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SUMMARY

A large amount of data has been generated over the last decade. The size and

dimensionality of the data sets have grown at an unprecedented rate. As a result,

the task of developing methods to analyze and extract information from such data

sets has become crucial. A caveat is that, with the amount of data available one can

essentially discover any pattern one wants to, irrespective of it being true or false.

Hence the challenge is to develop efficient procedure to extract information that is

meaningful from a scientific perspective.

Modern statistical methods provide us with a principled framework for extracting

such meaningful information from noisy high-dimensional data sets. A significant

feature of such procedures is to be able to make inferences from the data that are

statistically significant and computationally efficient. In this thesis we make several

contributions to such statistical procedures. Our contributions are two-fold.

We first address prediction and estimation problems. A particular drawback of

existing approaches is that they are not designed to handle certain non-standard

situations that arise in practice. Specifically, in order to evaluate or train a predictor,

labeled data is required by existing methods. While labeled data is typically expensive

to obtain, it might be relatively easy and inexpensive to obtain large amounts of

unlabeled data. Also, in several situations labeled data may not be available at all,

for example, due to privacy reasons. We develop principled procedures that enable

one to train and evaluate predictors, provably well in those situations. We also

address prediction with large output spaces and develop procedures that predict with

complexity logarithmic in the dimensionality of the output space. Furthermore, we

propose an asymptotically optimal procedure for sparse multi-task learning under a
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random effects model.

We next address the problem of learning meaningful representation of data. The

task of feature design for the subsequent estimation/prediction problem has been

shown to be of at most importance to gain better performance. Towards that, we

develop a new procedure for obtaining sparse representations of data, that takes

into account the spatial structure of the data space. We also develop a method to

obtain sparse representations for several related tasks with shared structure. Next,

we develop a model-free method for selecting a relevant subset of features given a

large number of features.

In summary, our contributions add to the existing set of statistical procedures for

extracting meaningful information from large data sets. It also extends the applica-

bility of such procedures to several previously unstudied scenarios and helps obtain

better performance.
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CHAPTER I

OVERVIEW OF THE THESIS

1.1 Introduction

The focus of this thesis is on developing and analyzing statistical machine learning

algorithms for data analysis. Two major components of such information systems

are data and models. Modern data sets have grown in size at a relatively fast rate.

They are large-scale and often high-dimensional. The success of building informa-

tion systems capable of deriving meaningful insights from such modern data sets, lies

crucially on coming up with sophisticated models of learning. Under the well estab-

lished minimax framework for statistical inference, one could note that simple models

are fundamentally limited in their information extraction capabilities and existing

non-parametric methods are inefficient in high-dimensions, as they suffer from the so

called curse of dimensionality.

The opportunities provided by the data deluge and limitations exhibited by the

simple models, naturally point at developing more sophisticated, yet efficient models

of learning in high-dimensions. Since the developed models would have limited usage

if they are computationally demanding, computational feasibility is a fundamental

requirement. The thesis aims at developing such computationally and statistically

efficient estimation procedures based on matrix and functional models for analyzing

large-scale high-dimensional data sets.

1.1.1 The Machine learning pipeline

A standard and highly successful framework for applying statistical learning tech-

niques for information extraction problems involves two steps: 1) estimation/prediction

given the features and 2) designing features or learning representations from data.
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More precisely, given input X ∈ X and output Y ∈ Y with a joint distribution

P(X, Y ), the task of prediction is to find a measurable mapping f : X 7→ Y that

minimizes the risk given by EL(f(X), Y ), where L is a (prediction/estimation) loss

function that penalizes the error made by the mapping f .

In practice, we do not observe the distribution P(X, Y ), but we are given access

to training samples {X(i), Y (i)}ni=1, with X(i) ∈ X and Y (i) ∈ Y for all i = 1, . . . , n. In

this case, step (1) consists of estimating a mapping f̂ that minimizes the empirical risk

defined as n−1
∑n

i=1 L(f(X(i)), Y (i)). Early statistical research focused mainly on this

prediction/estimation part of the pipeline. Furthermore, their scope was limited in the

sense that, they operated under ideal situations (as will be described in detail in the

subsequent sections). Modern problems and data sets pose a different set of challenges

that often cannot be handled by those methods. Some examples are: no access to

output samples (i.e., we are given access to only{X(i)}ni=1 ); high-dimensionality of the

data sets (i.e., X ⊆ Rd, with d > n) which necessitates developing variable selection

techniques; large output-spaces (i.e., Y ⊆ Rk with k > n) which bring about statistical

and computational challenges for efficient prediction.

Furthermore feature designing or representation learning, has emerged as an im-

portant step that one should focus on, while designing statistical learning systems

to have improved performance. A main motivation is that in many practical cases,

getting access to large amounts of unlabeled data is easy compared to getting ac-

cess to labeled data. This rises the question if one could use the unlabeled samples

to learn some representations of the data, that might improve the subsequent pre-

diction/estimation step. Representation learning, at a high-level, involves several

techniques for extracting or learning efficient features from the given data. More

precisely, given input sample X ∈ X, the goal of representation learning is to find

a mapping (from a finite dimensional space for simplicity) T : Rp 7→ X and a code

C ∈ Rp, such that the following reconstruction error (with respect to the loss `r is
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minimum: `r(X,T (C)). When X ⊆ Rd, depending on the structure of the mapping

T and relationship between p and d, several representation learning techniques are

defined.

Several theoretical and empirical justifications exist for adopting such feature de-

sign methods. With the learned representation of the data, one could proceed to do

prediction and estimation tasks. These representations may or may not have specific

interpretations. For example, given a face image, the learned representation of the

image may not necessarily correspond to another face image. In some cases though,

the learned representations need to have a particular interpretation. In this case, the

feature design boils down to selecting a subset of features from the given features. A

canonical example is the variable selection method (for example, Lasso) used in gene

expression data sets.

1.2 Thesis Statement

In this thesis, we focus on both parts of the above mentioned pipeline. Specifically,

we develop principled procedures for estimating, predicting and learning ef-

ficient representations from high-dimensional data in several non-standard

and challenging situations.

The developed procedures enable one to design and analyze better statistical learning

systems. Towards that, we make the following contributions:

• We rigorously show that even when given no access to labeled samples, one

can still consistently estimate error rate of predictors and train predictors with

respect to a given (convex) loss function. We derive consistency of the proposed

method given high-dimensional data.

• We propose an efficient procedure for predicting with large output spaces that

3



scales logarithmically in the dimensionality of the output space. We demon-

strate that the method outperforms existing methods in the considered regime.

• We device an optimal procedure for performing multi-task learning when the

tasks share a joint support. We show the consistency of the proposed method

and derive rates of convergence. Furthermore the same approach enables one

to design features for multiple related tasks.

• We propose a method for learning sparse features that takes into account the

structure of the data space and demonstrates how it enables one to obtain better

features compared to existing methods. We further establish sample complexity

results for the proposed approach.

• We propose a model-free variable selection procedure and establish its sure-

screening property in the high dimensional regime. The method is flexible and

can handle non-standard and multivariate output spaces directly.

1.3 Estimation and Prediction Problems in Non-standard
Situations

The first focus-point of the thesis aims at the fundamental statistical task of estima-

tion and prediction, given the data representation. While a large body of successful

work exists on this problem, much of the methods developed assumes and works under

ideal or standardized situations (for example, availability of complete data set). Com-

pared to previous work, we consider statistical inference under several non-standard,

yet practically frequently occurring situations where existing methods are no longer

meaningful. Towards that, we first established a framework called Unsupervised Su-

pervised Learning, which enables one to do supervised tasks (which normally require

labels during training) like estimating error rates of predictors and training classifiers

without labels. Next, we considered high-dimensional output spaces (for example,
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consider an image tagging system where output space is of the order of 106) and

developed an efficient landmark based functional prediction framework. This is yet

another non-standard and challenging setting not often considered in existing work.

1.3.1 Supervised Learning with No Labels

Many popular linear classifiers, such as logistic regression, boosting, or SVM, are

trained by optimizing a margin-based risk function. Traditionally, these risk func-

tions are computed based on a labeled dataset. We develop a novel technique for

estimating such risks using only unlabeled data and the marginal label distribution.

We prove that the proposed risk estimator is consistent on high-dimensional datasets

and demonstrate it on synthetic and real-world data. Furthermore, estimating the

error rates of classifiers or regression models is a fundamental task in machine learning

which has thus far been studied exclusively using supervised learning techniques. We

propose a novel unsupervised framework for estimating these error rates using only

unlabeled data and mild assumptions. We prove consistency results for the frame-

work and demonstrate its practical applicability on both synthetic and real world

data. This is joint work with Guy Lebanon and Pinar Donmez and is described in

Chapters 2 and 3. The material of these chapters can also be found in the following

published papers: [3] and [33].

1.3.2 Optimal Random Effects Model for Multi-task Learning

Joint sparsity regularization in multi-task learning has attracted much attention in

recent years. The traditional convex formulation employs the group Lasso relaxation

to achieve joint sparsity across tasks. Although this approach leads to a simple con-

vex formulation, it suffers from several issues due to the looseness of the relaxation.

To remedy this problem, we view jointly sparse multi-task learning as a specialized

random effects model, and derive a convex relaxation approach that involves two

steps. The first step learns the covariance matrix of the coefficients using a convex
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formulation which we refer to as sparse covariance coding; the second step solves

a ridge regression problem with a sparse quadratic regularizer based on the covari-

ance matrix obtained in the first step. It is shown that this approach produces an

asymptotically optimal quadratic regularizer in the multitask learning setting when

the number of tasks approaches infinity. Experimental results demonstrate that the

convex formulation obtained via the proposed model significantly outperforms group

Lasso (and related multi-stage formulations). This is joint work with Kai Yu and

Tong Zhang and is described in Chapter 5. The material of this chapter can also be

found in the following published paper: [7].

1.3.3 Landmark Selection Method for Multiple Output Prediction

Conditional modeling X 7→ Y is a central problem in machine learning. A substantial

research effort is devoted to such modeling when X ⊂ Rd is high dimensional. We

consider, instead, the case of a high dimensional Y ⊂ Rk, where X is either low

dimensional or high dimensional. Our approach is based on selecting a small subset

YL of the dimensions of Y, and proceed by modeling (i) X 7→ YL and (ii) YL 7→ Y.

Composing these two models, we obtain a conditional model X 7→ Y that possesses

convenient statistical properties. Multi-label classification and multivariate regression

experiments on several datasets show that this method outperforms the one vs. all

approach as well as several sophisticated multiple output prediction methods. This

is joint work with Guy Lebanon and is described in Chapter 4. The material of this

chapters can also be found in the following published paper: [4].

1.4 Learning Meaningful Data Representation and Feature
Designing

While the previous line of work focused mainly on estimation and prediction prob-

lems with a given data representation, in this line of work we consider the problem

of efficiently learning meaningful data representation in high-dimensions. We refer
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the reader to [76] for the general feature representation framework, which includes

standard methods like principal component analysis (PCA) and non-negative matrix

factorization (NMF) and sparse coding (SC). Recent research has empirically shown

the advantages of learning data representations for a variety of prediction tasks. To-

wards that, we proposed a smooth version of sparse coding that taking into account

spatial and temporal information of the data, along with theoretical guarantees for

the method. In some applications, one might just want to select relevant features

from existing ones. Focusing on such applications, we developed a novel feature se-

lection method, based on kernel embeddings, which does not assume any regressive

model between the input and the output (and hence model-free).

1.4.1 Smooth Sparse Coding

We propose and analyze a novel framework for learning sparse representations, based

on two statistical techniques: kernel smoothing and marginal regression. The pro-

posed approach provides a flexible framework for incorporating feature similarity or

temporal information present in data sets, via non-parametric kernel smoothing. We

provide generalization bounds for dictionary learning using smooth sparse coding

and show how the sample complexity depends on the L1 norm of kernel function

used. Furthermore, we propose using marginal regression for obtaining sparse codes,

which significantly improves the speed and allows one to scale to large dictionary

sizes easily. We demonstrate the advantages of the proposed approach, both in terms

of accuracy and speed by extensive experimentation on several real data sets. In

addition, we demonstrate how the proposed approach could be used for improving

semi-supervised sparse coding. This is Joint work with Kai Yu and Guy Lebanon

and is described in Chapter 6. The material of this chapter can also be found in the

following published paper: [6].
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1.4.2 RKHS Embedding based high Dimensional Feature Screening

Feature screening is a key step in handling ultrahigh dimensional data sets that are

ubiquitous in modern statistical problems. Over the last decade, convex relaxation

based approaches (e.g., Lasso/sparse additive model) have been extensively developed

and analyzed for feature selection in high dimensional regime. But in the ultrahigh

dimensional regime, these approaches suffer from several problems, both computa-

tionally and statistically. To overcome these issues, we propose a novel Hilbert space

embedding based approach to independence screening for ultrahigh dimensional data

sets. The proposed approach is model-free (i.e., no model assumption is made be-

tween response and predictors) and could handle non-standard (e.g., graphs) and

multivariate outputs directly. We establish the sure screening property of the pro-

posed approach in the ultrahigh dimensional regime, and experimentally demonstrate

its advantages and superiority over other approaches on several synthetic and real data

sets. This is joint work with Bharath Sriperumbudur and Guy Lebanon and is de-

scribed in Chapter 7. The material of this chapter can also be found in the following

published paper: [5].
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CHAPTER II

MARGIN-BASED CLASSIFICATION WITHOUT LABELS

2.1 Introduction

In this chapter, we consider binary classification problem with the input space X ⊂ Rd

and the output space Y = {−1,+1}. Many popular linear classifiers, such as logistic

regression, boosting, or SVM, or their additive versions, are trained by optimizing

a margin-based risk function. For standard linear classifiers Ŷ = sign
∑
θjXj with

Y ∈ {−1,+1}, and X, θ ∈ Rd the margin is defined as the product

Y fθ(X) where fθ(X)
def
=

d∑
j=1

θjXj.

Similarly, for additive classifiers, Ŷ = sign
∑
fj(Xj) with Y ∈ {−1,+1}, and X ∈ Rd

and fj : R 7→ R are univariate functions assumed to be in a reproducing kernel Hilbert

space or Sobolev space. The margin is defined similar to the linear case, as the product

Y fθ(X) where fθ(X)
def
=
∑d

j=1 fj(Xj). We consider linear classifiers in this chapter,

but the exposition applies to additive classifiers with minor modifications.

Training such classifiers involves choosing a particular value of θ. This is done by

minimizing the risk or expected loss

R(θ) = E P(X,Y )L(Y, fθ(X)) (1)

with the three most popular loss functions

L1(Y, fθ(X)) = exp (−Y fθ(X)) , (2)

L2(Y, fθ(X)) = log (1 + exp (−Y fθ(X))) and (3)

L3(Y, fθ(X)) = (1− Y fθ(X))+ (4)
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being exponential loss L1 (boosting), logloss L2 (logistic regression) and hinge loss

L3 (SVM) respectively (A+ above corresponds to A if A > 0 and 0 otherwise).

Since the risk R(θ) depends on the unknown distribution P, it is usually replaced

during training with its empirical counterpart

Rn(θ) =
1

n

n∑
i=1

L(Y (i), fθ(X
(i))) (5)

based on a labeled training set

(X(1), Y (1)), . . . , (X(n), Y (n))
iid∼ P (6)

leading to the following estimator

θ̂n = arg min
θ

Rn(θ).

Note, however, that evaluating and minimizing Rn requires labeled data (6). While

suitable in some cases, there are certainly situations in which labeled data is difficult

or impossible to obtain.

In this chapter we construct an estimator for R(θ) using only unlabeled data, that

is using

X(1), . . . , X(n) iid∼ P (7)

instead of (6). Our estimator is based on the assumption that when the data is high

dimensional (d→∞) the quantities

fθ(X)|{Y = y}, y ∈ {−1,+1} (8)

are normally distributed. This phenomenon is supported by empirical evidence and

may also be derived using non-iid central limit theorems. We then observe that the

limit distributions of (8) may be estimated from unlabeled data (7) and that these

distributions may be used to measure margin-based losses such as (2)-(4). We examine

two novel unsupervised applications: (i) estimating margin-based losses in transfer
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learning and (ii) training margin-based classifiers. We investigate these applications

theoretically and also provide empirical results on synthetic and real-world data.

Our empirical evaluation shows the effectiveness of the proposed framework in risk

estimation and classifier training without any labeled data.

The consequences of estimating R(θ) without labels are indeed profound. Label

scarcity is a well known problem which has lead to the emergence of semisupervised

learning: learning using a few labeled examples and many unlabeled ones. The tech-

niques we develop lead to a new paradigm that goes beyond semisupervised learning

in requiring no labels whatsoever.

2.2 Unsupervised Risk Estimation

In this section we describe in detail the proposed estimation framework and discuss

its theoretical properties. Specifically, we construct an estimator for R(θ) defined

in (1) using the unlabeled data (7) which we denote R̂n(θ ;X(1), . . . , X(n)) or simply

R̂n(θ) (to distinguish it from Rn in (5)).

Our estimation is based on two assumptions. The first assumption is that the label

marginals P(Y ) are known and that P(Y = 1) 6= P(Y = −1). While this assumption

may seem restrictive at first, there are many cases where it holds. Examples include

medical diagnosis (P(Y ) is the well known marginal disease frequency), handwriting

recognition or OCR (P(Y ) is the easily computable marginal frequencies of different

letters in the English language), life expectancy prediction (P(Y ) is based on marginal

life expectancy tables). In these and other examples P(Y ) is known with great accu-

racy even if labeled data is unavailable. Our experiments show that assuming a wrong

marginal P′(Y ) causes a graceful performance degradation in |P(Y )−P′(Y )|. Further-

more, the assumption of a known P(Y ) may be replaced with a weaker form in which

we know the ordering of the marginal distributions e.g., P(Y = 1) > P(Y = −1), but

without knowing the specific values of the marginal distributions.

11



The second assumption is that the quantity fθ(X)|Y follows a normal distribution.

As fθ(X)|Y is a linear combination of random variables, it is frequently normal when

X is high dimensional. From a theoretical perspective this assumption is motivated by

the central limit theorem (CLT). The classical CLT states that fθ(X) =
∑d

i=1 θiXi|Y

is approximately normal for large d if the data components X1, . . . , Xd are iid given

Y . A more general CLT states that fθ(X)|Y is asymptotically normal if X1, . . . , Xd|Y

are independent (but not necessary identically distributed). Even more general CLTs

state that fθ(X)|Y is asymptotically normal if X1, . . . , Xd|Y are not independent but

their dependency is limited in some way. We examine this issue in Section 2.2.1

and also show that the normality assumption holds empirically for several standard

datasets.

To derive the estimator we rewrite (1) by taking expectation with respect to Y

and α = fθ(X)

R(θ) = E P(fθ(X),Y )L(Y, fθ(X)) =
∑

y∈{−1,+1}

P(y)

∫
R
P(fθ(X) = α|y)L(y, α) dα. (9)

Equation (9) involves three terms L(y, α), P(Y ) and P(fθ(X) = α|y). The loss

function L is known and poses no difficulty. The second term P(Y ) is assumed to be

known (see discussion above). The third term is assumed to be normal fθ(X) | {Y =

y} =
∑

i θiXi | {Y = y} ∼ N(µy, σy) with parameters µy, σy, y ∈ {−1, 1} that are

estimated by maximizing the likelihood of a Gaussian mixture model (we denote

µ = (µ1, µ−1) and σ2 = (σ2
1, σ

2
−1). These estimated parameters are used to construct

the plug-in estimator R̂n(θ) as follows:

`n(µ, σ) =
n∑
i=1

log
∑

y(i)∈{−1,+1}

P(y(i))Pµy ,σy(fθ(X(i))|y(i)).

(µ̂(n), σ̂(n)) = arg max
µ,σ

`n(µ, σ).

R̂n(θ) =
∑

y∈{−1,+1}

P(y)

∫
R
P
µ̂
(n)
y ,σ̂

(n)
y

(fθ(X) = α|y)L(y, α) dα.

(10)

(11)

(12)
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We make the following observations.

1. Although we do not denote it explicitly, µy and σy are functions of θ.

2. The loglikelihood (45) does not use labeled data (it marginalizes over the label

y(i)).

3. The parameters of the loglikelihood (45) are µ = (µ1, µ−1) and σ = (σ1, σ−1)

rather than the parameter θ associated with the margin-based classifier. We

consider the latter one as a fixed constant at this point.

4. The estimation problem (11) is equivalent to the problem of maximum likelihood

for means and variances of a Gaussian mixture model where the label marginals

are assumed to be known. It is well known that in this case (barring the

symmetric case of a uniform P(Y )) the MLE converges to the true parameter

values [106].

5. The estimator R̂n (12) is consistent in the limit of infinite unlabeled data

P
(

lim
n→∞

R̂n(θ) = R(θ)
)

= 1.

6. The two risk estimators R̂n(θ) (12) and Rn(θ) (5) approximate the expected

loss R(θ). The latter uses labeled samples and is typically more accurate than

the former for a fixed n.

7. Under suitable conditions arg minθ R̂n(θ) converges to the expected risk mini-

mizer

P

(
lim
n→∞

arg min
θ∈Θ

R̂n(θ) = arg min
θ∈Θ

R(θ)

)
= 1.

This far reaching conclusion implies that in cases where arg minθ R(θ) is the

Bayes classifier (as is the case with exponential loss, log loss, and hinge loss) we

can retrieve the optimal classifier without a single labeled data point.
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2.2.1 Asymptotic Normality of fθ(X)|Y

The quantity fθ(X)|Y is essentially a sum of d random variables which under some

conditions for large d is likely to be normally distributed. One way to verify this

is empirically, as we show in Figures 1-3 which contrast the histogram with a fitted

normal pdf for text, digit images, and face images data. For these datasets the

dimensionality d is sufficiently high to provide a nearly normal fθ(X)|Y . For example,

in the case of text documents (Xi is the relative number of times word i appeared in

the document) d corresponds to the vocabulary size which is typically a large number

in the range 103 − 105. Similarly, in the case of image classification (Xi denotes the

brightness of the i-pixel) the dimensionality is on the order of 102 − 104.

Figures 1-3 show that in these cases of text and image data fθ(X)|Y is approxi-

mately normal for both randomly drawn θ vectors (Figure 1) and for θ representing

estimated classifiers (Figures 2 and 3). A caveat in this case is that normality may

not hold when θ is sparse, as may happen for example for L1 regularized models (last

row of Figure 2).

From a theoretical standpoint normality may be argued using a central limit

theorem. We examine below several progressingly more general central limit theorems

and discuss whether these theorems are likely to hold in practice for high dimensional

data. The original central limit theorem states that
∑d

i=1 Zi is approximately normal

for large d if Zi are iid.

Proposition 1 (de-Moivre). If Zi, i ∈ N are iid with expectation µ and variance σ2

and Z̄d = d−1
∑d

i=1 Zi then we have the following convergence in distribution

√
d(Z̄d − µ)/σ  N(0, 1) as d→∞.

As a result, the quantity
∑d

i=1 Zi (which is a linear transformation of
√
d(Z̄d −

µ)/σ) is approximately normal for large d. This relatively restricted theorem is un-

likely to hold in most practical cases as the data dimensions are often not iid.
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RCV1 text data face images

−5 0 5 −5 0 5 −5 0 5

−5 0 5 −5 0 5 −5 0 5

−5 0 5 −5 0 5 −5 0 5

−5 0 5 −5 0 5 −5 0 5

MNIST handwritten digit images

Figure 1: Centered histograms of fθ(X)|{Y = 1} overlayed with the pdf of a fitted
Gaussian for randomly drawn θ vectors (θi ∼ U(−1/2, 1/2)). The columns represent
datasets (RCV1 text data [67], MNIST digit images, and face images [80]) and the
rows represent multiple random draws. For uniformity we subtracted the empirical
mean and divided by the empirical standard deviation. The twelve panels show
that even in moderate dimensionality (RCV1: 1000 top words, MNIST digits: 784
pixels, face images: 400 pixels) the assumption that fθ(X)|Y is normal holds often
for randomly drawn θ.
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RCV1 text data face images

−5 0 5 −5 0 5 −5 0 5

F
is

h
er

’s
L

D
A

lo
g
.

re
g
re

ss
io

n

−5 0 5 −5 0 5 −5 0 5

−5 0 5 −5 0 5 −5 0 5 lo
g
.

re
g
re

ss
io

n
(l
2

re
g
u

la
ri

ze
d

)

lo
g
.

re
g
re

ss
io

n
(l
1

re
g
u

la
ri

ze
d

)

−5 0 5 −5 0 5 −5 0 5

MNIST handwritten digit images

Figure 2: Centered histograms of fθ(X)|{Y = 1} overlayed with the pdf of a fit-
ted Gaussian for multiple θ vectors (four rows: Fisher’s LDA, logistic regression, l2
regularized logistic regression, and l1 regularized logistic regression-all regularization
parameters were selected by cross validation) and datasets (columns: RCV1 text data
[67], MNIST digit images, and face images [80]). For uniformity we subtracted the
empirical mean and divided by the empirical standard deviation. The twelve panels
show that even in moderate dimensionality (RCV1: 1000 top words, MNIST digits:
784 pixels, face images: 400 pixels) the assumption that fθ(X)|Y is normal holds
well for fitted θ values (except perhaps for L1 regularization in the last row which
promotes sparse θ).
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USPS ISOLET
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Arcene

Figure 3: Centered histograms of fθ(X)|{Y = 1} overlayed with the pdf of a fit-
ted Gaussian for multiple θ vectors (four rows: Fisher’s LDA, logistic regression, l2
regularized logistic regression, and l1 regularized logistic regression-all regularization
parameters were selected by cross validation) and datasets (columns: USPS Hand-
written Digits, Arcene data set, and ISOLET). For uniformity we subtracted the
empirical mean and divided by the empirical standard deviation. The twelve panels
further confirm that the assumption that fθ(X)|Y is normal holds well for fitted θ
values (except perhaps for L1 regularization in the last row which promotes sparse θ)
for various data sets.
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A more general CLT does not require the summands Zi to be identically dis-

tributed.

Proposition 2 (Lindberg). For Zi, i ∈ N independent with expectation µi and vari-

ance σ2
i , and denoting s2

d =
∑d

i=1 σ
2
i , we have the following convergence in distribution

as d→∞

s−1
d

d∑
i=1

(Zi − µi) N(0, 1)

if the following condition holds for every ε > 0

lim
d→∞

s−2
d

d∑
i=1

E (Zi − µi)21{|Xi−µi|>εsd} = 0. (13)

This CLT is more general as it only requires that the data dimensions be indepen-

dent. The condition (13) is relatively mild and specifies that contributions of each of

the Zi to the variance sd should not dominate it. Nevertheless, the Lindberg CLT is

still inapplicable for dependent data dimensions.

More general CLTs replace the condition that Zi, i ∈ N be independent with the

notion of m(k)-dependence.

Definition 1. The random variables Zi, i ∈ N are said to be m(k)-dependent if

whenever s− r > m(k) the two sets {Z1, . . . , Zr}, {Zs, . . . , Zk} are independent.

An early CLT for m(k)-dependent RVs was provided by [53]. Below is a slightly

weakened version of the CLT, as proved in [11].

Proposition 3 (Berk). For each k ∈ N let d(k) and m(k) be increasing sequences

and suppose that Z
(k)
1 , . . . , Z

(k)
d(k) is an m(k)-dependent sequence of random variables.

If

1. E |Z(k)
i |2 ≤M for all i and k

2. Var (Z
(k)
i+1 + . . .+ Z

(k)
j ) ≤ (j − i)K for all i, j, k

3. limk→∞ Var (Z
(k)
1 + . . .+ Z

(k)
d(k))/d(k) exists and is non-zero
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4. limk→∞m
2(k)/d(k) = 0

then
∑d(k)
i=1 Z

(k)
i√

d(k)
is asymptotically normal as k →∞.

Proposition 3 states that under mild conditions the sum of m(k)-dependent RVs

is asymptotically normal. If m(k) is a constant i.e., m(k) = m, m(k)-dependence

implies that a Zi may only depend on its neighboring dimensions (in the sense of

Definition 1). Intuitively, dimensions whose indices are far removed from each other

are independent. The full power of Proposition 3 is invoked when m(k) grows with

k relaxing the independence restriction as the dimensionality grows. Intuitively, the

dependency of the summands is not fixed to a certain order, but it cannot grow too

rapidly.

A more realistic variation of m(k) dependence where the dependency of each

variable is specified using a dependency graph (rather than each dimension depends on

neighboring dimensions) is advocated in a number of chapters, including the following

recent result by [87].

Definition 2. A graph G = (V,E) indexing random variables is called a dependency

graph if for any pair of disjoint subsets of V, A1 and A2 such that no edge in E has

one endpoint in A1 and the other in A2, we have independence between {Zi : i ∈ A1}

and {Zi : i ∈ A2}. The degree d(v) of a vertex is the number of edges connected to

it and the maximal degree is maxv∈V d(v).

Proposition 4 (Rinott). Let Z1, . . . , Zn be random variables having a dependency

graph whose maximal degree is strictly less than D, satisfying |Zi − EZi| ≤ B a.s.,

∀i, E (
∑n

i=1 Zi) = λ and Var (
∑n

i=1 Zi) = σ2 > 0, Then for any w ∈ R,∣∣∣∣P (∑n
i=1 Zi − λ
σ

≤ w

)
− Φ(w)

∣∣∣∣ ≤ 1

σ

(
1√
2π
DB + 16

( n
σ2

)1/2

D3/2B2 + 10
( n
σ2

)
D2B3

)
where Φ(w) is the CDF corresponding to a N(0,1) distribution.
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The above theorem states a stronger result than convergence in distribution to a

Gaussian in that it states a uniform rate of convergence of the CDF. Such results are

known in the literature as Berry Essen bounds [31]. When D and B are bounded and

Var (
∑n

i=1 Zi) = O(n) it yields a CLT with an optimal convergence rate of n−1/2.

The question of whether the above CLTs apply in practice is a delicate one.

For text one can argue that the appearance of a word depends on some words but

is independent of other words. Similarly for images it is plausible to say that the

brightness of a pixel is independent of pixels that are spatially far removed from it.

In practice one needs to verify the normality assumption empirically, which is simple

to do by comparing the empirical histogram of fθ(X) with that of a fitted mixture

of Gaussians. As the figures above indicate this holds for text and image data for

some values of θ, assuming it is not sparse. Also, it is worth mentioning that one

dimensional CLTs kick in relatively early perhaps at 50 or 100 dimensions. Even when

the high dimensional data lie on a lower dimensional manifold whose dimensionality

is on the order of 100 dimensions, the CLT still applies to some extent (see histogram

plots).

2.2.2 Unsupervised Consistency of R̂n(θ)

We start with proving identifiability of the maximum likelihood estimator (MLE) for

a mixture of two Gaussians with known ordering of mixture proportions. Invoking

classical consistency results in conjunction with identifiability we show consistency of

the MLE estimator for (µ, σ) parameterizing the distribution of fθ(X)|Y . As a result

consistency of the estimator R̂n(θ) follows.

Definition 3. A parametric family {pα : α ∈ A} is identifiable when pα(x) =

pα′(x), ∀x implies α = α′.

Proposition 5. Assuming known label marginals with P(Y = 1) 6= P(Y = −1) the
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Gaussian mixture family

pµ,σ(x) = P(Y = 1)N(x ;µ1, σ
2
1) + P(Y = −1)N(x ;µ−1, σ

2
−1)

is identifiable.

Proof. It can be shown that the family of Gaussian mixture model with no apriori

information about label marginals is identifiable up to a permutation of the labels y

[106]. We proceed by assuming with no loss of generality that P(Y = 1) > P(Y =

−1). The alternative case P(Y = 1) < P(Y = −1) may be handled in the same

manner. Using the result of [106] we have that if pµ,σ(x) = pµ′,σ′(x) for all x, then

(P(y), µ, σ) = (P(y), µ′, σ′) up to a permutation of the labels. Since permuting the

labels violates our assumption P(Y = 1) > P(Y = −1) we establish (µ, σ) = (µ′, σ′)

proving identifiability.

The assumption that P(Y ) is known is not entirely crucial. It may be relaxed by as-

suming that it is known whether P(Y = 1) > P(Y = −1) or P(Y = 1) < P(Y = −1).

Proving Proposition 5 under this much weaker assumption follows identical lines.

Proposition 6. Under the assumptions of Proposition 5 the MLE estimates for

(µ, σ) = (µ1, µ−1, σ1, σ−1)

(µ̂(n), σ̂(n)) = arg max
µ,σ

`n(µ, σ)

`n(µ, σ) =
n∑
i=1

log
∑

y(i)∈{−1,+1}

P(y(i))Pµy ,σy(fθ(X(i))|y(i)).

are consistent i.e., (µ̂
(n)
1 , µ̂

(n)
−1 , σ̂

(n)
1 , σ̂

(n)
−1 ) converge as n → ∞ to the true parameter

values with probability 1.

Proof. Denoting pη(z) =
∑

y P(y)Pµy ,σy(z|y) with η = (µ, σ) we note that pη is identi-

fiable (see Proposition 5) in η and the available samples z(i) = fθ(X
(i)) are iid samples

from pη(z). We therefore use standard statistics theory which indicates that the MLE

for identifiable parametric model is strongly consistent [43, chap. 17].
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Proposition 7. Under the assumptions of Proposition 5 and assuming the loss L is

given by one of (2)-(4) with a normal fθ(X)|Y ∼ N(µy, σ
2
y), the plug-in risk estimate

R̂n(θ) =
∑

y∈{−1,+1}

P(y)

∫
R
P
µ̂
(n)
y ,σ̂

(n)
y

(fθ(X) = α|y)L(y, α) dα. (14)

is consistent, i.e., for all θ,

P
(

lim
n
R̂n(θ) = R(θ)

)
= 1.

Proof. The plug-in risk estimate R̂n in (14) is a continuous function (when L is given

by (2), (3) or (4)) of µ̂
(n)
1 , µ̂

(n)
−1 , σ̂

(n)
1 , σ̂

(n)
−1 (note that µy and σy are functions of θ),

which we denote R̂n(θ) = h(µ̂
(n)
1 , µ̂

(n)
−1 , σ̂

(n)
1 , σ̂

(n)
−1 ).

Using Proposition 6 we have that

lim
n→∞

(µ̂
(n)
1 , µ̂

(n)
−1 , σ̂

(n)
1 , σ̂

(n)
−1 ) = (µtrue

1 , µtrue
−1 , σ

true
1 , σtrue

−1 )

with probability 1. Since continuous functions preserve limits we have

lim
n→∞

h(µ̂
(n)
1 , µ̂

(n)
−1 , σ̂

(n)
1 , σ̂

(n)
−1 ) = h(µtrue

1 , µtrue
−1 , σ

true
1 , σtrue

−1 )

with probability 1 which implies convergence limn→∞ R̂n(θ) = R(θ) with probability

1.

2.2.3 Unsupervised Consistency of arg min R̂n(θ)

The convergence above R̂n(θ) → R(θ) is pointwise in θ. If the stronger concept of

uniform convergence is assumed over θ ∈ Θ we obtain consistency of arg minθ R̂n(θ).

This surprising result indicates that in some cases it is possible to retrieve the expected

risk minimizer (and therefore the Bayes classifier in the case of the hinge loss, log-loss

and exp-loss) using only unlabeled data. We show this uniform convergence using a

modification of Wald’s classical MLE consistency result [43, chap. 17].

Denoting

pη(z) =
∑

y∈{−1,+1}

P(y)Pµy ,σy(f(X) = z|y), η = (µ1, µ−1, σ1, σ−1)
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we first show that the MLE converges to the true parameter value η̂n → η0 uniformly.

Uniform convergence of the risk estimator R̂n(θ) follows. Since changing θ ∈ Θ results

in a different η ∈ E we can state the uniform convergence in θ ∈ Θ or alternatively

in η ∈ E.

Proposition 8. Let θ take values in Θ for which η ∈ E for some compact set E.

Then assuming the conditions in Proposition 7 the convergence of the MLE to the

true value η̂n → η0 is uniform in η0 ∈ E (or alternatively θ ∈ Θ).

