in w;. The value
of the constant in the right hand side of (4.47) can be found from the single value

condition of the function w;:

(%’) =184 0 (4.48
The solution of Eq. (4.47) is determined within an arbitrary function of z. This func-
tion can be specified from various conditions. Each one yields a specific interpretation
of the variable U/;. For example if W7 = 0 the variable [7; = 7] according to Eq. (4.30).
The choice of these conditions does not affect the final form of the 1D beam theory

and therefore will not be specified in this formulation. The result is the following

simple analytical solution of Eq. (4.47)
w; = —yUy(z) — 2Us(z) + G(s)¢ () + g () (=) (4.49)

where

0
_ _oBl) -1 L
b(S) - ”2(’.(3) ( - ("(S) €« = ) n (4'50)

The area enclosed by contour I' is denoted by A, in Eq. (4.50). It is seen from expres-
sion (4.49) that w, is of order (911) and relation (4.34) is justified. The displacement
field corresponding to the first correction is obtained by substituting Eq. (4.49) into
Eq. (4.30) and dropping w; and w since their contribution to the shell energy is negh-
gible compared to w;. The result referred to as the first-order approximation is given
by

v = Ui(z) = y(s)Us(z) = 2(s)Us(z) + G(s)p'(2) + g1 (s)U;(z)

d dz
v = Uz(z)d—i’ + Us(z)- + el)rn (4.51)
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4.4.3 Second-Order Approximation

Following a similar procedure to the one described in section 4.4.2, a second-order

approximation can be constructed by rewriting the displacement field in Eq. (4.51)

in the form

vy = Ui(z) — yUy(x) = zUy(x) + G(s)p'(z) + g1 (s)Uy(7) + tin(s.7)

d dz

vy = Up(2) =2 + Us(z) = + @(2)rn + a(s, 2) (4.52)
ds ds
dz d; .

v=Uslz) 7 = Uala) 32 = pla)r + (s, )

where w,,w, and @ can be regarded as correction functions to be determined based
on their contributions to the energy functional.
Substitute Eq. (4.52) into (4.7) to obtain the strains and curvatures in terms of

the displacement corrections

v 9,
1=+ Bz
o a“z’z 2 2 aﬁ’l
2712 = P10 + e +291, 5 2932 = Be
. - 2 61?2 ‘KI’
Y22 =22+ Y22 s V22 = '5;’ + "1'2’
. 8*w
P11 =pu+ pe (4.53)
6211‘ 3 31112 L3 1 ad’l

P2=Pet o T TR G TP 0 P2 R Er

= Bt 5 ;.  &w 6(152)
P22 = P22 p22 ) p22 - 852 65 R

where 4,5 and p,s are the strains and curvatures corresponding to the first-order
approximation. These are expressed as
(&) (&) (&)

Famthmn f—';l“"N F"-‘;}"\ " "
Y = Uy(z) - yUy () — 2Us () +G(s)e"(2) + 9:(s)Uy ()
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~ — ’ d91 r A)
Y22 = 0
~ H d: 1 dy H A
pu = Ufle) 1 = U3(2) 8 — ¢'(2)r ~ O (F) (4.54)
5 1 dg; _, 1 24, , A
ey (4R T 1) lz) ~ (dL)
P22 =0

The terms written over the overbraced expressions in Eq. (4.54) denote their order.
Among the new terms introduced by the function w; the leading ones are denoted by
superscn"pt: in Eq. (4.53). The order of w; is assumed to be

d2
@ ~ 0 (‘;2 ) (4.53)

Such an assumption will be justified later. Therefore, the order of magnitude of the

leading terms, Eq. (4.53), is as follows

: : Ad
Y12 ~ V22 ~ O (—)

L2
3 5 A
Prz ~ P2y ~ O (L—) (4.56)

The energy functional can be represented by @(~11,2712, 722,011, P12, 022). BY
keeping the strains and curvature associated with the first-order approximation and

the leading terms contribution over the other terms (i.e., by dropping the terms %—3,

%‘%3, %%, and g:g; - ;%%‘I’j in Eq. (4.53)) the energy function can be written as
§(;;1132";12 + 2;"1250 + :7229 ﬁllsﬁn + 51270 + ;’22) (457)

In the following, the order of magnitude of the energy due to bending, i.e. due to gy,

P12, Py2, a0d Py, 15 investigated.
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The interaction terms associated with g;,, namely

ko2, P11 22 hzﬁuf’;z s hzﬁnf’zz
are of order (-A—;-?‘i) or smaller. They are neglected in comparison with the following

membrane contribution to the energy

~ 0 (%—2;—‘3) associated with U’} and ¢’

Y1712 M1Y225 Y1212 5 F12722 Ry . (4.58)
~0 ( T ) associated with U} and U7}
The interaction terms due to the bending curvature g,, are
“ - 2h
hp12919 s Rp12990 ~ O (—-L-S-) associated with U] and ¢’ (4.59)
. . A%d [ R? . .
hzﬁuplz, hzﬁlzpzz ~0 [—fé- (ﬁ)] associated with U/} and ¢’ (4.60)

These terms are of higher order in comparison with the membrane contribution asso-
ciated with U] and ' in Eq. (4.58), and may be neglected. The remaining interaction

terms associated with p,, and p,,. namely

~0 (%’-’) associated with U] and ¢

’ﬁllf.’lz 3 h511ﬁ22 ) h'hhzl"n ) }ﬁlzﬁzz (4-61)

~0 (A;_.h d) associated with U') and U7}
are of higher order when compared to the corresponding membrane ones, listed in
(4.58). Therefore in order to determine the functions w; one has to minimize the shell

energy expressed by

L - -
1= [ § @511, 22 + 2312,522,0,0,0) dsdz (4.62)
0

The contribution of the new corrections in the work done by external forces is neg-
ligible compared to the first-order approximation. Consequently its contribution is
neglected in Eq. (4.62). It is worth- noting that the bending contribution does not
appear in Eq. (4.62). That is, to the second order approximation the shell energy

corresponds to a membrane state.
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The first variation of the energy functional is

od aﬂvl od 6,“2
61 = / /{3(2’712 ( Os ) + 37226 ( 65 )}dez (4.63)

8(27 ) = Nj, and 5;; = Na,, Eq. (4.63) takes the form

b Bdy) ., (B(b@n) 1
51-/0 f{m, = +1\22( - +-E6u)}dsd:r

Set the first variation of the energy to zero, to obtain Egs. (4.39) and (4.40). By

Recall that ———

setting N, to zero, the energy density is expressed in terms of 4;; and ~4;, only as
given by Eq. (4.41). The function w; can be determined from Eq. (4.39) and (4.41)
and by enforcing the condition on w; to be single valued as previously outlined in

section 4.4.2. Substitute from Eqgs. (4.53) and (4.54) into (4.45) to get

2]
em | (2) (1) (3F) (%7) (%9) (,i\)
1’_,\ ,—v-/\\ ,-_-/\_m ,__A_T’ ~— - ’ J‘" 61{)1
3 B |Uj(z) = y(s)U, —z(s)U; + G(s)g"(x) + ga(s)U) (z) + v
r N "
() ¢y (5%) @
l(Eh) ~ dg ou ou
- £ e ( 21 7 2 ! = : .
-f-4 C ¢ (x)+ R Ulxz)+ e P constant (4.64)

Comparing the order of magnitude of each kinematical variable, Eq. (4.64) reduces

to

IU{(r S)U" )U y

+ - C' ()+ U' z)+ -%1:;—1- = constant (4.65)

Using the single value condition of function ,, the following simple analytical solution

of Eq. (4.65) is obtained

Wy = g2U7(2) + gs(s)Us(2) . (4.66)
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where
s E- -
als)=-[ {b(r)y(r) - —g’-c(r)]df ~0 (&)

gs(s) = _/0' [b(r)z(r)-— gc(‘r)] dr ~ O (d’) (.4.67)

It is seen from expression (4.50) and (4.67) that G(s). gi(s), g2(s) and g3(s) are

single-valued functions, with

G(0) = G(I) = ¢:(0) = g1(!) = g2(0) = gao() = g5(0) = ga({) = 0
Using Eqs. (4.66) and (4.67), w; is found to be of order (953) and the assumption in
Eq. (4.55) is justified.
4.4.4 Convergence of Displacement Field

The displacement field corresponding to the second correction is obtained by substi-
tuting Eq. (4.66) into Eq. (4.52) and dropping w; and w since their contribution to

the shell energy is negligible compared to w;. The result is

vy = Uj(x) = y(s)U,(z) — 2(s)5(z) + G(s)¢' ()

+9:1(8)U3(2) + ga(s)U7 () + ga(s) 5 ()

dy

dz
] _ .
2 T Ua(@)gg + ez (4.68)

v = U2(7)

-~

dy
v = [ -—_ 11 = - .
{2(I)ds la(r)ds tp(l‘)‘r,

A third cycle is carried out, however no additional terms of the same order in the
energy functional result as shown in the Appendix, and the final displacement field
converges to the expression given in Eq. (4.68).

The underlined terms in Eq. (4.68) correspond to the classical theory of extension,
bending and torsion of beams. The additional terms é,(s)Ul' » 92(s)U, and gs(s)Uy

in Eq. (4.68) represent warping due to axial strain and bending . These new terms
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emerge naturally in addition to the classical torsional related warping G(s)¢'. They
are strongly influenced by the material anisotropy, and vanish for materials that are
either orthotropic or whose properties are antisymmetric relative to the shell middle
surface. For these layups the coupling parameter b(s) defined in Eqs. (4.50) and
(4.42) vanishes. The significance of the axial and bending-related warping terms and
their effect on the accuracy, is shown in the applications of Chapter V. Moreover, the
expression for torsional related warping G(s) differs from the work of Refs. [30] and

[42]-[46]. A comparison of these expressions is presented in section 4.6.

4.4.5 Strain Field

We now substitute the displacement field of Eq. (4.68) into the in-plane strain com-

ponents of Eq. (4.7), while using Eq. (4.50), to obtain

(%) (27 (‘z‘r) (3F)
P —— ,__/__\
71 = Ul'(:r)—yU;( ) ( ) (s)p ( )
(2 ( ) ("

’_"‘,,— — ’—",7;‘
+ g1(s)U () + 92U, () + g3 U5 ()

(%) ($) 4D (@f)
24, d dgz .
2 = Zep(e)+ LUl + (e + Lpyia)
Y22 =0 (4.69)

The terms g, U/, g.U,", and g3Uy" can be neglected in comparison with Uy, yU’;, and

2U, respectively. Therefore, the in-plane strain components become

m = Uj(z) = y(s)U3(z) — 2(s)U5(z) + Gy”

2A / dgl 1 92 " dOg
“op'+ 20+ 2Ry 2oy (4.70)

2y =

Yo2 =0
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Using Eq. (4.70), the shell energy density, Eq. (4.41), can be written as

— 2 17} 7 1" typi
28, = A [(U07 + WU + ULV +(Ge"): —29Uj Uy = 22U,

a%d 824 8242
b i I

) HyprH o ' .
+ 22U " +2y=U Uy — 2yGU, " - 2:GU "

ey
(%)
S 4 d d ’—Z“_‘
+ B _511_([,1,)2 g'i (I/”) ,__9_3( 71/) up”
ds ds
2‘45 - ' dg? 1222 dg3 tyyit 2A n /
— T il 5 5 5§ rhprie L 2 T
+l“dl¢+dllz+dl(' lccl
dgl Hyrt dg3 nypn 24 " / dgl Hyrt
_ o /r ’r 14 f v r r
U UL~y =2 UL esly! - === U]
(%) (-"ﬁf) ()
d " d  d " d
92[71117114_ ey 9 Il(rll_*_G g2 ul-ru Peptad gs "l T
ds ds
[ (%)

1 2/15 ' d91 2 dg2 1 : dg3 " 2
- C i & 4 7 T
T3¢ (zzc“")“L(dsl) (dl P

)

b

() () (

X
4A dgl 1 / 4A dg2 lll 4A dg3 TN
s Y T o P T O e
dgl dg? 1 II dgl dg3 ] u dg2 dga " -
T 3 .71
+2 2 Ry uy 4 2T Ry 4 92 SRy (4.71)

where the underlined terms are associated with the Gy contribution in Eq. (4.70).