Proof. We start by making the following notation

U(z, η, η0) = log pη(z)− log pη0(z)

α(η, η0) = Epη0U(z, η, η0) = −D(pη0 , pη) ≤ 0

with the latter quantity being non-positive and 0 iff η = η0 (due to Shannon’s in-

equality and identifiability of pη).

For ρ > 0 we define the compact set Sη0,ρ = {η ∈ E : ‖η − η0‖ ≥ ρ}. Since

α(η, η0) is continuous it achieves its maximum (with respect to η) on Sη0,ρ denoted

by δρ(η0) = maxη∈Sη0,ρ α(η, η0) < 0 which is negative since α(η, η0) = 0 iff η = η0.

Furthermore, note that δρ(η0) is itself continuous in η0 ∈ E and since E is compact

it achieves its maximum

δ = max
η0∈E

δρ(η0) = max
η0∈E

max
η∈Sη0,ρ

α(η, η0) < 0

which is negative for the same reason.

Invoking the uniform strong law of large numbers [43, chap. 16] we have

n−1

n∑
i=1

U(z(i), η, η0)→ α(η, η0)

uniformly over (η, η0) ∈ E2. Consequentially, there exists N such that for n > N

(with probability 1)

sup
η0∈E

sup
η∈Sη0,ρ

1

n

n∑
i=1

U(z(i), η, η0) < δ/2 < 0.
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But since n−1
∑n

i=1 U(z(i), η, η0)→ 0 for η = η0 it follows that the MLE

η̂n = max
η∈E

1

n

n∑
i=1

U(z(i), η, η0)

is outside Sη0,ρ (for n > N uniformly in η0 ∈ E) which implies ‖η̂n − η0‖ ≤ ρ. Since

ρ > 0 is arbitrarily and N does not depend on η0 we have η̂n → η0 uniformly over

η0 ∈ E.

Proposition 9. Assuming that X,Θ are bounded in addition to the assumptions of

Proposition 8 the convergence R̂n(θ)→ R(θ) is uniform in θ ∈ Θ.

Proof. Since X,Θ are bounded the margin value fθ(X) is bounded with probability

1. As a result the loss function is bounded in absolute value by a constant C. We

also note that a mixture of two Gaussian model (with known mixing proportions) is

Lipschitz continuous in its parameters∣∣∣∣∣ ∑
y∈{−1,+1}

P(y)P
µ̂
(n)
y ,σ̂

(n)
y

(z)−
∑

y∈{−1,+1}

P(y)Pµtruey ,σtruey
(z)

∣∣∣∣∣
≤ t(z) ·

∣∣∣∣∣∣(µ̂(n)
1 , µ̂

(n)
−1 , σ̂

(n)
1 , σ̂

(n)
−1 )− (µtrue

1 , µtrue
−1 , σ

true
1 , σtrue

−1 )
∣∣∣∣∣∣

which may be verified by noting that the partial derivatives of pη(z) =
∑

y P(y)pµy ,σy(z|y)

∂pη(z)

∂µ̂
(n)
1

=
P(Y = 1)(z − µ̂(n)

1 )

(2π)1/2σ̂
(n)3

1

e
−

(z−µ̂(n)1 )2

2σ̂
(n)3

1

∂pη(z)

∂µ̂
(n)
−1

=
P(Y = −1)(z − µ̂(n)

−1 )

(2π)1/2σ̂
(n)3

−1

e
−

(z−µ̂(n)−1 )2

2σ̂
(n)3

−1

∂pη(z)

∂σ̂
(n)
1

= −P(Y = 1)(z − µ̂(n)
1 )2

(2π)3/2σ̂
(n)6

1

e
−

(z−µ̂(n)1 )2

2σ̂
(n)2

1

∂pη(z)

∂σ̂
(n)
−1

= −P(Y = −1)(z − µ̂(n)
−1 )2

(2π)3/2σ̂
(n)6

−1

e
−

(z−µ̂(n)−1 )2

2σ̂
(n)2

−1
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are bounded for a compact E. These observations, together with Proposition 8 lead

to

|R̂n(θ)−R(θ)| ≤
∑

y∈{−1,+1}

P(y)

∫ ∣∣∣P
µ̂
(n)
y ,σ̂

(n)
y

(fθ(X) = α)− Pµtruey ,σtrue
y

(fθ(X) = α)
∣∣∣ |L(y, α)|dα

≤ C

∫ ∣∣∣ ∑
y∈{−1,+1}

P(y)P
µ̂
(n)
y ,σ̂

(n)
y

(α)−
∑

y∈{−1,+1}

P(y)Pµtruey ,σtrue
y

(α)
∣∣∣ dα

≤ C ‖(µ̂(n)
1 , µ̂

(n)
−1 , σ̂

(n)
1 , σ̂

(n)
−1 )− (µtrue

1 , µtrue
−1 , σ

true
1 , σtrue

−1 )‖
∫ b

a

t(z)dz

≤ C ′ ‖(µ̂(n)
1 , µ̂

(n)
−1 , σ̂

(n)
1 , σ̂

(n)
−1 )− (µtrue

1 , µtrue
−1 , σ

true
1 , σtrue

−1 )‖ → 0

uniformly over θ ∈ Θ.

Proposition 10. Under the assumptions of Proposition 9

P

(
lim
n→∞

arg min
θ∈Θ

R̂n(θ) = arg min
θ∈Θ

R(θ)

)
= 1.

Proof. We denote t∗ = arg minR(θ), tn = arg min R̂n(θ). Since R̂n(θ) → R(θ) uni-

formly, for each ε > 0 there exists N such that for all n > N , |R̂n(θ)−R(θ)| < ε.

Let S = {θ : ‖θ − t∗‖ ≥ ε} and minθ∈S R(θ) > R(t∗) (S is compact and thus R

achieves its minimum on it). There exists N ′ such that for all n > N ′ and θ ∈ S,

R̂n(θ) ≥ R(t∗) + ε. On the other hand, R̂n(t∗) → R(t∗) which together with the

previous statement implies that there exists N ′′ such that for n > N ′′, R̂n(t∗) < R̂n(θ)

for all θ ∈ S. We thus conclude that for n > N ′′, tn 6∈ S. Since we showed that for

each ε > 0 there exists N such that for all n > N we have ‖tn − t∗‖ ≤ ε, tn → t∗

which concludes the proof.

2.2.4 Asymptotic Variance

In addition to consistency, it is useful to characterize the accuracy of our estimator

R̂n(θ) as a function of P(y), µ, σ. We do so by computing the asymptotic variance of

25



the estimator which equals the inverse Fisher information

√
n(η̂mle

n − η0) N(0, I−1(ηtrue))

and analyzing its dependency on the model parameters. We first derive the asymptotic

variance of MLE for mixture of Gaussians (we denote below η = (η1, η2), ηi = (µi, σi))

pη(z) = P(Y = 1)N(z;µ1, σ
2
1) + P(Y = −1)N(z;µ−1, σ

2
−1)

= p1pη1(z) + p−1pη−1(z).

The elements of 4× 4 information matrix I(η)

I(ηi, ηj) = E

(
∂ log pη(z)

∂ηi

∂ log pη(z)

∂ηj

)
may be computed using the following derivatives

∂ log pη(z)

∂µi
=
pi
σi

(
z − µi
σi

)
pηi(z)

pη(z)

∂ log pη(z)

∂σ2
i

=
pi

2σi

((
z − µi
σi

)2

− 1

)
pηi(z)

pη(z)

for i = 1,−1. Using the method of [9] we obtain

I(µi, µj) =
pipj
σiσj

M11

(
pηi(z), pηi(z)

)
I(µ1, σ

2
i ) =

p1pi
2σ1σ2

i

[
M12

(
pηi(z), pηi(z)

)
−M10

(
pη1(z), pηi(z)

)]
I(µ−1, σ

2
i ) =

p−1pi
2σ−1σ2

i

[
M21

(
pηi(z), pη−1(z)

)
−M01

(
pηi(z), pη−1(z)

)]
I(σ2

i , σ
2
i ) =

p4
i

4σ4
i

[
M00

(
pηi(z), pηi(z)

)
− 2M11

(
pηi(z), pηi(z)

)
+M22

(
pηi(z), pηi(z)

)]
I(σ2

1, σ
2
−1) =

p1p−1

4σ2
1σ

2
−1

[
M00

(
pη1(z), pη−1(z)

)
−M20

(
pη1(z), pη−1(z)

)
−M02

(
pη1(z), pη−1(z)

)
+M22

(
pη1(z), pη−1(z)

)]
where

Mm,n

(
pηi(z), pηj(z)

)
=

∫ ∞
−∞

(
z − µi
σi

)m(
z − µj
σj

)n pηi(z)pηj(z)

pη(z)
dx.
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In some cases it is more instructive to consider the asymptotic variance of the

risk estimator R̂n(θ) rather than that of the parameter estimate for η = (µ, σ). This

could be computed using the delta method and the above Fisher information matrix

√
n(R̂n(θ)−R(θ)) N(0,∇h(ηtrue)T I−1(ηtrue)∇h(ηtrue))

where ∇h is the gradient vector of the mapping R(θ) = h(η). For example, in the

case of the exponential loss (2) we get

h(η) = P(Y = 1)σ1

√
2 exp

((µ1 − 1)2

2
− µ2

1

2σ2
1

)
+ P(Y = −1)σ−1

√
2 exp

((µ−1 − 1)2

2
− µ2

−1

2σ2
−1

)
∂h(η)

∂µ1

=

√
2P(Y = 1)(µ1(σ2

1 − 1)− σ2
1)

σ1

exp

(
(µ1 − 1)2

2
− µ2

1

2σ2
1

)
∂h(η)

∂µ−1

=

√
2P(Y = −1)(µ−1(σ2

−1 − 1) + σ2
−1)

σ−1

exp

(
(µ−1 + 1)2

2
− µ2

−1

2σ2
−1

)
∂h(η)

∂σ2
1

=
P(Y = 1)(µ2

1 + σ2
1)√

2σ1

((µ1 − 1)2

2
− µ2

1

2σ2
1

)
∂h(η)

∂σ2
−1

=
P(Y = −1)(µ2

−1 + σ2
−1)√

2σ−1

((µ−1 + 1)2

2
− µ2

−1

2σ2
−1

)
.

Figure 4 plots the asymptotic accuracy of R̂n(θ) for log-loss. The left panel shows

that the accuracy of R̂n increases with the imbalance of the marginal distribution

P(Y ). The right panel shows that the accuracy of R̂n increases with the difference

between the means |µ1 − µ−1| and the variances σ1/σ2.

2.2.5 Multiclass Classification

Thus far, we have considered unsupervised risk estimation in binary classification. In

this section we describe a multiclass extension based on standard extensions of the

margin concept to multiclass classification. In this case the margin vector associated

with the multiclass classifier

Ŷ = arg max
k=1,...,K

fθk(X), X, θk ∈ Rd

is fθ(X) = (fθ1(X), . . . , fθK (X)). Following our discussion of the binary case, fθk(X)|Y ,

k = 1, . . . , K is assumed to be normally distributed with parameters that are esti-

mated by maximizing the likelihood of a Gaussian mixture model. We thus have
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Figure 4: Left panel: asymptotic accuracy (inverse of trace of asymptotic variance)
of R̂n(θ) for logloss as a function of the imbalance of the class marginal P(Y ). The
accuracy increases with the class imbalance as it is easier to separate the two mixture
components. Right panel: asymptotic accuracy (inverse of trace of asymptotic vari-
ance) as a function of the difference between the means |µ1 − µ−1| and the variances
σ1/σ2. See text for more information.

K Gaussian mixture models, each one with K mixture components. The estimated

parameters are plugged-in as before into the multiclass risk

R(θ) = Ep(fθ(X),Y )L(Y, fθ(X))

where L is a multiclass margin based loss function such as

L(Y, fθ(X)) =
∑
k 6=Y

log(1 + exp(−fθk(X))) (15)

L(Y, fθ(X)) =
∑
k 6=Y

(1 + fθk(X))+. (16)

Care should be taken when defining the loss function for the multi-class case, as a

stright-forward extension from the binary case might render the framework incon-

sistent. We use the specific extension which is proved to be consistent for various

loss functions (including hinge-loss) by [107]. Since the MLE for a Gaussian mixture

model with K components is consistent (assuming P(Y ) is known and all probabili-

ties P(Y = k), k = 1, . . . , K are distinct) the MLE estimator for fθk(X)|Y = k′ are

consistent. Furthermore, if the loss L is a continuous function of these parameters

(as is the case for (15)-(16)) the risk estimator R̂n(θ) is consistent as well.
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2.3 Application 1: Estimating Risk in Transfer Learning

We consider applying our estimation framework in two ways. The first application,

which we describe in this section, is estimating margin-based risks in transfer learning

where classifiers are trained on one domain but tested on a somewhat different domain.

The transfer learning assumption that labeled data exists for the training domain but

not for the test domain motivates the use of our unsupervised risk estimation. The

second application, which we describe in the next section, is more ambitious. It is

concerned with training classifiers without labeled data whatsoever.

In evaluating our framework we consider both synthetic and real-world data. In

the synthetic experiments we generate high dimensional data from two uniform dis-

tributions X|{Y = 1} and X|{Y = −1} with independent dimensions and prescribed

P(Y ) and classification accuracy. This controlled setting allows us to examine the

accuracy of the risk estimator as a function of n, P(Y ), and the classifier accuracy.

Figure 5 shows that the relative error of R̂n(θ) (measured by |R̂n(θ)−Rn(θ)|/Rn(θ))

in estimating the logloss (left) and hinge loss (right). The curves decrease with n and

achieve accuracy of greater than 99% for n > 1000. In accordance with the theoreti-

cal results in Section 2.2.4 the figure shows that the estimation error decreases as the

classifiers become more accurate and as P(Y ) becomes less uniform. We found these

trends to hold in other experiments as well. In the case of exponential loss, however,

the estimator performed substantially worse across the board, in some cases with an

absolute error of as high as 10. This is likely due to the exponential dependency of

the loss on Y fθ(X) which makes it very sensitive to outliers.

Figure 23 shows the accuracy of logloss estimation for a real world transfer learning

experiment based on the 20-newsgroup data. We followed the experimental setup of

used by [30] in order to have different distributions for training and test sets. More

specifically, 20-newsgroup data has a hierarchical class taxonomy and the transfer

learning problem is defined at the top-level categories. We split the data based
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Figure 5: The relative accuracy of R̂n (measured by |R̂n(θ) − Rn(θ)|/Rn(θ)) as a
function of n, classifier accuracy (acc) and the label marginal P(Y ) (left: logloss, right:
hinge-loss). The estimation error nicely decreases with n (approaching 1% at n = 1000
and decaying further). It also decreases with the accuracy of the classifier (top) and
non-uniformity of P(Y ) (bottom) in accordance with the theory of Section 2.2.4.
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Data Rn |Rn − R̂n| |Rn − R̂n|/Rn n P(Y = 1)
sci vs. comp 0.7088 0.0093 0.013 3590 0.8257
sci vs. rec 0.641 0.0141 0.022 3958 0.7484
talk vs. rec 0.5933 0.0159 0.026 3476 0.7126
talk vs. comp 0.4678 0.0119 0.025 3459 0.7161
talk vs. sci 0.5442 0.0241 0.044 3464 0.7151
comp vs. rec 0.4851 0.0049 0.010 4927 0.7972

Figure 6: Error in estimating logloss for logistic regression classifiers trained on one
20-newsgroup classification task and tested on another. We followed the transfer
learning setup described by [30] which may be referred to for more detail. The train
and testing sets contained samples from two top categories in the topic hierarchy but
with different subcategory proportions. The first column indicates the top category
classification task and the second indicates the empirical log-loss Rn calculated using
the true labels of the testing set (5). The third and forth columns indicate the absolute
and relative errors of R̂n. The fifth and sixth columns indicate the train set size and
the label marginal distribution.

on subcategories such that the training and test sets contain data sampled from

different subcategories within the same top-level category. Hence, the training and

test distributions differ. We trained a logistic regression classifier on the training set

and estimate its risk on the test set of a different distribution. Our unsupervised

risk estimator was quite effective in estimating the risk with relative accuracy greater

than 96% and absolute error less than 0.02.

2.4 Application 2: Unsupervised Learning of Classifiers

Our second application is a very ambitious one: training classifiers using unlabeled

data by minimizing the unsupervised risk estimate θ̂n = arg min R̂n(θ). We evaluate

the performance of the learned classifier θ̂n based on three quantities: (i) the unsu-

pervised risk estimate R̂n(θ̂n), (ii) the supervised risk estimate Rn(θ̂n), and (iii) its

classification error rate. We also compare the performance of θ̂n = arg min R̂n(θ) with

that of its supervised analog arg minRn(θ).

We compute θ̂n = arg min R̂n(θ) using two algorithms (see Algorithms 1-2) that

start with an initial θ(0) and iteratively construct a sequence of classifiers θ(1), . . . , θ(T )
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which steadily decrease R̂n. Algorithm 1 adopts a gradient descent-based optimiza-

tion. At each iteration t, it approximates the gradient vector ∇R̂n(θ(t)) numerically

using a finite difference approximation (17). We compute the integral in the loss

function estimator using numeric integration. Since the integral is one dimensional a

variety of numeric methods may be used with high accuracy and fast computation.

Algorithm 2 proceeds by constructing a grid search along every dimension of θ(t) and

set [θ(t)]i to the grid value that minimizes R̂n (iteratively optimize one dimension

at a time). This amounts to greedy search converging to local maxima. The same

might hold for Algorithm 1, but we observe that Algorithm 1 workds slightly better

in practice, leading to lower test error with less number of training iterations.

Although we focus on unsupervised training of logistic regression (minimizing un-

supervised logloss estimate), the same techniques may be generalized to train other

margin-based classifiers such as SVM by minimizing the unsupervised hinge-loss es-

timate.

Algorithm 1 Unsupervised Gradient Descent

Input: X(1), . . . , X(n) ∈ Rd, P(Y ), step size α
Initialize t = 0, θ(t) = θ0 ∈ Rd

repeat
Compute fθ(t)(X

(j)) = 〈θ(t), X(j)〉 ∀j = 1, . . . , n
Estimate (µ̂1, µ̂−1, σ̂1, σ̂−1) by maximizing (11)
for i = 1 to d do

Plug-in the estimates into (14) to approximate

∂R̂n(θ(t))

∂θi
=
R̂n(θ(t) + hiei)− R̂n(θ(t) − hiei)

2hi
(ei is an all zero vector except for [ei]i = 1) (17)

end for
Form ∇R̂n(θ(t)) = (∂R̂n(θ(t))

∂θ
(t)
1

, . . . , ∂R̂n(θ(t))

∂θ
(t)
d

)

Update θ(t+1) = θ(t) − α∇R̂n(θ(t)), t = t+ 1
until convergence
Output: linear classifier θfinal = θ(t)
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Algorithm 2 Unsupervised Grid Search

Input: X(1), . . . , X(n) ∈ Rd, P(Y ), grid-size τ
Initialize θi ∼ Uniform(−2, 2) for all i
repeat

for i = 1 to d do
Construct τ points grid in the range [θi − 4τ, θi + 4τ ]
Compute the risk estimate (14) where all dimensions of θ(t) are fixed except
for [θ(t)]i which is evaluated at each grid point.
Set [θ(t+1)]i to the grid value that minimized (14)

end for
until convergence
Output: linear classifier θfinal = θ

Figures 7-8 display R̂n(θ̂n), Rn(θ̂n) and error-rate(θ̂n) on the training and testing

sets as on two real world datasets: RCV1 (text documents) and MNIST (handwritten

digit images) datasets. In the case of RCV1 we discarded all but the most frequent 504

words (after stop-word removal) and represented documents using their tfidf scores.

We experimented on the binary classification task of distinguishing the top category

(positive) from the next 4 top categories (negative) which resulted in P(Y = 1) = 0.3

and n = 199328. 70% of the data was chosen as a (unlabeled) training set and the

rest was held-out as a test-set. In the case of MNIST data, we normalized each of the

28 × 28 = 784 pixels to have 0 mean and unit variance. Our classification task was

to distinguish images of the digit one (positive) from the digit 2 (negative) resulting

in 14867 samples and P(Y = 1) = 0.53. We randomly choose 70% of the data as a

training set and kept the rest as a testing set.

Figures 7-8 indicate that minimizing the unsupervised logloss estimate is quite

effective in learning an accurate classifier without labels. Both the unsupervised

and supervised risk estimates R̂n(θ̂n), Rn(θ̂n) decay nicely when computed over the

train set as well as the test set. Also interesting is the decay of the error rate. For

comparison purposes supervised logistic regression with the same n achieved only

slightly better test set error rate: 0.05 on RCV1 (instead of 0.1) and 0.07 or MNIST

(instead of 0.1).
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Figure 7: Performance of unsupervised logistic regression classifier θ̂n computed using
Algorithm 1 (left) and Algorithm 2 (right) on the RCV1 dataset. The top two rows
show the decay of the two risk estimates R̂n(θ̂n), Rn(θ̂n) as a function of the algorithm
iterations. The risk estimates of θ̂n were computed using the train set (top) and the
test set (middle). The bottom row displays the decay of the test set error rate of θ̂n
as a function of the algorithm iterations. The figure shows that the algorithm obtains
a relatively accurate classifier (testing set error rate 0.1, and R̂n decaying similarly to
Rn) without the use of a single labeled example. For comparison, the test error rate
for supervised logistic regression with the same n is 0.07.
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Figure 8: Performance of unsupervised logistic regression classifier θ̂n computed using
Algorithm 1 (left) and Algorithm 2 (right) on the MNIST dataset. The top two rows
show the decay of the two risk estimates R̂n(θ̂n), Rn(θ̂n) as a function of the algorithm
iterations. The risk estimates of θ̂n were computed using the train set (top) and the
test set (middle). The bottom row displays the decay of the test set error rate of θ̂n
as a function of the algorithm iterations. The figure shows that the algorithm obtains
a relatively accurate classifier (testing set error rate 0.1, and R̂n decaying similarly to
Rn) without the use of a single labeled example. For comparison, the test error rate
for supervised logistic regression with the same n is 0.05.
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In another experiment we examined the proposed approach on several different

data sets and compared the classification performance with a supervised baseline

(logistic regression) and Gaussian mixture modeling (GMM) clustering with known

label proportions in the original data space (Table 1). The comparison was made

under the same experimental setting (n, P(Y )) for all three approaches. We used

data sets from UCI machine learning repository [44] and from previously cited sources,

unless otherwise noted. The following tasks were considered for each data set.

• RCV1: top category versus next 4 categories

• MNIST: Digit 1 versus Digit 2

• 20 newsgroups: Comp category versus Recreation category

• USPS: Digit 2 versus Digit 5

• Umist0: Male face (16 subjects) versus Female faces (4 subjects) with image

resolution reduced to 40× 40

• Arcene: Cancer versus Normal

• Isolet: Vowels versus Consonants

• Dexter: Documents about corporate acquisitions versus rest

• Secom: Semiconductor manufacturing defects versus good items

• Pham faces: Face versuss Non-face images

• CMU pie face: male (30 subjects) vs female (17 subjects)

• Madelon: It consists of data points (artificially generated) grouped in 32 clusters

placed on the vertices of a five dimensional hypercube and randomly labeled +1

or -1, corrupted with features that are not useful for classification.
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Table 1: Comparison (test set error rate) between supervised logistic regression, Un-
supervised logistic regression and Gaussian mixture modeling in original data space.
The unsupervised classifier performs better than the GMM clustering on the original
space and compares well with its supervised counterpart on most data sets. See text
for more details. The stars represent GMM with covariance σ2I due to the high di-
mensionality. In all other cases we used a diagonal covariance matrix. Non-diagonal
covariance matrix was impractical due to the high dimensionality.

Data set Dimensions Supervised log-reg USL-2 GMM

RCV1 top 504 words 0.0500 0.0923 0.2083
Mnist 784 0.0700 0.1023 0.3163

20 news group top 750 words 0.0652 0.0864 0.1234
USPS 256 0.0348 0.0545 0.1038
Umist 400 PCA components 0.1223 0.1955 0.2569
Arcene 1000 PCA components 0.1593 0.1877 0.3843*
Isolet 617 0.0462 0.0568 0.1332

Dexter top-700 words 0.0564 0.1865 0.2715
Secom 591 0.1246 0.1532 0.2674

Pham faces 400 0.1157 0.1669 0.2324
CMU pie face 1024 0.0983 0.1386 0.2682*

Madelon 500 0.0803 0.1023 0.1120

Table 1 displays the test set error for the three methods on each data set. We note

that our unsupervised approach achieves test set errors comparable to the supervised

logistic regression in several data sets. The poor performance of the unsupervised

technique on the Dexter data set is due to the fact that the data contains many

irrelevant features. In fact it was engineered for a feature selection competition and

has a sparse solution vector. In general our method significantly outperforms Gaussian

mixture model clustering in the original feature space. A likely explanation is that

(i) fθ(X)|Y is more likely to be normal than X|Y and (ii) it is easier to estimate in

one dimensional space rather than in a high dimensional space.

2.4.1 Inaccurate Specification of P(Y )

Our estimation framework assumes that the marginal P(Y ) is known. In some cases

we may only have an inaccurate estimate of P(Y ). It is instructive to consider how

the performance of the learned classifier degrades with the inaccuracy of the assumed
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Figure 9: Performance of unsupervised classifier training on RCV1 data (top class
vs. classes 2-5) for misspecified P(Y ). The performance of the estimated classifier
(in terms of training set empirical logloss Rn (5) and test error rate measured using
held-out labels) decreases with the deviation between the assumed and true P(Y = 1)
(true P(Y = 1) = 0.3)). The classifier performance is very good when the assumed
P(Y ) is close to the truth and degrades gracefully when the assumed P(Y ) is not too
far from the truth.

P(Y ).

Figure 9 displays the performance of the learned classifier for RCV1 data as a

function of the assumed value of P(Y = 1) (correct value is P(Y = 1) = 0.3). We

conclude that knowledge of P(Y ) is an important component in our framework but

precise knowledge is not crucial. Small deviations of the assumed P(Y ) from the true

P(Y ) result in a small degradation of logloss estimation quality and testing set error

rate. Naturally, large deviation of the assumed P(Y ) from the true P(Y ) renders the

framework ineffective.

2.4.2 Effect of Regularization and Dimensionality reduction.

In Figure 10 we examine the effect of regularization on the performance of the un-

supervised classifier. In this experiment we use the L1 regularization. Clearly, regu-

larization helps in the supervised case. It appears that in the USL case weak regu-

larization may improve performance but not as drastically as in the supervised case.

Furthermore, the positive effect of L1 regularization in the USL case appears to be

weaker than L2 regularization (compare the left and right panels of Figure 10). One
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Figure 10: Test set error rate versus regularization parameter (L2 on the left panel
and L1 on the right panel) for supervised and unsupervised logistic regression on
RCV1 data set.

possible reason is that the sparsity promoting nature of L1 conflicts with the CLT

assumption.

In Figure 11 we examine the effect of reducing the data dimensionality via PCA

prior to training the unsupervised classifier. Specifically, the 256 dimensions USPS

image dataset was embedded in an increasingly lower dimensional space via PCA. For

the original dimensionality of 256 or a slightly lower dimensionality the classification

performance of the unsupervised classifier is comparable to the supervised. Once

the dimensions are reduced to less than 150 a significant performance gap appears.

This is consistent with our observation above that for lower dimensions the CLT

approximation is less accurate. The supervised classifier also degrades in performance

as less dimensions are used but not as fast as the unsupervised classifier.

2.5 Related Work

Semi-supervised approaches: Semisupervised learning is closely related to our

work in that unsupervised classification may be viewed as a limiting case. One of the

first attempts at studying the sample complexity of classification with unlabeled and

labeled data was by [24]. They consider a setting when data is generated by mixture

distributions and show that with infinite unlabeled data, the probability of error
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Figure 11: Test set error rate versus the amount of dimensions used (extracted via
PCA) for supervised and unsupervised logistic regression on USPS data set. The
original dimensionality was 256.

decays exponentially faster in the labeled data to the Bayes risk. They also analyze

the case when there are only finite labeled and unlabeled data samples, with known

class conditional densities but unknown mixing proportions [25]. A variant of the

same scenario with known parametric forms for the class conditionals (specifically

n-dimensional Gaussians) but unknown parameters and mixing proportions is also

analyzed by [59]. Some of the more recent work in the area concentrated on analyzing

semisupervised learning under the cluster assumption or the manifold assumption.

We refer the reader to a recent survey by [131] for a discussion of recent approaches.

However, none of the prior work consider mixture modeling in the projected 1-d space

along with a CLT assumption which we exploit. In addition, assuming known mixing

proportions, we propose a framework for training a classifier with no labeled samples,

while approaches above still need labeled samples for classification.

Unsupervised approaches: The most recent related research approaches are by

[81], [46], and [33]. The work by [81] aims to estimate the labels of an unlabeled testing

set using known label proportions of several sets of unlabeled observations. The key

difference between their approach and ours is that they require separate training

sets from different sampling distributions with different and known label marginals
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(one for each label). Our method assumes only a single dataset with a known label

marginal but on the other hand assumed the CLT approximation. Furthermore, as

noted previously (see comment after Proposition 5), our analysis is in fact valid when

only the order of label proportions is known, rather than the absolute values.

A different attempt at solving this problem is provided by [46] which focuses on

discriminative clustering. This approach attempts to estimate a conditional proba-

bilistic model in an unsupervised way by maximizing mutual information between the

empirical input distribution and the label distribution. A key difference is the focus

on probabilistic classifiers and in particular logistic regression whereas our approach

is based on empirical risk minimization which also includes SVM. Another key dif-

ference is that the work by [46] lacks consistency results which characterize when it

works from a theoretical perspective. The approach by [33] focuses on estimating the

error rate of a given stochastic classifier (not necessarily linear) without labels. It is

similar in that it estimates the 0/1 risk rather than the margin based risk. However,

it uses a different strategy and it replaces the CLT assumption with a symmetric

noise assumption.

An important distinction between our work and the references above is that our

work provides an estimate for the margin-based risk and therefore leads naturally

to unsupervised versions of logistic regression and support vector machines. We

also provide asymptotic analysis showing convergence of the resulting classifier to

the optimal classifier (minimizer of (1)). Experimental results show that in practice

the accuracy of the unsupervised classifier is on the same order (but slightly lower

naturally) as its supervised analog.

2.6 Computing Mm,n for Section 2.2.4

In this section, we provide derivations for computing

Mm,n

(
pηi(z), pηj(z)

)
=

∫ ∞
−∞

(
z − µi
σi

)m(
z − µj
σj

)n pηi(z)pηj(z)

pη(z)
dz
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from Section 2.2.4 using a power series expansion. We follow the transformation

technique described in [9].

Without loss of generality we assume σ1 ≤ σ−1 and consider the linear transfor-

mation

t = ε (z − µ̄) /σ̄

where

ε =


1 µ1 ≤ µ−1

−1 µ1 > µ−1

µ̄ =
µ1 + µ−1

2

σ̄ =
√
σ1σ−1.

Denoting D = |µ−1 − µ1|/2σ̄ and r = σ1/σ−1 the density function given by

pη(z) = p1pη1(z) + p−1pη−1(z) (18)

is equivalent to

g(t) = p1g1(t) + p−1g−1(t)

where

gi(t) =
1√
2πri

exp−(t−Di)
2

2ri
for i = 1,−1.

with D1 = −D and D−1 = D, r1 = r and r−1 = 1/r.

This transformation reduces normal mixtures with four parameters to an equiv-

alent standard normal mixture with two parameters D, r. Hence the integral could

be written as

Mm,n

(
pηi(z), pηj(z)

)
= εm+nr

−m/2
i r

−n/2
j Gm,n(gi, gj)
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where

Gm,n(gi, gj) =

∫ ∞
−∞

(t−D − i)m(t−Dj)
n gi(t)gj(t)

g(t)
dt

Observe that

gi(t)gj(t)

g(t)
=

1√
2πrirj/r

hi(t)hj(t)

h(t)

where h(t) = p1h1(t) + p−1h−1(t) with hi(t) = exp− (t−Di)2
2ri

for i = 1,−1 and α1, α−1

are the roots of the equation

(1− r2)t2 + 2D(1 + r2)t+D2(1− r2)− 2r log(p1/p−1r) = 0.

The geometric series expansion for Gm,n(gi, gj) [9] is given by

Gm,n(gi, gj) =
1√

2πrirj/r

∞∑
N=0

(∫ α1

−∞
HN(t)dt+

∫ α−1

α1

H̄N(t)dt+

∫ ∞
α−1

HN(t)dt

)
where

HN(t) = (t−Di)
m(t−Dj)

nφN(t)

H̄N(t) = (t−Di)
m(t−Dj)

nφ̄N(t)

φN(t) =
1

p−1r

(
− p1

p−1r

)N
hi(t)hj(t)

h−1(t)

(
h1(t)

h−1(t)

)N
φ̄N(t) =

1

p1

(
−p−1r

p1

)N
hi(t)hj(t)

h1(t)

(
h−1(t)

h1(t)

)N
.

Since φ(t) and φ̄(t) are constant multiples of normal densities, the computation of

the integral corresponds to that of truncated non-central moments of the normal

distribution. For example,

M0,0

(
pη1(z), pη−1(z)

)
= G00(g1, g−1)

=
1

p−1r

∞∑
N=0

(−1)Nr
√
N(1− r2) + 1 exp

(2D2rN(N = 1)

N(1− r2) + 1
− N

2r

)
.
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CHAPTER III

ESTIMATING CLASSIFICATION AND REGRESSION

ERRORS WITHOUT LABELS

3.1 Introduction

A common task in machine learning is predicting a response variable y ∈ Y based on

an explanatory variable X ∈ X. Assuming a joint distribution P(X, Y ) and a loss

function L(Y, Ŷ ), a predictor f : X → Y is characterized by an expected loss or risk

function

R(f) = E P(X,Y ){L(Y, f(X))}. (19)

For example, in classification we may have X = Rd, Y = {1, . . . , l}, and L(Y, Ŷ ) =

I(Y 6= Ŷ ) where I(A) = 1 if A is true and 0 otherwise. The resulting risk is known

as the 0-1 risk or simply the classification error rate

R(f) = P (f predicts the wrong class). (20)

In regression we may have X = Y = R, and L(Y, Ŷ ) = (Y − Ŷ )2. The resulting risk

is the mean squared error

R(f) = E P(X,Y )(Y − f(X))2. (21)

We consider the case where we are provided with k predictors fi : X → Y, i =

1, . . . , k (k ≥ 1) whose risks are unknown. The main task we are faced with is

estimating the risks R(f1), . . . , R(fk) without using any labeled data whatsoever.

The estimation of R(fi) is rather based on an estimator R̂(fi) that uses unlabeled

data X(1), . . . , X(n) iid∼ P(X).
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A secondary task that we consider is obtaining effective schemes for combining

k predictors f1, . . . , fk in a completely unsupervised manner. We refer to these two

tasks of risk estimation and predictor combination as unsupervised-supervised learn-

ing since they refer to unsupervised analysis of supervised prediction models.

It may seem surprising that unsupervised risk estimation is possible at all. After

all in the absence of labels there is no ground truth that guides us in estimating the

risks. However, as we show in this chapter, if the marginal P(Y ) is known it is possible

in some cases to obtain a consistent estimator for the risks using only unlabeled data

i.e.,

lim
n→∞

R̂(fi ;X
(1), . . . , X(n)) = R(fi) with probability 1, i = 1, . . . , k.

In addition to demonstrating consistency, we explore the asymptotic variance of the

risk estimators and how it is impacted by changes in n (amount of unlabeled data),

k (number of predictors), and R(f1), . . . , R(fk) (risks). We also demonstrate that

the proposed estimation technique works well in practice on both synthetic and real

world data.

The assumption that P(Y ) is known seems restrictive, but there are plenty of

cases where it holds. Examples include medical diagnosis (P(Y ) is the well known

marginal disease frequency), handwriting recognition/OCR (P(Y ) is the easily com-

putable marginal frequencies of different English letters), regression model for life

expectancy (P(Y ) is the well known marginal life expectancy tables). In these and

other examples P(Y ) is obtained from extremely accurate histograms.