These terms are of higher order and raay be neglected in comparison with the remain-
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ing overbraced leading terms, as shown in Eq. (4.71). Therefore, one may drop G"

from Eq. (4.70), and the final expressions for the in-plane strain components, using

Eqs. (4.50) and (4.67), become

m = Uy(z) = y(s)U;(x) — 2(s)U5 ()

24, ,
2m2 = Tc(s)‘P + [b(s)—

It is worth noting that the vanishing of hoop stress resultant in Eq. (4.40) and hoop
strain in Eq. (4.72) should be interpreted as negligible contribution relative to other
parameters. The longitudinal strain 4, is a linear function of y and =. This result
was adopted as an assumption in the work of Ref. [29].

In the present formulation, parameters A, B and ' where assumed to be of

the same order. However, the results are valid for configurations which satisfv the

é-¢i<<] £i<<1
C\L C\L

4.4.6 Constitutive Relationships

following inequalities

Dropping the underlined terms in Eq. (4.71) and integrating over the shell middle

surface to get the energy of 1D beam theory

—

1= /0 “ & - / Puidzds (4.72
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where

& = i [CnnlT])? + Carl @) + Casl Uy + Can( U5 )]
+CU " + CU U, + C UL U,
+Ca3p' Uy + Coap'Uy + Cag U Uy (4.74)
Explicit expressions for the stiffness coefficients C;; (i, 7 = 1, 4) are given in Eq.
(4.78).
The constitutive relationships can be written in terms of stress resultants and kine-
matic variables by differentiating Eq. (4.74) with respect to the associated kinematic

variable or by relating the traction T, torsional moment M, and bending moments

M, and M. to the shear flow and axial stress as follows

g‘fﬁ {fondgds = /N,de
M, = & = f/aur,,(.s)dfde f]\n'r,,(.s

M, = af’,f, = ffau-dgds = -f]\u. (4.75)

M. 621:// - f/allydfdc = /Any

The shear flow le is derived from the energy density in Eq. (4.45) and the axial
stress resultant N,; is given by

0%,
Ny = =
" 0

A(s)ym + B(s)ne (4.76)

and the associated axial and shear stresses are uniform through the wall thickness.

Substitute Eq. (4.72

[ —g

into Eqs. (4.45) and (4.76) and use Eq. (4.75) to get
T ) [Cu G Ciz Cu] (U]
M, Ciz Cap Caz Cauf | ¢
M, Cizs Cas Css Cse| | Uy
| M Ciua Ca Ca Cu) \ UG
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where expressions for the stiffness coefficients C;; (7, j = 1, 4) in terms of the cross
section geometry and materials properties are as follows

due to gy U

_ B? lf(B/C)dsr
Cll-‘{(A—F)dS+W
Cir = §(B/C)ds
127 6(1/C)ds
due to gﬂqnd PR
. B* . §(B/C)ds §(B/C)=ds
Cha= —f(A——é—)-ds— Vg

due to g1 U] and g, U}

§(B/C)ds §(B/C)yds
$(1/C)ds

2
014=—f(A-%)yds-
1 2
—_—_f(l/C')dsA' (4.78)
$(B/C)zds
$(1/C)ds
_ _§(B/Cyds
#TTF(/Cyds

due to galt'y’

Co =

0232"

C A,

= B -2 [J-‘T(‘B/("):d.s}2
033 - f(A - ?u—)- ds + W
due to g;b’a’: and gy U}
B B/C)yds §(B/C)-d
G = (A= Frly=ds + = ;y(ls/cf)(ds/ S
due to g U7}’
_ B, [$(B/Clyds]
s f(A B _C_'-)y dot $(1/C)ds

The out-of-plane warping contribution to the stiffinesses due to the axial strain (i.e.,
due to g;U;), bending about y axis (i.e., due to gsUy'), and bending about z axis (i.e.,

due to g,U;') is shown by the overbraces in Eq. (4.78).
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The coefficients C;; (i, j = 1, 4) can be expressed in terms of the in-plane axial

stifiness coefficients A;; of Classical Lamination Theory (CLT) if one neglects the
through-the-thickness contribution to the stifinesses in Eq. (4.78). The result is
Eh o (Ko Ea)ds)
(lyy = K 12 ds 12 »
O = f (K = s+ et

f (1\'12/1\'22 )ds
Cyp = 24, -
12 $(1/K3)ds

2 ‘ ' ¥ ne J2ds
(,13__{ I‘ll :12) ds — f(Alz/I‘ﬂ)ds f(An/I‘n)"d*

2 §1/Kpds
Coa= = f (K - Afz Jyds — & (Kw/h'zz;alls/ I\i Eiw/ffzz)yds
1
Ca2 4A3m2_
o= 24
O N
Csz = f(Ku - %):2ds 4 [f(;112//1€222)53ds]2
Cau = f (K - g—:)y ds + $F/ ﬁ'z:}yf;ﬁi(j;'u/zfﬂ )=ds
Coa = f(K“ - %)y ds + [f(;‘;llz//}izzz)ids]z

where, the stiffnesses K;; are

Az
A A
Ky = A6 — ;: 2 (4.79)
22
Ae)?
Koy = Ags — (Aze)
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4.4.7 Equilibrium Equations

The equilibrium equations are derived using the principle of virtual work. The vari-

ation of the internal strain energy is

L .
6(’ = ,/0 f(]\;:&‘)zt + 2A720574=8) dez‘

Using the strain displacement relations, one-dimensional stretching. twisting, and

bending generalized internal forces are defined as

T= j[ N,ods
M, = 24.N,,
1, = - f Nyezds

= - f N:.yds

Consider a beam subjected to external forces and moment resultants T, M., M, and

M. at both ends. Moreover, surface tractions P,, P,, and P. are applied along the

z, y, and = directions, respectively. The variation of the virtual work of the external

forces can be written as

W, = TeU\E + BT 60|k — M 6U3\L — M.8ULE

+/o [(f P’d“) 80 - (){ Pﬂ/ds) §U, ~ (f P=~ds) 6Us + (fP ds) U,
~ (§ Pizds) b — (f P.ds) 603 = (f Pyds) 6] d

Using the principle of virtual work
§U = §W,
one obtains a system of linear equilibrium equations as follows

T'+fp,ds=o
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M+ f(P;y—- P,z)ds = 0

M) +(§ P.2ds) + { P.ds =0 (4.80)

M+ ( f Pyds) + f P,ds =0

One of the member of each of the following four pairs must be prescribed at the
beam ends :

Torli, M,orp, MyorU,and M. or U; (4.81)

4.5 Summary of governing equations

The development presented in this work encompasses five equations. The first. is
the displacement field given in Eq. (4.68). Its functional form was determined based
on an asymptotical expansion of shell energy. The associated strain field is given in
Eq. (4.72) and the stress resultants in Eq. (4.45), (4.75) and (4.76). The fourth, are
the constitutive relationships in Eq. (4.77) with the stiffness coeflicients expressed as
integral of material properties and cross sectional geometry in Eq. (4.78). Finally the
equilibrium equations and boundary conditions are given in Egs. (4.80) and (4.81),
respectively.

In the present development the determination of the displacement field is essential
in obtaining accurate expressions for the beam stifinesses. A comparison of the derived
displacement field with results obtained by previous investigators is presented in the

following section.

4.6 Analytical comparison with previous results

In anisotropic materials the importance of physical effects such as transverse shear

strains is influenced by the relative magnitude of elastic moduli. For example in
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laminated composites the extensional modulus along the fibers direction is usually
large relative to the shear moduli and consequently transverse shear effects can be
significant. Several theories have addressed this issue by including transverse shear
in the assumed displacement field [30], and [42]-[46]. The displacement function
Eq. (4.68) derived from the asymptotical analysis does not include transverse shear
strain terms explicitly. This is a consequence of the vanishing of the through-the-
thickness stress component o** in Eq. (4.5) or (4.9) where the transverse shear strains
are expressed in terms of other strain components. Their effect however is implicitly
included in the stretching-related warping term g,(s) and the bending-related warping
terms g,(s) and g;(s) as illustrated by the applications of Chapter V.
| Rehfield’s theory [30] recognizes the significance of transverse shear strain in thin-

walled composite beams. Its displacement field is given by
vy = Ui(z) — y(s) [U(x) = 292y (7)] = 2(8) [Us(2) = 292:(x)] + g(s, )
uy = Uy(x) — 2(s)p(z) (4.82)

ug = Us(z) + y(s)p(x)

where 4,, and 4, aré the transverse shear strains. The warping function g(s,zr) is

given as
g(s,z) = G(s)¢'(=) (4.83)

with

G.'(s) = ZA,:; - /0‘ ro(7)dr (4.84)
A comparison of the displacement fields in Eq. (4.68) and (4.82) shows that the
warping function in Rehfield’s formulation includes the torsional-related contribution

and does not include explicit terms that express the bending-related warping. The

torsional-relaied warping function G(s) in Eq. (4.50) is different from the function in
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Eq. (4.84). The two expressions coincide when ¢ = constant that is, when the wall
stifiness and thickness are uniform along the cross section circumference.
The torsional related warping function in Eq. (4.84) was modified by Atilgan [44],
and Rehfield and Atilgan [43] as

R ] 2‘4‘
(s) =/0 [zc—c‘ —'r,,(‘r)]d‘r (4.85)
1
where
1
0= —@ 7 (4.86)
Ao =
and
2
Ay Aw] _An- (ﬁ';) A - —LA’::"] (4.87)
- , .
A Age| [ Are— At Ase — 12>

The A;; in Eq. (4.87) are the in-plane axial stiffnesses of CLT, Refs. [19] and [50],

they are related to the modulus tensor by
A11 =< Ellu >, .412 =< E1122 >, A22 =< E2222 >

A16 =< Elll? > A26 =< E1222 > AGG =< E1212 >

A comparison of the modified torsional warping function in Eq. (4.85) and G(s) in
Eq. (4.50) shows that they coincide for laminates with no extension-shear coupling
( < D2 >=< D22 >= (, in Eq. (4.10) ). For the case where the through-the-
thickness contribution is neglected in Eq. (4.10), this reduces to 4;6 = Az = 0.

The warping function obtained in Refs. [42] and [46] for composite box beams is
identical to the expression of Refs. [43] and [44] in Eqs. (4.83) and (4.85).

An assessment of all the previous warping expressions can be made by checking

whether they reduce to the exact expression for isotropic materials (see, for example,

Ref. [59])
(:?(s) = /o' [2—Aec2 - r,,('r)] dr (4.88)

le;
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with

where y is the shear modulus.
For isotropic materials the in-plane coupling b is zero and consequently g,, g» and
g3 in Eqgs. (4.50) and (4.67) vanish. That is the warping is torsion-related and reduces

to G(s)y'. Moreover, the shear parameter ¢ is equal to and the expressions for

1
4uhis)
G(s) and (;’(s) in Eqs. (4.50) and (4.88) coincide.

Rehfield's warping function in Eq. (4.84) coincides with Eq. (4.88) when the ma-
terial is isotropic and the wall thickness is constant. Also the works of Refs. [43], [44]

and [46] reduce to Eq. (4.88) for isotropic materials.

4.7 Closing Remarks

The major advantage of the approach adopted in this work is the fact that the dis-
placement function emerges as a result of the asymptotical analysis of the shell energy.
The influence of the material’s anisotropy is accounted for in a consistent manner and
the deformation modes are determined on the basis of their contribution to the asso-
ciated energy. Two new contributions to the warping emerge due to stretching and
bending. They are of the same order of the classical torsional-related warping. Their

significance is illustrated in the applications provided in the next chapter.