There are several reasons that motivate our approach of using exclusively unla-

beled data to estimate the risks. Labeled data may be unavailable due to privacy

considerations where the predictors are constructed by organizations using training

sets with private labels. For example, in medical diagnosis prediction, the predic-

tors f1, . . . , fk may be obtained by k different hospitals, each using a private internal

labeled set. Following the training stage, each hospital releases its predictor to the
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public who then proceed to estimate R(f1), . . . , R(fk) using a separate unlabeled

dataset.

Another motivation for using unlabeled data is domain adaptation where predic-

tors that are trained on one domain, are used to predict data from a new domain

from which we have only unlabeled data. For example, predictors are often trained

on labeled examples drawn from the past but are used at test time to predict data

drawn from a new distribution associated with the present. Here the labeled data

used to train the predictors will not provide an accurate estimate due to differences

in the test and train distributions.

Another motivation is companies releasing predictors to clients as black boxes

(without their training data) in order to protect their intellectual property. This is

the situation in business analytics and consulting. In any case, it is remarkable that

without labels we can still accurately estimate supervised risks.

The collaborative nature of this diagnosis is especially useful for multiple predic-

tors as the predictor ensemble {f1, . . . , fk} diagnoses itself. However, our framework

is not restricted to a large k and works even for a single predictor with k = 1. It

may further be extended to the case of active learning where classifiers are queried

for specific data and the case of semi-supervised learning where a small amount of

labeled data is augmented by massive unlabeled data.

We proceed in the next section to describe the general framework and some im-

portant special cases. In Section 3.3 we discuss extensions to the general framework

and in Section 3.4-3.5 we discuss the theory underlying our estimation process. In

Section 3.6 we discuss practical optimization algorithms. Section 4.6 contains an

experimental study. We conclude with a discussion in Section 3.8.
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3.2 Unsupervised Risk Estimation Framework

We adopt the framework presented in Section 3.1 with the added requirement that the

predictors f1, . . . , fk are stochastic i.e. their prediction Ŷ = fi(X) (conditioned on

X) is a random variable. Such stochasticity occurs if the predictors are conditional

models predicting values according to their estimated probability i.e., fi models a

conditional distribution Qi and predicts Y ′ with probability Qi(Y
′|X).

As mentioned previously our goal is to estimate the risk associated with classifica-

tion or regression models f1, . . . , fk based on unlabeled data X(1), . . . , X(n) iid∼ P(X).

The testing marginal and conditional distributions P(X),P(Y |X) may differ from the

distributions used at training time for the different predictors. In fact, each predictor

may have been trained on a completely different training distribution, or may have

been designed by hand with no training data whatsoever. We consider the predictors

as black boxes and do not assume any knowledge of their modeling assumptions or

training processes.

At the center of our framework is the idea to define a parameter vector θ ∈ Θ

which characterizes the risks R(f1), . . . , R(fk) i.e. R(fj) = gj(θ) for some function

gj : Θ → R, j = 1, . . . , k. The parameter vector θ is estimated from data by

connecting it to the probabilities

Pj(Y ′|Y )
def
= p(fj predicts Y ′| true label is Y ).

More specifically, we use a plug-in estimate R̂(fj) = gj(θ̂) where θ̂ maximizes the

likelihood of the predictor outputs Ŷ
(i)
j = fj(X

(i)) with respect to the model

Pθ(Ŷ ) =

∫
Pθ(Ŷ |Y )P(Y ) dy
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. The precise equations are:

R̂(fj ; Ŷ (1), . . . , Ŷ (n)) = gj(θ̂
mle(Ŷ (1), . . . , Ŷ (n))) where (22)

Ŷ (i) def
= (Ŷ

(i)
1 , . . . , Ŷ

(i)
k )

Ŷ
(i)
j

def
= fj(X

(i))

θ̂mle(Ŷ (1), . . . , Ŷ (n)) = arg max `(θ ; Ŷ (1), . . . , Ŷ (n)) (23)

`(θ ; Ŷ (1), . . . , Ŷ (n)) =
n∑
i=1

logPθ(Ŷ (i)
1 , . . . , Ŷ

(i)
k ) (24)

=
n∑
i=1

log

∫
Y

Pθ(Ŷ (i)
1 , . . . , Ŷ

(i)
k |Y (i))P(Y (i)) dµ(Y (i)).

The integral in (24) is over the unobserved label Y (i) associated with X(i). It

should be a continuous integral
∫∞
Y (i)=−∞ for regression and a finite summation

∑l
Y (i)=1

for classification. For notational simplicity we maintain the integral sign for both cases

with the understanding that it is over a continuous or discrete measure µ, depending

on the topology of Y. Note that (24) and its maximizer are computable without any

labeled data. All that is required are the classifiers (as black boxes), unlabeled data

X(1), . . . , X(n), and the marginal label distribution P(Y ).

Besides being a diagnostic tool for the predictor accuracy, θ̂mle can be used to

effectively aggregate f1, . . . , fj to predict the label of a new example Xnew

Ŷ new = arg max
y∈Y

Pθ̂mle(Y | f1(Xnew), . . . , fk(X
new))

= arg max
Y ∈Y

P(Y )
k∏
j=1

Pθ̂mle
j

(fj(X
new) | Y ). (25)

As a result, our framework may be used to combine existing classifiers or regression

models in a completely unsupervised manner.

There are three important research questions concerning the above framework.

First, what are the statistical properties of θ̂mle and R̂ (consistency, asymptotic vari-

ance). Second, how can we efficiently solve the maximization problem (23). And
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third, how does the framework work in practice. We address these three questions

in Sections 3.4-3.5, 3.6, 4.6 respectively, We devote the rest of the current section to

examine some important special cases of (23)-(24) and consider some generalizations

in the next section.

3.2.1 Non-Collaborative Estimation of the Risks

In the non-collaborative case we estimate the risk of each one of the predictors

f1, . . . , fk separately. This reduces the problem to that of estimating the risk of a

single predictor, which is repeated k times for each one of the predictors. We thus

assume in this subsection the framework (22)-(24) with k = 1 with no loss of gener-

ality. For simplicity we denote the single predictor by f rather than f1 and denote

g = g1 and Ŷ (i) = Ŷ
(i)

1 . The corresponding simplified expressions are

R̂(f ; Ŷ (1), . . . , Ŷ (n)) = g(θ̂mle(Ŷ (1), . . . , Ŷ (n))) (26)

θ̂mle(Ŷ (1), . . . , Ŷ (n)) = arg max
θ

n∑
i=1

log

∫
Y

Pθ(Ŷ (i)|Y (i))P(Y (i)) dµ(Y (i)) (27)

where Ŷ (i) = f(X(i)).

We consider below several important special cases.

3.2.1.1 Classification

Assuming l labels Y = {1, . . . , l}, the classifier f defines a multivariate Bernoulli

distribution Pθ(Ŷ |Y ) mapping the true label Y to Ŷ

Pθ(Ŷ |Y ) = θŶ ,Y . (28)

where θ is the stochastic confusion matrix or noise model corresponding to the clas-

sifier f . In this case, the relationship between the risk R(f) and the parameter θ

is

R(f) = 1−
∑
y∈Y

θY Y P(Y ). (29)
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Equations (28)-(29) may be simplified by assuming a symmetric error distribution

[28]

Pθ(Ŷ |Y ) = θI(Ŷ=Y )

(
1− θ
l − 1

)I(Ŷ 6=Y )

(30)

R(f) = 1− θ (31)

where I is the indicator function and θ ∈ [0, 1] is a scalar corresponding to the

classifier accuracy. Estimating θ by maximizing (27), with (28) or (30) substituting

Pθ completes the risk estimation task.

In the simple binary case l = 2,Y = {1, 2} with the symmetric noise model (30)

the loglikelihood

`(θ) =
n∑
i=1

log
2∑

Y (i)=1

θI(Ŷ
(i)=Y (i))(1− θ)I(Ŷ (i) 6=Y (i))P(Y (i)). (32)

may be shown to have the following closed form maximizer

θ̂mle =
P(Y = 1)−m/n
2P(Y = 1)− 1

. (33)

where m
def
= |{i ∈ {1, . . . , n} : Ŷ (i) = 2}|. The estimator (33) works well in practice

and is shown to be a consistent estimator in the next section (i.e., it converges to

the true parameter value). In cases where the symmetric noise model (30) does not

hold, using (33) to estimate the classification risk may be misleading. For example, in

some cases (33) may be negative. In these cases, using the more general model (28)

instead of (30) should provide more accurate results. We discuss this further from

theoretical and experimental perspectives in Sections 3.4-3.5, and 4.6 respectively.

3.2.1.2 Regression

Assuming a regression equation

Y = aX + ε, ε ∼ N(0, τ 2)
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and an estimated regression model or predictor Ŷ = a′X we have

Ŷ = a′x = a′a−1(y − ε) = θy − θε

where θ = a′a−1. Thus, in the regression case the distribution Pθ(Ŷ |Y ) and the

relationship between the risk and the parameter R(f) = g(θ) are

Pθ(Ŷ |Y ) = (2πθ2τ 2)−1/2 exp

(
−(Ŷ − θY )2

2θ2τ 2

)
(34)

R(f |Y ) = bias 2(f) + Var (f) = (1− θ)2y2 + θ2τ 2 (35)

R(f) = θ2τ 2 + (1− θ)2E P(Y )(Y
2). (36)

Note that we consider regression as a stochastic estimator in that it predicts Y =

a′X + ε or Y |X ∼ N(a′X, τ 2).

Assuming P(Y ) = N(µY , σ
2
Y ) (as is often done in regression analysis) we have

Pθ(Ŷ (i)) =

=

∫
R
Pθ(Ŷ (i)|Y )P(Y )dy = (2πθ2τ 22πσ2

Y )−1/2

∫
R

exp

(
−(Ŷ − θY )2

2θ2τ 2
− (Y − µY )2

2σ2
Y

)
dy

(37)

=
1

θ
√

2π(τ 2 + σ2
Y )

exp

(
(Ŷ (i))2

2θ2τ 2

(
σ2
Y

σ2
Y + τ 2

− 1

)
+

µ2
Y

2σ2
Y

(
τ 2

σ2
Y + τ 2

− 1

)
+

Ŷ (i)µY
θ (τ 2 + σ2

Y )

)
(38)

where we used the following lemma in the last equation.

Lemma 1 (e.g., [79]).∫ ∞
−∞

Ae−Bx
2+Cx+D dx = A

√
π

B
exp

(
C2/4B +D

)
(39)

where A,B,C,D are constants that do not depend on x.

In this case the loglikelihood simplifies to

`(θ) = −n log

(
θ
√

2π(τ 2 + σ2
Y )

)
−
(∑n

i=1(Ŷ (i))2

2(τ 2 + σ2
Y )

)
1

θ2
+

(
µY
∑n

i=1 Ŷ
(i)

τ 2 + σ2
Y

)
1

θ
− n µ2

Y

2(σ2
Y + τ 2)

(40)
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which can be shown to have the following closed form maximizer

θ̂mle = −µY
∑n

i=1 Ŷ
(i)

2n(τ 2 + σ2
Y )
±

√√√√√(µY ∑n
i=1 Ŷ

(i)
)2

4n2(τ 2 + σ2
Y )

2 +

∑n
i=1(Ŷ (i))2

n(τ 2 + σ2
Y )

(41)

where the two roots correspond to the two cases where θ = a′/a > 0 and θ = a′/a < 0.

The univariate regression case described above may be extended to multiple ex-

planatory variables i.e., Y = aX+ ε where Y,X, ε are vectors and A is a matrix. This

is an interesting extension which falls beyond the scope of the current chapter.

3.2.1.3 Noisy Gaussian Channel

In this case our predictor f corresponds to a noisy channel mapping a real valued

signal Y to its noisy version Ŷ . The aim is to estimate the mean squared error or noise

level R(f) = E ‖Y − Ŷ ‖2. In this case the distribution Pθ(Ŷ |Y ) and the relationship

between the risk and the parameter R(f) = g(θ) are

Pθ(Ŷ |Y ) = (2πθ2)−1/2 exp

(
−(Ŷ − Y )2

2θ2

)
(42)

R(f |Y ) = θ2 (43)

R(f) = θ2E P(Y )(Y ). (44)

The loglikelihood and other details in this case are straightforward variations on

the linear regression case described above. We therefore concentrate in this chapter

on the classification and linear regression cases.

As mentioned above, in both classification and regression, estimating the risks for

k ≥ 2 predictors rather than a single one may proceed by repeating the optimization

process described above for each predictor separately. That is R̂(fj) = gj(θ̂
mle
j ) where

θ̂mle
1 , . . . , θ̂mle

k are estimated by maximizing k different loglikelihood functions. In some

cases the convergence rate to the true risks can be accelerated by jointly estimating

the risks R(f1), . . . , R(fk) in a collaborative fashion. Such collaborative estimation

is possible under some assumptions on the statistical dependency between the noise
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processes defining the k predictors. We describe below such an assumption followed

by a description of more general cases.

3.2.2 Collaborative Estimation of the Risks: Conditionally Independent
Predictors

We have previously seen how to estimate the risks of k predictors by separately

applying (22) to each predictor. If the predictors are known to be conditionally in-

dependent given the true label i.e. Pθ(Ŷ1, . . . , Ŷk|Y ) =
∏

j Pθj(Ŷj|Y ) the loglikelihood

(24) simplifies to

`(θ) =
n∑
i=1

log

∫
Y

k∏
j=1

Pθj(Ŷ
(i)
j |Y (i))P(Y (i)) dµ(Y (i)), where Ŷ

(i)
j = fj(X

(i)) (45)

and Pθj above is (28) or (30) for classification and (34) for regression. Maximizing

the loglikelihood (45) jointly over θ1, . . . , θk results in estimators R̂(f1), . . . , R̂(fk) that

converge to the true value faster than the non-collaborative MLE (27) (more on this

in Section 4.6). Equation (45) does not have a closed form maximizer requiring the

use of iterative computational techniques.

The conditional independence of the predictors is a much weaker condition than

the independence of the predictors which is very unlikely to hold. In our case, each

predictor fj has its own stochastic noise operator Tj(r, s) = p(Ŷ = r|Y = s) (regres-

sion) or matrix [Tj]rs = pj(Ŷ = r|Y = s) (classification) where T1, . . . , Tk may be

arbitrarily specified. In particular, some predictors may be similar e.g., Ti ≈ Tj, and

some may be different e.g., Ti 6≈ Tj. The conditional independence assumption that

we make in this subsection is that conditioned on the latent label Y the predictions

of the predictors proceed stochastically according to T1, . . . , Tk in an independent

manner.

Figure 12 displays the loglikelihood functions `(θ) for three different dataset sizes

n = 100, 250, 500. As the size n of the unlabeled data grows the curves become

steeper and θ̂mle
n approach θtrue. Figure 13 displays a similar figure for k = 1 in the
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Figure 12: A plot of the loglikelihood functions `(θ) in the case of classification for
k = 1 (left, θtrue = 0.75) and k = 2 (right, θtrue = (0.8, 0.6)>). The loglikelihood was
constructed based on random samples of unlabeled data with sizes n = 100, 250, 500
(left) and n = 250 (right) and P(Y = 1) = 0.75. In the left panel the Y values of
the curves were scaled so their maxima would be aligned. For k = 1 the estimators
θ̂mle (and their errors |θ̂mle − 0.75|) for n = 100, 250, 500 are 0.6633 (0.0867), 0.8061
(0.0561), 0.765 (0.0153). As additional unlabeled examples are added the loglikeli-
hood curves become steeper and their maximizers become more accurate and closer
to θtrue.

case of regression.

In the case of regression (45) involves an integral over a product of k + 1 Gaus-

sians, assuming that Y ∼ N(µY , σ
2
Y ). In this case the integral in (45) simplifies to

Pθ(Ŷ (i)
1 , . . . , Ŷ

(i)
k ) =∫ ∞

−∞

(
k∏
j=1

1

θjτ
√

2π
e
−
(
Ŷ

(i)
j −θjY

(i)
)2/

2θ2j τ
2

)
1

σy
√

2π
e
−(Y (i)−µY )

2
/

2σ2
y dY (i)

=
1

τ k(
√

2π)
k+1

σY
∏k

j=1 θj

∫ ∞
−∞

exp

−1

2

(Y (i) − µY
σy

)2

+
k∑
j=1

(
Y (i)

τ
−
Ŷ

(i)
j

τθj

)2
 dY (i)

=

∫∞
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Ŷ
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(Ŷ
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(Ŷ
(i)
j )2

2τ 2θ2
j

− µ2
Y

2σ2
Y

 (46)

where the last equation was obtained using Lemma 1 concerning Gaussian integrals.

Note that this equation does not have a closed form maximizer requiring the use of
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Figure 13: A plot of the loglikelihood function `(θ) in the case of regression for k = 1
with θtrue = 0.3, τ = 1, µY = 0 and σY = 0.2. As additional unlabeled examples are
added the loglikelihood curve become steeper and their maximizers get closer to the
true parameter θtrue resulting in a more accurate risk estimate.

iterative computational techniques.

3.2.3 Collaborative Estimation of the Risks: Conditionally Correlated
Predictors

In some cases the conditional independence assumption made in the previous subsec-

tion does not hold and the factorization (45) is violated. In this section, we discuss

how to relax this assumption in the classification case. A similar approach may also

be used for regression. We omit the details here due to notational clarity.

There are several ways to relax the conditional independence assumption. Most

popular, perhaps, is the mechanism of hierarchical loglinear models for categorical

data [17]. For example, generalizing our conditional independence assumption to

second-order interaction log-linear models we have

log p(Ŷ1, . . . , Ŷk|Y ) = αy +
l∑

i=1

βi,Ŷi,Y +
∑
i<j

γi,j,Ŷi,Ŷj ,Y (47)
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where the following ANOVA-type parameter constraints are needed [17]

0 =
∑
Ŷi

βi,Ŷi,Y ∀i, Y (48)

0 =
∑
Ŷi

γi,j,Ŷi,Ŷj ,Y =
∑
Ŷj

γi,j,Ŷi,Ŷj ,Y ∀i, j, Y.

The β parameters in (47) correspond to the order-1 interaction between the vari-

ables Ŷ1, . . . , Ŷk, conditioned on Y . They correspond to the θi in the independent

formulation (28)-(30). The γ parameters capture two-way interactions which do not

appear in the conditionally independent case. Indeed, setting γi,j,Ŷi,Ŷj ,Y = 0 retrieves

the independent models (28)-(30).

In the case of classification, the number of degrees of freedom or free unconstrained

parameters in (47) depends on whether the number of classes is 2 or more and what

additional assumptions exist on β and γ. For example, assuming that the probability

of fi, fj making an error depends on the true class Y but not on the predicted classes

Ŷi, Ŷj results in a k + k2 parameters. Relaxing that assumption but assuming binary

classification results in 2k + 4k2 parameters. The estimation and aggregation tech-

niques described in Section 3.2.2 work as before with a slight modification of replacing

(28)-(30) with variations based on (47) and enforcing the constraints (48).

Equation (47) captures two-way interactions but cannot model higher order inter-

actions. However, three-way and higher order interaction models are straightforward

generalizations of (47) culminating in the full loglinear model which does not make

any assumption on the statistical dependency of the noise operators T1, . . . , Tk. How-

ever, as we weaken the assumptions underlying the loglinear models and add higher

order interactions the number of parameters increases adding to the difficulty in es-

timating the risks R(f1), . . . , R(fk).

In our experiments on real world data (see Section 4.6), it is often the case that

maximizing the loglikelihood under the conditionally independent assumption (45)

provides adequate accuracy and there is no need for the more general (47)-(48).
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Nevertheless, we include here the case of loglinear models as it may be necessary in

some situations.

3.3 Extensions: Missing Values, Active Learning, and Semi-
Supervised Learning

In this section, we discuss extensions to the current framework. Specifically, we

consider extending the framework to the cases of missing values, active and semi-

supervised learning.

Occasionally, some predictors are unable to provide their output over specific data

points. That is assuming a dataset X(1), . . . , X(n) each predictor may provide output

on an arbitrary subset of the data points {fj(X(i)) : i ∈ Sj}, where Sj ⊂ {1, . . . , n},

j = 1, . . . , k.

Commonly referred to as a missing value situation, this scenario may apply in cases

where different parts of the unlabeled data are available to the different predictors at

test time due to privacy, computational complexity, or communication cost. Another

example where this scenario applies is active learning where operating fj involves

a certain cost cj ≥ 0 and it is not advantageous to operate all predictors with the

same frequency for the purpose of estimating the risks R(f1), . . . , R(fk). Such is the

case when fj corresponds to judgments obtained from human experts or expensive

machinery that is busy serving multiple clients. Active learning fits into this situation

with Sj denoting the set of selected data points for each predictor.

We proceed in this case by defining indicators βji denoting whether predictor j is

available to emit fj(X
(i)). The risk estimation proceeds as before with the observed

likelihood modified to account for the missing values.
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In the case of collaborative estimation with conditional independence, the estima-

tor and loglikelihood become

θ̂mle
n = arg max

θ
`(θ)

`(θ) =
n∑
i=1

log
∑

r:βri=0

∫
Y

Pθ(Ŷ (i)
1 , . . . , Ŷ

(i)
k ) dµ(Ŷ (i)

r ) (49)

=
n∑
i=1

log
∑

r:βri=0

∫∫
Y2

Pθ(Ŷ (i)
1 , . . . , Ŷ

(i)
k |Y (i))P(Y (i)) dµ(Ŷ (i)

r )dµ(Y (i))

where Pθ may be further simplified using the non-collaborative approach, or using the

collaborative approach with conditional independence or loglinear model assumptions.

In the case of semi-supervised learning a small set of labeled data is augmented

by a large set of unlabeled data. In this case our framework remains as before with

the likelihood summing over the observed labeled and unlabeled data. For example,

in the case of collaborative estimation with conditional independence we have

`(θ) =
n∑
i=1

log

∫
Y

k∏
j=1

Pθj(Ŷ
(i)
j |Y (i))P(Y (i)) dµ(Y (i)) +

m∑
i=n+1

log
k∏
j=1

Pθj(Ŷ
(i)
j |Y (i))P(Y (i)).

(50)

The different variations concerning missing values, active learning, semi-supervised

learning, and non-collaborative or collaborative estimation with conditionally inde-

pendent or correlated noise processes can all be combined in different ways to provide

the appropriate likelihood function. This provides substantial modeling flexibility.

3.4 Consistency of θ̂mle
n and R̂(fj)

In this and the next section we consider the statistical behavior of the estimator θ̂mle
n

defined in (23) and the risk estimator R̂(fj) = gj(θ̂
mle) defined in (22). The analysis

is conducted under the assumption that the vectors of observed predictors outputs

Ŷ (i) = (Ŷ
(i)

1 , . . . , Ŷ
(i)
k ) are iid samples from the distribution

Pθ(Ŷ ) = Pθ(Ŷ1, . . . , Ŷk) =

∫
Y

Pθ(Ŷ1, . . . , Ŷk|Y )P(Y ) dµ(y).
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We start by investigating whether estimator θ̂mle in (23) converges to the true pa-

rameter value. More formally, strong consistency of the estimator θ̂mle
n = θ̂(Ŷ (1), . . . , Ŷ (n)),

Ŷ (1), . . . , Ŷ (n) iid∼ Pθ0 is defined as strong convergence of the estimator to θ0 as n→∞

[43]

lim
n→∞

θ̂mle
n (Ŷ (1), . . . , Ŷ (n)) = θ0 with probability 1. (51)

In other words as the number of samples n grows, the estimator will surely converge

to the true parameter θ0 governing the data generation process.

Assuming that the risks R(fj) = gj(θ) are defined using continuous functions gj,

strong consistency of θ̂mle implies strong convergence of R̂(fj) to R(fj). This is due to

the fact that continuity preserves limits. Indeed, as the gj functions are continuous in

both the classification and regression cases, strong consistency of the risk estimators

R̂(fj) reduces to strong consistency of the estimators θ̂mle.

It is well known that the maximum likelihood estimator is often strongly consis-

tent. Consider, for example, the following theorem.

Proposition 11 (e.g., [43]). Let Ŷ (1), . . . , Ŷ (n) iid∼ Pθ0, θ0 ∈ Θ. If the following con-

ditions hold

1. Θ is compact (compactness)

2. Pθ(Ŷ ) is upper semi-continuous in θ for all Ŷ (continuity)

3. There exists a function K(Ŷ ) such that E Pθ0 |K(Ŷ )| <∞ (boundedness)

and logPθ(Ŷ )− logPθ0(Ŷ ) ≤ K(Ŷ ) ∀Ŷ ∀θ

4. For all θ and sufficiently small ρ > 0, sup|θ′−θ|<ρ Pθ′(Ŷ ) is (measurability)

measurable in Ŷ

5. Pθ ≡ Pθ0 ⇒ θ = θ0 (identifiability)

then the maximum likelihood estimator is strongly consistent i.e., θ̂mle → θ0 as n→∞

with probability 1.

Note that Pθ(Ŷ ) in the proposition above corresponds to
∫
Y
Pθ(Ŷ |Y )P(Y ) dµ(y)
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in our framework. That is the MLE operates on the observed data or predictor output

Ŷ (1), . . . , Ŷ (n) that is sampled iid from the distribution Pθ0(Ŷ ) =
∫
Y
Pθ0(Ŷ |Y )P(Y ) dµ(y).

Of the five conditions above, the last condition of identifiability is the only one

that is truly problematic. The first condition of compactness is trivially satisfied in

the case of classification. In the case of regression it is satisfied assuming that the

regression parameter and model parameter are finite and a 6= 0 as the estimator θ̂mle

will eventually lie in a compact set. The second condition of continuity is trivially

satisfied in both classification and regression as the function
∫
Y
Pθ(Ŷ |Y )P(Y ) dµ(y) is

continuous in θ once Ŷ is fixed. The third condition is trivially satisfied for classifi-

cation (finite valued Y ). In the case of regression due to conditions 1,2 (compactness

and semi-continuity) we can replace the quantifier ∀θ with a particular value θ′ ∈ Θ

representing worst case situation in the bound of the logarithm difference. Then, the

bound K may be realized by the difference of log terms (with respect to that worst

case θ′) whose expectation converges to the KL divergence which in turn is never ∞

for Gaussian distributions or its derivatives. The fourth condition of measurability

follows as Pθ is specified in terms of compositions, summations, multiplications, and

point-wise limits of well-known measurable functions.

The fifth condition of identifiability states that if Pθ(Ŷ ) and Pθ0(Ŷ ) are identical

as functions i.e., they are identical for every value of Ŷ , then necessarily θ = θ0. This

condition does not hold in general and needs to be verified in each one of the special

cases.

We start with establishing consistency in the case of classification where we rely on

a symmetric noise model (30). The non-symmetric case (28) is more complicated and

is treated afterwards. We conclude the consistency discussion with an examination

of the regression case.
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3.4.1 Consistency of Classification Risk Estimation

Proposition 12. Let f1, . . . , fk be classifiers fi : X → Y, |Y| = l, with conditionally

independent noise processes described by (30). If the classifiers are weak learners i.e.,

1/l < 1−err(fi) < 1 and P(Y ) is not uniform the unsupervised collaborative diagnosis

model is identifiable.

Corollary 1. Let f1, . . . , fk be classifiers fi : X→ Y with |Y| = l and noise processes

described by (30). If the classifiers are weak learners i.e., 1/l < 1− err(fi) < 1, and

P(Y ) is not uniform the unsupervised non-collaborative diagnosis model is identifiable.

Proof. Proving identifiability in the non-collaborative case proceeds by invoking Propo-

sition 12 (whose proof is given below) with k = 1 separately for each classifier. The

conditional independence assumption in Proposition 12 becomes redundant in this

case of a single classifier, resulting in identifiability of Pθj(Ŷj) for each j = 1, . . . , k

Corollary 2. Under the assumptions of Proposition 12 or Corollary 1 the unsuper-

vised maximum likelihood estimator is consistent i.e.,

P
(

lim
n→∞

θ̂mle
n (Ŷ (1), . . . , Y (n)) = (θtrue1 , . . . , θtruek )

)
= 1.

Consequentially, assuming that R(fj) = gj(θ), j = 1, . . . , k with continuous gj we also

have

P
(

lim
n→∞

R̂(fj ;Y (1), . . . , Y (n)) = R(fj), ∀j = 1, . . . , k
)

= 1.

Proof. Proposition 12 or Corollary 1 establishes identifiability, which in conjunction

with Proposition 11 proves the corollary.

Proof. (for Proposition 12) We prove identifiability by induction on k. In the base
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case of k = 1, we have a set of l equations, corresponding to i = 1, 2 . . . l,

Pθ(Ŷ1 = i) = P(Y = i)θ1 +

(∑
j 6=i

P(Y = j)

)
(1− θ1)

(l − 1)

= P(Y = i)θ1 + (1− P(Y = i))
(1− θ1)

(l − 1)

=
θ1(lP(Y = i)− 1) + 1− P(Y = i)

(l − 1)

from which we can see that if η 6= θ and P(Y = i) 6= 1/l then Pθ(Ŷ1) 6= Pη(Ŷ1). This

proves identifiability for the base case of k = 1.

Next, we assume identifiability holds for k and prove that it holds for k + 1. We

do so by deriving a contradiction from the assumption that identifiability holds for k

but not for k + 1. We denote the parameters corresponding to the k labelers by the

vectors θ, η ∈ [0, 1]k and the parameters corresponding the additional k + 1 labeler

by θk+1, ηk+1.

In the case of k classifiers we have

Pθ(Ŷ1, . . . , Ŷk) =
l∑

i=1

Pθ(Ŷ1, . . . , Ŷk|Y = i)P(Y = i) =
l∑

i=1

G(Ai, θ)

where

G(Ai, θ)
def
= P(Y = i)

∏
j∈Ai

θj ·
∏
j 6∈Ai

(1− θj)
(l − 1)

.

Ai
def
= {j ∈ {1, 2..., k} : Ŷj = i}.

Note that the A1, . . . ,Al form a partition of {1, . . . , k} i.e., they are disjoint and their

union is {1, . . . , k}.

In order to have unidentifiability for the k + 1 classifiers we need (θ, θk+1) 6=

(η, ηk+1) and the following l equations (corresponding to Ŷk+1 = 1, 2, . . . , l) to hold
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for any Ŷ1, . . . , Ŷk which corresponds to any partition A1, . . . ,Al

θk+1G(A1, θ) +
(1− θk+1)

(l − 1)

∑
i 6=1

G(Ai, θ) = ηk+1G(A1, η) +
(1− ηk+1)

(l − 1)

∑
i 6=1

G(Ai, η)

θk+1G(A2, θ) +
(1− θk+1)

(l − 1)

∑
i 6=2

G(Ai, θ) = ηk+1G(A2, η) +
(1− ηk+1)

(l − 1)

∑
i 6=2

G(Ai, η)

...

θk+1G(Al, θ) +
(1− θk+1)

(l − 1)

∑
i 6=l

G(Ai, θ) = ηk+1G(Al, η) +
(1− ηk+1)

(l − 1)

∑
i 6=l

G(Ai, η).

(52)

We consider two cases in which (θ, θk+1) 6= (η, ηk+1): (a) θ 6= η, and (b) θ =

η, θk+1 6= ηk+1. In the case of (a) we add the l equations above which marginalizes

Ŷk+1 out of Pθ(Ŷ1, . . . , Ŷk, Ŷk+1) and Pη(Ŷ1, . . . , Ŷk, Ŷk+1) to provide

l∑
i=1

G(Ai, θ) =
l∑

i=1

G(Ai, η) (53)

which together with θ 6= η contradicts the identifiability for the case of k classifiers.

In case (b) we have from the l equations above

θk+1G(At, θ) +
1− θk+1

l − 1

(
l∑

i=1

G(Ai, θ)−G(At, θ)

)

= ηk+1G(At, η) +
1− ηk+1

l − 1

(
l∑

i=1

G(Ai, η)−G(At, η)

)
for any t ∈ {1, . . . , l} which simplifies to

0 = (θk+1 − ηk+1)

(
lG(At, θ)−

l∑
i=1

G(Ai, θ)

)
t = 1, . . . , k. (54)

As we assume at this point that θk+1 6= ηk+1 the above equality entails

lG(At, θ) =
l∑

i=1

G(Ai, θ). (55)

We show that (55) cannot hold by examining separately the cases P(Y = t) > 1/l

and P(Y = t) < 1/l. Recall that there exists a t for which P(Y = t) 6= 1/l since the

proposition requires that P(Y ) is not uniform.
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If P(Y = t) > 1/l we choose At = {1, . . . , k} and obtain

lP(Y = t)
k∏
j=1

θj =
∑
i 6=t

P(Y = i)
k∏
j=1

1− θj
l − 1

+ P(Y = t)
k∏
j=1

θj

(l − 1)P(Y = t)
k∏
j=1

θj = (1− P(Y = t))
k∏
j=1

1− θj
l − 1

P(Y = t)
k∏
j=1

θj =
(1− P(Y = t))

(l − 1)

k∏
j=1

1− θj
l − 1

which cannot hold as the term on the left hand side is necessarily larger than the term

on the right hand side (if P(Y = t) > 1/l and θj > 1/l). In the case P(Y = t) < 1/l

we choose As = {1, . . . , k}, s 6= t to obtain

lP(Y = t)
k∏
j=1

1− θj
l − 1

=
∑
i 6=s

P(Y = i)
k∏
j=1

1− θj
l − 1

+ P(Y = s)
k∏
j=1

θj

(lP(Y = t)− p(y 6= s))
k∏
j=1

1− θj
l − 1

= P(Y = s)
k∏
j=1

θj

which cannot hold as the term on the left hand side is necessarily smaller than the

term on the right hand side (if P(Y = t) < 1/l and θj > 1/l).

Since we derived a contradiction to the fact that we have k-identifiability but not

k + 1 identifiability, the induction step is proven which establishes identifiability for

any k ≥ 1.

The conditions asserted above that P(Y ) 6= 1/l and 1/l < 1 − err(fi) < 1 are

intuitive. If they are violated a certain symmetry may emerge which renders the

model non-identifiable and the MLE estimator not consistent.

In the case of the non-collaborative estimation for binary classification with the

non-symmetric noise model, the matrix θ in (28) is a 2× 2 matrix with two degrees

of freedom as each row sums to one. In particular we have θ11 = Pθ(Ŷ = 1|Y = 1),

θ12 = Pθ(Ŷ = 1|Y = 2), θ21 = Pθ(Ŷ = 2|Y = 1), θ22 = Pθ(Ŷ = 2|Y = 2) with the
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overall risk R(f) = 1−θ11P(Y = 1)−θ22P(Y = 2). Unfortunately, the matrix θ is not

identifiable in this case and neither is the scalar parameter θ11P(Y = 1)+θ22P(Y = 2)

that can be used to characterize the risk.

We can, however, obtain a consistent estimator for θ (and therefore for R(f)) by

first showing that the parameter θ11P(Y = 1)− θ22P(Y = 2) is identifiable and then

taking the intersection of two such estimators.

Lemma 2. In the case of the non-collaborative estimation for binary classification

with the non-symmetric noise model and P(Y ) 6= 0, the parameter θ11P(Y = 1) −

θ22P(Y = 2) is identifiable.