CHAPTER V

APPLICATIONS OF ANISOTROPIC THIN-WALLED
BEAM THEORY

An evaluation of the variationally consistent theory developed in chapter IV is
provided. The theory is ;a.pplied to beams with arbitrary closed cross-sections made
of laminated composite materials with variable thickness and stiffness subjected to
axial load, torsion and bending. A comparison of flexibility coefficients and deforma-
tion with finite element predictions, closed form solutions and experimental data is
performed to validate predictions and isolate the influence of different contributions to
the section warping. In addition to the torsional related warping. two new contribu-
tions namely, axial strain and bending related out-of-plane warping were identified in
the developed theory. Extension and bending related out-of-plane warping are shown
to have a significant effect on the accuracy of predictions. Comparison of predictions
provides also a check of the asymptotical analysis result regarding the contribution
of shear deformation. Although the resulting displacement field does not include
an explicit shear deformation term similar to Timoshenko’s theory, shear deforma-
tion contribution is shown to be implicitly accounted for through the out-of-plane
warping due to extension and bending.

Two special layups: The circumferentially uniform stiffness (CUS) and circum-
ferentially Asymmetric stifiness (CAS) have been considered in Refs. [41)-[46] and

[51]. They are associated with different non-classical behaviors. These behaviors are
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shown to be influenced by the out-of-plane warping due to extension and bending in
the next section.

5.1 Effect of Out-of-Plane Warping due to Extension and Bending

5.1.1 CUS Configuration

This configuration produces both extension-twist and bending-transverse shear cou-
plings. The axial, coupling and in-plane stiffnesses A, B, and C given in Eq. (4.42)
are constant throughout the cross section and hence the name circumferentially uni-
form stiflness (CUS) adopted in Ref. [43], [44], {45] and [51]. Such a configuration
is manufactured by wrapping the composite lay-up using a winding technique. For
a box-beam, the ply lay-ups on opposite sides are of reversed orientation, and hence
the name antisymmetric configuration adopted in Refs. [41], [42], and [46].

Since A, B, and (" are constants, the stifiness matrix in Eq. (4.78), for a centroidal
coordinate system, reduces to
(C1y (2 O 0]
Cia €2 O 0
[Ci5] = (5.1)
0 0 C O
0 0 0 Caa

The nonzero stifiness coeflicients are given by

Cn = AI
Cl2 = BA:
C
sz = 'I'Af (5-2)
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where [ denotes the length of the closed contour I'. For such a case the out-of-plane
warping due to axial strain vanishes and g; does not aflect the response. This is
shown by considering A, B, and (' as constants in Eq. (4.78). The influence of the
out-of-plane warping due to bending in the z-z and z-y planes are expressed by the
underlined terms in the expressions of C33 and (44, respectively. These terms are

significant in predicting the deflection of antisymmetric configurations.

5.1.2 CAS Configuration

This configuration produces both bending-twist and extension-transverse shear cou-
plings. The stifiness A is constant throughout the cross section. For a box beam, the
coupling stiffness, B, vanishes for the vertical members, while its values in the top

and bottom members are of opposite signs

Btop = - Bbottom

Boertical members = 0 (5.3)
and hence the name circumferentially asymmetric stifiness (CAS) adopted in Ref. [43],
[44], {45] and [51]. For a box-beam, the ply lay-ups on opposite sides are mirror images.
and hence the name symmetric configuration adopted in Ref. [41},[42], and [46]. The

stifiness (" along the horizontal and vertical members are equal and expressed by

Ctop = Chottom

Cvertical left = Cvntical right (54)

The stiffness matrix, for a centroidal system of axes, reduces to

[C,y O 0 0
0 sz 023 O
[C;_,'] = (5.5)
0 Cus Cis 0
_‘ 0 0 0 'C“J
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The nonzero stifiness coefficients are expressed by

2
C}] = AI — Z%d
't
C, 5
= A
2 2id+a (%)] ¢
B
Chs = : A? (5.6)

2 A(
C'sazAf:zd.s——%—{a— }At

2¢, :d +a (—gf)}
B:d
Cuu= A yds - -

Subscripts t and v denote top and vertical members, respectively. The box width
and height are represented by d and a, respectively. Equations (5.6) are derived by
substituting Eqs. (5.3) and (5.4) into Eq. (4.78) and considering A to be constant. The
underlined term in the expression of the axial stiffness ('); represents the extension
contribution to the out-of-plane warping. The bending contributions to the out-of-
plane warping are represented by the underlined terms in the expressions of C33 and
('4s. For the CAS configuration, bending about the y-axis is coupled with torsion
while extension and bending about the :-axis are decoupled.

In order to assess the accuracy of the predictions and isolate the influence of
stretching and bending-related warping, the present theory is applied to the box
beam given in Ref. [51]. The cross sectional configuration is shown in Fig. 5.1 and

the material properties in Table 5.1.

5.2 Comparison of Flexibility Coefficients

A comparison of the flexibility coefficients S;; with the predictions from two models

is provided in Table 5.2. The flexibility coefficients S;; are obtained by inverting
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Table 5.1: Properties of T300/5208 Graphite/Epoxy

Ey = 21.3 Msi

Ej = E33 = 1.6 Msi
G2 = G13 = 0.9 Msi
Gas = 0.7 Msi

12 = 133 = 0.28

Vg = 0.5

the 4 x 4 matrix in Eq. (4.77). NABSA (Nonhomogeneous Anisotropic Beam Section
Analysis) is a finite element model based on an extension of the work presented in Ref.
[32]. In this model all possible types of warping are accounted for. The TAIL model
is based on Ref. [30], but neglecting the restrained torsional warping. The predictions
of the NABSA and TAIL models are pré\'ided in Ref. [51]. The percentage differences
appearing in Table 5.2 are relative to the NABSA predictions. The present theory is
in good agreement with NABSA. Its predictions show a difference ranging from +0.7
to +3.6 percent while those based on Ref. [30] range from +3.6 to —18.4 percent.
Since the box beam has a CUS configuration, the out-of-plane warping due to
bending has a significant effect on the prediction of the bending fiexibilities (C;n) and
(El‘—‘) as shown in Eq. (5.2). Neglecting g3 and g, in the expressions of C33 and Cyy
leads to values of 0.11424 x 10~% b~ 'in~2 and 0.38410 x 10~* Ib~'in~? for S,; and
S44, respectively. Comparison of these values with the underlined results in Table 5.2

shows a 65 percent increase in the bending flexibilities due to out-of-plane bending



Table 5.2: Comparison of Flexibility Cloefficients of NABSA, TAIL and Present

(Ib, in units)

Flexibility | NABSA | PRESENT % Diff. | TAIL % Difl.
Sy x10° | 0.143883 0.14491  +0.7 0.14491  +0.7
S, x 10* | 0.312145 0.32364  +3.6 0.32364 +3.6
S12 x 10° | —0.417841 | —0.43010 +42.9 | —0.43010 +2.9
Saa x 10° | 0.183684 0.1886  +2.6 0.17294 5.8
Se x 10° | 0.614311 0.63429  +3.2 0.50157 —18.4

related warping.

5.3 Comparison of Deformation

The present theory is applied to the prediction of the tip deformation in a cantilevered
beam made of Graphite/Epoxy and subjected to different types of loading. The beam
has a CUS square cross section with [+12]4 lay-up. The geometry and mechanical
properties are given in Table 5.3. Comparison of results with the MSC/NASTRAN
finite element analysis of Rel. [38] is provided in Table 5.4. The applied axial and
transverse forces are equal to 100 1b, while the applied torsional moment is 100 1b-in.

The MSC/NASTRAN analysis is based on a 2D plate model accounting for both
shear deformation and warping. The predictions of the present theory range from
+1.7 to —0.7 percent difference relative to the finite element results.

The deflection due to transverse load neglecting out-of-plane bending related warp-
ing is equal to 1.341 inch compared to 1.853 inch (38% difference) in Table 5.4. For
a CUS configuration, the extension-torsional response is decoupled from bending as

shown in Eq. (5.2). Since C is constant and g, does not affect the stiffness coefficients,
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Table 5.3: Geometry and Mechanical Properties of Thin-Walled Beam with [+12],

CUS square cross-section

Length = 24.0 in. En = Egz = E33 = 11.65 Msi
Width = depth = 1.17 in. Gn = Gl3 = 082, st = 0.7 Msi
Ply thickness = 0.0075 in. 4, = 33 = 0.05, v = 0.3

as outlined in section 5.1.1, the flexibility coefficients controlling extension and twist
response, Sy;, S12 and S;; coincide with those of Refs. [43] and [44]. As a conse-
quence, the axial displacement and twist angle predictions coincide. However, the
lateral deflection under transverse load differs. The tip lateral deflection predicted
using the theory 6f Ref. [30], which includes shear deformation, and Refs. [43] and
[44], which include a shear deformation correction to Ref. [30], is 1.724 inch resulting
in —7.6 percentage difference compared to the NASTRAN result. This is due to the
effect of bending-related out-of-plane warping on the bending flexibilities 5‘3—; and c%.v
(Cs3 = Cy4 for this case), as shown by the underlined terms in Eq. (5.2).

Figures 5.2 and 5.3 show the bending slope variation along the beam span for
antisymmetric and symmetric cantilevers under a 1 1b transverse tip load, respec-
tively. The beam geometry and its material properties are given in Table 5.5. The
experimental results are reported in Refs. [41], [42], and [46]. The influence of the
out-of-plane warping due to bending is isolated in these ﬁgures.v The bending related
out-of-plane warping, g.U, and g;Uj terms in Eq. (4.68), results in a 91 and 20 %

increase in the bending slope for the antisymmetric and symmetric configurations,
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Table 5.4: MSC/NASTRAN and Present Solutions for a CUS Cantilevered Beam
with [+12]; Layups Subjected to Various Tip Load Cases

Tip Load Tip Deformation % Diff.
NASTRAN  Present

Axial Force Axial Disp. : 0.002189 in. 0.002202 in. | +0.6 %

Axial Force Twist : 0.3178 deg.  0.32325 deg. | +1.7 %

Torsional Moment | Twist : 2.959 deg.  2.998 deg. +1.32 %

Transverse Force | Deflection :  1.866 in. 1.853 in. -0.7 %

respectively. The analytical predictions reported in Refs. {41}, [42], and [46] together
with results obtained on the basis of the analyses in Ref. [30], [43], [44] and the present
theory are combined in Figs. 5.4 and 5.5. Results show that the present theory is
in good agreement with the test data and the closest when compared to the other
analytical approaches which include shear deformation, Refs. [30]. [42], and {46}, and
shear deformation corrections, Refs. [43] and [44].

The bending slope in Figs. 5.2-5.5 is defined in terms of the cross section rotation
for theories including shear deformation. For the geometry and material properties
considered, this eflect is negligible as shown in Figs. 5.4 and 5.5 where the spaﬂwise
slope at the fixed end from theories with shear deformation, is indistinguishable from
zero. The nonzero value shown by the test data may be due to the experimental set
up used to achieve clamped end conditions.

The spanwise twist distribution of symmetric cantilevered beam with [30)¢ and
[45]6 lay-ups is plotted in Figs. 5.6 and 5.7, respectively. The beams are subjected to
a transverse tip load of 1 Ib. Their dimensions and material properties are given in

Table 5.5. Results show that the present theory and those of Refs. [43] and [44] are
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Table 5.5: Cantilever Geometry and Properties

Width = 0.953 in. E;; = 20.59 Msi, Fyy = E33 = 1.42 Msi
Depth = 0.53 in. Glz = G13 = 0.87 Msi, st = 0.7 Msi
Ply thickness = 0.005 in. 14 = 13 = 0.42, 153 = 0.5

the closest to the test data. A similar behavior is found for the bending slope and the
twist angle at the mid-span of the symmetric cantilevered beams appearing in Figs.

5.8 and 5.9. The beams are subjected to a tip torque of 1 lb-in.