Proof. For two different parameterizations θ, η we have

Pθ(Ŷ = 1) = P(Y = 1)θ11 + (1− P(Y = 1))(1− θ22) (56)

Pθ(Ŷ = 2) = P(Y = 1)(1− θ11) + (1− P(Y = 1))θ22 (57)

and

Pη(Ŷ = 1) = P(Y = 1)η11 + (1− P(Y = 1))(1− η22) (58)

Pη(Ŷ = 2) = P(Y = 1)(1− η11) + (1− P(Y = 1))η22. (59)

Equating the two Equations (56) and (58) we have

P(Y = 1)(θ11 + θ22) + 1− P(Y = 1)− θ22 = P(Y = 1)(η11 + η22) + 1− P(Y = 1)− η22

P(Y = 1)θ11 − (1− P(Y = 1))θ22 = P(Y = 1)η11 − (1− P(Y = 1))η22

P(Y = 1)θ11 − P(Y = 2)θ22 = P(Y = 1)η11 − P(Y = 2)η22

Similarly, equating Equation (57) and Equation (59) also results in P(Y = 1)θ11 −

P(Y = 2)θ22 = P(Y = 1)η11 − P(Y = 2)η22. As a result, we have

Pθ ≡ Pη ⇒ P(Y = 1)θ11 − P(Y = 2)θ22 = P(Y = 1)η11 − P(Y = 2)η22.
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The above lemma indicates that we can use the maximum likelihood method to

obtain a consistent estimator for the parameter θ11P(Y = 1)− θ22P(Y = 2). Unfortu-

nately the parameter θ11P(Y = 1)− θ22P(Y = 2) does not have a clear probabilistic

interpretation and does not directly characterize the risk. As the following propo-

sition shows we can obtain a consistent estimator for the risk R(f) if we have two

populations of unlabeled data drawn from distributions with two distinct marginals

P1(Y ) and P2(Y ).

Proposition 13. Consider the case of the non-collaborative estimation of binary

classification risk with the non-symmetric noise model. If we have access to two

unlabeled datasets drawn independently from two distributions with different marginals

i.e.

X(1), . . . , X(n) iid∼ P1(x) =
∑
Y

P(X|Y )P1(Y )

X ′(1), . . . , X ′(m) iid∼ P2(x) =
∑
Y

P(X|Y )P2(Y )

we can obtain a consistent estimator for the classification risk R(f).

Proof. Operating the classifier f on both sets of unlabeled data we get two sets of ob-

served classifier outputs Ŷ (1), . . . , Ŷ (n), Ŷ ′(1), . . . , Ŷ ′(m) where Ŷ (i) iid∼ ∑y Pθ(Ŷ |Y )P1(Y )

and Ŷ ′(i)
iid∼ ∑y Pθ(Ŷ |Y )P2(Y ). In particular, note that the marginal distributions

P1(Y ) and P2(Y ) are different but the parameter matrix θ is the same in both cases

as we operate the same classifier on samples from the same class conditional distri-

bution P(X|Y ).

Based on Lemma 2 we construct a consistent estimator for P1(Y = 1)θ11−P1(Y =

2)θ22 by maximizing the likelihood of Ŷ (1), . . . , Ŷ (n). Similarly, we construct a con-

sistent estimator for P2(Y = 1)θ11 − P2(Y = 2)θ22 by maximizing the likelihood of

Ŷ ′(1), . . . , Ŷ ′(m). Note that P1(Y = 1)θ11 − P1(Y = 2)θ22 and P2(Y = 1)θ11 − P2(Y =

2)θ22 describe two lines in the 2-D space (θ11, θ22). Since the true value of θ11, θ22
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represent a point in that 2-D space belonging to both lines, it is necessarily the in-

tersection of both lines (the lines cannot be parallel since their linear coefficients are

distributions which are assumed to be different).

As n and m increase to infinity, the two estimators converge to the true parameter

values. As a result, the intersection of the two lines described by the two estimators

converges to the true values of (θ11, θ22) thus allowing reconstruction of the matrix θ

and the risk R(f).

Clearly, the conditions for consistency in the asymmetric case are more restricted

than in the symmetric case. However, situations such as in Proposition 13 are not

necessarily unrealistic. In many cases it is possible to identify two unlabeled sets

with different distributions. For example, if Y denotes a medical condition, it may

be possible to obtain two unlabeled sets from two different hospitals or two different

regions with different marginal distribution corresponding to the frequency of the

medical condition.

As indicated in the previous section, the risk estimation framework may be ex-

tended beyond non-collaborative estimation and collaborative conditionally indepen-

dent estimation. In these extensions, the conditions for identifiability need to be

determined separately, in a similar way to Corollary 1. A systematic way to do so

may be obtained by noting that the identifiability equations

0 = Pθ(Ŷ1, . . . , Ŷk)− Pη(Ŷ1, . . . , Ŷk) ∀Ŷ1, . . . , Ŷk

is a system of polynomial equations in (θ, η). As a result, demonstrating lack of

identifiability becomes equivalent to obtaining a solution to a system of polynomial

equations. Using Hilbert’s Nullstellensatz theorem we have that a solution to a poly-

nomial system exists if the polynomial system defines a proper ideal of the ring of

polynomials [29]. As k increases the chance of identifiability failing decays dramati-

cally as we have a system of lk polynomials with 2k variables. Such an over-determined
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system with substantially more equations than variables is very unlikely to have a

solution.

These observations serve as both an interesting theoretical connection to algebraic

geometry as well as a practical tool due to the substantial research in computational

algebraic geometry. See [103] for a survey of computational algorithms and software

associated with systems of polynomial equations.

3.4.2 Consistency of Regression Risk Estimation

In this section, we prove the consistency of the maximum likelihood estimator θ̂mle

in the regression case. As in the classification case our proof centers on establishing

identifiability.

Proposition 14. Let f1, . . . , fk be regression models fi(x) = a′iX with Y ∼ N(µY , σ
2
Y ),

Y = aX + ε. Assuming that a 6= 0 the unsupervised collaborative estimation model

assuming conditionally independent noise processes (45) is identifiable.

Corollary 3. Let f1, . . . , fk be regression models fi(X) = a′iX with Y ∼ N(µY , σ
2
Y ),

Y = aX + ε. Assuming that a 6= 0 the unsupervised non-collaborative estimation

model (45) is identifiable.

Proof. Proving identifiability in the non-collaborative case proceeds by invoking Propo-

sition 14 (whose proof is given below) with k = 1 separately for each regression

model. The conditional independence assumption in Proposition 14 becomes redun-

dant in this case of a single predictor, resulting in identifiability of Pθj(Ŷj) for each

j = 1, . . . , k.

Corollary 4. Under the assumptions of Proposition 14 or Corollary 3 the unsuper-

vised maximum likelihood estimator is consistent i.e.,

P
(

lim
n→∞

θ̂mle
n (Ŷ (1), . . . , Y (n)) = (θtrue1 , . . . , θtruek )

)
= 1.
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Consequentially, assuming that R(fj) = gj(θ), j = 1, . . . , k with continuous gj we also

have

P
(

lim
n→∞

R̂(fj ;Y (1), . . . , Y (n)) = R(fj), ∀j = 1, . . . , k
)

= 1.

Proof. Proposition 14 or Corollary 3 establish identifiability, which in conjunction

with Proposition 11 completes the proof.

Proof. (of Proposition 14).

We will proceed, as in the case of classification, with induction on the number of

predictors k. In the base case of k = 1 we have derived Pθ1(Ŷ1) in Equation (37).

Substituting in it Ŷ1 = 0 we get

Pθ1(Ŷ1 = 0) =
1

θ1

√
2π(τ 2 + σ2

Y )
exp

(
µ2
Y

2σ2
Y

(
τ 2

σ2
Y + τ 2

− 1

))
Pη1(Ŷ1 = 0) =

1

η1

√
2π(τ 2 + σ2

Y )
exp

(
µ2
Y

2σ2
Y

(
τ 2

σ2
Y + τ 2

− 1

))
. (60)

The above expression leads to θ1 6= η1 ⇒ Pθ1(Ŷ1 = 0) 6= Pη1(Ŷ1 = 0) which implies

identifiability.

In the induction step we assume identifiability holds for k and we prove that it

holds also for k+1 by deriving a contradiction to the assumption that it does not hold.

We assume that identifiability fails in the case of k + 1 due to differing parameter

values i.e.,

P(θ,θk+1)(Ŷ1, . . . , Ŷk, Ŷk+1) = P(η,ηk+1)(Ŷ1, . . . , Ŷk, Ŷk+1) ∀Ŷj ∈ R j = 1, . . . , k + 1 (61)

with (θ, θk+1) 6= (η, ηk+1) where θ, η ∈ Rk. There are two cases which we consider

separately: (a) θ 6= η and (b) θ = η.

In case (a) we marginalize both sides of (61) with respect to Ŷk+1 which leads to

a contradiction to our assumption that identifiability holds for k∫ ∞
−∞

P(θ,θk+1)(Ŷ1, . . . , Ŷk, Ŷk+1)dŶk+1 =

∫ ∞
−∞

P(η,ηk+1)(Ŷ1, . . . , Ŷk, Ŷk+1)dŶk+1

Pθ(Ŷ1, . . . , Ŷk) = Pη(Ŷ1, . . . , Ŷk). (62)
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In case (b) θ = η and θk+1 6= ηk+1. Substituting Ŷ1 = · · · = Ŷk+1 = 0 in (61) (see

(46) for a derivation) we have

P(θ,θk+1)(Ŷ1 = 0, . . . , Ŷk+1 = 0) = P(η,ηk+1)(Ŷ1 = 0, . . . , Ŷk+1 = 0) (63)

or

√
π
[

1
2

(
1
σ2
Y

+ k+1
τ2

)]−1/2

τ k+1(
√

2π)k+2σyθk+1

∏k
j=1 θj

exp


(
µY
σ2
Y

)2

2
(

1
σ2
Y

+ k+1
τ2

) − µ2
Y

2σ2
Y


=

√
π
[

1
2

(
1
σ2
Y

+ k+1
τ2

)]−1/2

τ k+1(
√

2π)k+2σyηk+1

∏k
j=1 ηj

exp


(
µY
σ2
Y

)2

2
(

1
σ2
Y

+ k+1
τ2

) − µ2
Y

2σ2
Y


which cannot hold if θ = η but θk+1 6= ηk+1.

3.5 Asymptotic Variance of θ̂mle
n and R̂

A standard result from statistics is that the MLE has an asymptotically normal

distribution with mean vector θtrue and variance matrix (nJ(θtrue))−1, where J(θ) is

the r × r Fisher information matrix

J(θ) = E Pθ{∇ logPθ(Ŷ )(∇ logPθ(Ŷ ))>} (64)

with ∇ logPθ(Ŷ ) represents the r × 1 gradient vector of logPθ(Ŷ ) with respect to θ.

Stated more formally, we have the following convergence in distribution as n → ∞

[43]

√
n (θ̂mle

n − θ0) N(0, J−1(θtrue)). (65)

It is instructive to consider the dependency of the Fisher information matrix,

which corresponds to the asymptotic estimation accuracy, on n, k,P(Y ), θtrue.

In the case of classification considering (30) with k = 1 and Y = {1, 2} it can be

shown that

J(θ) =
α(2α− 1)2

(θ(2α− 1)− α + 1)2
− (2α− 1)2(α− 1)

(α− θ(2α− 1))2
(66)

70



where α = P(Y = 1). As Figure 14 (right) demonstrates, the asymptotic accuracy of

the MLE (as indicated by J) tends to increase with the degree of non-uniformity of

P(Y ). Recall that since identifiability fails for a uniform P(Y ) the risk estimate under

a uniform P(Y ) is not consistent. The above derivation (66) is a quantification of

that fact reflecting the added difficulty in estimating the risk as we move closer to a

uniform label distribution α→ 1/2. The dependency of the asymptotic accuracy on

θtrue is more complex, tending to favor θtrue values close to 1 or 0.5. Figure 14 (left)

displays the empirical accuracy of the estimator as a function of P(Y ) and θtrue and

shows remarkable similarity to the contours of the Fisher information (see Section 4.6

for more details on the experiments). In particular, whenever the estimation error

is high the asymptotic variance of the estimator is high (or equivalently, the Fisher

information is low). For instance, the top contours in the left panel have smaller

estimation error on the top right than in the top left. Similarly, the top contours in

the right panel have smaller asymptotic variance on the top right than on the top left.

We thus conclude that the Fisher information provides practical, as well as theoretical

insight into the estimation accuracy.

Similar calculations of J(θtrue) for collaborative classification case or for the re-

gression case result in more complicated but straightforward derivations. It is impor-

tant to realize that consistency is ensured for any identifiable θtrue,P(Y ). The value

(J(θtrue))−1 is the constant dominating that consistency convergence.

A similar distributional analysis can be derived for the risk estimator. Applying

Cramer’s theorem [43] to R̂(fj) = gj(θ̂
mle), j = 1, . . . , k and (65) we have

√
n(R̂(f)−R(f)) N

(
0,∇g(θtrue)J(θtrue)∇g(θtrue)>

)
(67)

where R(f), R̂(f) are the vectors of true risk and risk estimates for the different pre-

dictors f1, . . . , fk and ∇g(θtrue) is the Jacobian matrix of the mapping g = (g1, . . . , gk)

evaluated at θtrue.

For example, in the case of classification with k = 1 we have R(fj) = 1 − θj and
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the Jacobian matrix is −1, leading to an identical asymptotic distribution to that of

the MLE (65)-(66)

√
n(R̂(f)−R(f)) N

(
0,

(
α(2α− 1)2

(θ(2α− 1)− α + 1)2
− (2α− 1)2(α− 1)

(α− θ(2α− 1))2

)−1
)
. (68)

3.6 Optimization Algorithms

Recall that we obtained closed forms for the likelihood maximizers in the cases of

non-collaborative estimation for binary classifiers and non-collaborative estimation

for one dimensional regression models. The lack of closed form maximizers in the

other cases necessitates iterative optimization techniques.

One class of technique for optimizing nonlinear loglikelihoods is the class of gradi-

ent based methods such as gradient descent, conjugate gradients, and quasi Newton

methods. These techniques proceed iteratively following a search direction; they often

have good performance and are easy to derive. The main difficulty with their im-

plementation is the derivation of the loglikelihood and its derivatives. For example,

in the case of collaborative estimation of classification (l ≥ 2) with symmetric noise

model and missing values the loglikelihood gradient ∂`
∂θj

is

n∑
i=1

∑
Y (i)

P(Y (i))
∑

r:βri=0

∑̂
Y

(i)
r

∏
p 6=j hpi(I(Ŷ

(i)
j = Y (i))− θj)((l − 1)θj)

I(Ŷ
(i)
j =Y (i))−1(1− θj)−I(Ŷ

(i)
j =Y (i))

∑
Y (i) P(Y (i))

∑
r:βri=0

∑
Ŷ

(i)
r

∏k
p=1 hpi

(69)

where

hpi = θI(Ŷ
(i)
p =Y (i))

p

(
1− θp
l − 1

)I(Ŷ (i)
p 6=Y (i))

Similar derivations may be obtained in the other cases in a straightforward manner.

An alternative iterative optimization technique for finding the MLE is expectation

maximization (EM). The derivation of the EM update equations is again relatively
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straightforward. For example in the above case of collaborative estimation of clas-

sification (l ≥ 2) with symmetric noise model and missing values the EM update

equations are

θ(t+1) = arg max
θ

n∑
i=1

∑
Y (i)

∑
r:βri=0

∑
Ŷ

(i)
r

q(t)(Ŷ (i)
r , Y (i))

k∑
j=1

logPj(Ŷ (i)
j |Y (i)) (70)

=
1

n

n∑
i=1

∑
Y (i)

∑
r:βri=0

∑
Ŷ

(i)
r

q(t)(Ŷ (i)
r , Y (i))I(Ŷ

(i)
j = Y (i))

q(t)(Ŷ (i)
r , Y (i)) =

P(Y (i))
∏k

j=1 Pj(Ŷ
(i)
j |Y (i), θ(t))∑

Y (i)

∑
r:βri=0

∑
Ŷ

(i)
r

P(Y (i))
∏k

j=1 Pj(Ŷ
(i)
j |Y (i), θ(t))

.

where q(t) is the conditional distribution defining the EM bound over the loglikelihood

function.

If all the classifiers are always observed i.e., βri = 1 ∀r, i Equation (49) reverts to

(45), and the loglikelihood and its gradient may be efficiently computed in O(nlk2). In

the case of missing classifier outputs a naive computation of the gradient or EM step

is exponential in the number of missing values R = maxi
∑

r βri. This, however, can

be improved by careful dynamic programming. For example, the nested summations

over the unobserved values in the gradient may be computed using a variation of the

elimination algorithm in O(nlk2R) time.

3.7 Empirical Evaluation

We start with some experiments demonstrating our framework using synthetic data.

These experiments are meant to examine the behavior of the estimators in a con-

trolled setting. We then describe some experiments using several real world datasets.

In these experiments we examine the behavior of the estimators in an uncontrolled

setting where some of the underlying assumptions may be violated. In most of the

experiments we consider the mean absolute error (mae) or the `1 error as a metric
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Figure 14: Left: Average value of |θ̂mle
n −θtrue| as a function of θtrue and P(Y = 1) for

k = 1 classifier and n = 500 (computed over a uniform spaced grid of 15×15 points).
The plot illustrates the increased accuracy obtained by a less uniform P(Y ). Right:
Fisher information J(θ) for k = 1 as a function of θtrue and P(Y ). The asymptotic
variance of the estimator is J−1(θ) which closely matches the experimental result in
the left panel.

that measures the estimation quality

mae(θ̂mle, θtrue) =
1

k

k∑
i=1

∣∣θtrue
i − θ̂mle

i

∣∣. (71)

In the non-collaborative case (which is equivalent to the collaborative case with k = 1)

this translates into the absolute deviation of the estimated parameter from the true

parameter.

In Figure 14 (left) we display mae(θ̂mle, θtrue) for classification with k = 1 as a

function of θtrue and P(Y ) for n = 500 simulated data points. The estimation error,

while overall relatively small, decays as P(Y ) diverges from the uniform distribution.

The dependency on θtrue indicates that the error is worst for θtrue around 0.75 and

it decays as |θtrue − 0.75| increases with a larger decay attributed to higher θtrue.

These observations are remarkably consistent with the developed theory as Figure 14

(right) shows by demonstrating the value of the inverse asymptotic variance J(θ)

which agrees nicely with the empirical measurement in the left panel.

Figure 15 (left) contains a scatter plot contrasting values of θtrue and θ̂mle for k = 1

classifier and P(Y = 1) = 0.8. The estimator was constructed based on 500 simulated
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Figure 15: Left: Scatter plot contrasting the true and predicted values of θ in the case
of a single classifier k = 1, P(Y = 1) = 0.8, and n = 500 unlabeled examples. The
displayed points were perturbed for improved visualization and the striped effect is
due to empirical evaluation over a discrete grid of θtrue values. Right: mae(θ̂mle, θtrue)
as a function of the number of unlabeled examples for different number of classifiers
(θtrue
i = P(Y = 1) = 0.75) in the collaborative case. The estimation error decreases

as more classifiers are used due to the collaborative nature of the estimation process.

data points. We observe a symmetric Gaussian-like distribution of estimated values

θ̂mle, conditioned on specific values of θtrue. This is in agreement with the theory

predicting an asymptotic Gaussian distribution for the mle, centered around the true

value θtrue. A similar observation is made in Figure 16 (left) which contains a similar

scatter plot in the regression case (k = 1, σy = 1, n = 1000). In both figures, the

striped effect is due to selection of θtrue over a discrete grid with a small perturbation

for increased visibility. Similar plots of larger and smaller n values (not shown) verify

that the variation of θ̂mle around θtrue decreases as n increases. This agrees with

the theory that indicates a O(n−1) rate of decay for the variance of the asymptotic

distribution.

Figures 15 and 16 (right) show the mae(θ̂mle, θtrue) for various k values in classi-

fication and regression, respectively. In classification, θ̂mle was obtained by sampling

data from P(Y = 1) = 0.75 = θtrue
i ,∀i. In regression, the data was sampled from the

regression equation with θtrue
i = 1 and P(Y ) = N(0, 1). In both cases, the mae error

decays with n as expected from the consistency proof and with k as a result of the
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Figure 16: Left: Scatter plot contrasting the true and predicted values of θ in the case
of a single regression model k = 1, σY = 1, and n = 1000 unlabeled examples. The
displayed points were perturbed for improved visualization and the striped effect is
due to empirical evaluation over a discrete grid of θtrue values. Right: mae(θ̂mle, θtrue)
as a function of the number of unlabeled examples for different number of regression
models (θtrue

i = σY = 1) in the collaborative case. The estimation error decreases
as more regression models are used due to the collaborative nature of the estimation
process.

collaborative estimation effect.

To further illustrate the effect of the collaboration on the estimation accuracy,

we estimated the error rates individually (non-collaboratively) for 10 predictors and

compared their mae to that of the collaborative estimation case in Figure 17. This

shows that each of the classifiers have a similar mae curve when non-collaborative

estimation is used. However, all of these curves are higher than the collaborative

mae curve (solid black line in Figure 17) demonstrating the improvement of the

collaborative process.

We compare in Figure 18 the proposed unsupervised estimation framework with

supervised estimation that takes advantage of labeled information to determine the

classifier accuracy. We conducted this study using equal number of examples for both

supervised and unsupervised cases. Clearly, this is an unfair comparison if we assume

that labeled data is unavailable or is difficult to obtain. The unsupervised estimation

does not perform as well as the supervised version especially in general. Nevertheless,
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Figure 17: Comparison of collaborative and non-collaborative estimation for k =
10 classifiers. mae(θ̂mle, θtrue) as a function of n is reported for θtrue

i = 0.75 ∀ki
and P(Y = 1) = 0.75. The colored lines represent the estimation error for each
individual classifier and the solid black line represents the collaborative estimation
for all classifiers. The estimation converges to the truth faster in the collaborative
case than in the non-collaborative case.

the unsupervised estimation accuracy improves significantly with increasing number

of classifiers and finally reaches the performance level of the supervised case due to

collaborative estimation.

In Figure 19 we report the effect of misspecification of the marginal P(Y ) on

the estimation accuracy. More specifically, we generated synthetic data using a true

marginal distribution but estimated the classifier accuracy on this data assuming a

misspecified marginal. Generally, the estimation framework is robust to small per-

turbations while over-specifying tends to hurt less than under-specifying (misspecifi-

cation closer to uniform distribution).

Figure 20 shows the mean prediction accuracy for the unsupervised predictor

combination scheme in (25) for synthetic data. The left panel displays classification

accuracy and the right panel displays the regression accuracy as measured by 1 −
1
m

∑m
i=1(Ŷ new

i − ynew
i )2. The graphs show that in both cases the accuracy increases

with k and n in accordance with the theory and the risk estimation experiments. The
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Figure 18: Comparison of supervised and unsupervised estimation for different val-
ues of classifiers with k = 1, 3, 5, 10. Supervised estimation uses the true labels to
determine the accuracy of the classifiers whereas in the unsupervised case the esti-
mation proceeds according to the collaborative estimation framework. Despite the
fact that the supervised case uses labels the unsupervised framework reaches similar
levels by increasing the number of classifiers.
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Figure 19: The figure compares the estimator accuracy assuming that the marginal
P(Y ) is misspecified. The plots draw mae(θ̂mle, θtrue) as a function of n for k = 1
and θtrue = 0.75 when P true(Y = 1) = 0.8 (left) and P true(Y = 1) = 0.75 (right).
Small perturbations in P true(y) do not affect the results significantly; interestingly
over-specifying P true(Y = 1) leads to more accurate estimates than under-specifying
(misspecification closer to uniform distribution)

78



20 40 60 80 100 120 140 160 180 200
0.7

0.75

0.8

0.85

0.9

0.95

1

A
c
c
u

ra
c
y
 o

f 
th

e
 p

re
d

ic
ti
o
n

 f
o

r 
yn

e
w

Number of noisy observations

 

 

k=3

k=5

k=10

20 40 60 80 100 120 140 160 180 200
0.7

0.75

0.8

0.85

0.9

0.95

1

Number of noisy observations

A
c
c
u

ra
c
y
 o

f 
th

e
 p

re
d

ic
ti
o
n

 f
o

r 
yn

e
w

 

 

k=3

k=5

k=10

Figure 20: Mean prediction accuracy for the unsupervised predictor combination
scheme in (25) for synthetic data. The left panel displays classification accuracy and
the right panel displays the regression accuracy as measured by 1 − 1

m

∑m
i=1(Ŷ new

i −
ynew
i )2. The graphs show that in both cases the accuracy increases with k and n in

accordance with the theory and the risk estimation experiments.

parameter θtrue
i was chosen uniformly in the range (0.5, 1), and P(Y = 1) = 0.75 for

classification and θtrue
i = 0.3, P(Y ) = N(0, 1) in the case of regression.

We also experimented with the natural language understanding dataset introduced

in [97]. This data was created using the Amazon Mechanical Turk (AMT) for data

annotation. AMT is an online tool that uses paid employees to complete small labeling

and annotation tasks. We selected two binary tasks from this data: the textual

entailment recognition (RTE) and temporal event recognition (TEMP) tasks. In

the former task, the annotator is presented with two sentences for each question.

He needs to decide whether the second sentence can be inferred from the first. The

original dataset contains 800 sentence pairs with a total of 165 annotators. The latter

task involves recognizing the temporal relation in verb-event pairs. The annotator

is forced to decide whether the event described by the first verb occurs before or

after the second. The original dataset contains 462 pairs and 76 annotators. In both

datasets, most of the annotators have completed only a handful of tasks. Therefore,

we selected a subset of these annotators for each task such that each annotator has

completed at least 100 problems and has differing accuracies. The datasets contain

79



20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Number of unlabeled examples

M
e
a

n
 a

b
s
o

lu
te

 e
rr

o
r 

o
f 

th
e
 M

L
E

 

 

k=3

k=4

k=5

10 40 70 100 130 160 190
0

0.05

0.1

0.15

0.2

0.24

Number of unlabeled examples

M
e
a

n
 a

b
s
o

lu
te

 e
rr

o
r 

o
f 

th
e
 M

L
E

 

 

k=3

k=4

k=5

Figure 21: mae(θ̂mle, θtrue) as a function of n for different number of annotators
k on RTE (left) and TEMP (right) datasets. Left: n = 100, P(Y = 1) = 0.5
and θtrue = {0.85, 0.92, 0.58, 0.5, 0.51}. Right: n = 190, P(Y = 1) = 0.56 and
θtrue = {0.93, 0.92, 0.54, 0.44, 0.92}. The classifiers were added in the order specified.

ground truth labels which are used solely to calculate the annotator accuracy and

not used at all during the estimation process. For efficiency, we selected only the

instances for which all annotators provide an answer. This resulted in n = 100, 190

for RTE and TEMP, respectively.

In Figure 21 we display mae(θtrue, θ̂mle) for these datasets as function of n for

different values of k. These plots generated from real-world data show similar trend

to the synthetic experiments. The estimation errors decay to 0 as n increases and

generally tend to decrease as k increases. This correspondence is remarkable since

two of the labelers have worse than random accuracy and since it is not clear whether

the conditional independence assumption actually holds in reality for these datasets.

Nevertheless, the collaborative estimation error behaves in accordance with the syn-

thetic data experiments and the theory. This shows that the estimation framework

is robust to the breakdown of the assumption that the classifier accuracy must be

higher than random choice. Also, whether the conditional independence assumption

holds or not is not crucial in this case.

We further experimented with classifiers trained on different representations of

the same dataset and estimated their error rates. We adopted the Ringnorm dataset
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generated by [19]. Ringnorm is a 2-class artificial dataset with 20 dimensions where

each class is drawn from a multivariate normal distribution. One class has zero mean

and a covariance Σ = 4I where I is the identity matrix. The other class has unit

covariance and a mean µ = ( 2√
20
, 2√

20
, . . . , 2√

20
). The total size is 7400. We created 5

different representations of the data by projecting it onto mutually exclusive sets of

principal components obtained by Principal Component Analysis (PCA). We trained

an SVM classifier (with 2-degree polynomial kernel) [116, 62] on samples from each

representation while holding out 1400 examples as the test set resulting in a total of

5 classifiers. We tested each of the 5 classifiers on the test set and used their outputs

to estimate the corresponding parameters. The true labels of the test set examples

were used as ground truth to calculate the mae of the mle estimators.

The mae curves for this dataset appear in Figure 22 as a function of the number n

of unlabeled examples. When all classifiers are highly accurate (upper left panel), the

collaborative unsupervised estimator is reliable, see Figure 22(a). With a mixture

of weak and strong classifiers (upper right panel), the collaborative unsupervised

estimator is also reliable. This is despite the fact that some of the weak classifiers

in Figure 22(b) have worse than random accuracy which violates the assumptions

in the consistency proposition. This shows again that the estimation framework is

robust to occasional deviations from the requirement concerning better than random

classification accuracies. On the other hand, as most of the classifiers become worse

(bottom row), the accuracy of the unsupervised estimator decreases, in accordance

with the theory developed in Sections 3.5 (recall the Fisher information contour plot).

Our experiments thus far assumed the symmetric noise model (30). Despite it

not being always applicable for real world data and classifiers, it did result in good

estimation accuracy in some of the cases described thus far. However, in some cases

this assumption is grossly violated and the more general noise model is needed (28).

For this reason, we conducted two experiments using real world data assuming the
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(a) Strong classifiers
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(b) A mixture of strong and weak classi-
fiers
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(c) Mostly weak classifiers
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(d) Very weak classifiers

Figure 22: mae(θtrue, θ̂mle) as a function of the test set size on the Ringnorm dataset.
P(Y = 1) = 0.47, and θtrue is indicated in the legend in each plot. The four panels
represent mostly strong classifiers (upper left), a mixture of strong and weak classifiers
(upper right), mostly weak classifiers (bottom left), and mostly very weak classifiers
(bottom right). The figure shows that the framework is robust to occasional devia-
tions from the assumption regarding better than random guess classification accuracy
(upper right panel). However, as most of the classifiers become weak or very weak, the
collaborative unsupervised estimation framework results in worse estimation error.
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book dvd kitchen electronics 20newsgroup
training error 0.22 0.23 0.26 0.30 0.028
non-collaborative 0.04 0.04 0.08 0.06 0.006
collaborative 0.10 0.10 0.09 0.08 n/a

Figure 23: mae(θ̂mle, θtrue) for the domain adaptation (n = 1000, P(Y = 1) = 0.75)
and 20 newsgroup (n = 15, 000, P(Y = 1) = 0.05 for each one-vs-all data). The unsu-
pervised non-collaborative estimator outperforms the collaborative estimator due to
violation of the conditional independence assumption. Both unsupervised estimators
perform substantially better than the baseline training error rate estimator. In both
cases the results were averaged over 50 random train test splits.

more general (28).

The first experiment concerned domain adaptation [18] for Amazon’s product

reviews in four different product domains: books, DVDs, electronics and kitchen

appliances. Each domain consists of positive (Y = 1) and negative (Y = 2) reviews

with P(Y = 1) = 0.75. The task was to estimate the error rates of classifiers (linear

SVM [116, 62]) that are trained on 300 examples from one domain but tested on

other domains. The mae values for the classification risks are displayed in Figure 23

with the columns indicating the test domain. In this case, the unsupervised non-

collaborative estimator outperforms the collaborative estimator due to violation of

the conditional independence assumption. Both unsupervised estimators perform

substantially better than the baseline estimator that uses the training error on one

domain to predict testing error on another domain.

In the second experiment using (28) we estimated the risk (non-collaboratively)

of 20 one vs. all classifiers (trained to predict one class) on the 20 newsgroup data

[65]. The train set size was 1000 and the unlabeled data size was 15000. In this

case the unsupervised non-collaborative estimator returned extremely accurate risk

estimators. As a comparison, the risk estimates obtained from the training error are

four times larger than the unsupervised MLE estimator (See Figure 23).
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3.8 Discussion

We have demonstrated a collaborative framework for the estimation of classification

and regression error rates for k ≥ 1 predictors. In contrast to previous supervised

risk estimation methods such as cross validation [34], bootstrap [35], and others [50],

our approach is fully unsupervised and thus able to use vast collections of unlabeled

data. Other related work includes [96] and [92] which consider repeated labeling

where each instance is labeled by multiple experts and the final label is decided based

on a majority voting scheme. However, [96] and [92] fail to address estimating the

risks of the predictors which is the main focus of our work.

We prove statistical consistency in the unsupervised case and derive the asymp-

totic variance. Our experiments on synthetic data demonstrate the effectiveness of

the framework and verify the theoretical results. Experiments on real world data

show robustness to underlying assumptions. The framework may be applied to esti-

mate additional quantities in an unsupervised manner, including noise level in noisy

communication channels [28] and error rates in structured prediction problems.

84



CHAPTER IV

LANDMARK SELECTION METHOD FOR MULTIPLE

OUTPUT PREDICTION

4.1 Introduction

Conditional modeling X 7→ Y is a central problem in machine learning. Specific cases

include classification, where Y is a discrete random variable, and regression, where Y

is a continuous random variable. Much of the attention in recent years has focused

on the case where X is a high dimensional vector (X ⊂ Rd). In this case, traditional

statistical methods are inefficient due to overfitting. Proposed alternatives for high

dimensional X ∈ Rd include feature selection and regularized models.

We consider, instead, the case of a high dimensional Y , where X is either low di-

mensional or high dimensional. The baseline approach in this case is to independently

construct models X 7→ Yi ∈ R for i = 1, . . . , k (assuming Y is a k-dimensional real

vector). This approach has the advantage of drawing from a wide variety of available

single output models, including linear and non-linear regression, logistic regression,

and support vector machines. The main disadvantage is that the independent models

do not take advantage of a likely correlation between the dimensions of Y . Incorpo-

rating this correlation becomes especially important when the dimensionality of Y is

higher or of similar order to the dimensionality of X.

Our approach is based on selecting a small subset L ⊂ {1, . . . , k} of the dimensions

of Y , and constructing two models:

X 7→ YL (72)

YL 7→ Y, (73)
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where we use the standard notation YL = {Yi : i ∈ L}. We thus have three problems:

selecting the subset L, estimating (72), and estimating (73).

Specifically, we estimate model (73) in conjunction with selecting L via least-

squares regression with group Lasso based hierarchical regularization. The precise

model (72) varies, based on whether Y is discrete or continuous. It may be any low-

dimensional multiple output model, such as multilabel logistic regression and SVM,

or multiple linear regression. If the dimensionality of X is high, regularization for

model (72) is also necessary.

The underlying assumption of our model is that there exists a subset L of the

dimensions of Y , called landmark variables, such that the remaining dimensions of Y

may be expressed as a noisy linear combination Y = AYL+ε, with sparse coefficients.

Several practical data sets exhibit such a kind of relationship. One example is the

prediction of future stock prices Y from current stock prices X. The relationship

Y = AYL+ε is motivated by the identical trends of stock prices of multiple companies

with a similar business model, or of multiple investment banks with similar holding

portfolio. This phenomenon has been well documented in finance under the term

cointegration. Another example is the classification of images (X) depending on

what objects appear or do not appear in them (Y ). Obviously, some objects tend to

appear or to not appear simultaneously, such as sky and tree, or car and road.

The cardinality s of the subset L is typically orders of magnitude lesser than

the actual dimension of the output space making the method scale well to ultra-

high dimensional outputs. For example, the naive one vs. all method requires O(k)

independent models that need to be learnt from the data, whereas the number of

subproblems selected in the proposed approach scales at the rate of O(s). Assuming

s � k we see that there is a huge advantage in terms of number of subproblems

selected.

We report in this chapter experimental results for classification and regression on
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multiple datasets. Based on our experimental study, we conclude that our model

outperforms the one vs. all approach as well as several sophisticated multiple output

prediction methods.

4.2 Related Work

Several methods have been proposed for multi-output prediction both in regression

and classification setting. In the regression setting, most approaches have focused

on penalization of the regression matrix or input space sharing. For example [58]

introduced low-rank penalization of the regression matrix, which was analyzed in [85]

in the low-dimensional setting. Recent work focused on analyzing penalized regression

in high dimensions [88]. An alternative approach that is directly applicable to multi-

output prediction is group lasso [126]. Though these methods are popular and widely

applicable, they do not directly model correlations in the output dimensions, which

can be used to reduce the complexity of the problem. A notable exception is the

curds and whey method [20] which uses shrinkage techniques in output space to

reduce prediction error.

In the classification setting, the popular approach of one-vs-all was proposed by

several researchers (see [86] for a discussion). This method ignores the dependencies

between the different dimensions of Y , and is inefficient when Y is high dimensional.

A summary of improvements over the one-versus-all method is available in [113].

Alternative approaches assume a class hierarchy on the output space [26], graph

structure on the output space [117] and joint feature extraction from output and

input spaces in large margin setting [112].