5.4 Shear Deformation Contribution

The significance of the out-of-plane warping due to bending is illustrated in Fig. 5.2.
A similar behavior is obtained in Ref. [65] when the shear deformation contribution
is neglected. This indicates that the out-of-plane warping due to bending includes
implicitly the shear deformation contribution. In order to assess this similarity, the
present theory and the numerical work of Ref. [65] are applied to the prediction
of the deflection in a cantilevered beam made of graphite/epoxy and subjected to
a transverse tip load of 1 1b. The beam has a CUS cross-section with [+15]¢ lay-
up. The geometry and mechanical property, provided in Ref. [65], are given for
convenience in Table 5.6. Figure 5.10 shows a similar behavior suggesting that in the
present theory, shear deformation is implicitly accounted through bending-related
warping. The prediction of Ref. [65] are referred to Classical when shear deformation
is neglected. Further evidence could be provided by estimating the equivalent shear

deformation strain. This can be expressed by the slope of the plane that approximates
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Table 5.6: Cantilever Geometry and Properties

Width = 0.923 in. E;y; = 20.6 Msi, Ey; = E33 = 1.42 Msi
Depth = 0.50 in. G]2 = Gm = 0.87 MSi, ng = 0.696 Msi
Ply thickness = 0.005 in. 145 = 113 = 0.3, 193 = 0.34

the cross-section warping and is given [66] by

JyvidA

7. (5.7)

29,y = —

where A and I.. represent the cross-sectional area and moment of inertia about the
s-axis, respectively.

For a CUS box cross-section subjected to a vertical tip transverse load p., the
shear strain distribution across the cantilever length is obtained by substituting the
axial displacement v, from Eq. (4.68)’int.o Eq. (5.7). The result is the following

analytical expression

(L~ zy)had {a® d?
- )M L ed+ ) Saap. .
294y il 3 + ad+ 3 33p: (5.8)
where
Ss3 = Bending flexibility
L = Length of cantilever
z; = Cross-section position measured from the fixed end

h = Laminate thickness
a = Box height

d = Box width
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A comparison of the shear strain 4., over the length of the cantilever with the

prediction of Ref. [65] is shown in Fig. 5.11. The shear strain at the fixed end is

4.5924 x 10~* based on Eq. (5.8) which is within 2 percent of 4.6857 x 10~* calculated
on the basis of Ref. [65].

5.5 Conclusion

The anisotropic thin-walled closed section has been validated by comparison of re-
sponse predictions with finite element solutions, other closed form analyses and test
data. The influence of the two new nonclassical contributions namely, extensional
and bending related out-of-plane warping on the accuracy of the response predictions
is shown to be significant. Moreover, the contribution of shear deformation is shown
to be implicitly accounted for through the bending related out-of-plane warping. and

in-plane warping eflect is found to be negligible.

5.6 Closing Remarks

For anisotropic beams, the major reason for the discrepancy in the predictions of the
analytical models of Refs. [30] and [41]-[46] and the present theory is due to the apriori
assumed displacement fields which neglect the extension and bending-related out-of-
plane warping. The influence of the material’s anisotropy on the displacement is too
complex to cast in a kinematic assumption similar to classical theory of extension-
bending and torsion.

A consistent approach to account for the various behavioral modes associated
with anisotropic beams was adopted in this work. It is based on an asymptotical
analysis of the energy. The influence of the material’s anisotropy on the displacement

and stiffness coefficients was isolated, and by comparison an assessment of previous
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analyses was performed. In particular, this approach accounts implicitly the shear
deformation contribution shown to be significant in previous models. The difference
being the consistent order of magnitude that this contribution is accounted for and

its significance relative to other contributions.
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Figure 5.1: Beam Cross Section
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Figure 5.2: Significance of out-of-plane bending related warping on the bending slope

of an antisymmetric [15)¢ cantilever under 1 Ib transverse tip Load
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Figure 5.3: Significance of out-of-plane bending related warping on the bending slope

of a symmetric {30]s cantilever under 1 lb transverse tip Load
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

This research addresses two key issues for the continuing implementation of com-
posites in advanced structures namely, the understanding of the role of the material’s
anisotropy on its stiffness behavior and its damage modes. An analytical model based
upon a shear deformation theory and a sublaminate approach was developed in or-
der to investigate mid-plane and matrix crack-tip delaminations. This model was
combined with an earlier analysis for mixed-mode free-edge delamination to form an
integrated code for the prediction of damage onset in laminated composites. The
code predictions were validated by comparing its results with test data. Of signif-
icance is the ability it provides for the prediction of damage progression sequence
and corresponding critical strains. Moreover, the effect of hygrothermal stresses on
the strain energy release rate and interlaminar stresses was isolated. The increase
in strain energy release rate and interlaminar stresses associated with curing stresses
can precipitate failure and should be considered for an accurate prediction of failure.

The findings of this research work point to new research inquiries. The first is
characterization and prediction of damage onset and growth under cyclic loading
including the effect of hygrothermal stresses. The investigation can lead to the deter-
mination of composite components’ life and inspection intervals. The second is the
study of the effect of damage modes and their interactions on the vibration charac-
teristics and damping of laminated composites. The result of this investigation will

assess the effect of damage modes on the natural frequencies and mode shapes and
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can lead to the development of Non-Destructive Evaluation methods.

The asymptotical analysis used to develop the thin-walled anisotropic beam theory
provides a rigorous basis for the prediction of the beam stiffnesses and associated
displacement field. Closed-form expressions for the stiffnesses have been developed
and new contributions to the warping have been found. This analysis can be extended
to beams with multi-cell type cross sections and pretwisted configurations. Moreover,
the previous results on the effects of hygrothermal stresses point to the significance
of including their contribution in the thin-walled closed section beam analysis. The
consideration of dynamic and aerodynamic loadings using asymptotical analysis will
provide a rigorous basis for the investigation of the dynamic and aeroelastic response
of composite structures. Finally, the presence of embedded delamination on the
response of composite beams is a first step toward studying the effect of damage
modes on their stifiness and strength. In this respect, the analysis of composite
beams with open cross section can be regarded as the final stage of damage in a
closed section beam.

When accomplished, these recommended research tasks will provide an under-
standing of the eflects of damage on the performance of advanced structures made
out of composite and will lead to the development of reliable design tools to ensure

their damage tolerance.
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Appendix A

Convergence of Displacement Field

In this appendix detailed calculation of the third and final cycle is provided.
Results show that no additional correction terms of the same order in the energy
functional emerge and the displacement field given in Eq. (4.68) is the converged one.

1.1 Third-Order Approximation

A third cycle is carried out by rewriting the displacement field in Eq. {4.68) in the
form

v = Uifz) = y(s)Uy(x) — 2(s)U3(z) 4+ Gls)y'(x)

it

+01($)U1 () + 92($)U5(7) + gs(s)U'5 () + (5. 7)

d d= .
vy = Unp(2) 52 + Us(z) = + @(2 ) + Wa(5, 7) (A-1)
ds ds
d= d .
v = Us(a) = Us(z) 3 = pla)r + (s, )
s ds

where w,,1, and W are correction functions to be determined based on their contri-

butions to the energy functional.

Substitute Eq. (A-1) into (4.7) to obtain the strains and curvatures in terms of

the displacement corrections

y |, Ow
71 =Tt Bz
v L Ow . 0y
2712 = 29, + Bz +2%, 5 2= '5;‘
- 61}-’2 ’i’

Y22 = V22 + V22 =377
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Y 52
P11 = Py 31’2 (A-2)
. 8% 3 fiy - ;1 6wy
Plz-P12+5—s—d;——R;—3—+Pn s P12=4—R'as
14 1 2 82’&' 6 ‘t.i’z
P22 = Pagt P22y Pr2 = '6_35 ~ b (_}‘2‘)

where %’Qﬂ and Baﬁ are the strains and curvatures corresponding to the second-order

approximation. These are expressed as

(£) (8¢ £) (47)
v - /-—-;7—\ f—'jl\—'\ f-—/_\
'711::('() yU() 51‘(]+G()5‘°()
(%) (5)  (af
rH vt} Hi
+ 91(5)[’1(3)+92[’2 (z)+gsl3 ()
(%) (%) (3 (&)
¢ 24, . dgi ., - dgy ., . dgs .,
21, = Tredlm) + TU(e) + U (=) + TR0 (e)
'13’2220
v rit < 1 dy " A
Fu = U5 - el g - '@~ 0 (5) (A-3)
¥ 1 dg;_, 1 24, , A
Do = —— —[] — - )~ —_—
P12 = 4R s 1(‘”(43 Ie © 1)‘”’) O(dL>
522"0

An order of magnitude comparison for each strain and curvature measure shows that

some terms of higher order in :“;n can be cancelled and its expression simplifies to

(¢) (& (£7) (27)
Uy

- r-"'b'\ et N, s e
Y = Ui(z) —yUy(2) = =Us(z) + G(s)p"(z)

Among the new terms introduced by the function w; the leading ones are denoted

by superscript” in Eq. (A-2). The order of w; is assumed to be
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Consequently, the order of magnitude of the leading terms in Eq. (A-2), is as follows

: : Ad?
Y12 ~ 22~ O (_")

13
s . Ad
Pu"’P:z”*O('Zs—) (A -5)

The energy functional can be represented by @ (7,1,2912,722, P11, P12, £22). BY
keeping the strains and curvature associated with the second-order approximation

and the leading terms contribution over the other terms (i.e., by dropping the terms

) :| 2 ..‘ ? ..‘ .-7 - - - .
a—;’j, %—‘;}, 27';, and 5‘5‘3 - é%‘ in Eq. (A-2)) the energy function can be written as

‘I’(:)I'ua?){u -+ 2:)'1270 -+ :fz:,ﬁuaﬁu -+ /.’12-. 0+ 522) (A - 6)

In the following, the order of magnitude of the energy due to bending, i.e. due to j,;.
Bn» f')u, and ;322, is assessed.

The interaction terms associated with g,,, namely

v oz v o2 2y % 2y =
hp11912s RP1 Y22 RP11 P12 BT P11 P2n

are of order (A;f’sdz) or smaller. They are neglected in comparison with the following

membrane contribution to the energy

~0 (—A—Ei'-i) associated with U] and ¢’

- (A-T)
~0 (A_L;!-) associated with U’ and U}’

The interaction terms due to the bending curvature 3, are

A%hd
14
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These terms are of higher order of magnitude in comparison with the corresponding
membrane contribution in Eq. (A-7), and may be neglected. The remaining interac-

tion terms associated with f;, and p,,, namely

~ 0 (A;_fd) associated with U7} and ¢’

O (222) associated with U} and Uy

h511h12 5 P12P12 5 hﬁuﬁj’zz s h312P2 {

may also be neglected in comparison with (A-7). Therefore in order to determine the

functions w; one has to minimize the shell energy expressed by

L v A - -
I= /0 f‘i’ﬁnsy)’u + 29125922, 0,0,0) dsdr (A — 8)

Setting the first variation of the energy functional to zero to get Eq. (4.45). Sub-

stitute from Eq. (A-2) into Eq. (4.45) to obtain

(2) (&)  (3F) (27) (3:)

2 TN T o A Guy
B |Ul(z) - y(s)U; — =(s)U; + G(s)e"(x) + .

O}

) (%) (%) (&
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& a2 \]
e (89) (5F)
dg3 ™ 61“2 6&’1
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1

Equation (A-9) shows that the contribution of w is of higher order in comparison with
all other terms and may be cancelled from the left hand side. Therefcre ne additional

corrections to the displacement field emerges, and the displacement field obtained in
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Eq. (4.68) is the converged one. An alternative is to neglect the terms of higher order

in Eq. (A-9). while keeping the leading @, term, to obtain

1
B0 (=) = y(8)U; — =()05)

dg3 61..1’1
P —U,(z)+ e = constant

dgs

dg,
CLP( )+'—[ﬂ( ) ds

C’

7”
l‘ ——Uy(z)+
(A - 10)
Solution of Eq. (A-10) is determined using the single value condition of the axial
displacement and 1 is found to be a function of z only. Such a function has already

been considered and no new terms of the same order in the energy functional are

generated from the third and therefore final cycle.
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