A chapter related to our proposed method is [54], which consider multi-label

prediction in a sparse high-dimensional output space. Their proposed method for

multi-label classification is to randomly project Y and construct a regression model

on the reduced subspace. There are two significant differences between this chapter
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and our approach: (i) our approach uses data-dependent transformation, rather than

a random projection, and (ii) our approach selects a subset of the dimensions of Y

that contributes to computational efficiency, statistical analysis, and is in line with

some practical scenarios (see previous section). Furthermore, the approach by [54]

might not be applicable in the regression setting, as output sparsity assumption does

not hold for regression in practice.

Recently proposed variations on [54] include [105] that propose to reduce the

dimensionality of the output space by PCA, and [14] that propose to reduce the label

space by preserving a graph structure hierarchy on Y . While these methods are sub-

linear, they still project on to a low-dimensional real subspace, and hence they do

not guarantee that the problem in the reduced subspace is easier than the original

problem.

Our approach also has a close connection to sparse PCA [132]. Two significant

differences are: (i) sparse PCA is generally applied to the covariates X rather than

Y , and (ii) our focus is on identifying the landmarks L and the relationship YL 7→ Y

rather than estimating the principal components themselves.

4.3 The landmark selection method:

With a slight abuse of notation, we denote the data matrices, containing n labeled

samples, by X ∈ Rn×d and Y ∈ Rn×k.

4.3.1 Step 1: Selecting the landmark set L and modeling (73)

A convenient way to select the set of landmark dimensions L, and to model (73)

simultaneously is the following regularized least squares regression model

Â = arg min
A∈Rk×k

‖Y − Y A‖2
F + λ1‖A‖1,2 + λ2‖A‖1 (74)
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where

‖A‖F def
=
√

tr(A>A)

‖A‖1,2
def
=

k∑
i=1

√√√√ k∑
j=1

A2
i,j

‖A‖1
def
=

k∑
i=1

k∑
j=1

|Aij|.

The first term in (74) is the least squares empirical risk that is standard in linear

regression models. Obviously, the identity A = I minimizing that term constitutes a

trivial solution that is ineffective when Y is high dimensional. The second and third

terms in (74) promote a “small” A and thus prevent the estimated model to be the

trivial minimizer I of the first term.

Much like group lasso, the second term in (74) enforces joint group sparsity across

the rows of A. To see this note that ‖A‖1,2 is the L1 norm of the L2 norms of the

individual rows. Due to the sparsity promoting nature of the L1 minimizer, Â will

have only a few rows that are not identically zero. The resulting effect is the selection

of landmark dimensions YL where L corresponds to the non-zero rows. We thus have

that the first two terms in (74) simultaneously select the landmark dimensions L, and

model YL 7→ Y . The third term ‖A‖1 promotes sparsity within the coefficients of the

model YL 7→ Y . This additional sparsity assumption reduces the prediction risk when

Y is high dimensional.

The regularization parameter λ1 controls the number of landmark output dimen-

sions. The regularization parameter λ2 controls the sparsity of the model YL 7→ Y .

Both λ1 and λ2 should increase with k. When the landmark assumption holds and

there exists a landmark set L∗ such that Y is a noisy sparse linear combination of yL∗ ,

the row sparsity pattern of Â should coincide with L∗ (assuming an appropriate selec-

tion of λ1, λ2). As λ1/λ2 increases, the group sparsity constraints become dominant

implying that each dimension of Y depends on all of the dimensions of YL. As λ1/λ2
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decreases, Â tends to be more sparse within groups, implying that the dimensions of

Y are sparse linear combinations of the YL.

From a practical point of view, with a proper selection of the regularization pa-

rameters λ1, λ2 (for example using cross-validation), the model (74) is quite flexible.

It allows handling situations involving large landmark sets L and small landmark sets

L, and high or low sparsity for the model YL 7→ Y . Empirically, the dependence on

the precise value of λ1, λ2 is robust, as small variations in λ1, λ2 do not substantially

change the predicted values.

Handling non-linear output relationship: In order to select and learn non-

linear relationships between the outputs and the landmarks, one could use functional

joint sparsity models with  L1/L∞ constraints as proposed by [69] or with L1 +  L1/L2

constraints (appropriately defined on a function space). With this change in step 1,

the proposed approach could be used to handle non-linear relationships between the

outputs, making the proposed method more flexible. Developing concrete algorithms

and analysis for this setting is left as future work.

4.3.2 Step 2: Estimating (72)

Once the landmark outputs L are identified, we can proceed with fitting model (72).

In the case of continuous Y (regression), model (72) can be estimated using a using

multivariate regression model. In the case of a discrete Y (classification), a one vs.

all classifier may be used for X 7→ Yi, i = 1, . . . , s, or alternatively a multiple output

classifier may be used for X 7→ YL. Examples include support vector machines and

log-linear models. From a statistical perspective, when Y is high dimensional the

reduction in the number of estimated parameters from kd to sd (in the regression

setting) where s � k, contributes to lower prediction risk. If the dimensionality of

X is also high, the models X 7→ YL or X 7→ Yi should use careful feature selection or

regularization to avoid overfitting.
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Algorithm 3 Landmark selection method

Input: data {(X(1), Y (1)), . . . , (X(n), Y (n))} in the form of X ∈ Rn×d and Y ∈ Rn×k

Step 1: Simultaneously find the landmark set L and solve the optimization problem
in step 1 to obtain the model YL → Y and estimate Â.
Step 2: Estimate the modelX → YL using independent models for each component
of YL or using multiple-output classification or regression algorithms.
Step 3: Given a new test point X, estimate Y by (75)-(76).

4.3.3 Step 3: Prediction

In many cases, a statistical model for (72) provides not only point estimates, but also

a full probabilistic model P(YL|X). Similarly, a statistical model for (73) provides a

full probabilistic model for P(Y |YL). The implied model

P(Y |X) = P(Y |YL)P(YL|X)

suggests the following procedure for predicting Y from X

Y ∗L = arg max
YL

p(YL|x) (75)

y∗Lc = arg max
YLc

∫
P(Y |YL)P(YL|X) dYL. (76)

An alternative to (76) is to use the following approximation

arg max
Y

P(Y |X) ≈ arg max
Y

P
(
Y | arg max

YL

P(YL|X)

)
.

In other words, given a new test sample X, we predict YL using the model from

step 2, and then estimate YLc using the model from step 1, operating on the predicted

YL. In the case of classification, we follow standard practice and set the components

of Y to 1 if the corresponding prediction of model (73) is greater than 0.5 and to

0 if it lesser than 0.5. Finally the outputs are concatenated and they represent the

prediction for the given sample X. Algorithm 1 summarizes this procedure.

4.4 Theory

In this section, we give a brief theoretical analysis of the proposed approach in the

regression setting highlighting the advantage of the proposed approach. We assume
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that there exist a true landmark subset L∗ and provide conditions under which it could

be recovered consistently. Specifically, following the analysis developed in [78] for

random design linear regression with group Lasso regularization, we can get a lower

bound on the number of samples needed for recovering the support of the subset L∗

of the landmark labels. For simplicity, we consider the regression setting with the

assumption that λ2 = 0.

We assume that Y consists of i.i.d. rows sampled from N(0,Σ). This distribution

could in fact be any sub-Gaussian distribution (which includes any bounded random

variable for example the Bernoulli random variable) for which a similar analysis could

be carried out. We make the following assumption on the the covariance matrix Σ: (1)

there exists ρmin > 0 and ρmax <∞ such that all the eigenvalues of the s×s covariance

matrix Σs of the the landmark output YL ∈ Rs are contained in the closed interval

[ρmin, ρmax], (2) mutual incoherence: there exist a incoherence parameter γ ∈ (0, 1]

such that ‖ΣScSc(ΣSS)−1‖∞ ≤ 1− γ and (3) self-incoherence: there exists Dmax <∞

such that ‖(ΣSS)−1‖∞ ≤ Dmax. Note that these are standard conditions assumed

for support recovery results in the modern sparse recovery analysis. Condition (1) is

needed to prevent over-dependency between the landmark outputs. Conditions (2)

and (3) are necessary conditions for model selection consistency of sparse recovery

problems. For example, several classes of matrices, for example Toeplitz matrices,

tree-structured matrices and bounded off-diagonal matrices are shown to satisfy the

above conditions [129]. In the absence of these conditions, landmark recovery might

fail even with arbitrarily large training set.

We also make the following assumption on the regression matrix. Let amin
def
= mini∈L ‖Ai‖2

where Ai denote the ith non-zero row of the matrix A. We denote As ∈ Rs×k to be the

subset of the matrix A with non-zero rows, ζ(As) ∈ Rs×k to be the row normalized

matrix, and

φ(A)
def
= λmax

(
ζ(As)

>(ΣSS)−1ζ(As)
)
.
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This quantity characterizes the amount of overlap that could be captured given the

output samples. Note that the support overlap function φ(A) satisfies

s

ρmaxK
≤ φ(A) ≤ s

ρmin

for any Y that satisfies assumption (1).

Proposition 15. Consider the label matrix Y with rows i.i.d. drawn from N(0,Σ)

satisfying assumptions (1)-(3), suppose that a2
min decays no more slowly than f(k) min{1

s
, 1

log(k−s)}

for some function f(k) such that f(k)/s → 0 and f(k) → ∞. Then, as long as

n > C ′ρmaxφ(A∗) log(k− s), we have with probability greater than 1− c1 exp (c2 log s):

(1) the optimization problem in 74 (with λ2 = 0) has a unique solution when λ1 =√
f(k) log k

n
and (2) the row support specified by the unique solution of the optimization

problem 74 is equal to the row support of the true model.

Proof. The proof follows from the corresponding proof in [78].

The main consequence of the above proposition is that if there exist a set of land-

mark variable L∗ in the output space, the sample complexity is of logarithmic order

in the original dimension of the output space k. Using sub-Gaussian assumptions on

the label matrix, analogous conditions for classification are possible.

Following [85] we note that for a matrix regression problem y = Θx + ε with

Θ ∈ Rm1×m2 , the Frobenious norm error rate (with n samples, unit noise variance

and no assumption on the regression matrix)

‖Θ̂−Θ‖2
F = O

(m1m2

n

)
.

Since in our case the estimated matrix (72) (assuming linear regression model) is of

the dimension s×d, the error is of the order of O( sd
n

) samples [85], much smaller than

the classical setting without the landmark selection method of O(kd
n

). In particular,

when s� k, there is a significant gain in efficiency.
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We conclude that the landmark method makes a structural assumption on the

output space in order to facilitate regression in high dimensional setting (n � kd).

Other methods, making a different set of structural assumptions (e.g., low-rank re-

gression) try to achieve the same goal, but work under a different set of assumptions.

Empirically, the landmark method works better than low-rank regression and group

Lasso based multivariate regression on a variety of datasets (see Section 4.6).

4.5 Optimization procedure

Here, we provide the optimization procedure required to solve the optimization prob-

lem described in step 1. The spaRSA method, proposed recently in [120], is a solver

for optimization problems of the form

min
a∈Rp

f(a) + λφ(a)

where f is a convex loss function and φ is a convex regularizer. The main advantage

of spaRSA is that when the regularizer is group separable, the problem decomposes

over the group.

Using vectorization and block-diagonalization, it can be shown that (74) falls un-

der this framework. Upon initial investigation, it appears that the block-diagonalization

operation complicates the solver as it increases the size of the data matrix. However,

we describe below a variation on spaRSA that works directly with the Y and A. A

similar approach was used in [100] for the problem of collaborative dictionary learn-

ing with hierarchical penalty. The main advantage of the spaRSA procedure (that

the problem decouples across groups) is still preserved and further in our case, each

subproblem could be solved via thresholding.

In order to solve the optimization problem, the spaRSA procedure generates a

sequence of updates that converges to the solution. We refer the reader to [120] for

a complete description of the general procedure. In our case, we let f(Ai) denote the

reconstruction error (the squared loss in our case) for Ai (here and below we denote
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the i-column of a matrix A as Ai) and define the matrix U (t) ∈ Rk×k whose i-column

is given by

U
(t)
i = A

(t)
i − (1/αt)∇f(A

(t)
i ).

The sequence of spaRSA updates that converge to the true solution is

A(t+1) = arg min
Z∈Rk×k

‖Z − U (t)‖F +
λ1

α(t)
‖Z‖F +

λ2

α(t)
‖Z‖1,

which is group separable into k independent problems as below:

A
(t+1)
i = arg min

Zi∈Rk
‖Zi − U (t)

i ‖2 +
λ1

α(t)
‖Zi‖2 +

λ2

α(t)
‖Z‖1.

The solutions for each of these sub-problems are available in closed form (similar

to [100]) as follows:

A
(t+1)
i =

 max{0, ‖h‖2 − λ1}h/‖h‖2 if ‖h‖2 > 0

0 if ‖h‖2 = 0

where hj = sign(U
(t)
i,j ) max{0, |U (t)

i,j | − λ2}. The thresholding require operations that

are linear in the dimensionality of the matrix Y . The above procedure is repeated

until convergence to obtain the final solution that features row sparsity, and potential

sparsity within rows as well.

4.6 Experiments

In this section, we compare our landmark selection method, which we refer to below

as moplms, to alternative baselines on classification and regression problems. In our

experiments we used code from [120] for performing the mixed norm penalty (group

lasso and lasso) landmark selection. The regularization parameters were set by cross-

validation.

4.6.1 Synthetic experiments

We conducted an experiment on synthetic regression data with k = 500 (dimension-

ality of Y ), d = 500 (dimensionality of X). The number of landmark outputs s was
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Figure 24: Left: MSE vs. sample size for synthetic regression data set. Middle: MSE
vs. sample size for synthetic regression data set. Right: Hamming loss as a function
of sample size for synthetic classification data set. The multiple curves represent
different values of s/k.
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Figure 25: Hamming loss vs. sample size on synthetic classification data sets.

varied in the set {50, 100, 200}. The data was simulated from the above model, includ-

ing the specified landmark outputs. Figure 24 (left) shows the plot of the test MSE

prediction error as a function of the sample size for various values of the parameter

s/k.

From section 5.4, we have that if the landmark output selection method is not

used, with a linear regression model for X 7→ Y ,the Frobenious norm error between

the true and estimated matrix scales as O
(
kd
n

)
. Where as with the landmark output

assumption the error for model 72 scales as O
(
sd
n

)
. This benefit in the estimation

error of the regression matrix is reflected in the MSE prediction error. Specifically,

as s decreases, the sample complexity decreases. This phenomenon is especially im-

portant in high-dimensional cases, when there are fewer samples than the number of

parameters to be estimated. We also compared the proposed approach to group-Lasso
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and low-rank multivariate regression. Figure 24 (middle) shows the mse prediction

error rate of the moplms method decays faster compared to the other methods.

We also experimented with synthetic classification data where Y is a 500 dimen-

sional binary vector and the input X ∈ R500. Similar to the regression setting, the

landmark outputs were first generated with s ∈ {50, 100, 200} and the dependent

outputs where generated as sparse linear combination of the landmark outputs. Fig-

ure 24 (right) shows the Hamming loss as a function of the sample size. The X 7→ YL

model was collection of multiple one-vs-all SVMs. Similar to the regression case,

the prediction error decays with the number of landmark outputs s/k. We further

compare the proposed approach on synthetic data set against the following methods:

1. One vs. all: This is a standard base-line approach for multi-label classification,

for e.g., [86].

2. Multilabel compressive sensing (mlcs): This approach was proposed in

[54] where the label vector is projected to a random m dimensional sub-space

followed by regression on the compressed subspace.

3. Multi-label classification via canonical correlation analysis (ml-cca):

After performing canonical correlation analysis (CCA) on the input and output

variables, a model is learned in the resulting subspace, followed by projection

to the original label space.

From Figure 25, we note that the proposed approach has a better rate of decay

of hamming loss compared to the other approaches. This phenomenon is further

observed in the real world data sets as described in the next section.

We conducted an additional experiment to study the number of sub-problems se-

lected. Specifically, we varied the number of sub-problems and the tuning parameters

of mlcs, and noted the values achieving the lowest prediction error. We then trained

moplms, gradually reducing the regularization parameter until the prediction error
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matched that of mlcs. The two methods achieved identical prediction error with the

following (mean) values of s/k: 0.45 (mlcs) and 0.30 (moplms), indicating moplms

selected fewer sub-problems while achieving identical performance. Note, however,

that mlcs always uses base regressors and moplms uses base classifiers.

4.6.2 Real-world data sets

4.6.2.1 Classification

We experimented with the following two multiple output classification datasets.

1. del.icio.us This dataset consists of data from del.icio.us, a social bookmarking

site where webpages are labeled with multiple contextual tags. The data set

contains about 16000 labeled web page and 983 unique labels. We follow the

experimental setup followed in [54] and represent web page as a boolean bag-

of-words vector, with the vocabulary chosen using a combination of frequency

thresholding and χ2 feature ranking, resulting in 500 features.

2. Image data set. This dataset contains 68000 images, with about 22000 unique

word tags for each image. Following [54] we retained the 1000 most frequent

labels. We represented each image via codes computed with a learned dictionary

(of size 1024) via sparse coding [121]. Specifically, we densely sampled 10× 10

patches from the image and computed sparse codes. Finally max-pooling was

used to pool the codes obtained for the patches.

Note that we use thresholding to convert the real output to the binary form of the

data. The regularization parameters λ1 and λ2 were estimated using cross-validation.

The number of selected landmarks s was 231 for the del.ic.ious data and 278 for the

image data set. This was less than the number of sub-problems in both the mlcs and

ml-cca approaches, which were also tuned for optimal prediction error.
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Table 2: Test set Hamming loss and F1 measure evaluation of the four classification
approaches: mlcs, ml-cca, one vs. all, and moplms. The base classifiers in the reduced
space were SVM.

Delicious Image
Ham. loss F-score Ham. loss F-score

mlcs 0.0187 0.3732 0.0047 0.3012
ml-cca 0.0164 0.3822 0.0041 0.3183

one.vs.all 0.0144 0.4512 0.0034 0.3923
moplms 0.0142 0.4522 0.0032 0.4031

Table 2 displays the F1-score and hamming loss that are two standard evaluation

metrics for multi-label classification.

Hamming loss =
y>1 + ŷ>1− 2y>ŷ

k

F1 score =
2y>ŷ∑k

i=1 yi +
∑

i=1 ŷi
.

The landmark selection method performed better in terms of both evaluation met-

rics. The one-versus-all method was the second best in terms of prediction accuracy,

but takes a significantly greater amount of train and test time, compared to the

alternative methods.

Figure 26 (left and middle) shows the decay of the Hamming loss as a function

of the sample size for mlcs, moplms and ml-cca method. We omitted the one-vs-all

method as it took significantly more amount of time compared to the other ap-

proaches, and thus is not computationally attractive. The proposed landmark selec-

tion approach has lower prediction error than mlcs and ml-cca.

4.6.2.2 Regression

In the regression setting, we consider predicting the stock prices of several companies

based on previous values via the landmark selection approach on the SP 500 data

set. More specifically, the data consists of closing stock prices of the 500 companies

in the S&P index in the period from August 21, 2009 to August 20, 2010 (a total of
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Figure 26: Left and middle: Hamming loss versus number of samples for moplms,
mlcs and ml-cca on delicious data set (left) and image data set (middle). Right: Mean
MSE prediction error as a function of sample size for moplms, low rank multivariate
regression and group Lasso based multivariate regression.

245 entries). We assume the following autoregressive 1 or AR(1) model

YtL = BYt−1L + E (77)

where Yt = log St
St−1

represents the log returns (St is the stock price at time t) for

day t and E is the noise matrix. The problem is motivated by the observation

in finance that multiple companies have stock prices that share identical stochastic

trends (cointegration).

We compare our landmark selection approach to low-rank multivariate regres-

sion (using trace norm regularization) and group lasso based multivariate regression.

These two baselines are popular multivariate regression methods. In our case (mo-

plms), we used a multivariate ridge regression for estimating model (72), which is

Equation 77 in the current setting. As in the classification setting, the regularization

parameter was tuned by cross validation, and resulted in s = 98 landmark outputs.

Table 3 shows that moplms outperformed the two baselines (group lasso and

low-rank multivariate regression). Figure 26 displays the prediction error rate as a

function of the sample size. It confirms this conclusion as the prediction error of

moplms decays faster than the baselines.
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Table 3: Test prediction error (MSE) for moplms vs. Lrmvr. λ1 and λ2 in state
1 were selected to minimize prediction error using cross-validation. The number of
subproblems selected in this case was 98.

Method Moplms Group lasso LRMV Reg
Test err 3.28 5.42 4.63
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CHAPTER V

OPTIMAL RANDOM EFFECTS MODEL FOR SPARSE

MULTI-TASK LEARNING

5.1 Introduction

Modern high-dimensional data sets, typically with more parameters to estimate than

the number of samples available, have triggered a flurry of research based on struc-

tured sparse models, both on the statistical and computational aspects. The initial

problem considered in this setting was to estimate a sparse vector under a linear

model (or the Lasso problem). Recently, several approaches have been proposed

for estimating a sparse vector under additional constraints, for e.g., group sparsity-

where certain groups of coefficients are jointly zero or non-zero. Another closely re-

lated problem is that of multi-task learning or simultaneous sparse approximation,

which are special cases of the group sparse formulation. A de-facto procedure for

dealing with joint sparsity regularization is the group-Lasso estimator [126], which is

based on a (2, 1)-mixed norm convex relaxation to the non-convex (2, 0)-mixed norm

formulation.

However, as we shall argue in this chapter, group-Lasso suffers from several draw-

backs due to the looseness of the relaxation; cf., [57, 47]. We propose a general method

for multi-task learning in high-dimensions based on a joint sparsity random effects

model. The standard approach for dealing with random effects requires estimating

covariance information. Similarly, our estimation procedure involves two-steps: a

convex covariance estimation step followed by the standard ridge-regression. The

first step corresponds to estimating the covariance of the coefficients under additional

constraints that promote sparsity. The intuition is that to deal with group sparsity
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(even if we are interested in estimating the coefficients) it is better to first estimate

covariance information, and then plug in the covariance estimate for estimating the

coefficients. With a particular sparse diagonal structure for the covariance matrix the

model becomes similar to group-lasso, and the advantage of the proposed estimation

approach over group-lasso formulation will be clarified in this setting.

Related work: Traditional estimation approaches for random effects model in-

volve two-steps: first estimate the underlying covariance matrix, and then estimate

the coefficients based on the covariance matrix. However, the traditional covariance

estimation procedures are non-convex such as the popular method of restricted maxi-

mum likelihood (REML) and such models are typically studied in the low-dimensional

setting [51].

From a Bayesian perspective, a hierarchical model for simultaneous sparse ap-

proximation is proposed in [119] based on a straightforward extension of automatic

relevance determination. Under that setting, the tasks share a common hyper-prior

that is estimated from the data by integrating out the actual parameter. The result-

ing marginal likelihood is maximized for the hyper-prior parameters; this procedure

is called as type-II maximum likelihood in the literature. The non-Bayesian counter-

part is called random effects model in classical statistics, and the resulting estimator

is referred to as REML. The disadvantage of this approach is that it makes the result-

ing optimization problem non-convex and difficult to solve efficiently, as mentioned

before. In addition, the problem becomes harder to analyze and provide convincing

statistical and computational guarantees, while Lasso-related formulations are well

studied and favorable statistical and computational properties could be established.

More recently, the problem of joint sparsity regularization has been studied under

various settings (multi-task learning [2, 1], group lasso [126], and simultaneous sparse

approximation [110, 119]) in the past years. In [1], the authors develop a convex
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framework for multi-task learning based on the (2, 1)-mixed norm formulation. Con-

ditions for sparsity oracle inequalities and variable selection properties for a similar

formulation are derived in [72], showing the advantage of joint estimation of tasks

that share common support is statistically efficient. But the formulation has several

drawbacks due to the looseness of its convex relaxation [57, 47]. The issue of bias

that is inherent in the group lasso formulation was discussed in [57]. By defining a

measure of sparsity level of the target signal under the group setting, the authors

mention that the standard formulation of group lasso exhibits a bias that cannot be

removed by simple reformulation of group lasso. In order to deal with this issue,

recently [47] proposed the use of a non-convex regularizer and provided a numerical

algorithm based on solving a sequence of convex relaxation problems. The method

is based on a straightforward extension of approach developed for the Lasso setting

(cf., [128]), to the joint sparsity situation. Note that adaptive group-Lasso is a special

case of [47]. In this chapter, we propose a simple two-step procedure, to overcome the

drawbacks of the standard group-Lasso relaxation. Compared to [47], the proposed

approach is entirely convex and hence attains the global solution.

The current chapter has two theoretical contributions. First, under a multi-task

random effects model, we obtain an expected prediction error bound that relates

the predictive performance to the accuracy of covariance estimation; by adapting

high dimensional sparse covariance estimation procedures such as [36, 15], we can

obtain consistent estimate of covariance matrix which leads to asymptotically optimal

performance. Second, it is shown that under our random effects model, group Lasso

in general does not accurately estimate the covariance matrix and thus is not optimal

under the model considered. Experiments show that this approach provides improved

performance compared to group Lasso (and the multi-stage versions) on simulated

and real data sets.
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5.2 Joint Sparsity Random Effects Model and Group Lasso

We consider joint sparsity regularization problems under multi-task learning. In

multi-task learning, we consider m linear regression problems tasks ` = 1, . . . ,m

Y (`) = X(`)β̄(`) + ε(`). (78)

We assume that each Y (`) is an n(`) dimensional vector, each X(`) is an n(`) × d

dimensional matrix, each β̄(`) is the target coefficient vector for task ` in d dimension.

For simplicity, we also assume that ε(`) is an n(`) dimensional iid zero-mean Gaussian

noise vector with variance σ2: ε(`) ∼ N(0, σ2In(`)×n(`)).

The joint sparsity model in multi-task learning assumes that all β̄(`) share similar

supports: supp(β̄(`)) ⊂ F̄ for some common sparsity pattern F̄ , where supp(β) = {j :

βj 6= 0}. The convex relaxation formulation for this model is given by group Lasso

min
β

 m∑
`=1

1

2

∥∥Y (`) −X(`)β(`)
∥∥2

2
+ λ

d∑
j=1

√√√√ m∑
`=1

(β
(`)
j )2

 , (79)

where β = {β(`)}`=1,...,m.

We observe that the multi-task group Lasso formulation (79) is equivalent to

minβ,ω F (β, ω), where F (β, ω) =

m∑
`=1

1

2σ2

∥∥Y (`) −X(`)β(`)
∥∥2

2
+

d∑
j=1

1

2ωj

m∑
`=1

(β
(`)
j )2 +

m

2σ2

d∑
j=1

ωj (80)

with λ = σ
√
m, where β = {β(`)}`=1,...,m and ω = {ωj}j=1,...,d.

With fixed hyper parameter ω, we note that (79) is a special case of

min
β

m∑
`=1

1

2σ2

∥∥Y (`) −X(`)β(`)
∥∥2

2
+

1

2

m∑
`=1

(β(`))>Ω−1β(`), (81)

where Ω is a hyper parameter covariance matrix shared among the tasks. This general

method employs a common quadratic regularizer that is shared by all the tasks. The

group Lasso formulation (79) assumes a specific form of diagonal covariance matrix

Ω = diag({ωj}).
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Equation (81) suggests the following random effects model for joint sparsity reg-

ularization, where the coefficient vectors β̄(`) are random vectors generated indepen-

dently for each task `; however they share the same covariance matrix Ω̄: E β̄(`)β̄(`)> =

Ω̄. Given the coefficient vector β̄, we then generate Y (`) based on (81). Note that we

assume that Ω may contain zero-diagonal elements. If Ωjj = 0, then the correspond-

ing β̄
(`)
j = 0 for all `. Therefore we call this model joint sparsity random effects model

for multi-task learning.

5.3 Joint Sparsity via Covariance Estimation

Under the proposed joint sparsity random effects model, it can be shown (see Sec-

tion 5.4) that the optimal quadratic optimizer (β(`))>Ω−1β(`) in (79) is obtained at the

true covariance Ω = Ω̄. This observation suggests the following estimation procedure

involving two steps:

• Step 1: Estimate the joint covariance matrix Ω as hyper parameter. In partic-

ular, this chapter suggests the following method as discussed in Section 5.3.1:

Ω̂ =

arg min
Ω∈S

[
1

2

m∑
`=1

∥∥Y (`)Y (`)> −X(`)ΩX(`)>∥∥2

F
+R(Ω)

]
, (82)

where ‖·‖F denotes the matrix Frobenius norm, S is the set of symmetric positive

semi-definite matrices, and R(Ω) is an appropriately defined regularizer function

(specified in Section 5.3.1).

• Step 2: Compute each β(`) separately given the estimated Ω̂ using:

β̂(`) =
(
X(`)>X(`) + λΩ̂−1

)−1

X(`)>Y (`), (83)

where ` = 1, . . . ,m.

Note that the estimation method proposed in step 1 holds for a general class of

covariance matrices. Meaningful estimates of the covariance matrix could be obtained
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even when the generative model assumption is violated. If the dimension d and sample

size n per task are fixed, it can be shown relatively easily using classical asymptotic

statistics that when m → ∞, we can reliably estimate the true covariance Ω̄ using

(82), i.e., Ω̂ → Ω̄. Therefore the method is asymptotically optimal as m → ∞. On

the other hand, the group Lasso formulation (80) produces sub-optimal estimate of

ωj, as we shall see in Section 5.4.2. We would like to point out that in cases when

the matrix Ω̂ is not invertible (for example, as in the sparse diagonal case as we see

next) we replace the inverse with pseudo-inverse. For ease of presentation, we use the

inverse throughout the presentation, though it should be clear from the context.

5.3.1 Sparse Covariance Coding Models

In our two step procedure, the covariance estimation of step 1 is more complex com-

pared to step 2, which involves only the solutions of ridge regression problems. As

mentioned above, if we employ a full covariance estimation model, then the estimation

procedure proposed in this work is asymptotically optimal when m → ∞. However,

since modern asymptotics are often concerned with the scenario when d � n, com-

puting a d× d full matrix Ω becomes impossible without further structure on Ω. In

this section, we assume that Ω is diagonal, which is consistent with the group Lasso

model.

This section explains how to estimate Ω using our generative model, which implies

that β̄(`) ∼ N(0,Ω), and Y (`) = X(`)β̄(`) + ε(`) with ε(`) ∼ N(0, σ2In(`)×n(`)). Tak-

ing expectation of Y (`)Y (`)> with respect to ε and β̄(`), we obtain Eβ(`),εY
(`)Y (`)> =

X(`)ΩX(`)> + σ2In(`)×n(`) . This suggests the following estimator of Ω: Ω̂ =

arg min
Ω∈S

m∑
`=1

∥∥Y (`)Y (`)> −X(`)ΩX(`)> − σ2In(`)×n(`)

∥∥2

F
,

where ‖ · ‖F is the matrix Frobenius norm. This is equivalent to

Ω̂ = arg min
Ω∈S

1

2

m∑
`=1

∥∥Y (`)Y (`)> −X(`)ΩX(`)>∥∥2

F
+ λtr

(
Ω

m∑
`=1

X(`)>X(`)

)
(84)
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with λ = σ2. Similar ideas for estimating covariance by this approach appeared

in [36, 16]. We may treat the last term as regularizer of Ω, and in such sense a more

general form is to consider Ω̂ =

arg min
Ω∈S

[
1

2

m∑
`=1

∥∥Y (`)Y (`)> −X(`)ΩX(`)>∥∥2

F
+R(Ω)

]
,

where R(Ω) is a general regularizer function of Ω. Note that the dimension d can

be large, and thus special structure is needed to regularize Ω. In particular, to

be consistent with group Lasso, we impose the diagonal covariance constraint Ω =

diag({ωj}), and then encourage sparsity as follows: Ω̂ =

arg min
{ωj≥0}

m∑
`=1

1

2
‖Y (`)Y (`)> −X(`)diag({ωj})X(`)>‖2

F + λ
∑
j

ωj. (85)

This formulation leads to sparse estimation of ωj, which we call sparse covariance

coding (scc). Note that the above optimization problem is convex and hence the

solution could be computed efficiently. This formulation is consistent with the group

Lasso regularization which also assumes diagonal covariance implicitly as in (79). It

should be noted that if the diagonals of
∑m

`=1X
(`)>X(`) have identical values, then

up to a rescaling of λ, (85) is equivalent to (84) with Ω restricted to be a diagonal

matrix. In the experiments conducted on real world data sets, there was no significant

difference between the two regularization terms (see Table 7 ), when both formulations

are restricted to diagonal Ω.

5.4 Theoretical Analysis

In this section we do a theoretical analysis of the proposed method. Specifically, we

first derive upper and lower bounds for prediction error for the joint sparsity random

effects model and show the optimality of the proposed approach. Informally, the

notion of optimality considered is as follows: what is the ‘optimal shared quadratic

regularizer’, when m and d goes to infinity and when solutions for each task can be

written as individual ridge regression solutions with a shared quadratic regularizer
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(note that this includes group-Lasso method). Next, we demonstrate with a simple

example (i.e., considering the low-dimensional setting) the drawback of the standard

group-Lasso relaxation. In a way, this example also serves as a motivation for the

approach proposed in this work and provides concrete intuition.

We consider a simplified analysis with Ω̂ replaced by Ω̂(`) in Step 2 so that Ω̂(`)

does not depend on Y (`):

β̂(`) =
(
X(`)>X(`) + λΩ̂(`)−1

)−1

X(`)>Y (`). (86)

For example, this can be achieved by replacing Step 1 with Ω̂(`) =

arg min
Ω∈S

[
1

2

∑
k 6=`

∥∥Y (k)Y (k)> −X(k)ΩX(k)>∥∥2

F
+R(Ω)

]
. (87)

Obviously when m is large, we have Ω̂(`) ≈ Ω̂. Therefore the analysis can be slightly

modified to the original formulation, with an extra error term of O(1/m) that van-

ishes when m → ∞. Nevertheless, the independence of Ω̂(`) and Y (`) simplifies the

argument and makes the essence of our analysis much easier to understand.

5.4.1 Prediction Error

This section derives an expected prediction error bound for the coefficient vector β̂(`)

in (86) in terms of the accuracy of the covariance matrix estimation Ω̂(`). We consider

the fixed design scenario, where the design matrices X(`) are fixed and ε(`) and β̄(`)

are random.

Theorem 5.4.1. Assume that λ ≥ σ2. For each task `, given Ω̂(`) that is independent

of Y (`), the expected prediction error with β̂(`) in (86) is bounded as

σ2λω(`) ≤ A ≤ λ2ω(`),

where A = E ‖X(`)β̂(`)−X(`)β̄(`)‖2
2−
∥∥∥X(`)Ω̄1/2

(
Ω̄1/2Σ(`)Ω̄1/2 + λI

)−1/2
∥∥∥2

F
and the ex-

pectation is with respect to the random effects β̄(`) and noise ε(`), and Σ(`) = X(`)>X(`),
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and

ω(`) = ‖X(`)
(

Ω̂(`)Σ(`) + λI
)−1

(Ω̂(`) − Ω̄)(Σ(`))1/2
(
(Σ(`))1/2Ω̄(Σ(`))1/2 + λI

)−1/2 ‖2
F .

Proof. For notational simplicity, we remove the superscripts (`) in the following

derivation (e.g., denote X(`) by X, β̂(`) by β̂ and so on). We have the following

decomposition

E ‖Xβ̂ −Xβ̄‖2
2

=E

∥∥∥∥X ((X>X + λΩ̂−1
)−1

X>(Xβ̄ + ε)− β̄
)∥∥∥∥2

2

=E

∥∥∥∥X (X>X + λΩ̂−1
)−1

λΩ̂−1β̄

∥∥∥∥2

2

+ E

∥∥∥∥X (X>X + λΩ̂−1
)−1

X>ε

∥∥∥∥2

2

=λ2tr

[
X
(
X>X + λΩ̂−1

)−1

Ω̂−1Ω̄Ω̂−1
(
X>X + λΩ̂−1

)−1

X>
]

+ σ2tr

[
X
(
X>X + λΩ̂−1

)−1

X>X
(
X>X + λΩ̂−1

)−1

X>
]

≤trλ

[
X
(

Ω̂X>X + λI
)−1

(λΩ̄ + Ω̂X>XΩ̂)
(
X>XΩ̂ + λI

)−1

X>
]

=λ(A+B + C),

where with ∆Ω̂ = Ω̂− Ω̄, we have

A = tr

[
X
(

Ω̂X>X + λI
)−1

∆Ω̂X>X∆Ω̂
(
X>XΩ̂ + λI

)−1

X>
]

and

B = 2tr

[
X
(

Ω̂X>X + λI
)−1

Ω̄X>X∆Ω̂
(
X>XΩ̂ + λI

)−1

X>
]

and

C = tr

[
X
(

Ω̂X>X + λI
)−1

(Ω̄X>XΩ̄ + λΩ̄)
(
X>XΩ̂ + λI

)−1

X>
]
.
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We can further expand C as:

C =tr

[
X
(
Ω̄X>X + λI

)−1
(Ω̄X>XΩ̄ + λΩ̄)

(
X>XΩ̂ + λI

)−1

X>
]

− tr

[
X
(

Ω̂X>X + λI
)−1

∆Ω̂X>X
(
Ω̄X>X + λI

)−1
(Ω̄X>XΩ̄ + λΩ̄)

(
X>XΩ̂ + λI

)−1

X>
]

=tr

[
XΩ̄

(
X>XΩ̂ + λI

)−1

X>
]
− tr

[
X
(

Ω̂X>X + λI
)−1

∆Ω̂X>XΩ̄
(
X>XΩ̂ + λI

)−1

X>
]

=tr

[
XΩ̄

(
X>XΩ̂ + λI

)−1

X>
]
−B/2.

Therefore

B + C − tr
[
XΩ̄

(
X>XΩ̄ + λI

)−1
X>
]

=B/2− tr

[
XΩ̄

(
X>XΩ̄ + λI

)−1
X>X∆Ω̂

(
X>XΩ̂ + λI

)−1

X>
]

=B/2− tr

[
X
(
Ω̄X>X + λI

)−1
Ω̄X>X∆Ω̂

(
X>XΩ̂ + λI

)−1

X>
]

=− tr

[
X
(

Ω̂X>X + λI
)−1

∆Ω̂X>X
(
Ω̄X>X + λI

)−1
Ω̄X>X∆Ω̂

(
X>XΩ̂ + λI

)−1

X>
]
.

Therefore we have

A+B + C − tr
[
XΩ̄

(
X>XΩ̄ + λI

)−1
X>
]

=tr

[
X
(

Ω̂X>X + λI
)−1

∆Ω̂
(
I −X>X

(
Ω̄X>X + λI

)−1
Ω̄
)
X>X∆Ω̂

(
X>XΩ̂ + λI

)−1

X>
]

=λtr

[
X
(

Ω̂X>X + λI
)−1

∆Ω̂
(
X>XΩ̄ + λI

)−1
X>X∆Ω̂

(
X>XΩ̂ + λI

)−1

X>
]
.

This proves the upper bound. Similarly, the lower bound follows from the fact that

E ‖Xβ̂ −Xβ̄‖2
2 ≥ σ2(A+B + C).

The bound shows that the prediction performance of (86) depends on the accuracy

of estimating Ω̄. In particular, if Ω̂(`) = Ω̄, then the optimal prediction error of∥∥∥X(`)Ω̄1/2
(
Ω̄1/2X(`)>X(`)Ω̄1/2 + λI

)−1/2
∥∥∥2

F
can be achieved. A simplified upper bound

is E ‖X(`)β̂(`) − X(`)β̄(`)‖2
2 ≤

∥∥∥X(`)Ω̄1/2
(
Ω̄1/2Σ(`)Ω̄1/2 + λI

)− 1
2

∥∥∥2

F
+ λ−1‖Σ(`)(Ω̂(`) −

Ω̄)‖2
F .
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This means that if the covariance estimation is consistent; that is, if Ω̂(`) converges

to Ω̄, then our method achieves the optimal prediction error
∥∥∥X(`)Ω̄1/2

(
Ω̄1/2Σ(`)Ω̄1/2 + λI

)−1/2
∥∥∥2

F

for all tasks.

The consistency of Ω̂(`) has been studied in the literature, for example by [15] un-

der high dimensional sparsity assumptions. Such results can be immediately applied

with Theorem 6.5.1 to obtain optimality of the proposed approach. Specifically, we

consider the case of diagonal covariance matrix, where the sparsity in Ω̄ is defined as

the number of non-zero diagonal entries, i.e., s = |{i : Ωii 6= 0}|. Following [15], we

consider the case X(`) = X ∈ Rn×d, ` = 1, . . . ,m. Let XJ denote the sub matrix of X

obtained by removing the columns of X whose indices are not in the set J . We also

assume that the diagonals of X>X have identical values so that (85) is equivalent to

(84) up to a scaling of λ.

Let ρmin(A) and ρmax(A) for a matrix A denote the smallest and largest eigenvalue

of A respectively. We introduce two quantities [15] that impose certain assumptions

on the matrix X.

Definition 4. For 0 < t ≤ d, define ρmin(t) := infJ⊂{1,...,d}
|J |≤t

ρmin(X>J XJ).

Definition 5. The mutual coherence of the columns Xt, t = 1, . . . , d of X is defined as

θ(X) := max{|X>t′Xt|, t 6= s′, 1 ≤ t, t′ ≤ d} and let X2
max := max{‖Xt‖2

2, 1 ≤ t ≤ d}.

We now state the following theorem establishing the consistency of covariance

estimation (given by Eq 87) in the high-dimensional setting. The proof essentially

follows the same argument for Theorem 8 in [15], by noticing the equivalence between

(85) and (84), which implies consistency.

Theorem 5.4.2. Assume that Ω̄ is diagonal, and θ(X) < ρmin(s)2/4ρmax(X>X)s.

Assume n is fixed and the number of tasks and dimensionality m, d → ∞ such that

√
s ln d/m → 0. Then the covariance estimator of (87), with appropriately chosen λ
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and R(Ω) defined by (85), converges to Ω̄:

‖X(Ω̂(`) − Ω̄)X>‖2
F →P 0. (88)

The following corollary, which is an immediate consequence of Theorem 6.5.1 and

5.4.2, establishes the asymptotic optimality (for prediction) of the proposed approach

under the sparse diagonal matrix setting and R(Ω) defined as in (85). Similar result

could be derived for other regularizers for R(Ω).

Corollary 5. Under the assumption of Theorem 6.5.1 and 5.4.2, the two-step ap-

proach defined by (87) and (86), with R(Ω) defined by (85) is asymptotically optimal

for prediction, for each task `:

E ‖Xβ̂(`) −Xβ̄(`)‖2
2 −

∥∥∥XΩ̄1/2
(
Ω̄1/2X>XΩ̄1/2 + λI

)−1/2
∥∥∥2

F
→P 0.

Note that the asymptotics considered above, reveals the advantage of multi-task

learning under the joint sparsity assumption: with a fixed number of samples per

each task, as the dimensions of the samples and number of tasks tend to infinity

(obeying the condition given in theorem 5.4.2) the proposed two-step procedure is

asymptotically optimal for prediction. Although for simplicity, we state the optimality

result for (87) and (86), the same result holds for the two-step procedure given by

(82) and (83), because Ω̂(`) of (87) and Ω̂ of (82) differ only by a factor of O(1/m)

which converges to zero under the asymptotics considered. Finally, we would like

to remark that the mutual coherence assumption made in Theorem 5.4.2 could be

relaxed to milder conditions (based on restricted eigenvalue type assumptions) - we

leave it as future work.

5.4.2 Drawback of Group Lasso

In general, group Lasso does not lead to optimal performance due to looseness of the

single step convex relaxation. [57, 47]. This section presents a simple but concrete

example to illustrate the phenomenon and shows how Ω̄ is under-estimated in the
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group-Lasso formulation. Combined with the previous section, we have a complete

theoretical justification of the superiority of our approach over group Lasso, which

we will also demonstrate in the empirical study.

For this purpose, we only need to consider the following relatively simple illustra-

tion (in the low-dimensional setting). We consider the case when all design matrices

equal identity: X(`) = I for ` = 1, . . . ,m. This formulation is similar to Normal

means models, a popular model in the statistics literature. It is instructive to con-

sider this model because of its closed form solution. It helps in deriving useful insights

that further help for a better understanding of more general cases. We are interested

in the asymptotic behavior when m→∞ (with n(`) and d fixed), which simplifies the

analysis, but nevertheless reveals the problems associated with the standard group

Lasso formulation. Moreover, it should be mentioned that although the two-step pro-

cedure is motivated from a generative model, the analysis presented in this section

does not need to assume that each β(`) is truly generated from such a model.

Proposition 16. Suppose that n(`) = d and X(`) = I for ` = 1, . . . ,m, and m→∞.

The sparse covariance estimate corresponding to the formulation defined by (85) is

consistent.

Proof. The sparse covariance coding formulation (85) is equivalent to (with the in-

tention of setting λ = σ2): Ω̂scc = arg min{ωj≥0}
∑m

`=1
1
2

∥∥Y (`)Y (`)> − diag({ωj})
∥∥2

F
+

λm
∑

j ωj. The closed form solution is given by ω̂sccj = max
(

0,m−1
∑m

`=1(Y
(`)
j )2 − λ

)
for j = 1, . . . , d. Since m−1

∑m
`=1(Y

(`)
j )2 → Eβ(`)(β

(`)
j )2 + σ2 as m→∞, the variance

ω̂sccj → Eβ(`)(β
(`)
j )2 with λ = σ2. Therefore ω̂j is consistent.

Note that by plugging-in the estimate of variance into (83) with the same λ (with

λ = σ2), we obtain

β̂
(`)
j = Y

(`)
j max

(
0, 1− λ

m−1
∑m

`=1(Y
(`)
j )2

)
. (89)
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An immediate consequence of Proposition 16 is that the estimate define in (89)

is asymptotically optimal for any method using a quadratic regularizer shared by all

the tasks.

A similar analysis of group Lasso formulation would reveal its drawback. Consider

the group Lasso formulation defined in (80). Under similar settings, the formulation

can be written as [β̂, ω̂gl] =

arg min
β,ω

m∑
`=1

∥∥Y (`) − β(`)
∥∥2

2
+ λ

d∑
j=1

1

ωj

m∑
`=1

(β
(`)
j )2 +m

d∑
j=1

ωj.

The closed form solution for the above formulation is given by

ω̂glj = max

0,

√√√√λm−1

m∑
`=1

(Y
(`)
j )2 − λ

 ,

for j = 1, . . . , d and the corresponding coefficient estimate is

β̂
(`)
j = Y

(`)
j max

0, 1−
√
λ√

m−1
∑m

`=1(Y
(`)
j )2


, for ` = 1, . . . ,m and j = 1, . . . , d.

The solution for ω̂glj implies that it is not possible to pick a fixed λ such that the

group Lasso formulation gives consistent estimate of ωj. Since from (80), it is evident

that group Lasso can also be regarded as a method that uses a quadratic regularizer

shared by all the tasks, we know that the solution obtained for the corresponding

co-efficient estimate is asymptotically sub-optimal. In fact, the covariance estimate

ω̂glj is significantly smaller than the correct estimate ω̂sccj . This under-estimate of

ωj in group Lasso implies a corresponding under-estimate of β(`) obtained via group

Lasso, when compared to (89). This under-estimation is the underlying theoretical

reason why the proposed two-step procedure is superior to group Lasso for learning

with joint sparsity. This claim is also confirmed by our empirical studies.
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5.4.3 Other Covariance Coding Models

We now demonstrate the generality of the proposed approach for multi-task learning.

Note that in addition to the sparse covariance coding method (85) that assumes a

diagonal form of Ω plus sparsity constraint, some other structures may be explored.

One method that has been suggested for covariance estimation in [15] is the following

formulation:

Ω̂ = arg min
Ω∈S

m∑
`=1

‖Y (`)Y (`)> −X(`)ΩX(`)‖2
F + 2λ

∑
k

γk

√∑
m

Ω2
k,m, (90)

where S denotes the set of symmetric positive semi-definite matrices S. This approach

selects a set of features, and then models a full covariance matrix within the selected

set of features. Although the feature selection is achieved with a group Lasso penalty,

unlike this work, [15] didn’t study the possibility of using covariance estimation to do

joint feature selection (which is the main purpose of this work), but rather studied

covariance estimation as a separate problem.

The partial full covariance model in (90) has complexity in between that of the

full covariance model and the sparse diagonal covariance model (sparse covariance

coding) which we promote in this chapter, at least for the purpose of joint feature

selection. The latter has the smallest complexity, and thus more effective for high

dimensional problems that tend to cause over-fitting.

Another model with complexity in between of sparse diagonal covariance and

full covariance model is to model the covariance matrix Ω as the sum of a sparse

diagonal component plus a low-rank component. This is similar in spirit to the more

general sparse+low-rank matrix decomposition formulation recently appeared in the

literature [27, 23, 55]. However since the sparse matrix is diagonal, identifiability holds

trivially (as described in the appendix) and hence one could in principal, recover both

the diagonal and the low-rank objects individually which preserves the advantages

of the diagonal formulation and the richness of low-rank formulation. The model
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assumption is Ω = ΩS + ΩL, where ΩS is the diagonal matrix and ΩL is the low-rank

matrix. The estimation procedure now becomes the following optimization problem

(and the rest follows)

[Ω̂S, Ω̂L] = arg min
ΩS ,ΩL

m∑
`=1

1

2
‖Y (`)Y (`)> −X(`)(ΩS + ΩL)X(`)>‖2

F + λ1‖ΩS‖vec(1) + λ2‖ΩL‖∗,

subject to the condition that ΩS is a non-negative diagonal matrix, and ΩL ∈ S,

where ‖ · ‖vec(1) is the element-wise L1 norm and ‖ · ‖∗ corresponds to trace-norm.

5.5 Identifiability of additive structure

The issue of identifiability (which is necessary subsequently for consistency and re-

covery guarantees) arises when we deal with additive decomposition of the covariance

matrix. Here, we discuss about the conditions under which the model is identifiable,

i.e., there exist an unique decomposition of the covariance matrix as the summation

of the sparse diagonal matrix and low-rank matrix. We follow the discussion used in

[55]. Let Ω = Ωs+ΩL denote the decomposition where Ωs denotes the sparse diagonal

matrix and ΩL a low-rank matrix. Intuitively, identifiability holds if the sparse matrix

is not low-rank (i.e., the support is sufficiently spread out) and the low-rank matrix

is not too sparse (i.e., the singular vectors are away from co-ordinate axis). A formal

argument is made based on the above intuition. We defined the following quantities

(following [55]) below that measures the non-zero entries in any row or column of Ωs

and sparseness of the singular vectors of ΩL:

α = max{‖sign(Ωs)‖1→1, ‖sign(Ωs)‖∞→∞}

and

β = ‖UUT‖∞ + ‖V V T‖∞ + ‖U‖2→∞‖V ‖2→∞,

where U, V ∈ Rd×r are the left and right orthonormal singular vectors corresponding

to non-zero singular values of ΩL and ‖M‖p→q def
= {‖Mv‖q : v ∈ Rm, ‖v‖p ≤ 1}.
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Note that, for a diagonal matrix, ‖sign(Ωs)‖1→1 = ‖sign(Ωs)‖∞→∞ = 1. It is

proved in [55] that if αβ < 1, then the matrices are identifiable, i.e, the sparse

plus low-rank decomposition is unique. Therefore we only need to require β < 1 for

identifiability, which is a rather weak assumption, satisfied by most low-rank matrices

with sufficient spread of the support.

5.6 Experiments

We demonstrate the advantage of the proposed two-step procedure through (i) multi-

task learning experiments on synthetic and real-world data sets and (ii) sparse co-

variance coding based image classification.

5.6.1 Multi-task learning

We first report illustrative experiments conducted on synthetic data sets with the

proposed models. They are compared with the standard group-lasso formulation. The

experimental set up is as follows: the number of tasks m = 30, d = 256, and n` = 150.

The data matrix consists of entries from standard Gaussian N(0, 1). To generate the

sparse co-efficients, we first generate a random Gaussian vector in d dimensions and

set to zero d − k of the co-efficients to account for sparsity. The cardinality of the

set of non-zero coefficients is varied as k = 50, 70, 90 and the noise variance was

0.1. The results reported are averages over 100 random runs. We compare against

standard group lasso, MSMTFL [47] (note that this is a non-convex approach, solved

by sequence of convex relaxations) and another natural procedure (GLS-LS) where

one uses group lasso for feature selection and with the selected features, one does

least squares regression to estimate the coefficients. A precise theoretical comparison

to MSMTFL procedure is left as future work.

Tables 5 shows the coefficient estimation error when the samples are such that

they share 80% as common basis (and the rest 20% is selected randomly from the

remaining basis) and when the samples share the same indices of non-zero coefficients
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Table 4: Support selection: Hamming distance between true non-zero indices and
estimated non-zero indices by the indicated method for all signals.

Method 80% shared basis Completely shared basis
k=50 k=70 k=90 k=50 k=70 k=90

Standard group lasso 0.18 0.22 0.27 0.11 0.16 0.22
MSMTFL 0.15 0.18 0.20 0.07 0.08 0.17

Partial full covariance 0.17 0.20 0.23 0.07 0.11 0.16
Sparse diagonal covariance 0.13 0.16 0.20 0.05 0.09 0.14

(and the actual values vary for each signals). We note that in both cases, the model

with diagonal covariance assumption and partial full covariance (Equation 90) outper-

forms the standard group lasso formulation, with the diagonal assumption performing

better because of good estimates. The diagonal+low-rank formulation slightly out-

performs the other models as it preserves the advantages of the diagonal model, while

at the same time allows for additional modeling capability through the low-rank part,

through proper selection of regularization parameters by cross-validation.

Support selection: While the above experiment sheds light on co-efficient esti-

mation error, we performed another experiment to examine the selection properties of

the proposed approach. Table 4 shows the hamming distance between selected basis

and the actual basis using the different models. Note that Hamming distance is a

desired metric for practical applications where exact recovery of the support set is not

possible due to low signal-to-noise ratio. The indices with non-zero entry along the

diagonal in the model with diagonal covariance assumption correspond to the selected

basis. Similarly, indices with non-zero columns (or rows by symmetry) correspond to

the selected basis in the partial full covariance model. The advantage of the diagonal

assumption for joint feature selection is clearly seen from the table. This superiority

in the feature selection process also explains the better performance achieved for co-

efficient estimation. A rigorous theoretical study of the feature selection properties is

left as future work.

Correlated data: We next study the effect of correlated data set on the proposed
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Table 5: Coefficient estimation: Normalized L2 distance between true coefficients
and estimated coefficients by the indicated method. First 5 rows correspond to 80%
shared basis and the last 5 rows correspond to fully shared basis.

Method k=50 k=70 k=90
standard group Lasso 0.1541± 0.0045 0.1919± 0.0092 0.2404± 0.0124

GLS-LS 0.1498± 0.0032 0.1901± 0.0034 0.2383± 0.0342
Partial full covariance 0.1239± 0.0063 0.1542± 0.0131 0.1992± 0.0143

Sparse Diagonal covariance 0.1022± 0.0054 0.1393± 0.0088 0.1701± 0.0104
MSMTFL 0.1276± 0.0075 0.1564± 0.0153 0.1987± 0.0201

Diag+Low-rank covariance 0.1031± 0.0042 0.1212± 0.0122 0.1532± 0.0173

Standard group Lasso 0.1032± 0.0086 0.1574± 0.0151 0.1733± 0.0190
GLS-LS 0.1010± 0.0045 0.1532± 0.0134 0.1698± 0.0430

Partial full covariance 0.0735± 0.0078 0.1131± 0.0148 0.1576± 0.0201
Sparse Diagonal covariance 0.0447± 0.0071 0.0828± 0.0165 0.1184± 0.0198

MSMTFL 0.0643± 0.0093 0.0832± 0.0200 0.1457± 0.0223
Diag+low-rank Covariance 0.0452± 0.0084 0.0786± 0.0136 0.1012± 0.0161

Table 6: Coefficient estimation: Normalized L2 distance between true coefficients
and estimated coefficients by the indicated method with correlated input data.

Method k=50 k=70 k=90
Group Lasso 0.2012± 0.0033 0.2655± 0.0132 0.3252± 0.0323

GLS-LS 0.2090± 0.0098 0.2702± 0.0042 0.3304± 0.0333
Partial full covariance 0.1706± 0.0064 0.2376± 0.0224 0.2701± 0.0323

Sparse diagonal covariance 0.1634± 0.0022 0.2112± 0.0073 0.2601± 0.0231
MSMTFL 0.1786± 0.0023 0.2323± 0.0434 0.2776± 0.0223

Diag+Low-rank covariance 0.1531± 0.0042 0.2002± 0.0236 0.2544± 0.0145

approach. We generated correlated Gaussian random variables (corresponding to the

size of the data matrix) in order to fill the matrix X for each task. The correlation co-

efficient was fixed at 0.5. We worked with fully overlapped support set. Other problem

parameters were retained. We compared the estimation accuracy of the proposed

approach with different settings with group lasso and its variants. The results are

summarized in Table 6. Note that the proposed approach performs much better

than the group-Lasso based counterparts. Precisely characterizing this improvement

theoretically would be interesting.

Next, the proposed approach was tested on three standard multi-task regression
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Table 7: Multi-task learning: Average (across task) MSE error on the test data set.
Data set Group lasso MSMTFL Sparse diag. Cov. Corr. Sparse diag (Eq.84)

Computer 1.542± 0.043 1.334± 0.031 1.223± 0.033 1.209± 0.054
School 2.202± 0.038 2.033± 0.241 1.987± 0.040 2.012± 0.073
Sarcos 9.221± 0.051 9.113± 0.145 8.983± 0.043 9.002± 0.032

data sets (computer, school and sarcos data sets) and compared with the standard ap-

proach for multi-task learning: mixed (2, 1)-norms or group lasso (79). A description

of the data sets is given below:

Computer data set: This dataset consists of a survey among 180 people (cor-

responding to tasks). Each rated the likelihood of purchasing one of 20 different

computers. The input consists 13 different computer characteristics, while the out-

put corresponds to ratings. Following [1], we used the first 8 examples per task for

training and the last 4 examples per task for testing.

School data set: This dataset is from the London Education Authority and

consists of the exam scores of 15362 students from 139 schools (corresponding to

tasks). The input consists 4 school-based and 3 student-based attributes, along with

the year. The categorical features are replaced with binary features. We use 75% of

the data set for training and the rest for testing.

Sarcos data set: The dataset has 44,484 train samples and 4449 test samples.

The task is to map a 21-dimensional input space (corresponding to characteristics of

robotic arm) to the the output corresponding to seven torque measurement (tasks)

to predict the inverse dynamics.

We report the average (across tasks) root mean square error on the test data

set in Table 7. Note that the proposed two-step approach performs better than the

group lasso approach on all the data sets. The data sets correspond to cases with

varied data size and number of tasks. Observe that even with a small training data

(computer data set), performance of both our approach is better than the group-lasso

approach.
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5.6.2 SCC based Image Classification

In this section, we present a novel application of the proposed approach for obtain-

ing sparse codes for gender recognition in CMU Multi-pie data set. The database

contains 337 subjects (235 male and 102 female) across simultaneous variations in

pose, expression, and illumination. The advantages of jointly coding the extracted

local descriptors of an image with respect to a given dictionary for the purpose of

classification has been highlighted in [10]. They propose a method based on mixed

(2, 1)-norm to jointly find a sparse representation of an image based on local de-

scriptors of that image. Following a similar experimental setup, we use the proposed

sparse covariance coding approach for attaining the same goal.

Each image is of size 30× 40, size of patches is 8× 8, and number of overlapping

patches per image is 64. Local descriptors for each images are extracted in the form

of overlapping patches and a dictionary is learned based on the obtained patches

by sparse coding. With the learnt dictionary, the local descriptors of each image is

jointly sparse coded via the diagonal covariance matrix assumption and the codes

thus obtained are used or classification. This approach is compared with the group

sparse coding based approach. Linear SVM is used in the final step for classification.

Note that the purpose of the experiment is not learning a dictionary. Table 8 shows

the test set and train set error for the classifier thus obtained. Note that the proposed

sparse covariance coding based approach outperforms the group sparse coding based

approach for gender classification due to its better quality estimates.

Table 8: Face image classification based on gender: Test and Train set error rates
for sparse covariance coding and group sparse coding (both with a fixed dictionary).

Group sparse coding Sparse cov. coding
Train error 6.67± 1.34% 5.56± 1.62%
Test error 7.48± 1.54% 6.32± 1.12%
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5.6.3 Landmark selection

Landmark selection corresponds to the problem of identifying the data samples, which

best approximate the given data set. It is useful for image processing and computer

vision applications [94]. We used the proposed approach for selecting the landmark

points from a given data set and compared it with group-lasso formulation, which

could also be used for the same problem. The data set used is CMU multi-pie data set.

The experiment is as follows: A set of 5000 images is split as train set (4000) and test

set (1000). The images are such that they are captured with different illuminations

and viewpoints. There are 249 subjects in total. The goal is find a small set of images

from the train set such that the reconstruction error on the train set and hence on

the test set is low. Initially, the train data set is split into two unequal parts (3500

and 500). The larger part is used as basis and regressed against the smaller part to

get the landmark images and the reconstruction error is calculated for the training

set. Given a new point from test set, it is expressed as the linear combination of the

selected basis. The coefficients are estimated by least square method and the average

reconstruction error is calculated for the entire set of test points.

Table 9 shows the reconstruction error on the test and train data set, where the

regularization parameter was calculated by cross-validation. We note that the pro-

posed approach performs better than the group-lasso formulation. The superiority

of the proposed approach for joint feature selection, coupled with better coefficient

estimation is exploited in this situation to perform joint landmark selection to ap-

proximate the given data set.

5.7 A joint framework for covariance and regression co-
efficient estimation

In this section, we outline a joint framework for estimating both the covariance matrix

and regression coefficients simultaneously. In order to describe the procedure, first
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Table 9: Simultaneous basis selection for data approximation: Average reconstruc-
tion error

Method No noise
Train error Test error

Group Lasso 15.35± 0.99% 22.45± 1.93%
Diag Co-var 10.74± 1.03% 15.87± 1.45%

Corr. Diag (Eq. 84) 10.83± 1.26% 15.71± 1.63%
Noise = 0.02

Train error Test error
Group Lasso 19.32± 1.24% 26.54± 1.86%
Diag Co-var 13.63± 2.25% 18.02± 2.56%

Corr. Diag (Eq. 84) 13.78± 2.02% 17.63± 2.21%

we observe that the equivalent multi-task group Lasso formulation, given by

min
β,ω

[
m∑
`=1

1

2σ2

∥∥Y (`) −X(`)β(`)
∥∥2

2
+

d∑
j=1

1

2ωj

m∑
`=1

(β
(`)
j )2 +

µ

2σ2

d∑
j=1

ωj

]
,

with λ = σ
√
m, where β = {β(`)}`=1,...,m and ω = {ωj}j=1,...,d, is a special case of

min
β,Ω∈S

[
m∑
`=1

1

2σ2

∥∥Y (`) −X(`)β(`)
∥∥2

2
+

1

2

m∑
`=1

(β(`))>Ω−1β(`) + µΦ(Ω)

]
,

where µ > 0 is a tuning parameter, Ω is a hyper parameter covariance matrix shared

among the tasks, and S is a subset of symmetric positive semidefinite matrices. Φ(Ω)

is a penalty function for Ω with the goal of providing a good estimate of the covariance

matrix Ω in the common quadratic regularizer (β(`))>Ω−1β(`) shared by all the tasks.

If Φ(Ω) is a convex function of Ω, then (81) is jointly convex in [β,Ω] because it is

well-known (and easy to verify) that (β(`))>Ω−1β(`) is jointly convex in [β(`),Ω].

The group Lasso formulation (80) assumes a specific form of diagonal covariance

matrix class S = {Ω = diag({ωj}) : ωj ≥ 0}. The specific choice of Φ(Ω) is the

simple L1 penalty function Φ(Ω) =
∑

j ωj that encourages sparsity. Unfortunately,

this simple choice is suboptimal, as shown previously. It was also shown that it is

possible to achieve better estimation of β by using a more sophisticated convex penalty

function Φ(Ω).The joint model presented in this section subsumes all the models

described previously. It is worth mentioning that the Bayesian approach of [119] can
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also be regarded as a special case of (81) but with a non-convex Φ(Ω). However,

due to the usual local minimum issues associated with nonconvex formulations, in

practice this method does not perform as well as the convex formulations proposed

in this chapter.
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CHAPTER VI

SMOOTH SPARSE CODING

6.1 Introduction

Sparse coding is a popular unsupervised paradigm for learning sparse representations

of data samples that are subsequently used in classification tasks. In standard sparse

coding, each data sample is coded independently with respect to the dictionary. We

propose a smooth alternative to traditional sparse coding that incorporates feature

similarity, temporal or other user-specified domain information between the samples

into the coding process.

The idea of smooth sparse coding is motivated by the relevance weighted likelihood

principle. Our approach constructs a code that is efficient in a smooth sense and as

a result leads to improved statistical accuracy over traditional sparse coding. The

smoothing operation, which can be expressed as non-parametric kernel smoothing,

provides a flexible framework for incorporating several types of domain information

that might be available for the user. For example, in image classification task, one

could use: (1) kernels in feature space for encoding similarity information for images

and videos, (2) kernels in time space in case of videos for incorporating temporal

relationship, and (3) kernels on unlabeled image in the semi-supervised learning and

transfer learning settings.

Most sparse coding training algorithms fall under the general category of alternat-

ing procedures with a convex lasso regression sub-problem. While efficient algorithms

for such cases exist [66], their scalability for large dictionaries remains a challenge.

We propose a novel training method for sparse coding based on marginal regres-

sion, rather than solving the traditional alternating method with lasso sub-problem.
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Marginal regression corresponds to several univariate linear regression followed by

a thresholding step to promote sparsity. For large dictionary sizes, this leads to a

dramatic speedup compared to traditional sparse coding methods (up to two orders

of magnitude) without sacrificing statistical accuracy.

We also develop theory that extends the sample complexity result of [115] for

dictionary learning using standard sparse coding to the smooth sparse coding case.

This result specifically shows how the sample complexity depends on the L1 norm of

the kernel function used.

Our main contributions in this chapter are: (1) proposing a framework based

on kernel-smoothing for incorporating feature, time or other similarity information

between the samples into sparse coding, (2) providing sample complexity results for

dictionary learning using smooth sparse coding, (3) proposing an efficient marginal

regression training procedure for sparse coding, and (4) successful application of the

proposed method in various classification tasks. Our contributions lead to improved

classification accuracy in conjunction with computational speedup of two orders of

magnitude.

6.2 Related work

Our approach is related to the local regression method [71, 52]. More recent related

work is [77] that uses smoothing techniques in high-dimensional lasso regression in

the context of temporal data. Another recent approach proposed by [125] achieves

code locality by approximating data points using a linear combination of nearby

basis points. The main difference is that traditional local regression techniques do

not involve basis learning. In this work, we propose to learn the basis or dictionary

along with the regression coefficients locally.

In contrast to previous sparse coding works we propose to use marginal regression

for learning the regression coefficients, which results in a significant computational
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speedup with no loss of accuracy. Marginal regression is a relatively old technique that

has recently reemerged as a computationally faster alternative to lasso regression [39].

See also [45] for a statistical comparison of lasso regression and marginal regression.

6.3 Smooth Sparse Coding

In this chapter, the notation |f |p corresponds to the Lp norm of the function f :

(
∫
|f |p dµ)1/p. The standard sparse coding problem consists of solving the following

optimization problem,

min
D∈Rd×K
βi∈RK ,i=1,...,n

n∑
i=1

‖X(i) −Dβi‖2
2

subject to ‖dj‖2 ≤ 1 j = 1, . . . K

‖βi‖1 ≤ λ i = 1, . . . n.

where βi ∈ RK corresponds to the encoding of sample X(i) with respected to the

dictionary D ∈ Rd×K and dj ∈ Rd denotes the j-column of the dictionary matrix D.

The dictionary is typically over-complete, implying that K > d.

Object recognition is a common sparse coding application where X(i) corresponds

to a set of features obtained from a collection of image patches, for example SIFT

features [73]. The dictionary D corresponds to an alternative coding scheme that

is higher dimensional than the original feature representation. The L1 constraint

promotes sparsity of the new encoding with respect to D. Thus, every sample is

now encoded as a sparse vector that is of higher dimensionality than the original

representation.

In some cases the data exhibits a structure that is not captured by the above

sparse coding setting. For example, SIFT features corresponding to samples from the

same class are presumably closer to each other compared to SIFT features from other

classes. Similarly in video, neighboring frames are presumably more related to each

other than frames that are farther apart. In this chapter we propose a mechanism
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to incorporate such feature similarity and temporal information into sparse coding,

leading to a sparse representation with an improved statistical accuracy (for example

as measured by classification accuracy).

We consider the following smooth version of the sparse coding problem above:

min
D∈Rd×K
βi∈RK ,i=1,...,n

n∑
i=1

n∑
j=1

w(X(j), X(i))‖X(j) −Dβi‖2
2 (91)

subject to ‖dj‖2 ≤ 1 j = 1, . . . K (92)

‖βi‖1 ≤ λ i = 1, . . . n. (93)

where
∑n

j=1w(X(j), X(i)) = 1 for all i. It is convenient to define the weight function

through a smoothing kernel

w(X(j), X(i)) =
1

h1

K1

(
ρ(X(j), X(i))

h1

)
where ρ(·, ·) is a distance function that captures the feature similarity, h1 is the

bandwidth, and K1 is a smoothing kernel. Traditional sparse coding minimizes the

reconstruction error of the encoded samples. Smooth sparse coding, on the other

hand, minimizes the reconstruction of encoded samples with respect to their neighbors

(weighted by the amount of similarity).

The smooth sparse coding setting leads to codes that represent a neighborhood

rather than an individual sample and that have lower mean square reconstruction

error (with respect to a given dictionary), due to lower estimation variance (see for

example the standard theory of smoothed empirical process [32]). There are several

possible ways to determine the weight function w. One common choice for the kernel

function is the Gaussian kernel whose bandwidth is selected using cross-validation.

Other common choices for the kernel are the triangular, uniform, and tricube kernels.

The bandwidth may be fixed throughout the input space, or may vary in order to

take advantage of non-uniform samples. We use in our experiment the tricube kernel

with a constant bandwidth.
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The distance function ρ(·, ·) may be one of the standard distance functions (for

example based on the Lp norm). Alternatively, ρ(·, ·) may be expressed by domain

experts, learned from data before the sparse coding training, or learned jointly with

the dictionary and codes during the sparse coding training.

6.3.1 Spatio-Temporal smoothing

In spatio-temporal applications we can extend the kernel to include also a term re-

flecting the distance between the corresponding time or space

w(X(j), X(i)) =
1

h1

K1

(
ρ(X(j), X(i))

h1

)
1

h2

K2

(
j − i
h2

)
.

Above, K2 is a univariate symmetric kernel with bandwidth parameter h2. One

example is video sequences, where the kernel above combines similarity of the frame

features and the time-stamp.

Alternatively, the weight function can feature only the temporal component and

omit the first term containing the distance function between the feature represen-

tation. A related approach for that situation, is based on the Fused lasso which

penalizes the absolute difference between codes for neighboring points. The main

drawback of that approach is that one needs to fit all the data points simultane-

ously whereas in smooth sparse coding, the coefficient learning step decomposes as

n separate problems which provides a computational advantage (see supplementary

document for more details). Also, while fused Lasso penalty is suitable for time-series

data to capture relatedness between neighboring frames, it may not be immediately

suitable for other situations that the proposed smooth sparse coding method could

handle.

6.4 Marginal Regression for Smooth Sparse Coding

A standard algorithm for sparse coding is the alternating bi-convex minimization pro-

cedure, where one alternates between (i) optimizing for codes (with a fixed dictionary)
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and (ii) optimizing for dictionary (with fixed codes). Note that step (i) corresponds

to regression with L1 constraints and step (ii) corresponds to least squares with L2

constraints. In this section we show how marginal regression could be used to obtain

better codes faster (step (i)). In order to do so, we first give a brief description of the

marginal regression procedure.

Marginal Regression: Consider a regression model Y = Xβ + z where y ∈ Rn,

β ∈ Rp, X ∈ Rn×p with L2 normalized columns (denoted by X(j)), and z is the noise

vector. Marginal regression proceeds as follows:

• Calculate the least squares solution

α̂(j) = X(j)Ty.

• Threshold the least-square coefficients

β̂(j) = α̂(j)1{|α̂(j)|>t}, j = 1, . . . , p.

Marginal regression requires just O(np) operations compared to O(p3 + np2), the

typical complexity of lasso algorithms. When p is much larger than n, marginal

regression provides two orders of magnitude speedup over Lasso based formulations.

Note that in sparse coding, the above speedup occurs for each iteration of the outer

loop, thus enabling sparse coding for significantly larger dictionary sizes. Recent

studies have suggested that marginal regression is a viable alternative for Lasso given

its computational advantage over lasso. A comparison of the statistical properties of

marginal regression and lasso is available in [40, 45].

Code update (step (i)): Applying marginal regression to smooth sparse coding,

we obtain the following scheme. The marginal least squares coefficients are

α̂
(k)
i =

n∑
j=1

w(X(j), X(i))

‖dk‖2

dTkX
(j).
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We sort these coefficient in terms of their absolute values, and select the top s coef-

ficients whose L1 norm is bounded by λ:

β̂
(k)
i =


α̂

(k)
i k ∈ S

0 k /∈ S
, where

S =

{
1, . . . , s : s ≤ d :

s∑
k=1

|α̂(k)
i | ≤ λ

}
We select the thresholding parameter using cross validation in each of the sparse

coding iterations. Note that the same approach could be used with structured regu-

larizers too, for example [21, 60].

Dictionary update (step (ii)): Marginal regression works well when there is

minimal correlation between the different dictionary atoms. In the linear regression

setting, marginal regression performs much better with orthogonal data [45]. In

the context of sparse coding, this corresponds to having uncorrelated or incoherent

dictionaries [111]. One way to measure such incoherence is using the babel function,

which bounds the maximum inner product between two different columns di, dj:

µs(D) = max
i∈{1,...,d}

max
Λ⊂{1,...,d}\{i};|Λ|=s

∑
j∈Λ

|d>j di|.

An alternative, which leads to easier computation is by adding the term ‖DTD −

IK×K‖2
F to the reconstruction objective, when optimizing over the dictionary matrix

D. This leads to the following optimization problem for dictionary update step:

D̂ = arg min
D∈D

F (D) where

F (D) =
n∑
i=1

‖X(i) −Dβ̂i‖2
2 + γ‖D>D − I‖2

F

and D = {D ∈ Rd×K : ‖dj‖2 ≤ 1}. The regularization term γ controls the level of

incoherence enforced.

This optimization problem is of the form of minimizing a differentiable function

over a closed convex set. We use the gradient projection method [13, 98] for solving
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the above optimization problem. The gradient (cf. [75]) of the above expression

with respect to D at each iteration is given by ∇F (D) = 2
(
DB̂B̂> −XB̂>

)
+

4γ
(
DD>D −D

)
, where B̂ = [β̂1, . . . , β̂n] is the matrix of codes from the previous

code update step, X ∈ Rp×n is the data in matrix format. The gradient projection

descent iterations are given by

D(t+ 1) = ΠD (D(t)− ηt∇F (D(t))) .

where by ΠD, we denote column-wise projection of the dictionary matrix on to the

unit ball and t is the index for sub-iteration count for each dictionary update step.

Specifically, for each dictionary update step, we run the gradient projected descent

algorithm untill convergence (more details about this in experimental section). Note

that projection of a vector onto the l2 ball is straightforward since we only need to

rescale the vector towards the origin, i.e., normalize the vectors with length greater

than 1.

Convergence to local point of gradient projection methods for minimizing differ-

entiable functions over convex set have been analyzed in [98]. Similar guarantees

could be provided for each of the dictionary update steps. A heuristic approach for

dictionary update with incoherence constraint was proposed in [83] and more recently

in [93](where the L-BFGS method was used for the unconstrained problem and the

norm constraint was enforced at the final step). We found that the proposed gradient

projected descent method performed empirically better than both the approaches.

Furthermore both approaches are heuristic and do not guarantee local convergence

for the dictionary update step.

Finally, a sequence of such updates corresponding to step (i) and step (ii) con-

verges to a stationary point of the optimization problem (this can be shown using

Zangwill’s theorem [127]). But no provable algorithm that converges (under certain

assumptions) to the global minimum of the smooth sparse coding (or standard sparse
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Algorithm 4 Smooth Sparse Coding via Marginal Regression

Input: Data {(X(1), Y (1)), . . . , (X(n), Y (1))} and kernel/similarity measure K1 and
d1.
Precompute: Compute the weight matrix w(i, j) using the kernel/similarity mea-
sure
Initialize: Set the dictionary at time zero to be D0.
Algorithm:
repeat

Step (i): For all i = 1, . . . , n, solve marginal regression:

α̂
(k)
i =

n∑
j=1

w(X(j), X(i))

‖dk‖2

dTkX
(j)

β̂
(k)
j =

{
α̂

(k)
j j ∈ S

0 j /∈ S ,

S = {1, . . . , s; s ≤ d :
s∑

k=1

|α̂(k)
i | ≤ λ}.

Step (ii): Update the dictionary based on codes from previous step.

D̂ = arg min
D∈D

n∑
i=1

‖X(i) −Dβ̂i‖2
2 + γ‖D>D − I‖2

F

where D = {D ∈ Rd×K : ‖dj‖2 ≤ 1}

until convergence
Output: Return the learned codes and dictionary.

coding) exists yet. Nevertheless, the main idea of this section is to speed-up the exist-

ing alternating minimization procedure for obtaining sparse representations, by using

marginal regression. We leave a detailed theoretical analysis of the individual dictio-

nary update steps and the overall alternating procedure (for codes and dictionary) as

future work.

6.5 Sample Complexity of Smooth sparse coding

In this section, we analyze the sample complexity of the proposed smooth sparse

coding framework. Specifically, since there does not exist a provable algorithm that

converges to the global minimum of the optimization problem in Equation (91), we
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provide uniform convergence bounds over the dictionary space and thereby prove a

sample complexity result for dictionary learning under smooth spare coding setting.

We leverage the analysis for dictionary learning in the standard sparse coding setting

by [115] and extend it to the smooth sparse coding setting. The main difficulty

for the smooth sparse coding setting is obtaining a covering number bound for an

appropriately defined class of functions (see Theorem 1 for more details).

We begin by re-representing the smooth sparse coding problem in a convenient

form for analysis. Let x1, . . . , xn be independent random variables with a common

probability measure P with a density p. We denote by Pn the empirical measure over

the n samples, and the kernel density estimate of p is defined by

pn,h(x) =
1

nh

n∑
i=1

K

(‖x−X(i)‖2

h

)
.

Let Kh1(·) = 1
h1
K1( ·

h
). With the above notations, the reconstruction error at the

point x is given by

rλ(x) =

∫
min
β∈Sλ
‖x′ −Dβ‖2Kh1(ρ(x, x′)) dPn(x′)

where

Sλ = {β : ‖β‖1 ≤ λ}.

The empirical reconstruction error is

E Pn(r) =

∫∫
min
β∈Sλ
‖x′ −Dβ‖2Kh1(ρ(x, x′)) dPn(x′) dx

and its population version is

E P(r) =

∫∫
min
β∈Sλ
‖x′ −Dβ‖2Kh1(ρ(x, x′)) dP(x′) dx.

Our goal is to show that the sample reconstruction error is close to the true re-

construction error. Specifically, to show E P(rλ) ≤ (1 + κ)E Pn(rλ) + ε where ε, κ ≥ 0,

we bound the covering number of the class of functions corresponding to the recon-

struction error. We assume a dictionary of bounded babel function, which holds as a
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result of the relaxed orthogonality constraint used in the Algorithm 4 (see also [83]).

We define the set of r functions with respect to the the dictionary D (assuming data

lies in the unit d-dimensional ball Sd−1) by

Fλ = {rλ : Sd−1 → R : D ∈ Rd×K , ‖di‖2 ≤ 1, µs(D) ≤ γ}.

The following theorem bounds the covering number of the above function class.

Theorem 6.5.1. For every ε > 0, the metric space (Fλ, | · |∞) has a subset of cardi-

nality at most
(

4λ|Kh1 (·)|1
ε(1−γ)

)dK
, such that every element from the class is at a distance

of at most ε from the subset, where |Kh1(·)|1 =
∫
|Kh1(x)| dP.

Proof. Let F′λ = {r′λ : Sd−1 → R : D ∈ d×K, ‖di‖2 ≤ 1}, where r′λ(x) =

minβ∈Sλ ‖Dβ − x‖. With this definition we note that Fλ is just F′λ convolved with

the kernel Kh1(·). By Young’s inequality [32] we have,

|Kh1 ∗ (s1 − s2)|p ≤ |Kh1|1|s1 − s2|p, 1 ≤ p ≤ ∞

for any Lp integrable functions s1 and s2. Using this fact, we see that convolu-

tion mapping between metric spaces F′ and F converts ε
|Kh1 (·)|1 covers into ε covers.

From [115], we have that the class F′λ has ε covers of size at most ( 4λ
ε(1−γ)

)
dK

. This

proves the statement of the theorem.

The above theorem could be used in conjunction with standard statements in

the literature for bounding the generalization error of empirical risk minimization

algorithms based on covering numbers. We have provided the general statements in

the appendix for completeness of this chapter. The proofs of the general statements

could be found in the references cited. Below, we provide two such generalization

bounds for smooth sparse coding problem, corresponding to slow rates and fast rates.

Slow rates: When the theorem on covering numbers for the function class Fλ

(Theorem 6.5.1) is used along with Lemma 1 stated in the appendix (correspond-

ing to slow rate generalization bounds) it is straightforward to obtain the following

generalization bounds with slow rates for the smooth sparse coding problem.
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Theorem 6.5.2. Let γ < 1, λ > e/4 with distribution P on Sd−1. Then with prob-

ability at least 1 − e−t over the n samples drawn according to P, for all the D with

unit length columns and µs(D) ≤ γ, we have:

E P(rλ) ≤ E Pn(rλ) +

√√√√dK ln
(

4
√
nλ|Kh1 (·)|1

(1−γ)

)
2n

+

√
t

2n
+

√
4

n

The above theorem, establishes that the generalization error scales as O(n−1/2)

(assuming the other problem parameters are fixed).

Fast rates:Under further assumptions (κ > 0), it is possible to obtain faster rates

of O(n−1) for smooth sparse coding, similar to the ones obtained for general learning

problems in [8]. The following theorem gives the precise statement.

Theorem 6.5.3. Let γ < 1, λ > e/4, dK > 20 and n ≥ 5000. Then with probability

at least 1− e−t, we have for all D with unit length and µs(D) ≤ γ,

E P(rλ) ≤ 1.1E Pn(rλ) + 9
dK ln

(
4nλ|Kh1 (·)|1

(1−γ)

)
+ t

n
.

The above theorem follows from the theorem on covering number bound (Theorem

6.5.1) above and Lemma 2 from the appendix. In both statements the definition of

rλ(x) differs from (1) by a square term, but it could easily be incorporated into the

above bounds resulting in an additive factor of 2 inside the logarithm term as is done

in [115].

6.6 Experiments

We demonstrate the proposed approach both in terms of speed-up and accuracy, over

standard sparse coding. A detailed description of all real-world data sets used in the

experiments are given in the appendix. As discussed before, the overall optimization

procedure is non-convex. The stopping criterion was chosen as when the value of

the reconstruction error did not change by more than 0.001%. Though this does not

guarantee convergence to a global optimum, according to the experimental results,
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we see that the points of convegence invariably resulted in a good local optimum (as

reflected by the good empirical performance). Furthermore, in all the experiments,

we ran 10 iterations of the projected gradient descent algorithm for each dictionary

update step. We fixed the learning rate for all iterations of gradient projection descent

algorithm as η = ηt = 0.01 as it was found to performed well in the experiments. The

parameters γ and t are set for each experiment based on cross-validation (we first

tuned for γ and then for t) for classification results on training set as is done in the

literature [123].

6.6.1 Speed comparison

We conducted synthetic experiments to examine the speed-up provided by sparse

coding with marginal regression. The data was generated from a 100 dimensional

mixture of two Gaussian distribution that satisfies ‖µ1 − µ2‖2 = 3 (with identity

covariance matrices). The dictionary size was fixed at 1024.

We compare the proposed smooth sparse coding algorithm, standard sparse cod-

ing with lasso [66] and marginal regression updates respectively, with a relative re-

construction error ‖X − D̂B̂‖F/‖X‖F convergence criterion. We experimented with

different values of the relative reconstruction error (less than 10%) and report the

average time. From Table 10, we see that smooth sparse coding with marginal regres-

sion takes significantly less time to achieve a fixed reconstruction error. This is due to

the fact that it takes advantage of the spatial structure and use marginal regression

updates. It is worth mentioning that standard sparse coding with marginal regression

updates performs faster compared to the other two methods that uses lasso updates,

as expected (but does not take into account the spatial structure).

6.6.2 Experiments with Kernel in Feature space

We conducted several experiments demonstrating the advantage of the proposed cod-

ing scheme in different settings. Concentrating on face and object recognition from
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Table 10: Time comparison of coefficient learning in SC and SSC with either Lasso or
Marginal regression updates. The dictionary update step was same for all methods.

Method time (sec)

SC+LASSO 524.5 ±12
SC+MR 242.2±10

SSC+LASSO 560.2±12
SSC+MR 184.4 ±19

static images, we evaluated the performance of the proposed approach along with

standard sparse coding and LLC [125], another method for obtaining sparse features

based on locality. Also, we performed experiments on activity recognition from videos

based on both space and time based kernels. As mentioned before all results are re-

ported using tricube kernel.

6.6.2.1 Image classification

We conducted image classification experiments on CMU-multipie, 15 Scene and Caltech-

101 data sets. Following [123] , we used the following approach for generating sparse

image representation: we densely sampled 16 × 16 patches from images at the pixel

level on a grid with step size 8 pixels, computed SIFT features, and then computed

the corresponding sparse codes over a 1024-size dictionary. We used max pooling to

get the final representation of the image based on the codes for the patches. The pro-

cess was repeated with different randomly selected training and testing images and

we report the average per-class recognition rates (together with its standard deviation

estimate) based on one-vs-all SVM classification. As Table 11 indicates, our smooth

sparse coding algorithm resulted in significantly higher classification accuracy than

standard sparse coding and LLC. In fact, the reported performance is better than

previous reported results using unsupervised sparse coding techniques [123].

Dictionary size: In order to demonstrate the use of scalability of the proposed

method with respect to dictionary size, we report classification accuracy with in-

creasing dictionary sizes using smooth sparse coding. The main advantage of the
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Table 11: Test set error accuracy for face recognition on CMU-multipie data set
(left) 15 scene (middle) and Caltech-101 (right) respectively. The performance of the
smooth sparse coding approach is better than the standard sparse coding and LLC
in all cases.

CMU-multipie 15 scene Caltech-101

SC 92.70±1.21 80.28±2.12 73.20±1.14
LLC 93.70±2.22 82.28±1.98 74.82±1.65
SSC 95.05 ±2.33 84.53±2.57 77.54±2.59

Table 12: Effect of dictionary size on classification accuracy using smooth sparse
coding and marginal regression on 15 scene and Caltech -101 data set.

Dictionary size 15 scene Caltech-101

1024 84.42±2.01 77.14 ±2.23
2048 87.92±2.35 79.75±1.44
4096 90.22±2.91 81.01±1.17

proposed marginal regression training method is that one could easily run experi-

ments with larger dictionary sizes, which typically takes a significantly longer time

for other algorithms. For both the Caltech-101 and 15-scene data set, classification

accuracy increases significantly with increasing dictionary sizes as seen in Table 12.

6.6.2.2 Action recognition:

We further conducted an experiment on activity recognition from videos with KTH

action and YouTube data set (see Appendix). Similar to the static image case, we

follow the standard approach for generating sparse representations for videos as in

[118]. We densely sample 16 × 16 × 10 blocks from the video and extract HoG-

3d [64] features from the sampled blocks. We then use smooth sparse coding and

max-pooling to generate the video representation (dictionary size was fixed at 1024

and cross-validation was used to select the regularization and bandwidth parameters).

Previous approaches include sparse coding, vector quantization, and k-means on top

of the HoG-3d feature set (see [118] for a comprehensive evaluation). As indicated

by Table 13, smooth sparse coding results in higher classification accuracy than pre-

viously reported state-of-the-art and standard sparse coding on both datasets (see
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Table 13: Action recognition (accuracy) for cited method (left), Hog3d+ SC (middle)
and Hog3d+ SSC (right): KTH data set(top) YouTube action dataset (bottom).

Cited method SC SSC

92.10 [118] 92.423 94.393
71.2 [70] 72.640 75.022
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Figure 27: Comparison between the histograms of Fisher discriminant score realized
by sparse coding and smooth sparse coding. The images represent the histogram of
the ratio of smooth sparse coding Fisher score over standard sparse coding Fisher
score (left: image data set; right: video). A value greater than 1 implies that smooth
sparse coding is more discriminatory.

[118, 70] for a description of the alternative techniques).

6.6.2.3 Discriminatory power

In this section, we describe another experiment that contrasts the codes obtained by

sparse coding and smooth sparse coding in the context of a subsequent classification

task. As in [124], we first compute the codes in both case based on patches and

combine it with max-pooling to obtain the image level representation. We then

compute the fisher discriminant score (ratio of within-class variance to between-class

variance) for each dimension as measures of the discrimination power realized by the

representations.

Figure 27, graphs a histogram of the ratio of smooth sparse coding Fisher score

over standard sparse coding Fisher score R(d) = F1(d)/F2(d) for 15-scene dataset
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(left) and Youtube dataset (right). Both histograms demonstrate the improved dis-

criminatory power of smooth sparse coding over regular sparse coding.

6.7 Semi-supervised smooth sparse coding

One of the primary difficulties in some image classification tasks is the lack of availabil-

ity of labeled data and in some cases, both labeled and unlabeled data (for particular

domains). This motivated semi-supervised learning and transfer learning without la-

bels [82] respectively. The motivation for such approaches is that data from a related

domain might have some visual patterns that might be similar to the problem at

hand. Hence, learning a high-level dictionary based on data from a different domains

aids the classification task of interest.

We propose that the smooth sparse coding approach might be useful in this set-

ting. The motivation is as follows: in semi-supervised, typically not all samples from

a different data set might be useful for the task at hand. Using smooth sparse coding,

one can weigh the useful points more than the other points (the weights being calcu-

lated based on feature/time similarity kernel) to obtain better dictionaries and sparse

representations. Other approach to handle a lower number of labeled samples include

collaborative modeling or multi-task approaches which impose a shared structure on

the codes for several tasks and use data from all the tasks simultaneously, for example

group sparse coding [10]. The proposed approach provides an alternative when such

collaborative modeling assumptions do not hold, by using relevant unlabeled data

samples that might help the task at hand via appropriate weighting.

We now describe an experiment that examines the proposed smoothed sparse

coding approach in the context of semi-supervised dictionary learning. We use data

from both CMU multi-pie dataset (session 1) and faces-on-tv dataset (treated as

frames) to learn a dictionary using a feature similarity kernel. We follow the same

procedure described in the previous experiments to construct the dictionary. In the
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test stage we use the obtained dictionary for coding data from sessions 2, 3, 4 of

CMU-multipie data set, using smooth sparse coding. Note that semi-supervision was

used only in the dictionary learning stage (the classification stage used supervised

SVM).

Table 14 shows the test set error rate and compares it to standard sparse coding

and LLC [125]. Smooth sparse coding achieves significantly lower test error rate than

the two alternative techniques. We conclude that the smoothing approach described

in this chapter may be useful in cases where there is a small set of labeled data, such

as semisupervised learning and transfer learning.

Table 14: Semi-supervised learning test set error: Dictionary learned from both CMU
multi-pie and faces-on-tv data set using feature similarity kernel, used to construct
sparse codes for CMU multipie data set.

Method SC LLC SSC-tricube

Test errror 6.345 6.003 4.975

6.8 Data set Description

6.8.1 CMU Multi-pie face recognition:

The face recognition experiment was conducted on the CMU Multi-PIE dataset. The

dataset is challenging due to the large number of subjects and is one of the standard

data sets used for face recognition experiments. The data set contains 337 subjects

across simultaneous variations in pose, expression, and illumination. We ignore the

88 subjects that were considered as outliers in [123] and used the rest of the images

for our face recognition experiments. We follow [123] and use the 7 frontal extreme

illuminations from session one as train set and use other 20 illuminations from Sessions

2-4 as test set.

6.8.2 15 Scenes Categorization:

We also conducted scene classification experiments on the 15-Scenes data set. This

data set consist of 4485 images from 15 categories, with the number of images each
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category ranging from 200 to 400. The categories corresponds to scenes from var-

ious settings like kitchen, living room etc. Similar to the previous experiment, we

extracted patches from the images and computed the SIFT features corresponding to

the patches. The categorization results are reported in Table 2. The accuracy using

smooth sparse codes is better than previous reported results on this data set using

standard sparse coding techniques for e.g., [122].

6.8.3 Caltech-101 Data set:

The Caltech-101 data set consists of images from 101 classes like animals, vehicles,

flowers, etc. The number of images per category varies from 30 to 800. Most im-

ages are of medium resolution (300× 300). All images are used a gray-scale images.

Following previous standard experimental settings for Caltech-101 data set, we use

30 images per category and test on the rest. Average classification accuracy normal-

ized by class frequency is used for evaluation. Similar to the previous experiment,

we extracted patches from the images and computed the SIFT features correspond-

ing to the the patches. Table 2 shows the accuracy of sparse coding and smooth

sparse coding. Note that sparse coding on SIFT achieves one of the best results on

the Caltech-101 data set. The proposed smoothing approach further improves the

accuracy and achieves competitive results on this benchmark data set.

6.8.4 Activity recognition

The KTH action dataset consists of 6 human action classes. Each action is performed

several times by 25 subjects and is recorded in four different scenarios. In total, the

data consists of 2391 video samples. The YouTube actions data set has 11 action

categories and is more complex and challenging [70]. It has 1168 video sequences

of varied illumination, background, resolution etc. We randomly densely sample

blocks (400 cuboids) of video from the data sample and extract HOG-3d features and

constructed the video features as described above. .
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6.8.5 Youtube person data set

Similar to the experiments using the feature smoothing kernel, in this section we

report results on experiment conducted using the time smoothed kernel. Specifically,

we used the YouTube person data set [63] in order to recognize people, based on

time-based kernel smooth sparse coding. The dataset contains 1910 sequences of 47

subjects. The approach for this experiment is similar to [122]. We extracted SIFT

descriptors for every 16 × 16 patches sampled on a grid of step size 8. Then we use

smooth sparse coding with time kernel to learn the codes and max pooling to get

the final representation of a video sample. Pre-processing steps like face extraction

or face tracking was not used in this experiment. Finally, linear svm was used for

classification of video sequences based on person present in the video sequences.

6.9 Experiments using Temporal Smoothing

In this section we describe an experiment conducted using the temporal smoothing

kernel on the Youtube persons dataset. We extracted SIFT descriptors for every

16× 16 patches sampled on a grid of step size 8 and used smooth sparse coding with

time kernel to learn the codes and max pooling to get the final video representation.

We avoided pre-processing steps such as face extraction or face tracking. Note that in

the previous action recognition video experiment, video blocks were densely sampled

and used for extracting HoG-3d features. In this experiment, on the other hand,

we extracted SIFT features from individual frames and used the time kernels to

incorporate the temporal information into the sparse coding process.

Table 15: Linear SVM accuracy for person recognition task from YouTube face video
dataset.

Method Fused Lasso SC SSC-tricube

Accuracy 68.59 65.53 71.21
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For this case, we also compared to the more standard fused-lasso based ap-

proach [109]. Note that in fused Lasso based approach, in addition to the standard L1

penalty, an additional L1 penalty on the difference between the neighboring frames

for each dimensions is used. This tries to enforce the assumption that in a video

sequence, neighboring frames are more related to one another as compared to frames

that are farther apart.

Table 15 shows that smooth sparse coding achieved higher accuracy than fused

lasso and standard sparse coding. Smooth sparse coding has comparable accuracy on

person recognition tasks to other methods that use face-tracking, for example [63].

Another advantage of smooth sparse coding is that it is significantly faster than sparse

coding and the fused lasso.

6.10 Generalization bounds for learning problems

In this section, for completeness, we provide two generalization bounds for learning

problems, corresponding to slow-rates and fast rates, based on covering numbers. We

first state the following general lemma regarding generalization error bounds with

slow rates for a learning problem with given covering number bounds.

Lemma 3 ([115] ). Let Q be a function class of [0, B] functions with covering number

(C
ε
)d > e

B2 under | · |∞ norm. Then for every t > 0 with probability at least 1 − e−t,

for all f ∈ Q, we have:

E f ≤ Enf +B

(√
d ln(C

√
n)

2n
+

√
t

2n

)
+

√
4

n
.

Next, we state a general lemma regarding generalization error bounds with fast

rates

Lemma 4 ([115] ). Let Q be a function class of [0, 1] functions that can be covered

for any ε > 0 by at most (C/ε)d balls of radius ε in the | · |∞ metric, where C ≥ e and
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β > 0. Then with probability at least 1− exp (−t) we have for all functions f ∈ Q,

E f ≤ (1 + β)Enf +K(d,m, β)
d ln(Cm) + t

n
,

where K(d,m, β) =

√
2
(

9√
n

+ 2
) (

d+3
3d

)
+ 1 +

(
9√
n

+ 2
)

+
(
d+3
3d

)
+ 1 + 1

2β
.

Note that K(d,m, β) is non-increasing in d,m as a consequence of which we im-

mediately have the following corollary, which we use in the statement of our main

theorem for fast rates.

Corollary 6. Let Q be as above. For d ≥ 20, m ≥ 5000 and β = 0.1, we have with

probability at least 1− exp (−t) for all functions f ∈ Q,

Ef ≤ (1.1)Enf + 9
d ln(Cm) + t

n
.

The proofs of Lemma 1 and Lemma 2 could be found in [115]. Obtaining general-

ization bounds for the problem under consideration follows directly, given the above

two general statements and our theorem on covering numbers (Theorem 1).
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CHAPTER VII

FEATURE SCREENING VIA RKHS EMBEDDINGS

7.1 Introduction

Ultrahigh dimensional data sets are ubiquitous in modern statistical problems arising

from several diverse scientific fields. For example, several biological problems or high

frequency trading problems have several million features (denoted as d) compared

to a much lesser number of samples (denoted as n). Feature screening plays an

important role in analyzing these ‘large d small n’ data sets. Various penalization

based techniques that promote sparsity have been developed and analyzed in this

regime: Lasso [108], Dantzig selector [22] and scad penalties [38] assume a linear

model between the covariates and the response, while SPAM and related techniques

[84, 56] assume a non-linear model in order to select a few relevant features. All these

methods allow for the data dimensionality to be greater than the sample size.

However, there are several issues with the above mentioned penalty approaches

in ultrahigh dimensions. First, these methods cannot efficiently handle ultrahigh di-

mensional settings with d growing faster than a polynomial rate in n, e.g., d growing

exponential in n. Second, the irrepresentability conditions [130]—these conditions

mean that the covariates not in the true model are not representable, in some sense,

by the covariates in the true model—under which the model selection consistency is

proved for the penalty methods in high-dimensions, are too stringent to hold in ultra-

high dimensions [41](Section 5.5 for general discussion and concrete examples). Third,

penalization approaches are computationally expensive, e.g., typical lasso algorithms

scales as O(d3) and are therefore expensive for ultrahigh dimensional problems.

In order to tackle this situation, an alternate line of research based on marginal

148



regression was proposed and analyzed [39, 42]. This is a relatively old technique, that

has re-emerged as an alternative for feature screening in ultrahigh dimensions. The

general idea of this approach is to measure the relationship (to be clearly defined based

on context) of each feature individually to the response and rank them accordingly.

For example, assuming a linear model between response and covariates, [39] proposed

to measure the residual between response and each covariate (in a least-square sense)

and rank the covariates accordingly. In order to relax the linear model assump-

tion, [42] proposed screening for generalized linear models based on marginal utility;

[37] proposed screening using a non-parametric additive model based on smoothing

splines. Recently, [68] proposed a model-free (i.e., without any regressive model-

ing assumptions) screening procedure, DC-SIS, based on distance covariance metric

[104]—which is zero if and only if the random variables are independent—as a mea-

sure of relationship between response and covariate. To elaborate, if the distance

covariance between the response and a covariate is “small”, then the response is in-

dependent of the covariate and therefore such a covariate can be screened out from

consideration. Recently [61] showed that a two-step procedure, screening followed by

penalized regression, is optimal for feature selection in this regime.

In this chapter, we propose a general framework, sup-HSIC-SIS (Hilbert Schmidt

independence criterion–Sure independence screening), for model-free, multi-output

screening. The approach uses RKHS based independence measures [49] and gener-

alizes the previously proposed DC-SIS approach. This proposal is motivated from

the recent work by [90] that established an equivalence between distance covariance

and HSIC (a dependence/independence measure based on RKHS embedding of prob-

abilities). Given this equivalence, it is straightforward to propose an independence

screening procedure based on HSIC by carrying out the analysis with HSIC replacing

the distance covariance in [68]. However, a major issue with DC-SIS (or its equiv-

alent RKHS version, say HSIC-SIS) is that the employed independence measure is
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just one member of a parametric family of independence measures and there is no

guarantee that this member provides the best screening procedure over all the other

choices from this family. For example, if we consider HSIC-SIS, the choice of kernel

determines the performance of the screening procedure.

Our main contribution in this chapter is to address this issue by using an inde-

pendence measure (that adapts to the joint distribution between the response and

covariates) that is obtained by taking the supremum of HSIC over a family of kernels,

and show theoretically that sup-HSIC-SIS enjoys the sure screening property under

some regularity conditions. We also propose two iterative versions of sup-HSIC-SIS

that address issues inherent in any marginal screening procedure and are robust to

the regularity assumptions. We show empirically that the proposed extensions along

with sup-HSIC-SIS perform better than existing state-of-the-art approaches, while

the theoretical analysis of these extensions are left out for future work.

A related RKHS based approach was previously proposed for feature selection

in [99]. The approach uses HSIC metric and deals primarily with the low-dimensional

setting (i.e., n > p) and is basically a model-free version of subset selection approaches

used in linear regression settings. Comparing their empirical results with ours (see

Sections 7.6.4 and 7.6.5), we note that while BA-HSIC is suitable for low-dimensions

and to some extent for high-dimensional settings, it does not perform well in ultrahigh

dimensional settings. We conjecture that BA-HSIC is inferior to DC-SIS and sup-

HSIC-SIS in ultrahigh dimensional settings using arguments similar to the ones used

in [68].

7.2 RKHS embedding of probabilities

Recently, the notion of embedding probability measures into a reproducing kernel

Hilbert space (RKHS) has been proposed as a generalization to the classical kernel

method (which embeds points from an input space into an RKHS) with a motivation
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to provide a linear method for handling higher-order statistics of random variables

[12, 95].

Formally, given a Borel probability measure, P defined on a topological space,

X, and the RKHS (H, k) of functions on X with bounded and measurable k as its

reproducing kernel, the embedding of P into H is defined as Pk :=
∫
X
k(·, x) dP(x).

[48] defined the maximum mean discrepancy (MMD) RKHS distance between two

Borel probability measures P, Q, as

γk(P,Q)
def
=

∥∥∥∥∫
X

k(·, x) dP(x)−
∫
X

k(·, x) dQ(x)

∥∥∥∥
H

.

When the kernel k is characteristic [102], the embeddings are injective, i.e., γk(P,Q) =

0 if and only if P = Q and thus γk defines a metric on the space of probability

measures.

One of the applications of the above metric is in capturing the degree of depen-

dence between two random variables X ∈ X and Y ∈ Y with marginal distributions

P(X) and P(Y ) and jointly distributed as P(X, Y ). Assuming k : (X×Y)2 → R is sep-

arable, i.e., k((x, y), (x′, y′)) = kX(x, x′)kY(y, y′), where kX : X2 → R and kY : Y2 → R

are reproducing kernels of HX and HY respectively (so that H ∼= HX⊗HY), γ2
k reduces

to the Hilbert-Schmidt independence criterion [49] between X, Y , defined as

γ2
k(P(X, Y ),P(X)P(Y ))

def
= ‖P(X, Y )k − P(X)P(Y )k‖2

H (94)

= EXX′Y Y ′ [kX(X,X ′)kY(Y, Y ′)]

+ EXX′ [kX(X,X ′)]E Y Y ′ [kY(Y, Y ′)]

− 2EXY [EX′ [kX(X,X ′)]E Y ′ [kY(Y, Y ′)]] ,

where X ′ and Y ′ are independent copies of X and Y respectively. [49] showed that

γk(P(X, Y ),P(X)P(Y )) is the Hilbert-Schmidt norm of the cross-covariance operator

between HX and HY, with the property that when kX and kY are characteristic,

γk(P(X, Y ),P(X)P(Y )) is zero iff X and Y are independent. This crucial property
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of γk will be exploited later in our screening framework. One difficulty is that this

approach depends on tuning parameters associated with the kernel and selected in

practice using heuristics. [101] proposed the following sup-HSIC variation:

γ(P(X, Y ),P(X)P(Y ))
def
= sup{γk(P(X, Y ),P(X)P(Y )) : k ∈ K}.

Note that γ represents the maximal distance between P(X, Y ) and P(X)P(Y ) over the

family of kernels K. If any k ∈ K is characteristic, then γ is a metric. Typical example

includes the family of Gaussian kernels KG when kX(u, v) = kY(u, v)
def
= {exp−σ‖u−v‖

2
2 :

σ ∈ R+}. See [101] for more details and examples.

In statistical problems, we are given n random samples {(X(1), Y (1)), . . . , (X(n), Y (n))}

drawn i.i.d. from P(X, Y ). Given these samples, an estimate γ̂ of sup-HSIC is defined

as:

γ̂(P(X, Y ),P(X)P(Y ))
def
= sup{‖P(X, Y )nk − P(X)nP(Y )nk‖H : k ∈ K},

=
1

n
sup

kX∈KX,kY∈KY

√
trace (KXH KYH)

where P(X, Y )n,P(X)n and P(Y )n represent the empirical measures over the given

samples. Above, KX and KY are the n× n Gram matrices associated with kX and kY

respectively, and H = I − 1
n
11> where I is the n × n identity matrix (1 is a n × 1

vector of ones).

7.3 Screening via RKHS embedding

In this section, we describe how the sup-HSIC measure of independence could be used

for feature screening in ultrahigh dimensions. We assume a response Y ∈ Rq (note

that this notation differs slightly from the rest of the thesis; this is done in order to

avoid potential confusion between the kernel k and output dimension) and covariates

X ∈ Rdn , with dn growing with n and q fixed (for simplicity). The method applies as

well to more general topologic spaces X,Y. We use Xr to denote the r-component of

X and XS to denote the components of X indexed by the elements of the set S. We
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denote the n training set samples as {(X(1), Y (1)), . . . , (X(n), Y (n))} where n can be

very small compared to dn. Under such an assumption, it is natural to assume that

only a subset of covariates are related to the response Y .

Following [68], we define the set of relevant variables M and irrelevant variables I

as:

M = {r : P(Y |X) depends on Xr}

I = {r : P(Y |X) does not depend on Xr}

where P(Y |X) is the conditional distribution of Y given X. Note that given XM, XI is

conditionally independent of Y and hence redundant while calculating the response.

Using the above definitions, feature selection reduces to estimating the set M from a

set of n iid samples.

A natural idea is to rank the covariates according to their degree of dependence to

the response. In order to measure such a degree of dependence of the dimension Xr

to Y , we use the sup-HSIC measure introduced in the previous section. Specifically,

we use the sup-HSIC between the joint random variable (Xr, Y ) and the marginals

Xr and Y . Denoting the joint distribution of the vector (Xr, Y ) as P(Xr, Y ) and the

marginal distribution of the dimensions Xr and Y as P(Xr) and P(Y ) respectively,

we define

ωr
def
= γr(P(Xr, Y ),P(Xr)P(Y ))

to be the measure of dependence between the r-component Xr and the response Y .

Note that the greater γr is, the greater the degree of dependence and γr = 0 iff

Xr is independent of Y . These properties make sup-HSIC suitable for ranking the

dimensions of X according to the degree of dependence to the response Y . In practice,

given n samples, we use the empirical estimator ω̂r = γ̂r(P(Xr, Y )n,P(Xr)nP(Y )n

(defined in the previous section).
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In order to select the relevant variables and estimate M, we first compute ω̂r for

r = 1, . . . , dn and define

M̂ = {r : ω̂r ≥ cn−κ, for 1 ≤ r ≤ dn}

where 0 ≤ κ < 1/2, as the estimated set of relevant features. Note that the set of

relevant features is defined as the set of all dimensions that have dependence with

the response greater than cn−κ. The threshold defined here depends on n and when

n is large variables with weaker dependence may be detected.

The approach above has several nice properties. First, the method is model free

as it does not assume a specific regression model between X and Y . Second, the

response Y may be a vector or more generally a graph or a ranking. As a result, the

method can be used for feature selection in the case of multi-label classification and

multivariate output regression. Third, the method chooses the kernel k in a principled

way by selecting k from a family of positive definite kernels that maximizes the Hilbert

Schmidt norm of the covariance operator. Finally, as we show in the next section the

method generalizes the recently proposed state-of-the-art DC-SIS [68].

7.3.1 DC-SIS as a special case of sup-HSIC-SIS

In order to see how the proposed method generalizes the recent approach by [68],

we appeal to the general equivalence between distance based independence metrics

and kernel based independence metrics, as established by [90]. To summarize DC-SIS

briefly, [68] uses distance covariance metric [104] as a measure of independence in

the screening approach. In order to see the connection, we first need the following

definition due to [74].

Definition 6. Let (X, ρX) and (Y, ρY) be semi-metric spaces of negative type, with

random variables X and Y taking values in X and Y respectively. The distance
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covariance between X and Y is defined as

dcov2(X, Y ) = EX,Y EX′,Y ′ρX(X,X ′)ρY(Y, Y ′)

+ EXEX′ρX(X,X ′)E Y ,E Y ′ρX(X,X ′)

− 2EX,Y (EX′ρX(X,X ′)E Y ′ρX(X,X ′)) .

When X = Rs and Y = Rt with ρX(u, v) = ρY(u, v) = ‖u− v‖, dcov reduces to the

distance used in [104]. The following result due to [91] establishes the equivalence

between dcov and γk.

Theorem 7.3.1. Let (X, ρX) and (Y, ρY) be semi-metric spaces of negative type with

X ∼ P(X) and Y ∼ P(Y ) having joint P(X, Y ). Let kX and kY be kernels on X and Y

that generate the respective metrics and denote k((x, y), (x′, y′)) = kX(x, x′)kY(y, y′).

Then dcov2(X, Y ) = 4γ2
k(P(X, Y ),P(X)P(Y )).

Example 11 in [91] shows that kq(x, x
′) = 1

2
(‖x‖q + ‖x′‖q − ‖x− x′‖q), x, x′ ∈ Rd,

0 < q ≤ 2 generates a semi-metric, ρq(x, x
′) = ‖x − x′‖q of negative type. Choosing

kX = kY = k1 yields the dcov metric as proposed in [104], which is used in DC-SIS.

Using the sup-HSIC dependence measure in sup-HSIC-SIS generalizes DC-SIS in

that it allows choosing more general exponent q, possibly kq with q outside of the

range 0 < q ≤ 2. This provides a richer set of independence measures between

random variables, which in turn facilitates a better model-free feature selection. In

addition, as we show later on sup-HSIC-SIS achieves better empirical results than the

DC-SIS method.

7.4 Theoretical analysis

In this section, we prove the sure screening property of sup-HSIC-SIS for X ⊂ Rdn

and Y ⊂ Rq. Our analysis applies to a range of kernel families and does not impose

any moment conditions on the variables X and Y . Furthermore, it provides a simpler

proof under relaxed assumption compared to [68] that also applies to DC-SIS. For
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simplicity, we assume a fixed q be fixed, but one could also analyze the dependency

on q to determine the joint scaling of q and dn with n. We allow the cardinality of the

dependence set to scale with n, i.e., |Mn| = sn. We assume the following assumptions:

A1 sup{kX(x, x) : kX ∈ KX, x ∈ X} = A <∞

A2 sup{kY(y, y) : kY ∈ KY, y ∈ Y} = A <∞

A3 min
r∈M

ωr ≥ 2cn−κ for some c > 0 and κ ∈ [0, 1/2).

Assumption A3 requires that sup-HSIC measure corresponding to the relevant vari-

ables cannot be too small, which is similar to condition 3 of [39] as well as to conditions

in various other related chapters that analyzed marginal screening approaches. The

proof of sure screening property of sup-HSIC-SIS in Theorem 7.4.1, uses an interme-

diate result in Lemma 1, stated and proved below. We first start with the following

definition.

Definition 7. Let G be a class of functions on X×X and {ρ1, . . . ρn} be independent

Rademacher random variables. The homogeneous Rademacher chaos process of order

two with respect to {ρ1, . . . ρn} is defined as {n−1
∑n

i<j ρiρjg(xi, xj) : g ∈ G} for some

{x1, . . . , xn} ⊂ X. The Rademacher chaos complexity of G is defined as

Un(G; {xi}) def
= E ρ sup

g∈G

∣∣∣∣∣ 1n
n∑
i<j

ρiρjg(xi, xj)

∣∣∣∣∣ .
Lemma 5. Let kX and kY be measurable kernels satisfying assumptions A1 and A2.

Then for any 1 ≤ r ≤ dn, with probability at least 1 − δ over the choice of samples,

{(X(i)
r , Y (i))},

|ω̂r − ωr| ≤

√
8Un(K; {(X(i)

r , Y (i))})
n

+

√
8AUn(KX; {X(i)

r })
n

+

√
8AUn(KY; {y(i)})

n

+

√
162A2

n
log

6

δ
+

6A√
n
.
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Proof. The proof technique is similar to that of Theorem 7 in [101]. Consider

|ω̂r − ωr| = |γ̂r(P(Xr, Y ),P(Xr)P(Y ))− γr(P(Xr, Y ),P(Xr)P(Y ))|

≤ sup
k∈K
‖P(Xr, Y )nk − P(Xr, Y )k‖H + sup

k∈K
‖P(Xr)nP(Y )nk − P(Xr)P(Y )k‖H

.

We now bound the terms θ := supk∈K ‖P(Xr, Y )nk − P(Xr, Y )k‖H and φ :=

supk∈K ‖P(Xr)nP(Y )nk − P(Xr)P(Y )k‖H. Since θ satisfies the bounded difference

property, using McDiarmid’s inequality gives that with probability at least 1− δ
6

over

the choice of {(X(i)
r , Y (i))}ni=1, we have

θ ≤ E sup
k∈K
‖P(Xr, Y )nk − P(Xr, Y )k‖H +

√
2A2

n
log

6

δ
. (95)

By invoking symmetrization for E supk∈K ‖P(Xr, Y )nk − P(Xr, Y )k‖H, we have

E θ ≤ 2EE ρ sup
k∈K

∥∥∥∥∥ 1

n

n∑
i=1

ρik(., (X(i)
r , Y (i)))

∥∥∥∥∥
H

, (96)

where {ρi}ni=1 represent i.i.d. Rademacher random variables and E ρ represents the ex-

pectation w.r.t. {ρi} conditioned on {(X(i)
r , Y (i))}. Since E ρ supk∈K

∥∥∥ 1
n

∑n
i=1 ρik(., (X

(i)
r , Y (i)))

∥∥∥
H

satisfies the bounded difference property, by McDiarmid’s inequality, with probability

at least 1− δ
6

over the choice of the random samples of size n, we have

EE ρ sup
k∈K

∥∥∥∥∥ 1

n

n∑
i=1

ρik(., (X(i)
r , Y (i)))

∥∥∥∥∥
H

≤
√

2A2

n
log

6

δ
+E ρ sup

k∈K

∥∥∥∥∥ 1

n

n∑
i=1

ρik(., (X(i)
r , Y (i)))

∥∥∥∥∥
H

.

(97)

By writing∥∥∥∥∥ 1

n

n∑
i=1

ρik(., (X(i)
r , Y (i)))

∥∥∥∥∥
H

≤ A√
n

+

√
2

n

√√√√∣∣∣∣∣
n∑
i<j

ρiρjk((X
(i)
r , Y (i)), (X

(j)
r , Y (j)))

∣∣∣∣∣ (98)

we have with probability at least 1− δ
6
, the following holds:

EE ρ sup
k∈K

∥∥∥∥∥ 1

n

n∑
i=1

ρik(., (X(i)
r , Y (i)))

∥∥∥∥∥
H

≤
√

2A2

n
log

6

δ
+

A√
n

+

√
2Un(K; {(X(i)

r , Y (i))})
n

.

(99)
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Tying (95)-(99), we have that w.p. at least 1− δ
3

over the choice of {(X(i)
r , Y (i))}, the

following holds:

θ ≤

√
8Un(K; {(X(i)

r , Y (i))})
n

+
2A√
n

+

√
18A2

n
log

6

δ
. (100)

Now we consider bounding φ

φ
def
= sup

k∈K
‖P(Xr)nP(Y )nk − P(Xr)P(Y )k‖H

= sup
k∈K

∥∥∥∥∫ kX(·, x)⊗ kY(·, y) d[(P(Xr)× P(Y )− (P(Xr)n × P(Y )n)](x, y)

∥∥∥∥
H

= sup
k∈K

∥∥∥∥∫ kX(·, x) dP(Xr)(x)⊗
∫
kY(·, y) dP(Y )(y)−∫

kX(·, x) dP(Xr)n(x)⊗
∫
kY(·, y) dP(Y )n(y)

∥∥∥∥
H

≤ sup
k∈K

∥∥∥∥∫ kX(·, x) d(P(Xr)− P(Xr)n)(x)⊗
∫
kY(·, y) dP(Y )(y)

∥∥∥∥
H

+ sup
k∈K

∥∥∥∥∫ kX(·, x) dP(Xr)n(x)⊗
∫
kY(·, y) d(P(Y )− P(Y )n)(y)

∥∥∥∥
H

= sup
k∈K

∥∥∥∥∫ kX(·, x) d(P(Xr)− P(Xr)n)(x)

∥∥∥∥
HX

∥∥∥∥∫ kY(·, y) dP(Y )(y)

∥∥∥∥
HY

+ sup
k∈K

∥∥∥∥∫ kX(·, x) dP(Xr)n(x)

∥∥∥∥
HX

∥∥∥∥∫ kY(·, y) d(P(Y )− P(Y )n)(y)

∥∥∥∥
HY

= sup
kX∈KX

∥∥∥∥∫ kX(·, x) d(P(Xr)− P(Xr)n)(x)

∥∥∥∥
HX

sup
kY∈KY

∥∥∥∥∫ kY(·, y) dP(Y )(y)

∥∥∥∥
HY

+ sup
kY∈KY

∥∥∥∥∫ kY(·, y) d(P(Y )− P(Y )n)(y)

∥∥∥∥
HY

sup
kX∈KX

∥∥∥∥∫ kX(·, x) dP(Xr)n(x)

∥∥∥∥
HX

≤
√
A sup
kX∈KX

∥∥∥∥∫ kX(·, x) d(P(Xr)− P(Xr)n)(x)

∥∥∥∥
HX

+

√
A sup
kY∈KY

∥∥∥∥∫ kY(·, y) d(P(Y )− P(Y )n)(y)

∥∥∥∥
HY

.

Now,

φX
def
= sup

kX∈KX

‖
∫
kX(·, x) d(P(Xr)− P(Xr)n)(x)‖HX

and

φY
def
= sup

kY∈KY

‖
∫
kY(·, y) d(P(Y )− P(Y )n)(y)‖HY
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can be bounded by using Theorem 7 of [101], which yields that probability at least

1− δ
3

φX ≤

√
8Un(KX; {X(i)

r })
n

+
2
√
A√
n

+

√
18A

n
log

6

δ
(101)

and

φY ≤
√

8Un(KY; {Y (i)})
n

+
2
√
A√
n

+

√
18A

n
log

6

δ
. (102)

Using (101) and (102), with probability at least 1− 2δ
3

over the choice of {X(i)
r } and

{Y (i)}, we have

φ ≤
√

8AUn(KY; {Y (i)})
n

+
4A√
n

+

√
72A2

n
log

6

δ
+

√
8AUn(KX; {X(i)

r })
n

. (103)

Combining (100) and (103) provides the result.

The above lemma will be helpful to prove the sure-screening property of the pro-

posed approach in Theorem below.

Theorem 7.4.1. Let kX and kY be measurable kernels satisfying assumptions A1 and

A2. Define D := {(X(i), Y (i))}ni=1. Then we have

(P(X, Y ))n
(
D ∈ (X× Y)n : max

1≤r≤dn
|ω̂r − ωr| ≥ cn−κ

)
≤ 6dn exp

(
−
(
cn

1
2−k−Rn−6A

)2
162A2

)
, (104)

where

Rn
def
=
√

8AUn(KY; {Y (i)}) + sup
r

(√
8Un(K; {(X(i)

r , Y (i))}) +

√
8AUn(KX; {X(i)

r })
)
.

Furthermore if assumption A3 is also satisfied, then we have the following sure screen-

ing property:

(P(X, Y ))n
(
M ⊆ M̂

)
≥ 1−O

sne−
(
cn

1
2−k−Rn−6A

)2

162A2

 .

159



Proof. The proof of (104) follows from applying Lemma 1 to each r followed by a union

bound. In order to prove the sure screening property, if M * M̂, then there must

exist some r ∈M such that ω̂r < cn−κ. But, from the assumption A3, we have that

|ω̂r−ωr| > cn−κ for some r ∈M. Hence we have {M * M̂} ⊆ {|ω̂r−ωr| > cn−κ}, for

some r ∈ M. Define Γ = {maxr∈M |ω̂r − ωr| ≤ cn−κ}. Then we have Γ ⊂ {M ⊆ M̂}

and we have (P(X, Y ))n
(
M ⊆ M̂

)
≥ (P(X, Y ))n(Γ) and the following sequence of

inequality holds

Pr(Γ)=1− Pr(Γc) = 1− Pr

(
min
r∈M
|ω̂r − ωr| ≥ cn−κ

)
=1− snPr

(
|ω̂r − ωr| ≥ cn−κ

)
≥1−O

(
sn exp

(
−
(
cn−κ+1/2 − Rn − 6A

)2

162A2

))
.

where Pr
def
= (P(X, Y ))n. This completes the proof.

Note that an important quantity controlling the rates is the term Rn that in-

volves the Rademacher chaos complexities of K, KX and KY. [101] has shown that

for VC-subgraph classes of kernels, the Rademacher chaos complexity is bounded

above by a constant that depends on the VC dimension of the class. Examples

of such kernel classes in a d-dimensional Euclidean space include Gaussian, Lapla-

cian, Matern class etc. We refer the reader to [101] for a detailed discussion and

several more examples. In our setting, if K, KX and KY VC subgraph classes,

then Pr (max1≤r≤dn |ω̂r − ωr| ≥ cn−κ) ≤ O (dn exp(−c1n
1−2κ)) from which we observe

that the proposed approach enables us to handle the ultrahigh dimensionality of

log dn = o(n1−2κ).

In order to control the false positive rates, if we assume that maxr/∈M |ωr| =

O(n−κ), then with probability tending to 1, we have

max
r/∈M
|ω̂r| ≤ C(n−κ).
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for some constant C > 0. By applying Theorem 7.4.1, we have: Pr(M = M̂) =

1−O(1). This gives a model selection consistency result under the assumption that

there is a strict separation between the set of relevant and irrelevant variables.

We analyze below the cardinality of the set M̂.

7.4.1 Upper bounding the cardinality of M̂

A main reason for performing feature screening is to reduce the dimensionality from

exponential to something that can be handled such as polynomial in n (sample size).

In this section, we show that by appropriately selecting the bounded on the kernel,

one could make the cardinality of the estimated set grow polynomially in the sample

size. Specifically, we have the following theorem.

Theorem 7.4.2. Let kX and kY be measurable kernels satisfying assumptions A1 and

A2. Then there exists a constant c > 0 such that,

(P(X, Y ))n
(
|M̂| ≤ O(nκdnA)

)
≥ 1− dne−

(
cn

1
2−k−Rn−6A

)2

162A2 .

Proof. First we note that
∑dn

r=1 ωr ≤ dn maxr ωr,≤ CAdn = O(Adn). Now this

would imply that |{r : ωr > εn−κ}| cannot exceed O(nκAdn) for any ε > 0. Thus

on the set, Υ = {max1≤r≤d |ω̂r − ωr| ≤ εn−κ}, |{r : ω̂r > 2εn−κ}| cannot exceed

|{r : ωr > εn−κ}|, which would be bounded by O(nκAdn). If we take ε = c/2, we

have Pr(|M̂| ≤ O(nκAp)) ≥ Pr(Υ) and the conclusion follows from (104).

The main consequence of the above theorem is that when A = O(nτ/dn), for

some τ > 0, then we have |M̂| = O(nκ+τ ) and thus the size of the selected set is of

polynomial order in n. Compared to the initial case when the dimensionality is of

exponential order, this is a huge improvement in terms of feature selection. This also

gives us some insights on how to design or select kernels such that we can control the

cardinality of the selected feature set size.
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7.5 Iterative Screening procedures

Any screening method based on marginal computations suffers from the following

problems [42]: (1) any irrelevant covariate that is highly correlated with the set of

relevant covariates can be selected and (2) a marginally uncorrelated covariate that

is jointly correlated with the response might not be selected. We propose below two

approaches for handling such cases.

7.5.1 Method 1

We first consider the situation when important covariates are jointly correlated to the

response but only weakly correlated marginally. In order to deal with this situation,

we propose the following iterative method:

1. Compute sup-HSIC between each dimension and response and select the covari-

ates that have ωr > λt. Let M̂(t) be the set of selected covariates at round t

with X
M̂(t)

being the set of selected features.

2. Compute sup-HSIC between (Y, (X
M̂(t)

, Xj)) and marginal Y and (X
M̂(t)

, Xj))

for all j ∈ M̂c
(t). The selected feature set M̂′(t) consists of covariates j for which

the above calculated sup-HSIC is greater than the sup-HSIC between (Y,X
M̂(t)

)

and the marginal Y and X
M̂(t)

. Update M̂(t) = M̂(t−1) ∪ M̂′(t)

3. Repeat the procedure untill M̂(t) = M̂(t−1) or until |⋃t M̂(t)| > n.

In the above iterative approach, the threshold λt is set at a high value during the

initial rounds and reduced as the rounds progress. In practice, it could be selected

using cross-validation. Heuristics for selecting the threshold for such iterative methods

could be found in [42]. The above iterative approach would be able to detect covariates

that are marginally uncorrelated with the response (and hence not selected in initial

rounds), but are jointly correlated because we measure sup-HSIC between the joint

vector (X
M̂(t)

, Xj) and the response Y .
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7.5.2 Method 2

This approach is motivated by the iterative screening procedure proposed by [39]

which was based on residuals computed between the covariates and response under a

linear model assumption. It is not possible to directly adopt such a procedure in our

case, as the proposed approach is model-free.

We define X
M̂(t)
∈ Rn×|M̂(t)| to be the data matrix associated with selected covari-

ates at round t and and X
M̂c

(t)
∈ Rn×(p−|M̂(t)|) to be the data matrix corresponding to

the remaining covariates. We define the input residual matrix as the projection of

complement of the selected variables in a particular step onto the orthogonal comple-

ment space of the selected variables in that step:

X(t)
r = {In×n −X

M̂(t)
(X>

M̂(t)
X

M̂(t)
)−1X>

M̂(t)
}X

M̂c
(t)
.

The key idea of this approach is that the input residual matrix at a particular step

is uncorrelated with the space of selected variables in that step. Therefore covariates

that would have been selected because they are correlated with a true relevant co-

variate (and hence correlated with the response) could be avoided in this approach.

This leads to the following approach.

1. Calculate sup-HSIC for the original data set and let M̂(t) be set of selected

features at round t.

2. Compute the residual data matrix, X(t)
r = {In×n−X

M̂(t)
(X>

M̂(t)
X

M̂(t)
)−1X>

M̂(t)
}X

M̂c
(t)

and compute sup-HSIC between X(t)
r and the response to obtain the selected

feature set M̂′(t) and update M̂(t) = M̂(t−1) ∪ M̂′(t). Stop when M̂(t) = M̂(t−1) or

|⋃t M̂(t)| > n.

As in the case of Method 1, the threshold for the initial round is set at a high value

and subsequently lowered. Since the residual matrix at each step is not correlated with

the selected covariates, the covariates that are strongly correlated with any of true
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active covariates would not be selected. Also covariates that were actually correlated

to the response (but were not selected) would now be detected easily.

7.6 Experiments

In this section, we report experimental results on various synthetic and real-world

data sets. These experiments demonstrate the advantage of the proposed approach

(sup-HSIC-SIS) over various feature screening approaches. For the experiments on

synthetic data, we consider the data settings from [68] in order to make a direct com-

parison to their approach (as DC-SIS is the current state-of-the-art). For evaluation

on real-world data, we consider a very high dimensional gene data set and a multi-

label data set. In both cases our proposed approach performs significantly better

than the existing approaches.

7.6.1 Synthetic data – univariate response

We generated the following synthetic data: X ∼ N(0,Σ) where Σ ∈ Rd×d with entries

σi,j = 0.8|i−j|. We set n = 200 and p = 5000. We generate the response Y according

to three models

1. Y = c1β1X1X2 + c3β21(X12 < 0) + c4β3X22 + ε

2. Y = c1β1X1X2 + c3β21(X12 < 0)X22 + ε

3. Y = c1β1X1 + c2β2X2 + c3β31(X12 < 0) + exp(c4|X22||)ε

where βj = (−1)U(a + |Z|) where a = 4 log n/
√
n, U ∼ Bernoulli(0.4) and Z, ε ∼

N(0.1). Note that all models are non-linear in X12 and the third model is het-

eroscedastic.

We also generated a fourth data set, where the relationship between the response

and covariates is given by the following joint model for each r: P(Xr, Y ) ∝ 1 +

sin(lx) sin(ly) where the support is [−π, π] × [−π, π] and l is an integer. Note that
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when l = 0, Xr and Y are independent and as |l| increases they become dependent

wherein the joint distribution departs from the uniform at higher frequencies, making

it hard to detect from small sample sizes. We set l = 10 for r = 1, 2, 3, 4 and l = 0

for the remaining values of r (the response is dependent on the first four covariates

only).

We compared the following approaches:

• HSIC-SIS with kq(z, z
′) = 1/2 (‖z‖q + ‖z′‖q − ‖z − z′‖q) at q = 1, 0.5, 0.25

• sup-HSIC-SIS with K = {kq : 0 < q ≤ 2}(Note that q = 1 corresponds to

DC-SIS)

• sup-HSIC-SIS with a Gaussian kernel

• non-parametric independence screening (NIS) of [37].

Table 16 shows P (M∗ ⊂ M̂) and P (M∗ = M̂) computed over 500 experiments. Note

that the proposed sup-HSIC-SIS approach performs better than other approaches.

In some cases the Gaussian kernel performs better, while in other cases the distance

kernel performs better. The fourth model in particular clearly demonstrates the

advantage of the proposed approach (the other approaches are not able to detect the

specific type of dependency). Selecting a kernel for a given task is a more involved

problem which we hope to address in the future (a simple step in this direction would

be to consider a convex combination of base kernels).

7.6.2 Synthetic data – multivariate response

In this experiment, we deal with multivariate outputs. We generate X as before and

generate Y from a normal distribution with mean zero and conditional covariance

matrix ΣY |X given by σ11 = σ22 = 1 and σ12 = σ21 = σ(X). We consider two

correlation functions for σ(X) given by

1. σ(X) = sin(β>1 X) where β1 = (0.8, 0.6, 0, . . . , 0)
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Table 16: Probability of support recovery using the distance kernel and Gaussian
kernel: First four rows correspond to P (M∗ = M̂) (corresponding to models 1, 2, 3

and 4 respectively) and the last four rows correspond to P (M∗ ⊂ M̂). The very last
row corresponds to the average cardinality of selected set.

NIS q = 1 q = 1
2

q = 1
4

supq kq Gauss.

P (M∗ = M̂)
0.78 0.79 0.82 0.84 0.88 0.87
0.73 0.75 0.79 0.80 0.83 0.84
0.73 0.73 0.75 0.78 0.82 0.82
0.35 0.40 0.52 0.60 0.71 0.80

P (M∗ ⊂ M̂)
0.96 0.98 1.00 1.00 1.00 1.00
0.94 0.95 0.99 1.00 1.00 1.00
0.93 0.96 1.00 1.00 1.00 1.00
0.6 0.69 0 .72 0.75 0.92 0.98

|M̂|
10.1 7.4 5.4 4.4 4.2 4.2

2. σ(X) = {exp(β>2 X − 1)/ exp(β>2 X + 1)} where β2 = (2−U1, 2−U2, 2−U3, 2−

U4, 0, . . . , 0) with Ui drawn i.i.d. from Uniform[0, 1].

Note that for this experiment, the NIS method could not be used directly as it cannot

handle multivariate outputs. Hence, we only compared our approach to DC-SIS,

whose results are presented in Table 17. It is clear from Table 17 that sup-HSIC-SIS

performs better in this setup as well.

7.6.3 Synthetic data – Iterative screening

In this section, we examine the performance of the iterative screening procedures

(see Section 7.5). The experiments show that this method performs better than sup-

HSIC-SIS (using a Gaussian kernel). We use the synthetic data described by [39],

which consists of a linear model y = β>x + ε with β ∈ Rp and ε ∼ N(0, 1). We set

β = (5, 5, 5,−15
√
ρ, 0, . . . , 0) with p = 2000 and we draw n = 100 covariates x from

a mean zero normal distribution with Σd×d = σij, with entries σii = 1 for i = 1, . . . , p

and σi4 = σ4i =
√
ρ for i 6= 4 and σij = ρ for i 6= j, i 6= 4 and j 6= 4. Note that all
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Table 17: Probability of support recovery using the distance kernel and Gaussian
kernel. First two rows correspond to P (M∗ = M̂) and the last three rows correspond

to P (M∗ ⊂ M̂). The very last row corresponds to the average cardinality of selected
set over all experiments.

q = 1 q = 1
2

q = 1
4

supq kq Gaussian

P (M∗ = M̂)
0.79 0.85 0.86 0.91 0.90
0.77 0.81 0.85 0.87 0.89

P (M∗ ⊂ M̂)
0.97 0.99 1.00 1.00 1.00
0.96 0.97 0.98 1.00 1.00

|M̂|
9.4 6.7 5.2 4.3 4.4

Table 18: Advantage of iterative methods over sup-HSIC-SIS. The values reported
are estimates of P (M∗ ⊂ M̂) over 1000 trials.

ρ 0 0.1 0.5 0.9
sup-HSIC-SIS 0.98 0.89 0.54 0.42

Method 1 1.00 1.00 0.99 0.95
method 2 1.00 1.00 1.00 1.00

predictors except x4 are equally correlated with correlation coefficient ρ. In addition,

x4 has correlation coefficient ρ with all other predictors and is independent of y, but

x4 belongs to the active set when ρ 6= 0 (we vary ρ among the set {0, 0.1, 0.5, 0.9}).

Both iterative algorithms completed 2 iterations before attaining the stopping

criterion (the threshold parameter was set by cross-validation). We repeat the exper-

iment for 1000 trials and report the probability of including all correct variables in

the estimated set P (M∗ ⊂ M̂) (see Table 18).

As Table 18 shows the non-iterative version performed poorly, while both iterative

algorithms performed well. Method 1 performed slightly worse compared to Method

2 because it has to deal with multivariate sup-HSIC evaluations in the second step,

which is relatively hard to do with less samples.
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7.6.4 Gene array data set

We analyze the performance of the feature selection methods on the Affymetric

GeneChip Rat Genome Array data set. The dataset, previously used in [89] and

[56], consists of 120 rat subjects from which 18, 975 different probes sets (genes) from

eye tissue were measured. Following [56], the intensity values were normalized and

gene expression levels were analyzed on a logarithmic scale. Specifically, we are in-

terested in finding the genes that are most related to TRIM32 gene, the reason being

that this gene was recently found to cause Bardet-Biedl syndrome, a topic of inter-

est in the biological community. The data set is highly challenging with n = 120,

p = 18, 975, and a non-linear relationship between the covariates and the response.

We used sup-HSIC-SIS with Gaussian kernel to select the important genes and

compared it to BA-HSIC, NIS and DC-SIS methods. BA-HSIC cannot actually handle

high dimensionality because of its design; we just use it for comparison purpose. For

the experiment, we used 100 training samples to select the features (genes), and fitted

an additive model (with functions in Sobolev classes) using the selected features, and

compared the predictive error (PE) on the remaining 20 points. BA-HSIC performs

poorly in this regime (small n, large d) and fails to select many important genes

that are selected by all the other methods (in addition to exhibiting worse predictive

accuracy). Both NIS and DC-SIS select 8 genes, whereas the proposed approach

selects 7 genes. The predictive accuracy of the proposed approach is smaller implying

that maybe the additional gene selected by the other methods is not actually necessary

to explain the response, a potential advantage to biologists.

7.6.5 Multi-label classification data set

In our final experiment, we evaluate the performance of sup-HSIC-SIS (using Gaussian

kernel), DC-SIS and BA-HSIC on 4 different yahoo multi-label data sets: arts, busi-

ness, education and health [114]. The task is to select features first using the above
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Table 19: Gene data set: Cardinality of selected set and predictive error (PE) under
an additive model.

Method Cardinality PE
BA-HSIC 12.32 4.32

NIS 7.73 0.47
DC-SIS 7.21 0.45

sup-HSIC-SIS 6.76 0.39

Table 20: Test set classification error on the multi-label data sets. The number in
the bracket correspond to the cardinality of selected feature set.

Data set BA-HSIC DC-SIS Proposed
Arts (967) 25.87 (658) 14.32 (435) 9.54

Business (1231) 26.32 (743) 15.64 (611) 10.11
Edu (1123) 21.02 (643) 11.31 (533) 9.21

Health (1045) 22.54 (764) 13.42 (564) 10.74

three methods and perform classification in the next step using one-vs-all multi-label

SVM approach. For each of the data sets, the number of samples was set at n = 1000

(with balanced label proportions). The dimensionality of (X, Y ) for the data sets are

(17973, 19), (16621, 17), (20782, 14), (18430, 14) respectively. Table 20 shows the clas-

sification accuracy and the cardinality of the selected features for different data sets.

The proposed approach achieves better classification accuracy with a fewer number

of features.
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CHAPTER VIII

CONCLUSION

The aim of this chapter is to summarize and reiterate the contributions made in this

thesis. We also discuss possible extensions of the proposed approaches. Furthermore,

continuing along the lines of the thesis, we outline concrete problems that are similar

in sprit, to the main theme of the thesis.

8.1 Summary and Key Contributions

In Chapters 2 and 3, we developed a novel framework for estimating margin-based

risks using only unlabeled data. We show that it performs well in practice on sev-

eral different data sets. We derived a theoretical basis by casting it as a maximum

likelihood problem for Gaussian mixture model followed by plug-in estimation.

Remarkably, the theory states that assuming normality of fθ(X) and a known

P(Y ) we are able to estimate the risk R(θ) without a single labeled example. That is

the risk estimate converges to the true risk as the number of unlabeled data increase.

Moreover, using uniform convergence arguments it is possible to show that the pro-

posed training algorithm converges to the optimal classifier as n → ∞ without any

labeled data.

The results in Chapter 2 are applicable only to additive (with both linear and non-

linear components) classifiers, which form an extremely important class of classifiers

especially in the high dimensional case. In the non-linear classification scenario, it

is worth examining if the CLT assumptions on the mapped high-dimensional feature

space could be used for building non-linear classifiers via the kernel trick. On a more

philosophical level, our approach points at novel questions that go beyond supervised
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and semi-supervised learning. What benefit do labels provide over unsupervised train-

ing? Can our framework be extended to semi-supervised learning where a few labels

do exist? Can it be extended to non-classification scenarios such as margin based

regression or margin based structured prediction? When are the assumptions likely

to hold and how can we make our framework even more resistant to deviations from

them? These questions and others form new and exciting open research directions.

In Chapter 5, We proposed a two-step estimation procedure based on a specialized

random effects model for dealing with joint sparsity regularization and demonstrated

its advantage over the group-Lasso formulation. The proposed approach highlights the

fact that enforcing interesting structure on covariance of the coefficients is better for

obtaining joint sparsity in the coefficients. Future work also includes (i) relaxing the

assumptions made in the theoretical analysis, (ii) exploring more complex models like

imposing group-mean structure on the parameters for additional flexibility, (iii) other

additive decomposition of the covariance matrix with complementary regularizers and

(iv) using locally-smoothed covariance estimates for time-varying joint sparsity.

We proposed a framework for multi-output prediction based on parsimonious mod-

eling on the output space in Chapter 4. By selecting a subset of the output dimensions

(landmarks) and focusing on modeling the dependency of that subset of y on x, we

reduce the sample complexity considerably. This is most noticeable when the out-

put dimensionality is high and the different component feature high correlation. Our

experiments indicate that the proposed method outperforms standard multi-output

methods in both the classification and regression scenarios.

In Chapter 6, we proposed a simple framework for incorporating similarity in

feature space and space or time into sparse coding. We also propose in this chap-

ter modifying sparse coding by replacing the lasso optimization stage by marginal

regression and adding a constraint to enforce incoherent dictionaries. The resulting
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algorithm is significantly faster (speedup of about two-orders of magnitude over stan-

dard sparse coding). This facilitates scaling up the sparse coding framework to large

dictionaries, an area which is usually restricted due to intractable computation.

This work leads to several interesting follow-up directions. On the theoretical

side: (i) local convergence of proposed approach is interesting to analyze and (ii) it

is also interesting to explore tighter generalization error bounds by directly analyzing

the solutions of the marginal regression iterative algorithm. Methodologically, it is

interesting to explore: (i) using an adaptive or non-constant kernel bandwidth to get

higher accuracy, and (iv) alternative incoherence constraints that may lead to easier

optimization and scaling up.

We proposed an RKHS embedding approach for feature screening of ultrahigh

dimensional data in Chapter 7. The proposed approach is model-free and works with

multivariate and general output spaces such as graphs or rankings. We prove the

feature screening consistency of the proposed approach and empirically demonstrated

its capability in handling ultrahigh dimensional regimes on various synthetic and

real-world data sets. Furthermore, we proposed two iterative screening methods to

counter some problems exhibited by the marginal screening based feature selection

approaches.

8.2 Related open problems

We conclude the thesis by outlining two concrete open questions that arise naturally

from the work described in this thesis.

8.2.1 Joint Regularization for Multiple Low-rank Estimation

Group-Lasso has been introduced in the vector regression context as a way of ex-

ploiting shared structure in multiple vector regression situation. One could examine

if a similar extension of the approach proposed in Chapter 5, could be used in the

context of trace-regression, where we group singular values at the same level of several
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matrices to enforce joint low-rank structure. In order to analyze this particular pro-

cedure, one would require obtaining novel tail bounds beyond than the ones existing

in random matrix theory.

8.2.2 Sparse-additive Near-separable Nonnegative Matrix Factorization

Non-negative matrix factorization could be seen as a method of learning undercom-

plete features of a data sample, that are non-negative.The proposed landmark se-

lection approach, in Chapter 4. could essentially be used for provably computing

non-negative matrix factorization under near-separability assumption. An interest-

ing investigation is to develop a non-parametric version of non-negative matrix fac-

torization under sparse additivity and near-separability assumption for extracting

non-linear features from the data set.
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